
TASK: PA18
CDRL: A023

02 September 1994

Usage Report
AdaWise

Informal Technical Data

This dociLacat h.a.s boon approved
foi public i-i\:.o:-5 cn>.i sale; its
distribution is urdnnr.-. d.

STARS-AC-A023/010/00

19950109 140
TVT.rr: .-<.

REPORT DOCUMENTION PAGE
Form Approved

OMB No, 0704-0188

Public reporting burden lor this collaction ol information is estimated to average 1 hour per response. Including the time lor reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection ol Information. Send comments regarding this burden estimate or any other aspect of this collection ol information,
including suggestions lor reducing this burden to Washington Headquarters Services. Directorate lor Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4X2. and to the Otllce ol Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

02 September 1994
3. REPORT TYPE AND DATES COVERED

Informal Technical Report

4. TITLE AND SUBTITLE

Usage Report, AdaWise

5. FUNDING NUMBERS

F19628-93-C-0130

6. AUTHOR(S)

C. A. Barbasch

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Unisys Corporation
12010 Sunrise Valley Drive
Reston,VA 22091-3499

8. PERFORMING ORGANIZATION
REPORT NUMBER

CDRL NBR
STARS-AC-A023/010/00

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Air Force
ESC/ENS
Hanscom AFB, MA 01731-2816

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

A023

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution "A"

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

AdaWise is a set of tools currently under development, checks Ada programs for improper aliasing,
incorrect order dependencies (including in elaboration of compilation units), and use of undefined
variables. They are written in Ada, using ASIS (Ada Semantic Interface Specification) for front-end-
static semantic analysis. A user of the tools must first compile the input source to be analyzed with a
compiler that supports ASIS. However, while the tool set is built using ASIS, a user of the tools is not
required to have the ASIS product itself to run the tools.

14. SUBJECT TERMS 15. NUMBER OF PAGES

13
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

TASK: PA18
CDRL: A023

02 September 1994

INFORMAL TECHNICAL REPORT

For

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Usage Report
A da Wise

STARS-AC-A023/010/00
02 September 1994

Acceslon For j "]

NTÜ~CRÄ&i g """j CONTRACT NO. F19628-93-C-0130
(DTIC IAS fj I
| Unan^ovnced n ' „
[Justifir..-vtion j Prepared for:

 1 Electronic Systems Center
 - i Air Force Materiel Command, USAF
J; ! Hanscom AFB, MA 01731-2816

By
Distrli:

A".

A-l\

lor } Prepared by:

j ORA
under contract to

 : Unisys Corporation
12010 Sunrise Valley Drive

Reston, VA 22091

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

TASK: PA18
CDRL: A023

02 September 1994

Data Reference: STARS-AC-A023/010/00
INFORMAL TECHNICAL REPORT
Usage Report
AdaWise

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

Copyright 1994, Unisys Corporation, Reston, Virginia
and ORA

Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with
the DFAR Special Works Clause.

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution "A" of the Scientific and Tech-
nical Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise
indicated. Sponsored by the U.S. Advanced Research Projects Agency (ARPA) under con-
tract F19628-93-C-0130, the STARS program is supported by the military services, SEI,
and MITRE, with the U.S. Air Force as the executive contracting agent. The information
identified herein is subject to change. For further information, contact the authors at the
following mailer address: delivery@stars.reston.paramax.com

Permission to use, copy, modify, and comment on this document for purposes stated un-
der Distribution "A" and without fee is hereby granted, provided that this notice appears
in each whole or partial copy. This document retains Contractor indemnification to The
Government regarding copyrights pursuant to the above referenced STARS contract. The
Government disclaims all responsibility against liability, including costs and expenses for vi-
olation of proprietary rights, or copyrights arising out of the creation or use of this document.

The contents of this document constitutes technical information developed for internal Gov-
ernment use. The Government does not guarantee the accuracy of the contents and does
not sponsor the release to third parties whether engaged in performance of a Government
contract or subcontract or otherwise. The Government further disallows any liability for
damages incurred as the result of the dissemination of this information.

In addition, the Government (prime contractor or its subcontractor) disclaims all warranties
with regard to this document, including all implied warranties of merchantability and fitness,
and in no event shall the Government (prime contractor or its subcontractor) be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from
the loss of use, data, or profits, whether in action of contract, negligence or other tortious

action, arising in connection with the use of this document.

Data Reference: STARS-AC-A023/010/00
INFORMAL TECHNICAL REPORT
Usage Report
AdaWise

Principal Author(s):

Approvals:

TASK: PA18
CDRL: A023

02 September 1994

Cheryl Barbasch Date

Program Manager Teri F. Payton Date

(Signatures on File)

TASK: PA18
CDRL: A023

02 September 1994

Data Reference: STARS-AC-A023/010/00
INFORMAL TECHNICAL REPORT
Usage Report
AdaWise

Abstract

AdaWise, a set of tools currently under development, checks Ada programs for improper
aliasing, incorrect order dependences (including in elaboration of compilation units), and
use of undefined variables. They are written in Ada, using ASIS (Ada Semantic Interface
Specification) for front-end static semantic analysis. A user of the tools must first compile
the input source to be analyzed with a compiler that supports ASIS. However, while the tool
set is built using ASIS, a user of the tools is not required to have the ASIS product itself to
run the tools.

02 September 1994 STARS-AC-A023/010/00

Contents

1 Introduction 1

2 The Software Products Tested with AdaWise 1

3 Elaboration Order Checking 2
3.1 Results 2
3.2 Warnings 2
3.3 Example: Portable Text Formatter 3

3.3.1 I Warning: 3
3.3.2 Explanation: 3
3.3.3 Solution: 4

4 Alias Checking in Subprogram Calls 4
4.1 Results 4
4.2 Warnings 5
4.3 Example: Aflex 5

4.3.1 Warning of Incorrect Order Dependence: 5
4.3.2 Explanation: 5
4.3.3 Solution: 6
4.3.4 Warning of Erroneous Execution 6

4.3.5 Explanation: 6
4.3.6 Solution: 8

4.4 Example: Forms Generator 8
4.4.1 Warning: . 8
4.4.2 Explanation: 8
4.4.3 Solution: 10

4.5 Example: Spelling Corrector/Checker 10
4.5.1 Warning for HELP_UTILITY 10
4.5.2 Explanation: 10
4.5.3 Solution: 12
4.5.4 Warning for UTILITIES.MERGE 12
4.5.5 Explanation: 12
4.5.6 Solution: 13

5 Conclusions 13

Page i

02 September 1994 STARS-AC-A023/010/00

1 Introduction

AdaWise, a set of tools currently under development, checks Ada programs for improper
aliasing, incorrect order dependences (including in elaboration of compilation units), and
use of undefined variables. They are written in Ada, using ASIS (Ada Semantic Interface
Specification) for front-end static semantic analysis. A user of the tools must first compile
the input source to be analyzed with a compiler that supports ASIS, However, while the tool
set is built using ASIS, a user of the tools is not required to have the ASIS product itself to

run the tools.

As a preliminary test of our evolving AdaWise tools, we ran two of them on a variety of
publicly available Ada software products. We then examined the code in those places that
the tools had warned might be incorrect, to see if the code in fact contained errors. Since
the tools are conservative, we were particularly interested in what percentage of the total
warnings issued by the tools were actual errors. We did not attempt to find whether the

tools missed any errors in the code.

We used this exercise to determine the practical value of using the tools on "real-world"
code. The results of our tests indicate that the tools find actual errors, without reporting
too many false warnings. We discovered in some cases that the tools issued warnings for
programs that technically contained no errors, but these warnings provided useful "red flags"
for programmers and future maintainers for situations in which slight modifications could
cause errors later. For this reason, we envision the tools being useful during both software
development and maintenance: programmers can use the tools on code as they develop it
and use the tools again every time they make fixes to existing code.

The following sections give more details on our testing. We reformatted some quoted code
and output from the tools to fit on the page; we did not change any of the actual text.

2 The Software Products Tested with AdaWise

To exercise the AdaWise tools fully and to demonstrate their applicability, we ran the tools
on diverse publicly available software. We analyzed the following products.

• Arcadia's Aflex, a version of the flex parser in and for Ada.

• A publicly available Dining Philosophers program that exercises the tasking features

of Ada.

• Dhrystone, a common benchmark of computational performance.

• Ada Standard Repository (ASR) code from SIMTEL20 (now called the Public Ada

Library (PAL)):

- Integer Calculator, a utility that makes infix integer calculations.

Page 1

02 September 1994 STARS-AC-A023/010/00

- Line Editor, a line-oriented file editor.

- Expert System, a configurable goal-driven expert system.

- Forms Generator, a product to create screen input forms for use in other prod-

ucts.

- Menu Manager, a product to make and use system menus.

- Plotter, a product that reads data points and generates video or printed output.

- Portable Text Formatter, the text processor and formatter used for ASR and

other documents.

- Spelling Corrector/Checker, an interactive spelling tool with a dictionary.

Of the eleven products analyzed, four of them received warnings about potential incorrect
order dependence during elaboration and three received warnings about potential improper
aliasing. No one product generated more than four total warnings.

3 Elaboration Order Checking

In general, an Ada program's compilation units may be elaborated in more than one order.
Chapter 10 of the Ada Reference Manual (ARM) constrains the possible orders; any order
meeting these constraints is legal. If there are two different legal elaboration orders that
have different observable effects, then the program has an incorrect order dependence.

The elaboration order checking tool, check.elab, analyzes an Ada main program and all its
dependent units for incorrect order dependence in the elaboration of the compilation units.
If no potential errors are reported by the tool for this program, then any legal elaboration
order can be chosen by the compiler (or by another program analysis tool) without affecting
execution. If the tool issues a warning, then the programmer can use pragma ELABORATE to

eliminate the potential incorrect order dependence.

3.1 Results

We ran check_elab on all of the products. If a product included more than one main
program, we ran the tools on each program. Four products caused warnings, and all of the
warnings indicated actual incorrect order dependence in elaboration. Table 1 shows more

detailed statistics.

3.2 Warnings

Table 1 shows that check_elab generated a total of six warnings in four products; all six
warnings were for a subprogram being called from the initialization section of a package

Page 2

02 September 1994 STARS-AC-A023/010/00

Table 1: Statistics for check.elab.

Source
Product Lines Units Warnings
Aflex 11,351 50 2
Philosophers 1,093 18 2
Dhrystone 1,110 6 none
Calculator 486 7 none
Line Editor 2,646 9 none
Expert System 1,048 3 none
Forms Generator 14,198 33 none
Menu Manager 3,907 17 1
Plotter 1,094 21 none
Portable Text Formatter 10,423 34 1
Spelling Corrector/Checker 9,258 49 none

body before the subprogram's body was guaranteed to be elaborated. All of the problems
would be solved by including pragma ELABORATE statements.

The check.elab tool guarantees only that there is no incorrect order dependence. If all legal
elaboration orders will result in a subprogram being called before its body is elaborated, then
the tool will not report the error. Once all legal elaboration orders are shown to have the
same effect (no warnings are issued by check_elab), another tool that checks for definedness
of objects can be used to check for potential raising of PROGRAM.ERROR.

Here is one example of the warnings issued by check_elab and a discussion of the potential

error.

3.3 Example: Portable Text Formatter

3.3.1 Warning:

=> Compilation Units are NOT independent:
dyn(A_PACKAGE_BODY) and
formatted_output_file(A_PACKAGE_BODY)

(subprogram DEFINED in dyn(A_PACKAGE_BODY)
is CALLED in formatted_output_file(A_PACKAGE_BODY))

3.3.2 Explanation:

The partial order determined by context clauses does not define the order in which package
body Dyn and package body Formatted_Output_File are to be elaborated. A compiler may

Page 3

02 September 1994 STARS-AC-A023/010/00

choose either order. The package body of Formatted_Gutput_File initializes one variable
using the D.String function denned in package Dyn:

Header_Footer_Default
: constant HF_LINES

:= (others => (others => Dyn.D_String(" ")));

This results in an unrecoverable PR0GRAM_ERR0R if (and only if) the implementation elabo-
rates the body of Formatted_Output_File before elaborating the body of Dyn.

3.3.3 Solution:

To guarantee that no compiler generate code leaving this exception to be raised, insert
pragma ELABORATE (Dyn) before the package body of Formatted. Output .File.

4 Alias Checking in Subprogram Calls

Two program variables are aliased if their storage overlaps, so that modifying one of the
variables may affect the value of the other. Unintentional or improper aliasing is a well-
known source of programming errors. For example, the body of a subprogram often relies
on the fact that the actual parameters matched with distinct formal parameters will not be
aliased, and a subprogram call violating that assumption may behave surprisingly. These
problems are compounded because, in general, the compiler may choose the order in which
actual parameters are evaluated and the method by which they are passed. As a result, im-
proper aliasing may lead not only to non-portabilities (incorrect order dependence) but also
to completely undefined behavior (erroneous execution). (See the Ada Reference Manual,

sections 1.6, 6.2(13), 6.4, and 12.3(17).)

The alias checking tool, check.alias, finds all subprogram calls and generic instantiations
in a given compilation unit and checks the actual parameters (depending on mode and type)
for potential aliasing with global variables, for aliasing with each other, and for indepen-
dence. If no potential errors are reported by the tool, then neither the choice of parameter
passing mechanism nor the order of parameter evaluation by the compiler can affect the
visible behavior of the program during execution. Note that even though the tool is con-
servative and the warnings generated may not in fact indicate an error, the warnings can
alert programmers to a potential problem that could lead to future bugs or problems in

maintenance or portability.

4.1 Results

We ran check_alias on all of the units in each product. The tool issued warnings for three

of the products. Table 2 shows more detailed statistics.

Page 4

02 September 1994 STARS-AC-A023/010/00

Table 2: Statistics for check_alias.

Source
Product Lines Units Warnings
Aflex 11,351 50 4
Philosophers 1,093 18 none
Dhrystone 1,110 6 none
Calculator 486 7 none
Line Editor 2,646 9 none
Expert System 1,048 3 none
Forms Generator 14,198 33 1
Menu Manager 3,907 17 none
Plotter 1,094 21 none
Portable Text Formatter 10,423 34 none
Spelling Corrector/Checker 9,258 19 3

4.2 Warnings

The check_alias tool issued a total of eight warnings in three products. This section shows
those warnings and gives explanations of and solutions for each kind of warning.

4.3 Example: Aflex

Check.alias issued four warnings for the Aflex product: 2 warnings of potential incorrect
order dependence because of aliasing of actual parameters, and 2 warnings of potential
erroneous execution because of aliasing of an actual parameter with a global.

4.3.1 Warning of Incorrect Order Dependence:

**** dfa line 496:
DFA.EPSCLOSURE(NSET, NUMSTATES, ACCSET, NACC, HASHVAL, NSET)

=> Parameters: 6 and 1 are potential ALIASES
(potential ORDER of COPY OUT error)

4.3.2 Explanation:

Check_alias reports that incorrect order dependence can occur. The parameters are scalar
or access type, so check_alias does not warn of potential erroneous execution.

DFA. EPSCLOSURE has the following specification:

Page 5

02 September 1994 STARS-AC-A023/010/00

procedure EPSCL0SURE(T : in out INT_PTR;
NS.ADDR : in out INTEGER;
ACCSET : in out INT.PTR;
NACC.ADDR, HV.ADDR : out INTEGER;
RESULT : out INT_PTR) is

The reported alias involves using the same variable for the first and last (sixth) parameter.
However, the last statement of the DFA.EPSCLOSURE procedure body sets the last (out)

formal parameter equal to the first (in out) parameter:

RESULT := T;

Therefore, in this case, using the same variable for both parameters is not a problem since
both are set to the same value on exit. Thus, the order of copy back chosen by the compiler
makes no difference. This coding practice is confusing, not only to the tools but to human

readers.

4.3.3 Solution:

Add a comment in DFA.EPSCLOSURE that the exit values of RESULT and T are identical; or,
perhaps safer, change the code to make T mode IN or do not use aliased actual parameters.

Note that the first of these solutions does not stop the tool from issuing warning messages

when you rerun the tool.

4.3.4 Warning of Erroneous Execution

**** main_body line 365:
EXTERNAL_FILE_MANAGER.GET_BACKTRACK_FILE(BACKTRACK_FILE)

=> Parameter 1: is aliased with a global,
(potential ERRONEOUS EXECUTION)

4.3.5 Explanation:

The tool warns that an alias of BACKTRACK_FILE is updated during the call (other than by

using the formal parameter).

The called procedure does not accesse BACKTRACK.FILE directly, but calls MISC.AFLEXFATAL
in exception handlers, which calls MAIN_B0DY. AFLEXEND directly, which uses BACKTRACK.FILE:

Page 6

02 September 1994 STARS-AC-A023/010/00

procedure GET_BACKTRACK_FILE(F : in out FILE.TYPE) is

begin
CREATE(F, OUT.FILE, "aflex.backtrack");

exception
when USE_ERR0R I NAME_ERROR =>

MISC.AFLEXFATAL("could not create backtrack file");

end GET_BACKTRACK_FILE;

— aflexfatal - report a fatal error message and terminate
procedure AFLEXFATAL(MSG : in VSTRING) is

use TEXT.IO;
begin
TSTRING.PUT(STANDARD.ERROR,

"aflex: fatal internal error " & MSG) ;
TEXT.IO.NEW_LINE(STANDARD_ERROR);

MAIN.BODY.AFLEXEND(1) ;
end AFLEXFATAL;

MAIN.BODY.AFLEXEND contains the following code:

if (BACKTRACK.REPORT) then
if (NUM.BACKTRACKING = 0) then
TEXT_IO.PUT_LINE(BACKTRACK_FILE, "No backtracking.");

else
if (FULLTBL) then

INT_IO.PUT(BACKTRACK_FILE, NUM.BACKTRACKING, 0);
TEXT_IO.PUT_LINE(BACKTRACK_FILE,

" backtracking (non-accepting) states.");

else
TEXT_IO.PUT_LINE(BACKTRACK_FILE,

"Compressed tables always backtrack.");

end if;
end if;
CLOSE(BACKTRACK.FILE);

end if;

The predefined type TEXT_IO.FILE_.TYPE is an implementation-dependent limited private
type. The check_alias tool treats it as a non-scalar, without regard to a particular com-
piler implementation of the type. Thus, the calls to PUT and PUT.LINE potentially update

BACKTRACK.FILE.

Page 7

02 September 1994 STARS-AC-A023/010/00

If an exception occurs attempting to create BACKTRACK.FILE, the resulting action will include
attempting to write to the same file that failed, no doubt raising an unhandled exception.

This example shows a problem that is both difficult to find (it is obscured by several layers of
procedure calls) and not likely to appear in testing (it happens only under error conditions),
yet is potentially serious. The example also indicates that cases of aliasing tend to be trouble
spots in general, and even if the situation is not "erroneous execution" in the ARM sense,

it can be an actual bug.

4.3.6 Solution:

Eliminate the global alias in the call to GET_BACKTRACK_FILE, or remove the call to AFLEXEND

from AFLEXFATAL.

4.4 Example: Forms Generator

Check_alias issues one warning of potential aliasing of actual parameters that could result
in either incorrect order dependence or erroneous execution.

4.4.1 Warning:

**** form_executor lines 128 to 130:
FORM.MANAGER.GET_FIELD_INF0

(FIELD, NAME, POSITION, LENGTH, RENDITION,
CHAR.LIMITS, VALUE, VALUE, MODE)

=> Parameters: 7 and 8 are potential ALIASES
(potential ORDER of COPY OUT error) and
(potential ERRONEOUS EXECUTION)

4.4.2 Explanation:

The check_alias tool warns that parameters 7 and 8 are potential aliases. The modes
of the matching formal parameters are both output parameters. (If both modes were IN,
check_alias would not have issued a warning.) The tool has also given an indication of the
types of error caused by the aliasing. We can use the error information to inspect the code.

First, potential ORDER of COPY OUT error tells us there could be dependence on the
order chosen by a compiler to copy formal variables back to actuals after execution of the
body of GET_FIELD_INF0 (see Ada Reference Manual, 6.4(6)).

Second, potential ERRONEOUS EXECUTION tells us that the types of both aliased parameters

Page 8

02 September 1994 STARS-AC-A023/010/00

are non-scalar (and non-access type) and that the effect of executing the program may depend
on the parameter passing mechanism chosen by the compiler (see the Ada Reference Manual,

6.2(7)).

We inspect the code to see if there is an actual error. The procedure call listed occurs in

FORM.EXECUTOR.GET.INFO.

The called procedure FORM.EXECUTOR. GET_FIELD_INFO references the abstract FIELD_ACCESS
pointer type of the first parameter and returns some information stored in it in 8 output

parameters:

procedure GET_FIELD_INFO (FIELD
NAME
POSITION
LENGTH
RENDITION
CHAR.LIMITS
INIT.VALUE
VALUE
MODE

begin

NAME := FIELD.NAME;
POSITION := FIELD.POSITION;

LENGTH := FIELD.LENGTH;
RENDITION := FIELD.RENDITION;
CHAR_LIMITS := FIELD.CHAR.LIMITS;

INIT.VALUE := FIELD.INIT.VALUE;

VALUE := FIELD.VALUE;
MODE := FIELD.MODE;

exception

FIELD.ACCESS;
out FIELD.NAME;

out FIELD.POSITION;

out FIELD.LENGTH;
out FIELD.RENDITIONS;

out CHAR.TYPE;
out FIELD.VALUE;

out FIELD.VALUE;

out FIELD.MODE) is

end GET.FIELD.INFO;

The value of FIELD.INIT.VALUE will presumably differ from the value of FIELD.VALUE in
some cases where F0RM_EXECUT0R.GET.INF0 is called. This implementation depends on the
returned VALUE being set to the FIELD.VALUE field. Since the parameters are non-scalar,
two compiler implementations could produce different results, depending on the parameter-
passing mechanism chosen, or the order chosen to copy the formals back to the actuals.

In this case, inspection shows that check.alias has discovered an actual error.

Page 9

02 September 1994 STARS-AC-A023/010/00

4.4.3 Solution:

If in fact the value of the FIELD. INIT_VALUE field is unwanted, one solution is to use a
"scratch" variable to receive its value, to prevent corrupting the crucial VALUE variable.

4.5 Example: Spelling Corrector/Checker

For the Spelling Corrector/Checker product, check.alias generated three warnings: one of
aliasing of two actual parameters causing potential incorrect order dependence and two of
aliasing with a global causing potential erroneous execution.

4.5.1 Warning for HELP_UTILITY

**** help.utility.print.topic.text lines 36 to 37:
HELP_INF0_SUPP0RT.APPEND_TO_DISPLAY(CURRENT_LINE.TEXT_LINE,

CURRENT.LINE.LINE.LENGTH)

=> Parameter 1: is aliased with a global,
(potential ERRONEOUS EXECUTION)

4.5.2 Explanation:

The potential ERRONEOUS EXECUTION warning tells us to look in the body of APPEND_TO_DISPLAY
to see if the parameter passing mechanism makes a difference in the results of the execution.

HELP_UTILITY.PRINT_TOPIC_TEXTis a separately defined compilation unit:

separate (HELP.UTILITY)
procedure PRINT_TOPIC_TEXT (NODE: in HELP_UTILITY.HELP_LINK) is

CURRENT.LINE: HELP_INF0_SUPP0RT.TEXT.LINK;

begin

CURRENT_LINE := NODE.TEXT.LINES;

while CURRENT.LINE /= null loop
HELP_INFO_SUPPORT.

APPEND.TO.DISPLAY(CURRENT.LINE.TEXT.LINE,
CURRENT.LINE.LINE_LENGTH);

CURRENT.LINE := CURRENT.LINE.NEXT.LINE;

end loop;

Page 10

02 September 1994 STARS-AC-A023/010/00

exception
when others => raise;

end PRINT_TOPIC_TEXT;

At first glance, CURRENT_LINE appears to be a locally declared variable and thus could not be
aliased with a global. But, on inspection, we see that the type ofHELP.INFO.SUPPORT.TEXT.LINK
is access TEXT.LINE. This means that the local CURRENT_LINE.TEXT_LINE is an object on
the heap (i.e., equivalent to CURRENT.LINE.all.TEXT.LINE). Thus, check_alias considers
the actual parameter to be potentially aliased with anything else of the same type on the

heap.

The procedure body of HELP_INF0_SUPP0RT.APPEND_T0_DISPLAY does in fact reference a

global object of the same type (TEXT_LINE) on the heap:

procedure APPEND_TO_DISPLAY(LINE : in STRING;
CHAR.COUNT: in natural) is

begin

if LINE'length <= FILE.TEXT.LINE'length then
CURRENT.LINE.TEXT.LINE := FILE.TEXT.LINE'(others => ' ');
CURRENT.LINE.TEXT_LINE(l..LINE'length) := LINE;

CURRENT.LINE.LINE.LENGTH := CHAR.COUNT;

else
CURRENT_LINE.TEXT.LINE := LINE(1..FILE.TEXT.LINE'length);
CURRENT.LINE.LINE.LENGTH := FILE.TEXT.LINE'length;

end if;

PREVIOUS_LINE.NEXT.LINE := CURRENT.LINE;

CURRENT_LINE.NEXT.LINE := null;
PREVIOUS.LINE := CURRENT.LINE;
CURRENT.LINE := new TEXT.LINE;

exception

when others =>

raise;
end APPEND.TO.DISPLAY;

The CURRENT.LINE in HELP.INFO.SUPPORTis different from the CURRENT.LINE in PRINT.TOPIC.TEXT.
They are not aliased, but the objects they point to (and that are referenced) are potentially

aliased.

However, inspection of the body of APPEND.TO.DISPLAY shows that it never references the
formal IN parameter, LINE, after updating the potential global alias. That means that even

Page 11

02 September 1994 STARS-AC-A023/010/00

if the parameter were aliased with a global, (i.e., the access variables had the same value),
the body indeed does not have an erroneous execution because the undefined value is not

subsequently used (see section 6.2(13 of the Ada Reference Manual).

This example is a common false warning, since check_alias does not know the values of

the access variables.

4.5.3 Solution:

In this case, the tool is being overly conservative. Note the warning, perhaps leaving a

comment about it, but there is no problem.

4.5.4 Warning for UTILITIES.MERGE

**** speller line 483:
UTILITIES.MERGE (INPUT.FILE.A, INPUT.FILE.B, INPUT_FILE_A)

=> Parameters: 1 and 3 are potential ALIASES
(potential ORDER of COPY OUT error) and
(potential ERRONEOUS EXECUTION)

4.5.5 Explanation:

The called procedure UTILITIES.MERGE has the following specification:

~ Algorithm : This process will merge DICTIONARY.A and
: DICTIONARY.B into DICTIONARY.C.

procedure MERGE (DICTIONARY.A,
DICTIONARY.B,
DICTIONARY.C : in out TEXT_IO.FILE_TYPE) is

Nowhere is it stated that the output dictionary may be the same as one of the input dictionar-
ies, as is the case when it is called above. The code reads DICTIONARY.A and DICTIONARY.B
into internal storage, then using the internal storage calculates the merged output and writes
the results to DICTIONARY.C. All three files are closed at the end of MERGE:

TEXT.IO.CLOSE (DICTIONARY.C);

Page 12

02 September 1994 STARS-AC-A023/010/00

if TEXT_IO.IS_OPEN (DICTIONARY_A) then
TEXT.IO.CLOSE (DICTIONARY_A);

end if;

if TEXT_I0.IS_0PEN (DICTIONARY.B) then
TEXT.IO.CLOSE (DICTIONARY.B);

end if;

Superficially there appears to be no actual error. An obvious danger might be that another
programmer working on the same code (or the same programmer later) might deem the
current implementation inefficient, and rewrite the routine to write the output as it reads
the input files. Adding internal comments will alert future programmers to that danger.

However, even the existing program may produce unforseen results because of the aliasing.
Ada's OPEN and CLOSE are not necessarily equivalent to the operating system's open and
close operations. For example, closing of the file DICTIONARY_C might have some unforseen
effect on the subsequent closing of DICTIONARY.A depending on whether the parameters were
passed by reference or by copy, or on the implementation's association of an external file

with an internal file.

4.5.6 Solution:

Change the actual parameters to MERGE so that they are not aliased.

5 Conclusions

We expected a small number of warnings for and possibly no actual errors in the products we
analyzed because the products have been in use for some time. The AdaWise tools in fact
generated only a small number of warnings. These warnings, however, indicated that there
were actual errors in some products. Some warnings were "false positives". It is impossible
to estimate the percentage of false positives that the tools would give on code under initial
testing. An important point, though, is that almost all of the false positives in fact indicated
areas of weakness in the code. We suspect that even lengthy unguided code inspections
would not have revealed most of these errors and the potential bugs.

Page 13

