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In  this   paDf>T-     +-u     T . ' ' 
the modulation effect nf linear stability and v 
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I:  INTRODUCTION 

; \ 
Acousto-optic  bistable  systems  n«*    , ^ 

aualities com.cn to optical bist ^ Sy m Z^ J^ ^°Se 

.characteristics of dual channel or J^ ^? ~ ^ 

Integration. i„ specific installations, its bistabilty and 

unstabxlrty are also different in a nUmber of ways from electJ 

optic bxstable systems. It is a system with widespread uses in 
optical communications and optical computers. 

Chrostowski et alt1'2! have reported on experiments with Bragg 

acousto-optic bistable stationary equipment and Jerominek et al^l 

and Dong Xiaoyi et al^ have reported on dynamic characteristics 

of Roman-Nath acousto-optic bistable equipment. These articles 

emphasized reporting on the stable and non-stable characteristics 

of acousto-optic bistable systems. This article will discuss more 

systematically the time of linear stability of the Brag acousto- 



optic bistable system, concentrating on a discussion of the 

modulation effect of that system. 

II:  DYNAMIC EQUATIONS 

The Bragg acousto-optic bistable system depicted in Figure One 

can be described in the following equations1 ]: 

tfc(0-<tf*^*[*/M*(0+«*>)3» " (1) 
*^(j)M+«,(*) -jeTuiC*—TD)] ■ •;        -;; (2) 

In these equations, ^(0,^(*)>Uo,«*,-^«\^-K"^T*> respectively indicate 

the light output electrical conversion voltage, the post 

amplification conversion voltage, the DC bias, the half-wave 

voltage, the input light intensity, the photo-electrical conversion 

coefficient, the voltage amplification multiple, the acousto-optic 

crystal diffraction efficiency, the reaction time of the feedback 

channel and the delay time. After appropriate substitution, the 

above formulas may be written in a non-dimensional form as: 

Ia(*)=J1X:sin
al7'(*)+ö],' . (3) 

dF(i)/dt+V(fi)-I*(t-T),    ... (4) 

wherein /I^W/W)/«., Ix-«fMI/«., ' 0-**/*,. ^      ,    ' '. 

Substituting equation (3) into equation (4), we obtain] 

This is the dynamic equation of the Bragg acousto-optic bistable 

system. 



Fig 1:  Diagram of Bragg Acousto-optic Device. 

H\ t In? or 

i X 

1 

* 
s T A 

«o|  u2   ^ 

M is modulation device, D optic-electric detector, T delay sytem, 
A amplifier and B ultrasonic driving source. 

Fig. 2.  Curve of Stability State. 
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The parameters used here are K=0.8, Curves 1, 2,  3, and 4 
correspond to 0=0.3, 0.5. 0.7 and 0.9 seconds respectively. 

Ill:  QUALITATIVE ANALYSIS OF BISTABILITY AND LINEAR STABILITY 

In order to analyze the stability characteristics of this 

system, in equation (4) we set W(i)/ä*"^:    ,   obtaining F(«0-It(°°) i 

changing equation (3) to 
la-I»* ata*CZ»+*)o (6) 

This is the dynamic equation of the Bragg Acousto-optic bistable 

system. Within an appropriate range of values for 6, there is 

bistability between the output 1X   and the input I2.  In equation 



(6) if we set dIi/&Zs=W, , we obtain 
2I,=*g(Is+0)„ (7) 

From equation (7) we obtain the range of values of 6 for the 

bistability of the system as 

n5F<ö<Wr+(-f -i)*iw+0.«01*, (n-0, ±1, ±2, •••)<, "     (8) 

Figure Two represents a fur line bistability graph when the values 

of 0 are =0.03;*, 0.05:*,0.07^,0.09^ 

In order to analyze the dynamic stability, employing equation 

(5) near the point of stability, and solving for linear items, we 

obtain 

a+l=TT exp(-a2>os ßT, (9) 

Here, a and ß are the strong and weak portions of the linear 

eigenvalues, with a representing the amplitude gain and ß 

representing the oscillation frequency. W is the state parameter. 

By analyzing equations (9), (10) and (11), we can reach the 

following conclusions concerning linear stability: 

(1). When W>1, and dl2/dl1<0 corresponds to the imaginary 

slope portions of the bistability graph. When W<1, dl2/dl1 
corresponds to the real slope portions of the bistability graph. 

(2). The points on the branches of the negative slope lines 

on the bistability graph are all unstable points (a>0), and the 

points on the positive slope branches corresponding to W<1 are 

stable points (oc<0). 

(3). The stability of the points on the positive slope lines 

of the instability graph corresponding to W,-l is related to the 

delay time T of the feedback channel and the state parameter W. 

Setting a=0 and solving for equations (9) and (10), we obtain the 

graph of the boundary of the instability domain as shown in Figure 

Three. Within the domain to the lower left of the solid line, the 



value of a is always less than zero. This is the stability domain. 

At any point to the upper right of the solid line, the eigenvalues 

contain at least one eigenvalue where a is greater than zero, this 

is the instability domain. The dotted line in Figure Three denotes 

the range of values for W. We can see that the graph of the 

boundary of the instability domain of the Bragg Acousto-optic 

bistability system differs quite greatly from graph of the boundary 

of the instability domain of electro-optic bistability systemst6]. 

Fig 3.  The Boundary of the Instability Domain. 
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The parameters are K=0, 8=0.4VJT.  Solid curve is boundary of the 
instability domain. Dashed line shows region of parameter value W. 

IV:  MODULATION EFFECT 

In the system in Figure One, if the intensity of the input 

light is modulated to a simple harmonic of a certain frequency, 

then on the basis of the above analysis, we discover that certain 

extremely interesting modulation effects occur in this system. 

1.  THE MODULATION EFFECT WITHIN THE STABILITY DOMAIN 

In the domain where W<-1 and a<0, that is within the stability 

domain of the system, when the simple harmonic modulation is 

performed on the input light intensity corresponding to certain 



points on the bistability graph, then 
•liCO-io+j. «*(«**), . ■ " ;v ; ;; . :;<i2) 

Equation (5) becomes : • 
■ir(f)/&+r(ß)-g<fi, '   "•     ...;* \v--r (i3) 

When modulation amplitude A is very small, it can be demonstrated 

that V(t)xV0+BooB((Oot+?),   . :;.:.(15) 

here, FQ^.I0-K':sin
JCFo+ö] , B, and (p are the factors of the modulation 

frequency u0, the modulation amplitude A and other parameters. We 

can see from this that within the stability domain of this system, 

when the input light is modulated by a simple harmonic at <o0, the 

output is also oscillated at a simple harmonic of G>0. To study how 

the simple harmonic output varies with the simple harmonic 

frequency, we set AV-V(t)max-V(t)max and use a computer to solve for 

equation (13) and graph A against <o0. By doing this we obtain the 

four graphs shown in Figure Four of different modulation amplitude 

A values. Just as predicted, when the modulation frequency and the 

imaginary part of the linearized eigenvalue (ß=6.10) approach each 

other, there is a peak in output amplitude. This is caused by the 

modulation signal being a harmonic of one of the eigenvalues of the 

system. We can also see from the four graphs in Figure four that 

as modulation amplitude A increases the harmonic peak is lower and 

shifted to one side. This is obviously the result of the nonlinear 

response of the system gradually intensifying as the modulation 

amplitude increases. 



Fig 4. Funcion of Amplitude of Output Intensity vs. Modulation 
Fequency of Iput Itensity in Stable Region, when Input Intensity Is 
Modulated. 
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Parameters are K=0.8, 8=0.0477, I2=2.3, T=0.27. The imaginary part 
of the linearized eigenvalue is ß=6.10. Curves 1, 2, ,3, and 4 
correspond to A=0.3, 0.6, 0.9 and 1.2. 

MODULATION EFFECTS IN THE NON-STABLE DOMAIN 

In the domain of W<-1 and a>0, which is the non-stable domain 

of the system, when the input light intensity corresponding to a 

certain point on the bistability graph undergoes simple harmonic 

modulation in the form of equation (12), the solution to equation 

(5) may be written as 
FCO-FG-O^-'+JVa-'^CO,  (16> 

In this equation, the specific form of g(t') is provided by 

equation (14). Obviously,, in this domain the response of the 

system to the modulation signal will be more complex than the 

response in the stability domain. Fixing K,6,A,T,and I2 and using 

a solution to compute equation (16), we obtain the values of V(t) 

for times t. Then using a computer for rapid Fourier 

transformation, we obtain the fundamental frequency of output 

oscillation. Then drawing a graph of the fundamental output 

frequency as a factor of u0 we obtain Figure Five. We can see from 



Figure Five and its corresponding data that on the solid line AB 

the system output oscillation frequency u is equal to the input 

modulation frequency, and system eigenvalue of the fundamental 

frequency of the output oscillation of w(A=0)=3.12 falls within 

this range. This indicates that there are frequency locking 

phenomena existing near the eigenvalue of the fundamental 

frequency, and the output light non-linear oscillation is tightly 

locked in on the input modulation frequency. In Figure Five, the 

lines CD, EF, GH, IJ, and KL are all frequency lock regions. 

Fig. 5. The Function of the Fudamental Frequency of the Output 
Intensity w vs. the Modulation Frequency of the Input Intensity 0)o 
in the Unstable Region. 

Parameters are K=) , 6=0.04TT, I2=2.3. The eigenvalue of the 
fundamental frequency of the output intensity is u(A=0)=3.12, while 
the imaginary part of the linearized eigenvalue is ß=3.36. 

However, within these regions, the input modulation frequencies are 

2, 3, 1/2, 3/2, and 5/2 times that of these output oscillation 

frequencies respectively. Within the non-locked regions in 

Illustration Five, the relationship between the fundamental output 

frequency and the input modulation frequency is extremely complex. 

The size of the locked regions mentioned above will expand as 

the modulation frequency A is increased.  Figure Six shows the 

8 



fundamental frequency locked region AB as modulation amplitude A 

changes. In this figure, wmax and wmin represent the maximum and 

minimum frequency respectively of that locked region. 

Fig 6.   The Function of the Maximum <i>max and Minumum wmax of 
frequency locked region AB in Fig. 5 vs. The Modulation Depth 
4. Ao-^mm*—o>mta  is frequency locked region AB. 
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Parameters are K=0.i, 6=O.04TT, I2=2.3, T=0.6, M(A=0)=3 .12, ß=3.36, 

In frequency locked region AB, fixing the input light 

modulation frequency w0 and gradually increasing the modulation 

amplitude, the system amplitude wave form over time will have 

sequential multiple cycle, forked circuits, chaotic states, and 

reverse forked circuits. In order to recognize the forking and 

chaotic behavior of oscillation wave forms, we conducted Fourier 

frequency spectrum analysis of each output wave form, the results 

of which are shown in Figure Seven. 



Fig. 7: Function of Fundamental Frequency w of Output Intensity 
vs. the Modulation depth A when Modulation Frequency of Input 
Intensity <i)0 is a Constnt in the Frequency in the Locked Region AB 
of Fig. 5. 
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The straight lines running parallel to the abcissa show the 
frequency lockig phenomenon, where 6>=(ö0 , 2p, 4p, and 8p correspond 
to one, two and three period doubling bifurcations. The parameters 
are K=0.8, 6=04TT, 0)O=2.46  I2=2.3, T=0.81, W(A=))=2.39, ß=2.63. 

We can see from this illustration that in order to achieve 

frequency locking, the modulation amplitude must be exceed a 

certain minimum threshold. With the exception of the chaotic 

region, even though threshold exceeding wave form may go through 

multiple cycle and forking processes, its fundamental frequency of 

oscillation will always remain locked onto the modulation 

frequency. This differs from some non-linear systems where the 

fundamental frequency continues to change in forking processes. 

V:  CONCLUSIONS 

This article analyzes the conditions of bistability of Bragg 

acousto-optic bistable systems, and, on the basis of its non-linear 

boundaries, studies the physical responses of such a system to a 

simple harmonic modulation signal on the input light. It points 

the eigenvalue harmonic that exists in that system's stable domains 

and the frequency locking of unstable domains,  it also points out 
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such modulation effects as multiple cycle, forking and chaotic 

cycles induced by increasing modulation amplitudes. These 

theoretical results still need to be demonstrated experimentally. 
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