
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DTIC
ELECTE
JAM 0.1995!

Q *h*&#$*

ANALYSIS, DESIGN AND IMPLEMENTATION OF A
DATABASE SYSTEM FOR THE SYSTEMS MANAGEMENT

CURRICULUM OFFICE

by

Sufian I. Althawadi
Barry D. Hubbard

September 1994

Thesis Advisor:
Co-Advisor:

William B.Short
Shu Liao

Approved for public release; distribution is unlimited.

19950109 089

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
leadquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302 and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Lerne blank) REPORT DATE
September, 1994

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE Analysis, Design and Implementation of a
Database System for the Systems Management Curriculum Office

6. AUTHOR(S) Sufian I. Althawadi and Barry D. Hubbard

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING RGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the authors and do not reflect the official policy (
position of the Department of Defense or the U.S. Government.

12a. DISTRD3UTION/AVABLABDLITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRD3UTION CODE
A

14. SUBJECT TERMS Database management system (DBMS), DBMS design, DBMS development,
DBMS implementation, PARADOX ver 4.0, systems management database system (SMDS)

13. ABSTRACT (maximum 200 words) The Systems Management Curricular Office at the Naval Postgraduate School is
burdened with the enormous administrative task of managing files for over 500 students. In a time of drastic military
downsizing and funding cuts, this task will require more work of a smaller staff with less money. The burden of paper
management could be lessened through automation of record keeping, while increasing efficiency and effectiveness.
Valuable time for the students could be saved through elimination of excessive paperwork which they were required to
prepare. Based on requirements from the Systems Management Curricular Office, this thesis designs and implements a
database management system. The primary objective is to allow the incoming class of students to enroll using this system
instead of traditional paper forms, enabling the staff to focus on more non-administrative tasks. This system will store,
sort and compare data relevant to all students while minimizing the need to maintain hardcopy files. Additionally, the
staff will be able to query reports and generate letters with niinimal effort . The system is also analyzed to determine
possible enhancements that could be added in the future. The Systems Management Database Systems (SMDS) is
designed using Borland's PARADOX version 4.0.

17. SECURITY
CLASSD7ICATION OF
REPORT

Unclassified

18. SECURITY
CLASSDTCATION OF
THIS PAGE

Unclassified

19. SECURITY
CLASSD7ICATION OF
ABSTRACT

Unclassified

15. NUMBER OF
PAGES 142

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

ANALYSIS, DESIGN AND IMPLEMENTATION OF A DATABASE SYSTEM FOR THE
SYSTEMS MANAGEMENT CURRICULUM OFFICE

Sufian I. Althawadi
First Lieutenant, Bahrain Army

B.S., University of Bahrain, 1987

Barry D. Hubbard
Lieutenant Commander, United States Navy

B.S. U.S. Naval Academy, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

Authors:

Approved by:

NAVAL POSTGRADUATE SCHOOL
September 1994

<gu*y
„
Barry Hubbard

\AiUAJUS^ 4^'C~) ,
William B. Short, Thesis Advisor

/ Shu Liao, Co-Advisor

David R. Whipple, C1Ä
Department of Systems Management

in

Accession For ? OTIS 6RA&I
MIC TAB O

Jttstajticatifta -,

AvalLability Q*$g*

list i
/'

IV

ABSTRACT

The Systems Management Curricular Office at the Naval Postgraduate School is

burdened with the enormous administrative task of managing files for over 500 students.

In a time of drastic military downsizing and funding cuts, this task will require more

work of a smaller staff with less money. The burden of paper management could be

lessened through automation of record keeping, while increasing efficiency and

effectiveness. Valuable time for the students could be saved through elimination of

excessive paperwork which they were required to prepare.

Based on requirements from the Systems Management Curricular Office, this

thesis designs and implements a database management system. The primary objective is

to allow the incoming class of students to enroll using this system instead of traditional

paper forms, enabling the staff to focus on more non-administrative tasks. This system

will store, sort and compare data relevant to all students while minimizing the need to

maintain hardcopy files. Additionally, the staff will be able to query reports and generate

letters with minimal effort . The system is also analyzed to determine possible

enhancements that could be added in the future. The Systems Management Database

Systems (SMDS) is designed using Borland's PARADOX version 4.0.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. SYSTEMS MANAGEMENT DATABASE SYSTEM (SMDS) 2
C. CHAPTER DESCRIPTIONS 2

II. SYSTEM DEVELOPMENT (GENERIC) 3

A. PHASE I: DEFINITION PHASE 3

1. Form Team 3

2. Define Problem 3

3. Establish Scope 3

4. Assess Feasibility 4

B. PHASE II: REQUIREMENTS PHASE 4

1. Create Data Model 4

2. Determine Update, Display and Control Mechanisms 4
3. Interview Users 4

4. Use Prototypes 5

C. PHASE III: EVALUATION PHASE 5

1. Select Systems Architecture 5

2. Reassess Feasibility 5

3. Reassess Requirements 5

D. PHASE IV: DESIGN PHASE 6

1. Develop Database Design 6

2. Develop Application Design 6

E. PHASE V: IMPLEMENTATION 7

1. Construct Database 7

2. Build Application 7

VII

3. Testing 7

4. Installation 7

5. Maintenance g

III. SYSTEM DEVELOPMENT (SMDS) 9

A. PHASE I: DEFINITION PHASE 9

B. PHASE II: REQUIREMENTS PHASE n

C. PHASE III: EVALUATION PHASE 15

D. PHASE IV: DESIGN PHASE 16

E. PHASE V: IMPLEMENTATION 18

IV. CONCLUSIONS 21

REFERENCES 23

APPENDIX A. Entity Relation Diagram 25
APPENDIXB. Data Dictionary 27

APPENDIXC. Data Flow Diagrams 49

APPENDIX D. Update, Display, and Control Mechanism 57
APPENDIXE. Relational Diagram 67

APPENDIX F. Menus, Forms, and Reports 69

APPENDIX G. Logic for Menus and Submenus gj

INITIAL DISTRIBUTION LIST 131

VIII

I. INTRODUCTION

A. BACKGROUND

The Naval Postgraduate School (NPS) was established to serve the educational

needs of the Navy. Its specific mission is to provide advanced professional studies at the

graduate level for military officers from all services as well as other nations. The NPS is

fully accredited and confers master's, engineer's and doctor's degrees.

The NPS is divided into eleven academic departments and four interdisciplinary

academic groups. The Systems Management (SM) curriculum is made up of one

Educational Technician, one secretary, an assistant Curricular Officer, a Curricular

Officer and 562 student Officers. The administrative burden of manually tracking

information on all these students is inefficient and requires excessive manpower. The

focus of the staff has become full time management of administrative tasks related to

students. Additionally, the number of students supervised has grown because of the

Information Technology Management curriculum being absorbed into Systems

Management curriculum during the summer quarter of 1994.

Students are required to fill out numerous forms when first reporting to the NPS.

These forms range from personal locator cards to next of kin notification cards, class

schedules, course matrices and list of dependents. There are numerous redundancies.

Difficulties have been noted by the SM curricular office staff in locating specific student

forms and the information on the forms has often been incomplete or inaccurate.

The Curricular Officer, Systems Management department, requested a feasibility

study with regards to automating the maintenance of student information and building a

supporting database. It was desired that students would log on to a single terminal to

input all their required data. This would enable the staff to track, sort and check data

from a single source. The system would be required to generate a limited number of

reports, letters, and lists while storing information for historical reference. This thesis

proposes a system designed to accomplish these tasks.

B. SYSTEMS MANAGEMENT DATABASE SYSTEM (SMDS)

The Systems Management Database System (SMDS) was designed to ease the

administrative burden of the Curricular Office staff while making storage and retrieval of

vital information easier and more efficient. Additionally, the ability to sort like

information for reports and similar tasks further streamline the tasks performed. To

accomplish this we interviewed the office staff to determine their requirements.

Borlands PARADOX for Windows, version 4.0, was used to build this system.

Many iterations and revisions were accomplished through recommendations and updates

from the Systems Management office staff. SMDS is menu driven, designed to mimic

DOD forms in as logical a fashion as possible, and designed to be user friendly for those

without background in using PARADOX.

C. CHAPTER DESCRIPTIONS

Chapter E is a discussion of the generic System Development methodology

considered in developing this automated information system.

Chapter m will discuss the SMDS System Development process and the phases

discussed above.

Chapter IV will discuss conclusions, discussions and recommendations. This area

will focus on improvements and possible areas for growth for the system.

Appendices A through G provide support and substantiation of requirements, a

data dictionary, ObjectPAL text and data flow diagrams.

II. SYSTEM DEVELOPMENT (GENERIC)

The SMDS was developed using the five standard phases of the Systems

Development Life Cycle (SDLC). The five phases are the definition phase, requirements

phase, evaluation phase, design phase, and implementation phase. This chapter will

discuss the generic requirements of each phase.

A. PHASE I: DEFINITION PHASE

1. Form Team

Simply stated, the definition phase determines what a system is to do. The initial

action is to form a team of individuals to build the system. Attention should be paid to

team members' strengths and levels of experience. The team should be large enough to

accomplish the tasks at hand, yet not so large as to unduly influence the development

process.

2. Define Problem

After the team has been formed, the problem to be solved must be defined. A

problem is a perceived difference between what is and what it ought to be. Since

problems are perceptions, individual definitions of the problem may vary greatly. The

team must reach some agreement as to a definition and establish how far to go with a

solution.

3. Establish Scope

Establishing the scope of the problem is defining the limitations of how the team

can help to solve a specific portion of the defined problem. The users may want too

many features or possibly not enough. The task of defining the scope establishes

proposed parameters for both developers and users.

4. Assess Feasibility

After the team has been formed, the problem defined and the scope established it

is necessary to determine the overall feasibility of the project. Areas to consider are cost,

time, and schedule requirements.

At the end of the definition phase the team should report back to the client for

feedback. Improvements or refinements can be made at this time.

B. PHASE H: REQUIREMENTS PHASE

1. Create Data Model

A requirements phase is necessary to build on the specifics laid out in the

definition phase. The expansion of the definition phase is done through use of users

requirements and data models. The users data model describes the objects that are to be

stored in the database and denotes their relationships to one another and their structure.

The requirements data model represents the basis for database design. This should be a

"big picture" of input documents, processes required, and general output desired by the

user.

2. Determine Update, Display and Control Mechanisms

Additionally, within the requirements phase, it is necessary to establish functional

components or mechanisms to update, display, and control the database. This will define

the means by which the user will maintain a current database and retrieve useful

information from it.

3. Interview Users

The ultimate authority on application requirements are always the users. The

development team will use its experience, background, and knowledge to help users form

their requests regarding inputs, outputs, and constraints into plausible needs.

4. Use Prototypes

Mock-ups of forms, reports, and an input menu can be developed to help users

envision the future product. The purpose of these prototypes is to open an avenue for

dialogue between the team and the users. With appropriate feedback the team may be

able to extract additional requirements from the users and further refine the system in its

early stage.

The result of this phase could be a data-flow diagram, entity-relationship diagram,

object diagram, various prototypes, summary of update, display, and control mechanism

or any combination of these.

C. PHASE HI: EVALUATION PHASE

1. Select Systems Architecture

The evaluation phase begins after all the data collected in the requirements phase

is compiled and considered. During this phase a systems architecture should be selected

and alternatives should be considered to ensure the ideal match is made for the user. The

system initially selected may be excluded due to new information exposed in the

requirements phase.

2. Reassess Feasibility

After deciding the specifics of the hardware to be used, a reassessment of its

feasibility should occur. This reassessment should be more specific than that considered

in the definition phase. During the reassessment considerations should include expenses,

overall scope, and timing as well as any new requirements.

3. Reassess Requirements

If it appears any of the evaluated areas cannot be achieved by the development

team, the users need to be notified and an effective feedback loop should ensure the

project becomes achievable. It may be as simple as an adjustment to schedules, tweaking

the budget or a more major reduction in physical requirements. Another consideration

may be the possible deferral or exclusion of actions.

D. PHASE IV: DESIGN PHASE

1. Develop Database Design

Application and database design will take place within the design phase. Here,

the task is to meet the users' specific needs through designed programs and procedures;

specifications for hardware are also written during this phase. Files are established

(relation tables), data items (attributes) are defined, and relationships are correlated

between objects. Relationships between objects can be simple one-to-one, one-to-many

or more complex many-to-many. Normalization should be conducted to ensure there are

no anomalies between relations. Elimination of anomalies occurs by splitting the relation

into two or more separate relations, each containing a single theme. Objects may be a

basic, simple object or a grouping of objects called an aggregation.

2. Develop Application Design

Within the design phase, the database and applications are created. An

application is a collection of menus, forms, reports, and queries that enable users to

interact with and update the system. Mechanisms by which the system is to be

implemented and updated will be developed and the program's logic will be decided.

This is the ideal time to detect errors prior to building the system. Beyond this point

finding errors will be difficult and correcting them expensive.

The output of this design phase should be a relation diagram, relation definitions,

menu hierarchy, and pseudo code for each menu and sub-menu.

E. PHASE V: IMPLEMENTATION

1. Construct Database

The final phase is implementation. The task at hand is to build the system

according to the specifications decided to this point. Users' needs must be isolated at this

juncture. Any further requirements will adversely affect the systems development.

Programming usually occurs at this point. Using the data definition subsystem of the

engineered DBMS, the design is converted to fit the user's requirements. The goal is to

construct the system while strictly adhering to the design. Hardware is installed,

programs are developed, procedures are documented, and office staff and users are

trained.

2. Build Application

Forms, reports, and menus need to be built through application development, as

well as construction of transaction processing programs.

3. Testing

An often ignored area of implementation is testing. Testing verifies that any

errors which may have been created in the modeling or implementation phases are

discovered, and that the system performs those functions as desired by the user. This

testing can be accomplished in a number of ways. The testing should not be isolated to a

specific phase; rather it should be distributed throughout the entire project as it

progresses. The types of testing vary greatly depending on the complexity of the system

and its developers.

4. Installation

Installation is one of the final steps in implementation. Installation can occur in

either of four strategies. The first of these is the parallel strategy, whereby both the old

and new systems operate side by side until it is proven that the new system is working

properly. The second is the pilot strategy, where only a small piece of the function or

office is converted to the new system. The new system operates in one area with the old

system remaining in place until conversion occurs later. Phase-in is the third strategy.

Here, the old system is gradually replaced by the new system. The final strategy is direct

cutover. Conversion takes place in one fell swoop, with the new system replacing the old

all at once. [James A. Senn, 1990, Information Systems in Management].

User and operator guides and documentation are generated as well in this phase.

Training is recommended to ensure a smooth transition from the old system to the new

one. The training should be complete such that users and system administrators are

familiar with what the system can and will do for them.

5. Maintenance

Maintenance requires the verification of three areas:

a. Correction of errors discovered during system operation.

b. Implementation of modifications to the system due to user requests or

changes in requirements after implementation.

c. The implementation of performance enhancements and improvements

to user interfaces.

It is important to maintain the system with minimal disruption to the users;

therefor, a "high degree of data independence" is desired so as to insulate applications

from the physical organization of the database .

III. SYSTEM DEVELOPMENT (SMDS)

A. PHASE I: DEFINITION PHASE

The development team was comprised of two military officers; Sufian Althawadi,

an Army Lieutenant from Bahrain and Bany Hubbard, a Navy Lieutenant Commander in

the U.S. Navy. Both were students in the Naval Postgraduate School's Information

Technology Management curriculum.

A problem of locating information on students at the Naval Postgraduate School

was noted by the Systems Management Curriculum Officer, during the 1994 school year.

Additionally, the hours expended by the curricular office staff tracking volumes of

paperwork relating to students was excessive as was storing and cataloging the paper.

With the trend of downsizing in today's Navy, the desire to be able to accomplish

equivalent tasks with less personnel, heightened the interest in this area.

As a consequence of the above, the SM curricular officer asked that a feasibility

study be conducted to design a Database Management System (DBMS) that could be

updated by individual students, maintained by one office/staff member, be available to all

students, possess sufficient security so as to observe a student's privacy of information,

and be installed on a single IBM compatible 386 or 486 P.C..

The scope of the issue was to build a DBMS that could replace numerous forms,

cards and records required at initial student check-in. If all these bits of information

could be stored in conjunction with information regarding classes, grades, schedules, and

the Military's physical readiness test (PRT) then the task of managing this information

could be much more efficient. Reports would be ready made, letters would automatically

be generated, and greater attention could be paid to students regarding their day-to-day

issues.

The goal was to build a system that would utilize the following files:

• STUDENT

• MILITARY

• EDUCATION

• SPOUSE

• CHILDREN

• FACULTY

• COURSES

• SCHEDULE

• CURRICULUM

• THESIS

• DEPARTMENT

• ADD/DROP

• PHYSICAL

Money was limited due to Navy-wide constraints on funding. In as much as

money was tight a dedicated P.C. could not be made available. Instead of a stand-alone

computer, the SMDS will share a P.C. with the newly installed voice mail system. The

total cost from inception to implementation/testing is $5000.00 with annual maintenance

expenses forecast not to exceed $1500.00. If the Navy could purchase a unique P.C. for

this system it would add an additional $5000.00 to the estimate above. It was determined

that, for the cost of an upgrade to the 486/DX 66MHz IBM compatible P.C.'s with 8MB

memory and time related to developing this DBMS, it could be possible to design the

system within the time specified.

Benefits to be gained from SMDS include:

1. Savings of numerous man-hours from automation.

2. Time savings for curriculum staff to perform other functions by speedier

retrieval of information.

10

3. Paper reduction, resulting in cost savings as well as decreasing storage space

required.

4. Quality of data entries can be reviewed more easily resulting in higher integrity

of data.

5. Increased ability to sort, calculate, and conduct statistical analysis of data

stored.

B. PHASE H: REQUIREMENTS PHASE

A decision of a database development style was necessary to begin. The choices

were Top-Down, Bottom-Up, or a Hybrid approach which uses techniques from each

style. Top-Down development was selected because entities in the Entity-relationship

Diagram (E-R) were developed with a particular organizational structure in mind.

The overall goal of those interviewed was to capture the information necessary to

eliminate excessive paperwork retention by the staff. Additionally, quicker, more

efficient data retrieval, and sorting of information regarding each student was desired.

User interviews were conducted with each member of the Systems Management (SM)

curricular Office staff that will be involved in the use of the system. Those interviewed

were the Educational Technician (Ed. Tech.); the Assistant Curricular Officer and the

Curricular Officer. Questions posed to the SM curricular office staff were geared to

solicit improvements to their quality of life in the work place while improving overall

efficiency. Student information was often out of reach or difficult to retrieve for the staff.

If a student's file was not where it should be, there were no back up files available. Most

student information could not be compared unless it was part of the NPS FOCUS system.

Even as a part of the FOCUS system, letters of caution or reprimand could not be tied

together, nor automatically generated. Additionally, the PRT results and grades had to be

calculated using tables, height/weight charts, and conversion factors.

11

The staff specifically requested the following reports:

• Student Graduate Report

• Summary of Students by:

• Country

• Service

• Notification of Academic Performance

• Notification of Academic Improvement

• Notification of Academic Probation

• Continuation of Academic Probation

The curricular staff additionally desired a system in which students would carry

their own diskette that would represent their individual file. The student would be able to

go to any P.C. with PARADOX for Windows installed and enter their own data. These

diskettes would then be turned over to the SMDS systems administrator to update the

master SMDS database.

Using the experience of the design team, further user requirements were

developed by; (1) determining the reports and documents most utilized and (2) examining

the properties which needed to be captured when modeling those reports and forms with a

focus on eliminating redundancy. The forms students must fill-in at the initial

registration range from a locator card, next-of-kin information, dependent information,

education history, and the list goes on. The forms are not all produced at NPS, and are,

for the most part generic. Because of their non-specific nature, a great deal of

redundancy exists between documents. Within the DBMS the system will help identify

and hopefully eliminate this redundancy. Subtle changes to these forms were made for

ease of use, elimination of redundancy as well as for overall esthetics.

Through numerous interviews with the above personnel the following twenty

objects or entities were decided upon. These objects represent the most specific entities

possible and are discussed below.

• STUDENT

12

MILITARY

EDUCATION

SPOUSE

SPOUSE ACTIVE DUTY

CHILDREN

FACULTY

COURSES

SCHEDULE

WEEKDAY

PERIODS

STUDENT SCHEDULE

CURRICULUM

CURRICULUM COURSES

REQUIRED COURSES

THESIS

PHYSICAL

PHYSICAL CHART

DEPARTMENT

SUBSPECIALTY

The STUDENT entity is the central object. STUDENT will hold all the personnel

information to include a scanned photo of those enrolled in the SM curriculum. This will

act as a lookup table for all other tables, in other words, all information should be entered

in this table first to facilitate the use of all other tables. MILITARY is a weak entity of

STUDENT containing professional information tied to a student's military career, past,

present, and future. A weak entity is an entity that is dependent upon another entity or a

"parent" for its own identity. EDUCATION is a weak entity of STUDENT and collects

information related to a student's past education. SPOUSE is a weak entity of

STUDENT and contains the spouse's personal data and addresses where they reside.

13

SPOUSE ACTIVE DUTY is a weak entity of SPOUSE and discusses the likelihood

that a student's spouse is also an active duty member of the armed forces, containing

personnel data unique to their military affiliation. CHILDREN is a weak entity of

STUDENT and are those dependents of the student. It records data relating to their date

of birth and gender. FACULTY identifies instructors at the Naval Postgraduate School

and vital data relating to their ID number, department code, office room, phone

number(s), and E-mail address. COURSES is an entity describing course number, title,

and credits for those classes taught at NPS, much like the NPS catalog. SCHEDULE is

described by course number, segment number, faculty ID and room number in which the

course is taught on a quarterly basis. WEEKDAY is a weak entity of SCHEDULE and

contains the date the course is offered. PERIODS is a weak entity of WEEKDAY and

lists the periods in which the class is offered. STUDENT SCHEDULE is a weak entity

of STUDENT made up of student SSN, course number, segment number, quarter and

course type for the current quarter only. The entity CURRICULUM denotes curriculum

number, title; whether it is 3000 or 4000 level class; the number of quarters required for

that curriculum; and the academic associate, subspecialty and curricular office codes

associated. CURRICULUM COURSES is a weak entity of CURRICULUM and

contains curriculum number and quarter ordered for a particular curriculum. REQUIRED

COURSES is a weak entity of CURRICULUM COURSES and is distinguished from

other courses in that they are necessary for completion of a specific degree. REQUIRED

COURSES lists curriculum number, curriculum quarter and course number and type

(other courses would be optional or elective in nature). THESIS is a weak entity of

STUDENT that documents the thesis topic, thesis advisor and the students forwarding

address to send them their masters degree. PHYSICAL is weak entity of STUDENT

made up of statistics documenting a student performance on the military physical

readiness test (PRT). PHYSICAL has no true relation to the pursuit of a masters degree,

but it is a requirement for active duty students to pass a PRT on a twice per year basis.

PHYSICAL CHART is a weak entity of PHYSICAL that stores the PRT point chart that

14

compares actual sit-up, push-ups, run and swim results with point totals. DEPARTMENT

is an entity that is described with a department code and name and includes all academic

departments. SUBSPECIALTY is an entity describing subspecialty codes correlating to

individual graduate degrees.

The above entities are displayed as an E-R diagram in appendix A. The entity

and domain definitions are displayed in the data dictionary in appendix B.

The collection of data flow diagrams are displayed in appendix C. These diagrams

describe the overall flow of the information in the system, and the lower level processes.

Attributes and functions of the SMDS are listed with summaries of update, display and

control mechanism in appendix D by input, output and process notes.

The SMDS should have a back-up tape drive to ensure information integrity and

needs to be backed up on a daily basis for database files, or quarterly basis to down load

previous quarters information and up load the next quarters. The SMDS should also be

equipped with a restore function that enables the system administrator to reestablish all

data lost due to catastrophe, operator error or virus. Restoration can be done globally or

for individual database files.

C. PHASE HI: EVALUATION PHASE

The system selected was a 486 IBM PC compatible. This PC was selected

because it was readily available to the SM staff and funding constraints prohibited any

large expenditures. The system is currently located in the SM office. Because of the

single PC operation it was decided the DBMS would reside on the PC and each student

would have their own disk representing their individual student file. The SM Ed. tech.

will act as systems administrator.

During a reassessment of requirements it was decided that the yet-to-be

announced new PRT format would not be included. As a result, a height weight chart

would be used in lieu of the default percent body fat calculations.

15

D. PHASE IV: DESIGN PHASE

Logical database design centers around the primary entity STUDENT. The

entities MILITARY and PHYSICAL are weak entities of STUDENT with a one-to-one

relationship. In both cases the key of the STUDENT entity (SSN) is stored in the

MILITARY and PHYSICAL entities. PHYSICAL CHART is a weak entity of

PHYSICAL with a one-to-many relationship. PHYSICAL CHART is used to lookup

values (Curl-ups, Push-ups, Run and Swim) related to the PRT. The entities THESIS,

SPOUSE, CHILDREN and EDUCATION are also weak entities of STUDENT but with a

one-to-many relationship. Here, the key of STUDENT is stored in these weak entities.

ACTIVE DUTY is a weak entity of SPOUSE utilizing the spouses SSN as its key, with

its primary attributes being Rank, Service and home address. The SSN in all the weak

entities listed above also represents a foreign key to those entities. The data in the

STUDENT entity drives all other entities and must be completed before effectively

utilizing the weak entities.

The CURRICULUM entity has Curr. No and P Code as its key and has a

one-to-many relationship with the entity SUBSPECIALTY. SUBSPECIALTY's key is P

Code with an attribute of a title. CURRICULUM COURSES is a weak entity of

CURRICULUM with a one-to-many relationship with CURRICULUM, and has Curr. No

(foreign key) and order as its composite key. CURRICULUM COURSES is linked with

the entity COURSES by the relation REQUIRED through a many-to-many relationship.

The relation REQUIRED has as its keys Order, Curr. No. and Course number. These are

the keys of COURSES and CURRICULUM COURSES combined.

STUDENT entity is connected to the CURRICULUM entity through a

many-to-many relationship entitled ENROLLED. The keys of STUDENT and

CURRICULUM become the composite key of ENROLLED. ENROLLED attributes are

Section No and graduation date.

16

STUDENT entity is connected to the COURSES entity through a many-to-many

relationship entitled TAKENBY. The keys of STUDENT and COURSES become the

composite key of TAKENBY. TAKENBY attributes are Grade and Course type.

STUDENT entity is connected to the SCHEDULE entity through a

many-to-many relationship entitled ADD/DROP. The keys of STUDENT and

SCHEDULE become the composite key of ADD/DROP. ADD/DROP attributes are Date

and type of transaction.

STUDENT entity is connected to the SCHEDULE entity through a

many-to-many relationship entitled STUDENT SCHEDULE. The keys of STUDENT

and SCHEDULE become the composite key of STUDENT SCHEDULE. STUDENT

SCHEDULE attributes are Quarter Order and Course type.

FACULTY entity is connected to the SCHEDULE entity through a one-to-many

relationship. The keys of FACULTY (Faculty ID) is stored in SCHEDULE. FACULTY

entity is connected to the DEPARTMENT entity through a one-to-many relationship. The

key of DEPARTMENT (Dept. Code) is stored as an attribute in FACULTY.

The entity SCHEDULE has a one-to-many relationship with its weak entity

WEEKDAY. Attributes of the entity WEEKDAY are Course No., segment and day.

The above entities and relationships are graphically represented in the Relational

Diagram, Appendix E and the relation definitions, Appendix B.

Menus, forms and reports are listed in Appendix F.

Menus: Figure 1 is the login screen, requiring the last name of the user and a

predetermined password. Figure 2 is the main menu listing all the selections possible for

the SMDS. Figure 3 represents the student submenu and allows access to eight possible

selections. Figure 4 is the curriculum submenu. Figure 5 represents the student schedule

submenu. Figure 6 represents the schedule submenu. Figure 7 represents the generate

reports submenu. Figure 8 represents the performance letters submenu. Figure 9

represents the codes submenu. Figure 10 represents back up submenu. Figure 11

represents restore submenu. Figure 12 represents a submenu for selecting a table to

17

restore. Figure 13 represents student disk submenu. Figure 14 represents a submenu for

restore (student disk). Figure 15 represents a submenu of select a table to restore (student

disk).

Forms: Figure 16 represents student form. Figure 17 represents military form.

Figure 18 represents spouse form. Figure 19 represents children form. Figure 20

represents physical form. Figure 21 represents education form. Figure 22 represents

faculty form. Figure 23 represents courses form. Figure 24 represents master schedule

form. Figure 25 represents course schedule form. Figure 26 represents curriculum form.

Figure 27 represents curriculum courses form. Figure 28 represents enrolled in form.

Figure 29 represents student schedule form. Figure 30 represents add/drop form. Figure

31 represents academic record form. Figure 32 represents thesis form. Figure 33

represents password form. Figure 34 represents password change form. Figure 35

represents department form. Figure 36 represents subspecialty form. Figure 37

represents physical chart form.

Reports: Figure 38 represents the individual report menu. Figure 39 represents

the group report menu. Figure 40 represents notification of academic performance report.

Figure 41 represents notification of academic improvement report. Figure 42 represents

notification of academic probation report. Figure 43 represents continuation of academic

probation report. Figure 44 represents Summary of students by: country and service

report. Figure 45 represents Student graduate report.

The logic (pseudo code) for the menus and submenus are coded in ObjectPal and

is listed in Appendix G.

E. PHASE V: IMPLEMENTATION

Borlands PARADOX for Windows was selected to build the Systems

Management Database System (SMDS). PARADOX was suited to handle the tasks at

hand, as well as having sufficient power to implement additional features that would

streamline tasks. Using the information discussed in the previous phases, the database

18

tables were constructed. The next task in creating the database data was to ensure that the

data and database were compatible (referential integrity). In other words, if data entered

in the database key fields were changed all the corresponding fields in the dependent

tables would change accordingly.

The system hardware parameters are: an IBM PC compatible 386 (or greater) with

PARADOX for Windows ver 4.0 or later installed. The SMDS requires four 3.5" disks to

hold all the systems information (menus, forms, db files, and reports).

Forms, reports and menus were constructed using Pal (PARADOX'S screen

painter) to closely simulate those prototype forms and reports provided by the users at the

outset of this project. Furthermore, ObjectPal (PARADOX'S data manipulation language)

was used to provide links, correlations and relationships between entities.

A pilot strategy for conversion was decided upon. This strategy should be most

effective due to the user's desire to gradually implement the system as new sections of

students arrive. The pilot strategy is most applicable where no previous automated

system existed and a new system is to be implemented. This technique is safer than

others because it minimizes the risk to the user should any problems occur in

implementation since the old system is still up and running. The old system of

maintaining files should gradually decrease as the SMDS becomes more utilized.

Training and familiarization sessions were held with the SM staff to enable them

to become comfortable with the system's capabilities. A users guide has been published

and promulgated to help individuals navigate through SMDS and is listed in appendix H.

Due to the system's simplistic nature of push burton screens and menus it was not

necessary to conduct more extensive training for the users. The Ed Tech received

additional training in system installation, troubleshooting, back-up techniques and a

deeper level of overall expertise.

Testing entailed the entry of pre-assigned data selected to test the known ranges of

the SMDS. The intent was to see if a student could push the system beyond its known

parameters and to a point not expected by the system developers. Files were selected for

19

students that had academic performances ranging from outstanding to extremely poor.

When the data was entered, the system was then queried to see if the results were as

expected. Twenty student records were selected by the SM department staff. After

entering the data into the database, normal queries to the system and generated reports

were compared to those conducted manually. Modifications to the system were able to

correct errors as they were detected.

Maintenance will be primarily managed by the system administrator. The plan

will be for the administrator to ensure that any repetitive errors are noted and corrected

through manipulation of ObjectPal or Pal as needed. Additionally, the systems

administrator will be able to implement modifications to SMDS as the needs arise; again

with the use of ObjectPal. As time passes, the staff and users may develop performance

enhancers or additional bells and whistles; this too will fall on the system administrator's

shoulders. Data independence was established at the highest degree possible to ensure

the application would experience a minimum of disruption.

20

IV. CONCLUSIONS

The SMDS system is on-line and ready for the incoming section of students. The

SMDS was successful in meeting the expectations of the users in that the system can do

what it was designed to do. The SM staff will be able to learn more regarding the

extensive and additional capabilities of the SMDS as time goes on. The staff will soon

notice an enhancement to their work environment due to the SMDS.

It was noted that as the team tried to follow the conventional SDLC methodology

the tendency was to merge requirements phase items with the design phase and

visa-versa. The only way to keep these steps separate was to constantly review the SDLC

outline and re-read reference material. One part of the problem is the users don't usually

know the different SDLC phases; and in their discussions they lump all their needs and

information into one pot. The job of the designers has to start by sorting the users

information into its proper phase and proceed from there. It also is difficult to resist the

urge to do parts of each phase and then go back and fill-in afterwards. This too should be

avoided because of the risk of missing something in this haphazard style.

An observation of data proprietorship by the registrars office led to a suggestion

for future system improvement. The data this system will rely upon will in large part

come from the FOCUS database. If this information could be provided to the systems

administrator in dBase, ASCII or any other PARADOX format the task of data entry

would be simplified greatly. SMDS may be a good candidate for an application to be

placed on the NPS network to facilitate data entry at the students level. This step would

eliminate the need for the systems administrator to transfer data from student disks to the

main database. If the system were to be placed on the NPS network system it would be

necessary to bring the individual password/ security system on-line. It wasn't necessary

in the initial phase because each student will hold his or her own disk and will not be

accessible to others. Upgrading from PARADOX for Windows version 4.0 to version 5.0

will provide the SMDS with the latest innovations and greater power. This upgrade

21

should be available since the SM department is a registered owner of PARADOX 4.0.

Floppy disks will not easily hold all the data anticipated in SMDS. A tape back-up

system would ensure a state-of-the art redundancy system; therefore, the cost of

purchasing a tape back-up would be worthwhile.

After a semester of evaluating the system, a review of the initial requirements

should be conducted. As users note new needs and capabilities the systems ObjectPal can

be manipulated to increase reports, letters, and information sorts to better suit their needs.

These changes/additions could be simple enough to be accomplished by the systems

administrator; but may be extensive enough to warrant a follow-on effort by another

thesis student.

It is recommended that rather than having the system administrator effect a

change every time one is decided upon, he maintain a log of proposed changes for

implementation at a specific time. This will be a labor saving device as well as enable

the curricular officer to review the changes before they are made. After all the new

changes are entered a new version of the system would then exist.

22

REFERENCES

Hughes, John G., Object-Oriented Databases, Prentice Hall International (UK) Ltd, 1991.

Kroenke,Davide M., Database Processing, 4th Ed., Macmillon, 1992.

Occardi, Val, Relational Database: Theory and Practice, NCC Black Limited, 1992.

Senn, James A., Information System in Management, 4th Ed., Wadsworth, Inc., 1990.

23

24

APPENDIX A. Entity Relation Diagram

FACULTY

DEPARTMENT

l:N

SCHEDULE N:l COURSES <e>

25

26

APPENDIX B. Data Dictionary

A. ENTITY DEFINITIONS

1. STUDENT Entity

*SSN; Student-social-security-number

LAST NAME; Student-last-name

FIRST NAME; Student-first-name

MIDDLE INITIAL; Student-middle-initial

SEX; Student-sex

MARITAL STATUS; Student-marital-status

NUMBER OF DEPENDENTS; Student-number-of-dependents

DOB; Student-date-of-birth

POB; Student-place-of-birth

SGC; Student-gard-center number

COUNTRY; Student-Country

STREET ADDRESS; Student-home-address

CITY; Student-home-city

STATE; Student-home-state

ZIP CODE; Student-home-zip-code

HOME PHONE; Student-home-phone

HOME OF RECORDS; Student-home-of-record

DATE REPORTED; Date-student-reported to NPS

PHOTO; Student-photo

2. MILITARY Entity (Weak entity of STUDENT)

• *SSN; Student-social-security-number (foreign key)

• RANK; Student-rank

• SERVICE; Student-service

27

DATE OF RANK; Student-date-of-present-rank

SOURCE OF COMMISSION; Student-source-of-commission

DATE OF COMMISSION; Student-date-of-commission

YEAR GROUP; Student-year-group

DESIGNATOR; Student-designator

YEAR ENLISTED; Student-year-enlisted

HIGHEST RATE; Student-highest-rate-held

SECURITY CLEARANCE; Student-security-clearance

QUALIFICATION; Student-qualification

COMMUNITY; Student-community

PAYBACK; Student-follow-on-assignment

PREVIOUS COMMAND; Student-previous-command

NEXT COMMAND; Student-next-command

3. EDUCATION Entity (Weak entity of STUDENT)

• *SSN (foreign key)

• COLLEGE CODE ATTENDED; College-code-attended

• MAJOR; Description-of-course

• LOCATION; Location-of-college-attended

• COURSE START DATE; Course-start-date

• COURSE END DATE; Course-end-date

• DEGREE AWARDED; Degree-awarded

4. SPOUSE Entity (Weak entity of STUDENT)

• *SPOUSE SSN; Spouse-social-security-number

• SSN; Student-social-security-number (foreign key)

• LAST NAME; Spouse-last-name

• FIRST NAME; Spouse-first-name

28

• MIDDLE INITIAL; Spouse-middle-initial

• STREET ADDRESS; Spouse-home-address

• CITY; Spouse-home-city

STATE; Spouse-home-state

• ZIP CODE; Spouse-home-zip-code

ACTIVE DUTY; Spouse-active-duty

•

•

5. SPOUSE ACTIVE DUTY Entity (Weak entity of SPOUSE)

• *SPOUSE SSN; Spouse-social-security-number (Foreign key)

• SP RANK; Spouse-rank

• SERVICE; Spouse-branch-of-service

• STATION; Spouse-present-duty-station

6. CHILDREN Entity (Weak entity of STUDENT)
• *SSN; Student-SSN (Foreign key)

• LAST NAME; Child-last-name

• FIRST NAME; Child-first-name

• MIDDLE INITIAL; Child-middle-initial

• DOB; Child-data-of-birth

• GENDER; Child-sex

7. FACULTY Entity

• *FACULTY ID; Faculty-id-code

• LAST NAME; Faculty-last-name

• FIRST NAME; Faculty-first-name

• MIDDLE INITIAL; Faculty-middle-initial

• DEPT CODE; Faculty-department-code

• ROOM; Faculty-room-number

• TEL; Faculty-telephone-number

29

• EMAIL; Faculty-email-address

8. COURSES Entity

• "COURSE NO; Course-number

• COURSE TITLE; Course-title

• CREDIT; Credit-hours

• LAB; Laboratory-hours

9. SCHEDULE Entity

• "COURSE NO; Course-number (Foreign key)

• "SEGMENT NO; Segment-Number

• FACULTY ID; Faculty-id-code

• ROOM; Room-course-taught-in

10. WEEKDAY Entity (Weak entity of SCHEDULE)

• "COURSE NO; Course-number (Foreign key)

• "SEGMENT NO; Segment-Number

• TDAY; Date-course-offered

• PERIOD; period-offered

11. CURRICULUM Entity

• *CURRNO;Curricular-number

• CURR TITLE; Curricular-title

• CREDIT 4L; Credit-required-at-4000-level

• CREDIT 3L; Credit-required-at-3000-level

• QUARTERS; Number-of-quarters-required

• ACADEMIC CODE; Academic-associate-code

• P CODE; Subspecialty-code

30

• OFFICE CODE; Curricular-office code

12. THESIS Entity (Weak entity of STUDENT)

• *SSN; Student-SSN (Foreign key)

• TOPIC; Thesis-topic

• ACADEMIC; Thesis-academic-associate

• ADVISOR; Thesis-co-advisor

• CONUS;CONUS

• DIP STREET; Diploma-street

• DIP CITY; Diploma-city

• DP STATE; Diploma-state

• DIP ZIP; Diploma-zip-code

13. DEPARTMENT Entity

• *DEPT CODE; Department-code

• DEPT NAME; Department-name

14. TAKEN BY Relation

• *SSN; Student-SSN (Foreign key)

• *COURSE NO; Course-number (Foreign key)

• »QUARTER ORDER; Curriculum-quarter-order

• GRADE; Student-grade

• TYPE; Course-type

15. ENROLLED IN Relation

• *SSN; Student-SSN (Foreign key)

• *CURR NO; Curriculum-number (Foreign key)

• »SECTION NO; Section-number

31

• DATE ENROLLED; Date-enrolled

• GRADUATION DATE; Graduation-date

• CARREL; Student-study-space-no

16. ADD/DROP Relation

• *SSN; Student-SSN (Foreign key)

• "COURSE NO; Course-number (Foreign key)

• "SEGMENT NO; Segment-Number

• DATE; Date-of-transaction

• TYPE; Transaction-type

17. PHYSICAL Entity (Weak entity of STUDENT)

*SSN; Student-SSN (Foreign key)

EXAM DATE; Date-last-physical-readiness-test

NEXT EXAM; Date-next-physical-test

HEIGHT; Student-height

WEIGHT; Student-weight

NECK; Student-neck-size

ABDOMEN;

WAIST;

HIP;

BODYFAT; Bodyfat-percentage-student

RESULT;

SIT REACH;

CURL UPS;

PUSH UPS

SWIM;

CLASSIFICATION;

32

18. STUDENT SCHEDULE Entity

• *SSN; Student-SSN (Foreign key)

• *COURSE NO; Course-number (Foreign key)

• *SEGMENT NO; Segment-Number

• QUARTER ORDER; Curriculum-quarter-order

• S TYPE; Course-type

19. CURRICULUM COURSES Entity

• *CURR NO; Curriculum-number (Foreign key)

• *ORDER; Curriculum-quarter-order

20. REQUIRED Entity

• *CURR NO; Curriculum-number (Foreign key)

• *ORDER; Curriculum-quarter-order (Foreign key)

• *COURSE NO; Course-number (Foreign key)

• TYPE; Course-type

21. SUBSPECIALTY Entity

• *P CODE; Subspecialty-code

• SUBSPECIALTY; Curriculum-subspecialty-title

33

B. DOMAIN DEFINITIONS

• Social-security-number

• Alphanumeric 9

• Social security number of service student

• Student-last-name

• Text 15

• Last name of service student

• Student-first-name

• Text 15

• First name of service student

• Student-middle-initial

• Text l

• Middle initial of service student

• Student-sex

• Text 1, Mask M or F

• Gender

• Student-marital-status

• Text, Mask M or S or D

• Marital status of student, married, single, or divorced

• Student-number-of-dependents
• Numeric 2

• Number of dependents

34

Student-date-of-birth

• Date, Mask Da/Mo/Yr
• Date of members birth

• Student-place-of-birth

• Text 20

• Place where the student is born

• Student-gard-center-number

• Numeric 4

• Student mail box number

• Student-country

• Text 15

Student original country

• Student-street-address

• Text 15

• Student street address

• Student-home-city

• Text 10

• Student home city

• Student-home-state

• Text 2, Mask XX, where XX two letter state abbreviation

• Student home state

• Student-home-zip-code

• Text 10, Mask XXXXX-XXXX, where X any number

• Student home zip code

35

• Student-home-phone

• Text 12, Mask XXX-XXX-XXXX, where X any number

• Student home phone

• Student-home-of-record

• Text 15

• Student home city, state home of record

• Date student-reported

• Date, Mask da/mo/yr

• Date student reported for duty to NPS

• Student-photo

• Image

• Holds the students photograph

• Student-rank

• Text 5, Mask ENS, LTJG, LT, LCDR, CDR, CAPT, RADM, VADM, ADM, LT, 1LT,

CPT, MAJ, LTCOL, COL, BGEN, MGEN, GEN

• Rank of officers, standard Military abbreviation

• Student-date-of-rank

• Date, Mask da/mo/yr

• Student date of last promotion to current rank

• Student-service

• Text 4, Mask USN, USA, USMC, INTL

• Student service

36

• Student-source-of-commission

• Text 7, Mask ACAD, OCS, NROTC, DIRECT

• Student source of commissioning, std Military abbreviation

• Student-date-of-commission

• Date, Mask da/mo/yr

• Date student commissioned

• Student-year-group

• Text 2

• Student year group

• Student-designator

• Text 4

• Student designator

• Student-year-enlisted

• Numeric 2

• Student-highest-rate-held

• Text 2, Mask El -E9

• Student-security-clearance

• Text2,MaskN,C,S,TS

• Clearance level student held

• Student-qualification

• Text 20

• Student-community

• Text 15

37

• Student-P-code

• Text 5

• Student subspecialty code

• Student-payback

• Text 3, Mask YES, NO

• Student-previous-command

• Text 15

• Student previous command or ship and homeport

• Student-next-command

• Text 15

• Student next command or ship and homeport

• College-code-attended

• Text 25

• University or collage for undergrad degree

• Description-of-course

• Text 15

• Material that covered under this course

• Location-of-college-attended

• Text 15

• Location of the undergrad collage

• Course-start-date

• Date, Mask da/mo/yr

• Date started undergrade

38

• Course-end-date

• Date, Mask da/mo/yr

• Date finished undergrad

• Degree-awarded

• Text 15

• Title of undergrad degree

• Spouse-social-security-number

• Alphanumeric 11

• Social security number of the service members spouse

• Spouse-last-name

• Text 15

• Last name of spouse

• Spouse-first-name

• Text 15

• First name of spouse

• Spouse-middle-initial

• Textl

• Middle initial of spouse

• Spouse-home-address

• Text 30

• Spouse street address

• Spouse-home-city

• Text 20

• Spouse home city

39

• Spouse-home-state

• Text 2

• Spouse home state

• Spouse-home-zip-code

• Text 10, Mask XXXXX-XXXX, where X any number

• Spouse home zip code

• Spouse-active-duty

• Text 3, Mask YES or NO

• Spouse-rank

• Text 5, Mask ENS, LTJG, LT, LCDR, CDR, CAPT, RADM, VADM, ADM, 1LT,

LT, CPT, MAJ, LTCOL, COL, BGEN, MGEN, GEN

• Spouse rank , standard Military abbreviation

• Spouse-branch-of-service
• Text 20

• Spouse branch of service

• Spouse-present-duty-station
• Text 20

• Spouse present duty station location

• Child-last-name

• Text 15

Last name of service members child

• Child-first-name

• Text 15

• First name of service members child

40

• Child-middle-initial

• Text 1

• Middle initial of service members child

• Child-date-of-birth

• Date, Mask da/mo/yr

• Date of birth (service member child)

• Child-sex

• Text 1, Mask M or F

• Child sex

• Faculty-id-code

• Text 2

• Identification code of faculty member

• Faculty-last-name

• Text 15

• Last name of faculty member

• Faculty-first-name

• Text 15

• First name of faculty member

• Faculty-middle-initial

• Textl

• Middle initial of faculty member

• Faculty-department-code

• Text 3

• Department code of faculty member

41

• Faculty-room-number

• Text 4

• Office number of faculty member

• Faculty-telephone-number

• Text 13, Mask XXX-XXX-XXXX, Where X any number

• Office phone number of faculty member

• Faculty-email-address

• Text 15

• Faculty email address

• Course-number

• Text 7, Mask XXYYYY, where X any letter, Y any number

• Course number offered

• Course-title

• Text 40

• Title of course being taken

• Credit-hours

• Numeric 2, Mask XX, where X any number

• Credit hours for course offered

• Laboratory-hours

• Numeric 2, Mask XX, where X any number

• Laboratory hours for course offered

• Segment-Number

• Text 2, Mask XX, where XX any number

• Class section number

42

• Room-course-taught-in

• Text 5

• Classroom class taught-in

• Date-course-offered

• Text 2, Mask Mo, Tu, We, Th or Fr

• Date class meets

• Period-offered

• Text 1, Mask 1,2, 3,4, 5, 6, 7 or 8

• Period class meets

• Curricular-number

• Text 7

• Curriculum number

• Curricular-title

• Text 40

• Curriculum description

• Credit-required-at-4000-level

• Numeric 2

• Credit hours required at the 4000 level

• Credit-required-at-3000-level

• Numeric 2

• Credit hours required at the 3000 level

• Number-of-quarters-required

• Numeric 2

• Number of quarters required

43

• Academic-associate-code

• Text 2

• Code of academic associate

• Subspeciality-code

• Text 5

• Subspecialty code of service member

• Curricular-office code

• Text 2

• Curricular office code

• Thesis-topic

• Text 25

• Topic for thesis

• Thesis-academic-associate

• Text 15

• Name of the academic associate

• Thesis-advisor

• Text 15

• Name of thesis Co advisor

• CONUS

• Text 1, Mask Y or N

• Diploma-street

• Text 15

• Street address for diploma mailing

44

• Diploma-city

• Text 15

• City address for diploma mailing

• Diploma-state

• Text 2, Mask XX, where X any letter

• State abbreviation for diploma mailing

• Diploma-zip-code

• Text 10, Mask XXXXX-XXXX, where X any number

• Diploma zip code

Department-code

• Text 3

• Department identification code

• Department-name

• Text 30

• Title of department

• Course-order

• Text 2

• Course-type

• Text 1, Mask R,E,T or V

• Curriculum-quarter-order

• Text 2

45

• Student-grade

• Text 2, Mask A\ A, A\ B\ B, B, C\ C, C, D+, D, D, X, I, W, P, F, T

• Student grade

• Date-enrolled

• Date, Mask da/mo/yr

• Date student enrolled at NPS

• Graduation-date

• Date. Mask da/mo/yr

• Date of expected graduation

• Student-study-space-no

• Text 3

• Study carrel of study area

• Date-of-transaction

• Date, Mask da/mo/yr

• Date of transaction occurred

• Transaction-type

• Text 1, mask Add or Drop

• Type of transaction either add or drop

• Date-last-physical-readiness-test

• Date, Mask da/mo/yr

• Last PRT taken

• Date-next-physical-test

• Date, Mask da/mo/yr

• next PRT to be taken

46

• Student-height

• Numeric 4, Mask XX.X, where X any number

• Height in inches

• Student-weight

• Numeric 5, Mask XXX.X, where X any number

• Weight in pound

• Student-neck-size

• Numeric 4, Mask XX.X, where X any number

• Neck circumference in inches

• Student-abdomen

• Numeric 4, Mask XX.X, where X any number

• Abdomen circumference in inches (female)

• Student-waist

• Numeric 4, Mask XX.X, where X any number

• Waist circumference in inches (male)

• Student-hip

• Numeric 4, Mask XX.X, where X any number

• Hip circumference in inches (female)

• Bodyfat-percentage-student

• Numeric 2, Mask XX, where X any number

• Result

• Numeric 5, Mask XXX.X, where X any number

• Percent body fat using DOD scale

47

• Student-sit-reach

• Textl,PorF

• Student-curl-ups

• Numeric 3, Mask XXX, where X any number

• Number of sit-ups achieved

• Student-push-ups

• Numeric 3, Mask XXX, where X any number

• Number of pushups achieved

• Student-swim

• Numeric 5, Mask XX:XX, where X any number

• Time for 500 yd swim

• Student-classification

• Text 15, Mask Outstanding, Excellent, Good or Satisfactory

• Overall score for PRT

• Curriculum-subspecialty-title

• Text 30

• Subspecialty title

48

APPENDIX C. Data Flow Diagrams

SERUICE
MEMBER

SUBSYSTEM

TUDENT
BSYSTEM

FACULTY
SYBSYSTEM

CURRICULUM
SUBSYSTEM

UPDATE
FACULTY

UPDATE
DEPARTMENT

GENERATE
REPORTS

UPDATE
CURRICULUM

3.2

{ *)
COURSES

SUBSYSTEM

' 4.1 4.2E

UPDATE
COURSES

GENERATE
REPORTS

^ >

UPDATE
CURRICULUM

COURSES

UPDATE
SUB-

SPECIALITY

GENERATE
REPORTS

SCHEDULE
SUBSYSTEM

STUDENT
SCHEDULE
SUBSYSTEM

(5.1 Y 5.2E

UPDATE GENERATE
MAIN REPORTS

SCHEDULE
\ k ,

6.1 6.2 '6.3 Y 6.4E *!

UPDATE
STUDENT

SCHEDULE

UPDATE
ADO-DROP

UPDATE GENERATE
ENROLL REPORTS

1 ?
GENERATE
REPORTS

'DATE
TUDENT

UPDATE
PHYSICAL

UPDATE
SPOUSE

UPDATE
EDUCATION

UPDATE
CHILDREN

UPDATE
MILITARY

UPDATE
THESIS

GEHERATE
REPORTS GRADUATION DISTINCTION

GRADUATE
LIST

ACADEMIC
PROPATION

7.5

ACADEMIC
PERFORMANCE

49

STUDENT
INFO.

FACULTY DETAILS

I REPORT A INQUIRIES

PHYSICAL INFO.

REPORTS «
"INUUlKlhb'

REPC

I

RTS « INQUIRIES 'v..
^

j

THESIS INFO.
IHE SIS

STUDENT
REPORTS«
INQUIRIES

SYSTEMS
MANAGEMENT
SYSTEM

SCHEDULE DETAILS

REPORTS A INQUIRIES

COURSES INFO

REPORTS *
"TFTOOTRTES—^

COURSES

REPORTS * INQUIRIES

CURRICULUM INFO.

CONTEXT DIAGRAM

50

WDflTE,
STUDEHT
DE1MLS

GENERATE
ntrntrv

J
UPDATE

CHILDREN
UPDATED
CfUMEN

UPDATED
PHYSIC«.
DETAILS

ST. SSH
' 1.3 ■'—

UPOATED
SPOUSE

UPDATE
CPOUEE

T5—\ UPOATED
THESIS
INFO.

EDUCATION]
DETAILS I

UPOATED
MILITARY
DETAILS

7^
~r

ST INFO
TO K

PHTSICAL
IHFO~*

THESIS
MFC

niLITMTV
»ro

51

fwr. two
TO K
CHWCO

»I» •T(flP~~

* AT« STOd^-

TO K

rr*

or« ID

CHILD

52

THESIS

THESIS
DETAILS

ST.SSH

ST. INFO
EXIST

CET
THESIS

ncsis
OETAILS THESIS

DETAILS

r~r'» i

THESIS
OETAILS

.4P "

THESIS
OWKZ
THESIS

DELETE
THESIS

THESIS
«COED

THESIS
CHMCEO

THESIS

THESIS.
MTA 9T0*

NCU.TY ■
OEPAftTTCKT

ragj-Tv IHFTJMWIOH
DATA raGEE

GEHERATE
swwrr
KEKKT3

53

1*

MTWTIgHT-

DETAILS

«IOUI1
» «TORT"-

D
T* -rf

ROJIMD com

54

P-COOE
DETAILS SUB-

SPECIALITY

GET
EUB-

SPECIBLITY

P-COCE
DETAILS

P-CODE
DETAILS

P-O
OET

DO E
LS

^T7 nv—\
SUB-

SPECIALITY

CHANCE
SUB-

SPECIALITY

DELETE
SUB-

■PECILAITY

P-CODE
«MED

P
o -COOE

ttNCEO
P-
K

CODE
LCTEC

BPE
»T

>UB-

3T0«

OETAIlJ

UPDATED
COURSES
DETAILS

COURSES
COURSES IHFORtlATlOH

JATA meet

CORSE
OETAILS

CET
COURSE

COURSE
OETAILS

COUR
DETA

E
L3

1 4.1.4P"

COURSE
CHANGE
COURSE

DELETE
COURSE

COURSE
ftODED

a
o

USE
«HCED

a
a ITTEO

COURSES
MTA STC*

UPDATED^
SCHEDULE
OETAILS

SOCOULF INFOMWTIOH
(iX 1

GENERATE

55

PfKIQDS tocoxi «DtDftV

POIODS
caam ■CM

err ILS
MV1 (V
«nennt

•OCXLI

KHCOULE
OTTAILS ■OCDOI

K>CDU-E
KlfllUS

L
5.*TF—

KMOXJLC
CMKZ

KHQXJLE
CELTTT

■OCOli

•OCXLf
MSEC

■OCOJJ
OMtCET TOM 003

1
1

1CDXMY «SCO

«DXM
CMWCC D

loeui
MT* sroM tCIHMv

MI« 1T0M mioos
MT« »ran

■ 1
•QIOOS (DCCS

•cwnjLf neLTTTD

tTUCEMT
KWOU
«TOILS '

tronrt
mXXKT

IM»TE>
•T IOCU1
DETAILS

inaTED
«cow
KTJIILi

■TUCMT
•OCCUCL

MT« race

irtMTtt
MOJ.
0CTA1L!

WWUJD IM

56

APPENDIX D. Update, Display, and Control Mechanism

The following are attributes and functions of the Systems Management database

listed in the following format:

a. Input

b. Output

c. Process notes

Note: Volume and frequency values have not been individually addressed in each

process. The frequency in which a process is addressed will vary dependent on the size

and structure of a given curriculum. Additionally, volume is dependent on the SM size

and the number of officers and civilian assigned.

STUDENT

1. Get Student Update (1.1.1P)

a. Selection from the Student menu (allows add, change, and delete service member).

b. Update the Student data store according to selection.

c. This process allows a choice between the different options within the Student menu.

2. Add Student (1.1.2P)

a. Student information (Personnel Office).

b. Store in Student data store.

c. Form provided for input of each field.

3. Change Student (1.1 JP)

a. Student information (Personnel/Admin Offices).

b. Update Student data store.

c. Queuing for each field provided after Student is found (form view).

57

4. Delete Student (1.1.4P)

a. Student SSN (Personnel/Admin Office).

b. Confirmation of deletion.

c. Confirm deletion actually will remove the record from Student, and all the relating
data stores.

PHYSICAL

5. Update Physical (1.2.1P)

a. Select from the student menu (add, change or delete a Physical record).

b. Update the PHYSICAL data store.

c. This process allows a choice between the different options of the physical menu.

6. Add Physical Details (1.2.2P)

a. Physical information (Disbursing Office)

b. Store in physical data store.

c. Form is provided for input of each field.

7. Change Physical Details (1.2.3P)

a. Physical information (Disbursing Office)

b. Update in Physical data store.

c. Queuing by field provided after physical record found (form view).

8. Delete Physical Details (1.2.4P)

a. Student SSN (Personnel/Admin Office).

b. Confirmation of deletion.

c. Confirm deletion actually will remove the record from Physical data stores.

58

SPOUSE

9. Get Spouse Update (1.3.1P)

a. Selection from the spouse menu (add, change and delete).

b. Update the spouse data store.

c. Choice between different options of the spouse menu.

10. Add New spouse Details (1.3.2P)

a. Spouse information (Admin. Office)

b. Store in spouse data store.

c. Form is provided for input of each field.

11. Change Spouse Details (1.3.3P)

a. Spouse Information (Admin. Office).

b. Update the Spouse data store.

c. Queuing by field provided after spouse record found (form view).

12. Delete spouse Details (1.3.4P)

a. Service Member SSN (Persormel/Admin Office).

b. Confirmation of deletion.

c. Confirm deletion actually desired.

CHILDREN

13. Get Children Update Physical (1.5.1P)

a. Select from the children menu (add, change or delete a children record).

b. Update the children data store.

c. This process allows a choice between the different options of the children menu.

14. Add Children Details (1.5.2P)

a. Children information (Disbursing Office)

b. Store in children data store.

59

c. Form is provided for input of each field.

15. Change Children Details (1.5.3P)

a. Children information (Disbursing Office)

b. Update in Children data store.

c. Queuing by field provided after Children record found (form view).

16. Delete Children Details (1.5.4P)

a. Student SSN (Personnel/Admin Office).

b. Confirmation of deletion.

c. Confirm deletion actually will remove the record from Children data stores.

MILITARY

17. Get Military Update (1.6.1P)

a. Select from the military menu (add, change or delete a Military record).

b. Update the PHYSICAL data store.

c This process allows a choice between the different options of the physical menu.

18. Add Military Details (1.6.2P)

a. Military information (Disbursing Office)

b. Store in Military data store.

c. Form is provided for input of each field.

19. Change Military Details (1.6.3P)

a. Military information (Disbursing Office)

b. Update in Military data store.

c. Queuing by field provided after military record found (form view).

60

20. Delete Military Details (1.6.4P)

a. Student SSN (Personnel/Admin Office).

b. Confirmation of deletion.

c. Confirm deletion actually will remove the record from Military data stores.

THESIS

21. Get Thesis Update (1.7.1P)

a. Select from the Thesis menu (add, change or delete a Thesis record).

b. Update the Thesis data store.

c. This process allows a choice between the different options of the Thesis menu.

22. Add Physical Details (1.7.2P)

a. Thesis information (Disbursing Office)

b. Store in thesis data store.

c. Form is provided for input of each field.

23. Change Physical Details (1.7.3P)

a. Thesis information (Disbursing Office)

b. Update in Thesis data store.

c. Queuing by field provided after Thesis record found (form view).

24. Delete Physical Details (1.7.4P)

a. Student SSN (Personnel/Admin Office).

b. Confirmation of deletion.

c. Confirm deletion actually will remove the record from Thesis data stores.

FACULTY

25. Get Faculty Update (2.1.1P)

a. Select from the faculty menu (add, change or delete a Faculty record).

b. Update the Faculty data store.

61

menu. c. This process allows a choice between the different options of the Faculty

26. Add Faculty Details (2.1.2P)

a. Faculty information (Disbursing Office)

b. Store in faculty data store.

c. Form is provided for input of each field.

27. Change Faculty Details (2.1.3P)

a. Faculty information (Disbursing Office)

b. Update in Faculty data store.

c. Queuing by field provided after faculty record found (form view).

28. Delete Faculty Details (2.1.4P)

a. Faculty ID.(Personnel/Admin Office).

b. Confirmation of deletion.

c Confirm deletion actually will remove the record from Faculty data stores.

DEPARTMENT

29. Get Department Update (2.2.1P)

a. Select from the department menu (add, change or delete a department record).

b. Update the Department data store.

c. This process allows a choice between the different options of the Department menu.

30. Add Department Details (2.2.2P)

a. Department information (Disbursing Office)

b. Store in Department data store.

c. Form is provided for input of each field.

62

31. Change Department Details (2.2.3P)

a. Department information (Disbursing Office)

b. Update in Department data store.

c. Queuing by field provided after Department record found (form view).

32. Delete Department Details (2.2.4P)

a. Department code (Personnel/Admin Office).

b. Confirmation of deletion.

c. Confirm deletion actually will remove the record from Department data stores.

CURRICULUM

33. Get Curriculum Update (3.1.1P)

a. Select from the Curriculum menu (add, change or delete a curriculum record).

b. Update the Curriculum data store.

c. This process allows a choice between the different options of the Curriculum menu.

34. Add Curriculum Details (3.1.2P)

a. curriculum information (Disbursing Office)

b. Store in Curriculum data store.

c. Form is provided for input of each field.

35. Change Curriculum Details (3.1.3P)

a. Curriculum information (Disbursing Office)

b. Update in Curriculum data store.

c. Queuing by field provided after Curriculum record found (form view).

36. Delete Curriculum Details (3.1.4P)

a. Curriculum Number (Personnel/Admin Office).

b. Confirmation of deletion.

c. Confirm deletion actually will remove the record from Curriculum data stores.

63

Curriculum Courses

37. Get Curriculum Courses Update (3.2.1P)

a. Select from the curriculum courses menu (add, change or delete a record).

b. Update the curriculum courses and Required data store.

c. This process allows a choice between the different options of the curriculum courses
menu.

38. Add Curriculum Courses Details (3.2.2P)

a. Curriculum Courses and Required information (Disbursing Office)

b. Store in curriculum courses and required data store.

c. Form is provided for input of each field.

39. Change Curriculum Courses Details (3.2.3P)

a. Curriculum Courses and Required information (Disbursing Office)

b. Update in curriculum courses and required data store.

c. Queuing by field provided after Curriculum courses record found (form view).

40. Delete Curriculum Courses Details (3.2.4P)

a. Course Number (Personnel/Admin Office).

b. Confirmation of deletion.

c. Confirm deletion actually will remove the record from Curriculum Courses and

Required data stores.

SUBSPECIALTY

41. Get Subspecialty Update (3.3.1P)

a. Select from the subspecialty menu (add, change or delete subspecialty record).

b. Update the subspecialty data store.

c. This process allows a choice between the different options of the subspecialty menu.

64

42. Add Subspecialty Details (3.3.2P)

a. Subspecialty information (Disbursing Office)

b. Store in Subspecialty data store.

c. Form is provided for input of each field.

43. Change Subspecialty Details (3.3.3P)

a. Subspecialty information (Disbursing Office)

b. Update in Subspecialty data store.

c. Queuing by field provided after Subspecialty record found (form view).

44. Delete Subspecialty Details (3.3.4P)

a. Subspecialty code (Personnel/Admin Office).

b. Confirmation of deletion.

c. Confirm deletion actually will remove the record from Subspecialty data stores.

COURSES

45. Get Courses Update (4.1.1P)

a. Select from the courses menu (add, change or delete a courses record).

b. Update the Courses data store.

c. This process allows a choice between the different options of the courses menu.

46. Add Courses Details (4.1.2P)

a. Courses information (Disbursing Office)

b. Store in courses data store.

c. Form is provided for input of each field.

47. Change Courses Details (4.1.3P)

a. Courses information (Disbursing Office)

b. Update in Courses data store.

c. Queuing by field provided after Courses record found (form view).

65

48. Delete Courses Details (4.1.4P)

a. Course number (Personnel/Admin Office).

b. Confirmation of deletion.

c. Confirm deletion actually will remove the record from Courses data stores.

SCHEDULE

49. Get Schedule Update (5.1.1P)

a. Select from the schedule menu (add, change or delete a schedule record).

b. Update the Schedule, Weekday and Periods data store.

c. This process allows a choice between the different options of the schedule menu.

50. Add Schedule Details (5.1.2P)

a. Schedule information (Disbursing Office)

b. Store in Schedule, Weekday and Periods data store.

c. Form is provided for input of each field.

51. Change Courses Details (5.1.3P)

a. Schedule information (Disbursing Office)

b. Update in Schedule, Weekday and Periods data store.

c. Queuing by field provided after Schedule record found (form view).

52. Delete Courses Details (5.1.4P)

a. Course number (Personnel/Admin Office).

b. Confirmation of deletion.

c. Confirm deletion actually will remove the record from Schedule data stores.

66

APPENDIX E. Relational Diagram

o

y
1

z s
o. u
Q

&

u
Q

■o S
u
o u
Q zs

£
3 u

CQ
U-

67

68

APPENDIX F. Menus, Forms, and Reports

Exit
SYSTEMS MANAGEMENT - [Pass Word Menul

SYSTEMS

MANAGEMENT

Please Enter your User Id and pass word
 followed by return

Figure [1] Login Screen

Selection Procedures Quit
SYSTEMS MANAGEMENT - |Main Menu]

SYSTEMS

MANAGEMENT

Field

Student

Onuses

Cuukuluiii

Thesis

Faculty

Schedule

St. Schedule

Codes

Generate Reports

End of Quarter

BackUp

St Disk User Id

Exit

Figure [2] Main menu

69

Figure [3] Student Submenu

' -| Selection ßeturn
SYSTEMS MANAGEMENT - (Curriculum Menul

\ .

k

SYSTEMS

MANAGEMENT

New Curriculum

Curriculum Courses

Generate Reports

Return to Mam Menu

Figure [4] Curriculum submenu

70

-1 Selection Beturn
SYSTEMS MANAGEMENT - (Student Schedule Menul

SYSTEMS

MANAGEMENT

Curriculum Enrolled

Student Schedule

Add / Drop Courses

Academic Record

Return to Main Menu

Figure [5] Student Schedule menu

r -1 Selection ßeturn
SYSTEMS MANAGEMENT - [Master Schedule Menu]

SYSTEMS

MANAGEMENT

Master Schedule

Course Schedule list

Generate Reports

Return to Mam Menu

\

Figure [6] Master Schedule submenu

71

■U1JJIHIIM.I«im.|BMJ,|JiN|.||.^Frn

\

SYSTEMS

MANAGEMENT

Performance Ldters

Graduate List

Diploma Mailing Labels

Academic

Return to Main Menu

Figure [7] Generate Reports submenu

, _|Seiection Betuj.^ii'lnl'lMl'M^l'nl'mij^,i.ii„nlMi!i,fni'm

SYSTEMS

MANAGEMENT

Individual Letter

Group Letters

Rtn to Reports Menu

Figure [8] Performance Letters submenu

72

Selection Beturn
SYSTEMS MANAGEMENT - |Codes Menu!

SYSTEMS

MANAGEMENT

Department

Sub speciality

Physical Point

Return to Main Menu

Figure [9] Codes submenu

firive Selection fietum
SYSTEMS MANAGEMENT - |Back Ups Menul

SYSTEMS

MANAGEMENT

\

Please enter the right Drive,
and Insert your diskette NOW

E @ [cT

Daily BackUp Restore

Graduates Bkp Main menu

Figure [10] Back up submenu

73

Selection £eturn
SYSTEMS MANAGEMENT - |Hestore Menul

r ■ ■ ^^ ""v^^^-"-—;™!™~??!rTTT???--=!T!?:= —"

1
SYSTEMS

MANAGEMENT
':■ :N!n]MEp^N^^^nii:J:|JHi=n?fyiÜljNijJ|yM^^]=||£i=n;!£f?ü

?

Restore AI Tables

Select a table to restore

Rtn to Backup Menu

Hllllllllllllll

Figure [11] Restore submenu

Figure [12] Select a Table to Restore submenu

74

Figure [13] Student Disk submenu

1 -| Selection fjeturn

SYSTEMS

MANAGEMENT

Restore All Tables

Sdect a table to restore

Rto to Disk Menu

Figure [14] Restore (student disk) submenu

75

/ -[Selection fieturn
SYSTEMS MANAGEMENT - |Sludenl Select a table)

SYSTEMS

MANAGEMENT

Personnel Sp. active

Military Children

Education Physical

Spouse RstMenu

Figure [15] Select a Table to Restore (student disk)

Data Becord Print Quit
SYSTEMS MANAGEMENT - |Student Forml

SYSTEMS MANAGEMENT
Student Form

1 of 5 [STUDENT.DB]

New

Edit

Delete

Fmd

FmdNn

Cencel

End

Exit

Figure [16] Student Form

76

Data ßecord Print Quit
SYSTEMS MANAGEMENT - |Military Forml

SYSTEMS MANAGEMENT
Military Information

SSN

Last Name

Rank

Source Com.

YearEntisted

First Name

1LT DateRank

ACAD Date Com

12 Designator

QuaL BS COMPUTER SCIENCE Community

Pre Comd BD.F NxtComd BDJ

pcoDE 0039P tmummiimaim

xamm^ M. Initial

12/26788 S. Clearance TS

1/1/79 Highest Rate El

2312 Year Group 1979

INTEL Pay Back YES

F Service INTL

New Edit Delete Find Cancel Erit

3 of 3 [MILITARY.DB]

Figure [17] Military Form

-| Data ßecord Print Quit
SYSTEMS MANAGEMENT - |Spouse Form]

SYSTEMS MANAGEMENT
SPOUSE SCREEN

SPOUSE DETAILS

2 of 2 ISPOUSE.DBJ

New Edit Delete Find Cancel Exit :>Xv'>x'

AVI^.V.V.'.'IVM'.V.'.V.V.'.'.'.V.V.V.'.'.'.'.V/.'.V.'.'.'.Y.V.V '*"»:vw V..V.V.V.

Figure [18] Spouse Form

77

3 of 5 [STUDENT.DB]

SYSTEMS MANAGEMENT
Children Form

R3TM

minimum.«
HUBBARD BARRY

■SJllZ|IE3gB|
KEEGAN

MICHAEL

New Edit Delete Fmd Cancel r^i

Figure [19] Children Form

-1 Data flecord grin! Quit

V

SYSTEMS MANAGEMENT
Physical Form

New Edit Delete Fmd Cancel Eat

Figure [20] Physical Form

32

P

Outstanding

♦ Excellent

1410
Good

Satisfactory

212 Unsatisfactory

78

Data Record Print Quit
SYSTEMS MANAGEMENT - (Education Fortnl

SYSTEMS MANAGEMENT
Education History Form

SSN:

Last Name Fast Name

College Description Location

Bahrein Univercity ComputerSience Bahrain

Bahrain University ComputerSience Bahrain

M. Initial H

Start End Degree

9/1/85 7/21/86 BSc.

9/1/79 673/84 Diploma

New Edit Find Delete Cancel Brit

y

4 of 5 [STUDENT.DB]

Figure [21] Education Form

fjata Becord grint flu»
SYSTEMS MANAGEMENT - |Faculty Form!

SYSTEMS MANAGEMENT
Faculty Form

AD

WMMsmMum

Haw | Ma | Tad | Dih»|c«aa Eat

1 o» 44 [FACULTY.DB]

Figure [22] Faculty Form

79

Data flecord Erint fluit
SYSTEMS MANAGEMENT - [Courses Forml

SYSTEMS MANAGEMENT
Courses Screen

WWW^BW

An introduction to problem solving and structured programming with Ad«, aE
high-level, block-structured programming language This course is foi
computer science majors and other students with a deep interst m the subject
Fundemantal techniques of problem storing and usmg Ad» to implement the
solutions of non-numencal problems are presented Several programing
projects aimed at practicing these techniques are assigned during the course

rial owe I Cunl I Ext

2 of 34 [COURSES.DB)

Figure [23] Courses Form

SYSTEMS MANAGEMENT
Master Srltedule List

B20O0

1 KL fill 1-280 1 KL Q I-2SC

3 p
4

3 p
4

n
l c
2

j

1 B

i i
■

•

1

2 of 2 |:V/0RK:PERI0DS.DB]

Figure [24] Master Schedule Form

80

Figure [25] Course schedule Form

SYSTEMS MANAGEMENT- (Curriculum Forml
Bat» Becord Erint Quit

SYSTEMS MANAGEMENT
Ciirriculmn Form

ACM-S15

nransam

1 of 8 [CURRTB.DB]

Hm \ Uü | ru | MM Cmal Ent

^

Figure [26] CurriculumForm

81

^MBainBBMJMdj.i.ij.ifnin||.|i|iii„ijjiiijj1JJiB
Becord Prjnt Quit ^~""""■

Figiire [27] Curriculum Courses Form

l*'dW.bi.iM.'M,wuni
D»ta Becord Print Quit

SYSTEMS MANAGEMENT

ni-ii-iiii

| Ma | TM | B»l^|cimi| EJH

1 o« 4 [ENR0LLED.DB1

Figure [28] Enrolled Form

82

Data Record Print Quit
SYSTEMS MANAGEMENT - |Student Schedule Forml

SYSTEMS MANAGEMENT
Student Schedule

1—
6 E0810 1 R

6 IS4302 1 R BU S-313

6 MN4123 1 R
6 NS3252 1 R

ITM-370 PM-31

QQ|gJ^JU J BS

1 of 5 [STUDENT.DB]

Figure [29] Student Schedule Form

Figure [30] Add/Drop Form

83

I.^UAU.tuji.irij.iij.nwHUiHiMimHni
Data ßecord Erint flu»

Figure [31] Academic record Form

Figure [32] Thesis Form

84

/-
-1 Bat« Record frint Quit

SYSTEMS MANAGEMENT - |Passward Forml =K

SYSTEMS MANAGEMENT
Password Screen

111-11-1111

5HHHHB1 5H32JEEJS1

*" I Uix Find I IM« IC wall Exit

1 of 3 [PASSWD.DB]

Figure [33] Password Form

Figure [34] Password change Form

85

^d.'.kiV.i;M^!ldJtai.lfW!^l^m
I I Ü»'» Be cord frint fluit

SYSTEM MANAGEMENT
Department Screen

\ 1 tjM

iDEPTCODEl || DEPARTMOTTNAME

5 IDEPAHTMT.DB)

AERO/ASTRO ENGRG

C3 ACADEMIC GROUP

COMPUTER SCIENCE

ELEC/COMP ENGRG

EW ACADEMIC GROUP

MATHEMATICS DEPT

MEHANICAL ENGRG

METEROLOOYDEPT

NATIONAL SECURITY AFFAIRS

ew Edit Delete C«ncel Erit

?y

Figure [35] Department Form

SYSTEMS MANAGEMENT
Subspeciality Screen

\

SIHSPECIALATY

None

D0I7P MS Neiioenl Security Affeii

0018P MA NalioenlSecurity Affeii

0019P MA Neiioenl Security Affei»

0D71P MA Neiionel Security Affeii

0022P MA Neiionel Security Affeii

0023P MA Neiionel Security Affeii

0024P MA NttiontlSecurity Affairs

0028P MA Neiionel Security Affeii

1 o» 36 [SUBSPEC.DB]

Figure [36] Subspecialty Form

86

-1 ßata Fjecord ffrint Quit
SYSTEMS MANAGEMENT - physical point Table!

SYSTEMS MANAGEMENT
Physical Point Table

1 1 24.40 27.48
2 2 2430 273« |
3 3 24.20 27.24 1
4 4 24.10 27.12 !
i 5 2 24.00 27.00 |
6 6 23 JO 26.43 i
7 7 23.40 2636 I
8 8 2330 26.24 1
9 9 232) 26.12 |

10 10 3 23.10 26.00 !
11 11 23.00 25.48 i
12 12 22 JO 2536 i

New Edit Delete Cancel Exit

1 of 100 [PHYPOINT.DB]

Figure [37] physical Chart Form

Data Becord ffrint flult
SYSTEMS MANAGEMENT - [Individaul Reportl

=X

SYSTEMS MANAGEMENT
Individual Reports

625-J6-4W7

Exit

Calculate GPA

Performance

Fir ft Probation

Second Probation

Improved

4 of 5 ISTUDENT.DB]

Figure [38] Individual report menu

87

Cat» Becord Erlnt Quit
SYSTEMS MANAGEMENT

SYSTEMS MANAGEMENT
Croup Reports

Calculate GPA

Perfotmace

First Probation

Second Probation !j

Improved

l^DDHS
1 of 7 IWARRNING.DB]

Figure [39] Group report menu

88

DEPARTMENT OF THE NAVY
NAVAL POSTGRADUATE SCHOOL

MONTEREY, CA 93943-5100

Tuesday, September 20, 1994

MEMORANDUM

From: Systems Management Curricular Officer/Academic Associate (ITM-370)

To: JOHNSON STEVE I, INTL , 625-56-4047

Subj: ACADEMIC PERFORMANCE

1. Areview of your academic transcript for the quarter ending SEPTEMBER /1994 reveals
that your Graduate Quality Point Rating (GQPR) is 1.94 and your Total Quality Point

Rating (TQPR) is 124 . The purpose of this memo is to remind you that a minimum
GQPR of 3.00 and a TQPR of 2.75 must be obtained in order to receive a Master of
Science in Management degree.

2. We trust that you are making every effort to bring up your grades. You are not being
placed on academic probation at this time.

3. If you have any questions or need any assistance, please contact me or you
Academic Associate.

M. P. Tryon
CDR, SC, USN

89

DEPARTMENT OF THE NAVY
NAVAL POSTGRADUATE SCHOOL

MONTEREY, CA 93943-5100

Tuesday, September 20, 1994

MEMORANDUM

From: Systems Management Curricular Officer/Academic Associate (ITM-370)

To: JOHNSON STEVE I , INTL , 625-56-4047

Subj: NOTIFICATION OF ACADEMIC PERFORMANCE

1. A review of your academic transcript for the quarter ending SEPTEMBER /1994 reveals
that your Graduate Quality Point Rating (GQPR) is 1.94 and your Total Quality Point

Rating (TQPR) is 1.24 . The purpose of this memo is to advise you that a minimum

GQPR of 3.00 and a TQPR of 2.75 must be obtained in order to receive a Master of
Science in Management degree.

2. In view of the foregoing, you are notified that you have been placed on academic
probation. Failure to meet the minimum standards, depending on subsequent performance,
may result in disenrollment.

3. Extenuating circumstances, or a need for additional assistance or instruction in
assigned courses, should be discussed with the curricular officer or your Academic
Associate.

M. P. Tryon
CDR, SC, USN

90

DEPARTMENT OF THE NAVY
NAVAL POSTGRADUATE SCHOOL

MONTEREY, CA 93943-5100

Tuesday, September 20,1994

MEMORANDUM

From: Systems Management Curricular Officer/Academic Associate (JTM-370)

To: JOHNSON STEVE I, INTL , 625-56-4047

Subj: NOTIFICATION OF ACADEMIC PROBATION

1. A review of your academic transcript for the quarter ending SEPTEMBER /l 994 reveals
that your Graduate Quality Point Rating (GQPR) is 1.94 and your Total Quality Point
Rating (TQPR) is 1.24 . The purpose of this memo is to advise you that a minimum
GQPR of 3.00 and a TQPR of 2.75 must be obtained in order to receive a Master of
Science in Management degree.

2. In view of the foregoing, you will remain on academic probation. This is your third
quarter on academic Probation, you must earn A's in all your courses in order to meet
graduation requirements.

3. Extenuating circumstances, or a need for additional assistance or instruction in
assigned courses, should be discussed with the curricular officer or your Academic
Associate.

M. P. Tryon
CDR, SC, USN

91

DEPARTMENT OF THE NAVY
NAVAL POSTGRADUATE SCHOOL

MONTEREY, CA 93943-5100

Tuesday, September 20, 1994

MEMORANDUM

From: Systems Management Curricular Officer/Academic Associate (ITM-370)

To: JOHNSON STEVE I, INTL , 625-56-4047

Subj: IMPROVED ACADEMIC PERFORMANCE

1. A review of your academic transcript for the quarter ending SEPTEMBER /1994 reveals
that your Graduate Quality Point Rating (GQPR) is 3.53 and your Total Quality Point
Rating (TQPR) is 2.59

2. The purpose of this memo is congratulate you on your improved grade point average.
You have put fourth significant efforts towards achieving the academic standards required
for a degree at the Naval Postgraduate School. You are to be commended for these efforts.

M. P. Tryon
CDR, SC, USN

92

SEPTEMBER /1994 GRADUATES Page 1

NAME : ALQASSIM _ WAHEED , A

Dip name : Waheed Abdula Alqassim

Phonetic: Wa-heed Al-Qassim

Advisor: AD

PAYBACK: NO NEXT COMMAND:

Dip street: p.o. BOX 774 MANAMA - BAHRAIN

Dip city :

RANK: LT

SERVICE : INTL

NAME: HUBBARD BARRY A

Dip name: Barry Hubbard RANK: LTCDR

Phonetic: BARRY HUBBARD SERVICE: USN

Advisor: HA

PAYBACK: NO NEXT COMMAND:

Dip street: 123 CUSTOM ST

Dip city : PEBBEL BEACH , CA 93942-

NAME: ALTHAWADI ISA S
t »

Dip name : isa Sufian Althawadi RANK :

Phonetic : ESSA-SOF-YAN-AL-THE-WADI SERVICE •

Advisor: AD

PAY BACK : NEXT COMMAND:

Dip street: 5200 COE AVENUE #2151

Dip city: FORT ORD . CA 93941-

NAME : ALBUSMAIT, KHALID , Y

Dip name : Khalid Y. Albusmait RANK :

Phonetic: KHA-LED AL-BUSS-MAIT SERVICE

Advisor: HA

PAY BACK : NEXT COMMAND :

Dip street: 253 AVENUE 1, MUHARRAQ

Dip city: BAHRAIN .

NAME : JOHNSON STEVE , I

Dip name: Sufian Isa Althawadi RANK: 1LT

Phonetic: SOF-YAN ALTHE-WADI SERVICE: INTL

Advisor: AD

PAYBACK: YES NEXT COMMAND: B.DF

Dip street: 201 GLENWOOD CIRCLE # 14 A

Dip city: MONTEREY , IN 34221-

93

Courses Schedule for September, 1994 Page 1

Curriculum No: ITM-370 /PM-31

Student Name

ALQASSIM, WAHEED, A

HUBBARD, BARRY, A

ALTHAWADI, SUFIAN, I

Courses

IS0810 IS4502 MN4125 NS3252

CS2970 IS2000 MN2155 OS3101

CS2970 IS2000 IS4200 MN2155 OS3101

94

Student list by Country September, 1994 Pa9e 1

Country : BAHRAIN # of Student: 3

ALQASSIM, WAHEED,A

ALBUSMAIT, KHALID Y

ALTHAWADI, SUFIAN,!

Country : USA # of Student: 2

HUBBARD, BARRY, A

ALTHAWADI, ISA, S

95

ALQASS1M , WAHEED , A

P.O. BOX 774 MANAMA - BAHRAIN

ALBUSMAIT, KHAL1D , Y

253 AVENUE 1, MUHARRAQ
BAHRAIN

HUBBARD , BARRY,

123 CUSTOM ST
PEBBEL BEACH CA 93942-

ALTHA WAD] , SUFIAN , /

201 GLEN WOOD CIRCLE #14 A
MONTEREY IN 34221-

ALTHAWADI ,ISA ,S

5200 COE AVENUE #2151
FORTORD, CA 93941-

96

Object:

MethodName

Source:

APPENDIX G. Logic for Menus and Submenus

passForm

Var

Var

end Var

formName Form
userCategory.userSSN String
newDrive.copyName String

Object: passForm

MethodName: close

Source : method close(var eventlnfo Event)
if eventlnfo.isPreFilter()

then
; This code executes for each object on the form.

else

endif
endmethod

; This code executes only for the form.
showSpeedBar()
removeMenuQ

Object: passForm

MethodName: arrive

Source : method arrive(var eventlnfo MoveEvent)
Var

thisApp Application
endVar
if eventlnfo.isPreFilter()

then
; This code executes for each object on the form.

else

endif
endmethod

; This code executes only for the form.
thisApp.setTitlefSYSTEMS MANAGEMENT')
if Not isMaximized() then

maximized
endif
hideSpeedBar()
newDrive-'"
disableDefault

Object: stselectPage

MethodName: arrive

Source : method arrive(var eventlnfo MoveEvent)
if Not isMaximized() then

maximizeO
endif

97

setTitlefStudent Select a table")
endmethod

Object: stselectPage

MethodName: copyTB

Source: method copyTB()
Var

tmpTb Table
end Var
if msgQuestionfPlease Confirm ! "

copy?") = "Yes" 25/°" ^t0 r6St°re thS < "+C0PyName+" > table form the Student
tmpTb.attach(newDrive+copyName)
tmpTb.add(copyName,True,True)

endif messa9e("c°Py fi,e form <"+newDrive+copyName+"> to <"+copyName+">")
endmethod

Object: stselectPage.#Box265.#Box266.CoursesBttn1

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
strestorePage.moveToO

endmethod

Object: stselectPage.#Box265.#Box266.departmentBttn14

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="ST_SCHED.db"
copyTB()
endmethod

Object: stselectPage.#Box265.#Box266.departmentBttn4

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="CHLIDREN.db"
copyTB()
endmethod

Object: stselectPage.#Box265.#Box266.departmentBttn22

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="THESIS.db"
copyTB()
endmethod

98

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="SPACTIVE.db"
copyTB()
endmethod

Object: stselectPage.#Box265.#Box266.departmentBttn12

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="SPOUSE.db"
copyTB()
endmethod

Object: stselectPage.#Box265.#Box266.departmentBttn19

MethodName: pushButton

Source: method pushButton(var eventlnfo Event)
copyName="ENROLLED.db"
copyTBO

endmethod

Object: stselectPage.#Box265.#Box266.departmentBttn9

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="ADDDROP.db"
copyTB()
endmethod

Object: stselectPage.#Bbx265.#Box266.departmentBttn3

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="PHYSICAL.db"
copyTB()
endmethod

Object: stselectPage.#Box265.#Box266.departmentBttn2

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="EDUCFORM.db"
copyTBO
endmethod

Object: stselectPage.#Box265.#Box266.departmentBttn1

MethodName: pushButton

99

Source : method pushButton(var eventlnfo Event)
copyName="MILITARY.db"
copyTB()
endmethod

Object: stselectPage.#Box265.#Box266.departmentBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="STUDENT.db"
copyTB()
endmethod

Object: strestorePage

MethodName: arrive

Source: method arrive(var eventlnfo MoveEvent)
if Not isMaximized() then

maximized
endlf
setTitle("Student Restore Menu")
pageMenu()
endmethod

Object:

MethodName

Source:

strestorePage

menuAction

method menuAction(var eventlnfo MenuEvent)

endVar
mc String

mc = eventlnfo.menuChoiceO
switch
case mc ="Restore &AII tables" :strestoretableBttn.pushbutton()
rÜff mn =-f leCJ &T5blPt0 resotre' ■stselecttableBttn.pushbutton)
case mc = ÄStudent disk menu" :returnBttn9.pushbutton()

endswitch v

endmethod

Object: strestorePage

MethodName: proc

Source: proc pageMenuQ
Var

pageMenu Menu
dropMenul, dropMenu2 popUpMenu

endVar

dropMenu1.addText("Restore &AII tables")
dropMenu1.addText("Select ÄTable to resotre")
pageMenu.addPopUp("&Selection",dropmenu1)

dropMenu2.addText("&Student disk menu")
pageMenu.addPopUp("&Return",dropMenu2)

100

pageMenu.show()

endproc

Object: strestorePage.#Box255.#Box256.returnBttn9

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
stdiskPage.moveTo()

endmethod

Object: strestorePage.#Box255.#Box256.strestoretableBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

fs FileSystem
tmpTb Table
tableName Array[] String

endVar
if msgQuestion("Please Confirm !...",

"Are you sure that you want to restore all the"+
'Tables form the STUDENT Diskette copy") = "Yes" then

tableName.setSize(11)
tableName[1]="ADDDROP.db"
tableName[2]="CHILDREN.db"
tableName[3]="EDUCFORM.db"
tableName[4]="ENROLLED.db"
tableName[5]="MILITARY.db"
tableName 6]="PHYSICAL.db"
tableName[7]="SPOUSE.db"
tableName[8]="SPACTIVE.db"
tableName[9]="ST-SCHED.db"
tableName[10]="STUDENT.db"
tableName[11]='THESIS.db"
for i from 1 to 11

tmpTb.attach(newDrive+tableName[i])
tmpTb.add(tableName[i],True,True)
message("Restore form <"+newDrive+tableName[i]+

"> To C:\\pdoxwin\\smdb\\"+tableName[i])
endFor

endif
endmethod

Object: strestorePage.#Box255.#Box256.stselecttableBttn

101

MethodName: pushButton

Source method pushButton(var eventlnfo Event)
stselectPage. moveToO
endmethod

Object:

MethodName

Source:

stdiskPage

menuAction

method menuAction(var eventlnfo MenuEvent)

endVar
mc String

mc = eventlnfo.menuChoice()
switch
case mc ="&A
case mc ="&B
case mc ="&C

i:" :aBttn.pushbutton()
':" :bBttn.pushbutton()

 _J:" :cBttn.pushbutton()
case mc ="&Create new diskette" :newdiskBttn.pushbutton()
case mc ^Quarterly Update" :qrtlyBttn.pushbutton() "
case mc = &Restore from student disk":strestoreBttn.pushbuttonO

endSswitch enU" :returnBttn8.pushbütton()
endmethod

Object: stdiskPage

MethodName: proc

Source: proc PageMenu()
Var

pageMenu Menu
dropMenul, dropMenu2, dropMenu3 popUpMenu

dropMenul .addText("&A")
dropMenul .addText("&B:")
dropMenul .addText("&C:")
pageMenu.addPopUp("&Drive",dropmenu1)

dropMenu2.addText("&Create new diskette")
dropMenu2.addText("&Quarterly Update")
dropMenu2.addText("&Restore from student disk")
pageMenu.addPopUp("&Selection",dropmenu2)

dropMenu3.addText("&Main menu")
pageMenu.addPopUp("&Return",dropMenu3)

pageMenu.showQ

endproc

Object: stdiskPage.#Box5.#Group245.returnBttn8

MethodName: pushButton

Source method pushButton(var eventlnfo Event)
MainPage.moveTo()

102

endmethod

Object: stdiskPage.#Box5.#Group245.strestoreBttn

MethodName: pushButton

Source: method pushButton(var eventlnfo Event)
if not newDrive.isBlank() then

strestorePage. moveTo()
else

msgStopfWARNING !","you must specify the Drive label")
endlf '
endmethod

Object: stdiskPage.#Box5.#Group245.qrtlyBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)

fs FileSystem
stPath String
tableName Array[] String

endVar
stpath="C:\\pdoxwin\\smdb\\stdisk\\"
if not newDrive.isBlank() then

tableName.setSize(11)
tableName[1
tableName
tableName
tableName
tableName
tableName
tableName
tableName
tableName
tableName
tableName

else

endlf

="SCHEDULE.db"
="WEEKDAY.db"
="PERIODS.db"
="COURSES.db"
="CURRTB.db"
="CURRCOUR.db"
="DEPARTMT.db"
="SUBSPEC.db"

9]="FACULTY.db"
10]="PHYPOINT.db"

[11]="REQUIRED.db"
for i from 1 to 11

copy(tableName[i],newDrive+tableName[i])
messagefcopy < "+tableName[i] +

" > to < "+newDrive+tableName[i]+" >")

copy(stpath+"ST-SCHED.db",newDrive+"ST-SCHEDDB")
message("copy < "+stPath+"ST-SCHED.db" +

" > to < "+newDrive+"ST-SCHED db")
copy(stpath+"ADDDROP.db",newDrive+"ADDDROP")
message("copy < "+stPath+"ADDDROP.db" +

" > to < "+newDrive+"ADDDROP.db")

msgStop("WARNING! Error"t"You must specify the Drive label")

endmethod

Object: stdiskPage.#Box5.#Group245.newdiskBttn

MethodName: pushButton

103

Source : method pushButton(var eventlnfo Event)
Var
fs FileSystem
mainPath String

endVar
if not newDrive.isBlank() then

if msgQuestion("Please Confirm !...",
"All the data in the destination disk will LOST") = "Yes" thpn

l=fs.makeDir("b:\\smdb") '
message("Status",iif(l,"New directory created'7'makeDir failure"))
mainPath="C:\\pdoxwin\\smdb\\stdisk\\" "
if fs.findFirst("C:\\pdoxwin\\smdb\\stdisk*.fdl") then

fs.copy(mainPath+fs.name(),newDrive+fsnamef))
message("copy < "+mainPath+fs.name() +

... . r J„, " > to < "+newDrive+fs.nameO) while fs.findNext() '°"icW;

fs.copy(mainPath+fs.name(),newDrive+fsnamen)
messagefcopy < "+mainPath+fs.name() +

endWhile " > t0 < "+newDrive+fename())
endlf
if fs.findFirst("C:\\pdoxwin\\smdb\\stdisk*.db") then

copy(mainPath+fs.name(),newDrive+fsname())
message("copy < "+mainPath+fs.name() +

while fs.findNextQ " > to < "+newDriVe+fs.name())

copy(mainPath+fs.name(),newDrive+fsnameO)
message("copy < "+mainPath+fs.name() +

endWhile " > t0 < M+newDrive+fs.name())
endlf

fs.copy(mainPath+"smdb.ssl",newDrive+"smdbssl")

,%°Btmpu^Bt;o;rbba,"'newDrivesubs,r<i'3)*"^
endif

else
msgStop("WARNING! Error",

end|f "you must specify the Drive label")

endmethod

Object: stdiskPage.#Box5.#Box7.#Button15

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
newDrive ="C:\\smdb"
endmethod

Object: stdiskPage.#Box5.#Box7.#Button10

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
newDrive ="B:Usmdb\\"
endmethod

Object: stdiskPage.#Box5.#Box7.#Button8

MethodName: pushButton

104

Source : method pushButton(var eventlnfo Event)
newDrive ="A:\\smdb"
endmethod

Object: selectPage

MethodName: copyTB

Source: method copyTB()
Var

tmpTb Table
endVar
if msgQuestion("Please Confirm !...",

copy") = "Yes" th?n° y°U Want t0 ^^the * "+C0PvName+" > tab|e form the back up
tmpTb.attach(newDrive+copyName)
tmpTb.add(copyName,True,True)

endif
endmethod

Object: selectPage.#Box181 .#Box185.departmentBttn24

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="SUBSPEC.db"
copyTBO
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn23

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="TAKENBY.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn22

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName='THESIS.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn21

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="WARRINING.db"
copyTBO
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn20

MethodName: pushButton

105

Source : method pushButton(var eventlnfo Event)
copyName="WEEKDAY.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn14

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="ST_SCHED.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn13

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName=MSPACTIVE.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn12

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="SPOUSE.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn11

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="SCHEDULE.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn10

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="REQUIRED.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn19

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="ENROLLED.db"
copyTB()

106

endmethod

Object: selectPage.#Box181.#Box185.departmentBttn18

MethodName: pushButton

Source: method pushButton(var eventlnfo Event)
copyName="FACULTY.db"
copyTB()
endmethod '

Object: selectPage.#Box181.#Box185.departmentBttn17

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="PASSWD.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn16

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="PERIODS.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn15

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyname="PHYPOINT.db"
copyTB()
endmethod

Object: selectPage.#Box181 .#Box185.departmentBttn9

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="ADDDROP.db"
copyTB()
endmethod

Object: selectPage.#Box181 .#Box185.departmentBttn8

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyname="COURSES.db"
copyTB()
endmethod

107

Object: selectPage.#Box181.#Box185.departmentBttn7

MethodName: pushButton

Source method pushButton(var eventlnfo Event)
copynmae="CURRCOUR db"
copyTB()
endmethod

Object: se!ectPage.#Box181.#Box185.departmentBttn6

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

tmpTb Table
endVar
if msgQuestionfPlease Confirm !...",

up copy") = "Yes" then "D° y°U W3nt t0 reSt°re the Curriculum table form the back
tmpTb.attach(newDrive+"CURRTBdb")
tmpTb.add("CURRTB.db",True,True)

endif
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn5

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="DEPARTMT.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn4

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="CHLIDREN.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn3

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="PHYSICAL.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn2

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="EDUCFORM.db"
copyTB()

108

endmethod

Object: selectPage.#Box181.#Box185.departmentBttn1

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="MILITARY.db"
copyTB()
endmethod

Object: selectPage.#Box181.#Box185.departmentBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
copyName="STUDENT.db"
copyTB()
endmethod

Object: selectPage.#Box181 .#Box182.retumBttn8

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
restorePage. moveTo()

endmethod

Object:

MethodName

Source:

restorePage

menuAction

method menuAction(var eventlnfo MenuEvent)
Var

endVar
mc String

mc = eventlnfo.menuChoice()
switch
case mc ="Restore &AII tables" :restoretableBttn.pushbutton()
case mc ="Select &Table to resotre":selecttableBttn.pushbutton()
case mc ="&Back up menu" :returnBttn7.pushbutton()

endswitch v/

endmethod

Object: restorePage

MethodName: proc

Source: proc pageMenu()
Var

pageMenu Menu
dropMenul, dropMenu2 popUpMenu

endVar

dropMenuladdText("Restore &AII tables")

109

dropMenu1.addText("Select ÄTable to resotre")
pageMenu.addPopUp("&Selection",dropmenu1)

dropMenu2.addText("&Back up menu")
pageMenu.addPopUp("&Return",dropMenu2)

pageMenu.show()

endproc

Object: restorePage.#Box170.#Box174.restoretableBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

fs FileSystem
tmpTb Table

endVar
if msgQuestionfPlease Confirm !...",

"Are you sure that you want to restore all the"+
Tables form the back up copy") = "Yes" then

if fs.findFirst(newDrive+"*.db") then
tmpTb.attach(newDrive+fs.name())
tmpTb.add(fs.name(),True,True)
message("Restore form <"+newDrive+fs.name()+

u-i X.X- ^, ^ "> To C:\\"+fs.name())
while fs.findNextO

tmpTb.attach(newDrive+fs.name())
tmpTb.add(fs.name(),True,True)
message("Restore form <"+newDrive+fs.name()+

"> To C:\\"+fs.name())

endlf
endif
endmethod

endWhile

Object: restorePage.#Box170.#Box174.selecttableBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
selectPage.moveTo()
endmethod

Object: restorePage.#Box170.#Box171.returnBttn7

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
backupPage. moveTo()

endmethod

110

Object :

MethodName

Source:

backupPage

menuAction

method menuAction(vareventlnfo MenuEvent)
Var

endVar
mc String

mc = eventlnfo.menuChoice()
switch
case mc ="&A:" :aBttn.pushbutton()
case mc ="&B:" :bBttn.pushbutton()
case mc ="&C:" :cBttn.pushbutton()
case mc ="&Daily back up" :dailyBttn.pushbutton()
case mc ="&Graduates back up" :gradbackBttn.pushbutton()
case mc ="&Restore from back ups":retoreBttn.pushbutton()
case mc ="&Main menu" :returnBttn6.pushbutton()

endswitch
endmethod

Object:

MethodName:

Source:

backupPage

proc

proc PageMenu()
Var

pageMenu Menu
dropMenul, dropMenu2, dropMenu3 popUpMenu

endVar
dropMenul .addText("&A:")
dropMenul .addText("&B:")
dropMenul .addText("&C:")
pageMenu.addPopUp("&Drive",dropmenu1)

dropMenu2.addText("&Daily back up")
dropMenu2.addText("&Graduates back up")
dropMenu2.addText("&Restore from back ups")
pageMenu.addPopUp("&Selection",dropmenu2)

dropMenu3.addText("&Main menu")
pageMenu.addPopUp("&Return",dropMenu3)

pageMenu.show()

endproc

Object: backupPage.bigbox.retumBttn6

MethodName: push Button

Source: method pushButton(var eventlnfo Event)
MainPage.moveTo()
endmethod

Object: backupPage. bigbox.returnBttn6.#Text168

MethodName: action

111

Source : method action(var eventlnfo ActionEvent)
mainPage.moveTo()
endmethod

Object: backupPage.bigbox.#Group156.retoreBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
if not newDrive.isBlank() then

restorePage. moveTo()
else

msgStop("WARNING !n,"you must specify the Drive label")
endlf '
endmethod

Object: backupPage.bigbox.#Group156.gradbackBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

tmpTb Table
endVar
if not newDrive.isBlank() then

else
msgStop("WARNING! Error","you must specify the Drive label")

endlf '
endmethod

Object: backupPage.bigbox.#Group156.dailyBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

fs FileSystem
endVar
if not newDrive.isBlank() then

if msgQuestion("Please Confirm !...",
"Are you sure that you want to back up all files") = "Yes" then
iffs.findFirstr.db")then

copy(fs.name(),newDrive+fs.name())
while fs.findNextO

copy(fs.name(),newDrive+fs.name())
endWhile

endlf
endif

else
bigbox.visible-'False"
msgStop("WARNING! Error",

"you must specify the Drive label")
bigbox.visible-True"

endlf
endmethod

Object: backupPage.bigbox.#Box149.cBttn

MethodName: pushButton

112

Source method pushButton(vareventlnfo Event)
newDrive ="C:\\"
endmethod

Object: backupPage.bigbox.#Box149.bBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
newDrive ="B:\\"
endmethod

Object: backupPage. bigbox.#Box149.#Button 150

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
newDrive ="A:\\"
endmethod

Object :

MethodName:

Source:

codePage

menuAction

method menuAction(var eventlnfo MenuEvent)
Var

endVar
mc String

mc = eventlnfo.menuChoiceO
switch
case mc ="&Department form" :departmentBttn.pushbutton()
case mc ="&Subspeciality form":subspecialBttn.pushbutton()
case mc ="&Physical Point Table":phypointBttn.pushbutton()
case mc ="&Main menu":returnBttn5.pushbutton()

endswitch
endmethod

Object: codePage

MethodName: proc

Source: proc pageMenu()
Var

pageMenu Menu
dropMenul, dropMenu2 popUpMenu

endVar

dropMenul .addTextC'&Department form")
dropMenul.addTextf&Subspeciality form")
dropMenu1.addText("&Physical Point Table")
pageMenu.addPopUp("Se&lection",dropmenu1)

dropMenu2.addText("&Main menu")
pageMenu.addPopUp("&Return",dropMenu2)

pageMenu.show()

endproc

113

Object :

MethodName

Source:

Object:

codePage.#Box133.#Box140.phypointBttn

pushButton

method pushButton(var eventlnfo Event)
Var '

open Form Form
endVar

openForm.openf'PHYPOINT fdl")
disableDefault

endmethod

codePage.#Box133.#Box140.departmentBttn

MethodName: pushButton

Source method pushButton(var eventlnfo Event)
Var '

open Form Form
endVar

openForm.openf'DEPART.fdl")
disableDefault

endmethod

Object: codePage.#Box133.#Box140.subspecialBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var '

open Form Form
endVar

openForm.open("SUBSPECI fdl")
disableDefault

endmethod

Object: codePage.#Box133.#Box134.returnBttn5

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
MainPage.moveTof)

endmethod

Object: performancePage

MethodName: menuAction

Source : {™fr
thod menuAction(var eventlnfo MenuEvent)

mc String
Var

endVar

mc = eventlnfo.menuChoiceO
switch w

ritt ™ =3}!?dividua> Letter :individualBttn.pushbutton()
S?Pmr-"fpr0Up* Lettfs'-groupBttn.pushbuttonO

endsvvit h~ ports menu :returnBttn4.pushbutton()
endmethod

14

Object: performancePage

MethodName: proc

Source: proc pageMenu()
Var

pageMenu Menu
dropMenul, dropMenu2 popllpMenu

endVar

dropMenuladdText("&lndividual Letter")
dropMenul .addText("&Group Letters")
pageMenu.addPopUp("Se&lection",dropmenu1)

dropMenu2.addText("&Reportsmenu")
pageMenu.addPopUp("&Return",dropMenu2)

pageMenu.show()

endproc

Object: performancePage.#Box125.#Box139.individualBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

open Form Form
endVar

openForm.open("WARNSING.fdl")
disableDefault

endmethod

Object: performancePage.#Box125.#Box139.groupBttn

MethodName: pushButton

Source: method pushButton(var eventlnfo Event)
Var

open Form Form
endVar

openForm.openfWARRNING.fdl")
disableDefault

endmethod

Object: performancePage.#Box125.#Box129.returnBttn4

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
reportsPage. moveTo()

endmethod

Object:

MethodName

Source:

reportspage

menu Action

method menuAction(var eventlnfo MenuEvent)
Var

115

endVar
mc String

mc = eventlnfo.menuChoiceO
switch
case mc ="&Performance Letters" :performanceBttn.pushbuttonO
case mc = ÄGraduates List" :graduateBttn.pushbutton()
case mc ="&Diploma Mailing Label":labelBttn.pushbutton()
case mc ="&Academic Reports" :acadreportBttn.pushbutton()
case mc = &Main menu" :returnBttn3.pushbuttonO

endswitch v/

endmethod

Object: reportspage

MethodName: proc

Source: proc PageMenu()
Var

pageMenu Menu
dropMenul, dropMenu2 popUpMenu

endVar

dropMenul.addTextf&Performance Letters")
dropMenul .addTextf&Graduates List")
dropMenuladdTextf&Diploma Mailing Label")
dropMenul .addTextf&Academic Reports")
pageMenu.addPopUp("Se&lection",dropmenu1)

dropMenu2.addText("&Main menu")
pageMenu.addPopUp("&Return",dropMenu2)

pageMenu.show()

endproc

Object: reportspage.#Box18.#Box114.labelBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

open Form Report
endVar

openFoimopenfLABELrdl")
disableDefault

endmethod

Object:

MethodName

Source:

reportspage.#Box18.#Box114.graduateBttn

pushButton

method pushButton(var eventlnfo Event)
Var

openForm Report
endVar

openForm.openfGRADUATE.rdl")
disableDefault

116

endmethod

Object: reportspage.#Box18.#Box114.performanceBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
performancePage.moveToO
endmethod

Object: reportspage.#Box18.#Box111 .returnBttn3

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
MainPage.moveTo()

endmethod

Object: mstSchedulePage

MethodName: menuAction

Source : method menuAction(var eventlnfo MenuEvent)
Var

mc String
endVar

mc = eventlnfo.menuChoice()
switch
case mc ="&Master Schedule form" :masterschedBttn.pushbutton()
case mc ="&Course Schedule form" :courseschedBttn.pushbutton()
case mc ="&Main menu":retumBttn3.pushbutton()

endswitch
endmethod

Object:

MethodName

Source:

mstSchedulePage

proc

proc pageMenu()
Var

pageMenu Menu
dropMenul, dropMenu2 popUpMenu

endVar

dropMenu1.addText("&Master Schedule form")
dropMenu1.addText("&Course Schedule form")
pageMenu.addPopUp("Se&lection",dropmenu1)

dropMenu2.addText("&Main menu")
pageMenu.addPopUp("&Return",dropMenu2)

pageMenu.show()

117

endproc

Object: mstSchedulePage.#Box62.#Box99.masterschedBttn

MethodName: pushButton

Source method pushButton(var eventlnfo Event)
Var

open Form Form
endVar

openForm.openfMSTSCHED.fdl")
disableDefault

endmethod

Object: mstSchedulePage.#Box62.#Box99.courseschedBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

openForm Form
endVar

openForm.open('TAUGHTBY.fdl")
disableDefault

endmethod

Object: mstSchedulePage.#Box62.#Box96.returnBttn3

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
MainPage.moveTo()

endmethod

Object: stSchedulePage

MethodName: menuAction

Source : method menuAction(var eventlnfo MenuEvent)
Var

mc String
endVar

mc = eventlnfo.menuChoice()
switch

18

case mc = ÄCurriculum Enrolled form" :currenrollBttn.pushbutton()
case mc ="&Student Schedule form":stscheduleBttn.pushbutton()
case mc ="&Add/Drop form":addropBttn.pushbutton()
case mc ="Academic SRecords form":academicBttn.pushbutton()
case mc ="&Main menu":retumBttn2.pushbutton()

endswitch
endmethod

Object: stSchedulePage

MethodName: proc

Source: proc PageMenu()
Var

pageMenu Menu
dropMenul, dropMenu2 popUpMenu

endVar

dropMenu1.addText("&Curriculum Enrolled form")
dropMenuLaddTextf&Student Schedule form")
dropMenul .addText("&Add/Drop form")
dropMenu1.addText("Academic ÄRecords form")
pageMenu.addPopUp("Se&lection",dropmenu1)

dropMenu2.addText("&Main menu")
pageMenu.addPopUp("&Retum",dropMenu2)

pageMenu.show()

endproc

Object: stSchedulePage.#Box110.#Box95.academicBttn

MethodName: pushButton

Source: method pushButton(vareventlnfo Event)
Var

open Form Form
endVar

openForm.open('TAKENBY.fdr')
disableDefault

endmethod

Object: stSchedulePage.#Box110.#Box95.addropBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)

openForm Form
endVar

openForm.openf'ADDDROP.fdl")
disableDefault

endmethod

119

Object: stSchedulePage.#Box110.#Box95.stscheduleBttn

MethodName: pushButton

Source method pushButton(var eventlnfo Event)
Var

open Form Form
endVar

openForm.open("STSCHED.fdl")
disableDefault

endmethod

Object: stSchedulePage.#Box110.#Box95.currenrollBttn

MethodName: pushButton

Source: method pushButton(var eventlnfo Event)
Var

open Form Form
endVar

openForm.open("enrolled.fdl")
disableDefault

endmethod

Object: stSchedulePage.#Box110.#Box92.returnBttn2

MethodName: pushButton

Source: method pushButton(var eventlnfo Event)
Main Page. moveTo()

endmethod

Object: curriculumPage

MethodName: menuAction

Source: method menuAction(var eventlnfo MenuEvent)

endVar
mc String

mc = eventlnfo.menuChoiceO
switch
case mc ="&New Curriculum form" :curriculumBttn.pushbutton()
case mc - ÄCurriculum courses form":currcoursesBttn.pushbutton()
case mc = &Main menu":retumBttn1.pushbuttons

endswitch w

endmethod

Object: curriculumPage

MethodName: proc

Source: proc pageMenu()
Var

pageMenu Menu
dropMenul, dropMenu2 popUpMenu

endVar

120

dropMenu1.addText("&New Curriculum form")
dropMenu1.addText("&Curriculum courses form")
pageMenu.addPopUp("Se&lection",dropmenu1)

dropMenu2.addText("&Main menu")
pageMenu.addPopUp("&Return",dropMenu2)

pageMenu.showQ

endproc

Object: curriculumPage.#Box45.#Box54.curriculumBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

open Form Form
endVar

openForm.open("CURRICUL.fdl")
disableDefault

endmethod

Object: curriculumPage.#Box45.#Box54.currcoursesBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

open Form Form
endVar

openForm.open("CURRCOUR.fdl")
disableDefault

endmethod

Object: curriculumPage.#Box45.#Box51.returnBttn1

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
MainPage.moveToO

endmethod

Object: studentpage

MethodName: menuAction

Source : method menuAction(var eventlnfo MenuEvent)

mc String
endVar

mc = eventlnfo. menuChoiceQ

121

switch
case mc ="&Personnel form" :personnelBttn.pushbuttonO
case mc = &Military formM:militaryBttn.pushbutton()
case mc ="&Education form":educationBttn.pushbuttonO
case mc ="P&hysical form":physicalBttn.pushbutton()
case mc ="&Spouse from":spouseBttn.pushbutton()
case mc ="&Children form":childrenBttn.pushbutton()
case mc ="Change Pass&word":passwdBttn.pushbuttonO
case mc = &Main menu":returnBttn.pushbuttonO

endswitch
endmethod

Object: studentpage

MethodName: proc

Source: proc PageMenuf)
Var

pageMenu Menu
dropMenul, dropMenu2 popUpMenu

endVar

dropMenul .addTextf&Personnel form")
dropMenul .addTextf&Military form")
dropMenul .addText("&Education form")
dropMenul .addText("P&hysical form")
dropMenul .addTextf&Spouse from")
dropMenul .addText("&Children form")
dropMenul .addSeparator()
dropMenu1.addText("ChangePass&word")
pageMenu.addPopUp("Se&lection",dropmenu1)

dropMenu2.addText("&Main menu")
pageMenu.addPopUp("&Retum",dropMenu2)

pageMenu.show()

endproc

Object: studentpage.#Box87.#Box72.personnelBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

open Form Form
endVar

openForm.openfpersonel.fdl")
disableDefault

endmethod

Object: studentpage.#Box87.#Box72.militaryBttn

MethodName: pushButton

122

Source method pushButton(vareventlnfo Event)
Var

open Form Form
endVar

openForm.open("MILITARY.fdl")
disableDefault

endmethod

Object: studentpage.#Box87.#Box72.spouseBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

open Form Form
endVar

openForm.open("SPOUSE.fdl")
disableDefault

endmethod

Object: studentpage.#Box87.#Box72.physicalBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

openForm Form
endVar

openForm.open("PHYSICAL.fdl")
disableDefault

endmethod

Object: studentpage.#Box87.#Box72.childrenBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

openForm Form
endVar

openForm.open("CHILDERN.fdl")
disableDefault

endmethod

Object: studentpage.#Box87.#Box72.educationBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

openForm Form
endVar

openForm.openfEDUCFORM.fdl")
disableDefault

endmethod

Object: studentpage.#Box87.#Box69.retumBttn

123

MethodName : pushButton

Source : method pushButton(var eventlnfo Event)
Main Page. moveToO

endmethod

Object :

MethodName

Source:

studentpage.#Box87.#Box42.passwdBttn

pushButton

method pushButton(var eventlnfo Event)
Var

open Form Form
endVar

openForm.openfPASSCHG.fdl")
disableDefault

endmethod

Object:

MethodName

Source:

MainPage

menuAction

method menuAction(var eventlnfo MenuEvent)

end Var
mc String

mc = eventlnfo.menuChoiceO
switch
case mc ="&Student" :StudentBttn.pushbutton()
case mc =;;Student Sche&dule menu":StScheduleBttn.pushbuttonf)
case mc = &Main Schedule menu":ScheduleBttn.pushbutton()
case mc = &Courses":CoursesBttn.pushbutton()
case mc ="&Faculty":FacultyBttn.pushbutton()
case mc ="Cu&rriculum menu":CurriculumBttn.pushbuttonO
case mc ="&Thesis":ThesisBttn.pushbutton() U

case mc ="&Codes menu":codesBttn.pushbutton()
case mc ="&Add new user":useridBttn.pushbutton()
case mc ="&End of quater":endquarterBttn.pushburton()
case mc = ÄGenrate Reports".TeportsBttn.pushbutton(
case mc = fCreate student Diskette":stdiskBttn.pushbutton()
case mc ="&Back Ups":backupBttn.pushbutton()
case mc ="&Quit":ExitBttn.pushbuttonO

endswitch
endmethod

Object: MainPage

MethodName: proc

Source: proc PageMenu()
Var

pageMenu Menu
dropMenul, dropMenu2,dropMenu3 popUpMenu

endVar

dropMenul .addText("&Studenf')
dropMenu1.addText("Student Sche&dule menu")
dropMenul .addText("&Main Schedule menu")
dropMenul .addTextf&Courses")

124

dropMenul .addTextC'&Faculty")
dropMenul .addText("Cu&rriculum menu")
dropMenul .addTextf&Thesis")
dropMenul .addText("&Codes menu")
pageMenu.addPopUp("Se&lection",dropmenu1)

dropMenu2.addText("&Add new user")
dropMenu2.addText("&End of quarter")
dropMenu2.addText("&Genrate Reports")
dropMenu2.addText("&Create student Diskette")
dropMenu2.addText("&Back Ups")
pageMenu.addPopUp("&Procedures",dropmenu2)

dropMenu3.addText("&Quit")
pageMenu.addPopUp("&Quit",dropMenu3)

pageMenu.show()

endproc

Object:

MethodName:

Source:

MainPage.#Box25. ExitBttn

pushButton

method pushButton(var eventlnfo Event)
PassWdField=""
UserldField =""
UserldField.moveTo()

endmethod

Object: MainPage.#Box243.CurriculumBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
if userCategory = "STUDENT' then

msglnfofCAUTION'V'You are NOT allowed to access <"+self.LabelText+"> form")

curriculumPage.moveToO
endif
endmethod

Object: MainPage.#Box243.StScheduleBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
if userCategory = "STUDENT" then

msglnfoC'CAUTION'V'You are NOT allowed to access <"+self.LabelText+"> form")
else '

stSchedulePage.moveTo()

125

endif
endmethod

Object: MainPage.#Box243.ScheduleBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
if user-Category = "STUDENT' then
else ms9lnf°("CAUTION"."You are NOT allowed to access <"+self.LabelText+"> form")

mstSchedulePage.moveToO
endif
endmethod

Object: MainPage.#Box243.CoursesBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

open Form Form
endVar
if userCategory = "STUDENT' then
else ms9lnf°("CAUTION"."You are NOT allowed to access <"+self.LabelText+"> form")

disableDefault
hide()
openForm.openf'COURSES.fdl")

endif '
endmethod

Object: MainPage.#Box243.FacultyBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var '

openForm Form
endVar
if userCategory = "STUDENT' then
else ms9|nf°("CAUTION"."You are NOT allowed to access <"+self.LabelText+"> form ")

openForm.openf'FACULTY fdl")
disableDefault

endif
endmethod

Object: MainPage.#Box243.StudentBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
studentPage. moveTof)

endmethod

126

Object: MainPage.#Box243.CodesBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
if userCategory = "STUDENT" then
else ms9lnf°("CAUTION"-"You are NOT allowed to access <"+self.LabelText+"> form")

codePage.moveTo()
endif
endmethod

Object: MainPage.#Box243.ThesisBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

open Form Form
endVar
if userCategory = "STUDENT' then

msglnfo("CAUTION","You are NOT allowed to access <"+self LabelText+"> form")
else '

disableDefault
hide()
openForm.open("THESIS.fdl")

endif
endmethod

Object: MainPage.#Box41.#Box44.#Group106.useridBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

openForm Form
endVar
if userCategory = "STUDENT' then

msglnfo("CAUTION","You are NOT allowed to access <"+self.LabelText+"> form")

openForm.open("PASSWD.fdl")
disableDefault

endif
endmethod

Object: MainPage.#Box41.#Box44.#Group106.stdiskBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
if userCategory = "STUDENT' then

msglnfo("CAUTION","You are NOT allowed to access <"+self.LabelText+"> form")

stdiskPage.moveTo()
endif
endmethod

Object: MainPage.#Box41.#Box44.backupBttn

127

MethodName

Source :

pushButton

method pushButton(var eventlnfo Event)
if userCategory = "STUDENT' then
else ms9lnf°("CAUTI0N"."Y°u are NOT allowed to access <"+self.LabelText+"> form »)

backupPage. moveToQ
endif w

endmethod

Object: MainPage.#Box41.#Box44.endquarterBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
Var

studentTC, stschedTC TCursor
acadTC, courseTC, addTC TCursor

endVar
if userCategory = "STUDENT' then

else ms9|nf°("CAUTI0N"."You are NOT allowed to access <"+self.LabelText+"> form ")

if m*ÄSÄ"WARJSP;7his routine wi" uPdate the Academic record of+
a" SnÄrfeÄROP db")e0t SCh6dUle' Add/dr°P tables")="Yes" then

if studentTC.openfSTUDENT.db") and
stschedTC.open("ST-SCHED.db")and
acadTC.open("TAKENBY.db") and
courseTC.open("COURSES.db") then
studentTC.homeO
for i from 1 to studentTC.nRecords()

stschedTC.setFilter(studentTC.SSN)
if NOT stschedTC.isEmptyO then

acadTC.editO
for j from 1 to stschedTC.nRecords()

acadTC. insertRecord()
acadTC.SSN=stschedTC.SSN

ORDER"=stschedTC."QUARTERORDER"adTC"QUARTER

acadTC."COURSENO"=stschedTC."COURSE NO"

NO",stschedTC."COURSE NO") then

acadTC'COURSE TYPE"=stschedTC "S TYPE"
if courseTC.Iocate("COURSE

endlf

acadTC."Credit"=courseTC.CREDIT
acadTC."Lab"=courseTC.LAB

endlf
stschedTC. nextRecordO

endFor
acadTC.endEditn

endlf
stschedTC.setFilterO
studentTC.nextRecordO

endFor
stschedTC.emptyO
addTC.emptyO
studentTC.close()
stschedTC.closeO
acadTC.close()
courseTC.close()
addTC.close()

128

noted =195
noteG#1=207
noteA2=220
noteA#2=234
noteB2=249
noteC2=265
noteC#2=282
noteD2=300

endConst
sound(noteA1,200)
sound(noteD1,150)
sound(noteF#1,50)
sound(noteA2,100)
sound(noteB2,100)
sound(noteA2,150)
endmethod

Object: PassPage.#Box105.PassWdField

MethodName: action

Source : method action(var eventlnfo ActionEvent)
Var

tc TCursor
password String

endVar
tc.Open("PASSWD.db")
if not tc.Locate("Userld",UserldField.upper()) then

MsgStop("F>ASSWORD","User Id <"+UserldField.upper()+"> NOT found on file")
UserldField =
UserldField.moveTo()
disableDefault

else
password = tc.PassWd
if password <> PassWdField then

soundPY()
MsgStopfPASSWORD'VWrong Password")
PassWdField=""
UserldField =""

UserldField.moveTo()
disableDefault

else
userCategory = tc. "Category", value
MainPage. moveTo()
disableDefault

129

endmethod

Object:

MethodName

Source:

PassPage

menuAction

method menuAction(var eventlnfo MenuEvent)

mc String
endVar
mc = eventlnfo.menuChoiceO
switch

case mc ="&Exit to System":self.close()

endswitch
endmethod

;exit()

Object: PassPage

MethodName: proc

Source: proc pageMenu()
Var

pageMenu Menu
dropMenul, dropMenu2 popUpMenu

endVar

dropMenu2.addText("&Exit to System")
pageMenu.addPopUp("&Exit",dropMenu2)

pageMenu.show()

endproc

Object: PassPage

MethodName: soundPY

Source: method soundPY()
Var
qnote.octave, note longint
power Number
endVar

const
noteAl = 110
noteA#1=116
noteB1=123
noted=130
noteC#1=138
noteD1=146
noteD#1=155
noteE1=164
noteF1=174
noteF#1=184

endlf
endlf
endmethod

Object: MainPage.#Box41.#Box44.ReportsBttn

MethodName: pushButton

Source : method pushButton(var eventlnfo Event)
if userCategory = "STUDENT' then

msglnfo("CAUTION","You are NOT allowed to access <"+self.LabelText+"> form")
else

reportsPage. moveTo()
endif

endlf
endlf

;endWhile
tc.close()
endmethod

130

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

2

2. Library, Code 052
Naval Postgraduate School
Monterey, California 93943-5002

2

3. Systems Management, Code 36
Naval Postgraduate School
Monterey, California 93943-5002

5

4. LCDR William B. Short, Code SM/SH
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5002

1

5. Shu Liao, Code SM/LC
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5002

1

6. Barry Hubbard
4904 Holly Crest way
Fair Oaks, California 95628

1

7. Sufian I Althawadi
P.O. Box 1969
Manama-Bahrain

1

131

