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ABSTRACT 

The U.S. Navy's new multiprocessor, the AN/UYS-2 Enhanced Modular Signal 

Processor (EMSP) utilizes a First-Come-First-Serve (FCFS) algorithm to transfer data. 

This algorithm is simple to implement but provides no mechanism to control execution of 

a specific application on the AN/UYS-2 which prevents performance predictions. A Large 

Grain Data Flow (LGDF) representation of a specific application is utilized to predict 

performance, with the introduction of trigger queues (dependency arcs) into the graphs to 

control execution. 

I utilized the EMSP Common Operational Software (ECOS) Workstation to execute 

graph representations of specific applications used by the U.S. Navy in the Anti-Submarine 

Warfare (ASW) arena. A complete description of the ECOS workstation, and the process 

of transforming specific applications into graph representations to be executed on the 

ECOS Workstation is demonstrated. Specifically, the Correlator Graph which represents a 

real-time ASW process is examined 

To control and improve performance, the technique of implementing trigger queues 

using the ECOS Workstation is demonstrated. A basic graph is executed and referenced as 

a benchmark, with two reconstructed graphs executed demonstrating how trigger queues 

effect graph execution. The node execution times statistics indicate trigger queues control 

execution and will provide a mechanism to predict node performance. 
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I. INTRODUCTION 

The Twentieth Century has produced two great trends in Naval Warfare, the Weaponry 

Revolution and the Sensory Revolution. The advances in the weapons field has produced 

fire control systems which can deliver ordnance on target quickly and accurately. The 

aircraft carrier and the embarked air wing, nuclear powered fast attack submarines, and 

missile equipped surface combatants provides the US Navy with platforms which can 

deliver offensive firepower throughout the world. The range and speed of today's offensive 

weapons; jet aircraft, torpedoes, surface to air missiles and cruise missiles have greatly 

increased. This increase in range and speed has resulted in a sensor revolution which 

attempts to detect and locate the electronic devices used in these weapons systems. The area 

of the earth's surface which must be monitored to detect the enemy has increased at the 

same ratio as the weapons range. These surveillance systems must be able to detect and 

process video data onboard ships of the fleet before a coordinated, concentrated attack can 

be carried out. 

Capt. Wayne Hughes (RET), in his book "Fleet Tactics" discusses six Measures 

required for effective attack; Strategic detection, Tactical detection, Tracking, Targeting, 

Attacking, and Damage Assessment [HUG 86]. The quick, accurate, and coordinated 

processing of data during the tactical detection, tracking and targeting phases used for an 

effective attack, must be improved to counter the ever increasing speed of today's modern 

offensive weapons. Two specific areas, the processing of radar (radio detection and 

ranging) data, and passive and active acoustic data requires millions of computations per 

second. The fusion of this data with other passive sensors such as Electronic Surveillance 

Measures (ESM), Cryptologic Support Measures, satellite imagery, and satellite data links 

provides the Warfare Commander with the data needed to organize and coordinate a 

concentrated attack on the enemy. To disperse the same tactical picture to all units in a task 

group, the signal processing methods must be improved to provide an accurate real-time 

picture of events. A delay in signal processing and fusion of available data inputs will only 



provide a history of what happened, in other words, information which is worthless to the 

tactical commander during the heat of battle in today's fast paced environment. 

Signal processing requirements for the Navy in 1990 ranged from 300 million floating 

point operations per second (MFLOP) for small airborne sensors, to 2.4 million MFLOPs 

for submarine sonar arrays [RIC 90]. But as the speed of offensive weapons increase, and 

current traditional von Neumann architectures reach physical limits of technology, an 

increase in signal processing rates must be accomplished to compete in the twenty-first 

century. The problem encountered here is a multi-disciplinary one. Network theorists try to 

find optimal transformation methods and transparent and clear representation domains for 

the algorithms; mathematicians provide methodologies and algorithms for solving the 

related mathematical problems; VLSI designers have to bridge the gap to silicon when 

designing the microprocessor [VAN 91]. To meet these needs, the United States Navy must 

utilize a system which can test and optimize new signal processing methods, and test the 

techniques on new microprocessors before being built in the lab and introduced into the 

fleet. 

To meet the needs of today's smaller Department of Defense's budgets, the U.S. Navy 

must maximize simulation in the lab, analyzing how the new system would perform with 

existing systems. The ECOS Workstation (EWS) will be used to test signal processing 

methods by using Processing Graph Methods (PGM), the algorithm being implemented to 

process the data flow, and simulation of the proposed the multiprocessor providing 

statistical data which can be used to optimize the system. 

Specifically, the EWS was developed to test the Enhanced Modular Signal Processor 

(EMSP) AN/UYS-2, which will have applications to the AN/SQS-89 sonar, Surveillance 

Towed Array Sensor System (SURTASS), and Airborne Low Frequency Sonar (ALFS) 

programs. The AN/UYS-2, attempts to maximize the concurrency inherent in data-flow 

architectures, while minimizing the associated overhead, using a hybrid architecture. Such 

an architecture would take advantage of control-flow for the task level, and data-flow at the 

functional level [ATT 93]. 



A. BACKGROUND 

1. Data Flow and the EMSP 

Data flow representation of digital signal processing algorithms provides a 

natural exploitation of concurrence [LIT 91]. In a signal processing graph the execution of 

a particular node is controlled by the amount of information on each of its input queues. For 

each node, each incoming queue has an associated minimum amount, or threshold, of 

information needed for the operation's execution. When all of a node's input queues 

contain sufficient information to meet the respective thresholds, the node is ready for 

execution. This node represents the head of the queue, while the source node represents the 

tail. Information is deposited on, and removed from, queues in different methods. One 

method is the First In, First Out (FIFO) algorithm, which schedules by maintaining a 

database consisting of PGM graph node and Arithmetic Processor information. The 

simplicity of the FIFO algorithm earns it the designation as the most attractive scheduling 

algorithm [LIT 91]. 

2. The Multiprocessor 

Once the signal processing application and the Data Flow Algorithm have been 

optimized, the results must be tested on the proposed multiprocessor. An analysis of the 

hardware configuration and its major subsystems; Functional Elements, Data Transfer 

Network, Functional Element Control Bus and how these operate together, is important in 

optimizing the entire process. The EWS provides the statistics to examine each Node, 

queue, and architecture of the specific multiprocessor. 

The AN/UYS-2 is meant to provide the United States Navy with a standard, 

programmable, modular, multi-processor capable of meeting the digital signal processing 

requirements into the twenty-first century. All previous signal processors in the U.S. Navy 

utilized time-line control-flow architectures. Here a series of instructions and 

corresponding data are processed sequentially and initiated by a single control signal. This 

narrow connection between instructions and data held in memory and the single processing 



unit forms von Neumann's bottlenecks. The bottleneck can be avoided by removing the 

assumptions implicit in a von Neumann design [LEW 92]. 

3.      Processing Graph Method (PGM) 

The PGM was developed to provide the signal processing engineer a convenient 

means to write applications software without having to be concerned with the architecture 

of the machine on which it would be run [NRL 90]. PGM allows a signal processing 

application to be described as a collection of signal processing graphs in a manner similar 

to the common use of block diagrams [ATT 88]. The implementation of PGM allows the 

automated translation of a representation of a signal processing graph into a collection of 

software modules which carry out the application functions. 

In signal processing, as in any high data rate, processor-intensive computer 

application, the name of the game is throughput. The more data the computer can process 

per second, the better. The simplest method is to speed up the processors. Until recently, 

computer processors executed programs one operation at a time. Consequently, the 

algorithms written to solve problems were designed to perform one step at a time; such 

algorithms are called serial. However, many computationally intense problems cannot be 

solved in a reasonable amount of time using serial operations [ROS 91]. 

A second method to increase the throughput of data is by the use of several 

processors running in parallel. Parallel processing, which uses computers made up of many 

separate processors, each with its own memory, helps overcome the limitations of serial 

computers. Parallel algorithms, which break a problem into a number of subproblems that 

can be solved concurrently, can then be devised to rapidly solve problems using a computer 

with multiple processors. In a parallel algorithm, a single instruction stream controls the 

execution of the algorithm, sending subproblems to different processors, and directs the 

input and output of these subproblems to the appropriate processors. 

When parallel processing is used, one processor may need output generated by 

another processor. Consequently, these processors need to be interconnected. However, an 



imprudent assignment of tasks to processors can cause unnecessary interprocessor 

communications. The communication time - the amount of time spent moving data between 

processors - can dominate the computation time and thus limit the realized performance 

[HAM 92]. The use of PGM, allows the analysis of the interconnection network for the 

parallel processors, thus optimizing the system by using the most appropriate graph for the 

problem presented. The type of interconnection network used to implement a particular 

parallel algorithm depends on the requirements for exchange of data between processors, 

the desired speed, and the available hardware. 

B. OBJECTIVE 

The ECOS Workstation provides the tools for an analysis of each phase involved from 

graph creation to multiprocessor development. This thesis will examine the procedures 

required to implement and develop a graph, a scheduling algorithm, and the AN/UYS-2 

multiprocessor. This system produces two outputs, graphical analysis static (gas) and event 

time simulator (ets++), which will be analyzed to provide insight into what each output file 

means towards the development of an optimized, efficient signal processing system. A case 

study utilizing the Correlator Graph model to demonstrate this systems' capabilities from 

design to implementation will be examined. The implementation of trigger queues will be 

demonstrated to show how a graphs execution can be modified with this technique. 

C. SCOPE, LIMITATIONS, AND ASSUMPTIONS 

The scope of this investigation is limited to performing testing and analysis of an 

example graph, input/output file, and machine configuration file, explaining how these files 

are integrated together to produce the gas and ets++ output. The EWS system will then be 

executed using a correlator graph to provide insight into the statistics provided for 

optimization of a graph. Trigger queues will then be demonstrated, and their effect on a 

graph's performance. 



D.   ORGANIZATION OF THESIS 

This thesis is organized into five chapters. This chapter provides the introduction and 

scope of work to be performed. Chapters II provides a background on the ECOS 

Workstation (EWS) and the specifics of each phase of development, and the files involved 

in this investigation. Chapter III will explain the Correlator Graph and associated files, 

which will provide an example of the system in use. Chapters IV examines the 

implementation of trigger queues into a graph and the methods utilized with the ECOS 

simulator. Chapter V covers what conclusions can be derived from these results. 



II.   ECOS FUNDAMENTALS 

A. BACKGROUND 

The ECOS Workstation (EWS) is a suite of tools used to develop, analyze, test and 

optimize AN/UYS-2 signal processing applications. The system allows the implementation 

of signal processing algorithms using the Processing Graph Method (PGM) and the testing 

of the signal flow characteristics with different configurations of the AN/UYS-2 

architecture prior to actually building the hardware in the lab. EWS may be run on a variety 

of platforms and is used independently of the actual AN/UYS-2 machine. ECOS (EMSP 

Common Operational Support Software) refers to the implementation of the Processing 

Graph Method (PGM) on the AN/UYS-2 previously known as the EMSP (Enhanced 

Modular Signal Processor). [ATT 92] 

PGM provides a convenient way of specifying the signal processing algorithms to be 

executed by application software programs by allowing the description of the algorithms in 

terms of signal processing graphs. These graphs are analogous to be the block diagrams 

commonly employed as high level summaries of the signal processing algorithms. 

The AN/UYS-2A architecture is determined by the needs of the application. Each 

configuration must contain one Data Transfer Network (DTN), one Scheduler (SCH), and 

one Command Program Processor (CPP). The architecture accommodates various 

combinations of Input Output Processors (IOP's), Input Signal Conditioner's (ISC's), 

Global Memories (GM's), and Arithmetic Processor's (AP's). [NRL 1] 

B. THE ECOS PROCESS 

The phases of the ECOS process, utilized to create a graph, implement a data 

processing algorithm, optimize the graph, and configure an AN/UYS-2 multiprocessor are 

the key aspects of this system. A graph file, command program file, Input/Output procedure 

file, and Machine Configuration file are needed to run the system. The following 

information provides an in-depth explanation of how the ECOS simulator works and how 



the files are integrated to produce the data flow characteristics used to optimize the graph. 

The best way to explain this system is to use an example and provide a detailed explanation 

of each integral part of the system and it's relevance during ECOS simulator operation.The 

sample graph file, command program file, Input/Output procedure file, and Machine 

Configuration file demonstrates the process from graph development to system 

optimization. 

1.      Graph File 

The EWS visual graph editor, gred, speeds up application development by 

allowing the design of signal processing programs in the form of ECOS data-flow graphs 

as represented in Figure 1. These graphs automatically generate Signal Processing Graph 

Notation (SPGN) source code for the application, freeing the programmer from the task of 

programming in SPGN code. The system allows the graph objects, which are the building 

blocks of a gred graph, and represent one step in the flow of signal processing data to be 

created: 

A signal processing graph consists of a set of nodes representing the primitive 

processing elements of the graph, a set of subgraphs representing more complex processes, 

a set of merges for use in controlling the flow of data, a set of queues representing the 

directed information flow through the graph, and a set of graph variables holding arbitrary 

information. The INPUT QUEUE provides the interface between an input processor and 

the graph. The OUTPUT QUEUE provides the interface between the graph and an output 

processor. The GRAPH INSTANTIATION PARAMETER (GIP), is a start time 

constant which is passed to a graph by the command program at graph instantiation time. 

The VAR (GRAPH VARIABLE) is a variable which is passed to a graph by the command 

program, or passed to a subgraph by a parent graph. The value of the Var may be re-written 

during run-time, and the new value may be passed to the graph during run-time. A LOCAL 

QUEUE represents the directed flow of information from node to node, from node to 

subgraph, or from subgraph to node within the graph and carries information on a first-in, 



first-out basis into a node or subgraph. A NODE in a graph embodies a specific signal 

processing operation, called a primitive, and a Primitive Interface Procedure (PIP), which 

provides the interface between the node and the primitive. A SUBGRAPH allows 

hierarchical structures in a graph definition. A subgraph is originally defined as a graph and 

then used in the definition of a larger graph. A CONNECTION is the object used to 

connect NODES, Queues, Subgraphs, INPUTQ, OUTPUTQ, and CONSTRUCTOR 

Objects. An INPUT CONSTRUCTOR consolidates data from various graph objects and 

passes it to a node or subgraph as a single input. An OUTPUT CONSTRUCTOR takes 

output data from a node or subgraph and distributes it to various graph objects. These are 

the objects required to build and test the flow of information on a graph. [ATT 92] 

The EWS provides a number of tools for graph creation. The graph topology is 

implemented using gred, which permits an object-oriented style of code creation. Once 

created, the graph is converted to SPGN using the grail translator. This converts the 

graphical representation into compilable code, which is checking for syntax and continuity 

errors. This new file is executed using ggcc, which is three programs which validate and 

compile the SPGN; grasp, glitr, and cpcc. Grasp translate the SPGN source code into 

graph tables. Glitr translates the tables in C language routines and cpcc compiles the C 

routines and command program, then links all the programs. Once the executable file is 

created, static and dynamic simulations may be accomplished using two additional EWS 

tools, Graph Analysis, Static (gas) and Event Time Simulator (ets++). 



Figure 1: PGMTUT Sample graph 

2.      Command Program File 

The EWS command program defines how an application connects with the 

outside world via the input and output procedures, formal input and output queues, graph 

10 



variables and graph instantiation parameters, and how various graph within an application 

connect to one another. The command program is used together with the SPGN source file 

produced by grail to compile the application. 

PROGRAM— 
%INITCOMPROG() 

IO_PROC_ID 
QUEUEJD 
GRAPH ID 

iopl,iop2; 
inl, oul; 
G; 

inl = %CREATEQ(FLOAT); 
oul = %CREATEQ(CFLOAT); 

G = %START(PGM_TUT 
INPUTQ=inl 
OUTPUTQ=oul 
PRIORITY = 2 

); 

if (%SCODE) exit(l); 

iopl = %INITIO(IOPl 
INPUTQ=inl); 

iop2 = %INITIO(IOP2 
OUTPUTQ=oul); 

%STARTIO(iopl); 

%STARTIO(iop2); 

%PRENT(%TERM, 1, G); 

%ENDPROGRAM 

COMMENTS 
Opening statement of each 
Command program 
- I/O procedures 
- Formal input/output queues 
- Graph's name 

-- Create the queue named inl 
- Create the queue named oul 

-- Start graph PGM_TUT 
- Match INPUTQ with inl 
-- Match OUTPUTQ with oul 
- State the graph's priority 

- Check for correct SPGN, 
stop if errors detected. 
- Initialize the I/O procedure 
- Match IOP1 with INPUTQ inl 
- Initialize the I/O procedure 
- Match IOP2 - OUTPUTQ oul 

- Start I/O procedures iopl 

- Start I/O procedures iop2 

— Prepares the compiled executable 

file to generate an ets++ input 
file. There is 1 graph, G. 

— Final statement of each command 
program. 

Figure 2: PGMTUT Command Program 

Each command program must be able to create the input and output queues for 

the graph, initialize the input/output procedures (i.e., attach the queues to them), start the 

graph with its required parameters, and start the input/output procedures. The command 

program example in Figure 2, lists two Input/Output procedures iopl, iop2 which correlate 

11 



with two names that will be listed in the Input/Output procedure file (pgm_tut.io), and are 

started by %INITIO. Two formal input/output queues, inl and oul which map to Bearnjn 

and Beam_Out of the graph PGM_TUT in figure 1, and are initialized by %CREATEQ. 

The graph G is started by %START(PGM_TUT) which correlates to the file created using 

gred. 

3.      I/O procedure file 

The EWS I/O procedure file provides information to gas and ets++ about 

characteristics of the graph's input and output nodes. Input and output nodes are external 

to the graph; they feed outside world input data into the graph and read output data from 

the graph. The I/O procedure file contains details about incoming and outgoing data rates. 

These rates are used by gas and ets++ in their various timing analysis. 

The I/O procedure file pgm_tut.io displayed in FIGURE 3, provides the input 

to the ECOS simulator example. The IOP1 variable, declared as an input for the graph with 

one port, corresponds to the iopl variable in the command program. The input rate into the 

graph is 300000 words per second with the output rate producing 2048 words per second 

directed into the output interface. The IOP2 variable, is an output variable with one port, 

and corresponds to the variable iop2 in the command program. This program has a 

threshold of 822 words, reads 822 words, and consumes 822 words. 

12 



#The format of the i/o procedure file is tabular; the information content is 
# simple, so this should cause no problems, and it reduces the amount of baggage in 
# the simulator for interpreting this file. 

# NAME is the symbolic identifier of the i/o procedure named in the %INYTlO 
# statement in the command program; it must match exactly; case is significant. 

# TYPE is one of INPUT, BIDIRECTIONAL, or OUTPUT 

# DATA RATES for graph inputs are expressed in words/second 

# THRESH, READ, CONSUME, and PRODUCE amounts are in words 

# comments look like this, everything on a line to the right of the sharp sign is discarded 

# number of 
# name 
#  

IOP1 

type ports 

INPUT 1 

# 
#  

rate produce 

300000 2048 

# number of 
# name 
#  

type ports 

IOP2 OUTPUT 1  : 

# thresh read consume 
#  
822 822 822 

Figure 3: PGMTUT Input/Output File 

4.      AN/UYS-2 Machine Configuration file 

The EWS machine configuration file defines an AN/UYS-2 hardware 

configuration for use by ets++, will execute an application as if it were running on the 

hardware specified in the configuration. The hardware consists of the Data Transfer 

Network (DTN), the Distributor/Concentrator ports on the DTN, and the Functional 

Elements (FE). The DTN's come in three sizes: 4, 8 or 16 ports. The designer may assign 

up to four FE's per port, however, to minimize DTN contention, assign no more than one 

FE per port. A concentrator transfers data from a FE to the DTN, while a distributor 

13 



transfers data from the DTN to a FE. The Functional elements consist of Arithmetic 

Processors, Input/Output Processors, and Global Memory. Each Functional Element is 

associated with a specific port. 

Figure 4 provides a visual display of the AN/UYS-2 which would be tested by 

the ECOS system as determined by the machine configuration file. The DTN has eight 

ports, two of which are not used. Each Functional Element has it's own port to reduce data 

transfer conflicts. 

Figure 4: PGMTUT Machine Hardware 

Figure 5 is an example of a machine configuration file, 3ap2gm.cf which is used 

in the ECOS example. This Configuration has three Arithmetic Processors, one Input/ 

Output Processor, and two Global Memories. The Data Transfer Network has eight 

distributors and eight concentrators. The Arithmetic Processors are Class one, meaning that 

the AP class is directed to use a particular AP load image for class one. AP 0 is connected 

to distributor 0 and concentrator 0, AP 1 to distributor 1/concentrator 1, AP 2 to distributor 

2/concentrator 2, IOP 0 connected to distributor 3/concentrator 3, GM 0 to distributor 4/ 

concentrator 4, and GM 1 to distributor 5/concentrator 5. 
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#ETS++ machine configuration file 
# comment lines look like this, anything on a line after the sharp sign ("#") is discarded 
# tiie format here is vaguely reminiscent of the actual configuration file 
# keywords: 

«CONFIGURATION 
»HARDWARE 
# AP (ARITHMETIC PROCESSOR) 
# IOP (INPUT/OUTPUT PROCESSOR) 
# GM (GLOBAL MEMORY) 
# DISTRIBUTORS 
# CONCENTRATORS 

CONFIGURATION 

# number of functional elements of each type 
# FE 
#type                                                   quantity 

AP                                                      3 
IOP                                                     1 
GM                                                     2 

# number of concentrators/distributors on DTN 

DIST                                               8 
CONC                                             8 

HARDWARE 

#FE                                                    FE 
#type                            '                     name 
#.                                                
AP                                                      AP:0 
AP                                                      AP:I 
AP                                                      AP:2 
IOP                                                     IOP:0 
GM                                                 GM:0 
GM                                                     GM:1 

DIST 
ID 

CONC 
ID 

AP 
CLASS 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

1 
1 
1 

Figure 5: PGMTUT Machine Configuration File 

C.   ECOS EXECUTION PROCESS 

The following sequence of events demonstrates the ECOS Workstation functions and 

how they are integrated together to produce the statistical data required to optimize the 

signal data flow represented by the graph. The PGM_TUT graph in Figure 1, the Command 

Program File com_prog.cp, I/O Procedure File pgm_tut.io, and Machine Configuration 

File 3ap2gm.cf are utilized to demonstrate the execution of the system, with the gas and 

ets++ output files produced, displayed and examined: 
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1. gred 

The gred (graphical editor) is an executable file which invokes a graphical 

window which is used as a tool to create a graph which is saved as pgm_tut.g. 

2. grail -g pgmtut.g > pgmtut.src 

The grail -g pgmtut.g > pgm_tut.src is the function which calls grail which 

converts the graph created in gred into SPGN compilable code. The -g 

filename(pgm_tut.g), is the name of the graph file saved in gred and used by grail to 

identify the input. The >pgm_tut.src, is the new name of the file created by grail. 

3. ggcc pgmtut.src comprog.cp 

The ggcc pgmtut.src com_prog.cp is the function call to ggcc (grasp, glitr, 

cpcc, cpcc), where grasp translates your SPGN source file into graph tables, glitr 

translates .int file into C routines, cpcc compiles the C files and cpcc compiles the 

command program and then links all the compiled files The pgmtut.src file is the name 

of the file generated by grail and com_prog.cp is the name of the command program 

supplied to cpcc. 

4. comprog > comprog.ets 

The com_prog > com_prog.ets command, is the renaming of the file produced 

by ggcc, which is named com_prog and > com_prog.ets is used to generate the simulation 

input file for gas and ets++. 

5. gas -g comprog.ets -i pgmtut.io -n all -q all > pgmtut.gout 

The gas -g comprog.ets -i pgmtut.io -n all > pgmtutgout command, is the 

call to the gas function, which is the graph analysis static, the analysis tool utilized first. It 

performs a quick, cursory check of the signal processing application based on the static 

properties of the graph. The -g fiIename(com_prog.ets) provides the name of the graph file 

to gas. The -i filename(pgm_tut.io) provides the name of the Input/Output file to gas. The 
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-n all provides the command which requests statistics on each node to gas. The > 

pgm_tut.gout is the name given to the output file produced by gas. 

6.      ets++ -g comprog.ets -i pgmtutJo -m 3ap2gm.cf -n all -q all -t (time) > 

pgmtuteout 

The ets++ -g comprog.ets -i pgmtuUo -m 3ap2gm.cf -n all -q all -t (time) 

> pgm_tut.eout command, is the call to the ets++ function, which is a dynamic 'event-time 

simulator' function used for modeling real-time graph performance for a given AN/UYS- 

2 configuration. The -g filename(com_prog.ets) provides the graph file name to ets++. 

The -i filename(pgm_tut.io) provides the Input/Output file name to ets++. The -m 

filename(3ap2gm.cf) provides the Machine Configuration file name to ets++.The -n all 

provides the command which requests all statistics on each node. The -q all provides the 

command which requests all statistics on each queue.The -t (time) - time may be in 

seconds, minutes or machine cycles. The default is seconds. To specify minutes, type -t 

timem and to specify machine cycles type -t timec. For example: 

-t 10 = 10 seconds 

-t 10m = 10 minutes 

-t 10c = 10 machine cycles 
The > pgm_tut.eout is the name given to the output file produced by ets++. 

D.   ECOS OUTPUT 

1.      gas analysis 

The gas function does not simulate a graph execution and it has no information 

regarding the machine configuration. Rather, it takes a look at the graph's design and 

calculates execution statistics as if the graph were running in a perfect setting with 

unlimited hardware resources, gas performance statistics thus present a best case scenario. 

The analysis of the gas output file will check to see if the graph is structurally sound, 

report characteristics of the graph which allow identification of certain types of 

performance trouble spots, and report execution characteristics which allow the 
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programmer to estimate the hardware configuration needed to run the application on an 

AN/UYS-2. 

Three types of graph statistics appear in the gas output, scheduling rate and 

execution time statistics, System Language message statistics, and the Bandwidth 

statistics.The following acronyms are used in the gas output file: 

AIS - Accept Instruction Stream 

AP - Arithmetic Processor 

AU - Arithmetic Unit 

CQ - Consume Queue 

GM - Global Memory 

IOP - Input/Output Processor 

RGV - Read Graph Variable 

RQ - Read Queue 

SL - System Language 

WGV - Write Graph Variable 

WQ - Write Queue 

a. Graph Statistics 

Figure 6, which displays the graph statistics section, is the output file 

which has four categories. The first, SCHEDULING RATE AND EXECUTION TIME 

STATISTICS section provides four specific areas of information. The total node 

scheduling rate is the sum of the individual scheduling rates of all nodes. The AP node 

scheduling rate is the sum of the individual scheduling rates for all nodes which execute on 

an AP. The total required AU cycles is a weighted sum of the AP node execution times 

where the weights are the individual node execution rates. And the mean AU cycles per 

node is a weighted average of the per-node AU execution time. 

b. System Language Statistics 

The SYSTEM LANGUAGE MESSAGE STATISTICS provides thirteen 

different types of information for analysis. The mean queue consumes/node is the average 
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number of CQ (consume queue) messages sent per node execution. The mean queue 

consume amount is the average amount consumed pr consume request. The mean queue 

reads/node is the average number of RQ (read queue) messages per node execution. The 

mean queue read amount is the average amount read per read request The mean queue 

writes!node is the average number of WQ (write queue) messages per node execution. The 

mean queue write amount is the average size of a write request. The mean graph variable 

reads is the average number of RGV (read graph variable) messages per node execution. 

The mean gv read amount is the average size of an RGV request. The mean graph variable 

writes is the average number of WGV (write graph variable) messages per node execution. 

The mean gv write amount is the average size of a WGV request. The mean queue+gv read 

amount is the average read amount (without distinguishing between a queue read and a GV 

read).The mean queue+gv write amount is the average write amount (without 

distinguishing between a queue write and a GV write). The mean AIS size, is derived from 

the following process; Every node execution involves the transfer of an instruction stream 

from a GM (global memory) to an AP (arithmetic processor) via an AIS (accept instruction 

stream) message. 

c.     Bandwidth Statistics 

The BANDWIDTH STATISTICS section provides three specific areas of 

information for analysis. The Bandwidth AP is the rate at which data is moved between APs 

and GMs due to reading and writing queues and graph variables. The Bandwidth IOP is the 

rate at which data is moved between IOPs and GMs. The Bandwidth GM is the total rate at 

which data is moved into and out of GMs. This is the sum of Bandwidth AP and Bandwidth 

IOP. 
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Static Graph Analysis - EWS Release: 5T5 
Invocation: gas -g com_prog.ets -i pgm_tut.io -n all 

total graph objects: 4 nodes, 6 queues, 0 graphvars, 2 I/O procedures 

graph: PGM_TUT 

pids: /users/res/zakyclasses/EWS/sef/Pids/pidtoc 
graph objects: 4 nodes[0,3], 6 queues [0,5], 0 graphvars, 2 I/O 
procedures[0,1] 

graph source: oom_prog.ets 
i/o procedure source: pgm_tut.io 

total node scheduling rate: 2434.99 
AP node scheduling rate: 2343.75 
total required AU cycles: 5.63e+06 
mean AU cycles per node: 2.40e+03 
mean queue consumes / node: 1.25 
mean queue consume amount: 461.00 
mean queue reads / node: 1.25 
mean queue read amount: 470.20 
mean queue writes / node: 1.25 
mean queue write amount: 384.20 
mean graph variable reads: 0.00 
mean gv read amount: 0.00 
mean graph variable writes: 0.00 
mean gv write amount: 0.00 
mean queue+gv read amount: 470.20 
mean queue+gv write amount: 384.20 
mean AIS size: 256.00 
Bandwidth AP: 2.5e+06 
Bandwidth IOP: 3.75e+05 
Bandwidth GM: 2.88e+06 

Individual node statistics 
Node  Node rate       rate 
id  name      (exec/sec)  (cycl/sec) 

/ second 
/ second 
cycles / second 
cycles 
CQ / node 
words / CQ 

RQ / node 
words / RQ 
WQ 
words 
RGV 

node 
WQ 
node 

words / RGV 
WGV / node 
words / WGV 
words 
words 
words 

(RQ,RGV) 
(WQ,WGV) 
AIS 

words / second 
words 
words 

second 
second 

RQs 
  number of -- 
WQs  CQs  RGVs WGVs 

i/o rate 
(word/sec) 

0 PGM_TUT>BANDSHIFT 586 932e6 
1 PGM_TUT>FIR1 58 6 2.14e6 
2 PGM_TUT>FIR2 586 1.69e6 
3 PGM_TUT>FIR3 586 865e3 

2    2    2 
111 
111 
111 

901e3 
906e3 
461e3 
236e3 

Figure 6: PGM TUT gas Output File 
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d.     Node Statistics 

The INDIVIDUAL NODE STATISTICS section provides six areas of 

information about the performance of each node in the graph. The Node ID is the unique 

numerical identifier for the node. The Node name is the hierarchical node name. The rate 

(exec/sec) is the number of node executions per second (the number of times per second 

that the node is called upon to process data). The rate (cycle/sec) is the number of AP cycles 

per second (processing speed) required to execute the node. This rate must be lower than 

the maximum processing speed of the AP. Otherwise, the node will become a bottleneck 

and the graph will not be executable on a machine of any size. The number ofRQs, WQs, 

CQs, RGVs, and WGVs summarizes the number of SL messages per node execution. The 

i/o rate (word/sec) is the rate at which data is transferred between APs and GMs per node 

execution. This is calculated for each node by taking the number of words per execution 

due to RQ, WQ, RGV and WGV messages and multiplied by the number of executions per 

second. This gives a words per second result. 

The results of the gas function is analyzed, providing the programmer with 

insight into how each node is operating in reference to the data flow rates. This allows the 

programmer to edit the application, or prepare the machine configuration file and perform 

a real-time simulation with ets++. 

2.      ets++ analysis 

One of the central components of the ECOS Workstation is an EMSP system 

simulator which models the execution of a graph on the actual machine. ets++ does not 

perform signal processing. It does simulate the data-flow scheduling of the functional 

elements in the AN/UYS-2 signal processor. Through this simulation, ets++ computes 

timing and hardware usage statistics for the application. ets++ models the data-flow 

scheduling between graph elements, the system language message traffic and the real time 

operations which take place in the functional elements (FEs) of an AN/UYS-2 during graph 
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execution. It models the execution based on the AN/UYS-2 configuration specified in the 

machine configuration file. 

ets++ provides four main types of information about your graph, overall system 

performance, individual functional element (FE) performance, graph execution 

characteristics, and individual graph object execution statistics. 

The following is a list of acronyms used in the ets++ output file: 

RQ - Read queue 

AQ - Accept queue 

WQ - Write queue 

CQ - Consume queue 

RGV - Read graph variable 

AGV - Accept graph variable 

WGV - Write graph variable 

QOT - Queue over threshold 

QUT - Queue under threshold 

QOC - Queue over capacity 

QUC - Queue under capacity 

RFIS - Ready for instruction stream 

SIS - Send instruction stream 

AIS - Accept instruction stream 

EIS - Execute instruction stream 

SNDT - Suspend node data transfer 

CNDT - Continue node data transfer 

CTC - Change threshold and consume 

3.      The ets++ output file 

The following is an analysis of the five sections of the output file produced by 

executing the ets++ function. Utilizing the input files in the example with the gas function 

coupled with the machine configuration file 3ap3gm.cf, ets++ results are provided. 
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a.     Header Section 

The HEADER section provides general information about the ets++ output file 

such as the EWS version being utilized, and the command line used to invoke ets++. The 

machine parameter file line, lists the directory and filename of the machine configuration 

file. The Configuration section lists the hardware makeup of the mircroprocessor being 

used in the simulation. The graph objects line, provides the number of nodes, the 

EMSP Event Time Simulator - EWS Release: 5.6 

Invocation: ets++ -g com_prog.ets -i pgm_tut.io -m 3ap2gm.cf -n all -g 
all -t 1 

Machine parameter file: '/users/res/zakyclasses/EWS/sef/lib/params.d' 
of 06/22/92 15:58 

Conf i gurat i on 

PE count: ■ 7 
AP count: 3 
GM count: 2 
IOP count: 1 
concentrators: 8 
distributors: 8 

total graph objects: 4 nodes, 6 queues, 0 graphvars, 2 I/O procedures 

graph: PGM_TUT 
pids: /users/res/zakyclasses/EWS/sef/Pids/pidtoc 
graph objects: 4 nodes[0,3], 6 queues[0,5], 0 graphvars, 2 I/O 
procedures[0,1] 

Statistics 

Simulation clock = 1.000 seconds 

Figure 7: PGMTUT ets++ Header 

number of queues, the number of graph variables, and I/O procedures. The range of 

numerical identifiers for the graph objects and I/O procedures appears in square brackets. 
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Additionally, the graph name used in the simulation is listed, the location of the PID 

library, and the Statistics section states how long the simulation was executed. 

b.     Functional Element Statistics 

An example of each type of Functional Element (arithmetic processor, 

global memory, input/output processor) and the scheduler, and the statistics provided 

follow: 

FEID: 0 NAME: AP:0 TYPE: arithmetic processor 
cone id: 0  dist id: 0 

AP Class: 1 
CU idle = 50.70 % 
CU wait =  0.12 % 
CU busy = 49.18 % 

service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
service wait per dtn request: avg = 7.71e-06 sec, max = 1.57e-04 sec 
cbus messages sent: 1808    received:     0 
dtn messages sent:   646   received: 1163 

AG/AU nodes executed: 516 (CU only: 0) 
AG/AU busy: 17.62 % 
AG/AU pending: 51.27 % 
AG/AU efficiency: 25.57 % 
Free time (AP:0): 48.49 % 

Figure 8: PGM TUT ets++ AP Statistics 

(1) The Arithmetic Processor Section: 

This section is broken down into thirteen sections which provides vital 

information about the AP. The numerical ID for this FE comes from the machine 

configuration file. The AP class which is assigned during gred, can be used to group APs 

(Arithmetic Processors) into a particular class.The CU idle percentage, is the amount of the 

time that the Control Unit(CU) is not in use at all. The CU wait percentage, is time when 

the CU must wait for the completion of an event before it can do anything else. The CU 

busy percentage, is the time when the CU is busy when it is performing work such as SL 

message processing. The service wait is the amount of time a message arriving at the CBUS 
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(Control Bus) or DTN (Data Transfer Network) interfaces must wait before processing. 

The cbus messages sent is the number of SL (System Language) messages sent from this 

AP via the control bus. The received data, is the number of SL messages received by this 

AP via the control bus. The dtn messages sent information is the number of SL messages 

sent from this AP via the data transfer network. The received information, is the number of 

SL messages received by this AP via the data transfer network. The AGIAU nodes executed, 

is the number of AG/AU (Address Generator/Arithmetic Unit) nodes executed on this AP. 

The CU only section, is the number of nodes executed only on the Control Unit (CU), such 

as merge, flow control and AP replicate nodes. The AG/AU busy section is the percent of 

total simulation time that the AP's AU was executing primitives. The AG/AU pending 

section, is the percent of total simulation time that the AP was waiting to execute a 

primitive that has been assigned to it. The AG/AU efficiency section is the percent of the 

AP's 'in use' time that is actually used for doing productive work. The Free time data, is 

the percent of total simulation time that the AP was free to be assigned a node for execution. 

(2) The Global Memory Section 

The GM Utilization (busy + dtn i/o) statistics, is the percent of total 

simulation time that the GM was either processing SL messages (CU busy) or sending and 

receiving data to and from the DTN (dtn i/o). The memory usage information, where three 

types of memory usage statistics are produced; high water mark, pointer block, and static. 

High water mark is the maximum amount of memory used at any one time during the 

simulation. The Pointer block is the maximum memory used by the pointer block. The 

pointer block keeps track of the used and unused blocks of GM memory. Static, is the 

amount of fixed overhead memory, which remains constant throughout the simulation. 
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FEID:  3  NAME: GM:0 TYPE: global memory 
cone id:  4  dist id:  4 
CU idle =  53.91 % 
CU wait =   0.00 % 
CD busy =  4 6.09 % 

service wait per cbus request: avg = 4.29e-05 sec, max = 5.98e-04 sec 
service wait per dtn request: avg = 1.97e-05 sec, max = 1.24e-04 sec 
cbus messages sent:  1226    received:  3227 
dtn messages sent:  2001    received:  1309 

GM Utilization (busy + dtn i/o):  60.40 % 
memory usage,high water mark:108236; pointer block: 512, static: 4844 

Queue table: 128 GI table 3000 
Node table: 128 Queue Hist 0 

GV table: 0 Templates 1040 (appr) 
GV memory: 0 delta 0 (assm) 

Initial data: 544 CTC table 4 
Nodes: 2    Queues : 4 Graph Variables: 0 

Figure 9: PGM TUT ets++ Global Memory Statistics 

(3) The I/O Processor Section 

The Simple IOP model, provides the Basis information for the Control bus 

and Data Transfer Network. The Number ofWQs completed is the number of Write Queue 

messages successfully sent from this IOP to a GM. The cancelled by SNDT section, is the 

number of WQ messages lost due to outstanding SNDTs (suspend node data transfer 

messages). The Input queue data, provides the Input queue # handled by this IOP. The input 

rate (w/sec) data, is the input data rate for that particular input queue #. The Output nodes 

executed provides the number of output nodes executed on this IOP. This allows the 

designer to analyze the amount of traffic on the two buses. 
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FEID:  6  NAME: SCH TYPE: scheduler 
CU idle =  84 .99 9- 

CU wait 0 .01 9- 

CU busy =  15 .00 
service wait per cbus request :avg = 6. 29e-06 sec. max = 1 ,54e- -04 sec 
service wait per dtn request :avg = 0. 00e+00 sec. max = 0 .00e+00 sec 
cbus messages sent: 1613 received: 3553 
dtn messages sent: 0 received: 0 

Figure 10: PGMTUT ets++ Scheduler Statistics 

(4) The Scheduler Section 

The SCHEDULER Section of the ets++ output file provides statistical data 

about the control of the resources in the mircroprocessor. The CU idle data, is the percent 

of time that the Control Unit is not in use. The CU wait data, is the percent of control bus 

contention. The CU busy data, is the percent of time the scheduler is processing data, 

including System Language message processing and assignment of nodes to APs for 

execution. 

c.     Graph Execution Performance 

The graph execution performance consists of the Control Bus, Data 

Transfer Network, the DTN Input FIFO,and Node Scheduling Statistics. 

CBUS Utilization Statistics 

CBUS message count = 9165 
idle = 96.20 % 
busy = 3.80 % 

Figure 11: PGM TUT ets++ Control Bus Statistics 
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The Control Bus is a single access bus handling only one Functional 

Element at a time. The CBUS message count, conts the number of messages sent via the 

CBUS. The idle percentage data, is the percent of total simulation time that the CBUS was 

idle. The busy percentage data, is the percent of total simulation time that the CBUS is busy. 

DTN Utilization Statistics 

DTN message   count   =   5636 

Cone 0: idle = 96.98% busy= 3.02 % avg.wait= 0.00e+00 sec max wait = 0.00e+00 sec 
Cone 1: idle = 97.03 % busy = 2.97 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 
Cone 2: idle = 96.92 % busy = 3.08 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 
Cone 3: idle = 97.59 % busy = 2.41 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 
Cone 4: idle = 90.96 % busy = 9.04 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 
Cone 5: idle = 91.29 % busy = 8.71% avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 
Cone 6: idle = 100.00 % busy = 0.00 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 
Cone 7: idle = 100.00 % busy = 0.00 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 

Dist 0: idle = 94.28 % busy = 5.72 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 
Dist 1: idle = 94.32 % busy = 5.68 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 
Dist 2: idle = 94.19 % busy = 5.81% avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 
Dist 3: idle = 99.46 % busy = 0.54 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 
Dist 4: idle = 93.80 % busy = 6.20 % avg. wait = 2.79e-06 sec max wait = 1.41e-04 sec 
Dist 5: idle = 95.09 % busy = 4.91 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 
Dist 6: idle = 100.00 % busy = 0.00% avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 
Dist 7: idle = 100.00 % busy = 0.00 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec 

Figure 12: PGMTUT ets++ DTN Statistics 

The Data Transfer Network(DTN) Utilization Statistics reports four areas 

of information for each concentrator and distributor; idle, busy, average, wait and 

maximum wait. Data flows from an FE through a concentrator into the DTN. Data flows 

from the DTN through a distributor into the FE. The idle percentage, is the percent of total 

simulation time that the concentrator or distributor was not in use. The busy percentage, is 

the percent of total simulation time that the concentrator or distributor was in use, including 

resource contention delays. The avg. wait data is the average amount of time that an FE had 

to wait to use this resource. The max wait data is the maximum amount of time that any one 

FE had to wait to use this resource. 
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DTN input fifo statistics 
AP:0 (id = 0) PIP: max. messages = 2, high water mark = 519 
AP:1 (id = 1) PIP: max. messages = 2, high water mark = 519 

AP:2 (id = 2) PIP: max. messages = 2, high water mark = 519 
GM:0 (id = 3) PIP: max. messages = 3, high water mark = 2190 
GM:1 (id = 4) PIP: max. messages = 2, high water mark = 1031 
IOP:0 (id = 5) PIP: max. messages = 1, high water mark = 623 

Figure 13: PGMTUT ets++ DTN Input FIFO Statistics 

For each AP, GM, and IOP Primitive Interface Procedure (PIP) First in, 

First out (FIFO) buffer, the DTN input statistics are provided. The max messages number 

is the highest number of messages that ever existed in the FIFO buffer at any one time. The 

high water mark number is the maximum number of 16-bit words waiting in the buffer at 

any one time. The FIFO buffer capacity is pre-set. 

Node Scheduling Statistics 
nodes scheduled = 1613 
rate = 1613.0 nodes/sec 

Figure 14: PGMTUT Node Scheduling Statistics 

The nodes scheduled, is the total number of nodes scheduled for execution 

for the length of the simulation. The rate, is the number of nodes scheduled divided by the 

simulated length of time. 

d.     System Language Statistics 

This System Language messages list, provides the number of times each 

type of message was sent during the simulation. The two key categories, QOC (queue over 

capacity) and SNDT (suspend node data transfer) indicate that data has been backing up. If 

both values are greater than zero, there may be data loss. 

29 



Cumulative SL message statistics 

RQ 1999 
AQ 1999 
WQ 2085 
CQ 1999 
RGV 0 
AGV 0 
WGV 0 
QOT 2004 
QUT 0 
QOC 0 
QUC 0 
RFIS 1550 
SIS 1553 
AIS 1552 
EIS/ESN 60 
SNDT 0 
CNDT 0 
CTC 0 

TOTAL 14801 

Figure 15: PGMTUT System Language Statistics 

e.     Individual Graph Object Execution Statistics 

The Node ID, is the node's numerical identifier. The Node name, is the 

node's symbolic hierarchical name. The GM id is the numerical identifier of the GM that 

stores this node's instruction stream. The times scheduled, is the number of times the node 

was scheduled for execution. The times waited for AP, is the number of times the node was 

ready for execution but had to wait because there was no AP available. The average wait 

forAP, is the average amount of time, in seconds, that the node which is ready for execution 

had to wait for an AP to become available.The average delay to exec, is the average amount 

of time from when the node was scheduled for execution on an AP until execution actually 

begun. The average breakdown delay, is the average amount of time from the completion 

of microcode execution until the completion of output-data transfer to the GM's. 
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Graph Object  Statistics 

Node Statistics 

average times      average      average 
Node     Node              GM  times        waited    wait         delay brkdown 

id      name             id    scheduled  forAP    forAP      to exec delay 

6.49e-04 0      >BANDSHIFT3 389           197      1.19e-04     1.03e-03 
1      >FIR1              4     389              0      0.00e+00  8.45e-04 3.64e-04 
2      >FIR2             3     388              0      0.00e+00  1.07e-03 3.85e-04 
3      >FIR3              4     387              0      0.00e+00  9.60e-04 7.70e-04 

Figure 16: PGM TUT Node Graph Object Statistics 

(1)   Queue Information 

The Queue id, is the queue's numerical identifier. The Queue name, 

is the queue's symbolic hierarchical name. The GM id, is the numerical identifier of the GM 

that stores this queue's data. The times written, is the number of times the queue was written 

by it's source node. The remaining words in queue, is the number of 16 bit words remaining 

on the queue at the time this statistic was written. 

Queue Statistics 

remaining 

Queue Queue GM times words 

id name id 

3 

written 

146 

in queue 

99840 0 >BEAM_IN 
1 >BEAM  OUT 3 386 88 

2 >Q2 4 389 1034 

3 >NP 3 389 1 
4 >Q3 3 388 530 
5 >Q4 4 387 274 

Figure 17: PGMTUT Queue Statistics 
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The data provided by the ets++ output provides the vital statistics for the complete 

analysis of the proposed graph, data-flow diagram, and algorithm used. The optimization 

of the new system can be performed prior to the actual building of a new multiprocessor. 
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III. PERFORMANCE ANALYSIS TOOLS: A CASE STUDY 

A digital signal processor's performance can be measured by throughput. 

Unfortunately, the AN/UYS-2 's throughput is not based exclusively on its scheduling 

algorithm, the First-Come-First-Serve algorithm. The concurrent parts of the program or 

tasks, represented by nodes on the graph must be arranged in time and space to optimize 

performance. The analysis of a graph created at AT&T, the Correlator Graph, will provide 

actual hands on experience in the ECOS process and the optimization of a graph, data flow, 

and multiprocessor configuration. This process will highlight the features used to optimize 

a signal graph using the simulator. 

A. CORRELATOR GRAPH 

The Correlator Graph, constructed utilizing the gred function, (refer to Figure 18 and 

Figure 19), was created based on the task to be performed, the data flow topology required, 

and the available Primitive Interface Definitions (PIDs) accessible in the PID directory. 

This Correlator Graph, named E006, consists of 27 nodes, 37 queues, and 4 input/ 

output procedures. Two input queues, named X and represented by the family input queue 

graph object feeds the graph. Data is directed to two separate nodes, FIXL1 and FIXL2, 

where two separate paths for data processing is accomplished. Upon completion of 

processing, Two output queues, named GRAMOUT and represented by the family output 

queue graph object provides the results to the Input/Output Processor (IOP) for distribution 

to an interface not associated with the Correlator Graph. 

B. CORRELATOR GRAPH COMMAND PROGRAM 

The command program for the Correlator Graph, named test.cp (refer to Appendix A), 

controls the graph's execution and interaction. The program starts the E006 graph, 

initializes four Graph Instantiation Parameters (GIPs) STI, F, SR, and TC, declares the 
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Input Queue will be a Family of Queues, consisting of two inputs designated as INI and 

IN2, and the Output Queue will be a Family of Queues, consisting of two outputs 

designated as OUT1 and OUT2. The program will then initialize the input and output 

queues with the %INITIO command, then start the processing with the %STARTIO 

command. From this brief description of the command program, it is obvious that the 

purpose of test.cp is control rather than signal processing. The command program basically 

initializes and starts the io-procedure and controls the flow of data to and from the outside 

world. 

C. CORRELATOR GRAPH INPUT/OUTPUT PROCEDURE FILE 

The I/O procedure file provides the characteristics of the Correlator Graph's input and 

output data rate. The Correlator Graph Input/Output file, named l.io (refer to Appendix B), 

defines four I/O procedures, IN 1 and IN2 which are for input, OUT1 and OUT2 which are 

for output and .correspond to the input/output variables in the command program file 

testxp. Each procedure has only one associated port. The data rate of INI and IN2 

corresponds to 2048 words per second being generated by the I/O device onto the queue, 

which are expressed in 16-bit words/second. The produce amount of INI and IN2 is the size 

of the data blocks which the I/O input device feeds into the graph, which are expressed in 

16 bit words. The data rate of OUT1 and OUT2 corresponds to a 513 words for the 

threshold level, 513 words for the read amount, and 513 consume amount, with each 

amount expressed in 16-bit words. 

D. CORRELATOR GRAPH gas ANALYSIS 

Now that the graph and command program have been created, compiled, and linked, 

the I/O procedure file prepared, and simulation input file generated, the gas analysis tool is 

utilized. 

The Correlator Graph simulation file corr.ets (refer to Appendix C), and the I/O 

procedure file l.io are utilized as inputs to gas which produces an output file, named 

corr.gout (refer to Appendix D). The gas environment simulates a perfect setting with 
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unlimited hardware resources, from which the machine configuration needed for this graph 

can be determined. In particular, analysis of the AP node scheduling rate, the total required 

AU cycles, Bandwidth GM, Node rate (exec/sec), and Node rate (cycle/sec) provides the 

necessary information for AN/UYS-2 configuration. 

The AP node scheduling rate of 3.19/second indicates this node scheduling rate 

achieves the estimated rate based on the nature of the processing task and the intended 

throughput rate. If the rate had been less, the graph may have run successfully for short 

bursts, but the machines' resources would become swamped in the long run. The maximum 

throughput can be computed by taking the number of processors and multiplying them by 

the clock speed, divide that number by the total required AU cycle field, and take the result 

and multiply by the input data rate. 

Max Throughput = Num_of_Processors X ClockJSpeedX Gas_Data_Rate   (Eq 3.1) 
total_required_AU_cy des 

The total required AU cycles of 3.90e+04 cycles per second, provides a rough estimate 

of the minimum amount of AP processing power needed to meet the real-time scheduling 

requirements of the graph. A SEM-E AP with a 10 MHZ clock can handle 10e+6 cycles per 

second. The minimum number of processors needed for the graph can be computed by 

dividing the total required AU cycles rate by the processor speed. 

Min Processors = total required AU cycles I processor speed (Eq 3.2) 

The Bandwidth GM of 1.09e+5 words/second, is the sum of Bandwidth AP and 

Bandwidth IOP. This figure provides an estimate of the minimum amount of GMs needed 

for this machine. A SEM-E GM can transfer data over the DTN at a rate of lOe+6 32-bit 

wps or 20e+6 16-bit wps. The minimum required Global Memory can be computed by 

dividing the Bandwidth GM by 10e+6 or 20e+6. 
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Required GM = Bandwidth GMI Clock Speed (Eq 3.3) 

The Node rate (exec/sec) provides the number of times per second that the node is 

called upon to process data. Verification that expected values are consistent with given 

input data rates for the graph are necessary to insure a smooth data flow. 

The Node rate (cycle/sec) value provides the number of AP cycles per second 

(processing speed) required to execute the node. This rate must be lower than the maximum 

processing speeds of the AP or a bottleneck will occur at that node and the graph will not 

execute. 

E. CORRELATOR GRAPH MACHINE CONFIGURATION FILE 

The machine configuration file for the Correlator Graph, 4-6.cf (refer to Appendix E), 

lists in tabular form, the machine configuration of the AN/UYS-2, to be utilized as input to 

the ECOS analysis tool, ets++. The information provided by the analysis of the gas output 

for the Correlator Graph was utilized to construct the proposed hardware. 

The 4-6.cf machine configuration file lists four Arithmetic Processors, six Global 

Memories, two Input/Output Processors, and One Scheduler Processor. The Data Transfer 

Network (DTN) has eight Distributor/Concentrator ports, the ports numbered 0-7. The four 

Arithmetic Processors are on ports 0-3, the six Global Memories are on ports 4-6, with two 

GMs per port, and the two Input/Output Processors on port 7. 

F. CORRELATOR GRAPH ets++ ANALYSIS 

The ets++ event time simulator performs dynamic graph simulation on the Correlator 

Graph using the machine configuration file created from analysis of the gas simulation. The 

output file of the Correlator Graph ets++ simulation, corr.eout (Refer to Appendix F), 

provides the vital statistics needed for analysis. Through this simulation, timing and 

hardware usage statistics are computed which are utilized for further debugging, 

configuration sizing and performance optimization of the Correlator Graph. 
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To fully understand the optimization of the Correlator Graph, an analysis of the 

Functional Elements; arithmetic processors, global memory, Input/output processor 

scheduler, the data transfer network, scheduler and system language messages must be 

performed. 

The arithmetic processor statistic Free Time is the key field for analysis of the AP 

functional element. A Free Time Value of under 10% indicates insufficient AP resources. 

If an AP runs out of free time, the Correlator Graph will fail. Free Time for APO, API, AP2, 

and AP3 is 99.83%, 99.83%, 99.84%, and 99.86% respectfully. The APs are providing the 

Correlator Graph with a sufficient amount of Free Time which guarantees the 

multiprocessor will have an AP available when needed. 

The Global Memory Statistics high water mark is the key data field for analysis. This 

high water mark is the sum of the static memory, the dynamic memory, and the pointer 

block utilized simultaneously. The GM supports optimized performance through memory 

management of data. 

The cancelled by SNDT (Suspend Node Data Transfer) is the key field for analysis for 

the input/output processor. If this value is not zero, it indicates data is backing up on the 

graph. Input/Output processor IOP0 and IOP1 for the Correlator Graph are both zero, 

indicating a free flow of data. 

The avg wait field for the DTN utilization is the key field for analysis. If the wait 

statistic is too high for any concentrator or distributor, indications are that congestion 

exists, and a modification to the AN/UYS-2 must be accomplished for the system to 

executed smoothly. The data for the Correlator Graph and the machine configuration show 

little contention, thus indicating optimal performance. 

The high water mark field of the DTN inputfifo statistics is the key field for analysis. 

This field tracks the maximum number of 16-bit words waiting in the buffer at any one 

time. If the FIFO (First-In-First-Out) buffer capacity exceeds the 32K for SEM-B or 8K for 

SEM-E,  a blocked  message  is  substituted.  The  Correlator Graph performance is 
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outstanding with GMO and GM4 each having 16689 words in the buffer, well below the 32K 

maximum. 

The System Language message field which provides key data are the QOC (queue over 

Capacity) and SNDT (Suspend Node Data Transfer). These messages indicate that data has been 

backing up. If both values are greater than zero, there is a risk of losing data. The Correlator Graph 

simulation performance has QOC equal to one, SNDT equal to zero, so performance is not 

degraded. 

Figure 18: Correlator Graph Part 1 
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Figure 19: Correlator Graph Part 2 

The simulation process is now complete for the Correlator Graph, with results indicating that 

this graph will function in an optimal capacity in its current configuration. The ECOS simulator has 

provided a data flow path for a specific hardware configuration which meets the requirements for 

the current data input rate as described in the input/output file. 
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IV. SYNCHRONIZATION TRIGGER QUEUES 

A. INTRODUCTION 

Analyzing and predicting the performance of the AN/UYS-2, the multiprocessor 

which the ECOS system simulates, is an extremely complicated process. The graph 

representation used by the ECOS simulator provides an excellent tool to perform analysis 

of how different processes integrate together to complete the execution of a specific graph. 

But, a second area which must be addressed, is the transfer of data between nodes during 

execution. Currently, the AN/UYS-2 utilizes a First-Come-First-Serve algorithm which 

does not provide any characteristics which can be utilized to predict performance. A 

possible solution is the implementation of the Revolving Cylinder algorithm by Graph 

Restructuring. This process, along with its implementation on the ECOS system and the 

simulation of several graph's to demonstrate how node execution can be controlled will 

follow. 

B. GRAPH RESTRUCTURING 

Graph Restructuring provides a means to control the graph's execution, while not 

modifying the basic purpose of the graph. As data rates increase, or the issue of scalability 

is applied to a graph, the execution of a graph and the data transfer between nodes must be 

computed to insure sufficient hardware configurations are available. An algorithm which 

overcomes these issues and which does not change the semantics of the graph, is the RC 

algorithm. 

The key idea in the RC algorithm is based on inserting dependencies into the graph. 

These dependencies will be implemented into a graph by inserting trigger queues 

(dependency arcs) onto the graph which utilizes the FCFS algorithm. Essentially, the 

execution of nodes in the graph will be controlled by the trigger queues, and their 

associated parameters. 
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The advantages of the RC algorithm are that each execution of a graph will set up a 

system where performance can be predicted, reduce memory contention, and maximize 

communication and computation overlap. This will make the system have more predictable 

average response time and throughout. Thus memory contention can be reduced because 

the nodes and queues can be mapped to different memory modules. Another advantage of 

RC is the ability to achieve maximum overlap of communication time with computation 

time by placing the cylinders in appropriate order of execution. 

C.   ADDING TRIGGER QUEUES 

The graph in Figure 20, the PGM_TUT sample graph, will be used as an example in 

demonstrating the implementation of the TRIGGER Queues onto a graph. The graph will 

be modified step by step, with an explanation of the transformation to the RC technique. 

Trigger queues must consist of artificial data flows. Implementation is accomplished 

using the same structures seen previously for traditional data flow, node production sent to 

an assigned queue in memory, via an output port, then to the successor node via an input 

port. In the case of hierarchical structures, triggering pulses are passed using the actual 

input and output constructs [SWK 93]. 

To implement, changes must be made to the graph by using the graph editor gred. Four 

basic steps must be accomplished to implement the trigger queue. The local queue must be 

created and the characteristics declared. The queue must be connected to a node, and the 

threshold level declared. The node of interest must be modified to reflect the new input into 

the node, and possible output to a Revolving Cylinder queue. The output connection from 

the node to a trigger queue must be edited to reflect the change. 
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A2 

A3 

BEAt- 

Figure 20: PGMTUT Sample graph 

1.      Trigger Queue 

The trigger queue channels synchronization signals called trigger queue pulses 

rather than data. This allows the forced synchronization of an otherwise asynchronous, data 
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driven sequence of operations. The data elements on a trigger queue are pulses which have no 

semantic value. 

To implement a trigger queue on a graph, the graphical editor gred, must be utilized. 

Invoke the gred function, and read in the graph to be modified. Select INTRODUCE / LOCAL 

QUEUE, choose single or family, then place the queue on the graph in a position relative to the 

node which will be modified. The next step is the naming of the queue. Select the queue with 

the arrow and depress the #1 button (the left of three), at which time a menu will pop up, select 

name. Enter a name in the text bar section of the gred display. Depress the return button, then 

the #2 (center button) on the mouse which acknowledges the 'ok' display. 

RCl 
description 

■ |Thn. 1%.   m   trigger- quou> «hidi will tiiulat* * d^paodancy 
^arc. which can bo used to atnulate tho RC algoclthM 

inod«- rcliTpntr 
■ TRIGGER 

initial «»lu-i                               »»lKtor 

1 
Figure 21: Queue Definition Window 

2.      Initializing the Trigger Queue 

Now that the queue has been named, the internal characteristics must be defined. The 

queue is edited by selecting the queue with the #1 mouse button. Depress the #3 mouse (right) 

button, a pop up menu appears and select the edit%Queue. The Local Queue Definition Window 

as in Figure 21, will appear. The description field is used to enter text which will appear as 

comments in the SPGN code. The mode reference field is where the mode of the queue is 

defined by selecting the TRIGGER mode. The initial values field refers to the number of trigger 

pulses to be placed on the trigger queue. A single value may be entered. The member selector 

(mselector) field is used when a family local queue is being defined, and used to enter initial 

values into the queue. 
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If the queue is a family trigger queue, two additional fields, the family 

dimensions/local index, and initial value/mselector fields can be defined. The family 

dimensions of a queue could be a one dimension such as 1..8. The initial value / member 

selector field can be input by mapping the values to the member selector. 

3.      Input Port Connection and Setting Threshold Levels 

The queue must be connected to the node which will receive the trigger pulses. 

This is accomplished by creating a connection. Select the INTRODUCE / CONNECTION, 

single or family (must correspond to the queue definition). Depress the #2 mouse button on 

the queue, then the #2 mouse button on the destination Node. The characteristics of this 

Port must now be defined. Place the mouse button arrow on the Port and depress #1 mouse 

button to edit the port. The Port definition window will appear. Enter the Node Execution 

Parameter (NEP) THRESH (see Figure 22), which represents the number of data elements 

required to be on the queue in order for the node to execute. 

1 
RC1 

NEP ualue 
ITHRESH 1 

Figure 22: Input Port Connection 

4.      Output Port Connections 

The trigger queue must be connected from a node with input to the queue. The 

OUTPUT Port connection (see Figure 23) menu, is utilized to declare the number of trigger 

pulses to be placed on a trigger queue. In Figure 23, the Node Execution Parameter is 
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declared as type pulse, with a member selector of 1 which means one trigger pulse is placed 

onto the connection. 

/^~*   ^X u> $ RCl 

Figure 23: Output Port Connection 

5.      Modifying Node Descriptions 

When a node is declared in a graph, a Primitive Interface Definition (PID) must 

be used to define the node descriptions. But trigger queues are not accounted for in the PID 

library in the ECOS system. To counter this, the trigger queues must be introduced using 

the Parallel Interface Port (PIP) [NRL 90]. This method of using the PIP allows data that is 

not specified within the PRIM_IN macro of the PID to be utilized as a normal execution 

function. 

The node's PIP allows information to be passed into a node via the inport port 

which is not associated with the node primitive. The declaration PIP_IN, utilizes the macro 

$INx. 
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Item parameter  list 
I PRIM CBH.RFF 
JPRIM.IN 512,0,4,1,*1N0,«1N1 
I PRIM.OUT t0UT0,*OUTl 
IPIP.IN tIN2 

Figure 24: PIPIN Declaration 

The node's PIP may pass information out through node output ports not 

associated with the node' s primitive. Such a node output port is attached to a queue of mode 

trigger. The PIP may place zero or more initial pulses on the trigger queue. The declaration 

PIP_OUT, which utilizes the macro $OUTx, specifies the actual parameters passed out of 

the node which do not originate at the node's underlying primitive. 

parameter list 

| tINO 
PRIM.0UT    tOUTO 
PIP.OUT     *0UT1 

Figure 25: PIPOUT Declaration 

If the node is connected to a trigger queue, the Output Connection from the node 

to the trigger queue must be edited. By selecting the Output port, the Node Execution 

Parameter PULSE must be added. PULSE represents the number of trigger pulses to be 
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placed on a trigger queue. The value entry represents the number of tokens to be transferred 

to the trigger queue. 

NEP valu* 
■ PULSE 1 

'( 
T*^ \ RC1 

) 

Figure 26: Output Port 
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Figure 27: Restructured Graph 

D.   RESTRUCTURED GRAPH EXECUTIONS 

To demonstrate that a trigger queue does perform as a control mechanism, the graph 

was executed three times with different characteristics. The Restructured Graph in Figure 

27, consists of one trigger queue RC1. This trigger queue creates the capability to control 

the node execution, providing the technique which can be utilized to analyze and predict a 

graph's performance. This graph was executed using the same input files which were 

examined in Chapter 2. The only variables which were modified were the number of trigger 

tokens, and the threshold levels. 
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The simulation of graphs using the ets++ function, was executed for three graphs to 

provide analysis of the effects of the trigger queue on a graph. The Basic Sample Graph 

was executed to provide a benchmark with results in Figure 28. The second execution, 

using the trigger queue as displayed in Figure 27, was set with a threshold of zero, and two 

trigger tokens. The introduction of the two trigger tokens into the graph reduced the number 

of times the graph was executed which can be seen in Figure 29. The third execution, used 

a threshold of one and zero trigger tokens, which caused deadlock in the graph. Reviewing 

the results in Figure 30, one can see that none of the nodes were executed. 

Node Node 
id  name 

>B&NDSHIFT 
>FIR1 
>FIR2 
>FIR3 

GM   times 
id scheduled 

3 389 
4 389 
3 388 
4 387 

Figure 28: Basic Graph 

Node Node 
id name 

0 >BMD SHIFT 
1 >FIR1 
2 >FIR2 
3 >FIR3 

GM  tines 
id scheduled 

3S5 
355 
354 
353 

Figure 29: Threshold = 0 / Trigger 2 

Node Node GM times 
id name id scheduled 

0 >BÄND SHIFT 3 0 
1 >FIR1 4 0 
2 >FIR2 3 0 
3 >FIR3 4 0 

DEADLOCK 

SITUATION 

Figure 30: Threshold = 1 / Trigger = 0 
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The trigger queue technique demonstrated by the three executions of these basic 

graphs demonstrates how the transfer of data between nodes can be varied. This method 

can be utilized to implement a control process into graphs which will allow the analysis and 

the ability to predict data flow in graphs. 
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V. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH 

A. CONCLUSION 

As the U. S. Navy moves into the Twenty-first Century the signal processing 

requirements will continue to increase. With the quick reaction time needed onboard ships 

to counter the enemies' offensive weapons or the timely processing of data needed to 

compute a fire control solution, the Navy must optimize the use of the AN/UYS-2 

multiprocessor. Real time and parallel systems will be needed to meet these needs, and will 

continue to grow in size and complexity. While scalability is one facet of a parallel 

program, it is not a direct measure of performance [HEN 90]. This area, performance of 

electronic equipment is what the U. S Navy must be concerned with.The trigger queue 

implementation provides a technique to predict performance, which will allow the testing 

of new features of the AN/UYS-2 multiprocessor before upgrades and/or new features are 

entered into the fleet. Compile time analysis of whether the new graph will meet the 

required data rate estimates for a new system will become possible. Data-flow execution 

can be carried out in a controlled manner using the trigger queue, thus improving 

predictability of the application graph. 

B. TOPICS FOR FUTURE RESEARCH 

Several topics for further study can be derived from this investigation. All of them are 

related to either improving performance or to explaining events which can be utilized to 

optimize the AN/UYS-2 multiprocessor. 

Performance analysis studies of the trigger queues on graphs currently under 

development for use by the U.S. Navy should be conducted and analyzed. The current focus 

of ASW (Anti-Submarine Warfare) has shifted from the passive mode of prosecution of 

nuclear submarines to the active mode of searching for diesal submarines which should 

result in new procedures being developed. 
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The topic of scalability must be addressed and what effect executing several graphs 

simultaneously has on performance of the graph. This system looks at only one specific 

graph and tailors the hardware configuration file for that graph. Analysis must be 

performed on real-time scenarios encountered by U.S. Navy ASW platforms and the effect 

on the graph execution statistics., 

In the hardware configuration area, the interconnection structure of the AN/UYS-2, 

and possible additions of cache memory for processors and the effect on performance. The 

introduction of trigger queues greatly increased the number of system language messages 

onto the Data Transfer Network and the addition of cache memory may reduce this high 

number. 
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APPENDIX A. CORRELATOR GRAPH COMMAND PROGRAM 

This appendix contains the Correlator Graph command program, testxp. 

%INITCOMPROG() 

int STI=4; 
float F = 500.0; 
float SR = 1000.0; 
float TC = 50.0; 

IO_PROC_IDiopl,iop2,iop3,iop4; 
GRAPHJDG; 
QUEUE_IDib[2],ob[2]; 

ib[0]=%CREATEQ(FIXED); 
ib[l]=%CREATEQ(FIXED); 
ob[0]=%CREATEQ(INT); 
ob[l]=%CREATEQ(INT); 

G = %START(E006 
GIP = SR,F,TC,STI 
INPUTQ = FAMILY(ib[0],ib[l]) 
OUTPUTQ = FAMILY(ob[0],ob[l]) 
PRIORITY = 2); 

if(%SCODE)exit(l); 

iopl = %INITIO(INl    INPUTQ = ib[0]); 
iop2 = %INITIO(IN2   INPUTQ = ib[l]); 
iop3 = %INITIO(OUTl   OUTPUTQ = ob[0]); 
iop4 = %INITIO(OUT2  OUTPUTQ = ob[l]); 
%STARTIO(iopl); 
%STARTIO(iop2) 
%STARTIO(iop3) 
%STARTIO(iop4) 

%PRINT(%TERM, 1 ,G); 

%ENDPROGRAM 
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APPENDIX B. CORRELATOR GRAPH INPUT/OUTPUT FILE 

This appendix contains the Correlator Graph Input/Output file, l.io. 

#@(#) /b/cm/emsp/sef/sccs/b2/eo/s.eo.ioproc.cf 1.2 3/5/91 

# The format of the i/o procedure file is tabular; the information 
# content is simple, so this should cause no problems, and it reduces 
# the amount of baggage in the simulator for interpreting this file. 

# NAME is the symbolic identifier of the i/o procedure named in 
# the %INITIO statement in the command program; it must match exactly; 
# case is significant. 
# 
# TYPE is one of INPUT, BIDIRECTIONAL, or OUTPUT 
# 
# DATA RATES for graph inputs are expressed in words/second 
# 
# THRESH, READ, CONSUME, and PRODUCE amounts are in words 
# 
# comments look like this, everything on a line to the right 
# of the sharp sign is discarded 

# 
# 
#name 
#  
INI 

type 

INPUT 

number of 
ports 

output 

1 

# 
#- 

rate produce 

2048 2048 

IN2 INPUT 1 

# 
# 

rate 

2048 

produce 

2048 
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# number of 
# ports 
#name type input 
#--— 
0UT1 OUTPUT 1 

# thresh read consume 
# - 

513 513 513 

OUT2 OUTPUT 1 

# thresh 
#  

read consume 

513 513 513 
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APPENDIX C. CORRELATOR GRAPH SIMULATION FILE 

This appendix contains the Correlator Graph simulation file corr.ets. 

version 2.0 

ioprocs 4 

#ioproc 
#ident 
#  

0 
1 
2 
3 

name 

INI 
IN2 
OUT1 
0UT2 

lop input output 
ident type ports 

0 

ports 

0 I 1 
0 I 0 1 
0 0 1 0 
0 0 1 0 

graph E006 2 

PIDS /users/res/ecos/temp/Ecosws/Pids/pidtoc 

(E006 

(32  ;Queues 
(X  (1 

( 
(GRAMOUT  (1 

FIXFLOUT1 
BAND1OUT 
BAND20UT 
FIXFL0UT2 
FIR20UT 
FIR10UT 
ZFILOUT 
FFT20UT 
FFT10UT 
WIND10UT 
WIND20UT 
IFFTOUT 
PWRMULTOUT 
SQRTOUT 
ASQRTOUT 
MAGOUT 
DIVOUT 
STIOUT 
EAVNOUT 
MULTOUT 
PWR10UT 

( 

0 (1 

2 (1 

2 )))) 

2 )))) 
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PWR20UT 
C0EFFPTR1 
COEFFPTR2 
EAVNFEED 
REFVECT2 
(REP20UT  (1 

(   30 (1   2 )))) 
(REPIOUT  (1 

(   32 (1   2 )))) 
(REP3 0UT  (1 

(   34 (1   2 )))) 
REFVECT 

) 
(27 
; 27 Nodes 
FIXFL1 
FIXFL2 
BAND1 
FIR1 
BAND2 
FIR2 
ZEROFILL 
FFT2 
FFT1 
WINDOW1 
WINDOW2 
REPLICATE2 
REPLICATE1 
MULTXY 
POWERX 
POWERY 
INVERSEFFT 
MAGNITUDE 
MULTPOWER 
SQRT 
CHANGE 
NORMALIZE 
INTEGRATE 
REPLICATE3 
GRAM 
EXPAVG 
ASCAN 

) 
; 0 Vars 
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nodes   27 

#node is exec input  output 
#ident   [index]name c lass type  size cycles ports     ports       primitive 

0   FIXFL1 1 P 256 6174 1 1 DMC_FXFL 
1  FIXFL2 1 P 256 6174 1 1 DMC_FXFL 
2   BAND1 1 P 256 16492 2 2 CDM_RVF 
3   FIR1 1 P 256 67781 1 1 FIR_C2S 
4   BAND2 1 P 256 16492 2 2 CDM_RVF 
5   FIR2 1 P 256 67781 1 1 FIR_C2S 
6   ZEROFILL 1 P 256 8244 1 1 DFC_REORD 
7   FFT2 1 P 256 21403 1 1 FFT_CC 
8   FFT1 1 P 256 21403 1 1 FFT_CC 
9   WIND0W1 1 P 256 5193 1 1 DCP_HAMN 

10   WINDOW2 1 P 256 5193 1 1 DCP_HAMN 
11   REPLICATE2 1 P 256 0 1 2 DFC_REP 
12   REPLICATE1 1 P 256 0 1 2 DFC_REP 
13   MULTXY 1 P 256 7206 2 1 VCC_VMUL 
14   POWERX 1 P 256 3105 1 1 VOC_PWR 
15   POWERY 1 P 256 3105 1 1 VOC_PWR 
16   INVERSEFFT 1 P 256 23507 1 1 FFT_CC 
17   MAGNITUDE 1 P 256 2099 1 1 DCP_CSMG 
18  MULTPOWER 1 P 256 52 2 1 VRR_VMUL 
19   SQRT 1 P 256 70 1 1 VOR_VSQR 
20   CHANGE 1 P 256 0 1 1 DMCJSMC 
21  NORMALIZE 1 P 256 5180 2 1 VRR_VDIV 
22   INTEGRATE 1 P 256 7031 1 1 DCP_STI 
23   REPLICATE3 1 P 256 0 1 2 DFC_REP 
24   GRAM 1 P 256 9271 2 1 DFC_REQ 
25   EXPAVG 1 P 256 3821 2 2 DCP_EAVN 
.26   ASCAN 1 P 256 9271 2 1 DFC_REQ 

queues   37 

#queue init elem src src prod sink    sink thresh re ad cons       lm 
#[dims]name  type el em size node port amt     node    port  amt         amount     amt     type 

(1]X                     I 0 1 0 0 0 0 0 16384 16384     16384   OM 
[2]X                     I 0 1 1 0 0 1 0 16384 16384     16384   OM 
[ 1]GRAMOUT       0 0 1 24 0 513 2 0 0 0            0   #### 
[ 2]GRAMOUT       0 0 1 26 0 513 3 0 0 0            0   #### 
FIXFLOUT1           S 0 2 0 0   16384 2 1 16384 16384        16384   OM 
BAND1OUT            S 39 4 2 0   16384 3 0 16423 16423        16384   OM 
BAND20UT            S 39 4 4 0   16384 5 0 16423 16423        16384   OM 
FIXFLOUT2          S 0 2 1 0   16384 4 1 16384 16384        16384   OM 
FIR20UT              S 0 4 5 0 4096 6 0 4096 4096          4096   OM 
FIRIOUT              S 0 4 3 0 4096 8 0 4096 4096          4096   OM 
ZFILOUT                S 0 4 6 0 4096 7 0 4096 4096          4096   OM 
FFT20UT               S 0 4 7 0 4096 10 0 4096 ä096          4096   OM 
FFT10UT               S 0 4 8 0 4096 9 0 4096 4096          4096   OM 
WINDIOUT            S 0 4 9 0 4096 12 0 4 09 6 3096          4096   OM 
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WIND20UT s 0 4 10 0 4096 ii 
IFFTOUT s 0 4 16 0 2052 17 
PWRMULTOUT s 0 2 18 0 4 19 
SQRTOUT s 0 2 19 0 1 20 
ASQRTOUT s 0 2 20 0 1 21 
MAGOUT S 0 2 17 0 2052 21 

DIV0ÜT 

0 4096 4096 4096 OM 
0 2052 2052 2052 OM 
0 4 4 4 OM 
0 4 4 4 OM 
1 1 1 1 0M 

513      513      513    OM 
0   2   21    8 515 21     I   2052 2052 2052 01 

STIOUT S 0 2 22 0 513 23 0 513 513 513 OM 
EAVNOUT S 0 2 25 0 513 26 0 513 513 513 OM 
MULTOUT S 0 4 13 0 4096 16 0 4096 4096 4096 OM 
PWR10UT S 0 2 14 0 4 18 1 4 4 4 OM 
PWR20UT S 0 2 15 0 4 18 0 4 4 4 OM 
COEFFPTR1 S 1 1 2 1 1 2 0 1 1 1 CULM 
COEFFPTR2 S 1 1 4 1 1 4 0 1 1 1 CULM 
EAVNFEED s 513 2 25 1 513 25 0 513 513 513 OM 
REFVECT2 s 513 2 -1 c 0 26 1 513 513 0 OM 
[1JREP20UT s 0 4 11 0 4096 13 1 4096 1 1 OM 
[2]REP20UT s 0 4 11 1 4096 15 0 4096 4096 4096 OM 
[11REP10UT s 0 4 12 0 4096 13 0 4096 4096 4096 OM 
[2]REP10UT s 0 4 12 1 4095 14 0 4096 4096 4096 OM 
[1JREP30UT s 0 2 23 0 513 24 0 513 513 513 OM 
[2]REP30UT s 0 2 23 1 513 25 1 513 513 513 OM 
REFVECT s 513 2 -1 0 0 24 1 513 513 0 OM 

graph vars 0 
# end of E006 

connect 0 
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APPENDIX D. CORRELATOR GRAPH gas OUTPUT 

This appendix contains the Correlator Graph gas output produced by using the 

simulation file corr.ets and the Input/Output file l.io as input. 

Static Graph Analysis - EWS Release: 5.6 

Invocation: gas -g corr.ets -i l.io -n all -q all -o corr.gout 

total graph objects: 27 nodes, 37 queues, 0 graphvars, 4 I/O procedures 

graph: E006 
pids: /users/res/ecos/temp/Ecosws/Pids/pidtoc 
graph objects: 27 nodes[0,26], 37 queues[0,36], 0 graphvars, 4 I/O procedures[0,3] 

graph source: corr.ets 
i/o procedure source: l.io 

total node scheduling rate: 
AP node scheduling rate: 
total required AU cycles: 
mean AU cycles per node: 
mean queue consumes / node: 
mean queue consume amount: 
mean queue reads / node: 
mean queue read amount: 
mean queue writes / node: 
mean queue write amount: 
mean graph variable reads: 
mean gv read amount: 
mean graph variable writes: 
mean gv write amount: 
mean queue+gv read amount: 
mean queue+gv write amount: 
mean AIS size: 
Bandwidth AP: 
Bandwidth IOP: 
Bandwidth GM: 

3.44 / second 
3.19/second 
3.90e+04 cycles / second 
1.22e+04 cycles 
1.28 CQ   /node 

13048.27 words/CQ 
1.28 RQ   /node 

13120.46 words/RQ 
1.24WQ   /node 

13078.38 words/WQ 
0.00RGV  /node 
0.00 words /RGV 
0.00WGV  /node 
0.00 words /WGV 

13120.46 words / (RQ,RGV) 
13078.38 words / (WQ,WGV) 

256.00 words / AIS 
1.05e+05 words / second 

4.22e+03 words / second 
1.09e+05 words / second 

2 nodes with inconsistent scheduling rate: 
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E006>MULTXY (id=13) (min,max) = (1.25e-01,5.12e+02) / sec 
E006>NORMALIZE (id=21) (min.max) = (3.12e-02,5.00e-01) / sec 

Individual node statistics 
Node Node rate rate  number of 
id      name (exec/sec) (cycl/sec) ROs WOs COs 

0 E006>FIXFL1 .125 772 
1 E006>FDCFL2 .125 772 
2 E006>BAND1 .125 2.06e3 
3 E006>FIR1 .125 8.47e3 
4 E006>BAND2 .125 2.06e3 
5 E006>FIR2 .125 8.47e3 
6 E006>ZEROFILL     .125 1.03e3 
7 E006>FFT2 .125 2.68e3 
8 E006>FFT1 .125 2.68e3 
9 E006>WINDOW1      .125 649 

10 E006>WINDOW2      .125 649 
11 E006>REPLICATE2 .125 0 
12 E006>REPLICATE1 .125 0 
13 E006>MULTXY .125 901 
14 E006>POWERX        .125 388 
15 E006>POWERY        .125 388 
16 E006>INVERSEFFT .125 2.94e3 
17 E006>MAGNiTUDE .125 262 
18 E006>MULTPOWER.125 6.5 
19 E006>SQRT .125 8.75 
20 E006>CHANGE       0.0312 0 
21 E006>NORMALIZE 0.0312 162 
22 E006>INTEGRATE     .125 879 
23 E006>REPLICATE3    .125 0 
24 E006>GRAM .125 1.16e3       2 
25 E006>EXPAVG .125 478 2 
26 E006>ASCAN .125 1.16e3      2 

                  i/o rate 
RGVs WGVs (word/se 

0 0 6.14e3 
0 0 6.14e3 
0 0 12.3e3 
0 0 10.3e3 
0 0 12.3e3 
0 0 10.3e3 
0 0 4.1e3 
0 0 4.1e3 
0 0 4.1e3 
0 0 4.1e3 
0 0 4.1e3 
0 0 6.14e3 
0 0 6.14e3 
0 0 4.1e3 
0 0 2.05e3 
0 0 2.05e3 

I        0 0 3.07e3 
1        0 0 1.54e3 
2        0 0 3 
1        0 0 1.25 
1        0 0 .312 
2        0 0 64.2 
1        0 0 641 
1        0 0 385 
2        0 0 321 
2        0 0 513 
2        0 0 321 
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APPENDIX E. CORRELATOR GRAPH MACHINE 
CONFIGURATION FILE 

This appendix contains the Correlator Graph machine configuration file 4-6.cf. 

CONFIGURATION 
# 
# Machine configuration file: /users/res/ecos/temp/Ecosws/0graph/4-6.cf 
# Produced by med at: Sat Aug 20 10:55:05 1994 

# 
# number of functional elements of each type 
# 
#  type quantity 
#  — 

AP 4 
GM 6 
IOP 2 

# 
# number of concentrators/distributors on DTN 
# 

DIST 8 
CONC8 

HARDWARE 
# type 
# — 

AP 

name did cid class 

AP:0 0 0 1 
AP AP:1 1 1 1 
AP AP:2 2 2 1 
AP AP:3 3 3 1 
GM GM:0 4 4 
GM GM:1 5 5 
GM GM:2 6 6 
IOP IOP:0 7 7 
GM GM:3 4 4 
GM GM:4 5 5 
GM GM:5 6 6 
IOP IOP:l 7 7 
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APPENDIX F. CORRELATOR GRAPH ets++ OUTPUT 

This appendix contains the Correlator Graph ets++ output file produced by utilizing 

the simulation file corr.ets, the Input/Output file l.io, and the Machine Configuration file 

4-6.cf. 

EMSP Event Time Simulator - EWS Release: 5.6 

Invocation: ets++ -g corr.ets -i l.io -m 4-6.cf -t 10 -n all -q all 

Machine parameter file:   '/users/res/ecos/temp/Ecosws/lib/params.d'  of 06/18/93 
09:12 

Configuration 

FE count: 13 
AP count: 4 
GM count: 6 
IOP count: 2 
concentrators: 8 
distributors: 8 

total graph objects: 27 nodes, 37 queues, 0 graphvars, 4 I/O procedures 

graph: E006 
pids: /users/res/ecos/temp/Ecosws/Pids/pidtoc 
graph objects: 27 nodes[0,26], 37 queues[0,36], 0 graphvars, 4 I/O procedures[0,3] 

Statistics 

Simulation clock = 10.000 seconds 
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Functional Element Utilization Statistics 

FEID: 0 NAME: AP:0 TYPE: arithmetic processor 
cone id: 0  dist id: 0 
AP Class: 1 
CU idle = 99.95 % 
CUwait=  0.00% 
CUbusy=  0.05% 
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
service wait per dtn request: avg = 2.43e-06 sec, max = 2.76e-05 sec 
cbus messages sent:    17    received:     0 
dtn messages sent:     5    received:    11 

AG/AU nodes executed: 5 (CU only: 0) 
AG/AU busy: 0.14% 
AG/AU pending: 0.14% 
AG/AU efficiency: 49.50 % 
Free time (AP:0): 99.86 % 

FEID: 1 NAME:AP:1 TYPE: arithmetic processor 
cone id: 1   dist id:  1 
AP Class: 1 
CU idle = 99.96 % 
CU wait =  0.00 % 
CUbusy=  0.04% 
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
service wait per dtn request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
cbus messages sent:    15    received:     0 
dtn messages sent:     6    received:    10 
AG/AU nodes executed: 4 (CU only: 1) 
AG/AU busy: 0.15 % 
AG/AU pending: 0.15% 
AG/AU efficiency: 48.83 % 
Free time (AP:1): 99.85% 
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FEID: 2 NAME: AP:2 TYPE: arithmetic processor 
cone id: 2   dist id: 2 
AP Class: 1 
CU idle = 99.95 % 
CUwait=  0.00% 
CUbusy=  0.05% 
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
service wait per dtn request: avg = 7.29e-06 sec, max = 3.33e-05 sec 
cbus messages sent:    19   received:    0 
dtn messages sent:    7   received:    12 
AG/AU nodes executed: 4 (CU only: 1) 
AG/AU busy: 0.06 % 
AG/AU pending: 0.11% 
AG/AU efficiency: 36.43 % 
Free time (AP:2): 99.89 % 

FEID: 3 NAME: AP:3 TYPE: arithmetic processor 
cone id: 3   dist id: 3 
AP Class: 1 
CU idle = 99.95 % 
CUwait=  0.00% 
CUbusy=  0.05% 
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
service wait per dtn request: avg = 2.43e-06 sec, max = 2.76e-05 sec 
cbus messages sent:    17   received:    0 
dtn messages sent:     6   received:    11 
AG/AU nodes executed: 5 (CU only: 0) 
AG/AU busy: 0.05 % 
AG/AU pending: 0.12% 
AG/AU efficiency: 29.28 % 
Free time (AP:3): 99.88 % 

FEID: 4 NAME: GM:0 TYPE: global memory 
cone id: 4  dist id: 4 
CUidle= 99.94% 
CUwait=  0.00% 
CUbusy=   0.06% 
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
service wait per dtn request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
cbus messages sent:    4   received:    12 
dtn messages sent:     8   received:    12 
GM Utilization (busy + dtn i/o):   0.24 % 
memory usage, high water mark: 79579; pointer block: 336, static: 12203 
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Queue table:    224     GI table:   3000 
Node table:    384    Queue Hist:      0 

GV table:      0    Templates:   7020 (appr) 
GV memory:      0        delta:      0 (assm) 

Initial data:   1568     CTC table:      7 
Nodes: 6   Queues: 7    Graph Variables: 0 

FEID: 5 NAME:GM:1 TYPE: global memory 
cone id: 5   distid: 5 
CU idle = 99.95 % 
CUwait=  0.01 % 
CUbusy=   0.04% 
service wait per cbus request: avg = 5.71e-07 sec, max = 7.71e-06 sec 
service wait per dtn request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
cbus messages sent:     5   received:    13 
dtn messages sent:     8    received:     5 
GM Utilization (busy + dtn i/o):   0.14 % 
memory usage, high water mark: 43963; pointer block: 176, static: 10779 

Queue table:    224     GI table:   3000 
Node table:    256    Queue Hist:      0 

GV table:      0    Templates:   7020 (appr) 
GV memory:      0        delta:      0 (assm) 

Initial data:    272     CTC table:      7 
Nodes: 4    Queues: 7    Graph Variables: 0 

FEID: 6 NAME: GM:2 TYPE: global memory 
cone id: 6  dist id: 6 
CU idle = 99.95 % 
CUwait =  0.00% 
CU busy =  0.05 % 
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
service wait per dtn request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
cbus messages sent:     4   received:    12 
dtn messages sent:     8   received:    12 
GM Utilization (busy + dtn i/o):   0.15 % 
memory usage, high water mark: 26969; pointer block: 80, static: 10505 

Queue table:    160      GI table:   3000 
Node table:    320    Queue Hist:      0 
GV table:      0    Templates:   7020 (appr) 

GV memory:      0        delta:      0 (assm) 
Initial data:      0     CTC table:      5 

Nodes: 5    Queues: 5    Graph Variables: 0 
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FEID: 7 NAME: GM:3 TYPE: global memory 
cone id: 4  dist id: 4 
CU idle = 99.96 % 
CUwait=  0.00% 
CUbusy=  0.04% 
service wait per cbus request: avg = 7.14e-07 sec, max = 7.71e-06 sec 
service wait per dtn request: avg = 7.23e-05 sec, max = 3.62e-04 sec 
cbus messages sent:     5    received:    10 
dtn messages sent:     6   received:    5 
GM Utilization (busy + dtn i/o):   0.16 % 
memory usage, high water mark: 46507; pointer block: 224, static: 12011 

Queue table:    224     GI table:   3000 
Node table:    192   Queue Hist:     0 

GV table:      0    Templates:   7020 (appr) 
GV memory:     0        delta:     0 (assm) 

Initial data:   1568    CTC table:     7 
Nodes: 3    Queues: 7    Graph Variables: 0 

FEID: 8 NAME: GM:4 TYPE: global memory 
cone id: 5 ■ dist id: 5 
CU idle = 99.95 % 
CUwait=  0.00% 
CUbusy=  0.05% 
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
service wait per dtn request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
cbus messages sent:     4   received:    12 
dtn messages sent:     8    received:     4 
GM Utilization (busy + dtn i/o):   0.23 % 
memory usage, high water mark: 79482; pointer block: 336, static: 12106 

Queue table:    192     GI table:   3000 
Node table:    320    Queue Hist:      0 

GV table:      0    Templates:   7020 (appr) 
GV memory:     0        delta:     0 (assm) 

Initial data:   1568    CTC table:     6 
Nodes: 5    Queues: 6    Graph Variables: 0 

FEID: 9 NAME: GM:5 TYPE: global memory 
cone id: 6   dist id: 6 
CU idle = 99.97 % 
CUwait=  0.00% 
CUbusy=  0.03% 
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service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
service wait per dtn request: avg = 6.99e-05 sec, max = 2.79e-04 sec 
cbus messages sent:     3   received:     9 
dtn messages sent:     6   received:     4 
GM Utilization (busy + dtn i/o):   0.12 % 
memory usage, high water mark: 27177; pointer block: 96, static: 10441 

Queue table:    160     GI table:   3000 
Node table:    256    Queue Hist:      0 
GV table:      0     Templates:   7020 (appr) 

GV memory:      0        delta:      0 (assm) 
Initial data:      0     CTC table:      5 

Nodes: 4    Queues: 5    Graph Variables: 0 

FEID: 10 NAME: IOP:0 TYPE: input/output processor 
cone id: 7   dist id: 7 
Simple IOP model 
cbus messages sent:     0   received:     1 
dtn messages sent:    18   received:    0 
Number of WQs completed: 18 cancelled by SNDTs: 0 

Input queue:   0, input rate (w/sec): 2.05e+03 
Input queue:   1, input rate (w/sec): 2.05e+03 
Output nodes executed: 0 

FEID: 11 NAME: IOP: 1 TYPE: input/output processor 
cone id: 7   dist id: 7 
Simple IOP model 
cbus messages sent:    0   received:     1 
dtn messages sent:     0   received:     0 
Number of WQs completed: 0 cancelled by SNDTs: 0 

Output nodes executed: 0 

FEID: 12 NAME: SCH TYPE: scheduler 
CU idle = 99.98 % 
CUwait = 0.00% 
CUbusy=  0.02% 
service wait per cbus request: avg = 5.71e-06 sec, max = 7.70e-05 sec 
service wait per dtn request: avg = 0.00e+00 sec, max = 0.00e+00 sec 
cbus messages sent:    20   received:    50 
dtn messages sent:     0   received:     0 
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CBUS Utilization Statistics 

CBUS message count = 120 
idle = 100.00 % 
busy = 0.00 % 

DTN Utilization Statistics 
DTN message count = 86 
Cone 0: idle = 99.95 % busy = 
Cone 1: idle =99.92% busy = 

busy = 
busy = 
busy = 
busy = 
busy = 
busy = 

Cone 3: idle = 99.93% 
Cone 4: idle = 99.85% 
Cone 5: idle = 99.85 % 
Cone 6: idle = 99.90 % 
Cone 7: idle = 99.97 % 

Dist 0: idle = 
Dist 1: idle: 
Dist 2: idle = 
Dist 3: idle = 
Dist 4: idle: 
Dist 5: idle = 
Dist 6: idle = 
Dist 7: idle = 

■■ 99.90 % 
: 99.88 % 

99.92 % 
99.92 % 
99.88 % 

■ 99.88 % 
99.92 % 
100.00 % 

busy = 
busy = 
busy = 
busy = 
busy = 
busy = 
busy = 
busy: 

= 0.05% 
= 0.08% 
= 0.09% 
= 0.07% 
= 0.15% 
= 0.15% 
:    0.10% 
:     0.03% 

0.10 % 
0.12 % 
0.08 % 
0.08 % 
0.12 % 
0.12 % 
0.08 % 
0.00 % 

avg. wait i 
avg. wait: 
avg. wait: 
avg. wait: 
avg. wait = 
avg. wait: 
avg. wait = 
avg. wait = 

avg. wait = 
avg. wait = 
avg. wait = 
avg. wait = 
avg. wait = 
avg. wait = 
avg. wait = 
avg. wait = 

= 0.00e+00 sec 
= 0.00e+00 sec 
= 0.00e+00 sec 
= 0.00e+00 sec 
= 0.00e+00 sec 
= 0.00e+00sec 
= 0.00e+00 sec 
= 0.00e+00 sec 

0.00e+00 sec 
0.00e+00 sec 
1.10e-04 sec 
0.00e+00 sec 
0.00e+00 sec 
0.00e+00 sec 
0.00e+00 sec 
0.00e+00 sec 

max wait; 
max wait; 
max wait■■ 
max wait: 
max wait = 
max wait: 
max wait: 
max wait = 

max wait = 
max wait = 
max wait = 
max wait = 
max wait = 
max wait = 
max wait = 
max wait = 

= 0.00e+00 sec 
= 0.00e+00 sec 
= 0.00e+00 sec 
: 0.00e+00 sec 
= 0.00e+00 sec 
: 0.00e+00 sec 
: 0.00e+00 sec 
■■ 0.00e+00 sec 

: 0.00e+00 sec 
0.00e+00sec 
1.32e-03 sec 
0.00e+00sec 
0.00e+00 sec 
0.00e+00 sec 
0.00e+00 sec 

= 0.00e+00 sec 

DTN input fifo statistics 
AP:0 (id = 0) PIP: max. 
AP:l(id= 1) PIP: max. 
AP:2 (id = 2) PIP: max. 
AP:3 (id = 3) PIP: max. 
GM:0 (id = 4) PIP: max 
GM:1 (id= 5) PIP: max 
GM:2 (id = 6) PIP: max. 
GM:3 (id = 7) PIP: max. 
GM:4(id= 8) PIP: max. 
GM:5 (id = 9) PIP: max. 

IOP:0 (id = 10) PIP: max. 
IOP:l(id=ll)PIP:max. 

messages = 1, high water mark = 410 
messages = 1, high water mark = 410 
messages = 2, high water mark = 721 
messages = 1, high water mark = 410 

. messages = 1, high water mark = 16689 

. messages = 1, high water mark = 8633 
messages = 1, high water mark = 4605 
messages = 1, high water mark = 8633 
messages = 1, high water mark = 16689 
messages = 1, high water mark = 4605 
messages = 0, high water mark = 0 
messages = 0, high water mark = 0 

Node Scheduling Statistics 
nodes scheduled = 20 
rate = 2.0 nodes/sec 

73 



Cumulative SL message statistics 
RQ 24 
AQ 24 

WQ 42 

CQ 24 

RGV 0 
AGV 0 
WGV 0 
QOT 30 
QUT .0 
QOC 0 
QUC 0 
RFIS 20 
SIS 20 
AIS 20 
EIS/ESN 0 
SNDT 0 
CNDT 0 
CTC 0 

TOTAL 204 

Graph Object Statistics 

Node Statistics 

Node Node 
id   name 

0 >FIXFL1 
1 >FIXFL2 
2 >BAND1 
3 >FIR1 
4 >BAND2 
5 >FIR2 
6 >ZEROFILL 
7 >FFT2 
8 >FFT1 
9 >WINDOWl 
10 >WINDOW2 
11 >REPLICATE2 
12 >REPLICATE1 

GM 
id 

4 
6 
5 
8 
7 
4 
5 
6 
9 
8 
7 
4 
9 

times 
times        waited 
scheduled forAP 

1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

average 
wait 
forAP 

0.00e+00 
0.00e+00 
0.00e+00 
0.00e+00 
0.00e+00 
0.00e+00 
0.00e+00 
0.00e+00 
0.00e+00 
0.00e+00 
0.00e+00 
0.00e+00 
0.00e+00 

average 
delay 
to exec 

average 
brkdown 
delay 

2.18e-03 
2.18e-03 
3.79e-03 
6.56e-03 
3.80e-03 
6.56e-03 
2.18e-03 
2.18e-03 
2.18e-03 
2.18e-03 
2.18e-03 
0.00e+00 
0.00e+00 

2.67e-03 
2.67e-03 
5.25e-03 
1.50e-03 
5.25e-03 
1.50e-03 
1.50e-03 
1.50e-03 
1.50e-03 
1.50e-03 
1.50e-03 
4.98e-0 
4.98e-03 
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13 >MULTXY 5        1 
14 >POWERX 8 1 
15 >POWERY 6 1 
16 >INVERSEFFT 9 1 
17 >MAGNITUDE 6 1 
18 >MULTPOWER 4 1 
19 >SQRT 8 1 
20 >CHANGE 9 0 
21 >NORMALIZE 4 0 
22 >INTEGRATE 5 0 
23 >REPLICATE3 6 0 
24 >GRAM 7 0 
25 >EXPAVG 8 0 
26 >ASCAN 4 0 

0.00e+00   2.27e-03   1.60e-03 
0 0.00e+00 2.18e-03 3.27e-04 
0 0.00e+00 2.18e-03 3.27e-04 
0 0.00e+00 2.19e-03 9.13e-04 
0 0.00e+00 1.45e-03 6.19e-04 
0 0.00e+00 9.16e-04 4.32e-04 
0 0.00e+00 7.55e-04 3.26e-04 
0 0.00e+00 0.00e+00 0.00e+00 
0 0.00e+00 0.00e+00 0.00e+00 
0 0.00e+00 0.00e+00 0.00e+00 
0 0.00e+00 0.00e+00 0.00e+00 
0 0.00e+00 0.00e+00 0.00e+00 
0 0.00e+00 0.00e+00 0.00e+00 
0 0.00e+00 0.00e+00 0.00e+00 

Queue Statistics 

Queue  Queue 
id   name 

GM   times 
id    written 

0 >[1]X 4        9 
1 >[2]X 6        9 
2 >[l]GRAMOUT 9       0 
3 >[2]GRAMOUT 5       0 
4 >FIXFL0UT1 5 
5 >BAND10UT 8 
6 >BAND20UT 4 
7 >FIXFLOUT2 7 
8 >FIR20UT 5 
9 >FIR10UT 9 
10 >ZFILOUT 6 
11 >FFT20UT 7 
12 >FFT10UT 8 
13 >WIND10UT 9 
14 >WIND20UT 4 
15 >IFFTOUT 6 
16 >PWRMULTOUT 8 
17 >SQRTOUT 9 
18 >ASQRTOUT 4       0 
19 >MAGOUT 7        1 
20 >DIVOUT 5       0 

remaining 
words 
in queue 

2048 
2048 

0 
0 
0 

156 
156 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
0 

4104 
0 
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21 >STIOUT 6 0 0 
22 >EAVNOUT 4 0 0 
23 >MULTOUT 9 1 0 
24 >PWR10UT 4 1 0 
25 >PWR20UT 5 1 0 
26 >C0EFFPTR1 5 1 1 
27 >COEFFPTR2 7 1 1 
28 >EAVNFEED 8 0 1026 
29 >REFVECT2 4 0 1026 
30 >[1]REP20UT 5 1 16380 
31 >[2]REP20UT 6 1 0 
32 >[1]REP10UT 7 1 0 
33 >[2]REP10UT 8 1 0 
34 >[1]REP30UT 7 0 0 
35 >[2]REP30UT 8 0 0 
36 >REFVECT 7 0 1026 
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