
TASK: PA18
CDRL: A023

26 February 1994

ELECTEI
*%JAN 1 0 1994

Report on Logical Foundations
.■■ a

Informal Technical Data

iöl public T.V.1-
titeuibuticri v.

Movci !

STARS-AC-A023/005/00
26 February 1994

19950109 136
»1'i.v) <-,

'/, .."-' *'

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden tor this collection of information is estimated to average I nour per response, including the time lor reviewing instruction*, searching existing data sources,
gathering and maintaining (he data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate tor Information Operations and Reports. Uli Jefferson
Oavis Highway. Suite 1204. Arlington. VA 22202-4 307. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
26 Feb 1994

3. REPORT TYPE AND-DATES COVERED

[nformal Technical Report
4. TITLE AND SUBTITLE

Report on Logical Foundations

6. AUTHOR(S)

0RA

5. FUNDING NUMBERS

F19628-93-C-0130

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Unisys Corporation

12010 Sunrise Valley Drive
Reston, VA 22091

8. PERFORMING ORGANIZATION
REPORT NUMBER

STARS-AC-A023/005/00

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Department of the Air Force
Headquarters ESC
Hanscora, AFB, MA 01731-5000

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

A023

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution "&"

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 wards)

The Penelope Ada proof editor allows a user to incrementally develop provably correct Ada
programs. The current version of the Penelope system is .formally based on a predicate
transformer semantics for sequential Ada. The purpose of this work is to provide the math-
ematical foundations for extending Penelope to Ada tasking programs.

14. SUBJECT TERMS 15. NUMBER OF PAGES
77

16. PRICE COOt

17. SECURITY CLASSIFICATION
OF REPORT

Unclaaaified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclaaaified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclaaaified

20. LIMITATION OF ABSTRACT

SAR

,MSN 75CO-01-2B0-5500 '.-.i-rM.-d cor.r ;Vi ; = .:v J 69)

TASK: PA18
CDRL: A023

26 February 1994

INFORMAL TECHNICAL REPORT

For

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Report on Logical
Foundations

STARS-AC-A023/005/00
26 February 1994

/-»ccesion For

NTIS CRA&I ^
DTiC 'iAS fj
Unannounced f~|
Ji!5--sif!Cü1.-[On

t:::::!z

D

1\-

Ay;
if* •
iSi Cp- ■,■-.}

/' 01

Data Type: Informal Technical Data

CONTRACT NO. F19628-93-C-0130

Prepared for:

Electronic Systems Center
Air Force Materiel Command, USAF

Hanscom AFB, MA 01731-2816

Prepared by:

Odyssey Research Associates
under contract to

Unisys Corporation
12010 Sunrise Valley Drive

Reston, VA 22091

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

TASK: PA18
CDRL: A023

26 February 1994

Data Reference: STARS-AC-A023/005/00
INFORMAL TECHNICAL REPORT
Report on Logical
Foundations

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

Copyright 1994, Unisys Corporation, Reston, Virginia
and Odyssey Research Associates

Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with
the DFAR Special Works Clause.

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution "A" of the Scientific and Tech-
nical Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise
indicated. Sponsored by the U.S. Advanced Research Projects Agency (ARPA) under con-
tract F19628-93-C-0130, the STARS program is supported by the military services, SEI,
and MITRE, with the U.S. Air Force as the executive contracting agent. The information
identified herein is subject to change. For further information, contact the authors at the
following mailer address: delivery@stars.reston.paramax.com

Permission to use, copy, modify, and comment on this document for purposes stated un-
der Distribution "A" and without fee is hereby granted, provided that this notice appears
in each whole or partial copy. This document retains Contractor indemnification to The
Government regarding copyrights pursuant to the above referenced STARS contract. The
Government disclaims all responsibility against liability, including costs and expenses for vi-
olation of proprietary rights, or copyrights arising out of the creation or use of this document.

The contents of this document constitutes technical information developed for internal Gov-
ernment use. The Government does not guarantee the accuracy of the contents and does
not sponsor the release to third parties whether engaged in performance of a Government
contract or subcontract or otherwise. The Government further disallows any liability for
damages incurred as the result of the dissemination of this information.

In addition, the Government (prime contractor or its subcontractor) disclaims all warranties
with regard to this document, including all implied warranties of merchantability and fitness,
and in no event shall the Government (prime contractor or its subcontractor) be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from
the loss of use, data, or profits, whether in action of contract, negligence or other tortious
action, arising in connection with the use of this document.

TASK: PA18
CDRL: A023

26 February 1994

Data Reference: STARS-AC-A023/005/00
INFORMAL TECHNICAL REPORT
Report on Logical
Foundations

Principal Author(s):

Wolfgang Polak Date

Approvals:

Program Manager Teri F. Payton Date

(Signatures on File)

26 February 1994 STARS-AC-A023/005/00

Contents

1 Introduction 1
1.1 Goals and Objectives 1
1.2 Specifying Concurrent Systems 3

1.3 Process Logic . . 4
1.4 Ada Verification 10

1.4.1 Principles H
1.4.2 Restrictions 12

1.4.2.1 Termination 12
1.4.2.2 Timing 13
1.4.2.3 Priorities 13
1.4.2.4 Task Status 13
1.4.2.5 Abort statement 13
1.4.2.6 Entry queues 14
1.4.2.7 Global variables 14

1.5 Related Work 14
1.5.1 Process Algebra 14
1.5.2 Other Approaches 15

1.5.2.1 Modal logic 15
1.5.2.2 Axiomatic Methods 16
1.5.2.3 History Sequences 16

1.5.3 Other Specification Languages 17
1.5.3.1 LOTOS 17
1.5.3.2 RSL 18

1.5.4 Support Tools 18
1.6 Organization 19

2 Formal Basis 19
2.1 Notation I9

2.2 Domains I9

2.3 First-order Logic 21
2.4 Processes 22
2.5 Operational Semantics 23
2.6 Process Equivalence 26
2.7 The "don't care" Process 28
2.8 Proof Theory 28

2.8.1 Equations 28
2.8.2 Approximation 32
2.8.3 Example Proofs 32

2.9 Denotational Semantics 34
2.9.1 Process Semantics 37

3 Semantics and Verification 38
3.1 Concepts • 38

Page ii

26 February 1994 STARS-AC-A023/005/00

3.1.1 Predicate Transformers 38
3.1.2 Application to Concurrency 39
3.1.3 A Special Case: Sequential Programs 40

3.2 Ada Tasking 42
3.2.1 Task Declarations 43
3.2.2 Task Activation 44
3.2.3 Task Termination 45
3.2.4 Entry Calls 46
3.2.5 Entries and Accept Statements 47
3.2.6 Delay Statements 47
3.2.7 Select Statements 47
3.2.8 Conditional Entry Calls 48
3.2.9 Abort Statements 48

3.3 Annotations and Proofs 48
3.3.1 Invariants in Concurrent Programs 48
3.3.2 Procedure Annotations 50
3.3.3 Abstraction and Action Refinement 50

4 Examples 51
4.1 A Buffer Task 51

4.1.1 The Program 51
4.1.2 Annotations 52
4.1.3 Verification Conditions 53

4.2 Multi-Set Partitioning 55
4.2.1 Design 55
4.2.2 The Program 57
4.2.3 Verification Conditions 58
4.2.4 A Calling Environment 59

4.3 Matrix Multiplication 62
4.3.1 The Program 62
4.3.2 Problem Areas 67

5 Conclusions 68

6 Bibliography 70

Page iii

26 February 1994 STARS-AC-A023/005/00

1 Introduction

1.1 Goals and Objectives

The Penelope Ada proof editor allows a user to incrementally develop provably correct Ada
programs. The current version of the Penelope system is formally based on a predicate
transformer semantics for sequential Ada. The purpose of this work is to provide the math-
ematical foundations for extending Penelope to Ada tasking programs. Several issues need
to be addressed to this end.

1. A suitable logical formalism needs to be defined within which it is possible to reason
about concurrent programs. In the case of sequential programs first-order logic was
sufficient for this purpose.

2. A specification and an annotation language must be defined for stating properties of
concurrent programs. In the case of sequential programs input/output conditions and
loop invariants are used as specifications.

3. A method for defining the semantics of Ada needs to be devised. Given a program
and a specification, it must be possible to derive conditions under which the program
will satisfy its specifications. This step corresponds to the generation of verification
conditions in the sequential case.

4. An effective proof procedure must be found for showing that the that correctness
conditions generated for a program are true. If first-order logic is used, then a first-
order theorem prover will suffice, in the concurrent case a theorem prover for a richer
language will be needed.

5. Finally, a new methodology for the systematic development of correct tasking programs
needs to be developed. This includes ways to formally express problem specification,
to find proper program annotations and so on.

This document addresses primarily the first three questions. While an appropriate notion
of proof is formally defined within our mathematical framework, issues of the engineering of
a practical theorem prover are not discussed. The use of the new formalism for proving the
correctness of tasking programs is demonstrated with several programming examples. But
the development of a verification methodology requires more extensive experience.

There are a number of desiderata for the formalism.

1. The specification method must be compositional and must support abstractions. This
is to say, that the meaning of a concurrent program can be determined from the
meaning of its parts and that these parts can be separately specified and proved correct.

Compositionality is important so the one can break down complex proofs into smaller,
manageable ones. Compositionality is difficult to achieve for concurrent programs since
their semantics depends on the possible interaction of all processes.

Page 1

26 February 1994 STARS-AC-A023/005/00

2. Program annotations must express the intended behavior in a natural way. The spec-
ifications of a program's parts should correspond to notions of the designer and pro-

grammer.

3. There must be reasonably efficient proof procedures for the formal correctness state-
ments. Given that fully automated proofs are not likely (and impossible in general),
it is important that the formulas arising during proofs are meaningful to the human
verifier and that they can be related to the program text.

The approach taken here is based on the concepts of process algebra, an abstract, algebraic
description of the observable behavior of processes [87, 18, 57]. Process algebra is composi-
tional, leads to fairly natural specifications, and has well understood proof procedures. The
technique is fairly mature and other formal specification languages such as LOTOS ([22])
and the RAISE specification language ([44]) are also based on process algebra.

The contribution of this work is twofold. First, it defines process logic which combines
first-order logic with process algebra1. The former allows the specification of the state of a
computation while the latter describes the possible sequences of observable events. Secondly,
a technique, based on predicate transformers, is defined for using process logic to specify and

verify concurrent programs.

Using process logic it is possible to express the communication behavior of a code fragment
in terms of pre- and post-processes. I.e. process terms are used in place of pre- and post-
conditions. The method is compositional in the sense that the pre- and post-process of
a composite language construct are defined in terms of the pre- and post-processes of its

constituents.

Even though process logic can express divergence, termination, and deadlock, the proposed
specification technique deals only with partial correctness. The reason is that as in the
sequential case, loop invariants and pre- and post-processes are used to reason about iteration

and recursion.

The technique assumes a message passing semantics of concurrency. I.e., the computational
model assumes a set of processes with local state that communicate through messages. In
particular, the method does not deal directly with shared memory concurrency. Of course,
shared memory accesses can always be viewed as communications with a central shared
memory process. The method is applied to Ada by specifying predicate transformers for
Ada tasking construct. But the definition of process logic is independent of Ada and can be

applied to other languages.

The method described here satisfies the above criteria to large degree. Predicate transformers
are a natural mechanism for several reasons. Program specifications can be expressed through
pre- and post-processes on code fragments. Program verification proceeds in a manner

!The term process logic is sometimes used (e.g. in [94]) to refer to Hennessy-Milner logic ([55]). The use
of the term in the present context has historic reasons since early version of this work were based on a modal
logic approach.

Page 2

26 February 1994 STARS-AC-A023/005/00

familiar from sequential verification: For a given program with annotations the verifier will
generate verification conditions which are shown to be valid by a theorem prover.

1.2 Specifying Concurrent Systems

Concurrency is used on a number of levels in software systems. Different usages may require
different formal models. It is therefore important to define the kinds of applications and
correctness properties that we are interested in.

One class of problems that are of no interest here involves low-level concurrency such as the
implementation of mutual exclusion in terms of shared variables with atomic assignment,
or the correctness proof of an on-the-fiy garbage collector ([39]). Rather, the problems of
interest involve concurrent processes that communicate with each other through message
passing. It is assumed that on this level suitable process abstractions are available. Issues of
the correct implementation of processes abstraction, of the fairness of the system scheduler,
and so on are of no concern here. The view taken here is very broad and includes all
components of a system. These need not be software artifacts but may involve hardware
devices. The correctness of a software component of such a larger system needs to be proved
in the context of its environment. The Ada tasking model supports this more abstract view
where devices interact with Ada tasks through interrupts mapped to entry calls.

The typical system of interest might be a reactive system that responds to a set of possible
stimuli by certain actions. For example, the control system of a reactor receives inputs
from a number of pressure and temperature sensors and has to properly respond by issuing
appropriate signals to control valves, sound alarms and so on. Within our formal model it is
possible to describe the behavior of such a control system as well as the reactor itself. It is
then possible to formally evaluate their mutual interaction. Eventually, the control system
or significant parts of it will be implemented in software in a suitable high-level language
(e.g. Ada).

Most of the systems specified are likely to be non-terminating. In fact, termination of a
control system might be a fatal error. Rather, the kind of termination properties one is
interested in are called liveness properties (e.g. [72, 7]). Liveness means that the program
is guaranteed to make progress and will eventually respond. By contrast, safety properties
guarantee that the program, if it responds, will respond properly. (See [1] for a topological
definition of safety and liveness.)

In general, liveness may be violated by non-termination, either due to non-termination of
a sequential program fragment or infinite internal communication. The former situation
requires termination proofs of all sequential fragments. The latter case also amounts to
termination: on some level of abstraction it is not observable whether internal computation
involves communication or not. The present work is only concerned with safety properties,
i.e., the causal relation between events and with the correctness of associated data. This can
be remedied, however, by using standard well-foundedness arguments to prove termination
of sequential program parts.

Page 3

26 February 1994 STARS-AC-A023/005/00

In practice one is not only concerned with termination but also with the actual time it
takes to respond to certain events. Timing constraints are not treated here. There are
several reasons for omitting timing consideration. One important problem is that the timing
behavior of a program is not a property of the source code but depends on a large number of
other factors such as compilation techniques, processor performance, distribution and so on.
At least in principle, process algebra can be extended to deal with real-time (see e.g. [16]).
Henzinger ([56]) discusses the notion of liveness in the context of timing constraints.

Another property of concurrent programs is fairness. An execution is not fair if some service
request is ignored for ever. This situation may arise if the program performs useful work on
other tasks. Process logic cannot express fairness in this abstract form. This is no big loss
in practice, since the abstract fairness property only guarantees that service will eventually,
after arbitrary finite delay, be provided. A statement that says that at most a certain
fixed number of other events happen before service is provided is much more useful for real
application. But such a statement of bounded delay (not in time but in terms of the number
of observable actions) can be expressed in process logic.

One key question, of course, is how properties of a concurrent program can be specified in a
natural manner. Pre- and postconditions have been used successfully for the specification of
sequential programs. Even though such techniques use internal annotations of loops and local
subprograms, the specifications are extensional. This is to say any program that satisfies
the prescribed input/output behavior satisfies the specifications. For sequential programs
the observable behavior is fully determined by by the relation between inputs and outputs

of the program.

The process logic approach uses pre- and post-processes that express both the expected com-
putation states as well as the communications of the program fragment with its environment.
The description of the possible communication behavior must be exact in the sense that it
captures all possible behaviors. The reason is compositionality: only if all possible behaviors
of two processes are known is it possible to determine their interaction.

1.3 Process Logic

In the following we give an informal presentation of process logic. The purpose is to motivate
the choice of constructs and make it easier to follow the formal definition given in section 2.

First, the terminology may need some clarification. Often the notion of a process is associated
with a physical (or at least abstract) agent. Instead, in the present context the word process
refers to a sequence of actions being performed. For example, two processes performed
concurrently constitute a new process. The exact nature of the agents (e.g. Ada tasks) that
realize a process is immaterial. Observationally, the execution of multiple agents constitutes
a single process. In section 3.1 the semantic definition of Ada tasking will formally establish
the relation between a set of tasks and their meaning (a process).

Page 4

26 February 1994 STARS-AC-A023/005/00

Primitive processes. Complex processes are constructed from simple primitive processes
by a number of operators that modify or combine processes. There are three primitive
processes, e, 6, and £1. e is the terminated process that will not perform any further actions. S
is the deadlocked process; it will not perform any further actions but has not terminated. The
distinction between deadlock and normal termination is very important in the computational
setting. There is an observable difference between the two processes if they are sequentially
composed with another process (see below). Process Q indicates the divergent process, i.e. a
process that continually performs internal computations but will not perform any observable
action. Depending on the physical environment, a deadlock may or may not be observably
different from fi. For instance, a deadlocked program will appear to be non-terminating but
the fact that it does not use resources may be observable.

Actions If p is a process, a-pis a process that consists of performing the action a followed
by process p. Intuitively, there can be a number of different kinds of actions such as sending
or receiving a message. But in the formalism they are all described uniformly. Some actions
require the cooperation of an observer, which may be another process or the environment
(e.g. user, physical device etc.). Consider a very simple process

PushButton? • LightOn! • e

that waits for a button to be pushed and will then turn on a light and terminate. There is a
difference between the event PushButton? and the event LightOn!. The former is caused by
the user action PushButton! and is sensed by the process, while the latter is caused by the
process and received by the environment as LightOn?. Both actions are synchronous and
require the cooperation of two processes (one of which may be the environment).

Alternatives If pi and pi are processes, then p\ + P2 is a process that can choose between
Px and pi- This choice is non-deterministic. But in the case where the initial actions of p\
and pi require cooperation, such as in

(a\ ■ Pl) + (ß\ ■ pi)

the behavior of the process depends on the environment (e.g. whether the action or? or the
action ßl becomes possible first).

Recursion The processes that can be written so far are all finite and not very interest-
ing. To define infinite or potentially infinite processes, recursive definitions of processes are
introduced. For instance, a semaphore can be defined recursively as

sem ::= PI • VI • sem

This process accepts an infinite sequence of alternating P\ and V! operations. Strictly
speaking, such a recursive definition is merely a shorthand for recursion operator.

Page 5

26 February 1994 STARS-AC-A023/005/00

As a more realistic example consider a dish washer. It has a door that can be opened and
closed, a start button, and a light that indicates that a wash cycle is complete. The dish
washer process can be described by

DishWasher ::= close? • (start? • Cycle + open? • DishWasher)

Cycle ::= (open? • close? • Cycle)

+ (LightOn! • open? • LightOff! • DishWasher)

Internal action Suppose one wants to define a process that makes a nondeterministic
choice and then engages in either action a\ or action ß\. The process a\ ■ e + ß\ • e does not
describe such a process since its behavior depends on the kind of communications offered by
the environment. To define true non-determinism a new process term is introduced: r • p is
a process that can perform some internal computation and will then behave like p. Whether
or not r occurs cannot be affected by the environment. Action r is the only action that is
not observable.

Consider the process

Random ::= (r • a\ ■ Random) + (r • ß\ ■ Random)

Process Random can make an initial choice between two alternatives. Because either choice
leads to internal computations, the choice itself cannot be influenced by the environment.
For example, a faulty dish washer might be characterized by

DishWasher ::= close? • (r • start? • Cycle + r • open? • DishWasher)

meaning that, depending on some inner non-determinism, the machine allows the user to
either push the start button or to open the door, but not both.

Value passing So far, the language can describe potentially infinite processes that engage
in a finite set of actions. But these actions are atomic and no data communication is
associated with their occurrence. This is not a problem in principle since the communication
of arbitrary data could be modeled by a sequence of 0 and 1 actions representing individual
bits. But clearly such an encoding would be highly inconvenient for describing practical
processes.

Instead, in order to describe communications of data to and from a process, the notation is
extended to a\v ■ p and alx ■ p. Here a is a label or name of a communication channel. The
term a\v ■ p denotes a process that will send the value v via channel a and will then behave
like p. The term a?x • p is a process that will receive some value via channel a and will bind
it to variable x in p. The conceptual model is one where a send action is possibly only when
some other process performs a matching receive action with the same label. The notation
a\ ■ p and a? • p is just the the special case of sending and receiving an empty message.

Page 6

26 February 1994 STARS-AC-A023/005/00

A simple process might be

Calc ::= input?x • input??/ •

(plus? • output!(a: + y) • Calc + minus? • output!(x — y) ■ Calc)

Conditionals Once value passing can be described, one may want to define processes
whose future behavior depends on the values received. So far the language provides no
mechanism to express such dependencies. The problem is addressed by the following guard
construct: If p and q are processes and A is a predicate, then if A then p else q is a new process,
if Athenpeheq behaves like p if the predicate A is true and behaves like q otherwise.

Using conditionals, processes whose behavior depends on values received can be described.
For example,

p ::= input?x • if x mod 2 = 0 then(even! • p) else(odd! • p)

Extending recursion The kind of recursive processes that can be defined so far are cyclic
processes whose behavior is independent of the local state, i.e. the recursive process will
behave identically for every cycle. In a more general setting one may want to describe
cyclic processes whose behavior depends on some local state that may be different for every
iteration. This problem is addressed by introducing functions from states to processes and
allowing recursive definitions of such functions. For example a potentially infinite buffer can
be described as follows:

6(cont) ::= put?a; • 6(cont&(a:))
+ if -iempty(cont) then get!fst(cont) • 6(rest(cont)) else £

Here cord is a sequence denoting the current content of the buffer, (x) denotes a singleton
sequence and & denotes sequence concatenation. A new empty buffer process is given by the
term 6(()). Again, the notation is strictly shorthand for a more complex recursion operator.

Parallel composition The producer process

p ::= put!c0 ■ p

generates an infinite number of constants CQ. Process p can be executed in parallel with a
buffer 6(()). This new process is written as p | &(()). One might expect p | 6(()) to be a
process that accepts an infinite number of get communications, each one communicating the
value Co. But this is not quite the case, because both processes can still communicate with
the environment. This means, for instance, that p | 6(()) can accept a message sent to put
and place the received data in the buffer.

Page 7

26 February 1994 STARS-AC-A023/005/00

To be precise p | 6(()) will be a process bp(Q) where

6p(cont) ::= put?x • 6p(cont • (x))
+ if-iempty(cont)thenget!fst(cont) ■ 6p(rest(cont)) e\se6

+ put!c0 • 6p(cont)
+ r • 6p(cont • (c0))

Section 2.8.1 defines rules for formally establishing the above equivalence.

It is important to guarantee that processes do not share state. This can be ensured by
the requiring that two terms can only be parallel composed if their respective sets of free
variables are disjoint.

Hiding labels A new operation is needed in order to describe a process that has local
labels that are not externally observable. For instance one may want to define a process just
like p | 6(()) that does not engage in any send action to put. Such a process is defined by
the hiding operator.

d{?ut}.(p 16({)))

In general dH.p denotes a process that behaves like p except that no communications via
a are possible for any a € H. Applied to the example we get <9{put}.(p | &(())) = bp'(Q)

where
6p'(cont) ::= if-iempty(cont) then getlfst(cont) • bp (rest(cont)) else S

+ T • 6p'(cont • (c0))

As will be shown in section 2.8.3, it can be proved that bp'(Q) is equivalent to a process r • g

defined as
g ::=get!c0-£r + f2

The alternative ti captures the fact that the process may perform infinite internal computa-
tion; i.e., the process can perform an infinite number of no longer observable put actions.

Synchronization The communication mechanism introduced so far suffices to describe
communication between two processes. But Ada provides a mechanism whereby a collec-
tion of tasks terminate only if all agree to do so. This is, in effect, a form of multiway
synchronization (no values are communicated).

The new action aft- is a multiway synchronization action. The term aft • p denotes a process
that can synchronize via the label a and that will then behave like p. All processes that are
parallel composed must synchronize. For example

aft • Pi I «tt • Vi I • • • I aii • Pn
= <4' (Pi I P2) I «tt-P3 I ••• I atf-Pn

= «It • (Pi I P2 I • ■ • I Pn)

Page 8

26 February 1994 STARS-AC-A023/005/00

Note that in aft • p \ ß\c0 • aft • q the first process does not have the option to perform aft-
without the cooperation of the second process.

Clearly, one may want to limit the synchronization requirement to a subset of all process in
a system. This can be done using the hiding operator. Hiding is defined such that

d{a}.a§ ■ p = d{a}.p

Quantification Consider again the buffer process defined earlier

fr(cont) ::= put?x • 6(cont • (x))
+ if -iempty(cont) then getlfst(cont) • 6(rest(cont)) else 6

A program that uses a buffer normally creates a new instance &(()) as in the example p | &(()).
Suppose, that the programmer failed to initialize the buffer content to the empty sequence.
Then the new buffer instance behaves like b(c) for some random content c. More precisely,
the behavior is a choice b(c\) + 6(c2) + ... for all possible content values c,-. The new process

term

captures this idea. E;p is the possibly infinite choice p[t>i/i] + pfa/i] + • • • for all possible
values of i.

Concatenation Finally, given two processes pi and p2, the term px; p2 denotes the sequen-
tial composition of the two processes, i.e. it consists of the behavior of p1 followed by the
behavior of p2. The need for sequential composition stems from procedure calls. Procedural
abstraction may be used to encapsulate a sequence of actions. Abstractly, this can be de-
scribed by a process. Thus, it is natural to view procedures as processes and the sequential
composition of procedures as sequential composition of the respective processes.

On the other hand, action prefixing is important because it provides a binding and scoping
mechanism. For example, the process

{alx -p);q

is different from
alx ■ (p; q)

since in the former the binding of x is limited to p while in the latter x will be bound in p; q.

Equality It is obvious that different terms in process logic may denote the "same" process.

Consider the process
a- (b- e + b- e)

which performs an a and a b action and will then stop. There is no way to distinguish this
behavior from that of the process

a ■ b ■ e

Page 9

26 February 1994 STARS-AC-A023/005/00

Thus, these two processes should be regarded as observationally equivalent. Two processes
should be considered equal if they are observationally equivalent. How can such and equality

be defined?

The equality used in process logic is based on bisimulation ([101, 87]). The idea here is that
two processes are equivalent (=B) if, in some intuitive sense, each can simulate the behavior
of the other. Bisimulation is formally defined in section 2.6.

Approximation The purpose of process logic is, of course, to use it for specifying tasking
programs. Suppose, that s is a process specification and p is a process that describes the
actual behavior of an agent or program (for now we ignore the question of how p may be
determined). We must define precisely what it means for p to satisfy the specification s.

One possibility would be to say that a process p satisfies a specification s if p and s are
the same process, i.e., p = s. Even though this is a reasonable definition it is not adopted
here. Rather, the desired relation should provide some form of approximation of fixed points

through loop invariants.

In section 2.8.2 the relation =>■ will be formally defined. For processes s and p relation s =» p
holds if p is bisimulation equivalent to s whenever p terminates. Thus =»• results in partial
correctness specifications since s =>• p is vacuously true for non-terminating p.

Trivial Specifications One of the problems with the definition of approximation is that
it is not possible to leave the behavior of a process unspecified. More formally, there is no
process p such that p => q for arbitrary q. To address this problem it is necessary to introduce
a new don't care process T with the property: T =>■ q for any q. To see the utility of this
construct consider a program guaranteed to start in an initial state that satisfies A. In order
to show that the program behaves like process s it suffices to specify if Athen s else T; i.e., if

A does not hold the program may behave arbitrarily.

1.4 Ada Verification

The previous section explained on some intuitive level how processes and their behavior
can be described in process logic. It is shown here how this logic can be used to prove the

correctness of tasking programs.

One of the important features of process logic is that predicate transformers very similar to
the ones for sequential programs can be used to determine the process associated with a task.
This section gives an informal description of the principles of using predicate transformers
for describing the semantics of tasking programs. A more detailed definition of Ada tasking

is presented in section 3.2.

Page 10

26 February 1994 STARS-AC-A023/005/00

1.4.1 Principles

The key idea is that a program will be annotated with terms of process logic. A process
term placed at a point in the program asserts that the program, if started at this point, will
behave as described by this process. The process associated with a concurrent program can
then be computed by a suitable "concurrent predicate transformer" Wc. Consider first the
sequential predicate transformer Wp[S] A that gives the weakest liberal precondition ([50]) of
program S under postcondition A. Precondition B = WpfS] A can be interpreted as follows:
If the program is started in some initial state in which B holds and if the program terminates
it will satisfy its postcondition (A).

In process logic the precondition of S can be expressed as

if B then eelse T

This says that, if started in a state in which B holds and the program terminates, then
the program terminates (in a state its postcondition A holds) and otherwise it may behave
arbitrarily. This precondition depends on the postcondition A in the sense that the postcon-
dition determines what should be considered a successful termination (e). Note that this is
a partial correctness statement: the precondition makes no guarantee of termination.

In general, the process term if Athen eelse T corresponds to the sequential assertion A. Thus,
for sequential program S the concurrent predicate transformer specializes to

Wc[S](ifAtheneelseT) = if(then Wcelse[S]A)£eT.

Now consider a sequential program that inputs a character and then performs the same
computation as S above. Traditionally, such a program might be described by modeling the
input stream and by treating this stream as a global variable. In process logic, the behavior
of the program can be described by the process

get?c • if B then e else T

which says that if the program reads a character c from event get and if then B is true,
then it may terminate in the desired final state. Note that get?c • p creates a binding for c
and the predicate B my depend on the value of c. Thus preconditions can be viewed as a
condition on the environment in which the program is to be executed as well as the initial
state: the environment must send a character c via get and the predicate B must hold in
the initial state. Preconditions that are processes are referred to as -pre-processes. Similarly,
a postcondition that is a process is referred to as a post-process.

As a concrete example, consider the program

declare
integer x;

begin

Page 11

26 February 1994 STARS-AC-A023/005/00

get(x);
if x <= 1 then

put ("error");

elsif prime (x) then

put ("yes");

else
put ("no");

end if;

end;

For simplicity assume that the semantics of put and get are defined by channels put and
get. The obvious pre-process for post-process e is

get?x • if(x <= 0)then
put! "error" • e

else
ifprime(z) then

put!"yes" -e
else put! "no" -e

Note that the trivial post-process e is appropriate. The behavior of the program is completely
captured in the pre-process and the final state becomes irrelevant. Also note that this process
will deadlock if it is not executed in an environment that will accept the put actions.

1.4.2 Restrictions

This section defines the subset of Ada tasking that can be covered by our approach as well
as the kinds of properties that can be proved. Some of the restrictions limitations are in
principle nature while others have been stipulated to reduce the complexity of the problem.

1.4.2.1 Termination In principle, termination is expressible in process logic since 0 ^ e.
This particular application of the logic, however, results in a partial correctness framework.
The problem is inherent in the use of loop invariant: an invariant only proves that a certain
property is maintained, not that progress is made. As a result, it is not possible to prove
termination properties for concurrent programs. More generally, it will be possible to prove
safety properties but not liveness properties.

In principle, process logic would not require invariants since weakest pre-processes of loops
are expressible. For instance, the program

while x /= 0 loop x := x - 1; end loop;

with post-process t has the pre-process p(x) where

p(y) ::= if y ^ Othenp(y — 1) elsee

Page 12

26 February 1994 STARS-AC-A023/005/00

which can be shown to be equal to (see section 2.8.3)

if x > Othen eelsefi

This means that the program will behave like e if x > 0 and will diverge otherwise.

When using invariants to reason about this loop, it is possible to pick the invariant e. This
leads to the verification condition

e =>• if x 7^ 0 then e[x — l/x] else e

or e =r- e and the pre-process e. This is a reasonable statement in a partial correctness
setting and it is sound since the pre-process e is stronger than the weakest pre-process
if x > Othen eelse fl, i.e.

e =S> if x > Othen eelseO

1.4.2.2 Timing As an obvious consequence of the above restriction it will not be possible
to reason about time. Reasoning about the timing behavior of concurrent programs is even
more complex than reasoning about termination. An adequate description of timing requires
assumptions about the speed of execution of an Ada program and needs to consider program
optimizations, processor speeds, operating system scheduling, and other factors. The present
approach treats delay statements as if they had zero delay. Similar treatment applies to
selective waits and timed entry calls.

1.4.2.3 Priorities In order to deal with priorities, the formal model needs to be ex-
tended. There has been some work (e.g. [32] and [63]) on adding priorities to process al-
gebra. But in addition, the definition of priorities requires that entry queues be modeled
explicitly in the semantics (see 3.2.4). For instance, problems such as priority inversion must
be captured by any semantics that deals with priorities.

1.4.2.4 Task Status The given semantics of tasks is abstract in the sense that it does not
model certain implementation notions. Concepts such as the status of a task (e.g. whether
the task is active or terminated) as well as explicit entry queues are not modeled by our
semantics. As a result, it is not possible to reason about the following attributes:

T'CALLABLE
T'COUNT
T'TERMINATED

1.4.2.5 Abort statement The current form of process logic cannot describe abort state-
ments properly. Aborting a task is a form of communication that affects two processes but
does not require the cooperation of both. Such a mechanism is currently not provided (see

3.2.9).

Page 13

26 February 1994 STARS-AC-A023/005/00

1.4.2.6 Entry queues The semantics does not model Ada's entry queues. Consequently,
the 'LENGTH attribute cannot be handled. Similarly, the semantics of a conditional entry
call is simple a nondeterministic choice between the call and the else clause.

Omitting entry queues form the model affords a significant simplification of the definition
and of program proofs. This omission is not a serious limitation since in the absence of
priorities the effect of entry queues is not observable.

1.4.2.7 Global variables Global variables can always be modeled as new processes that
allow only two communications: reading and writing. This is a trivial syntactic transforma-
tion and it is assumed that the abstract program representation has been transformed to
represent access to shared variables by explicit read and write operations. A semantics of
these operations is given in process logic.

1.5 Related Work

1.5.1 Process Algebra

The specification language described here is based on process algebra. Process algebra has
its roots in Milner's CCS ([87]) and Hoare's CSP ([57]). Later work includes ATP ([53])
and ACP ([15, 18, 19]). The relevance of ATP is that it avoids the use of internal actions
and uses two different choice operators instead. Bergstra and Klop [18] provide a confluent
rewrite system for ACP. Some of the axiomatization in our approach is based on their ideas.

Process algebra is a very active field of research. Current work in the area ranges from
theoretical foundations to practical applications.

Theoretical work in the area is concerned with model construction and extending the algebra
to value passing ([59]). Also, there have been attempts to define higher-order process algebras
(e.g. [117,118]) where processes are themselves values that can be passed as arguments. Even
though Ada provides task types, and thus first-class tasks, this generality was not necessary

to deal with Ada semantics.

Process algebra has the advantage over other approaches to concurrency semantics that
it provides process abstractions with elegant mathematical properties. This will greatly
simplify the task of specifying concurrent systems and reasoning about their properties. As
is pointed out in [69] process algebra is suitable for implementation through transformation
and can be used for prototyping by constructing interpreters.

The disadvantage of process algebra is that it cannot describe fairness and it is cumbersome
to define shared memory. While it is possible to augment process algebra with priorities (see

[32]) we chose to avoid this complication.

Properties of processes can be characterized by modal formulas (Hennessy-Milner logic [55]).

Page 14

26 February 1994 STARS-AC-A023/005/00

Here events of the process correspond to modal operators. Thus is is possible to state that
certain events alwarjs or sometimes follow other events.

There are a number of applications of process algebra. The following are just a few. The
programming language Occam ([61]) provides built-in concurrency primitives that direct
modeled after CSP. The language is actively used in production work. The formal speci-
fication languages LOTOS ([22]) and RSL ([44]) are based on process algebra (see section
1.5.3). Process algebra has been used to specify and prove correct systolic algorithms (e.g.,
[54]) and protocols (e.g., [120], [73]). Additional application can be found in [14].

Another approach to defining the semantics of Ada tasking is taken by Astesiano and Reggio
based on SMoLCS ([12]). SMoLCS takes a two step approach. First, a denotational style
definition maps programs into an intermediate language that contains concurrency primi-
tives. The concurrency is defined in terms of a parameterized labeled transition system that
has its roots in CCS ([87]) and SCCS ([89]). Properties of the transition relation are defined
algebraically.

1.5.2 Other Approaches

1.5.2.1 Modal logic First-order logic can be enriched with modal operators such as
"always", written □, and "eventually", written O. Examples of sentences in modal logic are
up (proposition p is always true) and Op (proposition p will be eventually true). Appropriate
deduction rules and axioms can be defined for modal logic. For example, (Op) =>- (Op) holds,
as does (up) <£> ->(0->p).

Modal logic2 has a number of application in semantics and verification. The typical way
to use modal logic to describe concurrent programs uses an enriched program state that
contains the current locus of control. It is thus possible to write control predicates that state
that a particular statement is about to be executed. For example, the predicate @l holds
when control is "now" at label /. Using control predicates one can write modal statements
like

(@/i Ap) =^0(@/2 Aq)

This says that if control is at label l\ and if proposition p is true, then eventually control
will reach label /2 and proposition q will be true. See [72] for an example of the use of modal
logic to reason about concurrent programs.

One difficulty with modal reasoning and the used of control predicates is that the technique
is not compositional. This means, that one cannot specify and reason about components
separately and later draw conclusions about their composition. As a result, the technique
does not support abstraction. Also, the use of control predicates is appropriate for reasoning
about sequences of computation states. Process algebra abstracts from the state and con-
siders the sequences of observable actions (that cause state changes). Hennessy-Milner logic

2 In the context of concurrency many authors use the term temporal logic

Page 15

26 February 1994 STARS-AC-A023/005/00

([55]) is a modal logic for reasoning about processes. In essence, a process is viewed as an
abstract program that executes observable actions.

Statements of a programming language can themselves be viewed as modal operators. The
sentence S_p means "after execution of S proposition p holds". This is to say that [_S_|p is
the precondition of S for post-process p. This view is discussed extensively in the literature
on dynamic logic ([52]).

1.5.2.2 Axiomatic Methods The first approaches to formally deal with concurrency
were developed as extensions to axiomatic proof techniques for sequential programs. Lam-
port's version of concurrent Hoare logic ([71]) uses control predicates. Other approaches are
closer to the original Hoare method and consider conditions under which parallel composition
of program parts is well defined.

One such methods of reasoning about concurrent programs was developed by Owicki, Gries
([100]). Their method is an extension of Hoare logic based on the concept of mutual non-
interference. Given two statements SI and S2 that are executed in parallel, then the rule

{p1}si{g1},{p2}s2{g2}
{p1AP2}si||s2{g1Ag2}

is valid if SI and S2 do not interfere. The notion of interference can be defined more precisely
in terms of variables read and written by concurrent program parts (see [100]).

Similar to the non-interference test, de Roever introduced a proof technique based on the
"cooperation test" ([46]). This technique is based on conventional annotation with input
output conditions. For a communication action e, the proof of an individual process may
assume a particular behavior, e.g. {p}e{q}. Based on such assumptions the partial correct-
ness of a single process is established. In order to combine several processes, it is necessary
to show that the individual proofs cooperate. This means that if {p}e{q} was assumed in
the proof of one process, then the proofs of all other processes must be based on the same
assumptions about e. The basic method is refined by introducing a global invariant. Using
this invariant it is possible to reason about values being communicated and properties of the
combined program. The global invariant may be assumed in the proof of individual program
parts but it must also be shown that all program parts preserve the invariant. Consequently,
the individual proofs depend on the global invariant and the technique is not compositional.

In [45] Gerth defines the semantics of the Ada rendezvous using the cooperation test.

1.5.2.3 History Sequences Various researchers have used history sequences to given
an axiomatic semantics of concurrency. The core idea of this approach can be summarized
as follows.

Communication is described by a history of communication events. Within one process a
local, unshared history variable h is assumed. The semantics of passing a message to another

Page 16

26 February 1994 STARS-AC-A023/005/00

process is described by appending a send action to h. Receiving a message is modeled by
appending a receive action h.

Given statements SI and S2 that communicate only by message passing, we have the following
proof rule

{P1Ah = ()} SI {QlAh = HM, {P2Ah = ()} S2 {Q2 A h = H[s2}

{P, A P2} SI || S2{Q! AQ2}

Here H is the assumed global history of both processes. H[s\ is the projection of the global
history H onto the event sequence as seen by SI. The rule can be read as follows: If there
is a global history H such that the messages sent by SI are the message received by S2 and
vice versa, then the two statements and be executed in parallel with the combined effect on
the state. A description of this technique can be found in [116] and [80].

1.5.3 Other Specification Languages

Process algebra is the basis for the development of other concurrency specification languages.
LOTOS and RSL are two important examples since both are concerned with specifications
of real systems and go beyond the realm of academic exercises.

1.5.3.1 LOTOS LOTOS (Language of Temporal Ordering Specification) is a specifica-
tion language based on process algebra. It was designed specifically to specify distributed
systems and protocols. Standardization of the language by ISO is underway.

LOTOS is very similar to process logic. The following are some of the similarities between

the two systems:

1. The syntax and semantics of value passing are virtually identical. The main difference
is that in LOTOS binding occurrences of variables are explicitly typed.

2. The conditional of process logic corresponds to boolean guards in LOTOS.

3. The infinite sum (£) corresponds to the LOTOS choice operator.

4. LOTOS synchronization gates provide a way to express synchronization between multi-
ple processes similar to the synchronization events in process logic. The key difference
is that LOTOS specifies synchronization gates as part of a special parallel composition
operator while process logic uses a special kind of event to indicate synchronization.

One important feature of LOTOS, not present in process logic, is the disabling operator. In
effect p[> q is a process that behaves like p until q makes a transition. From this point on
only q transitions are possible. Transitions of p are disabled. This construct is very useful
in defining the semantics of the Ada abort statement. A similar construct is not included in
process logic since its formal basis is not fully understood.

,Page 17

26 February 1994 STARS-AC-A023/005/00

In addition to process specifications LOTOS includes a sublanguage for the specification of
abstract data types (ACT ONE [41]). In contrast, process logic only assumes some first-
order language. The details of this language are left unspecified. In the case of Penelope, of

course, the underlying first-order language is the Larch shared language.

1.5.3.2 RSL The RAISE project (Rigorous Approach to Industrial Software Engineer-
ing) was part of the European ESPRIT effort and involved participants from industry and
academia. The team developed the RAISE specification language (RSL) for formally specify-
ing software systems ([44]). RSL employs CLEAR-style algebraic definitions of abstract data
types and uses CSP/CCS-style specifications of concurrency. In RSL processes are typed
according to the channels (events) through which they can communicate. The concurrency
constructs are very similar to those used in process logic. The main semantic differences
are the use of internal and external choice operators (similar to ATP [53]) and the use of
stop to denote both normal termination and deadlock. Using both internal and external
choice operators avoids the need for internal actions. Internal actions are mathematically
more difficult to describe. But they are closer to the user's computational model and may
therefore be easier to understand. The inability of RSL to distinguish deadlock from normal

termination is a serious problem.

The following is a RSL specification of a buffer process.

buffer(6) = empty?; buffer(())

0
let v = add? in buffer(6&()) end

D
if b ^ () then get!(first(6)); buffer(rest(6)) else stop end

The corresponding specification in process logic differs only in the syntax:

buffer(6) := empty? • buffer(()) (1)

+ add?y • buffer(6&()) (2)

+ if b ^ () then get!first(6) • else 6 (3)

1.5.4 Support Tools

Several research projects are in the stage of tool development including analysis tools and
special purpose theorem provers. It can be expected that some of these tools will become
usable and available in the near term. There are two classes of theorem provers, those based
on a model-checking approach and those based on an inference system. Working systems
of the former class are AUTO ([24]), Squiggle ([23]), and Workbench ([33]). One version of
the workbench has extended to include priorities ([63]). Examples of the second class are
CRLAB ([97]) and PSF ([81]). A comparison of these and other tools can be found in [60].

Page 18

26 February 1994 STARS-AC-A023/005/00

Another tool for reasoning about process algebra is PAM (Process Algebra Manipulator,
[77]). PAM implements a general rewrite engine and mechanisms for various forms of in-
ductions. The system can be configured for different process algebra formalisms by defining

suitable equations (rewrite rules).

Process algebra can be expressed in HOL ([48]) and the HOL prover has been used to show
bisimulation equivalence of process terms ([96]).

1.6 Organization

The following section contains a rigorous description of process logic including its syntax,
semantics, and proof theory. Section 3 describes the application of process logic to specify the
semantics of Ada and ways to specify and verify concurrent programs. Only the principles
are discussed here and this section does not constitute a complete formal definition of Ada
tasking semantics.

In section 4 process logic is applied in several examples. This illustrates techniques for the
systematic development of tasking programs, strategies for developing annotations, and proof
techniques. The examples point out areas where the basic mechanisms need to be extended
by more abstract specification concepts in order to become practical.

2 Formal Basis

2.1 Notation

Lambda notation has its usual meaning, e.g. Xx.fxx. Type information is omitted where
it can be inferred. Sometimes function application is written as juxtaposition, e.g. fx.
Functions may be curried. Functions can be redefined point-wise as

f[d —> e] = Ax. if a; = dthen eelse/ x

Substitution of x for y in t is written as p[x/y}. The notation for parallel substitution is

p[xi/yi,...,xn/yn].

2.2 Domains

Definition 1 A domain is a set D with a partial order C. such that

1. _L € D and L Q d for all de D.

2. Every C. chain has a least upper bound.

3. There is a countable base DB Q D such that every d 6 D is the least upper bound of

some DB chain.

Page 19

26 February 1994 STARS-AC-A023/005/00

The importance of domains is that equations involving + (sum), x (product), and —> (con-
tinuous function) constructors have solutions in domains. Further, continuous functions on
domains have unique least fixed points. A more detailed discussion of domains can be found

in [51].

Describing concurrent and non-deterministic programs requires powerdomains. I.e., a con-
structor P is needed that constructs the domain of subsets of a given domain. It is then
possible to solve domain equation involving P (see e.g. [51, 78, 79]).

One powerdomain construction due to Symth ([113]) defines Ps^-D) is denned as

P5(D) = {S C D\S is non-empty and finite or _LG S}

An ordering (Egli-Milner) Q on Ps(£>) is defined as follows

qrT _ / Vse S3t eT.sQt
-J — \ Vt e T3s eS.sQt

One problem with this construction is that Ps(£>) does not contain the empty set.

The powerdomain construction proposed by Plotkin [103] does not suffer this problem and
the following is based on Plotkin powerdomains. Abramsky shows in [2] how to extend the
latter to a constructor P° that generates a powerdomain that contains the empty set.

For the details of the P° construction see [2]. Here only the following properties are of
interest.

• P° is a functor, i.e., it maps a function / G D\ —> D2 to a function P0/ G P°(-Di) —>

P°(Z>2).

• Further, the following operations are denned:

1|GP°(D) Empty set
j].[} <E £-*P°(£) Singleton set
y G P°(D) -> P°(D) -> P°(£>) Union
(i) e P°(P°(£>)) -> P°(£>) Join

Using the construction given in [2] it can be shown that (P°, -{I.|},l+)) is a monad as denned
in [121]. Following Wadler ([121]) P° is a "monad with zero" (Ax.{][}) and therefore admits
comprehension with filters. Thus, terms such as

i\fx\xeX,Px$eP0(D2)

for X G P°(Di) and continuous / 6 D\ —* D2 and predicate p has meaning as defined in

[121]:

§t\x6X§ = P°{\x.t)X

Page 20

26 February 1994 STARS-AC-A023/005/00

{t\xeX,..4 = \SUt\ •••11^1}
{t\p$ = ifptherj^else^

= ifpthen^l ... fr else^IJ-

For example, the term §fx | x G X,px\ expands as follows

\fx\xex,px§ = \tjut\pxb\xexb
= yflifpxthenfl^eH|}|a;GX|}

= y(P°(Ax.ifpxthenWelse-{]frPO

2.3 First-order Logic

Terms of process logic will contain terms and formulas of some first-order language C defined
as follows3:

The syntax is defined as follows:

A, B G Prtd Predicate Symbols
/, g G Func Function Symbols
c G Const Constants
x,v £ Var Variables
t € Term Terms
A G Form Formulas

where

t ::= u | c I /(ii,...,£„)

A ::= <i = <2 | ^(*i, ■ • •, *n) | false | Ax -> A2 | Vx.A | ...

The usual set of boolean connectives and existential quantifiers will be used; they can be
defined from the above in the obvious way.

An £-Structure M = (D, I) consists of a domain D and an interpretation / such that

1. I(P) C Dn for n-ary predicate P

2. /(/) e Dn -> D for n-ary function /

3Very little changes if a different logic is substituted in the definition of process logic

Page 21

26 February 1994 STARS-AC-A023/005/00

3. 1(c) € D for every constant.

A .A/"-valuation v € V = Var —> Z) assigns a value in D to every variable of £. Every v £ V
extends to all terms in the obvious way, we write i/(t) to denote the value of term t under

valuation v.

We write
Af\=„A

if the formula A is true under the valuation v. Af (= A says that A is true in Af under all
valuations. Equivalently, the notation j\T[A]i/ is used to denote the truth of Af |=„ A.

2.4 Processes

For (first-order) language C the language of processes V(C) is defined as follows4.

a, ß € £a& Labels (or channels)
H C £ai Subset of labels
p,q € Proc Processes
P,Q € Pfun Process functions
/, g G Puar Function symbols

A and t refer to formulas and terms of C respectively.

P ::= Ax.p | / | fxf.P

p ::= <S e 0 | T • p | if A then p else q \ dH.p \

a$-p\ a\t-p\ cP.x • p\p + q\p\q_\p\<l\ ^x&vp

Processes distinguish deadlock (8) and normal termination (e). The treatment is similar to
ACP [15] in that p + 6 = p holds for all p. This differs from the treatment in [5] where
p -\- e = p holds instead.

ACP uses concatenation (";") as the basic process constructors and CCS based systems use
action prefixing ("■"). Process logic contains both constructs. Action prefixing is appropriate
for receive actions since they are binding operations: the process following a receive action
is the scope of the received value. On the other hand, process concatenation turns out to
needed for the semantics of a procedure calls.

4The syntax has been changed drastically from earlier versions. The main reason is to be consistent with
other work in the area. The original notation was heavily influenced by a modal logic approach. The present
notation has its roots in ACP, CCS, ECS.

Page 22

26 February 1994 STARS-AC-A023/005/00

The introduction of sequential composition leads to context free processes, i.e., a language
that (in the absence of value passing) is strictly more powerfull than one that only uses

action prefixing. For instance,
p ::= (a- p;b- e) + e

is a process that generates the context free language of actions anbn which cannot be defined
with action prefixing alone since this defines only regular languages. Note, however, that by

introducing auxiliary state variables we can define

P

piO)
Pi{n)

= Pi(O)

= a • pi(n + I) + p2{n)

= if n = Othen eelseö-p2(^ — 1)

The notation T,x€xP is used to denote the (possibly infinite) choice over all values a;,- € X,
p[Xl/x] + p[x2/x] + ... We write £xp if the domain of x is clear from the context.

Constructs for sending and receiving values were originally proposed by Milne and Milner in

[83]. More recently, a variation was proposed in [59].

Because of the presence of value passing and the conditional construct, the behavior of a
process depends on the state. And the definition of recursive processes needs to account for
changing state. For this reason the syntax contains general process functions, i.e., functions
from values to processes and a least fixed point construct \i for such functions. The notational
shorthand f(x) ::= p is used to make recursive processes more readable. The term f(t) means
(nf.\x.p)(t) in the context of a definition f(x) ::= p. Special care is needed in manipulating
formulas that used this abbreviated notation. For instance f(t)[e/y] = f(t) is generally false
even if y is not free in t since it may be free in the definitional equation of /.

2.5 Operational Semantics

An operational semantics of process logic can be given as a labeled transition system. Let

A be the set of actions defined as follows:

r represents an internal computation,

a\v represents the sending of value v via event a,

alv represents the reception of value v via event a, and

ajj represents the synchronization with event a.

Function lab G A -> LabU {r} determines the label of an action:

lab(r) = r

lab(ctlv) = a

Page 23

26 February 1994 STARS-AC-A023/005/00

lab(alv) — a

lab{af) — a

For a € A we write a • p for the process that performs a and then behaves like p.

A labeled transition system is a relation ~>C Proc x Ax Proc. If a triple (p, a, q) €~» we
write p -£» q. By convention a e A is any action, p ■£> q means that the process p can

perform the action a and transition to process q.

Note that the possible transitions for process p depend on the state (i.e., the values of the
free variables of p). Thus the following definitions assume an arbitrary but fixed £-structure
J\f and ^-valuation v. More pedantically, one might write M f=„ p -^ q, meaning that in a
state v process p can perform a and then behave like q.

., alt alt • p~> p alx ■ p ^> p[t/x]

T ■ p~~* p öit • P ""*• P

p^q a
p ~> §

p + r -^ q r + p ~> ?

p[c/x] ~> q
v a

2jxp^ q

p -S> q, lab(a) £ H pZ* q, dH.q *£* r, a € H
dH.p £* dH.q dH.p ^ r

p£> q, B p-Z> q, ->B

if B then p else r ^ q if .B then r else p ^ q

Note that B refers to the truth of B is the given valuation v.

p^ q, a ^ aft p ~^ <?, a ^ otjt

(r | p) -^ (r | 9) (p | r) -£► (<? | r)

rPt , a't , all , all /
p ^ ?, p' £» g' P ^ P , <? -^ <?

P I P' -^ <? I <?' (p | p') ^ (7 I ?')

Page 24

26 February 1994 STARS-AC-A023/005/00

p\r ~> q;r
P^ g
t;p^ q

fif.P(t) <Z> q
p[t/x] -£> q

(Xx.p)(t) ^ q

The relation ~> can be extended to sequences of actions in the obvious way. In particular,
we write

a+ -IT T T I a I T T px-*qmp~~*...'^p "^ q ~> ... ~> g

i.e., if there are zero or more internal transitions and an a transition that transform p into
q. Similarly,

f p~£ q when a ^ r
q when a = r

a* 9 iff
p^y q or p

includes the reflexive case p ~> p.

The unary relation y/ C Proc defines terminated processes. A process is in y/ if it cannot
perform any further actions but is not deadlocked. Instead of p G y/ we write py/. Again,
the following definitions assume some fixed valuation v. y/ is the smallest relation such that

py/ implies (dH.p)y/

py/, qy/ implies (p + q)y/, (p \ q)y/, {p; q)y/

Vc.(p[c/x]vO implies (T,xp)y/

py/,B implies (ifB then pelse q)y/

py/,-~B implies (if 5 then qe\sep)y/

p[t/x]y/ implies (Xx.p)(t)y/

pw-pimw mplies (vf.P){t)y/

Similarly, |C Proc is the relation defining definite processes, i.e., those processes that do not
diverge without performing any action. Again, p € j is written p i and p J, means that p j
for all valuations in which A is true. | is the smallest relation such that

el

Si
a-p I

Pi

Pi

pi,q i

mplies (dH.p) j

mplies (p; q) j

mplies (p; q) |

mplies (p + q) i and (p \ q) |

Page 25

26 February 1994 STARS-AC-A023/005/00

Vc.(p[c/x] I) implies (Exp) J,

p[,B implies (if Bthenpelse q) J,

p 1,->B implies (if B then 5 elsep) |

p[*/z] J. implies (Xx.p)(t) J.

p\nf.p/f\(t)l imPlies W)(*H

Next, JJ-C Proc is the set of definite processes that cannot perform an infinite sequence of r
actions. Formally ty. is the smallest relations such that

p ty if (p I A(Vg.p -Z* q -> ? ^))

Finally, V C Proc is the set of processes that will not deadlock before performing a non-
r action, i.e. pV if any state q reachable through r transitions from which not further r
transitions are possible will be a terminated state, formally

pV iff Nq.pZ* q A ~3q''.q -^ q' —> ?A/J

2.6 Process Equivalence

Obviously, two different process terms can denote two processes that are not observably
different. The key question is what me mean by "observable". There are a number of
different equivalence relations proposed in the literature. Bisimulation ([101]) appears to be
the most natural definition. The definition says that two processes are equivalent if any action
that can be performed by one can be performed by the other such that the resulting new
processes are equivalent. The literature distinguishes between weak and strong bisimulation.
The difference is that weak bisimulation assumes that the performance of an internal action
is not observable.

One strong argument in favor of bisimulation is the modal characterization theorem. The
theorem says that two processes are bisimulation equivalent if and only if they satisfy the
same sets of formulas in Hennessy-Milner logic.

A different process equivalence, called branching bisimulation, has been proposed ([47]).
Branching bisimulation is a smaller relation than bisimulation, i.e., there are processes that
are distinguished by branching bisimulation but that are weakly bisimilar. Branching bisim-
ulation provides a reasonable definition of process equivalence since, as for weak bisimulation,
there is a modal characterization theorem: Two processes are branching bisimilar if and only
if they satisfy the same set of formulas in Hennessy-Milner logic with until (see [37]).

In absence of strong evidence that other equivalence relations lead to simpler proof procedures
we choose weak bisimulation for process logic.

This section first defines a bisimulation preorder QB- Intuitively, two processes p and q are
in the relation p CB q if either p diverges or if p and q have the same behavior. A process

Page 26

26 February 1994 STARS-AC-A023/005/00

equivalence can then be defined as = = Cß n Qß1. It turns out that = is not a congruence.
Next, a slightly smaller relation Qc is defined such that Qc H C^1 will be a congruence.
The latter relation will be process equality.

The bisimulation preorder p QB q is the largest relation such that p \ZB q if and only if

1. if p -i- p' there exists a q' such that q ■£•» q' and p' CB q\

2. if p J| then

(a) if q ~S> q' there exists a p' such that p £* p' and p' CB g',

(b) q$

(c) pV iff ?V

The definition of bisimulation preorder is slightly different from the traditional one (e.g.
[101]). The difference is the distinction between processes that terminate normally from

those that deadlock which is due to [5].

Bisimulation preorder expresses a very intuitive ordering between processes: if p QB q, then

q is better that p in the sense that

• if p can perform a sequence of observable actions, then q can perform the same sequence

of observable actions

• if p converges, then

— q converges

— q cannot perform actions that cannot be performed by p, and

— if p can deadlock then so can q.

It is easy to check that all process terms except p + q are monotonic with respect to OB. The
following example shows that p + q is not monotonic. It is immediate that r • a! • p QB a! • p.

T-a\-p + ß\-q £B a\-p + ßl-q (4)

since, (r • a! • p + ß\ ■ q) -~> a! • p is a possible behavior for which there is no corresponding

transition in a! • p + ß\ • q.

Two processes p and q are equivalent if p QB q and q \ZB p, i.e., = is defined as Es H Cg .
Unfortunately, = is not a congruence. This follows immediately from the fact that Cs is not
monotonic for +: Let p = q, then p QB <?■ The previous example (equation 1 above) shows
that there exists a context C such that C\p) %B C[q] and consequently C[p] ^ C[q].

In general, if < is any preorder on a term algebra and if all operator symbols are monotonic
with respect to <, then < D <_1 is a congruence. This property can be used to construct a
congruence for processes as follows. Let p Qc q be the largest relation such that p Cc q if

and only if

Page 27

26 February 1994 STARS-AC-A023/005/00

1. if p ~2> p' there exists a q' such that q ^ q' and p' QB q',

2. if p ^ then

(a) if <j"^> <?' there exists a p' such that p ^~> p' and p' C5 </,

(b) <^

(c) pV iff ?V

Note that this definitions differs only from that of \ZB in clauses (1) and (2a) where £» has

been replaced by Q. Also observe that this change only applies to the top level; states

reachable need only be related by QB-

All process terms are monotonic with respect to \ZC. Thus C.c n C^1 is a congruence and
we define this relation to be process equality.

Milner ([88]) proposes an alternate, equivalent definition of equality

p = q iff Vr.(p + r) = (q + r)

The preorder Qc is also the relation used to approximate fixed points. Since Qc is monotonic,

the following rule rule is sound:

P[I/f}(x) Qc I
lif.R(t) Ec I[t/x]

In other words, given the fixed point fif.P and an invariant / for which one can show the
verification condition P[I/f](x) Qc I then this invariant is an approximation to the fixed

point.

2.7 The "don't care" Process

There is one slight problem with the definitions given so far: it is not possible to write
specifications that leave the behavior of a process unspecified. To correct this problem a
new process T is introduced. The don't care process T is defined such that pEcT for all
processes p. All process terms other than the conditional are strict with respect to T.

Using T it is possible to write specifications like if Athen p else T that specifies a process that
behaves like p if A holds and is unspecified otherwise.

Finally, the notation p =» q means q Oc p, suggesting the correspondence to implication in

the sequential case. In fact, the formula

if A then p else T =» if B then p else T

is true if and only if A —> B.

Page 28

26 February 1994 STARS-AC-A023/005/00

2.8 Proof Theory

2.8.1 Equations

The following equations hold for process terms.

Internal computations

a • T • p = a • p (Nl)
r • p + p = T ■ p (N2)

a • (p + T ■ q) = a ■ (p + T ■ q) + a- q (N3)

See [91] for a discussion of the equality rules. In particular, the seemingly natural axiom
a • (p + T • q) = a • (p + q) + a ■ q is not sound.

Hiding

dH.S = 8
dH.e = e

dH.n = n
dH.T • p = T ■ dH.p

dH. if Athenpe\sep = if A then dH.p else dH.q
dH.aj-p = a£H : dH.p, atf • dH.p
dH.alt ■ p = aeH :6,a\t- dH.p

dH.alx ■ p = a e H : S, alx ■ dH.p
dH.(Pl+p2) = dH.px + dH.pi

dH.(pi;p2) = dH.pi, dH.p2

Conditionals

iffalsethenpelse«? = q
iftruethenpelseg - P

Alternatives

p + (q + r) = (p + q) + r
p + q = q + P
6 + p = p
p + p = p

Concatenation

(HI)
(H2)
(H3)
(H4)
(H5)
(H6)
(H7)
(H8)
(H9)
(H10)

(Gl)
(G2)

(Al)
(A2)
(A3)
(A4)

Page 29

26 February 1994 STARS-AC-A023/005/00

S;p = 6 (Jl)
e;p = p (J2)

Ü;p = Ü (J3)
(if A then p else 9); r = if Athen(p;r)else(g;r) (J4)

H-p);? = «ft •(?;?) (J5)
(a!<-p);? = a!t-(p;9) _ (J6)

(a?x • p); q = (a?x • (p; q)) where x not free in q (J7)

(pi+P2);g = (pi;?) + (p2;g) (J8)
(pi;p2);p3 = pi;(p2;P3) (J9)

Recursion

(M/.P)* = pw-pim) (R1)

Concurrent composition

An equational definition of concurrent composition can be given in term of two auxiliary

terms (following [18]):

p Lj_ q is like p | 5 except that the first action that is a communication of p with the environ-

ment.

p\c q is a process that performs the internal action of communicating between p and q and
that then behaves as the concurrent composition of the resulting processes.

With these definitions concurrent composition can be defined as

Pi I (P2 I Ps) = (Pi I P2) I P3 (P1)
p\q = (pU) + (<iLp) + (p\cq) (P2)

Given a y£ ß then

Page 30

26 February 1994 STV VRS-AC-A023,

P \e q = q UP (Cl)

(p |c ?) je r = P \c {q \er) (C2)

S\cP = 8 (C3)

£ \cP = 8 (C4)
tt \c p = Ü (C5)

T-p\cq = 8 (C6)
(if A then p else p') \c q = if Athen(p |c q)e\se(p' \c q) (C7)

<*t-p\cßt-q = if a = /3 then aft • (p \ q)else^ (C8)
alt • p \c alx ■ q = if a = ß then r • (p \ q[x/t}) e\se8 (C9)

alt-p \cß$- q = 8 (CIO)
a\t ■ p \e ß\f ■ q = 8 (Cll)

aly -p \c ßlx- q = 8 (C12)

atyp Ußhq = 8 (C13)

(p + q) \c r = P\cr + q\cr (C14)

SLp = 8 (SI)

e]Lp = 8 (S2)
ntp = n (S3)

r-p_q = T-(p\q) (S4)
(if A then p else p') [|_ q = if Athen(p|j_g)else(p' [|_ g) (S5)

aft-plLg = 8 (S6)
a\t-p^_q = alt -(p\q) (S7)

alx ■ p[]_<? = alx • (p | q) where x not free in q (S8)

(p + q) lLr = ?Lr + qLr (S9)

Where y in (S8) is a new variable.

Consequences

The following properties can be derived from the above axioms:

Pi I Pi = Pi I Pi
a\-p\a\-q = aft • (p | q) (P4)

P3: Using equation Cl

Pi I Pi = (Pi IL.P2) + (P2 ILPi) + (Pi lc Pi)
= (P2LP1) + (P1LP2) + (P2 IcPl)

= Pi I P2

P4:

(P3)

aft • p | aft • <j = aft-pLaft-q + aft-qLLaft-p + aft -p |c aft • 9

= 8 + 8 + aft • (p I q)

= aft • (p | <?)

Page 31

26 February 1994 STARS-AC-A023/005/00

2.8.2 Approximation

p=>q, q=>r

p => p p => r

T =» q p => Ü

p^q

C[p] =► C[q]

where C[...] is an arbitrary context.

P(x) =»Q(x)
lif.P{t) => nf.Q{t)

I(x) =» P[///](s)
/(*) =» fif.p{t)

More generally, if i? is an admissible predicate, the following fixed point induction rule applies

to process terms.
R(Sl),Vx.R{f(x)) -> Vx.R(P(x))

R(fif.P(t))

Where the predicates Xp.(p Qc Pc), >>P-(P 3c Pc), and Xp.(p = pc) are all admissible for
arbitrary processes pc.

2.8.3 Example Proofs

The following proof shows the equality of bp (()) = T ■ g given in section 1.3. Recall that

g:=get\co-g + T-g

bp (cont) ::= if-•empty(cont) then getlfst(cont) • 6p'(rest(cont)) else 8

+ T ■ bp''(cont • (co))

Let CQ stand for the sequence of length n of values c0. We show the slightly stronger theorem

bp\cl) = g for all n > 0.

The original claim then follows since by definition

bp'(()) = bp'(c°0) = T-bp'(ci
0) = T-g

Page 32

26 February 1994 STARS-AC-A023/005/00

The proof of fcp'(co) = g ior n > 1 proceeds in two steps showing g => bp'(c%) and &p'(co) =^ 9
respectively.

For the first case the following instance of the induction rule is used:

Vn > 0.(g =► ß)
(Vn > O.fo =► bp'(cn

0))) ->
(Vn > 0.5- =» if-.empty(c^)thenget!fst(cS) • 6p'(rest(c^)) else^

 + T-6p'(cg •(<*)))
Vn > 0.(5r =*► &*/(<£))

To show the second premise of the rule consider two cases, n > 1 and n = 1. For n > 1

= 9
= get!co ■ g + T ■ g

=» get!c0-6p'(cr1) + ^-^K+1)
= if-.empty(cJJ) then getlco ■ bp (c^1) else S + r ■ bp'(c%+1)

For n = 1

$ = getlco -g + r-g

=» get!cö-&p'(cä)+T-y(cg)

= get!co • r • bp'(cl) + T ■ bp'{cl)

= getlco -(S + r- bp'(cl)) + T • bp'(cl)

= getlco • 6j/(cg) + r • bp\c2
Q)

= if-.empty(cJJ) then get!co • bp'fä-1) else 6 + r • bp'{$+1)

In the other direction we use fixed point induction on the definition of g. The rule instance

Vn > 0.(&j/(c&) =» fi)
(Vn > O.foj/Ccg) =» g)) -> (Vn > 0 V(cg) =» ffe*!cp • ff + r • g)

Vn > O.(fcpK) =* $0

Again, the second premise is shown by case analysis, considering n > 1 and n = 1.

As second example consider the process p(x) ::= if a; ^ 0thenp(a; - l)elsee given in section
1.4.2. We prove that ifz > 0 then e elseti =» p(x). The fixed point rule require to show the
premise

Vs.(if a: > 0 then e else tt => p(x))

Vx.(ifx > 0 then e else tt => if a; ^ 0thenp(x - l)elsee)

Page 33

26 February 1994 STARS-AC-A023/005/00

which, by monotonicity, becomes

Vx.(ifx^Othenifx- 1 > 0 then e else ft else e =» if x > 0 then e else ft)

The latter breaks into three cases:

x = 0

ifx > Othen e else ft = e

x >0

ifx ^ Othen if a; - 1 > Othen e else ft else e

if x > Othen e else ft = e

=^ e

= ifx — 1 > Othen e else ft

= ifx ^ Othen ifx - 1 > Othen e else ft else e

x <0

ifx > Othen e else ft = ft

=> ft

= if x - 1 > 0 then e else ft

= ifx ^ Othen ifx- 1 > Othen e else ft else e

To show equality of if x > Othen e else ft and p(x) consider the cases x < 0 and x > 0. Using

the above approximation the first case gives

if x > 0 then e else ft = ft =»■ p(x)

which implies p(x) = ft. In the second case (x > 0) a simple induction argument shows that

p{x) = e.

2.9 Denotational Semantics

This sections gives a denotational semantics of process terms. The semantics of process
terms is already well defined by the operational semantics given in terms of labeled transition
systems. The denotational semantics is useful to establish the connection between process
terms and programming language semantics. The semantics of a concurrent language can
be defined in terms of power domains. A predicate transformer semantics for the same
language will map programs into process terms. Showing the soundness of such a predicate

Page 34

26 February 1994 STARS-AC-A023/005/00

transformer definition amounts to proving that the denotation of the process term derived
for a program is the same as the denotation of the program itself (see section 3.1.1).

The denotational semantics should be fully abstract, which means that every property that
holds in the model should also hold for the processes. More precisely, given processes p and
q and their denotations [p| and [qr], then one wants p Qc q iff [p] C. {qj.

In [83] Milne and Milner give a suitable domain definition for processes as

D = Ps(^Lab(Uß x (Vß -> £>)))

In this construction an event fi is associated with sending a value (G Uß) and receiving a
value (G V^). This can be specialized to directional communication by choosing either Uß or
Vß as the single point domain. This construction is not adequate since it does not deal with

internal (r) actions.

In [2] Abramsky give a similar construction using P° which correctly models the deadlocked
process but omits value passing. This domain is fully abstract for strong bisimulation but
not for weak bisimulation. In [59] a similar construction is given that includes value passing.

The following is a domain suitable for process logic.

Labels
Data
Send action
Receive action
Synchronization action
Internal action

7T G P = P°{As + AR + Ax + AI + {e}) Processes

The following functions on P are introduced:

pfx € (p _,. p) _> p _> p next eP -> P

send G Lab -> D -> P -» P sync G Lab -> P -> P
recv £ Lab-+{D^ P)^ P cat G P -»• P -» P
comm G P -♦ P -»• P step G P -»• P

hide £ P -> 2Lab -> P mer#e G P -> P -> P

With the definitions:

p/z/?r = (+)flp/x/^Kr,7r,-)€7r|}W

|+J{]/7r | 0 ^{]a| a G^a^r,^!}

nexi = p/c(A7r.|(r,7r)|})

send ad = pfx(\ir'.§(a,d,Tv')§)

sync a — p/r(A7r'.{](a,7r')(})

recua = {[(a, Ad. nex£(/d))[}

Page 35

a, ß £ Lab
deD

As = Labx D x P
AR = La6 x (D -> P)
Ax = Labx P
A, = {T}XP

26 February 1994 STARS-AC-A023/005/00

The purpose of the definition of pfx is to guarantee a canonical representation as follows:

Whenever (a, d, r') G % then %' contains at least one choice that does not involve
an internal action, i.e., 3a G r'.a ^ (r}ir"). Furthermore, if (r, ir") G ir' then
(a,d,ir") G 7T.

The same condition applies to choices of the form (a, ir') G 7r and (T,T') G 7r.

merged, TT2) = s^ep(7Ti,7r2) W sfep(7r2,7r1) 1+) comm(7ri,7r2)

s£ep(7ri,7r2) = !+)■{] sendßd(merge(ir,T2)) \ (ßdw) G 7Ti|} l±)

|+J{] recvß(Xd'. merge(fd',ir2)) | (/3,/) G TT^ l±l

!+)-{] next(merge(ir,ir2)) \ (r, 7r) G 7TI|} l±l

comm(7T1,7T2) = l+j-j] next(merge(fd, ir)) | (/?, d, 7r) G 7TI, (/?, /) G 7r2[} (+)

yi next{merge{fd, TT)) | (/?, d, TT) G TT2, (/?, /) G TT^ l±)

|+J{] sync/? men/e^,^) | (Z?,^) G TT^/?,^) G TT2[[

ca<(7ri, TT2) = !+)•{] sendßd cat(ir', TT2) | (/?, d, TT') G 7TI[} l+J

(±14 recvß(Xd. cat(fd,ir2)) \ (ßj) G 7n|f Ö

|+)-{] sync a cai(7r',7r2)) | (a, 7r') G 7TI[} l±l

|+){jr-(cai(7r,7r2)) | (r,7r) GTT^W

l+lfe I e G 7rx|}

hide(r, //) = |+J{] send/WÄüfe« //) | (ß, d,ir') G TT,ß $ H$ W

(+){] recr;/?(AcZ. /i:de(/d, ff)) | (/?, /) G TT, /? g" //(} l±l

l+Jlsync/S/ude«//) | (/3, TT') G TT,/? g- //|f l±l

{+M next(hideir'ß) | (/?,*') G TT,/3 G //fr ü

|+J{] next(hideir'H) | (r,7r') G TT[} l±J

|e|eG7r[}

Page 36

26 February 1994 STARS-AC-A023/005/00

2.9.1 Process Semantics

Using the domain P a denotational semantics of process terms is given. To deal with recursive
processes environments of the form

pe E = Pvar -> D -> P

States
ueS= Var-> D

map variables to their values. These are the valuations for the underlying first-order logic
C.

The denotations of process terms are defined by two functions of the form

M € Proc -> E-* S ^ P
M' 6 Pfun -* E-> S^D -» P

defined as

MlSjpu = U
M{t\Pv = {4

MMpv = 414
M\r-p\pv = next(Mlpjpv)

Al [if A then p else q\pv - if jV[A]i/then M\p\pve\se M\p\pv

M{dH.p]pv = hide(Mlpjpv,H)
M\a$ ■ pjpu = syncct{M\p\pv)

M{a\t-p~lpv = senda{tflt\v){M\p[Pv)
M\alx-p\pv = recva{\d.M\p\pv[dlx])

Mlp + qjpv = M$p]pv V Mlqjpv

Mlpilptjpv = merge(Mfoi}pv, Mfpijpv)

Mfptqjpv = stepiMlplPVi Mlq]pv)

M\p\cq\pv = comm(M\p\pv,Mlq\pv)

M$p;q}pv = cat(M\plpv,Mlq\pv)

M{P(t)\pv = M'lP\pv{MW)

M'lfif.Pjpu = i\x\ipe(D->P).M'lP}p[f^ip}v

M'lXx.pjpu = XdeD.MMP^-*^
M'Uipu = plfj

Conjecture: M is fully abstract with respect to Qc-

Page 37

26 February 1994 STARS-AC-A023/005/00

3 Semantics and Verification

3.1 Concepts

Process logic as defined in section 2 can be used to describe abstract observable behavior.
This section discusses how the semantics of programming languages can be described using
process transformers and how the correctness of programs can be proved in this framework.
A process transformer is to concurrent programs what a predicate transformer is to sequential
ones.

3.1.1 Predicate Transformers

The concept of predicate transformers was first introduced by Dijkstra in [40]. A predicate
transformer for a program fragment S is a mapping from a postcondition p to a precondition
q. A precondition q that is true in the state before execution of S guarantees that, if S
terminates normally, p will hold in the final state. There are different possible interpreta-
tions of preconditions. A weakest liberal precondition is one that is implied by any other
precondition that satisfies the above interpretation. Finally, Dijkstra's weakest preconditions
also guarantee termination of the given program.

The sequential predicate transformers used in the Penelope system are formally related to a
continuation semantics. This section briefly reviews this connection. Section 3.1.2 shows that
process transformers stand in the same formal relationship with a continuation semantics

based on power domains.

A continuation is a mapping from program states to answers, i.e., program results. The
continuation associated with a point in the program describes the result when the program
is started at this point (label) with a particular state. Continuation semantics describes the
meaning of programs by defining the continuation before a statement in terms of the contin-
uation after the statement, i.e., the denotation of a statement is a continuation transformer.

The relation between continuations and predicates has long been recognized (see e.g. [84]).
The following view is based on [107]: an assertion at a point in the program is viewed as
a description of a set of possible continuations. Assume that for a fixed program point the
continuation 9 describes the effect of the remainder of the computation. Let A0 C A be
a subset of the "desirable" answers of the program, then AQ and continuation 6 define a
predicate P on states s € S in the following sense:

P(s) iff 6s e A0.

I.e., P is true for a state, if the program gives a desirable result when started at the given

point in this state.

Since a continuation semantics defines the continuation before a statement in terms of the
continuation following the statement, it effectively gives us a predicate transformer that
produces the precondition (for a desirable result) based on the postcondition of the statement.

Page 38

26 February 1994 STARS-AC-A023/005/00

Fo rm *~Fo rm

CsffSj

Figure 1: Soundness of Predicate Transformers

The soundness of predicate transformers is illustrated in figure 1. Assume that Cs is a
continuation semantics that maps sequential program S into a function from continuations
C to continuations. The notion of "desirable" answer can be captured by assuming that
answers are truth values. It is then possible to map a first-order assertion into a continuation
via <j)(A) = ASJVJAJS. The predicate transformers are sound if the diagram in figure 1

commutes.

This transformation is formalized and extended with the notion of invariants in [107] and
forms the basis of the Ada predicate transformer definition used in the Penelope system
([109]). The key idea in combining invariants with predicate transformers is to allow ap-
proximations, i.e., preconditions that are stronger than necessary. In this case user-provided
invariants and procedure pre- and postconditions can be used to approximate fixed points
associated with loops and recursive procedures.

This approach leads to a verification system based on the proof of first-order verification
conditions. At the same time, the semantic definition can make use of all of the definitional
idioms used in denotational semantics. In particular, expression continuations can be used to
define expression with side-effect and environments can be used for defining goto statements,
exceptions and other non-local transfer of control.

3.1.2 Application to Concurrency

Predicate transformers for concurrent program are formally related to a continuation seman-
tics in very much the same way as in the sequential case outlined above.

In the sequential case, a continuation is a mapping from states to answers. In the concurrent
case, a continuation maps states to processes. The answer of a concurrent program is its

observable behavior.

A concurrent programming language (without shared variables) can be denned by a contin-
uation semantics where continuations map states to powerdomain P as defined in section
2.9. Given a continuation 0 mapping s € S to IT € V, it defines a set of process terms p such

Page 39

26 February 1994 STARS-AC-A023/005/00

Proc *~ Proc

Figure 2: Soundness of Process Transformers

that
M\ =>6s

The relation between the continuation semantics and the process transformers is illustrated
in figure 2. Here Cc is a concurrent continuation semantics that maps program S into a
function from continuations (C = S -> P) to continuations. A term in process logic defines
a continuation (C) via function <f>'(p) = Xs.Mlpj L s. The process transformers are sound

if the diagram 2 commutes.

3.1.3 A Special Case: Sequential Programs

Obviously, sequential programs are special cases of concurrent ones. Thus, it is reasonable
to expect that using concurrent predicate transformers for a sequential program would lead
to the same proof obligations as traditional predicate transformers. It is show here that
this is indeed the case. The following argument shows (i) that, in the sequential case, a
process transformer definition can be systematically be derived from a first-order predicate
transformer definition and (ii) that everything provable in one formalism is provable in the

other.

The transformation ty maps first-order formulas into corresponding process logic terms ac-

cording to
if!(A) = if A then e else T

This transformation extends to annotated programs naturally, by replacing every annotation
A by ^(A), resulting in a program with process logic annotations. Now let Wp be a predicate
transformer for sequential programs (S) with first-order annotations, producing first-order
preconditions (<E Form). A process transformer Wc for (sequential) programs with process
logic annotations (e Proc) producing pre-processes can be constructed systematically from

Wp as follows:

Wp constructs first-order preconditions P € C from assertions A by (i) substitution P[u/x],
(ii) quantification Vx.P, and (iii) formation of conditionals if Athen Px elseP2, where A are

Page 40

26 February 1994 STARS-AC-A023/005/00

Wpjsj
Form *~r orm

tf

Proc
W4*{s)}

Proc

Figure 3: Relation between sequential and concurrent predicate transformers

first-order formulas. A corresponding predicate transformer Wc can be constructed by the
following transformation

Wp Wc
.[u/x]
Vz._
if A then_ else.

.[u/x]

if A then _else.

Furthermore, whenever Wp generates the verification condition A —> B, the Wc generates
the verification condition ^(A) =>• ^(B).

Wc constructed from Wp by this transformation will be consistent with Wp the sense indi-
cated in the diagram in Figure 3, i.e.,

Wc[*(S)]*(A) = *(W^p[S]A)

To prove that the diagram (Figure 3) commutes we show

1. tf(A[u/z]) = tf(A)[u/x]

2. tf(Vz.A) = XX.V(A)

3. tf(ifAthenAielseA2) = if Athen tf(Ax) else tf(A2)

The proof of this is immediate:

V(A[u/x]) = if A[u/x] then e else T
= (if AtheneelseT)[u/x]

= *(A)[u/a;]

Page 41

26 February 1994 STARS-AC-A023/005/00

2.

»l>(Vx.A) = ifVx.A then e else T

= Y,x.(\fA then e else T)

= E*.*(A)

Where the equality

if Vx.A then e else T = Er.(if A then e else T)

follows by case analysis. IfVx.A then Sx.(if Athen e else T) = e. If ->A[x0/x] for some
x0, then Ex.(if Athen e else T) = T since + is strict with respect to T.

\P(if A then Ai else A2) = if if Athen Ax else A2 then e else T

= if Athen if Ai then eelseT else

if A2then eelseT

= ifAthen*(Ai)else^(A2)

Finally, we can show that everything that is provable with first-order predicate transformers
is also provable in process logic. Consider the first-order verification condition

A -> Wp{S}B

If translated as above, this becomes

tf(A) => Wc[tt(S)]|tf(B)

and, using figure 3
*(A)=» tf(Wp|[S]£)

Thus, for every verification condition At -> A2 generated by Wp there is a corresponding
verification condition #(Ai) =>■ \&(A2) generated by Wc. Verification condition Ax —> A2 is
provable if and only if \P(Ai) =$> \P(A2) is.

Assume that Ai -> A2 holds. Then either Aa A A2 or ->Ai. In the first case, if Ax then e else
T =» if A2then eelseT becomes e =>■ e which holds trivially. If ->AU then if A\ then eelseT =^>
if A2 then eelseT becomes T => if A2 then eelseT which also holds since T => p holds for
arbitrary p. To show the converse, assume that Ai —*• A2 is false. This means Ai A -A2, in
which case if Ai then e else T =*> if A2 then e else T becomes e => T which is false.

3.2 Ada Tasking

Based on the preceding, the process transformers for the sequential part of Ada follow
immediately from the predicate transformers. This section discusses the details of mapping

Page 42

26 February 1994 STARS-AC-A023/005/00

Ada tasking constructs to process logic. The presentation here is simplified in order to focus
on the principles involved. A detailed formal predicate transformer definition for Ada tasking
is beyond the scope of this document

To simplify the exposition the presentation uses abstract simplified syntax. The focus is
on tasking semantics and many semantic details are omitted. These follow directly from
their sequential definition. Also, the exposition ignores details of maintaining an environ-
ment. Phrases like "the appropriate ..." and "the ... associated with ..." indicate that the
information needed can be computed from the environment.

The presentation omits the use of expression continuations and declaration continuations.
Instead it is assumed that all expressions evaluate without side-effects. The definition can
be extended to cover the proper Ada evaluation order rules using the same techniques as in
the sequential case ([109])

3.2.1 Task Declarations

The semantics of a task is described by a process term. This term defines the communication
behavior of the task, depending on the initial state. There is no post-process associated with
a task since the final state of a task is not observable (the user can, of course, add an
annotation at the end of the task body). The meaning of a task can simply be determined
as the pre-process of the task body for the post-process e.

The user may provide an optional pre-process (s) with a task specification. In this case the
user's specification will be meaning of the task and a verification condition is generated to
ensure that the implementation (p) satisfies this specification, i.e., the verification condition
will be s =$- p.

There is a slight complication in the case of task types since different instances of the same
task body may be activated. Obviously, their associated processes will differ, e.g., the entries
(and the events associated with calls to these entries) are different. To address this issue the
notion of a task value is introduced.

The domain of task values is an unbounded set of discrete elements. Task values will be
used to uniquely identify task instances. A task template is a process parameterized by a
task value. The meta-variable self is defined inside a task body and denotes the current
task value. The process for a task instance can be constructed from the task template by
substituting a new unique task value for for self in the template. The new task name is the
value of the task. It can treated like any other first class value. As will be shown later, the
events associated with the entries of a task instance can be constructed from the task type
(which is known statically) and the task value. Thus, task values can be used to model the
values of task variables as well as access values to tasks.

For uniformity it is assumed that all tasks are task types. A trivial syntactic transformation
can transform declared tasks into this case.

Page 43

26 February 1994 STARS-AC-A023/005/00

The pre-process of a task body

task body I is
D

begin
S

end I;

is the process
p = WcfD; S](7jj-e)

This says that the execution of the task consists of the elaboration of the local declarations
followed by the execution of the statements in the task body. The post process 7$ • e says that
after the execution the task will synchronize with the master and all and then stop. Here 7
is the synchronization label (see 3.2.3) unique to the master of task I. If the task declaration
contains a specification q, then the verification condition q =>■ p is generated. The template
associated with task I is Aself .p. New instances are generated by applying this template to
a new unique task name.

There is no dynamic semantics associated with task specifications.

3.2.2 Task Activation

The Ada language specifies that declared tasks are activated at the point of the "begin" of
their declarative region and that allocated tasks are activated when the allocator is evaluated.
It is assumed that for declared tasks the abstract syntax representation of tasking programs
contains an explicit representation for the activation of static tasks. Appropriate "activate"
statements follow the appropriate "begin". The semantics of the allocation is to create a
new, unique task value, to initialize the static tasks variable with this value, to instantiate
the task template, and to parallel compose the resulting process with the creating process.

For task activation we have

^[activate t}p = p[x/t] \ q[x/self\

where t is a static task, a: is a new task value, and q is the task template associated with t.

Similarly, for allocated tasks

Wcjnew tj(Xv.p) = (Xv.p){x) | q[x/selj\

where Xv.p is some expression continuation that receives the new task value.

Explicit representation of task activation poses one problem that so far has not been ad-
dressed. Suppose the program contains the declaration of an array of tasks with dynamic
bounds. In this case, the number of tasks that need to be activated is not static and acti-
vation needs to be done through some form of looping construct (see 4.3). Any such loop

Page 44

26 February 1994 STARS-AC-A023/005/00

would require some form of invariant. It may be possible that suitable invariants could be
constructed automatically, but this issue has not been studied. Thus, currently our tech-
nique is restricted to programs that contain only a fixed number of statically declared tasks
in every scope. Note that there are no restrictions on the number of tasks being allocated.

3.2.3 Task Termination

There are two interesting aspects to Ada task termination. First, a master (roughly the
enclosing scope) can only terminate if all dependent tasks have terminated. The master
of a declared task is the scope of its declaration, the master of an allocated tasks is the
scope that declared the access type. Secondly, tasks that include the terminate alternative
will terminate only when all siblings (tasks depending on the same master) are willing to
terminate and if the master's execution is is completed.

The semantics of both of these features is described in terms of synchronization events.
Each master (scope declaring a task Or task type) is assigned a unique synchronization label
(7). The last action in the master is to synchronize with 7. Similarly, the semantics of
each terminate alternative in all dependent tasks is to synchronize with 7 or, if there is no
terminate alternative, the last action of a task is to synchronize with 7.

This definition, given the semantics of synchronization in process logic, ensures that all
dependent tasks and their master terminate simultaneously. Terminate alternatives can only
be taken when all tasks are willing to terminate. To bound the scope of the synchronization
event the definition of activation needs to be revised as

Wc[activate tjp = £{7} U Ht.(p[x/t] | q[x/selj\)

where Ht is the set of all labels associated with entries of task t.

For example, consider the three processes

p :: = 7$ • e + a\x ■ p

q :: = 7J) • e + aly ■ q

m :: = OLIZ • alz • 7Jj • r

Where p and q might be the processes describing two tasks that repeatedly send messages to
a and that contain a terminate alternative. Process m might be the behavior of a master that
contains p and q, i.e., m will receive two values from a and will then exit the current scope
and will then continue as process r. Process r describes the remainder of the computation.
Informally, the predicate transformer for the activation of p and q (actually, the activation
of the respective tasks) is given as

#{a,7}-(p| <Z I m)

Page 45

26 February 1994 STARS-AC-A023/005/00

Using the equations in section 2.8.1 the latter term simplifies to

0{a,7}-(p| ^ I m)
= d{a,~t}.(p | ((7I • e + a\y ■ q) \ {atz ■ atz ■ 7ft • r)))

= T • d{a,7}.r

In addition to completing the execution of the task body, a task can terminate by executing
a terminate alternative. The process transformer for the terminate alternative is

VTcfterminateJp = 7JJ • e

Note that this definition is independent of p, indicating a non-local transfer of control.

3.2.4 Entry Calls

There are three actions associated with an entry call. First, the entry call starts. Some time
later, the entry call terminates. The termination may be either normal or exceptional. Thus
we have

• t.ea - the label associated with starting an entry call to entry e of task value (instance)
t. The caller will perform the action t.eje ■ p and the callee will perform t.ea7x ■ q.

• t.tw - the label associated with normal termination of an entry call to entry e of task
value t. In this case the callee will perform t.ej.e ■ q, returning the out and inout
parameters to the caller that will perform the matching action t.tjtx • p.

• t.e€ - the label associated with exceptional termination of an entry call. The callee will
execute the send action, passing the exception value to the caller which will raise this
exception in the calling program.

The Ada semantics of entry calls is very specific about the entry calls that are not imme-
diately possible are queued on entry queues. In principle it would be possible to represent
entry queues in our semantics. But this detailed description would be significantly more
complex that the approach taken here. As a consequence of this simplification, it is not
possible to reason about entry queues (e.g. their length attribute).

As a shorthand notation the task name se//will be omitted. For example ea means self.ea.
The notation suggests visibility as in Ada, i.e., naming an entry refers to the local name. It
is important understand the full expansion of this shorthand in cases like

(ejx ■ p)[t/self] = t.ejx ■ (p[t/self\)

Page 46

26 February 1994 STARS-AC-A023/005/00

3.2.5 Entries and Accept Statements

There is no semantics associated with entry declarations. An accept statement performs the
actions matching those of the an entry call as described in the previous section. Given

accept e (x : t; y : out t) do

S
end

and post-process p, the pre-process is defined as

self.ejx- WclS}(self.eJy ■ p)

In the typical case where S contains only assignments, this simplifies to

self.ea?x • self.ej.t • p

for some term t that reflects the effect of the assignments. But in general S may contain
arbitrary code including other accept statements and entry calls.

3.2.6 Delay Statements

Within an untimed partial correctness framework the meaning of the delay statement is
simply the side-effect of the evaluation of the delay expressions.

3.2.7 Select Statements

Select statements can simply be modeled using the choice operator (+) of process logic.
Select alternatives either begin with an accept statement, a when clause, or a terminate
statement. In the case of an alternative beginning with an accept statement, the pr-process

of the alternative is of the form (see 3.2.5):

For guarded alternatives the semantics is given by

Wcfwhen C ->}p = if C then p else S

The pre-process of a terminate alternative is of the form 7# • e (see 3.2.3).

The semantics of a select statement simply becomes a choice of the different select alterna-

tives:

self.t\a1x • ...

+ ...
+ if Cthen self.ena?x ■ .. .else«!)

+ 7tt-£

Page 47

26 February 1994 STARS-AC-A023/005/00

3.2.8 Conditional Entry Calls

Without modeling timing or entry queues the semantics of conditional entry calls is a non-
deterministic choice between the entry call and the else part. For instance, the pre-process
of a conditional entry

select t.e (x, y) else S

is
t.ejx ■ t.ejy -p + T- WcfSJp

Thus, the process may choose the entry call or choose to proceed with the else part. The
latter is a possible choice even if a rendezvous with t.e is possible. This is sound because it
is not observable in our framework whether or not a rendezvous is possible.

3.2.9 Abort Statements

As it stands, the definition does not handle abort statements. Describing general abort
semantics in a process logic framework is rather difficult. The problem is that abortion is
an action by one process that affect a second process without its cooperation.

A possible definition might involve the addition of abort alternatives to all communications
that task can perform. But such an approach would not faithfully model the fact that an
infinite loop (without communication) can be terminated with an abort statement.

While this is not a problem in a partial correctness framework, it makes it much more
difficult to add termination proofs. In the present semantics, termination can be shown
using standard well-founded ordering techniques on all loops and recursive subprograms.
This will be no longer the case if abort statements are defined in the manner described
above because a loop may terminate due to an abort statement in a different process.

A better solution may be to extend process logic with a disabling operator akin to that of
LOTOS ([22]).

3.3 Annotations and Proofs

Given the kind of predicate transformers described above, the question arises how the pro-
grammer should construct annotations for a program. This section discusses some of these
issues and compares the situation with the sequential case.

3.3.1 Invariants in Concurrent Programs

Consider the predicate transformers for a sequential while loop of the form:

while b loop S

Page 48

26 February 1994 STARS-AC-A023/005/00

with postcondition q. In some suitably rich language one could define the weakest pre-process
of the loop as

J^jp* [while 6 loop S\q = fir.(r —> if 6then Wjp[5]relse<7)

Since ordinary first-order logic does not contain a fixed point operator \i this formulation is
not very practical5. Instead, the typical solution is to use user-provided invariants to define
an approximation to Wp*. The idea is that if for some arbitrary formula / one can prove
that

/-> if bthen Wp[S]7else?

then monotonicity of predicate transformers with respect to —► guarantees that I is larger
(stronger) than that the least (weakest) fixed point, i.e.

/ -> Wp*[while b do Sjq

Obviously, the use of loop invariants is convenient for sequential programs. It allows proofs
to use first-order logic and it associates induction hypotheses with the loop they relate to6.

The situation is slightly more complex in the concurrent case. Consider the producer and a
consumer tasks given by

p(n) ::= a\n ■ if n > Othenp(n — 1) elsee

q(m) ::= aP.x ■ if m > 0 then q(m — 1) else e

Both of these processes (actually their respective tasks) contain a loop that may have an
invariant. Suppose one wants to prove that the process

d{a}.{p{k) | q(k))

will not deadlock. This illustrates the following problem: The absence of deadlock is a global
property. It depends on the global invariant that m and n are decremented in lock step and
that there are no other processes that send or receive a. A local invariant cannot help to
establish this property.

Thus, in the concurrent case loops that involve communication cannot be adequately de-
scribed by local invariants. In effect, suitable invariants need to be provided as induction
hypotheses at proof time once all of the global context is known (see section 4.2 for an ex-
ample). This poses no conceptual problem since appropriate pre-processes (fixed points) can
be expressed in process logic. The difficulty is one of human engineering: it is much simpler
and more intuitive for the user to provide induction hypotheses locally with the loop rather
than at proof time when the connection to the source has been lost. It may be appropriate
to introduce new kinds of annotations that are associated with collections of tasks (e.g. all
tasks with a common master). Such annotations could be used to express invariants that

cross multiple task boundaries.

In process logic, loop invariants are optional. For the loop

5Dijkstra's initial formulation of weakest preconditions assumes infinite disjunctions.
6This seems to be a special case of reusable proof directives embedded in the program text.

Page 49

26 February 1994 STARS-AC-A023/005/00

while E loop

S
end loop;

with post-process p the semantics is given by

nf.Xx.HEthen Wc{Sjf(x) elsep

where x is the set of all variables changed in S. If an invariant I(x) is given the pre-process
is I(x) with the verification condition

I(x) =► if£then Wc[S]I(x) elsep

3.3.2 Procedure Annotations

The execution of a procedure is a process that is executed sequentially with the calling
process. A procedure may perform arbitrary events and terminate in a particular state.

Consequently, the postcondition of a procedure is a first-order formula that characterizes
the possible final state. The pre-process of a procedure is a process term that describes the
process performed by the procedure depending on the initial state.

Given a procedure P with the pre-process p and the postcondition A, the pre-process of a
call to P is

Wc[p]? = p- E£ if Athen q else S

where x is the set of variables modified in the call.

3.3.3 Abstraction and Action Refinement

To deal with complex tasking programs one may wish to introduce abstraction for com-
munication events. The classical example is the implementation of networking protocol.
Typically, protocols are specified in layers. Each layer may be viewed abstractly as a defined
by a process whose abstract actions (e.g. the sending of a message) are implemented through
several actions in the lower layer.

Unfortunately, the abstraction of several actions into new, more abstract ones and the re-
finement of actions are not sound operations in general. The problem is that there is no
guarantee that lower level actions are performed in proper order and that there is no inter-
ference from other processes. It is worthwhile to study conditions under which abstraction
and refinement will be legal.

One important special case arises in Ada. If an entry call does not raise exceptions and the
associated accept does not contain nested accepts or entry calls the complete entry call can

Page 50

26 February 1994 STARS-AC-A023/005/00

be represented as a single action. The following shorthand notation will be used in this case:

t.e!x\e-p means t.ea1x ■ t.ej.e ■ p

t.elelx-p means t.ea!e • t.ejlx • p

The former is the action of an accept, the latter is the action of a matching call.

Section 4 shows some realistic examples that require more complex abstract actions to be
manageable.

4 Examples

4.1 A Buffer Task

4.1.1 The Program

The following example is based on the buffer task given in the Ada LRM [6, (9.12)].

task BÜFFER is
— I behavior PI
entry READ (C : out CHARACTER);

entry WRITE(C : in CHARACTER);
end;

task body BUFFER is
P00L_SIZE : constant INTEGER := 1
POOL : array(l .. P00L_SIZE) of CHARACTER;
COUNT : INTEGER range 0 .. POOL.SIZE := 0;
IN_INDEX, 0UT_INDEX : INTEGER range 1 .. P00L.SIZE := 1;

begin

— I P2
loop

— I invariant P3
select
— I P4.1
when COUNT < P00L.SIZE =>

accept WRITE(C : in CHARACTER) do

P00L(IN_INDEX) := C;

end;
IN.INDEX := IN_INDEX mod P00L.SIZE +1;
COUNT := COUNT +1;

or

— I P4.2

Page 51

26 February 1994 STARS-AC-A023/005/00

when COUNT > 0 =>
accept READ(C : out CHARACTER) do

C := P00L(0UT_INDEX);

end;
0UT_INDEX := 0UT_INDEX mod P00L_SIZE + 1;

COUNT := COUNT - 1;

or

— I P4.3

terminate;

end select;

end loop;

--I P5

end BUFFER;

Annotations Pi are denned below. Annotations P4. j and P2 are optional. They are included

here for illustration purposes.

4.1.2 Annotations

Even for this seemingly simple program it is indispensable to introduce appropriate abstrac-
tions. The semantics of the buffer can best be expressed in terms of the sequence of elements
buffered. We define the abstraction function a

a : ArrayIntChar, Int, Int, Int —> seq(Char)

that maps the current value of POOL, COUNT, IN_INDEX and 0UT_INDEX into the sequence of
characters currently in the buffer. Note that the signature of a is written using the Larch
sorts corresponding to the Ada types of the program according to the rules of Penelope.

Function a can be defined as follows:

<r(p,Q,i,o) = ()

cr(p,c+l,i,o) = (p[o])kcr(p, c,i,o mod ps + 1)

where () denotes sequence constructor, "&" means concatenation, and ps is the value of the

constant P00L_SIZE.

Next, we define a suitable abstract process that captures the behavior of the buffer task.

B(s) ::= lilength(s) < p, then write?c! • B(sk(c))e\seS

+ if s ^ () then read?!first{s) ■ B(rest(s)) else 6

where B(s) is a buffer process storing the data in sequence s and where 7 is the synchroniza-
tion event associated with the scope of declaration of the task. Note the use of the shorthand

notation write?c! •

Page 52

26 February 1994 STARS-AC-A023/005/00

P5 is defined to be e. This is reasonable since nothing about the final state is observable.
Alternatively, one might wish to state that

cr(P00L, COUNT, IN.INDEX, 0UT.INDEX) = ()

requiring that the task can only terminate if the buffer is empty. But this is not true
for the given task.

P3 is the loop invariant. It is defined as

5(<r(P00L, COUNT, BLINDEX, OUT_INDEX))

This invariant states that the task behaves like an abstract buffer that contains the
sequence of characters as defined by a.

P4.1 is the pre-process generated for the write alternative with the invariant as post-process.
Applying the predicate transformers yields:

if COUNT <psthen
write?c!-
(<r(P00L[lN_INDEX => CJCOUNT + 1, IN_INDEX mod ps + 1), 0,UT_INDEX)

else 8

P4.2 is the pre-process generated for the read alternative which is similarly determined to

be
if COUNT > Othen

read?!P00L[0UT_INDEX]-
B(er(P00L, COUNT - 1, IN_INDEX, 0UT_INDEX mod ps + 1))

else£

P4.3 is the pre-process of the terminate alternative. This is simply 7Jj • e.

P2 is the pre-process of the loop and is identical to P3, the loop invariant.

PI describes the behavior of the task given by B(Q). It is constructed from the invariant
P12 by accounting for the initializations in the declarative part of the task.

4.1.3 Verification Conditions

The pre-process of the select statement is just the alternative selection of the pre-processes
of the three select alternatives, i.e.

if COUNT < p^then
write?c!-

ß(o-(P00L[lN_INDEX =>■ C],

COUNT + 1,
IN.INDEX mod p3 + 1,
0UT_INDEX))

else 8

Page 53

26 February 1994 STARS-AC-A023/005/00

+ if COUNT > 0 then
read?!POOL[OUT_INDEX]-

£(cr(POOL, COUNT - 1, IN_INDEX, OUT.INDEX mod ps + 1))

else 8

+ 7Ü • «

which leads to the following verification condition for the loop

£(cr(P00L, COUNT, IN.INDEX, 0UT_INDEX))

=*>
if COUNT < ps then

write?c!-
£(<T(P00L[IN_INDEX => C],

COUNT + 1,
IN_INDEX mod ps + 1,
0UT_INDEX))

else 8
+ if COUNT > 0 then

read?!P00L[0UT_INDEX] •
B(cr(?00L, COUNT - 1, IN.INDEX, OUTJNDEX mod ps + 1))

else£
+ 7Ö-e

To prove this approximation observe the following equalities that follow directly from the

abstraction function (<r):

length((x(?QOL, COUNT, IN.INDEX, 0UT_INDEX)) = COUNT

C&cr(P00L, COUNT, IN_INDEX, 0UT_INDEX)
= cr(P00L[lN_INDEX =» C], COUNT + 1, IN_INDEX mod ps + 1, OUT.INDEX)

(cr(P00L, COUNT, IN_INDEX, 0UT_INDEX) ^ ()) = (COUNT > 0)

first(<r(?QÖL, COUNT, IN_INDEX, 0UT_INDEX)) = P00L[0UT_INDEX]

rest(a(?00L, COUNT,IN_INDEX, 0UT_INDEX))
= cr(P00L, COUNT - 1, IN.INDEX, OUTJENDEX mod ps + 1)

Next, write s for cr(P00L, COUNT, IN_INDEX, 0UT.INDEX) and substitute in the verification con-

dition:
B(s)

\Uength(s) < pa then write?c! • ß(C&;s)else£
+ \ilength(s) > Othen

rea.dV.first(s) • B(<r(rest(s))
else 8

Page 54

26 February 1994 STARS-AC-A023/005/00

Which follows directly from the definition of B. More precisely, since B is defined by
B{...) ::= p it follows that B(...) = p and thus B(...) =* p.

A second verification condition is generated to prove that PI implies the pre-process of the
task body, i.e.

fl(())=j>fl(<r(pooL, 0,1,1))

which follows trivially since <r(P00L, 0,1,1) = ().

4.2 Multi-Set Partitioning

In the following example a process specification is developed from an informal problem state-
ment. It is shown how an Ada tasking program together with its annotations can be derived
from this formal specification. The example demonstrates the systematic development of a
program from specifications and the use of the formalism as a guide to the implementation
in the style advocated by Gries ([50]). The importance is that process logic enables us to
perform such derivations for concurrent programs in a natural way.

The problem to be solved is a variant of one proposed by Dijkstra in [40, pages 260, 261].
Given are two tasks that each locally store a non-empty multi-sets of numbers. The problem
is for the two tasks to exchange numbers until all numbers in one of the multi-sets are greater

or equal to those in the other.

4.2.1 Design

The problem can be formalized in process logic as follows. Let high^mx) and low(m2) be two
processes whose local variables are mi and m2 respectively. A first approach at defining the

behavior of high might be to define

high(m) ::= a\min(m) ■ ßlx ■ (if x < min{m) then e else high(m + x - min(m)))

where min(m) is the minimum element of m and + and - denote the addition and removal
of an element from a multi-set. Since it is assumed that m is non-empty, the min function

is well defined. By symmetry, low can be defined as

low(m) ::= aly ■ ß\max{m) ■ (if y > max(m) then e else low(m + y - max(m)))

Assuming that it is possible to implement two tasks with the given behavior, we can attempt
to prove on the specification level that these two tasks will interact properly and solve the
problem. We are interested in the parallel execution of high(mx) and low(m2). But as has
been shown in earlier examples, the term high(m\) \ low(m2) will lead to a combinatorial
explosion of terms, most of which are uninteresting. So, what we are really interested in is
d{a,ß}.(high(mi) \ low(m2)). If we evaluate this latter term we get:

d{a,ß}.(high(mi) \ low(m2))

Page 55

26 February 1994 STARS-AC-A023/005/00

= d{a,ß}. ßlx ■ (if a; < min{mx) then e else high(mx + x — min{m\)))
| ß\max(m2) ■ if min{m\) > max(m2) then e

else low(m2 + min(mi) — max(m2))

= d{a,ß}. (\imax(m2) < min(mi) then e else
high{m\ + max{m2) — mm(mi)))

| (ifmm(mi) > max(m2) then e else
low(m2 + min(m-i) — max(m2)))

= if max(m2) < mm(mi) then e else

d{a,ß}. (high(mi + max(m2) — mm(mi)))
| low(rri2 + min(mi) — maa;(m2))

This term says that the parallel execution of hig^mx) and low(m2) will terminate when
max(m2) < min(mi) and will otherwise continue as the process high(mi + max(m2) —
min{mi)) \ low(m2 + min(mi) — max(m2)), i.e., is a state where both tasks have made
progress towards the solution. The process solves the problem since it makes no assump-
tions about the initial state (to be correct one would need to add the explicit conditions that
neither bag is empty). This follows since one can show

e =$> d{a, ß}.(high(mi) \ low(m2))

Note that e is the strongest observable behavior since the processes do not communicate the
results of their computation.

Next the specifications are altered slightly to fit Ada tasks. First, the initial and final values
need to be communicated through entry calls. This can be done by specifying

proch = initlm • high{rn)

proq — initlm • low(rn)

high(m) ::= almin(m) ■ ßlx • if x < minim) then
resultlm • e

else
high(m + x — min(m))

low(m) ::= aly ■ ß\max(m) ■ if y > maxim) then
resultlm • e

else
low{m + y — max{m))

To develop the Ada code, it must be decided how entry calls are used to perform the actual
communication. Obviously, init should become an entry to the tasks; result could be a call
to some third tasks or it could be another entry that returns the actual result through an out
parameter. The interesting cases are the events a and ß. These could be implemented as an
entry each or, alternatively, a and ß could be made the start and end of a single rendezvous.
Choosing the latter alternative the final specification for the two tasks is

proch = initlm). ■ high{m)

Page 56

26 February 1994 STARS-AC-A023/005/00

proct = initlml ■ low(m)

highirn) ::= ti.swap\min{m)1x •

if x < min{m) then result?x\m • eelse

high(m + x — min(m))

low(m) ::= swap?y\max(m) ■
if y > max(m) then resulttylm • eelse

low(m + y — max(m))

4.2.2 The Program

The translation of this specification into Ada tasks is now straightforward. First, the two

task specifications are:

task TH is
entry init (m : multi_set);
entry result (m : out multi_set);

end TH;

task TL is
entry init (m : multi_set);
entry swap (y : integer; x : out integer);
entry result (m : out multi_set);

end TL;

The initialization part of the tasks follows directly from the specification. The processes
high and low, however, need to be translated into two loops. This is a trivial transformation,
since the specification is in some sense "tail recursive". The two tasks receive their initial
values, communicate through the swap entry and return the final result.

task body TH is
bh : multi_set;
mi, mx : integer;

begin
accept init (m : multi_set) do

bh := m;
end accept;

loop
— I invariant high, (bh) ;
mi := min (bh);
TL.swap (mi, mx);

Page 57

26 February 1994 STARS-AC-A023/005/00

exit when mx <= mi;
bh := bh + mx - mi;

end loop;

accept result (m : out multi_set) do
m := bh;

end accept;
end TH;

task body TL is
bl : multi_set;
mx, mi : integer;

begin
accept init (m : multi_set) do

bl := m;
end accept;

loop
— I invariant low (bl)
mx := max (bl);
accept swap (y : integer; x : out integer) do

mi := y;
x := mx;

end accept;

exit when mx <= mi;
bl := bl + mi - mx;

end loop;

accept result (m : out multi_set) do

m := bl;
end accept;

end TL;

4.2.3 Verification Conditions

Using the rules in [111] and the loop rule above, the pre-process of task TH for post-process

e becomes
initlbh.1 • high(bh)

where high(bh) is the loop invariant given in TH as denned above. The verification condition
for the loop is computed as follows. With post-process e the pre-process of the final accept

statement is
resultV.bh • c

Page 58

26 February 1994 STARS-AC-A023/005/00

which becomes the post-process of the loop. The loop verification condition shows that the
given invariant is preserved by the body of the loop, i.e.

high(bh) =>
ti.swap\min{bh)1mx-
\imx < min(bh) then resultV.bh • e else high{bh + mx — min(bh))

To simplify matters slightly, the synchronization events used to describe task termination
have been omitted here.

Similarly, for task TL we get the pre-process

initlbil ■ low(bi)

with the verification condition

low(bi) =£■
swa.plx\max{b{)-

if max(bi) < x then resultV.bi ■ e else low(k + x — max{bi))

Both of these verification conditions follow immediately from the definitions of low and high

above.

4.2.4 A Calling Environment

The following procedure is an application of the partitioning solution: the two task instances
are locally declared in procedure partition. The objective is to prove that partition satisfies

a conventional sequential specification.

procedure partition (bl, b2 : multi_set;
h, 1 : out multi_set) is

— I in not empty (bl) and not empty (b2)
— I out 1 = f 1 (bl, b2) and h ='fh (bl, b2) ;

TaskL : tl;
TaskH : th;

begin
TaskH.init (bl);
TaskL.init (b2);
TaskH.result (h);
TaskL.result (1);

end

Page 59

26 February 1994 STARS-AC-A023/005/00

We write Pin(bx,b2) and Pout(h, /, &i, b2) for the specifications of the procedure. Functions /)
and fh are defined as

fl(bi,h):: =

if max(b2) < mm(6i) then 62

else/;(61 + max(b2) - m,in(b\), b2 + min{b\) — max{b2))

fk(h,b2) ■■■■=
\imax(b2) < min{bi) then 61
else//(6i + max(b2) - mm(61), b2 + min(bi) - max(b2))

The verification condition for procedure Partition says that the entry condition
Pin{b\, b2) "implies" the pre-process of the body, more precisely:

ifP,-n(6i, b2) then e else T =$■'
d{th,ti}.ti.init?bi\- L(k)

j th.init1bh\ ■ H{bh)
I th.init\bx1 ■ ti.init\b2l ■ th.resuW.7h ■ tt.resuW.il-

tiPout(h, I, 61, 62) then e else T

Where L = low[ti/self\ and H = high[th/self\ are the processes defining the two instances
of TL and TH and th and ti are new unique names for these instances introduced by the VC
generator. The notation d{t}.p is a shorthand for d{/?i, ...,ßn}.p for all events /?,• associated

with task t.

There are some obvious simplifications that can be applied to the right-hand side of the
approximation relation. The only possible events correspond to the rendezvous of the init

entry of th- This leads to

if Pin(bi,b2)then eelseT =►
d{th,tt}.T ■ tt.initlW. ■ L{bt)

I H(bx)
I tt.inW.bJ. ■ th.resuW1h ■ U.resuW.ll ■ if Pout(h, I, 61, 62) then e else T

Similarly, only the rendezvous with [tt.init] is possible. This simplification is somewhat less
obvious since it requires the unfolding of the definition of H to determine that process H

cannot engage in a rendezvous with the init entry ot L.

if #»(61,63) then e else T =►
d{th,U}.T-(L(b2)\H(bx)

I th.resuW.1h ■ ti.resuW.1l ■ if Pout(h, I, &i, b2) then e else T

Using the definition of the hiding operator, the right hand side is equal to

d{[t[.result], [th.result]}.T■
d{[tl.swap]}.{L(b2)\H(bl))

I th.resultllh ■ U.resuW.ll ■ if Pout{h, /, bu b2) then t else T

Page 60

26 February 1994 STARS-AC-A023/005/00

The process
0{[<Mwap]}.(L(&2)l#(6i))

represents a global loop that spans two tasks. In essence, TL and TH execute in lock step.
We use a global invariant to reason about this term. It will be shown that

t,.resultV.fi{bub2) ■ t | th.resultV.fh{bub2) ■ e

^■d{[ti.3wap]}.{L{b2)\H{b1)) (*)

Once (*) has been shown, the correctness of the procedure follows immediately: because of
monotonicity the verification condition reduces to

if P,-„(61, 62) then e else T =>•
d{[t 1.result], [th-result]}.r-

ti.resultV.fiib^ b2) ■ t \ tk.resultV.fhih, h) • e
I th.result\!h ■ ti.resuW.1l ■ if P0ut{h, I, h, b2) then e else T

which simplifies to

if Ptn(61, b2) then e else T
=* e I e I ifP0tt*(A(6i,63),//(6i,62),6i,62)theneelseT

and follows from the definition of Pout.

It remains to be shown that (*) holds. Expanding the definitions for L and H we get

düti.swapD.iHih) \ L(b2)) =
d{[ti.swap]}.

ti.swap\min{b\)1mx-
rfmx < mm(&i)theni/i.reauZt?!&i • eelsei?(6i + mx - mm(61))

I 11.swap!x\max{b2)-
if max(b2) < x then t1.resultV.b2 • eelseL(62 + x - max{b2))

Because of the hiding of entry swap no outside process can interfere and the concurrent
composition simplifies to

d{[ti.swap]}.T-
\imax{b2) < min(61) then th.resultVM • ee\seH(h + max(b2) - min(bx))

I if max(b2) < min(bx) then ti.result!\b2 ■ ee\seL(b2 + min(bi) - max(b2))

Finally, this process can be transformed by using case analysis. In effect, the property
p = if A then p else p is used here. The two instances of p can be simplified based on the
guard predicate. In this case A = max(b2) < minfa) gives

d{[t,.swap]}.{H{bl) I L(b2)) =
if(max(b2) < mm(6i)) then
r • {th.resultVM ■ t \ t{.resultVb2 ■ e)

else
r • d{[ti.swap}}.

(//(&i + max(b2) - min(bi)) | L(b2 + min{bx) - max(b2)))

Page 61

26 February 1994 STARS-AC-A023/005/00

Thus, if it can be shown that

ti.result?\fi(bi, b2) ■ e\ ti.resultV.fh(bi, b2) • e =>
\f(max(b2) < mm(&i))then
r • (th,.resultV.b\ ■ t \ ti.rtsultV.bi • e)

else
r • ti.resultV.fi(bi + max(b2) — mm(&i), b2 + min(bi) — max(b2)) • t

| th-resultV.fh(bi + max(b2) - rm'n(&i), 62 + min{bi) - max(b2)) ■ e

then (*) follows by fixed point induction. Now, by the definition of /; and fh this is

i,.re5u/i?!/,(i1,62) ■ e I th.resultV.f^WM) ■ e =>
if(maz(&2) < min(&i))then
r • (th.resultllb-i • e | ti.resultV.b2 • e)

else
r • ti.resultV.f^b-i, b2) ■ e\ th.resultV.f^bt, b2) ■ e

or
ti.resultV.f^bi, b2) • e \ th.resultV.fh(bi, b2) ■ e =»

r • ti.resultV.fi(bi, b2) ■ t \ th,.resultV.fh(h, b2) ■ e

In this example a proof of termination can be given by using the same techniques used for
sequential programs. In the example the number of iterations are bounded by the cardinality
of either of the bags. The program will terminate if either of the bags is finite.

Note that the proof involved only trivial reasoning about approximation (=»). The interest-
ing parts of the proof involve equivalence preserving simplifications of process terms. This
appears to be the typical approach for all programs that have sequential specifications real-

ized by concurrent implementations.

4.3 Matrix Multiplication

The following example demonstrates that simple strategies will not in general suffice for con-
currency proofs. Even more so as in the sequential case it is necessary to build appropriate
abstractions for the reasoning to be tractable. Additional experience with concurrency verifi-
cation is needed in order to determine what kind of extensions, abbreviations, meta-theorems
and so on are appropriate for process logic.

4.3.1 The Program

The program to be verified is an Ada tasking version of a multi-processor matrix multipli-

cation algorithm. Assume the following definition:

package matrix is

Page 62

26 February 1994 STARS-AC-A023/005/00

k

m

n

constant integer

constant integer

constant integer

type ma is array (1

type mb is array (1

type mc is array (1

procedure multiply (a
— I out c = a * b;

end matrix;

m, 1 .. n) of integer;

n, 1 .. k) of integer;
m, 1 .. k) of integer;

: ma; b : mb; c : out mc);

The multiplication is to be performed by an m x n x k cube of tasks. Values of matrix a
are propagated along the x dimension, values of b are propagated along the y dimension
and values of the product matrix are propagated along the z dimension. Each of the tasks
performs a single multiplication and addition. The situation is illustrated in figure 4.

The multiplication package can be implemented as

k, 1 .. m, 1 .. n) of cell;

package body matrix is
task type cell is

entry place (x, y, z : integer);
entry row (r : integer);
entry col (c : integer);
entry sum (s : out integer);

end cell;
type multiplier is array (1
mtx : multiplier;
task body cell is . . . ;
procedure multiply (a : ma; b : mb; c : out mc) is

begin
for i in 1 .. k loop

for j in 1 .. m loop
for h in 1 .. n loop

mtx (i, j, h).place (i, j, h);
end loop;

end loop;
end loop;

— I M (mtx);
end matrix;

Array mtx is the cube of cell tasks. The initialization in the package establishes a property
M(mtx) of the cube which informally says that if values of matrices a and b are sent to

Page 63

26 February 1994 STARS-AC-A023/005/00

Figure 4: Task structure for matrix multiplication

Page 64

26 February 1994 STARS-AC-A023/005/00

the appropriate entries, the product can be read. This invariant is maintained by calls to
multiply7. The initialization code is necessary to tell every task what its place is in the

cube so it can compute its neighbors.

procedure multiply (a : ma; b : mb; c : out mc) is
— I global mtx;
— I in M (mtx);
— I out M (mtx) and c = a * b;
begin

for j in 1 .. m loop for h in 1 .. n loop
mtx (1, j, h).row(a(j,h));

end loop; end loop;

for i in 1 .. k loop for h in 1 .. n loop
mtx (i, 1, h).col(b(h,i));

end loop; end loop;

for i in 1 .. k loop for j in 1 .. m loop
mtx (i, j, 1).sum(c(j,i));

end loop; end loop;
end multiply;

Procedure multiply initializes the k = 1 plane with matrix a and the m = 1 plane with b

and reads the product from the plane n = 1.

The body of task cell is given as

task body cell is
rr, cc, ss : integer;
kk, mm, nn : integer;
have_r, have_c : boolean;

begin
accept place (x, y, z : integer) do

kk := x; mm := y; nn := z;
end;

— I invariant I
while true loop

have.r := false; have_c := false;
while not (have_r and have_c) loop

select
7This invariant is actually too strong since the procedure will work properly in a concurrent environment

where several tasks simultaneously call the multiplication procedure.

Page 65

26 February 1994 STARS-AC-A023/005/00

when not have_r => accept row (r : integer) do
rr := r;

end ;
if kk < k then

mtx(kk + 1, mm, nn).row(rr);
end if;
have_r := true;

or
when not have_c => accept col (c : integer) do

cc := c;
end;
if mm < m then

mtx(kk, mm + 1, nn).col(cc);

end if;
have_c := true;

or
terminate;

end select;
end loop;
if nn < n then

mtx(kk, mm, nn + l).sum (ss);
else

ss := 0;
end if;
accept sum (s : out integer) do

s := ss + rr * cc;
end;

end loop;
end cell;

The pre-process of the cell task can be computed as place!(k,m,n)-I where process I is the

invariant of the outer loop.

Because of the manner in which values are propagated the processes on the surface of the
cube will behave slightly differently from those in the center. To simplify matters let us just
consider the invariant for a process in the center of the cube. It will be obvious how the
invariant can be modified to take care of the special boundary cases.

On close inspection is becomes clear that the inner loop will be executed exactly twice for
each iteration of the outer loop. Assume that the inner loop has been unfolded - a verification
condition generator can perform this trivial transformation. Thus no invariant is needed for

Page 66

26 February 1994 STARS-AC-A023/005/00

the inner loop and / becomes

I ::= rowlrl ■ mtx(k + 1, m, n).row\rl • colld ■ mtx{k, m + 1, n).colic! • q
+ colld • mtx(k, m + 1, n).co/!c? • rowlrl ■ mtx(k + 1, ra, n),row\r1 • q

+ 7ft • e

q ::= mtx(k,m,n + l).sum\ls • sum?!« + r * c • /

In the case of surface tasks, suitable conditionals need to be added to make sure that values
are not passed beyond the cube, e.g. mtx(k + l,m,n).row\r? • ... only applies if k < K.

4.3.2 Problem Areas

This example raises a number of questions that require further study.

Task Activation An interesting problem is encountered when we consider the activation
of the tasks. The present assumption is that task activation is represented in the abstract
syntax. This definition is satisfactory only for the case where the number of activated tasks
is statically known and unique new task values can be created by the VC generator. In the
present case the array mtx will cause new tasks to be activated at the beginning of the block.
Since the bounds of the array may vary dynamically there needs to be a representation of
some form "activation loop" and a way to generate an variable number of task names and
to prove that they are pair-wise distinct.

In the example one can use tuples (k,m,n) as task names such that the task at point
mtx(x,y,z) has the name (x,y,z). It may be possible to generalize and automate this
approach. Since multiple statically declared tasks must be contained in some complex data
structure, it may always be possible to use access functions (e.g. array indices or record
fields) to construct suitable task names.

Another question one might ask is if process logic can express the parallel composition of a
variable number of processes. The answer is yes, as the simple recursive process shows:

create(j) ::= ifj = 0 then e else (p\j/self] | create(j - 1))

Abstraction The matrix example makes the need for powerful process abstractions
painfully obvious. Consider the body of procedure multiply. The pre-process of the loop

for j in 1 .. m loop for h in 1 .. n loop
mtx (1, j, h).row(a(j,h));

end loop; end loop;

for post-process q is
eilflj? • . ..e,!a,? • q

Page 67

26 February 1994 STARS-AC-A023/005/00

for some sequence of entries e,-. It would simplify matters significantly, if it were possible to
describe this whole sequence of rendezvous as a single rendezvous

e!a? • q

for some abstract entry e that accepts the array a. In this particular example, informal
reasoning suggests that this is indeed true. But there is no formal justification for this at
present. The required reasoning appears to be much more subtle than that needed to justify
collapsing the start and end events of certain special cases of entry calls.

Ultimately, it should be possible to describe the behavior of the tasks in the cube by a simple
process like

cube = rowla ■ collb • resultla * b • cube

Information Hiding Related to abstraction is the issue of information hiding. In the
given example one would like to understand the package matrix as a sequential program.
The fact that there are local tasks should not be observable and should not have to be
considered in writing specifications for programs using the package. The idea would be to
treat every call to procedure multiply as a separate process that interacts with the local
tasks and terminates when the call is completed. No actions performed while executing
multiply should be observable outside the package. The formal basis for such a mechanism
is unclear.

5 Conclusions

The paper has outlined a formalism for specification and verification of Ada tasking pro-

grams.

A number of areas need further exploration before proofs of concurrent programs become
practical. Of particular interest are global program annotations, proof procedures, and action
refinement. Progress in these areas is interdependent and requires study of large realistic

examples.

The issue of global program annotations concerns ways to describe invariants that span
multiple tasks in the program text. Such a mechanism will likely reduce interactions with
the theorem prover and will make possible the replay of proofs after the modification of

programs.

In [85] it is noted that neither weak nor strong bisimulation is decidable for CCS. Other
more restrictive flavors of process algebra are decidable. For example, Basic Process Algebra
(BPA) consists of recursively defined processes that includes sequencing and choice (but not
parallel composition). Strong bisimulation is decidable for BPA ([31]).

Process logic as defined here is at least as hard as first-order logic. It needs to be investigated
if and how existing process algebra provers can be adapted to deal with process logic. In

Page 68

26 February 1994 STARS-AC-A023/005/00

either case, one may wish to factor proofs into first-order parts and process algebra parts.

As mentioned earlier, action refinement is not generally sound. But clearly, there are special
situation where action refinement is valid. The case of simple entry calls where the event
starting a rendezvous is always followed by the event ending the rendezvous with the same
process is one example. It needs to be investigated under which conditions action refinement
is sound. Special annotation constructs need to make such refinement accessible where legal.

Page 69

26 February 1994 STARS-AC-A023/005/00

6 Bibliography

[1]

[2]

[3]

[4]

[5

[6

[T

[8

[9

[io:

[11

[12;

[13:

[14

[15

[16

M. Abadi, L. Lamport, Composing Specifications, TOPLAS 15(1), 1993

Samson Abramsky. A Domain Equation for Bisimulation. Information and Comput-

ing, 92(2):161-218, June 1991.

Samson Abramsky. Observation Equivalence as a Testing Equivalence. Theoretical

Computer Science, 53:225-241, 1987.

Samson Abramsky. Tutorial on Concurrency. 1989. Slides from an invited lecture at

POPL '89.

L. Aceto, M. Hennessy, Termination, Deadlock and Divergence, 5th Intl. Conf. on
Mathematical Foundations of Programming Semantics, New Orleans, 1989, LNCS
442

Ada Programming Language, ANSI/MIL-STD-1815A

B. Alpern, F. B. Schneider, Defining liveness, Inf. Proc. Letters 21(4), 1985

K. R. Apt (ed.) Logics and models of concurrent systems, Nato ASI series F, Vol 13,

Springer Verlag 1985

K. R. Apt, N. Francez, and W. P. de Roever. A proof system for communicating

processes. ACM TOPLAS, 2(3):359-385, 1980.

E. Astesiano, A. Giovini, and G. Reggio. Generalized Bisimulation in Relational
Specifications. In LNCS 294: Proceedings of STACS 88, pages 207-226, Springer-

Verlag, Berlin, 1988.

E. Astesiano and E. Zucca. Parametric Channels in CCS and Their Applications.
In Proceedings of the 2nd Conference on Foundations of Software Technology and
Theoretical Computer Science, December 1982. Treat channels passing by encoding
it into pure CCS.

Egidio Astesiano and Gianna Reggio. SMoLCS-Driven Concurrent Calculi. In LNCS
249: TAPSOFT '87, pages 169-201, Springer-Verlag, Berlin, 1987.

E. Astesiano, G. Reggio, Comparing direct and continuation semantics styles for

concurrent languages, LNCS 247, pp. 311-322

J. C. M. Baeten (ed), Applications of Process Algebra, Cambridge University Press,

1990

J. C. M. Baeten, W. P. Weijland, Process Algebra, Cambridge University Press, 1990

J. C. M. Baeten, J. A. Bergstra, Discrete Time Process Algebra, CONCUR 92, LNSC

630

Page 70

26 February 1994 STARS-AC-A023/005/00

[IT

[18

[19

[20

[2i;

[22

[23;

[24;

[25

[26

[27;

[28

[29

[30

[31

J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Ready Trace Semantics for Concrete
Process Algebra with Priority Operator. Technical Report CWI Report CS-R8517,
CWI, Amsterdam, 1985.

J. A. Bergstra and J. W. Klop. Process Algebra for Synchronous Communication.

Information and Control, 60:109-137, 1984.

J. A. Bergstra and J. W. Klop, Algebra of communicating processes with abstraction,
Theoretical Computer Science, 37, pp77-121, 1985

David B. Benson, Jerzy Tiuryn, Fixed points in process algebras with internal actions,
LNCS 239, pp53-58

Bard Bloom, Sorin Istrail, and Albert Meyer. Bisimulation Can't Be Traced. Tech-
nical Report TR-90-1150, Cornell University, 1990. Revised version of 1988 POPL
paper.

T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LO-
TOS. In Computer Networks and ISDN Systems 14, pages 25-59, North-Holland,
Amsterdam, 1987.

T. Bolognesi, M. Caneve, Squiggle - A Tool for the Analysis of LOTOS Specifications,
in Formal Description Techniques (K. Turner, ed.) North Holland, 1989, pp201-216

G. Boudol, et. al., Process Calculi, from Theory to Practice: Verification Tools, in

LNCS 407, 1990

Gerard Boudol and Gerard Berry. The Chemical Abstract Machine. In Proceedings of
the Seventeenth Annual ACM Conference on Principles of Programming Languages,
pages 81-94, ACM, January 1990.

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Communicating
Sequential Processes. Journal of the ACM, 31(3):560-599, July 1984.

A. De Bruin, W. Böhm, The Denotational Semantics of Dynamic Networks of Pro-
cesses, ACM Transactions on Programming Languages and Systems, Vol 7, No 4,, pp

656-679, October 1985

S. D. Brookes, C. A. R. Hoare and A. W. Roscoe, A theory of communicating se-
quential processes, Journal ACM 31, pp 560-569, 1984

Alan Burns, Andrew M. Lister, and Andrew J. Wellings. A Review of Ada Tasking.
Volume 262 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1987.

Ilaria Castellani and Matthew Hennessy. Distributed Bisimulations. Journal of the

ACM, 36(4):887-911, 1989.

S. Christensen, H. Hüttel, C. Stirling, Bisimulation Equivalence is Decidable for all
Context-Free Processes, CONCUR-92, LNCS 630

Page 71

26 February 1994 STARS-AC-A023/005/00

[32

[33

[34

[35

[36

[37;

[38

[39

[40

[41

[42

[43

[44

[45

[46

[47

Ranee Cleaveland, Matthew Hennessy, Priorities in Process Algebras, LICS 1988.

Ranee Cleaveland, Joachim Parrow, and Bernard Steffen. The Concurrency Work-
bench. 1988. TOPLAS 15(1), 1993

R. de Nicola and M. Hennessy. Testing Equivalences for Processes. Theoretical Com-

puter Science, 34:83-133, 1984.

Rocco de Nicola and Matthew Hennessy. CCS without T'S. In LNCS 249: TAPSOFT
'87, pages 138-152, Springer-Verlag, Berlin, 1987.

P. Degano, R. de Nicola, and U. Montanari. A Distributed Operational Semantics for
CCS based on Condition/Event Systems. Technical Report Nota Interna I.E.I B4-
21, Department of Computer Science, University of Pisa, 1987. To appear in Acta
Informatica.

R. DeNicola, F. W. Vaandrager, Three logics for branching bisimulation, LICS 1990

Dijkstra, E. W., Guarded commands, nondeterminacy and the formal derivation of
programs, Comm. of the ACM, 18(8):453-457, August 1975.

Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Schölten, On-the-fly Garbage
Collection: An Exercise in Cooperation, Comm. ACM 21(11), 1978, pp966-975

Edsger W. Dijkstra, Selected Writings on Computing, A personal perspective ,
Springer Verlag, 1982

H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 1, Springer Verlag, 1985

Tzilla Elrad and Nissim Francez, A weakest precondition semantics for communicat-
ing processes, RC9773, IBM Yorktown Heights, 1982

U. Engberg and M. Nielsen. A Calculus of Communicating Systems with Label
Passing. Technical Report DAIMI PB-208, Aarhus University Computer Science
Department, 1986. The original paper in label passing CCS that inspired the ir-
calculus of Milner, Parrow and Walker.

Chris George, The RAISE Specification Language, A Tutorial, in VDM '91 Formal
Software Development Methods, Vol 2: Tutorials, LNCS 552

Rob Gerth, A sound and complete Hoare axiomatization of the Ada rendezvous, in
Proc. 9th ICALP, LNCS 140, pp252-264, 1982

R. Gerth and W. P. de Roever. A proof system for concurrent Ada programs. Science
of Computer Programming, 4, 198.

R. J. van Glabbeek, W. P. Weijland, Banching time and abstraction in bisimulation
semantics, in Information Processing 89, pp 613-618

Page 72

26 February 1994 STARS-AC-A023/005/00

[48

[49

[50

[51

[52

[53

[54

[55;

[56

[57;

[58

[59

[60

[61

[62

[63

[64

M. Gordon et al, The HOL System Description, Cambridge University and SRI In-
ternational

S. Graf and J. Sifakis. A modal characterization of observational congruence of finite
terms of CCS. Information and Control, 68:125-145, 1986.

David Gries, The Science of Programming, Springer Verlag, 1981

C. A. Gunter, D. S. Scott, Semantic Domains, in Handbook of Theoretical Computer
Science (J. van Leeuwen ed.), The MIT Press, 1990

D. Harel, First-Order Dynamic Logic, LNCS 68, 1979

Matthew Hennessy, Algebraic Theory of Processes, MIT Press, 1988

Matthew Hennessy, Proving Systolic Systems Correct, TOPLAS 8(3), pp344-387,

1986

M. Hennessy and R. Milner. Aigebraic Laws for Nondeterminism and Concurrency.
Journal of the ACM, 32(1):137-161, 1985.

Sooner is Safer Than Later, TR 92-1309, Cornell University, 1992

C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985

Soren Holmström. Hennessy-Milner Logic with Recursion as a Specification Lan-
guage, and a Refinement Calculus based on it. Programming Methodology Group Re-
port 44, University of Göteborg, 1988.

A. Ingolfsdottir, B. Thomsen, Semantic Models for CCS with Values, Chalmers Work-
shop on Concurrency, Baastad, Sweden, 1991

Paola Inverardi, Corrado Priami, Evaluation of Tools for the Analysis of Communi-
cating Systems, Bulletin of the EATCS 35, October 1991, ppl58-185

occam Programming Manual. 1984. Prentice-Hall Series in Computer Science,
C. A. R. Hoare (Series Editor). See also the occam 2 Reference Manual, Prentice-

Hall 1988.

Radha Jagadeesan and Prakash Panangaden. A Domain-Theoretic Model for a
Higher-Order Process Calculus. In M. S. Paterson, editor, LNCS 443: Automata,
Languages and Programming: Proceedings of the IIth International Colloquium,
pages 181-194, Springer-Verlag, Berlin, July 1990. Full form issued as Cornell tech-
nical report 89-1058.

C. T. Jensen, The Concurrency Workbench with Priorities, 3rd Int'l Workshop Com-
puter Aided Verification 1991, LNCS 575

P. C. Kanellakis and S. A. Smolka. CCS Expressions, Finite State Processes, and
Three Problems of Equivalence. In Proceedings of the 2nd ACM Symposium on Prin-
ciples of Distributed Computing, Montreal, Canada, pages 228-240, August 1983.

Page 73

26 February 1994 STARS-AC-A023/005/00

[65

[66

[67

[68

[69

[70

[71

[72

[73;

[74

[75

[76

[77

[78

[79

[80

P. C. Kanellakis and S. A. Smolka. On the Analysis of Cooperation and Antagonism
in Networks of Communicating Processes. Algorithmica, 1988.

L. Kossen, W. P. Weijland, Correctness Proofs for Systolic Algorithms: Palindromes
and Sorting, Report FVI 87-04, Comp. Sei. Dept., University of Amsterdam, 1987

D. Kozen. Results on the propositional mu-calculus. In LNCS 140: Proceedings of
the 9th International Colloqium on Automata, Languages and Programming (ICALP),
Springer-Verlag, Berlin, 1982.

Saul A. Kripke, Semantic Considerations on Modal Logic, in Reference and Modality
(Leonard Linsky, ed.), Oxford University Press, 1971, pp 63-72

Rom Langerak, Transformation and Semantics for LOTOS, Twente University, 1992

Lankford, D. S., Canonical algebraic simplification in computational logic, Memo
ATP-25, Automatic Theorem Proving Project, University of Texas, Austin, 1975.

L. Lamport, The 'Hoare Logic' of Concurrent Programs, Acta Informatica 14, pp. 21-

37, 1980

L. Lamport, Specifying Concurrent Program Modules, TOPLAS, 5/2, pp. 190-222,

April 1983

K. G. Larsen and R. Milner. Verifying a protocol using relativized bisimulation. In
LNCS 267: Proceedings of the 14th International Colloqium on Automata, Languages
and Programming (ICALP), Springer-Verlag, Berlin, 1987.

K. G. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Technical
Report R 88-29, Institut for Elektronsiske Systemer, Afdeling for Matematik og Dat-
alogi, Aalborg Universitetscenter, 1988. Full form of POPL '89 paper.

Kim Larsen. Proof systems for Hennessy-Milner logic with recursion. In LNCS 299:
Proceedings of CAAP 1988, Springer-Verlag, Berlin, 1988. Full version to appear in

TCS.

Kim G. Larsen. Context-Dependent Bisimulation between Processes. PhD thesis,
University of Edinburgh, 1986. Keywords: Contexts as predicate transformers. Modal

Logic, bisimulation.

Huimin Lin, PAM: A Process Algebra Manipulator, 3rd Int'l Workshop Computer

Aided Verification, 1991, LNSC 575

Michael G. Main, A powerdomain primer, Bulletin of the EATCS 33, October 1987

Michael G. Main, Free Constructions of Powerdomains, LNCS 239, ppl62-183

Sigurd Meldal, On Hierarchical Abstraction and Partial Correctness of Concurrent
Structures, PhD Thesis, University of Oslo, May 1986

Page 74

26 February 1994 STARS-AC-A023/005/00

[81

[82

[83

[84

[85

[86;

[87

[88;

[89;

[90

[91

[92

[93

[94;

[95

[96

S. Mau and G. J. Veltink. A Process Specification Formalism. Programming Research
Group Report P8814, University of Amsterdam, 1988.

S. Mau, G. J. Veltink, An Introduction to PSFd, Proc, Int. Joint Conf. on Theory
and Practice of Software Development, LNSC 352, pp272-285, 1989

George J. Milne, Robin Milner, Concurrent Processes and Their Syntax, Journal of
the ACM 26/2, pp. 302-321, April 1979

Robert Milne, Christopher Strachey, A theory of programming language semantics,
Chapman and Hall, 1976

Robin Milner. Communication and Concurrency. Series in Computer Science,
Prentice-Hall, 1989.

Robin Milner, Flowgraphs and Flow Algebras, Journal of the ACM 26/4, pp. 794-818,
October 1979

R. Milner, A calculus of Communicating Systems, LNCS 92, 1980

R. Milner, Operational and Algebraic Semantics of Concurrent Processes, in Handbook
of Theoretical Computer Science (J. van Leeuwen, ed.), Elsevier, 1990

Robin Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer Science,
25:269-310, 1983.

Robin Milner. Lectures on a Calculus for Communicating Systems. In LNCS 197:
Proceedings of the Seminar on Concurrency, pages 197-220, Springer-Verlag, Berlin,
1985.

R. Milner, A complete inference system for a class of regular behaviours. Journal of
Computer and System sciences 12 (3), pp439-466, 1984

Robin Milner. Operational and Algebraic Semantics of Concurrent Processes. Inter-
nal Report ECS-LFCS-88-46, University of Edinburgh, 1988.

Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes.
Technical Report ECS-LFCS-89-86, LFCS, Department of Computer Science, Uni-
versity of Edinburgh, June 1989. Also published as CSR-303-89.

Robin Milner, Joachim Parrow, and David Walker. Modal Logics for Mobile Pro-
cesses. In Proceedings of Concur '91, LNCS 527, 1991.

Faron Möller. Axioms for Concurrency. PhD thesis, University of Edinburgh, 1989.
Report Number ECS-LFCS-89-84.

M. Nezi, Mechanising a Proof by Induction of Process Algebra Specifications in Higher
Order Logic, rd3 Int'l Workshop Computer Aided Verification, 1991, LNCS 575.

Page 75

26 February 1994 ■ STARS-AC-A023/005/00

[97]

[98

[99

[100

[101

[102

[103

[104

[105

[106

[107;

[108

[109

[110

[111

R. De Nicola, P. Inverardi, M. Nesi, Using the Axiomatic Representation of Be-
havioural Equivalences for Manipulating CCS Specifications, LNCS 407, 1990

0. Nierstrasz, M. Papathomas, Viewing Objects as Patterns of Communicating
Agents, Proceedings on the Conference on Object-Oriented Programming, Ottawa

1990, pp 38-43 (also, SIGPLAN Notices 25(10), October 1990)

E.-R. Olderog and C. A. R. Hoare. Specification-oriented Semantics for Communi-
cating Processes. Ada Information, 23:9-66, 1986. Full form of LNCS 154: 10th
ICALP paper.

Owicki, S., Gires, D., An axiomatic proof technique for parallel programs, Acta In-
formatica 6, pp 319-340, 1979.

D. Park. Concurrency and Automata on Infinite Sequences. In Proceedings of the 5th

G.I. Conference, Springer-Verlag, Berlin, 1981.

1. Phillips. Refusal Testing. In LNCS 226: Automata, Languages and Programming:
Proceedings of the 13t/l International Colloquium, pages 304-313, Springer-Verlag,
Berlin, 1986.

G. D. Plotkin. A Powerdomain Construction. SIAM Journal of Computing, 5:452-

486, 1976.

G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Re-
port DAIMI FN-19, Aarhus University, September 1981.

G. D. Plotkin. An Operational Semantics for CSP. In D. Bj0rner, editor, Formal
Description of Programming Language Concepts II, pages 199-223, North-Holland,

Amsterdam, 1983.

A. Pnueli. Linear and Branching Structures in the Semantics and Logics of Reactive
Systems. In LNCS 194: Automata, Languages and Programming: Proceedings of the
\2th International Colloquium, pages 15-32, Springer-Verlag, Berlin, 1985.

W. Polak, Program Verification Based on Denotational Semantics, Eighth annual
ACM Symposium on Principles of Programming Languages, Williamsburg, January

1981, pp 149-158

W. Polak, Formal verification of Ada tasking programs, ORA proposal, Oct. 1988.

W. Polak, Predicate Transformer Semantics for Ada, ORA internal report.

W. Polak, Report on subset for concurrency, STARSSC03094/001/00, 1990.

W. Polak, Predicate Transformer Semantics for Ada tasking, ORA internal report.

Dec. 1991

[112] Ichiro Satoh, Mario Tokoro, A formalism for real-time concurrent Object-Oriented

Computing OOPSLA, 1992, pp. 315-326

Page 76

26 February 1994 STARS-AC-A023/005/00

113] M. B. Smyth. Powerdomains. JCSS, 16:23-36, 1978.

1141 Colin Stirling. Modal Logics for Communicating Systems. Theoretical Computer
Science, 49:311-347, 1987.

115] Colin Stirling. Temporal Logics for CCS. In Proceedings of REX Workshop 1988,
Springer-Verlag, Berlin, 1988.

1161 N. Soundarajan, Axiomatic Semantics of Communicating Sequential Processes, ACM
TOPLAS, 6/4, pp. 647-662, October 1984

1171 Bent Thomsen. Calculi for Higher-Order Communicating Systems. PhD thesis, Impe-
rial College of Science, Technology and Medicine, London, Department of Computing,
1990.

1181 Bent Thomsen. A Calculus of Higher Order Communicating Systems. In Confer-
ence Record of the Sixteenth Annual ACM Symposium on Principle of Programming
Languages, pages 143-154, ACM, January 1989.

1191 R. J. van Glabbeek. The semantics of finite, concrete, sequential processes. Technical
Report Report RvG-8801, Center for Mathematics and Computer Science, Amster-
dam, 1988.

1201 F. W. Vaandrager, Verification of Two Communication Protocols by means of Process
Algebra, CS-R8608, CWI, Amsterdam, 1986

1211 Philip Wadler, Comprehending Monads, Math. Struct, in Comp. Science (1992), Vol

2, pp. 461-493.

1221 David J. Walker. Bisimulation and Divergence. Information and Computation,
85(2):202-241, 1990.

123] J. Zwiers. Predicates, Predicate Transformers and Refinement. In LNCS 430: Step-
wise Refinement of Distributed Systems. (Proceedings of the 1989 REX Workshop),
pages 760-776, Springer-Verlag, Berlin, 1989.

124] J. Zwiers, W. P. de Roever, and P. van Emde Boas. Compositionality and concurrent
networks: soundness and completeness of a proof system. In LNCS 194-' Proceed-
ings of the 12th International Colloqium on Automata, Languages and Programming
(ICALP), pages 509-519, Springer-Verlag, Berlin, 1985.

Page 77

