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Do We Fully Understand the Symmetric 

Lanczos Algorithm Yet? * 

Beresford N. Parlett* 

Abstract 
Imagine that one has computed the real ra-vectors 6, Ab, Ä*b,..., Am~1b where A is a 

real symmetric nxn matrix. Lanczos showed us in 1950 how to construct a much better 
basis for the (Krylov) space spanned by these power vectors and for little extra cost. 
The new basis {qi,q2,■■-, 1m}, now called the Lanczos basis, has two nice properties: 
(i) it is orthonormal, (ii) the representation ofA's projection is a symmetric tridiagonal 
matrix Tm. Property (ii) is synonymous with the three term recurrence governing the 
Lanczos vectors. Moreover some of Tm's eigenvalues, called Ritz values hereafter, are 
excellent approximations to some of A's eigenvalues even when m « n. In addition 
we can tell, with little expense, which Ritz values are also eigenvalues. One surprising 
implication of these properties is that it is easier to find the largest few eigenvalues of 
A than to solve Ax = b\ 

When the Lanczos algorithm is implemented in a computer the user discovers 
an unpleasant fact. Property (i) fails completely for m as small as 20 or 30 and 
consequently the computed Tm's relation to A is unclear. Lanczos was aware of this 
blemish and proposed the obvious remedy: keep applying the Gram-Schmidt process to 
each new Lanczos vector as it is computed. The catch here is that all the {g,} must be 
kept handy whereas in exact arithmetic only the three latest Lanczos vectors are needed 
and earlier q's may be discarded. The arithmetic cost of this full reorthogonalization 
grows quadratically with m. So the hope of computing T„ efficiently and accurately by 
the Lanczos algorithm was dashed and other methods prevailed. In exact arithmetic 
T„ is similar to A and the algorithm stops. 

What Lanczos and Wilkinson both failed to see is that there is structure in the way 
that orthogonality is lost. This structure is revealed by a clever change of basis and it 
was discovered by C. C. Paige in 1969/1970 while writing his dissertation. Moreover 
the computed Tm retains information about A. Thus the loss of orthogonality delays 
the discovery of .A's eigenvalues by the simple Lanczos algorithm but does not prevent 
the attainment of full accuracy if enough steps are taken. In finite precision arithmetic 
the simple Lanczos algorithm will run forever and we are just beginning to come up 
with good models that describe how Tm relates to A when m»n. 

1    Introduction 
Today the Lanczos algorithm seems so natural, so inevitable, and so simple that it is 
difficult to imagine that it was not part of the numerical scene until 1950. Of course digital 
computers did not appear until the end of World War II but, equally important, is the fact 
that the concept of a tridiagonal matrix was not in the mental tool box of a scientist in 
1950. A tridiagonal matrix does not reveal its eigenvalues or eigenvectors to the casual eye 
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so, at best, it seemed a mere stepping stone to the desired spectral information. Indeed it 
was not until 1954 that safe and efficient ways of computing the spectrum of a symmetric 
tridiagonal matrix were discovered. For some applications, such as solving large systems 
of differential equations, a tridiagonal representation may suffice and diagonalization is 
overkill, see [13], [8]. 

This essay will discuss the Lanczos algorithm in the context of exact arithmetic and in 
the context of computer arithmetic. A sequence of pictures is presented that reveals, in 
striking detail, the structure governing the finite precision algorithm. 

The essay ends with a brief discussion of recent work designed to bound the number of 
steps needed to determine a given 'well represented' eigenvalue to working accuracy. Indeed 
it is not at all obvious that the tridiagonal matrix produced by the Lanczos algorithm will 
eventually have a spectrum that comes arbitrarily close to each eigenvalue of the given 
matrix, even if the algorithm is run forever. 

Let us now introduce the notation that is needed to tell our story. We start with an 
n xn Hermitian matrix A produced by a physicist or engineer. Either all or part of ^4's 
spectrum is wanted and the challenge is that n may be large; n = 104 is common, n = 106 

no longer makes headlines, and n = 108 is waiting around the corner. In several ways it 
helps to think of A as a self-adjoint linear operator and to forget n. 

Physicists are in the habit of talking glibly about diagonalizing an Hermitian matrix 
because their instructors tell them that this is always possible. The diagonal matrix is 
called A and we write 

(1) A = ZAZ* 

where Z is a unitary matrix whose columns are eigenvectors of A. For any complex object 
C we write C* for its conjugate transpose. In this essay we are concerned only with the 
first step in the task of computing A, namely the production of a real tridiagonal matrix T 
where 
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so that 

(3) A = QTQ* 

with Q* — Q~l being unitary. 
Is T canonical in the same way as A? Certainly not. There are infinitely many essentially 

different T matrices, a family with n - 1 degrees of freedom. This freedom can be specified 
very nicely. 

THEOREM 1.1. If Equation (3) above holds and Q is written by columns as Q = 
[QIJ ■ ■ ■. Qn) then both T and Q are completely determined by A and qi (or by A and qn). 
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The proof of this theorem yields the Lanczos algorithm! The proof supposes that all 
arithmetic operations are performed exactly and numbers represented exactly. Before 
presenting the proof we hasten to add that this is not the way Lanczos himself introduced 
his algorithm. For that story see the commentaries on the 1950 paper. 

Proof. To prove the theorem it is only necessary to equate columns on each side of the 
equation 

AQ = QT. 

Column 1 gives Aq\ = q\a\ + q-zßi- Orthogonality of Q's columns yields q\Aqi = q*qiati 
and the fact that each column of Q has Euclidean length 1 gives ai  = q{Aq\ and 
/?2 = \\Aq\ — q\a.\\\. Throughout this essay ||v|| := y/v*v. Thus q?. — (Aqi — qia.\)//%. 

In the same way, on equating column k on each side of AQ = QT one finds that 

ak   =   qkAqk = q%{Aqk - qk-ißk), 

ßic+i   =   \\Aqk - qk-ißk - qkOikW, 

Qk+i   =   (Aqk - qk-ißk - qkak)/ßk+i. 

Soifgfc_i, ßk, and qk are known then ak, ßk+i, and <&+! are completely determined. Notice 
that we rather cleverly assumed that all ß values were positive. In practice, if ßk+\ = 0, 
we are delighted because then the linear span of {qi,q2,---,qk} is invariant under A and 
every eigenvalue of Tk is an eigenvalue of A. 

Could anything be more simple? 
Let us mention another attractive feature of the algorithm. We live in an age that 

measures standard of living by the amount that the average citizen discards. We love to 
throw things away. Notice that at the end of step k we may throw away qk-i; it has served 
its purpose. In order to compute eigenvalues it is only necessary to store T and to use 
3 n-vectors in the fast memory. The arithmetic effort at each step is dominated by the 
formation of Aqk. Indeed, if A is a sparse matrix and the cost of forming Aqk is 0(n) 
rather than 0(n2) then we have an algorithm that computes Tn with 0(n2) effort. 

It is too good to be true-as we shall soon see. 

2    Rayleigh-Ritz Approximations 
There is more to be said about the Lanczos algorithm in exact arithmetic. Two matrix 
equations specify the output of the algorithm at each step. Define 

Qj   •-   ki,92, ...,#], 
e*j   :=   (0,0, ...,0,1),    a row j — vector 

Then 

(4) QtQj   =   Ij 

(5) AQj-QjTj   =   ^+i/3i+ie; 

Here is a picture of (5) 
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(3-term recurrence). 
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Up to this point we have neglected an important property of the algorithm. After an initial 
phase is over, i.e. for large enough j, some eigenvalues of Tj are good approximations to 
some eigenvalues of A. Which are the good approximations and how good are they? 

There is a beautiful answer to these questions. 
The extra notation needed at this point is spectral factorization, or diagonalization, of 

Tf 
(6) TjSj = SjQj 

where 

Sj = [sj  ,4 ,• • •)sj  ]>    Syl = Sj   iS a real orthogonal j x j matrix, 

s\  (k) denotes the kth entry in the normalized eigenvector of 0\. Also 

ej=diag(0?\...,ef), 

where 
e[j) <9{

2
j) <...<e{? 

are the eigenvalues of Tj which, henceforth, will be called Ritz values (of A at step j). 

Associated with Of' is its Ritz vector 

(7) y? = Qis?) = £lqks?\k),   i = l,...,j. 

The point of all this is that the pairs (fl^yf^), i = 1, •••,.? are the Rayleigh-Ritz 
approximations to A's eigenpairs from the range of Qj. It is known that, in several ways, 
these are collectively the best set of approximations from 

range Qj = span(qi, Aq\,A2q\,..., Aj~1q-i). 

For more details on this subject see (1] and [11]. 
To distinguish the good Ritz values from the bad ones it is only necessary to 

postmultiply (5), the matrix form of the 3 term recurrence, by s\3' to obtain 

(8) AQjSP - QJTJS^ = qj+ißj+isPU),   t = 1 j. 

By (6),  T^f^ standby (7) 

(9) AyV-y^^qj^ßj+^ü) 

and, on taking norms, 

(10) \\AyV - yPePw = tf» := ßj+^\j)\. 

This is a remarkable and rare situation; one can determine the ith residual norm, i.e. 
\\Ayi - Vi &i \\ without forming y^\ That is good news because y^ will not be easy 
to compute if all the Lanczos vectors have been discarded except for the last three. The 
right side of (10) requires an algorithm to update Ritz values and last entries in certain 
eigenvectors of a j x j tridiagonal matrix. When j = 40 and n = 104 the difference in 
arithmetic effort is significant. 
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Well known eigenvalue bounds, see [11] and [5], guarantee that there is at least one 
eigenvalue A of A that satisfies 

\\-oP\<ßP 
and, in fact, 

r-\2 

gap(i)   =   minl/z-6^1, 

lA-afl   <   ßf /gap{i) 

gap{i)   = 

where /z is an eigenvalue of A distinct from A. 
What this means in practice is that it is the quantities |s; (j)\, i = l,...,j which 

measure the quality of #{ . One can judge yf' before computing it. There are two ways 
to compute yf\ Either save the old q-vectors «ft,...,qj-2 on secondary storage or run the 
Lanczos algorithm for a second time accumulating yf' alongside <&, k = 1,2,... ,j. 

We now have two orthonormal bases for the Krylov subspace span (qi,Aqi,..., 
A?~xq\); the Lanczos basis {qi} and the Ritz basis {y± '}. Note that, in principle, 
the whole Ritz basis changes at each step. The way in which the O^' approach A's 
spectrum has received considerable attention, see [11] and [12]. The larger the ratio 
min{Ai+i — Xi, A» — Ai_i}/(A„ — Ai) the more rapidly does a Ritz value settle on to A^. 
Even for a randomly chosen q\ it is not uncommon for several extreme eigenvalues to be 
approximated to 8 correct decimals after 30 or 40 steps, independent of n. 

As we said before: It all seems too good to be true. 

3    Finite Precision Arithmetic 
Digital computers discard information at almost every arithmetic operation. When only 
the leading 50 or 60 bits of each floating point number are retained then the beautiful 
relationships expounded in Sections 1 and 2 fail. In order to describe what happens we 
change notation slightly and let Qj and Tj denote the quantities actually stored in the 
computer. In contrast Sj and Qj denote the exact spectral factors of the computed Tj. 

The orthogonality equation (4) is replaced by 

(11) Q*JQJ = C; + IJ + CJ 

where Cj is strictly upper triangular. Since the computed qi are not exactly normalized Ij 
should be replaced by some diagonal Aj that is exceedingly close to Ij but such veracity is 
not cost effective. The three term recurrence (5) becomes 

(12) AQj - QjTj = qj+ißj+ie*j + Fj 

where fc, column i of Fj, is just the amount by which the 3 term recurrence fails to hold 
for computed qi. It turns out that Fj remains at the round off level whereas ||Cj|| grows 
rapidly towards 1 as j increases. We can think of (12) as (5) contaminated with 'white 
noise' that remains at the round off level, i.e. \\fi\\ is proportional to round off unit and is 
independent of i. 

This perturbation to (5) has significant consequences. The algorithm driven by (12) 
never terminates. When j > n the columns Qj cannot be linearly independent, let alone 
orthonormal.   In fact linear independence is lost long before j is close to n.   The next 
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question is: how does T^ relate to A? In exact arithmetic Tn is similar to A but that is 
impossible for T-m- 

The best way to understand this orthogonality loss is through pictures. The figures 
that follow show Cj as a function of two variables; one plots \C(row, col)\ as a function of 
(row, col). 

Figure 1 shows a typical case; orthogonality leaks away. Close to the diagonal C is 
negligible but at step 30 C(k, k + 15) = 0(1) for most values of A: < 15. 

One cannot tell from Figure 1 whether linear independence has been lost yet but 
orthogonality loss is total. 

It is not disrespectful to say that Lanczos himself, and J. H. Wilkinson, the leading 
expert in matrix computations from 1960-1984, both panicked at this phenomenon. Each 
of them insisted on doing what we now call full reorthogonalization. With this modification 
at step j qj+i is explicitly orthonormalized against all preceding Lanczos vectors. See [7], 
p. 271, and [14], Section 38, line 3. This precaution increases the storage requirements 
and the arithmetic effort. No longer is the cost of step j constant, now it grows linearly 
with j. Thus full reorthogonalization seems to constrain users (except for rich physicists) 
to making short Lanczos runs whereas Krylov subspace theory reveals the approximating 
power of long Lanczos runs. 

The technique of restarting is not a bad response to the difficulties but neither is it 
fully satisfactory. The number of extra applications of the operator beyond those needed 
by one long Lanczos run can be significant and is not reported by those developing restart 
methods. 

4    Hidden Structure 
Despite appearances the loss of orthogonality among the Lanczos vectors is far from random. 
A strong idea as to what is happening is given by changing bases from Lanczos to Ritz. The 
reader is invited to contemplate carefully Figures 2 through 5 which show steps 18-22 in a 
typical Lanczos run. The top half shows Cj and the bottom half shows the strictly upper 
triangular part of YfYj, the Ritz picture. Step 18 is quite revealing. Orthogonality, judged 
by human eyesight, has been maintained beautifully among the Ritz vectors EXCEPT that 
y\s is a copy of y\7 , very nearly. That is not obvious from the Lanczos picture just 
above. Thus range Q18 had dimension 17. 

Step 19 (Fig. 3) seems to tell the same story, except that now y|g9) is a copy of y[^ 
Here it is useful to remember that y^ is the Ritz vector for the largest Ritz value; 

o¥)<dg)<...<of. 

Thus each of y\8   and y\™' is very close to the dominant eigenvector of A. 
Step 20 (Fig. 4) spoils the simplicity of Step 19 but Step 21 restores it (almost) but 

space limitations forced us to omit the picture. Step 22 (Fig. 5) is very like Step 21; there 
are 20 orthogonal Ritz vectors plus a spare copy of the two Ritz vectors that have converged 
to the two dominant eigenvectors. 

The idea of changing bases originated with CO Paige and was described in his Ph.D. 
dissertation in 1970/71 (London University) and in [9] and [10]. Actually neither the 
Lanczos basis alone nor the Ritz basis alone tells the story in its simplest terms. The key 
idea is to look at the angle between qj+1 and the previous Ritz vectors (y^\..., J/

(J)
). This 

information is available at the end of step j. 
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The next set of pictures, Figures 6 to 10 reveal Paige's discovery. We repeat the previous 
run; the picture plots \y^*qj+i\ as a function of (i, j + 1). It is helpful to remember that 
9i+i is being tested against a different basis than is qj. 

When this is understood one notices that, in Fig. 6, qu is bent towards y\7 and, 
to a smaller extent qn is bent towards y^6. Yet both these Ritz vectors are good 
approximations to A's dominant eigenvector. Thus qn and qi& are pulled in the same 
direction, qig more 917. Step 19 (Fig. 7) is a little disconcerting, at first, because qw has 
maintained better orthogonality than did qis- It is true; there is nothing monotonic in this 
orthogonality loss. By Step 22 we can see that 6^ is on its way to becoming a third copy 
of the dominant eigenvector! 

There is a beautiful result behind the foregoing discussion. 
THEOREM 4.1 (PAIGE'S THEOREM). If local orthogonality is maintained in the Lanczos 

process, governed by (12), i.e. 
if    qt+iqk = 0  for all k,     then for each i < j, 

(b)   for k<j,  i^k, 

<*< - «Mk. -*($#)- * (S|) + <* - ■»>- 
where 

T{j) = (7«) = S* [upper triangle (Q*jFj - FfQflSj 

and upper triangle (M) denotes the strictly upper triangular part of M with the rest of the 
matrix filled with zero entries. 

For proofs see [9], [10] and [11]. 
The striking feature of part (a) is that the denominator is precisely the formula for 

\\Ayi — ViOiW in exact arithmetic. 

5    The Lanczos Phenomenon 
Paige's work stimulated a variety of implementations of the Lanczos algorithm which differ 
in the extent to which orthogonality of the {<&} is maintained. However that is not the 
subject of this essay. 

Experience with the simple, minimal effort, algorithm revealed that Ritz values cluster 
very closely round the eigenvalues of A as the number of steps increases. There will be 
perhaps hundreds of Ritz values within 0(e \\A\\) of the first eigenvalue to be found before the 
last one has a single Ritz value beside it. Nevertheless all eigenvalues are found eventually, 
thanks to round off, even when the starting vector is orthogonal to an eigenvector of A. 
The only known exception is the artificial case when A is diagonal and the starting vector 
has a zero entry. 

At any particular value of j there may be Ritz values that are not eigenvalues of 
A but the corresponding s\ (j) values will not be small and, sooner or later, that Ritz 
value fff' will move. The way in which A's spectrum is revealed by Ritz value behavior 
is a complicated function of the starting vector, its relation to A's eigenvectors, and the 
distribution of A's spectrum. 

Anne Greenbaum, in [3] produced a backward error analysis which showed that for a 
given number of steps J and a computed tridiagonal Tj there is a matrix A' and a starting 
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vector gx such that the exact Lanczos algorithm applied to Ä, q\ will produce Tj. This 
work, and further extensions of it, are described in this volume in the section written by 
Greenbaum. 

In [2] came the first proofs of the Lanczos phenomenon: all eigenvalues are captured 
eventually. The results are full of technical details and we state them informally here. 

THEOREM 5.1 (DRUSKIN AND KNIZHERMAN). Let Azr = zrXr, \\zT\\ = 1. // 
IIA|| < 0.9, if the round off unit is small enough compared to j, if <pr := q*zT ^ 0, and 
if\n{\7j/4%) < j - 2, then for some i < j 

|gp)_Ar|<ln(17i/^)=0^ 
oo 

The important point here is that, in exact arithmetic, the analogous error bound is 0(1/j) 
for j < n. The results reflect worst case situations. 

A much more realistic bound is derived in terms of the gap 7r separating Ar from the 
rest of the spectrum. The bound is too complicated to give insight of itself but it may be 
used to generate useful diagrams. It seems pointless to copy the result in detail. It says 
that under a lot of apparently reasonable conditions on e there is an index i such that 

\&\j) -Xr\<K 

for any K that satisfies an inequality of the form 

^f     >     l0r|V7£l+2(l + V^ei)- 

ll^ + 2^j2e1 + (l + Jj)/Tj/2(\ 

where Tk denotes the Chebyshev polynomial of the first kind of degree j. Here t\ and e3 are 
functions of e. Note the presence of K on both sides of the inequality. For a small enough 
round off unit the bound reduces to 

I««»-;M<-
2
* 

+
 
VJ) 

which reminds specialists of the Kaniel-Paige-Saad bounds in exact arithmetic, see [12]. 
Knizherman [6] has further recent results (private communication) which show that the 

Ritz values cluster in intervals of radius 0(e||^4||) about the eigenvalues. This is a significant 
improvement on earlier results of the form C^VeMH). 
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°-8""i Lanczos Orthogonality 

FIG. 1.      n = 100    ratio = 0.87   rel gap = 0.13    round off = le-7   step 30 
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Ritz Orthogonality 

FlG. 2.      n = 100    ratio = 0.87   rel gap = 0.13    round off = It-7   step 18 
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FIG. 3.      n = 100    ratio = 0.87   rel gap = 0.13    round off = le-7   step 19 
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Ritz Orthogonality 

FIG. 4.      n = 100    ratio = 0.87    rel gap = 0.13    round off = le-7    step 20 



Do WE FULLY UNDERSTAND THE SYMMETRIC LANCZOS ALGORITHM YET?       105 

°-6vi   Lanczos Orthogonality 

0.5 

Ritz Orthogonality 

FlG. 5.       n = 100    ratio = 0.87   rel gap = 0.13    round off = le-7    step 22 
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1 -i    Paige Orthogonality 

0.8- 

FIG.  6.       n = 100    ratio = 0.87    rel gap = 0.13    round off = le-7    step 18 

Paige Orthogonality 

0.8- 

0.6- 

0.4- 

0.2- 

FlG. 7.      n=100    ratio = 0.87   rel gap = 0.13    round off = le-7   step 19 
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1 -,   Paige Orthogonality 

0.8- 

0.6- 

0.4- 

0.2- 

FlG. 8.      n = 100    ratio = 0.87   relgap = 0.13   round off = le-7   step 

Paige Orthogonality 

FIG. 9.      n = 100    ratio = 0.87   rel gap = 0.13   round off = le-7   step 22 


