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FOREWORD

The purpose of this document is to provide a description of the Next Generation
Workstation/Machine Controller (NGC) program philosophy and objectives in sufficient
detail so to be able to quickly and efficiently assess the impact on emerging system
designs and concepts. The focus for this document is the Specification for an Open
System Architecture Standard (SOSAS) that is the primary deliverable of the NGC
program. The SOSAS will capture definitions, conventions, and standards as they relate
to the final NGC family of controllers. The document presented here is not meant to be
construed as the final SOSAS, but rather it represents the key elements of the SOSAS
necessary to achieve the desired objectives relating to open systems, interchangeability,
interoperability, portability, etc. It is fully anticipated that subsequent discussion of this
document will provide some of the most important feedback with respect to the
production of the final SOSAS document. In this respect, comments relating to this
document are strongly encouraged.

This is the complete SOSAS document. An
overview is also available entitled "Next
Generation Controller Specification for an Open
Systems Architecture Standard - Overview".
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1.0 INTRODUCTION

The Next Generation Workstation/Machine Controller (NGC) program philosophy of
systems that are interoperable, interchangeable, and portable is an outgrowth of a more
general trend in all areas of systems development that stress "openness.” Like many new
ideas in engineering, the concept of an open system is one that has been much easier to
describe qualitatively than it has been to establish rigorous design methodologies. In the
arena of advanced manufacturing control systems, NGC and the Specification for an
Open System Architecture Standard (SOSAS) are an attempt to merge the evolving
methodology of open systems with a well-established technology base in machine tool,
robotics, measurement, and process control. As in any emerging technology, growth and
evolution do not come without some degree of controversy and argument. There is no
lack of recognition on the part of the NGC development team that while the long-term
benefits of an open approach to manufacturing controller design are obvious to virtually
everyone, the burden of making this vision a reality will fall on a vendor community that
is engaged in an intensive economic struggle and is faced, on a daily basis, with the
necessity of looking at an unforgiving bottom line. The result is that the NGC
development process has never been viewed as a "do it all over again” exercise, i.c.,
starts with a clean sheet of paper. Instead, it has been viewed as "given the space of open
system solutions, pick the solution that is a closest fit to existing systems."

The NGC can be viewed in many different perspectives. While the control builder will
ultimately be the one tasked with turning ideas and paper into working hardware and
software, it is the end user of manufacturing control systems who will, in the long term,
dictate the final form and structure of these evolving open systems. It is the end user who
will apply the resulting systems in an attempt to produce products that are cheaper than
the competitor and as a result, the end users that are successful in this process will,
explicitly or implicitly, determine the marketplace forces that ultimately shape the
technology. There are many complexities involved in defining what leads to a cheaper
product from the standpoint of the end user. While the actual dollar cost of a
manufacturing controller will always remain an important aspect of the overall metric,
there are many other factors that influence the end user's manufacturing strategy.
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Technology Infusion

The ability to rapidly integrate new technologies and practices has always been, and will
always remain, a crucial factor in competitiveness. A new technology can appear in many
different ways and impact practice, hardware, software, or all of these. A good example
of this is the emerging trend towards machine tool controllers that makes use of
temperature and/or vibration data at the spindle. This requires not only the ability to
integrate new sensors into the system but also the ability to rapidly and efficiently modify
existing software structures in order to get the right data to the dght place in an
appropriately timely fashion and implement newer and potentially more complex control
laws that take advantage of the new data.

Maintenance

Key factors in the competitiveness of any system are the supporting elements necessary
to keep the system running. In general, commonalty of system elements leads to lower
system cost for a variety of reasons. These include a decrease in inventory size for spare
components, the standardization of procedures for diagnosing and repairing systems, and
the ability to use trained diagnostic and repair personnel across a wider variety of

systems because of the decrease in specialization.

Operator Training

Commonalty of systems decreases the amount of additional training that is required to
transition operators from one system to another. Major retraining can be supplanted by
incremental training based upon knowledge of a core system structure. In this case, an
open system architecture that utilizes standardized system features can achieve nearly the
same desired commonalty as a mandate for all systems from one manufacturer. From the
standpoint of the operator, common look and feel of interfaces is more important than the
internal system that generates the look and feel.

While the issue of the specific attributes desired in a NGC controller were discussed at
much greater length in both the Needs Analysis document and the Requirements
Definition Document, it is obvious that the resulting NGC systems must help the end user
in a number of ways; neither very high-technology nor extremely low-cost systems are in

themselves the full answer.
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Instead of attempting to mandate a specific point solution to the advanced manufacturing
controller problem, a philosophy is embodied herein that leads to maximum flexibility
with the respect to ability to modify both the hardware and the software in the system to
achieve desired enhancements in capability as necessary.

Document Summary

Section 2.0 provides an overview of philosophy and structure of NGC. It describes the
basic concepts that allow the freedom of action on the part of the designer to choose the
proper mix of hardware and software to achieve an optimal solution to a given design
problem.

To facilitate a standardized approach to developing the structural elements of a system, a
component based approach has been adopted. The fundamental attributes of this
approach are described including the use of a reference architecture that is comprised of
primitive components that are used to delineate system requirements and structure in
terms of generic "building blocks". From the reference architecture an application
architecture is constructed that captures the functionality of the end system at an abstract
level. While a level of abstraction above the final hardware and software system, the
application architecture allows responsibilities and dependencies to be clearly
established. Finally, through the selection of implementation components a final software
structure is determined. The step from application architecture to implementation is a
very difficult one because it involves the specifics of the system platform. The platform
includes all system hardware as well other system software such as operating systems,
communication software, etc.

Effectively dealing with platform issues requires dealing with the specifics of different
types of potential hardware solutions as well as a large number of standards and
conventions that have arisen with respect to communication, operating systems, device
interfaces, graphics representations, etc. Because NGC has the goal of establishing a
foundation for the introduction of open systems technology into the advanced
manufacturing arena, it was felt that it would be a mistake for a small group to choose a
relatively small set of possible standards and conventions that would then exclusively
serve the NGC community. As a result, it was necessary to find a means of
accommodating systems that could draw on a wide range of hardware and software
solutions in arriving at a system implementation. This problem was dealt with through
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the use of a representation concept known as a profile. This concept is crucial to
understanding how the NGC specification can achieve the open system objectives
without overly constraining system designers. Profiles can be thought of as a means of
classifying NGC-compliant systems. The concept of the profile was adopted from POSIX
(Portable Operating System Interface) literature. (POSIX and it's role in NGC are
discussed in greater depth in section 3.0.) The vendor will use profiles to succinctly and
unambiguously describe the system structure. With a profile specified for a specific
system, the end user will be able to determine whether or not the candidate system has
the flexibility necessary for a given set of applications. A very simplified type of profile
is now commonly used to describe software packages as being "Mac" or "PC" compliant.
Similarly, the designation of "DOS" or "Windows" can be thought of as a subprofile
under PC. This flexibility assessment could include the ability to operate with existing
software packages, the ability to communicate with other factory systems with minor
modifications, or the ability to expand hardware features such as input/output (V/O) or
motor drivers. NGC does not preclude a vendor from building a system that is
essentially non-open; it does, however, guarantee that a system purchaser can be assured
of understanding precisely what degree of openness is being provided. Necessarily,
standards play an important role in achieving the NGC goals. In addition to describing
the basic architectural philosophy, Section 2.0 also provides a summary of the relevant
standards that have been chosen for application to the NGC system and the rationale for

their selection.

Section 3.0 includes both a more complete discussion of the component based approach
to the design of the application architecture. Platform issues are discussed in depth from
the standpoint of two basic elements; the Application Program Interface (API), and the
External Environment Interface (EEI). Both are discussed in section 3.3. The full
development process leading to implementation is discussed in section 3.4. Issues related
to conformance are discussed in section 3.5.

A full design example illustrating all of the basic NGC concepts is presented in section
4.0 for a 5-axis machining center. The example includes the selection of requirements
and primitive components leading to the application architecture. Implementation is
considered from the standpoint of different realistic hardware and COTS software
options.
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Section 5.0 consists of a brief summary and further issues for the evolution of NGC. The
primary issues cited with respect to the further evolution of NGC are the availability of
libraries of NGC components (both primitive and implementation) that can be made
widely available to the community at large for incorporation into emerging systems and
the development and availability of tools that will facilitate the NGC development
process. While an initial set of primitive components are provided for machining
applications as an appendix to this report (see below), sufficient raw material for a robust
initial implementation component library through the work of the National Institute of
Standards and Technology (NIST) as an output of the Enhanced Machine Controller
(EMC) program. Therefore, the key issue is the establishment of a repository for the
initial library.

The issue of tools is more complex but not intractable. It is generally believed that the
tool technology necessary for NGC currently exists through a variety of existing
developmental and commercial packages. Ideally, a complete tool set could be integrated
and made available to the general community. This would be the fastest way to spur the
growth of NGC type systems. Unfortunately, the resources for such an activity have not
yet been identified.

A set of appendices is provided that includes: Appendix A- Reference Requirements,
Appendix B- Primitive Components, Appendix C- Architecture Description Rules,
Appendix D- Domain Models, Appendix E- Domain Dictionary and Appendix F-
Architecture Description Language.
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2.0 NGC SYSTEM PHILOSOPHY AND STRUCTURE

2.1 Introduction

The open system concepts specified in this document establish a framework for the design
and construction of a family of workstation/machine controllers for industrial machines. This
framework addresses issues associated with both application software and the hardware
software platforms on which this application software will run. This Next Generation
Controller (NGC) specification is based where possible on de jure and de facto open standards
in manufacturing, controls, and computing technology but provides a sufficiently robust
structure such that evolving and new standards and technology can readily be incorporated.
The NGC specification facilitates commonality of components across a complete range of
machine controllers. These controllers are to be used in a wide variety of manufacturing

operations that include machining, robotics, and inspection.

A NGC supports a wide range of processing and discrete part manufacturing
applications, including machine tools of all types, robots, electronic assembly, material
handling devices, inspection devices, and virtually all types of automated equipment in
both manned and unmanned environments and networked and stand-alone
configurations. Specifically, a NGC controls a manufacturing workstation, which is
defined as a single material transformer and related material handling and inspection
equipment. As shown in Figure 2.1, the manufacturing workstation is placed at the
lowest level in the hierarchy of the overall manufacturing enterprise. Several
manufacturing workstations, each controlled by an NGC, are managed by a cell. Multiple
cells are managed by a center, and multiple centers are managed by a factory. At the top
of the hierarchy, the enterprise manages multiple factories. While this specification
focuses on the lowest level of the this hierarchy, the results and structure are immediately
and easily extended to include the higher hierarchical levels on an evolutionary basis.
Therefore, a foundation is established for much more complex Computer Integrated
Manufacturing (CIM) systems that will retain the open systems structure described in this
document.

The open systems concepts are evolving from requirements established by the NGC
community of control builders, machine integrators, end users, members of standards
organizations, and university researchers. It is flexible enough to cover the broad range
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of manufacturing practice, and it is extendible to absorb future advances in technology
while accommodating existing manufacturing and controller practice.

To produce an enduring standard, manufactured products and manufacturing processes
must be described independently of specific equipment, methods, or topologies. An
architecture, calling for a specific topological arrangement and interconnection of
components, does not provide enough flexibility to control every application in discrete
part manufacturing, nor does it accommodate technological advances over a period of
decades. Moreover, several topologies may be required in order to develbp a system and
understand its operation under a variety of situations. The overall view of the system
architecture that is used in the NGC process is captured in the Integration Architecture.

( Enterprise w

Facto

Center

Cell

Y
NGC
38y

A matenal transformer
with related material
handling and inspection
equipment

Manufacturing
Workstation

. Y,

Figure 2.1a. Manufacturing Enterprise Hierarchy

The integration architecture, Figure 2.1b, combines manufacturing and control
application components with a supporting infrastructure. It also acts as a framework for
incorporating open and de facto standards. Applications components intercommunicate
by messaging and can be adapted to a variety of component interconnection topologies.
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Typical computing platform conventions, definitions, and capabilities are provided by the
Open Systems Environment (OSE).

IMPLEMENTATION COMPONENTS

XECUTION ENVIRONMENT
NGC SERVICES AP
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Basic Management Managgment Modglmg Services
Input/ Services Services Services DI
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Figure 2.1b Integration Architecture
2.2 Industrial Control Domains

Manufacturing enterprises are complex, information-intensive environments. The
practices associated with discrete part manufacturing can be grouped into three principal
domains: (1) manufacturing practice, (2) controller practice, and (3) computing practice.
The three domains and some associated concepts are shown in Figure 2.3. Terminology
and representations from these domains are used in this specification. Existing and
emerging standards, developed within the purview of these domains, are incorporated in
this specification by reference. Thus the considerable investment and effort devoted to
the three domains, especially computing practice, can be reused effectively to support
manufacturing applications.
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Figure 2.2. Domains of Practice for Industrial Control

Manufacturing practice covers the process of transforming raw materials into finished
parts. The underlying concept for the discrete part manufacturing process is art-to-part.
The process begins by capturing a part design using a computer-aided design (CAD)
system. The resources for making the part are scheduled, and the machining, material
handling, and measuring activities are planned using a computer-aided manufacturing
(CAM) system. Motion paths are planned and used to drive the appropriate machinery,
i.e., tool paths for machining, robot end-effector paths for manipulation, and probe paths
for measurement. Some related manufacturing practice standards include those for
feature-based part description, part programming, and measurement languages. Many of
the steps in this process are done manually or disconnected. In the future, the art-to-part
process is envisioned as a seamless information flow from the designer’s concept to the
finished part.

Controller practice covers the organization and control of manufacturing equipment.
Equipment is controlled mostly by closed-loop controllers, which provide continuous
(motion) control and discrete control. |

Computing practice covers the computing and communication technologies required to
support manufacturing and controller practice. The practice includes design and use of
computer hardware and software. Computing practice is the target of intense open
systems activity, which benefits NGC as it evolves and becomes sufficiently mature.
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2.3 NGC Planning and Execution in the Manufacturing Context

The traditional manufacturing practice and general flow of numerically-controlled (NC)
machine tool programming starts with a design review by a part programmer as shown in
Figure 2.3-1. The part programmer's role has been to analyze the product design and
determine how to make the part economically, the machining range of workpiece, the
method of mounting the workpiece on the machine tool, the machining sequence of every
operation, and the cutting tools and cutting conditions. The output of the part
programmer has been a part programming manuscript that documents the logical order of
machine operations. The part geometry and cutter location data are post processed to a
specific machine-readable format and transferred to the machine control unit (MCU).

Machine Control Unit

Part Part Manuscript
Programmer —! Programming |—»{ Data [—®"° Program Reader
Manuscript Conversion * Memory
* Controller
Machine Workstation ) Machine
Tool Display Operator

Figure 2.3-1. Traditional Flow of NC Machine Tool Programming

The MCU memory has an executive program, program reader, shop floor programming
language, cutter line control, machine interface logic, program subroutines or canned
cycles, and tool changer control. The program reader in the MCU converts the coded
instructions and the MCU controller generates an output signal to servo mechanisms to
drive and direct the machine tool. The machine tool resolver or feedback device
determines the precise location of the workpiece relative to the cutter and returns this
data to the machine controller and also to machine operator workstation display. The
workstation display may display full operational and parametric data; display job setup
instructions; and have the capability for program verification, editing and update,
maintenance and troubleshooting, fault messages, and graphical representations of the
workpiece, tools, and cutter paths. The responsibility of the machine operator is to
monitor the machine operation, monitor workpiece loading and unloading, provide
information feedback, and perform operator programming through manual data input.
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The intent of a NGC is to provide the product designers, process planners, NC
programmers, machine operators, and factory managers with more flexibility in planning
and committing factory resources. This increased flexibility and efficiency will be
feasible through industrial machine controllers which allow open exchange of planning
data, feature-based part representation, cutter location data, tooling and fixture data, and
operations sequence data among different types machine tools without rewriting the part
programs source code, and eliminating programming and processing for specific
machines.

The concept of NGC product design and production planning is shown in Figure 2.3-2.
The product designer is able to generate a CAD that specifies the geometric features and
considers material handling, assembly requirements, and manufacturability. Part
geometry and features are interpreted through a CAM system to develop the process plan
and generate the machining program. A computer-aided process planning (CAPP) system
would evaluate economical production based upon a part family data base that has a
library of part features, geometric data representations, and machining processing data.
The process planning system determines the machine routing and operations sequence,
methods, fixtures and tooling, and setups. From the process plan and machining program,
a NC program is sent to a NGC workstation controller.

The concept of NGC planning and execution is shown in Figure 2.3-3. The part program
could be assigned to any machine in the factory that has the process capability and
control configuration to accept feature-based part model input, such as Product Data
Exchange Specification (PDES), or NC legacy code such as binary cutter location/ASCII
cutter location (BCL/ACL) part programs, RS-274 part programs, or automatically-
programmed tools (APT) part programs. The NGC operations planner creates an
operations plan.thal specifies the logical order of workstation operations among the
different machine mechanisms for part handling, machining, inspection, setups, and
fixturing. The part model input and operations plan provides input data instructions to a
task planner and path planner. The task planner and path planner specifies for each
mechanism the logical order of motion tasks, tool changes, feeds and speeds, detailed
motion geometry, and obstacle avoidance. The output from NGC operations planner, task
planner, and path planner directs each mechanism to obtain the resultant machine tool
action.
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2.4 NGC Development Process

To achieve the goals of the NGC program, it is necessary that the SOSAS structure
adequately addresses all of the primary issues associated with system structure,
application software, and platform development. Without a roadmap that shows how all
of these elements are accommodated by the SOSAS, it is difficult to appreciate how the
SOSAS supports all of these areas: (1) the bottoms-up development of a fully integrated
system, (2) development and integration of new system software, and (3) expansion of
platform capabilities to accommodate new requirements. A key element of the NGC
philosophy is the ability to achieve rapid and effective system modifications that address
only the part that "needs to be fixed" and do not necessarily entail massive, expensive
system re-design.

A roadmap for the SOSAS development process is shown in Figure 2.4, which illustrates
the basic design and development paths for addressing system structural issues and
platform issues. It is important to realize that any block on the diagram can be considered
to be an entry point for the design process. Development of new system application
software, for example, would entail only the "upper” path with the platform definition
being considered fixed. Similarly, if only the platform structure is being considered for
modification, then the application architecture elements can be considered as given from
the standpoint of platform issues and therefore, definition of the new platform profile is
the key issue.

The key to understanding Figure 2.4 is the realization that system structure is embodied
in the specification of an application architecture. The "upper” design path results in
the application architecture. To arrive at an application architecture, reference
requirements are compared with user needs to derive a set of problem specific
application requirements. By using a well-defined set of reference requirements as the
basis for selecting the final system application requirements, a tremendous amount of
consistency is brought to the entire requirements process, something not always achieved
in ad hoc requirements derivation processes.
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Figure 2.4. NGC Development Process

The Reference Architecture is the key to turning application requirements into the
application architecture. The Reference Architecture consists of both primitive and
aggregate components. Components are abstract building block elements that describe
functionality and communication. The application architecture is built from these
components. Although the Reference Architecture will necessarily be a "living” library
that continually grows, the objective is to develop a set of components that "span the
space” of desired functionality and communication for establishing a system structure.
Therefore, in the system design process, when the Reference Architecture is found
insufficient, new components are added to the reference architecture. The application
architecture is a complete and consistent topology for the representation of the system.

The lower pathway of Figure 2.4 addresses the issue of how the system will be physically
implemented from the standpoint of processors, buses, communication, I/O, etc. It is not
an objective of the SOSAS to enforce a particular design philosophy with respect to the
system platform structure. The NGC does not attempt to lead all system designers in the
direction of a standard "box". What it does do, however, is to establish a methodology for
accurately capturing what has been produced by a specific vendor.

Platform requirements are used to select the standards (or conventions) that the designer
feels are necessary for a specific platform implementation based on heritage, cost,
performance, etc. Once the basic platform structure has been established, the key elements of
the design are documented in the form of a platform profile. The notion of the platform
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profile was derived from the realization that. (1) because of diverse market forces there will
never be a "one platform does it all” to satisfy everyone, and (2) from the standpoint of
achieving system openness with all of the associated "-ilities” it is of crucial importance that
the user is able to understand what is being purchased in such a way that system expansion
and extension can readily be assessed. The platform profile, by documenting the key
standards and conventions used to construct the system, provides this insight.

The application architecture and platform design (as reflected in the profile) are unified in the
design application phase of the process. Here, the implementation compbnent library is
used to take advantage of off-the-shelf software elements to instantiate the application
architecture and insure consistency with the platform profile. Abstract functionality is
replaced by actual software that includes both the functional aspects as well as the practical
man-specific aspects necessary to accommodate the chosen platform profile.

2.5 Structure of a Working NGC

The NGC open system is comprised of application software exchanging information via
data communication mechanisms and connected to the services provided by operating
systems and hardware through a common interface called an application program
interface (API). The software is implemented in the form of components that interchange
messages in the process of carrying out their responsibilities. Components run under a
Common Execution Environment (CEE) that provides for transparent peer-to-peer
message exchange between the components as well as other services. Figure 2.5 shows
this concept.

AGENTS

COMMON EXECUTION ENVIRONMENT

Figure 2.5. Components and the Common Execution Environment (CEE)

Each component is a single separate thread of execution within the CEE since a
component must be able to send and receive messages independently from the other
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components. A component encapsulates the data and functionality it needs to carry out its
assigned responsibility. This approach is extremely flexible compared with older hard-
wired systems, allowing the NGC system software to be reconfigured dynamically during
operation by activating or deactivating agents. Dynamic reconfiguration does not cover
the addition or removal of hardware; connecting or disconnecting hardware will require 2

system shutdown.
Components have the following attributes:

 Responsibility—The role the component plays, distinguishing it from the other
components in the CEE, in the successful overall operation of the NGC system;

* Peer-to-peer Relationship(s)—The collaborative relationships the component has

with other components as required to carry out its responsibility;

s Behavior(s)—The specific functionality encapsulated by the component, where each
behavior is expressed as one or more operations to be performed in response to a

message;

e Message(s)—The complete set of specific instructions necessary for evoking all of
the behaviors encapsulated by the component These messages must be defined in
enough detail to guarantee interoperability.

» Application Program Interface(s)—The interface(s) a component uses specifically to
access services provided by the Open Systems Environment (OSE).

For a specific controller application, a configuration is an information structure that
provides a description of all required hardware and software elements and their
interconnections. The configuration contains the information needed to maintain safe and
reliable operation of the controller in carrying out all of its intended responsibilities. The
configuration includes, as a minimum, the description of all of the required components.
A directory service component or group of components has the responsibility for
assuring that all of the components needed for reliable controller operation are available
and working properly in the CEE. A configuration is used by the directory service
component(s) to maintain a roster of active components and facilitate message
interchange among them. The roster of active components will change dynamically, for
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example, with a shift in the operational requirements of the controller as it carries out its
various responsibilities.

2.6 Timing Considerations

The NGC stands at the juncture between process planning for cell activities and
controlling the equipment that actually fabricates parts or assembles products. Timing
considerations are important, but not crucial, for the former types of activity. But
controlling the equipment requires strict adherence to a time budget; failure to do so will
often result in higher production costs due to flawed parts and/or damaged equipment.

The NGC spans three separate timing domains: non real time (non RT), real time (RT),
and hard real time (hard RT). This partitioning of the timing requirements is shown in
Figure 2.6. The non-RT domain of standard computing covers activities like compiling
and linking software, reading data from a file, and reporting progress to the cell and other
entities in the enterprise. The time required to complete an activity can be flexible,
guided by the requirement to finish as early as possible. The standard computer domain
covers a wide variety of environments and operating systems, e.g., UNIX, DOS, non-RT
POSIX compliant systems, and Windows NT.
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User = [ Communications
|
Standard Hard
Ti .
Computer R;zl—m:i:e Real-Time  |w——Drives
Domain Domain
Sensors . Sensors —__ Sensors
Information Operations User Servo Loops
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Figure 2.6. NGC Timing Domains

An activity in the RT domain is driven by a time budget, but the consequences of missing
a deadline are not catastrophic, and the system can recover without serious loss. Some
examples of RT activities are operations planning, task planning, path planning, cutter
compensation, and a PLC’s actuation of the coolant valve. Hard-RT activities have
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mandated timing deadlines; missing one of these deadlines can have serious
consequences like a damaged part that must be reworked or discarded. Hard-RT
constraints apply to servo loop closures and programmable logic controller (PLC) cycles
that read values from sensors into memory and write values from memory to actuators.

The need to consider the three timing domains will persist in spite of the ever-improving
performance of available computing. As better computers are made, the increased
throughput makes more complicated algorithms feasible within a fixed time limit. When
they are deployed in advanced manufacturing applications, greater machining precision
at higher speeds will be made possible. The result is better quality products at faster
production rates. Thus the RT envelope will be pushed continually, and the relevance of
the three timing domains will remain as more capable processors emerge.

Several existing controller products can be aligned with the three timing domains. One
vendor links a transputer-based, RT platform to a UNIX front end through transputer
links. The transputers drive an Industry Standard Architecture (ISA) expansion bus, and
all motion servo loops are closed in the transputer using digital-to-analog (D/A)
converters and encoder feedback. Another vendor combines standard computing and less
demanding RT operations in a single PC AT running the Lynx operating system. The
demanding RT operations, that is, motion and high-speed discrete control, are
implemented in a separate ISA card. (The use of a separate dedicated function card for
demanding RT operations dominates current controller practice.) Yet another vendor
hosts the non-RT operations on a DOS platform and distributes control via ARCNET to
small proprietary nodes. All of these implementations fit within the timing partitions as
long as the messages at the selected boundaries are conformant with the NGC messages.

NGC does not, at this time, directly address the issue of timing performance for resulting
system implementations. In all likelihood, this will require dedicate tools that, in addition
to insuring other NGC requirements are met, also evaluate the adequacy of the overall
software/platform system with respect to performance/stability driven performance
requirements. This issue is discussed further in sections 2.9 and 3.4.

2.7 Open System Architecture Specification

Controller designs are constrained from two aspects: the Reference Architecture and
open standards (such as POSIX) and industry conventions (such as DOS). For a specific
industrial application, controller primitive components are selected from the Reference
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Architecture according to application-specific requirements and synthesized into an
Application Architecture. The resulting Application Architecture constrains the design of
the application system; that is, the system elements specifically required for
manufacturing and control. The other constraining aspect supports the operation of the
controller, which is based upon open and de facto standards of practice in manufacturing,
controllers, computing, and data communication.

2.8 Components

All of the primitive components needed to cover the spectrum of machine controller
applications over the NGC domain are maintained herein as the Reference Architecture.
A component is an abstract encapsulation of functionality and information with an
assigned responsibility and an abstract message interface definition. A component is
specified as follows:

¢ Responsibility: The role the component plays, differentiating it from all other
components in the Reference Architecture, in the successful overall operation of a
controller;

» Message(s): The complete set of distinct instructions necessary for evoking all of the
behaviors encapsulated by the component for carrying out its responsibilities. These
messages are defined at an abstract level.

Depending on the application, the required primitive components are selected and
arranged in an application architecture that will guide the actual design of the controller.
An application architecture must contain, as a minimum, the components needed to fulfill
all of the responsibilities of the application it is based on. Many such application
architectures are possible over the NGC domain. Based on a single application
architecture, a component may be implemented and delivered in a variety of ways. This
activity will result in libraries of implementation components that will capture the
functionality of the aggregated primitive components but contain the additional structure
necessary for integration into specific platform implementations.

2.9 NGC Development and Validation Tools

The intense competitive pressures and risks associated with development and subsequent
production of industry-fielded, open architecture, machine controllers necessitates the wise
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and prudent use of development and validation tools, such as knowledge-based tools,
libraries, and object-modeling tools. Tools should address system design and integration
support; configuration management; event timing; profile mapping and applications
supported; and the taxonomy and hierarchy of events, applications, standards, agents, and
components. Metrics and measurement methodologies need to be defined, developed, and
tested for validity and significance and then be evaluated for the benefits, capabilities, and
features of a specific implementation. Performance testing should consider the related open
system specifications, data exchange and information handling protocols, external and
internal interfaces, and the explicit and implicit features of openness, i.e., portability,
interoperability, scaleability, interchangeability, commonality of components, etc. The
development and validation tools, and documentation of lessons learned, should be mapped to
the capabilities and features of an open architecture machine controller.

Many software tools that would fulfill requirements for the NGC tool suite are either
available on the market today or are being developed in other ongoing programs. The
ARPA Domain Specific Software Architecture (DSSA) program is in the process of
establishing many of the fundamental tools that would be required in the NGC
requirements definition, design, and validation and verification activities. As NGC
continues to evolve and mature, it will be essential to find mechanisms for capturing the
tools legacy that exists and effectively integrating it into the NGC structure.

2.10 Open System Environment Overview and Profiles

The NGC is based on open standards. Open standards help to achieve a level of
portability and interoperability between multi-vendor controller products that does not
exist in controllers today. This “openness” of the controller facilitates the addition of new
controller features and innovative technology with a relative ease that is unavailable in
controllers that are closed. The benefits are two-fold: (1) the end-user has a controller
that is adaptable to market dynamics and can be easily modified to incorporate the latest
cost-saving technologies, and (2) third-party vendors are encouraged by the opportunities
to develop new technologies and market niches for a new generation of controllers.

Central to the open theme is the NGC Open Systems Environment (OSE) framework.
The OSE framework leverages open standards, both de jure and de facto, to specify an
infrastructure for open controllers. The OSE framework embodies three general
concepts: the reference model, the taxonomy, and profiles. The OSE reference model is
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the context for NGC open standards, the taxonomy is the logical grouping of these
standards, and the profiles are selections of standards from specific groups. Rather than
attempting to mandate a limited set of standafds, the concept of the profile allows the
vendor and the user to communicate key structural aspects of a system via a "snapshot”
that, through the shorthand afforded by defined standards, allows system structure to be
quickly determined. This is very similar to the common practice today of indicating
whether products are "Mac" or "PC" compatible. The OSE framework is essentially the
organized menu for this selection. While the possible number of permutations and
combinations of profiles is overwhelming at this point, it is expected that as more
vendors produce NGC systems, a smaller set of accepted profiles will emerge. These
concepts are again introduced and described in more detail in Section 3.3.

2.11 Conformance Overview

NGC conformance is determined by adherence to a specific profile of standards. The NGC
SOSAS does not attempt to specify a standard set of profiles. The market will drive out the
set of profiles that are most practical to both the controller developer and end-user.

A NGC-conformant product must include a “NGC Disclosure Statement” that specifies the
profile, component interfaces, and other conformance claimers where applicable. Profiling
offers the controller developer options for product conformance at a variety of levels to satisfy
user requirements at a competitive cost, with varying degrees of openness. Section 3.4
describes the disclosure statenent requirements, levels of conformance, language
documentation, statements of intent, and associated claimers in more detail.

2.12 Growth and Evolution

This document should be viewed as the initial document in what will be a growing set of
companion documents that govern the full NGC development process. In section 3.4 a
document hierarchy is discussed that parallels the structure used by IEEE to document
the POSIX standard. The structure of this family of documents is shown in Figure 2.7.
Like the POSIX standard, there is an overall document that describes basic system
structure and philosophy. Other documents (the .1 and .2 documents) address basic issues
associated with system framework and implementation. Finally, the architecture
document set deals with domain specific considerations. As shown, it is presumed that
this would initially include CNC, robotics, process control and PLC applications.
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The issue of the criticality of tools to a mature NGC process was discussed in an earlier
section. In addition to tools, success of NGC also hinges on the emergence of libraries
(or repositories) of effective and reliable implementation components that allow the
system developer to quickly satisfy both functionality and platform requirements in the
implementation process. As in the case of tools, other ongoing programs have already
developed much of the foundation for these libraries. This issue is discussed at greater

length in section 5.0.
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3.0 DETAILED ARCHITECTURE

This section specifies the details on the design, integration, and delivery of NGC conformant
industrial controllers. Key elements of the NGC process, such as the Reference Architecture,
Application Architecture, Open Systems Environment, etc. that were introduced in the previous

- section are described in greater detail with respect to the methodology involved in the NGC
design and development process.

Section 3.1 addresses the concept of the Reference Architecture and the evolution of system
structure. Emphasis is placed on the basic process that is used to move from Reference
Architecture to Application Architecture to a final system implementation as an Application
System. It is shown that this process is equivalent to proceeding from a level of high abstraction
that deals with general responsibilities to a final system that is implemented via specific choices
of hardware and software, defined by appropriate APIs and standards. The NGC levels of
abstraction facilitate flexible and extensible software designs and emphasize software reuse.

The NGC integration architecture is presented in Section 3.2 as a framework for incorporating
services identified and defined in open standards of computing and data communication. These
standards are relevant to NGC because they are likely to be supported as commercially available
products from vendors of hardware and operating systems. The integration architecture is crucial
to the overall NGC process because it provides a means visualizing the interplay between
application software, standard services and operating system functions, and the underlying
hardware platform.

Section 3.3 presents the NGC Open Systems Environment (OSE) framework and its role with
respect to NGC applications and the Common Execution Environment (CEE). The OSE is
standards based, having a taxonomy with application program interfaces (APIs) and external
environment interfaces (EEIs) as main branches. Also, the profiling concept is introduced,
where, by specifying a profile, the NGC user can select from among a competing set of de jure
and de facto standards to suit a particular implementation environment.

Section 3.4 addresses the issue of carrying controller development through to implementation.
An application framework guides the design and implementation of the controller, based on
available products. Key features of this process are reuse of hardware and software components,
adaptation of such components to related applications, and separate development of
interoperating components by independent vendors. A strategy for evolving a family of open
controller standards is also presented. This strategy parallels that employed by the IEEE for the
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POSIX standard. This approach allows for independent documentation of different aspects of the
NGC process and the emergence of domain specific companion volumes for specialized domains

such as machine tools, robotics, process control, etc.

Section 3.5 addresses the issue of conformance for NGC systems. Because of the mechanism of
- profiling, and the latitude it provides to the system designer, conformance becomes an issue of
adequate documentation of all aspects of the final system. In addition to the profile suite for both
API and EE], the supplier will also be required to document component interface descriptions

and language specifics.
3.1 Reference Architecture

This section describes the NGC Reference Architecture, the starting point for the design of a
controller's application software, and its role in specifying the realization of an open controller. Stated
in simplest terms, the Reference Architecture consists of a set of primitive components. The primitive
components can be thought of as abstract building blocks for NGC applications. At the level of
primitive components, the issues are those of function, responsibility, and generalized data flow rather
than specifics of implementation via either hardware or software. Although it is somewhat of a
simplification, primitive components can be thought of as a formalization of the elements normally
used for generating system "block diagrams". The primitive components, as captured in the Reference
Architecture form a language, of sorts, that can be used, later in the Application Architecture, for
capturing overall system structure and requirements. The architectural levels of abstraction mark the
stages in the process of implementing a controller from requirements analysis through
implementation. Use of the Reference Architecture and a derivative Application Architecture
constrains controller designs so that products developed independently by different suppliers can be
expected to interoperate within a single controller implementation. Moreover, by publishing the
architectural details of the controller design and its interfaces, a supplier is opening the system so that
it can be readily extended in performance and/or capability. To realize a controller for a specific
manufacturing application, an application architecture is synthesized from primitive components in
the Reference Architecture, and the Application Architecture, in turn, is used to constrain the design
of the application system.

3.1.1 Levels of Abstraction

For NGC, three levels of abstraction provide the flexibility to configure machines for a wide
variety of discrete part manufacturing applications while enabling extensions of the standard into
other industrial applications and/or controller implementation technologies. Figure 3.1.1 shows
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these levels of abstraction. In decreasing degree of abstraction, they are: domain level
(description of the controller in manufacturing and controller terminology), technology level
(broad structural partitioning that constrains implementation), and implementation level (actual
elements of a working instance of a controller).
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Figure 3.1.1 NGC Abstraction Levels

The domain level captures the NGC in the terminology of manufacturing and controller practice.
Multiple application scenarios from differing expert viewpoints have been analyzed to produce a
common set of reference requirements (see Appendix A), a set of domain models (see Appendix D),
and a Reference Architecture. These domain-level elements are independent of a specific technology
or implementation. Part fixturing, for example, could be performed manually by a human operator or
automatically by a robot. As another example, a controller can be implemented using an analog
(continuous variable) design. or as in the NGC case, the implementation technology is digitally-based
using computing platforms and programmable logic controllers (PLCs). NGC covers a wide vanety
of applications, and the controller elements actually used will vary from application to application.
For example, the controller for a three-axis milling machine will no doubt have a spindle, but a
spindle is meaningless as an element of a centerless grinder.

The Reference Architecture has two parts: the complete set of primitive components across all
NGC applications (see Appendix B) and some architecture description rules (see Appendix C).
Controller responsibilities are distributed among primitive components in the Reference
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Architecture. Each primitive component represents a single responsibility. Architecture
description rules are used with application requirements and primitive components to compose

an application architecture.

The technology level holds the components of an Application Architecture. The Application

- Architecture is synthesized out of primitive components following the analysis of the domain
practices of a specific controller application. Interdependencies are made explicit through the
definition of the component boundaries for the Application Architecture, and message mterfaces
while still abstract, are specialized to those required by the specific apphcatlon

At the implementation level, the operational paradigm is implementation components
exchanging messages within the Common Execution Environment (CEE) in order to fulfill their
assigned responsibilities. An implementation component is an encapsulation of functions and
data that interoperates concurrently with other implementation components within a computing
environment by exchanging messages in a variety of contexts. A component from an application
architecture represents one or more implementation components, but the actual number and
composition of such implementation components are left as choices for an implementor.
Consequently, an unlimited variety of designs can derive from a single application architecture
component definition. This allows separate vendors to differentiate their products while retaining
a correspondence to an application architecture at the technology level.

An Application Architecture component corresponds to an implementation component or a
grouping of implementation components. Implementation components have non-overlapping
responsibilities because they conform to the boundaries established by the Application
Architecture. That is, no two Application Architecture components share an implementation
component or group of implementation components, and no implementation component can be
associated with more than one Application Architecture component. An implementation
component is defined by its responsibilities, specific behaviors (functionality), exact message

interfaces (messages that evoke behaviors), and APIs.

The NGC abstraction levels play an important role. During analysis, application requiréments
are selected from the reference requirements, and a range or a set of values are applied to them.
A transition from the domain level to the technology level occurs when an application
architecture is synthesized by applying the application requirements, domain models, and
architecture description rules to selected primitive components. The Application Architecture
and the integration architecture then guide the NGC design at the implementation level. A design
is constrained by application architecture components’ responsibilities and message interfaces.
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The integration architecture facilitates portable software designs by defining standardized
interfaces to services that are characteristic of a computing and data communications
environment.

3.1.2 Components and Realization

The Reference Architecture contains all of the NGC primitive components (see Appendix B). A
primitive component has only one assigned responsibility and the interface associated with that
assigned responsibility; a primitive component's responsibility cannot be partitioned. A primitive
component is an abstraction and, therefore, is not associated in the early system specification
stage with either software or hardware. It is an abstract encapsulation of functionality and
information with an assigned responsibility and an interface description. A primitive component
in the Reference Architecture is specified as follows:

» Single Responsibility: The single indivisible role the primitive component plays,
differentiating it from other primitive components, in the successful operation of an NGC

system.

* Resources: The information the primitive component needs in order to carry out its
responsibility.

* Products: The information the component, can provide.

Temporal Information: The intended timing of the primitive component.

For a specific application, primitive components are selected from the NGC Reference Architecture
and synthesized into the components of an Application Architecture. Such components may be
composed into larger components, and in that sense, components of an Application Architecture are
structurally recursive. Any combination of two or more components is called an aggregation. An
aggregation carries the combined responsibilities of its constituents, and it must be able to respond to
all of the constituents’ abstract messages. A component of an Application Architecture is still an
abstraction specifying functionality and responsibility, and it is specified as follows:

» Responsibility: The role the component plays, differentiating it from other components, in
the successful operation of the overall controller application.

e Abstract Message(s): The complete set of instructions necessary for evoking all of the
behaviors encapsulated by the component. These messages are defined at an abstract level.
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The Application Architecture must satisfy all of the application requirements, and its
components must interconnect properly, that is, the components’ collective responsibilities must
be sufficient to cover the application requirements, and abstract message definitions must align
at component boundaries. Component interconnectivity is a necessary, but not sufficient
condition to guarantee interoperability. Although Application Architecture component
" interconnectivity is verifiable at the abstract message interface, it will not assure that
implementation components constrained by an application architecture are able to exchange
messages cooperatively and unambiguously. Thus a component’s abstract message definition
must be specified exactly when the Application Architecture is realized as an implementation. |

For a specific machine and process, the Application Architecture guides the implementation.
One or more implementation components carry out an Application Architecture component’s
responsibilities. Implementation component boundaries conform to those set by the Application
Architecture, and messages passed between implementation components correspond to the
application architecture components’ abstract message definitions. The process of realizing an
application system from the Reference Architecture and a selected application architecture is

shown conceptually in Figure 3.1.2.

There are as many different Application Architectures as needed to cover the wide range of
NGC applications. Since this specification will evolve along with manufacturing and controller
technology and be extended to new applications, the Reference Architecture is expected to grow
and evolve continually. The variety of possible Application Architectures will also grow and
evolve as the use of open industrial controllers becomes widespread.
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Figure 3.1.2 NGC Realization Process

3.2 Integration Architecture

The integration architecture shown in Figure 3.2-1 is a framework that supports interoperable,
portable, scaleable. and interchangeable NGC component implementations, designed and
developed by competing vendors. The integration architecture is a detailed refinement
(representation) of the application system (see Figures 3.1.1 and 3.1.2). An implementation is
divided into domain-dependent and domain-independent parts. The domain-dependent part is
made up of the implementation components needed by a specific application and the CEE. The
domain-independent part consists of the computing and data communication services that
represent the underlying platform. The domain-independent services provide support to the
implementation components and to the CEE.
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Services are based on computing practice and have a broader applicability than NGC, so that
they are termed “domain independent.” The integration architecture conveniently associates
relevant open standards of practice with the services as shown in Figure 3.2-2. Services are
provided through a specified API, and they can be invoked by implementation components and
called by other services. NGC services form six groups that act as an abstraction layer between
the implementation components and the native operating system, computing hardware, and

peripheral devices.
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3.2.1 Service Groups

The NGC integration architecture provides six groupings of domain-independent services, which
include Presentation Management, Data Management, Geometric Modeling, Communications,
Platform, and Basic Input/Output (I/O) services. The services are captured as a set of behaviors

~and an API to those behaviors. The responsibilities assigned to the service groups are described
below.

Presentation Management services provide standardized means for multiple applications to
present data to a user in a common display representation and to receive input from shared input
devices. Its responsibilities include displaying data in a common display (such as a display
window); receiving, coordinating, and managing data from the user (possibly from multiple,
simultaneous input devices); and creating and managing consistent graphic attributes and user
operations.

Data Management services are responsible for the information resources of a manufacturing
workstation, allowing applications to share data using an implementation-transparent
mechanism. Information resources appear to applications as a centralized repository of data
called the information base. The information base may be implemented in a variety of
centralized or distributed configurations using data bases, knowledge bases, shared memory, or
other forms of information storage.

Geometric Modeling services have responsibility for interactive and non-interactive solid
modeling and geometric operations. A solid modeling system unambiguously represents three-
dimensional bodies using a combination of geometric and topological information. This
capability is essential for NGC planning and execution utilizing feature-based part model inputs
and geometric representation of part design.

Communication services are responsible for application-to-application communication via a
protocol and mechanism independent interface. This facilitates interoperability among
independently developed applications.

Platform services are a generic set of operating system and utility services that act as an
abstraction layer over different operating system implementations, just like an operating system
can be an abstraction layer over different hardware platforms. These services provide access to
computing platform behaviors responsible for managing shared computing resources, and they
encompass both RT and non-RT requirements.
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The Basic I/O services implement the responsibility for interacting directly with a wide range of
1/O devices. These services are used to initialize devices and transfer data to and from them.

3.2.2 Domain-Independent Components

- For the most part there is an intentional correspondence between primitive components in the
Reference Architecture at the domain level and application architecture components at the
technology level. Occasionally however, a required component may not be identifiable at the
domain level because its role in a controller is considered to be domain independent. The
Display Manager, Exception Handler, Directory Services, Safety, and Help services are
examples of domain-independent components that have required implementation counterparts.

They are shown as implementation components in Figure 3.2.2.

Directory
| Services ‘

COMMON EXECUTION ENVIRONMENT

OTHER IMPLEMENTATION
COMPONENTS

Figure 3.2.2 Domain-Independent Implementation Components

The Display Manager component illustrates the need for such domain-independent components.
The Display Manager collects and organizes information intended for the video display of a
digital controller implementation, but it is an artifact of computing practice, not manufacturing
or controller practiée. A Display Manager is obviously needed for the display area of a video
monitor that must be shared among the independently-developed, components competing for
display real estate during the operation of the controller.

3.3 NGC OSE Framework

The NGC is based on open system standards and conventions. While it would be preferable to
deal only with official, documented standards endorsed by standards organizations, it is
recognized that "conventions", such as DOS, are important technology elements in the advanced
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manufacturing community. The complete set of open standards and conventions is referred to as
the Open Systems Environment (OSE) framework.

This section and subsequent subsections introduces the concepts of the OSE reference model,
taxonomy, and profiles. The OSE framework embodies all of these concepts, providing a general
foundation upon which a multitude of NGC OSEs may be derived. The OSE reference model is
the context for NGC open standards, the taxonomy is the logical grouping of these standards,
and the profiles are selections of standards from specific groups. Loosely stated, the OSE
framework may be viewed as the organized menu for this selection. The mechanism of profiles,
adopted from POSIX, provides a means for determining very quickly what the overall structure
of a system employs with respect to standards and platform elements.

The OSE framework includes relevant de facto and de jure standards of practice in
manufacturing, controls, computing, and data communications. Much of the OSE framework
emphasis is on the Common Execution Environment (CEE), the environment for NGC
application software execution. This emphasis is primarily due to the general-purpose nature of
computing and communications and the availability of a large base of existing standards to draw
from. Therefore, the CEE can be viewed as the physical instantiation of an OSE profile.

3.3.1 NGC OSE Reference Model

The NGC Open Systems Environment (OSE) reference model is the basic context for
categorizing the standards within the OSE framework. It is rooted in the reference model used in
POSIX but is intended to accommodate a much larger scope. POSIX, the Institute of Electrical
and Electronics Engineers (IEEE) portable operating system interface, originated, in part, from
the UNIX operating system. The X in POSIX denotes this UNIX origin. This standard is
discussed in greater detail in Section 3.3.2.

Figure 3.3.1 illustrates the OSE reference model. It includes two important interfaces: an
application program interface (API) between the application software and platform, and an
external environment interface (EEI) that supports the interface of the controller platform to
such external devices as displays, file servers, networks, etc. The platform is viewed as the
general-purpose computing engine, typically commercial off-the-shelf (COTS) hardware and
software, that includes processors, memory, clocks, input/output (I/O) boards, and buses, as well
as operating system software and other related, general-purpose software packages.
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The focus of this specification is at the interface level. This allows for a variety of specialized
controller platform implementations while still maintaining conformance with interfaces that

provide the maximum benefit of open systems.

Open systems are characterized by the fundamental attributes of interoperability, portability, and
user portability. A system and its components are interoperable if they are able to work properly
together in accomplishing their responsibilities. Software is portable if it can be moved easily
between computing platforms of different types with no more effort than recompiling. A system
is user portable if its user interface is understandable, consistent in style, and tailorable.

The OSE framework supports system-level interoperability with the specification of EEIs. EEIs
are essentially a collection of open standards in the areas of networking protocols, data
interchange formats, device /O, and distributed file systems. The OSE framework supports
source-level portability through specification of the APIs. Call-level interface standards (C
language bindings) are defined in the areas of general Platform, Device /0, Communications,
Data Management, Geometric Modeling, and Presentation Management services.

3.3.2 NGC OSE Taxonomy

The NGC Open Systems Environment (OSE) standards taxonomy categorizes the open standards
referenced within the OSE framework. The NGC approach leverages existing standards in all

September 23, 1994 34 SOSAS Rev. 3.0




applicable areas without “re-inventing the wheel”. These standards, many of which are
applications independent and of a general-purpose computing nature, play a significant role in
opening up the controller.

The standards taxonomy is used in deriving NGC profiles and provides one level of guidance for
- NGC design. In previous sections, we specify the components that guide the design of the
applications software, the system elements specifically required for manufacturing and control.
The OSE taxonomy, related profiles, and component specifications together support the
development of controller applications software that is both interoperable and portable.

A high-level inspection of the OSE taxonomy (Figure 3.3.2) reveals a close tie-in with the OSE
reference model. The two major branches of the taxonomy map one-for-one with the two major
interfaces identified in the reference model, specifically: application program interfaces (APIs)
and external environment interfaces (EEIs). In review, the API branch deals with issues of
source code portability and the EEI branch deals with system-level interoperability.
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Figure 3.3.2 NGC OSE Taxonomy
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It is unfortunate that today's available standards do not cover all the areas required for a fully
open NGC. Many NGC application areas presently unsupported by existing standards are now
being worked by standards committees and open systems consortiums.

This specification leverages such relevant draft standards work if it is sufficiently mature and
promises to have market acceptance. This position is taken in lieu of the alternatives: either to
define, by a much smaller committee, an independent solution, or to simply not address known
gaps in the NGC open systems architecture. Existing standards and draft standards span most of
the NGC open requirements space but still leave some gaps. These gaps are duly noted in the

subsequent standards discussions.
3.3.2.1 Application Programming Interface (API)

API categories include: platform, presentation management, data management, geometric
modeling, communications, and device input/output (1/0). In each category, a set of open
standards are identified to facilitate source code level portability. The essential ingredient for this
level of portability is a well-specified, language-dependent, call-level interface description.

The NGC API definitions specify C language bindings. It is left up to the discretion of the NGC
application designer as to whether or not he may wish to implement C++ “wrappers” (or some
other object-oriented language wrapper) around such C language calls to access API services

using a message-passing paradigm.

Wrapping maps the language interface of an application to the object interface. It places an
object-oriented interface in front of one that is not. This concept goes hand-in-hand with the
concept of a “container” object. Standard “C” applications may be placed inside container
objects so that they may send messages through an object-oriented interface while preserving it’s

appearance as a single application.

The Object Management Group's (OMG) Common Object Request Broker Architecture
(CORBA), for example, embodies many of these concepts. It is an open question as 10 whether
there are more CORBA implementations worldwide today than there are Open Software
Foundation (OSF) Distributing Computing Environment (DCE) implementations. Both
standards are primarily focused on writing applications that communicate with each other.
DCE’s Remote Procedure Call (RPC) communications method provides node transparency using
a client-server methodology. CORBA’s API specification is designed around the object-oriented
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methodology of message passing and supports the interoperability with other technologies via its
“static” API interface, which compiles at runtime.

As evident in the NGC reference model and the standards taxonomy, a large part of the NGC API
specification is rooted in the Institute of Electrical and Electronics Engineers, Inc., (IEEE) portable

- operating system interface (POSIX). Many of the NGC concepts draw from IEEE/TCOS POSIX
work. However, it should be clear that the NGC extends the notion of profiles defined for POSIX, as
well as that for International Organization for Standardization/Open Systems Interconnection
(ISO/OSI), to include a number of non-POSIX API standards. Purists within the open systems
standards communities may have some difficulty with this approach but certain de facto standards
have such large market support that they can not be ignored.

A common misconception is that POSIX is an operating system. POSIX describes the contract
between the applications and the operating system. It defines the interface between applications
and their libraries and says little about how to write those applications programs or how to write
the operating system. The importance of adopting the interface is to enable portability of
software applications across a variety of platforms. Any specific implementation of a NGC
platform is acceptable provided the standard interface API, services, protocols, and associated
behaviors are followed.

Therefore, workstation operating systems such as Digital Equipment Corporation (DEC) Ultrix,
SMI SunOS, and Hewlett-Packard HP-UX; PC-based operating systems such as Santa Cruz
Operation, Inc. (SCO) Xenix and MS Windows NT; micro-kernel-based systems such as Mach
and Chorus; and finally real-time operating systems (RTOSs) such as Integrated Systems pSOS,
Ready Systems VRTX, and Lynx LynxOS are all acceptable operating system implementations
provided that they support at least one of the NGC platform API profiles. In terms of the
computer hardware, platform implementations may include processors such as Intel, Motorola
and Inmos; backplane busses such as VME, ISA/EISA, and NuBus; and displays such as ASCII-
based terminals and X-terminals. NGC platform implementations comprised of multiple
processors and multiple operating systems are also viable solutions.

Many of the COTS operating system products already provide support for the NGC platform
APL Others need to be adapted to support one or more of the NGC API profiles. This is
especially true for those custom or proprietary operating systems that are not presently based on
existing standards. The process of adapting COTS and proprietary products to the desired NGC
API naturally leads to the notion of middleware.
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Middleware is a term associated with distributed systems and | communications. Within a
client/server distributed database environment, middleware allows transparent client access of
information over wide area networks. In the context of communications, it is a layer of code that
sits between the operating system and the application. Middleware is designed to ease the
development of peer-to-peer and client/server distributed systems. Middleware implements an
" API layer that shields distributed system and network designers from the details of specific
programming environments. In other words, with middleware developers need not have to write
to vendor-specific API; instead they may develop to a more generic, globally compatible
standard interface. |

The NGC extends the concept of middleware to support generic APIs for computer numerically
controlled (CNC) device I/O, fieldbus and distributed control, window-based display
management, etc. With this view, implementation of the NGC CEE may simply be considered a
selection of computer hardware, a selection of COTS operating system and networking software,
and a specific implementation of middleware to support one or several NGC API profiles. Figure
3.3.2.1 illustrates this perspective. The NGC support services layer is the middleware

implementation layer.

[ L Custom Support \
Application Programs for a collection of application
programs (e.g., vended

Custom Support

(e.g., C++ classes)
for application
programmers

NGC Support Services ' |
ea—r——— __-_~ ating S stems & istributed Se ___ i :
‘ . ". - ~',:-' QF - ﬁ""‘Ti'.‘q . N .y
COTS Layer Middleware Layer (if any)
- OSs - Support Services:
- Distrib. Comm /File Mgmt. Platform, Pres. Mgmt.,
- Bd. Support Pkgs. Data Mgmt., Geom. Modeling,
\_ - HUI Pkgs. Comm., Dev. /O Y

Figure 3.3.2.1 NGC Architecture Perspective
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The following discusses relevant standards within each major API category. POSIX is first
introduced as a general background. Explanatory information and several examples are also
provided to help clarify and bring into focus some of the key NGC concepts. A general
background in computing, communications, and software is assumed.

- 3.3.2.1.1 POSIX and ANSI C: An Introduction

Growing in popularity is the commitment among operating system vendors, especially among
the real-time operating system (RTOS) vendors, to support the POSIX interface and real-time
(RT) extensions to POSIX. Since POSIX specifies an interface, and does not describe how the
functions are implemented, it can be applied across a number of underlying COTS operating
systems.

Some operating system vendors have leveraged their existing operating system products by
simply adding to them a POSIX-compliant interface. To accomplish this, a translation element
must be designed, typically in the form of a runtime library, that takes POSIX system calls into
native operating system calls. Digital’s OpenVMS with its POSIX C-language runtime library
and added POSIX system services kernel is an example of this. This approach provides a
migration path toward open solutions in the future while maintaining a level of legacy support
for existing applications and their dependencies on proprietary interfaces. The burden of
immediate conversion to a fully open system is somewhat eased, and can be achieved in a period
of time to spread the cost of changeover.

Alternatively, a controller developer may internally develop a POSIX API middleware layer on
top of a COTS operating system product or on top of a proprietary kemnel for reasons of product
discrimination such as improved controller performance, cost competitiveness, etc. The choice
of the specific POSIX implementation is up to the developer.

Table 3.3.2.1.1 lists many of the POSIX related documents that are either current standards or at
some level of draft release. This table provides a context for subsequent discussions of APl
services, profiles, and conformant implementations. Only the POSIX documents most applicable
to this specification are identified.

The versions of designated draft standards are the latest available as of March 1993. It is
recognized that this specification must be updated periodically if it is to accommodate the most
recent standards developments. This is actually less of a problem than it may sound since many
operating system vendors have already announced their intent to support the evolving POSIX

September 23, 1994 39 SOSAS Rev. 3.0




draft standards, especially in the area of RT POSIX extensions (POSIX.4). In that sense,
modifications to the SOSAS in the area of POSIX will merely track known direction for
commercial operating system products. p
Table 3.3.2.1.1 POSIX Documents
Relevant
Designation Title NGC API n
IEEE 1003.0 D15 Guide to POSIX Based Open System Architecture All
none - guide IEEE Standard Interpretations of IEEE Standard Portable Operating System All
Interface for Computer Environments (IEEE Std 1003.1-1988) Prod. No.
SH15313-PVB ISBN: 1-55937-216-8 '
ANSVIEEE 1003.1-1990 | Portable Operating System for Computer Environments (same as ISO/ IEC All
9945-1:1990)
ISO/IEC 9945-1:1990 Information Technology—Portable Operating System Interface (POSIX)- All
Part 1: System Application Program Interface (API) [C language] Ed. 1
356p. JTC 1
IEEE 1003.1a D7 Draft Revision to POSIX.1 All
IEEE 1003.1 LIS D3 System Application Program Interface All
IEEE 1003.2a D8 POSIX--Part II: Shell Utilities, User Portability Extensions Pres.
IEEE 1003.2b D4 POSIX--Part II: Shell and Utilides. Amendment 2 Pres.
ANSVIEEE 1003.3-1991 | Information Technology-Test Methods for Measuring Conformance to All
POSIX
IEEE 1003.3-1991 IEEE Standard for Information Technology- Test Methods for Measuring All
Conformance to POSIX Prod. No. SH14068-PVB ISBN: 1-55937-104-8
(same as ANSIIEEE 1003.3-1991)
IEEE 1003.3.1 D14 Test Methods for Measuring Conformance to POSIX—-System Interfaces All
IEEE 1003.3.2 D8 Test Methods for Measuring Conformance to POSIX--Shell & Utilities Pres.
Interface
[EEE 1003.4 D13 POSIX--Part 1: Real Time & Related System APl All except Pres.
IEEE 1003.4a D6 Standards for Threads Interface to POSIX Platform, Pres.
Data
IEEE 1003.4b D4 Feb 92 POSIX--Part 1: Real Time System API Extensions Platform, Comm.,
Device /O
IEEE 1003.8 D6 POSIX~Part 1: Network-Transparent File Access Data
IEEE 1003.12D1.2 POSIX-Protoco! Independent Interfaces Comm
IEEE 1003.13 D5 POSIX Standardized Profile Profiles-All
IEEE 1003.16 D3 POSIX C Language Bindings-Part 1 All
IEEE 1003.17 D4 POSIX Directory Service API Comm.. Data
1EEE 1003.21 D? POSIX Real-Time Communications Comm.
IEEE 2003.1 IEEE Standard for Information Technology~Test Methods for Measuring All
Conformance to POSIX SH15826
FIPSPUB151-2 Portable Operating System Interface (POSIX)—System Application All
Program Interface {C Language] 93 May 12
The Federal Information Processing Standards Publications document, FIPSPUB-151, is a -
procurement profile specified by the government based on the POSIX.1 (ANSVIEEE 1003.1)
standard. This document is proof of government support of the POSIX standard, and is included
here as a basis for defining future NGC government/military profiles. »

Not included in the table are POSIX documents in the areas of system administration, language
bindings for FORTRAN and ADA, system security, supercomputing, profiles for transaction
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processing and multi-process platforms, and batch processing. Although these subjects may have
some NGC relevance, they are considered secondary to the fundamental requirements for open
system controllers. As open controller philosophies materialize in open controller prototypes and
NGC products, these additional documents need to be revisited for SOSAS applicability.

POSIX.1 covers the basic operating system services. It had originated as an Institute of Electrical
and Electronics Engineers, Inc., (IEEE) effort, became an American National Standards Institute
(ANSI) standard (ANSVIEEE 1003.1) in 1990, and is also an international standard (ISO/IEC
9945-1:1990). It is language-dependent, meaning the APIs are specified for C bindings (a call-
level interface description for the C language) and is perhaps the most essential document within
the standard set. Current standards efforts include the re-write of this document as a language
independent specification (LIS). The C language bindings are to be specified as a separate
document, as for bindings to other languages such as FORTRAN or ADA.

The NGC POSIX profiles are based on POSIX.1 and are strongly dependent on ANSI C,
officially designated ANSI/ISO 9899. This 1990 version of the C language standard is an
international standard (ISO/IEC 9899:1990). It is a revision and redesignation of ANSI X3.159-
1989. The corresponding government procurement profile to this standard is FIPSPUB-160.

Many of the NGC API services are supported through the adoption of the ANSI C standard
libraries. POSIX.1 explicitly deals with C language-dependent services and defines two types of
C language conformance: (1) C standard, and (2) common usage C. This emphasizes the strong
connection between POSIX and ANSI C.

The adoption of ANSI C for use in non-POSIX operating system environments also satisfies a
level of POSIX compliance. In such implementations, it is only when services are requested
outside of the support ordinarily provided through standard ANSI C libraries that the
applications are no longer conformant with POSIX. The designer’s choices for NGC
applications are then to use either the API extras and RT extensions defined within the POSIX
standard and implement a layer of corresponding middleware, or to rely on the support of
vendor-specific API libraries and de facto standards.

For the case where the developer chooses not to use POSIX, a NGC profile set is provided for
using other system implementations and corresponding support libraries. This approach satisfies
a need to support legacy systems and eases the migration toward future POSIX implementations.
The developer may always choose, instead, to either select a commercial POSIX operating
system platform or develop a POSIX middleware layer on top of a proprietary operating system.
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3.3.2.1.2 Platform Services API

{ API ‘ EEI
Pres. Mgmt Data Mgmt Geom. Model Comm. Device /O Lang. Data APl  Device UF Backplane
Exchange Overla_p : Bus .
\_ i Categories .

Platform services support many of the features commonly provided by commercial operating systems
today. These services include, for example, process/task control, synchronization and scheduling,

event and interrupt handling, time services, memory, and other resource management.

Table 3.3.2.1.2 identifies the relevant de jure standards in the area of Platform services. De facto
standards in this area and their relevance to the NGC are discussed in Section 3.3.3, Profiles.

Table 3.3.2.1.2 Platform Services—Relevant Open Standards

ISO/IEC 9945-1:1990 Portable Operating System for Computer Environments (same as ISO/ [EC 9945-1:1990)
IEEE 1003.4 D13 POSIX-Part 1: Real Time & Related System API

1EEE 1003.4a D6 Standards for Threads Interface to POSIX

IEEE 1003.4b D4 Feb 92 POSIX--Part 1: Real Time System API Extensions

ISO/MTEC 9899:1990 Programming Language—-C

ANSI C, now an international standard, is identified in the table as a standard separate from
POSIX but it should be recognized that it is also an integral part of the POSIX.1 specification.
Most of the standard ANSI C library services fall under the umbrella of NGC platform services.
This includes C library functions and corresponding API in the areas of character and string
handling, localization, mathematics, non-local jumps, input/output, date and time, diagnostics,
and general utilities. It is only in the I/O area that some of the C library functions relate to other
service categories such as presentation management, data management, and device I/O.

POSIX.1 Platform services API include functionality for single and multi-processing, signals,
and user groups. RT Platform services API, such as RT signals, semaphores, memory
management, priority scheduling, and timers, are defined in POSIX 4. Thread services and
reentrant functions API are covered in POSIX.4a. Spawning, central processing unit (CPU) time
management, and sporadic server services API are specified in POSIX.4b. Note that the services
mentioned are not the full breadth of the POSIX services, but only those services that relate
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specifically to the platform category. POSIX also spans the areas of communications, device /O,
data management (file management), etc.

The draft nature of the RT API definition is not viewed as a major problem due to the current
support of draft levels of POSIX.4 in a variety of RTOS products. For many NGC controllers,

-these COTS operating system products may form an integral part of their total controller
implementation solution.

The operating system industry acceptance and momentum towards open systems is evident in
Microsoft’s latest operating system product, Windows NT, which supports POSIX. The list of
RTOS products with varying levels of in-progress and available POSIX.1 and RT support
includes:

* Encore Computer (UMAX V R/T)

* Eyring (PDOS)

* Harris Computer Systems (CX/UX)

* Industrial Programming (MTOS)

* Integrated Systems (pSOS)

» JMI Software Systems (C Executive)

e Lynx Real-Time Systems (Lynx operating system)

* Microware Systems (OS-9000)

*  Modular Computer Systems (8xxx)

» Precise Software Technologies (Precise/MQX, MPX)
* QNX Software Systems (QNX), RTMX-UniFLEX (RTMX/RN/RX)
* Spectron Microsystems (SPOX)

* Wind River Systems (VxWorks, MicroWorks)

Many other operating system vendors have announced their product plans to support POSIX.
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3.3.2.1.3 Presentation Management Services (PM API)

API EEI
Platform Data Mgmt Geom. Model Comm. Device /O Lang. Data APl Device UF Backplane
Exchange Overlap- Bus
\ ’ Categories )

Presentation Management services support the man-machine aspects of the NGC typically
associated with a standard computer terminal. Supported hardware may include a display,
keyboard, and trackball or mouse. Presentation Management services may be used to support
control panel functionality, provided such capability is emulated on the NGC terminal and is not
a hardware panel implementation. For example, one NGC controller product line may use a
graphics windowing environment with specialized NGC menus, dialog boxes, and icons that
implement (in software) many of the control panel features commonly supported today using

hardware dials and buttons.

To clarify this point, Presentation Management services do not interface physical buttons
dedicated to jog, feedhold, pause, and E-stop functions, nor do they manage jog handwheels,
mode-select switches, and programmable function keys. However, API services have been
identified to support these types of hardware interfaces and are described under Device VO

services APl.

Table 3.3.2.1.3 lists the major presentation management standards. Not all the standards listed
need to be adopted for NGC-conformant controllers and many of the standards shown overlap in
functionality. NGC profiles for presentation management define the standards subsets as well as
applicable de facto standards. In designing the controller, satisfying many of the standards listed
in the table is easily accomplished through the use of existing COTS products.

In selecting relevant standards for this specification, the following general guideline has been
applied: if the selection of a standard for a specific application involves a choice between the
national (e.g.. ANSI) standard and the corresponding international standard (e.g., ISO/IEC), the
NGC selection is usually the international standard. Note the NGC selection for the ANSI C
language is ISO/IEC 9899. Correspondingly, ISO/IEC standards are identified for Programmer's
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Hierarchical Interactive Graphics System (PHIGS) and Graphical Kernel System (GKS) instead
of existing ANSI standards, e.g., ANSI X3.124-1985 (R1991) GKS Functional Description.

Table 3.3.2.1.3 Presentation Management Services—Relevant Open Standards

ISO/IEC 9945-1:1990 Portable Operating System for Computer Environments (same as ISO/IEC 9945-1:1990)
¢ IEEE 1003.2a D8 POSIX--Part II: Shell Utilities, User Portability Extensions

IEEE 1003.2b D4 POSIX-Part II: Shell and Utilities, Amendment 2

1IEEE 1003.4a D6 Standards for Threads Interface to POSIX

ISO/TEC 9899:1990 Programming Language - C

MIT X Windows (X11R5) MIT X Window System Version 11, Release 5

MIT X Windows PEX extension | MIT X Window System PHIGS EXtension

OSF/Motif 1.2 Open Software Foundation - Motif

ISO/IEC 8651-4:1991 Graphical Kernel System (GKS) language bindings - Part 4: C

ISO/TEC 8806-4:1991 Graphical Kernel System for Three Dimensions (GKS-3D) language bindings - Part 4: C

ISO/IEC 9593-4:1991 Programmer’s Hierarchical Interactive Graphics System (PHIGS) language bindings -
Part 4: C

IEEE 1201.1 Uniform Applications Program Interface Graphical User, Rev. 3, DS01719 (Windowing
Toolkit API)

Relevant portions of POSIX.1 deal with terminal identification and device/class specific APlIs.
POSIX.4a specifies reentrant functions for generating a terminal path name and determining
terminal device names. Character and string based keyboard and display I/O functions defined in
the C language (e.g., getchar(), printf(), etc.) are also applicable.

The POSIX shell utilities (POSIX.2x) are that part of the specification that deals with what is
commonly referred to on most systems as the command line interpreter (CLI). It is the CLI that
people identify with most when referring to a particular type of computer system and the
expected behavior of that system from a user’s perspective. The well-known “C, colon,
backslash™ (C:\) syntax is the CLI of the popular MS-DOS operating system found on many
IBM PC compatible, Intel-based platforms. The POSIX shell is modeled after the user interface
commonly found on many UNIX-based platforms.

A number of API open standards exist for graphics. The PHIGS and GKS international standards
define 2-D and 3-D graphic programming interfaces. PHIGS is also the interface supported by
the Massachusetts Institute of Technology (MIT) X Consortium for using the PEX 3-D graphics
extension. It is interesting to note that the X Consortium is currently in the process of spinning
out of MIT into a nonprofit, more market-driven organization. OpenLook, the chief graphical
user interface (GUI) rival of Motif, is absent from the list due to the recent agreement by leading
parties in the UNIX market to settle on the OSF/Motif interface for the Common Open Software
Environment (COSE).
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Other API strategies include X/Open’s favorable intention to adopt the Public Windows
Interface (PWI) in a future release of the Portability Guide (XPG). The PWI, developed by
several COSE sponsors, is a specification of the proprietary Microsoft Windows interface. The
plan is to pass the specification off to a vendor-neutral standards body (most likely X/Open) so
that Windows-based technologies would no longer have to pay royalties to Microsoft. This is
important for SunSelect’s new “Wabi” interface product, which allows users to run Windows 3.1
applications on reduced instruction set computer (RISC) workstations running UNIX and X
Windows. Should the PWI document survive the potential mitigation and become public
domain, future revisions of this specification may include this standard as part of its OSE

specification.

Also in this area is a current IEEE effort to standardize on a windowing toolkit API. This
standard, IEEE 1201.1, is currently in draft form. It is premature to assess the resulting product
support but it appears to carry enough momentum to qualify its candidacy in the NGC SOSAS.

Figure 3.3.2.1.3 illustrates some of the possibilities for implementing Presentation Management
services at varying levels of capability and windowing support. Several different combinations
of COTS products and/or middleware developed solutions are implied. As described through
profiles, not all levels need be supported by any one specific implementation. This subject is

expanded in the profile section.

The API standards identified provide for portable operator interface component source code. In
addition, they also address issues related with user portability; that is, they provide a foundation
for one of the major NGC benefits, common look-and-feel. Although the standards pave a

direction, they are not, in themselves, the complete solution.

A display style guide to be followed in the development of a NGC operator interface component,
and the user interface capability to customize and tailor the interface, are also essential
ingredients. This allows one shop floor, for example, to tailor all their NGC controllers to suit
their specific needs, yet also support a common user interface to minimize training and
maintenance throughout their shop.
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Figure 3.3.2.1.3 Presentation Management Services—API Levels and Implementation
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3.3.2.1.4 Data Management Services (DM API)

API EEI
Platform Pres. Mgmt. Geom. Model Comm. Device /O Llang. Data APl  Device /F Backplane
Exchange Overlap - Bus
\_ Categories )

Data Management services refer to the file management capabilities of the system. The
commercial products available for data management today cover a broad spectrum from
independent proprietary protocol implementations on a single host environment to open,
transparent file access solutions for multi-processor configurations. The latter provides the most
portability advantage for NGC applications.

From the perspective of the NGC as a system, Data Management services are concerned with both
external as well as internal system file support. External file support may simply involve the use of a
utility such as file transfer protocol (FTP) across a local area network (LAN) or Internet to a remote
host file system or network. In terms of an ISO/OSI open system alternative, it may involve the use of
file, transfer, access, and manipulation (FTAM) for remote file access. Both approaches are closely
tied to the NGC communications services as well as Data Management services, and both are
supported through NGC profiles. Internal to the NGC, Data Management services may also provide
data storage access across loosely and tightly coupled multi-processor controller implementations as
well as simple file access within a single processor environment.

The choice of a data management implementation is based on the intended application of the
specific controller product line. It is conceivable that some low-cost NGC families may not
feature a cell-level interface for external file support. The channel to the outside world for these
controllers could be a simple serial interface for RS-274 input. In contrast, high-ended NGC
controllers may not only support remote host file access across a shop floor network, but also
support “lights-out” operation for a 24-hour period. This, of course, is the vision of the future.

Transparent remote data access (RDA), such as that provided from Sun’s Network File System
(NFS) product is the current trend and a key focus within open systems communities. In the
UNIX environment, NFS makes remote file systems look the same as local ones. OSF’s
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Distributed Computing Environment (DCE) takes this a step further with the Distributed File
Service (DFS) by providing all users a single view of all files (both UNIX and non-UNIX based)
within an organization. Transparency deals with making the file resource more visible than the
computer host system that supplies the resource.

- Table 3.3.2.1.4 lists the standards most relevant to Data Management services. Relevant portions of
the POSIX.1 standard include files and directory services, system database access services, and
services defined for file descriptor manipulation and control operations on files. POSIX.4 covers file
truncation, synchronization, and real-time files. POSIX.4a identifies reentrant functions for
group/user database access, file lock/unlock synchronization, and thread-specific data key/data
management. Standard C defines file input/output functions, e.g. fread(), fwrite(), fseek(), etc.

Table 3.3.2.1.4 Data Management Services—Relevant Open Standards

ISO/IEC 9945-1:1990 Portable Operating System for Computer Environments (same as ISO/IEC 9945-1:1990)
1EEE 1003.4 D13 POSIX--Part 1: Real Time & Related System AP

IEEE 1003.4a D6 Standards for Threads Interface to POSIX

IEEE 1003.8 D6 POSIX--Part |: Network-Transparent File Access

ISO/TEC 9899:1990 Programming Language - C

X/Open §203 Data Management: SQL Call Level Interface (CLI)

IEEE 1238.1 File Transfer Access & Management Applications Interface (Rev 2). DS02345

X/Open P206 FTAM High-level APl (XFTAM)

The most interesting standard in the list is POSIX.8, Transparent File Access (TFA). TFA
refines the file system services specified in POSIX.1. It defines full TFA and core TFA in a
manner similar to the general NGC profiling approach. Full TFA provides all the file services
defined in POSIX.1. Core TFA defines a minimum set so that TFA may be used with other non-
POSIX file systems. Functional extensions to the core services are also defined for the flexibility
of adding capability on an individual file basis. POSIX.8, Annex F includes informative profiles
for several different file systems (e.g., Sun NFS, FTAM and PC/DQOS, etc.).

Note the Structured Query Language (SQL) international standard is not referenced in the table,
although it is quite relevant to data management. Many popular database management systems
today (e.g., Oracle, Sybase, Ingress, Informix, etc.) support the SQL client/server protocol. It
should be clear that the standards listed in the table focus on portability and relevant APL. SQL is
a protocol standard and, by definition, addresses interoperability concerns. Consequently, this
standard falls under the external environment interface (EEI) branch of the Open Systems
Environment (OSE) taxonomy and is discussed there.
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Of lesser importance, X/Open’s SQL call-level interface standard is included for completeness to
allow portability of controller applications that have built-in remote file management using SQL.
This may be an alternative to using a COTS proprietary data base API but may require a
middleware bridge between the NGC applications and the leveraged commercial data base
product. The other OSI/FTAM API standards are included for analogous reasons.
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3.3.2.1.5 Geometric Modeling Services (GM API)

( OSE )

API EE!l
Geom.\ comm. Device O Lang. Data APl Device UF Backplane
Model.

Exchange Overlap - Bus
\_ Categories )

Platform Pres. Mgmt. Data Mgmt.

Geometric Modeling services define a standard programming interface to product modeling
systems for extracting and operating on product definition data (PDD). The Geometric Modeling
services category is unique in that it tends to be more application specific than the other API
categories. However, the existence of open standards work in geometric modeling justifies its
place as an API category. Since this specification is an anticipatory standard, it is hoped that
other application-specific API categories will emerge in areas such as motion control,
programmable logic control, etc.

Table 3.3.2.1.5 shows the only relevant open standard in the area of geometric modeling, the
Consortium for Advanced Manufacturing International (CAM-I) Application Interface
Specification (AIS). CAM-I is committed to maintaining compatibility with the PDES/STEP
standards. The significance of the AIS is that it goes beyond data exchange by supporting
operations on product data definition.

Table 3.3.2.1.5 Geometric Modeling Services—Relevant Open Standards

CAM-1 AIS 2.0 Draft Standard CAM-I Application Interface Specification (AIS) Revised 1991 Document Number
Vol Il R-90-PM-03 AIS 2.0 C Language Binding

The PDES/STEP product data exchange standards have an important future relevance to NGC
and there will probably be a wealth of new products entering the market based on these
standards as they continue to mature. They may be the key to the NGC art-to-part factory of the
future by providing an industry standard that completely describes all part characteristics. As
data standards, their NGC role is one of ensuring system and applications level interoperability
and fall under the EEI branch of the NGC taxonomy.
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3.3.2.1.6 Communications Services (Comm API)

EEIl
. Data API Device UF Backplane
. Exchange Overlap’ Bus
\_ Categories )

Communications services API are perhaps the most important set of services of the NGC OSE.
Communications API not only provides for portability of source code that interfaces the NGC to
other external systems (e.g., networks), but also defines the set of callable interfaces that support
peer-to-peer communications between the internal NGC component agents.

The transparency of the communications system, that is, the ability of the communications
system to make resources more visible than the computer host that supplies the resource, is a key
focus of the NGC. The Data Management services discuss the notion of transparency in the
context of remote data access. The objective for file transparency is to make remote file systems
resident on heterogeneous hosts look the same as local ones. Architecturally, the inherent
transparency of a distributed file system is often a function of its underlying distributed

communications system and directory services.

Table 3.3.2.1.6 lists the open standards most relevant to communications. Inter-process
communications is achieved at various levels. One implementation may use a pipe to create an
inter-process channel and the general read(), write() functions defined in POSIX.1. Other
implementations mz{y rely on POSIX.4 message queue functions and the corresponding blocking
timeout services specified in POSIX.4b.

POSIX.12, protocol independent interface (PII), is perhaps the most important open standard of the
list. It defines two networking interfaces for protocol-independent, process-to-process
communication: the simple networking interface (SNI) and the detailed network interface (DNI). SNI
is a simple applications interface that provides for co-operating process intercommunication without
requiring details about underlying protocols. DNI offers protocol-independent mechanisms for
manipulating protocol specific features of the underlying network. DNI will be specified with C
language bindings for Berkeley Software Distributions (BSD) sockets and X/Open XTI. Both
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connection-oriented, byte- or record-stream virtual circuits and connectionless channel datagrams are
supported. Relevant OSI APIs are also referenced for completeness.

Table 3.3.2.1.6 Communications Services—Relevant Open Standards

ISO/TEC 9945-1:1990

Portable Operating System for Computer Environments (same as ISO/IEC 9945-1:1990)

IEEE 1003.4 D13

POSIX--Part 1: Real Time & Related System API

IEEE 1003.4b D4

Feb 92 POSIX--Part 1: Real Time System API Extensions

IEEE 1003.12D1.2

POSIX - Protocol Independent Interface

IEEE 1003.17 D4

POSIX Directory Service API

IEEE 1003.21 D

POSIX Real-Time Communications

ISO/IEC 9899:1990

Programming Language - C

IEEE 1238.0 Draft Common OSI Connection Management (Rev 4), DS01339 (API to Common OSI
Connection Management and Support Functions Project)

IEEE 1224 0S! Applications Programmer Interface. Jan 93 (Rev 8) DS 01123

IEEE 1224.1 X.400 Electronic Messaging API (Rev 6) DS01362

IEEE 12242 Directory Services Applications Programmer Interface (Rev 5) DS02428

X/Open TOO3 X.400 (APlsand EDI Messaging) Vols. 1-6

X/Open P203 ASCE/Presentation Services API

X/Open C196 X/Open Transport Interface (XTI)

X/Open P210 The Common Object Request Broker: Architecture and Specification - X/Open in conjunction
with Object Management Group (OMG)

OSFDCE 1.0.2 Open Software Foundation Distributed Computing Environment Version 1.0.2

Directory Services (POSIX.17) is the transparency glue for resolving the physical location of
objects, given globally defined logical names. This standard was mainly intended as an
International Consultative Committee on Telegraphy and Telephony (CCITT) X.500 API but
may also be used to access directory systems in existing practice. It offers one open system
approach to NGC for network communications and physical node transparency.

A Directory services component is also defined for NGC to provide a level of communications
transparency for peer-to-peer communications between agents, the processes and threads, within
a NGC. This component hides the communications details (sockets, process ids, message queue
descriptors. etc.) for single processor, multiple process environments. It also hides node id
details for distributed, multi-processor NGC implementations.

Like a telephone book, the Directory services component is responsible for managing all the
address information to globally named system entities. Every NGC component implementation
must have at least one agent for sending and receiving messages. Each communications agent
globally registers to the system symbolically, by its agent and corresponding component name
set. Node residency and all other required information to communicate between agents may be
obtained dynamically, during system operation, through the Directory services.
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Several existing products attempt to provide a simple and efficient communications interface in
a loosely and tightly coupled multi-processor environment. Most of these products fall short in
hiding node details or the underlying communications mechanisms.

For example, the Ohio State Trollius is an open architecture operating system for a concurrent
- message passing machine and attached UNIX machines. This product, although it is quite
powerful by today’s standards, defines APIs that are network dependent. In addition, nodes are
not transparent at an applications programming level, and node ids as well as event
synchronization information must be supplied as arguments to the communications API service
calls. Figure 3.3.2.1.6-1 illustrates the Trollius distributed memory multiple instruction, multiple
data (MIMD) architecture and the dependency of the Trollius communications API on the four
lower layers of the ISO/OSI model: physical, datalink, network, and transport layers.

4 _ _ )

Inside The Box Node :

Outside The Box Node :
- Single-user, dedi-

- GP Computers
- Multi-user - cated computers
- Shared links - Single-user links

- Paraliel comp probs.
- Few peripherals
- Run Trollius natively

- Ctrl Pernipherals
- Trollius- Applic.
run on GP OS

Note: Multiple OTBs req. multitasking OS (UNIX)

Trollius APIs

tsend() - send transport message
trecv() - receive transport message

nsend() - send network message NGC Standard APls
nrecv() - receive network message

dsend() - send datalink message » send() - standard wrapper

srecv() - receive datalink message recv() - receive stand. wrapper
psend() - send physical message

precv() - receive physical message Network Details Hidden

ksend() - send kemel message (nods local)
krecv() - receive kemel message (node local)

N\ _/

Figure 3.3.2.1.6-1 Communications Services—Trollius Example APIs Network Dependent

An applications-level API for NGC must shield the programmer from these networking details,
yet allow the programmer to selectively configure the implementation of the lower layers. This
can be achieved with programming options during the link process of the application, so the
desired communications implementation levels are built-in with the selection of the required

software component libraries.
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As Figure 3.3.2.1.6-1 illustrates, higher level send() and recv() API services would make
network details transparent to the applications programmer, yet he may still have the option
during the applications build process to select the level of protocol required to meet his specific
performance needs. Link options to a variety of object libraries during applications build could
facilitate such a flexible mechanism.

Two competing paradigms for communications are message passing and remote procedure calls
(RPCs). Two consortiums, Open Software Foundation (OSF) and Object Management Group
(OMG) are developing “middleware” in support of these different communications strategies.
OSF’s Distributed Computing Environment (DCE) implements RPCs. OMG’s Common Object
Request Broker Architecture (CORBA) standardizes distributed object-oriented computing using
message passing, which may also use RPC mechanisms as its underlying implementation.

From an architectural perspective, the interrelationship between POSIX, DCE, and CORBA is
somewhat hierarchical. This hierarchy is illustrated in Figure 3.3.2.1.6-2. This view is quite a
simplified view of the relationships of the standards. The whole story is, in fact, quite
complicated but the hierarchical view helps to understand some of the NGC communications
options and the levels of transparency that are available or missing when a particular option is
selected. Although CORBA and DCE both provide mechanisms for remote procedure calls
(RPCs), CORBA is shown at the highest level of the hierarchy because it is also an object-
oriented standard. DCE is function-oriented but there is nothing to preclude “wrapping” DCE
functionality into an object-oriented implementation.

DCE has evolved through the integration and standardization of a number of vendor products,
many of which were once separate stand-alone or bundled products. Although it is incorrect to
make the claim that all of DCE is built around POSIX, there are portions of DCE that are truly
based on POSIX. The DCE “threads” and the concept of “lightweight processes™ to improve
application performance through parallelism are based on POSIX threads. However, some DCE
services are not layered on POSIX and potentially need not be supported by commercially
available OS products, as the architectural hierarchy diagram also graphically depicts.

Within the set of POSIX standards there is also an implicit hierarchy of interrelated standards.
The POSIX hierarchy shown in Figure 3.3.2.1.6-2 is somewhat arbitrary in that it is not the only
hierarchy possible. Some of these standards are still in draft form. The resulting products will
establish the true interrelationships when these standards mature.
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Figure 3.3.2.1.6-2 Communications Standards Architectural Hierarchy

POSIX.8 is the POSIX standard for transparent file access (TFA). This standard, referenced in
the DM services section and earlier in this section by inference in the discussion of remote file
access, is shown at the top of the POSIX hierarchy. The rationale for its placement at the top is
due to its inherent dependence on the underlying network and communications mechanisms for

its implementation.

Potential communications mechanisms appear as the POSIX.12 SNI (Simple Network Interface)
and POSIX.12 DNI (Detailed Network Interface). Both of these standards are specified in the
POSIX.12 PII (Protocol Independent Interface) document and were briefly described earlier in
this section. POSIX.12 SNI appears at a higher level than POSIX.12 DNI to illustrate that an
“implementation” of a simple network interface may involve access to detailed network services.

The distributed services, illustrated as POSIX.17 DS in the hierarchy diagram, are accessed by
both POSIX.12 SNI and DNI. In addition, IEEE 1238.0, the Open Network Interface (ONI)
makes use of these same distributed services. The POSIX standards include not only those
standards designated by IEEE 1003.x, but also a number of other standards such as the 1238
ONI standard. The IEEE 1238 standard defines API at an applications level to the ISO/OSI
protocol stacks. As illustrated in the hierarchy, the 1238 services may be used to support
network or file access functions required of the higher level POSIX standards.
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To complete the POSIX hierarchy, POSIX.1 and POSIX.4 may provide all the service support
required of the other POSIX standards at a local host level. Local communications services may
range from pipes and signals to real-time semaphores, shared memory, mapped files, or message
queues.

The POSIX.12 SNI standard is highlighted (shadowed) in the hierarchy diagram because of its
importance in specifying two communications API: sni_send() and sni_recv(). These two APIs
approach a level of simplicity and communications transparency previously described as a
necessary NGC feature yet is not available in many real-time communications products today.
At an applications program level, these simple API may be used. The decision to use POSIX.4
shared memory or message queues for communications need not be made during applications
development, but instead could be made during the applications build by selection from specific
object libraries.

Another major point of distinction between the POSIX communications standards and the CORBA
and DCE standards is that the POSIX standards deal with communications at the level of inter-
process communications (IPCs). Both CORBA and DCE provide mechanisms for remote procedure
calls (RPCs) which may be viewed to be at a higher level of abstraction than IPCs.

Figure 3.3.2.1.6-3 illustrates the development mechanisms for implementing CORBA or DCE
RPCs. Within both the CORBA and DCE standards, an interface definition language (IDL) is
specified. The applications developer defines his interfaces using IDL and then “translates™ these
interface definitions using an IDL compiler. The compiler generates header files to be included
within the applications source code as well as client stubs and server skeletons which are
“linked” into the executable client and server applications programs during the build process.

Both standards, CORBA and DCE, are currently viewed as most applicable at the external
interface or workstation level of NGC communications, although there is nothing to prevent
their use for peer-to-peer communications internal to NGC. The only restriction for their use in
real-time applications is the current lack of real-time CORBA and DCE COTS products.
Today’s CORBA and DCE products are transaction-based and are oriented toward workstation
level business applications. OMG's CORBA may provide the foundation for one implementation
of an NGC external communications profile as well as perhaps OSF's DCE RPCs or even the
TCP/IP capability of the underlying operating system. A real-time CORBA product, if one
existed today, could have a tremendous impact on the approach to inter-process peer-to-peer
communications within an NGC.
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Figure 3.3.2.1.6-3 CORBA-DCE IDL & RPCs

The mechanism for message passing in NGC is Communications services. As mentioned in
Section 3.3.2.1 (general API section) it is left up to the discretion of the NGC application
designer as to whether or not he may wish to implement object-oriented wrappers around
function-oriented calls to access API services using a message passing paradigm. Through the
use of Communications services, NGC components may be implemented that embody the

container object concepts defined for OMG’s CORBA.

In summary, a set of communications standards and profiles are defined to enable the selection
of a communications strategy most suitable for the specific application and real-time
requirements of the’ NGC. As with all other API services, the Communications API focuses on
NGC applications source code portability and does not necessarily define how the underlying

services are to be implemented.
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3.3.2.1.7 Device Input/Output Services (De‘;ice /O API)

API EEIl
Platform Pres. Mgmt. DataMgmt. Geom. Comm. Lang. Data APl Device UF Backplane
Model. Exchange Overlap' Bus
\ Categories )

The Device I/O services are the peripheral management functions of the system. These services
perform the logical-to-physical and physical-to-logical mappings between the device requests
and the corresponding electrical signals to the device. The devices supported cover a broad
spectrum from dedicated operator control panel buttons, handwheels and switches, to specialized
sensor and actuator drive signals for motion control and tool change. Other devices may include
communications devices, auxiliary storage devices, analog-to-digital (A/D) and digital-to-analog
(D/A) converters, Centronics parallel interfaces, etc.

Table 3.3.2.1.7 identifies relevant device /O open API standards. POSIX.1 covers general O
primitives. These general open(), read(), write(), and close() primitives apply not only to files
but also to devices. POSIX treats all /O devices in the same general manner. File descriptors are
general-purpose descriptors used for all device management. POSIX.4 defines asynchronous Vo
primitives, e.g., aio_read(), aio_write(). Memory mapping functions may provide the required
interface to memory mapped /O devices. POSIX.4b specifies how to associate a user-written
interrupt service routine (ISR) with an interrupt and also defines a contro! device function,
devctl(), for a more direct path to the device driver.

Table 3.3.2.1.7. Device I/O Services—Relevant Open Standards

ISO/IEC 9945-1:1990 Portable Operating System for Computer Environments (same as ISO/ [EC 9945-
1:1990)

IEEE 1003.4 D13 POSIX—Part 1: Real Time & Related System API

IEEE 1003.4b D4 Feb 92 POSIX--Part 1: Real Time System API Extensions

ISO/TEC 9899:1990 Programming Language - C

In 1991, The Real Time Consortium had been working on the Open Basic Input Output System
(OBIOS) standard. The standardization effort, representing a collaborative effort of several key
hardware and system software vendors in the real-time and embedded systems marketplace, was
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focused on developing a call interface and associated client/device interaction model that

provides a common abstract interface for a wide range of I/O devices.

The OBIOS is an ideal candidate for inclusion in the NGC SOSAS. Unfortunately, the
consortium dissolved while the standard was still in the draft stage. This was the only standard

- of its kind and identifies a standard gap in the NGC OSE. It may be of little value to include the
contents from the OBIOS draft specification in the SOSAS since it appears at present to have
little market interest. It is listed as a placeholder in the EEI section.
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3.3.2.2 External Environment Interface (EEI)

The EEI includes API categories where interoperability issues are concerned and includes the
following additional categories: language, data exchange, device interface, and backplane bus.
" In each category a set of relevant open standards are identified to facilitate both system-level
interoperability and the interoperability of component-level implementations (applications
software) as well.

Interoperability considerations include networking protocols, data interchange formats,
distributed file systems, legacy support, and device interface. Each EEI category is concerned
with addressing one or more of these considerations. The following summarizes the NGC
approach to interoperability.

Networking protocols are defined in open standards such as IEEE 802.3 CSMA/CD, 802.4
token-passing bus, 802.5 token-passing ring, etc. These standards are supported by NGC profile
implementations using de facto standards and products such as Ethernet and ARCNET, as well
as the commonly used TCP/IP internet protocol found on many UNIX-based operating systems.

Standard data interchange formats tackle the problem of handling heterogeneous data, such as
differences in byte ordering, data formats, or the padding of data items in heterogeneous host
environments. The IEEE floating-point standard and OSF's DCE marshaling capability are
examples in this area. Standard product data formats such as PDES/STEP are also key.

Distributed file systems support file exchange or shared file access in distributed environments
requiring such access. Applications range from transferring files across a cell-level interface to
the transfer of legacy IGES or RS274 files across a CAD/CAM network or RS-232 interface.

In the area of device interface, there is a wealth of de facto and de jure standards that deal with
device interoperability.

Tables 3.3.2.2-1 through 3.3.2.2-5 list the EEI standards by category. The list of standards for
EEI can be quite large, especially in the area of ISO/OSI standards which are not enumerated
here for that reason. However, it must be remembered that subsets of these standards are selected
through NGC profiling and that most of these standards are already accommodated with the use
of commercial products.
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There are some obvious overlaps of certain API standards within the EEI domain. For example, X
Windows standards not only specify the X library and Xt intrinsics APIs, but also define an X
protocot for client-server interoperability between the client application and an X terminal. Therefore,
the X Windows standard also appears under the EEI branch of the taxonomy. In the area of data

management, SQL is another protocol standard that has a corresponding API standard.

Even within the EEI categories there are functional overlaps. No matter what view is taken,
there will probably be the potential for overlap. CAN bus, for example, may be classified as
having fieldbus characteristics, yet may also be used as a remote keybbard interface. The
primary focus for the NGC is on relevant standards for profiling. The NGC taxonomy organizes
standards to facilitate the profiling process. A statement need only be supplied for use of a

standard outside of its originally intended scope.

Figures 3.3.2.2-1 and 3.3.2.2-3 correlate some of the EEI standards into a more physical view of
the NGC system context. At the highest level, the NGC has only three major physical interface
types: a human-user interface, a cell or CAD/CAM interface, and a plethora of device interfaces.
Relative to these physical interfaces, a number of standards are mapped that define protocols
and/or data formats. Data format standards are grouped under the process heading in the
diagram. These data standards could apply to all major physical interfaces.
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Figure 3.3.2.2-1. NGC EEI System Context—Physical View
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Table 3.3.2.2-1. EEI Relevant Open Standards—Overlapping API Categories

Presentation Mgmt EEI

MIT X Windows (X11RS) MIT X Window System Version 11, Release 5

MIT X Windows PEX extension MIT X Window System PHIGS EXtension

OSF/Motif 1.2 Open Software Foundation - Motif

IEEE 1201.1 Uniform Applications Program Interface Graphical User, Rev. 3, DS01719

(Windowing Toolkit APT)

ANSI X3.124-1985 (R1991)

Graphical Kemnel System (GKS) Functional Description (includes ANSI X3.124.1-
1985)

FIPSPUB120-1

Graphical Kernel System (GKS) 91 Jan 08

ISO 7942:1985

Information Processing Systems - Computer Graphics - Graphical Kemel System
(GKS) functional description

ISO 8805:1988

Information Processing Systems - Computer Graphics - Graphical Kernel System for
Three Dimensions (GKS-3D) functional description

ANSI/1SO 9592.1-1989

Information Processing Systems - Computer Graphics - Programmer’s Hierarchical
Interactive Graphics System (PHIGS) - Part 1: Functional Description

FIPSPUBIS3

Programmer’s Hierarchical Interactive Graphics Svstem 88 Oct 14

ISO/EC 9592-1:1989

Information Processing Systems - Computer Graphics - Programmer’s Hierarchical
Interactive Graphics System (PHIGS) - Part 1: Functional Description

Data Management EEI

IEEE 1003.8 D6

POSIX—Part 1: Network-Transparent File Access

1SO 8907:1987

Information Processing Svstems - Database Languages - NDL

ANSI X3.133-1986

Database Language - NDL

FIPSPUB126

Database Language NDL 87 Mar 10

ISO/MEC 9075:1992

Information Technology - Database Languages - SQL

ISO/TEC 9579-1

Information Technology - Database Languages - Remote Data Access - Part 1:
Generic Model. Service and Protocol

ANSI X3.135-1989

Information Systems - Database Language - SQL with Integnity Enhancement

ANSI X3.168-1989

Information Systems - Database Language - Embedded SQL

FIPSPUB127-1 Database Language SQL

X/Open C201 Structured Query Language (SQL)
X/Open P205 SQL Remote Database Access
X/Open J301 RDA Mapping for TCP/TP
Geometric Modeling EEI

CAM-1 AIS 2.0 Draft Standard
Vol |

CAM-I Application Interface Specificauon (AIS) Revised 1991 Document Number
R-90-PM-03 AIS 2.0 Functional Specification
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Table 3.3.2.2-1 (Continued)

Communications EEI

IEEE 1003.12D1.2

POSIX - Protocol Independent Interface

IEEE 1003.17 D4

POSIX Directory Service API

ISO 7498:1984

Information Processing Systems - Open Systems Interconnect Basic Ref. Model

X/Open T904 X/Open Portability Guide 4 (C202, C203, C204, G204)
[ X/Open G212 X/Open Distributed Computing Services (XDCS) Framework
X/Open P210 The Common Object Request Broker: Architecture and Specification - X/Open in
conjunction with Object Management Group (OMG)
OSFDCE 1.0.2 Open Software Foundation Distributed Computing Environment Version 1.0.2
X/Open C210 Protocols for X/Open Interworking: XNFS, Issue 4 ’

ANSIEIA 511-1989

Manufacturing Message Specification - Service Definition and Protocol

ISO/IEC 9506-1:1950

Industrial automation systems - Manufacturing Message Specification - Part 1:
Service Definition

ISO/IEC 9506-2:1990

Industrial automation systems - Manufacturing Message Specification - Part 2:
Protocol Specification

ISO/TEC 9506-4:1992

Industrial automation systems - Manufacturing Message Specification - Part 4:
Companion Standard for Numerical Control

ISO/MEC 9506-5:1990 (IEC 65A/
65B(Secretariat)111/138 Sept. *90)

Industrial automation systems - Manufacturing Message Specification - Part 5:
Companion Standard for Programmable Controllers

IEC DIS 1131-5 (IEC 1131-5PC
Comm. Draft 1/15/93)

Programmable Controllers - Part 5: PC Communications
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Table 3.3.2.2-2. Language EEI—Relevant Open Standards

ISO/IEC 9899:1990 Programming Languages C

FIPSPUB160 C91 Mar 13

ANSI X3.37-1987 Programming Language APT

ANSI/EIA 494-B-1992 32-Bit Binary (BCL) and 7-Bit ASCII (ACL) Input Format for NCM

ANSLEIA 274-D-1980 (1988) Interchangeable Variable Block Data Format for Positioning, Contouring, and
Contouring/Positioning Numerically Controlled Machines

ANSLEIA 267-C-1990 Axis and Motion Nomenclature for Numerically Controlled Machines

ISO 841:1974 Numerical control of machines - Axis and motion nomenclature

IEC 1131-3 (1993) Programmable controllers - Part 3: Programming languages

1SO 3592:1978 Numerical control of machines - NC processor output - Logical structure (and major
words)

ISO 4342:1985 Numerical control of machines - NC processor input - Basic part program reference
language

ISO 4343:1978 Numerical control of machines - NC processor output - Minor elements of 2000-type
records (post-processor commands)

ISO 6983-1:1982 Numerical control of machines - Program format and definition of address words -
Part 1: Data format for positioning. line motion and contouring control systems
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Table 3.3.2.2-3. Data Exchange EEI—Relevant Open Standards

IGES 5.1

Initial Graphics Exchange Specification 5.1, October 1991 (US PRO P15.1)

ANSI/ASME Y14.26M-1989

Digital Representation for Communication of Product Definition Data (IGES 4.0)

FIPSPUB177

Initial Graphics Exchange Specification (IGES) 92 November 30

1SO 10303 Initial Release

Standard for the Exchange of Product Model Data (STEP) - Product Data
Representation and Exchange (US PRO P10303.IR - incl. parts 1, 11, 21, 31, 41 - 44,
46, 101. 201, and 203)

ANSI X3.4-1986 (R1992)

Coded Character Set - 7-Bit American National Standard Code for Information
Interchange (ASCII)

ANSI X3.41-1990

Code Extension Techniques for Use with the 7-byte Coded Character Set of ASCII

ANSI X3.42-1990

Representation of Numeric Values in Character Strings for Information Interchange

ANSI X3.64-1979 (R1990) Additional Controls for Use with the ASCII

FIPSPUB1-2 Code for Information Interchange. its Reps., Subsets. and Extensions 84 Nov 14
FIPSPUB86 Additional Controls for Use with the ASCII 81 Jan 29

ISO/MTEC 646:1991 ISO 7-bit coded character set for information interchange

1SO 2022:1986

Information processing - ISO 7-bit and 8-bit coded character sets - Coded extension
techniques

1SO 6093:1985

Information processing - Representation of numerical values in character strings for
information interchange

ISO/MEC 6429:1992

Informanon technology - Control functions for coded character sets

ANSUEIA 227-A-1978 (1988)

One-inch Perforated Tape

ANSU/EIA 358-B-1980 (R1990)

Subset of ASCII for Numerical Machine Control Perforated Tape

FIPSPUB2-1

Perforated Tape Code for Information Interchange 84 Nov 14

FIPSPUB26

One-inch Perforated Paper Tape for Information Interchange 73 June 30

ANSI/1SO 8632-1990

Information Processing Systems - Computer Graphics - Metafile for the Storage and
Transfer of Picture Description Information (rev. & redesig. of X3.122-1986)

FIPSPUB128-1

Computer Graphic Metafile. 93 May 11

ISONEC 8632-172/3/4

Information Technology - Computer Graphics - Metafile for the storage and transfer
of picture description information - Part 1: Functional Specification, Part 2:
Character encoding. Part 3: Binary encoding. Part 4: Clear text encoding

ANSUEIA-548-1988

Electronic Design Interchange Format (EDIF)

FIPSPUB161

Electronic Design Interchange (EDI) 91 Mar 29
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Table 3.3.2.2-4. Device Interface EEI—Relevant Open Standards

ANSI/EIA/TIA 232-E-1991 Interface between Data Terminal Equipment and Data Circuit-Terminating
Equipment Employing Serial Binary Data Interchange

EIA 485 Standard for Electrical Characteristics of Generators and Receivers for Use in
Balanced Digital Multipoint Systems )

ANSL/IEEE 488.1-1987 Digital Interface for Programmable Instrumentation

ANSVUIEEE 488.2-1987 ICodes, Formats, Protocols, and Common Commands

ANSI X3.183-1991 Information Systems - High Performance Parallel Interface

ANSI X3.131-1986 Small Computer Systems Interface (SCSI)

1SO 9316:1989 Information processing systems - Small Computer System Interface (SCSI)

SAE J1583 Controller Area Network (CAN) An In-vehicle Serial Communications Protocol

IEC 44(secretariat) 148 Serial Data Link for Real Time Communication Between Controls and Drives
(SERCOS)

ISA-S50.02-1992 Fieldbus Standard for Use In Industrial Controls Systems - Part 2: Physical Layer
Specification and Service Definition

ANSLEIA 431-1992 Electrical Interface Between a Numerical Control and Machine Tools

IEC 1131-1/2 (1992) Programmable Controllers. Part 1: General information, Part 2: Equipment
requirements and tests

EIA 441-1979 (R1992) Operator Interface Functions of Numerical Controls

1SO 4336:1981 Numerical control of machines - Specification of interface signals

OBIOS 1.15 OBIOS: Open Basic Input Output System Draft Specification - Real-Time
Consortium
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Table 3.3.2.2-5. Backplane Bus EEI—Relevant Open Standards

ANSVIEEE 896.1-1992

Backplane Bus Specification for Multiprocessor Architectures: Futurebus+, Logical
Layer Specification

ANSUIEEE 1296-1987

High performance Synchronous 32-Bit Bus: Multibus II

IEC 796-1/2/3

Microprocessor System Bus - 8-bit and 16-bit data MULTIBUS ) Parts 1-3:

ANSI/IEEE 1196-1987

NuBus - A simple 32-Bit Backplane Bus

ANSVIEEE 959-1988

Specification for an /O Expansion Bus: SBX Bus

ANSLUIEEE 961-1987

8-bit Microcomputer Bus System (STD Bus)

ANSIIEEE 1000-1987 Specification for a Standard 8-Bit Backplane Interface (STE Bus)

IEC 821 (1991) VMEBus - Microprocessor system bus for 1 byte to 4 byte data

TEC 822 (1988) VSB - Parallel Subsystem Bus of the IEC 821 VME bus

[EC 823 (1990) Microprocessor System Bus (VMSbus) - Serial Subsystem bus of the IEC 821 bus
ANSIIEEE 1014-1987 Versatile Backplane Bus: VMEbus

ANSUIEEE 1096-1988 Multiplexed High-Performance Bus Structure (VSB)

IEEE P1496 SBus

IEEE P1754 SPARC
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3.3.3 Profiles

The NGC standard supports varying levels of vendor-neutral open system conformance through
the concept of profiles. Simply stated, a profile specifies a set of de jure and de facto standards
that are adhered in the implementation of a specific controller. Thus, a profile characterizes a

controller by defining its unique level of openness and functional capability.

Profiles may include all the open standards specified in the OSE taxonomy. In addition, profiles
tie into accepted industry practice with provisions for including “de facto™ standards. De facto
standards, especially those that are commonly used in controller products today, can not be
ignored. These standards are not always considered “open” in the purest sense. Many de facto
standards are proprietary and they all lack formal specification by a recognized standards body.
However, some de facto standards have had a tremendous impact on industry. One example of
this is the PC ISA backplane bus which not only has gained wide popularity in the personal
computer industry but is also growing in use in industrial controls applications.

Profiles provide a mechanism for “apples-to-apples” comparison of NGC applications software
and platform environments to assess their relative compatibility. Through the use of profiles, the
selection of controller software for execution on a specific platform implementation is a simple
matter of comparing profiled capabilities. Compatible implementations may be interchanged
since they support equivalent levels of system interoperability, component interchangeability,
and portability. These “-abilities”, facilitated through the use of profiles, enable the realization of

the major benefits of NGC.

It is therefore the application of profiling that facilitates a new generation of controllers. These
NGC standards-based controllers are distinguished by their relative ease in accommodating:

(1) new features,

(2) scaleable and upgradeable features,

(3) interchangeable controller components,

(4) portability of components to different platform implementations,
(5) adaptable interfaces to a variety of hardware devices,

(6) flexible peer and factory-level communications and networks,
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(7) enhancements to performance, and

(8) consistent and tailorable user interfaces.

NGC profiles support both existing and emerging open standards. Many POSIX draft standards
are referenced where mature standards are unavailable. As described earlier, de facto public and
proprietary standards are also adopted where current market trends support such inclusion. Some
NGC implementations will inevitably evolve based on profiles that specify only vendor-neutral
open standards. It is hoped that completely vendor-neutral profiles will ultimately dominate the
marketplace. NGC conformance implies the adoption of one or more NGC profiles in a
controller implementation (see Section 3.5, Conformance).

NGC relevant standards are grouped into dimensions of similar purpose or functionality, as
defined by the Open Systems Environment (OSE) taxonomy. For example, the Backplane Bus
hardware dimension includes Multibus I/II, VME, Futurebus+, STD Bus, and NuBus. Backplane
Bus profiles also include proprietary standards that are widely used, e.g., Industry Standard
Architecture (ISA) and Extended Industry Standard Architecture (EISA) bus, when popularity of
these standards merit their inclusion as de facto standards. Selection of one or more standards
from each of the profile dimensions constitutes a specific profile. For example, the Backplane
Bus dimension of an implementation profile can include the selection of both the VMEBus and
the EISA bus standards.

Figure 3.3.3-1 illustrates the full set of NGC profile templates and their hierarchical relationship.
The template organizational structure is strongly influenced by the OSE taxonomy with some
subtle differences. One important difference is the introduction of de facto standards that are not
identified in the OSE standards taxonomy.
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Figure 3.3.3-1 NGC Profiles—Template Structure

Standards “levels” in the profile template structure is another departure from the OSE taxonomy
organization. Template levels provide the obvious benefit of helping to organize and represent the
tremendous amount of profile information on limited template space. However, this is only part of the
rationale for specifying the POSIX profile templates at two levels of detail. Level 1 supports profiling
of POSIX API options at a feature or API group level. This higher level satisfies the operating system
developer’s need to represent the compiler options used for a specific operating system product.
Compiler options are essentially packaging/bundling options for tailored products that meet specific
applications requirements and targeted hardware environments. Level 2 supports profiling of POSIX
at an individual API level so that an applications developer may accurately reflect the service
requirements of his controller component by reference to specific API calls.

A complete specification of all the profile templates represented by Figure 3.3.3-1 is beyond the _
scope of this specification. Figures 3.3.3-2 through 3.3.3-9, located at the end of this section, are
sample profile templates used in defining implementation profiles. As the template headings
suggest, the templates are dual-use and may be used to profile either a specific NGC platform or
a specific NGC software application component or aggregate. To define a specific profile, one
needs only to check mark the boxes corresponding to the desired template items.
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Selection of some items may either preclude or mandate the inclusion of other items in a profile.
The real-time (RT) or non-RT nature of the specific platform or application profile may also
have a potential impact on the applicability of certain template items. (Note that hard-RT
applications are not profiled since such applications are typically embedded or built-in hardware
and fall outside the scope of general platform and applications portability issues.)

The profiling process described, and the impact of one profile selection on the use of another
template, is best illustrated by example. The POSIX.13/D5 draft is a “Standardized Application
Environment Profile--POSIX Realtime Application Support (AEP)”. This draft specifies four
POSIX RT profiles: MINimal embedded, CONtroller, DEDicated, and MULtipurpose. These
profiles appear as selection items on the API Profile Suite template (Figure 3.3.3-2, upper right-
hand corner). In specifying a platform profile, selection of one of these items negates the need to
fill out the POSIX Profile Level 1 template (Figure 3.3.3-3) and the relevant POSIX Level 2
templates (Figures 3.3.3-4 thru 3.3.3-7) since these items are already predefined by the RT AEP
selection. However, RT POSIX custom platforms, or extensions to one of the POSIX RT AEPs,
will require the use of all the relevant POSIX profile templates.

The POSIX profiling example above illustrates the benefits to be gained from a user-friendly,
interactive set of tools for profiling. Intelligent profiling tools can simplify the profiling task so
that an NGC developer is presented with only the applicable options based on his previous
profiling selections. These tools do not exist today. The availability of automated tools for NGC
development and integration is considered a key enabling technology for bringing the NGC
concept to a practical reality.

It is interesting to note that POSIX.13/D5 is based directly on existing small and/or RT
(typically non-UNIX) kemel practice. Table 1-1 of the POSIX.13 draft specification offers a
comparison of five products (VRTX32, pSOS, C Exec, MTOS, and VxWorks) based on small
RT kernel features. The general approach of the standard specifies POSIX interfaces sufficient to
deliver the functionality typical of current RT systems.

Ongoing and future SOSAS work involves the tailoring and refinement of the profile suites.
Standard AEPs that are more encompassing than the POSIX RT AEPs, that span all OSE
dimensions, should evolve based on market-driven factors. It is premature (and unnecessary) to
anticipate or guess at what these standard AEPs should be. Documented profiles and the benefit
of time will illuminate the demand for certain profiles. Additional work is also required to
identify component profiles or NGC-relevant subsets of the base standards that are selectable
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items in the profile suites. As with AEP definition, component profiling must also be sensitive to

legacy and the projected product market.

Also related, but of a lower priority, is the feasibility of specifying a government/military AEP
based on the Federal Information Processing Standards (FIPS) procurement standards (made
available through the National Technical Information Service). Many of the PUBS documents
refer to open standards that are identified in the NGC OSE. Each of these documents contain a
“Specifications” section that is essentially a component profile of the referenced base standard.
All additions to, modifications of, and deletions to the referenced standard are specified.

It is obvious that the POSIX standard has been leveraged to a large degree for its value-added
standards in addition to its contribution to the fundamental philosophies of NGC and the OSE
reference model. The adoption of POSIX.l implies the adoption of the C language. Less
obvious, perhaps, is that the adoption of ANSI C implies the adoption of POSIX.1. This
connection to POSIX via the standard ANSI C library is often overlooked. It implies that much
of the legacy software developed using the C language may be leveraged with little or no
modification for POSIX compliance. POSIX-conformance is violated only if source-level API
system calls exist within the C source code that fall outside of the POSIX specification.
Therefore, when defining profiles for legacy C code, one should not be so-quick to rule out its

compliance to POSIX.

The IEEE/TCOS committee is also currently developing language-independent specification
(LIS) versions of the POSIX standards. The LIS version of POSIX.1 is intended to replace the
current C language-dependent version of the specification. FORTRAN and Ada language
bindings to the POSIX.1 standard are also at various stages of draft release. As these standards
mature and there is evidence of supporting products, they need to be integrated into the NGC
OSE profile strategy to fill some the present language gaps that exist with the current NGC
platform and POSIX approach.

Profiling offers complete flexibility in design to the developer. Many platform profiles will
evolve by leveraging existing COTS products. It is possible to implement each profile dimension
with a different product. Even the adherence to POSIX is optionally selectable by dimension. _
Little profiling constraints are placed on the developer other than to specify his unique profile.
End user requirements and market demand will establish de facto standard profiles that will have

the most impact on the next generation of controllers.

September 23, 1994 74 SOSAS Rev. 3.0




-

Pt API Profile Suite o Pt o
Platform/Application 0 MINimal Embedded
JSO5C aRSC o DSP O Other PP a2
L) eo/Bd./Chip: Processing Requirements O DEDicated
Application: ONonRT ORT o MULtipurpose
(Component/Aggregate Only) - Ncmon-POnSD(
Development Language Presentation Mgmt.:
N (Application Only) Command UF:  Graphics: Windows'GUIs
D Stand. C (opt. C++): o POSIX o GKS 0 X Windows O Non-X Win/GUis:
O Diagnostics 0 FORTRAN 0 POSIX.2a o 2D O Xlib-library & DOS Text/Graphics
) Character Handling O ADA 0 POSIX.2b 03D O Xt-toolkit D Windows
0O Localization O NonPOSIXbinding O Other_____ O PHIGS O Non-Xttookits D OS2
0 Mathematics O Pascal Prog. VF: O Proprictary 0 Andrew O Windows NT (Win32)
0 Non-Local Jumps O Smalltalk o POSIX o HOOPS O InterViews O Mac Windows
O Input/Cutput o Lisp O POSIX 1 D OpenGL 0 Other: D Other.
O General Utilities o PL/ O POSIX 4a o GDI 0 PEX-PHIGS exten
O String Handling o COBOL O ANSIC O Quickdaw O Matif
o Date and Time O Other: (Applic. Only) O Other: B Openlook
0 Common C (opt. C++) O IEEE 1201
Platform: Data Mgmt: Comm.: Geom. Model:
D POSIX 0 Non-POSIX o POSIX O POSTXS8 (TFA) o %’l’ 0 CAM-LAIS
D POSIX.1 o UNIX o POSIX1 0 Core TFA o ANSIC
0 POSIX.4 type: D POSIX 4 o Full TFA o OS] APIs Device 1O
O POSIX 4a o DOSWindows 0O POSIX4a O Profiled: O m, OPOSKX
o POSIX.4b o 052 O ANSIC RESNFSFTAM, o peep 19350 0 POSIX.1
o ANSIC o NT (Applic. Only) PC/DOS, other) O -X/Open ’ o POSD\ZA
(Applic. Only) @ MacOS gﬁk&l O Other:_____ o g(():ERBA o m“
0 Other:
—  oEEEln D posix1z  DOber__
\_ ‘Open 0 Other Y,
Figure 3.3.3-2 API Profile Suite
v
A'

September 23, 1994

75

SOSAS Rev. 3.0




———— ——

r POSIX Profile Level 1
Target Processor (Sheet 1)
: : Application:
(Piatform Only) . Platform/Application  (JF= 0 o
pOCISC ORISC oODSP OOther
. . Processing Requirements
Supplie/Bd./Chip:
P Chep O NonRT ORT
POSIX.1 POSIX.4a
Platform: Pres. Mgmt: Data Mgmt: Device VO: Platform: Pres. Mgmt: Data Mgmt:
O multi-process O terminals O file_system DOdevice IO O threads O reentrant_funcs O reentrant_funcs
O signals O device_specific O device 10 11 pipe O process_scheduling
O user_groups D job_control O file_attr O thread_prio_inherit
O single_process o fifo O thread prio_protect
O system_database O reentrant_funcs
B3 fd_mgmt
POSIX.4 POSIX.4b
Platform: Data Mgmt: Comm.: Device I/O: Platform: Comm.: . Device VO
O realtime_signals O mapped_files  DOmemory pasing D synchronized io O spawn O timeouts O device_control
O semaphores a} shared_nﬂwy_objeds D asynchronous 0 0 cputime O intesrupt_control
]| © memlock D synchronized_io D thread_cputime
D memlock_range O asynchronous_io D threads_sporadic_server
D mapped_files B
O memory_protection
0 shared_memory_objects
D priority_scheduling
o] umas
kn reattime_files Y,

September 23, 1994

Figure 3.3.3-3 POSIX Profile Level 1

76

SOSAS Rev. 3.0




2 )
Cacectp POSIX.1 Profile Level 2
Plosorm Only) Platform/Application
caton:
pCISC ORISC DODSP  DOther (gol:nponerrt/Aggregate Only)
Supplier/Bd./Chip: Processing Requirements
O Non-RT ORT
O single_process O multi_process O job_control O signals
0 uname() O execl) O execvp) O wait) 0 sleep() 0O setpgid() O sigemptyset) 0 kill)
O sysconf) O exeovQ) DO getpid) O waitpid) O alam() 0 tegetperp() O sigfillset() O sigaction()
O main() DO execle) O getppid) O _exit() O pause() 0 tesetpgrp() O sigaddset() 0 sigprocmask()
O execve() D times() B time() 0O sigdelset() D sigpending()
O execlp) O fork() O getenv() O sigismember() O sigsuspend()
0 user_groups D terminals O file_system O file_attr
D gewid) DO setsid) Ogetpgrp) O ctermid) D opendirQ) O petewd() O rename() O pathconf) O umask()
D getenid) 0 setgid) O ttyname() Dreaddu’O 0 mkdin) O stat) O fpathconfl) O chmod()
O getgid) O getgroups) Disatty)  © rewinddir)O creat) O ftat) O link) B chown()
O getegid) A getloginQ O closedi) O unlink() B access()
O semid) O cuserid) D chdif) O rmdir) O utimeQ
O fd_ mgmt B device 10 O device_specific O system_database O pipe O FIFO
o dupQ D open() O cfgetispeed) O tesetattr() O getgrgid) Dpipe) B mkfifo()
D dup2) D close) D cfgetospeed() O tcsendbreak() D getgmam() :
O lseek() O read) O cfsetispeed) DO tedrain) DO getpwuid()
0 fentl) O writeQ) O cfsetospeed) O teflush) O getpwnam()
\_ O twgatar() 0 wflow() W,
Figure 3.3.3-4 POSIX.1 Profile Level 2
—
POSTX .4 Profile Level 2 A
= vkliprey Platform/Application ..
pCSC DRISC o DSP o Otk Processing Requirements (Component/ Aggregate Ouly)
SupplicrBA/Chip: 0 NwRT ORT
O realtime_signals O scmaphores O memlock O memiock range 0 mapped_files
0 sigwaitrt() 0 sem_int() 0 sem_wait() o miockall() 0 mlock() O firuncate()
D sgtimedwait) O sem destroy() 0 sem_trywait() O munlockall) O mamlock)) O mmap)
D sgqueuc() O scmopen) O sam_post) O mmrmap)
D sem_close() O sem_getvalue()
O sem_uniink()
0 fwn O shared_memary_obyects D pricrity_scheduling D timers
0 fync) 0 shm_open() O sched_sctparam() udd_pm_ngmndd_mwnﬁm_m
' O shm_unlink() O sched_getparam() D-dnd_gd_mfy_maonchd_gummonmna_gummo
. - D schod_setscheduler() D sched_m_get_interval) O clock getres) O timer_getoverrun()
0 memory_protoctn D sched_getscheduler) timer_create() O nanoslecp()
O mprotect() 0 sched yield) O tuncr_delete()
D realtime files O synchronized_io 0 asynchronows_io 0 message_pasing
D o _create) D o getbiocap() o of_petbufl) O fdatasyno) O aio_read) O aio cancel) D mgopm) D mq notify()
D o gtatr) D of_getaiocap) 0 o_frochuf) O msync() D aio_witc O aio_mspend) O mqclos) D mq setatir()
o o _sctattr() o o_getdiocap() D aio_listio) O aio_fsync() D mq wiink() O mq_getattr()
O of_getalloccap) O of_getallociner() 0 aio_error() 0 mq_send()
\nxf_pmuhnupOn:f_gmo O aio_retum() 0 mq_receive() )

Figure 3.3.3-5 POSIX.4 Profile Level 2

September 23, 1994

77

SOSAS Rev. 3.0




(" POSIX 4a Profile Level 2
Target Processor 1 1
po i Platform/Application Appliction
DCISC BRISC BDSP O Other Processing Requirements (Component/Aggregate Only)
Supplier/Bd/Chip; O NeoRT ORT
0 threads
O pthread_attr_mit) D pthread_self) 3 pthread mutex_trylock() 0 pihread_cond_wait() DO pthread _attr_geisched()
0 pthread_gttr_destroy() O pthread_equal() D pthread_putex_uniock() 0 pthread_cond timedwait) DO ptherad attr_setprioQ)
O pthread_attr_setstacksize) O pthread_once() O pthread_condattr | mno D pthread_key_create() O pthread_attr_getprio()
O pthread_attr_getstacksize() O pthread_mutexattr_init() D pthread_condattr_destroy() D ptiread_setspecific() DO pthread_getschedattr()
O pthread_attr_setdetachstate() D pthread_mutexattr destroy) O pthread condattr_petpshared() O pthread_getspecific() O pthread setschedattr()
O pthread_sttr_petdetachstate() O pthread mutexatir_getpshared) O pthread_condattr_setpshared() o ;
D plread_crete) pora iy i S s o o S Lrsie yoneiio SR
O pthread_join() 0 pthread_ mutex mit) O pthread_cond_destroy() O pthread_attr_setinheritsched()D pthread_kill)
0 pthread_detach() O pthread_mutex_destroy() 8 pthread_cond signalQ O ptiread_sttr_getinheritschedQl ptiread_cancel()
0 pthread_exit() D ptiread_mutex_lock)) O pthread cond broadcast) 0 pthread attr_setsched() O pthread_setintr()
D pthread_setintrtype()
D pthread_testintr() 0 process_scheduling O thread prio_mherit O thread prio_protect
o m—m—l’“"o B segric) o ptlrwd_nnnam_setpuocoll(()) O piread_ mutex_getprio_oeilingl)
- getprio)) D pthread_mutexatir ;
tE,,  pmmemme, Seeiee
O getscheduler() O pthread_mutexattr_getprio_ceilmg()
0 yild)
O reentrant_funcs
0 readdic_r(): file_system 0 ctime_r(): C date and tme 0 getpwnam_r(): system_database O getc unlocked(: CHO-PM O rand_1(): C general utilities
Bb:almnx()C&n:mdmnerlogermm 0 getpwind_r(): system_databese O getchar unlocked(): C1O - PM
Ugnint_x()Cdatemdm O ttyname 1(); termimals 0 strtok_r(): C string handlmg 0 pute unlocked(: C VO - PM
D asctime_r(x C date andtime O getgrgid_r(): system_database O flockfile(): B putchar_unlocked(x C1O - PM
\D ctermid_r(): terminals D getprmam_i(x system_database O fimlockfile) 0 tmpoam(): C VO - DM W,
1. Figure 3.3.3-6 POSIX.4a Profile Level 2
4 )
POSIX.4b Profile Level 2
Target Processor Platform/Application
(Platform Only) Processing Requirements Application:
OCISC O RISC O DSP 0O Other ONon-RT ORT {Component’Aggregate Only)
Supplier/Bd /Chip:
O spawn O timeouts O cputime O thread_cputime
O spawn() O sem_timedwait) O clock_petcpuciockid) O pthread_getepuclockid()
o spawnp) O mgq_timedreceive() O clock_setenable_atr() D pthread_attr_setcputime()
O mgq_timedsend) O clock_getenable_atr() D pthread_atr_petcputime()
D pthread_mutex_timediock()
D threads & thread_priority_scheduling &
threads_sporadic_server O device_control O interrupt_control
O ptiread_attr_sctssparams() O devet() D mntr_capture()
D pthread_attr_petssparams() 0 intr_lockQ
O intr_unjock(
O mir_tmed_wa
N el w0 ),

Figure 3.3.3-7 POSIX.4b Profile Level 2

September 23, 1994

78

SOSAS Rev. 3.0




e )
Key:
Target Processor C Langu age P;ofi}e “+" Indicates POSIX.1 revised
(Platform Only) Platform/Application ~ Reguired by Standard C - not part of POSIX
OCISC © RISC 0O DSP O Other _ _ Application:
Supplier/Bd./Chip: Processing Requirements (Cpp o :rl:t/ Only)
ONon-RT BRT
Standard C Compliance 0 Character Handling B Localization
o Stand. C O jsanum() O idower) O isxdigitQ) O sctiocale(+
O C++ Option O isalpha) O isprint) O tolower() D localeconv()*
0 Common C 0 iscntd() O ispunct() O toupper() 8 Diagnostics
g C++ Option O isdigt) D isspace() O assert()
O isgraph) O isupper)
O Mathematics D Non-Local Jurnps O Inpuy/Output
D acos) O sn) O exp) 0O modf) O floor) D seimp) Platform VO: PMTO:
Oasin) B tn) O frp0 O pow) O fmod) B longmp) 0 sprintf)) O getc) O perror) O puts)
O azn() O cosh() O Kexp() O sqrt) O sigsetimp() Dscax'lf() 0 getchar) O printf) O scanf()
O amn2() O snh() O bgd O ) O siglongimp() O vsprintf)* O ges) 0O putc) DOungetc)
O cos) O tanh) O bgl0) O fabs) 0 putchar() O vprintf)*
O String Handling DMTO:
o O smomp( O srspn) O mememp()* O streor)* O clearen) O fgete() O fread) O fprintf) O setbuf) - O fgetpos(y*
0 stmepy() O strchrQ 0 strstr() 0 memepyQ* D stxfrm()* O folose) 0O fgets() O freopen)) O remove() O tmpfile) O fietpos()*
D sreat() O srespn)) O sriok) O memmowe(* o feof) 0O fopen() O fseek() O rename()+ O tmpoam() O setvbuf()*
O stmcat) O supork) O sten) O memset)® O feror) QO fputc) O fel) Drewind) O fleno) O viprintf)*
0 sremp() O strchr) O memchr(® O streoll(* O fiush) O fpusQ O farie) O ficanf) O fdopen()
0 General Utilities 0 Date and Time O Signals
O abs) B smand) Oabort)+ O awexit)® Ombstowes()® O system() D time() 0 micime(y+ 0 raise))*
O aof) O calloc) Oexit) Odv)* Ombowe)* O westombs()® O asctime) B srftme( O signal()*
O ani) O fre) O peem(+ Olbs)* Osod)®* O wetomb(* D ctime)+ DO et
0 ai) O malloc) O bscarch) O KWVQ* O sol(® O gmime(+ DO clock)®
k|:;,,,,‘,Ot:mnoeo::qmno 0 mbien()* O strtoul)* O localtime()+ O difftime()* )
Figure 3.3.3-8 C Language Profile
(- EEI Profile Suite )
Platform/Application
Processing Requirements T(;E;m Only) Application:
O Non-RT O RT O HadRT OCISC O RISC O DSP o Ot (Component'Aggregate Only)
Supplier/Bd./Chup:
Pres Mpmt: Data \ . Geom Model: Comm.: Data Exchanpe:  Device IF: Backplane Bus:
X Windows NDL CAM-1 AIS  ISO'OSI 7498, ANSIC IGES RS 232, 485 VME
Protocol SQLRDA Func. Spec. ASN.1 + others  APT PDES'STEP, ANSI X3.183 -VSB,VMS
Func. Specs. Func Specs. (CCITT,IEEE) ACL/BCL EXPRESS GPIB 488 SBX
XPG4 RS 274 ASCI SCSI FuturcBus+
XDCS IEC 1131-3 CGM CAN Multibus LTI
JONFS EDIF SERCOS STD
MMS (NC, PLC) ISA Fieldbus  STE
IEC 1131-5 [EC 1131-1/-2 NuBus
Func. Specs. RS 431, 41 S Bus
1SO 4336 SPARC
\ OBIOS )

Figure 3.3.3-9 EEI Profile Suite—Platform/Application
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3.4 Development Process and Implementation

This section describes the NGC development process and illustrates the path from an
architecture specification to an implementation solution. It is perhaps one of the most important
sections for guidance to the NGC controller builder. Emphasis is placed on implementation,
where the “rubber meets the road” in terms of NGC product development.

Up to this point, little guidance on “how to implement an NGC” is provided. The preceding
sections describe a context, architectural framework, and supporting environment for a NGC. In
some respect, they introduce the necessary background and terminology to better understand the

NGC specification in preparation for development.

The remainder of this section focuses on those implementation aspects that will evolve a next
generation of flexible controller products, bringing specification to reality. After all, the NGC
vision will only be realized if there is a large base of existing NGC products available.

Open controller characteristics such as component interchangeability and system flexibility have
fundamental significance at an implementation level. These characteristics bring the ultimate
benefits to the end user. The ability to add new features, scale performance, and interconnect
physical hardware and controller components are natural by-products of open controllers. It is
the implementation approach to component development and the resulting interoperability of
hardware and software products that enables the desired system flexibility. The NGC
implementation approach is therefore key to bringing the controller flexibility desired by end

users today into the capabilities of controllers tomorrow.
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3.4.1 Integration Process

Figure 3.4.1 illustrates the NGC integration process with focus and greater detail on the design
and implementation phase. The term “integration” is used in the title to highlight the notion that
if controller development begins with a mature and robust implementation component archive, it
is possible to construct a working controller system from existing COTS products without
having to create any new components. Early NGC development work must naturally begin by
populating this component repository with newly developed components and interactive tools for
its access. A plan is currently underway to establish the controlling organization for this
repository and develop a strategy for its required maintenance.

4 N

{1 i1

i
§

fil = ffs-— D11
| 0

Figure 3.4.1 NGC Integration Process

The integration process diagram captures the general flow and process dependencies and is not
necessarily a prescription for any one single approach to development. The developer may begin
development starting from any stage in the process. For example, one organization may decide
to follow the NGC integration process using concurrent engineering practices, assigning
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engineering work groups to various stages of the process simultaneously. All feedback paths are
implicit and do not appear on the diagram to avoid unnecessary complexity in illustration.

The integration process flow consists of two main parallel paths: applications development and
platform development. The applications development path is illustrated as the upper path in the
process diagram. The lower path addresses platform development. Both paths compliment and
support each other and are interrelated in ways not easily captured in the process flow diagram.

For example, the selection of applications software is driven by the compatibility of the available
software components and the platform selected for a specific controller implementation. Profiles
provide the mechanism for contrasting software component implementations against selected
platform implementations so their compatibility may be ascertained. The availability or lack of
existing applications components for a specific platform implementation may drive the need to
select an alternate platform implementation. Trades such as these, the “make-or-buy” choices,

are implicit in the process flow.

The platform implementation tends to solve more of the general-purpose computation and
communications requirements. These requirements are referred to as *‘domain-independent”
requirements. Conversely, application component implementations address more of the
application-specific or “domain-dependent” requirements to control and manufacturing. The
dependence of the platform on existing open standards makes available to the developer a
variety of implementation solutions and supporting COTS products. Every NGC platform
implementation must be profiled. With every new NGC applications software product
developed, a corresponding profile and interface description must be supplied.

To complete the integration story, selected and/or developed source-level software components
are compiled and linked together with object-level component libraries to generate the
executable controller applications for the target controller platform. Platform profiles and
profiles supplied with applications software are used in the selection process so that only
compatible components are selected. All hardware and executable software is then integrated
into a fully functional NGC application system, or simply the controller.

3.4.2 Application Framework, Architecture, and Implementation

The architectural concept of a “framework™ forms the underlying infrastructure and foundation
of NGC. At the platform level, the NGC Open System Environment (OSE) framework embodies
3 concepts: (1) a “reference model”, which is based on and extends the POSIX model; (2) a
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“taxonomy” of de jure standards; and (3) “profiles” of de facto and de jure standards. It defines a
set of language-dependent, function-oriented API callable services and facilitates the

development of object-oriented wrappers.

In addition, at the application level, the NGC specification facilitates the generation of a variety
of frameworks for specific application architectures, €.g., 5-axis machining center. Much of the
information contained in this specification may be used to compose a “framework”™ for the
development of an application architecture. An application framework is characterized by a
selected set of primitive components and an implicit topology (resource-product associations). A
framework is “composed” by selecting and spec'ializing reference requirements with a specific
application in mind, and by applying architecture description rules (ADRs) for primitive
component selection and interconnection. Specification of the reference requirements, primitive
components, and architecture description rules (ADRs) used for composing an application
framework is contained in the appendices of this document.

With this background, the process of creating an “application architecture” is better understood.
This process is lightly touched upon in the upper left hand portion of the integration process
diagram (Figure 3.4.1) and is further expanded in Figure 3.4.2. An application architecture is
distinct from its corresponding framework in that it specifies the first major level of design
detail.

Starting from an application framework, architectural components are defined consisting of
primitive components and aggregates of primitive components that compose the framework.
Language-independent message interfaces are specified between architectural components and
between components and the external environment. The architecture specification must also take
into consideration design requirements for system flexibility. By design, the architecture must
accommodate the system’s ability to integrate legacy motion controller boards, add new sensors,
or increase the number of axis of control for a specific application requirement. The architecture
may also be the first level for considering timing requirements. The “aggregation™ or grouping
of primitive components into larger architectural components for product packaging may be
driven in-part by commonly shared timing requirements. The application architecture is
therefore a top-level design manifestation of an application framework that supports all the

desired requirements for system flexibility.
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Figure 3.4.2 From Reference Requirements to Implementation

Figure 3.4.2 illustrates the process of developing an implementation from reference requirements,

showing the characteristic differences between an application framework, architecture, and the final b
system. Note that profiles and language issues are implementation concepts and are not architectural -

concepts. This reinforces the previous discussion that component interchangeability, facilitated

through the use of profiles, is fundamental at the implementation level. r

Different architectures may potentially be spawned from one framework. Consistent with the
profiling philosophy of this specification, the number of different architectures that evolve from
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one framework and the number of specific frameworks that require standardization must be
market-driven. The subsequent discussion on standardization and the document vision provides
additional supportive rationale for separating the application framework from its corresponding
architecture.

3.4.3 Standardization and Document Vision

Figure 3.4.3-1 depicts the NGC document vision for open controller standardization. This
SOSAS specification, including its latest modifications, with the exception of its many
appendices, may be viewed essentially as the “Guide to Open Controller Standards (OCS.0)”. It
introduces the standards and philosophies and provides a context and terminology for
understanding by example the other standards documents. The adopfed convention for
designating the documents is similar to that used for the POSIX standards. For example,
POSIX.0 is the guide to the POSIX standards.

(

Introduction to Standards
From Ref. Reqts. to implementation

Note: Doc. designation convention (Rev. 2.5 SOSAS doc. with latest mods)

adopted from POSIX

0CS.2
Implementation
Guideline

Specificabon: Specificabon:

. 20":“300& « impi. Process

. . Components * impl. Comp. Lib.

» Arch. Desc. Ruies (ADR, ADL) » Config Ainteg. Tools
+ Doman Modets
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7 et ettt V7 £ NP T e -
<. Specific Application fx=ei=i s : Specific Archtecture 1. =~~~ 7=~ Specific Application -
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Figure 3.4.3-1 NGC Document Vision: Open Controller Standards
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The “Applications Framework Open Controller Standard (OSC.1)”, is envisioned to contain
most of the appendices from this SOSAS specification. In addition, it will contain an expanded
set of reference requirements, primitive components, architecture description rules, and domain
models to compose frameworks for application domains outside of its present focus on CNCs.
Other application domains include robotics, programmable logic controllers (PLCs), process

control, semiconductor manufacturing, etc.

Architecture specifications (OCS.3, OCS.4, etc.) are envisioned to evolve for specific
applications based on market-driven factors. For traceability, these documents must specify the
application framework upon which they are based. Each framework must be individually
derivable from the OCS.1 document which will be expanded to accommodate additional

application domains as market forces dictate.

Different documents satisfy different needs of the community. For example, from a CNC developer’s
perspective, the “CNC Application Architecture (OCS.3)” document and the “Implementation
Guideline (OCS.2)” may be the only two specifications of interest. OSC.2 is envisioned to be an
expansion of this SOSAS implementation section with detailed information on profiling, language
binding, the component library, interactive development tools, and other system development and
integration information. Standards bodies, on the otherhand, may have much more of an interest in
the framework document, OCS.1, and its role in governing the evolving set of application architecture
specifications. The developer of an NGC product may or may not care about the OCS.1 document.
However, if a controller developer has a vested interest in standardizing his application architecture,
he will not only have an interest in OCS.1 but must also show compliance to a specific application
framework that is derivable from the OCS.1 specification.

As a final point in understanding the NGC document vision and the document interrelationships,
consider the ISO/OSI 7 layer reference model specification (ISO 7498) and its relationship to the
Ethernet level 2 specification (IEEE 802.3). Full interoperability is only guaranteed when a
specific physical implementation is determined (e.g. twisted pair, coax, etc.). Even the Ethernet
specification is incomplete in assuring interoperability of physical components, but it certainly
specifies a detailed level of protocols that is not specified by its parent ISO 7498 specification.
Token ring and token bus are also defined level 2 protocols under the ISO/OSI reference model -
yet neither will interoperate without converting bridges or gateways.

By analogy, the NGC applications framework is to a specific architecture as the ISO/OSI
reference model is to Ethernet. Ethernet is to token ring as one NGC application architecture is
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to another. Neither will interoperate. Just as physical characteristics are important to ensure
interoperable Ethernet implementations, NGC component profiles and language binding
considerations are of equal importance to ensure the interoperability and interchangeability of
application architecture component implementations. These implementation issues must be
considered to ensure interoperability yet, like the Ethernet specification, are not specified within
the NGC architecture documents. The criteria for ensuring NGC implementation interoperability
is discussed in the OCS.2 Implementation Guideline.

A formal standardization approach is required to bring the NGC documentation vision to reality.
The following 3 methods are recognized by ANSI as establishing evidence of consensus: (1)
Accredited sponsor using the canvas method, (2) Accredited standards committee method
(ASC), and (3) Accredited standards developing organization method (ASDO). A full
explanation of these methods is beyond the scope of this specification. Figure 3.4.3-2 is a
graphic depiction of the process model for the second method, the ASC method. This process
model provides some insight into the standardization process. All methods focus on capturing
consensus and adequate representation (due process) and are equivalent in their final results.
Therefore, any of these methods are acceptable for NGC document standardization.

f * Work Dralt * Review ASC Process )
irweg. Com mities Opwnions * Review Vote Results for Rute Condorm.
* Peopie to 0o work? & inputs * Check Agreement with « Review Due Process &
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Figure 3.4.3-2 ANSI Siandardization Process Model—ACS Method
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3.4.4 Implementation Component Library & Tools

Section 3.4.1, Implementation Process, introduced the notion of an implementation component
archive that may be used to create a working controller system from an existing repository of
controller parts. This, of course, is currently a vision and early NGC development work must
naturally begin by populating this component repository with newly developed components and

interactive tools for its access.

The NGC implementation component library is envisioned to be a shopping list of COTS
software and hardware packages as well as a central archive of reuseable, publicly available
(perhaps at a cost) aggregate software products. It is the repository for storage and retrieval of
applications/platform product information, detailed interface descriptions, and profiles. To
support this vision, interactive tools for creating, maintaining and browsing the library are
needed that do not currently exist. Figure 3.4.4 presents a conceptual view of the component

library structure and contents.
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Figure 3.4.4 Implementation Component Library & Tools—Structure & Contents

Having user interactive tools to peruse available profile information on specific products facilitates
“apples-to-apples” comparison of products. Product profiles may be used to assess if a specific
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software component will run on a selected platform implementation. Profiles may also determine the
relative compatibility of two different vendor applications for replacing one with the other to upgrade
an existing NGC system. Creating a profile for a platform that was conceived with a specific set of
vendor products in mind has the added potential benefit of exposing alternative implementation
solutions that may not have been considered during the initial trade studies.

The unavailability of interactive library tools today implies that the first NGC controllers must break
new ground. Early implementations will define platform and component profiles from clean
templates. Much of the controller-specific applications software will have to be developed either from
scratch or through the reuse and modification of 1egacy software. With every new NGC software
product developed, a corresponding profile and interface description must be supplied.

The mature existence of an implementation library and interactive development tools for its use
is believed to be the single, most critical enabling technology for NGC.

3.4.5 Implementation

Previous sections describe the process flow leading to NGC implementations. Sections 3.4.1 and
3.4.2 illustrate the integration process and provide a context for the implementation process. The
NGC concepts of application framework and application architecture are reinforced and related
to the implementation process. Section 3.4.3 ties specification to implementation and section
3.4.4 provides a deeper understanding of the structure and contents of the implementation
component library.

Section 3.4.3, Standardization and Document Vision, discusses the need for an *“Implementation
Guideline™ specification (OCS.2). Its contents must include all of the information described thus
far in section 3.4 with more detail. It must address language issues such as language-dependent
message interface specification. In addition, it must cover issues related with profiling,
hardware-software partitioning, functional vs. object-oriented implementations, and the
development and integration of various “types” of component packages from COTS to
middleware to board support packages to specialized API service development. In depth
coverage of these subjects are beyond the scope of this specification but is a requirement for
interoperable, interchangeable component implementations. )

It should now be apparent that an applications architecture specification forms the basis for an
implementation but falls short of specifying the requirements for interoperable implementation
components. Figure 3.4.5-1 illustrates some of the new design considerations in transitioning
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from an application architecture to an implementation. An application architecture is a high-level
design that takes form in an implementation in terms of hardware and software components.
Implementation software components support applications or platform functions, all of which
execute on the hardware platform. Similarly, the platform hardware is composed of a number of

hardware implementation components.

4 )
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Generic Implementation

Figure 3.4.5-1 From Application Architecture to Implementation

Platform software may simply involve the installation of standards-based COTS packages.
Where COTS packages fall short of the selected platform profile standards, middleware
components may be developed or reused (if available) to bridge the API gap. Middleware may
also provide the required access layer to board-level and embedded controller products.

At an applications software level, client/server stubs provide the required mechanisms for
transparent communications between local and/or remote implementation components. These
components are natural by-products of CORBA and DCE based implementations. They are
generated by the interface definition language (IDL) compiler and implement remote procedure

calls (RPCs).
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Figures 3.4.5-2 and 3.4.5-3 expand the simplified architecture and generic implementation
example of Figure 3.4.5-1 to introduce timing and multi-platform considerations. Component
aggregation is illustrated in the expanded application architecture example. The primitive
components of a specific application component aggregate are numerically identified. The
intercomponent message sets are also numerically designated and directly correlate between the
application architecture and the resulting generic implementation.
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Figure 3.4.5-2 Application Architecture
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Figure 3.4.5-3 Generic Implementation
3.5 NGC Conformance

NGC conformance is defined at several levels. At the system level, conformance is determined
by following at least one of several NGC-specified profiles of EEI and API standards sets. An
application is NGC-conformant with respect to a specific profile if that application always uses
the standard API defined for that profile whenever it accesses functionality that is supported by
that APL

The OSE reference model described in Section 3.3.1 explains the OSE framework and its impact
on applications portability and systems-level interoperability. It is important to note that the OSE
framework does not specifically deal with component-level interoperability issues other than to
specify several applicable data standards for message interface. As described in Section 3.1,
component messages and behaviors are specified to facilitate software interoperability, but
component interfaces are not specified at a level that guarantees fully interoperable, fully _
interchangeable component implementations. However, specification of components, a reference
topology, and definition of high-level message classes puts a natural limitation on the total
design space of controller applications.
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To ensure that independent component developers may develop complimentary products that
will interoperate with other controller components, the following SOSAS requirement is added:
a detailed description of all component interfaces shall be supplied with any controller or
component that claims component-level interoperability.

This specification is a guide for an anticipatory standard. The fact that it is not a specification that
simply documents existing practice presents an inherent obstacle to its acceptance by the controller
industry. This partially explains the adopted position on component interoperability, that is, to keep
the component interface descriptions at an abstract, implementation-independent level. In an ideal
world, the SOSAS could specify component interfaces at a sufficient level of detail that would ensure
full software interoperability. If such a detailed specification is to be adopted by the controller builder
community, it would have to be sensitive to market drivers and de facto standards for component
interfaces that may potentially evolve. To ensure the acceptance and future applicability of the
SOSAS, these interfaces have been deliberately specified at a high level.

This NGC standards approach is analogous to the approach used for the ISO/OSI communications
standard. The ISO/OSI reference model standard (ISO 7498) specifies a multi-level framework for
communications at a sufficient enough level of abstraction to facilitate the evolution of several
different network implementations (e.g., ethernet, token ring, token bus, etc.), yet it constrains the
implementations to a specific hierarchy and specific sets of services and protocols. A possible
scenario for the NGC is that supporting SOSAS documents may evolve that define the component
interfaces at a level of detail that will facilitate fully interoperable implementations.

For a full NGC controller product, there are two basic levels of conformance: system level and
component level. System-level conformance implies the disclosure of all profiling information
specific to the platform (for all APVEEI categories). This same profiling information must also
be disclosed for the applications software as a whole. Component-level conformance subsumes
system-level conformance requirements and additionally requires the disclosure of detailed
component interface specifications.

The SOSAS extends POSIX philosophies with regard to conformance. All conformance
requirements within each individual POSIX.n specification shall apply if that specification is _
selected for inclusion in the developer’s profile. Implementation conformance refers to the NGC
system platform and associated services, or the execution environment for applications-level
NGC software components. An NGC platform is implementation conformant if it conforms to a
specific and complete profile in all dimensions of API and EEI standards, from communications
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protocols and services to device interfaces and human-user interface (HUI) APL The NGC
platform may include nonstandard extensions, provided such extensions are identified in the
system documentation. For such platforms, an environment must be defined and documented in
which applications may run with the expected behaviors specified by the corresponding

standards of the profile suite.

Application conformance applies to an application component of the NGC claiming
conformance to a specific platform implementation. A “strictly conforming” NGC application is
one that requires only the facilities defined by the specific platform implementation for which it
conforms. Additional documentation shall be supplied for “conforming” NGC applications that
use non-standard extensions of a NGC platform implementation.

Software applications claiming conformance with the C language shall claim conformance with
either “C Standard Language-Dependent System Support” or “Common Usage C Language-
Dependent System Support”. The former refers to conformance with the C programming
language international standard, ISO/IEC 9899:1990. Applications conforming instead with the
latter, common usage C, shall clearly document all variations from the international C standard.
It is expected that much of this information can be acquired from the vendor of the specific C

compiler product used for development.

POSIX.3, formally IEEE Standard 1003.3-1991: Test Methods for Measuring Conformance to
POSIX, will be the NGC adopted standard for test suite validation of POSIX-compliant
products. Since COTS products claiming POSIX compliance must follow this standard, the
adoption of POSIX.3 for the NGC is simply a statement of current and expected future practice.
Note the term “compliance™ is used instead of the term “conformance”. Compliance has stronger
meaning and implies the existence of a test suite for measuring the conformance of an
implementation. The application and extension of POSIX.3 test methods (beyond its intended
POSIX scope) into other NGC standards domains is not a requirement. Other supporting test
standards will apply as the market dictates.

Many POSIX draft standards are identified in the NGC OSE. Since there is an obvious lag of
commercially available products for such standards, the NGC developer need only disclose a
“statement of intent” for inclusion of such standards in future revisions of his product. This
statement of intent applies especially to those implementations that may accommodate some
level of the draft specification, but not necessarily the SOSAS referenced version, due to the
development lag of supporting products.
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For example, Wind River Systems’ VxWorks 5.1 product literature advertises full ANSI C
compliance. Several features from the real-time extensions proposed in the POSIX .4 draft were
added to the existing POSIX.1 file and input/output system. Wind River’s product literature
further documents their commitment to full compliance with POSIX.1 and their offering of
incremental compliance with POSIX.4 and .4a drafts, with full support once these standards are

approved.

The specification of a profile suite, component interface descriptions, language documentation,
statements of intent, and associated conformance claimers shall be supplied as applicable with
each NGC-conformant product in the form of a “disclosure statement”. An NGC product may

include:

+ Fully implemented platform;

» Platform product;

 Software applications (primitive component, component aggregates, module, and library
implementations); -

¢ NGC system.
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4.0 NGC DEVELOPMENT EXAMPLE

The 5-axis horizontal machining center shown in Figure 4.0 requires a controller. This section
addresses how to provide an open controller for this application, and it serves as an example of the
open controller design process. We begin with a brief overview of the design and implementation
process for this example. Salient parts of this process are elaborated in subsections.

TOOL SPINDLE

CHANGER _ CONTROLLER

OPERATOR
CONSOLE

PALLET
PLATFORM
PALLET

CHANGER tap|E

Figure 4.0. Horizontal Machining Center

The first major step in the process is to create the application requirements for 5-axis machining _
by selecting all relevant Reference Requirements (see Appendix A) and making them specific to
the application. Application requirements help to establish an application framework for 5-axis
machining. These requirements drive the selection of the Reference Architecture primitive
components (see Appendix B) that constitute the application framework. Collectively, the
primitive component responsibilities must cover the application requirements. If no set of
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primitive components from the Reference Architecture can cover the requirements, then existing

primitive components are modified and/or new ones are added until the revised set of primitive

components entirely matches the requirements. If any of the new or modified primitive

components prove to be generally useful and if they have unique responsibilities, they can be

added to the Reference Architecture and used to compose future application frameworks.

4 )
» Reference Reqts.
* Primitive Components  e—jim1 Compose -
« Arch, Desc. Rules (ADR) Framework
« Domain Models
« Create application reqts. (select/ Characteristics:
specialize ref. reqt. options) * Selected prim. components
¢ Apply ADRs for prim. comp. « Implicit topology: resource (input)
selectinterconnect & product (output) associations
» Specify Application -
Architecture Architectu(g_ T
« Group components: Characteristics:
- functional commonality » Component aggregation
- min. VF complexity (of prim. components)
- timing reqts. s Lang.-indep. msg. I/F specs.
- packaging trades * Flexibility gmts. (e.g., accom.
- legacy accommodation legacy MC boards, new sensors,
= Translate fiexibility reqts. (NGC end additional axis of control)
user benefits) to technology elements
« Define detailed message I/Fs
- implement -=  Application
System 7. System -
« Trade analysis: Characteristics:
-HW vs. SW « HW and SW partitioning
- cost vs. perf.Mex. * Plattorm(s) & applic.(s) profiles
- COTS vs. in-house dev. defined/selected
- tech. skills base * Msg. profiles defined/selected
- level of openness * COTS HW/SW products selected
- use of part surplus « Applic. components selected & enumerated
- legacy teatures «impl. lang(s). selected
Asepf:g:vaﬂabﬂﬂy » Lang -depend. msg. IFs specs. (e.g.. IDL)
M haroware * Fully int ted, . N
* Install plattorm software uly integrated. full func. NGC system
» Develop application software
« Select/procure impl. components
K * integrate system components )

During the next step, we group primitive components from the application framework into the

components of the Machining Center Application Architecture, which is an open specification of
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components and message interfaces. Suppliers will base their interoperable controller products
on this published, freely available specification. These primitive components groupings are
influenced by Architecture Description Rules (see Appendix C), by Domain Models (see
Appendix D), and by design considerations and implementation technology, e.g., availability of
off-the-shelf implementation components, timing capabilities, and information flow. The
previous step focused on analysis, but during this step, design considerations become important.
The behaviors of an application architecture component derive from the collective
responsibilities of its grouped primitive components. A component’s message set derives from
its behaviors and the resources and products of its primitive components.

Then we try to match existing software implementation components from the library, in this
example the Acme™ software library, to the components of the application architecture. Again,
wherever no implementation components match the component specifications of the application
architecture, existing software must be modified and/or new implementation components must
be added to the Acme™ software library. After any needed modifications or additions, the
resulting set of implementation components comprise an application system, which is one
instantiation of the application architecture. The Acme™ library can be updated by adding the

new or modified software.

A controller for this S-axis machining center becomes open when it is accompanied by a
complete architectural description of its application system. This description includes, but is not
limited to: the standards profile, the set of APIs used, the application architecture, the hardware
configuration, the application software configuration, and the detailed definitions of the

implementation components their message interfaces.

4.1 Application Architecture for Machining

Application requirements (see Table 4.1) are used in conjunction with the Architecture
Description Rules and Domain Models to assemble the components of an application
architecture for controlling the 5-axis machining center as shown in the example of Figure 4.1.
Based on requirements, relevant primitive components are selected from the Reference
Architecture, and their responsibilities and interfaces are aggregated into the components of this
example. In Figure 4.1, each component is given a unique name descriptive of the role it plays in
the application architecture. A component's constituent primitive components are indicated by
number (see Appendix B). The lines connecting the components show the message paths.
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Figure 4.1. Example of an Application Architecture for a Machining Center
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Table 4.1. Application Requirements for Machining Example

Reference
Number Application Requirement

Al3.1 The controller shall interface with a supervisory computer system.

A.13.2 The supervisory computer system shall exert complete control over the controller.

Al71 Block processing time shall be fast enough to prevent data starvation.

A.l17.2 The controller shall automatically decelerate axes movement when the block execution time is
less than the average block processing time.

A21.1 The controller shall provide continuous path control of tool motion.

A21.2 The controller shall provide point-to-point programming.

A221 The controller shall perform linear interpolation in simultaneous motion of all axis drives.

A222 The controller shall perform circular interpolation with 3-D motion control.

A223 The controller shall perform helical interpolation.

A27.1 The controller shall automatically control axis acceleration/deceleration.

A28.1 The controller shall provide automatic compensation of lead screw errors (pitch error compensation).

A282 The controller shall provide automatic compensation of backlash.

A283 Lead screw error compensation shall be reprogrammable for wear compensation.

A284 The controller shall perform cross compensation for axis alignment, beam sag and axis motion
geometry errors.

A29.1 The controlier shall perform temperature growth compensation.

A2121 The controller shall support programmable feedrates.

A3.1.1 Tool management shall have storage for the maximum number of tool data sets.

A3.14 The tool shall be referenced by the too! identification code.

A3.lS5 The tool shall be referenced by the tool location identification code.

A3.16 The tool magazine shall provide random storage of tools with preassignment.

A3l Tool slots, compartments, or other storage elements shall not have sensors for identification and
location of each tool.

A3.18 The tool magazine shall hold the complement of tools and spares for specific jobs.

A3.19 The tool magazine shall not support removable tool cartridges.

A3.1.10 | The tool magazine shall not support sensors for identification of tool cartridges and their job

.| associations.

A.3.1.15 | Tool change sequence shall be initiated by a T code.

A.3.1.16 | Tool change sequence shall not be initiated manually.

A3.1.18 | Tool length shall not be verified as part of the tool change procedure.

A3.1.19 | Tool diameter shall not be verified as part of the tool change procedure.

A3.1.20 | Tool form shall not be verified as part of the tool change procedure.

A3.21 The controller shall identify pallets by non-contact sensors.

A324 Pallet identification shall be used to automatically select part programs.

A325 Paliet identification shall be used to automatically select fixture offsets.

A326 Pallet identification shall be used to automatically select pallet offsets.

A327 Multiple part programs shall be selected per pallet.

A339 The controller shall measure engineering force levels on the spindle bearings.

A.3.3.10 | The controller shall measure temperature of the spindle bearings.

A33.14 | The controller shall adjust feedrate to maintain constant cutting force.

(Continued)
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Table 4.1. Application Requirements for Machining Example (Cont.)

Reference
No. Application Requirement
A4.15 Programming shall include feedrate programming: direct feedrate, inverse time feedrate, per

revolution unit feed for turning controls.
A4.1.11 Programming shall include fixture offsets for multiple pallet and table machines.
A4.1.12 Programming shall include multiple program storage and management.

A4.1.16 Programming shall include programmed tool change.

A4.1.17 Programming shall include programming for cutting process control.

A4.1.19 Programming shall include programmable adaptive control parameters.

A4.1.23 Programming shall include preprogrammed (canned) cycles for drilling, boring, and tapping.

Ad.1.24 Programming shall include preprogrammed cycles for area milling, rectancrular pocket milling,
circular pocket milling, and bolt hole circles.

A4.1.25 Programming shall include automatic chamfering and corner radiusing.

A4.1.26 Programming shall include look-ahead cutter compensation.

A4.1.27 Programming shall include coordinate system rotation.

A4.1.28 Programming shall include work coordinate system setting.

A4.1.30 Programming shall include constant surface speed programming.

A4.131 Programming shall include tool center point programming for 5-axis machining.
A4.22 Manual programming shall include automatic selection of cutting speed and feed.
A423 Manual programming shall include cutter offset.

A425 Manual programming shall include pallet or table change cycles.

4.2 Machining Scenario

The application architecture for a machining center controller facilitates its design and
implementation. In this section we show how the application architecture, which consists of
components and message interfaces, is also useful for verifying the operation of the controller in
an example scenario. The example scenario covers mass production of parts, and it is better
understood by referring to Figure 4.2 where the message interfaces of the application
architecture in Figure 4.1 are shown in greater detail.

This is a partial example of an application architecture. For clarity, the functionality of the
components and the number of messages have been limited intentionally just to cover the
scenario. This cannot reflect the complete set of messages needed for all of the operating _
scenarios of a machining center, but it gives a flavor of the level of message specification for an
application architecture.
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Figure 4.2¢ Application Architecture Components and Messages—Part 3

In an application architecture, the components embody the responsibilities of the primitive
components selected for the application, and the messages represent the flow of resources and
products explicitly. However, messages between application architecture components may not be
as specific as the interface definitions required for implementation components, e.g., function
prototypes in C-language header files. This example will compare representative application
architecture messages with their corresponding implementation messages.

In the following discussion, “the controller” refers to an open controller. Component names are
all capitalized, e.g., JOB MANAGER. Message names, e.g., Allocate Tools, and the names of
information types and structures in the messages, e.g., Tool Information, have leading caps.
System elements outside the controller have no capitals, e.g., factory scheduling system.

4.2.1 Factory Interaction

The factory scheduling system resides above the shop floor and sends job instructions to the
controller. These instructions are contained in the Perform Jobs message, which consists of a Job
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List specifying what is to be done and a Tool List enumerating the tools required from the tool
room. The Job List contains a sequence of Job Descriptions designated by job id. Each Job
Description identifies a series of pallets to be processed, each having a pallet id, a pallet offset,
and a list of parts. A Job Description is organized as follows:

jobid

pallet id, pallet offset
part 1, stock id, part program id, part offsets, beta offset
part 2, stock id, part program id, part offsets, beta offset
part 3, stock id, part program id, pért offsets, beta offset

pallet id, pallet offset
part 1, stock id, part program id, part offsets, beta offset
part 2, stock id, part program id, part offsets, beta offset
part 3, stock id, part program id, part offsets, beta offset

etc.

factory scheduling system ° Perform Jobs ( FACTORY SCHEDULER, Job List, Tool List )

FACTORY SCHEDULER °’ Accept Status ( factory scheduling system, Job Status )

The FACTORY SCHEDULER, a component of the controller, is responsible for communicating
with the factory scheduling system. It passes the Job List to the JOB MANAGER. The Tool List
is passed to the TOOL MANAGER, and the TOOL MANAGER sends the Tool IDs to the
TOOL CHANGER. Through the FACTORY SCHEDULER, information about the status of
jobs can be shared with the factory scheduling system because the JOB MANAGER maintains
an awareness of the jobs that have been released and those which are still queued.

FACTORY SCHEDULER ' Perform Jobs (JOB MANAGER, Job List )
FACTORY SCHEDULER °’ Allocate Tools( TOOL MANAGER, Tool List )
TOOL MANAGER °’ Load Tools ( TOOL CHANGER, Tool IDs)

JOB MANAGER ' Accept Status ( FACTORY SCHEDULER, Job Status )
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4.2.2 Resource Verification

When the JOB MANAGER receives the Job List, it asks the RESOURCE MANAGER to verify
the availability of the needed resources . For each job in the Job List, the JOB MANAGER sends
the RESOURCE MANAGER a Job Description, which contains the part program ids and stock
ids.

JOB MANAGER °’ Verify Resources ( RESOURCE MANAGER, Job Description )

To verify that proper resources are available, the RESOURCE MANAGER asks other managers
for applicable information. First, the FILE MANAGER is asked to send the RESOURCE
MANAGER a Part Program. The FILE MANAGER responds with the Part Program File, or a
Missing Program Error.

RESOURCE MANAGER ’ Provide Part Program ( FILE MANAGER, Part Program ID )

FILE MANAGER °’ Use Part Program ( RESOURCE MANAGER, Part Program
File)

or Accept Error ( RESOURCE MANAGER, Missing Program )

After scanning the Part Program File for tool information, the RESOURCE MANAGER asks
the TOOL MANAGER if the necessary tools (or adequate substitutes) are loaded. The TOOL
MANAGER responds with Tool IDs or a Missing Too! Error.

RESOURCE MANAGER ' Verify Tools ( TOOL MANAGER, Tool Information )
TOOL MANAGER '’ Use Tools ( RESOURCE MANAGER, Tool IDs )

or Accept Error ( RESOURCE MANAGER, Missing Tool )

The RESOURCE MANAGER may need to further verify the ability of the machine to perform
the intended job. It asks the MODEL MANAGER for the Machine Model, Stock Models, Part
Models, etc. to compare them to the part program.

RESOURCE MANAGER ’' Provide Models ( MODEL MANAGER, Machine Model, Stock
Models, Part Models )

MODEL MANAGER °’ Use Models ( RESOURCE MANAGER, Model Information )

Should any of these resources be missing, the RESOURCE MANAGER informs the
OPERATOR which resources are missing, and it informs the JOB MANAGER that this job did
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not pass. The JOB MANAGER then holds this job until the OPERATOR indicates something
has been done to correct the problem. The JOB MANAGER then resubmits the job for
verification to the RESOURCE MANAGER. This cycle continues until the RESOURCE
MANAGER indicates to the JOB MANAGER that the required resources are present.

RESOURCE MANAGER ° Find Resources ( OPERATOR, Job Description, Missing
Resources )

RESOURCE MANAGER ’ Accept Verification (JOB MANAGER, Resources )
or Hold for ( JOB MANAGER, Resource Verification )

OPERATOR °* Release Job (JOB MANAGER, Job Description )

4.2.3 Job Release

After the OPERATOR has released the job for execution, the JOB MANAGER asks the PART
HANDLER to load the first pallet with stock. The PART HANDLER loads a pallet and tells the
JOB MANAGER the Pallet ID. The JOB MANAGER now knows which part to do first; it tells
the CYCLE CONTROL to start running the first program; and it tells the ENHANCER the
offsets (Pallet Offset, Part Offsets, Beta Offset) necessary to locate the part on the pallet. The
JOB MANAGER marks the job as "in-progress" and waits for the CYCLE CONTROL to
request the next program.

JOB MANAGER ' Load Pallet (PART HANDLER, Stock IDs )
PART HANDLER °* Use Pallet ( JOB MANAGER, Pallet ID )

JOB MANAGER ' Make Part ( CYCLE CONTROL, Pallet ID, Part ID, Stock ID,
Part Program ID )

JOB MANAGER * Use Offsets ( ENHANCER, Pallet Offset, Part Offsets, Beta
Offset )

4.2.4 Part Program Setup

The CYCLE CONTROL has been told to run the next part program, so it asks the FILE
MANAGER to provide the program. If the CYCLE CONTROL can't hold the entire program, it
periodically asks the FILE MANAGER to provide more code, until the entire program has been
processed. The JOB MANAGER is informed when the end of the program has been reached so
it can start processing the next part on the current pallet. If the next part uses the same program
as the last part, then the file may not need to be accessed from the FILE MANAGER. If there
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are no more jobs on the current pallet, the JOB MANAGER asks the PART HANDLER to
change the pallet, and processing starts on the new pallet.

CYCLE CONTROL °

FILE MANAGER °’

CYCLE CONTROL °

Provide Part Program ( FILE MANAGER, Part Program ID )
Use Part Program ( CYCLE CONTROL, Part Program File )

Accept Finished Part ( JOB MANAGER, Part ID )

To continue, CYCLE CONTROL feeds the Part Program to the PARSER, which analyzes each
block of code to identify commands pertinent to the attached mechanisms. In our example, the
mechanisms are the TOOL CHANGER, the PART HANDLER, and a coolant control device
called COOLANT FLOW. The PARSER tells these devices which commands they will be
expected to perform when given the appropriate messages. This gives the mechanisms a chance

to do any necessary preliminary setups before the actual command is given.

CYCLE CONTROL °

PARSER °’

PARSER ’

PARSER

Analyze Part Program ( PARSER, Part Program )
Setup ( TOOL CHANGER, Part Program Commands )
Setup (PART HANDLER, Part Program Commands )

Setup ( COOLANT FLOW, Part Program Commands )

Any comments or operator cues for manual tasks are sent to the OPERATOR from the
PARSER. When the OPERATOR completes the task, it informs the JOB MANAGER through
the same pathway it used when adding missing resources. The JOB MANAGER tells the
CYCLE CONTROL to continue with this cycle, and the CYCLE CONTROL passes the
continue message on to the PARSER.

PARSER °’
PARSER °
OPERATOR °
JOB MANAGER °

CYCLE CONTROL

September 23, 1994

Accept Comment ( OPERATOR, Explicit Comment )
Accept Cue ( OPERATOR, Manual Task Description )
Release Job ( JOB MANAGER, Job Description )
Continue Part ( CYCLE CONTROL, Part ID )

Continue Part ( PARSER, Part ID )
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4.2.5 Code Augmentation

When the interaction with the OPERATOR is concluded, the PARSER feeds the ENHANCER
the Part Program, inserting the recipient or destination into each command. The ENHANCER

" augments motion command code from the PARSER. During the augmentation process, detail
blocks or commands are inserted in place of canned cycles. The ENHANCER also translates all
coordinate system data since it can derive the exact location of the part through the series of
offsets provided by the JOB MANAGER.

PARSER °’ Augment Code ( ENHANCER, Part Program with Recipients)

Final augmentation done by the ENHANCER relates to the coordinated activities between
mechanisms and motion. The ENHANCER inserts coordination points into the command
sequence. Say a tool change needs to occur at some point. The ENHANCER would replace the
tool change command in the program with a series of commands in the motion stream. These
inserted commands might first bring the tool to a chosen location and wait for a continue
message. Following the wait command would come commands to move the spindle to another
location and wait again for a continue message. Finally, a rapid traverse is inserted after the

second wait command.

This augmentation performed by the ENHANCER is highly dependent on the types of
mechanisms and their functionality. In some cases, the system startup procedures may require
the ENHANCER to ask the mechanisms for specialized augmentations for motion to perform

whenever one of their commands is encountered.
ENHANCER °’ Provide Augmentations (TOOL CHANGER )
ENHANCER °’ Provide Augmentations (PART HANDLER)

ENHANCER °’ Provide Augmentations ( COOLANT FLOW)

After the ENHANCER inserts coordination points into the command sequence, it gives the
COORDINATOR a complete copy of the augmented code, but it gives the TRAJECTORY
GENERATOR just the Motion Command Sequence. This Motion Command Sequence consists
of a series of points along with Feedrate, Spindle Speed, Acceleration, Deceleration, and any
other part program information relevant to motion. The ENHANCER feeds the Motion
Command Sequence to the TRAJECTORY GENERATOR in blocks and waits until the
TRAJECTORY GENERATOR requests more.
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ENHANCER °’ Use Part Program ( COORDINATOR, Augmented Part
Program )

ENHANCER °’ Use Commands ( TRAJECTORY GENERATOR, Motion
Command Sequence )

TRAJECTORY GENERATOR °’ Provide Commands (ENHANCER)

4.2.6 Coordination Between Mechanisms

Before covering the details of motion, we consider coordination between mechanisms. The
TRAJECTORY GENERATOR does not distinguish between the motion commands from the
original Part Program and those commands inserted into the Motion Command Sequence by the
ENHANCER to effect mechanism coordination. So, for example, if a tool change is the next
operation, the next command the TRAJECTORY GENERATOR sees in the Motion Command

Sequence is Wait. The TRAJECTORY GENERATOR informs the COORDINATOR, and then
it waits.

COORDINATOR ’ Proceed Until Wait (TRAJECTORY GENERATOR)

TRAJECTORY GENERATOR '’ Affirm Wait ( COORDINATOR, Trajectory Generator )

Since the COORDINATOR is in possession of the entire Augmented Part Program, it can understand
and coordinate the activities of the mechanisms under control. The COORDINATOR knows that a
tool change is next when the TRAJECTORY GENERATOR sends it a Trajectory Generator Waiting
message. The COORDINATOR tells the TOOL CHANGER that it is time to initiate a tool change.
When the TOOL CHANGER receives Change Tool, it verifies that the new tool is indeed the proper
tool change, performs the change, and informs the COORDINATOR that the tool change is
complete. The COORDINATOR directs the TRAJECTORY GENERATOR to continue, and the
TRAJECTORY GENERATOR proceeds until it encounters the next wait.

COORDINATOR ' Change Tool ( TOOL CHANGER, Tool ID)

TOOL CHANGER ’ Accept Tool Change ( COORDINATOR, Tool ID )

4.2.7 Tool Motion

To begin a description of the motion operations, the TRAJECTORY GENERATOR sends the
Path Normal Vectors to the CUTTER COMPENSATOR and the SENSOR PROCESSOR. The
RATE CONTROL and CUTTER COMPENSATOR components receive messages from the
ENHANCER: the RATE CONTROL needs the Rate required by the program; the CUTTER
COMPENSATOR needs the Plane Selection.
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TRAJECTORY GENERATOR ’ Use Normals ( CUTTER COMPENSATOR, Path Normal
Yectors )

TRAJECTORY GENERATOR ° Use Normals ( SENSOR PROCESSOR, Path Normal Vectors)
ENHANCER °’ UseRate (RATE CONTROL, Rate )

ENHANCER ° Use Plane ( CUTTER COMPENSATOR, Plane Selection )

The RATE CONTROL determines the Goal Rate by comparing the program requested Rate to
the Tool Tooth Count from the TOOL MANAGER and the Spindle Speed from the SENSOR
INTERFACE. (The SENSOR INTERFACE gets its information from the sensors.) The RATE
CONTROL supplies the Goal Rate to the TRAJECTORY GENERATOR. The TRAJECTORY
GENERATOR would prefer to operate at the Goal Rate, but the machine may be unable to
handle the Goal Rate. The TRAJECTORY GENERATOR asks the MODEL MANAGER for the
Axis Step Limits, and modifies the rate accordingly.

TOOL MANAGER °* Use Tool Tooth Count ( RATE CONTROL, Tool Tooth Count )
SENSOR INTERFACE °’ Use Spindle Speed ( RATE CONTROL, Spindle Speed )
RATE CONTROL ' UseRate ( TRAJECTORY GENERATOR, Goal Rate )
MODEL MANAGER ’ Use Axis Step Limits( TRAJECTORY GENERATOR, Axis Step

Limits )

Since the CUTTER COMPENSATOR must adjust the path according to the specific dimensions
and characteristics of the tool, it requests the tool's Offset Amount from the TOOL MANAGER,
and calculates the Cutter Offsets and passes them to the TRAJECTORY GENERATOR.

CUTTER COMPENSATOR ’ Provide Offset Amount ( TOOL MANAGER, Tool ID )

CUTTER COMPENSATOR * Use Offsets ( TRAJECTORY GENERATOR, Cutter Offsets )

The last information TRAJECTORY GENERATOR requires is the corrections based on sensor
information. The SENSOR PROCESSOR gets the Force and Torque from the SENSOR
INTERFACE, which, of course, receives it from the sensors. The SENSOR PROCESSOR uses
Force, Torque, and the path normal vectors to correct Position, Rate, and Spindle Speed for the
TRAJECTORY GENERATOR.
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SENSOR INTERFACE °’ Use Forcé { SENSOR PROCESSOR, Force )
SENSOR INTERFACE °’ Use Torque ( SENSOR PROCESSOR, Torque )
sensors ’ Use Values ( SENSOR INTERFACE, Sensor Values )

SENSOR PROCESSOR ’ Use Values (TRAJECTORY GENERATOR, Position
Corrections, Rate Corrections, Spindle
Speed Corrections )

The TRAJECTORY GENERATOR generates a Normalized Trajectory. It is normalized in the
sense of precise time segments. The TRAJECTORY GENERATOR gives the Position to the
ACCURACY ENHANCER.

TRAJECTORY GENERATOR ’ Use Position( ACCURACY ENHANCER, Position )

The ACCURACY ENHANCER corrects the trajectory to compensate for predictable variations,
which include thermal effects, axis non-linearities, etc. Thermal compensation is governed by
accessing the Temperature from the SENSOR INTERFACE which is updated from a
temperature sensor. Timing is provided by the system clock or by an internal timer. Tables and
Polynomials of precalculated corrections are accessed from the MODEL MANAGER. From all
of these information sources, the ACCURACY ENHANCER computes the corrections and
passes them on to the COMPENSATOR.

SENSOR INTERFACE °* Use Temperature ( ACCURACY ENHANCER, Temperature )
system clock or timer * Use Time ( ACCURACY ENHANCER, Timing )
MODEL MANAGER '’ Use Tables (ACCURACY ENHANCER, Tables )
MODEL MANAGER ’ Use Polynomials( ACCURACY ENHANCE.R, Polynomials )

ACCURACY ENHANCER ' Use Corrections ( COMPENSATOR, Corrections )

The COMPENSATOR receives the Normalized Trajectory from TRAJECTORY
GENERATOR, makes corrections, and sends the Servo Command Positions to the -AXIS
CONTROL. Timing concerns will separate the COMPENSATOR from the ACCURACY
ENHANCER: the former must operate continuously to direct tool motion; the latter is brought in
when compensation or adjustments to the basic commanded motion path are needed.
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TRAJECTORY GENERATOR ’  Use Trajectory ( COMPENSATOR, Normalized Trajectory )

COMPENSATOR °’ Position Servo( AXIS CONTROL, Servo Command Positions )

The AXIS CONTROL converts the Servo Command Positions to messages commanding the
- DRIVES. It accesses the Kinematic Equations from the MODEL MANAGER and stores the
Following Errors. If the Following Errors exceed the Following Error Limits, the AXIS
CONTROL will shut down the machine and request maintenance. The interfaces from the AXIS
CONTROL to the DRIVES and from the DRIVES to the MOTORS are éimple position and

velocity messages.

MODEL MANAGER °’ Use Kinematic Equations ( AXIS CONTROL, Equations )
AXIS CONTROL °* Use Following Errors ( MODEL' MANAGER, Following Errors )
AXIS CONTROL ’ Use Commands ( DRIVES, Drive Commands )

DRIVES ’ Use Commands ( motors, Motor Commands )
motors ’ Use Feedback ( DRIVES, Motor Feedback )

DRIVES °’ Use Feedback ( AXIS CONTROL, Drive Feedback )

4.2.8 IEC 1131 Environment

The IEC 1131 graphical programming and execution environment provides for creating,
debugging, and managing real-time programs that control the TOOL CHANGER, the PART
HANDLER, the COOLANT CONTROL, and other discrete devices like the spindle. The
environment supports control software coded either in C or in the programmable controller
languages defined by IEC-1131 Standard for Programmable Controllers Part 3 - Programming
Languages, which include:

Sequential Function Chart,
Ladder Diagram,

Function Block Diagram,
Instruction List, and
Structured Text.
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4.2.9 Implementation Component Messages

The application architecture components exchange abstract messages, but when a controller
implementation is realized from the application architecture, the abstract messages must be

" translated into an exact specification. For this example the exact message specification takes the

form of a C function prototype similar to those found in C header files. The following exact
message specifications are taken from the header files produced by the NIST Enhanced Machine
Controller project. '

<<<<More to go here --- Specific interface definitions from the NIST implementation are
matched with selected component messages as shown below.>>>>

The abstract message from the COORDINATOR directing a tool change by the TOOL
CHANGER is repeated below:

COORDINATOR °’ Change Tool (TOOL CHANGER, Toeol ID)

The NIST header file defines a message type (nml_io_change_tool_msg_t) and a function
prototype of an interface (nml_io_change_tool) to the behavior that implements the tool change.
This is a C-language implementation of the message interface to the TOOL CHANGER
component. The first parameter of the message structure carries an integer, which is the
identifier of the recipient of the message, TOOL CHANGER. The second message parameter is
the integer Tool ID. The function prototype specifies the interface to the function that effects the

tool change.
/* Message ID 313 */
typedef struct {
int id: /* Message Recipient’s ID */
int 1; /* Tool ID v/

} nml_1o0_change_tool msg_t;
extern int nml_io_change_tool (int i}

Note that the application architecture message is made specific when a particular controller is
implemented. The implementation interface will vary depending on the language chosen. In this
case, ladder code can be used as easily as a C code, but the interface definitions will differ due to
the differences in the languages. Also the way implementation components are identified may
vary among implementations. However, interoperability can be assured among implementation
components only if the interfaces are consistent.
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Another example compares the application architecture message interface to the COOLANT
FLOW with the NIST interface definition.

COORDINATOR °’ Initiate Next Command ( COOLANT FLOW, Tool ID )

The Initiate Next Command message to the COOLANT FLOW component expands into four
interface definitions for the NIST implementation component

/* Message ID 314 */
typedef struct ({

int id; /* Message Recipient’s ID */

} nml _io mist_on msg_t;

extern int nml_io_mist_on();

/* Message ID 315 */

typedef struct {

int id; /* Message Recipient’'s ID */

} nml_io mist_off msg t;
extern int nml_io _mist_off();

/* Message ID 316 */
typedef struct ({

int id; /* Message Recipient’s ID */

}) nml_io flood_on_msg_t;
extern int nml_io_flood on{();

/* Message ID 317 */
typedef struct ({

int id; /* Message Recipient’s ID */

} nml_io_flood_off msg_t;
extern int nml_io_flood off():

4.3 Implementation

The scenario described in the previous section walks through an example of a specific NGC
application architecture for machining. It is important to emphasize that the example is merely
one of many realizable controller architectures. This section continues this discussion with
several examples to illustrate the process of how the NGC developer implements an abstract
application architecture to generate a fully integrated NGC application system.

4.3.1 Integration Process Review

Figure 4.3.1 on the following page illustrates the NGC integration process and emphasizes the
design and implementation phases. The integration process flow is first introduced in Section
3.4.1 and is repeated in this example section because of its importance in understanding the
general flow and process dependencies. This figure should be referenced throughout the
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subsequent implementation discussions to provide an overall context for specific steps described
in the examples. Only the general process flow is captured. The developer may start from any
stage in the process and all feedback paths are intentionally omitted for the sake of simplicity,
but these additional entry points and paths may be inferred.

- In brief review, two basic process paths are illustrated. Applications development appears as the
upper path in the diagram and platform development is the lower path. Although each path may
be traversed independently and concurrently, both paths are strongly interrelated and each path
potentially feeds the other throughout the integration process. The two pathé merge at the final
development stages to produce a complete NGC system.

The unifying concept that joins the platform and applications paths is profiles. All NGC
implementation components, whether they support platform or applications related functions of
the system, are profiled. It is through the application of profiles that many of the implementation

decisions are made.

Profiles provide a convenient mechanism for assessing the relative compatibility of
complimentary products and for making “apples-to-apples” comparisons of similar products.
They may be used to assess if a specific application software component will run on a selected
platform implementation. They provide the developer with the information he needs to select the
optimal mix of COTS products based on the availability of compatible applications and platform
products. Profiles also clarify the “make or buy™ choices that are of fundamental importance to
developer organizations when they embark on the development of a new product line.

Frequently, the selection of certain implementation options are predetermined. The inclusion of
a specific product in a system is often mandated by an organization for a variety of strategic
reasons. In such cases, profiles provide the mechanism to compare and contrast available
products and options based on previous selections. They expose the alternatives for component
interchange and simplify the task of system upgrade.
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Figure 4.3.1. NGC Integration Process

Creating a profile for a platform conceived with a specific set of vendor products in mind has the
added benefit of surfacing new product solutions. Such solutions may not have been evident during
the initial survey or trade studies yet they may offer comparable or even better alternatives than the
original solution. Platform implementations that share a common set of profiles support the same set
of services and equivalent levels of portability and interoperability by inference. These “compatible™
implementations may offer significant cost saving alternatives that are not apparent prior to profiling.
Products organized by profile category offer a powerful new dimension to the access of product
information for both controller developers and end-users.

It may be useful to assume the existence of a mature NGC implementation component library while
walking through the subsequent examples. This library, referenced in Section 3.4.1 and described in
further detail in Section 3.4.4, is envisioned to be an on-line catalog of COTS hardware and software
and an archive for publicly available NGC software products, all with a supporting set of interactive
tools for creation, maintenance, and perusal. It is an information repository for the storage and
retrieval of detailed component interface descriptions, standard profiles and templates, and product
disclosure information used for NGC-conformant product development.
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Early NGC development work must populate. this component repository with newly developed
components and interactive tools for its access. NGC implementation may be accomplished
without the existence of the component library. This is how the first NGC controllers must be
built. However, the integration process flow can not be fully appreciated without consideration
of the library as an integral part of the process. The component library brings the full advantages

~of open controllers to the end-users by making available a complete variety of off-the-shelf

interchangeable, replaceable components for system upgrade and flexibility. Component
“integration” and “reuse” become a major implementation emphasis. Less development effort
need be spent on “reinventing the wheel” and efforts may be directed toward developing value-
added features and enabling technology areas. The availability of a mature library, fully stocked
with NGC-compliant products and user friendly interactive tools for product integration, will
bring the major benefits of NGC to the end user. It is therefore critical that early NGC activities
focus on developing the component library.

4.3.2 Implementation Example - Machining Center

The integration process is best understood by looking at specific implementations of the
application architecture example for a machining center. To illustrate some of the key points,
two specific controller implementations are described. Figure 4.3.2-1 portrays the real time (RT)
and non-RT platforms, the major communications links, and profiling options of each system
implementation. For lack of formal identification of these NGC controllers, they will be referred
to as simply Sys-A and Sys-B. It should be recognized that there are many different possible
implementations of the architecture example.
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Figure 4.3.2-1 Platform Implementation Examples

Figures 4.3.2-2 and 4.3.2-3 contrast the platform and presentation management dimensions of
the API profiles of the two platforms. Both systems are bi-polar, whereby the applications
software is physically partitioned onto RT and non-RT system platforms, and both systems use a
PC ISA-based (Intel 386/486) front end to support all non-RT functions. However, the operating
system and graphical user interface (GUI) for the non-RT platform of Sys-A is a combination of
MS DOS and Windows.

The Sys-A developer also opted to include Hoops as a strategic move. It was heard that
AutoDesk, the maker of AutoCAD and one of Microsoft’s key software vendors for Windows
NT, recently acquired Ithaca Software, the maker of Hoops. Hoops also works with Microsoft’s
Graphical Device Interface (GDI).

The non-RTOS for the Sys-B platform is SCO UNIX running X Windows and Motif. SCO
UNIX happens to be POSIX compliant and an XPG3 (X/Open Portability Guide 3) branded
product. The X Windows PEX option was also purchased for three-dimensional, PHIGS-

compatible graphics.
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Figure 4.3.2-3 Profile: Presentation Management Dimension
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Sys-A uses a hybrid PC/transputer-based platform for its real-time functionality and runs SCO
XENIX. Although this system is not POSIX compliant, it is a multi-user, multitasking UNIX
system optimized for personal computers. Sys-B is VME Motorola 68030/40-based and uses the
VxWorks operating system. VxWorks is POSIX.1 compliant and will incrementally support the
POSIX .4 real-time extensions to POSIX that are currently at various stages of draft release.

Both systems support full ANSI C. The non-RT platform for Sys-B also supports C++. The
Development Language profile is used to show language support (Figure 4.3.2-4).

Files are accessed on the MS-DOS/Windows platform (Sys-A) using ANSI C. The factory
scheduling system external to the NGC is a SunSparc. Job lists are accessed using PC NFS
which provides access to files on the Sun server transparently, as if they were stored locally on
the PC disk (refer to Figure 4.3.2-5). System B, on the other hand, is much more elaborate and
leverages the full capability of the POSIX file system. It also conforms with the POSIX.8 Sun
NFS profile.

( N

All Platforms

Development Language
(Application Only)

J?f.nd. C (opt. C++):
{Diagnostics O FORTRAN

JCharacter Handling 0O ADA
J.Localization O Non-POSIX binding

{Malhcmatics Q Pascal
fon-Local Jumps O Smalltalk
put'Output Q Lisp
General Utilities a PL]
JSm’ng Handling o COBOL
Date and Time O Other:

0 Common C (opt. C++)

Sys-A/-B
\_ J

Figure 4.3.2-4 Profile: Development Language Dimension
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Figure 4.3.2-5 Profile: Development Language Dimension

Figure 4.3.2-6 illustrates the communications and device /O dimensions of the API profile suite. A
data communications link ties the two platforms of each system together. Sys-A makes use of the on-
chip communications capability of transputers and an Ohio State University package called Trollius
to achieve this inter-platform link. Sys-B uses the TCP/IP network capability of the two UNIX
environments and specialized software to transfer data between the two environments.
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Figure 4.3.2-6 Profiles: Communications and Device /O Dimension

Standard networks are used to link the NGCs to the factory scheduling system. System B has a
sophisticated set of communications alternatives. It has both simple and detailed network
interfaces (SNI, DNI) for protocol independent interface (PII) that is fully conformant with
POSIX.12. To facilitate global naming and remote access over the Internet, POSIX.17-
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compliant Directory Services (X.500) software is installed. In addition, in preparation for the
wave of soon-to-be-released object-oriented products, a C++ CORBA package, Expersoft’s
XShell, has been recently installed.

Sys-A uses specialized user-defined drivers to interface with NGC sensors, mechanisms, motor
drives, etc. Sys-B makes use of the available POSIX.4x device control API for standard /O
device communications (some of the latter features of Sys-B are exaggerated for illustrative
purposes and do not necessarily reflect the present capabilities of the underlying operating

system).

Having defined the profiles of the system platform in all dimensions, for both the API and EEI
branches of the OSE taxonomy, the developer then begins to select/develop application
components that implement various portions of the application architecture.

Figure 4.3.2-7 shows a possible partitioning of the application architecture primitive and
aggregate components. The shaded boxes are non-RT components and the unshaded boxes
represent RT components. The RT or non-RT nature of the components determine whether they
operate on the RT or non-RT platforms of our two system example. Profiles for the software
implementations of the architectural components are then compared against profiles of their
respective platforms to determine their relative compatibility. Compatible implementations are
then integrated into a final NGC system.

Figure 4.3.2-8 is a variation on the possible partitioning of the architecture components. In this
example, the cross-hatched boxes indicate hard-RT components. In terms of the platform, this
may signify that a specialized COTS motion controller board is incorporated into the system and
subsumes all of the component functionality in firmware or hardware. It should be obvious from
the numerous examples in this section that the number of implementation options is enormous.
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Figure 4.3.2-7 Platform Partitioning, Example 1

( . e . )
Example of an Application Architecture
for a Machining Center
Tool Mamager File Mamager Foctery Scheduler
Job Mamager
R Operster
Rate Contrel Cutter Compensstor
[
- Tosl Changer Cycie Contrel &l\vmc“
Parser Compemmtor - ~ -
Purt Handler -
Eab Axds Contred Seaswr Precesewr
C Flow .
)
Senew Intertiey
+
Legend: [_JRT [ ] somrT Hard-RT

Figure 4.3.2-8 Platform Partitioning, Example 2
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4.3.3 Implementation Example—Low End Controller

The previous example describes the profiling process for two platform implementations. It
focuses on platform development, the lower branch of the integration process diagram (Figure
4.3.1). The developer then selects or develops application components that are compatible with
the profiled platforms to implement various portions of the application architecture. Similarly,
the platform is implemented from a selection of off-the-shelf products and/or developed
components. This section provides an expanded view of this implementation process.

Many of the implementation concepts presented herein have been introduced in subsections of
Section 3.4, Development Process and Implementation. Figure 3.4.2.1 illustrates characteristic
differences between architecture development and implementation. For example, profiling and
language selection are concepts of implementation, and are not considerations during
architectural development and specification. Section 3.4.3 introduces the notion of a
specification of “implementation guidelines” to ensure the development of implementation
components that are truly portable, interoperable, and interchangeable. Some of these guiding
philosophies are described in this section. The “implementation component library”, described in
Section 3.4.4, offers an on-line central archive of reuseable, publicly available products and
information. The existence of this library is viewed to be the enabling technology that will bring
NGC from a conceptual vision to a reality.

The implementation process transitions from an architectural specification on paper to a set of
implementation components that are integrated into a physical system. An example used for
illustrating the process is introduced in Section 3.4.5. This section is a more thorough treatment
of the use of profiles, interrelationships with the component library, timing considerations, and
other language issues as they relate to the implementation process. Profiling is discussed as a
logical continuation of the previous example and is followed with a detailed description of the
example of Section 3.4.5. Relevant figures are repeated in this section for convenience.

To complete the profiling story of the previous example, it is useful to consider some of the
more subtle implications of platform profiling. Given a mature implementation component
library, standard profiles are made available. One possible scenario for platform implementation
is to first choose a standard profile from the implementation component library and then select
specific COTS products that, when packaged together, meet all the standards requirements of
that profile. Platform profiling should not be viewed as that necessary step in the process that is
performed after all the implementation choices are made, and specific COTS products are
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selected. Although this second scenario is certainly a possibility, it does not leverage many of the
inherent advantages of profiling.

Profiling is a selection from a large list of relevant standards that identifies the unique level of
openness of a controller product. It is a statement of the commitment of the developer to support
specific standards in his product lines. In that sense, platform profiles are the fundamental
requirements for platform implementation. Many developer organizations will make decisions to
commit to a particular set of standards prior to making any specific implementation decisions. In
such circumstances, platform profiling naturally precedes any consideration to implementation.

In practice, it is probably more realistic to assume that the platform profile for a specific product will
evolve based on a number of mitigating factors. The integration process described in Section 3.4.1
and reviewed in Section 4.3.1 illustrates how profiles “unify” platform and applications development.
Profiles clarify “make or buy” choices and provide the developer with the information he needs to
select the optimal mix of COTS products based on the availability of compatible applications and
platform products. Implicit in this statement is the advantage of profile flexibility in the development
process. Profiles that are tailorable based on product availability help to achieve the best solution.
Such a solution leverages all available products, meets cost, and satisfies many if not all of the initial
objectives for controller openness with little compromise.

Figures 4.3.3-1 thru 4.3.3-3 illustrate the process of implementing a specific application
architecture. Figure 4.3.3-l1a is a simplification of the detailed architecture and generic
implementation example of Figure 4.3.3-1b. For the sake of readability, Figure 4.3.3-1b is
enlarged and divided into two diagrams, Figures 4.3.3-2 and 4.3.3-3, to better illustrate the
detailed architecture and generic implementation examples respectively. These figures were
introduced in Section 3.4.5.

Figure 4.3.3-1a shows the basic design considerations in transitioning from an application
architecture to an implementation. In review, an application architecture is a high-level design
that is implemented with hardware and software components. Hardware components support
platform functions while software components may support either platform or applications level
functions. Platform functions are the general-purpose service oriented functions that support
software applications.

Implementation components fall into three general categories: platform hardware, platform
software, and application software. As evident in figure 4.3.3-1a, these categories may be further
subdivided. Although a complete list of categories is beyond the scope of this specification,
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many of the categories may be inferred from.the implementation component library figure of
Section 3.4.4. The implementation component library is envisioned to have a directory structure
to accommodate all of the various types of implementation components and associated

information.
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Figure 4.3.3-3 Generic Implementation

Platform hardware categories include system hardware, peripheral devices, storage devices,
communications devices, etc. Each of these categories are further subdivided. For example, the
system hardware category includes PCs, chassis, backplanes, board-level products, and standard
bus I/O. Platform software categories closely resemble those that appear in the OSE taxonomy.
Operating systems and system software, communications/network packages, database packages,
and window toolkits are example platform software categories.

The commercial availability of a product, or lack thereof, brings another level of dimensionality
to the categorization of implementation components. Many platform profiles may be
implemented using COTS products. However, where there is a deficiency in satisfying profile
requirements with commercially available products, middleware must be developed. Middleware
is strictly defined as a term associated with distributed systems and communications and is a
layer of code that sits between the O.S. and the application. Middleware is more loosely defined
in the context of NGC to represent software components that are developed expressly for
bridging COTS interfaces to standard APIs referenced by specific profiles.

COTS hardware products include special-function boards, many of which provide services in support
of embedded applications. Board support packages for board-level products and library packages that
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provide software interfaces for cross-development environments are often purchase options made
available through third party sources. These support products are designed to minimize the difficulty
of interfacing special-function boards and simplify their integration into a system. Such products
today offer a variety of levels of software support and many do not necessarily adhere to open
standards. They may be leveraged as with all other COTS platform products but may require a

= middleware component layer to satisfy profile API requirements.

At the applications level, Figure 4.3.3-1a illustrates a correlation between architecture
components and implementation components that is not a one-to-one mapping. The SIC2/SIC3
component implements all the responsibilities that are defined for two components, AC2 and
AC3, at the architecture level. SIC2/SIC3 is an example implementation component that
represents the packaging or bundling implementation strategy of one developer. The
client/server stubs are used for implementing transparent peer-to-peer communications and are
typically object components that only have meaning to a link editor during the applications build
process. Therefore, they are shown as an integral part of application component
implementations. Client/server stubs have significance in CORBA and DCE implementations.
They are generated by the interface definition language (IDL) compiler and implement remote
procedure cail mechanisms (RPCs). Refer to the discussion on CORBA and DCE IDL and RPCs
in Section 3.3.2.1.6, Communications Services, for further details on client/server stub
generation and the link process.

Clientserver stubs, COTS products, board support packages and the anticipated set of
component middleware products all have a place in the implementation component directory
structure. From this viewpoint, they may all be considered implementation components. To keep
the notation simple, these components are not numerically designated in the example
implementation figures.

External message interfaces are reflected in the application architecture example as arrows that
connect to a component from a single end with the other end disconnected. These messages are
numerically designated and correlate with platform service requests at the implementation level.
Intercomponent message sets at the architecture level are also numerically designated and
translate into corresponding communications messages in the resulting implementation.

Figure 4.3.3-1b and its corresponding enlargements, Figures 4.3.3-2 and 4.3.3-3, expand the
simplified example with an introduction to timing and multi-platform considerations. Also, the
expanded application architecture example illustrates component aggregation. The primitive
components of a specific application component aggregate are numerically identified.
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The controller responsibilities, as defined by the primitive components included in this example,
capture many of the basic requirements of the NGC controller at the low-end. This example
concentrates on low-end requirements since it is anticipated that early NGC implementations
will naturally have this focus. As technological advancements make higher-end capabilities more
readily available in off-the-shelf products, it is believed that these capabilities will then be
~ incorporated into future NGC products.

To illustrate the low-end capabilities of this architecture, consider the operator interface and
manager component, designated as ACI in Figure 4.3.3-2. The operator has responsibility for
determining and sequencing each part program and its coordinate offsets for a given job (PC3)
and ensures the availability of resources required by the jobs (PC5). Job sequences are initiated
manually (PC62). Status is obtained interactively (PC7), and startup/shutdown procedures are
also manually initiated (PC39,47). Unlike the the first implementation example, there is no
support in this example for a factory scheduling system interface. Part programming and
customnization (PC53,54) is performed interactively using the manual data interface of the
controller console. These operator responsibilities could be automated, as described by the first
implementation example, but are instead handled by the operator interactively in this example.
This type of stand-alone functionality, with perhaps a serial port interface for part program
download, is typical of low-end controllers today.

The file access (and other service support) implicit in the operator interface and management
functions is reflected abstractly in the application architecture as AM1b service message set.
Display and keyboard management to/from the physical operator console is depicted as AMla.
These translate into IM1 service requests in the generic implementation example (Figure 4.3.3-
3). Similarly, the AM12 communications message set between the operator interface component
(AC1) and the parser, enhancer & coordinator component (AC2) at an architecture level maps to
the IM12 message set of the implementation example.

Analogous to the display, keyboard and file management services that are required to support the
operator I/F component, similar I/O services are required for implementing interfaces to motor
drives and sensors. These are reflected as IM3 and IM4 service requests in the generic
implementation and directly correlate with AM3 and AM4 message sets shown in the application
architecture example. It is left as an exercise to the reader to use the appendices contained in this
specification to research the definition of the primitive components identified in each of the
other application architecture component aggregates and correlate message sets in the application
architecture with specific communications messages and services in the generic implementation.
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Applying the hard knock experience of implementing systems is crucial in specifying an
architecture that may be feasibly implemented. System prototyping should play an essential role
in the architectural specification process for its validation. This is especially important when the
practicality of a new architectural approach remains unproven due to the lack of existing,
working implementations.

Timing considerations required for implementation will naturally influence the aggregation of
components specified at an architectural level. An architecture is a high-level design and can not
be divorced from timing issues involved during implementation. The implementation of the
architecture must be anticipated. Primitive components will be grouped into architectural
aggregates such that their respective responsibilities will have “like” timing requirements in their

implementation.

However, with the exception of considerations to the grouping of primitive components, timing
issues need not be addressed at the architectural specification level. Most considerations to
timing should be left to the details of implementation. This approach leverages the most benefit
from the portability and interoperability characteristics inherent in NGC-compliant
implementation component software. The timing of portable applications software will often
only be limited by the capabilities of its underlying platform and supporting services. The timing
characteristics of the applications software will also vary dramatically from platform to platform.

Implementation component aggregates having similar timing requirements may ultimately co-
reside on the same platform when they are implemented. The generic implementation example
represents a multi-platform solution that has both RT and non-RT hardware platform
components that are interconnected via a bridge. The two platforms have the effect of
partitioning the applications software components such that SIC1 resides on the non-RT
platform and the SIC2/SIC3 and SIC4 components reside on the RT platform. This is a realistic
partitioning since most operator interface functions are easily managed by a non-RT support
environment. For example, a one second response time is an acceptable response time to an
operator (though possibly annoying), but is much too slow and potentially disastrous for sensor
] update to a motion control servo while cutting a part.

The RT platform also integrates a special-purpose sensor /O board that is interfaced to the
. other components of the system via the SIC4 sensor I/F wrapper component. This particular

component of the system takes on hard-RT timing characteristics because of the unmodifiable,

applications-specific logic embedded in firmware on the product wrapped by SIC4.
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5.0 SUMMARY AND RECOMMENDATIONS

5.1 Summary

- This document has described a structure for the development of open architecture
systems for advanced manufacturing applications. This structure accommodates both a
wide range of software applications while at the same time permitting the use of a variety
of potential platform solutions. The admissible platform solutions allow for a wide range
of variability with respect to processor selection, buss selection, operating systems, and

device interface and communication devices and standards.

The process of NGC system development has been formalized with respect to
development of the overall system structure that satisfies system requirements through
the use of a component based approach that allows the design process to begin at a level
of abstraction that focuses on responsibilities and information flow within the system.

This flow from the selection of primitive components from a reference architecture to the

construction of an application architecture was chosen because of it's consistency with
what is becoming common practice in the software community. This follows the same
basic practices set forth in the Advanced Research Project Agency (ARPA) Domain
Specific Software Architecture (DSSA) program.

The equally challenging issue of the system platform has been addressed through the
concept of profiles, a concept adopted from the IEEE Portable Operating System
Interface (POSIX) standard. The profile is essentially a means of declaring a specific
implementation of a system by selecting standards and options from a large set of
possible choices. The strategy of profiles was chosen as an alternative to selecting 2 small
set of standards and conventions from a very large set and attempting to force this on the
overall community. As stated in the introduction of this document, it will be the
inevitable market forces that will result in a narrowing of design options for NGC
systems and the emergence of a small set of standard implementations such as the PC and »
the Macintosh in the personal computer arena. Realistically, any attempt to guess which
set of standards will win with respect to processors, busses, operating systems, device
interfaces, etc. is futile. The profiling concept necessarily leads to the possibility of an *
extremely large number of NGC systems, at least initially. In some ways this can be
viewed as no different from the current situation. There is, however, a crucial difference.
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Profiling allows users to determine, with little effort, the degree of openness in the
system that is being purchased. By declaring the fundamental structure of the system, the
path is opened for other vendors to produce system elements that can easily be integrated
into the resulting standardized systems. The ultimate benefit is to the user who, using the
system profile, can draw on a wide range of related products for system expansion and
improvement.

The profile system that has been developed addresses both the Application Program
Interface (API) as well as the External Environment Interface (EEI).' (Again, this is
similar to POSIX). Taken together, the application architecture and the profiling
structure form a firm foundation for NGC system development; they do not, however,
represent a complete methodology that would support immediate development of a
national, commercial NGC product base. There are two elements that are missing from
the overall system that would facilitate the adoption of the NGC approach; fully
populated and widely accessible implementation component libraries and a family of
tools for system design, integration, and validation. Unfortunately, the difficulty lies in
developing the initial libraries and tool set. Once initiated, it seems clear that they will
themselves become important commercial products.

At the implementation component level (see section 3.3 and 3.4) abstraction is finally
lost and issues of system interoperability are directly addressed. The implementation
library, (or repository in DSSA terms), consists of elements of software that are actually
linked and compiled into the final system. From the standpoint of the end user the truest
manifestation of NGC is in the availability of implementation components, not in the
abstract but necessary process that results in these components. It is not an over
simplification to say that the implementation components will be the "currency” of the
evolutionary NGC system.

Even with the availability of libraries of implementation components, computer based
tools will be essential to the propagation and success of this technology. The tool set is
what will be responsible for institutionalizing the full NGC process because it will
provide a quantum leap in the way systems are developed and modified in the same way
Windows and Macintosh interfaces represented a quantum leap with respect to humans
interfacing with computers.
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5.2 Synergistic Activities

There are a large number of ongoing activities that have the potential for filling in the
remaining pieces of the NGC structure. These activities include controller development
projects as well as more generalized real-time, distributed architecture projects. The
controller projects provide much of the necessary detail needed to arrive at a complete
and useful NGC structure. Specifically, they provide a set of primitive components,
requirements definition, application architectures, but most importantly, specific
messaging structures and an initial set of implementation components. It is also important
to note that the identified controller projects are not limited to strictly machine tool
control architectures. In addition to general machine tool applications, there are ongoing
projects that also address inspection (coordinate measurement) and robotics (both
autonomous and teleoperated.) Similarly, a number of ongoing real-time, distributed
control projects are focusing on many of the "domain independent” communication issues
that are important to NGC as well as the tool structure for both building and maintaining
NGC-like systems.

The controller projects that could directly contribute to completing the overall structure
of the NGC system include the NIST Enhanced Machine Controller, (EMC), the Unified
Telerobotic Architecture Project, (UTAP), sponsored by the Aircraft Directorate at the
San Antonio Air Logistics Center, (SA-ALC), with participation by NIST and JPL, the
Air Force ManTech Title III activity, the Department of Energy Technologies Enabling
Agile Manufacturing, (TEAM), as well as others. Even the European version of NGC,
Open System Architecture for Controls within Automation Systems, (OSACA), is
worthy of further study with respect to what it can offer a long term NGC activity. All of
the programs described above offer elements that can be directly incorporated into the
evolving NGC structure that was described in section 3.4. The NGC structure benefits
from the standpoint of additional depth and completeness. Each of the individual
programs also benefits from the ability to capture program legacy in the consistent
framework of NGC.

Similarly, there are a number of projects that are addressing many of the domain
independent and tools issues that are crucial to an effective and complete NGC system.
The ARPA DSSA program is currently felt to be the most important among these
programs. This program is working many of the issues essential to the advanced
manufacturing domain. Issues that are currently at the forefront of this project include
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requirements, system structural developmént, testing, and validation of systems. Most
importantly, DSSA is focusing on a consistent set of tools that will make opén, reusable
systems a reality for all real-time control system applications. Even programs seemingly
unrelated to NGC and advanced manufacturing such as the Reusable Software
Architecture for Spacecraft, (RSAS), sponsored by the Air Force Phillips Lab, are in the
process of working issues and developing tools that are directly relevant to NGC. Finally,
the National Information Infrastructure Program (NIIP) is of direct interest to the NGC
development process. This program has the goal of establishing and unifying many of the
key information transfer standards necessary for NGC.

5.3 Recommendation

An effective overall structure has been developed for the NGC vision for advanced
manufacturing systems. This structure facilitates the development of open, interoperable
controllers for all advanced manufacturing operations. At the same time, the structure
allows for an unprecedented growth in the vendor base that can field products relevant to
this area. It is not an overstatement to say that this structure could serve as the foundation
for a revolution in advanced manufacturing systems similar to that which has occurred in
personal and workstation computing over the past ten years.

To make the NGC vision a reality, it will be necessary to continue the development of
the overall system structure. This is not an overly daunting task because, as pointed out
in the earlier parts of this section, the activity should focus on capture of technology from
ongoing activities rather than additional development. It is safe to say that all the major
elements required to complete the NGC system either currently exist , (e.g. NIST EMC),
or are in the process of being developed (e.g. ARPA DSSA, Title I, TEAM, NIP). The
integration of these available elements is not an especially complex task, but it does
require that some type of central repository site be identified and solid interfaces with
these programs be developed.
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6.0 GLOSSARY OF TERMS'

ADL Rules: TBD

Aggregate Component: Two or more
primitive components retaining notion of
responsibilities and message requirements.

Application: The use of capabilities
(services/ facilities) provided by an
information system specific-to the
satisfaction of a set of user requirements.

Application Architecture: The result of
applying specific application requirements
to the selection of Reference Architecture
components. Still an abstraction but
messages become more specific. Many
possible configurations of Reference
Architecture components for any given
applications.

Application Environment Profile (AEP):
A profile, specifying a completed and
coherent specification of the Open Systems
Environment (OSE), in which the
standards, options, and parameters chosen
are necessary to support a class of
applications.

Application Platform: A set of resources
that support the services on which
application software will run. The
application platform provides services at
its interfaces that, as much as possible,
make the specific characteristics of the
platform irrelevant to the application
software.

Application Program Interface (API):
The interface between the application
software and the application platform
across which all services are provided. The
APl is primarily in support of application
portability, but system and application
interoperability are also supported by a
communication APIL.

Application Seftware: Software that is

specific to an application and is composed
of programs, data and documentation.
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Application System: One of many
possible implementations of a specific
application architecture. The computing
platform is fully specified by a profile
published by the control builder. Software
module granularity conforms to chosen
boundaries of the application architecture.

Architecture Description .Language
(ADL): TBD

Base Standard: A standard or
specification that is recognized as
appropriate for normative reference in a
profile by the body adopting that profile,
but is not a profile itself.

Component Profile: A profile that is
made up of a defined subset of a single
standard.

Conformance: Action or behavior in
correspondence with current customs,
rules, or styles. In particular, behavior in
correspondence with SOSAS rules,
requirements, and styles and documented
by a SOSAS-coconsistent standardized
profile.

External Environment Interface (EEI):
The interface between the application
platform and the external environment across
which information is exchanged. The EEI is
defined primarily in support of system and
application interoperability. The primary
services at the EEI comprise of human/
computer interaction services, information
services, and communication services.

Hardware: Physical equipment used in
data processing as opposed to programs,
procedures, rules, and associated
documentation.

Implementation Component: A
hardware, software, or human entity that
fulfills a specific set of responsibilities
with a specific interface. The form of
implementation is not specified.
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Interface: The shared boundary between
two functional units defined by functional
characteristics and other characteristics, as
appropriate.

Interchangeability: A characteristic of
system components that makes it possible
to replace one component with another
component of equivalent functionality
made by a different vendor.

Interoperability: The ability of two or
more systems to exchange information and
to mutually use the information that has
been exchanged.

Open System Application Program
Interface: A combination of standards
based interfaces specifying a complete
interface between an application program
and the underlying application platform.

Open System: A system that implements
sufficient open specifications for
interfaces, services, and supporting
formats to enable properly engineered
applications software: to be ported with
minimal changes across a wide range of
systems, to interoperate with other
applications on local and remote systems,
and to interact with users in a style that
facilitates user portability

Open Systems Environment (OSE): The
comprehensive set of interfaces, services, and
supporting formats, plus user aspects for
interoperability or for portability of
applications, data, or people as specified by
information technology standards and
profiles.

Performance: A measure of a computer
system or subsystem to perform its functions;
for example, response time, throughput,
number of transactions per second.

Portability: The ease with which software
can be transferred from one information
system to another.

Primitive Component: A component with
a single responsibility defined as an
abstraction (no code) with an abstract
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message interface and architecture
constraints defined.

Process: A address space and one or more
threads of control that execute within that
address space and their required system
resources.

Profile: A set of one or more base standards
and, where applicable, the identification of
chosen classes, subsets, options and
parameters of those base standards necessary
for accomplishing a particular function. A
profile lists the choices of platforms and
defines the interfaces for an implementation
of SOSAS consistent NGC.

Protocol: A set of semantic and syntactic
rules that determine the behavior of entities
in performing communication functions.

Reference Architecture: The collection of
all known components including both
primitive and aggregate components.

Scaleability: The ease with which software
can be transferred from one graduated series
of application platforms to another.

Software: The programs, procedures, rules
and any associated documentation
pertaining to the operation of a data
processing system.

Specification: A document that prescribes
in a complete, precise, verifiable manner,
the requirements, design, behavior or
characteristics of a system or system
component.

Standardized profile: A balloted, formal,
harmonized document that specifies a
profile.

Standards: Documents, established by
consensus and approved by a recognized
body, that provide for common and
repeated use, rules, guidelines, or
characteristics for activities or their results
aimed at the achievement of the optimum
degree of order in a given context.

Thread: A single flow of control within a
process.
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APPENDIX A — REFERENCE REQUIREMENTS

Reference requirements guide the grouping and specialization of responsibilities from the
Reference Architecture when synthesizing an application architecture for a specific
controller application. For any specific application, only a subset of the Reference
Requirements are relevant, and when the relevant requirements are selected out of the full set
of Reference Requirements, they must be made specific to the application. For example, if
Reference Requirement A.1.2.2, "Availability shall be at ? percent." is selected for a given
application, then it is made specific by changing it to "Availability shall be at 99 percent.”
The NGC Reference Requirements are listed below. The reference numbers provide a

convenient grouping of the requirements.
A.1  General Requirements

A.1.1 Environmental

A.l.l.l The controller shall meet ? environmental standards.

Alll2 The controller shall be able to operate in ? temperature range.

A.1.13 The controller shall/shall not be in an enclosure that keeps out dust-laden air.
All4 The controller shall/shall not be of modular construction.

A.l.1lS5 The controller shall/shall not automatically halt operation when the temperature

within the control unit reaches ? degrees.
A.1.1.6 The controller shall/shall not be equipped with an air conditioner that will
assure operation in a temperature of ? and humidity of .

A.1.2 Reliability

A.l21 Availability shall/shall not be a function of mean time between failures and
mean time to repair.

Al22 Availability shall be at ? percent.

A123 The controller shall/shall not have a test program that will execute all control

responsibilities implemented.

A.1.3 Factory Supervision

A.13.1 The controller shall/shall not interface with a supervisory computer system.
A.132 The supervisory computer system shall/shall not exert complete control over
the controller.

September 30, 1994 A-1 SOSAS Rev. 2.6




A.1.4 Probing
A.14.1 The controller shall/shall not incorporate measuring probes.
N A.142 The controller shall/shall not incorporate touch probes.
A.143 The controller shall/shall not incorporate optical probes.
Al44 The controller shall/shall not provide standard inspection

™ (probing/gauging/measuring) cycles.
A.14.5 The controller shall/shall not provide for user-defined measuring cycles.
A.14.6 The controller shall/shall not measure the amount of excess or lack of workpiece
material before operations.
A.14.6 The controller shall/shall not adjust process parameters according to pre-operation
measurements.

A.14.7 The controller shall/shall not gauge the workpieces throughout operations to
determine the necessity of tool changes.

A.14.38 The controller shall/shall not gauge the workpieces throughout operations to
determine the necessity of repeating operations.

A.14.9 The controller shall/shall not gauge the workpieces throughout operations to
determine the necessity of tool changes.

A.1.4.10  The controller shall/shall not record the results of the inspection cycle.

A.1.4.11  The controller shall/shall not generate digital coordinate point data describing any
complex-shaped three-dimensional object.

A.1.5 Multitasking

A.l5.1 The controller shall/shall not support multiple concurrent tasks.

A.15.2 The controller shall/shall not support background tasks of part programming.
A.l153 The controller shall/shall not support background tasks of program edit.

A.l54 The controller shall/shall not support background tasks of program loading.
A.15.5 The controller shall/shall not support background tasks of program downloading.
A.1.5.6 The controller shall/shall not support background tasks of program uploading.

A.1.6 User Interface

Y
A.1.6.1 The controller shall/shall not extract geometric information from program files.
A.1.6.2 The controller shall/shall not graphically display geometric information in
. orthographic views.

A.1.6.3 The controller shall/shall not graphically display geometric information in
perspective views.
Al64 The controller shall/shall not display a ?D simulation of the tool path.
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A.1.6.5

A.1.6.6
A.1.6.7
A.1.6.8
“A.1.6.9
A.1.6.10
A.l.6.11
A.1.6.12
A.1.6.13

The controller shall/shall not display a 7D simulation of a cross sectional view of
the part.

The user interface design shall/shall not use colors and sounds.

Colors and sounds shall/shall not be used sparingly and redundantly.

The user interface shall provide access to information with a maximum of ? steps.
The user interface shall have active ? windows at any oné moment.

The user shall/shall not be able to close all open windows with a single command.
The user interface shall support ?-language presentation. .

Information shall/shall not be updated dynamically as it changes.

The user interface shall provide timely feedback within ? ms for every input the

user makes.

A.1.7 Block Processing Time

A.1.7.1
A.1.7.2

A.1.7.3
Al74
A.1.7.5

Block processing time shall/shall not be fast enough to prevent data starvation.

The controller shallshall not automatically decelerate axes movement when the
block execution time is less than the average block processing time.

The controller shall have a look-ahead capacity of ? blocks.

The average block processing time shall be ? milliseconds.

The servo update time shall be from 7 to ? milliseconds.

A.1.8 Software

A.18.1

A.1.8.2

A.1.83

A.1.84

A.1.85

A.1.8.6

A.187

A.188

A.1.89

Software components shall be added or replaced incrementally with/without
recompilation.

/O counts and types shall be expandable for ? type of equipment.

The software shall/shall not preclude the use of a distributed system.

The software shall/shall not preclude the use of a centralized system.

The start-up sequence shall/shall not support appropriate start-up sequencing of all
machine components.

The start-up sequence shall/shall not support both a default and a user-defined idle
state after start-up.

The system shall/shall not come up in an operational mode following the start-up
sequence.

The system shall/shall not be orderly and responsible to emergency and catastrophic
shutdowns.

System shutdown shall/shall not result in graceful termination of process execution.
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A.1.8.10 A shutdown shall/shall not leave the system in a safe state with regard to the
positions of valves, motors, and actuators.
A.1.8.11  The system shall/shall not automatically save critical machine-state data.

A.2  Axis Motion Control Requirements

A.2.1 Continuous Path Control

A2.1.1 The controller shall/shall not provide continuous path control of tool motion.
A2.1.2 The controller shall/shall not provide point-to-point programmihg.

A213 The controller shall/shall not provide NURBS programming.

A2.14 The controller shall/shall not provide feature-based programming.

A.2.2 Interpolation

A221 The controller shall/shall not perform linear interpolation in simultaneous motion of
all axis drives.

A222 The controller shall/shall not perform circular interpolation with 3D motion control.

A223 The controller shall/shall not perform helical interpolation.

A.2.3 Interpolation Resolution
A23.1 Interpolation resolution shall be a maximum of ? mm or ? inch in linear mode.
A23.2 Interpolation resolution shall be a maximum of ? mm or ? inch in circular mode.

A.2.4 Methods of Specifying Interpolation

A24. Circular interpolation shall/shall not be specified by radius and end point.

A24.2 Circular interpolation shall/shall not be specified by I, J, K parameters.

A243 Circular interpolation shall/shall not be performed in more than one quadrant in one
command block.

A.2.5 Interpolation in Rapid Traverse
A25.1 Rapid traverse motion shall/shall not be in linear interpolation mode in all axes.

A.2.6 System Resolution
A2.6.1 Control system least input increment shall be ? mm / ? inch and ? degree.
A2.6.2 Control system least command increment shall be ? mm/ ? inch and ? degree.

A.2.7 Acceleration and Deceleration Control
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A27.1
A2.72
A2.7.3

The controller shall/shall not automatically control axis acceleration/deceleration.
The controller shall/shall not perform exponential acceleration for feed motions.
The controller shall/shall not perform linear acceleration for rapid traverse.

A.2.8 Mechanical Error Compensation

"A28.1

A2.8.2
A2.83

A284

The controller shall/shall not provide automatic compensation of lead screw errors
(pitch error compensation).

The controller shall/shall not provide automatic compensation of backlash.

Lead screw error compensation shall/shall not be reprogrammable for wear
compensation.

The controller shall/shall not perform cross compensation for axis alignment, beam

sag and axis motion geometry errors.

A.2.9 Thermal Compensation

A29.1
A29.2

The controller shall/shall not perform temperature growth compensation.
The controller shall use 7# of thermal sensors.

A.2.10 Software Limitation of Axis Motion

A.2.10.1

The controller shall/shall not establish spatial zones (safe or forbidden zones) in
addition to the fixed control limits provided by the machine builder.

A.2.11 Position Sensing

A.2.11.1  The controller shall/shall not measure position with linear digit scales.

A.2.11.2  The controller shall/shall not measure position with inductosyn devices.

A.2.12 Axis Velocity

A.2.12.1  The controller shall/shall not support programmable feedrates.

A.2.12.2  Programmable feedrates shall have a minimum of ? mm/min and a maximum of ?
mm/min for the ? axis.

A.2.12.3  Rapid traverse feedrates shall have a minimum of ? mm/min and a maximum of ?

mm/min for the ? axis.

A.3  Auxiliary Machine Control Functions

A.3.1 Tool Management
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A3.1.1

A3.12

A3.13
"A3.14
A3.1.5
A3.1.6

A3.1.7

A3.18

A3.19
A3.1.10

A3.1.11
A3.1.12
A3.1.13

A3.1.14
A3.1.15
A3.1.16
A3.1.17

A3.1.18
A3.1.19
A.3.1.20

Tool management shall/shall not have storage for the maximum number of tool
data sets.

The number of data sets may/may not be equal to or greater than the number of tool
changer pockets.

The tool identification code shall have a minimum number of ? digits.

The tool shall/shall not be referenced by the tool identification code.

The tool shall/shall not be referenced by the tool location identification code.

The tool magazine shall/shall not provide random storage of tools with/without
preassignment. , |
Tool slots, compartments, or other storage elements shall/shall not have sensors for
identification and location of each tool.

The tool magazine shall/shall not hold the complement of tools and spares for
specific jobs.

The tool magazine shall/shall not support removable tool cartridges.

The tool magazine shall/shall not support sensors for identification of tool
cartridges and their job associations.

The tool length shall have a measurement of ? digits.

Cutter diameter offset compensation shall have a measurement of ? digits.

Cutter nose radius compensation shall/shall not be used with bull and ball nose
cutters.

Cutter taper compensation shall/shall not be supported.

Tool change sequence shall be initiated by a ? code.

Tool change sequence shall/shall not be initiated manually.

Tool change operations shall/shall not automatically adjust to variations in spindle
attachment geometries.

Tool length shall/shall not be verified as part of the tool change procedure.

Too! diameter shall/shall not be verified as part of the tool change procedure.

Tool form shallshall not be verified as part of the tool change procedure.

A.3.2 Pallet Changer

A32.l
A322
A3.23
A324
A3.25
A3.2.6

The controller shall/shall not identify pallets by non-contact sensors.

Pallet data shall consist of at least ? bytes.

The controller shall track data for at least ? individual pallets.

Pallet identification shall/shall not be used to automatically select part programs.
Pallet identification shall/shall not be used to automatically select fixture offsets.
Pallet identification shall/shall not be used to automatically select pallet offsets.
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A3.27

Multiple part programs shall/shall not be selected per pallet.

A.3.3 Cutting Process Control

A33.1

"A33.2

A3.33
A334
A33.5
A3.3.6
A.3.3.7
A338
A339
A33.10
A3.3.11
A33.12

A3.3.13

A33.14
A33.15

Cutting tool life shall/shall not be monitored based on user programmed time
intervals/tool life time.

A tool life data shall/shall not include: tool number, programmed tool life,
accumulated cutting time, remaining tool life, and tools which have exceeded the
programmed tool life.

The controller shall/shall not automatically select an alternative tool should a tool's
life elapse.

Tool life data shall/shall not be passed to external devices or communication
systems.

The controller shall/shall not sense a broken tool.

The controller shall/shall not sense significant changes in tool performance.

The controller shall/shall not support a worn tap monitoring system for tapping
speeds below ? RPM.

The controller shall/shall not automatically change tools upon detection of a broken
or worn tool.

The controller shall/shall not measure engineering force levels on the spindle
bearings.

The controller shall/shall not measure temperature of the spindle bearings.

The controller shall/shall not scan excessive loads for collision protection.

The controller shall/shall not monitor for unbalanced spindle loads.

The controller shall/shall not take appropriate actions when monitored spindle
conditions exceed programmed tolerances.

The controller shall/shall not adjust feedrate to maintain constant cutting force.

The controller shall/shall not access work material parameter tables for automatic

selection of cutting speeds, feeds, and depth of cut.

A.4 Programming Requirements

A.4.1 Automatic Programming

A4.1.1
A4.1.2
A4.13
A4.14

Programming shall/shall not include high-level language part programming.
Programming shall/shall not include inch or metric units.

Programming shall/shall not include absolute or incremental programming.
Programming shall/shall not include programmed dwell, stop, and optional stop.
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A4.1.5

A4.1.6
A4.1.7
A4.1.8

A4.19

A4.1.10
A4.1.11

A4.1.12
A4.1.13
A4.1.14
A4.1.15
A4.1.16
A4.1.17
A4.1.18

A4.1.19
A4.1.20

A4.1.2]
A4.1.22
A4.123

A4.124

A4.1.25
A4.1.26
A4.1.27
A4.1.28
A4.1.29
A4.1.30
A4.131

Programming shall/shall not include feedrate programming: direct feedrate, inverse
time feedrate, per revolution unit feed for turning controls.

Programming shall/shall not include direct spindle speed programming in RPM.
Programming shall/shall not include block delete.

Programming shall/shall not include program number search and sequence number
search.

Programming shall/shall not include conditional and unconditional jumps in the
part program.

Programming shall/shall not include mirror image.

Programming shall/shall not include fixture offsets for multiple pallet and table
machines.

Programming shall/shall not include multiple program storage and management.
Programming shall/shall not include safe zone definitions.

Programming shall/shall not include parametric subroutines.

Programming shall/shall not include custom macro routines.

Programming shall/shall not include programmed tool change.

Programming shall/shall not include programming for cutting process control.
Programming shall/shall not include programmed tool life with designated
replacement.

Programming shall/shall not include programmable adaptive control parameters.
Programming shall/shall not include programmable selection in tool failure
detection modes.

Programming shall/shall not include circular interpolation designated by radius.
Programming shall/shall not include helical interpolation programming.
Programming shall/shall not include preprogrammed (canned) cycles for drilling,
boring, and tapping.

Programming shall/shall not include preprogrammed cycles for area milling,
rectangular pocket milling, circular pocket milling, and bolt hole circles.
Programming shall/shall not include automatic chamfering and corner radiusing.
Programming shall/shall not include look-ahead cutter compensation.

Programming shall/shall not include coordinate system rotation.

Programming shall/shall not include work coordinate system setting.

Programming shall/shall not include inspection probe programming.

Programming shall/shall not include constant surface speed programming.
Programming shall/shall not include tool center point programming for 5-axis
machining.
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A4.132

Programming shall/shall not include programming scaling.

A.4.2 Manual Programming Requirements

A42.1
A4.2.2

A423
Ad424
A425
A42.6
A4.27

A4238

Manual programming shall/shall not include provisions for conversational input.
Manual programming shall/shall not include automatic selection of cutting speed
and feed.

Manual programming shall/shall not include cutter offset.

Manual programming shall/shall not include programmable spindle orientation.
Manual programming shall/shall not include pallet or table change cycles.

Manual programming shall/shall not include program editing.

Manual programming shall/shall not include the following setup capabilities: test
run of part program, dry run of part program, graphic display of part position,
graphic tool path display, execution of automatic probe routine to align program,
axis inversion, and zero shift.

Manual control shall/shall not include: emergency stop, program stop, manual axis
select, manual positioning control, sequence number search and display, spindle
power and RPM readouts, X, Y, Z, and other axis position readouts.

A.4.3 Status Record Requirements

A4.3.1
A43.2

A433

A434
A435
A43.6

A4.3.7
A438
A439
A43.10
A43.11
A4.3.12
A4.3.13

Status records shall/shall not include work order number: job id and quantity.

Status records shall/shall not include job id number: part number and resource
number or class number.

Status records shall/shall not include job completion status: good, bad, rework,
trail, active, unscheduled stop, program stop, and emergency stop.

Status records shall/shall not include time stamp of start of job.

Status records shall/shall not include time stamp of end of job.

Status records shall/shall not include time stamp of last status record update for job
cycle.

Status records shall/shall not include elapsed time active for job cycle.

Status records shall/shall not include data transfer enabled.

Status records shall/shall not include edit mode enabled.

Status records shall/shall not include block by block mode enabled.

Status records shall/shall not include feedrate (percent override).

Status records shall/shall not include spindle speed (percent override).

Status records shall/shall not include programmable logic controller input, output,

and status bits.
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A43.14

A43.15

A43.16

A4.3.17
A4.3.18

A43.19

A4.3.20

A43.21

Status records shall/shall not include machine activities: power on, start and stop,
idle/running, remote or local, ready, hold, cycle start, controller stop, resume,
emergency stop, test run, and dry run.

Status records shall/shall not include tool status: list of tools, tool matrix data table
(type of tool, number of pockets, pockets currently occupied, description), and tool
object table (job number, T code, cutter compensation, tool offsets, gauge lengths,
programmed tool life, pocket number).

Status records shall/shall not include pallet status: number of pallets, pallet
identification, list of pallet offsets, pallet object table (pallet type, pallet size, pallét
priority levels, number of parts present, list of part coordinate reference) parts
mounted, and parts machined.

Status records shall/shall not include fixture status: type, id, and offsets.

Status records shall/shall not include part program status: id, size, available
memory size, create/modify data, restrictions on use, restrictions on modifications,
running program is 7% over, program complete, and elapsed time.

Status records shall/shall not include logical control parameters: feedrate override,
spindle override, block delete, single block, and optional stop.

Status records shall/shall not include diagnostic status: system hardware faults, tool
magazine faults, tool changer faults, pallet magazine faults, spindle drive faults, and
axes drive faults.

Status records shall/shall not include event log: setting or resetting of conditions.
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APPENDIX B — PRIMITIVE COMPONENTS

Primitive components represent indivisible responsibilities in the Reference Architecture. For
each primitive component, a descriptive template represents temporal, resource, and product

" information. Temporal information explains the intended timing of the primitive component,
such as start-up responsibilities. resource information explains what the primitive component
will need in order to carry out its responsibility, such as coordinate system data. Product
information explains what the primitive component can provide, such as translated coordinates.
Shaded areas of each template represent information that is not appropriate at the reference
architecture level. Once an application architecture is built, the determination of the contents of
these areas brings the development process into the design phase. Below is the template
including explanations for each entry. The remainder of this appendix contains the starter set of
primitive components for NGC.

Respons:bility: amvpanar reference mevbes end
1 _ampoml Aspact; reomng lnnac-irimted
s - Procems:
> o o vred
DIOOres OUTTD WOvCh CRVRION B AKIYCRON Quagarg Messagns: =
acNL Caoac, povensy — maporess © e
bR LOased.
ey
mp——ry T
Sama
Xama hasoucs
- ey PP
Sub-responsiies:
m Sp-ayeup wenees Shatuing o ¢ Sebal amvgls whath
ASCRIPASty o D SRRl -y AsPwr Gva -
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Responsibility: NGC-1

Handle operator moditéations to part program statements

| TemporalAspects incoming Messages: Message-
Initiation: modittation to part program necessary g‘zi{ééii@ff
. " Process:
gg;‘?lem“ z:ge:g:f’“p'e‘ed Outgoing Messages
|__Discrete / Continuous
3 2 3
H
Extemal Resources
D_escnpnon_, part program machine model modikcations
| Lilkehr Source;—Workstationmat | knowledge base | operatorinterdface
Beuabu;fy- weak stronq weak
CaonYicts: not likely not fikely not likely
Products
L Description.par program eror message.
Attributes: code: parameters code; parameter.
|__Constraints:..dependent on machine| __modication invalid
__Likely Recipients:wks matplaninterp _gperator interface
Procedures/Methods; geptprogam. Sub-responsibilitieS'
Example: modmauons needed rogram,
blocks if valid tX ocks if valid
. festa segment of prove-ouf . resta segment of prove-out
* send m&i ad blocks

Responsibility: NGC-2 Part program storage actnvmes

. aooess trom storage
p prgg"r,gm or program status

TemnoralAsoects OOTNNT LANSRE LR
|__Initiation° _system startup

mmw"wdom -~ Tl

Span: execution and prove-out RS
| Discrete / Continuous

1 ) e {

Extemal Hesources
|__Description: __actvity request____] pari pregram
| Likely Source: workstatonmgt | storage medium
__Raliability: strong strong
|_Contéets: not likety not ikety

Products
|__Descrption: _patprogram______} program status
|__Attributes: ___code: parameters | code; parameters
|__Constraints:
| Likely Becipients:workstation mgt ] workstation mat
Procedures/Methods Sub-responsibilities:
Example: cceptp
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Responsibility:

NGC-3 Determine each péﬁk’ program and coordinate offsets

fn/s
LAt

spects

Initiation: system startup

yning Messagss:

Message-
initiated

Completion: _ system shutdown

Span: execution and prove-out

Discrete / Continuous

Procass:

Sent ooy iynma

w

External Besources

__Likely Source: factary schedijer

Rpliahilify' strong
Conlicts: nat likely

oducts

| Des

__Aftributes: 2ero positions

rogram.id____ | _nad coordinate offsets

Constraints:

Likely Recipientsworkstation mat

workstation mat

Procedures/Method? b s

. s acceptjob li

Example. * parse part program and offsets
* send part program and offsets

Sub-responsibilities:

Responsibility: NGC-4  Maintain information on available tools

Tpmnnral Aspects
IDIIlaIlQIJ system startup

Completion:; _system shutdown
Span: execution and prove-out
Discrete / Continuous

JUd

1
A l:
St

ExtemaLBesm CRSs:

1 Des

strong

st ltooldataupdates | inolmodal
|| ikely Source:operatorinteface____| operator interface_____{ knowiadga basa

|__Beliahilitv: ___strong
) : i not likely

Products

—Descrption:__updatad tool model

__Attrihites:

_Constraints:

Likely Recipients:knowledge base

Procedures/Methods
: « accept 100! list, 100l data updates
Example: ¢ accept oo list, toc pda
* update model
* send updated tool model

Sub-responsibilities:
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Responsibility:

NGC-5 Ensure that resoui'ées required by the jobs are available

nis incoming Messages: Nessage-
Initiation: system startup inttigied
Completion: _system shutdown B e Procass:
Span: execution and prove-out SUGOING Meseages
Discrete / Continuous

N

w

ool aamsivmeme

External Besources

|__Description;____iob description tool, machine model | part program
_Lll(nl\LSnuro:,JMQﬂSSlaﬂQD,mgL___ |__knowledge hase workstation mat
Rpllahlhhl strong strong strong
Conicts: not likely not likely not likety
Products

Description: verittation results

. access tool and machine models
availability of resources

4 s verngation results

Attrihites: __code: parameters

Constraints:
__Likely Recipjentsworkstation mat
Procedures/Methods Sub-responsibilities:
Example: = accept job description « verify availability of resources

Responsibility: nGc-g  Determine if next part program matches current pagiprograrp

cts

SISO TIND

uquc_.

Initiation: stan of part program

Completion: _program completed

Span: execution and prove-out

~ - a
h o Tatl st B IOT P
WL EOIT VO8RS

Discrete / Continuous

S

| External Resources.

|_Descrintion: next part's program id

current part’s pi id

_Beuammv strong

Likety S a1 1rep workstation managempnt plan interpretaton

strong

Con'cts: not fikety

not likety

Products

| Desarintion:_comparnson resutt

| Aftrihiges: value

|__Constraints;__match / no match

Likely Recipients:-workstaton management

Procedures/Methods

Example:
* accept current

hd me;E

'acceptne:dpapa&mgramnd

Sub-responsibilities:
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Responsibility:

NGC-7 Determine status of active program

TemparalAspects

Incoming Messagss: Message-

Initiation: program startup

indinled

Completion:  program completed

Process:

Span: execution and prove-out

Ouigoing Messag

Discrete / Continuous

N
W

noalBosaiirnas

Extemal Besaurces

_Description: __software status

| Likely Source: components

| Beliahility: strong

Conlcts: not likely

Products

qunripﬁnn' proaram status

1853

Canstraints:

| Likely Recipientsworkstation mat

Procedures/Methods

Example: » accept software status
e correlate for program status
* send program status

Sub-responsibilities:

Responsibility: NGc-8  Request additional segments of part program

| TemporalAspects

LAEESENeS: | Message-

TCCTUNG

|[]|l|allﬁn program startup

nitatec

Completion: program shutdown

+ Process:

Span: execution and prove-out

Discrete / Continuous

‘ _Descnpnml_mmmmm_ammmmgmmmm iast

|__Description:__part program raquast
|__Attribites:  program ki

_Constraints:

Likely Recipientsworkstahon mqt

Procedures/Methods

Example: . accept additional segments request
* request part program
« send next appropnate segment

Sub-responsibilities:
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Responsibility: NGC-9 Initialize start of péﬁ program activities

| TemporalAspects

incoming Mesaages: | Message-

Initiation: pant program loaded

initia U*

Completion: _ part program started

Process

Span: execution and prove-out

Ok igoing Messages:

<

Discrete / Continuous

. R
L nesl Raosenirnoo

i‘}—\cﬁ_ ‘7‘\7! vy

[ TN

External Resources

|__Description:  cycle stat commang!

| Likely. Source:._operatorinterface.
| Reliahili

rty’ stronq
|__ConYcts: oot likely

| Products

|__Descrintion: _commands for stading

__Aftrihites ___code: parameters

Constraints:

|__Likely Becipienfsptan interpretatior

g(ocedlu res/Methods

: « accept cycle start command

ample sendpstac}'tc commands for
vanous activities

Sub-responsibilities:

Responsibility: NGC-10 Initiate end of part program activities

TemporalAspects oleled! ‘oreants ;
|__Initiation: ___program startup ;
__Qmple_t.sz_._mmmutdown o -- caram |
s an: [P, = [ER-NT CORORCIN !
!
Discrete / Contmuous '
1 2 3

External Besources

__Descnption:__part program______ | next command step___} machina model
| ikely Saurme:workstaban mgt___ | plan nterpretation 1 koawledge hase

Sron
o

| RBeliabilty. . strong strong
1 .

Pty not likety
| Products

not likely

100N.___pncing commands
_Aftributes.____code. parameters.

_Constraints:

Likely Recipientspian nterpretaton

Procedures/Methods
Example: ¢ accept p(:nacgrogram & next step

ﬁ\cen next step 1s nil, Jetermme
end ot program activites

Sub-responsibilities:
« determme end of program activities
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Responsibility: NGc-11  Determine where to send part program codes
cts Incoming Messages: Message-
Initiation: program startup indliated
Procass:

Completion: program shutdown

Span: execution and prove-out
Discrete / Continuous

Cuigoing Messages:

R ZaTetsy

o

SN TN
| External Resources
Descrintion;____part program machine model
__Lgkpl\/ Salrce: . workstation mat knowledae base
Rphahnlnv weak strong
[ _Convicts:  notlikely not likely
roducts
Description: modiYed part program

code: parameters

Attrihutes:

Constraints:

| Likely Recipientsplan interpretation

= accept progra
Procedures/Methods ; 325208 PR, model

Sub-responsibilities:
» determine rg‘:tipient of each

|_Completion: __endofprogmmstream | . =
t Quigeing Vessages:
exectionandprove-out . 1 R -

Example: « determine recipient of each
component com) . N
* augment 0909 with destinatidns + augment code with destinations
+ sond modived program
Responsibility:  nGc-12 Interpret part program
TemparalAspects IrCONNng Visssages ! Message
inning of program stream Initiatss
Process

September 23, 1994

Span:
Discrete / Continuous
1 2 3 4
snpsen s 7Renimsas [Fee
xtema Lqum HCes
.leﬁly_Smme_MSxanm.mauagemsm_hnma.hase
| Beliahility: strong,
_an.mts._mumv pot fikely
Products
|_Description:___parsed error message—machani
I : : |____codae: paramatars § code: paramatars.
—Constraints:
Likely Recipientspian interpretation | | mechanisms
Procedures/Methods Sub-responsibilities:
Example:  «accept program % » validate code for machine )
* access machine model » parse codes for motion / mechanism
» validate code for ma
* parsa codes for mouon /mechamsm
SOSAS Rev. 2.6




Responsibility: NGC-13 Augment code with component destinations

cis

Initiation: program startup

Completion:  program shutdown

incoming Messages

Message-
infliated

Span: execution and prove-out

Discrete / Continuous

Outgoing Messages!

Process:

©w

I eyl f3en v ry e

.ExtemaLBesources

|__Description: _pan program codes | _recipient

| Beliahility: strong strong

|__Likely Source: plan interpretation_|_plan interpretation

| Concts®  notlikely pot likely

Products.

__Description: ___modived part progral

Constraints:

Likely Recioi . —

Procedures/Methods tp codes and
* accept ram codes and rect
Example: pﬂa‘t’e pacodesr%gm recipients P
. send modied code

Sub-responsibilities:

nts

Responsibility: NGC-14 Inform operator of part program comments

| TemparalAspects,

Initiation: program startup

Completion: program shutdown

Span: execution and prove-out

Discrete / Continuous

|_RBeliabilitv: ___strong weak

_krﬁMeOQe.msn

stronen

|_Con'cts:  notikely not likely

o

Products

| _Description:__commants to nparatof

L __Attnihutes:  code: parameters

|__Constraints:_pnonty levels

Likely Recipientsoperator intertace

Procedures/Methods
Example: ’“ep,;‘i.%"mm"é’&s 10 send to operator
* send comments

Sub-responsibilities:

September 23, 1994
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Responsibility:

NGC-15 Augment code for coordination between motion and mechanigv

TemporalAspects b

Initiation: padiculartasks nacessary 1

k§°ssage-
inidated
100eSS!

ncoming Mes

s .
SEgeE!
¥

Completion: tasks completed

Span: execution and prove-out !
Discrete / Continuous

Cutgoing Messages:

JEngmal Resources

|__Description: . pan pogram

L Likely Source: _workstationmanagement
_Beliability: strong

|_Con¥acts: i
‘ S actlikely.

Description:

Products
augmented part program

_Anﬂbule,sh__andxmzlauammmsaousmng

isin

| Constraints: ____machina dapendant

| Procedures/Methods

Example: [accepto P erereq equiring tight coordinatipn

« look ahead to determine degree of cool
* determine new sequencmg

Sub-responsibilities:

« determine tasks requiring tight coordination
{?ok ahead to determine degree of coord.
etermine new sequencing

Responsibility: NGC-16 Translate coordi

nate systems

TemporalAspects incomong Wessaves:  Miessage-
Initiation: start of part program : i'm"ﬂec
Completion: _program completed - AP Process:
Span: execubon and prove-out e " < .

Discrete / Continuous ?
1 2 3

External Resaurces

_Description:__partprogram_______|___machine model____]___coordinate frame_majeis
| Likely_Source: plan interoretaton___| ._Medoebase__kmwiedge_basa

_Belxablmv strong strong
not uke!v not likety

_Erodl 1cts

__Descnption: _coordnate transfomnapans

| __Atiributes.____ code. parameters

Ints. _ dependent on machun

Likely Recipientgsan mterpretaton

Procedures/Methodsacceot progfam

Example: e oo
* access coorainate frame m
 transtorm coordinates

September 23, 1994

Sm%b-responsnbnlmes
* analysis for transformaton required

Is ® fransform coorainates

B-9
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Responsibility: NGC-17 interpret augmentéd code

s ncoming Messages: Message-
Initiation: program startup inilialed
Completion: ___program shutdown e Process:
‘ a0 Riageoces: ;
Span: execution and prove-out O*}*go g viessages:

Discrete / Continuous

1 2 3 4
Dl Loy
s Y R
Ay
Z\j;; [ar=
External Besources
|_Descrintion: . augmented program| _status reports machine model

|| ikely_Source:..plan intermratation motion/mechanism knowiedpa hase
__Behabnhtv strong strong stropa
Con'cts: not likely not fikely not likety
roducts
|__Descrption:____coordination commagds
Constraiots:
Li Recipi -

ProcedureglMg{hO,F FBlogram. and status reports

Example:. access ma ine model
e track program execution

. detenmne wait/continue commands for coo!

Sub-responsibilities:
» determine wait/continue commands for coordination

ination

Responsibility: NGC-18 Determine wait/continue commands for coordination

 Temporal Aspects

Initiation: program startup

Completion: program shutdown

Span: execytion and prove-out

Discrete / Continuous

Tm tsn oy

T Tt

T eme

FadprnaLBpem ees

|__Reliahiity: _ strong strong

|| ikely Saurce: plan mtefpretation ___| plan interpretabon___| knawlerga basa

Shrong

[ ConWcts:  notsely oot likely

| Products

| Desrnntion:___coordinahan commang

|__Attnhites: _____code; parameters

_Constraints:

| Likely Recipientsmotonvmechanism

Procedures/Methods

* access
* determine next coordination required
* send coordination commands

M * acce (4] ram & ram status
Exampie: gt pant prog prog

Sub-responsibilities:

September 23, 1994
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Responsibility: NGC-19 Swap current tool with required tool
spects incoming Messages: Message-
| Initiation: tool chanqge required initiated
Completion: __tool change accomplished Precess:
Span: exacution and prove-out Outgoing Messages
Discrete / Continuous
1 2 3 4
 External_Besources
| Descrintion: _cu menttoolid _ next tool id swap command
Likeh plan interpretation |__planinterprefation
L _Beliahility: strong strong strong
ConYicts: naot likely not likely nat likely
Products
| Descrintion:.___swap commands
|__Aftrinides: ___code: parameters
Constraints:
Likely Recioi —
Procedures/Methods Sub-responsibilities:
Example: * access current, next tool ids
« determine location of next tool
« track location of current tool
* send swap commands to mechanism
Responsibility: NGC-20 Map tool id to actual tool location
| TemporalAspects “comirg Messages gfo.z‘;fassacc-
Initiation: system startup | fnitiatst
Completion; _system shutdown P Y SO  Process
Span: execution and prove-out R A 1
Discrete / Continuous '
1 2 3 4
/-;r\“. ;/‘L‘/‘ [E€adal
ool model
knowledge base
stronq
: not likety
| Products
—Description:___tool iocation
|__Attributes:
_Constraints._
Likely Recipients:tooi changer
Procedures/Methods Sub-responsibilities:
Example:  *accept required tool id
* access tool model
» determune 100l location
* send tool location
September 23, 1994 B-11 SOSAS Rev. 2.6




Responsibility:

NGC-21 Load and unload tools

| TemporalAspects

|__Initiation: = system starfup

Completion: __ system shutdown

Incoming Massages:

Message-
iniated

Span: setup

Discrete / Continuous

Cuigoing Messages:

Procass:

w

H
i

nessl Rasanrsoo
;

s rir HOry

External Besources

Description: ___tools required

fools supplied

100l model

|_Likely_Source: factory scheduler_
Reliability: strong weak

_operatorintedace 1 _knowiadga base

strong

| _Con¥icts: nat likely not fikely

not likely

Products

intion: . modived tool model

Attribtites:

Canstraints:

Uikelv Recipients:

Procedures/Methods
Example : » accept tools requ:red and supplied
= access tool mod
* ypdate model wuh new tool data
* send modied tool mode!

Sub-responsibilities:

Responsibility: NGC-22 Track tool locations

TemporalAspects

Completion: _system shutdown

Span: execution and prove-out

Discrete / Continuous

| Description: _lasticolid _____Inextoolid |

|_naxt toal's location

__Beliability. __strong stong stmng
| _Convcts: __ notlikely notlikety pat ikely
| Products
Descrntion.

Affributes:  code: parameters

|__Constraints:__ ool sze

|__Likely Recipients:knowledge base

Procedures/Methods _ Sub-responsibilities:
Example: :aecess%mtggagn + design pant

1ast tool 10 next took location
* send last tool's new location

September 23, 1994 B-12
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Responsibility:

NGC-23 Swap current part'\.lvith next part

September 23, 1994

TemporalAspects Incoming Messages: | Message-
Initiation: part %&turing mechanism started Intiated
jon:  part Yiuring mechanism shut dowr - Process:
gg;:?let'on program execution Outgoing Messages: :
Discrete / Continuous
i 2
Lonai Raeaoiprnee
Nazer: indinn:
DBrrivngatones
Constranis:
Sepirear
External Resources
Description: part *turing commahds machine model
|__Likely Source: mechanism control knowledge base
L Beliability: strong strong
Convicts: not likely not likely
_Products
| _Descrintion:_command ack actuator signals
Attributes: code: parameter voitage
|__Constraints:____success of executioh  device types
L ikelv Recipientsmechanism contrdl actuators
Procedures/Methodept part Muring commands Sub-responsibilities:
Example: = convert to actuator signals
* send signals
+ send command acknowledgment
Responsibility: NGC-24 identify current paliet
emporalAspects incoming Messages: | Message-
\nitiation: paliet sturing mechanism started | I~ ated
Completion; _paliet ¥ufing mechanism shut dow=——————————— Proccss:
Span: .execution CUVCOING VICS8AGTS |
Discrete / Continuous |
1 2 4
s ; i o
External Resources
_Description: __sensor data
Likely Source: SENsor interface
__Reliability: weak
Con'cts: not likety
Products
|__Description:  paliet id
__Attributes: code; parameters
|_Constraints:_
Likely Recipientsworkstation mgt
Procedures/Methods Sub-responsibilities:
Example: . %cc sensor data
A
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Responsibility:

NGC-25 Maintain control of feedrate-dependent operations

cis

Initiation: start of part program

Completion: __program completed

Message-

incoming Messagess: essag
inibated

o=

Span: execution and prove-out

Discrete / Continuous

e - Process:
Ouigoing Messages N

LosalBosoucas

Tlogrrintion:

Bitring ron:

Iy o .y P
Gonstrainis:

Sensrines:

Extemal Besources

|__Description: ___command rate

mechanism commands}|

plan interpretation

__ijely Saurce:.. motion
|_Beliahility- strong strong

| _Concts __ npotlikely not likely

Products

Descriptian: mechanism commatds

|_Aftrihutes: code: parameters

Constraints: altered for smooth Yew

L_Likely Recipients:mechanism

Procedures/Methods

Example: * accept command rate, commands
s for continuous %w information
» modify Yw according to rate
* sand modikation commands

Sub-responsibilities:
» analysis for continuous Yw information

Responsibility: NGC-26 Control acceleration and deceleration

TpmnnralAcnprh

ID[IlaIl.QD motion started

Completion: _motion stopped

Span: aexecution and prove-out

Discrete / Continuous

. —
Yt MR = N Tt bdadel

N ape e e

AQ-':.n: 4y

=
R R AT Stk

[

Sy v

axs step limits

knowiedge base

|__Reliahility- strong stronq

not likety

| Aftributes:

|__Constraints:

Likely Recipients:trajectory generatg

=

Procedures/Methods
Example:  accept goal rate
* access axis st‘eep‘grggs imits
. mod:ty ra within
e send cgf?\?nland rate

Sub-responsibilities:

September 23, 1994
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Responsibility:

NGC-27 Dethe normals to'bath

ots

incoming Messagss: fessage-

Initiation- motion started

indiated

Completion: _ motion stopped

Process:

Span: exacution and prove-out

Ouigoing Messages:

Discrete / Continuous

2 3

Extemal Besqurces

|__Description: _trajectory,

._J_ikely_'Saurce;_tmjam:w_gﬂnaram
| _Beliability: strong

ConYicts: not likaly

Products

|__Aftributes:

Constraints:

|_Likely Recipientstrajectory generato

Procedures/Methods

. * accept trajecto
Example: « calculate normals

¢ send normals

Sub-responsibilities:

Responsibility: NGC-28 Normalize trajectory with respect to time

chaeoe.

| TemporalAspects
\nitation: "

Completion: _motion stopped

Span:
Discrete / Continuous

execution and prove-out !

i

1 e~

 External Resources

|| ikely Source: trajectory generator | knowledge base
_Reliahility: _ strong

Con'cts: pot likety

not likety

Products

|__Description: ___pomalizad trajectory

_Attnhites:_____setponts: parameters

|__Constraints:

Likety Recipients:trajectory generatgr

Procedures/Methods
Example:  accept trajectory
* access machine

« send nomalized frajectory

Sub-responsibilities:
« segment trajectory mnto setpoints for imesteps

model
= segment trajectory into setpoints for tiesteps

September 23, 1994
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Responsibility:

NGC-29 Translate motion commands to trajectory

cls incoming Messages: Message-
__Initiation: start of part program Initi a‘{ec
Completion;  Program completed Process:
Span: execution and prove-out Quigoing Messages:
Discrete / Continuous
i ) e
Loool Besniress
g nﬂ_'s:’
External Besources
Descrintion: motion command cutter offsets position correctiol rate corrections
Likely Source: plan interpretation motion motion moton
__Behabllml strong weak weak weak
Can'cts: not likely not likely not likely not likely
Products . i .
Description: _trajectory information
| Attrihutes: setpoints: parameterg
Constraints: __per coordinate frame}
Likely Becipientsactuator controt |

Procedures/Methods. accept program
Example: i or
® access comections

« determine setpoints and
» send trajectory

» analysis for destination informjation  * analysis

Sub-responsibilities:
s for destination information

» determine setpoints and parameters
eters

Responsibility: NGC-30 Coordinate with mechanisms

Lrocomirg Messages:

( Temparal Aspects
| _initiation: _ program started

Q_Qmplgjg : gggrarn shutdown

~

Span:
Discrete / Contmuous

3 n‘»r:a~ L2 =~
ior iy ol T

T e

 Extemnal Resources.

__Description" _augmentedcode ]
| ikely Sourmce: plan interpretation | plan interpretabion
Relianil g

1 . not likety

‘ Products

_Description:__wait inticator

| __Aftrinutes: ___code; parametet

__Constraints.

Likety Recipients:pian interpretaton

Procedures/Methods
Example:

« it code is to wait, send wait indicator
« if warting, accept continue command

Sub-responsibilities:

September 23, 1994
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Responsibility:

NGC-31 Avoid data starvatibn

TpmpnralAc.npr-tq
initiation- start of part program

Completion: program completed

H trven B o g mm on N
incoming Messagss:

Span: execution and prove-out

Ouigoin

[
.
N
O]
[¢4]
&
)
e
[11]
“s

Discrete / Continuous

Message-
inttialed
Procass;

N

1w

Extemal Besources

__Description: _motion commands

machinamodel

| _Beliability:.__strong strong

| Likely Sourcepanintemretation {knowledge base

Conlicts- notdikely

Products

| Description: _inok-ahead analysis reults

___Consizalnts_nmaimamnm_hmﬁan 5

[ Uikelv Recinients-oian o

Procedures/Methods

Example: « accept motion commands
* analysis for look-ahead information
e se nse to control

ransfer

look-ahead res;
rate of command

Sub-responsibilities:

* analysis for look-ahead information

Responsibility: NGc-32 Determine rate

of movement

cts

|_Intiation: motion started

Completion: _motion stopped

Span: execution and prove-out

Discrete / Continuous

emal Resources

|_Beliahility: __strong [ weak

|__Description:  ratecommands  {spindlespeed 1 toal madal
|__Likely Saurce-trajectory generator_{ sensor interface,

| knawledoe basa

stmpa.

|_Con%cts:  notlikely not likety

b

nat likply

Products

__Descriptionz__goalrata
| __Aftribites:

—Constraints:

=

Likely Recipients:rajectory generatd

Procedures/Methods

Example: < accept rate commands
* access spindie speed, tool model
. determme appropnate goal rate

« send goal rate

Sub-responsibilities:

September 23, 1994
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Responsibility:

NGC-33 Adjust trajectory fdf tool deviations

TemparalAspects incoming Messages: Message-
__Initiation:  sfagofpatprogam 1 Initiated
Completion: ___program completed PP Process:
Span: execution and prove-out uigoing Messages:
Discrete / Continuous
1 2 3 4

Qg opines:

* determine cutter compensation

 External Besources
|__Description; normals fa trajectoryl ... ool offset amounts{  plana selection
__Likely Source: trjectony.generation] . knowledge base..| . planinterpretation
_Behahlmy___slronﬂ strang steong
Canvicts: notlikely not likely notlikely
Products
|__Description:__citter offsets.
|__Aftrihutes: _values
__Constraints:____toal affsat accuracy
Likely RecipientSiaion
Procedures/Methods Sub-responsibilities:
Example: - accept inajectory « determine cutter compensation

* send new trajectory
Responsibility: NGC-34 Determine trajectory corrections from predidable variations
Tor 1 “oory g niassagse: 4 5¢cl§
Inttiation: machune startup l ntatsu
Completion; _mactune shutdown T T o ‘.'""J'..C'SCI
Span: executon and prove-out ey e IEEEES !
Discrete / Continuous !
1 2 3 4
External Resources :
|__Descophnn: _ thermal data ____temporal data tables, polynomials| _ position
| ikely Source:_sensotnterface 1 operatng system knowledge base sensor interface
Reliahility: weak strong strong weak
| Con'cts'  mety not likety not likely not likely
Products.
—.Descnptinn: ___trajectory comrecton
|__Attrihites: _____cooe_parameters
_. Constraints;
Likely Recipientstraectory generatan

Procedures/Methods, ,.cess mactine model

Example: « access tempora! data
« access thermal data

* getermine necessary corrections
seond corections

Sub-responsibilities:

September 23, 1994
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Responsibility:

NGC-35 Determine trajectdfy corrections from sensed variations

Message-

__Likely Source: sensor interface

trajactory generation plan interpretation

cls incoming Messages: &
Initiation: sensor data beyond tolerance infliated
Completion: __sensor data with tolerance e eseages: Process:
Span: execution and prove-out LIgOING MESSages:
Discrete / Continuous
1 ) 3 4
External Besources
Description;___sensor data (force, tarqueinormals to trajectory. sensor folerances sensor ranges

knowiedge base

Beliability' weak strong strona strong
ConVicts: Jdikely oot likely pot likely not likely
Products
|__Description:....amor messaga | position.comaction | ratecomrection | snindle correction |
| Aftributes: ___code: parameters | value value valug
__Constraints: __had path . had sansark.machina.deneodent | _machine depepdent. 1 _machine.dapendant..|
|1 ikely Recipientsipertorinterface | trajectory generation | trajectory generation 1 _imjectary generation
Procedures/Methods: 255eRt aRMhals ior sensors | Sub-responsibilities:
Example: « compare sensor data againsf « continually monitor sensors
tolerances s calculate correction
» calculate cormection
= send comection

Responsibility:

NGC-36 Adjust trajectory with corrections generated by sensor data

cts

: Initiation: start of part program !
Completion: _ program completed _

' ; 2
P Aoy R
Rl OLeieN 1 t; o

i

3805

[ PN
i essags-

initatss

e

i Process:

September 23, 1994

Span: ocution and brov .Qu:gc ~g Mzgzazes: !
Discrete / Continuous '
1 2 3 4
| External Resources
| Descrintion.__trjectary | sensad comections
|1 ikely_Source:_tmjectory genaration} __motion
__Beliahility: ____strong stmna
|L_Con%cts. _ notlikely potlikely
Products.
|__Description:__modised frajectories
__Constraints:___non-permanent progfam change
Likely Recipientsactyator control fm
Erocedlures/Methods Sub-responsibilities:
xample: . j
P + 32P! Talaa orrections
* modity trajectory as per tolerances
* send new trajectory
B-19
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Responsibility: NGc-37 Translate servo commands into drive readable movement coerar

cts incoming Messagss: Message-
Initiation: start of part program inifiatsd
Completion: __program completed TIPS Process:
Span: execution and prove-out Ouigoing Messages:
Discrete / Continuous
1 ) 3

Pmnnl fRaaerivamer

[Py

| External_Besources
|__Descrintion: servo command pospions_kinematic equations feedback
Likely Source: trajectory generation knowledae base servo interface

|_Beliability: strong strong weak
Cancts: not likely not likely not likely
_Products
qucriptinn' movement commands following emor
__Attdbutes: voltage value
Constraints:  accuracy of models agcuracy.of encoders
|_Likely Becipientsaxis drives machine mode!
Procedures/Methods, ... Sub-responsibilities:
Example: einte %sté%?:%t&seen current position . gﬁvﬂﬁggﬂw&dﬁoﬁﬂ&m&hm and setpoin
e convert to command voltage
s sand ughgg

Responsibility:  NGC-38 Control motors to produce movement

s Soorung essages: 1 Acssage-
Initiation: receipt of voltage commands - yIniizatec
Completion: __feedback provided Y S  Procass:
Span. exacution and prove-out S SESGRES !
Discrete / Continuous
1i 2 3 4
| Extemal Resoumces
|_Descoption: ___movement comm feedback
__likely Soume: _actuator control motors
__Beliahility: strong strong
Con%cts: not tikety not likely
| Products
Desenption____motoccommands__|___feedback
| __Attribites: voltage values
__Constraints:____motor type accuracy of dewices
|_Likely Recipients:motors actuator control
Procedur accept movement - ibilities:
Errools :es/Methods. convertfor moors Sub r.ecsapneer:‘sglkggi
» accept leadscrew feedback * convert for actuator control
* convert tor actuator control
= send feedback
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Responsibility: NGC-39 Initiate startup prdéedures

R T e S I L Y N T L AT I

TemparalAspects incoming Messages: Message-
Initiation: system power on initinted
Completion; _startup completed — - Process:
Span: prior to all operations Ouigoing Messages
Discrete / Continuous

1 2 3

| External Besources

| Descrintion;__reference setpoints | _machine model

|| ikely_Source: opemtotinterface .| knowledae base

|_Beliability: strong strong
CanYicts: ont likely pot likely
roducts.

| _Descrintion: __diagnosticresults | axes coordinate zero positions
| __Attrihutes: _codes; parameters | codes: parameters

._Constzaints.;__dexdsse.twﬁ axes
|Likely Recipientsop if / maintenancel trajectory ge

neration

Procedures/Methods: 'g‘é“rﬁ',ﬁﬁ“é’,g °r{ ops%yggr
Example: * send diagngstics results

* send axes zero positions

Sub-responsibilities:

* determine axes zero positim]

« perform diagnostics .,
» determine akes coordinate zero positions

[

Responsibility: nNGC-40 Coordinate with factory scheduler/control system

cis comirg izssages pidt
Initiation: system start up 13
Completion: _system shut down T Teoess
Span: Nno program executing gy v ve I
Discrete / Continuous .
1 2 3 4
| External Resources
|__Descnntion: . _jobnstructions | machine model heartbeats
|1 ikely_ Source:_factory system_____ | knowledge base, all components
| Beliahility: stronq strong steong
L ConWcts:  nottikety not likety not fikety
Products.
_Descnption:____health ;nformation job_list too! kst Job status
_Attnhistes: cooe; parameters__| _id. pallevpart id. offsetd _tool id_location______} code: parameters ____
_Constraints:
Likely Recipientstactory system workstation mqt workstation mqt tactory system
Procedures/Methods * accept instructons Sub-responsibilities:
Example: 3 BCCess MAChing MOde! s « validate mstructions
« accept machine heartbeats « getenmine machine health
* determine machine health
ssoRd-hoathnionnation
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Responsibility:

NGC-41 Path planning baséd on part features, surface model, etc.

TemnporalAspects

incoming Messagss: Message-

Initiation: beginning of model-based program

iniliated

Completion:  program completed

o - Process:

Span: execution and prove-out

yigolng Messages:

Discrete / Continuous

N
[ 1Y)

External.Besaurces

|__Reliahility: weak strong

| _Descrintion; ___part description machine mode! |
Likely Source: workstationmgt | knowledpe base.

ascription

knowledqe base

strona

Canvcts: not likely nat likely

not likely

Products.

|__Descrption: __path plan

| Attributes: trajectories

|__Caonstraints: _machine dependent

Likely Recipientsmotion controt

Procedures/Methods' accept part description

Examp e: access machlne model,
stock d qn

* determine path r motion

* send path

Sub-responsibilities:
« determine path for motion given models

Responsibility:

[ TemparalAspects

intiation: sensor data beyond tolerance

NGC-42 Modify part program based on sensor data

Span: execution and prove-out

Completion; sensor data within tolerance ‘

Discrete / Continuous

strong

Descoption:__sensordata | _padpmgram | sansartolerancas }sensorranges |
_Likely Sourre: sensorinetface 1 wnskstatonmot__ | planinterpretabon | knowledge base |

patlikety

not likety notlikely

__Attribut

Procedures/Methodg weg;,g,
Example:

sensors

* compare sensor data against
tolerances

* adjust part program

* send new part program

- Descnption:_._pan program.—____|___afroc massage.
es.  blocksofcodes 1 code. parametsrs
_Constraints; __machine dependent_| __bad program_/ bad $ensors
Likely Recipientsvorkstaton planreng  gperator intertace

Sub-responsibilities:
* adjust pan program
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Responsibility:

NGC-43 Switch between position control to force control

TpmpnraIAeppmc:

|__Initiation: ~_statofpattprogram |}

Incoming Messages:

Message-
Intliated

Completion; _program completed PSS Process:
Span: execution and prove-out Quigoing Messages:
Discrete / Continuous
1 2 3 4
iz <
Ccnsirainis:
Qv e
External Besources
|__Descrintion:___ switch command___}_machine model part model current position & force
__Likehy Source:. trajectory genaration} knowiadge hasa knowledae base sensocinterdface...........}
|__Beliahility: strong strona strong weak
|_Can¥cts: ___notlikely not likely not likely not likely
Products
|_Description: _ aclivate command__| deactivate command.
| Aftribites:.. . code: parametars_._ | code: parameters
Caonstraints:
Likely Recipientsnotion motion

Procedures/Methods
Example: - accept switch command

Sub-responsibilities:

¢ v ; « intermediate conversion between control
« intermediate conversion between control

= send deactivate 10 positionfforce componeht
« send activate to force/position component

Responsibility:  NGC-44 Plan for multi-axis interactions
JemporalAspects SO LS
Initiation- start of pant program 3
Completion; _program completed T T :
Span: execution and prove-out e g YNSSGLES ;
Discrete / Continuous !
B | 2 3 4
A.c‘:, '.;\t\ -” AL
< 7 R
-xtemnal. Resources
|__Descrintion:___trajectory machine model
__|ikely Source: motion knowledge base
| Beliahility: strong strong
ConYicts: not likety not likety
| Products
intion: _Movement comma error message
| __Attnibiutes: code: parameters code: parameter
| Constraints; time kmitatons interacbon invahd
Likely Recipientsmotion operator interface

Procedures/Methods
Example: * accept trajecto

ry .
* pertorm look-ahead to determine possible
mutti-axis coordination optimizabon
Y program

Sub-responsibilities:

* perform look-ahead to determine
mult-axis coordinaton optimizaton

ible
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Responsibility:

NGC-45 Touch off for automatic setup

ts

incoming Messages Measaqe-

Initiation: setup of part

infinied

Completion:  tool in position

?roczgsc.

Span: prove-out

Ouigoing Message

M

Discrete / Continuous

W

Pommersd D3 en vy e en

.Extemal Resources

__Description;___trajectory rough temination point

sensor data servo feedback

__Likely Source: tmijedtory genaration

sensor interface hardware interface

|__Beliahiliy- _strong

weak strong

CaonYicts: not likety

likety not likely

oducts

| __Description: .__servo commands

--Attrihutes: voltage

| Constrainis:.... sepsoraccuracy

|_Likely Becipientsaxis motors

Procedures/Methods

Example: «accept trajectory rough termination point
* move to termination point
* continue move untit sensors or
servos pass tolerance

Sub-responsibilities:
» continue move until sensors or servos pass tolerance

Responsibility:

NGC-46 Perform sensor fusion

cts

Initiation: start of part program

Completion: __program completed

Span: prove-out and execution

Discrete / Continuous

| External Resources.

__Description: ___sensor data

machine model

knowiedge base

__|ikely_Souirce:_sensor intertace
|_RBeliability: strong

weak
Con'cts: not likety

Skety
Products.

| _Descriptinn: ___sensor miormabon

| __Attnhintes: values

__Constraints;____sensor accuracy

Likely Recipientstrajectory gen. / wis planning

Erocedures/Methods
xample: * accept sensor data
P o tuse %ta from multiple sensors
« convert data into information
* send informaton

Sub-responsibilities:
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Responsibility: NGC-47 Initiate shutdown procedures

TemporalAspects incoming Messages: | Message-
|nitiation: system start up Iniiated
Completion:  System shutdown Process:
Span? always running Cutgoing Messages:

Discrete / Continuous
1 2 2 4

L mral Recsiirnog

External Resources
Description: watchdog warning machine model

| Likely-Source;.watchdog system knowledge base

__Reliahility: strong strong
CanVicts: not likely not likely

Products

|__Descrintion: shutdown command
Aftributes: code: parameters

__Constraints: time limitations
Likely Recipients:all components

Procedures/Methods Sub-responsibilities:

Example: ,
« accept watchdog waming

« detemine safe Shutdown procedures

» send shutdown command

Responsibility: NGC-48 Cue the operator for manual tasks

TemporalAspects AZCTUNG ASESEGES
Initiation receipt of specis commands
Compietion: valid operator response F oo ieseraos
Span: execution and prove-out Mgy TR
Discrete / Continuous ‘
: i 2 3
External Besources
L _Descrntion: part program machine model operator response
|| ikely Source: workstation managempentknowiedge base code: parameters
[_Reliahility: ___weak stronq strong
L Contcts: not likely not likely not likely
Products
__Description: __halt/continue cues error message
__Atiribites: code: parameters code: parameters
| Constraints:
_Likely Recipientgian interpretation/gperator interface operator interface
pt program blocks N IPTTIC
| Procedures/MethoQiaseest program blocks, Sub-responsibilities:
Example: « venfy manual tasks » verify manual tasks
» halt processing « halt block processing
*cue ‘gerator for task * resume processing
« resume processing with operator response
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Handle operator command interactions

|_Likely Recipientgtan interpretation

operator interface

Responsibility: ngc-49
cts ncoming Messages: Message-
initiation: system start up Intlinted
Completion: system shut down - " Process:
Span: always running Ouigoing Messages! -
Discrete / Continuous
1 o 3

! Sal Bosnunas

ExtemaLFlesources
Description;..._part program manual interaction
I lkel}LSQu[]‘e workstation management_operator interface
Reliahility: weak weak
CaonYicts: not likely not likely

Products

|__Description: __execution commands eITOr Message
Attrihutes: code: parameters code: parameter
Constraints:___non-pemmanent change _ interaction inyalid

Procedures/Methods A5 ot when
Example: teractions needed
. msel? v%%whon commands

» send execition commands

Sub-responsibilities:
* hatt program
« insert execution commands if valid

Responsibility:

NGC-50 Handle modi¥ations of offset values by operator

| TemporalAspects rusnurg ey
L_Inftiation: operator signat v
mpletion; 1 program r shutdown o trmraoe Froless
Span: funning A b e i
Discrete / Continuous [
1 2 3
anmalﬁpw ces.
|__Descr| |____machine modeis
1 ikely Source: _opsmatocintedaca_{ _ knowledge hasa
|__Beliahility: strong steang
| Concts:  poikey nat fikely
Products
—Description___madixt machine.mqdals_operator 109
| Aftrihiftes:  endes parameters | codae: paramater
__Constraints: __operator capabilives {____mamory si7a
Likely Recipientsknowiedgebase | operating sysiem
Procedures/Methods- accept operator offsets Sub-responsibilities:
Example: LIoggommanss, mocel
. send new models
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oy

Responsibility: Ngc-51 Handle operator interface for manual interpolation command

TemporalAspects Incoming Messages: Message-
Initiation: system start up initiated
Completion: _system shut down Y Process:
Span: always running Cuigoing Messages:

Discrete / Continuous
1 2 2 4

b
e
;f\l £

External Besaurces

|__Descriotion;___trajectory manual interpolatior} command

L Likely Source; tmjectory generation} . ope ratorinterface
Beliabilify: strong strong
Convicts: not likely not likely

Products
Descripntion:___.servo commands halt commands
Attribites: voltage code: parameter
Constraints;___accuracy of operator|

L Likely Recipientsaxis motor trajectory generatiob

Procedures/l\/I'%tcl'égé:it%?li ectory Sub-responsibilities:

Example: « accopt manual interpolation command « interpolate for next setpoint

. sendphan to trajectory generation

-imemglate for next si int
(]

Responsibility:  NGC-52 Ensure safety

TemporaiAspects Neleeiashe L lcssaze-
Initiation: system start up | Q:t.ate:
Completion:  system shut down S e oserr g, s Drocess
Span: alwa running (NN I DTN E
Discrete / Continuous )

1 2 3 4
LoLr v

o

Extemal Resources:

‘ ! Qs heartbeats tolarances
|1 ikelv_Source: _hamwareinterface | aficompopents | knowledge base
| Beliability: strong strong _strong
|_Con%cts: _ notlikely oot likely not likely

Products

|__Description:____waichdog waming

_Attnhutes: ____codes: parameters

|__Constraints:___out of tolerance

Likely Recipients shutdown compongnt
Procedures/Methods Sub-responsibilities:

Example: « accept voita
* access hearibeats
* compare aganst tolerances
» send waming if tolerances exceeded
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Responsibility:

NGC-53 Generate a part pfdgram

cts incoming Messages: Message-
Initiation: part design completed intligted
Completion: _program developed —— — Process
Span: product development Cuigoing Messages:
Discrete / Continuous

External Besources

|__Description; __ part model stock model operations available | machine model
| Likely Source: knowledgabase | knowledgehase | knowledgebase .. 1 knowledgebase
| Beliability: strong strong strong. strong
Canlicts: not likety nat likely natlikely ot likaly
Products
| Description: ___pan program
| Attributes: . code: parameters
Constraints:
| _Likely Recipientsworkstation mat
Procedures/Methods Sub-responsibilities:
Exampie: . gggg;%an'ras:i%cn’g ;“vgﬁgg\‘g modeis « determine sequence of operations that
. determinge sequence of operations will change stock (as is) to part (to be)
* send part program

Responsibility: NGC-54 Customize part program for particular machine

Tpmpnralkqppme.

| Initiation- ___new par program

Completion: _part program customized

Span: product development |
Discrete / Continuous

L

Py

_External Resources
__Descrntion: | machine model

scoption:  padprogram |
1 ikely_ Saurce:workstaton mgt_____{ knowledge base

| Beliahility:  strong strong

__Con'cts: not likety not likely

| Products.

| __Description: _austomizad part pmgrhm

| Aftrihutes: ____ code: parameters

_Constraints:

Likely Recipientssyorkstation mat

Procedures/Methods
. * al n m
Example: s acceptpa program
* customize program for machine
= send customized part program

Sub-responsibilities:
« customize program for machine
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Responsibility: NGC-55 Schedule processes in part program for optimal coordination
TemporalAspects incoming Messages: Message-
| Initiation: _ partprogramcompleted | Initie ‘wG
Completion: _ part program re-sequenced S Veseanms Proces
Span: product development LUGoInY Vessages
Discrete / Continuous
3 > 3 4
s sonl Basournss
Y ARd ’\1‘;?"‘!\
et at=u1 fﬂs-r\-/-
RVAVIRN 1SR L.
Exiemal Bpeources
__Description:____pant program part model stock model
| Likelr.Source; warkstation mgt.. | _knowledge base L knowledge base
._Behabmfv strong strong strong
ConYicts: nat likely not likely oot likely
Products
|__Description:_._resequenced part pregram
|__Attribites......._code: pameters
|__Constraints:
Likely Recipientsworkstation mat
Procedures/Methods . Sub-responsibilities:
. = accept part program « analyze program for optimali
Example: J aocegs%anpstgck models ¥26 prog P fty
e program for optimality
. se resequenced part program
Responsibility.: NGC-56 Simulate part program execution
cts Toaur lonennns
Initiation- simulation initiated
Completion: _simutation complete ~ s trieizeon
Span: maintenance AR
Discrete / Continuous
i 2 3 4
Extemal Resources
. Descrintion.__pan program start command hardware models ___|_softwara modais
1 ikelv Source: workstation mgt operator intertace knowledqge base knowledoe hasa___ |
|_Beliability: __strong strong strong strong
__ConActs:  notfkely not fikety not likety oot likety
Products
| Aftribiutes: ___code: parameters
|__Constraints.
Likely Recipientsoperator intertace
Procedures/Methods Sub-responsibilities:
Example: eacce ram and start command
e e com o actuators, axes
* respond to commands as devices would
* send results
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Responsibility:

NGC-57 Simulate software faults

cis

ming Messagas:

|nitiation: simulation initiated Iniated
Completion: _simuation complete P oo Process
Span: maintenance Outgoing Message
Discrete / Continuous
1 ”) 3
.:,\:‘;’:: --4: {'::";‘ .: VI LN
Rbepingg
(:: = 1.
External Resaurces
|__Description: __part program software errors mode!
Likele Sourcewoarkstationmgt .} knowledae base
__B&llablhj;v‘__stmna strong
Contcts: not likaly not likely
Products
|__Descrintion: i
|__Aftributes: code: parameters
Jpnmmwnm
Procedures/Methods Sub-responsibilities:
Example . accer?y part program and errors model
software model to contain
selected errors
» send modi'ed software model
Responsibility: NGC-58 Simulate hardware fautts
| TemporalAspects ~eomiro Zossanng: HLdgssale
__Initiation: _ smutaton initiated jloratze
| _Completion: smuaponcomplete "~ —— . _______ I o
Span: in e R A ;
Discrete / Continuous ‘
1 2 3 4
Extemnal Resources
|__Description:__ pan program hargware efrors mode!
|| ikelv_Source: workstabon mgt knowledge base
—Beliabilty: __ strong strong
‘ ! : no! likety
Products
L _Descoption: i pal
|__Attributes: __code; parameters
—Constraints. _efrors nsered
Likely Recipientsknowiedqe base
Exrocedlures/Methods Sub-responsibilities:
ample:
p m Rgmwa and errors model
selected errors
* send moch %ed hardware model
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Responsibility:

NGC-59 Create a part design

| TemporalAspects

|_Initiation: _part identived

Message-

Ataa =
tncoming Messages:
inftinted

1 ikelv_Source:knowledgebase | components... 1 sensoriotedace

. rGCRsE:
Completion: _ design completed Dutgoing Messages Proc
Span: product development SR B v
Discrete / Continuous
3 > 3 4.
External Besources
__Pescrintion:____part description part requirements physical laws
) ikely.Source;-engineerng .} engineenng .1 knowledge hase
Rphahllml weak weak strong
ConYcts: oot likely not likely not likely
Products.
|_Descrintion: _ part desian model
|_Attritutes:  features
Caonstraints:
|__Likely Recipientsmodel managemen
Procedures/Methods LSub-responsibiIities:
Example: * accept part descnphon & requiremen » design part
« access ph laws
nr? parnt design model
Responsibility: NGC-60 Notify maintenance when parameters exceed tolerances
cis reoimunn LSseanne A
| Initiation: system startup H
|__Completion: _system shutdown D oemir fecerras  Process
Span: execution and prove-out | v e EEEe I
Discrete / Continuous ’
1 2 3 4
External Resources.
| __Descrintion:.__machine model _____{ machine status | sansad status

waak

|_Reliability: ___strong____ }weak
__ConWcts:  notlikely

nat likety

not likely
- Products.

|__Aftribines:  code: parameters

__Constraints:

Likely Recipients:tactory control

Procedures/Methods
Example: - amrmamne model

om machine status and sensed status
. © status agains! tolerances

» send exception it out of tolerance

Sub-responsibilities:
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Responsibility:

NGC-61 Maintain models .

TemporalAspects

|pitiation: system startup

Completion: _ system shutdown

Incoming Messages!

Span: execution and prove-out

Cutgoing Messag

<

Discrete / Continuous

Messags-
Initiated
FOCEss:

L et Qr.g/\ngfv\g

Extemal Resources

|__Description: ___updates fo models | __models

RBeliahili tv strong strona

—Likely.Source:_op.iffmechanism/mcion_knowiadge hase

Can MS not ||ke|y not like_!y

Products

| Descrintion:..._updated modeis

|_Attribites:

Canstraints:

| Lkelv Recigieris:

Procedures/Methods

Example: « accept updates to models
» access models

« validate updates

* send updated models

Sub-responsibilities:

Responsibility: NGC-62 Initiate job sequence

TemporalAspects

Mmo

cx e

mpl own

Span: ;
Discrete / Continuous

External Besources

Descmtmn.__mrremorogmmsta _job bist

lan interpretation | workstation mat

—1ikely Source:p!
_Behamln\r strong strong
| _Concts:  natlik

gty oot likety
| Products

Desmptmn___mmmstan.mnx vl

Constramts

Likely Recipients:operator intertacd

Procedures/Methods

Example: e accept current program status
¢ access job list

e determine if current
* send request to start next cycle

Sub-responsibilities:

rogram is completed
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Responsibility:

NGC-63 Verify proper part brogram and revision number for each part

TemporalAspects

Initiation- system startup

Completion:  system shutdown

”C v} ?’;

Span: execute and prove-out

Discrete / Continuous

Message-
indinted
Process)

P anni i ens:

Aty

o~
I
s o3

QAf i

Extemal Besaurces

|_Description:  partid

part program

job list

—Likely Source: workstationmot |

workstation mat __factory schedbiler

strong

strong

_Beliabiliry' strong
Caonlicts: not likely

not fikely

not likely

Products.

_Descoption: ___ veriation notiéatiof

| Attributes:

|__Constraints:

|_Likely Recipients:workstation mgt

Procedures/Methods

Example:
aocess job
that aﬂ match

* accept part id and part program

ven kation notilkation

Sub-responsibilities:

Responsibility: NGC-64 Identify current part

| TemporalAspects

|_Initiation: ____svstem startup

Completion: _system shutdown

Span: execution and prove-out

Discrete / Continuous

| External Resources

| Description:___request for part id
L1 ikely Snurce: workstabon mgt

Products.

—Descnption:___ pant xt

| Aftnbintes: __ code; parameters

_Constraints:

Likely Recipients workstation mqt

Procedures/Methods

Example: - + accent request for part id
ccess sensor for id

. sena panrt @

Sub-responsibilities:
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Responsibility: NGC-65 Ensure sanctity of safe zones

TemporalAspects incoming Messages Message-

| Initiation:  system startup Intiated
Completion: __system shutdown VIV gt :

Span: execution and prove-out Cuigting Messages:

Discrete / Continuous

n
»
4w

| N

~nldno e veeseey

N o\ -~
<_ NN

External Besaurces

|__Descriotion;___traiectory. part model machine_megel

Likely Saupce: tmjectory generator knowledge base |__knowledos hase

Beliability: strong strong strang

1, . jkely pat likely not likely
Products

|__Description: __meodived trajectory
__Attributes: __satooinis: parameterg

__Copstraints:_

Uikely B T

Procedures/Methods ec( Sub-responsibilities:
M « accept trajecto
Example. accegs y el, machine modet
* modify odjec?ory if sate zones violateq!
* send modi¥d trajectory

Responsibility: nNGC-66 Reassignment of tasks between machine and operator

cts TOTITUTG VLnSanns! .

| Initiation system startup .1:

|Completion: _system shutdown T o aeen oo rrocEss
sDan X .on ndDI’O ‘ P g o uyuC«‘.::bA

Discrete / Continuous

4l
Y

External Resources:

_Descnphnan: __partprogram ______ | operatof reassignments

ource: plan interprelation __ § operator intedface

| Likely S
|__Rebahilty: ___strong strong
L Con'cts: notfikely not tikely

Products.

D ; _
| __Attibites: _ code: parameters

| __Constraints:;

Likely Recipients:plan mterpretation

Procedures/Methods Sub-responsibilities:

Example:» * accept operator reassignments
. mod:ty gamgramprogprg;n operator reassignment
* send modi'ed part program
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Responsibility: NGC-67 Coordinate spindlé gear changes with servo control

| TempaoralAspects incoming Messagss: Message-
|__Initiation: motion started iniiinted
Completion: __motion stopped S et Procass:
Span: execution and prove-out SHOIRG Messayes
Discrete / Continuous
1 2 3

LoonliBRoomirama

External Besources

Example: » accept movement commands
* access spindie gear state, machine m

* send modied movement commands

el

Description;____spindle gear state movement commands! _magchine model
. Likely Source: mechanism motion knowledge base
Reliability: strong strong strona
ConVicts: not likely not likely nat likely
Products
|__Description: ___movement commands
| Aftributes:
| Constraints:
. D —
Procedures/Methods Sub-responsibilities:

« modify movement commands according to spindle gear

Responsibility: NGC-68 Re-evaluate coordinate zeros for altemnate tool choices

cis
initiation: system startup

Ratalas
[RIRAAS I |

et lwvl.

Completion: __system shutdown
_SPani execution and prove-out
Discrete / Continuous

e por

1)

P

Extemal Resources

| Streng

|__Descoption: . tool substituton | coordinate system modql__tonl modal
—Likely Source:mechapysm | knowledge base

| ___knawledoa base

stna

|__Beliahility: __strong |
|_Con¥cts. oot likely not likely

o

nat likety

Products.

—Descniption.___new conntinate zams

|__Aftribites:

_Constraints:

Likely Recipients plan interpretation

Procedures/Methods

Example:  *accept tool substitution
* access tool and coordinate system moy
* determine new coordinate zeros

Sub-responsibilities:

Hel

* send new coordinate zeros
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Responsibility:

NGC-69 Translate NURBSA irajectories into motion commands

TemporalAspects Incoming Messages: Message-
Initiation: start of part program indtiated
Completion: __program completed e — ) Procass:
Span: execution and prove-out Ouigoing Messages!

Discrete / Gontinuous
1 2 2
3 3enonmyyommes

External_ Besources

| _Beliahility: strong strong

__Description: __NURBS trajectory | NURBS model
| Likely Saurce:..planganeration__1 . knowdedga base

Conicts: not likety not likely

Products

motion commands

| Description:
|__Attributes:

7

Constraints:

L ikely Recipientsactuator control

Procedures/Methods NURBS

. * accept trajectol
Example: 3000 NURBS modei
« determine setpoints and parameters

* send new trajectory

Sub-responsibilities:
« determine setpoints and parameters

Responsibility:

NGC-70 Manage canned cycles

cts

|nitiation: start of part program

Ay
BRI IR

| Completion:  program completed

Span:
Discrete / Continuous

execytionandproveout 1

ey
At

b/

2 3

| External Resources.

__sirong

|_Descoption: _padprogram | machinamodal  { —caooad cycla laxicon,
| ikely Source. worksiaton manageryent_knawladga hasa_ | ___knowledge base

—Beliahilty: ____weak
anlms- not likety

Products

| Descn : i
__Attribites: ______codes; parameters

__Constraints. __imned cycles

-

Likely Recipientgrajectory generatio

Procedures/Meth
Erampios - M3 par pogram

* access canned cycle iexicon

« parse cycle into individual comm.
Y '8 1o INd

Sub-responsibilities:
« parse cycle into individual commands
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Responsibility:  NGc-71 Notitation of errors such as singularitjashup, unreachable ppint
emporalAspects incoming Messages: Message-
Initiation: start of part program initiated
Completion: __program completed e Precess:
Span: execution and prove-out MWRZOING MESEages
Discrete / Continuous
1 2 3 4
r.\(‘,’*.:‘vvr\:zo
External Resources
Descrintion;___ trajectory setpoints machine model sensor data eror descriptions
| Likely Source: trajectory generation knowledge base sensor interface knowledge base
Beliahility: strong strong weak strong
Canvicts not likely not likely likely not likely
roducts
Description:.__emor noti‘kation hatt command
Attribites: code: parameters code: parameters
Constraints: __accuracy of sensors
Likely Recipientsyperator interface all components
Procedlures/Methods Sub-responsibilities:
aMPIe: « model machine as program executes * model machine as program executes
* compare model aggins error descriptions * compare model against ermror descriptions
* send halt command if match
. iation if match
Responsibility:  nge-72 Automatically
spects
Initiation- automatic feedrate/force activated
Completion:  automatic feedrate/force deactivat
Span: prove-out and execution
Discrete / Continuous
1 2 3 4
| External Resources
_Description: tfeedrate / feedforce yalue sensor data machine model
| ikely Source:; moton sensor intertace knowledge base
| Beliahility: strong weak strong
Con'Acts: not likely likely not likety
oducts
—Descrintion:___servo commands
- Aftihites:______voltage :
—-Constraints; ___accuracy of machind mode
Likely Recipients axs motor |
Procedures/Methods . Sub-responsibilities:
Example' * accept teedrate/force desired « MONItOr SeNsors
*  monitor sensors .
* adjust voltage to maintain tolerance
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Responsibility: NGC-73 Execute plans tafgéted at discrete actuators

TemporalAspects Incoming Messages: Message-
Initiation: start of part program initinted
Completion: __program completed T——— Process:
Span: execution and prove-out Ouigoing Messages:

Discrete / Continuous
b 2 3 4
L Soa-Bosauisss
Qe e

| External Besources

| __Description: discrete commands machine model
| ikel}bSoJ Lrce- . plan interpretation knowledae base

. Beliability: strong strong
Contcls: not likely not likely

Products.
Descrintion: actuator commandsj

| Attributes: voltage
Constraints: device types
Likely Recipients:hardware interface

Procedures/Methods Sub-responsibilities:

Example: * accept discrete commands
 convert for appropriate voitage per devi
* send voltage

Responsibility: NGC-74 Evaluate part with probe

_IempomlAgppﬂq toTmite . JI3alss
Initiation: program startup
Completion: program shutdown N omem iiiaos
Span: xecution and prove-out S e TEEEEES i
Discrete / Continuous i
i 2 3
Extemal Resources
|_Descrintion:_part model probe readings__| _machine model
_Likely Sourre:knowedgebase____ | sensofinterface_| knowledge base
__Reliahility: _ strong weak strong.
_Conlcts:  notlikely pot likely pot tikely
Products
__Descnption:__proha saiachon_____}____probe commands]_movement commands | __probe fesults
__Attrihites.____code: parameters___| _ code: parameters| _code: parameters____{___code: parameters__
__Constraints:
Likely Recipientstoot chanqe mechapism __sensor intertace | motion workstation mqt
Procedures/Methods Sub-responsibilities:
Example:  +access pant. machine models «» measure part
* send command to change tool to probe
* measure part
* send probe results
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Responsibility:  NGC-75 Evaluate tool with probe

cis Incoming Messagss: Message-
| Initiation: program startup inffialed
Completion: _program shutdown VIR YYSNUeS Procass
Span: execution and prove-out AHGTING VESSages:
Discrete / Continuous
1 2 3 4
LoneliResoursass
o
al Resources
intion:. . tool model probe readings machine model
] ik.el.\,l.s.ource;._knondedge hasa {__sensor interface knowledoe base
| Beliahility: strong strong stronq
Conlicts: nat likely not fikely pat likely
Products
|__Description:..__probe selection probs commands | movement command probe results
L Aftributes:..._code: paramete code: parameters | code: parameters code: parameters
Constraints:
_Likely Recipients:tool change mechanism sensor interface motion workstation mat

Procedures/Methods  mach |
. * access tool, machine models
Example: * send command to change tool to probe
* measure tool

e send probe results

Sub-responsibilities:
* measure part

Responsibility: NGC-76 Automatically leam machine’kinematics

TpmpnralAepprh

Initiation systern startup

ammwaime~ Linmoanmac:
COTAT S Lagssales.

Completion: system shutdown
Span: execution and prove-out
Discrete / Continuous

I qesim
(PRSI

T, eme

L External Resources

—Descontion”_machinestatus.____{__sensed status______ |
|1 ikelv Source:comoonents ! sensor interface |

|__kinematic equations
| _knowledge base

kin eq. history

knowledge base

strong

stronq

|_Beliahility: __strong weak
1 . v fikely

0ot likety,

not likety

Products

—Deseription:.__moditd kinematics

_Attrihites: matrices

__Constraints:

Likely Recipientsknowledge base

Procedures/Methods
Example: * access kinematic equations and history
- Bhalyze history and siatu

L B S
* mod%; and ser}l)d equations

Sub-responsibilities:
« analyze history and status
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APPENDIX C — ARCHITECTURE DESCRIPTION RULES

The following rules guide the construction of the components of an application architecture.
Some of them are based on requirements, others are based on primitive components. The rules
are expressed in simple English, although the architecture description language (ADL) explained
in Appendix F could be used for ease in computation. Sequence numbers were added for ease of

reference.

Most Important Structural Rule:

If a primitive component (PC NGC-#) needs a resource,
you need some other PC that has that resource as a product.

C.1  ADL Rules Accessing Multiple Primitive Components

C.l.1 If you want to control an axis,
you need PC NGC-38, Control motors to produce movement,
you need PC NGC-49, Handle operator command interactions.

C.l.2 If you have PC NGC-29,
you need PC NGC-28, Normalize trajectory with respect to time,
you need PC NGC-37, Translate servo commands into drive readable movement
commands.

C.13 If you want to maximize speed,
you need PC NGC-26, Contro! acceleration and deceleration,
you need PC NGC-32, Determine rate of movement.

Cl4 If you want to optimize cutting,
you need PC NGC-4, Maintain information on available tools,
you need PC NGC-26, Contro! acceleration and deceleration,
you need PC NGC-32, Determine rate of movement,
you need PC NGC-35. Determine trajectory corrections from predictable vanations,
you need force sensors,
you need torque sensors.

C.1.5 If you want to control tool changes,
you need PC NGC-21, Load and unload tool.
you need PC NGC-20, Map tool id to actual tool location,
you need PC NGC-19, Swap current tool with required tool,
you need PC NGC-22, Track tool locations.
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C.1.6 If you want to control pallet changés, |
you need PC NGC-23, Swap current part with next part,
you need PC NGC-24, Identify current part.

C.l17 If you have PC NGC-15,
you need PC NGC-17, Interpret augmented code,
you need PC NGC-18, Determine wait/continue commands for coordination.

C.18 If you are coordinating mechanisms and motion through a high-level language,
you need PC NGC-11, Determine where to send part program codes,
you need PC NGC-12, Interpretation of part program,
you need PC NGC-13, Augment code with component destmauons.

C.1.9 If your high-level language commands are embodied in a part program,
you need PC NGC-14, Inform operator of part program comments,
you need PC NGC-9, Initialize start of part program activities,
you need PC NGC-10, Initialize end of part program activities,
you need PC NGC-48, Cue the operator for manual tasks,
you need PC NGC-49, Handle operator command interactions.

C.1.10  If you want to work multiple parts with multiple programs as a job,
you need PC NGC-3, Determine each part's program and coordinate offsets,
you need PC NGC-7, Determine status of active program,
you need PC NGC-5, Ensure that resources required by the jobs are available,
you need PC NGC-6, Determine if next part's program matches current part's
program,
you need PC NGC-62, Initiate job sequence.

C.1.11 If you want to create new parts,
you need PC NGC-59, Create a part design,
you need PC NGC-53, Generate a part program,
you need PC NGC-1, Handle operator modifications to part program statements,
you need PC NGC-54, Customize part program for particular machine,
you need PC NGC-55, Schedule processes in part program for optimal coordination.

C.1.12  If you want to simulate operations,
you need PC NGC-56, Simulate part program execution.
you need PC NGC-57, Simulate software faults,
you need PC NGC-58, Simulate hardware faults.

C.2  ADL Rules Linking Primitive Components

C.2.l If you have PC NGC-34,
you need PC NGC-36, Adjust trajectory with corrections generated by sensor data.

C22 If you have PC NGC-33,
you need PC NGC-4, Maintain information on available tools.
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C.3  ADL Rules Accessing Single Primitive Components

C3.1

C3.2

C33

C3.4

C3.5

C3.6

C.3.7

C3.8

C.3.9

C.3.10

C3.11

C.3.12

C.3.13

C.3.14

C.3.15

If you want the operator to customize the part program,
you need PC NGC-1, Handle operator modifications to part program statements.

If you are going to store part programs for automatic access,
you need PC NGC-2, Part program storage activities.

If you want to execute a job list of multiple arts and programs,
you need PC NGC-3, Determine each part's program and coordinate offsets.

If you have dynamic tool data,
you need PC NGC-4, Maintain information on available tools.

If you want to execute programs with various resources,
you need PC NGC-5, Ensure that resources required by the jobs are available.

If you want to execute various programs,
you need PC NGC-6, Determine if next part's program matches current part's
program.

If you need to keep track of the executing program,
you need PC NGC-7, Determine status of active program.

If you cannot load an entire program at once,
you need PC NGC-8, Request additional segments of part program.

If you need to perform activities at the start of every program,
you need PC NGC-9, Initialize start of part program activities.

If you need to perform activities at the end of every program,
you need PC NGC-10, Initiate end of part program activites.

If you need to distribute code to various components,
you need PC NGC-11, Determine where to send part program codes.

If you need to parse code for motion and mechanisms,
you need PC NGC-12, Interpretation of part program.

If you need to track recipients of code,
you need PC NGC-13, Augment code with component destinations.

If you want the operator to follow the program execution,
you need PC NGC-14, Inform operator of part program comments.

If you want to coordinate mechanism control with motion control,
you need PC NGC-15, Augment code for coordination between motion and
mechanisms.
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C3.16

C.3.17

C.3.18

C3.19

C.3.20

C.3.21

C.3.22

C.3.23

C3.24

C.3.25

C.3.26

C3.27

C3.28
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If you have multiple coordinate syétéms,
you need PC NGC-16, Translate coordinate systems.

If you need to track program execution,
you need PC NGC-17, Interpret augmented code.

If you need to coordinate notion and mechanisms,
you need PC NGC-18, Determine wait/continue commands for coordination.

If you have multiple tools,
you need PC NGC-19, Swap current tool with required tool.

If you have dynamic tool location assignments,
you need PC NGC-20, Map tool id to actual tool location.

If your operator places tools in the tool changer,
you need PC NGC-21, Load and unload tools.

If you the tool changer swaps tool locations,
you need PC NGC-22, Track tool locations.

If the part handler can automatically change parts,
you need PC NGC-23, Swap current part with next part.

If you need to verify the loaded pallet,
you need PC NGC-24, Identify current part.

If you want to control a continuous flow device,
you need PC NGC-25, Maintain control of feedrate-dependent operations.

If you want to ensure the trajectory follows the machine's physical limitations,
you need PC NGC-26, Control acceleration and deceleration.

If you need to modify the trajectory,
you need PC NGC-27, Define normals to path.

If you need to follow a trajectory based on setpoints,
you need PC NGC-28, Normalize trajectory with respect to time.

If you want to enter high-level commands instead of axis commands,
you need PC NGC-29, Translate motion commands to trajectory.

If you need motion and mechanisms to coordinate,
you need PC NGC-30, Coordinate with mechanisms.

If you want to avoid witness marks,
you need PC NGC-31, Avoid data starvation.

If you want the goal rate to adjust for a chip per tooth rate,
you need PC NGC-32, Determine rate of movement.




C3.33 If you want to adjust for tool variaﬁdns,
you need PC NGC-33, Adjust trajectory for tool deviations.

C.3.34.1 If you want to adjust for predictable variations in axis linearity,
you need PC NGC-34, Determine trajectory corrections from predictable variations.

C.3.34.2 If you want to adjust for predictable variations with respect to temperature,
you need temperature sensors,
you need to track time of machine powered up,
you need PC NGC-34, Determine trajectory correction from predictable variations.

C.3.35 If you want to adjust for unpredictable variations in trajectory following,
you need PC NGC-35, Determine trajectory corrections from sensed variations,
you need force sensors,
you need torque sensors.

C.3.36  If you want to quickly modify the trajectory with pre-analyzed corrections,
you need PC NGC-36, Adjust trajectory with corrections generated by sensor data..

C.3.37 If you need to interpolate between current position and setpoints,
you need PC NGC-37, Translate servo commands into drive readable movement
commands.

C.3.38 If you need a closed loop motion control,
you need PC NGC-38, Control motors to produce movement.

C.3.39  If you need diagnostics and zero positions determined,
you need PC NGC-39, Initiate startup procedures.

C.3.40 If you want automatic job control by the factory scheduling system,
you need PC NGC-40, Coordinate with factory scheduler/control system.

C.341 If vou want to generate paths with as-is / to-be algorithms,
you need PC NGC-41, Path planning based on part features, surface model. etc.

C.3.42  If you want sensor data to be used for program modificatons,
you need PC NGC-42, Modify part program based on sensor data.

C.3.43  If you can control axes by both force and position,
you need PC NGC-43, switch between position control and force control.

C34u If you have more than one axis,
you need PC NGC-44, Plan for multi-axis interactions.

C.3.45 If you want automatic setup of parts,
you need PC NGC-45, Touch off for automatic setup.
you need touch sensors.

C.3.46  If you have multiple sensors providing one piece of information,
you need PC NGC-46, Perform sensor fusion.
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C.3.47

C3.48

C.3.49

C.3.50

C.3.51

C.3.52

C.3.53

C.3.54

C.3.55

C.3.56

C.3.57

C.3.58

C.3.59

If you want to gracefully shutdowni-form exception conditions,
you need PC NGC-47, Initiate shutdown procedures.

If you expect the part program to require interaction with the operator,
you need PC NGC-48, Cue the operator for manual tasks.

If you expect the operator to control the program execution,
you need PC NGC-49, Handle operator command interactions.

If you want the operator to enter offsets,
you need PC NGC-50, Handle modifications of offset values by operator.

If you expect the operator to perform manual interpolation,
you need PC NGC-51, Handle operator interface for manual interpolation commands.

If you need a system watchdog,
you need PC NGC-52, Ensure safety.

If you want to generate programs with as-is / to-be algorithms,
you need PC NGC-53, Generate a part program.

If you need to execute the same program on various machines,
you need PC NGC-54, Customize part program for particular machine.

If you want to improve the efficiency of the part program,
you need PC NGC-55, Schedule processes in part program for optimal coordination.

If you want to test the system without cutting a part,
you need PC NGC-56, Simulate part program execution.

If you want to introduce software errors into the system for testing,
you need PC NGC-57, Simulate software faults.

If you want to introduce hardware errors into the system for testing,
you need PC NGC-58, Simulate hardware faults.

If you want to generate a manufacturable part design from a concept,
you need PC NGC-59, Create a part design.

If you want maintenance to be informed automatically of problems,
you need PC NGC-60, Notify maintenance when parameters exceed tolerances.

If you want to keep machine, part, tool (etc) models in a central knowledge-base,
you need PC NGC-61, Maintain models.

If you want to setup multiple executions in one job list,
you need PC NGC-62, Initiate job sequence.
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C.3.63

part,

C3.64

C.3.65

C.3.66

C.3.67

C.3.68

C.3.69

C.3.70

C.3.71

C372

C.3.73

C.3.74

C3.75

C.3.76

If you want to ensure the right program is loaded on the right machine for the right

you need PC NGC-63, Verify proper part program and revision number for each part.

If you need to verify the part in the fixture,
you need PC NGC-64, Identify current part.

If you want to modify the trajectory to stay within safe zones,
you need PC NGC-65, Ensure sanctity of safe zones.

If you want to allow the operator to perform some machine functions,
you need PC NGC-66, Reassignment of tasks between machine and operator.

If you want to coordinate motion with the spindle gear setting,
you need PC NGC-67, Coordinate spindle gear changes with servo control.

If you allow substitute tools with different offsets,
you need PC NGC-68, Re-evaluate coordinate zeros for alternate tool choices.

If you want to follow complex curves,
you need PC NGC-69, Translate NURBS trajectories into motion commands.

If you want to program using canned cycles,
you need PC NGC-70, Manage canned cycles.

If you want to warn of impending movement errors,
you need PC NGC-71, Notification of errors such as singularity, lashup, unreachable
points.

If you want the system to maintain a constant rate or force,
you need PC NGC-72, Automatic feedrate / feedforce at point of contact.

If you want to control discrete actuators,
you need PC NGC-73, Executing plans targeted at discrete actuators.

If you want to measure for part accuracy,
you need PC NGC-74, Evaluate part with probe.

If vou want to measure for tool accuracy,
you need PC NGC-75, Evaluate tool with probe.

If you want the machine to learn its own physical nature,
you need PC NGC-76, Automatically learn machine’s kinematics.
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APPENDIX D — DOMAIN MODELS

Domain models describe the domain. They include a description of, actions of, relationships to,
communications among, and constraints of entities. The implementation may follow an object-
oriented paradigm or a functional or other paradigm. Some representations of domain models
include object diagrams, task diagrams, topology diagrams, and interaction diagrams. Some
domains may be better expressed in specialized models, such as algorithm models or hybrid

control models.

While domain models contain a full view of the domain, the models' appearance changes to
support multiple viewpoints. Particular objects, subsets of attributes and services, and certain
relationships are only relevant to certain views. Viewpoint also drives the collection of
responsibilities into components and the relevance of reference requirements. The domain

models for NGC are listed below.

September 26, 1994 D-1 SOSAS Rev. 2.6




Enterprise

I

Factory
* Center
¢
O
Cell Component
Part Fixture Operator Machine
Factory
Process Planner
Center
Intercenter Transport <
Factory Storage
4
| Intercell Transport Cell Center Storage
‘ Tool l'
L ¥
Py
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Machine O
reference frame
specifications
stop machine Kinematic Model v
l forward kinematics
inverse kinematics
4
NC Machine Robot Non-TCP Machine Axis
AN
AGV
Pallet Shuttle
NC Machine
Vertical Mill Machine Electrodischarge Machine
Knee Mill Machine Electron Beam Machine
Universal Mill Machine Umasomc Machine
Moving Column Machine Electrochemical Machine
Lathe
Abrasive Waterjet Machine
Saw
¥
Y
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NC Machine uses Fixture
T holds
¥ |
Part
- Table Operator Console Controller
]
Coolant Mechanism Spindle Tool Changer
holds stores
T}
Spindle

angle
position vector
rotaton direchon
rotaton speed

Table velocrty vector
lock spindle?

5’:,2‘2,‘.33 ::;toorr move spindle (posttion, veloctty)?
table move? off spindle?
z on spindle (speed, directon)?
has onent spindle (angel)?
has
Axis
.
Fy

September 26, 1994

D-4

SOSAS Rev. 2.6




~AXis

fine interpolation

Cartesian
Motion
Description

w

m

e

m

Servo Control Drive Motor Lead Screw
encoder error map
linear2rotary
rotary2linear
Control Law
Linear forceftorque
linear position/velocity
rotational forceftorque
rotational position/velocity
Kinematic Description Servo Controller
©
leadscrew len P . » error
leadscrew pite i gain
evaluate Sensor
update Data evaluate
Oy ®
e, o
v
Machine Interface
) . angular velocity to commands
w, = angular velocity desired “sensor data to motion
= angular velocity measured I
= angle measured s
Wy, = angular veloctty desired with manipulation %’:g
4
Sensors Commands

|
|
|
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uses
Rabot '| End Effector

attach grasper

rop
follow path

grasp
move
Link Joint Face Plate Controller
lenath
Drive
Motor
uses o
End Effector [— Tool
Remover Gripper Sprayer
—— End Mill

=1 Welder

—1 Cutter
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Abrasive Tool

Tool o
centerpoint
cut direction (CLW, CCLW)

cutter compensation plane (zy, yz, xz)

cutter comtpensation radius offset
auge vector

gomge position ———1| Grind Wheel |

length

length offset

number ——-I Grind Belt I

optimal feedrate
optimal spindle speed

orientation

position vector ——i Sandpaper ]
radius -

time in use o

tool change position __I Abrasive Cloth I

velocity vector

A

——  Fiat End Mill |
I Saw Belt I
—  DritBit |
[ Saw Blade l
{ Flexible Tap J
Part
—  RigidTap |
geometry
process plan
: safety envelope
F'xiure serial code
Steel Block Tape
Bolt
Parallels
Vice
Chuck
i
?r?géﬁ%n%m type Clamp
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¢ Position Sensor

Sensor

A

Voltage Sensor

Y Velocity Sensor

Current Sensor

Acceleration Sensor

Temperature Sensor

]
Force Sensor |

Flow Sensor

Vibration Sensor

Sensors

T

Motion Sensor

Linear Potentometer
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A

Thermometer

Strain Gauge
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‘Input Device

Joystick

A

Spaceball

Keyboard

Touchscreen

Mouse

Lightpen

Switch

Interactive Mechanism Mode

Output Device

A

Display Panel

Enunciator Panel

Printer

Indicator Lamp

Voice

Digitizing Tablet
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Operator Console

indicator lights
data entry keys
knobs

output screen
remote pendant
switches

coolant off
coolant on

cycle interrupt
cycle start
emergency stop
feedrate overnde
fine jog

motion hold
panic

power on

rapid jog

spindle speed overnde
spindie start
spindle stop

tool change

D-9

SOSAS Rev. 2.6




Task
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A
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Endfeed Gnnding
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Infeed Gnnding
Throughfeed Gnnding
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An Example of a Controller Topology

Workstation
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Independent Applications
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encoders motors tach motors valves lsiévx&tches
Sensors solenoids
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Independent Applications
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APPENDIX E — DOMAIN DICTIONARY

This dictionary contains the terminology and definitions from the domain of manufacturing in
general and in the domain of the Next Generation Controller in particular. The dictionary is

" divided into several sections: a bibliography, a glossary of terms, notation, and a category index.
The bibliography lists the information sources used. Sources include books, documents
generated by NCMS members, commercial brochures, and notes from knowledge acquisition
sessions. The glossary lists all terms (which are boldfaced) and their definitions alphabetically.
Each definition includes a bibliographical annotation of the form [#] to indicate its source.
Where a term has definitions from more than one source, each definition is annotated separately.
The notation section includes tables of symbols, nomenclature, and units. The category index
lists all terms divided into meaningful categories. Although a term may apply to more than one
category, Most are listed only once in one category.
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E.2  Glossary of Terms

25D

a 2D representation (topographical map) of
a 3D object. 2.5D cannot be rotated,
because the necessary 3D information is
only from one perspective, so there is
insufficient information to produce a 3D
model. [16]

abbe error

a linear positioning error caused by a
combination of an angular error in the ways,
and an offset between the precision
determining element (leadscrew, feedback
device, etc.) and the actual point of interest.

(8]

abort
to cease normal operations [5]

abrasive waterjet machine (AW])

a machine which performs material removal
via a stream of water containing an abrasive
solute at high pressure.

absolute

applies to measurements, in a standard,
fixed reference, as opposed to moving
reference; compare with relative [5]

absolute value

common math function; synonym for
magnitude; standard notation IxI;  for
vectors, absolute value means length
(magnitude) of the vector [5]

abstract data type
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1 a non standard, user defined data type.

[6]

2 a class of objects together with a set of
operations which can be applied to them.
The objects are entirely characterized
through the external behavior of the
operations. Neither the  storage
representation nor the implementation of the
operations should be known to the user. [6]

AC
abbreviation for alternating current.

acceleration

rate of change of velocity; either scalar or
vector, often with subscripts to denote the
coordinate frame; time derivative of
velocity; time integral of jerk; standard
symbol a, A; standard units ft/s?, g;
primary units L/8" [5]

accelerometer

an inertial device for measuring
acceleration, usually in three orthogonal
axes (lateral X, longitudinal Y, and vertical
Z); accelerometers usually consists of a
mass, spring, and damper, accelerometers
are usually included in inertial sensors [5]

AC induction motor

a device that uses alternmating current to
produce mechanical energy. These motors
do not have brushes and are simple to
operate as well as inexpensive to produce.
However, they are very difficult to control.
DC brushless motors are used as AC servo
motors. [4]
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accuracy

1 measure to exactness, possibly expressed
in percent, for example, position measured
+10% ; compare with precision. [5]

-2 extent of agreement of measured/reported
value with true magnitude. [7]

3 extent to which a given value for a
measurement agrees with the standard for
that measurement. The degree of
correctness of a quality or expression. [11]

activity

a repetitive, well-defined set of tasks that
have common functional characteristics. {7]
actuator

a motor or transducer that converts
electrical, hydraulic, or pneumatic energy to
motion. [7]

adaptive control

a response to time-varying characteristics of
the machinery, material, and process
involving an adjustment of elements in the
feedback control loop. [7]

ADL

abbr for  Applicaion  Development
Language.

AGVY

abbr for Automated Ground Vehicle.

Al
abbr for Artificial Intelligence.

aiding
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a process by which one or more sensors
provide data to another sensor to produce
results better than any single sensor. Aiding
occurs at the physical device level,
depending upon specific implementation of
the device. Aiding is automatically
controlled by software without input from
an operator [5]

algorithm
1 a sequence of mathematical operations
that precisely performs a specific task. [4]

2 a finite set of well defined rules for the
solution of a problem in a finite number of
steps. [6]

American National Standards Institute
(ANSI)

an organization consisting of producers,
consumers, and general interest groups, that
establish the procedures by which accredited
organizations create and maintain voluntary
industry standards in the United States. [6]

AMICE
abbr for European Computer Integrated
Manufacturing Architecture (in reverse)

analog input/output

continuous data input or output presented as
a measurable quantity such as voltage and
current. [7]

angle
synonym for angular position;
units rad, deg; primary units 1 [5]

standard

angular acceleration
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rate of change of angular velocity, either -

scalar or vector, often with subscripts to
denote the coordinate frame; time
derivative of angular velocity; time integral
of angular acceleration; standard symbol a;
standard units rad/s'; primary units 1/8' [5]

angular position

amount of rotation about an axis, either
scalar or vector, often with subscripts to
denote the coordinate frame; time integral
of angular velocity; synonym for angle;
standard symbol 6; standard units rad, deg;
primary units 1 [5]

angular velocity

rate of change of rotation about an axis,
either scalar or vector, often with subscripts
to denote the coordinate frame; time
derivative of angular position; time integral
of angular acceleration; see tachometer;
standard symbol ®; standard units rad/s,
Tpm; primary units 1/6 [5]

ANSI
abbr for American National Standards
Institute.

aperiodic

a process that executes based on events
rather than a fixed rate, it is not
synchronized to other processes of interest;
compare with periodic [5]

APl
abbr for  Application  Programming
Interface.

application program

a program that, when executed on a NGC
computing platform, performs designated
functions. [7]

September 26, 1994

E-5

application programming interface (API)
an interface that provides modules access to
vendor components, shared components,
and computing platform services. [7]

application-specific integrated circuit
(ASIC) . ,
a custom hardwired chip that performs a

desired function.

application viewpoint
a DSSA view of a system.

approach vector
machine's normal approach of moving to the
piece. Can be dynamically changed. {20]

architecture description language (ADL)
an ADL describes components’ structures
and specifies their protocols.

architecture viewpoint
a DSSA view of a system.

Arcnet

Arcnet is classified as a deterministic, high
speced 2.5 Mb/sec, peer-to-peer token
passing LAN. Arcnet is deterministic in that
is allows the user to calculate the worst case
latency of the network based on the number
of nodes in use. Arcnet provides the
software with a high-level interface that
minimizes software overhead. Packets are
written to the Arcnet controller along with
the destination address and a single
command is given to begin message
transmission. The completed transmission
and reception of a packet can be signaled
with an interrupt.
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Arcnet can be used by a number of network
configurations. It can be used in a star
configuration which uses active and passive
hubs to grow the network in any shape
required.  Arcnet also supports a bus
configuration which uses a high impedance
version of the network transceiver on each
node, and enables several nodes to be
connected to a bus section of cabling by
short cable spurs. Star and bus
configurations can be mixed to provide the
most effective layout for any installation.

Arcnet supports multiple media. Physically,
the connection can be made with coaxial,
fiber optic, and twisted pair cabling
including 485. typically, the network is tied
together with inexpensive RG62 coaxial
cable, making it highly immune to electrical
noise. A network can be up to 4 miles long.
the maximum node-to-node or node-to-hub
distance 1s 2000 feet.

Arcnet was designed to allow nodes to be
added or removed during live everyday use
while the network is running. There is no
need to shut down. The protocol will
automatically reconfigure itself within 60
milliseconds of a node being removed or
failing. [10]

arctangent

common math function; standard notation
arctan x, atan x, tan-'x, tan''(y,x); tan-(y,x)
means two-argument arctangent of y/x [5]

area clear milling

method of surface finishing in which the
tool follows a simple back-and-forth pattern
across the part surface. [15]

arm
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an interconnected set of links and articulated
joints between an end effector and its
support structure. [7]

artificial intelligence (AI)

the ability of a process to perform functions
normally associated with human
intelligence, such as reasoning, learning, and
self-improvement. A technology or field of
study that encompasses all attempts to
emulate or reproduce human neurological
functions, such as cognition, perception and
action, through symbolic means. [14]

ASCII
abbr for American Standard
Information Interchange.

Code for

ASIC
abbr for Application-Specific Integrated
Circuit

assembly

a group of parts and/or subassemblies that
are put together. An assembly may be an
end item or a component of a higher level
assembly. [6]

asset

any expendable resource within the
manufacturing workstation. Asset does not
include the machines under control. [7]

async
abbr for Asynchronous.

asynchronous
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tasks or events that occur at non-fixed time -

intervals and are large independent of one
another; compare with synchronous [7]

attribute
1 data element that represents a
characteristic used to describe an object. [7]

2 a quality or characteristic element of an
entity, having a name and a value; an item
of information about an entity; properties
which describe data objects. [6]

autonomous control
independent control over the sequence,
options, and schedule of tasks. [7]

availability

the measure of time that a manufacturing
workstation is free to carry out its
designated functions. [7]

averaging filter

a filter for combining multiple data sources,
usually of the same type, by adding with
weighted averages; a simple average of the
data sources; compare with complementary
filter, Kalman filter.

Averaging filters are often designed as:
n

y = Zl'.oma'

where a; are usually computed at run time
such that

(5]

._-M:
R
]

AW]
abbr for Abrasive WaterJet machine.
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axis
1 one direction in an orthogonal reference
frame [5]

2 Used to locate or move the part. An axis
is mathematically described as one of the
reference lines of a coordinate system, such
as Cartesian coordinates (X, y, and z). There
canbex,y, z, a,b,c,u, v,and w axes. [4]

3 Any line used as a fixed reference in
conjunction with one or more other
references for determining the position of a
point or of a series of points. [11]

4 the center line, real or imaginary, passing
through an object about which it could
rotate. a point of reference. [9]

backlash

the amount of free play between a leadscrew
and nut, or worm and worm gear. It is
determined by measuring the range of
angular movement of the driven shaft which
results in no motion. [8]

band-pass filter (BPF)

a filter that allows frequencies between two
cutoff frequencies to pass while attenuating
frequencies outside the cutoff frequencies; a
band-pass filter can be constructed as the
composition of a low-pass filter and a high-
pass filter [5]

band saw

a type of saw machine in the form of a
continuous steel belt running over pulleys.
[13]
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batch execution

a condition that occurs when the controller
is in the normal production mode.
Interaction may be required initially, but
file-based operations are generally thought
of as being "automatic”. This operation is
- characterized by the execution of internally
represented  plans, and facilitates
part/process production while performing
planning operations. A file typically
consists of pre-generated batched control
plan or process plan information that is
executed automatically from start to finish.

[7]

BCD
abbr for Binary Coded Decimal.

BCL
abbr for Binary Cutter Location.

binary cutter location (BCL)

a numeric control programming and
interpretation scheme that is based on a
generic machine reference. This eliminates
the need for post processing the CNC
program for a specific machine or type of

machine. CNCs designed for BCL
interpretation can execute the BCL
instructions directly. [6]

bias

an offset applied to a measurement for error
correction; standard engineering term

synonym for offset [5]

bed

machine's cutting surface, also referred to as
the "table"; the part is attached to this
surface with a clamping device. [4]
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bed mill

a.k.a. mill or machining center. A type of
machine that is more powerful than a knee
mill and can be used to cut large parts in
large quantities. @ The bed can travel
horizontally or vertically on a bed mill, and
the cutting area is usually enclosed. [4]

block

a group of instructions from a part program
to control machine actions. A block usually
describes a discrete movement or action
such as cutting a bolt circle. [4]

block cycle time
time it takes to execute one line of
executable RS-274 code [15]

blue
a finishing task.

BOC
abbr for Buick, Oldsmobile, Cadillac; a
now defunct GM organization.

bolt

a type of fixture; any of several types of
strong fastening rods, pins, or screws,
usually threaded to receive a nut. [11]

bore
a machining task; to make a hole in a
material by turning a tool.

BPF
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abbr for Band-Pass Filter [5]

break chip
temporarily stop z-motion of the tool to
break off the chip. [15]

broach

1 v. a machining task; to cut with a broach
tool.

2 n. a cutting tool for removing material
from metal or plastic to shape an outside
surface or hole that has been previously
formed, consisting of a bar of suitable
length provided on its surface with a series
of cutting edges or teeth that increase in size
from the entering or starting end. [13]

brushless motor

an "inside-out” DC motor, with a permanent
magnet rotor, and electrical coils in the
stator. Commutation of current in the
windings is typically achieved via external
switching transistors, and Hall effect
detectors. This avoids the limited life of
brushes and their radiated EMI. [8]

CAD
abbr for Computer-Aided Design.

calibration

1 an interactive condition that occurs when
the controller is in the maintenance mode;
starts processes unique to a specific machine
or process that enables the operator to fine
tune the controller. This mode shall be used
to adjust control law gains, modify axis soft
limits, input positional offsets, verify
setpoint accuracy, adjust overshoot and
balance process parameters, or adjust other
known model inaccuracies though the use of
error correction tables and/or other methods.
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It is assumed that this mode will rely heavily
on information provided by the operator
interactively. It is also assumed that manual
operation of the machine may be required in
this mode. {7]

2 calibrate sequence is used to determine a
reference point or zero location on a part.

(4]

CAM
abbr for Computer-Aided Manufacturing.

CANBus
1 an I/O bus used by numeric controllers.

(4]

2 CAN could be classified as a Small Area
Network (SAN). It runs on an inexpensive
twisted pair bus and provides an interface to
I/O and other peripherals, peer-to-peer
networking of controllers, deterministic
prioritized message passing, small efficient
packet sizes, robust error detection, and a
reduced wiring solution. CAN is an
industry standard protocol supported by
multiple vendors. Packets are written to the
bus controller along with priority and the
destination address. A single command is
given to begin message transmission. The
completed transmission and reception of a
packet can be signaled with an interrupt.
The data transmission rate can be up to
Imb/sec for networks less than 130 feet in
length. Lower data rates can support longer
networks. Up to 32 nodes can be attached to
a given network.

CAN is a deterministic network with
prioritized message passing. Worst case
message transmission latency in a CAN
network can be calculated based on the
number of nodes in use and the priority of
the message. The use of prioritized

SOSAS Rev. 2.6




messages guarantees that critical messages -

are transmitted ahead of lower priority ones.
[10]

canned cycle

common machining operations, such as
drilling, tapping, pecking, and boring and
reaming, that are pre-programming into a
CNC. These cycles allow the operator to
specify a type of operation and define only
the necessary variable information. Then
the system makes additional calculations to
define the operation fully. [16]

cache
1 an architected area of computer main
storage for system and/or application use.

[6]

2 the virtual storage within which objects
are presented to methods. [6]

3 an architected area made up of control
structures and pointers that point to a
variable number of Logical Views. The
Logical Views may contain internal and/or
external references to the same/other
Logical views which are resolved as
relocatable addresses when loaded into
computer storage. The entire cache
structure may be treated as a unique entity
and may be modified, saved and restored as
a means of maintaining the context of a user
or unit of work between user logons or
automatic activation of enterprise activities.

[6]

CALS
abbr. for Computer-aided Acquisition and
Logistics Support. [6]

canonical
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conforming to a standard form of semantics
and syntax. [6]

CCLW
abbr for Counterclockwise.

cell

1 a manufacturing unit that has the capacity
to manufacture a family of products that are
a subset of a product type within a fixed
domain of operations. It may contain
several manufacturing workstations. [7]

2 a manufacturing unit which has the
capacity to manufacture a family of products
which are a subset of a product type (e.g.
sheet metal, composites, circuit card, etc.)
and which share the same manufacturing
operations with minor changes. Therefore,
a cell is a manufacturing unit which has the
ability to produce a family of parts within a
fixed domain of operations. [6]

center

a manufacturing unit consisting of two or
more cells and the materials transport and
storage buffers that interconnect them. [7]

centerless grinding
a type of grinding.

CEP
abbr for Circular Error Probability [5]

chatter

the quick repeated sounds resulting from a
machine tool vibrating against the
workpiece while the machine is in
operation. [7]
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checkpointing

a recovery mechanism that take a snapshot
of everything pertinent to system state,
producing a virtual memory page, and
forces this page periodically to disk. [7]

chip

a small residue piece of material remaining
from cutting, shaping or finishing a part
with a machine tool. [7]

chuck
a type of fixture; a device for centering and

clamping work in a lathe or other machine
tool. [11]

CIM
abbr for Computer Integrated Manufacturing

circular error probability (CEP)

a probability that a percentage of two-
dimension measurements will lie within a
circle of given radius, with the circle
centered at truth or mean of the
measurements; compare with radial error
probability, spherical error probability

CEP specifies test. cases for measurement
errors of sensors of two dimensions, such as
X and Y. For example, a velocity error of 1
fs (50% CEP) means that for any given
measurement of velocity

Vi= {VE Vn}

then
pl7 -7 <n=05

where Y is the average of all Vi or V
truth, depending upon context. [5]
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clamp

a type of fixture; an appliance with opposite
sides or parts which may be adjusted or
brought closer together to hold or compress
something. [11]

class

1 the object-oriented paradigm’s abstract
data typing mechanism that groups objects
with commonalty of attributes and services.

(7]

2 atype of data object. There are primitive
classes or types such as fixed, character,
float, and bit. There are also more complex
types that are constructed from the primitive

types. [6]

3 a group of objects which carry the same
instance variables, the same methods, and
respond to the same messages. [6]

class hierarchy
defines superclass and subclass relationships
and supports the is-a relationship. [6]

climb milling

milling in which the tool motion is against
the tool rotation, such that feedrate +
rotation = actual speed of cutting tool;
compare with conventional milling [15]

clockwise (CLW)
positive rotational direction.

close dancing

two robots working on the same thing
independently without interfering with each
other. Matching parts takes 12 degrees of
freedom (position, velocity, etc.), 6 degrees
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of freedom on each of 2 parts (force, torque,
etc.). [19]

closed loop

control achieved by measuring the degree to
which actual system response (feedback)
conforms to desired system response and
using the difference to drive the system in
conformance. Also called feedback control.

(4]

CLW
abbr for Clockwise.

CMM
abbr for Coordinate Measuring Machine.

CNC
abbr for Computer Numerical Control.

coefficient of friction
the ratio of the force required to move a
given load to the magnitude of that load. [8]

command
a signal that actuates a device. [7]

commercial off-the-shelf package (COTS)
a software system that is commercially-
available and not specifically targeted
toward NGC system needs. [7]

commit

the act of writing buffered data to permanent
storage upon completion of a transaction.
Commits are usually carried out periodically
for groups of data. [7]
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communications viewpoint
a DSSA view of a system.

complementary filter

a filter in which the complement of the filter
is desired, for example {EMBED Equation
[}, giving the effect of a high-pass filter
implementing a low-pass filter; a filter for
combining multiple data sources, usually of
different types, by adding filtered values,
where the sum of the filters in the frequency
domain is unity; a Kalman filter with fixed
gains; compare with averaging filter,
Kalman filter

Complementary filters are often designed in
the frequency domain as

Y@=$R@um)

where Fi(s) are filters determined at build
time such that

3 Fi(s)=1

For example, with velocity sources Vx and
Vy, one might choose

Vsys(t) = fLpr(Vx(t) + fapr(Vy(D))

where the cutoff frequency of the LFP is
equal to that of the HPF. [5]

component viewpoint
a DSSA view of a system.

computer-aided design (CAD)

the use of computers in interactive
engineering drawing and storage of design.
Programs complete the layout, geometric
transformations,  projections,  rotations,
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magnifications, and interval (cross-section) -

view of part and its relation with other parts.

[6]

computer-aided manufacturing (CAM)

1 the use of computers to program, direct,
and control production equipment in the
fabrication, assembly, and distribution of
manufactured items. [6]

2 the application of a computer in a
manufacturing environment to bridge
various systems and connect them into a
coherent, integrated whole. For example,
budgets, CAD/CAM, process controls,
group technology systems, MRPII, financial
reporting systems, etc., would all share data
in an integrated environment. [6]

3 the application of information systems
technology to increase the productivity and
responsiveness of the organization. [6]

4 a business philosophy aimed at reducing
the development time of industrial products,
increase its quality and create an
environment where the production of goods
will be based on market requirements. Use
of (C)omputer technology to enable us to
work faster and more precisely in dealing
with complex problems. (Dntegration
means that we make our enterprise work as
an undivided unit. Transferring information
about our products, plans, methods and
decisions effortlessly and without risk of
introducing errors. (M)anufacturing refers
to all industrial activities necessary for
design, manufacture, installation and
maintenance of products. [6]

S a computer-based technology that helps

define and create a program to drive a CNC
machine. CAM generates tool path. [4]

computer cycle
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in a periodic, cyclical computer system, the
most basic, fastest timing loop [5]

computer numerical control (CNC)

1 controlling machine tools using
microcomputers attached to the machines in
some manner. The computer controls the
machining sequence of a machine to provide
faster, more accurate production and the
capability to make parts that are essentially
impossible to create by hand control.
Within the machine industry, the icontroli is
usually the enclosure and the computer
boards within it that contain the machine
controlling software and handle
communications between the machine and
the operator console. [4]

2 a type of machine controller designation,
in which the computer stores and recalls

programs. [16]

computing platform

the processing infrastructure of the NGC
manufacturing workstation consisting of
processor(s), related hardware, system, and
system utility software, and communication
mechanisms. [7]

concurrency

proper control of concurrent updates made
on shared data so that inconsistent data does
not result. The results produced by multiple
concurrent transactions are equivalent to
results that would be produced by serial
transactions. (7]

configuration

the arrangement of a manufacturing
workstation as defined by the nature,
number, interaction, and main
characteristics of its functions. The features,
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customer options, software modules and -

engineering specifications that collectively
define the  functionality of  the
manufacturing workstation. [7]

configuration management

establishing a process for managing and
controlling changes to functional and
physical characteristics during the life cycle;
this provides tracability and status of change
activities to previous configurations. [7]

conformance

action or behavior in correspondence with
current customs, rules, or styles. In
particular, behavior in correspondence with
SOSAS rules requirements, and styles. [7]

conformance class

a set containing members having common
behavior in correspondence with a defined
set of (SOSAS) rules, requirements, and
styles. [7]

consumable

material that is physically used or
transformed by a production process in the
completion of that process. It includes items
such as coolants and lubricants. [7]

context
the conditions that bound and relate discrete
events temporarily, spatially, or

semiannually. [7]

continuous path control

motion control of a device that is not
planned to stop at intermediate points along
a path. [7]
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continuous time

time which can have any point expressed as
a real quantity, without regard for any
specific interval or processing rate;
compare with discrete time [5]

continuous-time equation

a mathematical relationship to describe a
function of time, expressed in terms of
continuous time; compare with difference
equation, differential equation, discrete-time
equation, Laplace transform, Z transform;
see first order filter, second-order filter, unit
functions for examples.

Example standard notation for continuous-
time equations is:

[5]

=5 —t 5 3 1 -~
=—¢ +—¢e ——Ie
4 16 16 4

control law

the mathematical definition of a system used
to control or to change the dynamic
response of a system. [3]

control plan (CP)
a plan that is executable by a specific
machine within the workstation. [7]

controls standardized application (CSA)

provides both continuous and discrete
control of an individual machine. The SA
receives machine specific task commands
from the task execution SA, and produces
effector commands to support all modes of
operation. Process control commands are
also decomposed to a sequential set of
discrete effector commands and sent to
SESA. Coordination between machine
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specific motion and process commands is -

provided by this SA. [7]

conventional machine tool
a machine tool that is not controlled by
computers. [7]

conventional milling
milling in which the tool motion is with the

tool rotation; compare with climb milling
[15]

conversational part programming

method implemented by software within the
control that allows part programming in a
question/answer format on the operator
console. This method of part programming
uses multiple choice and fill-in-the-blank
questions, as well as clearly worded operator
prompts. It is the method not the software.

(4]

coolant

a cutting fluid that keeps the tool and part
cool to prevent reduction in hardness and
resistance to abrasion. It therefore helps
prevent distortion of the work. [4]

coolant mechanism

delivers coolant in either a flood, tap, or
mist fashion to prevent the tool or part from
overheating.

coordinate
any of the magnitudes which serve to define
the position of a point in terms of a fixed

reference frame such as coordinate axis.
(17]

coordinated joint
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a joint that is coordinated to begin and end
at prescribed, controlled, programmed
points with special tolerances on the
(interpolated) path in between them. [7]

coordinate measuring machine (CMM)
a machine that uses a probing tool to
determine coordinate points on a part.

correlation

the degree to which two or more attributes
or measurements on the same group of
elements show a tendency to vary together.

[11]

cosine
common math function;
cos X, cx [5]

standard notation

COTS
abbr for Commercial Off-The-Shelf package

counterbore

a machining task; to form a flat-bottomed
enlargement in the mouth of a cylindrical
bore [13]

counterclockwise (CCLW)
negative rotational direction.

countersink

a machining task; to cut a funnel shaped
enlargement at the outer end of a drill hole,
usually for the reception of a screw, bolt, or
rivet head. [13]

CP
abbr for Control Plan
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CrC
abbr for Chevrolet, Pontiac, CM of Canada.

CPU
abbr for Central Processing Unit

CSA
abbr for Controls Standardized Application.

cutoff frequency

the frequency at which the gain of a filter is
at an edge of a band, usually taken to be
when gain is 0.5, or A-3.01 dB; the
frequency at which the output of a filter is
half the power of the input; see band-pass
filter, high-pass filter, low-pass filter,
standard symbol oc; standard units rad/s,

Hz; primary =nits 1/8} [5]

cutter compensation

tool path is programmed for a tool of zero
diameter. Cutter compensation uses
algorithms to determine the offset of the tool
path to compensate for the actual diameter
of the tool. [4]

cutter compensation plane
plane in which cutter compensation is
measured. Either the xy-, yz-, or xz-plane.

cutter compensation radius offset
attribute of a cutting tool.

damped frequency
the frequency of oscillation of an
underdamped second-order filter
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where o, is the natural frequency and ¢ is
the damping ratio; see second-order filter;
standard symbol o; standard units rad/s, Hz;
primary units 1/6 [5]

damping ratio
see second-order filter; standard symbol (;
standard units 1; primary units 1 [5]

data

a representation of facts, concepts, or
instructions in a formalized manner suitable
for communications, interpretation, or
processing. [6]

database

a structured repository for information, with
well defined methods for storing and
accessing data. Instances of objects and
relationships as defined by a schema. [7]

database management system (DBMS)

a software system (often COTS) for
managing one Or more, centralized or
distributed data bases. Data management
facilities typically provide mechanisms for
data entry, update, retrieval, and storage.

(7]

data bus
communication path between one or more
CPUs and related hardware. [7]

data dictionary
a centralized repository of information about
data such as its meaning, relationships to
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other data, origin, usage, format,
business rules governing the data. It assists
management, database  administrators,
system analysts, and application
programmers in planning, controlling, and
evaluating the collection, storage and use of
data. [6]

data starvation

finish executing a block of code before next
block has been analyzed. Eliminated with
sufficient look-ahead. [15]

data structure

a formal representation of information for
communication and processing purposes
without regard to actual storage
configuration. [7]

DBMS

abbr for Database Management System

DC
abbr for Direct Current.

DC motor

such a motor uses direct current. There are
two types of DC motors: brushed and
brushless. The brushed DC motors use
brushes for commutation. Brushless motors
are externally commutated. [4]

deadband

the deadband range is adjustable and lets the
programmer select the appropriate error
range both above and below setpoints
outside of which the output will not change.
With the deadband, the programmer can
closely match the process variable to the
setpoint without changing the output. (see
PID control loop) [10]
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dedicated channel
point-to-point wiring. [7]

delta
the difference between the desired value and
the measured value

derivative

common math function; rate of change,
usually with respect to time; standard
notation X, x’, x, dx/dt, Dx, sx+x(0*) [5]

design viewpoint
a DSSA view of a system.

desired
what must be achieved in order to match a
plan; synonym for reference [5]

determinant
common math function; standard notation
det[A], Al [5]

deviation
difference from desired [S]

device driver 7
a software component that provides software
platform access to a hardware platform. [7]

diagnostic

an interactive condition that occurs when the
controller is in the maintenance mode. Off-
line diagnostics are algorithms that
extensively check the entire NGC system.
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They are intended to extensively verify all .

system hardware. A complete system
diagnostics verification requires some or all
of the NGC operations to be suspended.
This will normally require a mode change at
the standardized application level and
perhaps at the system level. Due to the
various possible configuration of hardware
and software on a NGC, the system
integrator must tailor this package for the
delivered environment. Health and status

monitoring includes data consistency
checking, and may be enabled any time
during system operation for any

combination of standardized applications in
the system. [7]

difference equation

a mathematical relationship to model a
discrete function, expressed in terms of
other values in the sequence; compare with
continuous-time  equation,  differential
equation, discrete-time equation, Laplace
transform, Z transform; A difference
equation usually models periodic process in
terms of past values; see first-order filter,
integrator, second-order filter for examples

Example standard notations for difference
equation are

y[n] = y[n-1] + y[n-2]
¥n=Y¥n-1 + ¥Yn-2
Yne2 = Yn+1 + ¥n

where y is a function of time, n denotes the
current cycle, n-1 denotes the last cycle, and
in general n-1 denotes the ith prior cycle.
Initial conditions, like y[0]=0, are usually
given or implied. Difference equations are
usually derived from differential equations.

(3]

differential equation
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a mathematical relationship to model a
continuous function, expressed in terms of
derivatives; compare with continuous-time
equation, difference equation, discrete-time
equation, Laplace transform, Z transform.
A differential equation usually models
continuous-time phenomenon in terms of
time derivatives; see first-order filter,
integrator, second-order filter for examples.

Example standard notation for differential
equations are

y"-2y' -3y=et

y-2y-3y=¢t

y@ -2y -3y =gt

(d2y/dt?) - 2(dy/dt) - 3y = et
(D2-2D-3)y=et
y-2_ydt-3__ydi2=__etdi?

s?y - sy(0%) - y(0%) - 2sy + 2y(0*) - 3y =™

where y is a function of time t. Initial
conditions, like y(0)=0 or y(0) =1 ft/s are
usually given or implied.

Differential equations are commonly used
by systems engineers to model systems.
The systems engineer usually converts
differential equations to difference equ .ions
for specification and implementation in
software. [5]

digital numerical control (DNC)

a type of machine controller designation, in
which  programs downloaded  from
elsewhere. [16]

dimension
1 a standard quantity, such as ft or mi;
synonym for units [5]

2 a degree of freedom within a vector
space. [17]
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dimensional measurement interface
specification (DMIS)

standard language to program coordinate
measuring machines. [7]

dimensionless
no units, such as ratios; synonym for
unitless [5] '

direct numerical control (DNC)

a host computer controls a group of machine
tools by downloading part programs to
them. Operators do not program parts at the
machine. They start machines and fixture
parts. This control structure is common in
large shops that mass produce parts. [4]

discrete I/O
input or output data represented by on or off
states. [7]

discrete time

time divided into quantized intervals; time
is usually divided into equal intervals to
create a periodic process; compare Wwith
continuous time [5]

discrete-time equation

a mathematical relationship to describe a
function of time, expressed in terms of
discrete time; compare with continuous-
time equation, difference  equation,
differential equation, Laplace transform, Z
transform;  see first-order filter, unit
functions for examples.

Example standard notation for discrete-time
equations is

(3]
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distance
synonym for range; method of
measurement dependent on use [5]

distributed control

distributed control means that a number of
PLCs on a network can control I/O in local
or remote places. They communicate over a
control network like Arcnet or CANbus. In
distributed control, the task of implementing
the control system is divided into a number
of small modular and easily managed parts.
Each part of the control is performed by
individual stations networked together to
communicate needed information. The idea
is to minimize the communication between
stations to allow each of them to run
autonomously. This approach works well in
large complex systems, applications with
many similar repeated elements, and when
machine upgrade and configuration
flexibility is essential. [10]

distributed database

a fully distributed database is one that has
multiple data bases stored on multiple
servers at physically separate locations. The
computers that store, manage, and interface
with users across the various locations are
linked by network. A centralized distributed
database utilizes a central server to access
dispersed database sources. [7]

DLL
abbreviation for Dynamically Linked
Library.
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DML
abbr for data manipulation language. [6]

DMS
abbr contained in definition for transaction

DMIS
abbreviation for Dimensional Measurement
Interface Specification

DNC
1abbr for Direct Numerical Control.

2abbr for Digital Numerical Control.

domain
the set of values assigned to the independent
variable of a function [11]

domain independent application

an applications that supplies general
functionality and was not necessarily
developed for NGC. [7]]

drawing interchange file (DXF)

the AutoCAD systemis ASCII drawing
interchange files describe a CAD drawing
created by that system software. These files
can be easily translated into formats for
other CAD systems. The files and their
format are of interest to companies
manufacturing CNCs because customers
want to use AutoCAD to design parts and
then dump the DXF files into the CNCs on
their machine tools and quickly cut the
parts. [4]
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drag
to move the tool with a dead spindle. [3]

drift
slow monotonic change in measured data

[5]

drill

a machining task; to make a rounded hole
or cavity in a solid by removing bits with a
rotating cutting tool. [13]

drill bit
a cutting tool for boring holes in material.

drive
a mechanism for controlling a motor.

DSP
abbr contained in definition for servo motor
control

dwell
to stop tool motion while the spindle is
turning; to break chip, for example. [3]

DXF
abbr for Drawing Interchange File.

dynamic binding

the code associated with a given procedure
call is not necessarily linked until the
moment of the call at run-time. [7]
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dynamic error

the difference between the true and the
reported values of a machine motion
variable due to error sources. [7]

dynamic following error
the distance between the commanded
position and the actual position of the device
under motion control. [7]

EBM
abbr for Electron Beam Machine.

ECM
abbr for ElectroChemical Machine.

EDM
abbreviation for electrodischarge machine.

EIA
abbr for Electrical/Electronic Industry
Association.

effector
a device that physically performs an action
or transformation function. [7]

electrical cabinet

large metal box, also called the magnetic
cabinet, containing the CNC computer
boards, servo amplifiers, communications
boards and other wiring necessary to control
the machine electronically. Some OEMs
attach the operator console to the outside of
this cabinet. [4]

electrochemical machine (ECM)
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a machine which performs material removal
via corrosive chemicals.

electrodischarge machine (EDM)
a machine which performs material removal
via electric potential.

element , _
a constituent of the NGC system at the level
directly below system level. [7]

emergency stop

a systemis emergency stopping circuits and
devices were designed to avoid injury to
personnel and damage to the machine.
Usually large, red E-stop buttons are the
emergency stopping devices on the operator
console, the remote jog unit, and the
machine itself. [4]

enclosure

screening around the cutting surfaces of a
machine to protect the operator from
material and coolant that may be propelled
from the cutting area during operation.
Enclosures are usually metal doors with
windows in them to allow the operator to
see inside. Many countries have regulations
defining these enclosures and the
mechanisms for opening and closing them.

(4]

encoder

a mechanic device for translating motion
into a unique electronic signal or
combination of signals. Modern machine
tools use optical encoders. See also
quadrature. [4]

encoder feedback
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an interface that allows a controller to -

interface to incremental or Quadrature
encoders or other high speed pulse sources.
The interface is capable of accepting Phase
0, Phase 90, and index pulse inputs. These
signals can be TTL, single-ended or
differential (strappable) and are optically
isolated. The interface provides logic to
detect overflow/underflow conditions and
desired position comparison triggers. The
index pulse can be used to latch counter
data. These conditions can be made to
generate interrupts to the host processor.
Inputs are conditioned by a four stage digital
filter. Five jumper selectable sampling
frequencies are available for filter use.
Selecting the lowest frequency compatible
with the highest expected input rate will
maximize noise immunity. The interface
accepts quadrature input and input pulse
rates. The counter register operates in
quadrature decoding, pulse and direction
input counting, or in a pulse input up/down
mode. Counter output is available to the
host bus as a binary or coded decimal form.
[10]

end effector

an effector, gripper, or mechanical device,
located at the end of last joint, by which
objects can be grasped or acted upon. [7]

endfeed grinding
a type of centerless grinding.

end mill
a type of task.

end mill sharpening
a type of grinding.
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endpoint control

any control scheme in which only the
motion of the tip of the end effector may be
commanded. [7]

end user
anyone who uses . a manufacturing
workstation for the execution of tasks. [7]

enterprise

the top level of a manufacturing hierarchy
under which exists the factory, center, and
cell [7]

enterprise information

the enterprise information is any data from
the enterprise level that is communicated to
lower levels. Enterprise information may
include procedures, policies and schedules.

[7]

environment
the aggregate of physical factors that act on
the manufacturing workstations,

manufacturing processes, and final products.

7

error
difference between desired and measured
data, synonym for delta; standard
engineering term [5]

ESPRIT

abbr for the European Strategic Programme
for Research and Development of
Information Technology.
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E-stop

abbr for Emergency Stop.
etch
a task; to produce a design, usually in a

metal or glass surface by covering it with an
acid resistant ground through which a design
is scratched with a pointed instrument, then
submitting the surface to an acid bath. [13]

euler parameters

four parameters for specifying quaternions;
standard symbols ej734,a,b,c,s; standard
units 1; primary units 1 [5]

European Strategic Programme for
Research and Development of
Information Technology (ESPRIT)

a consortium of 21 European companies
now working on the specification and
definition of CIM-OSA. The consolidated
efforts which focus on CIM has resulted in
what is today the AMICE consortium. [6]

exception handling
managing deviations from the
planned/nominal production or process. [7]

executive viewpoint
a DSSA view of a system.

expert system

a system that captures a human expert's
knowledge in a computer application for
general application to provide solutions for
similar problems. An expert system
attempts to capture some of the intuitive
reasoning that experts use to make
decisions. [6]
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exponential
common math function; standard notation
ex, expx [5]

external communication

communication of a  manufacturing
workstation with the outside world through
its computing platform. [7]

external interface
interfaces of a manufacturing workstation
with the outside world, to cell level above,
and to sensors/effectors below at the
machine level. [7]

extrapolate

function to determine values from two or
values in a table; usually linear but can be
higher order [5]

fabrication

a term used to distinguish manufacturing
operations for components, as opposed to
assembly operations; to make or produce a
part from raw stock. [6]

face mill cutter sharpening
a type of grinding.

face plate
the part of a robot at the end of the last joint,
to which an end effector can be attached.

factory

a manufacturing unit consisting of two or
more centers and the materials transport,
storage buffers and communications that
interconnect them. [7]
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failure recovery

a condition that begins with an assessment
of the damage. Repair of equipment and/or
replacement of components by the operator
may be required. In some instances the
process may be allowed to resume after a
failure recovery operation has been
successfully performed, but at a lower level
of performance. Failure recovery shall
involve the performance of specific
automatically generated and sequentially
executed steps, and may require some
interactive step execution as well. In most
instances, a combination of automatic and
interactive steps are required to facilitate a
successful failure recovery. [7]

fault detection/isolation

an automatic condition that occurs when the
controller is in the normal production mode.
It automatically detect failures or
interruptions in service, indicates location,
and diagnoses cause when possible, Fault
recovery actions are also initiated.
Detection takes place when a flag is set or
when some metric takes on a significantly
different value. Possible metrics include the
following: a process parameter that has
exceeded its control limits, a statistical
process control parameter, the output of a
sensor fusion/integration module, or derived
data such as runtime statistics that monitor
performance. [7]

fault management

prevention, correction, or recovery from
major deviations from current planned
operations; predicts impending failures in
time for corrective action; detects failures or
interruptions in service; indicates location
and diagnoses the cause when possible,
determines and initiates recovery action. [7]
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Fanuc
a controller manufacturer.

FBD
abbr for Function Block Diagram

feature
a physical attribute such as a surface, hole,
or slot, used to describe a part. [7]

feature-based definition
a method of describing a part in terms of its
features. [7]

feed

" to provide a machine with material.

feedback

1 Input describing what is being controlled.
This data is used by the CNC to adjust
positioning and velocity. [4]

2 the furnishing of data concerning the
output of a machine to an automatic control
device or to the machine itself, so that
subsequent or ongoing operations of the
machine can be altered or corrected [11]

3 correcting or controlling a system by
using part of the output as input; the flow of
information back into the control system so
that actual performance can be compared
with planned performance. [6]

feedrate
feeding material into a tool. [4]
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feedrate override
a way, via the operator console, for the
operator to manually change the feedrate.

feeds and speeds

machine tool movements determining the
rate at which a material is machined or
transported. This can be in the form of
stock feedrate into the tool, tool rotational
speed, or tool translational rate. [7]

field replaceable unit

a hardware unit or software module that can
be physically replaced on site, thus reducing
downtime. [7]

filter

a device to alter a signal; software to alter a
data steam; see averaging filter, band-pass
filter, complementary filter, first-order filter,
high-pass filter, hysteresis, Kalman filter,
limiter, low-pass filter, rate limiter, second-
order filter, smoothing filter, wash-out filter;
standard engineering term [5]

finish

a task; to polish a raw edge to form a
smooth surface; to finish a raw edge by
hemming, pinking, overcasting, or facing.
(13]

first-order filter

a filter in which the output follows the
input, only more slowly; It is usually
implemented in software as a difference
equation of period T as

Vn =e.“yn-l +(1—e‘$)xn =xn+e.‘:(yn—l —xn)
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where 7 is a filter constant. If the input is a
unit step, then

n)=1- e’
(1) = 0.6321

il =1-e e

The Laplace transform is

) __1
X(s) s+l

The Z transform is

Y(s) _ (- e¥ )z
X(s) z- e%

The differential equation is
y=x-1

The first-order filter is commonly used in
avionics to smooth data, and to wash out
transients at mode change, where typical
values for 1 are 1-5s. It is also used as a
low-pass filter, with cutoff frequency o =

1/z.

When implementing a second-order filter on
normalized variables, such as angles, the
discontinuities require special treatment. [5]

fixture

any device that holds workpieces during the
machining operation; a fixture by itself does
not provide location information. [7]

flat end mill
a type of cutting tool.

flexible tap

a type of tapping tool in which the rotation
and the z-motion of the tool are not tightly
coupled. [15]
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FLEXIS

performs  "offline  programming"  of
robot/manufacturing  processes. Uses
Grafcet language.

flute

a groove machined in a cutting tool to
facilitate easy chip removal and to permit
cutting fluid to reach the cutting point. [9]

following error

the difference between where a cutting tool
actually is and where the control commands
it to be. [4]

form cutter sharpening
a type of grinding.

form grinding
a type of grinding

function

a mathematical relation between two sets,
called the domain and range, which assigns
a unique value in the domain to each value
in the range. i.e. f(domain coordinate) =
range coordinate [17]

function block diagram (FBD)

a graphical language that allows program
elements that appear as blocks to be wired
together in a form analogous to a circuit
diagram. FBD is well suited for
applications that involve continuous flow of
information or data between control. [10]

gauge vector
attribute of a tool.
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geometric error

the difference between the true location of a
particular end effector and the location as
reported by the machinery scales. The
machinery is assumed to be in a static,
unloaded posture at a reference temperature.

(7]

geometric modeling applications program
(GMAP)

built on the results of PDDI, its goal is to
identify and organize geometric and
nongeometric  product definition data
required for the engineering, manufacturing,
and logistics support of complex structured
components throughout the product life
cycle. [6]

geometry

the definition (measurements and
relationships) of the dimensional properties
of points, lines, curves, surfaces, and solids,
as required to convey the shape of
configuration aspects of a design in human
processing terms. [6]

GM
abbr for General Motors

GMAP
abbr for Geometric Modeling Applications
Program.

GMF
abbr for General Motors/Fanuc.

GMTS
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abbr for General Motors Technical Staff. -

Authors of a Standard for Machinery and
Equipment.

goal
the end result of the manufacturing process.

[7]

granularity
degree of refinement. [7]

graphical user interface (GUI)

common user interfaces applied to the
controller domain include: Citect, Fix,
Genesis, Labview, Lotus @Factory, Paragon,
PCIM, Wonderware [10]

gravitational acceleration

acceleration caused by the force of gravity,
standard symbol g', standard units Ibf, kip;
primary units, ML/6; gravity sometimes
includes effects of the earth's rotation;
gravity is often treated as a constant, but for
greater accuracy gravity is a function of
latitude, altitude, and the phase of the moon

(5]

grind
a machining task; to wear down, polish, or
sharpen by friction. [13]

grind belt
a type of grinding tool.

grind wheel
a type of grinding tool.

gripper
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a type of end effector, a device by which
physical objects are grasped and held. [7]

GUI
abbr for Graphical User Interface

Hall effect sensor

highly accurate, non-contact limit switch
which detects the proximity of a magnet and
provides a digital output to assure an
accurate position reference. [8]

hand crank
usually a wheel with a handle attached used
to control the motion of an axis on a manual
machine. [4]

hierarchical control

control in which tasks are decomposed into
sequences of subtasks that are passed to the
next lower level in the hierarchy until the
lowest level is reached. [7]

high-pass filter (HPF)

a filter that allows frequencies above a
cutoff to pass while attenuating frequencies
below the cutoff frequency [5]

holding torque

stepper motors, when energized, hold
position via a magnetic field. The holding
torque is the maximum torque which can be
generated before the rotor slips to the next
pole location. [8]

home position

a tool may have a home position to which it
traverses to get out of the way of the
machine.
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home switch

any of a variety of sensors which can be
used to establish an accurate initial position.
This may consist of a standard end-of-travel
Hall sensor; a center position optointerupter
with half-travel blocking vane; an index
signal on a linear encoder; a shaft coupling
mounted magnet with Hall sensor; or a
once-per-revolution encoder index signal.
Once-per-revolution sensors will usually
require a logical ORing with a linear signal
if a unique home position is required. [8]

HPF
abbr for High-Pass Filter [5]

HUI
abbr for Human User Interface

human-user interface (HUI)

an information channel that conveys
information between a human user and a
system. It is composed of the surface
layout, domain-independent applications
(such as window and graphic packages),
open HUI applications, and the PMSs. [7]

hysteresis

1 the error which can occur when a motion
system is commanded to return to a starting
position after several interim moves are
made. It is attributable to lead screw
reversing errors, backlash, etc. {6]

2 a function in which the algorithm for
computing output changes at defined events
or thresholds, such that output follows as
input increases and another path as input
decreases.

Hysteresis can be formalized:
at initialization, select algorithm-0
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if event-1 occurs, switch to algorithm-1
if event-2 occurs, switch to algorithm-2

if event-n occurs, switch to algorithm-n

Hysteresis can prevent a test (x = X¢) from
oscillating near the transition point (X A x0)
due to noise. Implementation is usually:

at initialization, sety = 0

if xc + (1/2)2x,thensety =1

if xo - (/2) < x <xc + (W/2), then let y

retain its value

if x2xc - (W2), thensety =0 [5]

IB

abbr for Information Base.

ICAM

abbr for Integrated Computed Aided
Manufacturing.

identity

identity matrix; standard symbol I;

standard units 1; primary units 1 [35]

IEC-1131

1 A standard PLC programming and
execution environment that would facilitate
the proliferation of many third party vendor,
reusable software modules, and new
software development tools. [21]

2 A controller language standard which is a
collection of four different languages:
Pascal-like, Grafcet-like, Signals on IC chip
like, assembly language like. Statements in
each language can be included in each other.

IGES
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1 abbr for Interactive Graphics Exchange

Specification
2 abbr for International Graphics Exchange
Standard.

IL
abbr for Instruction List.

impulse
synonym for unit impulse [5]

MW
abbr for Intelligent Machining Workstation.

Industrial Real-Time Operating System
Nucleus (ITRON)

part of Japan's TRON program to develop a
new operating system for use across the
spectrum of computer systems and industrial
machinery. [6]

infeed grinding
a type of centerless grinding.

information base (IB)

an abstract storage mechanism that may
consist of multiple, coordinated information
sources (e.g., data bases, knowledge bases,
memory  maps)  distributed  across
heterogeneous or homogeneous platforms.
The IB is the conceptual structure to which
all  application-and service-generated
requests for shared data manipulation are
made. [7]

information base application
code that allows a user to interact with or
manipulate specific information in a manner
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that particularly suits NGC IB needs, e.g., a
graphical schema browser capable of taking
STEP input. [7]

information base support package

a software component (often COTS) that
provides specific IB functionality to be
accessed through the data management
services abstraction layer, e.g., a DBMS, a
KBMS. [7]

initialization

1 a procedure to reset physical devices to a
known state. During initialization, the
device is usually not available. [5]

2 an interactive condition that occurs when
the controller is in the start-up mode.
Initialization establishes all late bindings
and communications links between SAs, and
establishes the initial state for all SAs.
Initialization also retrieves the appropriate
models for the selected modes determined
by the configuration. {7]

in-process gauging

measure the part with a probe while the part
is still on the machine. Problems are
encountered due to additional cycle time
required for sensing with devices such as
lasers. [18]

input/output artifacts

objects, either physical or virtual, such as
buttons, dials, readouts, sliders, etc., that
provide specific user input or output
capabilities and that can be combined to
create user interface devices. [7]

instance
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" a distinguished occurrence of a particular
object. [7]

installation
the creation of an instance. [7]

instruction list (IL)

a low level language, similar to assembler
language. It is wuseful for smaller
applications or for optimizing parts of an
application. [10]

instrumentation
hardware to measure and to monitor a
system [5]

integrate/configure

an interactive condition that occurs when the
controller is in the start-up mode. Hardware
integration, physical integration and
configuration shall include installing
mechanisms and computing hardware,
and/or connecting wires to the hardware
ports; software integration and configuration
implies loading the code and data required
for the controller onto the computing
platform. [7]

integrated computed aided
manufacturing (ICAM)

1 an activity modeling methodology that
represents the functional decomposition of
any activity.  An activity in the model
converts inputs to outputs using the defined
mechanisms and under the constraints
imposed by the controls, and linked by those
inputs, outputs, and controls, to other
activities in the model. [6]

2 a representation of structurally integrated
information. A methodology for developing
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a data model which expresses the structural
characteristics of information. It is used as a
foundation for inter-division data standards
and data base design, showing data and
entity  relationships, and  attribute
identification. [6]

integration

the formation of one complete and
harmonious entity or coordinated entities of
different applications that will accomplish a
complete process solution. [7]

integration architecture

the components that provide the
interconnection structure and interface
definition between interoperating
applications. It is composed of the platform
services, communication services, data
management services, presentation

management services, task management
services, geometric modeler services, basic
I/O services, and the data standards. [7]

integrator
a function or filter that mathematically
integrates [5]

intelligent machining workstation (IMW)
a USAF Program conducted by Camegie
Mellon University, Cincinnati Milacron and
Pratt & Whitney. [6]

interactive graphics exchange
specification, or International Graphics
Exchange Standard (IGES)

1 files conforming to this specification are
generated by CAD systems to define part
geometry. However, interpretation of these
files by different CAD systems may vary
causing variations in the parts on different
systems. [4]
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2 a format for the exchange of graphical
information (such as lines, ellipses, and text)
between dissimilar drawing systems. This
data enables the electronic transmission of
prints, but does not include information
about the items represented by those prints.

[6]

3 a CAD/CAM data exchange specification
adopted by ANSI. IGES attempts to
standardize = communication of two-
dimensional drawing and geometric product
information between computer systems. [6]

interchangability

a characteristic of system components that
makes it possible to replace one component
with another component of equivalent
functionality made by a different vendor.
7]

interface

the definition of common boundary or a
point or means of interaction between two
or more distinct entities. It may be a shared
boundary between two subsystems, which
are defined by functional characteristics,
common physical interconnections, signal
specifications, and other characteristics. [7]

internal grinding
a type of grinding.

International Organization for
Standardization (ISO)

an organization of national standards bodies
from various countries established to
promote development of standards to
facilitate international exchange of goods
and services, and develop cooperation in
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intellectual, scientific, technological, and
economic activity. [6]

interoperability

1 a characteristic of independent system
components that makes it possible for a set
of components that comprise a system to
intercommunicate and work properly
together. [7]

2 that characteristic of a SOSAS compliant
module which makes it possible for the
module to operate on different computing
platforms, or be integrated with differently
configured NGCs. [6]

interpolate

function to determine intermediate values
from two or values in a table; usually linear
but can be higher order; endpoints are
either extrapolated or limited [5]

interpolation
1 the process of approximating a given
function by using its values at a discrete set
of points [11]

2 an algorithmic process to generate
intermediate points along a prescribed path
or specific geometric shape between two
points. For example, interpolation might be
used to generate an arc with a 3.5-in. radius
(circular interpolation) between points A
and B. In addition to linear and circular
interpolation, there are advanced algorithms
to produce helices, splines, etc. [6]

interpolation block

offline system generates more than machine
can handle, so machine ignore blocks
coming in when its not ready for them. [20]

interrupt
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interrupts are controlled with interrupt -

registers consisting of an end interrupt, poll,
poll status, interrupt mask, priority mask, in-
service, interrupt request, and interrupt
status. [10]

inventory

the aggregate of tangible company property
items which are held for sale in the ordinary
course of business, or are in process of
production for such sale, or are to be
currently consumed in the production of
products or services to be available for sale.

(6]

inverse
standard math function; standard matrix
operator; standard notation x1, X-1 [5]

I/O interface

different /O types are either accessed
directly from the base hardware platform via
serial or parallel interfaces or may otherwise
be accessed via add-on expansion modules.
/O types include:  CANbus, Opto-22
PAMUX and OPTOMUX, APC Seriplex,
Keithley Metrabyte and Workhorse,
TURCK Sensoplex, AB1771 Digital, GE
Series One, TLSeries, TL/Siemens,
Transition Technologies, Grayhill, Gordos,
Burr Brown Sensorbus, Du Tec [10]

iron

the frame of a machine without any
electrical equipment, such as the CNC or
servo drives, attached. The iron is produced
at a foundry and then the bed, tool changer,
and other electrical equipment is added. {4]

/0
abbr for Input/Output
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IPM
abbr for Inches Per Minute.

IPR
abbr for Inches Per Revolution.

I1SO
abbr for International Organization for
Standardization.

ITRON
abbr for Industrial Real-Time Operating
System Nucleus.

jerk

rate of change of acceleration, either scalar
or vector, often with subscripts to denote the
coordinate frame; time derivative of
acceleration; standard symbol j, J; standard
units ft/s3; primary units L/8 [5]

Jig

1 a mechanical construction that determines
location dimensions that are going to be
machined into a workpiece. A jig can be
incorporated into a fixture so that both
accurate location and clamping are
implemented (see fixture). (7]

2 a plate, box, or open frame for guiding
work and for guiding a machine tool to the

work, used especially for location and
spacing drilled holes. [11]

jig saw
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a type of saw machine with a narrow,

vertically reciprocating blade for cutting
curved and irregular lines or ornamental
patterns in open work. [13]

JIT

abbr for Just-In-Time.

Jjob shop

businesses the supply small quantities of
parts (20 to 30) on a contract basis to larger
companies. The large companies send
specifications for the parts to the job shops
and award the contracts to the lowest job
shop bidders. These shops usually
specialize in particular types of parts (e.g.,
springs for the automotive industry or hand
cranks for knee mills). [4]

jog
1 manual control of an axis. [4]

2 an interactive condition that occurs when
the controller is in the normal production
mode; allows a machine axis to moved in
any direction within the machine envelope
or limited parameters via specified
increments, or continuously until the human
interface button is released. [7]

joint
a point of articulation between moveable
parts. [7]

just-in-time (JIT)

a logistic approach to the movement of
material to the necessary place at the
necessary time. It allows for no buffer stock
and is designed to minimize inventory
during the manufacturing process. In short,
synchronized production scheduling. [6]
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kalman filter

a filter for combining multiple data sources,
usually of different types, to produce an
estimate better than any single source;
compare with averaging filter,
complementary filter [5]

Karel

an robot programming language, a successor
to VAL. Named for the Czech playwright
Karel Capek who wrote RUR.

KBMS
abbr for Knowledge Base Management
System

kinematic error

the difference between the true and the
reported locations of an end effector due to
mechanical distortion of the machinery
caused by motion. [7]

kinematic model
the controller's
machine's motion.

representation of the

kinematics

the branch of physics which deals with pure
motion, without reference to the masses or
forces involved in it [11]

knee mill machine

an inexpensive type of machine used to cut
small parts in limited quantities. These
machines usually do not have enclosures
around the cutting area, and they have lower
horsepower motors than bed mills. Knee
mills may have CNCs attached, but they all
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use at least one hand crank to move the bed -

with the part attached up to or away from
the cutting tool. The “Z” axis on these mills
has limited travel up and down, so the
operator always needs to adjust the position
of the bed. In fact, this machine received its
nickname because operators use their knees
to bump the cranks and adjust the beds when
their hands are busy. [4]

knowledge base
1  semantically rich set of symbols,
relations, procedures, and constraints. [7]

2 the data, data rules of use, and procedures
stored to support expert systems and
artificial intelligence applications. It implies
that some semantic (knowledge about the
meaning and possible uses of the data)
content is included. [6]

knowledge base management system
(KBMS)

a software system (often COTS) for
managing and providing reasoning
mechanisms for one or more centralized or
distributed knowledge bases, e.g., rule sets.
(7]

knowledge base system

a knowledge base system consists of several
components: a knowledge base and a
mechanism for reasoning about stored
information. The knowledge base contains
domain knowledge, rules and heuristics.
The reasoning mechanism includes the
control for rule selection and execution. {6]

ladder diagram (LD)

a powerful collection of standard graphical
symbols and function blocks that can be
combined into complex control programs
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that portray the actual execution component
taking place in the SFC step or action. [10]

ladder logic

1 written representation of the electrical
relays required to operate a machine. There
are several different forms of ladder logic
(see PAL). Ladder logic in the United
States looks like rungs of a ladder with
contacts and relays on the vertical rungs;
however, European ladder logic is written
horizontally. (Also referred to as relay
ladder logic.) [4]

2 a programming language utilized for
PLCs; the language for discrete control
originally based on relays, rails, and rungs.

[7]

ladder logic execution

ladder logic is driven (started) by a timer. It
executes for each millisecond chunk and
always responds to time interrupts. After
ladder is evaluated, a delay time is
hardcoded to give background tasks a
chance to run. Background tasks include
operator interface messages and other user-
defined code sequences. Ladder logic has a
higher priority, so it always takes place. It
must be interrupted so that other processing
can be executed.

Software interrupts are used to tie user-
defined code to particular points of the
ladder logic. Software interrupts occur at
the end of every OPI state, timer interrupt,
input phase, output phase, and during some
particular instruction in the ladder logic.
This allows a particular ladder logic
command to initiate a customized program.
[10]

ladder logic programming
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a simple high-level graphical language for -

drawing control logic diagrams. Input
contacts can be represented as normally
open or closed. Output coils can be
energized, latched, or unlatched. Boolean
logic is represented by horizontal rungs
(AND function) and vertical branches (OR
function) read left rail to right rail with logic
conditions on the left and output instructions

on the right. Current logic states are
graphically displayed as
connected/disconnected sections of the

rung(S). If a complete unbroken path exists
from the left rail of the rung to the right
trail, the rung is TRUE and the output
instruction is acted upon. This discussion
has only illustrated a small portion of the
entire ladder logic instruction set. [10]

Laplace transform

a mathematical relationship to model a
continuous function in the complex
frequency domain (S-plane); compare with
continuous-time equation, discrete-time
equation, Z transform; Laplace transforms
are commonly used by systems engineers to
describe systems; see first-order (filter,
integrator, second-order filter, unit functions
for examples [5]

latency ,
time between the request for an action and
the initiation/completion of that action. [7]

lathe

a machine used to shape a part by gripping it
in a holding device and rotating it under
power against a cutting tool. Lathes are
commonly used for turning, boring, facing,
and threading. (4]

LD
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abbr for Ladder Diagram

lead
synonym for pitch.

lead error

the deviation of a leadscrew from its
nominal pitch. The error is often monotonic
(linear), although periodic error and thermal
expansion set limits to its predictability. [8]

leadscrew

1 a mechanical device, also called a ball
screw, for translating rotary motion into
linear motion, consisting of an externally
threaded screw and an internally threaded
carriage (nut). These typically move the
bed, the spindle, and the head surrounding
the spindle. [4]

2 a long precision screw on the front of a
lathe bed that is geared to the spindle to
transmit motion of the carriage for thread
cutting [9]

leadscrew mapping

leadscrew motion can be mapped by
indicating the number of revolutions per
inch. This technique allows for
compensation in leadscrew pitch because the
pitch per inch is not constant (see lead
error). [4]

lead through teach
record the trajectories. Use teach points to
avoid obstacles [20]

length offset
attribute of a tool
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life-cycle costs
the cost of a product and its related activities
that occur over the entire life of the product.

[7]

limiter

a filter that passes the input to the output,
except that the output is limited to a
minimum value and a maximum value;
compare with rate limiter.

Limiters are usually implemented as

Yn = Max(Xmin,MIN(Xmax,Xn))

where Xmin is the lower limits and Xmax iS
the upper limit. [5]

limit switch

a sensor, typically Hall effect, optical, eddy
current, or mechanical, which is used to
sense the end of travel of a linear motion
assembly. In addition to preventing
overtravel, it is frequently used to establish a
precision reference. (8]

linear force/torque
a type of control law.

linear position/velocity
a type of control law.

link
part of a robot.

locking
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preventing access by one transaction to an
object by another transaction. Locking may
prevent data modification only or all
read/write access. [7]

logarithm
common math function: standard notation
logy x; log x =logiox [5]

logging

shadowing system activities over time by
creating a time-stamped log file of
transactions and state information. {7]

look ahead

algorithm that takes into account future
commands to make decisions about current
motions. For example, the control will note
that the cutting is going to be commanded to
stop so it begins to decelerate. [4]

look and feel

surface-level representation attributes and
behaviors  independent  of  specific
presentation layout, i.e., the style of
presentation. [7]

low-pass filter (LPF)

a filter that allows frequencies below a
cutoff frequency to pass while attenuating
frequencies above the cutoff frequency; see
first-order filter [5]

low rate initial production (LRIP)
normally, the phase of production used to
assess readiness for full rate production. [6)

LPF
abbr for Low-Pass Filter [5]
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LRIP
abbr for Low Rate Initial Production.

lube
synonym for lubricant.

lubricant
a substance used to reduce friction between
the cutting tool and the part. [4]

LWP
abbr for Light-Weight Process.

M & G codes

a slang phrase describing combinations of
the letters (common letters being iMi and
iGl) with multiple numbers to indicate
where a machine cutter should move and
what it should do. These codes are used in
NC programs. The codes were originally
fed into a machine as a punched tape of
instructions. Many other letters are used,
such as iTi codes to describe tool changes.
iGi codes describe positions, and iMi codes
identify miscellaneous functions. [4]

machine model

a structure data representation that provides
a description of a machine and simulates its
properties and characteristics of interest. [7]

machine tool

a stationary power-driven device used to
shape, cut, turn, bore, drill, grind, or polish
solid parts, especially metal. [4]
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machine under control
any machine or process being controlled by
NGC. [7]

machinist

a highly skilled machine operator who
makes decisions about how a part will be
programmed, fixtured, and cut. [4]

MADE
abbreviation for Manufacturing Automation
Design & Engineering.

magnitude
common math function; synonym for
absolute value [S]

maintainability

the measure of the ability of a system or
product to be retained in or restored to
specified conditions when used by personnel
having the specified skills, using prescribed
procedures and resources. [6]

maintenance

any activity to eliminate faults or to keep
hardware or programs in satisfactory
condition, including tests, measurements,
replacements, adjustments, and repairs. [6]

manipulator

a mechanism usually consisting of a senes
of articulated links, for the purpose of
grasping and moving physical objects. [7]

man-machine language (MML)
a user interface.
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manual machine

a machine that does not use computer
components to control operation of the
cutting tools. Usually the operator interacts
- with the machine by turning hand cranks to
adjust the spindle speed and to move the
cutting tools and/or bed. [4]

manufacturing

a series of interrelated actions involving the
process design, material selection, planning,
production, quality assurance, management
and marketing of discrete consumer and
desirable goods. [6]

Manufacturing Automation Protocol

(MAP)
IEEE 802.4 token-bus specification. [6]

manufacturing workstation

1 a material transformer device that
includes a controller, computing platform,
human interface, and peripheral devices. [7]

2 a manufacturing workstation is defined as
a single material transformer device and
related support equipment (e.g., material
handling or inspection) together with the
processing and control capability for
autonomous response to commands and
inquiries. [6]

MAP

abbr for Manufacturing Automation
Protocol.

mark

a measuring task.
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materials resource planning (MRP)
scheduling for the manufacturing floor.

matrix
standard notation [a;], A [5]

maximum

common math function; standard notation

metrology
science/system of weights and measures or
of measurement. [13]

microstepping

a technique which, instead of switching
phase currents in a stepper motor on and off,
slightly decreases the current in one
winding, while slightly increasing it in
another. This increases the resolution. [8]

mill

1 A machining process which removes
material, usually metal, from a part using
one or more rotating cutting tools. [4]

2 to shape or dress by means of a rotary
cutter. [13]

milling machine

a machine capable of performing the
operation of cutting, shaping, or finishing a
workpiece. [7]
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minimum ,
common math function; standard notation
min(Xy,...,Xp)[5]

MML
= abbr for Man-Machine Language.

MMPM
abbr for Millimeters Per Minute.

MMPR
abbreviation for Millimeters Per Revolution.

MMST

it features interoperability of a growing
number of machines used in semiconductor
manufacturing.

modal

a state during which an established
operation remains unchanged, compare
with one-shot [3]

mode :
an enumerated mechanism for coordinating
behavior. [7]

model

1 a structured data representation of a
process or system that simulates properties
and characteristics of interest. [7]

2 a mathematical representation [5]
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modular

a standardized and flexible construction
consisting of logically self-contained and
discrete parts; it allows for scalability and
interchangability within a NGC. [7]

mold

a form made on a milling or punch machine
into which a liquid is poured that hardens
into the shape of the mold. The resulting
molded product may also be milled as a
finishing step. [4]

motion control
control of continuous joint motion of
machines. [7]

motor

device that converts electrical energy into
mechanical energy by using forces produced
by magnetic fields on current-carrying
conductors. There are three basic types of
motors available on machine tools: DC
brushed, DC brushless, and AC induction.

(4]

moving column machine

in such a machine, the part remains in a
fixed position while the spindle performs all
motion.

MRP
abbr for Materials Resource Planning.

multiaxis mode
keeping the cutting tool perpendicular to the
surface [19]

multiprocessor control
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a control computing platform that contains -

more than one processing unit. [7]

natural frequency
see second-order filter; standard symbol ey,
standard units rad/s, Hz; primary units 1/0

[3]

NC
abbr for Numerical Control.

NCMS
abbr for National Center for Manufacturing
Sciences.

network interface

Arcnet and CANbus networks allow
controllers to be networked with each other
and with PCs. Arcnet is a Local Area
Network (LAN) industry standard protocol
that has been well accepted and proven in
factory control applications with over 1.67
million installed nodes in the United States.
CAN could be classified as a Small Area
Network (SAN). It runs on an inexpensive
twisted pair bus and provides an interface to
other peripherals, peer-to-peer networking
of controllers, deterministic prioritized
message passing, - small efficient packet
sizes, robust error detection, and a reduced
wiring solution. CAN is an industry
standard protocol supported by multiple
vendors.

Peer-to-peer networking means that each
node in the network is of equal status and is
able to transmit at any time within the
guidelines of the network access method.
This is in contrast to master-slave or server-
consumer based networks in which a
particular node(s) on the network has special
network functions and privileges. In
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master-slave based networks, a slave node
must wait for the master to poll it and give it
permission to transmit before being able to
send messages. This method can cause large
latencies to exist when high priority
messages such as alarmms and fault
conditions need to be reported. [10]

neutral manufacturing language (NML)
1 a proposed language for communications
between NGC applications and between a
NGC and the cell. [7]

2 used by humans to communicate with
hardware/software  modules and for
communication between such modules.
NML is the language used in
communicating within an NGC, between
NGCs and between an NGC and other
systems.  Manufacturing process plans,
product descriptions, processes (at several
levels of detail), machine management,
motion control, and other aspects of
manufacturing are expressed in NML. [6]

NGC
abbr for Next Generation Controller.

NGIS
abbr for Next Generation Inspection System.

NGIS - NC Inspection Project

a CMM with an open architecture. This
project will eventually add additional sensor
types besides just touch probes...vision,
laser, ultrasound. It will marry wrist and
machine controllers. A wrist controller has
a standard I/O interface and holds a variety
of different sensors. This will allow the
machine controller to select a sensor for a
particular process, much as it currently
selects a tool for a particular process. Some
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sensors include SAMI (a CCD based camera -

with software for vision, providing
information on tool wear, surface
conditions, etc.), laser for interferometries
for surface conditions, Strudhome capacitive
touch sensor (probe nears surface but does
not touch). [21]

NML
abbr for Neutral Manufacturing Language.

NIST
abbr for National Institute of Standards and
Technology.

noise

part of received data that is undesired,
consisting of random sinusoidal terms added
to a signal; compare with signal [5]

non-uniform rational b-spline

a spline is a function that has specified
values at a finite number of points and
consists of segments of polynomial
functions joined smoothly at those points,
enabling it to be used for approximation and
interpolation of functions. For example, a
cubic b-spline approximates a series of m+1
control points with-a curve consisting of m-
2 cubic polynomial curve segments. Non-
uniform indicates that the control points do
not have to be evenly spaced along the
curve. Rational indicates that each
parameter is defined by the quotient of two
b-spline polynomials. [22]

normalizer

function to restrict input to a specific range,
such as restricting an angle a in radians so
that -! 2 @ 2 !; angles usually require
normalizing following any computation;
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normalized variables often present problems
for filters and other functions as their
discontinuities [5]

numerical control (NC)

controlling the motion of machine
components using numbers (M & G codes)
often fed into the controller on punched
tape. The controller mechanism has no
intelligence and cannot be modified in any
way without changing the wiring of the
machine. (see also RS-274-D, CNC.) [4]

NURBS
abbr for Non-Uniform Rational B-Spline.

nut compliance

the reciprocal of the stiffness of a
leadscrew/nut assembly, measured in length
per axial force. [8]

object

an abstraction of an entity representing an
encapsulation of its attributes and services
on those attributes. [7]

object module
software that has been compiled, but not yet
linked. [7]

object-oriented |
a viewpoint that models data and behavior
as objects. [7]

object-oriented programming
programming in a language that embodies
the concepts of objects, classes, inheritance,
polymorphism, and dynamic binding. [7]
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object-oriented structures

two methods used to manage complexity;
classification structure, which captures
class/member organization; and assembly
structure, which portrays  whole/part
organization. [7]

odd pockets with islands milling

method of surface milling in which the tool
follows an inside-out or outside-in pattern
across the part surface. [15]

OEM
abbr for Original Equipment Manufacturer.

offset

the amount of compensation required to
account for the difference between the
actual dimensions of a tool, probe, or end
effector and the dimensions that were used
to program the motion. [7]

offset vector

attribute of a fixture, which describes by
how much the tool must be moved to avoid
the stationary fixture

one-shot

a state after which an established operation
is canceled upon execution; compare with
modal [3]

open applications

applications developed for NGC whose
functionality is not defined by the SOSAS
but whose external interfaces are specified
within the SOSAS. [7]
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open loop

a control system in which data flows
unidirectionally, that is, only from the
control to the mechanism but not from the
mechanism back to the control. [2]

open system

a system that provides capabilities that
enable properly implemented applications to
run on a wide variety of platforms from
multiple vendors, interoperate with other
system applications, and present a consistent
style of interaction with the user (IEEE
P1003.0). [7]

open system architecture

a specification of the capabilities or services
that provides the interconnection structure
and defines the interface between
interoperating components, thus allowing
applications to be integrated into a system
with a consistent style of interaction. [7]

open system interconnection

a seven-layer model of intersystem
communications  specified by  the
International Standard Organization. {7]

open technology
a technology for which there are publicly
available  specification  allowing the

reinvention, from scratch, without royalties
or license fees. [7]

operating system

software that controls the execution of
application  programs and  manages
computing platform services. [7]
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operational
functioning correctly {5]

operator

human who controls movements of a
machine and communicates instructions to a
machine. Usually an operator is a lower
skilled worker than a machinist. [4]

operator console

a device attached to a machine that allows
the operator to communicate to the machine
and receive message from the machine
indicating its operating state. The console
communicates to the control. [4]

operator interface

for the machine shop, it is best to train
operators on one controller for all the
machines in the shop. Plug in particular
machine model for specifics on that
machineis configurations, i.e. lathe model,
mill model, grinder model. [18]

orient

to move the spindle to a desired rotational
position

orientation

direction in reference to a coordinate frame

(5]

original equipment manufacturer (OEM)
they build machine tools and fit controls,
electrical devices, and operator consoles on
the machines. They may completely build
their own machines, or they may receive
CNC-prepared iron from a manufacturer and
integrate their own control or another
manufactureris control onto the iron. [4]
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Open-System Interconnection (OSI)
the ISO/OSI model is a seven-layer model
of intersystem communications. The model
has been adopted for use in MAP. [6]

optical encoder

a linear or angular position feedback device,
typically providing incremental two channel
information in quadrature format (sine or
square waves with a 90 phase shift between
each channel). Such two channel
information allows simple counter circuits
to function as absolute position indicators.

(8]

optimal feedrate
attribute of a tool

optimal spindle speed
attribute of a tool

orthogonality

the degree of perpendicularity, or
squareness, between two axes (X, Y, 2).
usually measured in arc seconds. [8]

OS1
abbr for Open-System Interconnection.

override
to alter selection made automatically by
software [5]

overshoot

the amount of distance a cutting tool goes
past the point where it was told to stop by
the control [4]
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PAL
abbr for Programmable Application Logic.

pallet
a portable platform on which materials
(parts) are stacked for transportation [12]

pallet shuttle
a mechanism for transporting pallets of parts
to and from the machining area.

PAMUX bus

a high-speed parallel bus. This bus can be
up to 500 feet in length. It is a very reliable
high-current bus that is extremely immune
to noise. An individual digital I/O byte on
the bus can be accessed in less than 3
microseconds, even at distances of 500 feet.
Analog channels are accessed in less than
150 microseconds. A completely populated
PAMUX digital bus could be read in
approximately 250 microseconds. It uses a
standard 40 conductor ribbon cable that is
daisy-chained between I/O interface brain
boards and terminated actively at each end.
(10]

paperless factory

the automated and on-line control of the
factory without the aid of printed reports or
forms. [6]

parallels

a type of fixture; a block or strip of metal
made with two parallel sides and used
especially in machine shop work, as for a
gauge block or for setting up work. [13]

part
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1 end product of a milling operation on
stock/workpiece. For example, a part could
be a small piece used inside a motor or a
large metal casting. Also called a workpiece
itself. [4]

2 normally refers to a material item which
is used as a component and is not an
assembly. [6]

part geometry
the dimensional features of a part or an
assembly; see geometry. [6]

part number
1 a number which serves to uniquely
identify a component, product or raw
material. [6]

2 the number that uniquely identifies each
purchased, manufactured, or assembled part.
It is also referred to as an item number. [6]

part program

1 definition of the machining features of a
part such as process order number, part
orientation and position, cutter tool types
and size, depth of cuts, spindle speed, and
feed rates. Then the programming system
calculates the information needed to position
the cutter and table. Many systems use
computer graphics to show the tool path on
a computer monitor. [4]

2 a manufacturing process dcscn’ptioh for a
workpiece. [7]

part programming

used to create tool path. It describes an
object to be made by a machine. Part
programming can be accomplished on a
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CAD/CAM system and downloaded to the -

machine or it can be programmed on the
machine itself using through the operator
console. [4]

part transformation

the removal or addition of materal,
assembly, or inspection of a part. Part
transformation adds value to a part. [7]

part zero
the "zero"location on a part; where the X
and Y axis meet on the part. [4]

path planner

software that produces paths for an end
effector and computes collision avoidance
algorithms, and satisfies other constraints.

(7]

PCTE
abbr for
Environment.

Portable Common Tool

PDD
abbr for Product Definition Data

PDDI
abbr for
Interchange

Product Definition Data

PDES
abbr for Product Data Exchange using
STEP.

period
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time of a periodic process; 1/fs where fs is
the sampling frequency; standard symbol T;
standard units s; primary units 6 [5]

periodic
a process that executes at a fixed rate;
compare with aperiodic [5]

phase current

the rated current which a stepper motor
requires to generate its rated holding torque.
This value is usually based on unipolar
(half-coil) operation. This choice of how
the motor is wired has significant impact on
performance. [8]

phase sequence

the specific sequence of coil current changes
used to advance a stepper motor clockwise
and counterclockwise, in either full or half
step modes. [8]

PHIGS

abbr for Programmer's Hierarchical
Interactive Graphics System. [6]

physical resource viewpoint
a DSSA view of a system.

PID control loop

a PID control loop is used to maintain a
selected process variable at a desired set
point. Many control applications require
closed loop real-time control to set and
maintain critical process characteristics
which might be expected to vary or to drift
over time. The PID function constantly
monitors these parameters and calculates the
error from the desired set-point and outputs
a control parameter to return the process to
the desired set point.
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the update time of the PID loops determines -

the amount of total PID loops a single
program/processor can handle.  Simple
loops and long update times allow for more
PID loops in a program.

PID can be used in both machine and
process control applications. In a process
control with temperature settings, PID can
monitor the thermocouples and upon a
programmed action, turn on a fan, open a
valve, energize a pump and more. Other
functions of PID include scaling, deadband,
and zero-crossing. [10]

pitch

1 for leadscrews specified in British units,
the number of full rotations required to
advance the nut 1". For example, a 5 pitch
leadscrew has a lead of .200". Metric
screws are specified by lead only, usually in
millimeters.

2 an angular deviation possible in
positioning system, in which the tables’
leading edge rises or falls as the table
translates along its direction of travel. This
represents rotation around a horizontal axis,
perpendicular to the direction of travel. [8]

plain mill sharpening
a type of grinding.

plan
an ordered set of actions for accomplishing
a goal. [7]

plane
a machining task.

planner based
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an automatic condition that occurs when the
controller is in the normal production mode;

all resources are focused on part
transformation or process control, and use of )
the production resources are in direct control

of the WPSA. The WPSA provides the

dialog or communications coordination that

allows multiple SAs within the workstation s
to interact and perform simultaneous
operations. [7]

planning

a procedure for determining the operations
or actions necessary to transform material
from one state to another. It includes the
preparation of detailed instructions to
produce a part transformation. [7]

plate
to cover with an adherent layer, as of metal,

by mechanical, chemical, or electrical
means. [13]

platform

a basic structure consisting of virtual
machines, operating systems,

communication mechanisms and hardware.

(6]

PLC
abbr for Programmable Logic Controller.

plunge grinding R
a type of grinding.
PMS A

abbr included in definition of human-user
interface
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point-to-point control

a scheme whereby the inputs commands
specify only points along a desired path or
motion. [7]

polymorphism

in an object language, the characteristic of
an operator that allows it to work on objects
of different classes. [7]

portability
the ability to operate the same component
on different computing platforms. [7]

position

location, either scalar or vector, often with
subscripts to denote coordinated frame; time
integral of velocity; standard symbol p, P,
X, y, z; standard units ft; primary units L
(5]

power-up

an interactive condition that occurs when the
controller is in the startup mode; involves
bringing the computing platform on-line via
the normal startup routines. If auto-start
files are integral to the controller, the NGC
automatically  start;  otherwise, the
appropriate start command must be issued to
initialize the NGC environment. In either
instance, power-up starting and self-test
routines, as determined by the configuration,
until they are successfully completed; (7]

precision

1 measure of exactness, possibly expressed
in number of digits, for example, computed
to the nearest millimeter; compare with
accuracy [5]
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2 the degree to which a given set of
measurements of the same sample agree
with their mean [11]

predicate
an expression that can be evaluated as either
TRUE or FALSE. [6]

primary units

a standard set of four units to which all units
can be resolved. The primary units are (1)
mass-M, (2) length-L, (3) time, and (4)
temperature-T. For example, standard units
for velocity might be ft/s or m/s, but
primary is always L/6. [5]

primitive function
the lowest level of functionality of the NGC
manufacturing workstation. [7]

prismatic
with regard to axes.

probing

synchronize with measure and motion.
Probe must be quickly brought near to part,
then slowing moved in close enough to part
to just sense it for measurement. Only
barely touching or not touching part at all.
(17]

procedure

a systematic, controlled sequence of actions
or operations performed in order to achieve
a specific result. [6)

process
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a set of procedures required to transform
resources (inputs) into specific objectives
(outputs) on a returning basis. [7]

process plan
the sequence and description of fabrication
or assembly operations. [6]

Product Data Exchange using STEP
(PDES)

1 a proposed data format and data exchange
standard which enables the sharing of
physical and functional product information
among various computer systems and
applications. [6]

2 an international standard for data
developed due to the problems discovered
with the IGES format. PDES, represented in
the EXPRESS specification language, uses
specific CAD translators and application
specific protocols to reduce part geometry
translation differences between CAD
systems. [4]

product definition data (PDD)

machine interpretable product, design, and
manufacturing information that includes
geometric models, features, surface finish,
heat treatment, materials specifications, and
tolerances. [7]

product definition data interchange
(PDDI)

a format that allows for interchanging of
PDD between dissimilar CIM systems. [7]

product life cycle
all the stages of a product from initial
concept to finish abandonment. [7]
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programmable application logic

an application specific "ladder logic" that is
continuously executed by the controlis
executive firmware. This "ladder logic" is
composed of PAL ladder language elements.
These elements are combined to form ladder
rungs that make up PAL ladder modules.
These ladder modules are linked together to
form a PAL program.

The PAL program coordinates and controls
the I/O interface between the 9/240 control
and the machine tool. Use PAL to perform
the following functions: 1) sequence
machine functions; 2) operate machine
functions; 3) monitor machine functions.
PAL communicates with the controlis
executive firmware and discrete I/O to
coordinate these machine functions.

The controlis executive firmware sends
information to the PAL program through
specific PAL flags and variables. The PAL
program sends information back to the
control through other PAL flags and
variables. The PAL program can also turn
on PAL messages and custom display pages
that appear on the operator panel CRT.
These flags are divided into the following
areas:

primary system flags

manual motion flags

axis mover flags

offset modification flags
part program selection flags
part program execution flags
feedrate flags

G code flags

M code flags

tool change flags

random tool flags

spindle and gear change flags
spindle orient flags

mode select flags
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status flags from the control
PAL message flags

display page flags
digitizing flags [1]

- programmable logic controller (PLC)

1 adevice for discrete control characterized
by repetitive cycling typically through the
ladder logic program. [7]

2 a control device designed to replace banks
of relays for the repetitive cycling through a
series of mechanical device control
commands. Current designs are computers
with sophisticated logic and
communications capabilities. [6]

Programmable Universal Machine for
Assembly (PUMA)

"At a luxurious press conference in 1978,
General Motors unveiled the PUMA system
that included conveyors, parts feeders, and
robots small enough to work alongside
humans. But it was the small robots in that
system, supplied by Unimation, that became
known as PUMAs". [2]

protocol

a set of semantic and syntactic rules that
determine the behavior of functional units in
achieving communication. [6]

PUMA

abbr for Programmable Universal Machine
for Assembly.

punch press
a machine with a table controlled in the x
and y plane used to cut or press holes
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usually into sheet metal. Punches are often
used to press vents into the sheet metal for
the sides of electrical cabinets. [4]

quadrature

state of being separated in phase by 90° or
one quarter cycle. A quadrature encoder
provides both position and direction
information to the control. [4]

quality
conformance to customer expectations. [6]

query
to request information from a database. [6]

query language

a language close to natural language
allowing flexibility of expressing syntactical
forms. It serves as the interface between the
user and the mechanics of the system and
enables him to query data. [6]

radial error probability (REP)

a probability that a percentage of one-
dimension measurements will lie on a radial
(line) of given length, with the origin
centered at truth or mean of the
measurements; compare with circular error
probability, spherical error probability;
used to specify test cases for measurement
errors of sensors of one dimension, such as
velocity.

For example, a position error of 1 ft/s (50%
REP) means that for any given measurement
of position, p(distance from truth to
measurement is less than 1) = 0.5.
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In another example, a velocity error of 1 ft/s "

(50% REP) means that for any given
measurement of velocity

Vi=V»
then
p7i-<n=05

—

where Vi is the average of all Vi or V

truth, depending upon context. [5]

radius

a straight line extending from the center of a
circle or sphere to the circumference or
surface [11]

RAMP
abbr for  Rapid
Manufacturing Parts. [6]

Acquisition  of

ramp
1 n. synonym for unit ramp [5]

2 v. to gradually accelerate a motor,
essential if performance beyond the
start/stop range is required. The slope of the
ramp is a function of screw pitch, load,
motor, and drive voltage and design. [8]

rapid traverse
cutting feedrate to quickly position the
cutting tool for the next cut. [4]

rate
rate of change or data; derivative with
respect to real time (5]

rate limiter
a filter that passes the input as the output,
except that rate of change of the output is
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limited to a maximum absolute value;
compare with limiter.
Rate limiters are usually implemented as

Vo =Yy + 5805 = Y )min(¥ lx, =y, 1D

where Pnax is the maximum absolute
change per period. [5]

real time

1 time in a computational process which
runs at the same rate as a physical process;
for example, algorithms designed to run a
fixed period T (filter time constants at set
for T) and actually execute with frequency
1/T in real time [5]

2 within a strict, predictable time interval.
Real-time processing often involves event
waiting, timed reminders, validity intervals,
and some form of approximate or
progressive reasoning that allows creation of
an acceptable (in some sense "best")
response within the time allowed. [7]

real-time function

a function that must be carried out in a
relatively brief time interval (typically a
minute or less) and that is characterized by a
commitment to execution.  Here, any
attempt to make a significant alteration in
the planned course of action will result in
some negative effect on the workpiece. [6]

real-time operation
an activity within a strict, predictable
bounded-time interval. [7]

ream
a machining task; to finish a drilled hole to
an exact size using a reamer [9]
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reamer

a cutting tool used to produce a smooth
accurate hole by removing a small amount
of metal from a drilling hole [9]

reamer sharpening

a type of grinding.
reciprocating saw

a type of saw machine.

recovery
restoration of IB consistency in the event of
hardware or software error. [7]

reference
what must be achieved in order to match a
plan; synonym for desired [5]

referential integrity

the capability of ensuring that repository
data does not contain references to non
existent data or definitions. It involves
automatically deleting a relationship
instance whenever the source or target of
that instance is deleted. [6]

relative

applies to measurements, in a non-standard,
moving reference, as opposed to fixed
reference; compare with absolute [5]

reliability

the measure of a system's ability to perform
in a stated manner for a given period of time
under specified operating conditions and
environments. [7]

remote jog pendant
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a hand-held device with wheels and buttons
used to manually move axes. Also called a
teach pendant. [4]

REP
abbr for Radial Error Probability [5]

repeatability , 4
capability of CNC software to exactly
imitate accurate motions. [4]

replication

the existence of multiple instantiations of a
module's functionality within an
implementation. [7]

requirement
a declarative statement describing customer
needs. [7]

resolution

the smallest unit of measurement that a
measuring  system is capable of
distinguishing. [7]

resolver
analog position feedback device. [4]

resonance

1 midrange resonance:  a parasitic
oscillation which is endemic to stepper
motors, although frictional loads may mask
its effect. It typically sets in from 5 to 15
revolutions per second, and can easily cause
a loss of synchronization (stalling). [8]
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2 primary resonance: The rotor inertia of a -

stepper motor, coupled to its spring-like
magnetic field characteristics, constitutes a
basic spring-mass oscillator. In the absence
of sufficient damping, stepper at certain
frequencies may excite resonance in this
system, or resonate with the load, resulting
in loss of synchrony. The addition of
system damping, operation in half-step
mode, or ramping through problem speeds
will usually eliminate resonance. [8]

resource

any item within the manufacturing
workstation used to transform a part, assist
in the transformation of a part, or support
other resources. These include machines-
under-control, such as robots, machine tools,
and material handling devices, as well as

fixtures, tools, lubricants, coolants, and
workpieces. [7]

retrofitter

a person or company who installs

(integrates) new CNCs and other electrical
equipment on old machine tools. Some
large companies  have  retrofitting
departments that are responsible for
constantly upgrading the machine tools.
Small job shops usually wait until a machine
is too expensive or impossible to fix or it
cannot be used to fulfill a new contract for
parts before trying to retrofit a new control
on the machine. [4]

reusable software
software that can be used for more than one
implementation. [7]

reverse engineering
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examining an existing part to determine its
structure and make a copy or use that
structure to create another part based on the
features of the first. [4]

revolutions per minute (RPM)

this unit of measurement indicates the
velocity at which a object must travel at a
uniform angle to complete a circle in one
minute. [4]

RMS
abbr for Root Mean Square

rigid tap
a type of tapping tool; compare flexible tap

robot
a programmable manipulator
associated system. [7]

and its

roll

an angular deviation from ideal straight line
motion, in which the positioning table
rotates around its axis of travel as it
translates along that axis. [8]

rollback

return a database to its state before an
uncommitted transaction was updated. In
order to do this, a "before image” that
reflects the state of the data items prior to
update must be available for restoration. [7]

rollforward

SOSAS Rev. 2.6




restore updated information following a -
rollback. In order to do this, an "after
image" that reflects the state of the data
items following update must be available for
restoration. [7]

root mean square (RMS)

a statistical measure of data; the square root
of the mean of the square; compare with
root sum square; for variables with mean of
zero, the standard deviation is equal to the
RMS. [5]

In discrete time, RMS is computed

- 2
Exi
i=0

n

In continuous time, RMS is computed:
x = lj'x’(t)dr
RMS l o1

root sum square (RSS)

a statistical measure of data; the square root
of the sum of the square; compare with root
mean square; for a vector, its length is
equal to the RSS of its scalar elements.

(5]

In discrete time, RSS is computed:

n
—- ’ 2
Xps = Zx‘
1=0

In continuous time, RSS is computed:

e IO

rotary saw
a type of saw machine.
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rotational force/torque
a type of control law.

rotational position/velocity
a type of control law.

roughing pass : _
a cycle of milling in which a significant
margin is added to the tool motion, so that
large amounts of material can be removed
quickly. [15]

RPM
abbr for Revolutions Per Minute.

RS-274-D

an industry standard, part programming
language for generating numerical control
(NC) programs (using M & G codes). The
programs describe tool path. This standard
specifies the use of the EIA Standard RS-
358 character code set and the basic
characteristics of a numerical controller. [4]

RSS
abbr for Root Sum Square (5]

RT
abbr for Real-Time.

SA
abbr for Standardized Application

saber saw
a type of saw machine which is a portable
electric jigsaw. [13]
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safety
safety relates to procedures to keep humans
free from injury or exposed to hazards. [7]

safety envelope

attribute of a part which describes the
volume about the part in which it is safe to
move the tool.

safety interlock

a safety interlock is dependent upon the
design and purpose of the equipment. It
provides a workstation warning and control
in the event of human errors and
misjudgments. It also detects component
failures such as electrical overloads and
shorts, valve sticking, or lack of flows and
pressure. [7]

sampling frequency

rate of a periodic process; 1/T where T is the
period; standard symbol fs; standard unit
Hz; primary units 1/6 [5]

saw
a type of machine; a machine tool used to
cut hard material, usually consisting of a
thin, flat blade or plate or tempered steel
with a continuous series of teeth on the edge
and mounted in a handle or frame. [13]

scalability

the capability to increase or decrease the
functionality of a manufacturing workstation
or its components. [7]

scalar
a quantity possessing only magnitude;
compare with vector; standard notation x

[11]
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scaling

the process in the PID instruction which
allows the setpoint and zero crossing values
to be displayed in engineering units.
Setpoint, deadband, process variable, and
error may be scaled. (see PID control loop)
[10]

schema

a data model that defines all abstract object
data types including relationships, attributes
and constraints. [7]

sculpted surface

a machined or molded object whose surface
is contoured and non-linear, e.g. the shape
of a light bulb. [6]

SDT
abbr for System Development Tool

SEB
abbr for Sensor/Effector Bus

second-order filter

a smoothing filter in which the output
follows the input, only more slowly. It is
usually implemented in software as a
difference equation of period T as:

xn + an—l + xn—‘.’
4

Y, =Av,.,-By, - +(1-4 +B)

= Ay _,-By,_,+(1-4+ B)x,

A and B vary depending upon case:

SOSAS Rev. 2.6




= 2¢7%nT cos(o,,TJl -¢? )= e T e

B=e280nT _ gmal | b7

where ©,>0 (natural frequency) and 0<(<1
(damping ratio) are filter constants for

- underdamping (case 1), ;>0 and £=0 for no

damping (case 2), a and b are filter constants
for overdamping (case 3), and a=b or ©,>0
and =1 for critical damping (case 4).

If the input is a unit step then, the time
Iesponses are:

underdamping, no damping
<o

)y=1- i/l—_g: sin(anl—gzt + cos-! C)

overdamping, a_b

y(t)=1+——b—l;e-a' + e—b

a- b-a
critical damping, a=b
w)=1-(1+ar)e~¢
The Z transform is:

Y(z) _(-4 + B)z2
X(z) z2-Az+B

The differential equations are:

e L

by o,
a+be__l_’B

x-2yp Ly
a a2

The Laplace transform is:
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¥(s) w? _ ab a2
T (s+aXs+b) (s+aR

X(s) 52 +2lons+o0?

When the second-order filter is used, it is
commonly to smooth data, and to wash out
transients at mode change. Usually, a first-
order filter suffices, and it being less
expensive, is chosen over a second-order
filter. Typical values for o,, a, and b are
0.1-2 rad/s, and ¢ 0.1-0.9 (unitless). It
should also be noted that two first-order
filters can be chained together to form a
second-order filter that is critically damped
or overdamped.

When implementing a second-order filter on
normalized variables, such as angles, the
discontinuities require special treatment. [5]

semantics

the meaning or interpretation assigned to a
group of characters in a language; compare
syntax

semicircle

a measure of angle, 1 semicircle = ! rad =
180 deg; angles from physical devices may
be reported in semicircles in order to
compress data [5]

sensor

1 feedback device used on a CNC machine
to monitor the operation and check output.
Common types of sensors are force and
power sensors, touch probes, and acoustic
monitors. [4]

2 a device that measures, receives, or
generates data [5]
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3 a transducer whose input is a physical -

event and whose output is a quantitative
measure. [7]

sensor control
control of a machine,
measurements. [7]

based on sensor

sensor/effector bus (SEB)

a shared medium for distributing electronic
signals between the controllers, sensors, and
effectors. [7]

sensor/effector standardized application
(SESA)

connects the controller to the instrument(s)
under control, i.e., it handles all input and
output relating to controlled instruments on
the manufacturing workstation. [7]

sensor feedback

the return of information obtained from
sensors to maintain performance or to
control a system or process. (7]

sensor hierarchy

a relationship of sensor information
processing elements whereby the results of
lower level processing are abstracted and
used as inputs to higher level processing.

[7]

SEP
1 abbr for Spherical Error Probability

2 abbr for Scenario-based Engineering
Process
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sequential function chart (SFC)

a graphical language that uses five simple
graphical elements to provide a
representative diagram of any sequential
process. The basic elements are steps,
transitions, and actions. A step consists of
any number of actions or pieces of a
program that are carried out until an action
qualifier is met. The language supports
alternative and parallel sequences. Because
discrete manufacturing applications all run
as a sequence of steps, SFC is an excellent
way to logically decompose the process and
automatically transfer the process into a
structured program. SFC greatly enhances
communication between the system
architect, project  manager, System
integrator, and maintenance personnel. [10]

service

a domain-independent mechanism that
provides fundamental capabilities enabling
integration of independently developed,
domain-specific functional entities. [7]

servo control

1 a feedback control system involving both
hardware and software in which the output
is some mechanical position, velocity, or
acceleration. [4]

2 an interface that allows a controller to
interface to industry standard servo drive
amplifiers using +/- 10 volt motor
commands and A quad B encoder feedback.
The interface is capable of independently
controlling the axis in closed-loop mode in
either velocity or position modes using a
DSP to perform the computations required
for servo control. The DSP has a command
set that eliminates most of the host CPU
overhead associated with motion. Velocity
profiling is supported. Loop compensation
is accomplished by a digital Proportional
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Integral Derivative (PID) filter updating the -

servo at 4khz. Feedback from an encoder is
received at 1 million counts/second. The
interface also handles motion control
applications requiring opto-isolated inputs
for end-of-travel limits, marker pulse, and
open collector or differential quadrature
encoders. [10]

servo-loop closure rate

in a closed-loop servo controller, the
synchronous rate at which servo commands
are generated, feedback sensors are sampled,
control laws are computed and servo drive
signals are generated. [7]

servo motor

a DC motor which produces a torque
proportional to current. Precise positioning
is achieved by linear or PWM (duty cycle)
control of motor current or voltage, together
with accurate monitoring of position via an
external feedback device. 8]

SESA
abbr mentioned in the definition for controls
standardized application.

SFC .
abbr for Sequential Function Chart

SFM
abbr for Surface Feet per Minute.

shared axis

a programmable axis that is shared by two
or more axes or groups of axes; e.g. two 5-
axis milling heads sharing a common rail
type axis that would position them. [6]
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shop floor

the part of a manufacturing enterprise that
has the responsibility to produce a product
by performing manufacturing operations.
The shop floor is the physical location
through which the product passes on its way
to completion. [6]

sign

common math function; returns whether the
input value is positive or negative; standard
notation sign x [5]

signal
part of received data that is desired;
compare with noise [5]

signal-to-noise-ratio (SNR, S/N)

the ratio of magnitude of a desired signal to
the magnitude of the noise received with it;
standard units dB, 1; primary units 1 [5]

simultaneous axes

axes that move simultaneously at different
or varying velocities as commanded by the
control. These begin and end at
programmed points but the simultaneous
axis motion does not accommodate specific
multi-axis paths in between these points. [6]

sine
common math function; standard notation
sin X, sx [S]

single instruction

an interactive condition that occurs when the
controller is in the normal production mode;
starts a process that enables the manual jog
of machine axis for tool positioning
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purposes during work piece set-up, or -

allows a process parameter to be temporarily
varied; manual operation is also useful for
activities where the workpiece remains
fixture on the machine and a cursory
inspection is performed via a digital probe
or similar device; single instruction can also
be an interactive condition that occurs when
the controller is in the normal production
mode. Examples of machine and process
related macro execution include "Home
Machine", "Auto Tool Change", "Set Point",
"Null". Macro execution shall also involve
the performance of a set of manual data
input instructions intended to drive an axis
or the machine to a predetermined
position/location within the work envelope;
or execute a predetermined collective set of
process parameters. [7]

single-step normal production

an interactive condition that occurs when the
controller is in the normal production mode;
the machine/process pauses after each
control plan segment and maintains that
position until a human interface button is
pressed. [7]

situation
current environment and surroundings [5]

slabbing cutter sharpening
a type of grinding.

slaved axis
an axis whose path follows that of another
axis but in some translated or offset amount.

[6]

SMM
abbr for Surface Meters per Minute.
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smoothing filter

a filter to reduce quick changes of a signal
by attenuating high frequencies; see first-
order filter, second-order filter, wash-out
filter [5]

S/N
abbr for Signal-to-Noise ratio [5]

SNR
abbr for Signal-to-Noise Ratio [5]

software library
a repository for software components. [7]

solution viewpoint
a DSSA view of a system.

SOSAS
abbr for Specification for an Open System
Architecture Standard.

SOSAS-conformant
a characteristic of a NGC product indicating
that it meets all applicable requirements in
the NGC SOSAS. [7]

SPC
abbr for Statistical Process Control.

speed
the scalar component of velocity, measured
in distance per unit time

spherical error probability (SEP)
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a probability that a percentage of three- -

dimension measurements will lie within a
sphere of given radius, with the sphere
centered at truth or mean of the
measurements; compare with circular error
probability, radial error probability

SEP specifies test cases for measurement
errors of sensors of three dimensions, such
as velocity X, Y, and Z. For example, a
total velocity error of 1 ft/s (50% SEP)
means that for any given measurement of
velocity

Vi= {VE,VN,VV}
then

pl7i-nl<p=05
where Vi is the average of all Vi or V
truth, depending upon context. [5]

spindle

a rotating mechanical assembly that serves
as an axis for revolving tools, a workpiece,
or an end effector for a machine tool. [7]

spindle lock
condition in which the spindle is stopped so
that it cannot rotate

s-plane

continuous complex frequency plane; see
Laplace transform; S-plane is used in
control systems engineering in the design of
control laws [5]

sprayer

a type of end effector.

spotface
a machining task; to machine a circular spot
on the surface of a part to furnish a flat
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bearing surface for the head of a bolt or nut

[9]

ST
abbr for Structured Text.

stall speed

the maximum speed which a stepper motor,
properly ramped, can achieve without loss
of synchrony. This speed is a function of
motor inductance, ramp slope, applied load,
drive voltage and design. [8]

stand alone control

one PLC controls all of the I/O. Stand alone
is perfect for a smaller application,
especially one that requires a continuous
process. [10]

standardized application (SA)

an application that supports current
controller practices and provides a baseline
controller. [7]

.standard notation

common form of a mathematical expression

(5]

standard units
units commonly encountered for a particular

quantity [5]

start/stop speed

the maximum step rate which can be applied
to a stationary stepper motor and still retain
error-free performance. Also, the rate from

which a stepper motor may be
instantaneously stopped without
overshooting. This is a function of the
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screw pitch, load, drive voltage and design, -

and motor. [8]

statistical process control (SPC)

the statistical techniques to analyze a
process or its end product so appropriate
actions can be taken to control and improve
the process. [7]

steel block
a type of fixture.

step
synonym for unit step [5]

stepper motor

a type of motor featuring two or four stator
coils and a toothed permanent magnet rotor,
which moves through a small angle in
response to a specific sequence of coil
current changes. [8]

stepper motor control

an intelligent interface that allows a
controller to interface to stepper motors.
The interface provides precise motion
control profiling requiring microstepping
rates at millions of pulses per second. Each
axis is controlled by an intelligent controller
which provides five output signals and
seven input signals, along with inputs for
incremental encoders connected in either
single-ended or differential form. It
provides pulse, direction CW/CCW, hold,
and user defined outputs. Inputs are
provided for axis limits, ramp up/down,
home, alarm and user defined input. All
input and output is opto-isolated for noise-
immunity and electrical isolation. Internal
registers control the number of steps,
acceleration/deceleration rates, starting rate,
slew rate, and ramp-down point. [10]
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step rate

the frequency of coil current changes, or
input pulse train applied to a stepper motor,
in pulses/second or hertz. For 200
step/revolution motors, the full step rate
multiplied by .3 equals the rotation rate in
RPM. [8]

stock

1 ahe raw material from which a part is cut.
This material is often metal, but it can be
any substance that can be cut such as plastic
or even glass. [4]

2 any transformable material that is not
currently involved in a transformation
process. [7]

structured text (ST)

a high level block structured language that
has a syntax that resembles PASCAL. ST
can be used to express complex statements
involving variables representing a wide
range of data types. [10]

surface representation
the form presented to a user that represents
surface function. [7]

synchronous
1 occurring at fixed time intervals (see
asynchronous). {7]

2 refers to any tasks or electronic/computer
events that occur at fixed intervals or
periods and must be executed in a lock-step
fashion (see asynchronous). [6]
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syntax

set rules specified for a language. The
relationships among characters or groups of
characters independent of their meaning or
the manner of their interpretation and use.

[7]

system
an organized collection of people, machines,
and procedures, required to accomplish a set

of specific architectural or enterprise
objectives. [6]

system development tool (SDT)

software that supports the analysis,

development, integration, operation and
maintenance of NGC-conformant elements.
(7]

tachometer

a device for measuring angular velocity [5]

tactile sensor
a transducer that is sensitive to contact
pressure. [7] '

tangent
common math function; standard notation
tan x [5]

tap
to cut an internal screw thread in an existing
hole

tape
a type of fixture

tap sharpening
a type of grinding
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target position
position command by the CNC. [4]

task
an activity within an
accomplish a goal. [7]

operation to

task execution standardized application
(TESA)

responsible for routine coordination of
multiple machines within a manufacturing
workstation, as well as direct invocation of
sensor/effector functionality as appropriate.

(7}

task schedule

the highest or master schedule for the
workstation. It is the combined schedules of
all activities for the workstation. [7]

TCP
abbr for Tool CenterPoint.

temperature

the average Kkinetic energy of a body;
standard symbol T; standard units °C;
primary units T [11]

terminal emulation
display software that makes a computer
display (CRT) and keyboard behave as a
"dumb" terminal to be interfaced to a host or
other computer. [6]

TESA
abbr for Task Execution Standardized
Application
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third party vendor

one who sells or offers for sale goods and/or
services for use with equipment
manufactured by other vendors. [6]

thread
a machining task; to form an external screw
thread or threads on or in material. [13]

throughfeed grinding
a type of centerless grinding.

time

time relative to some defined time base;
delta time as a fixed period (usually the
average time for one computational cycle);
standard symbol t, T; standard units s;
primary units & [5]

time constant

constant for a first-order filter determining
time at which the output of the filter reaches
A0.6321% of a step input; standard symbol
1, standard units s; primary units 6 [5]

tolerance
1 allowed error in measurements [5]

2 permissible variations in the dimensions
of a machined part. A part that does not
vary beyond these predefined limits is said
to be "in tolerance.” [4]

tool
1 acutting tool used by a machine. [4]

2 an item that physically implements a
predefined action. [7]
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tool centerpoint (TCP)

a fixed point on the tool that serves as the
reference point for the tool; all tool motion
is expressed as motion of the TCP

tool change position
attribute of a tool, describing the point to
which the tool should travel so that the tool
changer can get to it.

tool changer
an automatic device to hold and dispense
tools during part cutting. [4]

tool path

route a cutter takes when machining a part.
A part program may display this path
graphically on a computer monitor. [4]

tooth loading
material removal rate

top-down methodology

a process that begins with an analysis of key
objectives, data or activities at a high level
and works down to the lowest level of
detail. [6]

torque
1 Force and the direction of the force
combined to determine rotation movement.

(4]
2 the moment of a force or system of forces
tending to cause rotation; torque = (net

force) (length of moment arm) [11]

torque compensation
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used in digital control over
movement, associated with tuning. Should
the joystick move to the ifull onl position,
the system must back off the command until
the engine can catch up with its RPM rate,
creating a lag in response time. [21]

total quality management (TQM)

a leadership philosophy focused on
customer satisfaction, achieved through
empowered employees, teamwork, and
continuous improvement. [6]

TQM
abbr for Total Quality Management.

transfer speed

in teaching a path through a teach pendant,
the accuracy of the path generated from the
path program decreases as the transfer speed
is increased. This causes the teaching to be
done at a slow rate, thereby hindering the
testing of new algorithms. [17]

transaction

1 a mechanism for ensuring that all actions
associated with one or more DMSs service
call will be treated as a single unit of work.

[7]

2 a single bi-directional exchange of
messages from a requestor to its responding
partner and from the responder to the
requestor in that order. [6]

transducer
a device that converts a physical
phenomenon into an electrical signal. [7]
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transient-free switch

a switch with a wash-out filter so that the
output contains no transients (steps) at
switch time [5]

transpose
standard matrix operator; standard notation
XT [5]

travel
distance the bed moves along an axis. [4]

traverse grinding
a type of grinding.

trigger

a monitor placed on a data item that initiates
some action based on access to or change in
value of that item. [7]

tuning

digital control over analog movement. An
example is joystick control of a process (like
a hydraulic pump). As soon as the joystick
crosses 10%, the valve should open (since it
takes a specific amount just to start the
movement). Every movement of the
joystick causes the valve to open more. [21]

tuple

row of data in a (database) table.
Relationally speaking, tuples are
constituents of relations. [6]

turn
a machining task.
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two-phase commit

process in which a commit manager sends
out an intent-to-commit message to all
subprocesses and those subprocesses must
unanimously acknowledge consent before
the commit can take place. [7]

ultrasonic machine (UM)
a machine which performs material removal
via sound waves.

UM
abbr for Ultrasonic Machine.

unit
a standard quantity, such as ft or mi;
synonym for dimension [5]

unit function

one of a collection of functions used as
standard test cases in control systems
engineering; standard notation u(t);
standard units 1; primary units 1. The
primary unit functions of interest are the
unit impulse, the unit step, and the unit ramp
(see table in Notation section for properties)

(5]

unit impulse

a function used as a standard test case in
control systems engineering; a spike of
"area" one at time t = 0; synonym for
impulse; see wunit functions; standard
notation uy(t), & (t); standard units 1;
primary units 1; written uy(t - t) for a ramp
starting at time t = 7; standard engineering
term [5]
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unitless

no units, such as ratios; a quantity with
standard units of 1; a quantity with primary
units of 1; synonym for dimensionless [5]

unit ramp

a function used as a standard test case in
control systems engineering; a line of slope
1 starting at zero at time t = 0; synonym for
ramp; see unit functions; standard notation
u,(t); standard units 1; primary units 1;
written u.,(t-t) for a ramp starting at time t =
T [5]

unit step

a function used as a standard test case in
control systems engineering; a step from
zero to one at time t = 0; synonym for step;
see unit functions; standard notation u.(t-
1), u(t); standard units 1; primary units 1;
written u.(t-t) forastep attimet=1 [5]

upgradeability

the characteristic of enhancing speed,
capacity or functionality of a software or
hardware element within a manufacturing
workstation (see scalability). [7]

user interface

the messages and informational and data
entry screens displayed on a CRT to guide
the system user in operation of the machine.
Common elements of a CNC user interface
are the graphic representations of parts,
messages from the motion control
subsystem, and part setup and programming
option lists. [4]

user interface application
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code that allows a user to interact with or -

manipulate specific information. [7]

user interface device
provides surface presentation functionality
directly to a user. [7]

user interface support package
a COTS component that provides specific
HUI functionality. [7]

VAL
an robot programming language, BASIC-
like in syntax.

vector

a quantity possessing both magnitude and
direction, represented by an arrow the
direction of which indicates the direction of
the quantity and the length of which is
proportional to the magnitude; compare
with scalar; standard notation ¥ [11)]

velocity

rate of change of location, either scalar or
vector, often with subscripts to denote the
coordinate frame; time derivative of
position; time integral of acceleration;
standard symbol v, V; standard units kt, ft/s;
primary units L/8 [5]

verification
the methods or means used to ascertain that
the SOSAS conforms to the requirements.

(7]

version
a formal record used to help track an

object's evolution over time; a version may
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be associated with a context and loaded
according to that context. [7]

vice
a type of fixture; any of various tools
having two jams for holding work that
close, usually by a screw, lever, or cam.
[13]

view
a presentation with limited perspective
based on context. [7]

virtual machine

a specification of mechanisms providing a
common software interface to computing
platform services that isolates software
modules from the computing platform. [7]

wash-out filter

a filter to smooth a transition due to change
of input source, such as when changing
modes; see transient-free switch

Wash-out filters are usually designed as y =
xij - fipe(£EX), where i selects a particular
input x;, £x = xp - X;, when i changes, and
fipr is a high-pass filter, often first order.
Time constants are usually about 5's. [5]

waypoint
a discrete point along a path

ways
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the rails on which a large portion of the
machine, such as the bed or the spindle
column, moves. [4] '

welder
a type of end effector.

wheel dressing
a type of grinding.

WMSA
abbr for Workstation
Standardized Application.

Management

working envelope
a defined boundary representing the
maxirnum extent or reach of a machine in
all directions. [7]

working range

all reachable positions within the working
envelope; the range of any variable within
that the system normally operates. [7]

workpiece
the material that is being machined to
produce a product or the product itself. [7]

workstation
see manufacturing workstation. [7]

workstation management standardized
application (WMSA)

performs the control of the manufacturing
workstation by determining  and
rescheduling its activities. These activities
include coordination of startup, calibration,
diagnosing and shutdown of the machines,
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and extermal communications. This SA
provides for configuration management of
the manufacturing workstation and controls
its modes of operation. It monitors the
controller and machines within the
manufacturing  workstation, predicts
failures, and provides for failure mitigation.
This WMSA tracks and maintains the status
of all assets available within the
manufacturing workstation, Furthermore,
this SA provides the single point of
communication with the cell. [7]

workstation model
the data necessary to control the
manufacturing processes. It includes

information such as parameters of the
controlled equipment, quality control data,
tool performance data, and part material
characteristics, [7]

workstation planning standardized
application (WPSA)

performs the preparatory planning required
for the workstation. This planning includes
determining and executing the
manufacturing workstation operations plan,
preparing a CCP to be executed by the
TESA, and determining collision free path
for a machine. This SA also incorporates
modeling services for use in operations,
task, and path planning and plan
verification. [7]

world coordinate
a position relative to a frame of reference
fixed on the manufacturing workstation. [7]

world model
the system's estimate and evaluation of the
history, current state, and possible future
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states of the world, including the statas of
the system being controlled. [7]

WPSA
abbr for Workstation Planning Standardized
Application.

yaw
an angular deviation from ideal straight line
motion, in which the positioning table
rotates around the Z (vertical) axis as it
translates along its travel axis. [8]

Z axis

identifies the Cartesian axis that moves up
and down (the "Z" plane). The movement
of the "Z" axis controls the distance a
cutting tool travels into a part. [4]

Zero-crossing

a part of the deadband control. The PID
instruction uses the deadband error range
when a process variable moves into the
deadband and crosses the setpoint. (see PID
coatrol loop) [10]

z-plane

discrete complex frequency plane; see z
transform; z-plane is used in control systems
engineering in the design of control Jaws

(5]

z transform

a mathematical relationship to model a
discrete function in the complex frequency
domain  (z-plane); compare  with
continuous-time equation, difference
equation, differential equation, discrete-time
equation, Laplace transform; Z transforms
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are commonly used by systems engineers to
describe systems; see first-order (filter,
second-order filter, unit functions for
examples [5]
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E.3 Notation

The table below lists units used in this dictionary. Many entries list standard units for quantities.
These are the units most likely to be used by domain experts. It is not intended to serve as the
final word on units. Some engineers will prefer other units.

This dictionary lists primary units for many symbols. All units can be broken down into
combinations of four primary units: (1) mass (M), length (2) length (L), (3) time (0), and (4)
temperature (T). Unitless quantities have primary units of 1. The primary units are useful for

checking consistency of equations.

The tables below list the symbols used in this dictionary.

symbol primary units meaning measures

g L/e gravitational units acceleration
deg 1 degrees angle

DMS 1 degrees, minutes, seconds  angle

rad 1 radians angle
semicircle 1 semicircles angle

pm 10 revolutions per minute angle

1bf ML/®' pound force force

kip ML/e' thousand pounds force

Hz 1/6 hertz frequency
ft L feet length

in L inch length

Ibm M pound mass mass

slg M slug mass

in Hg ML/6'L inches mercury pressure
mbar ML/6'L millibar pressure

psi ML/6'L pounds per square inch pressure

% 1 percent ratio

dB 1 decibel ratio of power
oC T degrees Celsius temperature
hr ) hour time

s 0 second time

nomenclature  standard units primary units meaning

A

a
a
ac

fus',g
fus'.g
1

ft/s'.g
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L/e' acceleration

L/6' acceleration

1 Euler parameters

L/e Coriolis acceleration
E-69
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o rad/s' 1/6' angular acceleration
b 1 1 Euler parameters
c 1 1 Euler parameters
€1234 1 1 Euler parameters
fs Hz 1/6 sampling frequency
g ft/s' L/e' gravitational acceleration
g 1bf, kip ML/®' gravity

1 1 1 identity

J ft/s' L/’ jerk

j ft/s' L/e' jerk ,
o rad/s, rpm 1/6 angular velocity

P ft, mi L position

p rad/s, deg/s 1/6 pitch rate

p ft, mi L position

q rad/s, deg/s 1/6 roll rate

r ft, mi L range (mg)

r rad/s, deg/s 1/6 yaw rate

s 1 1 Euler parameters
T s 0 period

T °C T temperature

T s ) time

t s 6 time

6 rad, deg 1 angular position
AV ft/s, kt L/® speed error

\Y kt, ft/s L/e velocity

v kt, ft/s L/e velocity

X ft, mi L position

y ft, mi L position

z ft, mi L position

Greek standard primary

svmbol _units units meaning

© rad/s, Hz 1/6 damped frequency
¢ rad/s, Hz 1/6 cutoff frequency
©n rad/s, Hz 1/6 natural frequency
o rad, deg 1 roll

¢ rad, deg 1 roll

¢ rad/s, deg/s 1/6 roll rate

¥ rad, deg 1 yaw

y rad, deg 1 yaw

v rad/s, deg/s 1 yaw rate

T s 6 time constant

0 rad, deg 1 pitch

0 rad, deg 1 pitch
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e rad/s, deg/s 1/
€ 1 1
notation meaning

- 8(t) unit impulse
_xdt integral
A matrix
1Al determinant
arctan X arctangent
atan x arctangent
fa1j] matrix
Cos X cosine
cX cosine
Dx derivative
det [1] determinant
dx/dt derivative
ex exponential
exp X exponential
In x logarithm
log x logarithm
logy x loganthm
max(Xp,..., Xp) maximum
min(Xi,..., Xp) minimum
sgn x sign
sin x sine
sX sine
sx + x(0*) denvative
tan x tangent
tan-ix arctangent
tan"!(y.x) arctangent
u(t) unit step
u,y(t) unit step
u.a(t) unit ramp
u(t) unit functions
ug(t) unit impulse
X1 inverse
XT transpose
X scalar
X denivative
x(1) derivative
x-! inverse
Ix| absolute value
X' derivative
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pitch rate
damping ratio
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X vector
subscript meaning example
-2 ramp unit ramp (u.,(t)
--1 step unit step (u.;(t), u(t))
0 impulse unit impulse (up(t), 8(t))
b base logarithm (In x, log x, logpx)
c Coriolis Coriolis acceleration (a¢)
c cutoff cutoff frequency (w¢)
k order unit functions (ug(t))
max maximum limiter
min minimum limiter _
n cycle n first-order, integrator, second-order filter
n natural natural frequency (o)
s sampling sampling frequency (fs)
E-72 SOSAS Rev. 2.6
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E4  Category Index

computer, communication
Arcnet

CANBus

dedicated channel

PAMUX bus
sensor/effector bus

computer science
algorithm

analog input/output
ASCII

autonomous control
batch execution

binary coded decimal
checkpointing

commit

computer cycle
computing platform
concurrency

database

database management system
data bus

data structure

device driver

discrete /O

distributed database
dynamic binding
exception handling
graphical user interface
hierarchical control
human user interface
information base
information base application
interrupt

knowledge base
knowledge base management
system

latency

locking

logging
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operating system
protocol

schema
semantics

syntax

trigger

user interface

control law, categories of

linear force/torque
linear position/velocity
rotational force/torque

rotation position/velocity

controller, concepts regarding

block
block cycle time
canned cycle

controller, parts of
control law
interpolater
kinematic model
machine model

path planner

servo control

control, types of

adaptive control

binary cutter location
closed loop

computer numerical control
continuous path control
direct numerical control
distributed control

endpoint control

motion control

controls standardized application numerical control
conversational part programming open loop

data starvation
diagnostic

drawing interchange file

feedback

forward kinematics
interpolation
interpolation block
inverse kinematics
leadscrew mapping
multiaxis mode
offset

overshoot

part program

part programming
quadrature

roughing pass
servo-loop closure rate
stepper motor control
target position

torque compensation
transfer speed
waypoint
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point-to-point control
sensor control
stand alone control

engineering & mathematics
absolute

acceleration
accelerometer
accuracy

angle

angular acceleration
angular position
angular velocity
aperiodic
asynchronous

axis

bias

coefficient of friction
coordinate
correlation

delta

desired
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deviation
dimension
dimensionless
discrete time
distance

domain

drift

error

euler angles

euler parameters
function
granularity
gravitational acceleration
impulse

jerk

metrology

model

noise

non-uniform rational b-spline
orientation

period

periodic

position

precision

radius

ramp

rate

real time

reference

relative

resolution

root mean square
root sum square
sampling frequency
scalar

semicircle

signal
signal-to-noise ratio
speed

s-plane

standard notation
standard units

step

synchronous
tachometer
temperature
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time
tolerance
torque
transducer
unit

unit impulse
unitless
unit ramp
unit step
vector
velocity
Z-axis
z-plane

english

abort

activity
clockwise
counterclockwise
operational
situation

error
abbe error

dynamic error

dynamic following error
following error
geometric error
kinematic error

filter, concepts regarding
cutoff frequency

damped frequency
damping ratio

hysteresis

natural frequency

time constant
transient-free switch

filter, types of
averaging filter
band-pass filter
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complementary filter
first-order filter
high-pass filter
integrator

kalman filter
limiter

low-pass filter
rate limiter
second-order filter
smoothing filter
wash-out filter

fixture, types of

-bolt

chuck
clamp

jig
parallels
steel block

tape
vice

functions, types of
absolute value
arctangent
continuous-time equation
cosine

derivative
determinant
difference equation
differential equation
discrete-time equation
exponential
extrapolate

identity

interpolate

inverse

Laplace transform
logarithm
magnitude

matrix

maximum
minimum
normalizer
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sign

sine
tangent
transpose

z transform

grinding, types of
centerless grinding
endfeed grinding

end mill sharpening

face mill cutter sharpening
form cutter sharpening
form grinding

infeed grinding

internal grinding

plain mill sharpening
plunge grinding

reamer sharpening
slabbing cutter sharpening
tap sharpening
throughfeed grinding
traverse grinding

wheel dressing

ladder logic

ladder diagram

ladder logic execution

ladder logic programming
programmable logic controller

machine, types of
abrasive waterjet machine
bed mill

saw

coordinate measuring
machine

electrochemical machine
electrodischarge machine
clectron beam machine
knee mill machine

lathe

manual machine

milling machine
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moving column machine
Programmable Universal
Machine

for Assembly
punch
saw
ultrasonic machine
universal mill machine
vertical mill machine

manufacturing, concepts in
25D

aiding
application-specific
integrated circuit
approach vector
availability

backlash

chatter

circular error probability
close dancing
computer-aided
manufacturing
configuration
consumable

control plan

emergency stop

encoder feedback
external communication
external interface
feature-based definition
feedrate

feedrate override
function block diagram
geometry

goal

I/O interfaces

lead

lead error

lead through teach

look ahead

materials resource planning
modal

network interfaces
NGIS-NC Inspection Project
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nut compliance
one-shot

operator interface
orthogonality

part transformation
part zero

pitch

plan

planning

prismatic

process

radial error probability
rapid traverse
reference frame
repeatability
revolutions per minute
roll

safety

safety envelope

safety interlock
scalability

sensor feedback
spherical error probability
spindle lock

statistical process control
tool path

tooth loading

travel

tuning

upgradeability

virtual machine
working envelope
working range

world coordinate
world model

yaw

manufacturing, languages in
dimensional measurement
interface

specification
EXPRESS
FLEXIS
IEC1131-3
instruction list
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interactive graphics
exchange specification
Karel

ladder logic

M & G codes
man-machine language
neutral manufacturing
language

Product Data Exchange
using STEP
programmable application
logic

RS-274-D

sequential function chart
structured text

VAL

manufacturing, levels of
cell

center

enterprise

factory

job shop

manufacturing, objects in
actuator

asset

automated ground vehicle
bed

chip

controller

conventional machine tool
coolant

coolant mechanism
coordinated joint

drive

effector

electrical cabinet
enclosure

encoder

end effector

end user

environment

face plate

September 26, 1994

feature

fixture

gripper

Hall effect sensor
hand crank
home switch
instrumentation
iron

joint

leadscrew

limit switch
link

lubricant
machinist
manipulator
manufacturing workstation
mold

motor

operator
operator console
optical encoder
original equipment
manufacturer
pallet

pallet shuttle
part

remote jog pendant
resolver
resource
retrofitter

robot

sensor

spindle

sprayer

stock

table

tactile sensor
tool changer
ways

welder
workpiece
workstation

motor, concepts about
holding torque
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microstepping
phase current
phase sequence
ramp
resonance

stall speed
start/stop speed
step rate

motor, types of
AC induction motor
brushless motor

DC motor

- servo motor

stepper motor

PID

deadband

PID control loop
scaling
Zero-crossing

saw, types of
band saw

jig saw
reciprocating saw
rotary saw

saber saw

software engineering, concepts
in

actor

agent

application program
architecture description
language

application programming
interface

attribute

class

commercial off-the-shelf
package
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component
computer-aided design
configuration management
domain-independent
application

dynamically linked library
field replaceable unit
holon

input/output artifacts
instance

installation

integration architecture
interchangability

interface

interoperability

life cycle costs

modular

object

object module
object-oriented
object-oriented programming
object-oriented structures
open system

open system architecture
open system interconnection
open technology
polymorphism

portability

product life cycle

reusable software

reverse engineering
service

software library
verification

version

view

viewpoint

SOSAS, concepts in
conformance
conformance class
element

mode

machine under control
multiprocessor control
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open applications

primitive function

product definition data
product definition data
interchange

real-time operation
recovery

replication

sensor/effector standardized
application

sensor hierarchy

single instruction
single-step normal production
standardized application
surface representation
system development tool
task execution standardized
application

task schedule

transaction

two-phase commit

user interface application
user interface device

user interface support package
workstation management
standardized application
workstation model
workstation planning
standardized application

task, types of
area clear milling
blue

bore

break chip
broach
calibration

climb milling
conventional milling
counterbore
countersink

drag

drill

dwell

etch
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failure recovery

fault detection/isolation

fault management

feed

finish

grind

initialization

integrate/configure

jog

mark

mill

odd pockets with islands
milling

orient

-plane

plate
probing
ream
saw
spotface
tap
thread
tum

tool, concepts regarding

cutter compensation

cutter compensation plane

cutter compensation radius
offset

flute

gauge vector

home position

in-process gauging

length offset

optimal feedrate

optimal spindle speed

tool centerpoint

tool change position

tool, types of
drill bit

end mill

flat end mill
flexible tap
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grind belt
grind wheel
rigid tap
saw belt
saw blade

viewpoint, types of
application viewpoint
architecture viewpoint
communications viewpoint
component viewpoint
design viewpoint

executive services viewpoint
physical resource viewpoint
solution viewpoint

other
command
context

look and feel
override
planner based
power-up
reliability
requirement

recently added

abstract data type

American National

Standards Institute .

artificial intelligence

assembly

cache

canonical

class hierarchy

data

data dictionary

European Strategic

Programme for
Research and

Development of
Information

Technology
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expert system
fabrication
geometric modeling
applications
program
integrated computed aided
manufacturing
intelligent machining
workstation
inventory
International Organization
for
Standardization
Industrial Real-Time
Operating System
Nucleus
just-in-time
low rate initial production
maintainability
maintenance
manufacturing
Manufacturing Automation
Protocol
Open System
Interconnection
paperless factory
part geometry
part number
platform
predicate
process plan
quality
query
query language
real-time function
referential integrity
sculpted surface
shared axis
shop floor
simultaneous axes
slaved axis
system
terminal emulation
third party vendor
top-down methodology
total quality management

E-78

tuple
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APPENDIX F — ARCHITECTURE DESCRIPTION LANGUAGE (ADL)

The architecture description language (ADL) describes rules for composing application

architectures. The language constrains responsibilities, components, and interfaces. It is a
" constraint-based rather than a computational language. Categories of ADL rules include:

 applicable to architectural concepts, such as messages;

 applicable to domain concepts, such as mode;

« applicable to responsibilities, such as tool verification;

* applicable to components, such as motion control.

In a general sense, the ADL may contain a rule stating that the application architecture is not
complete until all resources required by components are supplied by other components in the
application. However, a great deal of domain knowledge is embodied in the ADL. More
domain knowledge is necessary with rules that require the selection of particular primitive
components, such as the technical selection 6f forward and inverse kinematics.

Future efforts in language research are focusing on communication concepts that will support the
dynamic construction of component-based architectures. One such language is the Adaptive
Semantic Language, described below.

THE ADAPTIVE SEMANTIC LANGUAGE

Introduction

As the complexity of software systems has increased, a number of formal models have been
proposed to address the decomposition of large software systems into sets of reusable
components. The Object Oriented (OO) paradigm is only the latest in a collection of models
designed to divide the responsibilities of systems into separate objects which can provide a
service to the rest of the system through a standard set of messages. The strength of the OO
paradigm is that the methods and data needed to fulfill a message request can be completely held
within an object, and therefore, hidden from the rest of the system. Thus, the high-level system
designer needs only to understand the message-passing aspects of the object, not how the object
internally deals with the requested service. At a higher level of abstraction, the complete set of
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objects making up a sub-component of a very. large system can be abstracted to a single unit, an
agent, which itself can provide a higher level of services to the overall system through a standard

set of messages.

Both the object and the agent model have the potential of greatly reducing the amount of new
software required to build a new system by allowing a standard method for the reuse of existing
components. However, neither of these models addresses the complexity of design at the high
level. Without clear documentation of a component’s services and message interface, the
component becomes unusable, but even with good documentation the selection of components
requires a complex search over a database of standard messages and services. Further, new
components cannot be considered for use by the system designer until their services and message
requirements are added to this database. If this database exists within a standards document the

process of adding new components can be very slow and not easily automated.

A better solution than a static database which must be modified for every change and addition to
the set of available components would be a method by which the components themselves could
contain semantic knowledge about their abilities and interface requirements. A system could
then be designed by providing a set of system-construction agents with an ability to query the
components, and then, based on the set of selected components tailor the system’s internal
interfaces to allow these components to carry out their required communication. However, such
a method would require that both the abilities and interface information of a component be held
in a common semantic representation which can be communicated between components using a

semantic language.

Since the required semantic language would require an adaptiveness similar to human language
while maintaining the non-ambiguity of a formal language, the logical source of such a language
should be found by first formally defining the syntactic and semantic features of a human
language required, and then, attempting to formally define the resulting features into a
knowledge representation model which will allow the programmatic storage and transmission of
the model's syntactic and semantic components. To accomplish this, both the requirements of
the adaptive semantic language and a model for the semantic representation must be determined.
Further, a testing platform must be constructed to ensure the resulting theory can be proven to
be achievable.

This appendix will provide the theoretical support for an adaptive semantic language and the n-
Towers model for the semantic representation which supports its use for communication from
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programmatic agent to programmatic agent and from programmatic agent to human. The
method by which this model can interface to sub-language elements of the programmatic agents
will also be addressed.

The n-Towers Model

The n-Towers model’s purpose is to provide a method for computers to understand HL and to
communicate with each other through a connection at the Adaptive Semantic Language (ASL)
layer. The model has been based largely on the principles of Government and Binding (GB)
linguistic theory. Using this foundation, the model attempts to incorporate the best features of
three current semantic theories; 1) Situation Semantics, 2) Possible Worlds Semantics, and 3)
Conceptual Semantics. Since no existing Knowledge Representation (KR) was found to be
adequate, the model is based on the completely new KR defined as Situational Dependencies.

Figure 1 presents one tower of the of n-Towers Model. In this model there are five levels (or
layers) between the Human Language (HL) Surface Structure and the Symbol Grounding Plane.
The two lowest levels (Meta-Semantics and Situational Dependencies) are viewed as below
linguistic knowledge. The model's breaking of HL syntactic processing into two layers (the
surface and deep structure) should not be viewed as a total embracing of GB theory. The Deep
Structure layer may best be viewed as a place holder for any HL information which cannot be
captured at the surface layer. Thus, the contents of these two layers could depend on the
requirements of any linguistic theory chosen to support the language processing above the ASL
layer.

The interface between the HL layers and the lower three layers is the ASL layer. This layer
provides a non-ambiguous language syntax which attempts to capture the ability to express the
full semantic richness of the HL above it. Based on a GB model, an expression in ASL best
maps to a logical form. The three lowest layers, as well as, the ASL and Symbol Grounding
Plane will be discussed in more detail in the next four sections.
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Symbol Grounding plane

Figure F-1. A Tower of the n-Towers Model

The actual number of towers needed by a system will depend on the application being
considered. For the communication of two agents within a generic system, each agent would
normally need only one tower. If these agents were collocated within a discrete portion of the
system, even some portions of these towers could be shared. An example of the way in which a
group of agents controlling various portions of a factory floor would communicate is given in
Figure 2. In this example, only the one agent whose duties include the system's man-machine

interface would need the top two HL levels of the n-Towers model.

Theoretical Basis for an Adaptive Semantic Language

As stated above, the purpose of the ASL is to provide a non-ambiguous interface between the
HL layers and the three lowest layers of the n-Towers model. As its name implies, ASL is
viewed as semantic language. This means it theoretically falls between the syntactic D-structure
and the conceptual structure represented by the three lower layers of the n-Towers model. This
positioning in the HL model requires that the resolution of at least syntactic and semantic
ambiguity be done in the top two layers of the model. This does not force a restriction in the
expressive power of the n-Towers model as a whole since there is nothing to preclude the two
top layers from generating any number of different ASL sentences for a given HL sentence.
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Before the concepts of the ASL can be fully defined, a formal definition of the syntax of both a
standard formal language and HI. must discussed.

| &
—

——— Symbol Grounding plane

ASL

41 Grounding plane Symbol Grounding plane
Process
[Robot Arm ] (5cheduler J ( Conirol J

Figure F-2. A Factory Application of the n-Towers Model

The Standard Formal Language Model

Given a grammar G = (V, T, P, S), a standard formal language L(G) is the set:

{w|weT*and S %w}

This definition assumes that both the set of terminal symbols {t | t & T} and the set of variables
{v!v & V} are finite sets of pre-defined symbols from which a potentially infinite set of
sentences can be constructed. The actual number of well formed sentences which can be
generated by a non-recursive set of production rules {p | p & P} depends on the total number of
elements in the sets P, T and V. Any form of recursion over the set P will cause the number of
well formed sentences to increase to infinity.
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While the addition of recursion to the set P allows the standard formal language L(G) to produce
an infinite number of sentences, the fact that such a L(G) depends on an increasing sentence
length to increase its expressional power presents a problem in attempting to use any semantic
model based on L(G). As the length of the sentence grows, the overall meaning of the sentence
will begin to become computationally clouded due to the exploding size of the semantic
" representation. This problem becomes especially acute if the recursion is indirect, due to the
lack of predictability about which portion of the representation will grow. Further, since only
the syntactic meaning of sentences can be dynamically varied, the rate of increase in the
expressional power of L(G) will naturally decay as the sentence length increases due to

reduction in the contribution of the more powerful lexical elements of semantics.

The Human Language Model

In contrast to the grammar which generates a standard formal language, a human language
HL(HG) can be defined using elements of GB theory as:

HG = (Xy, Gy, Px, C, CP).

Here the set of variables {v | v & V} has been replaced with the set of word categories {x1x,x,
x" & Xy} which can be plugged into the X-bar rules. The set of terminal symbols {t |t € T} has

been replaced with a word grammar, Gy, which using its own grammar can generate the word

level elements of the top level sentence grammar. In contrast to a formal language, a set of

production rules {p | p & P} is not sufficient to capture the nature of the GB rules which control
syntax, so a set Py and C are provided as a replacement. The set Py consists of the three X-bar

rules from GB theory. The set C consists of all rules generated by the other five modules of the
GB theory (i.e., Binding Theory, Bounding Theory, Case Theory, Control Theory and Theta
Theory). The start symbol S has been replaced by the CP symbol which is the top phrase

marker of a sentence in GB theory.

The word generation grammar can be defined as Gy = (M, LU, P, R) where M is a set of

morphological variables, LU is a set of stored lexical units {u |l u & LU}, MP is a set

morphology rules, and R is the set of word roots {r | r & R} which can grow over time. Thus, W
is the set of well formed words generated from Gy, by:

{wlwe LU*and R éw}
WG
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As can be seen from these definitions of HL(HG) and Gy, human language allows for both the

- growth of the word set W (the resulting set of all possible word generations from all possible

roots) and the recursive application of X-bar production rules within the set Py under the control

of C. In HL(HG), the extent of recursion of the X-bar rules within the set P is somewhat
controlled by the set C which places some constraints on the application of the X-bar rules.
" Further, the power of the set W to grow and the resulting increase in the lexical semantics that
results, reduces the need to draw additional semantic value from a more complex syntactic form.
The result is a dynamic language which can adapt to changing semantic requirements without
increasing the mean-length-of-utterance required for communication. In a massively parallél
system such as our brains, the resulting optimization toward increased search complexity does
not present a processing problem; however, in a modern computer such a complex grammar
within a grammar construction for a language does present a substantial processing problem.

The Adaptive Semantic Language Model

Clearly the best language model for the syntax of the ASL, based on its role as a computer to
computer communication language, would be one which is as expressive as the human language
model but as algorithmically efficient as the standard formal language model. Of course, such a
model cannot be constructed since these two requirements are nearly mutually exclusive, but
there is a large middle ground between the two models in which to select a compromise solution.
To determine exactly where the ASL model should fit between these two models, the syntactic
and lexical requirements of the ASL are discussed. Based on these requirements an ASL model
is proposed.

ASL Syntax Requirements

One of the difficulties in the processing of a HL is the complexity of the syntax necessary to
provide the richness of expressions required for the socialization of humans. Since the surface
structure form of a sentence needs to take in account the social environment of the utterance, a
number of pragmatically different forms of a semantically identical D-structure form can be
generated by a set of rules provided for this expressiveness. Further, since the human brain uses
a massively parallel processor which can store a great deal of information in temporary registers
and process the stored utterances almost simultaneously with the completion of input, the S-
structure ordering of phrases presents little or no problem to the parsing of the utterances, as
long as, this ordering falls within the range of acceptable possibilities.

Since the top two levels of the n-Towers model can handle the pragmatic aspects of a HL, the
language selected for the ASL does not need a number of surface variations of the D-structure of
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an utterance. Thus, a model based on the logical forms of HL expressions is sufficient to
express almost all of the semantic meaning needed. The only surface marker that needs to be
preserved is one which differentiates between a declarative and interrogative utterance.
However, a simple pre-punctuation of the utterance will convey the information without the
need of the redundant word order changes used in such languages as English.

Based on ASL'’s proposed position below the D-structure, the need for the ASL to allow any
recursion over its set of syntactic production rules can be eliminated if the lexical forms used
have sufficient semantic power. In fact, based on the reduced scope of the seinantic transmission
inherent in a formal language, a major portion of the structure of the language can be contained
within the lexicon. This assumes that the concept of external and internal g-roles is eliminated
within the lexical entries, and that the potential difficulty in parsing a SVO or OVS word order
is addressed.

Since the formal language of predicate calculus is very similar to a VSO or VOS language and
presents little problem to a trained user, the mapping of the lexical forms to a predicate syntax
would provide both a powerful level of expression and a very simple language to parse. Since
the parser would be provided with the lexical unit's identity first (as the predicate label), it could
easily look up the unit in the lexicon to determine its expected syntax and the number of
thematic roles and start mapping the semantics of the contents as the terms of the predicate are
read in. If the complete syntactic form of a predicate in predicate calculus is maintained,
recursion within the s-grids could be easily recognized and interpreted.

The ASL’s Lexical Requirements

During the natural evolution of a human language, the language's lexicon constantly changes.
The phonology, morphology, syntactic relation and meaning of a lexical unit will naturally
change over time and lexical units will be added or lost to the corpus of the language as the need
to express new sets of ideas is created. Attempts to stop this evolution have proven fruitless
since human language is closely tied to human society, and social change is a natural force not
easily controlled. As a result of this natural change, human language contains methods of
controlling the effect of a changing lexicon which can be exploited by an n-Towers model to
allow the language to change to support the expression of new sets of ideas. Since the major
forces for change in a human language reside outside the language, these control methods can be
exploited without fear of encountering an internal force within the n-Towers model which would

cause an uncontrollable change to the ASL.
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Research in GB theory has provided evidence that all human languages use a concept of g-grids
within the their lexicon to govern sentence construction and that the types of lexical categories
containing the g-grids are remarkably uniform across all human languages. However, the
number of lexical categories which have associated g-grids in HL is somewhat controversial. In
addition, the amount of information stored in the g-grids varies greatly within different views of
GB theory. Since there is some debate as to what amount, if any, of syntactic information is
stored in the g-grid, the term s-grid (author's convention) will be used to refer to syntactic
information stored in the lexicon. In addition a third grid, the a-grid (again author's convention)
will be added to the lexicon to support the connection to the Symbol Grounding Plane.

In summary, the supporting lexicon will need to provide 1) the internal syntactic realization for
all lexical units which can vary their internal syntactic realization, 2) a method of describing the
semantic linking for lexical units of governing categories and 3) a method of firing some action
as a result of the occurrence of a word in the ASL sentence. This will be done using s-grids, q-
grids and a-grids, respectively. Since our goal is a formal semantic language which by nature
will limit the number of ways the same semantic meaning can be expressed within the ASL
syntax, the storage of a good portion of the language's syntax within the lexicon should be
achievable, assuming that the number of lexical categories is reduced to a small set.

Lexical Categories

Human languages vary in the number of lexical categories used to logically divide the lexicon.
For a majority of human languages, a set of 12 lexical categories will be sufficient to separate
the language's lexicon. These are:

1) adjective 5) determiner 9) participle
2) adverb 6) infinitive 10) particle

3) auxiliary verb 7) main verb 11) preposition
4) conjunctions 8) noun 12) pronoun

Although this richness in the number of categories forces a complex syntax, the disadvantage of
this complexity is far outweighed by the extreme expressive power it provides. Our task is
reducing the number of categories which must exist at the semantic level while maintaining all
of the expressive power of HL.

Due to their semantic importance, neither the noun nor preposition category can be eliminated or
reduced in any real fashion. However, in almost all human languages, prepositions are notorious
for having broad overlapping meanings. This fact can be remedied in the ASL since
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prepositions are a closed category, thus, allowing a more careful definition which is both narrow

and non-overlapping.

The first reduction which can be made is in the number of categories required to express the
overall concept of a verb. The major reason why this concept is spread over the auxiliary verb,
main verb, infinitive and participle is to allow for the expression of mood, aspect, tense and
voice. If given a method in which to encode a verb's usage within the lexical form, the ASL
only needs to express externally the concept in the present active indicative without aspect and

these categories can be reduced to a single 'verb' category.

Adverbs, in human language, normally qualify the meaning of the main verb. This qualification
is normally in relative terms and often difficult to interpret in any concrete way. For these
reasons, it seems best to eliminate adverbs from the list of the ASL’s lexical categories. This
may again force some sort of encoding of verb category or addition of verbs like ‘run quickly'
unless a method can be found to make adverbs act as more well behaved members of the

adjective category.

Particles are sort of the waste bucket of human language lexical categories. Any concept which
cannot be fully expressed by another category or any difficulty in syntactic construction may
result in the use of a particle. In the ASL, the need for particle can be eliminated by a careful

definition of the syntax and other lexical categores.

The discussion of pronouns is slightly more complex since their number and use varies greatly
from human language to human language. For the sake of our discussion, we will take a
'standard’ view based on a number of Indo-European languages. Based on this view, the
personal, reflexive and relative pronouns will be treated as pronouns and other types will be

treated as either adjectives or determiners.

In most human languages, a personal pronoun is normally coreferential with either a referent
which has already been described in the discourse by a Noun Phrase (NP) or has been associated
to a grounded symbol by some non-language method. Since we are dealing with a formal
language, we can dismiss the non-language symbol grounding condition as beyond our realm of
interest and assume that for our purposes all personal pronouns will be coreferential with a
referent which has been described by a NP. The use of personal pronouns as external referents is
driven mostly by the need to reduce the amount of redundant information being transmitted in
HL. In a formal language, this need is less important and use of the personal pronoun can be

eliminated.
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The reflexive pronoun can be eliminated from a formal language for the same reason as the
personal pronoun. The need for the ASL to support relative clauses, and thus, relative pronouns
can be eliminated, but only if some type of conjuhction with a temporal meaning is supplied at
the syntactic level.

As with pronouns, adjectives serve to shorten the utterance by allowing a qualification of the NP
to be directly stated within the NP. Therefore, adjectives can also be eliminated from the ASL
without any loss of semantic expressive power as long as nouns with the same semantic value
are provided. 4 ’

Determiners on the other hand serve to quantify, not qualify, their associated NP. As such, they
cannot be fully eliminated from the ASL without losing semantic value. Since their semantic
value will need to be carefully defined for a proper semantic interpretation of the whole
utterance, they will need to be a closed category in the ASL. This follows from human language
where they are a closed category for the same reason.

The semantic value of conjunctions also cannot be eliminated from the ASL without losing
semantic value. However, since the number of conjunctions needed at both the lexical and
syntactic level is very small, they can be formalized in the ASL syntax.

Based on all the justifications given, the number of open categories needed in the ASL can be
reduced to two; 1) nouns and 2) verbs. The number of closed categories required can be reduced
to three; 1) determiners, 2) conjunctions, and 3) prepositions. Of these, verbs and prepositions
will require g-grids. Only verbs and nouns will require s-grids.

Lexical Entries

Since the purpose of the lexicon is to support adaptive change within the ASL, the number of
entries in the lexicon must be allowed to change over time. This will require some set of
components in the ASL model to have meta-knowledge about how to interpret the syntactic and
semantic information stored in the lexicon. The meta-knowledge about syntax can be relatively
straightforward since a category will either have a built-in syntactic realization or a s-grid which
can be directly read for this information. The meta-knowledge about the semantic model of the
ASL will need to be a little more complex since the interpreting component will need to do more
than simply read an entry's g-grid. This component will need to understand both, 1) the number
of possible thematic roles and how these roles map into a semantic understanding of the
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language and 2) how to read a semantic description of a verb or preposition to complete the

semantic understanding.

For a verb entry, the q-grid will need to consist of the required thematic elements and their
thematic roles. To aid in parsing, no optional g-roles should be permitted. To allow some
- optional forms of a verb, the ASL should allow two or more entries for the same verb name in
the lexicon. The s-grid for the verb will provide the phrase level constituents (either NP or PP)
for each actor in the g-grid. For a preposition entry, the g-grid will need to consist of the
thematic role of its actor. Since only NP's can fill this role, no s-grid will be fequired. '

For a noun entry, the s-grid will define the other elements which can be used with the noun to
form a NP. These elements will include determiners, conjunctions, prepositional phrases, and
other NP's.

Determiners and conjunctions will be atomic elements within the ASL, and therefore, will have
neither a s-grid or g-grid. Since determiners and conjunctions are both closed categories and are

tightly defined, their storage in the lexicon is optional.
The ASL Model

Based on the requirements provided above, the grammar rules and lexical syntax can be now be
defined for the ASL model. This is done in the next two sections. A set of examples is then

given to show how the ASL could be used.

Grammar Level Syntax

Using a predicate syntax where a verb name is the predicate label and the verb's governed g-roles
are the terms, the syntactic production rules of the ASL grammar can be reduced to the
following non-recursive set of rules:

S £ ST 2SI

SI £ VPINOT VP
VPEVIV/VIVEVIV>YV

where: \Y% is a verb predicate,
VP  isa verb phrase,
SI is an declarative sentence, and

2SI)  is interrogative sentence.
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This language allows a syntactic level negation (NOT) of the sentence. In addition, the
following syntactic level conjunctions are allowed across two V's:

1) alogical disjunction (/)
2) anif-then relationship (&)
3) atemporal ordering  (>)

A logical conjunction (AND) is not provided at the syntactic level since there is no semantic
value added to two simple sentences being ANDed together to make a complex sentence over
the same two simple sentences being stated as totally separate statements.

A more powerful recursive language could also be defined as:

S £ ST12SI)
SI £ VP
VPEVIV/VPIV EZVP|V>VPINOT (VP)

However, such a language would present a more difficult semantic evaluation and may be overly

expressive for the average domain.

Lexical Unit Level Syntax

As stated above, only verb phrases will appear at the sentence level. The syntax of the verb
phase will be controlled by the grammar and the lexical syntax of the verb. The syntax of a verb
will be:

verb-name ( sg, Sy ... SN)

where the number of s-roles (s, ) is determined by the verb's s-grid. These s-roles can either be
filled by a NP or a PP. The syntax of these will be:

noun-name (S, Sy ... SN)g [J noun-name ( sq, Sy ... SN )y

... jnoun-name ( sg, Sy ... SN)N ]
preposition-name ( NP)

where the symbol, j, stands for either a logical AND (Y) or OR (/) operator and the number of s-
roles (s, ) for the noun element within the NP is determined by the noun's s-grid. The s, position

of this s-grid can only be filled by a determiner. The s, position will be reserved for NP's acting

as adjectives. The remaining s-roles are optional and can be either filled by a NP or a PP.
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Example Expressions

Based on the above design, the following sentence examples for a NGC type domain are given:

English: The lathe rounds the part with a cutting tool.
ASL.: rounds(lathe(the, @), part(the, @), with(tool(a, cutting)))

English: Pick up the blue part on the green table with the stationary robot arm.

ASL: pick-up (part(the, blue, g, on(table(the, green, @, ))),
with(robot-arm(the, stationary(g))))

English: Get the cutting tool from the tool caddie, and then, cut a2 2mm deep
pocket in part. :

ASL: get( tool(the, cutting(g), @, 9),
from(caddie(the, tool(a, ¢, 8, 9), &, 8))) >
cut(pocket(a, 2mm), part(a, @, g, 8))

English: Move the tool alone the x-axis plus Smm.

ASL: move-linear (  tool(the, g, 9, 2),
position(relative, x-axis, +5mm))

In the examples, the ¢ symbol indicates a required s-role within a lexical unit being used for
which no (or NULL) information is needed to complete the English sentence being translated.

Situational Dependencies

As stated above, the Situational Dependencies layer provides the basic semantic network for the
storage of the Lexical Semantics. This semantic network allows for the existence of three types
of nodes: 1) verb, 2) noun and 3) preposition. As shown in Figure 3, each of these node types
provide the required storage of the tag and the needed grids.
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py <time,world>

Pe <time,world>

Pg <time,world>

Preposition

f-role
a-role

Figure F-3. Situational Dependency Nodes with Theta Relations

The expressive power of this network comes from the ability of the directed arcs (relations) to
contain both type and situation information about the relation (i.e., the time and world in which
the relation applies). Thus, procedural events, scenarios, and even beliefs can be directly
superimposed on the lexical semantics without any risk of the information being misused by the
system. As a result of this ability, the concept of long term and short term memory can be used
with the n-Towers model without any of the complexity normally associated with systems that
store these two types of knowledge in two different places.

As shown in Figures 3, 4, and 5, there are five different classes of situational relations define in
the Situational Dependencies KR. These are:

rqrelations - defines the noun or preposition node allowed to fill a verb’s

theta role.

re relations - defines the noun or preposition node allowed to fill a noun’s
epsilon role.

r;relations - defines a pure reciprocal relation between nodes of the same
type.
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r,relations -  defines non-reciprocal relation between nodes of the same

type.

r, relations -  defines two relations which when taken to together produce a
reciprocal relation between nodes of the same type.

- The actual number and names of the relations allowed in a relation class is defined in the Meta-

Semantic level of the n-Towers model.

P, <time,world>

Pe <time,world>

P, <time,world>

Preposition

0-role
Oo-role

Figure F-4. Epsilon Relations of Situational Dependency Nodes

Meta-Semantics

The Meta-Semantics layer allows the definition of the legal relations allowed in a tower of the n-
Tower model and the inferencing methods associated with those relations. Since relations must
be defined as one of the five classes stated above, inferencing method can be associated with

either a relation or a relation class.

The Meta-Semantics layer also handles the housekeeping for the reciprocal relations, ensuring
that when a reciprocal relations is defined between Node A and Node B, the correct relation is
defined between Node B and Node A. As an example of this, if the relation ‘A NC-machine
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always is-a machine in the real-world O is added to the semantic knowledge, then the relation ‘A
machine always could-be-a NC-machine in the real-world O would be added by the meta-
semantics if a reciprocal relation between is-a and could-be has been defined.

p, <time,world> pm<time, world>

Figure F-5. Other Relations of Situational Dependency Nodes

Lexical Semantics

As stated above, the verbs, nouns and prepositions which can be used by the ASL will be stored
in a lexicon which is free to grow as new concepts are needed to be expressed. In the n-Towers
model, this lexicon will exist in the Lexical Semantic layer. The amount of information which
must be stored in the Lexical Semantic layer for a lexical unit will depend on the category of the
lexical unit. For all entries, a tag and the set of current situational links to the semantic
representation of the domain knowledge (i.e., the other lexical units) will be required.

If the lexical unit is a verb, a q-grid containing the number and type of g-roles associated with
the unit will be maintained to allow a road map to which noun and preposition nodes in the
domain can be legally linked to that verb. If the lexical unit is a preposition, a single g-role will
be maintained for this purpose. If the lexical unit is a noun, a e-grid containing the number and
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type of e-roles associated with the unit will be maintained to allow a road map to which noun
and preposition nodes in the domain can be legally linked to that noun. The q-grid, g-role and
the e-grid are represented as a simple ordered list of roles that corresponds to the unit’s s-grid

and a-grid.

- Since a verb is one of the most complex types of entry, a verb will be used as an example.

Given the verb, 'rounds’, as used in the sentence:

The lathe rounds the part with a cutting tool.

The following lexical entry for 'rounds' would appear in the lexicon:

Tag: hit

g-grid: 1) Agent s-grid: 1) NP a-grid: 1) action X
2) Patient 2) NP 2) actionY
3) Instrument 3) PP 3) actionZ

Both the domain knowledge and general knowledge of a tower will be contained in a set of
situational dependent links between the lexical unit elements in the network (the nodes). The
Meta-Semantic layer will determine the set of inferencing methods needed for this knowledge.
As a result of the language information stored in the Lexical Semantic layer, the ASL layer is

able to prohibit meaningless sentences. For example, given the sentence:
English: The part rounds the lathe with a cutting tool.
ASL: rounds(part(the, @), lathe(the, ), with(tool(a, cutting)))

using the information stored in the Lexical Semantic layer, the ASL parser would be able to
determine that the g-roles for ‘rounds’ have been violated by the use of the NP:’the part’ as a
agent and the NP:’the lathe’ as a patient.
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