
TASK: PA18
CDRL: C006

02 September 1994

I I

AdaWise User's Manual
Alsys RISC Ada, Sun 05 4.1.2
Implementation
Informal Technical Data

STARS -AC-C006/00 1/01

141 ISIi~hTLUSTATER A1990 09 LAppro-~s&d for public releatse;
Pt~~~Unlirm-tedt

1OOForm ApprovedREPORT DOCUMENTION PAGE J OMB No. 0704-0188

Public reporting burden for this collection of Information Is estimated to average 1 hour per response, including the time for reviewing instructions. searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of intormation. Send comments regarding this burden estimate or any other aspect of this coitection of information,
including suggestions for reducing this burden to Washington Headquarters Services, Directorate for information Operations and Reports. 1215 Jefferson Davis Highway. Suite 1204. Arlington.
VA 22202-4302, and to the Office oa Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

02 September 1994 Informal Technical Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AdaWise User's Manual F19628-93-C-0130

6. AUTHOR(S)

C. A. Barbasch

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Unisys Corporation CDRL NBR
12010 Sunrise Valley Drive STARS
Reston, VA 22091-3499 -AC-C006/001/01

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Department of the Air Force C006
ESC/ENS
Hanscom AFB, MA 01731-2816

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution "A"

13. ABSTRACT (Maximum 200 words)

Ada is a high-level language with features to support program reliability and maintenance. An Ada
compiler will detect many potential programming errors or non-portabilities that other languages
would require a separate analysis tool to detect. However, the Ada language definition includes rules
that Ada programs are required to obey, but that compilers are not required to enforce, either at
compile-time or at execution-time. An Ada program that violates one or more of these rules can have
unpredictable behavior, or can have different effects with different compilers or in different execution
environments.

14. SUBJECT TERMS 15. NUMBER OF PAGES
36

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR

TASK: PA18
CDRL: C006

02 September 1994

INFORMAL TECHNICAL REPORT

For

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

AdaWise User's Manual
Alsys RISCAda, Sun OS 4.1.2 Implementation

STARS-AC-C006/001/01
02 September 1994

CONTRACT NO. F19628-93-C-0130

Prepared for: Accesion For
NTIS CRA&I 1

Electronic Systems Center DTIC TABM

Air Force Materiel Command, USAF Unannounced jJ
Hanscom AFB, M A 01731-2816 Justification

By
Prepared by: Distribution !

Odyssey Research Associates Availability Codes
under contract to Avail and Ior

Unisys Corporation Dist Special
12010 Sunrise Valley Drive

Reston, VA 22091

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

TASK: PA18
CDRL: C006

02 September 1994

Data Reference: STARS-AC-C006/001/01
INFORMAL TECHNICAL REPORT
AdaWise User's Manual
Alsys RISCAda, Sun OS 4.1.2 Implementation

Distribution Statement "A"

per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

Copyright 1994, Unisys Corporation, Reston, Virginia
and Odyssey Research Associates

Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with
the DFAR Special Works Clause.

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution "A" of the Scientific and Tech-
nical Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise
indicated. Sponsored by the U.S. Advanced Research Projects Agency (ARPA) under con-
tract F19628-93-C-0130, the STARS program is supported by the military services, SEI,
and MITRE, with the U.S. Air Force as the executive contracting agent. The information
identified herein is subject to change. For further information, contact the authors at the
following mailer address: delivery(stars.reston.paramax.com

Permission to use, copy, modify, and comment on this document for purposes stated un-
der Distribution "A" and without fee is hereby granted, provided that this notice appears
in each whole or partial copy. This document retains Contractor indemnification to The

Government regarding copyrights pursuant to the above referenced STARS contract. The
Government disclaims all responsibility against liability, including costs and expenses for vi-
olation of proprietary rights, or copyrights arising out of the creation or use of this document.

The contents of this document constitutes technical information developed for internal Gov-
ernment use. The Government does not guarantee the accuracy of the contents and does
not sponsor the release to third parties whether engaged in performance of a Government
contract or subcontract or otherwise. The Government further disallows any liability for
damages incurred as the result of the dissemination of this information.

In addition, the Government (prime contractor or its subcontractor) disclaims all warranties
with regard to this document, including all implied warranties of merchantability and fitness,
and in no event shall the Government (prime contractor or its subcontractor) be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from
the loss of use, data, or profits, whether in action of contract, negligence or other tortious
action, arising in connection with the use of this document.

TASK: PA18
CDRL: C006

02 September 1994

Data Reference: STARS-AC-C006/001/01
INFORMAL TECHNICAL REPORT
AdaWise User's Manual
Alsys RISCAda, Sun OS 4.1.2 Implementation

Principal Author(s):

Cheryl Barbasch Date

Dana Hartman Date

Approvals:

Program Manager Teri F. Payton Date

(Signatures on File)

Preface

This manual describes how to use AdaWise, a set of program analysis tools for Ada code.
Using AdaWise, a user can automatically check Ada code to detect potential errors related
to compiler-dependent behavior and definedness.

The AdaWise tool set runs on Sun SPARCstations with the SunOS UNIX operating system.
You will need the Alsys (TeleSoft) RISCAda/SPARC Development SystemTM, Release 2,
SunOS 4.1.2. We will refer to this version of the Ada compiler and associated files as
RISCAda in the rest of the document.

AdaWise is written in Ada, using ASIS (Ada Semantic Interface Specification) for front-
end static semantic analysis. A user of the tools must be able to compile the input source
to be analyzed with a compiler that supports ASIS (as does the Alsys RISCAda compiler).
However, while the tool set is built using ASIS, a user of the tools is not required to have
the ASIS product itself to run the tools.

Whether you are a novice or an experienced Ada programmer, you can use the guidelines
in this manual to check code. We assume that you have some practical experience with
the kinds of errors that arise in programming and a working familiarity with Ada. We also
assume that you are familiar with using the Alsys RISCAda compiler.

Organization of This Manual

Chapter 1 presents an overview of AdaWise and describes how to set up to use the tools, the
user interface to the tools, and the command line arguments. Chapters 2, 3, and 4 describe
the three AdaWise tools. In each of these chapters, we describe an AdaWise tool, show
steps to run the tool on sample code provided for demonstration purposes, and show the
tool's output for the sample code. Appendix A documents error messages produced by the
AdaWise tools.

Conventions

In this manual, we use the following conventions.

02 September 1994 STARS-AC-C006/001/01

e For command lines that you type verbatim, we use boldface type. Unless otherwise
specified, all command lines are followed by a carriage return. We also use boldface
type for program names, filenames, and pathnames.

e For command line variables that you choose, we use italic type.

e Brackets indicate an option in a command line.

e For prompts, output from the tools, and sample code, we use typewriter type.

When we refer to details of the Ada language, we cite the relevant section of the Ada
Reference Manual [1], which we call the ARM.

Contents

1 Introduction to AdaWise 1
1.1 Where AdaWise Fits In 2
1.2 Getting Started with AdaWise 3

1.2.1 Using the AdaWise Menu 6
1.2.2 Using AdaWise Command Line Arguments 8

2 The aiod Tool 10
2.1 Aliasing and Incorrect Order Dependence Errors in Ada 10
2.2 What aiod Checks 11
2.3 The aliased Sample Unit 12
2.4 Using aiod on the Sample Unit 12

3 The elab Tool 18
3.1 Elaboration Order in Ada 18
3.2 What elab Checks 18
3.3 The elab.prog.err Sample Unit 19
3.4 Using elab on the Sample Unit 20

4 The def Tool 26
4.1 Undefined Objects in Ada 26
4.2 What def Checks 27

A Error Messages from AdaWise 28
A.1 Warnings 28

A.1.1 Warnings from the aiod Tool 29
A.1.2 Warnings from the elab Tool 30
A.1.3 Warnings from the def Tool 31

A.2 User Errors 32
A.3 Errors within AdaWise 35

Bibliography 36

Chapter 1

Introduction to AdaWise

Ada is a high-level language with features to support program reliability and maintenance.
An Ada compiler will detect many potential programming errors or non-portabilities that
other languages would require a separate analysis tool to detect. However, the Ada language
definition includes rules that Ada programs are required to obey, but that compilers are
not required to enforce, either at compile-time or at execution-time. An Ada program that
violates one or more of these rules can have unpredictable behavior, or can have different
effects with different compilers or in different execution environments.

AdaWise is a set of tools that will check Ada programs at compile-time for the absence
of some of these errors. Input to the tools can be any legal Ada program; users are not
restricted to a subset of Ada. The AdaWise tools perform the checks automatically, without
requiring the user to write formal specifications or carry out proofs.

Although running the tools is automated, using them must be combined with human anal-
ysis. The warnings that the tools issue are conservative-that is, the absence of a warning
guarantees the absence of a problem. If a tool issues a warning, it points out a specific place
in the program in which a problem may occur. You then have a localized region in which to
look for a potential violation.

02 September 1994 STARS-AC-C006/00 1/01

The AdaWise tools currently under development check for improper aliasing and incorrect
order dependences, non-portabilities in the order of elaborating compilation units, and use
of undefined variables. You can apply the tools to programs of arbitrary size.

Currently, there are three tools in the tool set:

e aiod is a tool to check for potential erroneous execution as a result of aliasing of
subprogram parameters and for potential incorrect order dependences.

e elab is a tool to check for potential errors caused by incorrect order dependence during
elaboration of Ada units.

* def is a tool to check that variables are not read before they are written and that
subprograms are not called before their bodies have been elaborated.

AdaWise consists of a single executable, adawise, for all of the tools. There are two ways
to invoke adawise:

" Without command-line arguments, the adawise command displays a basic menu. Us-
ing the menu, you can enter an Ada unit to analyze, change defaults for AdaWise
options, and run an AdaWise tool. The menu is provided to help new users and is
primarily useful for small test programs.

" With command-line arguments to the adawise command, you can change defaults
for AdaWise options and run multiple AdaWise tools on multiple Ada units in one
execution in batch mode. Using adawise with command-line arguments is efficient
when analyzing the units of a large software project.

1.1 Where AdaWise Fits In

In this section, we describe the steps for using AdaWise. In later sections, we explain how
to set up the environment for using AdaWise, how to create an AdaWise configuration
file (aw.cfg), and how to run the tools.

The AdaWise tools use information stored in a compiler's library to perform the analysis of
source code. The first step to run AdaWise is to compile the source code to be checked using
a compiler that allows AdaWise to access that information. You create a library following
the compiler vendor's instructions, and you compile the source to be checked into that library.

In order to provide all of the information in the library that AdaWise requires, you may
have to compile with special options. For example, using the Alsys RISCAda compiler you
must compile with the -k or -d option.

Your source code does not have to be linked into an executable and does not have to be able
to execute. It needs only to compile cleanly.

Page 2

02 September 1994 STARS-AC-C006/00 1/01

After compiling the source code, the next step is to set up and run the AdaWise tools. You
create an AdaWise configuration file (aw.cfg), which tells the tools to ignore sublibraries
that you do not want to check (aw.cfg is also described in section 1.2). You can then
run AdaWise on the Ada units that you want to test. AdaWise, using static semantic
information produced by the compiler, performs its checks and reports potential errors in
the source code. (Note: AdaWise uses ASIS for the static semantic analysis; while you do
not need to have the ASIS product, the compiler that you use must support ASIS.) Since
the tools are conservative, you should inspect the source to determine if there is a real error.

1.2 Getting Started with AdaWise

We assume that your system administrator has installed the delivered tape according to the
installation instructions. Your system administrator should tell you where the AdaWise
executables are located on your system so that you can add the AdaWise bin directory to
your path. The AdaWise installation directory also contains subdirectories with documen-
tation and sample Ada source files.

Page 3

02 September 1994 STARS-AC-C006/001/01

You also need the Alsys TeleSoft RISCAda/SPARC Development
SystemTM, Release 2, SunOS 4.1.2. (We will refer to this version of the Ada compiler
and associated files as RISCAda in the rest of this document.)

Create the RISCAda library and environment as described in the RISCAda documentation.
Once you have your path and environment set, change to the directory in which you plan to
run AdaWise. In this directory, you need a RISCAda library listing file (by default called
the liblst.alb file) that contains the names of the sublibraries that you are using, and you
need to create your sublibrary. The following example creates a liblst.alb and a working
sublibrary:

% cat > liblst.alb
name: mylib.sub
name: $TELEGEN2/lib/rt. sub
<crtl-d>
% acr mylib.sub

Note the order of the sublibraries: the working sublibrary is first; the RISCAda run-time
sublibrary (rt.sub) must be the last one in the library file.

Next you compile the Ada source using the -k or -d option with the compiler's ada command.
The option is necessary to provide the internal information needed by the AdaWise tools
to do the analysis.

Before running the AdaWise tools, you should create a configuration file, called aw.cfg, in
the directory in which you are running the tools. This file lists the sublibraries that contain
the Ada units you want AdaWise to ignore.

We recommend that you always provide a configuration file that contains at least the com-
piler run-time units, since the compiler's internal Ada units typically will not contain the
additional library information that we need to do the analysis. You may also have additional
sublibraries that you do not want to analyze.

Page 4

02 September 1994 STARS-AC-C006/001/01

To create a default aw.cfg configuration file, run the AdaWise setup script by typing

setup-tools

If you use a different name for the library (.alb) file, you can use the -1 argument to the
setup-tool command to specify that file:

setup-tools [-1 your-lib-name.alb]

The setup script assumes that the last sublibrary in the library file is the name of the
RISCAda run-time sublibrary. For example, if the library file contains the sublibraries in
the example liblst.alb above, the setup script creates the following aw.cfg file:

AdaWise Configuration File for library: liblst.alb
Strings beginning with '--' are comments

Automatically generated configuration options below.

AdaWise tools will ignore TeleSoft internal Ada units
IgnoreSublib: $TELEGEN2/lib/rt. sub

This default configuration file instructs AdaWise to ignore the units in the RISCAda rt.sub
sublibrary when checking your compiled Ada source. If AdaWise is run without ignoring
the units in rt.sub, the tools may exit abnormally, or they may execute but with misleading
results.

Lines in the aw.cfg file consist of the string "IgnoreSublib: " followed by the pathname of
the sublibrary to ignore. Each sublibrary name must be one of the sublibraries following
"name: " in the library file, and it must appear exactly as it does in the library file (for
example, if you use $TELEGEN2 in your library file, you must use it, not the full path name,
in aw.cfg). The configuration file can contain comments (strings beginning with ' '--")

and whitespace (which is ignored). Also, the case of the letters in the string "ignoresublib"
and the order in which the sublibraries appear in the file are not important.

You can edit the aw.cfg file to add other sublibraries that you want the tools to ignore. For
example, if you call third party software that you do not want to check or that is inaccessible
to AdaWise, and the software is in sublib3.sub, you can edit aw.cfg to add sublib3.sub
to the list of sublibraries to ignore (using the same IgnoreSublib:sublib-name format):

IgnoreSublib: $TELEGEN2/lib/rt. sub

Page 5

02 September 1994 STARS-AC-C006/00 1/01

IgnoreSublib: sublib3. sub

You now have your working sublibrary, .alb file, and aw.cfg file. You can invoke Ada-
Wise with or without command line arguments. If you do not use arguments, you get the
AdaWise menu; using arguments, you bypass the menu.

1.2.1 Using the AdaWise Menu

The AdaWise menu is a very basic interface for the AdaWise tools. We expect that you
may want to use this menu only to become familiar with the tools and with the defaults for
the options. After you are familiar with AdaWise you will likely find it more efficient to
use the command-line arguments.

To use the AdaWise menu, type adawise. The first output (as shown below) tells which
sublibraries will be ignored based on your aw.cfg file.

Beginning AdaWise
Compiler Vendor: Alsys Inc.

-> *** The following TeleSoft sublibs will be ignored:
-> $TELEGEN2/lib/rt. sub

Input Library (CR defaults to liblst.alb):

You get a prompt for the Input Library. You can press the carriage return to select the
default library (liblst.alb) or input the name of your .alb file.

Page 6

02 September 1994 STARS-AC-C006/001/01

AdaWise next shows the option defaults and current library, provides a menu of tools and
control options, and gives a list of the options you can select:

Ada unit to check
Ada unit kind body
Verbose option no
Closure no
Output to standard out

Current Open Library : liblst.alb
The list of AdaWise Tools:

1 aiod: Check Aliasing & Incorrect Order Dependence
2 elab: Check Elaboration Order

3 def: Check Definedness
Control options:

u Ada unit to check
k Ada unit kind (body, spec)
v Set verbose or non-verbose
c Closure: run tool on all units in elaboration order
r Redirect output (file or standard out)
q Quit

Choice? (u, k, v, c, r, q):

To enter a unit name, enter u at the Choice? prompt. You then see an Input Ada unit:
prompt; at this prompt, enter the name of the Ada unit that you want to check. (You do
not enter the name of the source file containing the unit.) The Ada unit must be one that
was compiled into the working sublibrary listed in the .alb file. After you enter the unit
name, you get a new menu with the unit name in the list at the top of the menu and with
the tool selections in the Choice? prompt. Each time you change a control option, you get
a new menu.

Using the k control option, you can change the unit kind, which is either specification or
body. The default unit kind is body.

The v control option indicates whether the output is in verbose mode or non-verbose mode.
The default is non-verbose mode. With non-verbose, you typically see a few notices (with a
** prefix) and warnings (with a >> WARNING: prefix). With the verbose mode, in addition
to those notices and warnings, you see checkpoint notices (with a -- Checking: prefix) and
additional information for some warnings (with a -> prefix). We describe the AdaWise
messages in more detail in the chapters on the individual tools and in the appendix.

The c control option is the closure option and is for only the aiod tool. With this option, the
aiod tool checks all units required by the context clauses of the input unit, and recursively
all the units they require. If you use the closure option, you provide a single Ada unit name,
and aiod will check each Ada unit in the with-closure. This option is provided as an easy

Page 7

02 September 1994 STARS-AC-C006/001/01

way for the user to input a potentially large number of compilation units to check with aiod.
The option is ignored by the def and elab tools. The default is no closure.

If you enter r, you can choose to have output directed to your screen (the default) or to have
the output directed to a file. You can keep the default by pressing the carriage return, or
you can direct the output to a file by giving a filename. As the prompt message points out,
AdaWise will overwrite a file if it already exists. If you redirect output to a file, the new
menu shows the filename before the Choice? prompt:

Output will be redirected to file: output-filename
Choice? (1, 2, 3, u, k, v, c, r, q):

To run one of the tools, you enter the number for the tool at the Choice? prompt. By
entering 1, you start the aiod tool, which checks for aliasing errors and incorrect order
dependencies. The elab tool (2) assumes that the input Ada unit is a valid main program
and guarantees that all legal elaborations of that program have the same effect. The def tool
(3) assumes that the input Ada unit has no aliasing errors and that all legal elaborations of
the program have the same effect; therefore, to avoid misleading results from the def tools,
you should run the elab and aiod tools on the Ada unit(s) before running the def tool. The
def tool checks for undefined scalar variables.

After a tool has finished, AdaWise presents the menu again. You can then select u to enter
another Ada unit name and select a tool to run on that unit. (See the appropriate chapter
for the examples and output for each tool.)

The last choice in the adawise menu is the q control option to quit using AdaWise.

1.2.2 Using AdaWise Command Line Arguments

All of the arguments to the adawise command are optional (without arguments, you get
the AdaWise menu). The adawise command with its arguments has the following format:

adawise [tools='list of tools' units='list of Ada units' kind=bodylspec
verbose=nolyes closure=nolyes lib=-library-name]

where

e for the tools argument, you can choose one of the three tools (aiod, elab, def), or
you can list tools enclosed in either single or double quotation marks with white space
separating the tool names; a single tool name does not require quotation marks; there

is no default;

Page 8

02 September 1994 STARS-AC-C006/00 1/01

" for the units argument, you provide an Ada unit name, or you list the Ada unit names
enclosed in either single or double quotation marks with white space separating the
unit names; a single unit name does not require quotation marks; there is no default;

"* for the kind argument, you choose either body or spec; this kind holds for all units
specified with the units argument; the default is body;

"* for the verbose argument, you choose yes or no, with no being the default;

"* for the closure argument, you choose yes or no, with no being the default;

"* for the lib argument, you give the .alb file, with the default being liblst.alb.

The arguments can be in any order. Also, you can abbreviate the arguments and variables
as follows:

adawise [t='list of tools' u='list of ada units' k=bjs v=nly c=nly
l=library-name]

If you list multiple tools and multiple units on the command line, AdaWise calls each tool
to analyze each unit, taking defaults if necessary for the other arguments.

If you specify a tool but no unit, AdaWise prompts for a unit name and executes the tool.
If you specify multiple tools but no unit, AdaWise prompts for a unit, then runs each tool
on that unit.

If you specify a unit or units but no tool, AdaWise prompts for the tool, taking defaults
for the other arguments if necessary, and executes the tool on each of the units.

Chapters 2, 3, and 4 describe the AdaWise tools, give sample Ada code and AdaWise
commands to check the'code, and show the AdaWise output.

Page 9

Chapter 2

The aiod Tool

2.1 Aliasing and Incorrect Order Dependence Errors in Ada

Two program variables are aliased if their storage overlaps, so that modifying one of the
variables may affect the value of the other. Unintentional or improper aliasing is a well

known source of programming errors. Two categories of errors that can result from improper
aliasing are erroneous execution and incorrect order dependence (see ARM 1.6). A compiler

is not required to recognize these errors.

Erroneous execution can arise because the mechanism for passing parameters is not com-
pletely specified by the language rules for all variable types. (See ARM, sections 1.6, 6.2(13),

6.4, and 12.3(17).) Array, record, and task types may be passed either by reference or by
copy, as the compiler implementation chooses. When actual parameters to a subprogram or
an entry call are aliased, the results produced by the subsequent processing can depend upon
the parameter passing mechanism chosen by the compiler. If so, the execution is erroneous
and its effect is undefined.

Incorrect order dependence arises because the compiler implementation is allowed to execute
different parts of some constructs in any given order. For example, the order of evaluation of
actual subprogram or entry call parameters is not defined by the language rules (see ARM

6.4). In the case of two output parameters, if the actual parameters are aliased and the

result of the subprogram call depends upon the order of copy back to the actual parameters,
then there is an incorrect order dependence.

Other constructs in which an incorrect order dependence can occur include default initializa-
tions, subtype range evaluation, constrained array elaboration, indexed components, record
aggregates, expression evaluation, assignment statements, and generic instantiations.

Roughly twenty sections in the ARM discuss and define the incorrect order dependences that
can occur in a program.

References [2] and [3] enumerate and discuss the sections of the ARM that address incorrect

10

02 September 1994 STARS-AC-C006/001/01

order dependences.

2.2 What aiod Checks

The aiod tool checks for potential aliasing that could result in erroneous execution or incor-
rect order dependences. To check for possible errors resulting from aliasing, the aiod tool
checks the actual parameters of subprograms and generic instantiations (ARM 6.2(13), 6.4,
and 12.3(17)). Specifically, aiod finds all subprogram calls and generic instantiations in a
given compilation unit and checks the actual parameters (depending on mode and type) for
potential aliasing errors.

The following three checks are performed on the actual parameters for each subprogram call:

" Check each non-scalar, non-access type actual parameter for aliasing with a global
variable. If an IN parameter is aliased with a variable that is updated in the body of
the subprogram, then the call is flagged for potential erroneous execution. If an output
parameter is aliased with a variable that is referenced or updated in the body of the
subprogram then the call is flagged for potential erroneous execution.

" Check pairwise aliasing, except both mode IN. If two actual parameters are aliased
and are non-scalar, then the call is flagged for potential erroneous execution. If two
output parameters are aliased (including scalar variables) then the call is flagged for
potential incorrect order dependence (copy back).

"* Check pairwise independence. AdaWise calculates the set of objects changed (Lvals)
and the set of objects referenced(Rvals) in evaluating each actual expression. If the
Lvals of either intersects the Rvals or the Lvals of the other, then the call is flagged
for incorrect order dependence. If the actuals are both input parameters, there could
be incorrect order of copy in. For output parameters, there could be incorrect order of
evaluating the addresses of the output variables.

The aiod tool also checks for incorrect order dependence in the following constructs: assign-
ment statements (ARM 5.2(3)), discriminants (3.2.1, 3.7.1), record types (3.2.1(15)), dis-
criminant constraints (3.7.2(13)), ranges (3.5(5) or 3.6(10)), indexed components (4.1.1(4)),
aggregates ((4.3.1(3), 4.3.2(10)), index constraints (3.6(10)), and operands of an operator

* (4.5(5)).

The aiod tool is conservative in its warning messages: If no warnings are issued by the
tool, then neither the choice of parameter passing mechanism nor the order of parameter
evaluation by the compiler can affect the visible behavior of the program during execution
(assuming the call does not propagate an exception), and there are no incorrect order depen-
dences in the constructs enumerated above. If warnings are issued, the flagged errors may
or may not be actual errors (i.e., some correct programs may be marked as having errors).

Page I I

02 September 1994 STARS-AC-C006/001/01

2.3 The aliased Sample Unit

The following sample Ada code illustrates an error that results from aliasing.

This unit illustrates the cases of aliasing between pairs of parameters and between a param-
eter and a global variable. This aliasing can cause erroneous execution, resulting from the
Ada parameter passing mechanism (ARM 6.2). That is, if the compiler passes non-scalar
parameters by copy, the resulting executable will produce different results than it would if
the compiler were to pass the parameters by reference.

2.4 Using aiod on the Sample Unit

To run aiod on the sample unit, you can use the adawise menu or command line arguments
as described in Chapter 1.

Here is a command line for checking the sample code with the aiod tool:

adawise tools=aiod units=aliased

This command line takes the defaults for the other arguments (i.e., the unit is an Ada body,
the mode is non-verbose, and the library file is liblst.alb).

This command produces the following output:

Beginning AdaWise
Compiler Vendor: Alsys Inc.

-> *** The following TeleSoft sublibs will be ignored:
-> $TELEGEN2/lib/rt. sub

** Executing Tool: aiod Ada unit: aliased (body)

>> WARNING: potential parameter error in
>> aliased: line 35: P(B, B)

>> Parameters 1 and 2 are potential ALIASES
>> (potential ERRONEOUS EXECUTION)

>> WARNING: potential parameter error in
>> aliased: line 38: P(ALIASED.A, B)

>> Parameter 1: is aliased with a global.

Page 12

02 September 1994 STARS-AC-C006/001/01

procedure ALIASED is

type TABLE is array(l .. 10) of integer;

A: TABLE := (others => 0);

function F return TABLE is

begin
A := (others => 1);
return A;

end F;

procedure P (X: in TABLE; Y: out TABLE) is

Z: TABLE;
begin

Z : F; -- note: call to F modifies global A
Y : Z; -- writes Y,

Y(5) := X(5); -- then reads X
end P;

procedure Ecall is

A, B: TABLE : (others => 2);
begin

P(B, B); -- if pass-by-copy, B(5)=2,

-- else by reference: B(5) = 1

P(ALIASED.A, B); -- if pass-by-copy, B(S)=O,
-- else by reference: B(5) = 1

P(B, ALIASED.A); -- no actual error, but conservative warning

P(A, B); -- no aliasing error

end Ecall;

begin
Ecall;

end ALIASED;

Page 13

02 September 1994 STARS-AC-C006/001/01

>> (potential ERRONEOUS EXECUTION)

>> WARNING: potential parameter error in

>> aliased: line 41: P(B, ALIASED.A)

>> Parameter 2: is aliased with a global.

>> (potential ERRONEOUS EXECUTION)

**

** aiod Finished

If we use the verbose mode, we get the following output:

Beginning AdaWise
Compiler Vendor: Alsys Inc.

-> *** The following TeleSoft sublibs will be ignored:

-> $TELEGEN2/lib/rt.sub

ASIS version: 1.1.0.2
Vendor version: 1.1.0.2
Vendor info: 1.1.0.2

-> Verbose Option set

-> Opening library: liblst.alb

-> Unit: aliased (body)

** Executing Tool: aiod Ada unit: aliased (body)

5/6/1994 12:22: 6.26719E+01

-- Checking: in range (3.5(5))

-> aliased: line 10: 1 .. 10

-- Checking: in aggregate (4.3.1(3), 4.3.2(10))

-> aliased: line 12: (others => 0)

-- Checking: in assignment statement (5.2(3))

-> aliased: line 17: A := (others => 1)

-- Checking: in aggregate (4.3.1(3), 4.3.2(10))

-> aliased: line 17: (others => 1)

-- Checking: in assignment statement (5.2(3))

-> aliased: line 25: Z := F

-- Checking: FUNCTION CALL

-> aliased: line 25: F

Page 14

02 September 1994 STARS-AC-C006/001 /01

-> No parameters to check

-- Checking: in assignment statement (5.2(3))
-> aliased: line 26: Y := Z

-- Checking: in assignment statement (5.2(3))
-> aliased: line 27: Y(5) := X(5)

-- Checking: in indexed component (4.1.1(4))

-> aliased: line 27: Y(5)

-- Checking: in indexed component (4.1.1(4))
-> aliased: line 27: X(5)

-- Checking: in aggregate (4.3.1(3), 4.3.2(10))
-> aliased: line 32: (others => 2)

-- Checking: in aggregate (4.3.1(3), 4.3.2(10))
-> aliased: line 32: (others => 2)

-- Checking: PROCEDURE CALL

-> aliased: line 35: P(B, B)

-- Checking: Each parameter for global aliasing
-> Parameter 1: not aliased with a global
-> Parameter 2: not aliased with a global
-- Checking: Parameter pairs for independence
-> Parameters 1 and 2 are independent.
-- Checking: Parameter pairs for aliasing (except both IN)

>> WARNING: potential parameter error in
>> aliased: line 35: P(B, B)

>> Parameters 1 and 2 are potential ALIASES
>> (potential ERRONEOUS EXECUTION)

-- Checking: PROCEDURE CALL

-> aliased: line 38: P(ALIASED.A, B)

-- Checking: Each parameter for global aliasing

>> WARNING: potential parameter error in
>> aliased: line 38: P(ALIASED.A, B)

>> Parameter 1: is aliased with a global.
>> (potential ERRONEOUS EXECUTION)
-> Parameter 2: not aliased with a global
-- Checking: Parameter pairs for independence
-> Parameters 1 and 2 are independent.
-- Checking: Parameter pairs for aliasing (except both IN)
-> Parameters 1 and 2 are not aliases.

-- Checking: PROCEDURE CALL

Page 15

02 September 1994 STARS-AC-C006/001/01

-> aliased: line 41: P(B, ALIASED.A)

-- Checking: Each parameter for global aliasing
-> Parameter 1: not aliased with a global

>> WARNING: potential parameter error in
>> aliased: line 41: P(B, ALIASED.A)

>> Parameter 2: is aliased with a global.
>> (potential ERRONEOUS EXECUTION)
-- Checking: Parameter pairs for independence
-> Parameters 1 and 2 are independent.
-- Checking: Parameter pairs for aliasing (except both IN)
-> Parameters 1 and 2 are not aliases.

-- Checking: PROCEDURE CALL
-> aliased: line 43: P(A, B)

-- Checking: Each parameter for global aliasing
-> Parameter 1: not aliased with a global
-> Parameter 2: not aliased with a global
-- Checking: Parameter pairs for independence
-> Parameters i and 2 are independent.
-- Checking: Parameter pairs for aliasing (except both IN)
-> Parameters 1 and 2 are not aliases.

-- Checking: PROCEDURE CALL
-> aliased: line 48: Ecall

-> No parameters to check

** aiod Finished

5/6/1994 12:22: 5.91914E+01

The verbose option shows each call or parameter that is being checked and its line in the unit
file, each check being performed, and the results of each check. Checks that do not result in
error detection are prefixed by "->", and checks that result in an error being detected are
prefixed by ">".

As described in Chapter 1, if we list multiple units on the command line, AdaWise calls
the tool to analyze each unit. For example, if we have the aliased unit and a unit called
copy-back, we can use the command line

adawise u=-'aliased copy-back' t=aiod

to run aiod first on the aliased unit and then on the copy-back unit, which gives the

Page 16

02 September 1994 STARS-AC-C006/001/01

following output:

Beginning AdaWise
Compiler Vendor: Alsys Inc.

-> *** The following TeleSoft sublibs will be ignored:
-> $TELEGEN2/lib/rt.sub

**

** Executing Tool: aiod Ada unit: aliased (body)

>> WARNING: potential parameter error in

>> aliased: line 35: P(B, B)

>> Parameters I and 2 are potential ALIASES
>> (potential ERRONEOUS EXECUTION)

>> WARNING: potential parameter error in
>> aliased: line 38: P(ALIASED.A, B)

>> Parameter 1: is aliased with a global.
>> (potential ERRONEOUS EXECUTION)

>> WARNING: potential parameter error in
>> aliased: line 41: P(B, ALIASED.A)

>> Parameter 2: is aliased with a global.
>> (potential ERRONEOUS EXECUTION)

** aiod Finished

** Executing Tool: aiod Ada unit: copy-back (body)

>> WARNING: potential parameter error in
>> copy-back: line 35: SWAP (i, i)

>> Parameters I and 2 are potential ALIASES
>> (potential ORDER of COPY OUT error)

>> WARNING: potential parameter error in
>> copy-back: line 36: PROC(i, i)

>> Parameters 1 and 2 are potential ALIASES
>> (potential ORDER of COPY OUT error)

** aiod Finished

Page 17

Chapter 3

The elab Tool

3.1 Elaboration Order in Ada

The execution of an Ada program begins with the elaboration of all compilation units needed
by the main program unit. A compilation unit is a declaration or body that can be compiled
separately. It can be a subprogram declaration or body, a package declaration or body, a
generic declaration or body, a generic instantiation, or a subunit (ARM 10.1).

In general, a program's compilation units may be elaborated in more than one order. Chapter
10 of the ARM constrains the possible orders; any order meeting these constraints is legal.
If there are two different legal elaboration orders that have different observable effects, the
program has an incorrect order dependence. If no order satisfies the constraints, the program
is illegal. Run-time errors occur if an attempt is made to use an entity when a required body
has not been elaborated (ARM 10.5(4) and 3.9(8)).

3.2 What elab Checks

The elab tool analyzes all the compilation units needed by an Ada main program for incorrect
order dependence during elaboration. If two compilation units are not related in the partial
order defined by the with clauses, then elab checks the pair for independence. If an object
could be updated during elaboration of one of the units and could be read or updated by the
other, then the units are flagged for potential incorrect order dependence. If a subprogram
could be called during elaboration of one of the units, and the subprogram body is defined
in the other, then the units are flagged potential incorrect order dependence.

If no potential errors are reported by the tool for the program, then any legal elaboration
order can be chosen by the compiler (or by another program analysis tool) and be guaranteed
to produce the same visible result according to the Ada semantics.

Other types of error will not be guaranteed to be absent, though other errors may be found

18

02 September 1994 STARS-AC-C006/001/01

as a result of an incorrect order dependence during elaboration. For example, programs that
raise PROGRAM-ERROR or cause erroneous execution in some elaboration order will be
detected by elab only if there is another legal elaboration order that produces a different
result.

3.3 The elab-prog.err Sample Unit

The following sample Ada code illustrates an error.

package elab-prog-errA is

I: integer;
function F return integer;

end elab-prog-errA;

package body elab-prog-err-A is
function F return integer is begin

return 1;
end F;

end elab-prog-errA;

with elab-prog-errA;
package elab-prog-errB is

J: integer := elab-prog-errA.F;
end elab-prog.errB;

package body elab-prog-errB is
begin

elab-prog-errA.I := 0;
end elab-prog-errB;

with elab-prog-err..A;
package elab-prog-errC is

K: integer := elab-prog-errA.I;
end elab-prog-errC;

with elab-prog-errB, elab-prog-errC;
procedure elab.prog-errMAIN is
x, y: integer;
begin

x := elab-prog-errB.J;
y : elab-prog-errC.K;

end elab-prog-errMAIN;

In this unit, the incorrect order dependence produces a legal elaboration order that causes one
of the other categories of error: PROGRAM-ERROR is raised if the body of elab-prog-errA
is not elaborated before package elab-prog-errB. If elab-prog-errB is not elaborated
before elab-prog_ err_C, then variable elab-prog-errC.K is undefined.

Page 19

02 September 1994 STARS-AC-C006/001/01

3.4 Using elab on the Sample Unit

To run elab on the sample unit, you can use the adawise menu or command line arguments
as described in Chapter 1.

Here is a command line for checking the sample code with the elab tool:

adawise tools=elab units=elab-prog-err-main

This command line takes the defaults for the other arguments (i.e., the unit is an Ada body,
the mode is non-verbose, and the library file is liblst.alb).

This command produces the following output:

Beginning AdaWise
Compiler Vendor: Alsys Inc.

-> *** The following TeleSoft sublibs will be ignored:
-> $TELEGEN2/lib/rt.sub

** Executing Tool: elab Ada unit: elab-prog-err.main (body)

** CHECKING ELABORATION ORDER ERRORS FOR MAIN UNIT: elab-prog.err-main

** Errors checked:
** circular dependencies,
** missing related units,
** obsolete related units,

** incorrect order dependence

-> Number of compilation units to check: 6

>> WARNING: Compilation Units are NOT independent:
>> elabprog-err.c(APACKAGEDECLARATION) and
>> elab-prog-err-b(APACKAGEBODY)
>> Object: ELABPROGERRA(APACKAGEDECLARATION):i
>> is UPDATED in elab-progerr-b(APACKAGEBODY)
>> and READ in elabprogerr-c(A.PACKAGEDECLARATION)

>> WARNING: Compilation Units are NOT independent:
>> elab-prog-err-a(APACKAGEBODY) and
>> elab-prog-err-b(APACKAGEDECLARATION)
>> Subprogram: f
>> is DEFINED in elabprogerra(APACKAGEBODY)
>> and CALLED in elab-progerrb(APACKAGEDECLARATION)

Page 20

02 September 1994 STARS-AC-C006/001/01

>> WARNING: elab-prog.err.main
>> has a potential INCORRECT ORDER DEPENDENCE during elaboration.

**

** elab Finished

As this output shows, the non-verbose output includes a list of the kinds of errors being
checked, warnings for compilation units that are not independent, and a warning pointing
out the possibility of an incorrect order dependence during the elaboration of the unit.

If we use the verbose mode, we get the following output:

Beginning AdaWise
Compiler Vendor: Alsys Inc.

-> *** The following TeleSoft sublibs will be ignored:

-> $TELEGEN2/lib/rt.sub

ASIS version: 1.1.0.2
Vendor version: 1.1.0.2
Vendor info: 1.1.0.2

-> Verbose Option set

-> Opening library: liblst.alb

-> Unit: elab-prog-errmain (body)

** Executing Tool: elab Ada unit: elabprog.err.main (body)

5/10/1994 14:58: 4.89414E+01

** CHECKING ELABORATION ORDER ERRORS FOR MAIN UNIT: elab-prog-err.main
**

** Error messages for compilation units X and Y will be of the form:
** Object UPDATED in X is READ in Y
** which means:

** during elaboration of X, a variable is updated
** which is potentially aliased with a variable
** that is read during the elaboration of Y.
** OR

** Subprogram DEFINED in X is CALLED in Y
** which means:

** the elaboration of X declares a subprogram body

Page 21

02 September 1994 STARS-AC-C006/001 /01

** that is called during elaboration of Y

** Errors checked:

** circular dependencies,
** missing related units,

** obsolete related units,

** incorrect order dependence

**NOTE: if none of the above errors, then all legal elaboration orders

** will produce the same visible results -

** (including possibly some other type of error).

** Other tools (e.g. definedness) can use any of the legal orders.

5/10/1994 14:58: 4.91094E+01

-- Checking: Inconsistent units

-- Checking: Missing units

-- Checking: Circularities

-- Checking: Independence of incomparable compilation unit pairs

-> Number of compilation units to check: 6

5/10/1994 14:58: 4.97109E+01
-> Number of explicit units to check: 5

-- Checking: Compilation unit pair:

elab-prog.err-a(APACKAGEDECLARATION) <--> elab-prog-err-b(A-PACKAGEBODY)

-- Checking: Compilation unit pair:

elabprog-err-a(APACKAGEBODY) <--> elab-prog-err.b(A_PACKAGEBODY)

-> Pair is incomparable - checking independence

-> Compilation Units are independent.

-- Checking: Compilation unit pair:

elab-prog-err-c(APACKAGE-DECLARATION) <--> elab-prog-err.b(APACKAGEBODY)

-> Pair is incomparable - checking independence

>> WARNING: Compilation Units are NOT independent:

>> elab.prog.err.c(APACKAGEDECLARATION) and

>> elab-prog.err-b(APACKAGEBODY)

>> Object: ELABPROGERRA(APACKAGEDECLARATION):i

>> is UPDATED in elab-prog-err-b(APACKAGEBODY)
>> and READ in elab-progerr.c(APACKAGEDECLARATION)

-- Checking: Compilation unit pair:

elab-prog-err-b(APACKAGEDECLARATION) <--> elab-prog.errb(A_PACKAGEBODY)

-> Not checking own spec

-- Checking: Compilation unit pair:

Page 22

02 September 1994 STARS-AC-C006/001/01

elab-prog-err-a(APACKAGEDECLARATION) <--> elablprog.err.b(APACKAGEDECLARATION)

-- Checking: Compilation unit pair:

elab-prog-err-a(APACKAGEBODY) <--> elab-prog.err.b(A_PACKAGEDECLARATION)

-> Pair is incomparable - checking independence

>> WARNING: Compilation Units are NOT independent:
>> elab-prog.err.a(APACKAGEBODY) and

>> elab-prog.err-b(APACKAGEDECLARATION)
>> Subprogram: f
>> is DEFINED in elab-progerra(APACKAGEBODY)

>> and CALLED in elab-prog-err-b(APACKAGEDECLARATION)

-- Checking: Compilation unit pair:

elab-prog-err-c(APACKAGEDECLARATION) <--> elab-prog-err-b(APACKAGEDECLARATION)

-> Pair is incomparable - checking independence

-> Compilation Units are independent.

-- Checking: Compilation unit pair:

elab-prog-err.a(APACKAGEDECLARATION) <--> elab-prog-err-c(APACKAGEDECLARATION)

-- Checking: Compilation unit pair:

elab-prog-err.a(APACKAGEBODY) <--> elab-prog.err_c(A_PACKAGE_DECLARATION)

-> Pair is incomparable - checking independence

-> Compilation Units are independent.

-- Checking: Compilation unit pair:

elab-progerra(A_PACKAGEDECLARATION) <--> elabWprog-err-a(APACKAGEBODY)

-> Not checking own spec

>> WARNING: elab-prog-errmain

>> has a potential INCORRECT ORDER DEPENDENCE during elaboration.

END CheckElaborationOrder
5/10/1994 14:58: 5.12813E+01

** elab Finished

5/10/1994 14:58: 5.12891E+01

The verbose option explains more about the elaboration order errors that it's checking for;

gives checkpoint notices (with the -- Checking: prefix) as it performs each check; gives

additional information (with the -> prefix); shows each pair of user compilation units that is

Page 23

02 September 1994 STARS-AC-C006/001/01

being checked, whether the pair is incomparable, and whether the pair is independent (each
pair being checked has a <--> separator); and gives warning messages.

As described in Chapter 1, if we list multiple units on the command line, AdaWise calls
the tool to analyze each unit. For example, if we have the elab-prog-err unit and a unit
called elab-global, we can use the command line

adawise u='elab-prog-err-main elab-global-main' t=elab

which runs elab first on the elab-prog-err unit (with the same output as shown previously)
and then on the elab-global unit:

Beginning AdaWise
Compiler Vendor: Alsys Inc.

-> *** The following TeleSoft sublibs will be ignored:
-> $TELEGEN2/lib/rt.sub

** Executing Tool: elab Ada unit: elab-prog-err-main (body)

** CHECKING ELABORATION ORDER ERRORS FOR MAIN UNIT: elab-prog.err-main
**

** Errors checked:

** circular dependencies,
** missing related units,
** obsolete related units,
** incorrect order dependence

-> Number of compilation units to check: 6

>> WARNING: Compilation Units are NOT independent:
>> elab-prog-err-c(APACKAGEDECLARATION) and

>> elab-prog-err-b(APACKAGEBODY)
>> Object: ELAB-PROGERR-A(APACKAGEDECLARATION):i
>> is UPDATED in elab-prog-err-b(A-PACKAGEBODY)
>> and READ in elab-prog-err-c(APACKAGE-DECLARATION)

>> WARNING: Compilation Units are NOT independent:
>> elab-prog-erra(APACKAGEBODY) and
>> elab-prog-err-b(APACKAGEDECLARATION)
>> Subprogram: f
>> is DEFINED in elab-prog-err-a(APACKAGEBODY)
>> and CALLED in elabprog-err-b(A-PACKAGEDECLARATION)

Page 24

02 September 1994 STARS-AC-C006/001/01

>> WARNING: elab-prog-err-main
>> has a potential INCORRECT ORDER DEPENDENCE during elaboration.

**

** elab Finished
**

**

** Executing Tool: elab Ada unit: elab.global-main (body)
**

** CHECKING ELABORATION ORDER ERRORS FOR MAIN UNIT: elab-global-main
**

** Errors checked:

** circular dependencies,

** missing related units,
** obsolete related units,
** incorrect order dependence

-> Number of compilation units to check: 4

>> WARNING: Compilation Units are NOT independent:
>> elabglobal-a(A_PACKAGE_BODY) and
>> elab.globaI-b(APACKAGEDECLARATION)
>> Object: ELABGLOBALA(APACKAGEDECLARATION):i
>> is UPDATED in elabglobal-a(A_PACKAGEBODY)
>> and READ in elab.globalb(APACKAGEDECLARATION)

>> WARNING: elab-global-main
>> has a potential INCORRECT ORDER DEPENDENCE during elaboration.

**

** elab Finished

**

Page 25

Chapter 4

The def Tool

4.1 Undefined Objects in Ada

In compiler terminology, reading a variable is call a "use", and writing it, a "definition".
We can also use the terms "write", "read", and "create". An Ada variable is written when
it is assigned to, read when it is evaluated as part of some expression, and created when its
declaration is elaborated. We have a "definedness" error if a variable is used (or read) before
it is defined (or written). Definedness is the problem addressed by the def tool.

Definedness errors can precipitate two problems, one of which is erroneous execution. The
execution of a program is erroneous if it attempts to evaluate a scalar variable with an un-
defined value or apply a predefined operator to a variable that has a scalar subcomponent
with an undefined value (ARM section 3.2.1). In addition, defined variables may become
undefined during the execution of the program-even when declared as a record type with
default expressions for all scalar components. An unsuspecting programmer may be incor-
rectly assuming that an object of such a type is always guaranteed to be defined.

An Ada scalar can become (accessible and) undefined in the following situations:

"* An Ada scalar is undefined when it is created, unless it is given a defined initial value.
(Note that it can be initialized and still be undefined if, for example, the corresponding
component of the initialization expression is undefined.)

"* An Ada scalar is undefined after an assignment to a containing record.

"* Likewise, an Ada scalar is undefined after a procedure call where the IN or IN-OUT
actual parameter is a containing record and the component is undefined.

"* A scalar OUT parameter is undefined after a call if it is not updated within the call.

"* A component of an array or record variable may be undefined after an exception
handled in the body of a subprogram if the component was undefined before the call

26

02 September 1994 STARS-AC-C006/00 1/01

or the component of the formal parameter becomes undefined during the execution of
the subprogram.

" A scalar at the beginning of an exception handler is undefined if it was an actual OUT

parameter.

" A formal parameter becomes undefined after modifying a global alias (ARM 6.2). The
aiod tool can been used to preclude potential errors due to aliasing.

Definedness errors can also cause program errors. This type of definedness error is a call to
a subprogram whose body has not been elaborated.

4.2 What def Checks

The definedness checking tool analyzes an Ada program for two potential problems: erro-
neous executions resulting from reading undefined scalars and program errors resulting from
calling a subprogram whose body has not been elaborated.

The problem of automatically detecting undefined variables is undecidable in general, but
we use a decidable conservative approximation based on data flow analysis of the kind often
used in optimizing compilers.

Often, the proof that a variable is written before being read is easy: simply follow the flow of
control on each possible path until one or the other of these actions happens. It is not always
so simple, though. The analysis gets more complicated if it is difficult to determine whether
a control flow path is taken, if it is difficult to determine whether an expression actually
reads or writes a particular variable at run-time, or if the control flow path is infinite and it
is not clear whether the variable is read or written at all.

The definedness tool conservatively automates the analysis to handle the easy cases correctly
and to identify the hard cases. The data flow traces can be extracted by following the
program's control flow and neglecting use of state information to determine the flow of control
at branch points. By analyzing the enlarged set of data flow traces, we can guarantee that
no trace of the actual program will fail to be analyzed.

In the case of analyzing for program errors, our model treats the elaboration of the body of
a subprogram as a "write", a call to the subprogram as a "read", and the declaration as a
"create". Our algorithm assumes there are no aliasing errors and that there are no incorrect
order dependences in the elaboration (i.e., that all legal elaboration orders produce the same
results). The aiod and elab tools can be used to check for aliasing errors and incorrect
order dependence during elaboration.

The def tool is only partially implemented at this time.

Page 27

Appendix A

Error Messages from AdaWise

This appendix contains a partial list of some common messages that you may encounter
when running the AdaWise tools, along with explanations of the causes and solutions for
the messages.

There are three kinds of messages that can be issued by the tools: warnings that the code
being checked has a potential error, error messages because the user entered incorrect input
or did not set up the environment correctly, and errors messages because of internal bugs or
deficiencies in the AdaWise executable itself.

A.1 Warnings

The messages issued by the tools to warn of potential incorrect order dependence, erroneous
execution, or undefined variables are prefixed by ">>". Chapters 2, 3, and 4 illustrated some
of these messages. In the following warning messages, names enclosed in {} are variables,
depending on the source being analyzed.

28

02 September 1994 STARS-AC-C006/001/01

A.1.1 Warnings from the aiod Tool

Subprogram parameter error:

>> WARNING: potential parameter error in
>> {compilation-unit}: line {line-number}: {subprogram-call-source}

The parameter error message is followed by an explanation of the kind of error, which depends
on the mode and type of the formal parameters:

"* global aliasing

>> Parameter {parameter-position}: is aliased with a global.
>> (potential ERRONEOUS EXECUTION)

"* pair-wise aliasing of parameters (except if mode of both is IN):

>> Parameters {parm-positioni} and {parm-position2}: are potential ALIASES
>> (potential ERRONEOUS EXECUTION)

or,

>> Parameters {parm-positionl} and {parm-position2}: are potential ALIASES
>> (potential ORDER of COPY OUT error)

or, if both types of error are possible:

>> Parameters {parm-positionl} and {parm-position2}: are potential ALIASES
>> (potential ORDER of COPY OUT error) and (potential ERRONEOUS EXECUTION)

e pair-wise independence of all parameters:

>> Parameters {parm-positionl} and {parm-position2}: are NOT independent.
>> (potential ORDER of COPY IN or ADDRESS EVALUATION error)

Page 29

02 September 1994 STARS-AC-C006/001/01

Incorrect order dependences (other than subprogram parameters):

>> WARNING: potential incorrect order dependence (IOD)
>> {compilation-unit}: line {line-number}: {source-expression}

The IOD error message will be followed by an explanation of the type of error and the section
of the Ada Reference Manual that mentions the construct that could be evaluated in any
order by the compiler implementation.

"* in assignment statement (5.2(3))

"* in discrete range (3.6(10))

"* in record component list (3.2.1(15))

" in range (3.5(5))

" in discriminant constraint (3.7.2(13))

" in indexed component (4.1.1(4))

" in aggregate (4.3.1(3), 4.3.2(10))

"* between operands of an operator (4.5(5))

"• in discriminant part (3.2.1, 3.7.1)

"• in index constraint (3.6(10))

The object that causes the potential IOD is printed, followed by whether it is updated or
read by the construct. The variables {expressionl} and {expression2} are the two expressions
that may be evaluated in any order from {source-expression}:

>> Object: {compilation-unit-name}(unit-kind) :{simple-name}
>> is updated by: {expressionl}
>> and read by: {expression2}

A.1.2 Warnings from the elab Tool

The elab tool prints the number of compilation units being checked, and if there is a potential
incorrect order dependence during elaboration, prints warning messages depending on the
kind of error. There are three kinds of user errors that cause elab to stop processing and
that will be described in the next section:

Page 30

02 September 1994 STARS-AC-C006/00 1/01

"* circular dependencies

"* inconsistent units

"* missing units

For incorrect order dependence, the warning message is followed by the names of the com-
pilation units that are not independent and either a subprogram that is called in one unit
and defined in the other:

>> WARNING: Compilation Units are NOT independent:
> > {compilation-unit-name}({unit-kind})
>> {compilation-unit-name}({unit-kind})

>> Subprogram: {subprogram-name}
>> is DEFINED in {compilation-unit-name}({unit-kind})
>> and CALLED in {compilation-unit-name}({unit-kind})

or, an object that is read or written to cause the potential incorrect order dependence:

>> Object: {compilation-unit-name}(unit-kind) :{simple-name}
>> is updated in: {compilation-unitl}
>> and read in: {compilation-unit2}

At the end of the execution of elab, if there was a potential incorrect order dependence
during elaboration, the following message will be printed:

>> WARNING: {main-unit-name}
>> has a potential INCORRECT ORDER DEPENDENCE during elaboration.

A.1.3 Warnings from the def Tool

The definedness tool will warn of three cases: if there is an attempt to evaluate a scalar
variable with a potentially undefined value, or an attempt to apply a predefined operator to
a variable that has a scalar subcomponent with a potentially undefined value, or an attempt
to call a subprogram before its body has been elaborated.

TBD

Page 31

02 September 1994 STARS-AC-C006/001/01

A.2 User Errors

* ERROR MESSAGE:

** ERROR: Compilation Unit Unknown: {unit-name}
** Was the unit compiled with options necessary for ASIS?

- EXPLANATIONS:

You may get this error message after entering an Ada unit in a command line
or from the menu. This message means that the tool can't find the unit in the
library. You may have misspelled a unit name or have entered a unit that was
not compiled into the library.

You may have compiled the program without the necessary ada option.

SOLUTIONS:

If you are running the tools on one of the demonstration examples, check the
documentation for the name of the unit to check. Use the compiler als command
or list the .obj directory to see what units are in the library.

Each file in the program must be compiled with the -k or -d option. Make sure
to compile the program with one of those options to the RISCAda compiler, for
example, ada -k foo.aa. If the amake program is used, the '-N option may be
used to pass the option to the compiler, for example, amake -N -k *.aa.

e ERROR MESSAGE:

** ERROR: Unknown tool

- EXPLANATION:

You may get this error message after entering an incorrect name on the command
line for the "t=" option.

- SOLUTION:

The name of the tool must be one of elab, aiod, def.

e ERROR MESSAGE:

** ERROR: NAMEERROR: Error opening library
** ERROR: Open: Name Error. Library "{input-library}" not found
** Does {input-library} exist?
** Does {input-library} contain a sublib file that does not exist?

- EXPLANATION:

You will get this error if the name given in response to the library prompt does
not exist, or one of the sublibs mentioned in the .alb file is incorrect.

Page 32

02 September 1994 STARS-AC-C006/00 1/01

- SOLUTION:

If you take the default library name by using command line arguments for tool
and unit, or by hitting carriage return in response to the prompt, then check that
liblst.alb exists in your current directory. If you use the "-I" option to the tool,
or specify a library name in response to the prompt, then make sure you have
spelled the filename correctly. If the library file exists, then check that each sublib
specified in it by "name: {sublib}" is a sublib that has been created by using the
command "acr {sublib}".

Page 33

02 September 1994 STARS-AC-C006/001/01

"* ERROR MESSAGE (elab or def tool):

** ERROR: {main-unit-name} A CIRCULARITY EXISTS.

- EXPLANATION: The elab tool discovered a circularity among the supporting
units required for the elaboration of the input compilation unit.

- SOLUTION: Run the elab tool with the verbose option. A list of pairs of units
will be displayed, with each pair representing a unit followed by a supporter unit.
A circularity is established when a unit's supporter unit is equal to the first unit
in the set. Note that the compiler itself will usually report this error at link time.

"• ERROR MESSAGE (elab or def tool):

** ERROR: {main-unit-name} has INCONSISTENT UNITS.

- EXPLANATION: The units in the library required for the elaboration of the
input compilation unit are inconsistent due to the recompilation of one or more
supporting units.

- SOLUTION: Run the elab tool with the verbose option. A list of pairs of units
will be displayed, with each pair representing a unit followed by a unit causing
the inconsistency. Note that the compiler itself will usually report this error at
link time.

Page 34

02 September 1994 STARS-AC-C006/001/01

* ERROR MESSAGE (elab or def tool):

** ERROR: {main-unit-name} has MISSING RELATED UNITS.

- EXPLANATION: Units are missing from the library that are required for the
elaboration of the input compilation unit. Package bodies that are optional ac-
cording to the rules of Ada, and that do not exist, are not considered missing.

- SOLUTION: Run the elab tool with the verbose option. A list of pairs of units
will be displayed, with each pair representing a unit followed by a missing related
unit. Note that the compiler itself will usually report this error.

A.3 Errors within AdaWise

If AdaWise detects an internal inconsistency, it prints messages prefixed by "INTER-
NAL ERROR".

If STORAGE-ERROR or another predefined exception is raised running any of the

tools, check the input arguments. If there were multiple units listed for the "u="
option or multiple tools listed in the "t=" option, then rerun the tools separately,
specifying only one unit on the command line with each tool execution.

Page 35

02 September 1994 STARS-AC-C006/001/01

Bibliography

[1] ANSI. Reference Manual for the Ada Programming Language, 1983. ANSI/MIL-STD-
1815A.

[2] LabTek Corporation. Cecom final report - catalogue of ada runtime implementation
dependencies. Technical Report CIN C02-092JB-0001-00, U.S. Army HQ, Center for
Software Engineering Advanced Software Technology, February 1989.

[3] B.A. Wichmann. Insecurities in the ada programming language. Technical Report ISSN
0262-5369, National Physical Laboratory, January 1989.

Page 36

