
NAVAL POSTGRADUATE SCHOOL
Monterey, California

1 \g&

ELECTLtfl
JAN 1 2 1994

THESIS

LARGE GRAIN DATA FLOW GRAPH CONSTRUCTION
AND RESTRUCTURING UTILIZING THE

ECOS WORKSTATION SYSTEM

by

Richard Toney Keys

September 1994

Thesis Co-Advisors: Amr Zaky
S. B. Shukla

Approved for public release; distribution is unlimited.

Mom m

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operationsand Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
September 1994

13. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
LARGE GRAIN DATA FLOW GRAPH CONSTRUCTION AND

RESTRUCTURING UTILIZING THE ECOS WORKSTATION
SYSTEM

6. AUTHOR(S)

Keys, Richard T.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The U.S. Navy's new multiprocessor, the AN/UYS-2 Enhanced Modular Signal Processor (EMSP) utilizes a

First-Come-First-Serve (FCFS) algorithm to transfer data. This algorithm is simple to implement but provides no
mechanism to control execution of a specific application on the AN/UYS-2 which prevents performance
predictions. A Large Grain Data Flow (LGDF) representation of a specific application is utilized to predict
performance, with the introduction of trigger queues (dependency arcs) into the graphs to control execution.

I utilized the EMSP Common Operational Software (ECOS) Workstation to execute graph representations of
specific applications used by the U.S. Navy in the Anti-Submarine Warfare (ASW) arena. A complete description
of the ECOS workstation, and the process of transforming specific applications into graph representations to be
executed on the ECOS Workstation is demonstrated. Specifically, the Correlator Graph which represents a real-time
ASW process is examined

To control and improve performance, the technique of implementing trigger queues using the ECOS
Workstation is demonstrated. A basic graph is executed and referenced as a benchmark, with two reconstructed
graphs executed demonstrating how trigger queues effect graph execution. The node execution times statistics
indicate trigger queues control execution and will provide a mechanism to predict node performance.

14. SUBJECT TERMS
Data Flow Processing, Processing Graph Methodology, Signal Processing,
EMSP, First-Come-First-Serve (FCFS), Revolving Cylinder Algorithm,
Trigger Queues

15. NUMBER OF PAGES

90
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

LARGE GRAIN DATA FLOW GRAPH
CONSTRUCTION AND RESTRUCTURING UTILIZING

THE ECOS WORKSTATION

Richard T. Keys
Lieutenant, United States Navy

B.S., University of Mississippi, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

Author:

Approved By:

from the

NAVAL POSTGRADUATE SCHOOL
September 1994

Richard T. Keys
q(K^y? ^

rjm/u 2,
Amr Zaky, Thesis Co-Advisor

Shridhar B. Shukla, Thesis Co-Advisor

is, , „ ^
Ted Lewis, Chairman,

Department of Computer Science

Accesion For

NTIS CRAS;! H
DTiC TAB □
Unannounced □
Justification

t!\l~;

h-\

fv-J..

•jiü!

1U

ABSTRACT

The U.S. Navy's new multiprocessor, the AN/UYS-2 Enhanced Modular Signal

Processor (EMSP) utilizes a First-Come-First-Serve (FCFS) algorithm to transfer data.

This algorithm is simple to implement but provides no mechanism to control execution of

a specific application on the AN/UYS-2 which prevents performance predictions. A Large

Grain Data Flow (LGDF) representation of a specific application is utilized to predict

performance, with the introduction of trigger queues (dependency arcs) into the graphs to

control execution.

I utilized the EMSP Common Operational Software (ECOS) Workstation to execute

graph representations of specific applications used by the U.S. Navy in the Anti-Submarine

Warfare (ASW) arena. A complete description of the ECOS workstation, and the process

of transforming specific applications into graph representations to be executed on the

ECOS Workstation is demonstrated. Specifically, the Correlator Graph which represents a

real-time ASW process is examined

To control and improve performance, the technique of implementing trigger queues

using the ECOS Workstation is demonstrated. A basic graph is executed and referenced as

a benchmark, with two reconstructed graphs executed demonstrating how trigger queues

effect graph execution. The node execution times statistics indicate trigger queues control

execution and will provide a mechanism to predict node performance.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 3

1. Data Flow and the EMSP 3

2. The Multiprocessor 3

3. Processing Graph Method (PGM) 4

B. OBJECTIVE 5

C. SCOPE, LIMITATIONS, AND ASSUMPTIONS 5

D. ORGANIZATION OF THESIS 6

II. ECOS FUNDAMENTALS 7

A. BACKGROUND 7

B. THE ECOS PROCESS 7

1. Graph File 8

2. Command Program File 10

3. I/O procedure file 12

4. AN/UYS-2 Machine Configuration file 13

C. ECOS EXECUTION PROCESS 15

1. gred 16

2. grail -g pgm_tut.g > pgm_tut.src 16

3. ggcc pgm_tut.src com_prog.cp 16

4. com_prog > com_prog.ets 16

5. gas -g com_prog.ets -i pgmjutio -n all -q all > pgm_tut.gout 16

6. ets++ -g com_prog.ets -i pgm_tut.io -m 3ap2gm.cf -n all -q all -t (time) >

pgm_tut.eout 17

D. ECOS OUTPUT 17

1. gas analysis 17

a. Graph Statistics 18

vii

b. System Language Statistics 18

c. Bandwidth Statistics 19

d. Node Statistics 21

2. ets++ analysis 21

3. The ets++ output file 22

a. Header Section 23

b. Functional Element Statistics 24

c. Graph Execution Performance 27

d. System Language Statistics 29

e. Individual Graph Object Execution Statistics 30

IE. PERFORMANCE ANALYSIS TOOLS: A CASE STUDY 33

A. CORRELATOR GRAPH 33

B. CORRELATOR GRAPH COMMAND PROGRAM 33

C. CORRELATOR GRAPH INPUT/OUTPUT PROCEDURE FILE 34

D. CORRELATOR GRAPH gas ANALYSIS 34

E. CORRELATOR GRAPH MACHINE CONFIGURATION FILE 36

F. CORRELATOR GRAPH ets++ ANALYSIS 36

IV. SYNCHRONIZATION TRIGGER QUEUES 41

A. INTRODUCTION 41

B. GRAPH RESTRUCTURING 41

C. ADDING TRIGGER QUEUES 42

1. Trigger Queue 43

2. Initializing the Trigger Queue 44

3. Input Port Connection and Setting Threshold Levels 45

4. Output Port Connections 45

5. Modifying Node Descriptions 46

D. RESTRUCTURED GRAPH EXECUTIONS 49

V. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH 53

VUl

A. CONCLUSION 53

B. TOPICS FOR FUTURE RESEARCH 53

APPENDIX A. CORRELATOR GRAPH COMMAND PROGRAM 55

APPENDIX B. CORRELATOR GRAPH INPUT/OUTPUT FILE 57

APPENDIX C. CORRELATOR GRAPH SIMULATION FILE 59

APPENDDC D. CORRELATOR GRAPH gas OUTPUT 63

APPENDK E. CORRELATOR GRAPH MACHINE CONFIGURATION FILE 65

APPENDK F. CORRELATOR GRAPH ets++ OUTPUT 67

LIST OF REFERENCES 77

INITIAL DISTRIBUTION LIST 79

IX

I. INTRODUCTION

The Twentieth Century has produced two great trends in Naval Warfare, the Weaponry

Revolution and the Sensory Revolution. The advances in the weapons field has produced

fire control systems which can deliver ordnance on target quickly and accurately. The

aircraft carrier and the embarked air wing, nuclear powered fast attack submarines, and

missile equipped surface combatants provides the US Navy with platforms which can

deliver offensive firepower throughout the world. The range and speed of today's offensive

weapons; jet aircraft, torpedoes, surface to air missiles and cruise missiles have greatly

increased. This increase in range and speed has resulted in a sensor revolution which

attempts to detect and locate the electronic devices used in these weapons systems. The area

of the earth's surface which must be monitored to detect the enemy has increased at the

same ratio as the weapons range. These surveillance systems must be able to detect and

process video data onboard ships of the fleet before a coordinated, concentrated attack can

be carried out.

Capt. Wayne Hughes (RET), in his book "Fleet Tactics" discusses six Measures

required for effective attack; Strategic detection, Tactical detection, Tracking, Targeting,

Attacking, and Damage Assessment [HUG 86]. The quick, accurate, and coordinated

processing of data during the tactical detection, tracking and targeting phases used for an

effective attack, must be improved to counter the ever increasing speed of today's modern

offensive weapons. Two specific areas, the processing of radar (radio detection and

ranging) data, and passive and active acoustic data requires millions of computations per

second. The fusion of this data with other passive sensors such as Electronic Surveillance

Measures (ESM), Cryptologic Support Measures, satellite imagery, and satellite data links

provides the Warfare Commander with the data needed to organize and coordinate a

concentrated attack on the enemy. To disperse the same tactical picture to all units in a task

group, the signal processing methods must be improved to provide an accurate real-time

picture of events. A delay in signal processing and fusion of available data inputs will only

provide a history of what happened, in other words, information which is worthless to the

tactical commander during the heat of battle in today's fast paced environment.

Signal processing requirements for the Navy in 1990 ranged from 300 million floating

point operations per second (MFLOP) for small airborne sensors, to 2.4 million MFLOPs

for submarine sonar arrays [RIC 90]. But as the speed of offensive weapons increase, and

current traditional von Neumann architectures reach physical limits of technology, an

increase in signal processing rates must be accomplished to compete in the twenty-first

century. The problem encountered here is a multi-disciplinary one. Network theorists try to

find optimal transformation methods and transparent and clear representation domains for

the algorithms; mathematicians provide methodologies and algorithms for solving the

related mathematical problems; VLSI designers have to bridge the gap to silicon when

designing the microprocessor [VAN 91]. To meet these needs, the United States Navy must

utilize a system which can test and optimize new signal processing methods, and test the

techniques on new microprocessors before being built in the lab and introduced into the

fleet.

To meet the needs of today's smaller Department of Defense's budgets, the U.S. Navy

must maximize simulation in the lab, analyzing how the new system would perform with

existing systems. The ECOS Workstation (EWS) will be used to test signal processing

methods by using Processing Graph Methods (PGM), the algorithm being implemented to

process the data flow, and simulation of the proposed the multiprocessor providing

statistical data which can be used to optimize the system.

Specifically, the EWS was developed to test the Enhanced Modular Signal Processor

(EMSP) AN/UYS-2, which will have applications to the AN/SQS-89 sonar, Surveillance

Towed Array Sensor System (SURTASS), and Airborne Low Frequency Sonar (ALFS)

programs. The AN/UYS-2, attempts to maximize the concurrency inherent in data-flow

architectures, while minimizing the associated overhead, using a hybrid architecture. Such

an architecture would take advantage of control-flow for the task level, and data-flow at the

functional level [ATT 93].

A. BACKGROUND

1. Data Flow and the EMSP

Data flow representation of digital signal processing algorithms provides a

natural exploitation of concurrence [LIT 91]. In a signal processing graph the execution of

a particular node is controlled by the amount of information on each of its input queues. For

each node, each incoming queue has an associated minimum amount, or threshold, of

information needed for the operation's execution. When all of a node's input queues

contain sufficient information to meet the respective thresholds, the node is ready for

execution. This node represents the head of the queue, while the source node represents the

tail. Information is deposited on, and removed from, queues in different methods. One

method is the First In, First Out (FIFO) algorithm, which schedules by maintaining a

database consisting of PGM graph node and Arithmetic Processor information. The

simplicity of the FIFO algorithm earns it the designation as the most attractive scheduling

algorithm [LIT 91].

2. The Multiprocessor

Once the signal processing application and the Data Flow Algorithm have been

optimized, the results must be tested on the proposed multiprocessor. An analysis of the

hardware configuration and its major subsystems; Functional Elements, Data Transfer

Network, Functional Element Control Bus and how these operate together, is important in

optimizing the entire process. The EWS provides the statistics to examine each Node,

queue, and architecture of the specific multiprocessor.

The AN/UYS-2 is meant to provide the United States Navy with a standard,

programmable, modular, multi-processor capable of meeting the digital signal processing

requirements into the twenty-first century. All previous signal processors in the U.S. Navy

utilized time-line control-flow architectures. Here a series of instructions and

corresponding data are processed sequentially and initiated by a single control signal. This

narrow connection between instructions and data held in memory and the single processing

unit forms von Neumann's bottlenecks. The bottleneck can be avoided by removing the

assumptions implicit in a von Neumann design [LEW 92].

3. Processing Graph Method (PGM)

The PGM was developed to provide the signal processing engineer a convenient

means to write applications software without having to be concerned with the architecture

of the machine on which it would be run [NRL 90]. PGM allows a signal processing

application to be described as a collection of signal processing graphs in a manner similar

to the common use of block diagrams [ATT 88]. The implementation of PGM allows the

automated translation of a representation of a signal processing graph into a collection of

software modules which carry out the application functions.

In signal processing, as in any high data rate, processor-intensive computer

application, the name of the game is throughput. The more data the computer can process

per second, the better. The simplest method is to speed up the processors. Until recently,

computer processors executed programs one operation at a time. Consequently, the

algorithms written to solve problems were designed to perform one step at a time; such

algorithms are called serial. However, many computationally intense problems cannot be

solved in a reasonable amount of time using serial operations [ROS 91].

A second method to increase the throughput of data is by the use of several

processors running in parallel. Parallel processing, which uses computers made up of many

separate processors, each with its own memory, helps overcome the limitations of serial

computers. Parallel algorithms, which break a problem into a number of subproblems that

can be solved concurrently, can then be devised to rapidly solve problems using a computer

with multiple processors. In a parallel algorithm, a single instruction stream controls the

execution of the algorithm, sending subproblems to different processors, and directs the

input and output of these subproblems to the appropriate processors.

When parallel processing is used, one processor may need output generated by

another processor. Consequently, these processors need to be interconnected. However, an

imprudent assignment of tasks to processors can cause unnecessary interprocessor

communications. The communication time - the amount of time spent moving data between

processors - can dominate the computation time and thus limit the realized performance

[HAM 92]. The use of PGM, allows the analysis of the interconnection network for the

parallel processors, thus optimizing the system by using the most appropriate graph for the

problem presented. The type of interconnection network used to implement a particular

parallel algorithm depends on the requirements for exchange of data between processors,

the desired speed, and the available hardware.

B. OBJECTIVE

The ECOS Workstation provides the tools for an analysis of each phase involved from

graph creation to multiprocessor development. This thesis will examine the procedures

required to implement and develop a graph, a scheduling algorithm, and the AN/UYS-2

multiprocessor. This system produces two outputs, graphical analysis static (gas) and event

time simulator (ets++), which will be analyzed to provide insight into what each output file

means towards the development of an optimized, efficient signal processing system. A case

study utilizing the Correlator Graph model to demonstrate this systems' capabilities from

design to implementation will be examined. The implementation of trigger queues will be

demonstrated to show how a graphs execution can be modified with this technique.

C. SCOPE, LIMITATIONS, AND ASSUMPTIONS

The scope of this investigation is limited to performing testing and analysis of an

example graph, input/output file, and machine configuration file, explaining how these files

are integrated together to produce the gas and ets++ output. The EWS system will then be

executed using a correlator graph to provide insight into the statistics provided for

optimization of a graph. Trigger queues will then be demonstrated, and their effect on a

graph's performance.

D. ORGANIZATION OF THESIS

This thesis is organized into five chapters. This chapter provides the introduction and

scope of work to be performed. Chapters II provides a background on the ECOS

Workstation (EWS) and the specifics of each phase of development, and the files involved

in this investigation. Chapter III will explain the Correlator Graph and associated files,

which will provide an example of the system in use. Chapters IV examines the

implementation of trigger queues into a graph and the methods utilized with the ECOS

simulator. Chapter V covers what conclusions can be derived from these results.

II. ECOS FUNDAMENTALS

A. BACKGROUND

The ECOS Workstation (EWS) is a suite of tools used to develop, analyze, test and

optimize AN/UYS-2 signal processing applications. The system allows the implementation

of signal processing algorithms using the Processing Graph Method (PGM) and the testing

of the signal flow characteristics with different configurations of the AN/UYS-2

architecture prior to actually building the hardware in the lab. EWS may be run on a variety

of platforms and is used independently of the actual AN/UYS-2 machine. ECOS (EMSP

Common Operational Support Software) refers to the implementation of the Processing

Graph Method (PGM) on the AN/UYS-2 previously known as the EMSP (Enhanced

Modular Signal Processor). [ATT 92]

PGM provides a convenient way of specifying the signal processing algorithms to be

executed by application software programs by allowing the description of the algorithms in

terms of signal processing graphs. These graphs are analogous to be the block diagrams

commonly employed as high level summaries of the signal processing algorithms.

The AN/UYS-2A architecture is determined by the needs of the application. Each

configuration must contain one Data Transfer Network (DTN), one Scheduler (SCH), and

one Command Program Processor (CPP). The architecture accommodates various

combinations of Input Output Processors (IOP's), Input Signal Conditioner's (ISC's),

Global Memories (GM's), and Arithmetic Processor's (AP's). [NRL 1]

B. THE ECOS PROCESS

The phases of the ECOS process, utilized to create a graph, implement a data

processing algorithm, optimize the graph, and configure an AN/UYS-2 multiprocessor are

the key aspects of this system. A graph file, command program file, Input/Output procedure

file, and Machine Configuration file are needed to run the system. The following

information provides an in-depth explanation of how the ECOS simulator works and how

the files are integrated to produce the data flow characteristics used to optimize the graph.

The best way to explain this system is to use an example and provide a detailed explanation

of each integral part of the system and it's relevance during ECOS simulator operation.The

sample graph file, command program file, Input/Output procedure file, and Machine

Configuration file demonstrates the process from graph development to system

optimization.

1. Graph File

The EWS visual graph editor, gred, speeds up application development by

allowing the design of signal processing programs in the form of ECOS data-flow graphs

as represented in Figure 1. These graphs automatically generate Signal Processing Graph

Notation (SPGN) source code for the application, freeing the programmer from the task of

programming in SPGN code. The system allows the graph objects, which are the building

blocks of a gred graph, and represent one step in the flow of signal processing data to be

created:

A signal processing graph consists of a set of nodes representing the primitive

processing elements of the graph, a set of subgraphs representing more complex processes,

a set of merges for use in controlling the flow of data, a set of queues representing the

directed information flow through the graph, and a set of graph variables holding arbitrary

information. The INPUT QUEUE provides the interface between an input processor and

the graph. The OUTPUT QUEUE provides the interface between the graph and an output

processor. The GRAPH INSTANTIATION PARAMETER (GIP), is a start time

constant which is passed to a graph by the command program at graph instantiation time.

The VAR (GRAPH VARIABLE) is a variable which is passed to a graph by the command

program, or passed to a subgraph by a parent graph. The value of the Var may be re-written

during run-time, and the new value may be passed to the graph during run-time. A LOCAL

QUEUE represents the directed flow of information from node to node, from node to

subgraph, or from subgraph to node within the graph and carries information on a first-in,

first-out basis into a node or subgraph. A NODE in a graph embodies a specific signal

processing operation, called a primitive, and a Primitive Interface Procedure (PIP), which

provides the interface between the node and the primitive. A SUBGRAPH allows

hierarchical structures in a graph definition. A subgraph is originally defined as a graph and

then used in the definition of a larger graph. A CONNECTION is the object used to

connect NODES, Queues, Subgraphs, INPUTQ, OUTPUTQ, and CONSTRUCTOR

Objects. An INPUT CONSTRUCTOR consolidates data from various graph objects and

passes it to a node or subgraph as a single input. An OUTPUT CONSTRUCTOR takes

output data from a node or subgraph and distributes it to various graph objects. These are

the objects required to build and test the flow of information on a graph. [ATT 92]

The EWS provides a number of tools for graph creation. The graph topology is

implemented using gred, which permits an object-oriented style of code creation. Once

created, the graph is converted to SPGN using the grail translator. This converts the

graphical representation into compilable code, which is checking for syntax and continuity

errors. This new file is executed using ggcc, which is three programs which validate and

compile the SPGN; grasp, glitr, and cpcc. Grasp translate the SPGN source code into

graph tables. Glitr translates the tables in C language routines and cpcc compiles the C

routines and command program, then links all the programs. Once the executable file is

created, static and dynamic simulations may be accomplished using two additional EWS

tools, Graph Analysis, Static (gas) and Event Time Simulator (ets++).

Figure 1: PGMTUT Sample graph

2. Command Program File

The EWS command program defines how an application connects with the

outside world via the input and output procedures, formal input and output queues, graph

10

variables and graph instantiation parameters, and how various graph within an application

connect to one another. The command program is used together with the SPGN source file

produced by grail to compile the application.

PROGRAM—
%INITCOMPROG()

IO_PROC_ID
QUEUEJD
GRAPH ID

iopl,iop2;
inl, oul;
G;

inl = %CREATEQ(FLOAT);
oul = %CREATEQ(CFLOAT);

G = %START(PGM_TUT
INPUTQ=inl
OUTPUTQ=oul
PRIORITY = 2

);

if (%SCODE) exit(l);

iopl = %INITIO(IOPl
INPUTQ=inl);

iop2 = %INITIO(IOP2
OUTPUTQ=oul);

%STARTIO(iopl);

%STARTIO(iop2);

%PRENT(%TERM, 1, G);

%ENDPROGRAM

COMMENTS
Opening statement of each
Command program
- I/O procedures
- Formal input/output queues
- Graph's name

-- Create the queue named inl
- Create the queue named oul

-- Start graph PGM_TUT
- Match INPUTQ with inl
-- Match OUTPUTQ with oul
- State the graph's priority

- Check for correct SPGN,
stop if errors detected.
- Initialize the I/O procedure
- Match IOP1 with INPUTQ inl
- Initialize the I/O procedure
- Match IOP2 - OUTPUTQ oul

- Start I/O procedures iopl

- Start I/O procedures iop2

— Prepares the compiled executable

file to generate an ets++ input
file. There is 1 graph, G.

— Final statement of each command
program.

Figure 2: PGMTUT Command Program

Each command program must be able to create the input and output queues for

the graph, initialize the input/output procedures (i.e., attach the queues to them), start the

graph with its required parameters, and start the input/output procedures. The command

program example in Figure 2, lists two Input/Output procedures iopl, iop2 which correlate

11

with two names that will be listed in the Input/Output procedure file (pgm_tut.io), and are

started by %INITIO. Two formal input/output queues, inl and oul which map to Bearnjn

and Beam_Out of the graph PGM_TUT in figure 1, and are initialized by %CREATEQ.

The graph G is started by %START(PGM_TUT) which correlates to the file created using

gred.

3. I/O procedure file

The EWS I/O procedure file provides information to gas and ets++ about

characteristics of the graph's input and output nodes. Input and output nodes are external

to the graph; they feed outside world input data into the graph and read output data from

the graph. The I/O procedure file contains details about incoming and outgoing data rates.

These rates are used by gas and ets++ in their various timing analysis.

The I/O procedure file pgm_tut.io displayed in FIGURE 3, provides the input

to the ECOS simulator example. The IOP1 variable, declared as an input for the graph with

one port, corresponds to the iopl variable in the command program. The input rate into the

graph is 300000 words per second with the output rate producing 2048 words per second

directed into the output interface. The IOP2 variable, is an output variable with one port,

and corresponds to the variable iop2 in the command program. This program has a

threshold of 822 words, reads 822 words, and consumes 822 words.

12

#The format of the i/o procedure file is tabular; the information content is
simple, so this should cause no problems, and it reduces the amount of baggage in
the simulator for interpreting this file.

NAME is the symbolic identifier of the i/o procedure named in the %INYTlO
statement in the command program; it must match exactly; case is significant.

TYPE is one of INPUT, BIDIRECTIONAL, or OUTPUT

DATA RATES for graph inputs are expressed in words/second

THRESH, READ, CONSUME, and PRODUCE amounts are in words

comments look like this, everything on a line to the right of the sharp sign is discarded

number of
name

IOP1

type ports

INPUT 1

rate produce

300000 2048

number of
name

type ports

IOP2 OUTPUT 1 :

thresh read consume

822 822 822

Figure 3: PGMTUT Input/Output File

4. AN/UYS-2 Machine Configuration file

The EWS machine configuration file defines an AN/UYS-2 hardware

configuration for use by ets++, will execute an application as if it were running on the

hardware specified in the configuration. The hardware consists of the Data Transfer

Network (DTN), the Distributor/Concentrator ports on the DTN, and the Functional

Elements (FE). The DTN's come in three sizes: 4, 8 or 16 ports. The designer may assign

up to four FE's per port, however, to minimize DTN contention, assign no more than one

FE per port. A concentrator transfers data from a FE to the DTN, while a distributor

13

transfers data from the DTN to a FE. The Functional elements consist of Arithmetic

Processors, Input/Output Processors, and Global Memory. Each Functional Element is

associated with a specific port.

Figure 4 provides a visual display of the AN/UYS-2 which would be tested by

the ECOS system as determined by the machine configuration file. The DTN has eight

ports, two of which are not used. Each Functional Element has it's own port to reduce data

transfer conflicts.

Figure 4: PGMTUT Machine Hardware

Figure 5 is an example of a machine configuration file, 3ap2gm.cf which is used

in the ECOS example. This Configuration has three Arithmetic Processors, one Input/

Output Processor, and two Global Memories. The Data Transfer Network has eight

distributors and eight concentrators. The Arithmetic Processors are Class one, meaning that

the AP class is directed to use a particular AP load image for class one. AP 0 is connected

to distributor 0 and concentrator 0, AP 1 to distributor 1/concentrator 1, AP 2 to distributor

2/concentrator 2, IOP 0 connected to distributor 3/concentrator 3, GM 0 to distributor 4/

concentrator 4, and GM 1 to distributor 5/concentrator 5.

14

#ETS++ machine configuration file
comment lines look like this, anything on a line after the sharp sign ("#") is discarded
tiie format here is vaguely reminiscent of the actual configuration file
keywords:

«CONFIGURATION
»HARDWARE
AP (ARITHMETIC PROCESSOR)
IOP (INPUT/OUTPUT PROCESSOR)
GM (GLOBAL MEMORY)
DISTRIBUTORS
CONCENTRATORS

CONFIGURATION

number of functional elements of each type
FE
#type quantity

AP 3
IOP 1
GM 2

number of concentrators/distributors on DTN

DIST 8
CONC 8

HARDWARE

#FE FE
#type ' name
#.
AP AP:0
AP AP:I
AP AP:2
IOP IOP:0
GM GM:0
GM GM:1

DIST
ID

CONC
ID

AP
CLASS

0
1
2
3
4
5

0
1
2
3
4
5

1
1
1

Figure 5: PGMTUT Machine Configuration File

C. ECOS EXECUTION PROCESS

The following sequence of events demonstrates the ECOS Workstation functions and

how they are integrated together to produce the statistical data required to optimize the

signal data flow represented by the graph. The PGM_TUT graph in Figure 1, the Command

Program File com_prog.cp, I/O Procedure File pgm_tut.io, and Machine Configuration

File 3ap2gm.cf are utilized to demonstrate the execution of the system, with the gas and

ets++ output files produced, displayed and examined:

15

1. gred

The gred (graphical editor) is an executable file which invokes a graphical

window which is used as a tool to create a graph which is saved as pgm_tut.g.

2. grail -g pgmtut.g > pgmtut.src

The grail -g pgmtut.g > pgm_tut.src is the function which calls grail which

converts the graph created in gred into SPGN compilable code. The -g

filename(pgm_tut.g), is the name of the graph file saved in gred and used by grail to

identify the input. The >pgm_tut.src, is the new name of the file created by grail.

3. ggcc pgmtut.src comprog.cp

The ggcc pgmtut.src com_prog.cp is the function call to ggcc (grasp, glitr,

cpcc, cpcc), where grasp translates your SPGN source file into graph tables, glitr

translates .int file into C routines, cpcc compiles the C files and cpcc compiles the

command program and then links all the compiled files The pgmtut.src file is the name

of the file generated by grail and com_prog.cp is the name of the command program

supplied to cpcc.

4. comprog > comprog.ets

The com_prog > com_prog.ets command, is the renaming of the file produced

by ggcc, which is named com_prog and > com_prog.ets is used to generate the simulation

input file for gas and ets++.

5. gas -g comprog.ets -i pgmtut.io -n all -q all > pgmtut.gout

The gas -g comprog.ets -i pgmtut.io -n all > pgmtutgout command, is the

call to the gas function, which is the graph analysis static, the analysis tool utilized first. It

performs a quick, cursory check of the signal processing application based on the static

properties of the graph. The -g fiIename(com_prog.ets) provides the name of the graph file

to gas. The -i filename(pgm_tut.io) provides the name of the Input/Output file to gas. The

16

-n all provides the command which requests statistics on each node to gas. The >

pgm_tut.gout is the name given to the output file produced by gas.

6. ets++ -g comprog.ets -i pgmtutJo -m 3ap2gm.cf -n all -q all -t (time) >

pgmtuteout

The ets++ -g comprog.ets -i pgmtuUo -m 3ap2gm.cf -n all -q all -t (time)

> pgm_tut.eout command, is the call to the ets++ function, which is a dynamic 'event-time

simulator' function used for modeling real-time graph performance for a given AN/UYS-

2 configuration. The -g filename(com_prog.ets) provides the graph file name to ets++.

The -i filename(pgm_tut.io) provides the Input/Output file name to ets++. The -m

filename(3ap2gm.cf) provides the Machine Configuration file name to ets++.The -n all

provides the command which requests all statistics on each node. The -q all provides the

command which requests all statistics on each queue.The -t (time) - time may be in

seconds, minutes or machine cycles. The default is seconds. To specify minutes, type -t

timem and to specify machine cycles type -t timec. For example:

-t 10 = 10 seconds

-t 10m = 10 minutes

-t 10c = 10 machine cycles
The > pgm_tut.eout is the name given to the output file produced by ets++.

D. ECOS OUTPUT

1. gas analysis

The gas function does not simulate a graph execution and it has no information

regarding the machine configuration. Rather, it takes a look at the graph's design and

calculates execution statistics as if the graph were running in a perfect setting with

unlimited hardware resources, gas performance statistics thus present a best case scenario.

The analysis of the gas output file will check to see if the graph is structurally sound,

report characteristics of the graph which allow identification of certain types of

performance trouble spots, and report execution characteristics which allow the

17

programmer to estimate the hardware configuration needed to run the application on an

AN/UYS-2.

Three types of graph statistics appear in the gas output, scheduling rate and

execution time statistics, System Language message statistics, and the Bandwidth

statistics.The following acronyms are used in the gas output file:

AIS - Accept Instruction Stream

AP - Arithmetic Processor

AU - Arithmetic Unit

CQ - Consume Queue

GM - Global Memory

IOP - Input/Output Processor

RGV - Read Graph Variable

RQ - Read Queue

SL - System Language

WGV - Write Graph Variable

WQ - Write Queue

a. Graph Statistics

Figure 6, which displays the graph statistics section, is the output file

which has four categories. The first, SCHEDULING RATE AND EXECUTION TIME

STATISTICS section provides four specific areas of information. The total node

scheduling rate is the sum of the individual scheduling rates of all nodes. The AP node

scheduling rate is the sum of the individual scheduling rates for all nodes which execute on

an AP. The total required AU cycles is a weighted sum of the AP node execution times

where the weights are the individual node execution rates. And the mean AU cycles per

node is a weighted average of the per-node AU execution time.

b. System Language Statistics

The SYSTEM LANGUAGE MESSAGE STATISTICS provides thirteen

different types of information for analysis. The mean queue consumes/node is the average

18

number of CQ (consume queue) messages sent per node execution. The mean queue

consume amount is the average amount consumed pr consume request. The mean queue

reads/node is the average number of RQ (read queue) messages per node execution. The

mean queue read amount is the average amount read per read request The mean queue

writes!node is the average number of WQ (write queue) messages per node execution. The

mean queue write amount is the average size of a write request. The mean graph variable

reads is the average number of RGV (read graph variable) messages per node execution.

The mean gv read amount is the average size of an RGV request. The mean graph variable

writes is the average number of WGV (write graph variable) messages per node execution.

The mean gv write amount is the average size of a WGV request. The mean queue+gv read

amount is the average read amount (without distinguishing between a queue read and a GV

read).The mean queue+gv write amount is the average write amount (without

distinguishing between a queue write and a GV write). The mean AIS size, is derived from

the following process; Every node execution involves the transfer of an instruction stream

from a GM (global memory) to an AP (arithmetic processor) via an AIS (accept instruction

stream) message.

c. Bandwidth Statistics

The BANDWIDTH STATISTICS section provides three specific areas of

information for analysis. The Bandwidth AP is the rate at which data is moved between APs

and GMs due to reading and writing queues and graph variables. The Bandwidth IOP is the

rate at which data is moved between IOPs and GMs. The Bandwidth GM is the total rate at

which data is moved into and out of GMs. This is the sum of Bandwidth AP and Bandwidth

IOP.

19

Static Graph Analysis - EWS Release: 5T5
Invocation: gas -g com_prog.ets -i pgm_tut.io -n all

total graph objects: 4 nodes, 6 queues, 0 graphvars, 2 I/O procedures

graph: PGM_TUT

pids: /users/res/zakyclasses/EWS/sef/Pids/pidtoc
graph objects: 4 nodes[0,3], 6 queues [0,5], 0 graphvars, 2 I/O
procedures[0,1]

graph source: oom_prog.ets
i/o procedure source: pgm_tut.io

total node scheduling rate: 2434.99
AP node scheduling rate: 2343.75
total required AU cycles: 5.63e+06
mean AU cycles per node: 2.40e+03
mean queue consumes / node: 1.25
mean queue consume amount: 461.00
mean queue reads / node: 1.25
mean queue read amount: 470.20
mean queue writes / node: 1.25
mean queue write amount: 384.20
mean graph variable reads: 0.00
mean gv read amount: 0.00
mean graph variable writes: 0.00
mean gv write amount: 0.00
mean queue+gv read amount: 470.20
mean queue+gv write amount: 384.20
mean AIS size: 256.00
Bandwidth AP: 2.5e+06
Bandwidth IOP: 3.75e+05
Bandwidth GM: 2.88e+06

Individual node statistics
Node Node rate rate
id name (exec/sec) (cycl/sec)

/ second
/ second
cycles / second
cycles
CQ / node
words / CQ

RQ / node
words / RQ
WQ
words
RGV

node
WQ
node

words / RGV
WGV / node
words / WGV
words
words
words

(RQ,RGV)
(WQ,WGV)
AIS

words / second
words
words

second
second

RQs
 number of --
WQs CQs RGVs WGVs

i/o rate
(word/sec)

0 PGM_TUT>BANDSHIFT 586 932e6
1 PGM_TUT>FIR1 58 6 2.14e6
2 PGM_TUT>FIR2 586 1.69e6
3 PGM_TUT>FIR3 586 865e3

2 2 2
111
111
111

901e3
906e3
461e3
236e3

Figure 6: PGM TUT gas Output File

20

d. Node Statistics

The INDIVIDUAL NODE STATISTICS section provides six areas of

information about the performance of each node in the graph. The Node ID is the unique

numerical identifier for the node. The Node name is the hierarchical node name. The rate

(exec/sec) is the number of node executions per second (the number of times per second

that the node is called upon to process data). The rate (cycle/sec) is the number of AP cycles

per second (processing speed) required to execute the node. This rate must be lower than

the maximum processing speed of the AP. Otherwise, the node will become a bottleneck

and the graph will not be executable on a machine of any size. The number ofRQs, WQs,

CQs, RGVs, and WGVs summarizes the number of SL messages per node execution. The

i/o rate (word/sec) is the rate at which data is transferred between APs and GMs per node

execution. This is calculated for each node by taking the number of words per execution

due to RQ, WQ, RGV and WGV messages and multiplied by the number of executions per

second. This gives a words per second result.

The results of the gas function is analyzed, providing the programmer with

insight into how each node is operating in reference to the data flow rates. This allows the

programmer to edit the application, or prepare the machine configuration file and perform

a real-time simulation with ets++.

2. ets++ analysis

One of the central components of the ECOS Workstation is an EMSP system

simulator which models the execution of a graph on the actual machine. ets++ does not

perform signal processing. It does simulate the data-flow scheduling of the functional

elements in the AN/UYS-2 signal processor. Through this simulation, ets++ computes

timing and hardware usage statistics for the application. ets++ models the data-flow

scheduling between graph elements, the system language message traffic and the real time

operations which take place in the functional elements (FEs) of an AN/UYS-2 during graph

21

execution. It models the execution based on the AN/UYS-2 configuration specified in the

machine configuration file.

ets++ provides four main types of information about your graph, overall system

performance, individual functional element (FE) performance, graph execution

characteristics, and individual graph object execution statistics.

The following is a list of acronyms used in the ets++ output file:

RQ - Read queue

AQ - Accept queue

WQ - Write queue

CQ - Consume queue

RGV - Read graph variable

AGV - Accept graph variable

WGV - Write graph variable

QOT - Queue over threshold

QUT - Queue under threshold

QOC - Queue over capacity

QUC - Queue under capacity

RFIS - Ready for instruction stream

SIS - Send instruction stream

AIS - Accept instruction stream

EIS - Execute instruction stream

SNDT - Suspend node data transfer

CNDT - Continue node data transfer

CTC - Change threshold and consume

3. The ets++ output file

The following is an analysis of the five sections of the output file produced by

executing the ets++ function. Utilizing the input files in the example with the gas function

coupled with the machine configuration file 3ap3gm.cf, ets++ results are provided.

22

a. Header Section

The HEADER section provides general information about the ets++ output file

such as the EWS version being utilized, and the command line used to invoke ets++. The

machine parameter file line, lists the directory and filename of the machine configuration

file. The Configuration section lists the hardware makeup of the mircroprocessor being

used in the simulation. The graph objects line, provides the number of nodes, the

EMSP Event Time Simulator - EWS Release: 5.6

Invocation: ets++ -g com_prog.ets -i pgm_tut.io -m 3ap2gm.cf -n all -g
all -t 1

Machine parameter file: '/users/res/zakyclasses/EWS/sef/lib/params.d'
of 06/22/92 15:58

Conf i gurat i on

PE count: ■ 7
AP count: 3
GM count: 2
IOP count: 1
concentrators: 8
distributors: 8

total graph objects: 4 nodes, 6 queues, 0 graphvars, 2 I/O procedures

graph: PGM_TUT
pids: /users/res/zakyclasses/EWS/sef/Pids/pidtoc
graph objects: 4 nodes[0,3], 6 queues[0,5], 0 graphvars, 2 I/O
procedures[0,1]

Statistics

Simulation clock = 1.000 seconds

Figure 7: PGMTUT ets++ Header

number of queues, the number of graph variables, and I/O procedures. The range of

numerical identifiers for the graph objects and I/O procedures appears in square brackets.

23

Additionally, the graph name used in the simulation is listed, the location of the PID

library, and the Statistics section states how long the simulation was executed.

b. Functional Element Statistics

An example of each type of Functional Element (arithmetic processor,

global memory, input/output processor) and the scheduler, and the statistics provided

follow:

FEID: 0 NAME: AP:0 TYPE: arithmetic processor
cone id: 0 dist id: 0

AP Class: 1
CU idle = 50.70 %
CU wait = 0.12 %
CU busy = 49.18 %

service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec
service wait per dtn request: avg = 7.71e-06 sec, max = 1.57e-04 sec
cbus messages sent: 1808 received: 0
dtn messages sent: 646 received: 1163

AG/AU nodes executed: 516 (CU only: 0)
AG/AU busy: 17.62 %
AG/AU pending: 51.27 %
AG/AU efficiency: 25.57 %
Free time (AP:0): 48.49 %

Figure 8: PGM TUT ets++ AP Statistics

(1) The Arithmetic Processor Section:

This section is broken down into thirteen sections which provides vital

information about the AP. The numerical ID for this FE comes from the machine

configuration file. The AP class which is assigned during gred, can be used to group APs

(Arithmetic Processors) into a particular class.The CU idle percentage, is the amount of the

time that the Control Unit(CU) is not in use at all. The CU wait percentage, is time when

the CU must wait for the completion of an event before it can do anything else. The CU

busy percentage, is the time when the CU is busy when it is performing work such as SL

message processing. The service wait is the amount of time a message arriving at the CBUS

24

(Control Bus) or DTN (Data Transfer Network) interfaces must wait before processing.

The cbus messages sent is the number of SL (System Language) messages sent from this

AP via the control bus. The received data, is the number of SL messages received by this

AP via the control bus. The dtn messages sent information is the number of SL messages

sent from this AP via the data transfer network. The received information, is the number of

SL messages received by this AP via the data transfer network. The AGIAU nodes executed,

is the number of AG/AU (Address Generator/Arithmetic Unit) nodes executed on this AP.

The CU only section, is the number of nodes executed only on the Control Unit (CU), such

as merge, flow control and AP replicate nodes. The AG/AU busy section is the percent of

total simulation time that the AP's AU was executing primitives. The AG/AU pending

section, is the percent of total simulation time that the AP was waiting to execute a

primitive that has been assigned to it. The AG/AU efficiency section is the percent of the

AP's 'in use' time that is actually used for doing productive work. The Free time data, is

the percent of total simulation time that the AP was free to be assigned a node for execution.

(2) The Global Memory Section

The GM Utilization (busy + dtn i/o) statistics, is the percent of total

simulation time that the GM was either processing SL messages (CU busy) or sending and

receiving data to and from the DTN (dtn i/o). The memory usage information, where three

types of memory usage statistics are produced; high water mark, pointer block, and static.

High water mark is the maximum amount of memory used at any one time during the

simulation. The Pointer block is the maximum memory used by the pointer block. The

pointer block keeps track of the used and unused blocks of GM memory. Static, is the

amount of fixed overhead memory, which remains constant throughout the simulation.

25

FEID: 3 NAME: GM:0 TYPE: global memory
cone id: 4 dist id: 4
CU idle = 53.91 %
CU wait = 0.00 %
CD busy = 4 6.09 %

service wait per cbus request: avg = 4.29e-05 sec, max = 5.98e-04 sec
service wait per dtn request: avg = 1.97e-05 sec, max = 1.24e-04 sec
cbus messages sent: 1226 received: 3227
dtn messages sent: 2001 received: 1309

GM Utilization (busy + dtn i/o): 60.40 %
memory usage,high water mark:108236; pointer block: 512, static: 4844

Queue table: 128 GI table 3000
Node table: 128 Queue Hist 0

GV table: 0 Templates 1040 (appr)
GV memory: 0 delta 0 (assm)

Initial data: 544 CTC table 4
Nodes: 2 Queues : 4 Graph Variables: 0

Figure 9: PGM TUT ets++ Global Memory Statistics

(3) The I/O Processor Section

The Simple IOP model, provides the Basis information for the Control bus

and Data Transfer Network. The Number ofWQs completed is the number of Write Queue

messages successfully sent from this IOP to a GM. The cancelled by SNDT section, is the

number of WQ messages lost due to outstanding SNDTs (suspend node data transfer

messages). The Input queue data, provides the Input queue # handled by this IOP. The input

rate (w/sec) data, is the input data rate for that particular input queue #. The Output nodes

executed provides the number of output nodes executed on this IOP. This allows the

designer to analyze the amount of traffic on the two buses.

26

FEID: 6 NAME: SCH TYPE: scheduler
CU idle = 84 .99 9-

CU wait 0 .01 9-

CU busy = 15 .00
service wait per cbus request :avg = 6. 29e-06 sec. max = 1 ,54e- -04 sec
service wait per dtn request :avg = 0. 00e+00 sec. max = 0 .00e+00 sec
cbus messages sent: 1613 received: 3553
dtn messages sent: 0 received: 0

Figure 10: PGMTUT ets++ Scheduler Statistics

(4) The Scheduler Section

The SCHEDULER Section of the ets++ output file provides statistical data

about the control of the resources in the mircroprocessor. The CU idle data, is the percent

of time that the Control Unit is not in use. The CU wait data, is the percent of control bus

contention. The CU busy data, is the percent of time the scheduler is processing data,

including System Language message processing and assignment of nodes to APs for

execution.

c. Graph Execution Performance

The graph execution performance consists of the Control Bus, Data

Transfer Network, the DTN Input FIFO,and Node Scheduling Statistics.

CBUS Utilization Statistics

CBUS message count = 9165
idle = 96.20 %
busy = 3.80 %

Figure 11: PGM TUT ets++ Control Bus Statistics

27

The Control Bus is a single access bus handling only one Functional

Element at a time. The CBUS message count, conts the number of messages sent via the

CBUS. The idle percentage data, is the percent of total simulation time that the CBUS was

idle. The busy percentage data, is the percent of total simulation time that the CBUS is busy.

DTN Utilization Statistics

DTN message count = 5636

Cone 0: idle = 96.98% busy= 3.02 % avg.wait= 0.00e+00 sec max wait = 0.00e+00 sec
Cone 1: idle = 97.03 % busy = 2.97 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec
Cone 2: idle = 96.92 % busy = 3.08 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec
Cone 3: idle = 97.59 % busy = 2.41 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec
Cone 4: idle = 90.96 % busy = 9.04 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec
Cone 5: idle = 91.29 % busy = 8.71% avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec
Cone 6: idle = 100.00 % busy = 0.00 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec
Cone 7: idle = 100.00 % busy = 0.00 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec

Dist 0: idle = 94.28 % busy = 5.72 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec
Dist 1: idle = 94.32 % busy = 5.68 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec
Dist 2: idle = 94.19 % busy = 5.81% avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec
Dist 3: idle = 99.46 % busy = 0.54 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec
Dist 4: idle = 93.80 % busy = 6.20 % avg. wait = 2.79e-06 sec max wait = 1.41e-04 sec
Dist 5: idle = 95.09 % busy = 4.91 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec
Dist 6: idle = 100.00 % busy = 0.00% avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec
Dist 7: idle = 100.00 % busy = 0.00 % avg. wait = 0.00e+00 sec max wait = 0.00e+00 sec

Figure 12: PGMTUT ets++ DTN Statistics

The Data Transfer Network(DTN) Utilization Statistics reports four areas

of information for each concentrator and distributor; idle, busy, average, wait and

maximum wait. Data flows from an FE through a concentrator into the DTN. Data flows

from the DTN through a distributor into the FE. The idle percentage, is the percent of total

simulation time that the concentrator or distributor was not in use. The busy percentage, is

the percent of total simulation time that the concentrator or distributor was in use, including

resource contention delays. The avg. wait data is the average amount of time that an FE had

to wait to use this resource. The max wait data is the maximum amount of time that any one

FE had to wait to use this resource.

28

DTN input fifo statistics
AP:0 (id = 0) PIP: max. messages = 2, high water mark = 519
AP:1 (id = 1) PIP: max. messages = 2, high water mark = 519

AP:2 (id = 2) PIP: max. messages = 2, high water mark = 519
GM:0 (id = 3) PIP: max. messages = 3, high water mark = 2190
GM:1 (id = 4) PIP: max. messages = 2, high water mark = 1031
IOP:0 (id = 5) PIP: max. messages = 1, high water mark = 623

Figure 13: PGMTUT ets++ DTN Input FIFO Statistics

For each AP, GM, and IOP Primitive Interface Procedure (PIP) First in,

First out (FIFO) buffer, the DTN input statistics are provided. The max messages number

is the highest number of messages that ever existed in the FIFO buffer at any one time. The

high water mark number is the maximum number of 16-bit words waiting in the buffer at

any one time. The FIFO buffer capacity is pre-set.

Node Scheduling Statistics
nodes scheduled = 1613
rate = 1613.0 nodes/sec

Figure 14: PGMTUT Node Scheduling Statistics

The nodes scheduled, is the total number of nodes scheduled for execution

for the length of the simulation. The rate, is the number of nodes scheduled divided by the

simulated length of time.

d. System Language Statistics

This System Language messages list, provides the number of times each

type of message was sent during the simulation. The two key categories, QOC (queue over

capacity) and SNDT (suspend node data transfer) indicate that data has been backing up. If

both values are greater than zero, there may be data loss.

29

Cumulative SL message statistics

RQ 1999
AQ 1999
WQ 2085
CQ 1999
RGV 0
AGV 0
WGV 0
QOT 2004
QUT 0
QOC 0
QUC 0
RFIS 1550
SIS 1553
AIS 1552
EIS/ESN 60
SNDT 0
CNDT 0
CTC 0

TOTAL 14801

Figure 15: PGMTUT System Language Statistics

e. Individual Graph Object Execution Statistics

The Node ID, is the node's numerical identifier. The Node name, is the

node's symbolic hierarchical name. The GM id is the numerical identifier of the GM that

stores this node's instruction stream. The times scheduled, is the number of times the node

was scheduled for execution. The times waited for AP, is the number of times the node was

ready for execution but had to wait because there was no AP available. The average wait

forAP, is the average amount of time, in seconds, that the node which is ready for execution

had to wait for an AP to become available.The average delay to exec, is the average amount

of time from when the node was scheduled for execution on an AP until execution actually

begun. The average breakdown delay, is the average amount of time from the completion

of microcode execution until the completion of output-data transfer to the GM's.

30

Graph Object Statistics

Node Statistics

average times average average
Node Node GM times waited wait delay brkdown

id name id scheduled forAP forAP to exec delay

6.49e-04 0 >BANDSHIFT3 389 197 1.19e-04 1.03e-03
1 >FIR1 4 389 0 0.00e+00 8.45e-04 3.64e-04
2 >FIR2 3 388 0 0.00e+00 1.07e-03 3.85e-04
3 >FIR3 4 387 0 0.00e+00 9.60e-04 7.70e-04

Figure 16: PGM TUT Node Graph Object Statistics

(1) Queue Information

The Queue id, is the queue's numerical identifier. The Queue name,

is the queue's symbolic hierarchical name. The GM id, is the numerical identifier of the GM

that stores this queue's data. The times written, is the number of times the queue was written

by it's source node. The remaining words in queue, is the number of 16 bit words remaining

on the queue at the time this statistic was written.

Queue Statistics

remaining

Queue Queue GM times words

id name id

3

written

146

in queue

99840 0 >BEAM_IN
1 >BEAM OUT 3 386 88

2 >Q2 4 389 1034

3 >NP 3 389 1
4 >Q3 3 388 530
5 >Q4 4 387 274

Figure 17: PGMTUT Queue Statistics

31

The data provided by the ets++ output provides the vital statistics for the complete

analysis of the proposed graph, data-flow diagram, and algorithm used. The optimization

of the new system can be performed prior to the actual building of a new multiprocessor.

32

III. PERFORMANCE ANALYSIS TOOLS: A CASE STUDY

A digital signal processor's performance can be measured by throughput.

Unfortunately, the AN/UYS-2 's throughput is not based exclusively on its scheduling

algorithm, the First-Come-First-Serve algorithm. The concurrent parts of the program or

tasks, represented by nodes on the graph must be arranged in time and space to optimize

performance. The analysis of a graph created at AT&T, the Correlator Graph, will provide

actual hands on experience in the ECOS process and the optimization of a graph, data flow,

and multiprocessor configuration. This process will highlight the features used to optimize

a signal graph using the simulator.

A. CORRELATOR GRAPH

The Correlator Graph, constructed utilizing the gred function, (refer to Figure 18 and

Figure 19), was created based on the task to be performed, the data flow topology required,

and the available Primitive Interface Definitions (PIDs) accessible in the PID directory.

This Correlator Graph, named E006, consists of 27 nodes, 37 queues, and 4 input/

output procedures. Two input queues, named X and represented by the family input queue

graph object feeds the graph. Data is directed to two separate nodes, FIXL1 and FIXL2,

where two separate paths for data processing is accomplished. Upon completion of

processing, Two output queues, named GRAMOUT and represented by the family output

queue graph object provides the results to the Input/Output Processor (IOP) for distribution

to an interface not associated with the Correlator Graph.

B. CORRELATOR GRAPH COMMAND PROGRAM

The command program for the Correlator Graph, named test.cp (refer to Appendix A),

controls the graph's execution and interaction. The program starts the E006 graph,

initializes four Graph Instantiation Parameters (GIPs) STI, F, SR, and TC, declares the

33

Input Queue will be a Family of Queues, consisting of two inputs designated as INI and

IN2, and the Output Queue will be a Family of Queues, consisting of two outputs

designated as OUT1 and OUT2. The program will then initialize the input and output

queues with the %INITIO command, then start the processing with the %STARTIO

command. From this brief description of the command program, it is obvious that the

purpose of test.cp is control rather than signal processing. The command program basically

initializes and starts the io-procedure and controls the flow of data to and from the outside

world.

C. CORRELATOR GRAPH INPUT/OUTPUT PROCEDURE FILE

The I/O procedure file provides the characteristics of the Correlator Graph's input and

output data rate. The Correlator Graph Input/Output file, named l.io (refer to Appendix B),

defines four I/O procedures, IN 1 and IN2 which are for input, OUT1 and OUT2 which are

for output and .correspond to the input/output variables in the command program file

testxp. Each procedure has only one associated port. The data rate of INI and IN2

corresponds to 2048 words per second being generated by the I/O device onto the queue,

which are expressed in 16-bit words/second. The produce amount of INI and IN2 is the size

of the data blocks which the I/O input device feeds into the graph, which are expressed in

16 bit words. The data rate of OUT1 and OUT2 corresponds to a 513 words for the

threshold level, 513 words for the read amount, and 513 consume amount, with each

amount expressed in 16-bit words.

D. CORRELATOR GRAPH gas ANALYSIS

Now that the graph and command program have been created, compiled, and linked,

the I/O procedure file prepared, and simulation input file generated, the gas analysis tool is

utilized.

The Correlator Graph simulation file corr.ets (refer to Appendix C), and the I/O

procedure file l.io are utilized as inputs to gas which produces an output file, named

corr.gout (refer to Appendix D). The gas environment simulates a perfect setting with

34

unlimited hardware resources, from which the machine configuration needed for this graph

can be determined. In particular, analysis of the AP node scheduling rate, the total required

AU cycles, Bandwidth GM, Node rate (exec/sec), and Node rate (cycle/sec) provides the

necessary information for AN/UYS-2 configuration.

The AP node scheduling rate of 3.19/second indicates this node scheduling rate

achieves the estimated rate based on the nature of the processing task and the intended

throughput rate. If the rate had been less, the graph may have run successfully for short

bursts, but the machines' resources would become swamped in the long run. The maximum

throughput can be computed by taking the number of processors and multiplying them by

the clock speed, divide that number by the total required AU cycle field, and take the result

and multiply by the input data rate.

Max Throughput = Num_of_Processors X ClockJSpeedX Gas_Data_Rate (Eq 3.1)
total_required_AU_cy des

The total required AU cycles of 3.90e+04 cycles per second, provides a rough estimate

of the minimum amount of AP processing power needed to meet the real-time scheduling

requirements of the graph. A SEM-E AP with a 10 MHZ clock can handle 10e+6 cycles per

second. The minimum number of processors needed for the graph can be computed by

dividing the total required AU cycles rate by the processor speed.

Min Processors = total required AU cycles I processor speed (Eq 3.2)

The Bandwidth GM of 1.09e+5 words/second, is the sum of Bandwidth AP and

Bandwidth IOP. This figure provides an estimate of the minimum amount of GMs needed

for this machine. A SEM-E GM can transfer data over the DTN at a rate of lOe+6 32-bit

wps or 20e+6 16-bit wps. The minimum required Global Memory can be computed by

dividing the Bandwidth GM by 10e+6 or 20e+6.

35

Required GM = Bandwidth GMI Clock Speed (Eq 3.3)

The Node rate (exec/sec) provides the number of times per second that the node is

called upon to process data. Verification that expected values are consistent with given

input data rates for the graph are necessary to insure a smooth data flow.

The Node rate (cycle/sec) value provides the number of AP cycles per second

(processing speed) required to execute the node. This rate must be lower than the maximum

processing speeds of the AP or a bottleneck will occur at that node and the graph will not

execute.

E. CORRELATOR GRAPH MACHINE CONFIGURATION FILE

The machine configuration file for the Correlator Graph, 4-6.cf (refer to Appendix E),

lists in tabular form, the machine configuration of the AN/UYS-2, to be utilized as input to

the ECOS analysis tool, ets++. The information provided by the analysis of the gas output

for the Correlator Graph was utilized to construct the proposed hardware.

The 4-6.cf machine configuration file lists four Arithmetic Processors, six Global

Memories, two Input/Output Processors, and One Scheduler Processor. The Data Transfer

Network (DTN) has eight Distributor/Concentrator ports, the ports numbered 0-7. The four

Arithmetic Processors are on ports 0-3, the six Global Memories are on ports 4-6, with two

GMs per port, and the two Input/Output Processors on port 7.

F. CORRELATOR GRAPH ets++ ANALYSIS

The ets++ event time simulator performs dynamic graph simulation on the Correlator

Graph using the machine configuration file created from analysis of the gas simulation. The

output file of the Correlator Graph ets++ simulation, corr.eout (Refer to Appendix F),

provides the vital statistics needed for analysis. Through this simulation, timing and

hardware usage statistics are computed which are utilized for further debugging,

configuration sizing and performance optimization of the Correlator Graph.

36

To fully understand the optimization of the Correlator Graph, an analysis of the

Functional Elements; arithmetic processors, global memory, Input/output processor

scheduler, the data transfer network, scheduler and system language messages must be

performed.

The arithmetic processor statistic Free Time is the key field for analysis of the AP

functional element. A Free Time Value of under 10% indicates insufficient AP resources.

If an AP runs out of free time, the Correlator Graph will fail. Free Time for APO, API, AP2,

and AP3 is 99.83%, 99.83%, 99.84%, and 99.86% respectfully. The APs are providing the

Correlator Graph with a sufficient amount of Free Time which guarantees the

multiprocessor will have an AP available when needed.

The Global Memory Statistics high water mark is the key data field for analysis. This

high water mark is the sum of the static memory, the dynamic memory, and the pointer

block utilized simultaneously. The GM supports optimized performance through memory

management of data.

The cancelled by SNDT (Suspend Node Data Transfer) is the key field for analysis for

the input/output processor. If this value is not zero, it indicates data is backing up on the

graph. Input/Output processor IOP0 and IOP1 for the Correlator Graph are both zero,

indicating a free flow of data.

The avg wait field for the DTN utilization is the key field for analysis. If the wait

statistic is too high for any concentrator or distributor, indications are that congestion

exists, and a modification to the AN/UYS-2 must be accomplished for the system to

executed smoothly. The data for the Correlator Graph and the machine configuration show

little contention, thus indicating optimal performance.

The high water mark field of the DTN inputfifo statistics is the key field for analysis.

This field tracks the maximum number of 16-bit words waiting in the buffer at any one

time. If the FIFO (First-In-First-Out) buffer capacity exceeds the 32K for SEM-B or 8K for

SEM-E, a blocked message is substituted. The Correlator Graph performance is

37

outstanding with GMO and GM4 each having 16689 words in the buffer, well below the 32K

maximum.

The System Language message field which provides key data are the QOC (queue over

Capacity) and SNDT (Suspend Node Data Transfer). These messages indicate that data has been

backing up. If both values are greater than zero, there is a risk of losing data. The Correlator Graph

simulation performance has QOC equal to one, SNDT equal to zero, so performance is not

degraded.

Figure 18: Correlator Graph Part 1

38

Figure 19: Correlator Graph Part 2

The simulation process is now complete for the Correlator Graph, with results indicating that

this graph will function in an optimal capacity in its current configuration. The ECOS simulator has

provided a data flow path for a specific hardware configuration which meets the requirements for

the current data input rate as described in the input/output file.

39

40

IV. SYNCHRONIZATION TRIGGER QUEUES

A. INTRODUCTION

Analyzing and predicting the performance of the AN/UYS-2, the multiprocessor

which the ECOS system simulates, is an extremely complicated process. The graph

representation used by the ECOS simulator provides an excellent tool to perform analysis

of how different processes integrate together to complete the execution of a specific graph.

But, a second area which must be addressed, is the transfer of data between nodes during

execution. Currently, the AN/UYS-2 utilizes a First-Come-First-Serve algorithm which

does not provide any characteristics which can be utilized to predict performance. A

possible solution is the implementation of the Revolving Cylinder algorithm by Graph

Restructuring. This process, along with its implementation on the ECOS system and the

simulation of several graph's to demonstrate how node execution can be controlled will

follow.

B. GRAPH RESTRUCTURING

Graph Restructuring provides a means to control the graph's execution, while not

modifying the basic purpose of the graph. As data rates increase, or the issue of scalability

is applied to a graph, the execution of a graph and the data transfer between nodes must be

computed to insure sufficient hardware configurations are available. An algorithm which

overcomes these issues and which does not change the semantics of the graph, is the RC

algorithm.

The key idea in the RC algorithm is based on inserting dependencies into the graph.

These dependencies will be implemented into a graph by inserting trigger queues

(dependency arcs) onto the graph which utilizes the FCFS algorithm. Essentially, the

execution of nodes in the graph will be controlled by the trigger queues, and their

associated parameters.

41

The advantages of the RC algorithm are that each execution of a graph will set up a

system where performance can be predicted, reduce memory contention, and maximize

communication and computation overlap. This will make the system have more predictable

average response time and throughout. Thus memory contention can be reduced because

the nodes and queues can be mapped to different memory modules. Another advantage of

RC is the ability to achieve maximum overlap of communication time with computation

time by placing the cylinders in appropriate order of execution.

C. ADDING TRIGGER QUEUES

The graph in Figure 20, the PGM_TUT sample graph, will be used as an example in

demonstrating the implementation of the TRIGGER Queues onto a graph. The graph will

be modified step by step, with an explanation of the transformation to the RC technique.

Trigger queues must consist of artificial data flows. Implementation is accomplished

using the same structures seen previously for traditional data flow, node production sent to

an assigned queue in memory, via an output port, then to the successor node via an input

port. In the case of hierarchical structures, triggering pulses are passed using the actual

input and output constructs [SWK 93].

To implement, changes must be made to the graph by using the graph editor gred. Four

basic steps must be accomplished to implement the trigger queue. The local queue must be

created and the characteristics declared. The queue must be connected to a node, and the

threshold level declared. The node of interest must be modified to reflect the new input into

the node, and possible output to a Revolving Cylinder queue. The output connection from

the node to a trigger queue must be edited to reflect the change.

42

fll

A2

A3

BEAt-

Figure 20: PGMTUT Sample graph

1. Trigger Queue

The trigger queue channels synchronization signals called trigger queue pulses

rather than data. This allows the forced synchronization of an otherwise asynchronous, data

43

driven sequence of operations. The data elements on a trigger queue are pulses which have no

semantic value.

To implement a trigger queue on a graph, the graphical editor gred, must be utilized.

Invoke the gred function, and read in the graph to be modified. Select INTRODUCE / LOCAL

QUEUE, choose single or family, then place the queue on the graph in a position relative to the

node which will be modified. The next step is the naming of the queue. Select the queue with

the arrow and depress the #1 button (the left of three), at which time a menu will pop up, select

name. Enter a name in the text bar section of the gred display. Depress the return button, then

the #2 (center button) on the mouse which acknowledges the 'ok' display.

RCl
description

■ |Thn. 1%. m trigger- quou> «hidi will tiiulat* * d^paodancy
^arc. which can bo used to atnulate tho RC algoclthM

inod«- rcliTpntr
■ TRIGGER

initial «»lu-i »»lKtor

1
Figure 21: Queue Definition Window

2. Initializing the Trigger Queue

Now that the queue has been named, the internal characteristics must be defined. The

queue is edited by selecting the queue with the #1 mouse button. Depress the #3 mouse (right)

button, a pop up menu appears and select the edit%Queue. The Local Queue Definition Window

as in Figure 21, will appear. The description field is used to enter text which will appear as

comments in the SPGN code. The mode reference field is where the mode of the queue is

defined by selecting the TRIGGER mode. The initial values field refers to the number of trigger

pulses to be placed on the trigger queue. A single value may be entered. The member selector

(mselector) field is used when a family local queue is being defined, and used to enter initial

values into the queue.

44

If the queue is a family trigger queue, two additional fields, the family

dimensions/local index, and initial value/mselector fields can be defined. The family

dimensions of a queue could be a one dimension such as 1..8. The initial value / member

selector field can be input by mapping the values to the member selector.

3. Input Port Connection and Setting Threshold Levels

The queue must be connected to the node which will receive the trigger pulses.

This is accomplished by creating a connection. Select the INTRODUCE / CONNECTION,

single or family (must correspond to the queue definition). Depress the #2 mouse button on

the queue, then the #2 mouse button on the destination Node. The characteristics of this

Port must now be defined. Place the mouse button arrow on the Port and depress #1 mouse

button to edit the port. The Port definition window will appear. Enter the Node Execution

Parameter (NEP) THRESH (see Figure 22), which represents the number of data elements

required to be on the queue in order for the node to execute.

1
RC1

NEP ualue
ITHRESH 1

Figure 22: Input Port Connection

4. Output Port Connections

The trigger queue must be connected from a node with input to the queue. The

OUTPUT Port connection (see Figure 23) menu, is utilized to declare the number of trigger

pulses to be placed on a trigger queue. In Figure 23, the Node Execution Parameter is

45

declared as type pulse, with a member selector of 1 which means one trigger pulse is placed

onto the connection.

/^~* ^X u> $ RCl

Figure 23: Output Port Connection

5. Modifying Node Descriptions

When a node is declared in a graph, a Primitive Interface Definition (PID) must

be used to define the node descriptions. But trigger queues are not accounted for in the PID

library in the ECOS system. To counter this, the trigger queues must be introduced using

the Parallel Interface Port (PIP) [NRL 90]. This method of using the PIP allows data that is

not specified within the PRIM_IN macro of the PID to be utilized as a normal execution

function.

The node's PIP allows information to be passed into a node via the inport port

which is not associated with the node primitive. The declaration PIP_IN, utilizes the macro

$INx.

46

Item parameter list
I PRIM CBH.RFF
JPRIM.IN 512,0,4,1,*1N0,«1N1
I PRIM.OUT t0UT0,*OUTl
IPIP.IN tIN2

Figure 24: PIPIN Declaration

The node's PIP may pass information out through node output ports not

associated with the node' s primitive. Such a node output port is attached to a queue of mode

trigger. The PIP may place zero or more initial pulses on the trigger queue. The declaration

PIP_OUT, which utilizes the macro $OUTx, specifies the actual parameters passed out of

the node which do not originate at the node's underlying primitive.

parameter list

| tINO
PRIM.0UT tOUTO
PIP.OUT *0UT1

Figure 25: PIPOUT Declaration

If the node is connected to a trigger queue, the Output Connection from the node

to the trigger queue must be edited. By selecting the Output port, the Node Execution

Parameter PULSE must be added. PULSE represents the number of trigger pulses to be

47

placed on a trigger queue. The value entry represents the number of tokens to be transferred

to the trigger queue.

NEP valu*
■ PULSE 1

'(
T*^ \ RC1

)

Figure 26: Output Port

48

Figure 27: Restructured Graph

D. RESTRUCTURED GRAPH EXECUTIONS

To demonstrate that a trigger queue does perform as a control mechanism, the graph

was executed three times with different characteristics. The Restructured Graph in Figure

27, consists of one trigger queue RC1. This trigger queue creates the capability to control

the node execution, providing the technique which can be utilized to analyze and predict a

graph's performance. This graph was executed using the same input files which were

examined in Chapter 2. The only variables which were modified were the number of trigger

tokens, and the threshold levels.

49

The simulation of graphs using the ets++ function, was executed for three graphs to

provide analysis of the effects of the trigger queue on a graph. The Basic Sample Graph

was executed to provide a benchmark with results in Figure 28. The second execution,

using the trigger queue as displayed in Figure 27, was set with a threshold of zero, and two

trigger tokens. The introduction of the two trigger tokens into the graph reduced the number

of times the graph was executed which can be seen in Figure 29. The third execution, used

a threshold of one and zero trigger tokens, which caused deadlock in the graph. Reviewing

the results in Figure 30, one can see that none of the nodes were executed.

Node Node
id name

>B&NDSHIFT
>FIR1
>FIR2
>FIR3

GM times
id scheduled

3 389
4 389
3 388
4 387

Figure 28: Basic Graph

Node Node
id name

0 >BMD SHIFT
1 >FIR1
2 >FIR2
3 >FIR3

GM tines
id scheduled

3S5
355
354
353

Figure 29: Threshold = 0 / Trigger 2

Node Node GM times
id name id scheduled

0 >BÄND SHIFT 3 0
1 >FIR1 4 0
2 >FIR2 3 0
3 >FIR3 4 0

DEADLOCK

SITUATION

Figure 30: Threshold = 1 / Trigger = 0

50

The trigger queue technique demonstrated by the three executions of these basic

graphs demonstrates how the transfer of data between nodes can be varied. This method

can be utilized to implement a control process into graphs which will allow the analysis and

the ability to predict data flow in graphs.

51

52

V. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH

A. CONCLUSION

As the U. S. Navy moves into the Twenty-first Century the signal processing

requirements will continue to increase. With the quick reaction time needed onboard ships

to counter the enemies' offensive weapons or the timely processing of data needed to

compute a fire control solution, the Navy must optimize the use of the AN/UYS-2

multiprocessor. Real time and parallel systems will be needed to meet these needs, and will

continue to grow in size and complexity. While scalability is one facet of a parallel

program, it is not a direct measure of performance [HEN 90]. This area, performance of

electronic equipment is what the U. S Navy must be concerned with.The trigger queue

implementation provides a technique to predict performance, which will allow the testing

of new features of the AN/UYS-2 multiprocessor before upgrades and/or new features are

entered into the fleet. Compile time analysis of whether the new graph will meet the

required data rate estimates for a new system will become possible. Data-flow execution

can be carried out in a controlled manner using the trigger queue, thus improving

predictability of the application graph.

B. TOPICS FOR FUTURE RESEARCH

Several topics for further study can be derived from this investigation. All of them are

related to either improving performance or to explaining events which can be utilized to

optimize the AN/UYS-2 multiprocessor.

Performance analysis studies of the trigger queues on graphs currently under

development for use by the U.S. Navy should be conducted and analyzed. The current focus

of ASW (Anti-Submarine Warfare) has shifted from the passive mode of prosecution of

nuclear submarines to the active mode of searching for diesal submarines which should

result in new procedures being developed.

53

The topic of scalability must be addressed and what effect executing several graphs

simultaneously has on performance of the graph. This system looks at only one specific

graph and tailors the hardware configuration file for that graph. Analysis must be

performed on real-time scenarios encountered by U.S. Navy ASW platforms and the effect

on the graph execution statistics.,

In the hardware configuration area, the interconnection structure of the AN/UYS-2,

and possible additions of cache memory for processors and the effect on performance. The

introduction of trigger queues greatly increased the number of system language messages

onto the Data Transfer Network and the addition of cache memory may reduce this high

number.

54

APPENDIX A. CORRELATOR GRAPH COMMAND PROGRAM

This appendix contains the Correlator Graph command program, testxp.

%INITCOMPROG()

int STI=4;
float F = 500.0;
float SR = 1000.0;
float TC = 50.0;

IO_PROC_IDiopl,iop2,iop3,iop4;
GRAPHJDG;
QUEUE_IDib[2],ob[2];

ib[0]=%CREATEQ(FIXED);
ib[l]=%CREATEQ(FIXED);
ob[0]=%CREATEQ(INT);
ob[l]=%CREATEQ(INT);

G = %START(E006
GIP = SR,F,TC,STI
INPUTQ = FAMILY(ib[0],ib[l])
OUTPUTQ = FAMILY(ob[0],ob[l])
PRIORITY = 2);

if(%SCODE)exit(l);

iopl = %INITIO(INl INPUTQ = ib[0]);
iop2 = %INITIO(IN2 INPUTQ = ib[l]);
iop3 = %INITIO(OUTl OUTPUTQ = ob[0]);
iop4 = %INITIO(OUT2 OUTPUTQ = ob[l]);
%STARTIO(iopl);
%STARTIO(iop2)
%STARTIO(iop3)
%STARTIO(iop4)

%PRINT(%TERM, 1 ,G);

%ENDPROGRAM

55

56

APPENDIX B. CORRELATOR GRAPH INPUT/OUTPUT FILE

This appendix contains the Correlator Graph Input/Output file, l.io.

#@(#) /b/cm/emsp/sef/sccs/b2/eo/s.eo.ioproc.cf 1.2 3/5/91

The format of the i/o procedure file is tabular; the information
content is simple, so this should cause no problems, and it reduces
the amount of baggage in the simulator for interpreting this file.

NAME is the symbolic identifier of the i/o procedure named in
the %INITIO statement in the command program; it must match exactly;
case is significant.

TYPE is one of INPUT, BIDIRECTIONAL, or OUTPUT

DATA RATES for graph inputs are expressed in words/second

THRESH, READ, CONSUME, and PRODUCE amounts are in words

comments look like this, everything on a line to the right
of the sharp sign is discarded

#name

INI

type

INPUT

number of
ports

output

1

#-

rate produce

2048 2048

IN2 INPUT 1

rate

2048

produce

2048

57

number of
ports
#name type input
#--—
0UT1 OUTPUT 1

thresh read consume
-

513 513 513

OUT2 OUTPUT 1

thresh

read consume

513 513 513

58

APPENDIX C. CORRELATOR GRAPH SIMULATION FILE

This appendix contains the Correlator Graph simulation file corr.ets.

version 2.0

ioprocs 4

#ioproc
#ident

0
1
2
3

name

INI
IN2
OUT1
0UT2

lop input output
ident type ports

0

ports

0 I 1
0 I 0 1
0 0 1 0
0 0 1 0

graph E006 2

PIDS /users/res/ecos/temp/Ecosws/Pids/pidtoc

(E006

(32 ;Queues
(X (1

(
(GRAMOUT (1

FIXFLOUT1
BAND1OUT
BAND20UT
FIXFL0UT2
FIR20UT
FIR10UT
ZFILOUT
FFT20UT
FFT10UT
WIND10UT
WIND20UT
IFFTOUT
PWRMULTOUT
SQRTOUT
ASQRTOUT
MAGOUT
DIVOUT
STIOUT
EAVNOUT
MULTOUT
PWR10UT

(

0 (1

2 (1

2))))

2))))

59

PWR20UT
C0EFFPTR1
COEFFPTR2
EAVNFEED
REFVECT2
(REP20UT (1

(30 (1 2))))
(REPIOUT (1

(32 (1 2))))
(REP3 0UT (1

(34 (1 2))))
REFVECT

)
(27
; 27 Nodes
FIXFL1
FIXFL2
BAND1
FIR1
BAND2
FIR2
ZEROFILL
FFT2
FFT1
WINDOW1
WINDOW2
REPLICATE2
REPLICATE1
MULTXY
POWERX
POWERY
INVERSEFFT
MAGNITUDE
MULTPOWER
SQRT
CHANGE
NORMALIZE
INTEGRATE
REPLICATE3
GRAM
EXPAVG
ASCAN

)
; 0 Vars

60

nodes 27

#node is exec input output
#ident [index]name c lass type size cycles ports ports primitive

0 FIXFL1 1 P 256 6174 1 1 DMC_FXFL
1 FIXFL2 1 P 256 6174 1 1 DMC_FXFL
2 BAND1 1 P 256 16492 2 2 CDM_RVF
3 FIR1 1 P 256 67781 1 1 FIR_C2S
4 BAND2 1 P 256 16492 2 2 CDM_RVF
5 FIR2 1 P 256 67781 1 1 FIR_C2S
6 ZEROFILL 1 P 256 8244 1 1 DFC_REORD
7 FFT2 1 P 256 21403 1 1 FFT_CC
8 FFT1 1 P 256 21403 1 1 FFT_CC
9 WIND0W1 1 P 256 5193 1 1 DCP_HAMN

10 WINDOW2 1 P 256 5193 1 1 DCP_HAMN
11 REPLICATE2 1 P 256 0 1 2 DFC_REP
12 REPLICATE1 1 P 256 0 1 2 DFC_REP
13 MULTXY 1 P 256 7206 2 1 VCC_VMUL
14 POWERX 1 P 256 3105 1 1 VOC_PWR
15 POWERY 1 P 256 3105 1 1 VOC_PWR
16 INVERSEFFT 1 P 256 23507 1 1 FFT_CC
17 MAGNITUDE 1 P 256 2099 1 1 DCP_CSMG
18 MULTPOWER 1 P 256 52 2 1 VRR_VMUL
19 SQRT 1 P 256 70 1 1 VOR_VSQR
20 CHANGE 1 P 256 0 1 1 DMCJSMC
21 NORMALIZE 1 P 256 5180 2 1 VRR_VDIV
22 INTEGRATE 1 P 256 7031 1 1 DCP_STI
23 REPLICATE3 1 P 256 0 1 2 DFC_REP
24 GRAM 1 P 256 9271 2 1 DFC_REQ
25 EXPAVG 1 P 256 3821 2 2 DCP_EAVN
.26 ASCAN 1 P 256 9271 2 1 DFC_REQ

queues 37

#queue init elem src src prod sink sink thresh re ad cons lm
#[dims]name type el em size node port amt node port amt amount amt type

(1]X I 0 1 0 0 0 0 0 16384 16384 16384 OM
[2]X I 0 1 1 0 0 1 0 16384 16384 16384 OM
[1]GRAMOUT 0 0 1 24 0 513 2 0 0 0 0 ####
[2]GRAMOUT 0 0 1 26 0 513 3 0 0 0 0 ####
FIXFLOUT1 S 0 2 0 0 16384 2 1 16384 16384 16384 OM
BAND1OUT S 39 4 2 0 16384 3 0 16423 16423 16384 OM
BAND20UT S 39 4 4 0 16384 5 0 16423 16423 16384 OM
FIXFLOUT2 S 0 2 1 0 16384 4 1 16384 16384 16384 OM
FIR20UT S 0 4 5 0 4096 6 0 4096 4096 4096 OM
FIRIOUT S 0 4 3 0 4096 8 0 4096 4096 4096 OM
ZFILOUT S 0 4 6 0 4096 7 0 4096 4096 4096 OM
FFT20UT S 0 4 7 0 4096 10 0 4096 ä096 4096 OM
FFT10UT S 0 4 8 0 4096 9 0 4096 4096 4096 OM
WINDIOUT S 0 4 9 0 4096 12 0 4 09 6 3096 4096 OM

61

WIND20UT s 0 4 10 0 4096 ii
IFFTOUT s 0 4 16 0 2052 17
PWRMULTOUT s 0 2 18 0 4 19
SQRTOUT s 0 2 19 0 1 20
ASQRTOUT s 0 2 20 0 1 21
MAGOUT S 0 2 17 0 2052 21

DIV0ÜT

0 4096 4096 4096 OM
0 2052 2052 2052 OM
0 4 4 4 OM
0 4 4 4 OM
1 1 1 1 0M

513 513 513 OM
0 2 21 8 515 21 I 2052 2052 2052 01

STIOUT S 0 2 22 0 513 23 0 513 513 513 OM
EAVNOUT S 0 2 25 0 513 26 0 513 513 513 OM
MULTOUT S 0 4 13 0 4096 16 0 4096 4096 4096 OM
PWR10UT S 0 2 14 0 4 18 1 4 4 4 OM
PWR20UT S 0 2 15 0 4 18 0 4 4 4 OM
COEFFPTR1 S 1 1 2 1 1 2 0 1 1 1 CULM
COEFFPTR2 S 1 1 4 1 1 4 0 1 1 1 CULM
EAVNFEED s 513 2 25 1 513 25 0 513 513 513 OM
REFVECT2 s 513 2 -1 c 0 26 1 513 513 0 OM
[1JREP20UT s 0 4 11 0 4096 13 1 4096 1 1 OM
[2]REP20UT s 0 4 11 1 4096 15 0 4096 4096 4096 OM
[11REP10UT s 0 4 12 0 4096 13 0 4096 4096 4096 OM
[2]REP10UT s 0 4 12 1 4095 14 0 4096 4096 4096 OM
[1JREP30UT s 0 2 23 0 513 24 0 513 513 513 OM
[2]REP30UT s 0 2 23 1 513 25 1 513 513 513 OM
REFVECT s 513 2 -1 0 0 24 1 513 513 0 OM

graph vars 0
end of E006

connect 0

62

APPENDIX D. CORRELATOR GRAPH gas OUTPUT

This appendix contains the Correlator Graph gas output produced by using the

simulation file corr.ets and the Input/Output file l.io as input.

Static Graph Analysis - EWS Release: 5.6

Invocation: gas -g corr.ets -i l.io -n all -q all -o corr.gout

total graph objects: 27 nodes, 37 queues, 0 graphvars, 4 I/O procedures

graph: E006
pids: /users/res/ecos/temp/Ecosws/Pids/pidtoc
graph objects: 27 nodes[0,26], 37 queues[0,36], 0 graphvars, 4 I/O procedures[0,3]

graph source: corr.ets
i/o procedure source: l.io

total node scheduling rate:
AP node scheduling rate:
total required AU cycles:
mean AU cycles per node:
mean queue consumes / node:
mean queue consume amount:
mean queue reads / node:
mean queue read amount:
mean queue writes / node:
mean queue write amount:
mean graph variable reads:
mean gv read amount:
mean graph variable writes:
mean gv write amount:
mean queue+gv read amount:
mean queue+gv write amount:
mean AIS size:
Bandwidth AP:
Bandwidth IOP:
Bandwidth GM:

3.44 / second
3.19/second
3.90e+04 cycles / second
1.22e+04 cycles
1.28 CQ /node

13048.27 words/CQ
1.28 RQ /node

13120.46 words/RQ
1.24WQ /node

13078.38 words/WQ
0.00RGV /node
0.00 words /RGV
0.00WGV /node
0.00 words /WGV

13120.46 words / (RQ,RGV)
13078.38 words / (WQ,WGV)

256.00 words / AIS
1.05e+05 words / second

4.22e+03 words / second
1.09e+05 words / second

2 nodes with inconsistent scheduling rate:

63

E006>MULTXY (id=13) (min,max) = (1.25e-01,5.12e+02) / sec
E006>NORMALIZE (id=21) (min.max) = (3.12e-02,5.00e-01) / sec

Individual node statistics
Node Node rate rate number of
id name (exec/sec) (cycl/sec) ROs WOs COs

0 E006>FIXFL1 .125 772
1 E006>FDCFL2 .125 772
2 E006>BAND1 .125 2.06e3
3 E006>FIR1 .125 8.47e3
4 E006>BAND2 .125 2.06e3
5 E006>FIR2 .125 8.47e3
6 E006>ZEROFILL .125 1.03e3
7 E006>FFT2 .125 2.68e3
8 E006>FFT1 .125 2.68e3
9 E006>WINDOW1 .125 649

10 E006>WINDOW2 .125 649
11 E006>REPLICATE2 .125 0
12 E006>REPLICATE1 .125 0
13 E006>MULTXY .125 901
14 E006>POWERX .125 388
15 E006>POWERY .125 388
16 E006>INVERSEFFT .125 2.94e3
17 E006>MAGNiTUDE .125 262
18 E006>MULTPOWER.125 6.5
19 E006>SQRT .125 8.75
20 E006>CHANGE 0.0312 0
21 E006>NORMALIZE 0.0312 162
22 E006>INTEGRATE .125 879
23 E006>REPLICATE3 .125 0
24 E006>GRAM .125 1.16e3 2
25 E006>EXPAVG .125 478 2
26 E006>ASCAN .125 1.16e3 2

 i/o rate
RGVs WGVs (word/se

0 0 6.14e3
0 0 6.14e3
0 0 12.3e3
0 0 10.3e3
0 0 12.3e3
0 0 10.3e3
0 0 4.1e3
0 0 4.1e3
0 0 4.1e3
0 0 4.1e3
0 0 4.1e3
0 0 6.14e3
0 0 6.14e3
0 0 4.1e3
0 0 2.05e3
0 0 2.05e3

I 0 0 3.07e3
1 0 0 1.54e3
2 0 0 3
1 0 0 1.25
1 0 0 .312
2 0 0 64.2
1 0 0 641
1 0 0 385
2 0 0 321
2 0 0 513
2 0 0 321

64

APPENDIX E. CORRELATOR GRAPH MACHINE
CONFIGURATION FILE

This appendix contains the Correlator Graph machine configuration file 4-6.cf.

CONFIGURATION

Machine configuration file: /users/res/ecos/temp/Ecosws/0graph/4-6.cf
Produced by med at: Sat Aug 20 10:55:05 1994

number of functional elements of each type

type quantity
—

AP 4
GM 6
IOP 2

number of concentrators/distributors on DTN

DIST 8
CONC8

HARDWARE
type
—

AP

name did cid class

AP:0 0 0 1
AP AP:1 1 1 1
AP AP:2 2 2 1
AP AP:3 3 3 1
GM GM:0 4 4
GM GM:1 5 5
GM GM:2 6 6
IOP IOP:0 7 7
GM GM:3 4 4
GM GM:4 5 5
GM GM:5 6 6
IOP IOP:l 7 7

65

66

APPENDIX F. CORRELATOR GRAPH ets++ OUTPUT

This appendix contains the Correlator Graph ets++ output file produced by utilizing

the simulation file corr.ets, the Input/Output file l.io, and the Machine Configuration file

4-6.cf.

EMSP Event Time Simulator - EWS Release: 5.6

Invocation: ets++ -g corr.ets -i l.io -m 4-6.cf -t 10 -n all -q all

Machine parameter file: '/users/res/ecos/temp/Ecosws/lib/params.d' of 06/18/93
09:12

Configuration

FE count: 13
AP count: 4
GM count: 6
IOP count: 2
concentrators: 8
distributors: 8

total graph objects: 27 nodes, 37 queues, 0 graphvars, 4 I/O procedures

graph: E006
pids: /users/res/ecos/temp/Ecosws/Pids/pidtoc
graph objects: 27 nodes[0,26], 37 queues[0,36], 0 graphvars, 4 I/O procedures[0,3]

Statistics

Simulation clock = 10.000 seconds

67

Functional Element Utilization Statistics

FEID: 0 NAME: AP:0 TYPE: arithmetic processor
cone id: 0 dist id: 0
AP Class: 1
CU idle = 99.95 %
CUwait= 0.00%
CUbusy= 0.05%
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec
service wait per dtn request: avg = 2.43e-06 sec, max = 2.76e-05 sec
cbus messages sent: 17 received: 0
dtn messages sent: 5 received: 11

AG/AU nodes executed: 5 (CU only: 0)
AG/AU busy: 0.14%
AG/AU pending: 0.14%
AG/AU efficiency: 49.50 %
Free time (AP:0): 99.86 %

FEID: 1 NAME:AP:1 TYPE: arithmetic processor
cone id: 1 dist id: 1
AP Class: 1
CU idle = 99.96 %
CU wait = 0.00 %
CUbusy= 0.04%
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec
service wait per dtn request: avg = 0.00e+00 sec, max = 0.00e+00 sec
cbus messages sent: 15 received: 0
dtn messages sent: 6 received: 10
AG/AU nodes executed: 4 (CU only: 1)
AG/AU busy: 0.15 %
AG/AU pending: 0.15%
AG/AU efficiency: 48.83 %
Free time (AP:1): 99.85%

68

FEID: 2 NAME: AP:2 TYPE: arithmetic processor
cone id: 2 dist id: 2
AP Class: 1
CU idle = 99.95 %
CUwait= 0.00%
CUbusy= 0.05%
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec
service wait per dtn request: avg = 7.29e-06 sec, max = 3.33e-05 sec
cbus messages sent: 19 received: 0
dtn messages sent: 7 received: 12
AG/AU nodes executed: 4 (CU only: 1)
AG/AU busy: 0.06 %
AG/AU pending: 0.11%
AG/AU efficiency: 36.43 %
Free time (AP:2): 99.89 %

FEID: 3 NAME: AP:3 TYPE: arithmetic processor
cone id: 3 dist id: 3
AP Class: 1
CU idle = 99.95 %
CUwait= 0.00%
CUbusy= 0.05%
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec
service wait per dtn request: avg = 2.43e-06 sec, max = 2.76e-05 sec
cbus messages sent: 17 received: 0
dtn messages sent: 6 received: 11
AG/AU nodes executed: 5 (CU only: 0)
AG/AU busy: 0.05 %
AG/AU pending: 0.12%
AG/AU efficiency: 29.28 %
Free time (AP:3): 99.88 %

FEID: 4 NAME: GM:0 TYPE: global memory
cone id: 4 dist id: 4
CUidle= 99.94%
CUwait= 0.00%
CUbusy= 0.06%
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec
service wait per dtn request: avg = 0.00e+00 sec, max = 0.00e+00 sec
cbus messages sent: 4 received: 12
dtn messages sent: 8 received: 12
GM Utilization (busy + dtn i/o): 0.24 %
memory usage, high water mark: 79579; pointer block: 336, static: 12203

69

Queue table: 224 GI table: 3000
Node table: 384 Queue Hist: 0

GV table: 0 Templates: 7020 (appr)
GV memory: 0 delta: 0 (assm)

Initial data: 1568 CTC table: 7
Nodes: 6 Queues: 7 Graph Variables: 0

FEID: 5 NAME:GM:1 TYPE: global memory
cone id: 5 distid: 5
CU idle = 99.95 %
CUwait= 0.01 %
CUbusy= 0.04%
service wait per cbus request: avg = 5.71e-07 sec, max = 7.71e-06 sec
service wait per dtn request: avg = 0.00e+00 sec, max = 0.00e+00 sec
cbus messages sent: 5 received: 13
dtn messages sent: 8 received: 5
GM Utilization (busy + dtn i/o): 0.14 %
memory usage, high water mark: 43963; pointer block: 176, static: 10779

Queue table: 224 GI table: 3000
Node table: 256 Queue Hist: 0

GV table: 0 Templates: 7020 (appr)
GV memory: 0 delta: 0 (assm)

Initial data: 272 CTC table: 7
Nodes: 4 Queues: 7 Graph Variables: 0

FEID: 6 NAME: GM:2 TYPE: global memory
cone id: 6 dist id: 6
CU idle = 99.95 %
CUwait = 0.00%
CU busy = 0.05 %
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec
service wait per dtn request: avg = 0.00e+00 sec, max = 0.00e+00 sec
cbus messages sent: 4 received: 12
dtn messages sent: 8 received: 12
GM Utilization (busy + dtn i/o): 0.15 %
memory usage, high water mark: 26969; pointer block: 80, static: 10505

Queue table: 160 GI table: 3000
Node table: 320 Queue Hist: 0
GV table: 0 Templates: 7020 (appr)

GV memory: 0 delta: 0 (assm)
Initial data: 0 CTC table: 5

Nodes: 5 Queues: 5 Graph Variables: 0

70

FEID: 7 NAME: GM:3 TYPE: global memory
cone id: 4 dist id: 4
CU idle = 99.96 %
CUwait= 0.00%
CUbusy= 0.04%
service wait per cbus request: avg = 7.14e-07 sec, max = 7.71e-06 sec
service wait per dtn request: avg = 7.23e-05 sec, max = 3.62e-04 sec
cbus messages sent: 5 received: 10
dtn messages sent: 6 received: 5
GM Utilization (busy + dtn i/o): 0.16 %
memory usage, high water mark: 46507; pointer block: 224, static: 12011

Queue table: 224 GI table: 3000
Node table: 192 Queue Hist: 0

GV table: 0 Templates: 7020 (appr)
GV memory: 0 delta: 0 (assm)

Initial data: 1568 CTC table: 7
Nodes: 3 Queues: 7 Graph Variables: 0

FEID: 8 NAME: GM:4 TYPE: global memory
cone id: 5 ■ dist id: 5
CU idle = 99.95 %
CUwait= 0.00%
CUbusy= 0.05%
service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec
service wait per dtn request: avg = 0.00e+00 sec, max = 0.00e+00 sec
cbus messages sent: 4 received: 12
dtn messages sent: 8 received: 4
GM Utilization (busy + dtn i/o): 0.23 %
memory usage, high water mark: 79482; pointer block: 336, static: 12106

Queue table: 192 GI table: 3000
Node table: 320 Queue Hist: 0

GV table: 0 Templates: 7020 (appr)
GV memory: 0 delta: 0 (assm)

Initial data: 1568 CTC table: 6
Nodes: 5 Queues: 6 Graph Variables: 0

FEID: 9 NAME: GM:5 TYPE: global memory
cone id: 6 dist id: 6
CU idle = 99.97 %
CUwait= 0.00%
CUbusy= 0.03%

71

service wait per cbus request: avg = 0.00e+00 sec, max = 0.00e+00 sec
service wait per dtn request: avg = 6.99e-05 sec, max = 2.79e-04 sec
cbus messages sent: 3 received: 9
dtn messages sent: 6 received: 4
GM Utilization (busy + dtn i/o): 0.12 %
memory usage, high water mark: 27177; pointer block: 96, static: 10441

Queue table: 160 GI table: 3000
Node table: 256 Queue Hist: 0
GV table: 0 Templates: 7020 (appr)

GV memory: 0 delta: 0 (assm)
Initial data: 0 CTC table: 5

Nodes: 4 Queues: 5 Graph Variables: 0

FEID: 10 NAME: IOP:0 TYPE: input/output processor
cone id: 7 dist id: 7
Simple IOP model
cbus messages sent: 0 received: 1
dtn messages sent: 18 received: 0
Number of WQs completed: 18 cancelled by SNDTs: 0

Input queue: 0, input rate (w/sec): 2.05e+03
Input queue: 1, input rate (w/sec): 2.05e+03
Output nodes executed: 0

FEID: 11 NAME: IOP: 1 TYPE: input/output processor
cone id: 7 dist id: 7
Simple IOP model
cbus messages sent: 0 received: 1
dtn messages sent: 0 received: 0
Number of WQs completed: 0 cancelled by SNDTs: 0

Output nodes executed: 0

FEID: 12 NAME: SCH TYPE: scheduler
CU idle = 99.98 %
CUwait = 0.00%
CUbusy= 0.02%
service wait per cbus request: avg = 5.71e-06 sec, max = 7.70e-05 sec
service wait per dtn request: avg = 0.00e+00 sec, max = 0.00e+00 sec
cbus messages sent: 20 received: 50
dtn messages sent: 0 received: 0

72

CBUS Utilization Statistics

CBUS message count = 120
idle = 100.00 %
busy = 0.00 %

DTN Utilization Statistics
DTN message count = 86
Cone 0: idle = 99.95 % busy =
Cone 1: idle =99.92% busy =

busy =
busy =
busy =
busy =
busy =
busy =

Cone 3: idle = 99.93%
Cone 4: idle = 99.85%
Cone 5: idle = 99.85 %
Cone 6: idle = 99.90 %
Cone 7: idle = 99.97 %

Dist 0: idle =
Dist 1: idle:
Dist 2: idle =
Dist 3: idle =
Dist 4: idle:
Dist 5: idle =
Dist 6: idle =
Dist 7: idle =

■■ 99.90 %
: 99.88 %

99.92 %
99.92 %
99.88 %

■ 99.88 %
99.92 %
100.00 %

busy =
busy =
busy =
busy =
busy =
busy =
busy =
busy:

= 0.05%
= 0.08%
= 0.09%
= 0.07%
= 0.15%
= 0.15%
: 0.10%
: 0.03%

0.10 %
0.12 %
0.08 %
0.08 %
0.12 %
0.12 %
0.08 %
0.00 %

avg. wait i
avg. wait:
avg. wait:
avg. wait:
avg. wait =
avg. wait:
avg. wait =
avg. wait =

avg. wait =
avg. wait =
avg. wait =
avg. wait =
avg. wait =
avg. wait =
avg. wait =
avg. wait =

= 0.00e+00 sec
= 0.00e+00 sec
= 0.00e+00 sec
= 0.00e+00 sec
= 0.00e+00 sec
= 0.00e+00sec
= 0.00e+00 sec
= 0.00e+00 sec

0.00e+00 sec
0.00e+00 sec
1.10e-04 sec
0.00e+00 sec
0.00e+00 sec
0.00e+00 sec
0.00e+00 sec
0.00e+00 sec

max wait;
max wait;
max wait■■
max wait:
max wait =
max wait:
max wait:
max wait =

max wait =
max wait =
max wait =
max wait =
max wait =
max wait =
max wait =
max wait =

= 0.00e+00 sec
= 0.00e+00 sec
= 0.00e+00 sec
: 0.00e+00 sec
= 0.00e+00 sec
: 0.00e+00 sec
: 0.00e+00 sec
■■ 0.00e+00 sec

: 0.00e+00 sec
0.00e+00sec
1.32e-03 sec
0.00e+00sec
0.00e+00 sec
0.00e+00 sec
0.00e+00 sec

= 0.00e+00 sec

DTN input fifo statistics
AP:0 (id = 0) PIP: max.
AP:l(id= 1) PIP: max.
AP:2 (id = 2) PIP: max.
AP:3 (id = 3) PIP: max.
GM:0 (id = 4) PIP: max
GM:1 (id= 5) PIP: max
GM:2 (id = 6) PIP: max.
GM:3 (id = 7) PIP: max.
GM:4(id= 8) PIP: max.
GM:5 (id = 9) PIP: max.

IOP:0 (id = 10) PIP: max.
IOP:l(id=ll)PIP:max.

messages = 1, high water mark = 410
messages = 1, high water mark = 410
messages = 2, high water mark = 721
messages = 1, high water mark = 410

. messages = 1, high water mark = 16689

. messages = 1, high water mark = 8633
messages = 1, high water mark = 4605
messages = 1, high water mark = 8633
messages = 1, high water mark = 16689
messages = 1, high water mark = 4605
messages = 0, high water mark = 0
messages = 0, high water mark = 0

Node Scheduling Statistics
nodes scheduled = 20
rate = 2.0 nodes/sec

73

Cumulative SL message statistics
RQ 24
AQ 24

WQ 42

CQ 24

RGV 0
AGV 0
WGV 0
QOT 30
QUT .0
QOC 0
QUC 0
RFIS 20
SIS 20
AIS 20
EIS/ESN 0
SNDT 0
CNDT 0
CTC 0

TOTAL 204

Graph Object Statistics

Node Statistics

Node Node
id name

0 >FIXFL1
1 >FIXFL2
2 >BAND1
3 >FIR1
4 >BAND2
5 >FIR2
6 >ZEROFILL
7 >FFT2
8 >FFT1
9 >WINDOWl
10 >WINDOW2
11 >REPLICATE2
12 >REPLICATE1

GM
id

4
6
5
8
7
4
5
6
9
8
7
4
9

times
times waited
scheduled forAP

1
1
1
1

1
1
1
1

1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0

average
wait
forAP

0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00
0.00e+00

average
delay
to exec

average
brkdown
delay

2.18e-03
2.18e-03
3.79e-03
6.56e-03
3.80e-03
6.56e-03
2.18e-03
2.18e-03
2.18e-03
2.18e-03
2.18e-03
0.00e+00
0.00e+00

2.67e-03
2.67e-03
5.25e-03
1.50e-03
5.25e-03
1.50e-03
1.50e-03
1.50e-03
1.50e-03
1.50e-03
1.50e-03
4.98e-0
4.98e-03

74

13 >MULTXY 5 1
14 >POWERX 8 1
15 >POWERY 6 1
16 >INVERSEFFT 9 1
17 >MAGNITUDE 6 1
18 >MULTPOWER 4 1
19 >SQRT 8 1
20 >CHANGE 9 0
21 >NORMALIZE 4 0
22 >INTEGRATE 5 0
23 >REPLICATE3 6 0
24 >GRAM 7 0
25 >EXPAVG 8 0
26 >ASCAN 4 0

0.00e+00 2.27e-03 1.60e-03
0 0.00e+00 2.18e-03 3.27e-04
0 0.00e+00 2.18e-03 3.27e-04
0 0.00e+00 2.19e-03 9.13e-04
0 0.00e+00 1.45e-03 6.19e-04
0 0.00e+00 9.16e-04 4.32e-04
0 0.00e+00 7.55e-04 3.26e-04
0 0.00e+00 0.00e+00 0.00e+00
0 0.00e+00 0.00e+00 0.00e+00
0 0.00e+00 0.00e+00 0.00e+00
0 0.00e+00 0.00e+00 0.00e+00
0 0.00e+00 0.00e+00 0.00e+00
0 0.00e+00 0.00e+00 0.00e+00
0 0.00e+00 0.00e+00 0.00e+00

Queue Statistics

Queue Queue
id name

GM times
id written

0 >[1]X 4 9
1 >[2]X 6 9
2 >[l]GRAMOUT 9 0
3 >[2]GRAMOUT 5 0
4 >FIXFL0UT1 5
5 >BAND10UT 8
6 >BAND20UT 4
7 >FIXFLOUT2 7
8 >FIR20UT 5
9 >FIR10UT 9
10 >ZFILOUT 6
11 >FFT20UT 7
12 >FFT10UT 8
13 >WIND10UT 9
14 >WIND20UT 4
15 >IFFTOUT 6
16 >PWRMULTOUT 8
17 >SQRTOUT 9
18 >ASQRTOUT 4 0
19 >MAGOUT 7 1
20 >DIVOUT 5 0

remaining
words
in queue

2048
2048

0
0
0

156
156

0
0
0
0
0
0
0
0
0
0
2
0

4104
0

75

21 >STIOUT 6 0 0
22 >EAVNOUT 4 0 0
23 >MULTOUT 9 1 0
24 >PWR10UT 4 1 0
25 >PWR20UT 5 1 0
26 >C0EFFPTR1 5 1 1
27 >COEFFPTR2 7 1 1
28 >EAVNFEED 8 0 1026
29 >REFVECT2 4 0 1026
30 >[1]REP20UT 5 1 16380
31 >[2]REP20UT 6 1 0
32 >[1]REP10UT 7 1 0
33 >[2]REP10UT 8 1 0
34 >[1]REP30UT 7 0 0
35 >[2]REP30UT 8 0 0
36 >REFVECT 7 0 1026

76

LIST OF REFERENCES

[ATT 93] AT&T Technologies, AN/UYS-2A(V) ASIP Users' Manual, Application
Programmers Users' Manual Vol 1-3, AT&T Bell Laboratories, 28 June 1993.

[ATT 88] AT&T Technologies, Design and Implementation of an EMSP System
Simulator, AT&T Bell Laboratories, 5 August 1988.

[ATT 92] AT&T Technologies, ECOS Workstation Release 5.5 User Manual AT&T
Bell Laboratories, 1 April 1992.

[HAM 92] Hammond, S.W., Mapping Unstructured Grid Computations to Massively
Parallel Computers, Doctoral thesis, Rensselaer Polytechnic Institute, Trov New
York, February 1992.

[HEN 90] Hennessy, J.L., and Patterson, D.A., "Computer Architecture A
Quantitative Approach," pp. 585, Morgan Kaufmann Publishers, 1990.

[HUG 86] Hughs, W.P., "Fleet Tactics, theory and practice," pp.252-253 Naval
Institute Press, 1992.

[LEW 92] Lewis, T.G., and El-Rewini, H, "Introduction to Parallel Computing " no
29-30, Prentice-Hall, 1992. 6' VV'

[LIT 91] Little, B.S., A Technique for Predictable Real-Time Execution in the AN/
UYS-2 Parallel Signal Processing Architecture, Master's thesis, Naval Postgraduate
School, Monterey, California, December 1991.

[NRL 1] Naval Research Laboratory, Implementation of the Processing Graph
Method (PGM) on the EMSP with the Floating Point Arithmetic Processor (FPAP)
Specification, 15 December 1987.

[NRL 90] Naval Research Laboratory, Processing Graph Method Tutorial, 8 January

[RIC 90] Rice, M.L., "The Navy's New Standard Digital Signal Processor: The AN/
UYS-2," paper presented at the Association of Scientists and Engineers 27th
Annual Technical Symposium, 23 May 1990.

[ROS 91] Rosen, K.H., "Discrete Mathematics and its Applications," DD 423-424
McGraw-Hill, 1991. FF' '

77

[SWK93] Swank, D.P., Large Grain Data-Flow Graph Restructuring for EMSP
Signal Processing Benchmarks on the ECOS Workstation System, Master's thesis,
Naval Postgraduate School, Monterey, California, June 1993.

[VAN 91] van Roermund, A.H.M., Architectures for Real-Time Video, Elsevier

Science Publishers B.V, 1991.

78

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library
Code 052
Naval Postgraduate School
Monterey, CA 93943

3. Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Professor Amr Zaky, Code CS/Za.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Professor Shridhar Shukla, Code EC/Sh
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5100

6. LT Richard T. Keys
6061 General Diaz
New Orleans, LA 70124

79

