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FOREWORD 

The purpose of this document is to provide a description of the Next Generation 

Workstation/Machine Controller (NGC) program philosophy and objectives in sufficient 

detail so to be able to quickly and efficiently assess the impact on emerging system 
designs and concepts. The focus for this document is the Specification for an Open 
System Architecture Standard (SOSAS) that is the primary deliverable of the NGC 
program. The SOSAS will capture definitions, conventions, and standards as they relate 

to the final NGC family of controllers. The document presented here is not meant to be 

construed as the final SOSAS, but rather it represents the key elements of the SOSAS 

necessary to achieve the desired objectives relating to open systems, interchangeability, 

interoperability, portability, etc. It is fully anticipated that subsequent discussion of this 

document will provide some of the most important feedback with respect to the 

production of the final SOSAS document. In this respect, comments relating to this 

document are strongly encouraged. 

This is the complete SOSAS document. An 
overview is also available entitled "Next 
Generation Controller Specification for an Open 
Systems Architecture Standard - Overview". 
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1.0 INTRODUCTION 

The Next Generation Workstation/Machine Controller (NGC) program philosophy of 

systems that are interoperable, interchangeable, and portable is an outgrowth of a more 

general trend in all areas of systems development that stress "openness." Like many new 

ideas in engineering, the concept of an open system is one that has been much easier to 
describe qualitatively than it has been to establish rigorous design methodologies. In the 
arena of advanced manufacturing control systems, NGC and the Specification for an 

Open System Architecture Standard (SOSAS) are an attempt to merge the evolving 

methodology of open systems with a well-established technology base in machine tool, 

robotics, measurement, and process control. As in any emerging technology, growth and 

evolution do not come without some degree of controversy and argument. There is no 
lack of recognition on the part of the NGC development team that while the long-term 
benefits of an open approach to manufacturing controller design are obvious to virtually 

everyone, the burden of making this vision a reality will fall on a vendor community that 
is engaged in an intensive economic struggle and is faced, on a daily basis, with the 
necessity of looking at an unforgiving bottom line. The result is that the NGC 
development process has never been viewed as a "do it all over again" exercise, i.e., 
starts with a clean sheet of paper. Instead, it has been viewed as "given the space of open 

system solutions, pick the solution that is a closest fit to existing systems." 

The NGC can be viewed in many different perspectives. While the control builder will 
ultimately be the one tasked with turning ideas and paper into working hardware and 

software, it is the end user of manufacturing control systems who will, in the long term, 

dictate the final form and structure of these evolving open systems. It is the end user who 
will apply the resulting systems in an attempt to produce products that are cheaper than 

the competitor and as a result, the end users that are successful in this process will, 
explicitly or implicitly, determine the marketplace forces that ultimately shape the 
technology. There are many complexities involved in defining what leads to a cheaper 

product from the standpoint of the end user. While the actual dollar cost of a 
manufacturing controller will always remain an important aspect of the overall metric, 

there are many other factors that influence the end user's manufacturing strategy. 

September 23, 1994 1 SOSAS Rev 3.0 



Technology Infusion 

The ability to rapidly integrate new technologies and practices has always been, and will 

always remain, a crucial factor in competitiveness. A new technology can appear in many 

different ways and impact practice, hardware, software, or all of these. A good example 

of this is the emerging trend towards machine tool controllers that makes use of 

temperature and/or vibration data at the spindle. This requires not only the ability to 

integrate new sensors into the system but also the ability to rapidly and efficiently modify 

existing software structures in order to get the right data to the right place in an 

appropriately timely fashion and implement newer and potentially more complex control 

laws that take advantage of the new data. 

Maintenance 

Key factors in the competitiveness of any system are the supporting elements necessary 

to keep the system running. In general, commonalty of system elements leads to lower 
system cost for a variety of reasons. These include a decrease in inventory size for spare 

components, the standardization of procedures for diagnosing and repairing systems, and 
the ability to use trained diagnostic and repair personnel across a wider variety of 

systems because of the decrease in specialization. 

Operator Training 

Commonalty of systems decreases the amount of additional training that is required to 
transition operators from one system to another. Major retraining can be supplanted by 
incremental training based upon knowledge of a core system structure. In this case, an 

open system architecture that utilizes standardized system features can achieve nearly the 
same desired commonalty as a mandate for all systems from one manufacturer. From the 

standpoint of the operator, common look and feel of interfaces is more important than the 

internal system that generates the look and feel. 

While the issue of the specific attributes desired in a NGC controller were discussed at 
much greater length in both the Needs Analysis document and the Requirements 

Definition Document, it is obvious that the resulting NGC systems must help the end user 
in a number of ways; neither very high-technology nor extremely low-cost systems are in 

themselves the full answer. 
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Instead of attempting to mandate a specific point solution to the advanced manufacturing 
controller problem, a philosophy is embodied herein that leads to maximum flexibility 
with the respect to ability to modify both the hardware and the software in the system to 

achieve desired enhancements in capability as necessary. 

Document Summary 

Section 2.0 provides an overview of philosophy and structure of NGC. It describes the 
basic concepts that allow the freedom of action on the part of the designer to choose the 
proper mix of hardware and software to achieve an optimal solution to a given design 

problem. 

To facilitate a standardized approach to developing the structural elements of a system, a 

component based approach has been adopted. The fundamental attributes of this 
approach are described including the use of a reference architecture that is comprised of 

primitive components that are used to delineate system requirements and structure in 
terms of generic "building blocks". From the reference architecture an application 

architecture is constructed that captures the functionality of the end system at an abstract 

level. While a level of abstraction above the final hardware and software system, the 

application architecture allows responsibilities and dependencies to be clearly 
established. Finally, through the selection of implementation components a final software 

structure is determined. The step from application architecture to implementation is a 
very difficult one because it involves the specifics of the system platform. The platform 
includes all system hardware as well other system software such as operating systems, 

communication software, etc. 

Effectively dealing with platform issues requires dealing with the specifics of different 
types of potential hardware solutions as well as a large number of standards and 
conventions that have arisen with respect to communication, operating systems, device 

interfaces, graphics representations, etc. Because NGC has the goal of establishing a 
foundation for the introduction of open systems technology into the advanced 
manufacturing arena, it was felt that it would be a mistake for a small group to choose a 

relatively small set of possible standards and conventions that would then exclusively 
serve the NGC community. As a result, it was necessary to find a means of 

accommodating systems that could draw on a wide range of hardware and software 
solutions in arriving at a system implementation. This problem was dealt with through 
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the use of a representation concept known as a profile. This concept is crucial to 

understanding how the NGC specification can achieve the open system objectives 

without overly constraining system designers. Profiles can be thought of as a means of 

classifying NGC-compliant systems. The concept of the profile was adopted from POSIX 

(Portable Operating System Interface) literature. (POSIX and it's role in NGC are 

discussed in greater depth in section 3.0.) The vendor will use profiles to succinctly and 

unambiguously describe the system structure. With a profile specified for a specific 

system, the end user will be able to determine whether or not the candidate system has 

the flexibility necessary for a given set of applications. A very simplified type of profile 

is now commonly used to describe software packages as being "Mac" or "PC" compliant. 

Similarly, the designation of "DOS" or "Windows" can be thought of as a subprofile 

under PC. This flexibility assessment could include the ability to operate with existing 

software packages, the ability to communicate with other factory systems with minor 

modifications, or the ability to expand hardware features such as input/output (I/O) or 

motor drivers. NGC does not preclude a vendor from building a system that is 
essentially non-open; it does, however, guarantee that a system purchaser can be assured 

of understanding precisely what degree of openness is being provided Necessarily, 

standards play an important role in achieving the NGC goals. In addition to describing 

the basic architectural philosophy, Section 2.0 also provides a summary of the relevant 
standards that have been chosen for application to the NGC system and the rationale for 

their selection. 

Section 3.0 includes both a more complete discussion of the component based approach 

to the design of the application architecture. Platform issues are discussed in depth from 
the standpoint of two basic elements; the Application Program Interface (API), and the 

External Environment Interface (EEI). Both are discussed in section 3.3. The full 
development process leading to implementation is discussed in section 3.4. Issues related 

to conformance are discussed in section 3.5. 

A full design example illustrating all of the basic NGC concepts is presented in section 
4.0 for a 5-axis machining center. The example includes the selection of requirements 

and primitive components leading to the application architecture. Implementation is 

considered from the standpoint of different realistic hardware and COTS software 

options. 
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Section 5.0 consists of a brief summary and further issues for the evolution of NGC. The 
primary issues cited with respect to the further evolution of NGC are the availability of 
libraries of NGC components (both primitive and implementation) that can be made 

widely available to the community at large for incorporation into emerging systems and 

the development and availability of tools that will facilitate the NGC development 

process. While an initial set of primitive components are provided for machining 

applications as an appendix to this report (see below), sufficient raw material for a robust 
initial implementation component library through the work of the National Institute of 

Standards and Technology (NIST) as an output of the Enhanced Machine Controller 

(EMC) program. Therefore, the key issue is the establishment of a repository for the 

initial library. 

The issue of tools is more complex but not intractable. It is generally believed that the 

tool technology necessary for NGC currently exists through a variety of existing 
developmental and commercial packages. Ideally, a complete tool set could be integrated 
and made available to the general community. This would be the fastest way to spur the 

growth of NGC type systems. Unfortunately, the resources for such an activity have not 

yet been identified. 

A set of appendices is provided that includes: Appendix A- Reference Requirements, 
Appendix B- Primitive Components, Appendix C- Architecture Description Rules, 

Appendix D- Domain Models, Appendix E- Domain Dictionary and Appendix F- 

Architecture Description Language. 
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2.0 NGC SYSTEM PHILOSOPHY AND STRUCTURE  

2.1 Introduction 

The open system concepts specified in this document establish a framework for the design 

and construction of a family of workstation/machine controllers for industrial machines. This 

framework addresses issues associated with both application software and the hardware 

software platforms on which this application software will run. This Next Generation 

Controller (NGC) specification is based where possible on de jure and de facto open standards 

in manufacturing, controls, and computing technology but provides a sufficiently robust 

structure such that evolving and new standards and technology can readily be incorporated. 

The NGC specification facilitates commonality of components across a complete range of 

machine controllers. These controllers are to be used in a wide variety of manufacturing 

operations that include machining, robotics, and inspection. 

A NGC supports a wide range of processing and discrete part manufacturing 

applications, including machine tools of all types, robots, electronic assembly, material 

handling devices, inspection devices, and virtually all types of automated equipment in 

both manned and unmanned environments and networked and stand-alone 
configurations. Specifically, a NGC controls a manufacturing workstation, which is 

defined as a single material transformer and related material handling and inspection 

equipment. As shown in Figure 2.1, the manufacturing workstation is placed at the 
lowest level in the hierarchy of the overall manufacturing enterprise. Several 

manufacturing workstations, each controlled by an NGC, are managed by a cell. Multiple 

cells are managed by a center, and multiple centers are managed by a factory. At the top 

of the hierarchy, the enterprise manages multiple factories. While this specification 

focuses on the lowest level of the this hierarchy, the results and structure are immediately 
and easily extended to include the higher hierarchical levels on an evolutionary basis. 

Therefore, a foundation is established for much more complex Computer Integrated 
Manufacturing (CIM) systems that will retain the open systems structure described in this 

document. 

The open systems concepts are evolving from requirements established by the NGC 
community of control builders, machine integrators, end users, members of standards 
organizations, and university researchers. It is flexible enough to cover the broad range 
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of manufacturing practice, and it is extendible to absorb future advances in technology 
while accommodating existing manufacturing and controller practice. 

To produce an enduring standard, manufactured products and manufacturing processes 

must be described independently of specific equipment, methods, or topologies. An 

architecture, calling for a specific topological arrangement and interconnection of 

components, does not provide enough flexibility to control every application in discrete 

part manufacturing, nor does it accommodate technological advances over a period of 
decades. Moreover, several topologies may be required in order to develop a system and 
understand its operation under a variety of situations. The overall view of the system 
architecture that is used in the NGC process is captured in the Integration Architecture. 

Enterprise 

MMM 
A material transformer 
with related material 

handling and inspection 
equipment 

Manufacturing 
Workstation 

Figure 2.1a. Manufacturing Enterprise Hierarchy 

The integration architecture. Figure 2.1b, combines manufacturing and control 
application components with a supporting infrastructure. It also acts as a framework for 
incorporating open and de facto standards. Applications components intercommunicate 
by messaging and can be adapted to a variety of component interconnection topologies. 
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Typical computing platform conventions, definitions, and capabilities are provided by the 

Open Systems Environment (OSE). 

IMPLEMENTATION COMPONENTS 

HARDWARE 

Figure 2. lb  Integration Architecture 

2.2 Industrial Control Domains 

Manufacturing enterprises are complex, information-intensive environments. The 

practices associated with discrete part manufacturing can be grouped into three principal 

domains: (1) manufacturing practice, (2) controller practice, and (3) computing practice. 

The three domains and some associated concepts are shown in Figure 2.3. Terminology 

and representations from these domains are used in this specification. Existing and 

emerging standards, developed within the purview of these domains, are incorporated in 

this specification by reference. Thus the considerable investment and effort devoted to 

the three domains, especially computing practice, can be reused effectively to support 

manufacturing applications. 
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Figure 2.2. Domains of Practice for Industrial Control 

Manufacturing practice covers the process of transforming raw materials into finished 

parts. The underlying concept for the discrete part manufacturing process is art-to-part. 

The process begins by capturing a part design using a computer-aided design (CAD) 

system. The resources for making the part are scheduled, and the machining, material 

handling, and measuring activities are planned using a computer-aided manufacturing 

(CAM) system. Motion paths are planned and used to drive the appropriate machinery, 

i.e., tool paths for machining, robot end-effector paths for manipulation, and probe paths 

for measurement. Some related manufacturing practice standards include those for 

feature-based part description, part programming, and measurement languages. Many of 

the steps in this process are done manually or disconnected. In the future, the art-to-part 

process is envisioned as a seamless information flow from the designer's concept to the 

finished part. 

Controller practice covers the organization and control of manufacturing equipment. 

Equipment is controlled mostly by closed-loop controllers, which provide continuous 

(motion) control and discrete control. 

Computing practice covers the computing and communication technologies required to 

support manufacturing and controller practice. The practice includes design and use of 

computer hardware and software. Computing practice is the target of intense open 

systems activity, which benefits NGC as it evolves and becomes sufficiently mature. 
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2.3 NGC Planning and Execution in the Manufacturing Context 

The traditional manufacturing practice and general flow of numerically-controlled (NC) 

machine tool programming starts with a design review by a part programmer as shown in 

Figure 2.3-1. The part programmer's role has been to analyze the product design and 

determine how to make the part economically, the machining range of workpiece, the 

method of mounting the workpiece on the machine tool, the machining sequence of every 

operation, and the cutting tools and cutting conditions. The output of the part 
programmer has been a part programming manuscript that documents the logical order of 

machine operations. The part geometry and cutter location data are post processed to a 

specific machine-readable format and transferred to the machine control unit (MCU). 

Part 
Programmer 

Part 
Programming 
Manuscript 

Manuscript 
Data 

Conversion 

Machine Control Unit 
• Program Reader 
• Memory 
• Controller 

A 
1 

Machine Workstation Machine 
Tool ^ Display Operator 

Figure 2.3-1. Traditional Flow ofNC Machine Tool Programming 

The MCU memory has an executive program, program reader, shop floor programming 

language, cutter line control, machine interface logic, program subroutines or canned 

cycles, and tool changer control. The program reader in the MCU converts the coded 

instructions and the MCU controller generates an output signal to servo mechanisms to 

drive and direct the machine tool. The machine tool resolver or feedback device 

determines the precise location of the workpiece relative to the cutter and returns this 
data to the machine controller and also to machine operator workstation display. The 
workstation display may display full operational and parametric data; display job setup 
instructions; and have the capability for program verification, editing and update, 
maintenance and troubleshooting, fault messages, and graphical representations of the 

workpiece, tools, and cutter paths. The responsibility of the machine operator is to 
monitor the machine operation, monitor workpiece loading and unloading, provide 

information feedback, and perform operator programming through manual data input. 

September 23, 1994 10 SOSAS Draft V 2.0 



The intent of a NGC is to provide the product designers, process planners, NC 
programmers, machine operators, and factory managers with more flexibility in planning 
and committing factory resources. This increased flexibility and efficiency will be 

feasible through industrial machine controllers which allow open exchange of planning 

data, feature-based part representation, cutter location data, tooling and fixture data, and 

operations sequence data among different types machine tools without rewriting the part 

programs source code, and eliminating programming and processing for specific 

machines. 

The concept of NGC product design and production planning is shown in Figure 2.3-2. 
The product designer is able to generate a CAD that specifies the geometric features and 

considers material handling, assembly requirements, and manufacturability. Part 

geometry and features are interpreted through a CAM system to develop the process plan 

and generate the machining program. A computer-aided process planning (CAPP) system 

would evaluate economical production based upon a part family data base that has a 

library of part features, geometric data representations, and machining processing data. 
The process planning system determines the machine routing and operations sequence, 

methods, fixtures and tooling, and setups. From the process plan and machining program, 

a NC program is sent to a NGC workstation controller. 

The concept of NGC planning and execution is shown in Figure 2.3-3. The part program 
could be assigned to any machine in the factory that has the process capability and 
control configuration to accept feature-based part model input, such as Product Data 

Exchange Specification (PDES), or NC legacy code such as binary cutter location/ASCII 
cutter location (BCL/ACL) part programs, RS-274 part programs, or automatically- 

programmed tools (APT) part programs. The NGC operations planner creates an 

operations plan that specifies the logical order of workstation operations among the 
different machine mechanisms for part handling, machining, inspection, setups, and 

fixturing. The part model input and operations plan provides input data instructions to a 
task planner and path planner. The task planner and path planner specifies for each 
mechanism the logical order of motion tasks, tool changes, feeds and speeds, detailed 
motion geometry, and obstacle avoidance. The output from NGC operations planner, task 

planner, and path planner directs each mechanism to obtain the resultant machine tool 

action. 
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Figure 2.3-2. NGC Concept of Product Design and Production Planning 
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Figure 2.3-3. The Concept of NGC Planning and Execution 
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2.4 NGC Development Process 

To achieve the goals of the NGC program, it is necessary that the SOSAS structure 

adequately addresses all of the primary issues associated with system structure, 

application software, and platform development. Without a roadmap that shows how all 

of these elements are accommodated by the SOSAS, it is difficult to appreciate how the 

SOSAS supports all of these areas: (1) the bottoms-up development of a fully integrated 
system, (2) development and integration of new system software, and (3) expansion of 
platform capabilities to accommodate new requirements. A key element of the NGC 
philosophy is the ability to achieve rapid and effective system modifications that address 
only the part that "needs to be fixed" and do not necessarily entail massive, expensive 

system re-design. 

A roadmap for the SOSAS development process is shown in Figure 2.4, which illustrates 

the basic design and development paths for addressing system structural issues and 

platform issues. It is important to realize that any block on the diagram can be considered 
to be an entry point for the design process. Development of new system application 

software, for example, would entail only the "upper" path with the platform definition 

being considered fixed. Similarly, if only the platform structure is being considered for 

modification, then the application architecture elements can be considered as given from 
the standpoint of platform issues and therefore, definition of the new platform profile is 

the key issue. 

The key to understanding Figure 2.4 is the realization that system structure is embodied 
in the specification of an application architecture. The "upper" design path results in 
the application architecture. To arrive at an application architecture, reference 
requirements are compared with user needs to derive a set of problem specific 
application requirements. By using a well-defined set of reference requirements as the 

basis for selecting the final system application requirements, a tremendous amount of 
consistency is brought to the entire requirements process, something not always achieved 

in ad hoc requirements derivation processes. 

September 23, 1994 13 SOSAS Draft V 2.0 



Create 
Application 

Requirements 

Compose 
Application 

Architecture 

initiate 
NGC 

Development 
Design 

Application 

Create 
Platform 

Requirements 

Select 
Relevant 

Standards 

J\ 
Integrate 
System 

PLATFORM /J\ 
PROFILE 

platform 
profile 

NGC 
system 

S/W 
profile 

Figure 2.4. NGC Development Process 

The Reference Architecture is the key to turning application requirements into the 

application architecture. The Reference Architecture consists of both primitive and 
aggregate components. Components are abstract building block elements that describe 

functionality and communication. The application architecture is built from these 
components. Although the Reference Architecture will necessarily be a "living" library 

that continually grows, the objective is to develop a set of components that "span the 
space" of desired functionality and communication for establishing a system structure. 

Therefore, in the system design process, when the Reference Architecture is found 
insufficient, new components are added to the reference architecture. The application 

architecture is a complete and consistent topology for the representation of the system. 

The lower pathway of Figure 2.4 addresses the issue of how the system will be physically 

implemented from the standpoint of processors, buses, communication, I/O, etc. It is not 
an objective of the SOSAS to enforce a particular design philosophy with respect to the 

system platform structure. The NGC does not attempt to lead all system designers in the 

direction of a standard "box". What it does do, however, is to establish a methodology for 

accurately capturing what has been produced by a specific vendor. 

Platform requirements are used to select the standards (or conventions) that the designer 

feels are necessary for a specific platform implementation based on heritage, cost, 

performance, etc. Once the basic platform structure has been established, the key elements of 
the design are documented in the form of a platform profile. The notion of the platform 
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profile was derived from the realization that. (1) because of diverse market forces there will 

never be a "one platform does it all" to satisfy everyone, and (2) from the standpoint of 

achieving system openness with all of the associated "-ilities" it is of crucial importance that 

the user is able to understand what is being purchased in such a way that system expansion 

and extension can readily be assessed. The platform profile, by documenting the key 

standards and conventions used to construct the system, provides this insight. 

The application architecture and platform design (as reflected in the profile) are unified in the 

design application phase of the process. Here, the implementation component library is 

used to take advantage of off-the-shelf software elements to instantiate the application 

architecture and insure consistency with the platform profile. Abstract functionality is 

replaced by actual software that includes both the functional aspects as well as the practical 

man-specific aspects necessary to accommodate the chosen platform profile. 

2.5 Structure of a Working NGC 

The NGC open system is comprised of application software exchanging information via 

data communication mechanisms and connected to the services provided by operating 

systems and hardware through a common interface called an application program 

interface (API). The software is implemented in the form of components that interchange 

messages in the process of carrying out their responsibilities. Components run under a 

Common Execution Environment (CEE) that provides for transparent peer-to-peer 

message exchange between the components as well as other services. Figure 2.5 shows 

this concept. 

AGENTS 

Figure 2.5. Components and the Common Execution Environment (CEE) 

Each component is a single separate thread of execution within the CEE since a 

component must be able to send and receive messages independently from the other 
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components. A component encapsulates the data and functionality it needs to carry out its 
assigned responsibility. This approach is extremely flexible compared with older hard- 

wired systems, allowing the NGC system software to be reconfigured dynamically during 

operation by activating or deactivating agents. Dynamic reconfiguration does not cover 

the addition or removal of hardware; connecting or disconnecting hardware will require a 

system shutdown. 

Components have the following attributes: 

• Responsibility—The role the component plays, distinguishing it from the other 

components in the CEE, in the successful overall operation of the NGC system; 

• Peer-to-peer Relationship(s)—The collaborative relationships the component has 

with other components as required to carry out its responsibility; 

• Behavior(s)—The specific functionality encapsulated by the component, where each 
behavior is expressed as one or more operations to be performed in response to a 

message; 

• Message(s)—The complete set of specific instructions necessary for evoking all of 

the behaviors encapsulated by the component These messages must be defined in 

enough detail to guarantee interoperability. 

• Application Program Interface(s)—The interface(s) a component uses specifically to 

access services provided by the Open Systems Environment (OSE). 

For a specific controller application, a configuration is an information structure that 
provides a description of all required hardware and software elements and their 

interconnections. The configuration contains the information needed to maintain safe and 
reliable operation of the controller in carrying out all of its intended responsibilities. The 

configuration includes, as a minimum, the description of all of the required components. 

A directory service component or group of components has the responsibility for 

assuring that all of the components needed for reliable controller operation are available 
and working properly in the CEE. A configuration is used by the directory service 
component(s) to maintain a roster of active components and facilitate message 

interchange among them. The roster of active components will change dynamically, for 
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example, with a shift in the operational requirements of the controller as it carries out its 

various responsibilities. 

2.6 Timing Considerations 

The NGC stands at the juncture between process planning for cell activities and 

controlling the equipment that actually fabricates parts or assembles products. Timing 

considerations are important, but not crucial, for the former types of activity. But 

controlling the equipment requires strict adherence to a time budget; failure to do so will 

often result in higher production costs due to flawed parts and/or damaged equipment. 

The NGC spans three separate timing domains: non real time (non RT), real time (RT), 

and hard real time (hard RT). This partitioning of the timing requirements is shown in 

Figure 2.6. The non-RT domain of standard computing covers activities like compiling 

and linking software, reading data from a file, and reporting progress to the cell and other 

entities in the enterprise. The time required to complete an activity can be flexible, 

guided by the requirement to finish as early as possible. The standard computer domain 

covers a wide variety of environments and operating systems, e.g., UNIX, DOS, non-RT 

POSDC compliant systems, and Windows NT. 
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Figure 2.6. NGC Timing Domains 

An activity in the RT domain is driven by a time budget, but the consequences of missing 

a deadline are not catastrophic, and the system can recover without serious loss. Some 

examples of RT activities are operations planning, task planning, path planning, cutter 

compensation, and a PLC's actuation of the coolant valve. Hard-RT activities have 
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mandated timing deadlines; missing one of these deadlines can have serious 

consequences like a damaged part that must be reworked or discarded. Hard-RT 
constraints apply to servo loop closures and programmable logic controller (PLC) cycles 

that read values from sensors into memory and write values from memory to actuators. 

The need to consider the three timing domains will persist in spite of the ever-improving 

performance of available computing. As better computers are made, the increased 

throughput makes more complicated algorithms feasible within a fixed time limit. When 

they are deployed in advanced manufacturing applications, greater machining precision 

at higher speeds will be made possible. The result is better quality products at faster 

production rates. Thus the RT envelope will be pushed continually, and the relevance of 

the three timing domains will remain as more capable processors emerge. 

Several existing controller products can be aligned with the three timing domains. One 
vendor links a transputer-based, RT platform to a UNIX front end through transputer 

links. The transputers drive an Industry Standard Architecture (ISA) expansion bus, and 
all motion servo loops are closed in the transputer using digital-to-analog (D/A) 

converters and encoder feedback. Another vendor combines standard computing and less 
demanding RT operations in a single PC AT running the Lynx operating system. The 

demanding RT operations, that is, motion and high-speed discrete control, are 

implemented in a separate ISA card. (The use of a separate dedicated function card for 
demanding RT operations dominates current controller practice.) Yet another vendor 

hosts the non-RT operations on a DOS platform and distributes control via ARCNET to 
small proprietary nodes. All of these implementations fit within the timing partitions as 

long as the messages at the selected boundaries are conformant with the NGC messages. 

NGC does not, at this time, directly address the issue of timing performance for resulting 

system implementations. In all likelihood, this will require dedicate tools that, in addition 

to insuring other NGC requirements are met, also evaluate the adequacy of the overall 

software/platform system with respect to performance/stability driven performance 

requirements. This issue is discussed further in sections 2.9 and 3.4. 

2,7 Open System Architecture Specification 

Controller designs are constrained from two aspects: the Reference Architecture and 
open standards (such as POSDC) and industry conventions (such as DOS). For a specific 
industrial application, controller primitive components are selected from the Reference 
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Architecture according to application-specific requirements and synthesized into an 
Application Architecture. The resulting Application Architecture constrains the design of 
the application system; that is, the system elements specifically required for 

manufacturing and control. The other constraining aspect supports the operation of the 

controller, which is based upon open and de facto standards of practice in manufacturing, 

controllers, computing, and data communication. 

2.8 Components 

All of the primitive components needed to cover the spectrum of machine controller 

applications over the NGC domain are maintained herein as the Reference Architecture. 

A component is an abstract encapsulation of functionality and information with an 

assigned responsibility and an abstract message interface definition. A component is 

specified as follows: 

• Responsibility: The role the component plays, differentiating it from all other 

components in the Reference Architecture, in the successful overall operation of a 

controller, 

• Message(s): The complete set of distinct instructions necessary for evoking all of the 
behaviors encapsulated by the component for carrying out its responsibilities. These 

messages are defined at an abstract level. 

Depending on the application, the required primitive components are selected and 
arranged in an application architecture that will guide the actual design of the controller. 

An application architecture must contain, as a minimum, the components needed to fulfill 

all of the responsibilities of the application it is based on. Many such application 

architectures are possible over the NGC domain. Based on a single application 
architecture, a component may be implemented and delivered in a variety of ways. This 
activity will result in libraries of implementation components that will capture the 
functionality of the aggregated primitive components but contain the additional structure 

necessary for integration into specific platform implementations. 

2.9 NGC Development and Validation Tools 

The intense competitive pressures and risks associated with development and subsequent 

production of industry-fielded, open architecture, machine controllers necessitates the wise 
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and prudent use of development and validation tools, such as knowledge-based tools, 

libraries, and object-modeling tools. Tools should address system design and integration 

support; configuration management; event timing; profile mapping and applications 

supported; and the taxonomy and hierarchy of events, applications, standards, agents, and 

components. Metrics and measurement methodologies need to be defined, developed, and 

tested for validity and significance and then be evaluated for the benefits, capabilities, and 

features of a specific implementation. Performance testing should consider the related open 

system specifications, data exchange and information handling protocols, external and 

internal interfaces, and the explicit and implicit features of openness, i.e., portability, 

interoperability, scaleability, interchangeability, commonality of components, etc. The 

development and validation tools, and documentation of lessons learned, should be mapped to 

the capabilities and features of an open architecture machine controller. 

Many software tools that would fulfill requirements for the NGC tool suite are either 

available on the market today or are being developed in other ongoing programs. The 

ARPA Domain Specific Software Architecture (DSSA) program is in the process of 

establishing many of the fundamental tools that would be required in the NGC 

requirements definition, design, and validation and verification activities. As NGC 

continues to evolve and mature, it will be essential to find mechanisms for capturing the 

tools legacy that exists and effectively integrating it into the NGC structure. 

2.10 Open System Environment Overview and Profiles 

The NGC is based on open standards. Open standards help to achieve a level of 

portability and interoperability between multi-vendor controller products that does not 

exist in controllers today. This "openness" of the controller facilitates the addition of new 

controller features and innovative technology with a relative ease that is unavailable in 

controllers that are closed. The benefits are two-fold: (1) the end-user has a controller 

that is adaptable to market dynamics and can be easily modified to incorporate the latest 

cost-saving technologies, and (2) third-party vendors are encouraged by the opportunities 

to develop new technologies and market niches for a new generation of controllers. 

Central to the open theme is the NGC Open Systems Environment (OSE) framework. 

The OSE framework leverages open standards, both de jure and de facto, to specify an 

infrastructure for open controllers. The OSE framework embodies three general 

concepts: the reference model, the taxonomy, and profiles. The OSE reference model is 
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the context for NGC open standards, the taxonomy is the logical grouping of these 

standards, and the profiles are selections of standards from specific groups. Rather than 

attempting to mandate a limited set of standards, the concept of the profile allows the 

vendor and the user to communicate key structural aspects of a system via a "snapshot" 

that, through the shorthand afforded by defined standards, allows system structure to be 

quickly determined. This is very similar to the common practice today of indicating 

whether products are "Mac" or "PC" compatible. The OSE framework is essentially the 

organized menu for this selection. While the possible number of permutations and 

combinations of profiles is overwhelming at this point, it is expected that as more 

vendors produce NGC systems, a smaller set of accepted profiles will emerge. These 

concepts are again introduced and described in more detail in Section 3.3. 

2.11 Conformance Overview 

NGC conformance is determined by adherence to a specific profile of standards. The NGC 

SOS AS does not attempt to specify a standard set of profiles. The market will drive out the 

set of profiles that are most practical to both the controller developer and end-user. 

A NGC-conformant product must include a "NGC Disclosure Statement" that specifies the 

profile, component interfaces, and other conformance claimers where applicable. Profiling 

offers the controller developer options for product conformance at a variety of levels to satisfy 

user requirements at a competitive cost, with varying degrees of openness. Section 3.4 

describes the disclosure statement requirements, levels of conformance, language 

documentation, statements of intent, and associated claimers in more detail. 

2.12 Growth and Evolution 

This document should be viewed as the initial document in what will be a growing set of 

companion documents that govern the full NGC development process. In section 3.4 a 

document hierarchy is discussed that parallels the structure used by IEEE to document 

the POSIX standard. The structure of this family of documents is shown in Figure 2.7. 

Like the POSIX standard, there is an overall document that describes basic system 

structure and philosophy. Other documents (the .1 and .2 documents) address basic issues 

associated with system framework and implementation. Finally, the architecture 

document set deals with domain specific considerations. As shown, it is presumed that 

this would initially include CNC, robotics, process control and PLC applications. 
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The issue of the criticality of tools to a mature NGC process was discussed in an earlier 

section. In addition to tools, success of NGC also hinges on the emergence of libraries 

(or repositories) of effective and reliable implementation components that allow the 

system developer to quickly satisfy both functionality and platform requirements in the 

implementation process. As in the case of tools, other ongoing programs have already 

developed much of the foundation for these libraries. This issue is discussed at greater 

length in section 5.0. 
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3.0 DETAILED ARCHITECTURE 

This section specifies the details on the design, integration, and delivery of NGC conformant 

industrial controllers. Key elements of the NGC process, such as the Reference Architecture, 

Application Architecture, Open Systems Environment, etc. that were introduced in the previous 

- section are described in greater detail with respect to the methodology involved in the NGC 

design and development process. 

Section 3.1 addresses the concept of the Reference Architecture and the evolution of system 

structure. Emphasis is placed on the basic process that is used to move from Reference 
Architecture to Application Architecture to a final system implementation as an Application 

System. It is shown that this process is equivalent to proceeding from a level of high abstraction 
that deals with general responsibilities to a final system that is implemented via specific choices 
of hardware and software, defined by appropriate APIs and standards. The NGC levels of 

abstraction facilitate flexible and extensible software designs and emphasize software reuse. 

The NGC integration architecture is presented in Section 3.2 as a framework for incorporating 

services identified and defined in open standards of computing and data communication. These 
standards are relevant to NGC because they are likely to be supported as commercially available 

products from vendors of hardware and operating systems. The integration architecture is crucial 
to the overall NGC process because it provides a means visualizing the interplay between 

application software, standard services and operating system functions, and the underlying 

hardware platform. 

Section 3.3 presents the NGC Open Systems Environment (OSE) framework and its role with 

respect to NGC applications and the Common Execution Environment (CEE). The OSE is 
standards based, having a taxonomy with application program interfaces (APIs) and external 
environment interfaces (EEIs) as main branches. Also, the profiling concept is introduced, 

where, by specifying a profile, the NGC user can select from among a competing set of de jure 

and de facto standards to suit a particular implementation environment. 

Section 3.4 addresses the issue of carrying controller development through to implementation. 

An application framework guides the design and implementation of the controller, based on 

available products. Key features of this process are reuse of hardware and software components, 
adaptation of such components to related applications, and separate development of 

interoperating components by independent vendors. A strategy for evolving a family of open 
controller standards is also presented. This strategy parallels that employed by the IEEE for the 
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POSIX standard. This approach allows for independent documentation of different aspects of the 

NGC process and the emergence of domain specific companion volumes for specialized domains 

such as machine tools, robotics, process control, etc. 

Section 3.5 addresses the issue of conformance for NGC systems. Because of the mechanism of 

- profiling, and the latitude it provides to the system designer, conformance becomes an issue of 

adequate documentation of all aspects of the final system. In addition to the profile suite for both 

API and EEI, the supplier will also be required to document component interface descriptions 

and language specifics. 

3.1 Reference Architecture 

This section describes the NGC Reference Architecture, the starting point for the design of a 

controller's application software, and its role in specifying the realization of an open controller. Stated 

in simplest terms, the Reference Architecture consists of a set of primitive components. The primitive 

components can be thought of as abstract building blocks for NGC applications. At the level of 

primitive components, the issues are those of function, responsibility, and generalized data flow rather 

than specifics of implementation via either hardware or software. Although it is somewhat of a 

simplification, primitive components can be thought of as a formalization of the elements normally 

used for generating system "block diagrams". The primitive components, as captured in the Reference 

Architecture form a language, of sorts, that can be used, later in the Application Architecture, for 

capturing overall system structure and requirements. The architectural levels of abstraction mark the 

stages in the process of implementing a controller from requirements analysis through 

implementation. Use of the Reference Architecture and a derivative Application Architecture 

constrains controller designs so that products developed independently by different suppliers can be 

expected to interoperate within a single controller implementation. Moreover, by publishing the 

architectural details of the controller design and its interfaces, a supplier is opening the system so that 

it can be readily extended in performance and/or capability. To realize a controller for a specific 

manufacturing application, an application architecture is synthesized from primitive components in 

the Reference Architecture, and the Application Architecture, in turn, is used to constrain the design 

of the application system. 

3.1.1 Levels of Abstraction 

For NGC, three levels of abstraction provide the flexibility to configure machines for a wide 

variety of discrete part manufacturing applications while enabling extensions of the standard into 

other industrial applications and/or controller implementation technologies. Figure 3.1.1 shows 
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these levels of abstraction. In decreasing degree of abstraction, they are: domain level 

(description of the controller in manufacturing and controller terminology), technology level 

(broad structural partitioning that constrains implementation), and implementation level (actual 

elements of a working instance of a controller). 

Reference 
Architecture 

Application 
Architecture 

Application 
System 

I     \ 
Technology Level, 

Implementation Level 

Primitive Components 
• Single Responsibility 

• Resources 
• Products 
• Temporal Information 

Components 
• Responsibilities 

Abstract Messages 

Implementation Components 
• Responsibilities 
• Exact Message Interfaces 
• Specific Behaviors 

APIs 

Figure 3.1.1 NGC Abstraction Levels 

The domain level captures the NGC in the terminology of manufacturing and controller practice. 

Multiple application scenarios from differing expert viewpoints have been analyzed to produce a 

common set of reference requirements (see Appendix A), a set of domain models (see Appendix D), 

and a Reference Architecture. These domain-level elements are independent of a specific technology 

or implementation. Part fixturing, for example, could be performed manually by a human operator or 

automatically by a robot As another example, a controller can be implemented using an analog 

(continuous variable) design, or as in the NGC case, the implementation technology is digitally-based 

using computing platforms and programmable logic controllers (PLCs). NGC covers a wide variety 

of applications, and the controller elements actually used will vary from application to application. 

For example, the controller for a three-axis milling machine will no doubt have a spindle, but a 

spindle is meaningless as an element of a centerless grinder. 

The Reference Architecture has two parts: the complete set of primitive components across all 

NGC applications (see Appendix B) and some architecture description rules (see Appendix C). 

Controller responsibilities are distributed among primitive components in the Reference 
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Architecture. Each primitive component represents a single responsibility. Architecture 

description rules are used with application requirements and primitive components to compose 

an application architecture. 

The technology level holds the components of an Application Architecture. The Application 

■ Architecture is synthesized out of primitive components following the analysis of the domain 

practices of a specific controller application. Interdependencies are made explicit through the 

definition of the component boundaries for the Application Architecture, and message interfaces, 

while still abstract, are specialized to those required by the specific application. 

At the implementation level, the operational paradigm is implementation components 

exchanging messages within the Common Execution Environment (CEE) in order to fulfill their 

assigned responsibilities. An implementation component is an encapsulation of functions and 

data that interoperates concurrently with other implementation components within a computing 

environment by exchanging messages in a variety of contexts. A component from an application 

architecture represents one or more implementation components, but the actual number and 

composition of such implementation components are left as choices for an implementor. 

Consequently, an unlimited variety of designs can derive from a single application architecture 

component definition. This allows separate vendors to differentiate their products while retaining 

a correspondence to an application architecture at the technology level. 

An Application Architecture component corresponds to an implementation component or a 
grouping of implementation components. Implementation components have non-overlapping 

responsibilities because they conform to the boundaries established by the Application 

Architecture. That is, no two Application Architecture components share an implementation 

component or group of implementation components, and no implementation component can be 
associated with more than one Application Architecture component. An implementation 

component is defined by its responsibilities, specific behaviors (functionality), exact message 

interfaces (messages that evoke behaviors), and APIs. 

The NGC abstraction levels play an important role. During analysis, application requirements 

are selected from the reference requirements, and a range or a set of values are applied to them. 

A transition from the domain level to the technology level occurs when an application 

architecture is synthesized by applying the application requirements, domain models, and 
architecture description rules to selected primitive components. The Application Architecture 

and the integration architecture then guide the NGC design at the implementation level. A design 
is constrained by application architecture components' responsibilities and message interfaces. 
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The integration architecture facilitates portable software designs by defining standardized 
interfaces to services that are characteristic of a computing and data communications 
environment. 

3.1.2 Components and Realization 

The Reference Architecture contains all of the NGC primitive components (see Appendix B). A 
primitive component has only one assigned responsibility and the interface associated with that 

assigned responsibility; a primitive component's responsibility cannot be partitioned. A primitive 
component is an abstraction and, therefore, is not associated in the early system specification 
stage with either software or hardware. It is an abstract encapsulation of functionality and 

information with an assigned responsibility and an interface description. A primitive component 

in the Reference Architecture is specified as follows: 

• Single Responsibility: The single indivisible role the primitive component plays, 
differentiating it from other primitive components, in the successful operation of an NGC 
system. 

• Resources: The information the primitive component needs in order to carry out its 

responsibility. 

• Products: The information the component, can provide. 

• Temporal Information: The intended timing of the primitive component. 

For a specific application, primitive components are selected from the NGC Reference Architecture 

and synthesized into the components of an Application Architecture. Such components may be 

composed into larger components, and in that sense, components of an Application Architecture are 
structurally recursive. Any combination of two or more components is called an aggregation. An 

aggregation carries the combined responsibilities of its constituents, and it must be able to respond to 
all of the constituents' abstract messages. A component of an Application Architecture is still an 

abstraction specifying functionality and responsibility, and it is specified as follows: 

• Responsibility: The role the component plays, differentiating it from other components, in 

the successful operation of the overall controller application. 

• Abstract Message(s): The complete set of instructions necessary for evoking all of the 

behaviors encapsulated by the component. These messages are defined at an abstract level. 
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The Application Architecture must satisfy all of the application requirements, and its 
components must interconnect properly, that is, the components' collective responsibilities must 

be sufficient to cover the application requirements, and abstract message definitions must align 

at component boundaries. Component interconnectivity is a necessary, but not sufficient 

condition to guarantee interoperability. Although Application Architecture component 

interconnectivity is verifiable at the abstract message interface, it will not assure that 

implementation components constrained by an application architecture are able to exchange 

messages cooperatively and unambiguously. Thus a component's abstract message definition 

must be specified exactly when the Application Architecture is realized as an implementation. 

For a specific machine and process, the Application Architecture guides the implementation. 

One or more implementation components carry out an Application Architecture component's 

responsibilities. Implementation component boundaries conform to those set by the Application 

Architecture, and messages passed between implementation components correspond to the 

application architecture components' abstract message definitions. The process of realizing an 

application system from the Reference Architecture and a selected application architecture is 

shown conceptually in Figure 3.1.2. 

There are as many different Application Architectures as needed to cover the wide range of 
NGC applications. Since this specification will evolve along with manufacturing and controller 
technology and be extended to new applications, the Reference Architecture is expected to grow 

and evolve continually. The variety of possible Application Architectures will also grow and 

evolve as the use of open industrial controllers becomes widespread. 
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Figure 3.1.2 NGC Realization Process 

3.2 Integration Architecture 

The integration architecture shown in Figure 3.2-1 is a framework that supports interoperable, 

portable, scaleablc. and interchangeable NGC component implementations, designed and 
developed by competing vendors. The integration architecture is a detailed refinement 

(representation) of the application system (see Figures 3.1.1 and 3.1.2). An implementation is 
divided into domain-dependent and domain-independent parts. The domain-dependent part is 

made up of the implementation components needed by a specific application and the CEE. The 

domain-independent part consists of the computing and data communication services that 
represent the underlying platform. The domain-independent services provide support to the 

implementation components and to the CEE. 
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IMPLEMENTATION COMPONENTS 

HARDWARE 

Figure 3.2-1 NGC Integration Architecture 

Services are based on computing practice and have a broader applicability than NGC, so that 

they are termed "domain independent." The integration architecture conveniently associates 

relevant open standards of practice with the services as shown in Figure 3.2-2. Services are 

provided through a specified API, and they can be invoked by implementation components and 

called by other services. NGC services form six groups that act as an abstraction layer between 

the implementation components and the native operating system, computing hardware, and 

peripheral devices. 
IMPLEMENTATION COMPONENTS 

Fieldbu' 
RS 431 

SCSI 
RS  232 
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Multibus II 
Futurebus+ 
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Figure 3.2-2 NGC Integration Architecture & Related Standards 
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3.2.1 Service Groups 

The NGC integration architecture provides six groupings of domain-independent services, which 

include Presentation Management, Data Management, Geometric Modeling, Communications, 

Platform, and Basic Input/Output (I/O) services. The services are captured as a set of behaviors 

" and an API to those behaviors. The responsibilities assigned to the service groups are described 

below. 

Presentation Management services provide standardized means for multiple applications to 

present data to a user in a common display representation and to receive input from shared input 

devices. Its responsibilities include displaying data in a common display (such as a display 

window); receiving, coordinating, and managing data from the user (possibly from multiple, 
simultaneous input devices); and creating and managing consistent graphic attributes and user 

operations. 

Data Management services are responsible for the information resources of a manufacturing 

workstation, allowing applications to share data using an implementation-transparent 

mechanism. Information resources appear to applications as a centralized repository of data 

called the information base. The information base may be implemented in a variety of 
centralized or distributed configurations using data bases, knowledge bases, shared memory, or 

other forms of information storage. 

Geometric Modeling services have responsibility for interactive and non-interactive solid 

modeling and geometric operations. A solid modeling system unambiguously represents three- 

dimensional bodies using a combination of geometric and topological information. This 

capability is essential for NGC planning and execution utilizing feature-based part model inputs 

and geometric representation of part design. 

Communication services are responsible for application-to-application communication via a 

protocol and mechanism independent interface. This facilitates interoperability among 

independently developed applications. 

Platform services are a generic set of operating system and utility services that act as an 

abstraction layer over different operating system implementations, just like an operating system 
can be an abstraction layer over different hardware platforms. These services provide access to 
computing platform behaviors responsible for managing shared computing resources, and they 

encompass both RT and non-RT requirements. 
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The Basic I/O services implement the responsibility for interacting directly with a wide range of 

I/O devices. These services are used to initialize devices and transfer data to and from them. 

3.2.2 Domain-Independent Components 

. For the most part there is an intentional correspondence between primitive components in the 

Reference Architecture at the domain level and application architecture components at the 

technology level. Occasionally however, a required component may not be identifiable at the 
domain level because its role in a controller is considered to be domain independent. The 
Display Manager, Exception Handler, Directory Services, Safety, and Help services are 
examples of domain-independent components that have required implementation counterparts. 

They are shown as implementation components in Figure 3.2.2. 

OTHER IMPLEMENTATION 
COMPONENTS 

Figure 3.2.2 Domain-Independent Implementation Components 

The Display Manager component illustrates the need for such domain-independent components. 

The Display Manager collects and organizes information intended for the video display of a 

digital controller implementation, but it is an artifact of computing practice, not manufacturing 

or controller practice. A Display Manager is obviously needed for the display area of a video 
monitor that must be shared among the independently-developed, components competing for 

display real estate during the operation of the controller. 

33 NGC OSE Framework 

The NGC is based on open system standards and conventions. While it would be preferable to 
deal only with official, documented standards endorsed by standards organizations, it is 

recognized that "conventions", such as DOS, are important technology elements in the advanced 
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manufacturing community. The complete set of open standards and conventions is referred to as 

the Open Systems Environment (OSE) framework. 

This section and subsequent subsections introduces the concepts of the OSE reference model, 

taxonomy, and profiles. The OSE framework embodies all of these concepts, providing a general 

- foundation upon which a multitude of NGC OSEs may be derived. The OSE reference model is 

the context for NGC open standards, the taxonomy is the logical grouping of these standards, 
and the profiles are selections of standards from specific groups. Loosely stated, the OSE 
framework may be viewed as the organized menu for this selection. The mechanism of profiles, 

adopted from POSIX, provides a means for determining very quickly what the overall structure 

of a system employs with respect to standards and platform elements. 

The OSE framework includes relevant de facto and de jure standards of practice in 
manufacturing, controls, computing, and data communications. Much of the OSE framework 
emphasis is on the Common Execution Environment (CEE), the environment for NGC 
application software execution. This emphasis is primarily due to the general-purpose nature of 

computing and communications and the availability of a large base of existing standards to draw 
from. Therefore, the CEE can be viewed as the physical instantiation of an OSE profile. 

33.1 NGC OSE Reference Model 

The NGC Open Systems Environment (OSE) reference model is the basic context for 
categorizing the standards within the OSE framework. It is rooted in the reference model used in 
POSIX but is intended to accommodate a much larger scope. POSIX, the Institute of Electrical 

and Electronics Engineers (IEEE) portable operating system interface, originated, in part, from 

the UNIX operating system. The X in POSIX denotes this UNIX origin. This standard is 

discussed in greater detail in Section 3.3.2. 

Figure 3.3.1 illustrates the OSE reference model. It includes two important interfaces: an 

application program interface (API) between the application software and platform, and an 
external environment interface (EEI) that supports the interface of the controller platform to 

such external devices as displays, file servers, networks, etc. The platform is viewed as the 
general-purpose computing engine, typically commercial off-the-shelf (COTS) hardware and 
software, that includes processors, memory, clocks, input/output (I/O) boards, and buses, as well 
as operating system software and other related, general-purpose software packages. 
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Figure 3.3.1 NGC OSE Reference Model 

The focus of this specification is at the interface level. This allows for a variety of specialized 
controller platform implementations while still maintaining conformance with interfaces that 

provide the maximum benefit of open systems. 

Open systems are characterized by the fundamental attributes of interoperability, portability, and 

user portability. A system and its components are interoperable if they are able to work properly 
together in accomplishing their responsibilities. Software is portable if it can be moved easily 

between computing platforms of different types with no more effort than recompiling. A system 

is user portable if its user interface is understandable, consistent in style, and tailorable. 

The OSE framework supports system-level interoperability with the specification of EEIs. EEIs 

are essentially a collection of open standards in the areas of networking protocols, data 

interchange formats, device I/O, and distributed file systems. The OSE framework supports 

source-level portability through specification of the APIs. Call-level interface standards (C 

language bindings) are defined in the areas of general Platform, Device I/O, Communications, 

Data Management, Geometric Modeling, and Presentation Management services. 

33.2 NGC OSE Taxonomy 

The NGC Open Systems Environment (OSE) standards taxonomy categorizes the open standards 

referenced within the OSE framework. The NGC approach leverages existing standards in all 
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applicable areas without "re-inventing the wheel". These standards, many of which are 
applications independent and of a general-purpose computing nature, play a significant role in 

opening up the controller. 

The standards taxonomy is used in deriving NGC profiles and provides one level of guidance for 

NGC design. In previous sections, we specify the components that guide the design of the 

applications software, the system elements specifically required for manufacturing and control. 
The OSE taxonomy, related profiles, and component specifications together support the 

development of controller applications software that is both interoperable and portable. 

A high-level inspection of the OSE taxonomy (Figure 3.3.2) reveals a close tie-in with the OSE 

reference model. The two major branches of the taxonomy map one-for-one with the two major 
interfaces identified in the reference model, specifically: application program interfaces (APIs) 

and external environment interfaces (EEIs). In review, the API branch deals with issues of 

source code portability and the EEI branch deals with system-level interoperability. 
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Figure 3.3.2 NGC OSE Taxonomy 
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It is unfortunate that today's available standards do not cover all the areas required for a fully 
open NGC. Many NGC application areas presently unsupported by existing standards are now 

being worked by standards committees and open systems consortiums. 

This specification leverages such relevant draft standards work if it is sufficiently mature and 

• promises to have market acceptance. This position is taken in lieu of the alternatives: either to 

define, by a much smaller committee, an independent solution, or to simply not address known 

gaps in the NGC open systems architecture. Existing standards and draft standards span most of 
the NGC open requirements space but still leave some gaps. These gaps are duly noted in the 

subsequent standards discussions. 

3.3.2.1 Application Programming Interface (API) 

API categories include: platform, presentation management, data management, geometric 

modeling, communications, and device input/output (I/O). In each category, a set of open 

standards are identified to facilitate source code level portability. The essential ingredient for this 

level of portability is a well-specified, language-dependent, call-level interface description. 

The NGC API definitions specify C language bindings. It is left up to the discretion of the NGC 
application designer as to whether or not he may wish to implement C++ "wrappers" (or some 
other object-oriented language wrapper) around such C language calls to access API services 

using a message-passing paradigm. 

Wrapping maps the language interface of an application to the object interface. It places an 
object-oriented interface in front of one that is not. This concept goes hand-in-hand with the 

concept of a "container" object. Standard "C" applications may be placed inside container 
objects so that they may send messages through an object-oriented interface while preserving it's 

appearance as a single application. 

The Object Management Group's (OMG) Common Object Request Broker Architecture 

(CORBA), for example, embodies many of these concepts. It is an open question as to whether 
there are more CORBA implementations worldwide today than there are Open Software 
Foundation (OSF) Distributing Computing Environment (DCE) implementations. Both 

standards are primarily focused on writing applications that communicate with each other. 
DCE's Remote Procedure Call (RPC) communications method provides node transparency using 

a client-server methodology. CORBA's API specification is designed around the object-oriented 
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methodology of message passing and supports the interoperability with other technologies via its 

"static" API interface, which compiles at runtime. 

As evident in the NGC reference model and the standards taxonomy, a large part of the NGC API 

specification is rooted in the Institute of Electrical and Electronics Engineers, Inc., (IEEE) portable 

■ operating system interface (POSIX). Many of the NGC concepts draw from IEEE/TCOS POSIX 

work. However, it should be clear that the NGC extends the notion of profiles defined for POSIX, as 

well as that for International Organization for Standardization/Open Systems Interconnection 

(ISO/OSI), to include a number of non-POSK API standards. Purists within the open systems 

standards communities may have some difficulty with this approach but certain de facto standards 

have such large market support that they can not be ignored. 

A common misconception is that POSIX is an operating system. POSIX describes the contract 

between the applications and the operating system. It defines the interface between applications 

and their libraries and says little about how to write those applications programs or how to write 

the operating system. The importance of adopting the interface is to enable portability of 

software applications across a variety of platforms. Any specific implementation of a NGC 

platform is acceptable provided the standard interface API, services, protocols, and associated 

behaviors are followed. 

Therefore, workstation operating systems such as Digital Equipment Corporation (DEC) Ultrix, 

SMI SunOS, and Hewlett-Packard HP-UX; PC-based operating systems such as Santa Cruz 

Operation, Inc. (SCO) Xenix and MS Windows NT; micro-kernel-based systems such as Mach 

and Chorus; and finally real-time operating systems (RTOSs) such as Integrated Systems pSOS, 

Ready Systems VRTX, and Lynx LynxOS are all acceptable operating system implementations 

provided that they support at least one of the NGC platform API profiles. In terms of the 

computer hardware, platform implementations may include processors such as Intel, Motorola 

and Inmos; backplane busses such as VME, ISA/EISA, and NuBus; and displays such as ASCII- 

based terminals and X-terminals. NGC platform implementations comprised of multiple 

processors and multiple operating systems are also viable solutions. 

Many of the COTS operating system products already provide support for the NGC platform 

API. Others need to be adapted to support one or more of the NGC API profiles. This is 

especially true for those custom or proprietary operating systems that are not presently based on 

existing standards. The process of adapting COTS and proprietary products to the desired NGC 

API naturally leads to the notion of middleware. 
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Middleware is a term associated with distributed systems and communications. Within a 

client/server distributed database environment, middleware allows transparent client access of 

information over wide area networks. In the context of communications, it is a layer of code that 

sits between the operating system and the application. Middleware is designed to ease the 

development of peer-to-peer and client/server distributed systems. Middleware implements an 

API layer that shields distributed system and network designers from the details of specific 

programming environments. In other words, with middleware developers need not have to write 

to vendor-specific API; instead they may develop to a more generic, globally compatible 

standard interface. 

The NGC extends the concept of middleware to support generic APIs for computer numerically 

controlled (CNC) device I/O, fieldbus and distributed control, window-based display 

management, etc. With this view, implementation of the NGC CEE may simply be considered a 

selection of computer hardware, a selection of COTS operating system and networking software, 

and a specific implementation of middleware to support one or several NGC API profiles. Figure 

3.3.2.1 illustrates this perspective. The NGC support services layer is the middleware 

implementation layer. 

Application Programs 

Custom Support 
(e.g., C++ classes) 
for application 
programmers 

Custom Support 
for a collection of application 
programs (e.g., vended 
product) 

COTS Layer 
-OSs 
- Distrib. CommTFile Mgmt. 
- Bd. Support Pkgs. 
- HUI Pkgs. 

Middleware Layer (if any) 
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Platform, Pres. Mgmt., 
Data Mgmt., Geom. Modeling, 
Comm., Dev. I/O 

Figure 3.3.2.1 NGC Architecture Perspective 

September 23,1994 38 SOSAS Rev. 3.0 



The following discusses relevant standards within each major API category. POSIX is first 

introduced as a general background. Explanatory information and several examples are also 

provided to help clarify and bring into focus some of the key NGC concepts. A general 

background in computing, communications, and software is assumed. 

- 3.3.2.1.1 POSIX and ANSI C: An Introduction 

Growing in popularity is the commitment among operating system vendors, especially among 

the real-time operating system (RTOS) vendors, to support the POSIX interface and real-time 

(RT) extensions to POSIX. Since POSIX specifies an interface, and does not describe how the 

functions are implemented, it can be applied across a number of underlying COTS operating 

systems. 

Some operating system vendors have leveraged their existing operating system products by 

simply adding to them a POSIX-compliant interface. To accomplish this, a translation element 

must be designed, typically in the form of a runtime library, that takes POSIX system calls into 

native operating system calls. Digital's OpenVMS with its POSIX C-language runtime library 

and added POSIX system services kernel is an example of this. This approach provides a 

migration path toward open solutions in the future while maintaining a level of legacy support 

for existing applications and their dependencies on proprietary interfaces. The burden of 

immediate conversion to a fully open system is somewhat eased, and can be achieved in a period 

of time to spread the cost of changeover. 

Alternatively, a controller developer may internally develop a POSIX API middleware layer on 

top of a COTS operating system product or on top of a proprietary kernel for reasons of product 

discrimination such as improved controller performance, cost competitiveness, etc. The choice 

of the specific POSIX implementation is up to the developer. 

Table 3.3.2.1.1 lists many of the POSIX related documents that are either current standards or at 

some level of draft release. This table provides a context for subsequent discussions of API 

services, profiles, and conformant implementations. Only the POSIX documents most applicable 

to this specification are identified. 

The versions of designated draft standards are the latest available as of March 1993. It is 

recognized that this specification must be updated periodically if it is to accommodate the most 

recent standards developments. This is actually less of a problem than it may sound since many 

operating system vendors have already announced their intent to support the evolving POSIX 
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draft standards, especially in the area of RT POSEX extensions (POSIX.4). In that sense, 

modifications to the SOSAS in the area of POSIX will merely track known direction for 
commercial operating system products. 

Table 3.3.2.1.1 POSIX Documents 

Designation TiÜe 
Relevant 
NGC API 

IEEE 1003.0 D15 Guide to POSIX Based Open System Architecture All 
none - guide IEEE Standard Interpretations of IEEE Standard Portable Operating System 

Interface for Computer Environments (IEEE Std 1003.1-1988) Prod. No. 
SH15313-PVB ISBN: 1-55937-216-8 

All 

ANSI/IEEE 1003.1-1990 Portable Operating System for Computer Environments (same as ISO/ IEC 
9945-1:1990) 

All 

ISO/IEC 9945-1:1990 Information Technology—Portable Operating System Interface (POSIX)- 
Part 1: System Application Program Interface (API) [C language] Ed. 1 
356p. JTC 1 

All 

IEEE 1003.1a D7 Draft Revision to POSIX. 1 All 
IEEE 1003.1 LIS D3 System Application Program Interface All 
IEEE 1003.2a D8 POSIX-Part II: Shell Utilities. User Portability Extensions Pres. 
IEEE 1003.2b D4 POSIX-Part II: Shell and Utilities. Amendment 2 Pres. 
ANSI/IEEE 1003.3-1991 Information Technology-Test Methods for Measuring Conformance to 

POSIX 
All 

IEEE 1003.3-1991 IEEE Standard for Information Technology- Test Methods for Measuring 
Conformance to POSIX Prod. No. SH14068-PVB ISBN: 1-55937-104-8 
(same as ANSI/IEEE 1003.3-1991) 

All 

IEEE 1003.3.1 D14 Test Methods for Measuring Conformance to POSIX-System Interfaces All 
IEEE 1003.3.2 D8 Test Methods for Measuring Conformance to POSIX-Shell & Utilities 

Interface 
Pres. 

IEEE 1003.4 Dl3 POSIX-Part 1: Real Time & Related System API All except Pres. 
IEEE 1003.4a D6 Standards for Threads Interface to POSIX Platform. Pres. 

Data 
IEEE 1003.4b D4 Feb 92 POSIX-Part 1: Real Time System API Extensions Platform. Comm.. 

Device I/O 
IEEE 1003.8 D6 POSIX-Part 1: Network-Transparent File Access Data 
IEEE 1003.12 Dl.2 POSIX-Protocol Independent Interfaces Comm 
IEEE 1003.13 D5 POSIX Standardized Profile Profiles-All 
IEEE 1003.16 D3 POSDC C Language Bindines-Pan 1 All 
IEEE 1003.17 D4 POSDC Directory Service API Comm.. Data 
IEEE 1003.21 D? POSIX Real-Time Communications Comm. 
IEEE 2003.1 IEEE Standard for Information Technology-Test Methods for Measuring 

Conformance to POSIX SHI5826 
All 

FIPSPUB151-2 Portable Operating System Interface (POSIX)-System Application 
Program Interface [C Laneuaee] 93 Mav 12 

All 

The Federal Information Processing Standards Publications document, FTPSPUB-151, is a 

procurement profile specified by the government based on the POSEX. 1 (ANSI/EEEE 1003.1) 
standard. This document is proof of government support of the POSEX standard, and is included 

here as a basis for defining future NGC government/military profiles. 

Not included in the table are POSEX documents in the areas of system administration, language 
bindings for FORTRAN and ADA, system security, supercomputing, profiles for transaction 

September 23,1994 40 SOSAS Rev. 3.0 



processing and multi-process platforms, and batch processing. Although these subjects may have 

some NGC relevance, they are considered secondary to the fundamental requirements for open 

system controllers. As open controller philosophies materialize in open controller prototypes and 

NGC products, these additional documents need to be revisited for SOSAS applicability. 

' POSDC.l covers the basic operating system services. It had originated as an Institute of Electrical 

and Electronics Engineers, Inc., (IEEE) effort, became an American National Standards Institute 

(ANSI) standard (ANSI/IEEE 1003.1) in 1990, and is also an international standard (ISO/EEC 

9945-1:1990). It is language-dependent, meaning the APIs are specified for C bindings (a cali- 

level interface description for the C language) and is perhaps the most essential document within 

the standard set. Current standards efforts include the re-write of this document as a language 

independent specification (LIS). The C language bindings are to be specified as a separate 

document, as for bindings to other languages such as FORTRAN or ADA. 

The NGC POSDC profiles are based on POSDC.l and are strongly dependent on ANSI C, 

officially designated ANSI/ISO 9899. This 1990 version of the C language standard is an 

international standard (ISO/IEC 9899:1990). It is a revision and redesignation of ANSI X3.159- 

1989. The corresponding government procurement profile to this standard is FIPSPUB-160. 

Many of the NGC API services are supported through the adoption of the ANSI C standard 

libraries. POSDC.l explicitly deals with C language-dependent services and defines two types of 

C language conformance: (1) C standard, and (2) common usage C. This emphasizes the strong 

connection between POSDC and ANSI C. 

The adoption of ANSI C for use in non-POSDC operating system environments also satisfies a 

level of POSDC compliance. In such implementations, it is only when services are requested 

outside of the support ordinarily provided through standard ANSI C libraries that the 

applications are no longer conformant with POSDC. The designer's choices for NGC 

applications arc then to use either the API extras and RT extensions defined within the POSDC 

standard and implement a layer of corresponding middleware, or to rely on the support of 

vendor-specific API libraries and de facto standards. 

For the case where the developer chooses not to use POSDC, a NGC profile set is provided for 

using other system implementations and corresponding support libraries. This approach satisfies 

a need to support legacy systems and eases the migration toward future POSDC implementations. 

The developer may always choose, instead, to either select a commercial POSDC operating 

system platform or develop a POSDC middleware layer on top of a proprietary operating system. 
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3.3.2.1.2 Platform Services API 

OSE 

API 

fPlatform)Pres.Mgmt   DataMgmt Geom. Model Comm.    Device I/O   Lang.     Data API      Device l/F   Backplane 
^ -* Exchange    Overlap Bus 

Categories 

Platform services support many of the features commonly provided by commercial operating systems 

today. These services include, for example, process/task control, synchronization and scheduling, 

event and interrupt handling, time services, memory, and other resource management 

Table 3.3.2.1.2 identifies the relevant de jure standards in the area of Platform services. De facto 

standards in this area and their relevance to the NGC are discussed in Section 3.3.3, Profiles. 

Table 3.3.2.1.2 Platform Services—Relevant Open Standards 

ISO/IEC 9945-1:1990 
IEEE 1003.4 Dl3 
IEEE 1003.4a D6 
IEEE 1003.4b D4 
ISO/IEC 9899:1990 

Portable Operating System for Computer Environments (same as ISO/ IEC 9945-1:1990) 
POSIX-Part 1: Real Time & Related System API 
Standards for Threads Interface to POSIX 
Feb 92 POSIX-Part 1: Real Time System API Extensions 
Programming Language—C 

ANSI C, now an international standard, is identified in the table as a standard separate from 

POSIX but it should be recognized that it is also an integral part of the POSIX. 1 specification. 

Most of the standard ANSI C library services fall under the umbrella of NGC platform services. 

This includes C library functions and corresponding API in the areas of character and string 

handling, localization, mathematics, non-local jumps, input/output, date and time, diagnostics, 
and general utilities. It is only in the I/O area that some of the C library functions relate to other 

service categories such as presentation management, data management, and device I/O. 

POSIX. 1 Platform services API include functionality for single and multi-processing, signals, 

and user groups. RT Platform services API, such as RT signals, semaphores, memory 

management, priority scheduling, and timers, are defined in POSLX.4. Thread services and 
reentrant functions API are covered in POSIX.4a. Spawning, central processing unit (CPU) time 
management, and sporadic server services API are specified in POSLX.4b. Note that the services 
mentioned are not the full breadth of the POSIX services, but only those services that relate 
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specifically to the platform category. POSIX also spans the areas of communications, device I/O, 
data management (file management), etc. 

The draft nature of the RT API definition is not viewed as a major problem due to the current 

support of draft levels of POSIX.4 in a variety of RTOS products. For many NGC controllers, 

-these COTS operating system products may form an integral part of their total controller 

implementation solution. 

The operating system industry acceptance and momentum towards open systems is evident in 
Microsoft's latest operating system product, Windows NT, which supports POSIX. The list of 

RTOS products with varying levels of in-progress and available POSIX. 1 and RT support 

includes: 

Encore Computer (UMAX V R/T) 

Eyring (PDOS) 
Harris Computer Systems (CX/UX) 
Industrial Programming (MTOS) 

Integrated Systems (pSOS) 

JMI Software Systems (C Executive) 
Lynx Real-Time Systems (Lynx operating system) 

Microware Systems (OS-9000) 
Modular Computer Systems (8xxx) 
Precise Software Technologies (Precise/MQX, MPX) 
QNX Software Systems (QNX), RTMX-UniFLEX (RTMX/RN/RX) 

Spectron Microsystems (SPOX) 
Wind River Systems (VxWorks, MicroWorks) 

Many other operating system vendors have announced their product plans to support POSIX. 
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3.3.2.1.3 Presentation Management Services (PM API) 

OSE 

Platform DataMgmt Geom. Model  Comm.    Device I/O   Lang.      Data API      Device l/F    Backplane 
Exchange    Overlap Bus 

Categories 

Presentation Management services support the man-machine aspects of the NGC typically 

associated with a standard computer terminal. Supported hardware may include a display, 

keyboard, and trackball or mouse. Presentation Management services may be used to support 

control panel functionality, provided such capability is emulated on the NGC terminal and is not 

a hardware panel implementation. For example, one NGC controller product line may use a 

graphics windowing environment with specialized NGC menus, dialog boxes, and icons that 

implement (in software) many of the control panel features commonly supported today using 

hardware dials and buttons. 

To clarify this point. Presentation Management services do not interface physical buttons 

dedicated to jog, feedhold, pause, and E-stop functions, nor do they manage jog handwheels, 

mode-select switches, and programmable function keys. However, API services have been 

identified to support these types of hardware interfaces and are described under Device I/O 

services API. 

Table 3.3.2.1.3 lists the major presentation management standards. Not all the standards listed 
need to be adopted for NGC-conformant controllers and many of the standards shown overlap in 

functionality. NGC profiles for presentation management define the standards subsets as well as 

applicable de facto standards. In designing the controller, satisfying many of the standards listed 

in the table is easily accomplished through the use of existing COTS products. 

In selecting relevant standards for this specification, the following general guideline has been 
applied: if the selection of a standard for a specific application involves a choice between the 

national (e.g., ANSI) standard and the corresponding international standard (e.g., ISO/IEC), the 
NGC selection is usually the international standard. Note the NGC selection for the ANSI C 

language is ISO/IEC 9899. Correspondingly, ISO/IEC standards are identified for Programmer's 
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Hierarchical Interactive Graphics System (PfflGS) and Graphical Kernel System (GKS) instead 
of existing ANSI standards, e.g., ANSI X3.124-1985 (R1991) GKS Functional Description. 

Table 3.3.2.1.3 Presentation Management Services—Relevant Open Standards 

ISO/IEC 9945-1:1990 
IEEE 1003.2a D8 
IEEE 1003.2b D4 
IEEE 1003.4a D6 
ISO/IEC 9899:1990 
MUX Windows(XI1R5) 
MIT X Windows PEX extension 
OSF/Motif 1.2 
ISO/IEC 8651-4:1991 
ISO/IEC 8806-4:1991 
ISO/IEC 9593-4:1991 

IEEE 1201.1 

Portable Operating System for Computer Environments (same as ISO/IEC 9945-1:1990) 
POSIX-Part II: Shell Utilities. User Portability Extensions 
POSIX-Part II: Shell and Utilities, Amendment 2 
Standards for Threads Interface to POSIX 
Programming Language - C 
MIT X Window System Version 11. Release 5 
MIT X Window System PHIGS Extension 
Open Software Foundation - Motif 
Graphical Kernel System (GKS) language bindings - Part 4: C 
Graphical Kernel System for Three Dimensions (GKS-3D) language bindings - Part 4: C 
Programmer's Hierarchical Interactive Graphics System (PHIGS) language bindings ■ 
Part 4: C 
Uniform Applications Program Interface Graphical User, Rev. 3, DS01719 (Windowing 
Toolkit API)  

Relevant portions of POSIX. 1 deal with terminal identification and device/class specific APIs. 

POSLX.4a specifies reentrant functions for generating a terminal path name and determining 
terminal device names. Character and string based keyboard and display I/O functions defined in 

the C language (e.g., getchar(), printf(), etc.) are also applicable. 

The POSIX shell utilities (POSLX.2x) are that part of the specification that deals with what is 
commonly referred to on most systems as the command line interpreter (CLI). It is the CLI that 
people identify with most when referring to a particular type of computer system and the 

expected behavior of that system from a user's perspective. The well-known "C, colon, 
backslash" (C:\) syntax is the CLI of the popular MS-DOS operating system found on many 
IBM PC compatible, Intel-based platforms. The POSIX shell is modeled after the user interface 

commonly found on many UNLX-based platforms. 

A number of API open standards exist for graphics. The PHIGS and GKS international standards 

define 2-D and 3-D graphic programming interfaces. PHIGS is also the interface supported by 
the Massachusetts Institute of Technology (MIT) X Consortium for using the PEX 3-D graphics 

extension. It is interesting to note that the X Consortium is currently in the process of spinning 
out of MIT into a nonprofit, more market-driven organization. OpenLook, the chief graphical 
user interface (GUI) rival of Motif, is absent from the list due to the recent agreement by leading 

parties in the UNLX market to settle on the OSF/Motif interface for the Common Open Software 

Environment (COSE). 
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Other API strategies include X/Open's favorable intention to adopt the Public Windows 
Interface (PWI) in a future release of the Portability Guide (XPG). The PWI, developed by 
several COSE sponsors, is a specification of the proprietary Microsoft Windows interface. The 

plan is to pass the specification off to a vendor-neutral standards body (most likely X/Open) so 

that Windows-based technologies would no longer have to pay royalties to Microsoft. This is 

' important for SunSelect's new "Wabi" interface product, which allows users to run Windows 3.1 

applications on reduced instruction set computer (RISC) workstations running UNIX and X 
Windows. Should the PWI document survive the potential mitigation and become public 

domain, future revisions of this specification may include this standard as part of its OSE 

specification. 

Also in this area is a current IEEE effort to standardize on a windowing toolkit API. This 

standard, IEEE 1201.1, is currently in draft form. It is premature to assess the resulting product 

support but it appears to carry enough momentum to qualify its candidacy in the NGC SOS AS. 

Figure 3.3.2.1.3 illustrates some of the possibilities for implementing Presentation Management 

services at varying levels of capability and windowing support. Several different combinations 

of COTS products and/or middleware developed solutions are implied. As described through 

profiles, not all levels need be supported by any one specific implementation. This subject is 

expanded in the profile section. 

The API standards identified provide for portable operator interface component source code. In 

addition, they also address issues related with user portability; that is, they provide a foundation 

for one of the major NGC benefits, common look-and-feel. Although the standards pave a 

direction, they are not, in themselves, the complete solution. 

A display style guide to be followed in the development of a NGC operator interface component, 

and the user interface capability to customize and tailor the interface, are also essential 

ingredients. This allows one shop floor, for example, to tailor all their NGC controllers to suit 

their specific needs, yet also support a common user interface to minimize training and 

maintenance throughout their shop. 
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Figure 3.3.2.1.3 Presentation Management Services—API Levels and Implementation 
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3.3.2.1.4 Data Management Services (DM API) 

OSE 

Platform  Pres. Mgmt Geom. Model Comm.    Device I/O   Lang.     Data API      Device l/F    Backplane 
Exchange    Overlap Bus 

Categories 

Data Management services refer to the file management capabilities of the system. The 

commercial products available for data management today cover a broad spectrum from 

independent proprietary protocol implementations on a single host environment to open, 

transparent file access solutions for multi-processor configurations. The latter provides the most 

portability advantage for NGC applications. 

From the perspective of the NGC as a system, Data Management services are concerned with both 

external as well as internal system file support. External file support may simply involve the use of a 

utility such as file transfer protocol (FTP) across a local area network (LAN) or Internet to a remote 

host file system or network. In terms of an ISO/OSI open system alternative, it may involve the use of 

file, transfer, access, and manipulation (FTAM) for remote file access. Both approaches are closely 

tied to the NGC communications services as well as Data Management services, and both are 

supported through NGC profiles. Internal to the NGC, Data Management services may also provide 

data storage access across loosely and tightly coupled multi-processor controller implementations as 

well as simple file access within a single processor environment. 

The choice of a data management implementation is based on the intended application of the 

specific controller product line. It is conceivable that some low-cost NGC families may not 

feature a cell-level interface for external file support. The channel to the outside world for these 

controllers could be a simple serial interface for RS-274 input. In contrast, high-ended NGC 

controllers may not only support remote host file access across a shop floor network, but also 

support "lights-out" operation for a 24-hour period. This, of course, is the vision of the future. 

Transparent remote data access (RDA), such as that provided from Sun's Network File System 

(NFS) product is the current trend and a key focus within open systems communities. In the 

UNK environment, NFS makes remote file systems look the same as local ones. OSF's 
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Distributed Computing Environment (DCE) takes this a step further with the Distributed File 

Service (DFS) by providing all users a single view of all files (both UNLX and non-UNLX based) 

within an organization. Transparency deals with making the file resource more visible than the 

computer host system that supplies the resource. 

• Table 3.3.2.1.4 lists the standards most relevant to Data Management services. Relevant portions of 

the POSLX.l standard include files and directory services, system database access services, and 

services defined for file descriptor manipulation and control operations on files. POSIX.4 covers file 

truncation, synchronization, and real-time files. POSLX.4a identifies reentrant functions for 

group/user database access, file lock/unlock synchronization, and thread-specific data key/data 

management. Standard C defines file input/output functions, e.g. fread(), fwriteO, fseek(), etc. 

Table 3.3.2.1.4 Data Management Services—Relevant Open Standards 

ISO/IEC 9945-1:1990 Portable Operating System for Computer Environments (same as ISO/IEC 9945-1:1990) 
IEEE 1003.4 D13 POSIX-Part 1: Real Time & Related System API 
IEEE 1003.4a D6 Standards for Threads Interface to POSIX 
IEEE 1003.8 D6 POSIX-Part 1: Network-Transparent File Access 
ISO/EC 9899:1990 Programming Language - C 
X/Open S203 Data Management: SOL Call Level Interface (CLI) 
IEEE 1238.1 File Transfer Access & Management Applications Interface (Rev 2). DS02345 
X/Open P206 FTAM High-level API (XFTAM) 

The most interesting standard in the list is POSLX.8, Transparent File Access (TFA). TFA 

refines the file system services specified in POSLX.l. It defines full TFA and core TFA in a 

manner similar to the general NGC profiling approach. Full TFA provides all the file services 

defined in POSLX.l. Core TFA defines a minimum set so that TFA may be used with other non- 

POSLX file systems. Functional extensions to the core services are also defined for the flexibility 

of adding capability on an individual file basis. POSLX.8, Annex F includes informative profiles 

for several different file systems (e.g., Sun NFS, FTAM and PC/DOS, etc.). 

Note the Structured Query Language (SQL) international standard is not referenced in the table, 

although it is quite relevant to data management. Many popular database management systems 

today (e.g., Oracle, Sybase, Ingress, Informix, etc.) support the SQL client/server protocol. It 

should be clear that the standards listed in the table focus on portability and relevant API. SQL is 

a protocol standard and, by definition, addresses interoperability concerns. Consequently, this 

standard falls under the external environment interface (EEI) branch of the Open Systems 

Environment (OSE) taxonomy and is discussed there. 
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Of lesser importance, X/Open's SQL call-level interface standard is included for completeness to 

allow portability of controller applications that have built-in remote file management using SQL. 

This may be an alternative to using a COTS proprietary data base API but may require a 

middleware bridge between the NGC applications and the leveraged commercial data base 

product. The other OSI/FTAM API standards are included for analogous reasons. 

September 23,1994 50 SOSAS Rev. 3.0 



3.3.2.1.5 Geometrie Modeling Services (GM API) 

OSE 

Platform   Pres. Mgmt.   Data Mgmt Comm.    Device I/O   Lang.    Data API      Device l/F   Backplane 
Exchange     Overlap Bus 

Categories 

Geometric Modeling services define a standard programming interface to product modeling 

systems for extracting and operating on product definition data (PDD). The Geometric Modeling 

services category is unique in that it tends to be more application specific than the other API 
categories. However, the existence of open standards work in geometric modeling justifies its 
place as an API category. Since this specification is an anticipatory standard, it is hoped that 
other application-specific API categories will emerge in areas such as motion control, 

programmable logic control, etc. 

Table 3.3.2.1.5 shows the only relevant open standard in the area of geometric modeling, the 
Consortium for Advanced Manufacturing International (CAM-I) Application Interface 

Specification (AIS). CAM-I is committed to maintaining compatibility with the PDES/STEP 

standards. The significance of the AIS is that it goes beyond data exchange by supporting 

operations on product data definition. 

Table 3.3.2.1.5 Geometric Modeling Services—Relevant Open Standards 

CAM-I AIS 2.0 Draft Standard 
Vol II   

CAM-I Application Interface Specification (AIS) Revised 1991 Document Number 
R-90-PM-O3 A1S 2.0 C Language Binding  

The PDES/STEP product data exchange standards have an important future relevance to NGC 

and there will probably be a wealth of new products entering the market based on these 

standards as they continue to mature. They may be the key to the NGC art-to-part factory of the 
future by providing an industry standard that completely describes all part characteristics. As 
data standards, their NGC role is one of ensuring system and applications level interoperability 

and fall under the EEI branch of the NGC taxonomy. 
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3.3.2.1.6 Communications Services (Comm API) 

OSE 

Platform   Pres. Mgmt.   Data Mgmt.    Geom. 
Model. 

Device I/O   Lang.     Data API      Device l/F    Backplane 
Exchange    Overlap Bus 

Categories 

Communications services API are perhaps the most important set of services of the NGC OSE. 

Communications API not only provides for portability of source code that interfaces the NGC to 

other external systems (e.g., networks), but also defines the set of callable interfaces that support 

peer-to-peer communications between the internal NGC component agents. 

The transparency of the communications system, that is, the ability of the communications 

system to make resources more visible than the computer host that supplies the resource, is a key 

focus of the NGC. The Data Management services discuss the notion of transparency in the 

context of remote data access. The objective for file transparency is to make remote file systems 

resident on heterogeneous hosts look the same as local ones. Architecturally, the inherent 

transparency of a distributed file system is often a function of its underlying distributed 

communications system and directory services. 

Table 3.3.2.1.6 lists the open standards most relevant to communications. Inter-process 

communications is achieved at various levels. One implementation may use a pipe to create an 

inter-process channel and the general read(), write() functions defined in POSDC.l. Other 

implementations may rely on POSLX.4 message queue functions and the corresponding blocking 

timeout services specified in POSLX.4b. 

POSLX.12, protocol independent interface (PLT), is perhaps the most important open standard of the 

list It defines two networking interfaces for protocol-independent, process-to-process 

communication: the simple networking interface (SNI) and the detailed network interface (DNI). SNI 

is a simple applications interface that provides for co-operating process intercommunication without 

requiring details about underlying protocols. DNI offers protocol-independent mechanisms for 

manipulating protocol specific features of the underlying network. DNI will be specified with C 

language bindings for Berkeley Software Distributions (BSD) sockets and X/Open XTI. Both 
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connection-oriented, byte- or record-stream virtual circuits and connectionless channel datagrams are 

supported. Relevant OSI APIs are also referenced for completeness. 

Table 3.3.2.1.6 Communications Services—Relevant Open Standards 

ISO/IEC 9945-1:1990 
IEEE 1003.4 D13 
IEEE 1003.4b D4 
IEEE 1003.12 Dl.2 
IEEE 1003.17 D4 
IEEE 1003.21 D 
ISO/IEC 9899:1990 
IEEE 1238.0 

IEEE 1224 
IEEE 1224.1 
IEEE 1224.2 
X/Open T003 
X/Open P203 
X/Open C196 
X/Open P210 

OSFDCE 1.0.2 

Portable Operating System for Computer Environments (same as ISO/IEC 9945-1:1990)  
POSIX-Part 1: Real Time & Related System API 
Feb 92 POSIX-Part 1: Real Time System API Extensions 
POSIX - Protocol Independent Interface 
POSIX Directory Service API 
POSIX Real-Time Communications 
Programming Language - C 
Draft Common OSI Connection Management (Rev 4), DS01339 (API to Common OSI 
Connection Management and Support Functions Project) 
OSI Applications Programmer Interface. Jan 93 (Rev 8) PS 01123 
X.400 Electronic Messaging API (Rev 6) DS01362 
Directory Services Applications Programmer Interface (Rev 5) DS02428 
X.400 (APIsand EDI Messaging) Vols. 1-6 
ASCE/Presentation Services API 
X/Open Transport Interface (XTI) 
The Common Object Request Broker Architecture and Specification - X/Open in conjunction 
with Object Management Group (OMG) 
Open Software Foundation Distributed Computing Environment Version 1.0.2 

Directory Services (POSIX. 17) is the transparency glue for resolving the physical location of 

objects, given globally defined logical names. This standard was mainly intended as an 

International Consultative Committee on Telegraphy and Telephony (CCITT) X.500 API but 

may also be used to access directory systems in existing practice. It offers one open system 

approach to NGC for network communications and physical node transparency. 

A Directory services component is also defined for NGC to provide a level of communications 

transparency for peer-to-peer communications between agents, the processes and threads, within 

a NGC. This component hides the communications details (sockets, process ids, message queue 

descriptors, etc.) for single processor, multiple process environments. It also hides node id 

details for distributed, multi-processor NGC implementations. 

Like a telephone book, the Directory services component is responsible for managing all the 

address information to globally named system entities. Every NGC component implementation 

must have at least one agent for sending and receiving messages. Each communications agent 

globally registers to the system symbolically, by its agent and corresponding component name 

set. Node residency and all other required information to communicate between agents may be 

obtained dynamically, during system operation, through the Directory services. 
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Several existing products attempt to provide a simple and efficient communications interface in 

a loosely and tightly coupled multi-processor environment. Most of these products fall short in 

hiding node details or the underlying communications mechanisms. 

For example, the Ohio State Trollius is an open architecture operating system for a concurrent 

-message passing machine and attached UNIX machines. This product, although it is quite 

powerful by today's standards, defines APIs that are network dependent. In addition, nodes are 

not transparent at an applications programming level, and node ids as well as event 

synchronization information must be supplied as arguments to the communications API service 

calls. Figure 3.3.2.1.6-1 illustrates the Trollius distributed memory multiple instruction, multiple 

data (MIMD) architecture and the dependency of the Trollius communications API on the four 

lower layers of the ISO/OSI model: physical, datalink, network, and transport layers. 

Oirtskto Tha Box Node : 
- GP Computers 
- Multi-user ™"  ** 
• Shared links 
- Ctrl Peripherals 
- Trollius- Applic. 

run on GP OS 

-cxt^-#- 
OTB 

Note: Multiple OTBs req. multitasking OS (UNIX) 

Inside The Box Node: 
- Single-user, dedi- 

•+•  cated computers 
- Single-user links 
- Parallel comp probs. 
- Few peripherals 
- Run Trollius natively 

Trollius APIs 

tsendO - send transport message 
trecvQ - receive transport message 
nsendO - send network message 
nrecvQ - receive network message 

dsendO - send datalink message 
drecvQ - receive datalink message 

psendO - send physical message 
precvQ - receive physical message 
ksendO - send kernel message (node local) 
krecvQ - receive kernel message (node local) 

NGC Standard APIs 

sendO - standard wrapper 
recvQ - receive stand, wrapper 

Network Details Hidden 

Figure 3.3.2.1.6-1 Communications Services—Trollius Example APIs Network Dependent 

An applications-level API for NGC must shield the programmer from these networking details, 
yet allow the programmer to selectively configure the implementation of the lower layers. This 

can be achieved with programming options during the link process of the application, so the 

desired communications implementation levels are built-in with the selection of the required 

software component libraries. 
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As Figure 3.3.2.1.6-1 illustrates, higher level send() and recv() API services would make 
network details transparent to the applications programmer, yet he may still have the option 
during the applications build process to select the level of protocol required to meet his specific 

performance needs. Link options to a variety of object libraries during applications build could 

facilitate such a flexible mechanism. 

Two competing paradigms for communications are message passing and remote procedure calls 
(RPCs). Two consortiums, Open Software Foundation (OSF) and Object Management Group 
(OMG) are developing "middleware" in support of these different communications strategies. 

OSF's Distributed Computing Environment (DCE) implements RPCs. OMG's Common Object 
Request Broker Architecture (CORBA) standardizes distributed object-oriented computing using 

message passing, which may also use RPC mechanisms as its underlying implementation. 

From an architectural perspective, the interrelationship between POSIX, DCE, and CORBA is 

somewhat hierarchical. This hierarchy is illustrated in Figure 3.3.2.1.6-2. This view is quite a 
simplified view of the relationships of the standards. The whole story is, in fact, quite 

complicated but the hierarchical view helps to understand some of the NGC communications 

options and the levels of transparency that are available or missing when a particular option is 

selected. Although CORBA and DCE both provide mechanisms for remote procedure calls 
(RPCs), CORBA is shown at the highest level of the hierarchy because it is also an object- 

oriented standard. DCE is function-oriented but there is nothing to preclude "wrapping" DCE 

functionality into an object-oriented implementation. 

DCE has evolved through the integration and standardization of a number of vendor products, 
many of which were once separate stand-alone or bundled products. Although it is incorrect to 

make the claim that all of DCE is built around POSDC, there are portions of DCE that are truly 
based on POSDC. the DCE "threads" and the concept of "lightweight processes" to improve 

application performance through parallelism are based on POSDC threads. However, some DCE 
services are not layered on POSDC and potentially need not be supported by commercially 

available OS products, as the architectural hierarchy diagram also graphically depicts. 

Within the set of POSDC standards there is also an implicit hierarchy of interrelated standards. 

The POSDC hierarchy shown in Figure 3.3.2.1.6-2 is somewhat arbitrary in that it is not the only 
hierarchy possible. Some of these standards are still in draft form. The resulting products will 

establish the true interrelationships when these standards mature. 
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Figure 3.3.2.1.6-2 Communications Standards Architectural Hierarchy 

POSIX.8 is the POSIX standard for transparent file access (TFA). This standard, referenced in 

the DM services section and earlier in this section by inference in the discussion of remote file 

access, is shown at the top of the POSIX hierarchy. The rationale for its placement at the top is 

due to its inherent dependence on the underlying network and communications mechanisms for 

its implementation. 

Potential communications mechanisms appear as the POSIX. 12 SNI (Simple Network Interface) 
and POSIX. 12 DNI (Detailed Network Interface). Both of these standards are specified in the 
POSDC.12 PII (Protocol Independent Interface) document and were briefly described earlier in 
this section. POSDC.12 SNI appears at a higher level than POSDC.12 DNI to illustrate that an 
"implementation" of a simple network interface may involve access to detailed network services. 

The distributed services, illustrated as POSDC.17 DS in the hierarchy diagram, are accessed by 

both POSDC.12 SNI and DNI. In addition, IEEE 1238.0, the Open Network Interface (ONI) 

makes use of these same distributed services. The POSDC standards include not only those 

standards designated by IEEE 1003.x, but also a number of other standards such as the 1238 
ONI standard. The IEEE 1238 standard defines API at an applications level to the ISO/OSI 

protocol stacks. As illustrated in the hierarchy, the 1238 services may be used to support 

network or file access functions required of the higher level POSDC standards. 
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To complete the POSIX hierarchy, POSIX. 1 and POSIX.4 may provide all the service support 
required of the other POSIX standards at a local host level. Local communications services may 

range from pipes and signals to real-time semaphores, shared memory, mapped files, or message 

queues. 

- The POSIX. 12 SNI standard is highlighted (shadowed) in the hierarchy diagram because of its 
importance in specifying two communications API: sni_send() and sni_recv(). These two APIs 

approach a level of simplicity and communications transparency previously described as a 

necessary NGC feature yet is not available in many real-time communications products today. 

At an applications program level, these simple API may be used. The decision to use POSIX.4 
shared memory or message queues for communications need not be made during applications 
development, but instead could be made during the applications build by selection from specific 

object libraries. 

Another major point of distinction between the POSEX communications standards and the CORBA 

and DCE standards is that the POSIX standards deal with communications at the level of inter- 
process communications (IPCs). Both CORBA and DCE provide mechanisms for remote procedure 

calls (RPCs) which may be viewed to be at a higher level of abstraction than IPCs. 

Figure 3.3.2.1.6-3 illustrates the development mechanisms for implementing CORBA or DCE 
RPCs. Within both the CORBA and DCE standards, an interface definition language (IDL) is 

specified. The applications developer defines his interfaces using IDL and then "translates" these 

interface definitions using an IDL compiler. The compiler generates header files to be included 

within the applications source code as well as client stubs and server skeletons which are 

"linked" into the executable client and server applications programs during the build process. 

Both standards, CORBA and DCE, are currently viewed as most applicable at the external 
interface or workstation level of NGC communications, although there is nothing to prevent 
their use for peer-to-peer communications internal to NGC. The only restriction for their use in 

real-time applications is the current lack of real-time CORBA and DCE COTS products. 
Today's CORBA and DCE products are transaction-based and are oriented toward workstation 
level business applications. OMG's CORBA may provide the foundation for one implementation 

of an NGC external communications profile as well as perhaps OSFs DCE RPCs or even the 

TCP/IP capability of the underlying operating system. A real-time CORBA product, if one 
existed today, could have a tremendous impact on the approach to inter-process peer-to-peer 

communications within an NGC. 
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Figure 33.2.1.6-3 CORBA-DCEIDL & RPCs 

The mechanism for message passing in NGC is Communications services. As mentioned in 

Section 3.3.2.1 (general API section) it is left up to the discretion of the NGC application 

designer as to whether or not he may wish to implement object-oriented wrappers around 

function-oriented calls to access API services using a message passing paradigm. Through the 

use of Communications services, NGC components may be implemented that embody the 

container object concepts defined for OMG's CORBA. 

In summary, a set of communications standards and profiles are defined to enable the selection 

of a communications strategy most suitable for the specific application and real-time 

requirements of the NGC. As with all other API services, the Communications API focuses on 

NGC applications source code portability and does not necessarily define how the underlying 

services are to be implemented. 

September 23,1994 58 SOSAS Rev. 3.0 



3.3.2.1.7 Device Input/Output Services (Device I/O API) 

OSE 

Platform   Pres. Mgmt.   DataMgmt.    Geom.    Comm. 
Model. 

Lang.     Data API      Device l/F   Backplane 
Exchange     Overlap Bus 

Categories 

The Device I/O services are the peripheral management functions of the system. These services 

perform the logical-to-physical and physical-to-logical mappings between the device requests 

and the corresponding electrical signals to the device. The devices supported cover a broad 

spectrum from dedicated operator control panel buttons, handwheels and switches, to specialized 
sensor and actuator drive signals for motion control and tool change. Other devices may include 
communications devices, auxiliary storage devices, analog-to-digital (A/D) and digital-to-analog 

(D/A) converters, Centronics parallel interfaces, etc. 

Table 3.3.2.1.7 identifies relevant device I/O open API standards. POSLX.l covers general I/O 
primitives. These general open(), read(), write(), and close() primitives apply not only to files 
but also to devices. POSLX treats all I/O devices in the same general manner. File descriptors are 

general-purpose descriptors used for all device management. POSLX.4 defines asynchronous I/O 
primitives, e.g., aio_read(), aio_write(). Memory mapping functions may provide the required 

interface to memory mapped I/O devices. POSDC.4b specifies how to associate a user-written 

interrupt service routine (ISR) with an interrupt and also defines a control device function, 

devctlO, for a more direct path to the device driver. 

Table 3.3.2.1.7. Device I/O Services—Relevant Open Standards 

ISO/1EC 9945-1:1990 

IEEE 1003.4 D13 
IEEE 1003.4b D4 
1SO/IEC 9899:1990 

Portable Operating System for Computer Environments (same as ISO/ IEC 9945- 
1:1990)  
POSIX-Part 1: Real Time & Related System API 
Feb 92 POSIX-Pan 1: Real Time System API Extensions 
Programming Language - C 

In 1991, The Real Time Consortium had been working on the Open Basic Input Output System 
(OBIOS) standard. The standardization effort, representing a collaborative effort of several key 
hardware and system software vendors in the real-time and embedded systems marketplace, was 
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focused on developing a call interface and associated client/device interaction model that 

provides a common abstract interface for a wide range of I/O devices. 

The OBIOS is an ideal candidate for inclusion in the NGC SOSAS. Unfortunately, the 

consortium dissolved while the standard was still in the draft stage. This was the only standard 

• of its kind and identifies a standard gap in the NGC OSE. It may be of little value to include the 

contents from the OBIOS draft specification in the SOSAS since it appears at present to have 

little market interest. It is listed as a placeholder in the EEI section. 
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3.3.2.2 External Environment Interface (EEI) 

The EEI includes API categories where interoperability issues are concerned and includes the 

following additional categories: language, data exchange, device interface, and backplane bus. 

In each category a set of relevant open standards are identified to facilitate both system-level 

interoperability and the interoperability of component-level implementations (applications 

software) as well. 

Interoperability considerations include networking protocols, data interchange formats, 

distributed file systems, legacy support, and device interface. Each EEI category is concerned 

with addressing one or more of these considerations. The following summarizes the NGC 

approach to interoperability. 

Networking protocols are defined in open standards such as DEEE 802.3 CSMA/CD, 802.4 
token-passing bus, 802.5 token-passing ring, etc. These standards are supported by NGC profile 

implementations using de facto standards and products such as Ethernet and ARCNET, as well 
as the commonly used TCP/IP internet protocol found on many UNIX-based operating systems. 

Standard data interchange formats tackle the problem of handling heterogeneous data, such as 

differences in byte ordering, data formats, or the padding of data items in heterogeneous host 

environments. The IEEE floating-point standard and OSFs DCE marshaling capability are 

examples in this area. Standard product data formats such as PDES/STEP are also key. 

Distributed file systems support file exchange or shared file access in distributed environments 
requiring such access. Applications range from transferring files across a cell-level interface to 
the transfer of legacy IGES or RS274 files across a CAD/CAM network or RS-232 interface. 

In the area of device interface, there is a wealth of de facto and de jure standards that deal with 

device interoperability. 

Tables 3.3.2.2-1 through 3.3.2.2-5 list the EEI standards by category. The list of standards for 
EEI can be quite large, especially in the area of ISO/OSI standards which are not enumerated 

here for that reason. However, it must be remembered that subsets of these standards are selected 
through NGC profiling and that most of these standards are already accommodated with the use 

of commercial products. 
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There are some obvious overlaps of certain API standards within the EEI domain. For example, X 

Windows standards not only specify the X library and Xt intrinsics APIs, but also define an X 

protocol for client-server interoperability between the client application and an X terminal. Therefore, 

the X Windows standard also appears under the EEI branch of the taxonomy. In the area of data 

management, SQL is another protocol standard that has a corresponding API standard. 

Even within the EEI categories there are functional overlaps. No matter what view is taken, 

there will probably be the potential for overlap. CAN bus, for example, may be classified as 

having fieldbus characteristics, yet may also be used as a remote keyboard interface. The 

primary focus for the NGC is on relevant standards for profiling. The NGC taxonomy organizes 

standards to facilitate the profiling process. A statement need only be supplied for use of a 

standard outside of its originally intended scope. 

Figures 3.3.2.2-1 and 3.3.2.2-3 correlate some of the EEI standards into a more physical view of 

the NGC system context. At the highest level, the NGC has only three major physical interface 
types: a human-user interface, a cell or CAD/CAM interface, and a plethora of device interfaces. 

Relative to these physical interfaces, a number of standards are mapped that define protocols 

and/or data formats. Data format standards are grouped under the process heading in the 

diagram. These data standards could apply to all major physical interfaces. 

e.g.. 
• potentiometers, resorvers, 

encoders, interferometers, 
inductosyns 

• tachometers 
• acceierometers 
• limit switches 
• valves & solenoids 
• thermocouples 
• 3-phase AC motors 
• DC brush/brushless 

servo drives 
• pendant 
• jog, teedhoid. pause, & 

e-stop buttons 
• jog handwheels 
• mode select switches 
• prog, function keys 

Network/Comm. 
Protocol 

e.g.. 
• display, keyboard. 

mouse, trackball, 
Joystick 

• Legacy CAD/CAM systems 
• Statistical Process Control 

(SPC) systems 
• Manufacturing Resource 

Planning (MRP) systems 
• Distributed file systems 

Figure 3.3.2.2-1. NGC EEI System Context—Physical View 
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Figure 3.3.2.2-2. NGC EEI Interoperability Standards—Physical Mapping 
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OSE 

Platform   Pres. Mgmt   Data Mgmt    Geom. 
Model. 

Comm.  Device I/O Lang.      Data 
Exchange 

Device l/F  Backplane 
Bus > 

Table 3.3.2.2-1. EEI Relevant Open Standards—Overlapping API Categories 

Presentation Mgmt EEI 
MIT X Windows (XI1R5) 
MIT X Windows PEX extension 
OSF/Motif 1.2  . 
IEEE 1201.1 

ANSI X3.124-1985 (R1991) 

FIPSPUB120-1 
ISO 7942:1985 

ISO 8805:1988 

ANSI/ISO 9592.1-1989 

FIPSPUB 153 
ISO/EC 9592-1:1989 

Data Management EEI 
IEEE 1003.8 D6 
ISO 8907:1987 
ANSI X3.133-1986 
FIPSPUB 126 
ISO/IEC 9075:1992 
ISO/EC 9579-1 

ANSIX3.135-1989 
ANSI X3.168-1989 
FIPSPUB 127-1 
X/OpenC201 
X/Open P205 
X/OpenJ301 
Geometric Modeling EEI 
CAM-I AIS 2.0 Draft Standard 
Voll  

MIT X Window System Version 11. Release 5 
MIT X Window System PHIGS Extension 
Open Software Foundation - Motif 
Uniform Applications Program Interface Graphical User, Rev. 3, DS01719 
(Windowing Toolkit API) 
Graphical Kernel System (GKS) Functional Description (includes ANSI X3.124.1- 

1985) 
Graphical Kernel System (GKS) 91 Jan 08   
Information Processing Systems - Computer Graphics - Graphical Kernel System 
(GKS) functional description 
Information Processing Systems - Computer Graphics - Graphical Kernel System for 
Three Dimensions (GKS-3D) functional description 
Information Processing Systems - Computer Graphics - Programmer's Hierarchical 
Interactive Graphics System (PHIGS) - Part 1: Functional Description  
Programmer's Hierarchical Interactive Graphics System 88 Oct 14 
Information Processing Systems - Computer Graphics - Programmer's Hierarchical 
Interactive Graphics System (PHIGS) - Part 1: Functional Description  

POSIX-Part 1: Network-Transparent File Access 
Information Processing Systems - Database Languages - NDL 
Database Language - NDL 
Database Language NDL 87 Mar 10 
Information Technology - Database Languages - SQL 
Information Technology - Database Languages - Remote Data Access - Part 1: 
Generic Model. Service and Protocol .  
Information Systems - Database Language ■ SQL with Integrity Enhancement 
Information Systems - Database Language - Embedded SQL 
Database Language SQL 
Structured Query Language (SQL) 
SQL Remote Database Access 
RDA Mapping for TCP/IP 

CAM-I Application Interface Specification (AIS) Revised 1991 Document Number 
R-90-PM-03 AIS 2.0 Functional Specification  
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Table 33.2.2-1 (Continued) 

V 

Communications EEI 
IEEE 1003.12 Dl. 2 
IEEE 1003.17 D4 
ISO 7498:1984 
X/Open T904 
X/OpenG212 
X/OpenP210 

OSFDCE 1.0.2 
X/Open C210 
ANSI/EIA 511-1989 
ISO/IEC 9506-1:1990 

ISO/IEC 9506-2:1990 

ISO/EC 9506-4:1992 

ISO/IEC 9506-5:1990 (IEC 65A/ 
65B(Secretariat)l 11/138 Sept. '90) 
IECDIS 1131-5 (IEC 1131-5 PC 
Comm. Draft 1/15/93)  

POSIX - Protocol Independent Interface 
POSIX Directory Service API 
Information Processing Systems - Open Systems Interconnect - Basic Ref. Model 
X/Open Portability Guide 4 (C202, C203, C204, G204) 
X/Open Distributed Computing Services (XDCS) Framework 
The Common Object Request Broker: Architecture and Specification - X/Open in 
conjunction with Object Management Group (OMG) 
Open Software Foundation Distributed Computing Environment Version 1.0.2 
Protocols for X/Open Interworking: XNFS, Issue 4 
Manufacturing Message Specification - Service Definition and Protocol 
Industrial automation systems - Manufacturing Message Specification - Part 1: 
Service Definition 
Industrial automation systems - Manufacturing Message Specification - Part 2: 
Protocol Specification 
Industrial automation systems - Manufacturing Message Specification - Part 4: 
Companion Standard for Numerical Control 
Industrial automation systems - Manufacturing Message Specification - Part 5: 
Companion Standard for Programmable Controllers 
Programmable Controllers - Part 5: PC Communications 
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OSE 

Platform   Pres. Mgmt. Geom 
Model 

Data API      Device l/F 
Exchange   Overlap 

Categories 

Backplane 
Bus 

Table 3.3.2.2-2. Language EEI—Relevant Open Standards 

ISO/IEC 9899:1990 
FIPSPUB160 
ANSIX3.37-1987 
ANSI/EIA494-B-1992 
ANSI/EIA 274-D-1980 (1988) 

ANSI/EIA 267-C-1990 
ISO 841:1974 
EC 1131-3 (1993) 
ISO 3592:1978 

ISO 4342:1985 

ISO 4343:1978 

ISO 6983-1:1982 

Programming Languages C 
C91Marl3 
Programming Language APT 
32-Bit Binary (BCL) and 7-Bit ASCII (ACL) Input Format for NCM 
Interchangeable Variable Block Data Format for Positioning, Contouring, and 
Contouring/Positioning Numerically Controlled Machines 
Axis and Motion Nomenclature for Numerically Controlled Machines 
Numerical control of machines - Axis and motion nomenclature  
Programmable controllers - Part 3: Programming languages 
Numerical control of machines 
words)  

• NC processor output - Logical structure (and major 

Numerical control of machines - NC processor input - Basic part program reference 
language  
Numerical control of machines - NC processor output 
records (post-processor commands) 

■ Minor elements of 2000-type 

Numerical control of machines - Program format and definition of address words ■ 
Part 1: Data format for positioning, line motion and contouring control systems 
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OSE 

Platform   Pros. Mgmt.   Data Mgmt Geom. 
Model. 

Comm.  Device I/O    Lang. API 
Overlap 

Categories 

Device l/F Backplane 
Bus 

Table 3.3.2.2-3. Data Exchange EEI—Relevant Open Standards 

IGES5.1 Initial Graphics Exchange Specification 5.1. October 1991 (US PRO P15.1) 
ANSI/ASME Y14.26M-1989 Digital Representation for Communication of Product Definition Data (IGES 4.0) 
FIPSPUB177 Initial Graphics Exchange Specification (IGES) 92 November 30 
ISO 10303 Initial Release Standard for the Exchange of Product Model Data (STEP) - Product Data 

Representation and Exchange (US PRO P10303.IR - incl. parts 1,11, 21, 31,41 - 44, 
46, 101. 201, and 203) 

ANSI X3.4-1986 (R1992) Coded Character Set - 7-Bit American National Standard Code for Information 
Interchange (ASCII) 

ANSIX3.41-1990 Code Extension Techniques for Use with the 7-byte Coded Character Set of ASCII 
ANSI X3.42-1990 Representation of Numeric Values in Character Strings for Information Interchange 
ANSIX3.64-1979(R1990) Additional Controls for Use with the ASCII 
FIPSPUB1-2 Code for Information Interchange, its Reps.. Subsets, and Extensions 84 Nov 14 
FIPSPUB86 Additional Controls for Use with the ASCII 81 Jan 29 
ISO/IEC 646:1991 ISO 7-bit coded character set for information interchange 
ISO 2022:1986 Information processing - ISO 7-bit and 8-bit coded character sets - Coded extension 

techniques 
ISO 6093:1985 Information processing - Representation of numerical values in character strings for 

information interchange 
ISO/EC 6429:1992 Information technology - Control functions for coded character sets 
ANSl/EIA 227-A-1978 (1988) One-inch Perforated Tape 
ANSI/E1A 358-B-1980 (R1990) Subset of ASCII for Numerical Machine Control Perforated Tape 
FIPSPUB2-1 Perforated Tape Code for Information Interchange 84 Nov 14 
FIPSPUB26 One-inch Perforated Paper Tape for Information Interchange 73 June 30 
ANSI/ISO 8632-1990 Information Processing Systems - Computer Graphics - Metafile for the Storage and 

Transfer of Picture Description Information (rev. & redesig. of X3.122-1986) 
FIPSPUB128-1 Computer Graphic Metafile. 93 Mav 11 
ISO/IEC 8632-1/2/3/4 Information Technology - Computer Graphics - Metafile for the storage and transfer 

of picture description information - Part 1: Functional Specification. Part 2: 
Character encoding. Part 3: Binarv encoding. Part 4: Clear text encoding 

ANSI/EIA-548-1988 Electronic Design Interchange Format (EDIF) 
FIPSPUB 161 Electronic Design Interchange (EDI) 91 Mar 29 
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OSE 

Platform   Pres.Mgmt   DataMgmt    Geom.    Comm.  Device I/O     Lang. Data API    f Device^ Backplane 
Model. Exchange       Overiap \      ire?     I       Bus 

Categories J 

Table 3.3.2.2-4. Device Interface EEI—Relevant Open Standards 

ANSI/EIA/TIA 232-E-1991 

EIA485 

ANSI/IEEE 488.1-1987 
ANSI/EEE 488.2-1987 
ANSIX3.183-1991 
ANSIX3.131-1986 
ISO 9316:1989 
SAEJ1583 
EC ^secretariat) 148 

ISA-S50.02-1992 

ANSI/E1A 431-1992 
EC 1131-1/2 (1992) 

EIA 441-1979 (R1992) 
ISO 4336:1981 
OBIOS 1.15 

Interface between Data Terminal Equipment and Data Circuit-Terminating 
Equipment Employing Serial Binary Data Interchange 
Standard for Electrical Characteristics of Generators and Receivers for Use in 
Balanced Digital Multipoint Systems \  
Digital Interface for Programmable Instrumentation 
ICodes, Formats. Protocols, and Common Commands 
Information Systems - High Performance Parallel Interface 
Small Computer Systems Interface (SCSI) 
Information processing systems - Small Computer System Interface (SCSI) 
Controller Area Network (CAN) An In-vehicle Serial Communications Protocol 
Serial Data Link for Real Time Communication Between Controls and Drives 
(SERCOS) 
Fieldbus Standard for Use In Industrial Controls Systems - Part 2: Physical Layer 
Specification and Service Definition 
Electrical Interface Between a Numerical Control and Machine Tools 
Programmable Controllers. Pan 1: General information. Part 2: Equipment 
requirements and tests 
Operator Interface Functions of Numerical Controls 
Numerical control of machines - Specification of interface signals 
OBIOS: Open Basic Input Output System Draft Specification - Real-Time 
Consortium  _____ 
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Platform   Pres. Mgmt   Data Mgmt. Goom. 
Model. 

Comm.   Device I/O Lang. Data 
Exchange 

API    Device l/F 
Overlap 

Categories 

Table 3.3.2.2-5. Backplane Bus EEI—Relevant Open Standards 

ANSI/IEEE 896.1-1992 

ANSI/IEEE 1296-1987 
IEC 796-1/2/3 
ANSI/IEEE 1196-1987 
ANSI/IEEE 959-1988 
ANSI/IEEE 961-1987 
ANSI/IEEE 1000-1987 
IEC 821 (1991) 
EC 822 (1988) 
IEC 823 (1990) 
ANSI/IEEE 1014-1987 
ANSI/IEEE 1096-1988 
EEEEP1496 
IEEE PI754 

Backplane Bus Specification for Multiprocessor Architectures: Futurebus+, Logical 
Layer Specification  
High performance Synchronous 32-Bit Bus: Multibus II 
Microprocessor System Bus - 8-bit and 16-bit data (MULTIBUS I) Parts 1-3: 
NuBus - A simple 32-Bit Backplane Bus 
Specification for an I/O Expansion Bus: SBX Bus 
8-bit Microcomputer Bus System (STD Bus) 
Specification for a Standard 8-Bit Backplane Interface (STE Bus) 
VMEBus - Microprocessor system bus for 1 byte to 4 byte data 
VSB - Parallel Subsystem Bus of the IEC 821 VME bus 
Microprocessor System Bus (VMSbus) - Serial Subsystem bus of the IEC 821 bus 
Versatile Backplane Bus: VMEbus 
Multiplexed High-Performance Bus Structure (VSB) 
SBus 
SPARC 
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3.3.3 Profiles 

The NGC standard supports varying levels of vendor-neutral open system conformance through 

the concept of profiles. Simply stated, a profile specifies a set of de jure and de facto standards 

that are adhered in the implementation of a specific controller. Thus, a profile characterizes a 

controller by defining its unique level of openness and functional capability. 

Profiles may include all the open standards specified in the OSE taxonomy. In addition, profiles 

tie into accepted industry practice with provisions for including "de facto" standards. De facto 

standards, especially those that are commonly used in controller products today, can not be 

ignored. These standards are not always considered "open" in the purest sense. Many de facto 

standards are proprietary and they all lack formal specification by a recognized standards body. 

However, some de facto standards have had a tremendous impact on industry. One example of 

this is the PC ISA backplane bus which not only has gained wide popularity in the personal 

computer industry but is also growing in use in industrial controls applications. 

Profiles provide a mechanism for "apples-to-apples" comparison of NGC applications software 
and platform environments to assess their relative compatibility. Through the use of profiles, the 
selection of controller software for execution on a specific platform implementation is a simple 

matter of comparing profiled capabilities. Compatible implementations may be interchanged 
since they support equivalent levels of system interoperability, component interchangeability, 

and portability. These "-abilities", facilitated through the use of profiles, enable the realization of 

the major benefits of NGC. 

It is therefore the application of profiling that facilitates a new generation of controllers. These 

NGC standards-based controllers are distinguished by their relative ease in accommodating: 

(1) new features, 

(2) scaleable and upgradeable features, 

(3) interchangeable controller components, 

(4) portability of components to different platform implementations, 

(5) adaptable interfaces to a variety of hardware devices, 

(6) flexible peer and factory-level communications and networks, 

September 23,1994 70 SOSAS Rev. 3.0 



(7) enhancements to performance, and 

(8) consistent and tailorable user interfaces. 

NGC profiles support both existing and emerging open standards. Many POSDC draft standards 

are referenced where mature standards are unavailable. As described earlier, de facto public and 

proprietary standards are also adopted where current market trends support such inclusion. Some 

NGC implementations will inevitably evolve based on profiles that specify only vendor-neutral 

open standards. It is hoped that completely vendor-neutral profiles will ultimately dominate the 

marketplace. NGC conformance implies the adoption of one or more NGC profiles in a 

controller implementation (see Section 3.5, Conformance). 

NGC relevant standards are grouped into dimensions of similar purpose or functionality, as 

defined by the Open Systems Environment (OSE) taxonomy. For example, the Backplane Bus 

hardware dimension includes Multibus I/H, VME, Futurebus+, STD Bus, and NuBus. Backplane 

Bus profiles also include proprietary standards that are widely used, e.g., Industry Standard 

Architecture (ISA) and Extended Industry Standard Architecture (EISA) bus, when popularity of 

these standards merit their inclusion as de facto standards. Selection of one or more standards 

from each of the profile dimensions constitutes a specific profile. For example, the Backplane 

Bus dimension of an implementation profile can include the selection of both the VMEBus and 

the EISA bus standards. 

Figure 3.3.3-1 illustrates the full set of NGC profile templates and their hierarchical relationship. 

The template organizational structure is strongly influenced by the OSE taxonomy with some 

subtle differences. One important difference is the introduction of de facto standards that are not 

identified in the OSE standards taxonomy. 
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Figure 3.3.3-7 7VGC Profiles—Template Structure 

Standards "levels" in the profile template structure is another departure from the OSE taxonomy 

organization. Template levels provide the obvious benefit of helping to organize and represent the 

tremendous amount of profile information on limited template space. However, this is only part of the 

rationale for specifying the POSDC profile templates at two levels of detail. Level 1 supports profiling 

of POSDC API options at a feature or API group level. This higher level satisfies the operating system 

developer's need to represent the compiler options used for a specific operating system product. 

Compiler options are essentially packaging/bundling options for tailored products that meet specific 

applications requirements and targeted hardware environments. Level 2 supports profiling of POSDC 

at an individual API level so that an applications developer may accurately reflect the service 

requirements of his controller component by reference to specific API calls. 

A complete specification of all the profile templates represented by Figure 3.3.3-1 is beyond the 

scope of this specification. Figures 3.3.3-2 through 3.3.3-9, located at the end of this section, are 

sample profile templates used in defining implementation profiles. As the template headings 

suggest, the templates are dual-use and may be used to profile either a specific NGC platform or 

a specific NGC software application component or aggregate. To define a specific profile, one 

needs only to check mark the boxes corresponding to the desired template items. 
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Selection of some items may either preclude or mandate the inclusion of other items in a profile. 
The real-time (RT) or non-RT nature of the specific platform or application profile may also 

have a potential impact on the applicability of certain template items. (Note that hard-RT 

applications are not profiled since such applications are typically embedded or built-in hardware 

and fall outside the scope of general platform and applications portability issues.) 

The profiling process described, and the impact of one profile selection on the use of another 
template, is best illustrated by example. The POSIX.13/D5 draft is a "Standardized Application 
Environment Profile-POSDC Realtime Application Support (AEP)". This draft specifies four 

POSDC RT profiles: MINimal embedded, CONtroller, DEDicated, and MULtipurpose. These 

profiles appear as selection items on the API Profile Suite template (Figure 3.3.3-2, upper right- 

hand corner). In specifying a platform profile, selection of one of these items negates the need to 
fill out the POSDC Profile Level 1 template (Figure 3.3.3-3) and the relevant POSDC Level 2 
templates (Figures 3.3.3-4 thru 3.3.3-7) since these items are already predefined by the RT AEP 

selection. However, RT POSDC custom platforms, or extensions to one of the POSIX RT AEPs, 

will require the use of all the relevant POSIX profile templates. 

The POSIX profiling example above illustrates the benefits to be gained from a user-friendly, 

interactive set of tools for profiling. Intelligent profiling tools can simplify the profiling task so 
that an NGC developer is presented with only the applicable options based on his previous 
profiling selections. These tools do not exist today. The availability of automated tools for NGC 
development and integration is considered a key enabling technology for bringing the NGC 

concept to a practical reality. 

It is interesting to note that POSIX. 13/D5 is based directly on existing small and/or RT 
(typically non-UNTX) kernel practice. Table 1-1 of the POSDC. 13 draft specification offers a 
comparison of five products (VRTX32, pSOS, C Exec, MTOS, and VxWorks) based on small 
RT kernel features. The general approach of the standard specifies POSDC interfaces sufficient to 

deliver the functionality typical of current RT systems. 

Ongoing and future SOSAS work involves the tailoring and refinement of the profile suites. 

Standard AEPs that are more encompassing than the POSDC RT AEPs, that span all OSE 
dimensions, should evolve based on market-driven factors. It is premature (and unnecessary) to 

anticipate or guess at what these standard AEPs should be. Documented profiles and the benefit 

of time will illuminate the demand for certain profiles. Additional work is also required to 
identify component profiles or NGC-relevant subsets of the base standards that are selectable 
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items in the profile suites. As with AEP definition, component profiling must also be sensitive to 

legacy and the projected product market. 

Also related, but of a lower priority, is the feasibility of specifying a government/military AEP 

based on the Federal Information Processing Standards (FIPS) procurement standards (made 

available through the National Technical Information Service). Many of the PUBS documents 

refer to open standards that are identified in the NGC OSE. Each of these documents contain a 
"Specifications" section that is essentially a component profile of the referenced base standard. 

All additions to, modifications of, and deletions to the referenced standard are specified. 

It is obvious that the POSIX standard has been leveraged to a large degree for its value-added 

standards in addition to its contribution to the fundamental philosophies of NGC and the OSE 

reference model. The adoption of POSIX. 1 implies the adoption of the C language. Less 

obvious, perhaps, is that the adoption of ANSI C implies the adoption of POSIX. 1. This 

connection to POSIX via the standard ANSI C library is often overlooked. It implies that much 

of the legacy software developed using the C language may be leveraged with little or no 

modification for POSIX compliance. POSDC-conformance is violated only if source-level API 

system calls exist within the C source code that fall outside of the POSIX specification. 

Therefore, when defining profiles for legacy C code, one should not be so quick to rule out its 

compliance to POSIX. 

The EEEE/TCOS committee is also currently developing language-independent specification 

(LIS) versions of the POSIX standards. The LIS version of POSIX. 1 is intended to replace the 
current C language-dependent version of the specification. FORTRAN and Ada language 

bindings to the POSIX. 1 standard are also at various stages of draft release. As these standards 

mature and there is evidence of supporting products, they need to be integrated into the NGC 

OSE profile strategy to fill some the present language gaps that exist with the current NGC 

platform and POSIX approach. 

Profiling offers complete flexibility in design to the developer. Many platform profiles will 

evolve by leveraging existing COTS products. It is possible to implement each profile dimension 

with a different product. Even the adherence to POSIX is optionally selectable by dimension. 

Little profiling constraints are placed on the developer other than to specify his unique profile. 
End user requirements and market demand will establish de facto standard profiles that will have 

the most impact on the next generation of controllers. 
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3.4 Development Process and Implementation 

This section describes the NGC development process and illustrates the path from an 

architecture specification to an implementation solution. It is perhaps one of the most important 

sections for guidance to the NGC controller builder. Emphasis is placed on implementation, 

where the "rubber meets the road" in terms of NGC product development. 

Up to this point, little guidance on "how to implement an NGC" is provided. The preceding 
sections describe a context, architectural framework, and supporting environment for a NGC. In 

some respect, they introduce the necessary background and terminology to better understand the 

NGC specification in preparation for development. 

The remainder of this section focuses on those implementation aspects that will evolve a next 

generation of flexible controller products, bringing specification to reality. After all, the NGC 

vision will only be realized if there is a large base of existing NGC products available. 

Open controller characteristics such as component interchangeability and system flexibility have 
fundamental significance at an implementation level. These characteristics bring the ultimate 
benefits to the end user. The ability to add new features, scale performance, and interconnect 
physical hardware and controller components are natural by-products of open controllers. It is 

the implementation approach to component development and the resulting interoperability of 

hardware and software products that enables the desired system flexibility. The NGC 

implementation approach is therefore key to bringing the controller flexibility desired by end 

users today into the capabilities of controllers tomorrow. 
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3.4.1 Integration Process 

Figure 3.4.1 illustrates the NGC integration process with focus and greater detail on the design 

and implementation phase. The term "integration" is used in the title to highlight the notion that 

if controller development begins with a mature and robust implementation component archive, it 

is possible to construct a working controller system from existing COTS products without 

having to create any new components. Early NGC development work must naturally begin by 

populating this component repository with newly developed components and interactive tools for 

its access. A plan is currently underway to establish the controlling organization for this 

repository and develop a strategy for its required maintenance. 
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Figure 3.4.1 NGC Integration Process 

The integration process diagram captures the general flow and process dependencies and is not 

necessarily a prescription for any one single approach to development. The developer may begin 
development starting from any stage in the process. For example, one organization may decide 

to follow the NGC integration process using concurrent engineering practices, assigning 
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engineering work groups to various stages of the process simultaneously. All feedback paths are 

implicit and do not appear on the diagram to avoid unnecessary complexity in illustration. 

The integration process flow consists of two main parallel paths: applications development and 

platform development. The applications development path is illustrated as the upper path in the 

process diagram. The lower path addresses platform development. Both paths compliment and 

support each other and are interrelated in ways not easily captured in the process flow diagram. 

For example, the selection of applications software is driven by the compatibility of the available 

software components and the platform selected for a specific controller implementation. Profiles 

provide the mechanism for contrasting software component implementations against selected 

platform implementations so their compatibility may be ascertained. The availability or lack of 

existing applications components for a specific platform implementation may drive the need to 

select an alternate platform implementation. Trades such as these, the "make-or-buy" choices, 

are implicit in the process flow. 

The platform implementation tends to solve more of the general-purpose computation and 

communications requirements. These requirements are referred to as "domain-independent" 

requirements. Conversely, application component implementations address more of the 

application-specific or "domain-dependent" requirements to control and manufacturing. The 

dependence of the platform on existing open standards makes available to the developer a 

variety of implementation solutions and supporting COTS products. Every NGC platform 

implementation must be profiled. With every new NGC applications software product 

developed, a corresponding profile and interface description must be supplied. 

To complete the integration story, selected and/or developed source-level software components 

are compiled and linked together with object-level component libraries to generate the 

executable controller applications for the target controller platform. Platform profiles and 

profiles supplied with applications software are used in the selection process so that only 

compatible components are selected. All hardware and executable software is then integrated 

into a fully functional NGC application system, or simply the controller. 

3.4.2 Application Framework, Architecture, and Implementation 

The architectural concept of a "framework" forms the underlying infrastructure and foundation 

of NGC. At the platform level, the NGC Open System Environment (OSE) framework embodies 

3 concepts: (1) a "reference model", which is based on and extends the POSIX model; (2) a 
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"taxonomy" of de jure standards; and (3) "profiles" of de facto and de jure standards. It defines a 
set of language-dependent, function-oriented API callable services and facilitates the 

development of object-oriented wrappers. 

In addition, at the application level, the NGC specification facilitates the generation of a variety 

of frameworks for specific application architectures, e.g., 5-axis machining center. Much of the 

information contained in this specification may be used to compose a "framework" for the 

development of an application architecture. An application framework is characterized by a 
selected set of primitive components and an implicit topology (resource-product associations). A 
framework is "composed" by selecting and specializing reference requirements with a specific 
application in mind, and by applying architecture description rules (ADRs) for primitive 
component selection and interconnection. Specification of the reference requirements, primitive 

components, and architecture description rules (ADRs) used for composing an application 

framework is contained in the appendices of this document. 

With this background, the process of creating an "application architecture" is better understood. 

This process is lightly touched upon in the upper left hand portion of the integration process 
diagram (Figure 3.4.1) and is further expanded in Figure 3.4.2. An application architecture is 

distinct from its corresponding framework in that it specifies the first major level of design 

detail. 

Starting from an application framework, architectural components are defined consisting of 
primitive components and aggregates of primitive components that compose the framework. 
Language-independent message interfaces are specified between architectural components and 
between components and the external environment. The architecture specification must also take 

into consideration design requirements for system flexibility. By design, the architecture must 
accommodate the system's ability to integrate legacy motion controller boards, add new sensors, 

or increase the number of axis of control for a specific application requirement. The architecture 

may also be the first level for considering timing requirements. The "aggregation" or grouping 

of primitive components into larger architectural components for product packaging may be 
driven in-part by commonly shared timing requirements. The application architecture is 

therefore a top-level design manifestation of an application framework that supports all the 

desired requirements for system flexibility. 
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Figure 3.4.2 From Reference Requirements to Implementation 

Figure 3.4.2 illustrates the process of developing an implementation from reference requirements, 

showing the characteristic differences between an application framework, architecture, and the final 

system Note that profiles and language issues are implementation concepts and are not architectural 

concepts. This reinforces the previous discussion that component interchangeability, facilitated 

through the use of profiles, is fundamental at the implementation level. 

Different architectures may potentially be spawned from one framework. Consistent with the 

profiling philosophy of this specification, the number of different architectures that evolve from 
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one framework and the number of specific frameworks that require standardization must be 
market-driven. The subsequent discussion on standardization and the document vision provides 
additional supportive rationale for separating the application framework from its corresponding 

architecture. 

3.4.3 Standardization and Document Vision 

Figure 3.4.3-1 depicts the NGC document vision for open controller standardization. This 

SOSAS specification, including its latest modifications, with the exception of its many 

appendices, may be viewed essentially as the "Guide to Open Controller Standards (OCS.O)". It 

introduces the standards and philosophies and provides a context and terminology for 

understanding by example the other standards documents. The adopted convention for 

designating the documents is similar to that used for the POSIX standards. For example, 

POSIX.O is the guide to the POSIX standards. 

Note: Doc. designation convention 
adopted from POSIX 

Introduction to Standards 
From Ref. Reqts. to Implementation 

(Rev. 2.5 SOSAS doc. with latest mods) 

OCS.l 

Applications 
Framework 

Application 
Architecture 

CSC 

Specification: 
•Ref. Reqts. 
• Pnm. Components 
• Arch. Desc Rules (ADR. ADL) 
• Domain Models 

(Rev 2.5 SOSAS Appendces expanded to 
ndude addrtional application domains) 

^ppHCSnon 
Architecture 

Robotics 

JippulAtion 
Architecture 

PLC 
^f^iehüon 
Architecture 

Process 
Control 

Specification for Specific 
Apple. Domain: 

• Component Aggregation 
• Lang -Indep. Msg 1/Fs 
• Flenb&ty Reqts. 

OCS.2 

Implementation 
Guideline 

Specification: 
• Imp!. Process 
• Impl. Comp Ub. 
• ConfigJInteg Tools 
• Platform« syApphcts) Profiles 
• Functional VA Object-oriented 

Impl Considerations 
• HW-SW Partibonng 
• COTS/Middteware/API Pkgs 
• Lang -Deo Msg l/Fs & Other 

Language Issues 

£   Specific Application pw^^jjj; : Specific Architecture ! 
^i       Framework      Efe&jääS^. Domain      j 

■■ ■'->    Specific Application t ■ 
Implementation    j.. 

Figure 3.4.3-1 NGC Document Vision: Open Controller Standards 
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The "Applications Framework Open Controller Standard (OSC.l)", is envisioned to contain 

most of the appendices from this SOSAS specification. In addition, it will contain an expanded 

set of reference requirements, primitive components, architecture description rules, and domain 

models to compose frameworks for application domains outside of its present focus on CNCs. 

Other application domains include robotics, programmable logic controllers (PLCs), process 

control, semiconductor manufacturing, etc. 

Architecture specifications (OCS.3, OCS.4, etc.) are envisioned to evolve for specific 

applications based on market-driven factors. For traceability, these documents must specify the 

application framework upon which they are based. Each framework must be individually 

derivable from the OCS.l document which will be expanded to accommodate additional 

application domains as market forces dictate. 

Different documents satisfy different needs of the community. For example, from a CNC developer's 

perspective, the "CNC Application Architecture (OCS.3)" document and the "Implementation 

Guideline (OCS.2)" may be the only two specifications of interest. OSC.2 is envisioned to be an 

expansion of this SOSAS implementation section with detailed information on profiling, language 

binding, the component library, interactive development tools, and other system development and 

integration information. Standards bodies, on the otherhand, may have much more of an interest in 

the framework document, OCS. 1, and its role in governing the evolving set of application architecture 

specifications. The developer of an NGC product may or may not care about the OCS.l document 

However, if a controller developer has a vested interest in standardizing his application architecture, 

he will not only have an interest in OCS.l but must also show compliance to a specific application 

framework that is derivable from the OCS.l specification. 

As a final point in understanding the NGC document vision and the document interrelationships, 

consider the ISO/OSI7 layer reference model specification (ISO 7498) and its relationship to the 

Ethernet level 2 specification (IEEE 802.3). Full interoperability is only guaranteed when a 

specific physical implementation is determined (e.g. twisted pair, coax, etc.). Even the Ethernet 

specification is incomplete in assuring interoperability of physical components, but it certainly 

specifies a detailed level of protocols that is not specified by its parent ISO 7498 specification. 

Token ring and token bus are also defined level 2 protocols under the ISO/OSI reference model - 

yet neither will interoperate without converting bridges or gateways. 

By analogy, the NGC applications framework is to a specific architecture as the ISO/OSI 

reference model is to Ethernet. Ethernet is to token ring as one NGC application architecture is 
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to another. Neither will interoperate. Just as physical characteristics are important to ensure 
interoperable Ethernet implementations, NGC component profiles and language binding 
considerations are of equal importance to ensure the interoperability and interchangeability of 

application architecture component implementations. These implementation issues must be 

considered to ensure interoperability yet, like the Ethernet specification, are not specified within 

the NGC architecture documents. The criteria for ensuring NGC implementation interoperability 

is discussed in the OCS.2 Implementation Guideline. 

A formal standardization approach is required to bring the NGC documentation vision to reality. 

The following 3 methods are recognized by ANSI as establishing evidence of consensus: (1) 

Accredited sponsor using the canvas method, (2) Accredited standards committee method 
(ASC), and (3) Accredited standards developing organization method (ASDO). A full 
explanation of these methods is beyond the scope of this specification. Figure 3.4.3-2 is a 

graphic depiction of the process model for the second method, the ASC method. This process 
model provides some insight into the standardization process. All methods focus on capturing 

consensus and adequate representation (due process) and are equivalent in their final results. 

Therefore, any of these methods are acceptable for NGC document standardization. 
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3.4.4 Implementation Component Library & Tools 

Section 3.4.1, Implementation Process, introduced the notion of an implementation component 

archive that may be used to create a working controller system from an existing repository of 

controller parts. This, of course, is currently a vision and early NGC development work must 

naturally begin by populating this component repository with newly developed components and 

interactive tools for its access. 

The NGC implementation component library is envisioned to be a shopping list of COTS 

software and hardware packages as well as a central archive of reuseable, publicly available 

(perhaps at a cost) aggregate software products. It is the repository for storage and retrieval of 

applications/platform product information, detailed interface descriptions, and profiles. To 

support this vision, interactive tools for creating, maintaining and browsing the library are 

needed that do not currently exist. Figure 3.4.4 presents a conceptual view of the component 

library structure and contents. 
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Figure 3.4.4 Implementation Component Library & Tools—Structure & Contents 

Having user interactive tools to peruse available profile information on specific products facilitates 

"apples-to-apples" comparison of products. Product profiles may be used to assess if a specific 
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software component will run on a selected platform implementation. Profiles may also determine the 

relative compatibility of two different vendor applications for replacing one with the other to upgrade 

an existing NGC system. Creating a profile for a platform that was conceived with a specific set of 

vendor products in mind has the added potential benefit of exposing alternative implementation 

solutions that may not have been considered during the initial trade studies. 

The unavailability of interactive library tools today implies that the first NGC controllers must break 

new ground. Early implementations will define platform and component profiles from clean 

templates. Much of the controller-specific applications software will have to be developed either from 

scratch or through the reuse and modification of legacy software. With every new NGC software 

product developed, a corresponding profile and interface description must be supplied. 

The mature existence of an implementation library and interactive development tools for its use 

is believed to be the single, most critical enabling technology for NGC. 

3.4.5 Implementation 

Previous sections describe the process flow leading to NGC implementations. Sections 3.4.1 and 

3.4.2 illustrate the integration process and provide a context for the implementation process. The 

NGC concepts of application framework and application architecture are reinforced and related 

to the implementation process. Section 3.4.3 ties specification to implementation and section 

3.4.4 provides a deeper understanding of the structure and contents of the implementation 

component library. 

Section 3.4.3, Standardization and Document Vision, discusses the need for an "Implementation 

Guideline" specification (OCS.2). Its contents must include all of the information described thus 

far in section 3.4 with more detail. It must address language issues such as language-dependent 

message interface specification. In addition, it must cover issues related with profiling, 

hardware-software partitioning, functional vs. object-oriented implementations, and the 

development and integration of various "types" of component packages from COTS to 

middleware to board support packages to specialized API service development. In depth 

coverage of these subjects are beyond the scope of this specification but is a requirement for 

interoperable, interchangeable component implementations. 

It should now be apparent that an applications architecture specification forms the basis for an 

implementation but falls short of specifying the requirements for interoperable implementation 

components. Figure 3.4.5-1 illustrates some of the new design considerations in transitioning 
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from an application architecture to an implementation. An application architecture is a high-level 

design that takes form in an implementation in terms of hardware and software components. 

Implementation software components support applications or platform functions, all of which 

execute on the hardware platform. Similarly, the platform hardware is composed of a number of 

hardware implementation components. 
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Figure 3.4.5-1 From Application Architecture to Implementation 

Platform software may simply involve the installation of standards-based COTS packages. 

Where COTS packages fall short of the selected platform profile standards, middleware 

components may be developed or reused (if available) to bridge the API gap. Middleware may 

also provide the required access layer to board-level and embedded controller products. 

At an applications software level, client/server stubs provide the required mechanisms for 

transparent communications between local and/or remote implementation components. These 

components are natural by-products of CORBA and DCE based implementations. They are 

generated by the interface definition language (IDL) compiler and implement remote procedure 

calls (RPCs). 
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Figures 3.4.5-2 and 3.4.5-3 expand the simplified architecture and generic implementation 
example of Figure 3.4.5-1 to introduce timing and multi-platform considerations. Component 

aggregation is illustrated in the expanded application architecture example. The primitive 

components of a specific application component aggregate are numerically identified. The 

intercomponent message sets are also numerically designated and directly correlate between the 

application architecture and the resulting generic implementation. 
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3.5 NGC Conformance 

NGC conformance is defined at several levels. At the system level, conformance is determined 

by following at least one of several NGC-specified profiles of EEI and API standards sets. An 
application is NGC-conformant with respect to a specific profile if that application always uses 

the standard API defined for that profile whenever it accesses functionality that is supported by 

that API. 

The OSE reference model described in Section 3.3.1 explains the OSE framework and its impact 
on applications portability and systems-level interoperability. It is important to note that the OSE 

framework does not specifically deal with component-level interoperability issues other than to 

specify several applicable data standards for message interface. As described in Section 3.1, 
component messages and behaviors are specified to facilitate software interoperability, but 

component interfaces are not specified at a level that guarantees fully interoperable, fully 
interchangeable component implementations. However, specification of components, a reference 

topology, and definition of high-level message classes puts a natural limitation on the total 

design space of controller applications. 
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To ensure that independent component developers may develop complimentary products that 

will interoperate with other controller components, the following SOSAS requirement is added: 

a detailed description of all component interfaces shall be supplied with any controller or 

component that claims component-level interoperability. 

This specification is a guide for an anticipatory standard. The fact that it is not a specification that 

simply documents existing practice presents an inherent obstacle to its acceptance by the controller 

industry. This partially explains the adopted position on component interoperability, that is, to keep 

the component interface descriptions at an abstract, implementation-independent level. In an ideal 

world, the SOSAS could specify component interfaces at a sufficient level of detail that would ensure 

full software interoperability. If such a detailed specification is to be adopted by the controller builder 

community, it would have to be sensitive to market drivers and de facto standards for component 

interfaces that may potentially evolve. To ensure the acceptance and future applicability of the 

SOSAS, these interfaces have been deliberately specified at a high level. 

This NGC standards approach is analogous to the approach used for the ISO/OSI communications 

standard, The ISO/OSI reference model standard (ISO 7498) specifies a multi-level framework for 

communications at a sufficient enough level of abstraction to facilitate the evolution of several 

different network implementations (e.g., ethernet, token ring, token bus, etc.), yet it constrains the 

implementations to a specific hierarchy and specific sets of services and protocols. A possible 

scenario for the NGC is that supporting SOSAS documents may evolve that define the component 

interfaces at a level of detail that will facilitate fully interoperable implementations. 

For a full NGC controller product, there are two basic levels of conformance: system level and 

component level. System-level conformance implies the disclosure of all profiling information 

specific to the platform (for all API/EEI categories). This same profiling information must also 

be disclosed for the applications software as a whole. Component-level conformance subsumes 

system-level conformance requirements and additionally requires the disclosure of detailed 

component interface specifications. 

The SOSAS extends POSDC philosophies with regard to conformance. All conformance 

requirements within each individual POSDC.n specification shall apply if that specification is 

selected for inclusion in the developer's profile. Implementation conformance refers to the NGC 

system platform and associated services, or the execution environment for applications-level 

NGC software components. An NGC platform is implementation conformant if it conforms to a 

specific and complete profile in all dimensions of API and EEI standards, from communications 
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protocols and services to device interfaces and human-user interface (HUI) API. The NGC 
platform may include nonstandard extensions, provided such extensions are identified in the 
system documentation. For such platforms, an environment must be defined and documented in 

which applications may run with the expected behaviors specified by the corresponding 

standards of the profile suite. 

Application conformance applies to an application component of the NGC claiming 

conformance to a specific platform implementation. A "strictly conforming" NGC application is 

one that requires only the facilities defined by the specific platform implementation for which it 

conforms. Additional documentation shall be supplied for "conforming" NGC applications that 

use non-standard extensions of a NGC platform implementation. 

Software applications claiming conformance with the C language shall claim conformance with 

either "C Standard Language-Dependent System Support" or "Common Usage C Language- 

Dependent System Support". The former refers to conformance with the C programming 
language international standard, ISO/EEC 9899:1990. Applications conforming instead with the 
latter, common usage C, shall clearly document all variations from the international C standard. 

It is expected that much of this information can be acquired from the vendor of the specific C 

compiler product used for development. 

POSDC.3, formally IEEE Standard 1003.3-1991: Test Methods for Measuring Conformance to 
POSDC, will be the NGC adopted standard for test suite validation of POSDC-compliant 
products. Since COTS products claiming POSDC compliance must follow this standard, the 

adoption of POSDC.3 for the NGC is simply a statement of current and expected future practice. 

Note the term "compliance" is used instead of the term "conformance". Compliance has stronger 
meaning and implies the existence of a test suite for measuring the conformance of an 

implementation. The application and extension of POSDC.3 test methods (beyond its intended 
POSDC scope) into other NGC standards domains is not a requirement. Other supporting test 

standards will apply as the market dictates. 

Many POSDC draft standards are identified in the NGC OSE. Since there is an obvious lag of 

commercially available products for such standards, the NGC developer need only disclose a 
"statement of intent" for inclusion of such standards in future revisions of his product. This 

statement of intent applies especially to those implementations that may accommodate some 

level of the draft specification, but not necessarily the SOSAS referenced version, due to the 

development lag of supporting products. 
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For example, Wind River Systems' VxWorks 5.1 product literature advertises full ANSI C 

compliance. Several features from the real-time extensions proposed in the POSDC.4 draft were 

added to the existing POSK.l file and input/output system. Wind River's product literature 

further documents their commitment to full compliance with POSDt.l and their offering of 

incremental compliance with POSIX.4 and .4a drafts, with full support once these standards are 

approved. 

The specification of a profile suite, component interface descriptions, language documentation, 

statements of intent, and associated conformance claimers shall be supplied as applicable with 

each NGC-conformant product in the form of a "disclosure statement". An NGC product may 

include: 

• Fully implemented platform; 

• Platform product; 
• Software applications (primitive component, component aggregates, module, and library 

implementations); 

• NGC system. 
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4.0 NGC DEVELOPMENT EXAMPLE 

The 5-axis horizontal machining center shown in Figure 4.0 requires a controller. This section 

addresses how to provide an open controller for this application, and it serves as an example of the 

open controller design process. We begin with a brief overview of the design and implementation 

process for this example. Salient parts of this process are elaborated in subsections. 

TOOL 
CHANGER 

SPINDLE 
CONTROLLER 

OPERATOR 
CONSOLE 

PALLET 
PLATFORM 

PALLET 
CHANGER     TAßLE 

Figure 4.0. Horizontal Machining Center 

The first major step in the process is to create the application requirements for 5-axis machining 

by selecting all relevant Reference Requirements (see Appendix A) and making them specific to 

the application. Application requirements help to establish an application framework for 5-axis 

machining. These requirements drive the selection of the Reference Architecture primitive 

components (see Appendix B) that constitute the application framework. Collectively, the 

primitive component responsibilities must cover the application requirements. If no set of 
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primitive components from the Reference Architecture can cover the requirements, then existing 
primitive components are modified and/or new ones are added until the revised set of primitive 

components entirely matches the requirements. If any of the new or modified primitive 

components prove to be generally useful and if they have unique responsibilities, they can be 

added to the Reference Architecture and used to compose future application frameworks. 

• Reference Reqts. 
• Primitive Components   — 
• Arch. Desc. Rules (ADR) 
• Domain Models 

Compose 
Framework 

Application 
Framework h 

• Create application reqts. (select/ 
specialize ref. reqt. options) 

• Apply ADRs for prim. comp. 
select/interconnect 

Characteristics: 
• Selected prim, components 
• Implicit topology: resource (input) 

& product (output) associations 

-► 
-^   Application 
V/-   Architecture 

>-| 
• Group components: 

- functional commonality 
- min. I/F complexity 
- timing reqts. 
- packaging trades 
- legacy accommodation 

• Translate flexibility reqts. (NGC end 
user benefits) to technology elements 

• Define detailed message 1/Fs 

Characteristics: 
• Component aggregation 

(of prim, components) 
• Lang.-indep. msg. I/F specs. 
• Flexibility rqmts. (e.g., accom. 

legacy MC boards, new sensors, 
additional axis of control) 

-► Implement 
System 

^    r-    Application 
System J 

• Trade analysis: 
- HW vs. SW 
- cost vs. pertJttex. 
- COTS vs. in-house dev. 
- tech. skills base 
• level of openness 
- use of part surplus 
- legacy features 
• prod, avaäability 

• Asemble hardware 
• Install platform software 
• Develop applcation software 
• Select/procure impl. components 
• Integrate system components 

Characteristics: 
• HW and SW partitioning 
• Plattorm(s) & applic.(s) profiles 

defined/selected 
• Msg. profiles defined/selected 
• COTS HW/SW products selected 
• Apphc. components selected & enumerated 
• Impl. lang(s). selected 
• Lang-depend, msg. I/Fsspecs, (e.g., IDL) 
• FuUy integrated, fuBy tune. NGC system 

During the next step, we group primitive components from the application framework into the 

components of the Machining Center Application Architecture, which is an open specification of 
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components and message interfaces. Suppliers will base their interoperable controller products 

on this published, freely available specification. These primitive components groupings are 

influenced by Architecture Description Rules (see Appendix C), by Domain Models (see 

Appendix D), and by design considerations and implementation technology, e.g., availability of 

off-the-shelf implementation components, timing capabilities, and information flow. The 

previous step focused on analysis, but during this step, design considerations become important. 
The behaviors of an application architecture component derive from the collective 

responsibilities of its grouped primitive components. A component's message set derives from 

its behaviors and the resources and products of its primitive components. 

Then we try to match existing software implementation components from the library, in this 

example the Acme™ software library, to the components of the application architecture. Again, 

wherever no implementation components match the component specifications of the application 

architecture, existing software must be modified and/or new implementation components must 

be added to the Acme™ software library. After any needed modifications or additions, the 

resulting set of implementation components comprise an application system, which is one 

instantiation of the application architecture. The Acme™ library can be updated by adding the 

new or modified software. 

A controller for this 5-axis machining center becomes open when it is accompanied by a 
complete architectural description of its application system. This description includes, but is not 

limited to: the standards profile, the set of APIs used, the application architecture, the hardware 
configuration, the application software configuration, and the detailed definitions of the 

implementation components their message interfaces. 

4.1 Application Architecture for Machining 

Application requirements (see Table 4.1) are used in conjunction with the Architecture 

Description Rules and Domain Models to assemble the components of an application 

architecture for controlling the 5-axis machining center as shown in the example of Figure 4.1. 

Based on requirements, relevant primitive components are selected from the Reference 
Architecture, and their responsibilities and interfaces are aggregated into the components of this . 
example. In Figure 4.1, each component is given a unique name descriptive of the role it plays in 

the application architecture. A component's constituent primitive components are indicated by 

number (see Appendix B). The lines connecting the components show the message paths. 
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TOOL MANAGER 
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FILE MANAGER 
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RESOURCE MANAGER 
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JOB MANAGER 
PC; 3.6.7,49.62 

CYCLE CONTROL 
PCr 8.9.10 

PARSER 
1— PC: 11,1£13.14,48.S1,66 

ENHANCER 
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FACTORY SCHEDULER 
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RATE CONTROL; 
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COORDINATOR 
PC: 17.18 

OPERATOR 
:   PC: 39.47 

CUTTER COMPENSATOR 
PC: 33 

TRAJECTORr GENERATOR 
PC; 28,27,2829,30.31.52, 

65.67.72 

COMPENSATOR 
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DRIVES 
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toffrom motors 

to/from factory 
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operatoi 

MODEL MANAGER 
PC: 61 

ACCURACY ENHANCER 
PC: 34 

I     from timer 

M SENSOR PROCESSOR 
PC: 35 

SENSOR INTERFACE 
PC: 45 

from sensors 

Figure 4.1. Example of an Application Architecture for a Machining Center 

September 23,1994 99 SOSAS Rev. 3.0 



Reference 
Number 

A. 1.3.1 
A. 1.3.2 

A.l.7.1 
A.l.7.2 

A.2.1.1 
A.2.1.2 
A.2.2.1 
A.2.2.2 
A.2.2.3 
A.2.7.1 
A.2.8.1 
A.2.8.2 
A.2.8.3 
A.2.8.4 

A.2.9.1 
A.2.12.1 
A.3.1.1 
A.3.1.4 
A.3.1.5 
A.3.1.6 
A.3.1.7 

A.3.1.8 
A.3.1.9 
A.3.1.10 

A.3.1.15 
A.3.1.16 
A.3.1.18 
A.3.1.19 
A.3.1.20 
A.3.2.1 
A.3.2.4 
A.3.2.5 
A.3.2.6 
A.3.2.7 

A.3.3.9 
A.3.3.10 
A.3.3.14 

Table 4.1. Application Requirements for Machining Example 

    Application Requirement  
The controller shall interface with a supervisory computer system. 
The supervisory computer system shall exert complete control over the controller. 

Block processing time shall be fast enough to prevent data starvation.  
The controller shall automatically decelerate axes movement when the block execution time is 
less than the average block processing time.  
The controller shall provide continuous path control of tool motion. 
The controller shall provide point-to-point programming. 
The controller shall perform linear interpolation in simultaneous motion of all axis drives. 
The controller shall perform circular interpolation with 3-D motion control. 

The controller shall perform helical interpolation. 
The controller shall automatically control axis acceleration/deceleration. 
The controller shall provide automatic compensation of lead screw errors (pitch error compensation). 

The controller shall provide automatic compensation of backlash. 
Lead screw error compensation shall be reprogrammable for wear compensation. 
The controller shall perform cross compensation for axis alignment, beam sag and axis motion 
geometry errors.  
The controller shall perform temperature growth compensation. 
The controller shall support programmable feedrates. 
Tool management shall have storage for the maximum number of tool data sets. 
The tool shall be referenced by the tool identification code. 
The tool shall be referenced by the tool location identification code. 
The tool magazine shall provide random storage of tools with preassignment. 
Tool slots, compartments, or other storage elements shall not have sensors for identification and 
location of each tool.   
The tool magazine shall hold the complement of tools and spares for specific jobs. 
The tool magazine shall not support removable tool cartridges. 
The tool magazine shall not support sensors for identification of tool cartridges and their job 
associations.   
Tool change sequence shall be initiated by a T code. 
Tool change sequence shall not be initiated manually. 
Tool length shall not be verified as part of the tool change procedure. 
Tool diameter shall not be verified as part of the tool change procedure. 
Tool form shall not be verified as part of the tool change procedure. 
The controller shall identify pallets by non-contact sensors. 
Pallet identification shall be used to automatically select part programs. 
Pallet identification shall be used to automatically select fixture offsets. 
Pallet identification shall be used to automatically select pallet offsets. 
Multiple part programs shall be selected per pallet. 
The controller shall measure engineering force levels on the spindle bearings. 
The controller shall measure temperature of the spindle bearings. 
The controller shall adjust feedrate to maintain constant cutting force. 

(Continued) 
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Table 4.1. Application Requirements for Machining Example (Cont.) 

Reference 
No. 

A.4.1.5 

A.4.1.11 
A.4.1.12 
A.4.1.16 
A.4.1.17 
A.4.1.19 
A.4.1.23 
A.4.1.24 

A.4.1.25 
A.4.1.26 
A.4.1.27 
A.4.1.28 
A.4.1.30 
A.4.1.31 
A.4.2.2 
A.4.2.3 
A.4.2.5 

Application Requirement 
Programming shall include feedrate programming: direct feedrate, inverse time feedrate, per 
revolution unit feed for turning controls.  ^  
Programming shall include fixture offsets for multiple pallet and table machines. 
Programming shall include multiple program storage and management- 
Programming shall include programmed tool change. 
Programming shall include programming for cutting process control. 
Programming shall include programmable adaptive control parameters. 
Programming shall include preprogrammed (canned) cycles for drilling, boring, and tapping. 
Programming shall include preprogrammed cycles for area milling, rectangular pocket milling, 
circular pocket milling, and bolt hole circles. ;  
Programming shall include automatic chamfering and corner radiusing. 
Programming shall include look-ahead cutter compensation. 
Programming shall include coordinate system rotation. 
Programming shall include work coordinate system setting- 
Programming shall include constant surface speed programming. 
Programming shall include tool center point programming for 5-axis machining. 
Manual programming shall include automatic selection of cutting speed and feed. 
Manual programming shall include cutter offset. 
Manual programming shall include pallet or table change cycles. 

4.2 Machining Scenario 

The application architecture for a machining center controller facilitates its design and 

implementation. In this section we show how the application architecture, which consists of 

components and message interfaces, is also useful for verifying the operation of the controller in 

an example scenario. The example scenario covers mass production of parts, and it is better 

understood by referring to Figure 4.2 where the message interfaces of the application 

architecture in Figure 4.1 are shown in greater detail. 

This is a partial example of an application architecture. For clarity, the functionality of the 

components and the number of messages have been limited intentionally just to cover the 

scenario. This cannot reflect the complete set of messages needed for all of the operating 

scenarios of a machining center, but it gives a flavor of the level of message specification for an 

application architecture. 
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Figure 4.2a Application Architecture Components and Messages—Part 1 
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Figure 4.2b Application Architecture Components and Messages—Part 2 
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Figure 4.2c Application Architecture Components and Messages—Part 3 

In an application architecture, the components embody the responsibilities of the primitive 

components selected for the application, and the messages represent the flow of resources and 
products explicitly. However, messages between application architecture components may not be 
as specific as the interface definitions required for implementation components, e.g., function 
prototypes in C-language header files. This example will compare representative application 

architecture messages with their corresponding implementation messages. 

In the following discussion, "the controller" refers to an open controller. Component names are 
all capitalized, e.g., JOB MANAGER. Message names, e.g.. Allocate Tools, and the names of 

information types and structures in the messages, e.g.. Tool Information, have leading caps. 
System elements outside the controller have no capitals, e.g., factory scheduling system. 

4.2.1 Factory Interaction 

The factory scheduling system resides above the shop floor and sends job instructions to the 

controller. These instructions are contained in the Perform Jobs message, which consists of a Job 
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List specifying what is to be done and a Tool List enumerating the tools required from the tool 

room. The Job List contains a sequence of Job Descriptions designated by job id. Each Job 

Description identifies a series of pallets to be processed, each having a pallet id, a pallet offset, 

and a list of parts. A Job Description is organized as follows: 

job id 

pallet id, pallet offset 

part 1, stock id, part program id, part offsets, beta offset 

part 2, stock id, part program id, part offsets, beta offset 

part 3, stock id, part program id, part offsets, beta offset 

pallet id, pallet offset 

part 1, stock id, part program id, part offsets, beta offset 

part 2, stock id, part program id, part offsets, beta offset 

part 3, stock id, part program id, part offsets, beta offset 

etc. 

factory scheduling system    '    Perform Jobs (FACTORY SCHEDULER, Job List, Tool List) 

FACTORY SCHEDULER    '    Accept Status (factory scheduling system, Job Status) 

The FACTORY SCHEDULER, a component of the controller, is responsible for communicating 

with the factory scheduling system. It passes the Job List to the JOB MANAGER. The Tool List 

is passed to the TOOL MANAGER, and the TOOL MANAGER sends the Tool IDs to the 

TOOL CHANGER. Through the FACTORY SCHEDULER, information about the status of 

jobs can be shared with the factory scheduling system because the JOB MANAGER maintains 

an awareness of the jobs that have been released and those which are still queued. 

FACTORY SCHEDULER 

FACTORY SCHEDULER 

TOOL MANAGER 

JOB MANAGER 

Perform Jobs (JOB MANAGER, Job List) 

Allocate Tools (TOOL MANAGER, Tool List) 

Load Tools (TOOL CHANGER, Tool IDs) 

Accept Status (FACTORY SCHEDULER, Job Status ) 
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4.2.2 Resource Verification 

When the JOB MANAGER receives the Job List, it asks the RESOURCE MANAGER to verify 

the availability of the needed resources . For each job in the Job List, the JOB MANAGER sends 

the RESOURCE MANAGER a Job Description, which contains the part program ids and stock 

ids. 

JOB MANAGER    '    Verify Resources  (RESOURCE MANAGER, Job Description ) 

To verify that proper resources are available, the RESOURCE MANAGER asks other managers 

for applicable information. First, the FILE MANAGER is asked to send the RESOURCE 

MANAGER a Part Program. The FTLE MANAGER responds with the Part Program File, or a 

Missing Program Error. 

RESOURCE MANAGER    '    Provide Part Program (FILE MANAGER, Part Program ID ) 

FILE MANAGER    '    Use Part Program ( RESOURCE MANAGER, Part Program 
File) 

or Accept Error ( RESOURCE MANAGER, Missing Program ) 

After scanning the Part Program File for tool information, the RESOURCE MANAGER asks 

the TOOL MANAGER if the necessary tools (or adequate substitutes) are loaded. The TOOL 

MANAGER responds with Tool IDs or a Missing Tool Error. 

RESOURCE MANAGER    '    Verifj Tools   (TOOL MANAGER, Too! Information ) 

TOOL MANAGER    '    Use Tools ( RESOURCE MANAGER, Tool IDs ) 

or Accept Error ( RESOURCE MANAGER, Missing Tool) 

The RESOURCE MANAGER may need to further verify the ability of the machine to perform 

the intended job. It asks the MODEL MANAGER for the Machine Model, Stock Models, Pan 

Models, etc. to compare them to the part program. 

RESOURCE MANAGER    '    Provide Models ( MODEL MANAGER, Machine Model, Stock 
Models, Part Models) 

MODEL MANAGER    '    Use Models ( RESOURCE MANAGER, Model Information ) 

Should any of these resources be missing, the RESOURCE MANAGER informs the 

OPERATOR which resources are missing, and it informs the JOB MANAGER that this job did 

September 23,1994 105 SOSAS Rev. 3.0 



not pass. The JOB MANAGER then holds this job until the OPERATOR indicates something 

has been done to correct the problem. The JOB MANAGER then resubmits the job for 

verification to the RESOURCE MANAGER. This cycle continues until the RESOURCE 

MANAGER indicates to the JOB MANAGER that the required resources are present. 

RESOURCE MANAGER 

RESOURCE MANAGER 

or 

OPERATOR 

Find Resources (OPERATOR, Job Description, Missing 
Resources) 

Accept Verification (JOB MANAGER, Resources ) 

Hold for   (JOB MANAGER, Resource Verification ) 

Release Job (JOB MANAGER, Job Description ) 

4.2.3   Job Release 

After the OPERATOR has released the job for execution, the JOB MANAGER asks the PART 

HANDLER to load the first pallet with stock. The PART HANDLER loads a pallet and tells the 

JOB MANAGER the Pallet JX>. The JOB MANAGER now knows which part to do first; it tells 

the CYCLE CONTROL to start running the first program; and it tells the ENHANCER the 

offsets (Pallet Offset, Part Offsets, Beta Offset) necessary to locate the part on the pallet. The 

JOB MANAGER marks the job as "in-progress" and waits for the CYCLE CONTROL to 

request the next program. 

JOB MANAGER 

PART HANDLER 

JOB MANAGER 

JOB MANAGER 

Load Pallet ( PART HANDLER, Stock IDs ) 

Use Pallet (JOB MANAGER, Pallet ID ) 

Make Part  ( CYCLE CONTROL, Pallet ID, Part ID, Stock ID, 
Part Program ED) 

Use Offsets ( ENHANCER, Pallet Offset, Part Offsets, Beta 
Offset) 

4.2.4 Part Program Setup 

The CYCLE CONTROL has been told to run the next part program, so it asks the FILE 

MANAGER to provide the program. If the CYCLE CONTROL can't hold the enure program, it 

periodically asks the FILE MANAGER to provide more code, until the entire program has been 

processed. The JOB MANAGER is informed when the end of the program has been reached so 

it can start processing the next part on the current pallet. If the next part uses the same program 

as the last part, then the file may not need to be accessed from the FILE MANAGER. If there 

September 23,1994 106 SOSAS Rev. 3.0 



are no more jobs on the current pallet, the JOB MANAGER asks the PART HANDLER to 

change the pallet, and processing starts on the new pallet. 

CYCLE CONTROL    ' 

FILE MANAGER    ' 

CYCLE CONTROL    ' 

Provide Part Program (FILE MANAGER, Part Program ID) 

Use Part Program ( CYCLE CONTROL, Part Program FUe) 

Accept Finished Part  (JOB MANAGER, Part ID) 

To continue, CYCLE CONTROL feeds the Part Program to the PARSER, which analyzes each 

block of code to identify commands pertinent to the attached mechanisms. In our example, the 

mechanisms are the TOOL CHANGER, the PART HANDLER, and a coolant control device 

called COOLANT FLOW. The PARSER tells these devices which commands they will be 

expected to perform when given the appropriate messages. This gives the mechanisms a chance 

to do any necessary preliminary setups before the actual command is given. 

CYCLE CONTROL 

PARSER 

PARSER 

PARSER 

Analyze Part Program (PARSER, Part Program) 

Setup (TOOL CHANGER, Part Program Commands) 

Setup (PART HANDLER, Part Program Commands) 

Setup ( COOLANT FLOW, Part Program Commands ) 

Any comments or operator cues for manual tasks are sent to the OPERATOR from the 

PARSER. When the OPERATOR completes the task, it informs the JOB MANAGER through 

the same pathway it used when adding missing resources. The JOB MANAGER tells the 

CYCLE CONTROL to continue with this cycle, and the CYCLE CONTROL passes the 

continue message on to the PARSER. 

PARSER 

PARSER 

OPERATOR 

JOB MANAGER 

CYCLE CONTROL 

Accept Comment ( OPERATOR, Explicit Comment) 

Accept Cue ( OPERATOR, Manual Task Description ) 

Release Job (JOB MANAGER, Job Description ) 

Continue Part ( CYCLE CONTROL, Part ID ) 

Continue Part( PARSER, Part ID ) 
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4.2.5 Code Augmentation 

When the interaction with the OPERATOR is concluded, the PARSER feeds the ENHANCER 

the Part Program, inserting the recipient or destination into each command. The ENHANCER 

" augments motion command code from the PARSER. During the augmentation process, detail 

blocks or commands are inserted in place of canned cycles. The ENHANCER also translates all 

coordinate system data since it can derive the exact location of the part through the series of 

offsets provided by the JOB MANAGER. 

PARSER    '    Augment Code  (ENHANCER, Part Program with Recipients ) 

Final augmentation done by the ENHANCER relates to the coordinated activities between 

mechanisms and motion. The ENHANCER inserts coordination points into the command 

sequence. Say a tool change needs to occur at some point. The ENHANCER would replace the 
tool change command in the program with a series of commands in the motion stream. These 

inserted commands might first bring the tool to a chosen location and wait for a continue 
message. Following the wait command would come commands to move the spindle to another 

location and wait again for a continue message. Finally, a rapid traverse is inserted after the 

second wait command. 

This augmentation performed by the ENHANCER is highly dependent on the types of 
mechanisms and their functionality. In some cases, the system startup procedures may require 
the ENHANCER to ask the mechanisms for specialized augmentations for motion to perform 

whenever one of their commands is encountered. 

ENHANCER    '    Provide Augmentations (TOOL CHANGER ) 

ENHANCER    '    Provide Augmentations ( PART HANDLER ) 

ENHANCER    '    Provide Augmentations ( COOLANT FLOW ) 

After the ENHANCER inserts coordination points into the command sequence, it gives the 

COORDINATOR a complete copy of the augmented code, but it gives the TRAJECTORY 

GENERATOR just the Motion Command Sequence. This Motion Command Sequence consists 
of a series of points along with Feedrate, Spindle Speed, Acceleration, Deceleration, and any 

other part program information relevant to motion. The ENHANCER feeds the Motion 
Command Sequence to the TRAJECTORY GENERATOR in blocks and waits until the 

TRAJECTORY GENERATOR requests more. 
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ENHANCER    '    Use Part Program ( COORDINATOR, Augmented Part 
Program) 

ENHANCER    '    Use Commands (TRAJECTORY GENERATOR, Motion 
Command Sequence) 

TRAJECTORY GENERATOR    '    Provide Commands (ENHANCER) 

4.2.6 Coordination Between Mechanisms 

Before covering the details of motion, we consider coordination between mechanisms. The 

TRAJECTORY GENERATOR does not distinguish between the motion commands from the 

original Part Program and those commands inserted into the Motion Command Sequence by the 

ENHANCER to effect mechanism coordination. So, for example, if a tool change is the next 

operation, the next command the TRAJECTORY GENERATOR sees in the Motion Command 

Sequence is Wait. The TRAJECTORY GENERATOR informs the COORDINATOR, and then 

it waits. 

COORDINATOR    '    Proceed Until Wait (TRAJECTORY GENERATOR ) 

TRAJECTORY GENERATOR    '    Affirm Wait   (COORDINATOR, Trajectory Generator) 

Since the COORDINATOR is in possession of the entire Augmented Part Program, it can understand 

and coordinate the activities of the mechanisms under control. The COORDINATOR knows that a 

tool change is next when the TRAJECTORY GENERATOR sends it a Trajectory Generator Waiting 

message. The COORDINATOR tells the TOOL CHANGER that it is time to initiate a tool change. 

When the TOOL CHANGER receives Change Tool, it verifies that the new tool is indeed the proper 

tool change, performs the change, and informs the COORDINATOR that the tool change is 

complete. The COORDINATOR directs the TRAJECTORY GENERATOR to continue, and the 

TRAJECTORY GENERATOR proceeds until it encounters the next wait 

COORDINATOR    '    Change Tool  (TOOL CHANGER, Tool D3) 

TOOL CHANGER    »    Accept Tool Change ( COORDINATOR, Tool D3) 

4.2.7 Tool Motion 

To begin a description of the motion operations, the TRAJECTORY GENERATOR sends the 

Path Normal Vectors to the CUTTER COMPENSATOR and the SENSOR PROCESSOR. The 

RATE CONTROL and CUTTER COMPENSATOR components receive messages from the 

ENHANCER: the RATE CONTROL needs the Rate required by the program; the CUTTER 

COMPENSATOR needs the Plane Selection. 
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TRAJECTORY GENERATOR    '    Use Normals  (CUTTER COMPENSATOR, Path Normal 
Vectors) 

TRAJECTORY GENERATOR    '    Use Normals   (SENSOR PROCESSOR, Path Normal Vectors) 

ENHANCER    '    Use Rate (RATE CONTROL, Rate) 

ENHANCER    '    Use Plane ( CUTTER COMPENSATOR, Plane Selection) 

The RATE CONTROL determines the Goal Rate by comparing the program requested Rate to 

the Tool Tooth Count from the TOOL MANAGER and the Spindle Speed from the SENSOR 

INTERFACE. (The SENSOR INTERFACE gets its information from the sensors.) The RATE 

CONTROL supplies the Goal Rate to the TRAJECTORY GENERATOR. The TRAJECTORY 

GENERATOR would prefer to operate at the Goal Rate, but the machine may be unable to 

handle the Goal Rate. The TRAJECTORY GENERATOR asks the MODEL MANAGER for the 

Axis Step Limits, and modifies the rate accordingly. 

TOOL MANAGER    '    Use Tool Tooth Count ( RATE CONTROL, Tool Tooth Count) 

SENSOR INTERFACE    '    Use Spindle Speed ( RATE CONTROL, Spindle Speed ) 

RATE CONTROL    '    Use Rate (TRAJECTORY GENERATOR, Goal Rate ) 

MODEL MANAGER    '    Use Axis Step Limits( TRAJECTORY GENERATOR, Axis Step 
Limits) 

Since the CUTTER COMPENSATOR must adjust the path according to the specific dimensions 

and characteristics of the tool, it requests the tool's Offset Amount from the TOOL MANAGER, 

and calculates the Cutter Offsets and passes them to the TRAJECTORY GENERATOR. 

CUTTER COMPENSATOR    '    Provide Offset Amount  ( TOOL MANAGER, Tool ID ) 

CUTTER COMPENSATOR    '    Use Offsets (TRAJECTORY GENERATOR, Cutter Offsets) 

The last information TRAJECTORY GENERATOR requires is the corrections based on sensor 

information. The SENSOR PROCESSOR gets the Force and Torque from the SENSOR 

INTERFACE, which, of course, receives it from the sensors. The SENSOR PROCESSOR uses 

Force, Torque, and the path normal vectors to correct Position, Rate, and Spindle Speed for the 

TRAJECTORY GENERATOR. 
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SENSOR INTERFACE    '    Use Force ( SENSOR PROCESSOR, Force) 

SENSOR INTERFACE    '    Use Torque (SENSOR PROCESSOR, Torque) 

sensors    '    Use Values (SENSOR INTERFACE, Sensor Values) 

SENSOR PROCESSOR    '    Use Values (TRAJECTORY GENERATOR, Position 
Corrections, Rate Corrections, Spindle 
Speed Corrections ) 

The TRAJECTORY GENERATOR generates a Normalized Trajectory. It is normalized in the 

sense of precise time segments. The TRAJECTORY GENERATOR gives the Position to the 

ACCURACY ENHANCER. 

TRAJECTORY GENERATOR    '    Use Position (ACCURACY ENHANCER, Position) 

The ACCURACY ENHANCER corrects the trajectory to compensate for predictable variations, 

which include thermal effects, axis non-linearities, etc. Thermal compensation is governed by 

accessing the Temperature from the SENSOR INTERFACE which is updated from a 

temperature sensor. Timing is provided by the system clock or by an internal timer. Tables and 

Polynomials of precalculated corrections are accessed from the MODEL MANAGER. From all 

of these information sources, the ACCURACY ENHANCER computes the corrections and 

passes them on to the COMPENSATOR. 

SENSOR INTERFACE ' Use Temperature ( ACCURACY ENHANCER, Temperature ) 

system clock or timer ' Use Time ( ACCURACY ENHANCER, Timing) 

MODEL MANAGER • Use Tables  ( ACCURACY ENHANCER, Tables ) 

MODEL MANAGER ' Use Polynomials ( ACCURACY ENHANCER, Polynomials ) 

ACCURACY ENHANCER ' Use Corrections ( COMPENSATOR, Corrections ) 

The COMPENSATOR receives the Normalized Trajectory from TRAJECTORY 

GENERATOR, makes corrections, and sends the Servo Command Positions to the AXIS 

CONTROL. Timing concerns will separate the COMPENSATOR from the ACCURACY 

ENHANCER: the former must operate continuously to direct tool motion; the latter is brought in 

when compensation or adjustments to the basic commanded motion path are needed. 
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TRAJECTORY GENERATOR    '    Use Trajectory (COMPENSATOR, Normalized Trajectory) 

COMPENSATOR    '    Position Servo (AXIS CONTROL, Servo Command Positions) 

The AXIS CONTROL converts the Servo Command Positions to messages commanding the 

■ DRIVES. It accesses the Kinematic Equations from the MODEL MANAGER and stores the 

Following Errors. If the Following Errors exceed the Following Error Limits, the AXIS 

CONTROL will shut down the machine and request maintenance. The interfaces from the AXIS 

CONTROL to the DRIVES and from the DRIVES to the MOTORS are simple position and 

velocity messages. 

MODEL MANAGER    '    Use Kinematic Equations (AXIS CONTROL, Equations) 

AXIS CONTROL    '    Use Following Errors (MODEL MANAGER, Following Errors ) 

AXIS CONTROL    '    Use Commands (DRIVES, Drive Commands ) 

DRIVES    '    Use Commands (motors, Motor Commands) 

motors    '    Use Feedback (DRIVES, Motor Feedback) 

DRIVES    '    Use Feedback (AXIS CONTROL, Drive Feedback) 

4.2.8 IEC 1131 Environment 

The EEC 1131 graphical programming and execution environment provides for creating, 

debugging, and managing real-time programs that control the TOOL CHANGER, the PART 

HANDLER, the COOLANT CONTROL, and other discrete devices like the spindle. The 

environment supports control software coded either in C or in the programmable controller 

languages defined by EC-1131 Standard for Programmable Controllers Part 3 - Programming 

Languages, which include: 

Sequential Function Chart, 

Ladder Diagram, 

Function Block Diagram, 

Instruction List, and 

Structured Text. 
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4.2.9 Implementation Component Messages 

The application architecture components exchange abstract messages, but when a controller 

implementation is realized from the application architecture, the abstract messages must be 

translated into an exact specification. For this example the exact message specification takes the 

form of a C function prototype similar to those found in C header files. The following exact 

message specifications are taken from the header files produced by the NIST Enhanced Machine 

Controller project. 

««More to go here — Specific interface definitions from the NIST implementation are 
matched with selected component messages as shown below.»» 

The abstract message from the COORDINATOR directing a tool change by the TOOL 

CHANGER is repeated below: 

COORDINATOR    '    Change Tool  (TOOL CHANGER, Tool ID) 

The NIST header file defines a message type (nmi_io_change_tooi_msg_t) and a function 

prototype of an interface (nmi_io_change_tooi) to the behavior that implements the tool change. 

This is a C-language implementation of the message interface to the TOOL CHANGER 
component. The first parameter of the message structure carries an integer, which is the 

identifier of the recipient of the message, TOOL CHANGER. The second message parameter is 
the integer Tool ID. The function prototype specifies the interface to the function that effects the 

tool change. 

/* Message ID 313 ♦/ 

typedef struct { 
int id;   /* Message Recipient's ID */ 
int 1;   /* Tool ID       */ 

) nml_io_change_tool_msg_t; 
extern int nml_io_change_tool(int i); 

Note that the application architecture message is made specific when a particular controller is 
implemented. The implementation interface will vary depending on the language chosen. In this 

case, ladder code can be used as easily as a C code, but the interface definitions will differ due to 

the differences in the languages. Also the way implementation components are identified may 
vary among implementations. However, interoperability can be assured among implementation 

components only if the interfaces are consistent. 
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Another example compares the application architecture message interface to the COOLANT 

FLOW with the NIST interface definition. 

COORDINATOR    '    Initiate Next Command (COOLANT FLOW, Tool ID) 

The Initiate Next Command message to the COOLANT FLOW component expands into four 

interface definitions for the NIST implementation component 

/* Message ID 314 */ 

typedef struct { 
int id;   /* Message Recipient's ID */ 

} nml_i o_mi s t_on_ms g_t; 
extern int nml_io_mist_on(); 

/* Message ID 315 */ 

typedef struct { 
int id;   /* Message Recipient's ID */ 

} nml_io_mist_off_msg_t; 
extern int nml_io_mist_off() ; 

/* Message ID 316 */ 

typedef struct { 
int id;   /* Message Recipient's ID */ 

} nml_i o_f1ood_on_msg_t; 
extern int nml_io_flood_on() ; 

/* Message ID 317 */ 

typedef struct { 
int id;   /* Message Recipient's ID */ 

} nml_io_flood_off_msg_t; 
extern int nml_io_flood_off(); 

4.3 Implementation 

The scenario described in the previous section walks through an example of a specific NGC 
application architecture for machining. It is important to emphasize that the example is merely 

one of many realizable controller architectures. This section continues this discussion with 
several examples to illustrate the process of how the NGC developer implements an abstract 

application architecture to generate a fully integrated NGC application system. 

43.1 Integration Process Review 

Figure 4.3.1 on the following page illustrates the NGC integration process and emphasizes the 
design and implementation phases. The integration process flow is first introduced in Section 
3.4.1 and is repeated in this example section because of its importance in understanding the 
general flow and process dependencies. This figure should be referenced throughout the 

September 23,1994 114 SOSAS Rev. 3.0 



subsequent implementation discussions to provide an overall context for specific steps described 
in the examples. Only the general process flow is captured. The developer may start from any 
stage in the process and all feedback paths are intentionally omitted for the sake of simplicity, 

but these additional entry points and paths may be inferred. 

-In brief review, two basic process paths are illustrated. Applications development appears as the 
upper path in the diagram and platform development is the lower path. Although each path may 
be traversed independently and concurrently, both paths are strongly interrelated and each path 

potentially feeds the other throughout the integration process. The two paths merge at the final 

development stages to produce a complete NGC system. 

The unifying concept that joins the platform and applications paths is profiles. All NGC 
implementation components, whether they support platform or applications related functions of 

the system, are profiled. It is through the application of profiles that many of the implementation 

decisions are made. 

Profiles provide a convenient mechanism for assessing the relative compatibility of 
complimentary products and for making "apples-to-apples" comparisons of similar products. 

They may be used to assess if a specific application software component will run on a selected 
platform implementation. They provide the developer with the information he needs to select the 

optimal mix of COTS products based on the availability of compatible applications and platform 

products. Profiles also clarify the "make or buy" choices that are of fundamental importance to 

developer organizations when they embark on the development of a new product line. 

Frequently, the selection of certain implementation options are predetermined. The inclusion of 

a specific product in a system is often mandated by an organization for a variety of strategic 

reasons. In such cases, profiles provide the mechanism to compare and contrast available 
products and options based on previous selections. They expose the alternatives for component 

interchange and simplify the task of system upgrade. 
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Figure 4.3.1. NGC Integration Process 

Creating a profile for a platform conceived with a specific set of vendor products in mind has the 

added benefit of surfacing new product solutions. Such solutions may not have been evident during 

the initial survey or trade studies yet they may offer comparable or even better alternatives than the 

original solution. Platform implementations that share a common set of profiles support the same set 

of services and equivalent levels of portability and interoperability by inference. These "compatible" 

implementations may offer significant cost saving alternatives that are not apparent prior to profiling. 

Products organized by profile category offer a powerful new dimension to the access of product 

information for both controller developers and end-users. 

It may be useful to assume the existence of a mature NGC implementation component library while 

walking through the subsequent examples. This library, referenced in Section 3.4.1 and described in 

further detail in Section 3.4.4, is envisioned to be an on-line catalog of COTS hardware and software 

and an archive for publicly available NGC software products, all with a supporting set of interactive 

tools for creation, maintenance, and perusal. It is an information repository for the storage and 

retrieval of detailed component interface descriptions, standard profiles and templates, and product 

disclosure information used for NGC-conformant product development 
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Early NGC development work must populate this component repository with newly developed 
components and interactive tools for its access. NGC implementation may be accomplished 
without the existence of the component library. This is how the first NGC controllers must be 

built. However, the integration process flow can not be fully appreciated without consideration 

of the library as an integral part of the process. The component library brings the full advantages 

" of open controllers to the end-users by making available a complete variety of off-the-shelf 

interchangeable, replaceable components for system upgrade and flexibility. Component 

"integration" and "reuse" become a major implementation emphasis. Less development effort 
need be spent on "reinventing the wheel" and efforts may be directed toward developing value- 
added features and enabling technology areas. The availability of a mature library, fully stocked 
with NGC-compliant products and user friendly interactive tools for product integration, will 
bring the major benefits of NGC to the end user. It is therefore critical that early NGC activities 

focus on developing the component library. 

4.3.2 Implementation Example - Machining Center 

The integration process is best understood by looking at specific implementations of the 
application architecture example for a machining center. To illustrate some of the key points, 

two specific controller implementations are described. Figure 4.3.2-1 portrays the real time (RT) 
and non-RT platforms, the major communications links, and profiling options of each system 

implementation. For lack of formal identification of these NGC controllers, they will be referred 
to as simply Sys-A and Sys-B. It should be recognized that there are many different possible 

implementations of the architecture example. 
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Non-RT Platforms RT Platforms 
System A 

Transputer    __ 

Intel 80x86 PC ISA 

• MS-DOS 

• MS-Windows 

• Ithaca Hoops 

•MS GDI 

• ANSI/ISO C 

• PC NFS 

Ethernet 

Hybrid PC/Transputers. 

•SCO XENIX 

• ANSI/ISO C 

• Ohio State Trollius 

• Specialized Device 

Driver API 

Unk 

To 
Sun Sparc 

Factory 

Scheduling 

System 

Ethernet 

Intel 80x86 PC ISA 

• SCO UNIX 

• MIT X Windows 

•OSF MOTIF 

•MITPEX 

•ANSI/ISO C/C++ 

• POSIX.8 NFS 

• POSIX.12 (SNI, DNI) 

•POSIX.17(X.500) 

•CORBA 

System B 

TCP/IP 

Unk 

Motorola 680x0 VME 

• Wind River VxWorks 

•ANS171SOC 

•POSIX.4X Device 

Control API 

Figure 4.3.2-1 Platform Implementation Examples 

Figures 4.3.2-2 and 4.3.2-3 contrast the platform and presentation management dimensions of 

the API profiles of the two platforms. Both systems are bi-polar, whereby the applications 

software is physically partitioned onto RT and non-RT system platforms, and both systems use a 

PC ISA-based (Intel 386/486) front end to support all non-RT functions. However, the operating 

system and graphical user interface (GUI) for the non-RT platform of Sys-A is a combination of 

MS DOS and Windows. 

The Sys-A developer also opted to include Hoops as a strategic move. It was heard that 

AutoDesk, the maker of AutoCAD and one of Microsoft's key software vendors for Windows 

NT, recently acquired Ithaca Software, the maker of Hoops. Hoops also works with Microsoft's 

Graphical Device Interface (GDI). 

The non-RTOS for the Sys-B platform is SCO UNIX running X Windows and Motif. SCO 

UNDC happens to be POSDC compliant and an XPG3 (X/Open Portability Guide 3) branded 

product. The X Windows PEX option was also purchased for three-dimensional, PHIGS- 

compatible graphics. 
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Sys-A uses a hybrid PC/transputer-based platform for its real-time functionality and runs SCO 

XENIX. Although this system is not POSIX compliant, it is a multi-user, multitasking UNIX 

system optimized for personal computers. Sys-B is VME Motorola 68030/40-based and uses the 

VxWorks operating system. VxWorks is POSIX. 1 compliant and will incrementally support the 

POSIX.4 real-time extensions to POSIX that are currently at various stages of draft release. 

Both systems support full ANSI C. The non-RT platform for Sys-B also supports C++. The 

Development Language profile is used to show language support (Figure 4.3.2-4). 

Files are accessed on the MS-DOS/Windows platform (Sys-A) using ANSI C. The factory 

scheduling system external to the NGC is a SunSparc. Job lists are accessed using PC NFS 

which provides access to files on the Sun server transparently, as if they were stored locally on 

the PC disk (refer to Figure 4.3.2-5). System B, on the other hand, is much more elaborate and 

leverages the full capability of the POSIX file system. It also conforms with the POSIX.8 Sun 

NFS profile. 

All Platforms 

Development Language 
(Application Only) 

w Stand.C (opt. C++): 
^^Diagnostics 
^Character Handling 
ny.ocalization 
^^Mathematics 
ByNon-Local Jumps 
I^Input'Output 
■^General Utilities 
^Stnng Handling 
W Date and Time 

D FORTRAN 
D ADA 
a Non-POSDC binding 

O Pascal 
□ Smalltalk 
□ Lisp 
D PL'l 
O COBOL 
D Other  

a Common C (opt. C++) 

Sys-A/-B 

Figure 4.3.2-4 Profile: Development Language Dimension 
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Figure 4.3.2-5 Profile: Development Language Dimension 

Figure 4.3.2-6 illustrates the communications and device I/O dimensions of the API profile suite. A 

data communications link ties the two platforms of each system together. Sys-A makes use of the on- 

chip communications capability of transputers and an Ohio State University package called Trollius 

to achieve this inter-platform link. Sys-B uses the TCP/IP network capability of the two UNIX 

environments and specialized software to transfer data between the two environments. 
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Figure 4.3.2-6 Profiles: Communications and Device I/O Dimension 

Standard networks are used to link the NGCs to the factory scheduling system. System B has a 

sophisticated set of communications alternatives. It has both simple and detailed network 

interfaces (SNI, DNI) for protocol independent interface (PH) that is fully conformant with 

POSrX.12. To facilitate global naming and remote access over the Internet, POSDC.17- 
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compliant Directory Services (X.500) software is installed. In addition, in preparation for the 

wave of soon-to-be-released object-oriented products, a C++ CORBA package, Expersoft's 

XShell, has been recently installed. 

Sys-A uses specialized user-defined drivers to interface with NGC sensors, mechanisms, motor 

drives, etc. Sys-B makes use of the available POSIX.4x device control API for standard I/O 

device communications (some of the latter features of Sys-B are exaggerated for illustrative 

purposes and do not necessarily reflect the present capabilities of the underlying operating 

system). 

Having defined the profiles of the system platform in all dimensions, for both the API and EEI 
branches of the OSE taxonomy, the developer then begins to select/develop application 

components that implement various portions of the application architecture. 

Figure 4.3.2-7 shows a possible partitioning of the application architecture primitive and 

aggregate components. The shaded boxes are non-RT components and the unshaded boxes 
represent RT components. The RT or non-RT nature of the components determine whether they 

operate on the RT or non-RT platforms of our two system example. Profiles for the software 
implementations of the architectural components are then compared against profiles of their 
respective platforms to determine their relative compatibility. Compatible implementations are 

then integrated into a final NGC system. 

Figure 4.3.2-8 is a variation on the possible partitioning of the architecture components. In this 
example, the cross-hatched boxes indicate hard-RT components. In terms of the platform, this 

may signify that a specialized COTS motion controller board is incorporated into the system and 

subsumes all of the component functionality in firmware or hardware. It should be obvious from 

the numerous examples in this section that the number of implementation options is enormous. 
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Figure 4.3.2-7 Platform Partitioning, Example 1 

Example of an Application Architecture 
for a Machining Center 

Figure 4.3.2-8 Platform Partitioning, Example 2 
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4.3.3 Implementation Example—Low End Controller 

The previous example describes the profiling process for two platform implementations. It 

focuses on platform development, the lower branch of the integration process diagram (Figure 

4.3.1). The developer then selects or develops application components that are compatible with 

the profiled platforms to implement various portions of the application architecture. Similarly, 

the platform is implemented from a selection of off-the-shelf products and/or developed 

components. This section provides an expanded view of this implementation process. 

Many of the implementation concepts presented herein have been introduced in subsections of 

Section 3.4, Development Process and Implementation. Figure 3.4.2.1 illustrates characteristic 

differences between architecture development and implementation. For example, profiling and 

language selection are concepts of implementation, and are not considerations during 

architectural development and specification. Section 3.4.3 introduces the notion of a 

specification of "implementation guidelines" to ensure the development of implementation 

components that are truly portable, interoperable, and interchangeable. Some of these guiding 
philosophies are described in this section. The "implementation component library", described in 

Section 3.4.4, offers an on-line central archive of reuseable, publicly available products and 

information. The existence of this library is viewed to be the enabling technology that will bring 

NGC from a conceptual vision to a reality. 

The implementation process transitions from an architectural specification on paper to a set of 

implementation components that are integrated into a physical system. An example used for 

illustrating the process is introduced in Section 3.4.5. This section is a more thorough treatment 
of the use of profiles, interrelationships with the component library, timing considerations, and 

other language issues as they relate to the implementation process. Profiling is discussed as a 
logical continuation of the previous example and is followed with a detailed description of the 

example of Section 3.4.5. Relevant figures are repeated in this section for convenience. 

To complete the profiling story of the previous example, it is useful to consider some of the 

more subtle implications of platform profiling. Given a mature implementation component 

library, standard profiles are made available. One possible scenario for platform implementation 
is to first choose a standard profile from the implementation component library and then select 
specific COTS products that, when packaged together, meet all the standards requirements of 

that profile. Platform profiling should not be viewed as that necessary step in the process that is 
performed after all the implementation choices are made, and specific COTS products are 
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selected. Although this second scenario is certainly a possibility, it does not leverage many of the 

inherent advantages of profiling. 

Profiling is a selection from a large list of relevant standards that identifies the unique level of 

openness of a controller product. It is a statement of the commitment of the developer to support 

specific standards in his product lines. In that sense, platform profiles are the fundamental 

requirements for platform implementation. Many developer organizations will make decisions to 

commit to a particular set of standards prior to making any specific implementation decisions. In 

such circumstances, platform profiling naturally precedes any consideration to implementation. 

In practice, it is probably more realistic to assume that the platform profile for a specific product will 

evolve based on a number of mitigating factors. The integration process described in Section 3.4.1 

and reviewed in Section 4.3.1 illustrates how profiles "unify" platform and applications development. 

Profiles clarify "make or buy" choices and provide the developer with the information he needs to 

select the optimal mix of COTS products based on the availability of compatible applications and 

platform products. Implicit in this statement is the advantage of profile flexibility in the development 

process. Profiles that are tailorable based on product availability help to achieve the best solution. 

Such a solution leverages all available products, meets cost, and satisfies many if not all of the initial 

objectives for controller openness with little compromise. 

Figures 4.3.3-1 thru 4.3.3-3 illustrate the process of implementing a specific application 

architecture. Figure 4.3.3-la is a simplification of the detailed architecture and generic 

implementation example of Figure 4.3.3-lb. For the sake of readability, Figure 4.3.3-lb is 

enlarged and divided into two diagrams, Figures 4.3.3-2 and 4.3.3-3, to better illustrate the 

detailed architecture and generic implementation examples respectively. These figures were 

introduced in Section 3.4.5. 

Figure 4.3.3-la shows the basic design considerations in transitioning from an application 

architecture to an implementation. In review, an application architecture is a high-level design 

that is implemented with hardware and software components. Hardware components support 

platform functions while software components may support either platform or applications level 

functions. Platform functions are the general-purpose service oriented functions that support 

software applications. 

Implementation components fall into three general categories: platform hardware, platform 

software, and application software. As evident in figure 4.3.3-la, these categories may be further 

subdivided. Although a complete list of categories is beyond the scope of this specification, 
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many of the categories may be inferred from the implementation component library figure of 

Section 3.4.4. The implementation component library is envisioned to have a directory structure 

to accommodate all of the various types of implementation components and associated 

information. 
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Figure 4.3.3-la From Application Architecture to Implementation (Simplified) 
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Figure 4.3.3-3 Generic Implementation 

Platform hardware categories include system hardware, peripheral devices, storage devices, 
communications devices, etc. Each of these categories are further subdivided. For example, the 

system hardware category includes PCs, chassis, backplanes, board-level products, and standard 

bus I/O. Platform software categories closely resemble those that appear in the OSE taxonomy. 
Operating systems and system software, communications/network packages, database packages, 

and window toolkits are example platform software categories. 

The commercial availability of a product, or lack thereof, brings another level of dimensionality 

to the categorization of implementation components. Many platform profiles may be 
implemented using COTS products. However, where there is a deficiency in satisfying profile 
requirements with commercially available products, middleware must be developed. Middleware 
is strictly defined as a term associated with distributed systems and communications and is a 

layer of code that sits between the O.S. and the application. Middleware is more loosely defined 

in the context of NGC to represent software components that are developed expressly for 

bridging COTS interfaces to standard APIs referenced by specific profiles. 

COTS hardware products include special-function boards, many of which provide services in support 
of embedded applications. Board support packages for board-level products and library packages that 
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provide software interfaces for cross-development environments are often purchase options made 

available through third party sources. These support products are designed to minimize the difficulty 

of interfacing special-function boards and simplify their integration into a system. Such products 

today offer a variety of levels of software support and many do not necessarily adhere to open 

standards. They may be leveraged as with all other COTS platform products but may require a 

' middleware component layer to satisfy profile API requirements. 

At the applications level, Figure 4.3.3-la illustrates a correlation between architecture 

components and implementation components that is not a one-to-one mapping. The SIC2/SIC3 

component implements all the responsibilities that are defined for two components, AC2 and 

AC3, at the architecture level. SIC2/SIC3 is an example implementation component that 

represents the packaging or bundling implementation strategy of one developer. The 

client/server stubs are used for implementing transparent peer-to-peer communications and are 

typically object components that only have meaning to a link editor during the applications build 

process. Therefore, they are shown as an integral part of application component 

implementations. Client/server stubs have significance in CORBA and DCE implementations. 

They are generated by the interface definition language (DDL) compiler and implement remote 

procedure call mechanisms (RPCs). Refer to the discussion on CORBA and DCE DDL and RPCs 

in Section 3.3.2.1.6, Communications Services, for further details on client/server stub 

generation and the link process. 

Client/server stubs, COTS products, board support packages and the anticipated set of 

component middleware products all have a place in the implementation component directory 

structure. From this viewpoint, they may all be considered implementation components. To keep 

the notation simple, these components are not numerically designated in the example 

implementation figures. 

External message interfaces are reflected in the application architecture example as arrows that 

connect to a component from a single end with the other end disconnected. These messages are 

numerically designated and correlate with platform service requests at the implementation level. 

Intercomponent message sets at the architecture level are also numerically designated and 

translate into corresponding communications messages in the resulting implementation. 

Figure 4.3.3-lb and its corresponding enlargements. Figures 4.3.3-2 and 4.3.3-3, expand the 

simplified example with an introduction to timing and multi-platform considerations. Also, the 

expanded application architecture example illustrates component aggregation. The primitive 

components of a specific application component aggregate are numerically identified. 
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The controller responsibilities, as defined by the primitive components included in this example, 

capture many of the basic requirements of the NGC controller at the low-end. This example 

concentrates on low-end requirements since it is anticipated that early NGC implementations 

will naturally have this focus. As technological advancements make higher-end capabilities more 

readily available in off-the-shelf products, it is believed that these capabilities will then be 

" incorporated into future NGC products. 

To illustrate the low-end capabilities of this architecture, consider the operator interface and 

manager component, designated as AC1 in Figure 4.3.3-2. The operator has responsibility for 

determining and sequencing each part program and its coordinate offsets for a given job (PC3) 

and ensures the availability of resources required by the jobs (PC5). Job sequences are initiated 

manually (PC62). Status is obtained interactively (PC7), and startup/shutdown procedures are 

also manually initiated (PC39.47). Unlike the the first implementation example, there is no 

support in this example for a factory scheduling system interface. Part programming and 
customization (PC53.54) is performed interactively using the manual data interface of the 

controller console. These operator responsibilities could be automated, as described by the first 
implementation example, but are instead handled by the operator interactively in this example. 

This type of stand-alone functionality, with perhaps a serial port interface for part program 

download, is typical of low-end controllers today. 

The file access (and other service support) implicit in the operator interface and management 

functions is reflected abstractly in the application architecture as AM lb service message set. 

Display and keyboard management to/from the physical operator console is depicted as AM la. 

These translate into IM1 service requests in the generic implementation example (Figure 4.3.3- 
3). Similarly, the AM 12 communications message set between the operator interface component 

(AC1) and the parser, enhancer & coordinator component (AC2) at an architecture level maps to 

the IM 12 message set of the implementation example. 

Analogous to the display, keyboard and file management services that are required to support the 

operator I/F component, similar I/O services are required for implementing interfaces to motor 
drives and sensors. These are reflected as IM3 and IM4 service requests in the generic 

implementation and directly correlate with AM3 and AM4 message sets shown in the application 
architecture example. It is left as an exercise to the reader to use the appendices contained in this 

specification to research the definition of the primitive components identified in each of the 

other application architecture component aggregates and correlate message sets in the application 
architecture with specific communications messages and services in the generic implementation. 
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Applying the hard knock experience of implementing systems is crucial in specifying an 

architecture that may be feasibly implemented. System prototyping should play an essential role 

in the architectural specification process for its validation. This is especially important when the 

practicality of a new architectural approach remains unproven due to the lack of existing, 
working implementations. 

Timing considerations required for implementation will naturally influence the aggregation of 

components specified at an architectural level. An architecture is a high-level design and can not 

be divorced from timing issues involved during implementation. The implementation of the 

architecture must be anticipated. Primitive components will be grouped into architectural 

aggregates such that their respective responsibilities will have "like" timing requirements in their 
implementation. 

However, with the exception of considerations to the grouping of primitive components, timing 

issues need not be addressed at the architectural specification level. Most considerations to 

timing should be left to the details of implementation. This approach leverages the most benefit 

from the portability and interoperability characteristics inherent in NGC-compliant 

implementation component software. The timing of portable applications software will often 

only be limited by the capabilities of its underlying platform and supporting services. The timing 

characteristics of the applications software will also vary dramatically from platform to platform. 

Implementation component aggregates having similar timing requirements may ultimately co- 

reside on the same platform when they are implemented. The generic implementation example 

represents a multi-platform solution that has both RT and non-RT hardware platform 

components that are interconnected via a bridge. The two platforms have the effect of 

partitioning the applications software components such that SIC1 resides on the non-RT 

platform and the SIC2/SIC3 and SIC4 components reside on the RT platform. This is a realistic 

partitioning since most operator interface functions are easily managed by a non-RT support 

environment. For example, a one second response time is an acceptable response time to an 

operator (though possibly annoying), but is much too slow and potentially disastrous for sensor 
update to a motion control servo while cutting a part. 

The RT platform also integrates a special-purpose sensor I/O board that is interfaced to the 

other components of the system via the SIC4 sensor I/F wrapper component. This particular 

component of the system takes on hard-RT timing characteristics because of the unmodifiable, 

applications-specific logic embedded in firmware on the product wrapped by SIC4. 
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.0 fiTTMMAftV ^^COMMENDATIONS 

5.1 Summary 

This document has described a structure for the development of open architecture 
systems for advanced manufacturing applications. This structure accommodates both a 
wide range of software applications while at the same time permitting «he use of a vanay 
of potential platform solutions. The admissibie platform solutions allow for a w.de rang 
of variability with respect to processor selection, buss selection, operaung systems, and 

device interface and communication devices and standards. 

The process of NGC system development has been formalized with respect to 

development of «he overall system s<ructure «ha, satisfies system requtrements tough 
the use of a component based approach that allows the design process to begm a. a level 

of abstraction that focuses on responsibilities and information flow wtthm the system 
This flow from tine selection of primitive components from a reference arch.tec.ure to tin 
instruction of an appUcation architecture was chosen because of it's consistency w,«h 

what is becoming common practice in tine software communKy. This oUows tinesam 
basic practices set forth in the Advanced Research Project Agency (ARPA) Domam 

Specific Software Architecture (DSSA) program. 

The equally challenging issue of the system platform has been addressed through.the 

concept of profiles, a concept adopted from the EHE Portable Operaung System 
Interface (POSTX) standard. The profile is essentially a means of declanng a spe .fie 
imputation of a system by selecting standards and options from a  arge set* 
possible choice, The strategy of profiles was chosen as an alternate to sdecung . smafl 
Z of standards and conventions from a very large set and auempung to force th* on tine 
overall community. As stated in the introduction of tins document, .. wtl   be the 
inevitable market forces Una, will result in a narrowing of design options fo^NGC 
systems and the emergence of a small set of standard implementauons such as tine PC and 
the Macintosh in the personal computer arena. Realistically, any attempt to guess winch 
set of standards will win with respect to processors, busses, operaung systems, dev.ee 
Trfaces, etc. is futile. The profiling concept necessarily leads to tine posstinrhty of an 
extreme* large number of NGC systems, at leas, initially. In some waystinsa».he 
viewed as no different from the current situation. There is, however, a cructal drfference. 
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Profiling allows users to determine, with little effort, the degree of openness in the 

system that is being purchased. By declaring the fundamental structure of the system, the 

path is opened for other vendors to produce system elements that can easily be integrated 

into the resulting standardized systems. The ultimate benefit is to the user who, using the 

system profile, can draw on a wide range of related products for system expansion and 

improvement. 

The profile system that has been developed addresses both the Application Program 

Interface (API) as well as the External Environment Interface (EEI). (Again, this is 

similar to POSIX). Taken together, the application architecture and the profiling 

structure form a firm foundation for NGC system development; they do not, however, 

represent a complete methodology that would support immediate development of a 

national, commercial NGC product base. There are two elements that are missing from 

the overall system that would facilitate the adoption of the NGC approach; fully 

populated and widely accessible implementation component libraries and a family of 

tools for system design, integration, and validation. Unfortunately, the difficulty lies in 

developing the initial libraries and tool set. Once initiated, it seems clear that they will 

themselves become important commercial products. 

At the implementation component level (see section 3.3 and 3.4) abstraction is finally 

lost and issues of system interoperability are directly addressed. The implementation 

library, (or repository in DSSA terms), consists of elements of software that are actually 

linked and compiled into the final system. From the standpoint of the end user the truest 

manifestation of NGC is in the availability of implementation components, not in the 

abstract but necessary process that results in these components. It is not an over 

simplification to say that the implementation components will be the "currency" of the 

evolutionary NGC system. 

Even with the availability of libraries of implementation components, computer based 

tools will be essential to the propagation and success of this technology. The tool set is 

what will be responsible for institutionalizing the full NGC process because it will 

provide a quantum leap in the way systems are developed and modified in the same way 

Windows and Macintosh interfaces represented a quantum leap with respect to humans 

interfacing with computers. 
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5.2 Svnergistic Activities 

There are a large number of ongoing activities that have the potential for filling in the 

remaining pieces of the NGC structure. These activities include controller development 

projects as well as more generalized real-time, distributed architecture projects. The 

controller projects provide much of the necessary detail needed to arrive at a complete 

and useful NGC structure. Specifically, they provide a set of primitive components, 

requirements definition, application architectures, but most importantly, specific 

messaging structures and an initial set of implementation components. It is also important 

to note that the identified controller projects are not limited to strictly machine tool 

control architectures. In addition to general machine tool applications, there are ongoing 

projects that also address inspection (coordinate measurement) and robotics (both 

autonomous and teleoperated.) Similarly, a number of ongoing real-time, distributed 

control projects are focusing on many of the "domain independent" communication issues 

that are important to NGC as well as the tool structure for both building and maintaining 

NGC-like systems. 

The controller projects that could directly contribute to completing the overall structure 

of the NGC system include the NIST Enhanced Machine Controller, (EMC), the Unified 

Telerobotic Architecture Project, (UTAP), sponsored by the Aircraft Directorate at the 

San Antonio Air Logistics Center, (SA-ALC), with participation by NIST and JPL, the 

Air Force ManTech Title HI activity, the Department of Energy Technologies Enabling 

Agile Manufacturing, (TEAM), as well as others. Even the European version of NGC, 

Open System Architecture for Controls within Automation Systems, (OSACA), is 

worthy of further study with respect to what it can offer a long term NGC activity. All of 

the programs described above offer elements that can be directly incorporated into the 

evolving NGC structure that was described in section 3.4. The NGC structure benefits 

from the standpoint of additional depth and completeness. Each of the individual 

programs also benefits from the ability to capture program legacy in the consistent 

framework of NGC. 

Similarly, there are a number of projects that are addressing many of the domain 

independent and tools issues that are crucial to an effective and complete NGC system. 

The ARPA DSSA program is currently felt to be the most important among these 

programs. This program is working many of the issues essential to the advanced 

manufacturing domain. Issues that are currently at the forefront of this project include 
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requirements, system structural development, testing, and validation of systems. Most 
importantly, DSSA is focusing on a consistent set of tools that will make open, reusable 

systems a reality for all real-time control system applications. Even programs seemingly 

unrelated to NGC and advanced manufacturing such as the Reusable Software 

Architecture for Spacecraft, (RSAS), sponsored by the Air Force Phillips Lab, are in the 

process of working issues and developing tools that are directly relevant to NGC. Finally, 

the National Information Infrastructure Program (NHP) is of direct interest to the NGC 
development process. This program has the goal of establishing and unifying many of the 

key information transfer standards necessary for NGC. 

5.3 Recommendation 

An effective overall structure has been developed for the NGC vision for advanced 

manufacturing systems. This structure facilitates the development of open, interoperable 

controllers for all advanced manufacturing operations. At the same time, the structure 
allows for an unprecedented growth in the vendor base that can field products relevant to 
this area. It is not an overstatement to say that this structure could serve as the foundation 

for a revolution in advanced manufacturing systems similar to that which has occurred in 

personal and workstation computing over the past ten years. 

To make the NGC vision a reality, it will be necessary to continue the development of 

the overall system structure. This is not an overly daunting task because, as pointed out 

in the earlier parts of this section, the activity should focus on capture of technology from 

ongoing activities rather than additional development. It is safe to say that all the major 

elements required to complete the NGC system either currently exist, (e.g. NIST EMC), 
or are in the process of being developed (e.g. ARPA DSSA, Tide m, TEAM, NHP). The 

integration of these available elements is not an especially complex task, but it does 

require that some type of central repository site be identified and solid interfaces with 

these programs be developed. 
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6.0 GLOSSARY OF TERMS 

ADL Rules:   TBD 

Aggregate Component: Two or more 
primitive components retaining notion of 
responsibilities and message requirements. 

Application: The use of capabilities 
(services/ facilities) provided by an 
information system specific to the 
satisfaction of a set of user requirements. 

Application Architecture: The result of 
applying specific application requirements 
to the selection of Reference Architecture 
components. Still an abstraction but 
messages become more specific. Many 
possible configurations of Reference 
Architecture components for any given 
applications. 

Application Environment Profile (AEP): 
A profile, specifying a completed and 
coherent specification of the Open Systems 
Environment (OSE), in which the 
standards, options, and parameters chosen 
are necessary to support a class of 
applications. 

Application Platform: A set of resources 
that support the services on which 
application software will run. The 
application platform provides services at 
its interfaces that, as much as possible, 
make the specific characteristics of the 
platform irrelevant to the application 
software. 

Application Program Interface (API): 
The interface between the application 
software and the application platform 
across which all services are provided. The 
API is primarily in support of application 
portability, but system and application 
interoperability are also supported by a 
communication API. 

Application Software: Software that is 
specific to an application and is composed 
of programs, data and documentation. 

Application System: One of many 
possible implementations of a specific 
application architecture. The computing 
platform is fully specified by a profile 
published by the control builder. Software 
module granularity conforms to chosen 
boundaries of the application architecture. 

Architecture Description Language 
(ADL): TBD 

Base Standard: A standard or 
specification that is recognized as 
appropriate for normative reference in a 
profile by the body adopting that profile, 
but is not a profile itself. 

Component Profile: A profile that is 
made up of a defined subset of a single 
standard. 

Conformance: Action or behavior in 
correspondence with current customs, 
rules, or styles. In particular, behavior in 
correspondence with SOSAS rules, 
requirements, and styles and documented 
by a SOSAS-coconsistent standardized 
profile. 

External Environment Interface (EFJ): 
The interface between the application 
platform and the external environment across 
which information is exchanged. The EEI is 
defined primarily in support of system and 
application interoperability. The primary 
services at the EEI comprise of human/ 
computer interaction services, information 
services, and communication services. 

Hardware: Physical equipment used in 
data processing as opposed to programs, 
procedures, rules, and associated 
documentation. 

Implementation Component: A 
hardware, software, or human entity that 
fulfills a specific set of responsibilities 
with a specific interface. Tne form of 
implementation is not specified. 
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Interface: The shared boundary between 
two functional units defined by functional 
characteristics and other characteristics, as 
appropriate. 

Interchangeability: A characteristic of 
system components that makes it possible 
to replace one component with another 
component of equivalent functionality 
made by a different vendor. 

Interoperability: The ability of two or 
more systems to exchange information and 
to mutually use the information that has 
been exchanged. 

Open System Application Program 
Interface: A combination of standards 
based interfaces specifying a complete 
interface between an application program 
and the underlying application platform. 

Open System: A system that implements 
sufficient open specifications for 
interfaces, services, and supporting 
formats to enable properly engineered 
applications software: to be ported with 
minimal changes across a wide range of 
systems, to interoperate with other 
applications on local and remote systems, 
and to interact with users in a style that 
facilitates user portability 

Open Systems Environment (OSE): The 
comprehensive set of interfaces, services, and 
supporting formats, plus user aspects for 
interoperability or for portability of 
applications, data, or people as specified by 
information technology standards and 
profiles. 

Performance: A measure of a computer 
system or subsystem to perform its functions; 
for example, response time, throughput, 
number of transactions per second. 

Portability: The ease with which software 
can be transferred from one information 
system to another. 

Primitive Component: A component with 
a single responsibility defined as an 
abstraction (no code) with an abstract 

message interface and architecture 
constraints defined. 

Process: A address space and one or more 
threads of control that execute within that 
address space and their required system 
resources. 

Profile: A set of one or more base standards 
and, where applicable, the identification of 
chosen classes, subsets, options and 
parameters of those base standards necessary 
for accomplishing a particular function. A 
profile lists the choices of platforms and 
defines the interfaces for an implementation 
of SOSAS consistent NGC. 

Protocol: A set of semantic and syntactic 
rules that determine the behavior of entities 
in performing communication functions. 

Reference Architecture: The collection of 
all known components including both 
primitive and aggregate components. 

Scaleability: The ease with which software 
can be transferred from one graduated series 
of application platforms to another. 

Software: The programs, procedures, rules 
and any associated documentation 
pertaining to the operation of a data 
processing system. 

Specification: A document that prescribes 
in a complete, precise, verifiable manner, 
the requirements, design, behavior or 
characteristics of a system or system 
component. 

Standardized profile: A balloted, formal, 
harmonized document that specifies a 
profile. 

Standards: Documents, established by 
consensus and approved by a recognized 
body, that provide for common and 
repeated use, rules, guidelines, or 
characteristics for activities or their results 
aimed at the achievement of the optimum 
degree of order in a given context. 

Thread: A single flow of control within a 
process. 
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APPENDIX A — REFERENCE REQUIREMENTS 

Reference requirements guide the grouping and specialization of responsibilities from the 

Reference Architecture when synthesizing an application architecture for a specific 

controller application. For any specific application, only a subset of the Reference 

Requirements are relevant, and when the relevant requirements are selected out of the full set 

of Reference Requirements, they must be made specific to the application. For example, if 

Reference Requirement A. 1.2.2, "Availability shall be at ? percent." is selected for a given 

application, then it is made specific by changing it to "Availability shall be at 99 percent" 

The NGC Reference Requirements are listed below. The reference numbers provide a 

convenient grouping of the requirements. 

A.l      General Requirements 

A.1.1   Environmental 
A. 1.1.1 The controller shall meet ? environmental standards. 
A. 1.1.2        The controller shall be able to operate in ? temperature range. 
A. 1.1.3        The controller shall/shall not be in an enclosure that keeps out dust-laden air. 

A. 1.1.4        The controller shall/shall not be of modular construction. 
A. 1.1.5        The controller shall/shall not automatically halt operation when the temperature 

within the control unit reaches ? degrees. 
A. 1.1.6 The controller shall/shall not be equipped with an air conditioner that will 

assure operation in a temperature of ? and humidity of ?. 

A. 1.2   Reliability 
A. 1.2.1 Availability shall/shall not be a function of mean time between failures and 

mean time to repair. 
A. 1.2.2 Availability shall be at ? percent. 
A. 1.2.3        The controller shall/shall not have a test program that will execute all control 

responsibilities implemented. 

A.U   Factory Supervision 
A. 1.3.1 The controller shall/shall not interface with a supervisory computer system. 

A. 1.3.2        The supervisory computer system shall/shall not exert complete control over 

the controller. 
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inspection 

A.1.4  Probing 

A. 1.4.1 The controller shall/shall not incorporate measuring probes. 

The controller shall/shall not incorporate touch probes. 

The controller shall/shall not incorporate optical probes. 

The       controller       shall/shall       not       provide       standard 

(probing/gauging/measuring) cycles. 

The controller shall/shall not provide for user-defined measuring cycles. 

The controller shall/shall not measure the amount of excess or lack of workpiece 
material before operations. 

The controller shall/shall not adjust process parameters according to pre-operation 
measurements. 

The controller shall/shall not gauge the workpieces throughout operations to 
determine the necessity of tool changes. 

The controller shall/shall not gauge the workpieces throughout operations to 
determine the necessity of repeating operations. 

The controller shall/shall not gauge the workpieces throughout operations to 
determine the necessity of tool changes. 

The controller shall/shall not record the results of the inspection cycle. 

The controller shall/shall not generate digital coordinate point data describing any 
complex-shaped three-dimensional object. 

A. 1.4.2 

A. 1.4.3 

A. 1.4.4 

A. 1.4.5 

A. 1.4.6 

A. 1.4.6 

A. 1.4.7 

A. 1.4.8 

A. 1.4.9 

A. 1.4.10 

A.l.4.11 

A.1.5   Multitasking 

A. 1.5.1        The controller shall/shall not support multiple concurrent tasks. 

The controller shall/shall not support background tasks of part programming. 

The controller shall/shall not support background tasks of program edit. 

The controller shall/shall not support background tasks of program loading. 

The controller shall/shall not support background tasks of program downloading. 

The controller shall/shall not support background tasks of program uploading. 

A.l.5.2 

A. 1.5.3 

A. 1.5.4 

A.l.5.5 

A. 1.5.6 

A.1.6   User Interface 

A. 1.6.1        The controller shall/shall not extract geometric information from program files. 

The  controller  shall/shall   not  graphically  display  geometric   information  in 
orthographic views. 

The  controller  shall/shall  not  graphically  display  geometric  information  in 
perspective views. 

The controller shall/shall not display a ?D simulation of the tool path. 

A. 1.6.2 

A. 1.6.3 

A. 1.6.4 
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A.l.6.5        The controller shall/shall not display a ?D simulation of a cross sectional view of 

the part. 
A.l.6.6        The user interface design shall/shall not use colors and sounds. 

A 1 6 7        Colors and sounds shall/shall not be used sparingly and redundantly. 

A.l.6.8        The user interface shall provide access to information with a maximum of ? steps. 

- A 1 6 9        The user interface shall have active ? windows at any one moment. 

A.l.6.10      The user shall/shall not be able to close all open windows with a single command. 

A. 1.6.11      The user interface shall support ?-language presentation. 

A 1 6 12      Information shall/shall not be updated dynamically as it changes. 

A'.1.6.13      The user interface shall provide timely feedback within ? ms for every input the 

user makes. 

A.1.7  Block Processing Time 
A 1 7 1        Block processing time shall/shall not be fast enough to prevent data starvation. 

A.l.7.2        The controller shall/shall not automatically decelerate axes movement when the 

block execution time is less than the average block processing time. 

A. 1.7.3        The controller shall have a look-ahead capacity of ? blocks. 

A. 1.7.4        The average block processing time shall be ? milliseconds. 

A. 1.7.5        The servo update time shall be from ? to ? milliseconds. 

A.1.8   Software 
A.l.8.1        Software components shall be added or replaced incrementally w,th/without 

recompilation. 
A. 1.8.2        I/O counts and types shall be expandable for ? type of equipment. 

A. 1.8.3        The software shall/shall not preclude the use of a distributed system. 

A 1 8 4        The software shaltfshall not preclude the use of a centralized system. 

A.l.8.5        The start-up sequence shall/shall not support appropriate start-up sequencing of all 

machine components. 
A.l.8.6        The start-up sequence shall/shall not support both a default and a user-defined idle 

state after start-up. 
A.l.8.7        The system shall/shall not come up in an operational mode following the start-up 

sequence. 
A. 1.8.8        The system shall/shall not be orderly and responsible to emergency and catastrophic 

shutdowns. 
A.l.8.9        System shutdown shalVshall not result in graceful termination of process execution. 
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A. 1.8.10       A shutdown shall/shall not leave the system in a safe state with regard to the 

positions of valves, motors, and actuators. 

A. 1.8.11      The system shall/shall not automatically save critical machine-state data. 

A.2     Axis Motion Control Requirements 

A.2.1   Continuous Path Control 

A.2.1.1        The controller shall/shall not provide continuous path control of tool motion. 

A.2.1.2        The controller shall/shall not provide point-to-point programming. 

A.2.1.3        The controller shall/shall not provide NURBS programming. 

A.2.1.4        The controller shall/shall not provide feature-based programming. 

A.2.2  Interpolation 

A.2.2.1        The controller shall/shall not perform linear interpolation in simultaneous motion of 

all axis drives. 

A.2.2.2        The controller shall/shall not perform circular interpolation with 3D motion control. 

A.2.2.3        The controller shall/shall not perform helical interpolation. 

A.2.3  Interpolation Resolution 

A.2.3.1        Interpolation resolution shall be a maximum of ? mm or ? inch in linear mode. 

A.2.3.2        Interpolation resolution shall be a maximum of ? mm or ? inch in circular mode. 

A.2.4   Methods of Specifying Interpolation 

A.2.4.1        Circular interpolation shall/shall not be specified by radius and end point. 

A.2.4.2        Circular interpolation shall/shall not be specified by I, J, K parameters. 

A.2.4.3        Circular interpolation shall/shall not be performed in more than one quadrant in one 

command block. 

A.2.5  Interpolation in Rapid Traverse 

A.2.5.1        Rapid traverse motion shall/shall not be in linear interpolation mode in all axes. 

A.2.6  System Resolution 

A.2.6.1        Control system least input increment shall be ? mm / ? inch and ? degree. 

A.2.6.2        Control system least command increment shall be ? mm / ? inch and ? degree. 

A.2.7  Acceleration and Deceleration Control 
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A.2.7.1        The controller shall/shall not automatically control axis acceleration/deceleration. 

A.2.7.2        The controller shall/shall not perform exponential acceleration for feed motions. 

A.2.7.3        The controller shall/shall not perform linear acceleration for rapid traverse. 

A.2.8   Mechanical Error Compensation 
" A.2.8.1        The controller shall/shall not provide automatic compensation of lead screw errors 

(pitch error compensation). 
A.2.8.2        The controller shall/shall not provide automatic compensation of backlash. 

A.2.8.3        Lead screw error compensation shall/shall not be reprogrammable for wear 

compensation. 

A.2.8.4        The controller shall/shall not perform cross compensation for axis alignment, beam 

sag and axis motion geometry errors. 

A.2.9  Thermal Compensation 
A.2.9.1        The controller shall/shall not perform temperature growth compensation. 

A.2.9.2        The controller shall use ?# of thermal sensors. 

A.2.10 Software Limitation of Axis Motion 
A.2.10.1       The controller shall/shall not establish spatial zones (safe or forbidden zones) in 

addition to the fixed control limits provided by the machine builder. 

A.2.11 Position Sensing 
A.2.11.1       The controller shall/shall not measure position with linear digit scales. 

A.2.11.2      The controller shall/shall not measure position with inductosyn devices. 

A.2.12 Axis Velocity 

A.2.12.1       The controller shall/shall not support programmable feedrates. 
A.2.12.2      Programmable feedrates shall have a minimum of ? mm/min and a maximum of ? 

mm/min for the ? axis. 
A.2.12.3      Rapid traverse feedrates shall have a minimum of ? mm/min and a maximum of ? 

mm/min for the ? axis. 

A.3     Auxiliary Machine Control Functions 

A.3.1   Tool Management 

September 23,1994 A-5 SOSAS Rev. 2.6 



A.3.1.1 Tool management shall/shall not have storage for the maximum number of tool 

data sets. 

A.3.1.2        The number of data sets may/may not be equal to or greater than the number of tool 

changer pockets. 

A.3.1.3        The tool identification code shall have a minimum number of ? digits. 

" A.3.1.4        The tool shall/shall not be referenced by the tool identification code. 

A.3.1.5        The tool shall/shall not be referenced by the tool location identification code. 

A.3.1.6        The tool magazine shall/shall not provide random storage of tools with/without 

preassignment. 

A.3.1.7        Tool slots, compartments, or other storage elements shall/shall not have sensors for 

identification and location of each tool. 

A.3.1.8        The tool magazine shall/shall not hold the complement of tools and spares for 

specific jobs. 

A.3.1.9        The tool magazine shall/shall not support removable tool cartridges. 

A.3.1.10      The tool magazine shall/shall not support sensors for identification of tool 

cartridges and their job associations. 

A.3.1.11      The tool length shall have a measurement of ? digits. 

A.3.1.12      Cutter diameter offset compensation shall have a measurement of ? digits. 

A.3.1.13      Cutter nose radius compensation shall/shall not be used with bull and ball nose 

cutters. 

A.3.1.14      Cutter taper compensation shall/shall not be supported. 

A.3.1.15      Tool change sequence shall be initiated by a ? code. 

A.3.1.16      Tool change sequence shall/shall not be initiated manually. 

A.3.1.17      Tool change operations shall/shall not automatically adjust to variations in spindle 

attachment geometries. 

A.3.1.18      Tool length shall/shall not be verified as part of the tool change procedure. 

A.3.1.19      Tool diameter shall/shall not be verified as part of the tool change procedure. 

A.3.1.20      Tool form shall/shall not be verified as part of the tool change procedure. 

A.3.2   Pallet Changer 
A.3.2.1 The controller shall/shall not identify pallets by non-contact sensors. 

A.3.2.2 Pallet data shall consist of at least ? bytes. 

A.3.2.3 The controller shall track data for at least ? individual pallets. 

A.3.2.4 Pallet identification shall/shall not be used to automatically select part programs. 

A.3.2.5 Pallet identification shall/shall not be used to automatically select fixture offsets. 

A.3.2.6 Pallet identification shall/shall not be used to automatically select pallet offsets. 
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A.3.2.7        Multiple part programs shall/shall not be selected per pallet. 

A.3.3   Cutting Process Control 

A.3.3.1        Cutting tool life shall/shall not be monitored based on user programmed time 

intervals/tool life time. 

"A.3.3.2        A tool life data shall/shall not include: tool number, programmed tool life, 

accumulated cutting time, remaining tool life, and tools which have exceeded the 

programmed tool life. 

A.3.3.3        The controller shall/shall not automatically select an alternative tool should a tool's 

life elapse. 

A.3.3.4        Tool life data shall/shall not be passed to external devices or communication 

systems. 

A.3.3.5        The controller shall/shall not sense a broken tool. 

A.3.3.6        The controller shall/shall not sense significant changes in tool performance. 

A.3.3.7        The controller shall/shall not support a worn tap monitoring system for tapping 

speeds below ? RPM. 

A.3.3.8        The controller shall/shall not automatically change tools upon detection of a broken 

or worn tool. 

A.3.3.9        The controller shall/shall not measure engineering force levels on the spindle 

bearings. 

A.3.3.10      The controller shall/shall not measure temperature of the spindle bearings. 

A.3.3.11       The controller shall/shall not scan excessive loads for collision protection. 

A.3.3.12      The controller shall/shall not monitor for unbalanced spindle loads. 

A.3.3.13      The controller shall/shall not take appropriate actions when monitored spindle 

conditions exceed programmed tolerances. 

A.3.3.14      The controller shall/shall not adjust feedrate to maintain constant cutting force. 

A.3.3.15      The controller shall/shall not access work material parameter tables for automatic 

selection of cutting speeds, feeds, and depth of cut. 

A.4     Programming Requirements 

A.4.1   Automatic Programming 

A.4.1.1        Programming shall/shall not include high-level language part programming. 

A.4.1.2        Programming shall/shall not include inch or metric units. 

A.4.1.3        Programming shall/shall not include absolute or incremental programming. 

A.4.1.4        Programming shall/shall not include programmed dwell, stop, and optional stop. 
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A.4.1.5        Programming shall/shall not include feedrate programming: direct feedrate, inverse 
time feedrate, per revolution unit feed for turning controls. 

A.4.1.6        Programming shall/shall not include direct spindle speed programming in RPM. 

A.4.1.7        Programming shall/shall not include block delete. 

A.4.1.8        Programming shall/shall not include program number search and sequence number 

search. 
A.4.1.9        Programming shall/shall not include conditional and unconditional jumps in the 

part program. 
A.4.1.10      Programming shall/shall not include mirror image. 
A.4.1.11      Programming shall/shall not include fixture offsets for multiple pallet and table 

machines. 
A.4.1.12      Programming shall/shall not include multiple program storage and management. 

A.4.1.13      Programming shall/shall not include safe zone definitions. 
A.4.1.14      Programming shall/shall not include parametric subroutines. 

A.4.1.15      Programming shall/shall not include custom macro routines. 
A.4.1.16      Programming shall/shall not include programmed tool change. 
A.4.1.17      Programming shall/shall not include programming for cutting process control. 
A.4.1.18      Programming  shall/shall  not  include  programmed  tool  life  with  designated 

replacement. 
A.4.1.19      Programming shall/shall not include programmable adaptive control parameters. 
A.4.1.20      Programming  shall/shall  not include  programmable  selection  in  tool  failure 

detection modes. 
A.4.1.21       Programming shall/shall not include circular interpolation designated by radius. 

A.4.1.22      Programming shall/shall not include helical interpolation programming. 
A.4.1.23      Programming shall/shall not include preprogrammed (canned) cycles for drilling, 

boring, and tapping. 
A.4.1.24      Programming shall/shall not include preprogrammed cycles for area milling, 

rectangular pocket milling, circular pocket milling, and bolt hole circles. 
A.4.1.25      Programming shall/shall not include automatic chamfering and comer radiusing. 

A.4.1.26      Programming shall/shall not include look-ahead cutter compensation. 
A.4.1.27      Programming shall/shall not include coordinate system rotation. 

A.4.1.28      Programming shall/shall not include work coordinate system setting. 
A.4.1.29      Programming shall/shall not include inspection probe programming. 
A.4.1.30      Programming shall/shall not include constant surface speed programming. 

A.4.1.31      Programming shall/shall not include tool center point programming for 5-axis 

machining. 
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A.4.1.32      Programming shall/shall not include programming scaling. 

A.4.2  Manual Programming Requirements 

A.4.2.1        Manual programming shall/shall not include provisions for conversational input. 

A.4.2.2 Manual programming shall/shall not include automatic selection of cutting speed 

and feed. 
A.4.2.3        Manual programming shall/shall not include cutter offset. 
A.4.2.4        Manual programming shall/shall not include programmable spindle orientation. 

A.4.2.5        Manual programming shall/shall not include pallet or table change cycles. 

A.4.2.6        Manual programming shall/shall not include program editing. 
A.4.2.7 Manual programming shall/shall not include the following setup capabilities: test 

run of part program, dry run of part program, graphic display of part position, 

graphic tool path display, execution of automatic probe routine to align program, 

axis inversion, and zero shift. 
A.4.2.8 Manual control shall/shall not include: emergency stop, program stop, manual axis 

select, manual positioning control, sequence number search and display, spindle 

power and RPM readouts, X, Y, Z, and other axis position readouts. 

A.43  Status Record Requirements 
A.4.3.1        Status records shall/shall not include work order number: job id and quantity. 
A.4.3.2        Status records shall/shall not include job id number part number and resource 

number or class number. 
A.4.3.3        Status records shall/shall not include job completion status: good, bad, rework, 

trail, active, unscheduled stop, program stop, and emergency stop. 

A.4.3.4        Status records shall/shall not include time stamp of start of job. 

A.4.3.5        Status records shall/shall not include time stamp of end of job. 
A.4.3.6        Status records shall/shall not include time stamp of last status record update for job 

cycle. 
A.4.3.7        Status records shall/shall not include elapsed time active for job cycle. 

A.4.3.8        Status records shall/shall not include data transfer enabled. 

A.4.3.9        Status records shall/shall not include edit mode enabled. 
A.4.3.10      Status records shall/shall not include block by block mode enabled. 
A.4.3.11       Status records shall/shall not include feedrate (percent override). 
A.4.3.12      Status records shall/shall not include spindle speed (percent override). 
A.4.3.13      Status records shall/shall not include programmable logic controller input, output, 

and status bits. 
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A.4.3.14      Status records shall/shall not include machine activities: power on, start and stop, 
idle/running, remote or local, ready, hold, cycle start, controller stop, resume, 

emergency stop, test run, and dry run. 
A.4.3.15      Status records shall/shall not include tool status: list of tools, tool matrix data table 

(type of tool, number of pockets, pockets currently occupied, description), and tool 

object table (job number, T code, cutter compensation, tool offsets, gauge lengths, 

programmed tool life, pocket number). 
A.4.3.16      Status records shall/shall not include pallet status: number of pallets, pallet 

identification, list of pallet offsets, pallet object table (pallet type, pallet size, pallet 

priority levels, number of parts present, list of part coordinate reference) parts 

mounted, and parts machined. 
A.4.3.17      Status records shall/shall not include fixture status: type, id, and offsets. 
A.4.3.18      Status records shall/shall not include part program status: id, size, available 

memory size, create/modify data, restrictions on use, restrictions on modifications, 

running program is ?% over, program complete, and elapsed time. 
A.4.3.19      Status records shall/shall not include logical control parameters: feedrate override, 

spindle override, block delete, single block, and optional stop. 
A.4.3.20      Status records shall/shall not include diagnostic status: system hardware faults, tool 

magazine faults, tool changer faults, pallet magazine faults, spindle drive faults, and 

axes drive faults. 
A.4.3.21       Status records shall/shall not include event log: setting or resetting of conditions. 
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APPENDIX B — PRIMITIVE COMPONENTS 

Primitive components represent indivisible responsibilities in the Reference Architecture. For 

each primitive component, a descriptive template represents temporal, resource, and product 

information. Temporal information explains the intended timing of the primitive component, 

such as start-up responsibilities, resource information explains what the primitive component 

will need in order to carry out its responsibility, such as coordinate system data. Product 

information explains what the primitive component can provide, such as translated coordinates. 

Shaded areas of each template represent information that is not appropriate at the reference 

architecture level. Once an application architecture is built, the determination of the contents of 

these areas brings the development process into the design phase. Below is the template 

including explanations for each entry. The remainder of this appendix contains the starter set of 

primitive components for NGC. 

T  «lpwl                         A«p—*« cr***" 
«tOHtll 

  

;—■                    ,M    ■ 

MfltrtoOl Stft-fMpOfWfctMt 

•—•*■—•—• ■—«— tmm 
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Responsibility:     NGC-1     Handle operator modulations to part program statements 

TemporalAsperts 
Initiation- modiltation to part program necessar t 

Completion:    program completed 
Span: prove-out 
Discrete / Continuous 

Incomina Messages: 
initiated 

i Process: 

\ .•■•..-aj Reg.r.iiy 

ücrsstraims: 

E^ema!JBMOurce_s  
Description:       part program machine model modi'/tations 
 y!ce!y^urc9^-J«o^tatiQajmgL 
—Reliability: SS*  

CnnVirts- not likely  

Jffloj«led.geJ)ase_ 
strong  

jjp.emtojJrjlerface_ 
weak  

not likely not liKely 
.Products- 
 De-scription:_PMJ?rpsrari!  
-Attributes:   ... ,cqde;jgrarneteJ§  

Constraints-   dependent on machine 

jBjTor.message_ 
_code:_parameter  
_jnpdjJtetioiurjyMd_ 

kPly Rpfiipipnts- wks mgt/plan interp   operator interface 

Procedures/Methods: fffiföSffiWw 
Example: modulations needed 

• modify blocks if valid 
• restart segment of prove-ou 

 ' send modfad blocks 

Sub-responsibilities: 
•haltprogram   ,    ,._, 
• modify blocks if valid 
• restart segment of prove-out 

Responsibility:    NGC-2    Part program storage activities 

TemporalAsperts 
Initiation- system startup 
Completion: system shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

'■ ■' .-r-C-"' 

External Resources. 
-Description: actryjtyjtequesL 
■UketyLSource: worKstatjoaiDgL 
-Reliability: streng  
OnnYirtfi- notlikBtv 

.partprogram  
5Jcfage_m©dium_ 
.Strong  
not liketv 

Products 
nc$Oriptinn-      part program PfPgrarjLStatUSL 

.. Attributes: codejjarameiers—b»de^pararaeters_ 
Constraints:  
Likely ReciDients:workstation mot   I workstation mqt 

Procedures/Methods 
"   '       • accept program activity request 

• access part program from storage 
• send part program or program status 

Sub-responsibilities: 
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Responsibility:     NGC-3    Determine each pars'program and coordinate offsets 

TfimpnralARpRnts 
Initiation: system startup 
Completion:     system shutdown 
Span: execution and prove-out 
Discrete / Continuous 

incoming Messages: 

Outgoing Messages 

fvsessage- 
lniliatecl 
Process: 

4ossj-S©ssuss@&- 

oonst^ci-nts! 

.ExterrjaUBesources- 
■JPesgppiipn: iobiist 

Likely ?0'-irce'  fartnry scheduler 
Rpliahility strong 

finnVirls- nnt likfily 
Broducts. 
_Desc 

Attrihi ltps- 
dJoateLQffeets 

JSrpj30JSlt!SQS_ 
jConsttaintsi 
Likely Recipientsworkstation mot worKstation mat 

Procedures/Methods 
Example:       «accept job list r • parse part program and offsets 

• send part program and offsets 

Sub-responsibilities: 

Responsibility:    NGC-4    Maintain information on available tools 

TpmpnralAgpPCtg 

Initiation: system startup 
Completion:    system shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

:rccni'0 r^is^-os: -.zacc 
i-iit'atec; u-ifat?' 

Ji 

ExtemaL 
f>Pf^riptinn-     tool list tooldatajjotJaiea. jooLociodeL 
I ikply Rmirrp-opei 
Reliability: 

ratorjateriace j>BeraiorJnterface_ 

ConVfcts: 
jstranfl- £teog_ 

JmowiadoaJwseL. 
Ämog  

not liKely not likely ' i«"> iy 
Products 
 DpRrriptinn-     iiprtatArttnnI mortal 
_AttrihlltßS:  
_ConstraintSL 

Likely Recipients:knowledqe base 

Procedures/Methods 
Example'       * accept tool list, tool data updates 

• access tool model 
• update model 

 » send updated tool model  

Sub-responsibilities: 
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Responsibility:     NGC-5    Ensure that resources required by the jobs are available 

TpmpnralAspprts 
Initiation: system startup 

Completion: system shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

ExtemaLBescuircßS- 
JDe.scripli.Qn:..   i°b description 

ike!^ource;-J«0Jtelatiojnjmg 
Reliability:: strong  
P.nnVSrts- not liKely 

ProductS- 
flpg^rintiniT  veri'/tation results 
Attrihi itfts-     code: parameters 

Xtoastxaintsi 
Likely Recipientsworkstation mgt 

Incoming iviessages: 

)utaoina Messa 

i Message- 
I Initiated 
I Process: 

tool, machine model 
dgeJiase_ 

strong 
not likely 

Procedures/Methods 
Example: «accept job description r                  • access tool and machine models 

• verify availability of resources 
 »send verittation results  

part program 
jikslatioamgL 

strong  
not "kelv 

Sub-responsibilities: 
• verify availability of resources 

Responsibility:     NGC-6    Determine if next parg program matches current patffrrograr i 

TpmpnralAgpprte 
Initiation: start of part program 
Completion:   program completed 
Span: execution and prove-out 
Discrete / Continuous 

.External -Resources. 
ppwintinn-    next part's program id 

 I jkptv Rnnrr.pworkstation managem snt plan interpretation 
Rpliahility       strong " 

.^Desnriptio 
_Attnburiesi 

HnnMrts- not likely 

Products 
eösenresA. 

value 
Constraints:   match / no match 
Likely ReciPientSTwortgtatwn manapement 

nccTiin:: SS£ 
.:'..:i2.:so 
Process: 

L<!i'.COir.r '^ssaciss: 

current part*s prograi i id 

strong 
not likely 

Procedures/Methods 
Example:        • accept next part's program id 

• accept current parts program id 
•compare ids 
 »sendcomparison result  

_a 

Sub-responsibilities: 
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Responsibility:     NGC-7    Determine status of active program 

TpmpnralA«?ppr!t«? Incomino Messaoes:      | Message- 
initiated Initiation:           Droaram startup 

Completion:     proqram completed 
Outgoing messages: Span:                execution and prove-out 

Discrete / Continuous 

1 2 3 4 
* o-n?^ Rr-'-innf^"0 

O^nrlrrhrsrv 
A??»i?>; sfow 

Const rainis: 
C/>( -r.-^rt- 

External Resources 
DescriDtion:     software status 
[jkply Rniirce*  nomponents 
Rpliahilitv          stronq 
Hnnltots-              not likPly 

Products 
Dpsririntirin:      program status 
Attrihirtps-         code: Darameters 
finnstraintR- 
Likelv Recinipntsworkstation mot 

Procedures/Methods 
Example:                  • accept software status 

• correlate for program status 
• send program status 

Sub-responsibilities: 

Responsibility:    NGC-8    Request additional segments of part program 

TpmpnralAspppt«; 
Initiation: program startup 
Completion:    program shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

xri;rc .'.'essa^es:      j Message 
| ln;t:ai£C 

 : ; Process: 
'S>    »        .'-*—'» •    — ■   *        —   —   ->   - •   N-    —  —   - 

Jl 

External Resources-.. 
—Dfiscnp 
—LikelyJ 

Products 
 Descnptjoir__pafl-pfonranLrBqu«st 

AttrihiitPR-        program id  
„Constraints;. 

Likely Recipientswortcstation mqt 

Procedures/Methods 
Example:        • accept additional segments request 

• request part program 
• send next appropriate segment 

Sub-responsibilities: 
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Responsibility:     NGC-9    Initialize start of part program activities 

TemporalAspects 
Initiation: part program loaded 
Completion:    part program started 
Span: 
Discrete / Continuous 

execution and prove-out 

^n-ji"-,; T^^^ 

rjficrrjnrj^n- 

Afrri-'-tec;- 
.-onstrans: 

External Resources 
—Descrjp 
 Ukely^OUrce^-r^ratoLintfidaca. 

Reliability: strong  

JBroduclS- 
CnnYicts- pnt lilroly 

npgrrintinn-      commands for start ia 
Attrihirtps: rrxte- parameters 

.■Constraints:. 
Likely ReciniPntShtan intPmrPtatinr 

Incoming fviessages: 

Outgoing Massages: 

Message- 
Initiated 
Process: 

Procedures/Methods 
Example:        • accept cycle start command 

r • send start commands for 
various activities 

Sub-responsibilities: 

Responsibility:   NGC-10 Initiate end of part program activities 

TemporalAspects 
Initiation: program startup 
Completion:    nrooram shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

External. Resources. 
_Dasenption: partprogram_ 
_Ukpl" SniimP'wfyfc^at"" mgt       .plarunterpieialion. 
_BfiliahiUtyi. 

Con'**;- 
_PjDdUCtS_ 

-StQOft- 
""♦ '*»* 

npsrnptmn: wnrtag mmmaods. 
.code. parameters,. _Attnhiita«v 

_Constramts: 
Likely Rectpientspian nterpretatior 

!n::!a:er 
Prccess: 

nexijcommand step  

strong. 
not liKRly 

Procedures/Methods 
Example:     * accept partprogram & next step 

•acces 
• when 
  me model 
next step B nil, detemnine 

end ot program activities 
. ??^H cnrtmj rnmmanHc  

3. 

jtwchm« modftL 
JtnowiedneJiasa. 
.strong  
jnnT likPly 

Sub-responsibilities: 
• determine end ot program activities 
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Responsibility:     NGC-11    Determine where to send part program codes 

TpmpnralAsppr:ts 
Initiation: program startup 

Completion:   program shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

incoming Messages: 

Outgoing Messages: 

Message- 
initiated 
O^'^^<'xo<^c^■' 

Hfis-ifir 

.<w-i^iraifii». 

JExternaLBesQurces  
-JQejSClipJiQDJ part program, machine model 
 Likely-Source:. workstation „mgt,„ 

Rpliahilitv weak  
knowledge base 
strong 

CnnVSots; not likely,. not likely 

Products- 
npsr.riptinn:  modi'/fed part program 
Attrihi itps-      code: parameters 
Constraints: 
I ikPlv Rpdnipntsplan interpretation 

Procedures/Methods: |ffiPS°gBf!e model 
Example: • determine recipient of each 

component 
• augment code with destinations 
 » send modiVted program 

Sub-responsibilities: 
• determine recipient of each 

component 
• augment code with destinations 

Responsibility:     NGC-12  Interpret part program 

Tftmpnml Aspects 
Initiation: beginning of program stream 
Completion:       end of program stream 
Span: 
Discrete / Continuous 

PYtvirtinn and prow-nut 

ir.comirg Messages Messaoe 
Initiatea 
Process: 

—  ^„~~,r- 

-Extemal Resources 
_Descrj[: 

ikelv 
Rpliahility woak 

arLpn>fjcam_5fe_ jmcbinejnQdaL 
atjOD-maoane nsot 

ConHcts; 

Jmowl8rtgaJ»se_ 
sirnng 

nnt ItKptty ""< |i|fCty 
Products 
 DfiSCriptioxu___parsed part-program] error message—LnMchanisnuranrnands 

Attrihi itps: nrvto- paramators jnnrlfl- naramnmrs fYvin- paramntars 

_ConstraintSL 
Likely RecipientS/Han interpretation operator interface mechanisms 

Procedures/Methods 
Example:      • accept program lb 

• access machine model 
• validate code for machine 
» parse codes for motion / mechanism 

Sub-responsibilities: 
• validate code for machine 
• parse codes for motion / mechanism 

September 23,1994 B-7 SOSAS Rev. 2.6 



Responsibility:     NGC-13 Augment code with component destinations 

TpmpnralActpArts 

Initiation: program startup 

Completion:    program shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

A?'rih''*Qg' 

CAI 

JExtemaLBesQutces_ 
.JD^SjCJjpliOii: part program codes 
-Jikely-Source: plan intfirpmlalioa- 

Rpliflhilitv: strong 
C.nniArtx- nnt likfily 

Eroducts- 

Attrihutes:. ssdsimamism. 
Hnnstraints: 
Likely Recipipntsnian interpretation 

Incoming Messages: 

Outgoing Messages: 

Message- 
Iniliateti 
Process: 

recipient 
plan interpretation 
strong 
not likely 

Procedures/Methods 
Pyamnlp- • accept part program codes and recipi ants 
EACH i lyits. # upa^e <-CQÖes wam reCjpients T 

• send modi!#d code 

Sub-responsibilities: 

Responsibility:    NGC-14  Inform operator of part program comments 

Temporal Aetpprte 
Initiation- program startup 
Completion:    program shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

-ExtenaaLBesources  
nocrriptinn-     part program 
| jkPty RniirrB-wortgtatonmgt fijgjneenng. 
Reliahilitv        strong  UsealL. 
P-nnMrts- putllhRtY 

Products 
„Description: cnrnmuntsjonporaiot 
__Attrihiitfi5e___codeu)arameters— 
_ConstraintSL_pnonty levels 

Likely RecipientSPperator interlace 

P"-.->C5' 

pajiiBauicementS- 

no' I'ketv 

Procedures/Methods 
Example:       • accept part program 
^^   K • identify comments to send to operator 

• send comments 

■physical laws 
JcnQwtedgeJvisa. 
strong. 
nnt likply 

Sub-responsibilities: 
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Responsibility:     NGC-15  Augment code for coordination between motion and mechanis T 

Tempora I Asppnts 
Initiation: particular tasks narassary 

Completion:      tasks completed 
Span: 
Discrete / Continuous 

execution and prove-out 

Incoming Messages: 

Outgoing Messages: 

Message- 
initiated 

i Process: 

j ^aj j-jag/M|.-r;^c 

Atln'rv I'M- 

■ExternalRejapjmcjes. 
Description: part program 

—Likely-Source: workstaSon-roaRagefnent- 
Reliability: strong 
GnnVSrls- not likely 

Products 
—Descrir. 
_Aönbule&L 

jConstraintsi 
paraU äqusrjcJrjG- 

-macbiDarißpendanl. 
Likely Recipients:™^™ /mprhanktn 

Procedures/Methods 
example.    . aeJermine tasks requiring tight coordination 

• look ahead to determine degree of coorc 
• determine new sequencing 
« sand newly ordered oommandc 

Sub-responsibilities: 
• determine tasks requiring tight coordination 
• look ahead to determine degree of coord. 
• determine new sequencing 

Responsibility:     NGC-16 Translate coordinate systems 

TemporalAspprts 
Initiation: start of part program 
Completion:    program completed 
Span: executon and prove-out 
Discrete / Continuous 

> i > ! - ■ i <.    iv    v- ... Messags- 
iniiialec 
Process: 

-a 

ExternaLHesources. 
 D^w^pttofL__parlptogram____ 
_ Likely .Source^Dian »rtefpretatioa. 

Reliability:        strong  
ConVScts: 

jnaerJoemodeL- 
.knowledge .base. 
_5trojooi  

jsordinateJrarDejncpels. 
Jaiowledge_base_ 
.strong. 

nottikeiv not likely not likely 
-Products. 
 Descnpton^__coorc*nateiranstornwJK}rjs. 

AttrihiitftS- code parameters 
Constraints:     dependent on machin i 
Likely Reaptentgan interpretation 

Procedures/MethOdsaocept program 
Cvamnlo- • analysis tor transformation redui 
cAdinpie. • access machine models 

• access coordinate frame mofl :1s 
• transform coordinates 
« conn part prngram with nw» rhorrtinatt«; 

Sub-responsibilities: 
• analysis tor transformation required 
• transform coordinates 
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Responsibility:     NGC-17 Interpret augmented code 

TpmpnralAspprts 

Initiation; program startup 
Completion:     program shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

Incoming Messages: 

Outgoing Messages: 

Message 
I Initiated 
i Process: 

^IL 

£xteraalJBesQurces. 
_JD^S£DPJlOIl augmented program status reports machine model 

Likely -SO' .irre;  plan interpretation motion/mecrianism 

JBeliaMibc. strong strong 
knowledge base 

finnYfcts; ""* liitpiy not liKelv 
-Strong  
not likply 

■Eroducts 
nftscriptinn:      coordination commai ids. 
Attrihutes: ..cpde;Raame,tejs_ 
Oonsttaintsi 
Likely Recipientsmotion/mechanism 

pv__ni0.*acceprparr program and status reports 
example., access machine model 

• track program execution 
• determine wait/continue commands for coordination 
• qpnrl mnrHinatinn mmmanrta 

Sub-responsibilities: 
• determine wait/continue commands for coordination 

Responsibility:    NGC-18  Determine wait/continue commands for coordination 

Temporal Asperts 
Initiation- program startup 
Completion:    program shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

:rr: 
jhilatsc: 

-a 

-Exter 
npsr-riptinn: program status part program martina mnrtftl 

_lJkeJyJScdjri^Löarijnterjjjstatioa. 
Roliahilmy        strong  

p!anJrjlerpretatiorj_ 
Strang  

ConVtots: 

JcDQwletloflLbasa- 
<StDDQ  

not likely not likely ""* liWply 
Products 

nPRmntinn-     ranrrtinalinn mmmar» . 
_JVttnhi itR5ü___ßDae ^parameters  
„Constraints 

Likely Rectpientsmoftorvmechanism 

Procedures/Methods 
Example'        • accept part program & program status 

• access machine model 
• determine next coordination required 
• send coordination commands 

Sub-responsibilities: 
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Responsibility:     NGC-19 Swap current tool with required tool 

Temporal Aspprtg 
Initiation: tool change required 
Completion:     tool change accomplished 
Span: 
Discrete / Continuous 

execution and prove-out 

!     ,— —* r\ *    \'"i r~\ ^ "^ ' ' v/^ -"* ^s 

ncorning Messages: 

Outaoina Messages: 

I Message- 
initiated 

i Process: 

Q^[:H'^-; 

Exteroal-BesQuxces  
—JDe^iinpJiOIi: current, tool, id,  

ikely Source;   Ptan intBrprotation 
next tool id swap command 
plan interpretation plan interpretation 

JBeliability: strong strong _SttDDS_ 
GnnVSnts: 

Products- 
""♦ likp'y rot HKelY ™* |ikp|y 

_Qescii|: 
Attrih.utp.si 

ap commands 
code: parameters 

Constraints- 
likely Recipientstool mechanism 

Procedures/Methods 
ExamDle* * access current, next tool ids K    ' • determine location of next tool 

• track location of current tool 
• send swap commands to mechanism 

Sub-responsibilities: 

Responsibility:    NGC-20  Map tool id to actual tool location 

TpmpnralAspprts ir.ccmirq •■•/cssaqes: ! Msssacc- 

■ Process: 
Initiation-          svstem startuD 
Completion:    svstem shutdown Oj:gchc Vesssces: 
Span:               execution and Drove-out 
Discrete / Continuous 

1 0 « 4 

---..,... „,.. 
*     -:?.- 

~.   ...   
C~' //■-■ 

pYtpmal Rpsni irr.pcr 
npsrvintion*     reauirad tool id tool model 

I ikpry Roi imp- plan irtteroretation knowledge base 

RpliahilHv        strona strong 

ConVfcts:         not likeiv not likelv 

Pmrli irtc 
r>A^rrintinn*      Inrt irvatinn 
Attrihi itps- 
Constraints: 
Likerv Recipientstool changer 

Procedures/Methods 
Example:       • accept required tool id 

r            • access tool model 
• determine tool location 
• send tool location 

Sub-responsibilities: 
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Responsibility:     NGC-21   Load and unload tools 
TemporalAspects Incomina Messages: j Message- 

Initiated 
■j Process: 

Initiation:            system startuD 
Completion:      system shutdown Outgoing Messages: Span:               setup 
Discrete / Continuous 

1 2 ^ 4 

I r-.r&i £i.<r<ci>: irrf>c 

DssoripHotv 
Attrlhiärfis: 
Constraints: 
>>r.i >.rr~/ 

External Resources 
Description:      tools reauired tools supplied tool model 
| j|co|y Ro'irC1",..*?ntnry sphprlnlnr „ _op.eratoünlertace knnwfwlnp ha «A     

Reliability:         stronq weak strona 
CnnVSrte-            nnt in«My not likely nnt likely 

Products 
Descrintion:       modP/fed tool model 
Attributes: 
Constraints- 
Likelv ReciDients:knowlfidne base 

Procedures/Methods 
Example:        • accept tools required and supplied r              • access tool model 

• update model with new tool data 
• send modi'/fed tool model 

Sub-responsibilities: 

Responsibility:   NGC-22 Track tool locations 

TemporalAspects 
Initiation: system startup 
Completion:    system shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

Inco'Tiir:" :v"esSc:C9S j .vessi-.n-" 
j Irniated 

i 

Fytemal Rftsnnrrfis 
_Descriptio 
_JJk£ryi5DUK»iitouDJefl2rjlati 

Reliability:        strong 
ConVäcts: 

exLtopiisL pant tnnTs Inratinn 

not IHceiv 
StIHDg__ 
not IIKetY 

dadge-basa. 
.stioDg_ 

llikply 
£mducis_ 

Description:      l*«a mnfs naw Irratim i 
AttrihirtPS-        code: parameters 

_Cj3nstrainte^_jQoLsize_ 
Likely Recipients:knowiedoe base 

Procedures/Methods 
Example:       • access last next tool ids 

• access next tools location 
• assign last tool to next toofe location 
• send last tool's new location 

Sub-responsibilities: 
• design part 
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Responsibility:     NGC-23 Swap current part with next part 

TemporalAspects incomina Messages: Message- 
In itiateä 

- Process: 
Initiation-           part during mechanism started 
ComDletion:     Part Mrturing mechanism shut down 

Outgoing Messages: Span:              program execution 
Discrete / Continuous 

1 2 ^ 4 
i nr.rii pcc,~sfr^s=c 
Hairr^liOf 

Af'rlhnfP'.v 
oor"iSirH!rus: 
S'-i.rr^' 

External Resources 
Description:     part itturing comma ids  machine model 
I iirohf <5nnrro- mechanism control knowledae base 
Rpliahiiity-         str°n9 strong 
HnnVirtt;-            not likelv not likelv 

Products 
npsnriptinn-      command ack actuator siqnals 
AttrihirtRR-         code: parameter voltage 
Cnnstra ints-      success of executio i      device types 
Likelv Rednientsmechanism contrc 1       actuators 

Procedures/Methods,   ^^ . 
F*flmnlp-            • accept part yturmg commands tAai "K1 c •            • convert to actuator signals 

• send signals 
• send command acknowledgment 

Sub-responsibilities: 

Responsibility:     NGC-24 Identify current pallet 

TemporalAspects incominc Viesssges:     1 Messags- 
Initiation-           pallet Mcturing mechanism started |l".:t:atsd 
ComDletion:     pallet Wcturing mechanism shut dow 1 'i .          • i -> Process: 
Span:               execution "         -                                        1 

1 Discrete / Continuous 

1 0 3 A 

-■r.r^- 

1.   " '     -       : ' ^_V - 

-■ 

External Resources 
Dpsrriptinn-      sensor data 
1 ikPly SmirrP- sensor interface 
Reliability-        weak 
ConMcts:          not likely 

Products 
nesrriptinn:      pallet id 
Attrihirtps-         code: parameters 
Constraints: 
Likelv Recipientsworkstation mqt 

Procedures/Methods 
Example:                    • accept sensor data 

• identity pallet 
• send pallet id 

Sub-responsibilities: 
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Responsibility:     NGC-25  Maintain control of feedrate-dependent operations 

Tpmpnra I Asppnts 
Initiation: start of part program 
Completion:      program completed 
Span: execution and prove-out 

Discrete / Continuous 

Incoming Messages: 

Outgoing Messages: 

Message- 
Initiated 
Process: 

-Local Rsgource»- 
'^crri^'nn' 

AtrnhntP^' 

JExtemaUBesQijjrices  
-JDfiSCjrjpiiOJi;; command rate_ mechanism commands 

-Likely Source:  motion plan interpretation 

JBeliahility- strong strong 

CnrtArts- "Qt I'kelv not likely 

Products- 
npsorintion:       mechanism comma ids 
Attributes: code: parameters 

.Constraints:. altered for smooth V iw 
Likely Recipients:mechanism 

Procedures/Methods 
Example:     • accept command rate, commands 

• analysts for continuous Jfcw information 
• modify Vftw according to rate 

 • send modi'Aation commands   

Sub-responsibilities: 
• analysis for continuous V*w information 

Responsibility:    NGC-26 Control acceleration and deceleration 

Tpmpnra lAspprts ir.ccmrc Messsaes. i Messacc- 
1 l:iit:ateci 
- P'rrpa r ^-<—-- 

i 

i 

Initiation-          motion started 
Completion:   motion stopped Q^o-c f/cssaees. 
Span:               execution and Drove-out 
Discrete / Continuous 

1 0 ^ 4 
-  '\^i! ^o:^,"' i* — "c: 

""Vc */■*•*■'"" ^'* 

A—::MP--- 

v--".'"S''"i'"'"5' 
C~.    ,,--• 

External R«?so|irr°? 
npsnriptinn-     goal rate axis step limits 
1 ikpty Rnt imp* trajectory generator knowledqe base 
RpliahilHv        strona stronq 
ConVfcts:          not likelv not likelv 

Ppvinrtc 

np«VTiptinn-      mmmarvi ra»A 
AttrihiitP«' 
Constraints: 
Likelv Recioients^raiecton/ aeneran r 

Procedures/Methods 
Example:       »accept goal rate 

r            • access axis step limits 
• modify goal rate to be within limits 
• send command rate 

Sub-responsibilities: 
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Responsibility:     NGC-27 De14ie normals to path 

TpmpnralAgpprts 
Initiation; motion started 

Completion:     motion stopped 
Span: execution and prove-out 
Discrete / Continuous 

ai-Be sürc£<i. 
Hfty;- 

:«►%«*»«>*>«•- 
<:__. 

Atrrir jtoiV 

Const-amis: 

ExtemaUBasQUtces  
_J2££Cjrjpfioji: trajectory... 

Likely-Source: trajflctnty-gflnBratnr 
RRliahility' strong  

finnttrts- ml liknly 
Froducts- 

Dpsrription:      normals 
AttrihirtPS' 
Constraints: 
Likely Recipipntstraisctnrv generator 

incoming Messages: 

Outgoing Messages: 

Message- 
Iniiiateo 
Process: 

Procedures/Methods 
Example:       :«gg£*Ö 

• send normals 

Sub-responsibilities: 

Responsibility:    NGC-28  Normalize trajectory with respect to time 

Temporal Aspects 
Initiation: motion started 
Completion:    motion stopped 
Span: 
Discrete / Continuous 

execution and prove-out 

|-Extex 
npgrriptifvr HajeclOQiL. 
I jkPly Rm imp- trajectory generator taowledgeJasfi. 

ConVfcts: _rjoUihely_ 
Products 

npsTTiptirav     nrwmalfrnri trajflctnry- 
_AttrihirteÄi__setpomtSLparametets 
„Constraints:. 

Liketv Recipients:traiectorv generator 

r.ozn: '.-ice n^ac • i Messaco- 
I Init.atec! 

O.'tgo:' I 3vei: 

jnacriDejrjodeL 

strong 

not liKelY 

Procedures/Methods 
Example: • accept trajectory 

• access machine model 
• segment traiectory into setpoints for rjr lesteps 
» send normalized trajectory | 

Sub-responsibilities: 
• segment traiectory mto setpoints tor timesteps 
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Responsibility:     NGC-29 Translate motion commands to trajectory 

TpmpnralAspprts 

Initiation: start of part program 

Completion:     Program completed 
Span: execution and prove-out 
Discrete / Continuous 

Incoming Messages: 

Outgoing Messages: 

Message- 
initiated 
Process: 

JBctemaUBesourjc.es  
.JDföSjCjriptLQJi;      motion command 
-JJkely-Source: plan interpretation 

Reliability;.       stron9     
OnnVfrrts' not likely 

Products 
Qpgrriptinn-      trajectory intormatior 

Attrihirtps setpoints: parameter; 
Constraints-      Per coordinate frame 
I ikPly Rpninipntsactuator control 

cutter offsets 
motion 
weak 
not likely 

position corrections 
motion 
weak 
not likely 

Procedures/Methods, accept program 
Example: • analysis for destination infom ation 

• access corrections 
• determine setpoints and para neters 
 » send trajectory  

rate corrections 
motion 
weak 
not likely 

Sub-responsibilities: 
• analysis for destination information 
• determine setpoints and parameters 

Responsibility:    NGC-30 Coordinate with mechanisms 

TpmpnralAfipprtfi 
Initiation: program started 
Completion:    program shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

-External Resources- 

ikftly^minÄU*uiJntej5»eiatiQn_ 
Rpliahility        strong  

Pesrriptinn-     augmented code_ 

ConVfcts: npllihfiiY 
Products 
_ JDftsraptioJD^_MHiUrjn1calot_ 
_^ttrihijtR«c__oodO!parametet- 

_Constraints:  
Likely RecipientSDIan interpretation 

'rcemirc Messages: ! Message - 
| Initiatsc 

continue command 
.ptarxtterptetatm. 
JSttöQg  

noilihetv 

Procedures/Methods 
Example-       • accept augmented code r   '       • execute codes 

• if code is to wait, send wait indicator 
 «if waiting, accept continue command 

Sub-responsibilities: 
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Responsibility:     NGC-31  Avoid data starvation 

Tpmpnra I Aspects 
Initiation: start of part program 

Completion:  program completed 
Span: execution and prove-out 
Discrete / Continuous 

i ncomi no Messaaes: j Messaqe- 
nn fated 

Outqoinq Messaces 
Process: 

ucnsirasnts: 
Qr\f -rr.^' 

ExternaLBesQurces  
Description:   motion commands -machmamixieL 
| jkply Sm irppplan interpretation 
 BeJUatuliiy: strong. 

OnnVfots- 

-knowledge-base- 
jstiong  

nnt likply not lilraly 
ßroduets- 
 Dßs.ciipli£ 

AttrihutftS' 
ilysis re; ulls_ 

_Jütoastcaints:  time / mernnsdimitalior s. 
Likely Recipients; plan interpretation 

Procedures/Methods 
Example: • accept motion commands 

• analysis for look-ahead information 
• send look-ahead response to control 

rate of command transfer 

Sub-responsibilities: 
• analysis for look-ahead information 

Responsibility:    NGC-32  Determine rate of movement 

TpmpnralAspprtg 

Initiation: motion started 
Completion:    motion stopped 
Span: 
Discrete / Continuous 

execution and prove-out 

 1 p^-ac: 

-a 

External Resoucces- 
_Dßscription JooLmodeL 

JükelyJSoun^ilrAteciojyjenejatoL- >ensojrjrjterlace. 
Rpliahilify        strong 
Convicts; not liKeiY 

Äfiaii 
not 

JmowiedoeJtase_ 
.stmrjg  

likefv nnt likply 
Products 
 De.scriptiorr__or»Lrate_ 
_Aftrihiites:  

.Constraints:  
Likely Recipientsrtraiectorv generator 

Procedures/Methods 
Example:       • accept rate commands 

* access spindle speed, tool model 
* determine appropriate goal rate 

 » send goal rate  

Sub-responsibilities: 
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Responsibility:     NGC-33 Adjust trajectory for tool deviations 

TftmpnralAgpprts 
Initiation: «rtart nf part pmgram 

Completion:     program completed 
Span: execution and prove-out 
Discrete / Continuous 

ti^-^O-S***^ 

c,.,. 

ExternalJResources 
Description:        normale to trajectory 

—likely-Sourcei-trajeaory-geaeEation 
Rpliahility- strong 

.CoDl^tSl 
■Eroducts- 

not likely 

—Descnptio 
Attributes: _valuBs_ 
Constrair 
Likely Recipients™*™ 

Incoming Messages: 

Outgoing Messages: 

Message- 
tniiiated 
Process: 

tool offset amounts 
Jajow!edge-äase- 
...strnng- 
""♦ 'ikply 

Procedures/Methods 
Example: * accePt trajectory 

• access models 
• determine cutter compensation 
• send new trajectory   

plann Reduction 

-prfaainterpcetation- 
ctrnnn  

nnt lilraly 

Sub-responsibilities: 
• determine cutter compensation 

Responsibility:     NGC-34  Determine trajectory corrections from predictable variations 

Tpmpnra 1 A«spprrtc ~'.:zr~ •\- '.'-.•isi-sgss:      i Message- 
Initiation-            machine startup | mit ateo 
Completion:      machine shutdown 

^•-■■4- 
v  .            __ - K'OJSSS: 

Span:                 execution and prove-out j Discrete / Continuous 

1 0 3 4 

-■  

-" -   - - ■ 

pYtPrnal Rpvuirrp^ 
Hpsmption-      themoJ data temporal data tables, polynomials position 

 LikprvSourcp' sensouoiertace  ___flRerating_systerü_ knowledqe base sensor interface 

Rpliahility         weak strona strong. weak 

ConVfcts-          kkptv not liketv not likelv not likelv 

Prnrti irtc 
_D«scnptioni__Jraiectory corrections 

AttnhirtPK-         code parameters 
Constraints: 
Likely RecipientStraiectofY oeneratic T 

Procedures/Methods. access „^^ ^^ 
Example:                     • access temporal data 

• access thermal data 
• determine necessary correct 
• send corrections 

Sub-r 

3ns 

esponsibilities: 
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Responsibility:     NGC-35  Determine trajectory corrections from sensed variations 

TpmpnralAspprts 
Initiation: sensor data beyond tolerance 

Completion:    sensor data with tolerance 
Span: execution and prove-out 
Discrete / Continuous 

/A^I' f^-^-s— 

AVi-irv:>oc- 

*_'V- ;~? ■ cxv- >^. 

 Likely-Sour 
 BeliabilityL. 

CnnVirtg- 

ensor interface 
weak 

HKelY 

■Eroducts- 
Dpsrrintion: fltrxonessarje 
AttHhi itpg-       code: parameters 
Constraints: badLpatJ 
I ikely Reripißntffinprator interface 

incoming Messaaes:        Message- 
I Initialed 
Process: 

Outgoing Messages: 

ExtemaLBesources . . ,—  
Description:     sensor data (force, topiueViormals to trajectory sensor tolerances 

strong 

nt likely 

value 
ao-mrreruoa. 

i_njacbine-danaodent_ JTXBCbiaejlep.eadexi' 
traiPrtnrv QPngration 

Procedures/Methods: SuatJy^onitor sensors 
Example: »compare sensor data agains 

tolerances 
• calculate correction 

 « conri mrrortinn  

ijarfnry generatim i plan interpretation 

_Slrojrjgi_ 
not likely 

jr^ejarjrgcjipIL 
value 

trajectory generation 

sensor ranges 
knowledge base 
strong 
not I'kelv 

p ninnl» rarrnction 
-valua. 

jine-dependant— 
trajwtnry gonpratinn 

Sub-responsibilities: 
• continually monitor sensors 
• calculate correction 

Responsibility:     NGC-36 Adjust trajectory with corrections generated by sensor data 

TpmpnralAspprtg 

Initiation: start of part program 
Completion:     program completed 
Span: 
Discrete / Continuous 

execution and prove-out 

-ExteroaLBesources- 
_DescriplJorx trajectory. 

likfilyjSmjme^_Jtejednr^rjeMratioD| motion. 
ppliahilrtv strong |       gtmnn 
CnnMrts: 

Products 
not likply 

 Description:. 
Attributes:  

jnotfVhdJrajectorifls. 
«Mtprante- parameter, 

JConstraints:__nor>^rmai)«rtj)rog^crBnge. 
Likely Recipientsirt„atnr contra 

ircomir Message - 
initiateo 
P'ccess: 

mt liKRly 

Procedures/Methods 
Example: • accept trajectory 

• accept sensed corrections 
• modify trajectory as per tolerances 
» send new trajectory 

3. 

Sub-responsibilities: 
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Responsibility:      NGC-37 Translate servo commands into drive readable movement coi imar 

Tpmpnral Aspects 
Initiation: start of part program 
Completion:     program completed 
Span: execution and prove-out 

Discrete 7 Continuous 

^rx>4r^»*«^i?\>- 

C""r.5tr3!nt5 

ExtemaLBesources  
Description:       servo command positions kinematic equation; 

keJy-SOJJECe:   trajectory generation 
BeJiabJIity:        strong 

Xoxi2^cis: not liKely 
Products.. 

Hpsmptinn-       movement commam s      following error 
-Attrihiitfisi voltage 
P.nngtraintR-       accuracy of models 
Likely Recipientsaxis drives 

Incoming Messages: 

Outaoino Messages: 

Message- 
Iniiiaced 
Process: 

knowledge base 
strong 
not likely 

value 
^CS.UJ3Cy_0l£DC5dfJ5. 
machine model 

example.           . interpolate between current position 
andsetpoint 

• convert to command voltage 
 ■ rand iroltarja  

feedback 
servo interface 
weak 
not likely 

Sub-responsibilities: 
• interpolate between current position and setpoir: 
• convert to command voltage 

Responsibility:     NGC-38   Control motors to produce movement 

Temporal Aspects 
Initiation- receipt of voltage commands 

Completion:      feedback provided 
Span: 
Discrete / Continuous 

execution and prove-out 

-Extemal-Besources- 
npsrriptinn-       movement comman Is     feedback 
I ikpty Sm imp-   actuator control 
Rpliahility strong 

not likely 

Products 
_J3eivaiption^__inotDr_comrnanos_ 
AttrihiitPS- vottage  

■'::orvc .'viessasei" I Message 
' InhhMec 

- PICCGSS: 

motors 
strong 
not likely 

Jeedback_ 
values 

_a 

Constraints:      motor type 
Likely Recipients:motors 

accuracy of device; 
actuator control 

Procedures/Method* Ä^Ä«»"^ 
Example: «send vottage 

• accept leadscrew feedback 
• convert for actuator control 
» send feedback 

Sub-responsibilities: 
• convert for motors 
• convert tor actuator control 
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Responsibility:     NGC-39 Initiate startup procedures 

TempnralAsperts 
Initiation: system power on 

Completion:     startup completed 
Span: 
Discrete / Continuous 

prior to all operations 

Ar-:i 

.ExtemaUBesQurces  
_D^Sj2CipiiQDJ referenc.eja&oM 

keiy-Source^-opfitatar interfacB. 
_Beliahilityi 

OnnYfcts- 
strong 

JBroducts- 
nnt likRly 

—Desnrjplion: diag 
Attrihi rtpg- codes: parameters 

_J£oßstrJaint£__deyjcejype.s_ 
Likely Recipipntc;r»n if / maintenance 

incoming Message 

Outaoino Messages: 

Message- 
initiated 
Process: 

machine model 
knowledge base 
strong 
not likely 

sj;i»idiDateji^r5^JttiGns_ 
codes: parameters 

_axes  
trajectory generation 

Procedures/Methods* initialization of power 
Cyamnlo' • perform diagnostics 
cxctmpie. • send diagnostics results 

• determine axes zero positions 
• send axes zero positions 

Sub-responsibilities: 
• perform diagnostics 
• determine axes coordinate zero positions 

Responsibility:     NGC-40 Coordinate with factory scheduler/control system  

Temporal Aspftrts 
Initiation; system start up 
Completion:     system shut down 
Span: 
Discrete / Continuous 

no program executing 

-ExtemaLBesources- 
 Descnpücui^_jQCjosto]ctiorjs LjnaiSirjejnodeL- 

j5D0wjedge_base_ kRly_Soiircpj_Jactory^y5tem_ 
 Rpliahility strong  

Conllcts; rci liKetv  
Products 

jieanhjnformation_ 
„code: parameters_ 

„Desrnptinni 
_ Attributes:— 
^Constraints:  

Likely Recipientstactory system 

. -. '• * — ~ — - 

"CSüS: 

strong 
not likely 

JOtLlisL 
Jd.palleVpartid.-Offset! _tool idJocatiori 

workstation mgt 

Procedures/Methods* accept instructions 
Pvamnlo- • access machine model 
CAdiiipm. • validate, send instructions 

• accept machine heartbeats 
• determine machine health 
« send health intarmafcon 

_beartöeats_ 
all components 

Strang. 
not likely 

_toot.sst_ 

wofkstation mgt 

jotistatus  
jcode: parameters. 

factory system 

Sub-responsibilities: 
• validate instructions 
• determne machine health 
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Responsibility:     NGC-41   Path planning based on part features, surface model, etc. 

Temporal Agpprtg 
Initiation: beginning of model-based program 
Completion:     program completed 
Span: execution and prove-out 
Discrete / Continuous 

Incoming Messages: 

Ouiqoinq Messages: 

Message- 
initlaled 
Process: 

3. 

ExtemaL.Resourc.esL 
Description:      part description machine model stock description 
Likely Source: workstation mgt 

-Beiiabilityi       weak       
JsrjDwJedjjeJbasa. knowledge base 
strong _stang_ 

finnVfrftv not I'kelv ""* 'ikPly not likely 
Products. 

Dpsmptinn-      pat" plan 
-Attributes! trajectories 
rVinstraints-      machine dependent 

Likely RecipientspiQ'ion c0"*01  
Procedures/Methods* accept part description 
Pvamnlo- • access machine model, 
CÄdmpie. stock description 

• determine path Tor motion 
• send path 

Sub-responsibilities: 
• determine path for motion given models 

Responsibility:     NGC-42 Modify part program based on sensor data 

TfimpnmlAspftnt.s 
Initiation- sensor data beyond tolerance 

Completion:    sensor data within tolerance 
Span: execution and prove-out 
Discrete / Continuous 

"ccnirc !vi5ss<i3ss: 

seci^sc1 

Messace- 
Inilatsc 
Process: 

-External-Resources  
rVsrnptinn-     sensor data 

JLJkely_Sntirr£i5eijKtjüiefiac 
-part.nrogramL. jsßosorJDleraocas- ■Sflnsnr rannas- 

itattonjDnt- 
RAliahility weak _si[Qog_ 

JJjanJnle 
-Stmnrj- 

Bwiedoejase.  
,amng_ 

■■MMIMAIMM HhetY ml likply not likely notliketv 

Products 
_ Description: 
—Attributes: blocks of codes 

j»rmunessan«  
pnrta paramnlars 

Xonstraints:_jnacr«ie_depen()enil_bad programJ.bacL^ensors_. 
Likely Recipientawrxstaton planrenj      operator interface 

Procedures/Methods: gSnWRSrl* sensors 
Example: • compare sensor data against 

tolerances 
• adjust part program 

 » send new part program 

Sub-responsibilities: 
• continually monitor sensors 
• adjust pan program 
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Responsibility:     NGC-43 Switch between position control to force control 

TfimpnralAftpRfstFi 
Initiation: start of part program 
Completion:    program completed 
Span: 
Discrete / Continuous 

execution and prove-out 

4_seaJ-Sssao«JÄS- 

ÄfTi 

:nstrasnis: 

ExtemaUBe-Sources 
 Description:     switch command ljmachine.mpde.L 
—iJkeJ^^OUH^iJttHjaclary43eDßialiQn4JOTow)BdgaJ3a 

Rpliahilrry: strong  
C.nn-iArts- 

Products 
""* |ikp|y 

—JQescrir. 
Attributes^ 

> command 
_oi(fifcjiarairjfiteis_ 

jConstiaintsi. 
I ikply Rpcipipntsnntion 

Incoming Messages:       Message- 
j Initiated 
Process: 

Ct-.trr taolnq Messages: 

-SteQDS- 
""♦ |ikp|y 

■deactivate, commancL 
saäs^pa!Siasisx&- 

motion 
Procedures/Methods 
Example: • accept switch command 

• intermediate conversion between control 
• send deactivate to position/force component 
 « send activate to force/position component 

part model 
2wjed.ge_b.ase_ 

strong  
not likely 

currenlppsitionjijorce 
■sansorinterfanfi  
weak 
nnt likPly 

Sub-responsibilities: 
• intermediate conversion between control 

Responsibility:     NGC-44 Plan for multi-axis interactions 

TpmpnralAspprt«? ,-cc:-::r;- ..;c;;^::^ 

I 

i 

Initiation-            start of part program 
ComDletion:     program completed 

0-:?=.-'s .vsss£:s£: Span:                 execution and prove-out 
Discrete / Continuous 

1 0 3 -i 
*- — '; ,    ' — "> f" ~ '  ' """,—. (- 

-,_... , „   ... „. 
_■>...- - .._.-■• 

•-,..,..... ...... 
c;  -   :     '.-V-. 

Fvtpmfll Rpennrroc 
npsrriptinn-      traiectorv machine model 
I ikply Rf«irr.p- motion knowtedqe base 
Rpliahility          strong strong 
ConMcts:          not liketv not likelv 

Prrvinrt« 
np«^riptinn-      movement commanc 3      error message 
AttrihirtPR-          code: parameters code: parameter 
Constraints:     time limitations interaction invalid 
Likelv ReciDientanotion operator interface 

Procedures/Methods 
Example: • accept trajectory 

• perform look-ahead to determine possible 
multi-axis coordination optimization 

• send modi!*d part program 

Sub-responsibilities: 
• perform look-ahead to c 

mult-axes coordinaso 
Jetermine possible 
n optimization 

■f 

September 23,1994 B-23 SOSAS Rev. 2.6 



Responsibility:     NGC-45 Touch off for automatic setup 

Tempora I Aspects 
Initiation: setup of part 
Completion:    tool in position 
Span: prove-out 
Discrete / Continuous 

Incoming Messages: 

Outgoing Messages: 

Message- 
initiated 
Process: 

Q^>!   :f,-*A- 

ExtemalJBesources- 
Description:      trajectory rough termhation point sensor data servo feedback 

kely Source: trajectory generation sensor interface hardware interface 

JBeiiahility: strong. weak strong 

CnnVfrrts- rmt likft.lv likely not likely 

-Eroducts- 
Dpspriptinn-      servo commands 

^Jttrihulesi _YBßags_ 
Constraints-       gprrenraraiirary 
Likely Recipientsaxis motors 

Procedures/Methods 
Example:    • accept trajectory rough termination point 

• move to termination point 
• continue move until sensors or 

servos pass tolerance 

Sub-responsibilities: 
• continue move until sensors or servos pass tolerance 

Responsibility:     NGC-46  Perform sensor fusion 

Tpmpnral Aspprts rccrnirc Msss^ssr.:      ! Mcssaoe- 
Initiation-            start of part program i lp.it:ateo 
ComDletion:      program completed r~*                                      \   * - Process: 
Span:                 prove-out and execution 

f Discrete / Continuous 

1 9 3 A 
,, ^..      ;_   ,  .,.   ..„,. t. 
-._ .,. ... „.. 
•  t. ■ 

~-~    --• 
"...   .-- 

F«tpmfll Rpsniimpc 
npsrriptinn-       sensor data machine model 
I ikPty Rniimp-   sensor interface knowledge base 
Rplia'hilitv          weak stronq 
Convicts:           «cetv not likely 

Prrvii irtc 
npsrriptinn-       sensor information 
Attrihirtps-          values 
Constraints:      sensor accuracy 
Likelv ReciDientsJraiectory gen. / w* s planning 

Procedures/Methods 
Example:            • accept sensor data 

• fuse data from multiple sensors 
• convert data into information 
• send information 

Sub-responsibilities: 
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Responsibility:     NGC-47  Initiate shutdown procedures 

TfimpnralAspects 
Initiation: system start up 
Completion:     system shut down 
Span: always running 
Discrete / Continuous 

V"!   Rc5.^l!>'!\OC_ 

External Resources 
ppsrriptinn-       watchdog warning 

_4Jkely^ource^Jä3^]dogLSxstem_ 
LBeliability: 5^29  

P-nnttrtQ- not likely  
JEroduclS- 
__Diescriptioru_ 

AttrihutRSL. 
shutdown comman« I 
code: parameters 

„Constraints-     time 1™™*°™ 
likely Recipients:atl components 

incoming Messages: 

Outaoing Messages: 

Messaae- 
Initiated 
Process: 

machine model 
J^wtedgebase. 
strong 
not likely 

Procedures/Methods 
Example, .acc^watChtjog warning 

• determine safe shutdown procedures 
• send shutdown command 

Sub-responsibilities: 

Responsibility:     NGC-48 Cue the operator for manual tasks 

TfemporalAsoects 
Initiation- receipt ot specitt commands 
Completion:   valid operator response 
Span: 
Discrete / Continuous 

execution and prove-out 

JExtamaLBesQuice.s_ 
ppg/rintinn-    part program 
\ fkply Rm imp- workstation manager lent knowledge base 

_Beliability_ 
ConVfcts: 

weak 
not likely 

Products 
npsrript'""-    halt/continue cue 

_At*lhirtpg-       code: parameters 
.CoDsttaintsi. 
Likely Recipientylan interpretation/operator interface 

i I-' -ir.-H 

,J.C 

machine model 

strong 
not likely 

Procedures/Methoö§SKn?S 
Example: • verify manual tasks 

• halt processing 
• cue operator for task 

 «resume processing with operator response 

.a 

operator response 
code: parameters 
strong 
not likely 

error message 
code: parameters 

operator interface 

Sub-responsibilities: 
• verify manual tasks 
• halt block processing 
• resume processing 
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Responsibility:     NGC-49  Handle operator command interactions 

TpmpnralAgpprts 
Initiation: system start up 

Completion:   system shut down 
Span: always running 
Discrete / Continuous 

ncoming Messages: 

Outgoing Messages: 

| Message- 
I Initiated 
! Process: 

>JJ3.s><zci äsausvSÄ- 

£xternaLResources_ 
_J3fiSCnpiiPJi: part program, manual interaction 

rely Source: workstation manaqem 3nt operator interface 

JBeliabilitvL weak weak 
CnnVSrts: not 'frelv not likely 

Eroducts- 
ripgrrintinir    execution commands error message 
Attrihi itps code: parameters code: parameter 
Hnngtraints-    non-permanent Chang L-JuteiadiiQaJDyalid. 
Likely Recipientfitan interpretation operator interface 

P/ccedures/Methods! ffßfflen 
Example: interactions needed 

• insert execution commands 
if valid 

 »«JPnrl PYPrtrtinn r-nmmanri«: 

Sub-responsibilities: 
• halt program 
• insert execution commands if valid 

Responsibility:     NGC-50  Handle modulations ot offset values by operator 

Temporal Aspprrts 

Initiation: operator signal 
Completion:      part prooram start or shutdown 
Span: always running 
Discrete / Continuous 

External Resources: 
Pftsnriptinrr       nttsat valtiws 
 UkeryjSoumai_flperaifXjntßrfricfl._ 
—Beliabil lilityi _sttoog_ 

; Messacc- 
j 1 'lit atso 

I 

machine mortals 
owterV)e_basa. 

ctmnj 

.a 

Conttcts; 
Products 

nnt liknty tint liktaty 

 Dftsrwptinni__m«i,*ilniachinejrK rteis_opera!or tog 
ametar_ 

„Constraints: _operator capabilities 
Likely Recipientsknowtedoe base 

_ronmoryja7R_ 
operating system 

Procedures/Methods • accept operator offsets 
Pvamnle- * toQ commands cxdmpm. . modify mactwie models 

• send new models 

Sub-responsibilities: 
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Responsibility:     NGC-51   Handle operator interface for manual interpolation command 

TftmpnmlAsperts 
Initiation: system start up 

Completion:     system shut down 
Span: always running 

Discrete / Continuous 

incoming Messages: 

Outgoing Messac 

Message- 
Initiated 
Process: 

r">) Qn<?.-.; ! ■•i:y&*t^X"r**r*ir*Z?~ 

£xteinaiJBesojurcfis_ 
_JDe.scrjption: trajectory manual interpolator command 
 Uke!y-Souroe^ajsiaojrx.genej(a.ttQa 
_Be]iability: strong 

finnVfcls; 

 O^MOXiDtSTJaCA. 
strong  

not liKeiy not likely 

Rroducts- 
ripfinrintinn'      servo commands halt commands 

Attributes: voltage code: parameter 
Constraints:     accuracy of operator 
Likely Recipientsaxis motor trajectory qeneratio 1 

Procedures/Methods . _ 
Example:        • accept^ajectory 

• accept manual interpolation command 
-indTh ' "— 

...lerpo T 
•se.. 
•irrte 

[halt to trajectory generation 
olate for next setpoint 

Sub-responsibilities: 
• interpolate for next setpoint 

Responsibility:     NGC-52  Ensure safety 

TfimpnralAspfirts 
Initiation- system start up 
Completion:     system shut down 
Span: always running 
Discrete / Continuous 

;:xGf7i;;"g ;v'essa::r;s:       ! message- 
I i."iit.2t£C 

OJ:GO:- A>wOt.'. :.;;>. 

3. 

External Resources— 
npsnriptinn-       voltaoes haafthnats Joterances_ 

_Jjke]y^oume^jjatdwarejntedac 
Rfiliahility; Strong, 
CnnVfrts- 

alüxxnp 
-Strong. 

5Y¥ledgeJ»se_ 

_stmog_ 
not likerv mt IfltPily not liketv 

Products 
nftsrxiptinrv       walrhrtnq warning 

_jAttributas^___j»clesiparaniejers. 
Constraints:     out of tolerance 
Likely Recipientsshutdown component 

Procedures/Methods 
Example:        • accept voltages 

• access heartbeats 
• compare against tolerances 
 «send warning if tolerances exceeded 

Sub-responsibilities: 
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Responsibility:     NGC-53 Generate a part program 

Temporal Aspprstg 
Initiation: part design completed 
Completion:     program developed 
Span: 
Discrete / Continuous 

product development 

learning Messages:      I Message- 
| Initiated 

-1 Process: 
Outgoing Messages: 

-S« £i,&C±<iXlRSL &lciT:~rt<r&\*- 

'irM sf.<M.V 

L'OnS(^<ä!rU5! 

ExtemalJBesQurcesL 
-JQejLcnpJioiu part model... stock model operations available machine model 
 Likely-Somce:.. knowledgaJaase toondedneJiasi 

Rpliahility- strong 
finnVfctfv ""' '■'«■'y 

_stong_ 
nnt liKRly 

_know!edge-base_ 
stong  

«tedge-base- 
.stong  

not lilraly not likely 
■Etoducts- 

DRsnriptinn-      part program  
AttrihutPR-          code: parameters 
Constraints-  
Likely RecipientsworKstation mal 

Procedures/Methods 
Example* * accept part, stock, machine models K    * • access operations available 

• determine sequence of operations 
• send part program 

Sub-responsibilities: 
• determine sequence of operations that 

will change stock (as is) to part (to be) 

Responsibility:    NGC-54 Customize part program for particular machine 

TpmpnralAspprts i-ccnirc w'essacc-s:      i Message- 
Initiation-          new part Droaram j Iru! ate-j 

Completion:    Dart program customized - 
- r/"-s,^^c *■ 

Span:               product development 
N>. .L,'_;..: :.;b;c.;C:            , 

Discrete / Continuous 

1 0 3 &■ 

i* •* .* - .j * 

--•  -—-• 

FxtPrnfll Rps/inmpc 
npcrriptinrv     part program machine model 
I ikplv Soiin^iÄori^twDjiigl  knowledge base 
Rpliahility-        strong strong 
Convicts':        not likPtv not lik*»tv 

Prrvjf |<7t*> 
_J5asmption^_cusiomi7«i pan pmo' 

AttrihirtPR*  .     code: parameters 
im 

Constraints: 
Likelv Recioients*ort«tation mgt 

Procedures/Methods 
Example:        • accept part program 

• access machine model 
• customize program tor machine 
• send customized part program 

Sub-responsibilities: 
• customize program tor machine 
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Responsibility:     NGC-55 Schedule processes in part program for optimal coordination 

TpmpnralAspprtg 
Initiation- part program completed 
Completion:     part program re-sequenced 
Span 
Discrete / Continuous 

product development 

ncominq Messaqss: 

)utgoino Messages 

Message- 
I Initiated 

-i Process: 

üttTrhijfgic;- 

«•": 
-ExtexnaLBesouiCES- 
__DescriptiQni__part.pco.gram  
 Likely-Source: wnrkstafio~-mgt_ 
____liaJt_l_yj slrqPR  
____________ 

part model 
JtaQ.wtedgejjas.e_ 
strong  

_stocK.model  
ow)edgeJ3ase_ 

.Strong  
not likely not likely „nnt likRly 

j-coducts... 
Qpsnrir 
Attribute 

weacedj)_jlpi^grar__ 
le_parar_fitje_5_ 

--Crwxstraintsi 
Likely Recipientsworkstation mot 

Procedures/Methods 
Example: «accept part program r • access part, stock models 

• analyze program for optimality 
• send resequenced pah program 

Sub-responsibilities: 
• analyze program for optimality 

Responsibility:    NGC-56  Simulate part program execution 

Tpmpnral Aspprts "c;::*: r :■ :.'::.-::'.:':":£: 

- ='0cr:s:-=: 
Initiation-          simulation initiated 
ComDletion:   simulation complete ^v 

Span:               maintenance 
J.V.   _.           *                                         ^   -; 

Discrete / Continuous 

1 9 3 - 

-  

r -    - - - 

Fxtpmal RPCOIircp^ 
DPPCrintion:     part program  start command hardware models _snftw»mjnnrl«ls 
I ikplv Sm imp-workstation mat operator interface knowtedqe base kpr^wtno h»«w 
Rpliahility        strong stronq strono. stmno 

ConVfcts:         not fiketv not likelv not likelv 
Prnrli ir^c 

Dpurnntinn *      am riatinn nxa ilf«t 
Attrihirtps-        code: parameters 
Constraints: 
Likelv Recipientsooerator interface 

Procedures/Methods 
Example:    • accept part program and start command 

• retard commands to actuators, axes 
• respond to commands as devices would 
• send results 

Sub-responsibilities: 
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Responsibility:     NGC-57 Simulate software faults 

TpmpnratAgpertfi 
Initiation- simulation initiated 

Com Pletion:   simulation complete 
Span: maintenance 
Discrete / Continuous 

—irrzr-j 17t Rt~-"^-C ri&*cr -C**^Crt^(>" 

incoming Messages: 

Outgoing Messages: 

Sviessage- 
iniiiaied 
Process: 

cnst'air 

£xtfimaLResojircfis_ 
_J2.escoptiOD'^_part.program_ 
—Likely-Source:* 

Rpliahility       strong 

software errors model 
MedgeJaasiL 

strong  

GnnVfrrts; 
Products. 

nnt liknly not likely 

Dpsrrintinn-    mnrti'Art software mnr 3ls 
Aftrihi itps-       code: parameters 
Constraints'     »nnn; insnrtnri 
Likely Recipientfltnowledoe base 

Procedures/Methods 
Example:    • accept part program and errors model 

• modify software model to contain 
selected errors 

• send modi v»d software model  

Sub-responsibilities: 

Responsibility:    NGC-58  Simulate hardware faults 

Temporal Asppcrts "c::ri;r'!- ;;;css;
:':^s:       j i/iessäCc- 

Initiation:          simulation initiated ! j^it S!-3C 

ComDletiOn:    »mutation comDlete 
Span:                maintenance 1 Discrete / Continuous 

1 0 3 4 

-., 
  

- -. ....,   ■ - 

: -    -- 
Fvtpmal Rpwurnp^ 

Dpscrintion'    part program hardware errors mode 
I ikpK/ Rntirrp-workstation mot knowledqe base 
Rpliahilitv-        strona strona 
Con4cts:         not iikPtv not likely 

Prnrliirtc 
Ppsmptinn'      imi'M harrturara nv iol 

Attrihidps- axle._Daranieters__ 
Constraints:    snots nserted 
Likelv RecipientSknowiedQe base 

Procedures/Methods 
Example:    • accept part program and errors model 

• modify hardware models to contain 
selected errors 

• send modi Vied hardware model 

Sub-responsibilities: 
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—*: r^^<;\4-4--> *S^ 

Responsibility:     NGC-59 Create a part design 

TpmpnralAsppnts 
Initiation: part identi'/fed 
Completion:     design completed 
Span: 
Discrete / Continuous 

product development 

'*■& 'K$ ^:»»*^T*ur^* 

Qniir;\-' 

ixtejcnaLResoucceSu. 
„Description; p.arLdescriptio.n_ 
 uke!i<-Source^-engineanng  

Reliability.: *§§•<  
nnnVirt«;- mt likRly  

Products. 
_Desc 

Attributes! 
esigamodeL 

Jeamras  
J^straintsi. 
Likely Recipientsmodel manaoemerft 

Incoming Messages: Message- 
inii 

jtgoing Messages: 
i Process: 

part requirements 
jengiaeerjogL 
weak 
not likely 

Procedures/Methods 
Example: * accept part description & requirements 

• access physical laws 
?npan 
part design model 

• design pan 
•sende   "J 

.physical.laws— 
JraoMdedgeJaase- 
_£teng_ 
nnt likRly 

Sub-responsibilities: 
• design part 

Responsibility:    NGC-60 Notify maintenance when parameters exceed tolerances 

Temporal Agpppt«; 
Initiation: system startup 
Completion:    system shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

External Resources  
_Dp_«v:rintion^_macrJnejTK>cleL 
_JJkeJyJSourceJg»wtedgeJase -»J 

Rpliahilrry strong J«eak_ 
ConVfcts: not likely | not LiKetV 

Products. 
npc/riptinrv      ownphnn nrtiUalinn 

 Attributes^ 
_CoDstrainlsi 

jodfiLparamejen 

Likely Recipients^actorv control 

rxonrn ..'■ iviSiSacc- 

O ■■"< s* r". c c" 

o-:c 

jnachjne status _ 

Procedures/Methods 
Example: • accept machine model 

• monitor machine status and sensed status 
• compare status against tolerances 

 « seng exception it out of tolerance 

3. 

jwisflrt status 
rJace_ 

jweak- 

""< liltc|y 

Sub-responsibilities: 
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Responsibility:     NGC-61  Maintain models 

TemporalAspects 
Initiation: system startup 
Completion:    system shutdown 
Span: execution and prove-out 
Discrete / Continuous 

!>(-."' Pcgftürrs1; 

_Mllii-!iISSl 
■onsraints 

Q,V;.•,.,,. 

External Resources 
JQejsaipiiOXK updates to modeJs 
 Likeiy-Source^-onJf/tnechaniusm/mr ion_knowledge.-hasp_ 

Reliability strong  

OnnVfrts; 
JEtoductS- 

nnt lilfPly 

r>fisr.rintinn: updatedLmodels. 
AttrihiitRs:  
Constraints: 
likely Recipients- knnwiPdns hasp 

incoming Messages: Message- 
initiated' 
Process: 

adeJs_ 

_steong_ 
nnt likply 

Procedures/Methods 
Example:        • accept updates to models 

r • access models 
• validate updates 
• send updated models 

Sub-responsibilities: 

Responsibility:    NGC-62 Initiate job sequence 

TemporalAspects 
Initiation: system startup 
Completion:   system shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

External Resources. 
_Dfisnriptioru »nemprogramjstati s_job_list 

I ikpry Snnrpp-plan interpretation    __ÄD*stat)onji)gl 
Reliability. 
Confcts; 

■5troofl_ 

JBroducts. 
™*|i|<p|v 

. DescriptionL_j«iii«aJojaarti¥«tjjvcJft_ 
Attrihirtps:  

_ConstraintSL 
Likely Rectpients:ooerator mtertact 

es:Sace- 

0""äICC 

strong 

nnt liKfily 

Procedures/Methods 
Example:       • accept current program status 

• access pb list 
• determine if current program is comp eted 
 • send request to start next cycle 

Sub-responsibilities: 
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Responsibility:     NGC-63 Verify proper part program and revision number for each part 

Tpmpnral Aspprts incoming Messaaes: Message- 
in 11 iatec Initiation:            system startup 

ComDletion:     system shutdown "1 rrOCfcSS. 
Span:                execute and prove-out outgoing sviessayes: 

Discrete / Continuous 

1 2 ? 4 
niicr:r"i -•'■ 
Af?ri-«::r^iv 

UV     Oi ■  U'-'  '--  . 

O.M :,'-*• • 

External Resources 
DescriDtion:     part id part proqram iob list 
| jkp|v RourCP"  workstation mnt workstation mot factory schftrinlor 
Rpliahilitv-          stronq stronq strona 
nnnWrts-             nnt likply not likelv nnt lilfply 

Products 
Dfisrriptinn-      veriVtation notiVtatio 1 
Attrihi itPR- 
finnstraints: 
Likelv Recinientswnrkstation mnt 

Procedures/Methods 
ExamDle'         * accept Part id and part program r   '         • access job list 

• verify that ail match 
• send veriVtation notiVfcation 

Sub-responsibilities: 

Responsibility:    NGC-64  Identify current part 

Tpmpnra 1 A«?pp(~tQ 
I   .:»"~'-r. 

Initiation-          svstem starruD 
ComDletion:   svstem shutdown 

'  —- 
_,                          ,  . ""   f    \„:-V:.!;.-). 

Span:                execution and Drove-out '"     ■"   "  ""         =w" '           : 

Discrete / Continuous 

1 0 3 A 

-*_.,.. 

-'- "•-• 
Fxtemal Rpsruirrpc 

Dpsrriptinn-     reouest »or Dart id 
 UkeJy^ruiJEeiiyortotatwainoi___ 

Rpliahility        strong 
ConVfcts:         not likerv 

Pn-v-*| fCt«: 
npsrnptinn-     pan m 
Attrihi rtp«;-        code: Darameters 
Constraints: 
Likelv ReciDierrts:wortcstation mot 

Procedures/Methods 
Example:        «accept request for part id 

• access sensor tor id 
•sendpart id 

Sub-responsibilities: 
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Responsibility:     NGC-65  Ensure sanctity of safe zones 

TftmpnralAspfints 
Initiation- system startup 
Completion:     system shutdown 
Span: execution and prove-out 
Discrete / Continuous 

^■-■&G^i>^4::*£>K><^*£G£yx 

■Jc.srsiri'.s: 

External Resc 
„Description:. -trajectory... 
 Ukely-Souroe^-JraiectDjy-GfiDfiraii 

Rpliahility- strong  
rrtnVSrtQ- mt likPly  

Products. 
np.sc 
Attributes:. 

Urajectoiy_ 
.aajpointsiflatametei i 

.GooslraiDtsi 
Likely Recipientsrtraiectorv oeneratdr 

Incoming Messages: 

Outgoing Messages 

Message- 
Initiated 
Process: 

part model 
dsdgejjasfi- 

strong 
not likely 

Procedures/Methods 
p e. m gjjgggj p3rt mcJJe| machine model 

• modify trajectory if safe zones violate I 
• send modi»d trajectory 

jnacbinejnodeL- 
dedga-basB- 

.Steong  
nnt liKfily 

Sub-responsibilities: 

Responsibility:    NGC-66 Reassignment of tasks between machine and operator 

TpmpnralAspprt«; 
Initiation- system startup 
Completion:    system shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

External Resources- 
.Dp_sf3iptinni_-parLprogram.  

_JJceJyi5oiinÄj)lanjrjtejpretaiion_ 
Rpliahility        strong  

_Des 
-Attribute 
_Constrainlsi 

Cnnücts: nolliKety 
Products 

itamelexs. 

Likely Reapientsjian nterpretation 

:'.ics^ci<Jc- 

Bperatorjeassignmeots 
jsßeatorJDterjace  
jarang  
""t ''"''p'v 

Procedures/Methods 
Example:« accept operator reassignments 

• access part program 
• modrfy program per operator reassignment: 
• send modi fed cart Droaram »send modi fed part program 

_a 

Sub-responsibilities: 
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Responsibility:     NGC-67 Coordinate spindle gear changes with servo control 

Incoming Messages: TpmpnrfllAspprts 
Initiation; motion started 
Completion:     motion stopped 
Span: 
Discrete / Continuous 

execution and prove-out OL 

Message- 
initiated 
Process: 

iyui: iViCUKX^CS 

-AH 

JExtemaUBesoucces  
-J^SClipJiPIU §pjDdle_aaar,State,,. movement commands machine model 

kd^cSaurce^-infi[±iaDism_ 
Rpliahility-         strong 
rVinttrte- ootl 

motion JsnowJedgaJbasa- 
strong 

£roducts_ 
I likply not Hkelv 

.strong  
""t |ikp|y 

Description:      movement commanc s 
..Artrihutesi 
.Constraints^ 
Likely Recipients: motion 

Procedures/Methods 
Example:      • accept movement commands 

access spindle gear state, machine mo lei 
• modify movement commands accordini 
• send modiVfed movement commands 

Sub-responsibilities: 

to spindle gear 

Responsibility:    NGC-68  Re-evaluate coordinate zeros for alternate tool choices 

Tpmpnral Aspprtf«; .,-ocrr-: /zz-zzoz. ; Jv'cssacc- 

Initiation-          svstem startup 
Completion:   svstem shutdown Jvtccrr Vcss?,;es. 
Span:               execution and prove-out 
Discrete / Continuous 

1 0 ** 4 

,!'■- -    ■---■ 

~-  .,.. - 
C;..    ----- 

Pvtornal Pocmir-r-oc 
Dpscrintinn-     tool substitution CQordinate^ystenimodf 

-knowledge base 
I     tonl mnrlol 

I ikply Knurr.*»-mechanism __kDowlefln*iJDase_^ 
strona ptrnnn 

ConVfcts:          not likfilv not liketv rv-it lilroly 

Prnrii irtc 
_Descriptioru__new coonlinatajBros 

Attn'N itp<;- 
Constraints: 
LikelV ReCtDientSWan interpretation 

Procedures/Methods 
Example'       • accept tool substitution 

r            • access tool and coordinate system mo 
• determine new coordinate zeros 
• send new coordinate zeros 

Sub-responsibilities: 

Jel 
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Responsibility:     NGC-69 Translate NURBS trajectories into motion commands 

TpmpnrfllAgpprts 
Initiation; start of part program 
Completion:     program completed 
Span: execution and prove-out 

Discrete / Continuous 

££iJZC?ii,lY*C'..i?zSL ■yv>^^V* t*K)'l&&m 

iiaiL 

ExternaUBesQurces. 
_De.sjp.tipiion: NURBS trajectory 

ikelitSource^-j* 
Reliability: §!r°QSL 

ntog' 

HnnWs- "•>« |ikp|y 
Eroducts- 
JDgSCriptinn-      motion commands 
.Attributes^ setpoints: parameter;. 

Incoming Messages: 

)utgoing Messages: 

Message- 
Initiated 
Process: 

NURBS model 
oowj.eri0ftJbasfi— 

strong 

nnt likRly 

J^onsfxaintsi 
I ikply Reciniftntsactiiator control 

Procedures/Methods 
Pyamnlp- • accept NURBS trajectory 
txampie. . accept NURBS model 

• determine setpoints and parameters 
• send new trajectory     

Sub-responsibilities: 
• determine setpoints and parameters 

Responsibility:     NGC-70 Manage canned cycles 

TompnrglAcpprtc; 

Initiation: start of part program 

Completion:     program completed 
Span: 
Discrete / Continuous 

execution and prove-out 

JExtemaLBesoutces. 
ppornptinn: part program 
ikery^ounaiiJWJrKsötKjamarjager lenLknawtedneJ»! 

_Beliahiüty. 
Cnnttcts 

_weaK 
not likely 

Products 
f>PRrrintir>n-       ftatailart pmgram cm mantis 

^AttrihiitR5e___co0es: parameters. 
_Constraints: inrirted.cyeies 

>saaes. Messace- 
Initiatec 
Process: 

marhinamnripl 

-Strong. 
""> '""»"v 

rannnrl ry*n lovirr X 
tedgejasfi. 

 stcong. 
. not lihelY 

Likely ReciDientgraiectory oeneratioh 

Procedures/Metho^ 
Example: . access machine model 

• access canned cycle lexicon 
• parse cycle into individual command: 
f IfnH HotailoH inrtiwirti lal rnmmanflc 

Sub-responsibilities: 
• parse cycle into individual commands 
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Responsibility:     NGC-71   Notittation of errors such as singularirjashup, unreachable p Dint 

TpmpnralAgpprtg 
Initiation- start of part program 
Completion:    program completed 
Span: execution and prove-out 
Discrete / Continuous 

inccrnma wassaaes: 

wutgoina fvlessaaes: 

Message- 
| Initiated 

1 Process: 

,tl/. Q;   CkV- i;Q. 

ExternaLBesoutces  
—Description:      trajectory setpoints machine model sensor data 

kp.ly..Spi'rc<?: trajectory generation 
Rp.liahilitv strong  
Pnnttrtc- 

error descriptions 
knowledge base sensor interface knowledge base 
strong weak strong 

not iiKely not liKelY 
ProductS- 

likelv not likely 

Description:      error noti'/fcation JBLcojnmancL 
Attributes;. code: parameters 

 Constraints'     accuracy of sensors 
code: parameters 

Likely Recipientfpperator interface all components 

Procedures/Methods 
example. . m0(je| machine as program executes 

• compare model against error descriptions 
• send halt command if match 
 « send nnti 'Nation if matrh  

Sub-responsibilities: 
• model machine as program executes 
• compare model against error descriptions 

Responsibility:     NQC-72  Automatically set feedrate / feedforce at point of contact 
TpmpnralAspprts iiccrr; "c iVes2a~32.      ir.'cssc.cc- 

1 !"iiis;ec Initiation'            automatic feedrate/force activated 
Completion:      automatic feedrate/force deactivatec r-  w."-=r.;;. 

| Span:                 prove-out and execution 
Discrete / Continuous 

1 0 9 A 

—■.-»„,... ^   „ 

~  ■ -••-■■ 

■-••   -"• 

-Fxtemal RBSOIIITPC! 
npsrriptinn-       feedrate / feedforce alue sensor data machine model 

... 1 ikftly Source-  motion sensor interface knowledge base 
flfilia'hility-          strong weak strong 
ConMrts:            not Kkely likelv not likelv 

Prnrti irts 
_ Dfisrriptinn •       setvo commands 
Attributes-          voltaae 
Constraints:      accuracy of machine model 
Likely Recipients?*« motor 

Procedures/Methods 
Pyamnlp- • accept feedrate/force desired 
example. . monitor sensors 

• compare against machine model tolerance: 
• adjust voltage to maintain tolerance 

Sub-responsibilities: 
• monitor sensors 
* compare against machine model tolerances 
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Responsibility:     NGC-73  Execute plans targeted at discrete actuators 

Temporal Aspprts 
Initiation: start of part program 
Completion:      program completed 

Span: execution and prove-out 

Discrete / Continuous 

^Ggu-ssi&ssusses- 

,tv:- ii ti.. 

CV-; 

JExtemalJBesQurces  
Description:       discrete commands 
Likely Source'   Plan interpretation 

_BeliabJlitw: strong  
C.nniArte- not likely 

Products- 
DpP^riptinrT       actuator commands 
Attrihutes: voltage 
r.nnstrainfg-       device types 
Likely Reripients:hardware interfaci 

incoming Messages: 

Outgoing Messages 

Message- 
Initiated 
Process: 

machine model 
knowledge base 
strong 

not likely 

Procedures/Methods 
Example.   . acCept discrete commands 

• convert for appropriate voltage per device 
• send voltage 

Sub-responsibilities: 

Responsibility:    NGC-74 Evaluate part with probe 

TpmpnralAspprts 

Initiation- orooram startup 
Completion:    program shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

ExteraaLBesources- 
JDescrintion: panmodeL 

_JLikp.ryjSoumeJsnQwtedge pase_ 
Roliahility        strono  
Convicts: notlihelv  

Products 
 DfiJa^ption^_4iroh«5«lflrJioo  
_Attrihirtfisi__code: parameters. 
_ Constraints:. 

Likely Recipientstool change mechahism   sensor interface 

(-..essac 

jjBJbeieadirigs- 

weak 

not liKety 

.prooe.commands 

.codeLparameters 

Procedures/Methods 
Examole"        • access part, machine models r            • send command to change tool to protx 

• measure part 
» send probe results  

jnadmejnodeL 
sensorjmerJace_ _knowiedoeiase_ 

_sKPog_ 
.not lihely 

.rnoyement.commanos 
.code: parameters  

motion 

_PfoDe_tesutts_ 
_code:parameters. 

workstation mi 

Sub-responsibilities: 
• measure part 
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Responsibility:     NGC-75  Evaluate tool with probe 

TpmpnralAspprtg 
Initiation: program startup 
Completion:     program shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

incoming Messages:      | Message 
: initiated 

outgoing Messages 
Process: 

Af-r 

JExtemaLBesQurces.. 
Description:     tool model probe readings machine model 
 Ukdy-S-QUK^^JsnDMiefioeJiasa- 

Rpliahility strong  
sensor interface JsrjoMdedfje-basB- 
strong 

CnnVfcts- nnt likRly not Hkelv 
jstron.g_ 
nnt likply 

Products- 
 DjBSClipliQD: probe selection 

Attributes:       cpdjamcam£Le,rs_ 
probe commands movement commands probe results 
code: parameters code: parameters code: parameters 

J^tanstraioisi 
Likely Recipients:tool change mechinism sensor in erface motion workstation mgt 

Procedures/Methods 
Example' * access tool, machine models 

v    ' • send command to change tool to probfe 
• measure tool 
• send probe results 

Sub-responsibilities: 
• measure part 

Responsibility:    NGC-76 Automatically learn machine'kinematics 

TpmpnralAspprtg 
Initiation: system startup 
Completion:    system shutdown 
Span: 
Discrete / Continuous 

execution and prove-out 

r.coru; ■"^c^^^ric ■ ; fvi^S^"''0- 

C'tcpl'-.c f/essac£5: 

.a 

-ExtemaLBesources- 
 npsrrintinn-     machine status 

lJ^yJ5aiJJERJÄmpoj»nis_ 
 Rpliahility        strong 

asedstatus 
-sensQunteitace. 

anematJC-fiquatiQDSL 
JtoQyytedgejjase  

kin eg. history 
knowledge base 
strong 

ConHcts; "°t likely JMy_ not likely not likely 

-Products 
 Da<^^ptiorr_jnodilhriJdn«rnatics_ 
_Attrihi rtfiRi__matrices  
„Constraints:. 

Likely RecipientSknowiedge base 

Procedures/Methods 
Example:        »access kinematic equations and histor' 

• monrtor machine status 
• analyze history and status 
 » modify and send equations  

Sub-responsibilities: 
• analyze history and status 
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APPENDIX C — ARCHITECTURE DESCRIPTION RULES 

The following rules guide the construction of the components of an application architecture. 

Some of them are based on requirements, others are based on primitive components. The rules 

are expressed in simple English, although the architecture description language (ADL) explained 

in Appendix F could be used for ease in computation. Sequence numbers were added for ease of 

reference. 

Most Important Structural Rule: 

If a primitive component (PC NGC-#) needs a resource, 
you need some other PC that has that resource as a product. 

C.l      ADL Rules Accessing Multiple Primitive Components 

C. 1.1        If you want to control an axis, 
you need PC NGC-38, Control motors to produce movement, 
you need PC NGC-49, Handle operator command interactions. 

C. 1.2        If you have PC NGC-29, 
you need PC NGC-28, Normalize trajectory with respect to time, 
you need PC NGC-37, Translate servo commands into drive readable movement 

commands. 

C. 1.3        If you want to maximize speed, 
you need PC NGC-26, Control acceleration and deceleration, 
you need PC NGC-32, Determine rate of movement. 

C. 1.4        If you want to optimize cutting, 
you need PC NGC-4, Maintain information on available tools, 
you need PC NGC-26, Control acceleration and deceleration, 
you need PC NGC-32, Determine rate of movement, 
you need PC NGC-35. Determine trajectory corrections from predictable variations, 
you need force sensors, 
you need torque sensors. 

C. 1.5        If you want to control tool changes, 
you need PC NGC-21, Load and unload tool, 
you need PC NGC-20, Map tool id to actual tool location, 
you need PC NGC-19, Swap current tool with required tool, 
you need PC NGC-22, Track tool locations. 
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C. 1.6        If you want to control pallet changes, 
you need PC NGC-23, Swap current part with next part, 
you need PC NGC-24, Identify current part. 

C.1.7        If you have PC NGC-15, 
you need PC NGC-17, Interpret augmented code, 
you need PC NGC-18, Determine wait/continue commands for coordination. 

C. 1.8        If you are coordinating mechanisms and motion through a high-level language, 
you need PC NGC-11, Determine where to send part program codes, 
you need PC NGC-12, Interpretation of part program, 
you need PC NGC-13, Augment code with component destinations. 

C. 1.9        If your high-level language commands are embodied in a part program, 
you need PC NGC-14, Inform operator of part program comments, 
you need PC NGC-9, Initialize start of part program activities, 
you need PC NGC-10, Initialize end of part program activities, 
you need PC NGC-48, Cue the operator for manual tasks, 
you need PC NGC-49, Handle operator command interactions. 

C. 1.10      If you want to work multiple parts with multiple programs as a job, 
you need PC NGC-3, Determine each part's program and coordinate offsets, 
you need PC NGC-7, Determine status of active program, 
you need PC NGC-5, Ensure that resources required by the jobs are available, 
you need PC NGC-6, Determine if next part's program matches current part's 

program, 
you need PC NGC-62, Initiate job sequence. 

C. 1.11       If you want to create new parts, 
you need PC NGC-59, Create a part design, 
you need PC NGC-53, Generate a part program, 
you need PC NGC-1, Handle operator modifications to part program statements, 
you need PC NGC-54, Customize part program for particular machine, 
you need PC NGC-55, Schedule processes in pan program for optimal coordination. 

C. 1.12       If you want to simulate operations, 
you need PC NGC-56, Simulate pan program execution, 
you need PC NGC-57, Simulate software faults, 
you need PC NGC-58, Simulate hardware faults. 

C.2      ADL Rules Linking Primitive Components 

C.2.1 If you have PC NGC-34, 
you need PC NGC-36, Adjust trajectory with corrections generated by sensor data. 

C.2.2 If you have PC NGC-33, 
you need PC NGC-4, Maintain information on available tools. 
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C.3     ADL Rules Accessing Single Primitive Components 

C.3.1 If you want the operator to customize the part program, 
you need PC NGC-1, Handle operator modifications to part program statements. 

C.3.2        If you are going to store part programs for automatic access, 
you need PC NGC-2, Part program storage activities. 

C.3.3        If you want to execute a job list of multiple arts and programs, 
you need PC NGC-3, Determine each part's program and coordinate offsets. 

C.3.4        If you have dynamic tool data, 
you need PC NGC-4, Maintain information on available tools. 

C.3.5        If you want to execute programs with various resources, 
you need PC NGC-5, Ensure that resources required by the jobs are available. 

C.3.6        If you want to execute various programs, 
you need PC NGC-6, Determine if next part's program matches current part's 

program. 

C.3.7        If you need to keep track of the executing program, 
you need PC NGC-7, Determine status of active program. 

C.3.8        If you cannot load an entire program at once, 
you need PC NGC-8, Request additional segments of pan program. 

C.3.9        If you need to perform activities at the start of every program, 
you need PC NGC-9, Initialize start of part program activities. 

C.3.10      If you need to perform activities at the end of every program, 
you need PC NGC-10, Initiate end of part program activities. 

C.3.11       If you need to distribute code to various components, 
you need PC NGC-11, Determine where to send part program codes. 

C.3.12      If you need to parse code for motion and mechanisms, 
you need PC NGC-12, Interpretation of part program. 

C.3.13      If you need to track recipients of code, 
you need PC NGC-13, Augment code with component destinations. 

C.3.14      If you want the operator to follow the program execution, 
you need PC NGC-14, Inform operator of part program comments. 

C.3.15      If you want to coordinate mechanism control with motion control, 
you need PC NGC-15, Augment code for coordination between motion and 

mechanisms. 

September 26,1994 C-3 SOSAS Rev. 2.6 



C.3.16      If you have multiple coordinate systems, 
you need PC NGC-16, Translate coordinate systems. 

C.3.17      If you need to track program execution, 
you need PC NGC-17, Interpret augmented code. 

C.3.18      If you need to coordinate notion and mechanisms, 
you need PC NGC-18, Determine wait/continue commands for coordination. 

C.3.19      If you have multiple tools, 
you need PC NGC-19, Swap current tool with required tool. 

C.3.20      If you have dynamic tool location assignments, 
you need PC NGC-20, Map tool id to actual tool location. 

C.3.21       If your operator places tools in the tool changer, 
you need PC NGC-21, Load and unload tools. 

C.3.22      If you the tool changer swaps tool locations, 
you need PC NGC-22, Track tool locations. 

C.3.23       If the part handler can automatically change parts, 
you need PC NGC-23, Swap current part with next part 

C.3.24      If you need to verify the loaded pallet, 
you need PC NGC-24, Identify current part. 

C.3.25       If you want to control a continuous flow device, 
you need PC NGC-25, Maintain control of feedrate-dependent operations. 

C.3.26       If you want to ensure the trajectory follows the machine's physical limitations, 
you need PC NGC-26, Control acceleration and deceleration. 

C.3.27       If you need to modify the trajectory, 
you need PC NGC-27, Define normals to path. 

C.3.28       If you need to follow a trajectory based on setpoints, 
you need PC NGC-28, Normalize trajectory with respect to time. 

C.3.29      If you want to enter high-level commands instead of axis commands, 
you need PC NGC-29, Translate motion commands to trajectory. 

C.3.30       If you need motion and mechanisms to coordinate, 
you need PC NGC-30, Coordinate with mechanisms. 

C.3.31       If you want to avoid witness marks, 
you need PC NGC-31, Avoid data starvation. 

C.3.32      If you want the goal rate to adjust for a chip per tooth rate, 
you need PC NGC-32, Determine rate of movement. 
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C.3.33       If you want to adjust for tool variations, 
you need PC NGC-33, Adjust trajectory for tool deviations. 

C.3.34.1    If you want to adjust for predictable variations in axis linearity, 
you need PC NGC-34, Determine trajectory corrections from predictable variations. 

C.3.34.2    If you want to adjust for predictable variations with respect to temperature, 
you need temperature sensors, 
you need to track time of machine powered up, 
you need PC NGC-34, Determine trajectory correction from predictable variations. 

C.3.35       If you want to adjust for unpredictable variations in trajectory following, 
you need PC NGC-35, Determine trajectory corrections from sensed variations, 
you need force sensors, 
you need torque sensors. 

C.3.36       If you want to quickly modify the trajectory with pre-analyzed corrections, 
you need PC NGC-36, Adjust trajectory with corrections generated by sensor data.. 

C.3.37       If you need to interpolate between current position and setpoints, 
you need PC NGC-37, Translate servo commands into drive readable movement 

commands. 

C.3.38       If you need a closed loop motion control, 
you need PC NGC-38, Control motors to produce movement 

C.3.39       If you need diagnostics and zero positions determined, 
you need PC NGC-39, Initiate startup procedures. 

C.3.40       If you want automatic job control by the factory scheduling system, 
you need PC NGC-40, Coordinate with factory scheduler/control system. 

C.3.41       If you want to generate paths with as-is / to-be algorithms, 
you need PC NGC-41, Path planning based on part features, surface model, etc. 

C.3.42       If you want sensor data to be used for program modifications, 
you need PC NGC-42, Modify part program based on sensor data. 

C.3.43       If you can control axes by both force and position, 
you need PC NGC-43, switch between position control and force control. 

C.3.44       If you have more than one axis. 
you need PC NGC-44, Plan for multi-axis interactions. 

C.3.45       If you want automatic setup of pans, 
you need PC NGC-45, Touch off for automatic seuip, 
you need touch sensors. 

C.3.46       If you have multiple sensors providing one piece of information, 
you need PC NGC-46, Perform sensor fusion. 
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C.3.47      If you want to gracefully shutdown form exception conditions, 
you need PC NGC-47, Initiate shutdown procedures. 

C.3.48      If you expect the part program to require interaction with the operator, 
you need PC NGC-48, Cue the operator for manual tasks. 

C.3.49      If you expect the operator to control the program execution, 
you need PC NGC-49, Handle operator command interactions. 

C.3.50      If you want the operator to enter offsets, 
you need PC NGC-50, Handle modifications of offset values by operator. 

C.3.51       If you expect the operator to perform manual interpolation, 
you need PC NGC-51, Handle operator interface for manual interpolation commands. 

C.3.52      If you need a system watchdog, 
you need PC NGC-52, Ensure safety. 

C.3.53      If you want to generate programs with as-is / to-be algorithms, 
you need PC NGC-53, Generate a part program. 

C.3.54      If you need to execute the same program on various machines, 
you need PC NGC-54, Customize part program for particular machine. 

C.3.55       If you want to improve the efficiency of the part program, 
you need PC NGC-55, Schedule processes in part program for optimal coordination. 

C.3.56      If you want to test the system without cutting a part, 
you need PC NGC-56, Simulate part program execution. 

C.3.57       If you want to introduce software errors into the system for testing, 
you need PC NGC-57, Simulate software faults. 

C.3.58       If you want to introduce hardware errors into the system for testing, 
you need PC NGC-58, Simulate hardware faults. 

C.3.59      If you want to generate a manufacturable pan design from a concept, 
you need PC NGC-59, Create a part design. 

C.3.60       If you want maintenance to be informed automatically of problems, 
you need PC NGC-60, Notify maintenance when parameters exceed tolerances. 

C.3.61       If you want to keep machine, part, tool (etc) models in a central knowledge-base, 
you need PC NGC-61, Maintain models. 

C.3.62       If you want to setup multiple executions in one job list, 
you need PC NGC-62, Initiate job sequence. 
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C.3.63       If you want to ensure the right program is loaded on the right machine for the right 

part, 
you need PC NGC-63, Verify proper part program and revision number for each part. 

C.3.64      If you need to verify the part in the fixture, 
you need PC NGC-64, Identify current part. 

C.3.65      If you want to modify the trajectory to stay within safe zones, 
you need PC NGC-65, Ensure sanctity of safe zones. 

C.3.66       If you want to allow the operator to perform some machine functions, 
you need PC NGC-66, Reassignment of tasks between machine and operator. 

C.3.67      If you want to coordinate motion with the spindle gear setting, 
you need PC NGC-67, Coordinate spindle gear changes with servo control. 

C.3.68      If you allow substitute tools with different offsets, 
you need PC NGC-68, Re-evaluate coordinate zeros for alternate tool choices. 

C.3.69      If you want to follow complex curves, 
you need PC NGC-69, Translate NURBS trajectories into motion commands. 

C.3.70      If you want to program using canned cycles, 
you need PC NGC-70, Manage canned cycles. 

C.3.71       If you want to warn of impending movement errors, 
you need PC NGC-71, Notification of errors such as singularity, lashup, unreachable 

points. 

C.3.72      If you want the system to maintain a constant rate or force, 
you need PC NGC-72, Automatic feedrate / feedforce at point of contact. 

C.3.73      If you want to control discrete actuators, 
you need PC NGC-73, Executing plans targeted at discrete actuators. 

C.3.74      If you want to measure for pan accuracy, 
you need PC NGC-74, Evaluate part with probe. 

C.3.75       If you want to measure for tool accuracy, 
you need PC NGC-75, Evaluate tool with probe. 

C.3.76      If you want the machine to learn its own physical nature, 
you need PC NGC-76, Automatically learn machine's kinematics. 
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APPENDIX D — DOMAIN MODELS 

Domain models describe the domain. They include a description of, actions of, relationships to, 

communications among, and constraints of entities. The implementation may follow an object- 

oriented paradigm or a functional or other paradigm. Some representations of domain models 

include object diagrams, task diagrams, topology diagrams, and interaction diagrams. Some 

domains may be better expressed in specialized models, such as algorithm models or hybrid 

control models. 

While domain models contain a full view of the domain, the models' appearance changes to 

support multiple viewpoints. Particular objects, subsets of attributes and services, and certain 

relationships are only relevant to certain views. Viewpoint also drives the collection of 

responsibilities into components and the relevance of reference requirements. The domain 

models for NGC are listed below. 
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Part 

Enterprise 

T 
Factory 

I 
Center 

I 
Cell 

I 
Cell Component 

_H. 
Fixture Operator Machine 

Factory 
75 

Process Planner 

Intercenter Transport 

Factory Storage 

Tool 

Center 

Intercell Transport Cell Center Storage 
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A ividoi ill ic \? 

reference frame 
specifications 

Kinematic Model stop machine 

A forward kinematics 
inverse kinematics 

NC Machine Robot Non-TCP Machine Axis 

A 

AGV 

Pallet Shuttle 

NC Machine 

Vertical Mill Machine 

Knee Mill Machine 

Universal Mill Machine 

Moving Column Machine 

Lathe 

Saw 

Electrodischarge Machine 

Electron Beam Machine 

Ultrasonic Machine 

Electrochemical Machine 

Abrasive Waterjet Machine 
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NC Machine 

r 
uses Fixture 

Table Operator Console Controller 

Coolant Mechanism Spindle Tool Changer 

holds stores 

Tool 

holds 

Part 

Spindle 

angle 
positon vector 
rotaton directon 
rotaton speed 
velocrtv vector Table 

lock spindle'' 
move spindle (position, velocity)9 

off spindle7 

on spindle (speed, directon)7 

onent spindle (angel)7 

position vector 
vplorrtv vector 
table move'' 

has 

has 

Axis 
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Axis 

Servo Control 

fine interpolation 
Drive 

o 

Control Law 

Linear force/torque 
linear position/velocity 
rotational force/torque 
rotational position/velocity 

Motor 

encoder 
Lead Screw 

error map 

linear2rotary 
rotary2linear 

Cartesian  
Motion 
Description 

Kinematic Description 

leadscrew length 
leadscrew pitch 
evaluate 
update 

Sensor 
Data 

cod = angular velocity desired 
o)m = angular velocity measured 
6m = angle measured 
coj, = angular velocity desired with manipulation 

Sen/o Controller 
error 
gain 

evaluate 

e„ 
CÜH 

Machine Interface 

angular velocity to commands 
sensor data to motion 

Sensor 
Data 

Sensors Commands 
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Link 

length 

Robot uses 
End Effector 

attach grasper 
drop 
follow path 
grasp 
move 

1 
Joint 

<? 
Face Plate 

Drive 

Motor 

Controller 

End Effector 

Remover 

L i 

End Mill 

Welder 

Cutter 

uses 

A. 

Gnpper Sprayer 

Tool 

September 26,1994 D-6 SOSAS Rev. 2.6 



Tool 
centerpoint 
cut direction (CLW, CCLW) 
cutter compensation plane (zy, yz, xz) 
cutter compensation radius offset 
gauge vector 
Rome position 
length 
length offset 
number 
optimal feedrate 
optimal spindle speed 
orientation 
position vector 
radius 
time in use 
tool change position 
velocity vector 

~~^  

Flat End Mill 

Drill Bit 

Flexible Tap 

Rigid Tap 

Steel Block 

Parallels 

Chuck 

controller 
mechanism type 

Abrasive Tool 

I 

Fixture 

I 
Tape 

Bolt 

Vice 

Grind Wheel 

Grind Belt 

Sandpaper 

Abrasive Cloth 

Saw Belt 

Saw Blade 

Part 

geometry 
process plan 
safety envelope 
serial code 

Clamp 
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Sensor 

A 
Position Sensor Voltage Sensor 

Velocity Sensor Current Sensor 

Acceleration Sensor Temperature Sensor 

Force Sensor Flow Sensor 

Vibration Sensor 

Sensors 

I 
Motion Sensor 

I 
Thermal Compensation Sensor 

Trachometer 

Linear Potentiometer 

I 
Thermometer 

Strain Gauge 
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Input Device 

Joystick 

Spaceball 

Touchscreen 

Lightpen 

Interactive Mechanism Mode 

Keyboard 

Mouse 

Switch 

Digitizing Tablet 

Output Device 

I 
Display Panel 

Enunciator Panel 

Indicator Lamp 

Printer 

Voice 

Alarm Klaxon 

Operator Console 

indicator lights 
data entry keys 
knobs 
output screen 
remote pendant 
switches 

coolant off 
coolant on 
cycle interrupt 
cycle start 
emergency stop 
feedrate overnde 
fine jog 
motion hold 
panic 
power on 
rapid jog 
spindle speed overnde 
spindle start 
spindle stop 
tool change 
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Task 

I 
Other Task I Cell Task 

_Q£h_ 

H      Plate 

Measuring Task 
A 

Feed 

Transport 

Finish 

Machining Task 

7? 
—    Calibrate 

Blue B°fe 

MarK. Broach 

Measure   1    I Counterbore 

Reamer Sharpening 

Tap Sharpening 

End Mill Sharpening 

Plain Mill Sharpening 

Form Cutter Sharpening 

Face Mill Cutter Sharpening 

Slabbing Cutter Sharpening 

Wheel Dressing 

Countersink 

Drill 

Break chip 

Grind 

Plane 

Ream 

Initialize 

Configure 

_   Fault Recovery 

Saw 

Spotface 

Tap 

Thread 

4 Turn 

Form Grinding 

Plunge Grinding 

Internal Grinding 

Traverse Grinding 

Centeriess Grinding 

A 
Endfeed Gnndmg 

Infeed Grinding 

Throughfeed Grinding 
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An Example of a Controller Topology 

Workstation 

Control 

Interface 

Independent Applications 

Machine Interface 

Informatio., BasePI Safety I 
encoders   motors 

tach 
sensors motors valves   switches 

solenoids 

Topology for a Less-Sophisticated Controller 

Independent Applications 

encoders   motors 
tach       • -       • limit, 

sensors motors valves   switches 
solenoids 
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block of 
"S-274 code 

An Example of a Movement Interaction Diagram 

block of 

TIME STEPS (not to scale) 

An Interaction Diagram Illustrating a Tool Change 
code 

TIME STEPS (not to scale) 
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Dynamic Model with Subsystems (option 1 

f User creates 
V   part design 
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APPENDIX E — DOMAIN DICTIONARY 

This dictionary contains the terminology and definitions from the domain of manufacturing in 

general and in the domain of the Next Generation Controller in particular. The dictionary is 

divided into several sections: a bibliography, a glossary of terms, notation, and a category index. 

The bibliography lists the information sources used. Sources include books, documents 

generated by NCMS members, commercial brochures, and notes from knowledge acquisition 

sessions. The glossary lists all terms (which are boldfaced) and their definitions alphabetically. 

Each definition includes a bibliographical annotation of the form [#] to indicate its source. 

Where a term has definitions from more than one source, each definition is annotated separately. 

The notation section includes tables of symbols, nomenclature, and units. The category index 

lists all terms divided into meaningful categories. Although a term may apply to more than one 

category, Most are listed only once in one category. 
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E.2      Glossary of Terms 

2.5 D 
a 2D representation (topographical map) of 
a 3D object. 2.5D cannot be rotated, 
because the necessary 3D information is 
only from one perspective, so there is 
insufficient information to produce a 3D 
model. [16] 

1 a non standard, user defined data type. 
[6] 

2 a class of objects together with a set of 
operations which can be applied to them. 
The objects are entirely characterized 
through the external behavior of the 
operations. Neither the storage 
representation nor the implementation of the 
operations should be known to the user. [6] 

abbe error 
a linear positioning error caused by a 
combination of an angular error in the ways, 
and an offset between the precision 
determining element (leadscrew, feedback 
device, etc.) and the actual point of interest. 
[8] 

abort 
to cease normal operations [5] 

abrasive waterjet machine (AWJ) 
a machine which performs material removal 
via a stream of water containing an abrasive 
solute at high pressure. 

absolute 
applies to measurements, in a standard, 
fixed reference, as opposed to moving 
reference; compare with relative [5] 

AC 
abbreviation for alternating current. 

acceleration 
rate of change of velocity; either scalar or 
vector, often with subscripts to denote the 
coordinate frame; time derivative of 
velocity; time integral of jerk; standard 
symbol a, A; standard units ft/s2, g; 
primary units 178' [5] 

accelerometer 
an inertial device for measuring 
acceleration, usually in three orthogonal 
axes (lateral X, longitudinal Y, and vertical 
Z); accelerometers usually consists of a 
mass, spring, and damper, accelerometers 
are usually included in inertial sensors [5] 

absolute value 
common math function; synonym for 
magnitude; standard notation Ixl; for 
vectors, absolute value means length 
(magnitude) of the vector [5] 

abstract data type 

AC induction motor 
a device that uses alternating current to 
produce mechanical energy. These motors 
do not have brushes and are simple to 
operate as well as inexpensive to produce. 
However, they are very difficult to control. 
DC brushless motors are used as AC servo 
motors. [4] 
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accuracy 
1 measure to exactness, possibly expressed 
in percent, for example, position measured 
+10% ; compare with precision. [5] 

2 extent of agreement of measured/reported 
value with true magnitude. [7] 

a process by which one or more sensors 
provide data to another sensor to produce 
results better than any single sensor. Aiding 
occurs at the physical device level, 
depending upon specific implementation of 
the device. Aiding is automatically 
controlled by software without input from 
an operator  [5] 

3 extent to which a given value for a 
measurement agrees with the standard for 
that measurement. The degree of 
correctness of a quality or expression. [11] 

activity 
a repetitive, well-defined set of tasks that 
have common functional characteristics. [7] 
actuator 
a   motor   or   transducer   that   converts 
electrical, hydraulic, or pneumatic energy to 
motion. [7] 

adaptive control 
a response to time-varying characteristics of 
the machinery, material, and process 
involving an adjustment of elements in the 
feedback control loop. [7] 

ADL 
abbr      for 
Language. 

Application      Development 

AGV 
abbr for Automated Ground Vehicle. 

algorithm 
1 a sequence of mathematical operations 
that precisely performs a specific task. [4] 

2 a finite set of well defined rules for the 
solution of a problem in a finite number of 
steps. [6] 

American National Standards Institute 
(ANSI) 
an organization consisting of producers, 
consumers, and general interest groups, that 
establish the procedures by which accredited 
organizations create and maintain voluntary 
industry standards in the United States. [6] 

AMICE 
abbr  for  European   Computer  Integrated 
Manufacturing Architecture (in reverse) 

analog input/output 
continuous data input or output presented as 
a measurable quantity such as voltage and 
current. [7] 

AI 
abbr for Artificial Intelligence. 

angle 
synonym for angular position;     standard 
units rad, deg; primary units 1 [5] 

aiding 
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rate of change of angular velocity, either 
scalar or vector, often with subscripts to 
denote the coordinate frame; time 
derivative of angular velocity; time integral 
of angular acceleration; standard symbol a; 
standard units rad/s'; primary units 1/0' [5] 

application programming interface (API) 
an interface that provides modules access to 
vendor  components,   shared  components, 
and computing platform services. [7] 

angular position 
amount of rotation about an axis, either 
scalar or vector, often with subscripts to 
denote the coordinate frame; time integral 
of angular velocity; synonym for angle; 
standard symbol 0; standard units rad, deg; 
primary units 1 [5] 

angular velocity 
rate of change of rotation about an axis, 
either scalar or vector, often with subscripts 
to denote the coordinate frame; time 
derivative of angular position; time integral 
of angular acceleration; see tachometer; 
standard symbol co; standard units rad/s, 
rpm; primary units 1/0 [5] 

ANSI 
abbr   for   American   National   Standards 
Institute. 

application-specific    integrated    circuit 
(ASIC) 
a custom hardwired chip that performs a 
desired function. 

application viewpoint 
a DSSA view of a system. 

approach vector 
machine's normal approach of moving to the 
piece. Can be dynamically changed. [20] 

architecture description language (ADL) 
an ADL describes components' structures 
and specifies their protocols. 

architecture viewpoint 
a DSSA view of a system. 

aperiodic 
a process that executes based on events 
rather   than   a    fixed   rate,   it   is   not 
synchronized to other processes of interest; 
compare with periodic [5] 
API 
abbr      for     Application      Programming 
Interface. 

application program 
a program that, when executed on a NGC 
computing platform, performs designated 
functions. [7] 

Arcnet 
Arcnet is classified as a deterministic, high 
speed 2.5 Mb/sec, peer-to-peer token 
passing LAN. Arcnet is deterministic in that 
is allows the user to calculate the worst case 
latency of the network based on the number 
of nodes in use. Arcnet provides the 
software with a high-level interface that 
minimizes software overhead. Packets are 
written to the Arcnet controller along with 
the destination address and a single 
command is given to begin message 
transmission. The completed transmission 
and reception of a packet can be signaled 
with an interrupt. 
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Arcnet can be used by a number of network 
configurations. It can be used in a star 
configuration which uses active and passive 
hubs to grow the network in any shape 
required. Arcnet also supports a bus 
configuration which uses a high impedance 
version of the network transceiver on each 
node, and enables several nodes to be 
connected to a bus section of cabling by 
short cable spurs. Star and bus 
configurations can be mixed to provide the 
most effective layout for any installation. 

Arcnet supports multiple media. Physically, 
the connection can be made with coaxial, 
fiber optic, and twisted pair cabling 
including 485. typically, the network is tied 
together with inexpensive RG62 coaxial 
cable, making it highly immune to electrical 
noise. A network can be up to 4 miles long, 
the maximum node-to-node or node-to-hub 
distance is 2000 feet. 

Arcnet was designed to allow nodes to be 
added or removed during live everyday use 
while the network is running. There is no 
need to shut down. The protocol will 
automatically reconfigure itself within 60 
milliseconds of a node being removed or 
failing. [10] 

an interconnected set of links and articulated 
joints between an end effector and its 
support structure. [7] 

artificial intelligence (AI) 
the ability of a process to perform functions 
normally associated with human 
intelligence, such as reasoning, learning, and 
self-improvement. A technology or field of 
study that encompasses all attempts to 
emulate or reproduce human neurological 
functions, such as cognition, perception and 
action, through symbolic means. [14] 

ASCII 
abbr   for   American   Standard   Code   for 
Information Interchange. 

ASIC 
abbr   for   Application-Specific   Integrated 
Circuit 

assembly 
a group of parts and/or subassemblies that 
are put together. An assembly may be an 
end item or a component of a higher level 
assembly. [6] 

arctangent 
common math function; standard notation 
arctan x, atan x, tan-'x, tan-'(y,x); tan-'Cy.x) 
means two-argument arctangent of y/x [5] 

asset 
any expendable resource within the 
manufacturing workstation. Asset does not 
include the machines under control. [7] 

area clear milling 
method of surface finishing in which the 
tool follows a simple back-and-forth pattern 
across the part surface. [15] 

async 
abbr for Asynchronous. 

arm 
asynchronous 
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tasks or events that occur at non-fixed time 
intervals and are large independent of one 
another; compare with synchronous [7] 

attribute 
1 data element that represents a 
characteristic used to describe an object. [7] 

2 a quality or characteristic element of an 
entity, having a name and a value; an item 
of information about an entity; properties 
which describe data objects. [6] 

autonomous control 
independent   control   over   the   sequence, 
options, and schedule of tasks. [7] 

availability 
the measure of time that a manufacturing 
workstation is free to carry out its 
designated functions. [7] 

averaging filter 
a filter for combining multiple data sources, 
usually of the same type, by adding with 
weighted averages; a simple average of the 
data sources; compare with complementary 
filter, Kaiman filter. 

Averaging filters are often designed as: 
n 

y = La»x> 
1 

where a; are usually computed at run time 
such that 
[5] 

n 
Ia = l 
l 

AWJ 
abbr for Abrasive WaterJet machine. 

axis 
1 one direction in an orthogonal reference 
frame [5] 

2 Used to locate or move the part. An axis 
is mathematically described as one of the 
reference lines of a coordinate system, such 
as Cartesian coordinates (x, y, and z). There 
can be x, y, z, a, b, c, u, v, and w axes. [4] 

3 Any line used as a fixed reference in 
conjunction with one or more other 
references for determining the position of a 
point or of a series of points. [11] 

4 the center line, real or imaginary, passing 
through an object about which it could 
rotate, a point of reference. [9] 

backlash 
the amount of free play between a leadscrew 
and nut, or worm and worm gear. It is 
determined by measuring the range of 
angular movement of the driven shaft which 
results in no motion. [8] 

band-pass filter (BPF) 
a filter that allows frequencies between two 
cutoff frequencies to pass while attenuating 
frequencies outside the cutoff frequencies; a 
band-pass filter can be constructed as the 
composition of a low-pass filter and a high- 
pass filter [5] 

band saw 
a type of saw machine in the form of a 
continuous steel belt running over pulleys. 
[13] 
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batch execution 
a condition that occurs when the controller 
is in the normal production mode. 
Interaction may be required initially, but 
file-based operations are generally thought 
of as being "automatic". This operation is 
characterized by the execution of internally 
represented plans, and facilitates 
part/process production while performing 
planning operations. A file typically 
consists of pre-generated batched control 
plan or process plan information that is 
executed automatically from start to finish. 
[7] 

bed mill 
a.k.a. mill or machining center. A type of 
machine that is more powerful than a knee 
mill and can be used to cut large parts in 
large quantities. The bed can travel 
horizontally or vertically on a bed mill, and 
the cutting area is usually enclosed. [4] 

block 
a group of instructions from a part program 
to control machine actions. A block usually 
describes a discrete movement or action 
such as cutting a bolt circle. [4] 

BCD 
abbr for Binary Coded Decimal. 

BCL 
abbr for Binary Cutter Location. 

binary cutter location (BCL) 
a numeric control programming and 
interpretation scheme that is based on a 
generic machine reference. This eliminates 
the need for post processing the CNC 
program for a specific machine or type of 
machine. CNCs designed for BCL 
interpretation can execute the BCL 
instructions directly. [6] 

bias 
an offset applied to a measurement for error 
correction; standard engineering term 
synonym for offset [5] 

bed 
machine's cutting surface, also referred to as 
the "table"; the part is attached to this 
surface with a clamping device. [4] 

block cycle time 
time   it   takes   to   execute   one   line   of 
executable RS-274 code [15] 

blue 
a finishing task. 

BOC 
abbr for Buick, Oldsmobile, Cadillac; 
now defunct GM organization. 

bolt 
a type of fixture; any of several types of 
strong fastening rods, pins, or screws, 
usually threaded to receive a nut. [11] 

bore 
a machining task;    to make a hole in a 
material by turning a tool. 

BPF 
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abbr for Band-Pass Filter [5] 

break chip 
temporarily stop z-motion of the tool to 
break off the chip. [15] 

broach 
1 v. a machining task; to cut with a broach 
tool. 

2 n. a cutting tool for removing material 
from metal or plastic to shape an outside 
surface or hole that has been previously 
formed, consisting of a bar of suitable 
length provided on its surface with a series 
of cutting edges or teeth that increase in size 
from the entering or starting end. [13] 

brushless motor 
an "inside-out" DC motor, with a permanent 
magnet rotor, and electrical coils in the 
stator. Commutation of current in the 
windings is typically achieved via external 
switching transistors, and Hall effect 
detectors. This avoids the limited life of 
brushes and their radiated EMI. [8] 

CAD 
abbr for Computer-Aided Design. 

calibration 
1 an interactive condition that occurs when 
the controller is in the maintenance mode; 
starts processes unique to a specific machine 
or process that enables the operator to fine 
tune the controller. This mode shall be used 
to adjust control law gains, modify axis soft 
limits, input positional offsets, verify 
setpoint accuracy, adjust overshoot and 
balance process parameters, or adjust other 
known model inaccuracies though the use of 
error correction tables and/or other methods. 

It is assumed that this mode will rely heavily 
on information provided by the operator 
interactively. It is also assumed that manual 
operation of the machine may be required in 
this mode. [7] 

2 calibrate sequence is used to determine a 
reference point or zero location on a part. 
[4] 

CAM 
abbr for Computer-Aided Manufacturing. 

CANBus 
1 an I/O bus used by numeric controllers. 
[4] 

2 CAN could be classified as a Small Area 
Network (SAN). It runs on an inexpensive 
twisted pair bus and provides an interface to 
I/O and other peripherals, peer-to-peer 
networking of controllers, deterministic 
prioritized message passing, small efficient 
packet sizes, robust error detection, and a 
reduced wiring solution. CAN is an 
industry standard protocol supported by 
multiple vendors. Packets are written to the 
bus controller along with priority and the 
destination address. A single command is 
given to begin message transmission. The 
completed transmission and reception of a 
packet can be signaled with an interrupt. 
The data transmission rate can be up to 
lmb/sec for networks less than 130 feet in 
length. Lower data rates can support longer 
networks. Up to 32 nodes can be attached to 
a given network. 

CAN is a deterministic network with 
prioritized message passing. Worst case 
message transmission latency in a CAN 
network can be calculated based on the 
number of nodes in use and the priority of 
the   message.      The   use   of   prioritized 
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messages guarantees that critical messages 
are transmitted ahead of lower priority ones. 
[10] 

canned cycle 
- common machining operations, such as 

drilling, tapping, pecking, and boring and 
reaming, that are pre-programming into a 
CNC. These cycles allow the operator to 
specify a type of operation and define only 
the necessary variable information. Then 
the system makes additional calculations to 
define the operation fully. [16] 

cache 
1 an architected area of computer main 
storage for system and/or application use. 
[6] 

2 the virtual storage within which objects 
are presented to methods. [6] 

3 an architected area made up of control 
structures and pointers that point to a 
variable number of Logical Views. The 
Logical Views may contain internal and/or 
external references to the same/other 
Logical views which are resolved as 
relocatable addresses when loaded into 
computer storage. The entire cache 
structure may be treated as a unique entity 
and may be modified, saved and restored as 
a means of maintaining the context of a user 
or unit of work between user logons or 
automatic activation of enterprise activities. 
[6] 

conforming to a standard form of semantics 
and syntax. [6] 

CCLW 
abbr for Counterclockwise. 

cell 
1 a manufacturing unit that has the capacity 
to manufacture a family of products that are 
a subset of a product type within a fixed 
domain of operations. It may contain 
several manufacturing workstations. [7] 

2 a manufacturing unit which has the 
capacity to manufacture a family of products 
which are a subset of a product type (e.g. 
sheet metal, composites, circuit card, etc.) 
and which share the same manufacturing 
operations with minor changes. Therefore, 
a cell is a manufacturing unit which has the 
ability to produce a family of parts within a 
fixed domain of operations. [6] 

center 
a manufacturing unit consisting of two or 
more cells and the materials transport and 
storage buffers that interconnect them. [7] 

centerless grinding 
a type of grinding. 

CEP 
abbr for Circular Error Probability [5] 

> 

CALS 
abbr. for Computer-aided Acquisition and 
Logistics Support. [6] 

canonical 

chatter 
the quick repeated sounds resulting from a 
machine tool vibrating against the 
workpiece while the machine is in 
operation. [7] 

September 26,1994 E-10 SOSAS Rev. 2.6 



checkpointing 
a recovery mechanism that take a snapshot 
of everything pertinent to system state, 
producing a virtual memory page, and 
forces this page periodically to disk. [7] 

clamp 
a type of fixture; an appliance with opposite 
sides or parts which may be adjusted or 
brought closer together to hold or compress 
something. [11] 

chip 
a small residue piece of material remaining 
from cutting, shaping or finishing a part 
with a machine tool. [7] 

chuck 
a type of fixture; a device for centering and 
clamping work in a lathe or other machine 
tool. [11] 

CIM 
abbr for Computer Integrated Manufacturing 

class 
1 the object-oriented paradigm's abstract 
data typing mechanism that groups objects 
with commonalty of attributes and services. 
[7] 

2 a type of data object. There are primitive 
classes or types such as fixed, character, 
float, and bit. There are also more complex 
types that are constructed from the primitive 
types. [6] 

3 a group of objects which carry the same 
instance variables, the same methods, and 
respond to the same messages. [6] 

circular error probability (CEP) 
a probability that a percentage of two- 
dimension measurements will lie within a 
circle of given radius, with the circle 
centered at truth or mean of the 
measurements; compare with radial error 
probability, spherical error probability 

CEP specifies test, cases for measurement 
errors of sensors of two dimensions, such as 
X and Y. For example, a velocity error of 1 
ft/s (50% CEP) means that for any given 
measurement of velocity 

then 
V, = {FE, VK} 

/K|K1-KM|<1)=0.5 

where ^  is the average of all Vi or 
truth, depending upon context. [5] 

class hierarchy 
defines superclass and subclass relationships 
and supports the is-a relationship. [6] 

climb milling 
milling in which the tool motion is against 
the tool rotation, such that feedrate + 
rotation = actual speed of cutting tool; 
compare with conventional milling [15] 

clockwise (CLW) 
positive rotational direction. 

close dancing 
two robots working on the same thing 
independently without interfering with each 
other. Matching parts takes 12 degrees of 
freedom (position, velocity, etc.), 6 degrees 
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of freedom on each of 2 parts (force, torque, 
etc.). [19] 

closed loop 
control achieved by measuring the degree to 
which actual system response (feedback) 
conforms to desired system response and 
using the difference to drive the system in 
conformance. Also called feedback control. 
[4] 

CLW 
abbr for Clockwise. 

communications viewpoint 
a DSSA view of a system. 

complementary filter 
a filter in which the complement of the filter 
is desired, for example {EMBED Equation 
I}, giving the effect of a high-pass filter 
implementing a low-pass filter; a filter for 
combining multiple data sources, usually of 
different types, by adding filtered values, 
where the sum of the filters in the frequency 
domain is unity; a Kaiman filter with fixed 
gains; compare with averaging filter, 
Kaiman filter 

CMM 
abbr for Coordinate Measuring Machine. 

CNC 
abbr for Computer Numerical Control. 

coefficient of friction 
the ratio of the force required to move a 
given load to the magnitude ofthat load. [8] 

command 
a signal that actuates a device. [7] 

commercial off-the-shelf package (COTS) 
a software system that is commercially- 
available and not specifically targeted 
toward NGC system needs. [7] 

Complementary filters are often designed in 
the frequency domain as 

Y(s) = lFi(s)Xi(s) 
l 

where Fi(s) are filters determined at build 
time such that 

lFi(s) = \ 
i 

For example, with velocity sources Vx and 
Vy, one might choose 

Vsys(t) = fLPF(Vx(t) + fHPF(Vy(t))) 

where the cutoff frequency of the LFP is 
equal to that of the HPF. [5] 

component viewpoint 
a DSSA view of a system. 

commit 
the act of writing buffered data to permanent 
storage upon completion of a transaction. 
Commits are usually carried out periodically 
for groups of data. [7] 

computer-aided design (CAD) 
the use of computers in interactive 
engineering drawing and storage of design. 
Programs complete the layout, geometric 
transformations,     projections,     rotations, 
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magnifications, and interval (cross-section) 
view of part and its relation with other parts. 
[6] 

computer-aided manufacturing (CAM) 
1 the use of computers to program, direct, 
and control production equipment in the 
fabrication, assembly, and distribution of 
manufactured items. [6] 

2 the application of a computer in a 
manufacturing environment to bridge 
various systems and connect them into a 
coherent, integrated whole. For example, 
budgets, CAD/CAM, process controls, 
group technology systems, MRPII, financial 
reporting systems, etc., would all share data 
in an integrated environment. [6] 

3 the application of information systems 
technology to increase the productivity and 
responsiveness of the organization. [6] 

4 a business philosophy aimed at reducing 
the development time of industrial products, 
increase its quality and create an 
environment where the production of goods 
will be based on market requirements. Use 
of (C)omputer technology to enable us to 
work faster and more precisely in dealing 
with complex problems. (integration 
means that we make our enterprise work as 
an undivided unit. Transferring information 
about our products, plans, methods and 
decisions effortlessly and without risk of 
introducing errors. (M)anufacturing refers 
to all industrial activities necessary for 
design, manufacture, installation and 
maintenance of products. [6] 

5 a computer-based technology that helps 
define and create a program to drive a CNC 
machine. CAM generates tool path. [4] 

computer cycle 

in a periodic, cyclical computer system, the 
most basic, fastest timing loop [5] 

computer numerical control (CNC) 
1 controlling machine tools using 
microcomputers attached to the machines in 
some manner. The computer controls the 
machining sequence of a machine to provide 
faster, more accurate production and the 
capability to make parts that are essentially 
impossible to create by hand control. 
Within the machine industry, the icontroli is 
usually the enclosure and the computer 
boards within it that contain the machine 
controlling software and handle 
communications between the machine and 
the operator console. [4] 

2 a type of machine controller designation, 
in which the computer stores and recalls 
programs. [16] 

computing platform 
the processing infrastructure of the NGC 
manufacturing workstation consisting of 
processors), related hardware, system, and 
system utility software, and communication 
mechanisms. [7] 

concurrency 
proper control of concurrent updates made 
on shared data so that inconsistent data does 
not result. The results produced by multiple 
concurrent transactions are equivalent to 
results that would be produced by serial 
transactions. [7] 

configuration 
the arrangement of a manufacturing 
workstation as defined by the nature, 
number, interaction, and main 
characteristics of its functions. The features, 
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customer options, software modules and 
engineering specifications that collectively 
define the functionality of the 
manufacturing workstation. [7] 

configuration management 
establishing a process for managing and 
controlling changes to functional and 
physical characteristics during the life cycle; 
this provides tracability and status of change 
activities to previous configurations. [7] 

conformance 
action or behavior in correspondence with 
current customs, rules, or styles. In 
particular, behavior in correspondence with 
SOSAS rules requirements, and styles. [7] 

conformance class 
a set containing members having common 
behavior in correspondence with a defined 
set of (SOSAS) rules, requirements, and 
styles. [7] 

consumable 
material that is physically used or 
transformed by a production process in the 
completion of that process. It includes items 
such as coolants and lubricants. [7] 

continuous time 
time which can have any point expressed as 
a real quantity, without regard for any 
specific interval or processing rate; 
compare with discrete time [5] 

continuous-time equation 
a mathematical relationship to describe a 
function of time, expressed in terms of 
continuous time; compare with difference 
equation, differential equation, discrete-time 
equation, Laplace transform, Z transform; 
see first order filter, second-order filter, unit 
functions for examples. 

Example standard notation for continuous- 
time equations is: 
[5] 

^ J    16 16        4 

control law 
the mathematical definition of a system used 
to control or to change the dynamic 
response of a system. [5] 

control plan (CP) 
a plan that  is executable  by  a specific 
machine within the workstation. [7] 

> 

context 
the conditions that bound and relate discrete 
events temporarily, spatially, or 
semiannually. [7] 

continuous path control 
motion control of a device that is not 
planned to stop at intermediate points along 
a path. [7] 

controls standardized application (CSA) 
provides both continuous and discrete 
control of an individual machine. The SA 
receives machine specific task commands 
from the task execution SA, and produces 
effector commands to support all modes of 
operation. Process control commands are 
also decomposed to a sequential set of 
discrete effector commands and sent to 
SESA.      Coordination   between   machine 
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specific motion and process commands is 
provided by this SA. [7] 

conventional machine tool 
a machine tool that is not controlled by 
computers. [7] 

conventional milling 
milling in which the tool motion is with the 
tool rotation; compare with climb milling 
[15] 

conversational part programming 
method implemented by software within the 
control that allows part programming in a 
question/answer format on the operator 
console. This method of part programming 
uses multiple choice and fill-in-the-blank 
questions, as well as clearly worded operator 
prompts. It is the method not the software. 
[4] 

a joint that is coordinated to begin and end 
at prescribed, controlled, programmed 
points with special tolerances on the 
(interpolated) path in between them. [7] 

coordinate measuring machine (CMM) 
a machine that uses a probing tool to 
determine coordinate points on a part. 

correlation 
the degree to which two or more attributes 
or measurements on the same group of 
elements show a tendency to vary together. 

[11] 

cosine 
common math function;   standard notation 
cos x, ex [5] 

COTS 
abbr for Commercial Off-The-Shelf package 

coolant 
a cutting fluid that keeps the tool and part 
cool to prevent reduction in hardness and 
resistance to abrasion. It therefore helps 
prevent distortion of the work. [4] 

counterbore 
a machining task; to form a flat-bottomed 
enlargement in the mouth of a cylindrical 
bore [13] 

coolant mechanism 
delivers coolant in either a flood, tap, or 
mist fashion to prevent the tool or part from 
overheating. 

coordinate 
any of the magnitudes which serve to define 
the position of a point in terms of a fixed 
reference frame such as coordinate axis. 
[17] 

counterclockwise (CCL W) 
negative rotational direction. 

countersink 
a machining task; to cut a funnel shaped 
enlargement at the outer end of a drill hole, 
usually for the reception of a screw, bolt, or 
rivet head. [13] 

coordinated joint 
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CO = co„V^ 

CPC 
abbr for Chevrolet, Pontiac, CM of Canada. 

CPU 
abbr for Central Processing Unit 

where mn is the natural frequency and C, is 
the damping ratio; see second-order filter; 
standard symbol ©; standard units rad/s, Hz; 
primary units 1/8 [5] 

> 

CSA 
abbr for Controls Standardized Application. 

damping ratio 
see second-order filter;   standard symbol Q 
standard units 1; primary units 1 [5] 

cutoff frequency 
the frequency at which the gain of a filter is 
at an edge of a band, usually taken to be 
when gain is 0.5, or Ä-3.01 dB; the 
frequency at which the output of a filter is 
half the power of the input; see band-pass 
filter, high-pass filter, low-pass filter, 
standard symbol coc; standard units rad/s, 
Hz; primär}' units 1/9}  [5] 

cutter compensation 
tool path is programmed for a tool of zero 
diameter. Cutter compensation uses 
algorithms to determine the offset of the tool 
path to compensate for the actual diameter 
of the tool. [4] 

cutter compensation plane 
plane   in   which   cutter   compensation   is 
measured. Either the xy-, yz-, or xz-plane. 

data 
a representation of facts, concepts, or 
instructions in a formalized manner suitable 
for communications, interpretation, or 
processing. [6] 

database 
a structured repository for information, with 
well defined methods for storing and 
accessing data. Instances of objects and 
relationships as defined by a schema. [7] 

database management system (DBMS) 
a software system (often COTS) for 
managing one or more, centralized or 
distributed data bases. Data management 
facilities typically provide mechanisms for 
data entry, update, retrieval, and storage. 
[7] 

cutter compensation radius offset 
attribute of a cutting tool. 

data bus 
communication path between one or more 
CPUs and related hardware. [7] 

damped frequency 
the    frequency    of    oscillation 
underdamped second-order filter 

of    an 
data dictionary 
a centralized repository of information about 
data such as its meaning, relationships to 
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other   data,   origin,   usage,   format,   and 

- 

business rules governing the data.  It assists dedicated channel 
management,     database     administrators, point-to-point wiring. [7] 
system       analysts,       and       application 
programmers in planning, controlling, and 
evaluating the collection, storage and use of delta 

- data. [6] the difference between the desired value and 
the measured value 

data starvation 
finish executing a block of code before next derivative 
block has been analyzed.   Eliminated with common math function;    rate of change, 
sufficient look-ahead. [15] usually  with  respect  to  time;     standard 

notation #, x', x<», dx/dt, Dx, sx+x(aO   [5] 

data structure 
a formal representation of information for design viewpoint 
communication   and   processing   purposes a DSSA view of a system. 
without      regard      to      actual      storage 
configuration. [7] 
DBMS desired 
abbr for Database Management System what must be achieved in order to match a 

plan; synonym for reference [5] 

DC 
abbr for Direct Current. 

determinant 
DC motor common math function; standard notation 
such a motor uses direct current.  There are det[A],IAI [5] 
two  types  of DC  motors:   brushed   and 
brushless.    The brushed DC motors use 
brushes for commutation. Brushless motors deviation 
are externally commutated. [4] difference from desired [5] 

deadband device driver 
the deadband range is adjustable and lets the a software component that provides software 
programmer  select  the  appropriate  error platform access to a hardware platform. [7] 
range   both   above   and   below   setpoints 
outside of which the output will not change. 
With the deadband, the programmer can diagnostic 
closely match the process variable to the an interactive condition that occurs when the 
setpoint without changing the output,   (see controller is in the maintenance mode. Off- 
PID control loop) [10] line    diagnostics    are     algorithms    that 

extensively check the entire NGC system. 
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They are intended to extensively verify all 
system hardware. A complete system 
diagnostics verification requires some or all 
of the NGC operations to be suspended. 
This will normally require a mode change at 
the standardized application level and 
perhaps at the system level. Due to the 
various possible configuration of hardware 
and software on a NGC, the system 
integrator must tailor this package for the 
delivered environment. Health and status 
monitoring includes data consistency 
checking, and may be enabled any time 
during system operation for any 
combination of standardized applications in 
the system. [7] 

difference equation 
a mathematical relationship to model a 
discrete function, expressed in terms of 
other values in the sequence; compare with 
continuous-time equation, differential 
equation, discrete-time equation, Laplace 
transform, Z transform; A difference 
equation usually models periodic process in 
terms of past values; see first-order filter, 
integrator, second-order filter for examples 

Example standard notations for difference 
equation are 

y[n] = y[n-l]+y[n-2] 
y„ = yn-i + yn-2 
yn+2 = yn+i + yn 

where y is a function of time, n denotes the 
current cycle, n-1 denotes the last cycle, and 
in general n-1 denotes the ith prior cycle. 
Initial conditions, like y[0]=0, are usually 
given or implied. Difference equations are 
usually derived from differential equations. 
[5] 

a mathematical relationship to model a 
continuous function, expressed in terms of 
derivatives; compare with continuous-time 
equation, difference equation, discrete-time 
equation, Laplace transform, Z transform. 
A differential equation usually models 
continuous-time phenomenon in terms of 
time derivatives; see first-order filter, 
integrator, second-order filter for examples. 

Example standard notation for differential 
equations are 

y" - 2y' - 3y = e-< 
y - 2y - 3y = e_t 

y(2)_2y(D-3y = e-t 
(d2y/dt2) - 2(dy/df) - 3y = e-< 
(D2 - 2D - 3)y = e-1 

y - 2_ydt - 3 ydt2 = e"1 dt2 

s2y - sy(0+) - y(0+) - 2sy + 2y(0+) - 3y = e"1 

where y is a function of time t. Initial 
conditions, like y(0)=0 or y(0) =1 ft/s are 
usually given or implied. 

Differential equations are commonly used 
by systems engineers to model systems. 
The systems engineer usually converts 
differential equations to difference eqt lions 
for specification and implementation in 
software. [5] 

digital numerical control (DNC) 
a type of machine controller designation, in 
which programs downloaded from 
elsewhere. [16] 

dimension 
1    a standard quantity, such as ft or mi; 
synonym for units [5] 

differential equation 
2    a degree of freedom within a vector 
space. [17] 
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dimensional measurement interface 
specification (DMIS) 
standard language to program coordinate 
measuring machines. [7] 

dimensionless 
no   units,   such   as   ratios;   synonym   for 
unitless [5] 

direct numerical control (DNC) 
a host computer controls a group of machine 
tools by downloading part programs to 
them. Operators do not program parts at the 
machine. They start machines and fixture 
parts. This control structure is common in 
large shops that mass produce parts. [4] 

discrete I/O 
input or output data represented by on or off 
states. [7] 

discrete time 
time divided into quantized intervals; time 
is usually divided into equal intervals to 
create a periodic process; compare with 
continuous time [5] 

discrete-time equation 
a mathematical relationship to describe a 
function of time, expressed in terms of 
discrete time; compare with continuous- 
time equation, difference equation, 
differential equation, Laplace transform, Z 
transform; see first-order filter, unit 
functions for examples. 

Example standard notation for discrete-time 
equations is 
[5] 

y[n] = — e~" +— (?"-- ne~ ,L J    16 16 4 

distance 
synonym     for    range; method 
measurement dependent on use [5] 

of 

distributed control 
distributed control means that a number of 
PLCs on a network can control I/O in local 
or remote places. They communicate over a 
control network like Arcnet or CANbus. In 
distributed control, the task of implementing 
the control system is divided into a number 
of small modular and easily managed parts. 
Each part of the control is performed by 
individual stations networked together to 
communicate needed information. The idea 
is to minimize the communication between 
stations to allow each of them to run 
autonomously. This approach works well in 
large complex systems, applications with 
many similar repeated elements, and when 
machine upgrade and configuration 
flexibility is essential. [10] 

distributed database 
a fully distributed database is one that has 
multiple data bases stored on multiple 
servers at physically separate locations. The 
computers that store, manage, and interface 
with users across the various locations are 
linked by network. A centralized distributed 
database utilizes a central server to access 
dispersed database sources. [7] 

DLL 
abbreviation    for    Dynamically    Linked 
Library. 
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DML 
abbr for data manipulation language. [6] 

drag 
to move the tool with a dead spindle. [3] 

drift 
DMS slow monotonic change in measured data 
abbr contained in definition for transaction [5] 

DMIS 
abbreviation for Dimensional Measurement 
Interface Specification 

drill 
a machining task; to make a rounded hole 
or cavity in a solid by removing bits with a 
rotating cutting tool. [13] 

DNC 
labbr for Direct Numerical Control. 

2abbr for Digital Numerical Control. 

domain 
the set of values assigned to the independent 
variable of a function [11] 

domain independent application 
an applications that supplies general 
functionality and was not necessarily 
developed for NGC. [7]] 

drawing interchange file (DXF) 
the AutoCAD systemfs ASCII drawing 
interchange files describe a CAD drawing 
created by that system software. These files 
can be easily translated into formats for 
other CAD systems. The files and their 
format are of interest to companies 
manufacturing CNCs because customers 
want to use AutoCAD to design parts and 
then dump the DXF files into the CNCs on 
their machine tools and quickly cut the 
parts. [4] 

drill bit 
a cutting tool for boring holes in material. 

drive 
a mechanism for controlling a motor. 

DSP 
abbr contained in definition for servo motor 
control 

dwell 
to stop tool motion while the spindle is 
turning; to break chip, for example. [3] 

DXF 
abbr for Drawing Interchange File. 

dynamic binding 
the code associated with a given procedure 
call is not necessarily linked until the 
moment of the call at run-time. [7] 
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dynamic error 
the difference between the true and the 
reported values of a machine motion 
variable due to error sources. [7] 

dynamic following error 
the distance between the commanded 
position and the actual position of the device 
under motion control. [7] 

EBM 
abbr for Electron Beam Machine. 

ECM 
abbr for Electrochemical Machine. 

EDM 
abbreviation for electrodischarge machine. 

a machine which performs material removal 
via corrosive chemicals. 

electrodischarge machine (EDM) 
a machine which performs material removal 
via electric potential. 

element 
a constituent of the NGC system at the level 
directly below system level. [7] 

emergency stop 
a systemis emergency stopping circuits and 
devices were designed to avoid injury to 
personnel and damage to the machine. 
Usually large, red E-stop buttons are the 
emergency stopping devices on the operator 
console, the remote jog unit, and the 
machine itself. [4] 

EIA 
abbr    for    Electrical/Electronic    Industry 
Association. 

effector 
a device that physically performs an action 
or transformation function. [7] 

electrical cabinet 
large metal box, also called the magnetic 
cabinet, containing the CNC computer 
boards, servo amplifiers, communications 
boards and other wiring necessary to control 
the machine electronically. Some OEMs 
attach the operator console to the outside of 
this cabinet. [4] 

enclosure 
screening around the cutting surfaces of a 
machine to protect the operator from 
material and coolant that may be propelled 
from the cutting area during operation. 
Enclosures are usually metal doors with 
windows in them to allow the operator to 
see inside. Many countries have regulations 
defining these enclosures and the 
mechanisms for opening and closing them. 
[4] 

encoder 
a mechanic device for translating motion 
into a unique electronic signal or 
combination of signals. Modern machine 
tools use optical encoders. See also 
quadrature. [4] 

electrochemical machine (ECM) 
encoder feedback 
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an interface that allows a controller to 
interface to incremental or Quadrature 
encoders or other high speed pulse sources. 
The interface is capable of accepting Phase 
0, Phase 90, and index pulse inputs. These 
signals can be TTL, single-ended or 
differential (strappable) and are optically 
isolated. The interface provides logic to 
detect overflow/underflow conditions and 
desired position comparison triggers. The 
index pulse can be used to latch counter 
data. These conditions can be made to 
generate interrupts to the host processor. 
Inputs are conditioned by a four stage digital 
filter. Five jumper selectable sampling 
frequencies are available for filter use. 
Selecting the lowest frequency compatible 
with the highest expected input rate will 
maximize noise immunity. The interface 
accepts quadrature input and input pulse 
rates. The counter register operates in 
quadrature decoding, pulse and direction 
input counting, or in a pulse input up/down 
mode. Counter output is available to the 
host bus as a binary or coded decimal form. 
[10] 

endpoint control 
any control scheme in which only the 
motion of the tip of the end effector may be 
commanded. [7] 

end user 
anyone    who     uses  . a    manufacturing 
workstation for the execution of tasks. [7] 

enterprise 
the top level of a manufacturing hierarchy 
under which exists the factory, center, and 
cell [7] 

enterprise information 
the enterprise information is any data from 
the enterprise level that is communicated to 
lower levels. Enterprise information may 
include procedures, policies and schedules. 
[7] 

end effector 
an effector, gripper, or mechanical device, 
located at the end of last joint, by which 
objects can be grasped or acted upon. [7] 

environment 
the aggregate of physical factors that act on 
the manufacturing workstations, 
manufacturing processes, and final products. 
[7] 

endfeed grinding 
a type of centerless grinding. 

end mill 
a type of task. 

end mill sharpening 
a type of grinding. 

error 
difference between desired and 
data;     synonym    for    delta; 
engineering term [5] 

measured 
standard 

ESPRIT 
abbr for the European Strategic Programme 
for Research and Development of 
Information Technology. 
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E-stop 
abbr for Emergency Stop. 

etch 
a task; to produce a design, usually in a 
metal or glass surface by covering it with an 
acid resistant ground through which a design 
is scratched with a pointed instrument, then 
submitting the surface to an acid bath. [13] 

euler parameters 
four parameters for specifying quaternions; 
standard   symbols   ei234,a,b,c,s;   standard 
units 1; primary units 1   [5] 
European Strategic Programme for 
Research and Development of 
Information Technology (ESPRIT) 
a consortium of 21  European companies 
now   working   on   the   specification   and 
definition of CIM-OSA.   The consolidated 
efforts which focus on CTM has resulted in 
what is today the AMICE consortium. [6] 

exception handling 
managing        deviations        from        the 
planned/nominal production or process. [7] 

exponential 
common math function; standard notation 
ex, exp x [5] 

external communication 
communication of a manufacturing 
workstation with the outside world through 
its computing platform. [7] 

external interface 
interfaces of a manufacturing workstation 
with the outside world, to cell level above, 
and to sensors/effectors below at the 
machine level. [7] 

extrapolate 
function to determine values from two or 
values in a table; usually linear but can be 
higher order [5] 

fabrication 
a term used to distinguish manufacturing 
operations for components, as opposed to 
assembly operations; to make or produce a 
part from raw stock. [6] 

executive viewpoint 
a DSSA view of a system. face mill cutter sharpening 

a type of grinding. 

> 

expert system 
a system that captures a human expert's 
knowledge in a computer application for 
general application to provide solutions for 
similar problems. An expert system 
attempts to capture some of the intuitive 
reasoning that experts use to make 
decisions. [6] 

face plate 
the part of a robot at the end of the last joint, 
to which an end effector can be attached. 

factory 
a manufacturing unit consisting of two or 
more centers and the materials transport, 
storage buffers and communications that 
interconnect them. [7] 
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failure recovery 
a condition that begins with an assessment 
of the damage. Repair of equipment and/or 
replacement of components by the operator 
may be required. In some instances the 
process may be allowed to resume after a 
failure recovery operation has been 
successfully performed, but at a lower level 
of performance. Failure recovery shall 
involve the performance of specific 
automatically generated and sequentially 
executed steps, and may require some 
interactive step execution as well. In most 
instances, a combination of automatic and 
interactive steps are required to facilitate a 
successful failure recovery. [7] 

Fanuc 
a controller manufacturer. 

FBD 
abbr for Function Block Diagram 

feature 
a physical attribute such as a surface, hole, 
or slot, used to describe a part. [7] 

feature-based definition 
a method of describing a part in terms of its 
features. [7] 

) 

fault detection/isolation 
an automatic condition that occurs when the 
controller is in the normal production mode. 
It automatically detect failures or 
interruptions in service, indicates location, 
and diagnoses cause when possible, Fault 
recovery actions are also initiated. 
Detection takes place when a flag is set or 
when some metric takes on a significantly 
different value. Possible metrics include the 
following: a process parameter that has 
exceeded its control limits, a statistical 
process control parameter, the output of a 
sensor fusion/integration module, or derived 
data such as runtime statistics that monitor 
performance. [7] 

fault management 
prevention, correction, or recovery from 
major deviations from current planned 
operations; predicts impending failures in 
time for corrective action; detects failures or 
interruptions in service; indicates location 
and diagnoses the cause when possible, 
determines and initiates recovery action. [7] 

feed 
to provide a machine with material. 

feedback 
1 Input describing what is being controlled. 
This data is used by the CNC to adjust 
positioning and velocity. [4] 

2 the furnishing of data concerning the 
output of a machine to an automatic control 
device or to the machine itself, so that 
subsequent or ongoing operations of the 
machine can be altered or corrected [11] 

3 correcting or controlling a system by 
using part of the output as input; the flow of 
information back into the control system so 
that actual performance can be compared 
with planned performance. [6] 

feed rate 
feeding material into a tool. [4] 

K 
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feedrate override 
a way, via the operator console, for the 
operator to manually change the feedrate. 

feeds and speeds 
machine tool movements determining the 
rate at which a material is machined or 
transported. This can be in the form of 
stock feedrate into the tool, tool rotational 
speed, or tool translational rate. [7] 

field replaceable unit 
a hardware unit or software module that can 
be physically replaced on site, thus reducing 
downtime. [7] 

filter 
a device to alter a signal; software to alter a 
data steam; see averaging filter, band-pass 
filter, complementary filter, first-order filter, 
high-pass filter, hysteresis, Kaiman filter, 
limiter, low-pass filter, rate limiter, second- 
order filter, smoothing filter, wash-out filter; 
standard engineering term [5] 

finish 
a task; to polish a raw edge to form a 
smooth surface; to finish a raw edge by 
hemming, pinking, overcasting, or facing. 
[13] 

where x is a filter constant. If the input is a 
unit step, then 

y(x)« 0.6321 

y[n] = l-e"?("+1) 

The Laplace transform is 

Y(s)_    1 

X(s)    xs+l 

The Z transform is 

Y(s) = (l-e*)z 

X(s)      z-e^ 

The differential equation is 

y=x-xj* 

The first-order filter is commonly used in 
avionics to smooth data, and to wash out 
transients at mode change, where typical 
values for x are l-5s. It is also used as a 
low-pass filter, with cutoff frequency oc = 
1/x. 

When implementing a second-order filter on 
normalized variables, such as angles, the 
discontinuities require special treatment. [5] 

fixture 
any device that holds workpieces during the 
machining operation; a fixture by itself does 
not provide location information. [7] 

first-order filter 
a filter in which the output follows the 
input, only more slowly; It is usually 
implemented in software as a difference 
equation of period T as 

yn = *^n-l + 0-**K = Xn + ^(X-i "*„) 

flat end mill 
a type of cutting tool. 

flexible tap 
a type of tapping tool in which the rotation 
and the z-motion of the tool are not tightly 
coupled. [15] 
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FLEXIS 
performs "offline 
robot/manufacturing 
Grafcet language. 

flute 

programming"     of 
processes. Uses 

a groove machined in a cutting tool to 
facilitate easy chip removal and to permit 
cutting fluid to reach the cutting point. [9] 

following error 
the difference between where a cutting tool 
actually is and where the control commands 
it to be. [4] 

form cutter sharpening 
a type of grinding. 

form grinding 
a type of grinding 

function 
a mathematical relation between two sets, 
called the domain and range, which assigns 
a unique value in the domain to each value 
in the range, i.e. f(domain coordinate) = 
range coordinate [17] 

function block diagram (FBD) 
a graphical language that allows program 
elements that appear as blocks to be wired 
together in a form analogous to a circuit 
diagram. FBD is well suited for 
applications that involve continuous flow of 
information or data between control. [10] 

geometric error 
the difference between the true location of a 
particular end effector and the location as 
reported by the machinery scales. The 
machinery is assumed to be in a static, 
unloaded posture at a reference temperature. 
[7] 

geometric modeling applications program 
(GMAP) 
built on the results of PDDI, its goal is to 
identify and organize geometric and 
nongeometric product definition data 
required for the engineering, manufacturing, 
and logistics support of complex structured 
components throughout the product life 
cycle. [6] 

geometry 
the definition (measurements and 
relationships) of the dimensional properties 
of points, lines, curves, surfaces, and solids, 
as required to convey the shape of 
configuration aspects of a design in human 
processing terms. [6] 

GM 
abbr for General Motors 

GMAP 
abbr for Geometric Modeling Applications 
Program. 

GMF 
abbr for General Motors/Fanuc. 

gauge vector 
attribute of a tool. 

GMTS 
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abbr for General Motors Technical Staff. 
Authors of a Standard for Machinery and 
Equipment. 

goal 
the end result of the manufacturing process. 
[7] 

granularity 
degree of refinement. [7] 

graphical user interface (GUI) 
common user interfaces applied to the 
controller domain include: Citect, Fix, 
Genesis, Labview, Lotus ©Factory, Paragon, 
PCIM, Wonderware [10] 

gravitational acceleration 
acceleration caused by the force of gravity; 
standard symbol g', standard units lbf, kip; 
primary units, ML/9; gravity sometimes 
includes effects of the earth's rotation; 
gravity is often treated as a constant, but for 
greater accuracy gravity is a function of 
latitude, altitude, and the phase of the moon 
[5] 

grind 
a machining task; to wear down, polish, or 
sharpen by friction. [13] 

grind belt 
a type of grinding tool. 

grind wheel 
a type of grinding tool. 

gnpper 

a type of end effector,   a device by which 
physical objects are grasped and held. [7] 

GUI 
abbr for Graphical User Interface 

Hall effect sensor 
highly accurate, non-contact limit switch 
which detects the proximity of a magnet and 
provides a digital output to assure an 
accurate position reference. [8] 

hand crank 
usually a wheel with a handle attached used 
to control the motion of an axis on a manual 
machine. [4] 

hierarchical control 
control in which tasks are decomposed into 
sequences of subtasks that are passed to the 
next lower level in the hierarchy until the 
lowest level is reached. [7] 

high-pass filter (HPF) 
a filter that allows frequencies above a 
cutoff to pass while attenuating frequencies 
below the cutoff frequency [5] 

holding torque 
stepper motors, when energized, hold 
position via a magnetic field. The holding 
torque is the maximum torque which can be 
generated before the rotor slips to the next 
pole location. [8] 

home position 
a tool may have a home position to which it 
traverses to get out of the way of the 
machine. 
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home switch 
any of a variety of sensors which can be 
used to establish an accurate initial position. 
This may consist of a standard end-of-travel 
Hall sensor; a center position optointerupter 
with half-travel blocking vane; an index 
signal on a linear encoder; a shaft coupling 
mounted magnet with Hall sensor; or a 
once-per-revolution encoder index signal. 
Once-per-revolution sensors will usually 
require a logical ORing with a linear signal 
if a unique home position is required. [8] 

HPF 
abbr for High-Pass Filter [5] 

HUI 
abbr for Human User Interface 

human-user interface (HUI) 
an information channel that conveys 
information between a human user and a 
system. It is composed of the surface 
layout, domain-independent applications 
(such as window and graphic packages), 
open HUI applications, and the PMSs. [7] 

hysteresis 
1 the error which can occur when a motion 
system is commanded to return to a starting 
position after several interim moves are 
made. It is attributable to lead screw 
reversing errors, backlash, etc. [6] 

2 a function in which the algorithm for 
computing output changes at defined events 
or thresholds, such that output follows as 
input increases and another path as input 
decreases. 

if event-1 occurs, switch to algorithm-1 
if event-2 occurs, switch to algorithm-2 

if event-n occurs, switch to algorithm-n 

Hysteresis can prevent a test (x = Xc) from 
oscillating near the transition point (x Ä xj 
due to noise. Implementation is usually: 

at initialization, set y = 0 
if Xc + (h/2)2 x, then set y = 1 
if Xc - (h/2) < x < Xc + (h/2), then let y 
retain its value 
ifx2xc- (h/2), then sety = 0 [5] 

IB 
abbr for Information Base. 

ICAM 
abbr   for    Integrated    Computed    Aided 
Manufacturing. 

identity 
identity   matrix;       standard   symbol 
standard units 1; primary units 1 [5] 

I; 

IEC-1131 
1 A standard PLC programming and 
execution environment that would facilitate 
the proliferation of many third party vendor, 
reusable software modules, and new 
software development tools. [21] 

2 A controller language standard which is a 
collection of four different languages: 
Pascal-like, Grafcet-like, Signals on IC chip 
like, assembly language like. Statements in 
each language can be included in each other. 

Hysteresis can be formalized: 
at initialization, select algorithm-0 

IGES 
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1 abbr for Interactive Graphics Exchange 
Specification 
2 abbr for International Graphics Exchange 
Standard. 

-IL 
abbr for Instruction List. 

impulse 
synonym for unit impulse [5] 

IMW 
abbr for Intelligent Machining Workstation. 

Industrial Real-Time Operating System 
Nucleus (ITRON) 
part of Japan's TRON program to develop a 
new operating system for use across the 
spectrum of computer systems and industrial 
machinery. [6] 

that particularly suits NGC IB needs, e.g., a 
graphical schema browser capable of taking 
STEP input. [7] 

information base support package 
a software component (often COTS) that 
provides specific IB functionality to be 
accessed through the data management 
services abstraction layer, e.g., a DBMS, a 
KBMS. [7] 

initialization 
1 a procedure to reset physical devices to a 
known state. During initialization, the 
device is usually not available. [5] 

2 an interactive condition that occurs when 
the controller is in the start-up mode. 
Initialization establishes all late bindings 
and communications links between SAs, and 
establishes the initial state for all SAs. 
Initialization also retrieves the appropriate 
models for the selected modes determined 
by the configuration. [7] 

infeed grinding 
a type of centerless grinding. 

information base (IB) 
an abstract storage mechanism that may 
consist of multiple, coordinated information 
sources (e.g., data bases, knowledge bases, 
memory maps) distributed across 
heterogeneous or homogeneous platforms. 
The IB is the conceptual structure to which 
all application-and service-generated 
requests for shared data manipulation are 
made. [7] 

in-process gauging 
measure the part with a probe while the pan 
is still on the machine. Problems are 
encountered due to additional cycle time 
required for sensing with devices such as 
lasers. [18] 

input/output artifacts 
objects, either physical or virtual, such as 
buttons, dials, readouts, sliders, etc., that 
provide specific user input or output 
capabilities and that can be combined to 
create user interface devices. [7] 

information base application 
code that allows a user to interact with or 
manipulate specific information in a manner 

instance 
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a distinguished occurrence of a particular 
object. [7] 

installation 
the creation of an instance. [7] 

a data model which expresses the structural 
characteristics of information. It is used as a 
foundation for inter-division data standards 
and data base design, showing data and 
entity relationships, and attribute 
identification. [6] 

instruction list (IL) 
a low level language, similar to assembler 
language. It is useful for smaller 
applications or for optimizing parts of an 
application. [10] 

integration 
the formation of one complete and 
harmonious entity or coordinated entities of 
different applications that will accomplish a 
complete process solution. [7] 

instrumentation 
hardware  to  measure  and  to  monitor  a 
system [5] 

integrate/configure 
an interactive condition that occurs when the 
controller is in the start-up mode. Hardware 
integration, physical integration and 
configuration shall include installing 
mechanisms and computing hardware, 
and/or connecting wires to the hardware 
ports; software integration and configuration 
implies loading the code and data required 
for the controller onto the computing 
platform. [7] 

integrated computed aided 
manufacturing (ICAM) 
1 an activity modeling methodology that 
represents the functional decomposition of 
any activity. An activity in the model 
converts inputs to outputs using the defined 
mechanisms and under the constraints 
imposed by the controls, and linked by those 
inputs, outputs, and controls, to other 
activities in the model. [6] 

2 a representation of structurally integrated 
information. A methodology for developing 

integration architecture 
the components that provide the 
interconnection structure and interface 
definition between interoperating 
applications. It is composed of the platform 
services, communication services, data 
management services, presentation 
management services, task management 
services, geometric modeler services, basic 
I/O services, and the data standards. [7] 

integrator 
a  function  or  filter  that  mathematically 
integrates [5] 

intelligent machining workstation (IMW) 
a USAF Program conducted by Carnegie 
Mellon University, Cincinnati Milacron and 
Pratt & Whitney. [6] 

interactive graphics exchange 
specification, or International Graphics 
Exchange Standard (IGES) 
1   files conforming to this specification are 
generated by CAD systems to define part 
geometry.  However, interpretation of these 
files by different CAD systems may vary 
causing variations in the parts on different 
systems. [4] 
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2 a format for the exchange of graphical 
information (such as lines, ellipses, and text) 
between dissimilar drawing systems. This 
data enables the electronic transmission of 
prints, but does not include information 
about the items represented by those prints. 
[6] 

3 a CAD/CAM data exchange specification 
adopted by ANSI. IGES attempts to 
standardize communication of two- 
dimensional drawing and geometric product 
information between computer systems. [6] 

intellectual,  scientific,  technological,   and 
economic activity. [6] 
interoperability 
1 a characteristic of independent system 
components that makes it possible for a set 
of components that comprise a system to 
intercommunicate and work properly 
together. [7] 

2 that characteristic of a SOSAS compliant 
module which makes it possible for the 
module to operate on different computing 
platforms, or be integrated with differently 
configured NGCs. [6] 

interchangability 
a characteristic of system components that 
makes it possible to replace one component 
with another component of equivalent 
functionality made by a different vendor. 
[7] 

interface 
the definition of common boundary or a 
point or means of interaction between two 
or more distinct entities. It may be a shared 
boundary between two subsystems, which 
are defined by functional characteristics, 
common physical interconnections, signal 
specifications, and other characteristics. [7] 

internal grinding 
a type of grinding. 

interpolate 
function to determine intermediate values 
from two or values in a table; usually linear 
but can be higher order; endpoints are 
either extrapolated or limited [5] 

interpolation 
1 the process of approximating a given 
function by using its values at a discrete set 
of points [11] 

2 an algorithmic process to generate 
intermediate points along a prescribed path 
or specific geometric shape between two 
points. For example, interpolation might be 
used to generate an arc with a 3.5-in. radius 
(circular interpolation) between points A 
and B. In addition to linear and circular 
interpolation, there are advanced algorithms 
to produce helices, splines, etc. [6] 

International Organization for 
Standardization (ISO) 
an organization of national standards bodies 
from various countries established to 
promote development of standards to 
facilitate international exchange of goods 
and services, and develop cooperation in 

interpolation block 
offline system generates more than machine 
can handle, so machine ignore blocks 
coming in when its not ready for them. [20] 

interrupt 
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interrupts are controlled with interrupt 
registers consisting of an end interrupt, poll, 
poll status, interrupt mask, priority mask, in- 
service, interrupt request, and interrupt 
status. [10] 

IPM 
abbr for Inches Per Minute. 

inventory 
the aggregate of tangible company property 
items which are held for sale in the ordinary 
course of business, or are in process of 
production for such sale, or are to be 
currently consumed in the production of 
products or services to be available for sale. 
[6] 

IPR 
abbr for Inches Per Revolution. 

ISO 
abbr   for   International   Organization   for 
Standardization. 

inverse 
standard math function;    standard matrix 
operator; standard notation x^.X"1 [5] 

ITRON 
abbr for Industrial 
System Nucleus. 

Real-Time  Operating 

I/O interface 
different I/O types are either accessed 
directly from the base hardware platform via 
serial or parallel interfaces or may otherwise 
be accessed via add-on expansion modules. 
I/O types include: CANbus, Opto-22 
PAMUX and OPTOMUX, APC Seriplex, 
Keithley Metrabyte and Workhorse, 
TURCK Sensoplex, AB 1771 Digital, GE 
Series One, TI/Series, TI/Siemens, 
Transition Technologies, Grayhill, Gordos, 
Burr Brown Sensorbus, Du Tec [10] 

iron 
the frame of a machine without any 
electrical equipment, such as the CNC or 
servo drives, attached. The iron is produced 
at a foundry and then the bed, tool changer, 
and other electrical equipment is added. [4] 

jerk 
rate of change of acceleration, either scalar 
or vector, often with subscripts to denote the 
coordinate frame; time derivative of 
acceleration; standard symbol j, J; standard 
units ft/s3; primary units L/G [5] 

1 a mechanical construction that determines 
location dimensions that are going to be 
machined into a workpiece. A jig can be 
incorporated into a fixture so that both 
accurate location and clamping are 
implemented (see fixture). [7] 

2 a plate, box, or open frame for guiding 
work and for guiding a machine tool to the 
work, used especially for location and 
spacing drilled holes. [11] 

I/O 
abbr for Input/Output 

jigsaw 
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a type of saw machine with a narrow, 
vertically reciprocating blade for cutting 
curved and irregular lines or ornamental 
patterns in open work. [13] 

JIT 
abbr for Just-In-Time. 

kalman filter 
a filter for combining multiple data sources, 
usually of different types, to produce an 
estimate better than any single source; 
compare with averaging filter, 
complementary filter [5] 

job shop 
businesses the supply small quantities of 
parts (20 to 30) on a contract basis to larger 
companies. The large companies send 
specifications for the parts to the job shops 
and award the contracts to the lowest job 
shop bidders. These shops usually 
specialize in particular types of parts (e.g., 
springs for the automotive industry or hand 
cranks for knee mills). [4] 

Karel 
an robot programming language, a successor 
to VAL. Named for the Czech playwright 
Karel Capek who wrote RUR. 

KBMS 
abbr   for   Knowledge   Base   Management 
System 

jog 
1 manual control of an axis. [4] 

2 an interactive condition that occurs when 
the controller is in the normal production 
mode; allows a machine axis to moved in 
any direction within the machine envelope 
or limited parameters via specified 
increments, or continuously until the human 
interface button is released. [7] 

kinematic error 
the difference between the true and the 
reported locations of an end effector due to 
mechanical distortion of the machinery 
caused by motion. [7] 

kinematic model 
the    controller's 
machine's motion. 

representation    of    the 

joint 
a point of articulation between moveable 
parts. [7] 

kinematics 
the branch of physics which deals with pure 
motion, without reference to the masses or 
forces involved in it [11] 

just-in-time (JIT) 
a logistic approach to the movement of 
material to the necessary place at the 
necessary time. It allows for no buffer stock 
and is designed to minimize inventory 
during the manufacturing process. In short, 
synchronized production scheduling. [6] 

knee mill machine 
an inexpensive type of machine used to cut 
small parts in limited quantities. These 
machines usually do not have enclosures 
around the cutting area, and they have lower 
horsepower motors than bed mills. Knee 
mills may have CNCs attached, but they all 
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use at least one hand crank to move the bed 
with the part attached up to or away from 
the cutting tool. The "Z" axis on these mills 
has limited travel up and down, so the 
operator always needs to adjust the position 
of the bed. In fact, this machine received its 
nickname because operators use their knees 
to bump the cranks and adjust the beds when 
their hands are busy. [4] 

knowledge base 
1 semantically rich set of symbols, 
relations, procedures, and constraints. [7] 

2 the data, data rules of use, and procedures 
stored to support expert systems and 
artificial intelligence applications. It implies 
that some semantic (knowledge about the 
meaning and possible uses of the data) 
content is included. [6] 

knowledge base management system 
(KBMS) 
a software system (often COTS) for 
managing and providing reasoning 
mechanisms for one or more centralized or 
distributed knowledge bases, e.g., rule sets. 
[7] 

knowledge base system 
a knowledge base system consists of several 
components: a knowledge base and a 
mechanism for reasoning about stored 
information. The knowledge base contains 
domain knowledge, rules and heuristics. 
The reasoning mechanism includes the 
control for rule selection and execution. [6] 

ladder diagram (LD) 
a powerful collection of standard graphical 
symbols and function blocks that can be 
combined into complex control programs 

that portray the actual execution component 
taking place in the SFC step or action. [10] 

ladder logic 
1 written representation of the electrical 
relays required to operate a machine. There 
are several different forms of ladder logic 
(see PAL). Ladder logic in the United 
States looks like rungs of a ladder with 
contacts and relays on the vertical rungs; 
however, European ladder logic is written 
horizontally. (Also referred to as relay 
ladder logic.) [4] 

2 a programming language utilized for 
PLCs; the language for discrete control 
originally based on relays, rails, and rungs. 
[7] 

ladder logic execution 
ladder logic is driven (started) by a timer. It 
executes for each millisecond chunk and 
always responds to time interrupts. After 
ladder is evaluated, a delay time is 
hardcoded to give background tasks a 
chance to run. Background tasks include 
operator interface messages and other user- 
defined code sequences. Ladder logic has a 
higher priority, so it always takes place. It 
must be interrupted so that other processing 
can be executed. 

Software interrupts are used to tie user- 
defined code to particular points of the 
ladder logic. Software interrupts occur at 
the end of every OPI state, timer interrupt, 
input phase, output phase, and during some 
particular instruction in the ladder logic. 
This allows a particular ladder logic 
command to initiate a customized program. 
[10] 

ladder logic programming 
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a simple high-level graphical language for 
drawing control logic diagrams. Input 
contacts can be represented as normally 
open or closed. Output coils can be 
energized, latched, or unlatched. Boolean 
logic is represented by horizontal rungs 
(AND function) and vertical branches (OR 
function) read left rail to right rail with logic 
conditions on the left and output instructions 
on the right. Current logic states are 
graphically displayed as 
connected/disconnected sections of the 
rung(S). If a complete unbroken path exists 
from the left rail of the rung to the right 
trail, the rung is TRUE and the output 
instruction is acted upon. This discussion 
has only illustrated a small portion of the 
entire ladder logic instruction set.   [10] 

Laplace transform 
a mathematical relationship to model a 
continuous function in the complex 
frequency domain (S-plane); compare with 
continuous-time equation, discrete-time 
equation, Z transform; Laplace transforms 
are commonly used by systems engineers to 
describe systems; see first-order filter, 
integrator, second-order filter, unit functions 
for examples [5] 

latency 
time between the request for an action and 
the initiation/completion of that action. [7] 

lathe 
a machine used to shape a part by gripping it 
in a holding device and rotating it under 
power against a cutting tool. Lathes are 
commonly used for turning, boring, facing, 
and threading. [4] 

abbr for Ladder Diagram 

lead 
synonym for pitch. 

lead error 
the deviation of a leadscrew from its 
nominal pitch. The error is often monotonic 
(linear), although periodic error and thermal 
expansion set limits to its predictability. [8] 

leadscrew 
1 a mechanical device, also called a ball 
screw, for translating rotary motion into 
linear motion, consisting of an externally 
threaded screw and an internally threaded 
carriage (nut). These typically move the 
bed, the spindle, and the head surrounding 
the spindle. [4] 

2 a long precision screw on the front of a 
lathe bed that is geared to the spindle to 
transmit motion of the carriage for thread 
cutting [9] 

leadscrew mapping 
leadscrew motion can be mapped by 
indicating the number of revolutions per 
inch. This     technique     allows     for 
compensation in leadscrew pitch because the 
pitch per inch is not constant (see lead 
error). [4] 

lead through teach 
record the trajectories.   Use teach points to 
avoid obstacles [20] 

LD 
length offset 
attribute of a tool 
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life-cycle costs 
the cost of a product and its related activities 
that occur over the entire life of the product. 
[7] 

limiter 
a filter that passes the input to the output, 
except that the output is limited to a 
minimum value and a maximum value; 
compare with rate limiter. 

Limiters are usually implemented as 

yn = max(xmin,min(xmax>xn)) 

where xmjn is the lower limits and xmax is 
the upper limit. [5] 

limit switch 
a sensor, typically Hall effect, optical, eddy 
current, or mechanical, which is used to 
sense the end of travel of a linear motion 
assembly. In addition to preventing 
overtravel, it is frequently used to establish a 
precision reference. [8] 

preventing access by one transaction to an 
object by another transaction. Locking may 
prevent data modification only or all 
read/write access. [7] 

logarithm 
common math function:   standard notation 
logbx; logxslogiox [5] 

logging 
shadowing system activities over time by 
creating a time-stamped log file of 
transactions and state information. [7] 

look ahead 
algorithm that takes into account future 
commands to make decisions about current 
motions. For example, the control will note 
that the cutting is going to be commanded to 
stop so it begins to decelerate. [4] 

look and feel 
surface-level representation attributes and 
behaviors independent of specific 
presentation layout, i.e., the style of 
presentation. [7] 

linear force/torque 
a type of control law. 

linear position/velocity 
a type of control law. 

link 
part of a robot. 

low-pass filter (LPF) 
a filter that allows frequencies below a 
cutoff frequency to pass while attenuating 
frequencies above the cutoff frequency; see 
first-order filter [5] 

low rate initial production (LRIP) 
normally, the phase of production used to 
assess readiness for full rate production. [6] 

locking 
LPF 
abbr for Low-Pass Filter [5] 
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LRIP 
abbr for Low Rate Initial Production. 

lube 
synonym for lubricant. 

machine under control 
any machine or process being controlled by 
NGC. [7] 

machinist 
a highly skilled machine operator who 
makes decisions about how a part will be 
programmed, fixtured, and cut. [4] 

lubricant 
a substance used to reduce friction between 
the cutting tool and the part. [4] 

MADE 
abbreviation for Manufacturing Automation 
Design & Engineering. 

LWP 
abbr for Light-Weight Process. 

M & G codes 
a slang phrase describing combinations of 
the letters (common letters being iMi and 
id) with multiple numbers to indicate 
where a machine cutter should move and 
what it should do. These codes are used in 
NC programs. The codes were originally 
fed into a machine as a punched tape of 
instructions. Many other letters are used, 
such as ITi codes to describe tool changes. 
iGI codes describe positions, and iMi codes 
identify miscellaneous functions. [4] 

machine model 
a structure data representation that provides 
a description of a machine and simulates its 
properties and characteristics of interest. [7] 

machine tool 
a stationary power-driven device used to 
shape, cut, turn, bore, drill, grind, or polish 
solid parts, especially metal. [4] 

magnitude 
common   math   function;   synonym   for 
absolute value [5] 

maintainability 
the measure of the ability of a system or 
product to be retained in or restored to 
specified conditions when used by personnel 
having the specified skills, using prescribed 
procedures and resources. [6] 

maintenance 
any activity to eliminate faults or to keep 
hardware or programs in satisfactory 
condition, including tests, measurements, 
replacements, adjustments, and repairs. [6] 

manipulator 
a mechanism usually consisting of a series 
of articulated links, for the purpose of 
grasping and moving physical objects. [7] 

man-machine language (MML) 
a user interface. 
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manual machine 
a machine that does not use computer 
components to control operation of the 
cutting tools. Usually the operator interacts 
with the machine by turning hand cranks to 
adjust the spindle speed and to move the 
cutting tools and/or bed. [4] 

materials resource planning (MRP) 
scheduling for the manufacturing floor. 

matrix 
standard notation [ay], A [5] ) 

manufacturing 
a series of interrelated actions involving the 
process design, material selection, planning, 
production, quality assurance, management 
and marketing of discrete consumer and 
desirable goods. [6] 

Manufacturing     Automation     Protocol 
(MAP) 
IEEE 802.4 token-bus specification. [6] 

manufacturing workstation 
1 a material transformer device that 
includes a controller, computing platform, 
human interface, and peripheral devices. [7] 

2 a manufacturing workstation is defined as 
a single material transformer device and 
related support equipment (e.g., material 
handling or inspection) together with the 
processing and control capability for 
autonomous response to commands and 
inquiries. [6] 

MAP 
abbr     for     Manufacturing     Automation 
Protocol. 

mark 
a measuring task. 

maximum 
common math function; 
max(Xj xn) [5] 

standard notation 

metrology 
science/system of weights and measures or 
of measurement. [13] 

microstepping 
a technique which, instead of switching 
phase currents in a stepper motor on and off, 
slightly decreases the current in one 
winding, while slightly increasing it in 
another. This increases the resolution. [8] 

mill 
1 A machining process which removes 
material, usually metal, from a part using 
one or more rotating cutting tools. [4] 

2 to shape or dress by means of a rotary 
cutter. [13] 

milling machine 
a machine capable of performing the 
operation of cutting, shaping, or finishing a 
workpiece. [7] 
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minimum 
common math function; standard notation 
min(xi,...,xn)[5] 

MML 
abbr for Man-Machine Language. 

MMPM 
abbr for Millimeters Per Minute. 

MMPR 
abbreviation for Millimeters Per Revolution. 

modular 
a standardized and flexible construction 
consisting of logically self-contained and 
discrete parts; it allows for scalability and 
interchangability within a NGC. [7] 

mold 
a form made on a milling or punch machine 
into which a liquid is poured that hardens 
into the shape of the mold. The resulting 
molded product may also be milled as a 
finishing step. [4] 

motion control 
control   of  continuous 
machines. [7] 

joint   motion   of 

MMST 
it features interoperability of a growing 
number of machines used in semiconductor 
manufacturing. 

modal 
a state during which an established 
operation remains unchanged; compare 
with one-shot [3] 

mode 
an enumerated mechanism for coordinating 
behavior. [7] 

model 
1 a structured data representation of a 
process or system that simulates properties 
and characteristics of interest. [7] 

2 a mathematical representation [5] 

motor 
device that converts electrical energy into 
mechanical energy by using forces produced 
by magnetic fields on current-carrying 
conductors. There are three basic types of 
motors available on machine tools: DC 
brushed, DC brushless, and AC induction. 
[4] 

moving column machine 
in such a machine, the part remains in a 
fixed position while the spindle performs all 
motion. 

MRP 
abbr for Materials Resource Planning. 

multiaxis mode 
keeping the cutting tool perpendicular to the 
surface [19] 

multiprocessor control 
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a control computing platform that contains 
more than one processing unit. [7] 

natural frequency 
see second-order filter; standard symbol on; 

standard units rad/s, Hz; primary units 1/9 
[5] 

NC 
abbr for Numerical Control. 

NCMS 
abbr for National Center for Manufacturing 
Sciences. 

network interface 
Arcnet and CANbus networks allow 
controllers to be networked with each other 
and with PCs. Arcnet is a Local Area 
Network (LAN) industry standard protocol 
that has been well accepted and proven in 
factory control applications with over 1.67 
million installed nodes in the United States. 
CAN could be classified as a Small Area 
Network (SAN). It runs on an inexpensive 
twisted pair bus and provides an interface to 
other peripherals, peer-to-peer networking 
of controllers, deterministic prioritized 
message passing, small efficient packet 
sizes, robust error detection, and a reduced 
wiring solution. CAN is an industry 
standard protocol supported by multiple 
vendors. 

Peer-to-peer networking means that each 
node in the network is of equal status and is 
able to transmit at any time within the 
guidelines of the network access method. 
This is in contrast to master-slave or server- 
consumer based networks in which a 
particular node(s) on the network has special 
network   functions   and   privileges.      In 

master-slave based networks, a slave node 
must wait for the master to poll it and give it 
permission to transmit before being able to 
send messages. This method can cause large 
latencies to exist when high priority 
messages such as alarms and fault 
conditions need to be reported. [10] 

neutral manufacturing language (NML) 
1 a proposed language for communications 
between NGC applications and between a 
NGC and the cell. [7] 

2 used by humans to communicate with 
hardware/software modules and for 
communication between such modules. 
NML is the language used in 
communicating within an NGC, between 
NGCs and between an NGC and other 
systems. Manufacturing process plans, 
product descriptions, processes (at several 
levels of detail), machine management, 
motion control, and other aspects of 
manufacturing are expressed in NML. [6] 

NGC 
abbr for Next Generation Controller. 

NGIS 
abbr for Next Generation Inspection System. 

NGIS - NC Inspection Project 
a CMM with an open architecture. This 
project will eventually add additional sensor 
types besides just touch probes...vision, 
laser, ultrasound. It will marry wrist and 
machine controllers. A wrist controller has 
a standard I/O interface and holds a variety 
of different sensors. This will allow the 
machine controller to select a sensor for a 
particular process, much as it currently 
selects a tool for a particular process. Some 
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sensors include SAMI (a CCD based camera 
with software for vision, providing 
information on tool wear, surface 
conditions, etc.), laser for interferometries 
for surface conditions, Strudhome capacitive 
touch sensor (probe nears surface but does 
not touch). [21] 

NML 
abbr for Neutral Manufacturing Language. 

NIST 
abbr for National Institute of Standards and 
Technology. 

normalized variables often present problems 
for filters and other functions as their 
discontinuities [5] 

numerical control (NC) 
controlling the motion of machine 
components using numbers (M & G codes) 
often fed into the controller on punched 
tape. The controller mechanism has no 
intelligence and cannot be modified in any 
way without changing the wiring of the 
machine, (see also RS-274-D, CNC.) [4] 

NURBS 
abbr for Non-Uniform Rational B-Spline. 

noise 
part of received data that is undesired, 
consisting of random sinusoidal terms added 
to a signal; compare with signal [5] 

nut compliance 
the reciprocal of the stiffness of a 
leadscrew/nut assembly, measured in length 
per axial force. [8] 

non-uniform rational b-spline 
a spline is a function that has specified 
values at a finite number of points and 
consists of segments of polynomial 
functions joined smoothly at those points, 
enabling it to be used for approximation and 
interpolation of functions. For example, a 
cubic b-spline approximates a series of m+1 
control points with a curve consisting of m- 
2 cubic polynomial curve segments. Non- 
uniform indicates that the control points do 
not have to be evenly spaced along the 
curve. Rational indicates that each 
parameter is defined by the quotient of two 
b-spline polynomials. [22] 

object 
an abstraction of an entity representing an 
encapsulation of its attributes and services 
on those attributes. [7] 

object module 
software that has been compiled, but not yet 
linked. [7] 

object-oriented 
a viewpoint that models data and behavior 
as objects. [7] 

normalizer 
function to restrict input to a specific range, 
such as restricting an angle a in radians so 
that -1 2 a 2 '; angles usually require 
normalizing   following   any   computation; 

object-oriented programming 
programming in a language that embodies 
the concepts of objects, classes, inheritance, 
polymorphism, and dynamic binding. [7] 
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object-oriented structures 
two methods used to manage complexity; 
classification structure, which captures 
class/member organization; and assembly 
structure, which portrays whole/part 
organization. [7] 

odd pockets with islands milling 
method of surface milling in which the tool 
follows an inside-out or outside-in pattern 
across the part surface. [15] 

OEM 
abbr for Original Equipment Manufacturer. 

offset 
the amount of compensation required to 
account for the difference between the 
actual dimensions of a tool, probe, or end 
effector and the dimensions that were used 
to program the motion. [7] 

offset vector 
attribute of a fixture, which describes by 
how much the tool must be moved to avoid 
the stationary fixture 

one-shot 
a state after which an established operation 
is canceled upon execution; compare with 
modal [3] 

open loop 
a control system in which data flows 
unidirectionally, that is, only from the 
control to the mechanism but not from the 
mechanism back to the control. [2] 

open system 
a system that provides capabilities that 
enable properly implemented applications to 
run on a wide variety of platforms from 
multiple vendors, interoperate with other 
system applications, and present a consistent 
style of interaction with the user (IEEE 
P1003.0). [7] 

open system architecture 
a specification of the capabilities or services 
that provides the interconnection structure 
and defines the interface between 
interoperating components, thus allowing 
applications to be integrated into a system 
with a consistent style of interaction. [7] 

open system interconnection 
a seven-layer model of intersystem 
communications specified by the 
International Standard Organization. [7] 

open technology 
a technology for which there are publicly 
available specification allowing the 
reinvention, from scratch, without royalties 
or license fees. [7] 

open applications 
applications developed for NGC whose 
functionality is not defined by the SOSAS 
but whose external interfaces are specified 
within the SOSAS. [7] 

operating system 
software that controls the execution of 
application programs and manages 
computing platform services. [7] 
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operational 
functioning correctly [5] 

operator 
human who controls movements of a 
machine and communicates instructions to a 
machine. Usually an operator is a lower 
skilled worker than a machinist. [4] 

operator console 
a device attached to a machine that allows 
the operator to communicate to the machine 
and receive message from the machine 
indicating its operating state. The console 
communicates to the control. [4] 

operator interface 
for the machine shop, it is best to train 
operators on one controller for all the 
machines in the shop. Plug in particular 
machine model for specifics on that 
machineis configurations, i.e. lathe model, 
mill model, grinder model. [18] 

orient 
to move the spindle to a desired rotational 
position 
orientation 
direction in reference to a coordinate frame 
[5] 

Open-System Interconnection (OSI) 
the ISO/OSI model is a seven-layer model 
of intersystem communications. The model 
has been adopted for use in MAP. [6] 

optical encoder 
a linear or angular position feedback device, 
typically providing incremental two channel 
information in quadrature format (sine or 
square waves with a 90 phase shift between 
each    channel). Such    two    channel 
information allows simple counter circuits 
to function as absolute position indicators. 
[8] 

optimal feedrate 
attribute of a tool 

optimal spindle speed 
attribute of a tool 

orthogonality 
the degree of perpendicularity, or 
squareness, between two axes (X, Y, Z). 
usually measured in arc seconds. [8] 

OSI 
abbr for Open-System Interconnection. 

original equipment manufacturer (OEM) 
they build machine tools and fit controls, 
electrical devices, and operator consoles on 
the machines. They may completely build 
their own machines, or they may receive 
CNC-prepared iron from a manufacturer and 
integrate their own control or another 
manufactureris control onto the iron. [4] 

override 
to alter selection made automatically by 
software [5] 

overshoot 
the amount of distance a cutting tool goes 
past the point where it was told to stop by 
the control [4] 
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PAL 
abbr for Programmable Application Logic. 

pallet 
a portable  platform  on  which  materials 
(parts) are stacked for transportation [12] 

pallet shuttle 
a mechanism for transporting pallets of parts 
to and from the machining area. 

PAMUXbus 
a high-speed parallel bus. This bus can be 
up to 500 feet in length. It is a very reliable 
high-current bus that is extremely immune 
to noise. An individual digital I/O byte on 
the bus can be accessed in less than 3 
microseconds, even at distances of 500 feet. 
Analog channels are accessed in less than 
150 microseconds. A completely populated 
PAMUX digital bus could be read in 
approximately 250 microseconds. It uses a 
standard 40 conductor ribbon cable that is 
daisy-chained between I/O interface brain 
boards and terminated actively at each end. 
[10] 

paperless factory 
the automated and on-line control of the 
factory without the aid of printed reports or 
forms. [6] 

parallels 
a type of fixture; a block or strip of metal 
made with two parallel sides and used 
especially in machine shop work, as for a 
gauge block or for setting up work. [13] 

part 

1 end product of a milling operation on 
stock/workpiece. For example, a part could 
be a small piece used inside a motor or a 
large metal casting. Also called a workpiece 
itself. [4] 

2 normally refers to a material item which 
is used as a component and is not an 
assembly. [6] 

part geometry 
the dimensional features of a part or an 
assembly; see geometry. [6] 

part number 
1 a number which serves to uniquely 
identify a component, product or raw 
material. [6] 

2 the number that uniquely identifies each 
purchased, manufactured, or assembled part. 
It is also referred to as an item number. [6] 

part program 
1 definition of the machining features of a 
part such as process order number, part 
orientation and position, cutter tool types 
and size, depth of cuts, spindle speed, and 
feed rates. Then the programming system 
calculates the information needed to position 
the cutter and table. Many systems use 
computer graphics to show the tool path on 
a computer monitor. [4] 

2 a manufacturing process description for a 
workpiece. [7] 

part programming 
used to create tool path. It describes an 
object to be made by a machine. Part 
programming can be  accomplished on a 
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CAD/CAM system and downloaded to the 
machine or it can be programmed on the 
machine itself using through the operator 
console. [4] 

part transformation 
the removal or addition of material, 
assembly, or inspection of a part. Part 
transformation adds value to a part. [7] 

part zero 
the "zero"location on a part; where the X 
and Y axis meet on the part. [4] 

path planner 
software that produces paths for an end 
effector and computes collision avoidance 
algorithms, and satisfies other constraints. 
[7] 

PCTE 
abbr     for     Portable 
Environment. 

Common     Tool 

time of a periodic process; l/fs where fs is 
the sampling frequency; standard symbol T; 
standard units s; primary units 6 [5] 

periodic 
a process that executes at a fixed rate; 
compare with aperiodic [5] 

phase current 
the rated current which a stepper motor 
requires to generate its rated holding torque. 
This value is usually based on unipolar 
(half-coil) operation. This choice of how 
the motor is wired has significant impact on 
performance. [8] 

phase sequence 
the specific sequence of coil current changes 
used to advance a stepper motor clockwise 
and counterclockwise, in either full or half 
step modes. [8] 
PfflGS 
abbr     for     Programmer's     Hierarchical 
Interactive Graphics System [6] 

PDD 
abbr for Product Definition Data 

physical resource viewpoint 
a DSSA view of a system. 

PDDI 
abbr     for     Product     Definition     Data 
Interchange 

PDES 
abbr  for  Product   Data  Exchange   using 
STEP. 

period 

PID control loop 
a PID control loop is used to maintain a 
selected process variable at a desired set 
point. Many control applications require 
closed loop real-time control to set and 
maintain critical process characteristics 
which might be expected to vary or to drift 
over time. The PID function constantly 
monitors these parameters and calculates the 
error from the desired set-point and outputs 
a control parameter to return the process to 
the desired set point. 
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the update time of the PID loops determines 
the amount of total PID loops a single 
program/processor can handle. Simple 
loops and long update times allow for more 
PID loops in a program. 

PID can be used in both machine and 
process control applications. In a process 
control with temperature settings, PID can 
monitor the thermocouples and upon a 
programmed action, turn on a fan, open a 
valve, energize a pump and more. Other 
functions of PID include scaling, deadband, 
and zero-crossing. [10] 

pitch 
1 for leadscrews specified in British units, 
the number of full rotations required to 
advance the nut 1". For example, a 5 pitch 
leadscrew has a lead of .200". Metric 
screws are specified by lead only, usually in 
millimeters. 

2 an angular deviation possible in 
positioning system, in which the tables' 
leading edge rises or falls as the table 
translates along its direction of travel. This 
represents rotation around a horizontal axis, 
perpendicular to the direction of travel. [8] 

an automatic condition that occurs when the 
controller is in the normal production mode; 
all resources are focused on part 
transformation or process control, and use of 
the production resources are in direct control 
of the WPSA. The WPSA provides the 
dialog or communications coordination that 
allows multiple SAs within the workstation 
to interact and perform simultaneous 
operations. [7] 

planning 
a procedure for determining the operations 
or actions necessary to transform material 
from one state to another. It includes the 
preparation of detailed instructions to 
produce a part transformation. [7] 

plate 
to cover with an adherent layer, as of metal, 
by mechanical, chemical, or electrical 
means. [13] 

platform 
a   basic   structure   consisting   of   virtual 
machines, operating systems, 
communication mechanisms and hardware. 
[6] 

plain mill sharpening 
a type of grinding. PLC 

abbr for Programmable Logic Controller. 

plan 
an ordered set of actions for accomplishing 
a goal. [7] 

plunge grinding 
a type of grinding. 

plane 
a machining task. 

PMS 
abbr included in definition of human-user 
interface 

planner based 
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point-to-point control 
a scheme whereby the inputs commands 
specify only points along a desired path or 
motion. [7] 

polymorphism 
in an object language, the characteristic of 
an operator that allows it to work on objects 
of different classes. [7] 

portability 
the ability to operate the same component 
on different computing platforms. [7] 

2 the degree to which a given set of 
measurements of the same sample agree 
with their mean [11] 

predicate 
an expression that can be evaluated as either 
TRUE or FALSE. [6] 

primary units 
a standard set of four units to which all units 
can be resolved. The primary units are (1) 
mass-M, (2) length-L, (3) time, and (4) 
temperature-T. For example, standard units 
for velocity might be ft/s or m/s, but 
primary is always L/6. [5] 

position 
location, either scalar or vector, often with 
subscripts to denote coordinated frame; time 
integral of velocity; standard symbol p, P, 
x, y, z; standard units ft; primary units L 
[5] 

power-up 
an interactive condition that occurs when the 
controller is in the startup mode; involves 
bringing the computing platform on-line via 
the normal startup routines. If auto-start 
files are integral to the controller, the NGC 
automatically start; otherwise, the 
appropriate start command must be issued to 
initialize the NGC environment. In either 
instance, power-up starting and self-test 
routines, as determined by the configuration, 
until they are successfully completed; [7] 

precision 
1 measure of exactness, possibly expressed 
in number of digits, for example, computed 
to the nearest millimeter; compare with 
accuracy [5] 

primitive function 
the lowest level of functionality of the NGC 
manufacturing workstation. [7] 

prismatic 
with regard to axes. 

probing 
synchronize with measure and motion. 
Probe must be quickly brought near to part, 
then slowing moved in close enough to part 
to just sense it for measurement. Only 
barely touching or not touching part at all. 
[17] 

procedure 
a systematic, controlled sequence of actions 
or operations performed in order to achieve 
a specific result. [6] 

process 
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a set of procedures required to transform 
resources (inputs) into specific objectives 
(outputs) on a returning basis. [7] 

process plan 
the sequence and description of fabrication 
or assembly operations. [6] 

Product Data Exchange using STEP 
(PDES) 
1 a proposed data format and data exchange 
standard which enables the sharing of 
physical and functional product information 
among various computer systems and 
applications. [6] 

2 an international standard for data 
developed due to the problems discovered 
with the IGES format. PDES, represented in 
the EXPRESS specification language, uses 
specific CAD translators and application 
specific protocols to reduce part geometry 
translation differences between CAD 
systems. [4] 

product definition data (PDD) 
machine interpretable product, design, and 
manufacturing information that includes 
geometric models, features, surface finish, 
heat treatment, materials specifications, and 
tolerances. [7] 

product definition data interchange 
(PDDI) 
a format that allows for interchanging of 
PDD between dissimilar CIM systems. [7] 

product life cycle 
all the stages of a product from initial 
concept to finish abandonment. [7] 

programmable application logic 
an application specific "ladder logic" that is 
continuously executed by the controlis 
executive firmware. This "ladder logic" is 
composed of PAL ladder language elements. 
These elements are combined to form ladder 
rungs that make up PAL ladder modules. 
These ladder modules are linked together to 
form a PAL program. 

The PAL program coordinates and controls 
the I/O interface between the 9/240 control 
and the machine tool. Use PAL to perform 
the following functions: 1) sequence 
machine functions; 2) operate machine 
functions; 3) monitor machine functions. 
PAL communicates with the controlis 
executive firmware and discrete I/O to 
coordinate these machine functions. 

The controlis executive firmware sends 
information to the PAL program through 
specific PAL flags and variables. The PAL 
program sends information back to the 
control through other PAL flags and 
variables. The PAL program can also rum 
on PAL messages and custom display pages 
that appear on the operator panel CRT. 
These flags are divided into the following 
areas: 

primary system flags 
manual motion flags 
axis mover flags 
offset modification flags 
part program selection flags 
part program execution flags 
feedrate flags 
G code flags 
M code flags 
tool change flags 
random tool flags 
spindle and gear change flags 
spindle orient flags 
mode select flags 
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Status flags from the control 
PAL message flags 
display page flags 
digitizing flags [1] 

usually into sheet metal. Punches are often 
used to press vents into the sheet metal for 
the sides of electrical cabinets.   [4] 

programmable logic controller (PLC) 
1 a device for discrete control characterized 
by repetitive cycling typically through the 
ladder logic program. [7] 

2 a control device designed to replace banks 
of relays for the repetitive cycling through a 
series of mechanical device control 
commands. Current designs are computers 
with sophisticated logic and 
communications capabilities. [6] 

Programmable Universal Machine for 
Assembly (PUMA) 
"At a luxurious press conference in 1978, 
General Motors unveiled the PUMA system 
that included conveyors, parts feeders, and 
robots small enough to work alongside 
humans. But it was the small robots in that 
system, supplied by Unimation, that became 
known as PUMAs". [2] 

protocol 
a set of semantic and syntactic rules that 
determine the behavior of functional units in 
achieving communication. [6] 

PUMA 
abbr for Programmable Universal Machine 
for Assemblv. 

punch press 
a machine with a table controlled in the x 
and y plane used to cut or press holes 

quadrature 
state of being separated in phase by 90° or 
one quarter cycle. A quadrature encoder 
provides both position and direction 
information to the control. [4] 

quality 
conformance to customer expectations. [6] 

query 
to request information from a database. [6] 

query language 
a language close to natural language 
allowing flexibility of expressing syntactical 
forms. It serves as the interface between the 
user and the mechanics of the system and 
enables him to query data. [6] 

radial error probability (REP) 
a probability that a percentage of one- 
dimension measurements will lie on a radial 
(line) of given length, with the origin 
centered at truth or mean of the 
measurements; compare with circular error 
probability, spherical error probability; 
used to specify test cases for measurement 
errors of sensors of one dimension, such as 
velocity. 

For example, a position error of 1 ft/s (50% 
REP) means that for any given measurement 
of position, p(distance from truth to 
measurement is less than 1) = 0.5. 
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In another example, a velocity error of 1 ft/s 
(50% REP) means that for any given 
measurement of velocity 

Vi = Vv 
then 

p(\Vi-Vv\<\)=0.5 

where ^  is the average of all  Vi or V 
truth, depending upon context. [5] 

radius 
a straight line extending from the center of a 
circle or sphere to the circumference or 
surface [11] 

RAMP 
abbr      for      Rapid      Acquisition      of 
Manufacturing Parts. [6] 

ramp 
1 n. synonym for unit ramp [5] 

2 v. to gradually accelerate a motor, 
essential if performance beyond the 
start/stop range is required. The slope of the 
ramp is a function of screw pitch, load, 
motor, and drive voltage and design. [8] 

rapid traverse 
cutting   feedrate   to   quickly   position   the 
cutting tool for the next cut. [4] 

rate 
rate  of change  or  data;  derivative  with 
respect to real time [5] 

limited   to   a  maximum   absolute   value; 
compare with limiter. 
Rate limiters are usually implemented as 

y„ =yn-i +sgn(xn - v^min^Jx,, - v^J) 

where   J™ax   is   the   maximum   absolute 
change per period. [5] 

real time 
1 time in a computational process which 
runs at the same rate as a physical process; 
for example, algorithms designed to run a 
fixed period T (filter time constants at set 
for T) and actually execute with frequency 
1/T in real time [5] 

2 within a strict, predictable time interval. 
Real-time processing often involves event 
waiting, timed reminders, validity intervals, 
and some form of approximate or 
progressive reasoning that allows creation of 
an acceptable (in some sense "best") 
response within the time allowed. [7] 

real-time function 
a function that must be carried out in a 
relatively brief time interval (typically a 
minute or less) and that is characterized by a 
commitment to execution. Here, any 
attempt to make a significant alteration in 
the planned course of action will result in 
some negative effect on the workpiece. [6] 

real-time operation 
an   activity   within   a   strict,   predictable 
bounded-time interval. [7] 

rate limiter 
a filter that passes the input as the output, 
except that rate of change of the output is 

ream 
a machining task; to finish a drilled hole to 
an exact size using a reamer [9] 
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reamer 
a cutting tool used to produce a smooth 
accurate hole by removing a small amount 
of metal from a drilling hole [9] 

reamer sharpening 
a type of grinding. 
reciprocating saw 
a type of saw machine. 

a hand-held device with wheels and buttons 
used to manually move axes. Also called a 
teach pendant. [4] 

REP 
abbr for Radial Error Probability [5] 

repeatability 
capability   of  CNC   software   to   exactly 
imitate accurate motions. [4] 

recovery 
restoration of IB consistency in the event of 
hardware or software error. [7] 

reference 
what must be achieved in order to match a 
plan; synonym for desired [5] 

replication 
the existence of multiple instantiations of a 
module's functionality within an 
implementation. [7] 

referential integrity 
the capability of ensuring that repository 
data does not contain references to non 
existent data or definitions. It involves 
automatically deleting a relationship 
instance whenever the source or target of 
that instance is deleted. [6] 

relative 
applies to measurements, in a non-standard, 
moving reference, as opposed to fixed 
reference; compare with absolute [5] 

requirement 
a declarative statement describing customer 
needs. [7] 

resolution 
the smallest unit of measurement that a 
measuring system is capable of 
distinguishing. [7] 

resolver 
analog position feedback device. [4] 

reliability 
the measure of a system's ability to perform 
in a stated manner for a given period of time 
under specified operating conditions and 
environments. [7] 

remote jog pendant 
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resonance 
1 midrange resonance: a parasitic 
oscillation which is endemic to stepper 
motors, although frictional loads may mask 
its effect. It typically sets in from 5 to 15 
revolutions per second, and can easily cause 
a loss of synchronization (stalling). [8] 
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2 primary resonance: The rotor inertia of a 
stepper motor, coupled to its spring-like 
magnetic field characteristics, constitutes a 
basic spring-mass oscillator. In the absence 
of sufficient damping, stepper at certain 
frequencies may excite resonance in this 
system, or resonate with the load, resulting 
in loss of synchrony. The addition of 
system damping, operation in half-step 
mode, or ramping through problem speeds 
will usually eliminate resonance. [8] 

examining an existing part to determine its 
structure and make a copy or use that 
structure to create another part based on the 
features of the first. [4] 

revolutions per minute (RPM) 
this unit of measurement indicates the 
velocity at which a object must travel at a 
uniform angle to complete a circle in one 
minute. [4] 

resource 
any item within the manufacturing 
workstation used to transform a part, assist 
in the transformation of a part, or support 
other resources. These include machines- 
under-control, such as robots, machine tools, 
and material handling devices, as well as 
fixtures, tools, lubricants, coolants, and 
workpieces. [7] 

retrofitter 
a person or company who installs 
(integrates) new CNCs and other electrical 
equipment on old machine tools. Some 
large companies have retrofitting 
departments that are responsible for 
constantly upgrading the machine tools. 
Small job shops usually wait until a machine 
is too expensive or impossible to fix or it 
cannot be used to fulfill a new contract for 
parts before trying to retrofit a new control 
on the machine. [4] 

reusable software 
software that can be used for more than one 
implementation. [7] 

RMS 
abbr for Root Mean Square 

rigid tap 
a type of tapping tool; compare flexible tap 

robot 
a    programmable    manipulator    and    its 
associated system. [7] 

roll 
an angular deviation from ideal straight line 
motion, in which the positioning table 
rotates around its axis of travel as it 
translates along that axis. [8] 

rollback 
return a database to its state before an 
uncommitted transaction was updated. In 
order to do this, a "before image" that 
reflects the state of the data items prior to 
update must be available for restoration. [7] 

reverse engineering 
rollforward 
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restore updated information following a 
rollback. In order to do this, an "after 
image" that reflects the state of the data 
items following update must be available for 
restoration. [7] 

root mean square (RMS) 
a statistical measure of data; the square root 
of the mean of the square; compare with 
root sum square; for variables with mean of 
zero, the standard deviation is equal to the 
RMS. [5] 

In discrete time, RMS is computed 

x     = 
RMS 

'S*? 

n 

rotational force/torque 
a type of control law. 

rotational position/velocity 
a type of control law. 

roughing pass 
a cycle of milling in which a significant 
margin is added to the tool motion, so that 
large amounts of material can be removed 
quickly. [15] 

RPM 
abbr for Revolutions Per Minute. 

In continuous time, RMS is computed: 

(x)A 

root sum square (RSS) 
a statistical measure of data; the square root 
of the sum of the square; compare with root 
mean square;    for a vector, its length is 
equal to the RSS of its scalar elements. 
[5] 

In discrete time, RSS is computed: 

RS-274-D 
an industry standard, part programming 
language for generating numerical control 
(NC) programs (using M & G codes). The 
programs describe tool path. This standard 
specifies the use of the EIA Standard RS- 
358 character code set and the basic 
characteristics of a numerical controller. [4] 

RSS 
abbr for Root Sum Square [5] 

RT 
abbr for Real-Time. 

In continuous time, RSS is computed: 

rotary saw 
a type of saw machine. 

SA 
abbr for Standardized Application 

saber saw 
a type of saw machine which is a portable 
electric jigsaw. [13] 
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safety 
safety relates to procedures to keep humans 
free from injury or exposed to hazards. [7] 

safety envelope 
attribute of a part which describes the 
volume about the part in which it is safe to 
move the tool. 

scaling 
the process in the PID instruction which 
allows the setpoint and zero crossing values 
to be displayed in engineering units. 
Setpoint, deadband, process variable, and 
error may be scaled, (see PID control loop) 
[10] 

safety interlock 
a safety interlock is dependent upon the 
design and purpose of the equipment. It 
provides a workstation warning and control 
in the event of human errors and 
misjudgments. It also detects component 
failures such as electrical overloads and 
shorts, valve sticking, or lack of flows and 
pressure. [7] 

sampling frequency 
rate of a periodic process; 1/T where T is the 
period; standard symbol fs; standard unit 
Hz; primary units 1/9 [5] 

schema 
a data model that defines all abstract object 
data types including relationships, attributes 
and constraints. [7] 

sculpted surface 
a machined or molded object whose surface 
is contoured and non-linear, e.g. the shape 
of a light bulb. [6] 

SDT 
abbr for System Development Tool 

saw 
a type of machine; a machine tool used to 
cut hard material, usually consisting of a 
thin, flat blade or plate or tempered steel 
with a continuous series of teeth on the edge 
and mounted in a handle or frame. [13] 

scalability 
the capability to increase or decrease the 
functionality of a manufacturing workstation 
or its components. [7] 

scalar 
a quantity possessing only magnitude; 
compare with vector; standard notation x 
[11] 

SEB 
abbr for Sensor/Effector Bus 

second-order filter 
a smoothing filter in which the output 
follows the input, only more slowly. It is 
usually implemented in software as a 
difference equation of period T as: 

*.+2x,,_|+x,,_; 

= Av^-By„_2+(\-A + B)xn 

A and B vary depending upon case: 
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,-bT A = 2e^m"T cos^rVl-C2 )= e~aT +< 

B = e-2^„T = e-aT +e-bT 

where can>0 (natural frequency) and 0<^<1 
(damping ratio) are filter constants for 
underdamping (case 1), can>0 and C=0 for no 
damping (case 2), a and b are filter constants 
for overdamping (case 3), and a=b or on>0 
and C=\ for critical damping (case 4). 

If the input is a unit step then, the time 
responses are: 

underdamping, no damping 

MO = 1 - %     "' sinLjl-^t + cos-i 0 

Y(s) _ cog 
X(s)      S* +2^C0W5+t0^ 

ab & 

(s+aXs+b)     (s + ap 

When the second-order filter is used, it is 
commonly to smooth data, and to wash out 
transients at mode change. Usually, a first- 
order filter suffices, and it being less 
expensive, is chosen over a second-order 
filter. Typical values for on, a, and b are 
0.1-2 rad/s, and £ 0.1-0.9 (unitless). It 
should also be noted that two first-order 
filters can be chained together to form a 
second-order filter that is critically damped 
or overdamped. 

When implementing a second-order filter on 
normalized variables, such as angles, the 
discontinuities require special treatment. [5] 

overdamping, a_b 

b a 
y(t)=l + e-cf + e-fc' 

a-b b-a 

critical damping, a=b 

y(t)=\-(l + at)e-°' 

The Z transform is: 

Y(z) _(\-A + B)z2 

X(z)     22-Az + B 

The differential equations are: 

2^ v    l  < y=x j* rji 

a + b vr   1 » = x- yt-—j* 
ab        ab 

a      a* 

The Laplace transform is: 

semantics 
the meaning or interpretation assigned to a 
group of characters in a language; compare 
syntax 

semicircle 
a measure of angle, 1 semicircle = ' rad = 
180 deg; angles from physical devices may 
be reported in semicircles in order to 
compress data [5] 

sensor 
1 feedback device used on a CNC machine 
to monitor the operation and check output. 
Common types of sensors are force and 
power sensors, touch probes, and acoustic 
monitors. [4] 

2 a device that measures, receives, or 
generates data [5] 
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3 a transducer whose input is a physical 
event and whose output is a quantitative 
measure. [7] 

sensor control 
control of a machine, 
measurements. [7] 

based on sensor 

sensor/effector bus (SEB) 
a shared medium for distributing electronic 
signals between the controllers, sensors, and 
effectors. [7] 

sensor/effector standardized application 
(SESA) 
connects the controller to the instrument(s) 
under control, i.e., it handles all input and 
output relating to controlled instruments on 
the manufacturing workstation. [7] 

sensor feedback 
the return of information obtained from 
sensors to maintain performance or to 
control a system or process. [7] 

sensor hierarchy 
a relationship of sensor information 
processing elements whereby the results of 
lower level processing are abstracted and 
used as inputs to higher level processing. 
[7] 

SEP 
1 abbr for Spherical Error Probability 

2 abbr   for   Scenario-based   Engineering 
Process 

sequential function chart (SFC) 
a graphical language that uses five simple 
graphical elements to provide a 
representative diagram of any sequential 
process. The basic elements are steps, 
transitions, and actions. A step consists of 
any number of actions or pieces of a 
program that are carried out until an action 
qualifier is met. The language supports 
alternative and parallel sequences. Because 
discrete manufacturing applications all run 
as a sequence of steps, SFC is an excellent 
way to logically decompose the process and 
automatically transfer the process into a 
structured program. SFC greatly enhances 
communication between the system 
architect, project manager, system 
integrator, and maintenance personnel. [10] 

service 
a domain-independent mechanism that 
provides fundamental capabilities enabling 
integration of independendy developed, 
domain-specific functional entities. [7] 

servo control 
1 a feedback control system involving both 
hardware and software in which the output 
is some mechanical position, velocity, or 
acceleration. [4] 

2 an interface that allows a controller to 
interface to industry standard servo drive 
amplifiers using +/- 10 volt motor 
commands and A quad B encoder feedback. 
The interface is capable of independently 
controlling the axis in closed-loop mode in 
either velocity or position modes using a 
DSP to perform the computations required 
for servo control. The DSP has a command 
set that eliminates most of the host CPU 
overhead associated with motion. Velocity 
profiling is supported. Loop compensation 
is accomplished by a digital Proportional 
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Integral Derivative (PID) filter updating the 
servo at 4khz. Feedback from an encoder is 
received at 1 million counts/second. The 
interface also handles motion control 
applications requiring opto-isolated inputs 
for end-of-travel limits, marker pulse, and 
open collector or differential quadrature 
encoders. [10] 

shop floor 
the part of a manufacturing enterprise that 
has the responsibility to produce a product 
by performing manufacturing operations. 
The shop floor is the physical location 
through which the product passes on its way 
to completion. [6] 

servo-loop closure rate 
in a closed-loop servo controller, the 
synchronous rate at which servo commands 
are generated, feedback sensors are sampled, 
control laws are computed and servo drive 
signals are generated. [7] 

servo motor 
a DC motor which produces a torque 
proportional to current. Precise positioning 
is achieved by linear or PWM (duty cycle) 
control of motor current or voltage, together 
with accurate monitoring of position via an 
external feedback device. [8] 

sign 
common math function; returns whether the 
input value is positive or negative; standard 
notation sign x [5] 

signal 
part   of  received   data   that   is   desired; 
compare with noise [5] 

signal-to-noise-ratio (SNR, S/N) 
the ratio of magnitude of a desired signal to 
the magnitude of the noise received with it; 
standard units dB, 1; primary units 1 [5] 

SESA 
abbr mentioned in the definition for controls 
standardized application. 

SFC 
abbr for Sequential Function Chart 

simultaneous axes 
axes that move simultaneously at different 
or varying velocities as commanded by the 
control. These begin and end at 
programmed points but the simultaneous 
axis motion does not accommodate specific 
multi-axis paths in between these points. [6] 

SFM 
abbr for Surface Feet per Minute. 

sine 
common math function; standard notation 
sin x, sx [5] 

shared axis 
a programmable axis that is shared by two 
or more axes or groups of axes; e.g. two 5- 
axis milling heads sharing a common rail 
type axis that would position them. [6] 

single instruction 
an interactive condition that occurs when the 
controller is in the normal production mode; 
starts a process that enables the manual jog 
of   machine   axis   for   tool   positioning 
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purposes during work piece set-up, or 
allows a process parameter to be temporarily 
varied; manual operation is also useful for 
activities where the workpiece remains 
fixture on the machine and a cursory 
inspection is performed via a digital probe 
or similar device; single instruction can also 
be an interactive condition that occurs when 
the controller is in the normal production 
mode. Examples of machine and process 
related macro execution include "Home 
Machine", "Auto Tool Change", "Set Point", 
"Null". Macro execution shall also involve 
the performance of a set of manual data 
input instructions intended to drive an axis 
or the machine to a predetermined 
position/location within the work envelope; 
or execute a predetermined collective set of 
process parameters. [7] 
single-step normal production 
an interactive condition that occurs when the 
controller is in the normal production mode; 
the machine/process pauses after each 
control plan segment and maintains that 
position until a human interface button is 
pressed. [7] 

smoothing filter 
a filter to reduce quick changes of a signal 
by attenuating high frequencies; see first- 
order filter, second-order filter, wash-out 
filter [5] 

S/N 
abbr for Signal-to-Noise ratio [5] 

SNR 
abbr for Signal-to-Noise Ratio [5] 

software library 
a repository for software components. [7] 

solution viewpoint 
a DSSA view of a system. 

SOSAS 
abbr for Specification for an Open System 
Architecture Standard. 

situation 
current environment and surroundings [5] 

slabbing cutter sharpening 
a type of grinding. 

SOSAS-conformant 
a characteristic of a NGC product indicating 
that it meets all applicable requirements in 
the NGC SOSAS. [7] 

slaved axis 
an axis whose path follows that of another 
axis but in some translated or offset amount. 
[6] 

SMM 
abbr for Surface Meters per Minute. 

SPC 
abbr for Statistical Process Control. 

speed 
the scalar component of velocity, measured 
in distance per unit time 

spherical error probability (SEP) 
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a probability that a percentage of three- 
dimension measurements will lie within a 
sphere of given radius, with the sphere 
centered at truth or mean of the 
measurements; compare with circular error 
probability, radial error probability 

SEP specifies test cases for measurement 
errors of sensors of three dimensions, such 
as velocity X, Y, and Z. For example, a 
total velocity error of 1 ft/s (50% SEP) 
means that for any given measurement of 
velocity 

then 
Vi = {VE,VN,VV$ 

piVi-Vt\<\) = 0.5 

where V\i  is the average of all Vi or V 
truth, depending upon context. [5] 

bearing surface for the head of a bolt or nut 
[9] 

ST 
abbr for Structured Text. 

stall speed 
the maximum speed which a stepper motor, 
properly ramped, can achieve without loss 
of synchrony. This speed is a function of 
motor inductance, ramp slope, applied load, 
drive voltage and design. [8] 

stand alone control 
one PLC controls all of the I/O. Stand alone 
is perfect for a smaller application, 
especially one that requires a continuous 
process. [10] 

spindle 
a rotating mechanical assembly that serves 
as an axis for revolving tools, a workpiece, 
or an end effector for a machine tool. [7] 

standardized application (SA) 
an    application    that    supports    current 
controller practices and provides a baseline 
controller. [7] 

spindle lock 
condition in which the spindle is stopped so 
that it cannot rotate 

standard notation 
common form of a mathematical expression 
[5] 

s-plane 
continuous complex frequency plane; see 
Laplace   transform;   S-plane   is   used   in 
control systems engineering in the design of 
control laws [5] 
sprayer 
a type of end effector. 

spotface 
a machining task; to machine a circular spot 
on the surface of a part to furnish a flat 

standard units 
units commonly encountered for a particular 
quantity [5] 

start/stop speed 
the maximum step rate which can be applied 
to a stationary stepper motor and still retain 
error-free performance. Also, the rate from 
which a stepper motor may be 
instantaneously stopped without 
overshooting.    This is a function of the 
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screw pitch, load, drive voltage and design, 
and motor. [8] 
statistical process control (SPC) 
the   statistical   techniques   to   analyze   a 
process or its end product so appropriate 
actions can be taken to control and improve 
the process. [7] 

step rate 
the frequency of coil current changes, or 
input pulse train applied to a stepper motor, 
in pulses/second or hertz. For 200 
step/revolution motors, the full step rate 
multiplied by .3 equals the rotation rate in 
RPM. [8] 

steel block 
a type of fixture. 

step 
synonym for unit step [5] 

stepper motor 
a type of motor featuring two or four stator 
coils and a toothed permanent magnet rotor, 
which moves through a small angle in 
response to a specific sequence of coil 
current changes. [8] 

stepper motor control 
an intelligent interface that allows a 
controller to interface to stepper motors. 
The interface provides precise motion 
control profiling requiring microstepping 
rates at millions of pulses per second. Each 
axis is controlled by an intelligent controller 
which provides five output signals and 
seven input signals, along with inputs for 
incremental encoders connected in either 
single-ended or differential form. It 
provides pulse, direction CW/CCW, hold, 
and user defined outputs. Inputs are 
provided for axis limits, ramp up/down, 
home, alarm and user defined input. All 
input and output is opto-isolated for noise- 
immunity and electrical isolation. Internal 
registers control the number of steps, 
acceleration/deceleration rates, starting rate, 
slew rate, and ramp-down point. [10] 

stock 
1 ahe raw material from which a part is cut. 
This material is often metal, but it can be 
any substance that can be cut such as plastic 
or even glass. [4] 

2 any transformable material that is not 
currently involved in a transformation 
process. [7] 

structured text (ST) 
a high level block structured language that 
has a syntax that resembles PASCAL. ST 
can be used to express complex statements 
involving variables representing a wide 
range of data types. [10] 

surface representation 
the form presented to a user that represents 
surface function. [7] 

synchronous 
1 occurring at fixed time intervals (see 
asynchronous). [7] 

2 refers to any tasks or electronic/computer 
events that occur at fixed intervals or 
periods and must be executed in a lock-step 
fashion (see asynchronous). [6] 
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syntax 
set rules specified for a language. The 
relationships among characters or groups of 
characters independent of their meaning or 
the manner of their interpretation and use. 
[7] 

system 
an organized collection of people, machines, 
and procedures, required to accomplish a set 
of specific architectural or enterprise 
objectives. [6] 

system development tool (SDT) 
software that supports the analysis, 
development, integration, operation and 
maintenance of NGC-conformant elements. 
[7] 
tachometer 
a device for measuring angular velocity [5] 

target position 
position command by the CNC. [4] 

task 
an    activity    within    an    operation    to 
accomplish a goal. [7] 

task execution standardized application 
(TESA) 
responsible   for   routine   coordination   of 
multiple machines within a manufacturing 
workstation, as well as direct invocation of 
sensor/effector functionality as appropriate. 
[7] 

task schedule 
the highest or master schedule for the 
workstation. It is the combined schedules of 
all activities for the workstation. [7] 

tactile sensor 
a transducer that is sensitive  to contact 
pressure. [7] 

TCP 
abbr for Tool CenterPoint. 

tangent 
common math function; standard notation 
tanx [5] 

temperature 
the average kinetic energy of a body; 
standard symbol T; standard units °C; 
primary units T [11] 

tap 
to cut an internal screw thread in an existing 
hole 

tape 
a type of fixture 

tap sharpening 
a type of grinding 

terminal emulation 
display software that makes a computer 
display (CRT) and keyboard behave as a 
"dumb" terminal to be interfaced to a host or 
other computer. [6] 

TESA 
abbr   for   Task   Execution   Standardized 
Application 
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third party vendor 
one who sells or offers for sale goods and/or 
services for use with equipment 
manufactured by other vendors. [6] 

tool centerpoint (TCP) 
a fixed point on the tool that serves as the 
reference point for the tool; all tool motion 
is expressed as motion of the TCP 

> 

thread 
a machining task; to form an external screw 
thread or threads on or in material. [13] 

throughfeed grinding 
a type of centerless grinding. 

time 
time relative to some defined time base; 
delta time as a fixed period (usually the 
average time for one computational cycle); 
standard symbol t, T; standard units s; 
primary units 6 [5] 

tool change position 
attribute of a tool, describing the point to 
which the tool should travel so that the tool 
changer can get to it. 

tool changer 
an automatic device to hold and dispense 
tools during part cutting. [4] 

tool path 
route a cutter takes when machining a part. 
A part program may display this path 
graphically on a computer monitor. [4] 

time constant 
constant for a first-order filter determining 
time at which the output of the filter reaches 
ÄO.6321% of a step input; standard symbol 
T; standard units s; primary units 8 [5] 

tolerance 
1 allowed error in measurements [5] 

2 permissible variations in the dimensions 
of a machined part. A part that does not 
vary beyond these predefined limits is said 
to be "in tolerance." [4] 

tool 
1 a cutting tool used by a machine. [4] 

2 an item that physically implements a 
predefined action. [7] 

tooth loading 
material removal rate 

top-down methodology 
a process that begins with an analysis of key 
objectives, data or activities at a high level 
and works down to the lowest level of 
detail. [6] 

torque 
1 Force and the direction of the force 
combined to determine rotation movement. 
[4] 

2 the moment of a force or system of forces 
tending to cause rotation; torque = (net 
force) (length of moment arm) [11] 

torque compensation 
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used in digital control over analog 
movement, associated with tuning. Should 
the joystick move to the ifull oni position, 
the system must back off the command until 
the engine can catch up with its RPM rate, 
creating a lag in response time. [21] 

transient-free switch 
a switch with a wash-out filter so that the 
output contains no transients (steps) at 
switch time [5] 

total quality management (TQM) 
a leadership philosophy focused on 
customer satisfaction, achieved through 
empowered employees, teamwork, and 
continuous improvement. [6] 

TQM 
abbr for Total Quality Management. 

transfer speed 
in teaching a path through a teach pendant, 
the accuracy of the path generated from the 
path program decreases as the transfer speed 
is increased. This causes the teaching to be 
done at a slow rate, thereby hindering the 
testing of new algorithms. [17] 

transaction 
1 a mechanism for ensuring that all actions 
associated with one or more DMSs service 
call will be treated as a single unit of work. 
[7] 

2 a single bi-directional exchange of 
messages from a requestor to its responding 
partner and from the responder to the 
requestor in that order. [6] 

transducer 
a    device    that    converts    a    physical 
phenomenon into an electrical signal. [7] 

transpose 
standard matrix operator; standard notation 
XT [5] 

travel 
distance the bed moves along an axis. [4] 

traverse grinding 
a type of grinding. 

trigger 
a monitor placed on a data item that initiates 
some action based on access to or change in 
value of that item. [7] 

tuning 
digital control over analog movement. An 
example is joystick control of a process (like 
a hydraulic pump). As soon as the joystick 
crosses 10%, the valve should open (since it 
takes a specific amount just to start the 
movement). Every movement of the 
joystick causes the valve to open more. [21 ] 

tuple 
row of data in a (database) table. 
Relationally speaking, tuples are 
constituents of relations. [6] 

turn 
a machining task. 
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two-phase commit 
process in which a commit manager sends 
out an intent-to-commit message to all 
subprocesses and those subprocesses must 
unanimously acknowledge consent before 
the commit can take place. [7] 

ultrasonic machine (UM) 
a machine which performs material removal 
via sound waves. 

UM 
abbr for Ultrasonic Machine. 

unit 
a  standard  quantity,  such  as  ft  or  mi; 
synonym for dimension [5] 

unit function 
one of a collection of functions used as 
standard test cases in control systems 
engineering; standard notation Uk(t); 
standard units 1; primary units 1. The 
primary unit functions of interest are the 
unit impulse, the unit step, and the unit ramp 
(see table in Notation section for properties) 
[5] 

unit impulse 
a function used as a standard test case in 
control systems engineering; a spike of 
"area" one at time t = 0; synonym for 
impulse; see unit functions; standard 
notation Uo(t), 5 (t); standard units 1; 
primary units 1; written Uo(t - T) for a ramp 
starting at time t = x; standard engineering 
term [5] 

unitless 
no units, such as ratios; a quantity with 
standard units of 1; a quantity with primary 
units of 1; synonym for dimensionless [5] 

unit ramp 
a function used as a standard test case in 
control systems engineering; a line of slope 
1 starting at zero at time t = 0; synonym for 
ramp; see unit functions; standard notation 
u.2(t); standard units 1; primary units 1; 
written u.2(t-T) for a ramp starting at time t = 
t [5] 

unit step 
a function used as a standard test case in 
control systems engineering; a step from 
zero to one at time t = 0; synonym for step; 
see unit functions; standard notation u.j(t- 
T), u(t); standard units 1; primary units 1; 
written U.I(I-T) for a step at time t = x   [5] 

upgradeability 
the characteristic of enhancing speed, 
capacity or functionality of a software or 
hardware element within a manufacturing 
workstation (see scalability). [7] 

user interface 
the messages and informational and data 
entry screens displayed on a CRT to guide 
the system user in operation of the machine. 
Common elements of a CNC user interface 
are the graphic representations of parts, 
messages from the motion control 
subsystem, and part setup and programming 
option lists. [4] 

user interface application 
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code that allows a user to interact with or 
manipulate specific information. [7] 

be associated with a context and loaded 
according to that context. [7] 

user interface device 
provides surface presentation functionality 
directly to a user. [7] 

user interface support package 
a COTS component that provides specific 
HUI functionality. [7] 

VAL 
an robot programming language, BASIC- 
like in syntax. 

vector 
a quantity possessing both magnitude and 
direction, represented by an arrow the 
direction of which indicates the direction of 
the quantity and the length of which is 
proportional to the magnitude; compare 
with scalar; standard notation *  [11] 

velocity 
rate of change of location, either scalar or 
vector, often with subscripts to denote the 
coordinate frame; time derivative of 
position; time integral of acceleration; 
standard symbol v, V; standard units kt, ft/s; 
primary units L/8 [5] 

verification 
the methods or means used to ascertain that 
the SOSAS conforms to the requirements. 
[7] 

vice 
a type of fixture; any of various tools 
having two jams for holding work that 
close, usually by a screw, lever, or cam. 
[13] 

view 
a   presentation   with   limited   perspective 
based on context. [7] 

virtual machine 
a specification of mechanisms providing a 
common software interface to computing 
platform services that isolates software 
modules from the computing platform. [7] 

wash-out filter 
a filter to smooth a transition due to change 
of input source, such as when changing 
modes; see transient-free switch 

Wash-out filters are usually designed as y = 
Xj - fnp^/Ex), where i selects a particular 
input Xj, JEx = xp - xr, when i changes, and 
fm-F is a high-pass filter, often first order. 
Time constants are usually about 5 s. [5] 

waypoint 
a discrete point along a path 

version 
a formal  record  used  to  help  track  an 
object's evolution over time; a version may 
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the rails on which a large portion of the 
machine, such as the bed or the spindle 
column, moves. [4] 

welder 
a type of end effector. 

wheel dressing 
a type of grinding. 

and external communications. This SA 
provides for configuration management of 
the manufacturing workstation and controls 
its modes of operation. It monitors the 
controller and machines within the 
manufacturing workstation, predicts 
failures, and provides for failure mitigation. 
This WMSA tracks and maintains the status 
of all assets available within the 
manufacturing workstation. Furthermore, 
this SA provides the single point of 
communication with the cell. [7] 

WMSA 
abbr     for     Workstation     Management 
Standardized Application. 

working envelope 
a defined boundary representing the 
maximum extent or reach of a machine in 
all directions. [7] 

working range 
all reachable positions within the working 
envelope; the range of any variable within 
that the system normally operates. [7] 

workpiece 
the  material  that is being machined to 
produce a product or the product itself. [7] 

workstation 
sec manufacturing workstation. [7] 

workstation management standardized 
application (WMSA) 
performs the control of the manufacturing 
workstation by determining and 
rescheduling its activities. These activities 
include coordination of startup, calibration, 
diagnosing and shutdown of the machines, 

workstation model 
the data necessary to control the 
manufacturing processes. It includes 
information such as parameters of the 
controlled equipment, quality control data, 
tool performance data, and part material 
characteristics. [7] 

workstation planning standardized 
application (WPSA) 
performs the preparatory planning required 
for the workstation. This planning includes 
determining and executing the 
manufacturing workstation operations plan, 
preparing a CCP to be executed by the 
TESA, and determining collision free path 
for a machine. This SA also incorporates 
modeling services for use in operations, 
task, and path planning and plan 
verification. [7] 

world coordinate 
a position relative to a frame of reference 
fixed on the manufacturing workstation. [7] 

world model 
the system's estimate and evaluation of the 
history, current state, and possible future 
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States of the world, including the states of 
the system being controlled. [7] 

WPSA 
abbr for Workstation Planning Standardized 
Application. 

are commonly used by systems engineers to 
describe systems; see first-order filter, 
second-order filter, unit functions for 
examples [5] 

yaw 
an angular deviation from ideal straight line 
motion, in which the positioning table 
rotates around the Z (vertical) axis as it 
translates along its travel axis. [8] 

zaxis 
identifies the Cartesian axis that moves up 
and down (the "Z" plane). The movement 
of the "Z" axis controls the distance a 
cutting tool travels into a part. [4] 

zero-crossing 
a part of the deadband control. The PID 
instruction uses the deadband error range 
when a process variable moves into the 
deadband and crosses the setpoint. (see PID 
control loop) [10] 

z-plane 
discrete complex frequency plane; see z 
transform; z-plane is used in control systems 
engineering in the design of control laws 
[5] 

z transform 
a mathematical relationship to model a 
discrete function in the complex frequency 
domain     (z-plane); compare     with 
continuous-time equation, difference 
equation, differential equation, discrete-time 
equation, Laplace transform;   Z transforms 
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E.3     Notation 

The table below lists units used in this dictionary. Many entries list standard units for quantities. 
These are the units most likely to be used by domain experts. It is not intended to serve as the 
final word on units. Some engineers will prefer other units. 

This dictionary lists primary units for many symbols. All units can be broken down into 
combinations of four primary units: (1) mass (M), length (2) length (L), (3) time (9), and (4) 
temperature (T). Unitless quantities have primary units of 1. The primary units are useful for 
checking consistency of equations. 

svmbol Drimarv units meaning measures 

g L/e gravitational units acceleration 

deg degrees angle 
DMS degrees, minutes, seconds angle 

rad radians angle 
semicircle semicircles angle 

rpm 16 revolutions per minute angle 

lbf ML79' pound force force 

kip MI79' thousand pounds force 
Hz 1/6 hertz frequency 
ft L feet length 
in L inch length 

lbm M pound mass mass 

slg M slug mass 

inHg Mive'L inches mercury pressure 

mbar ML/8'L millibar pressure 

psi ML/6'L pounds per square inch pressure 

% 1 percent ratio 

dB 1 decibel ratio of power 

°C T degrees Celsius temperature 

hr 8 hour time 

s 6 second time 

The tables below list the symbols used in this dictionary. 

nomenclature     standard units       primary units        meaning 
A 
a 
a 
ac 

ft/s'.g 
ft/s\g 
1 
ft/s',g 

L/6' 
L/6' 
1 
L/e- 

acceleration 
acceleration 
Euler parameters 
Coriohs acceleration 
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a rad/s' 1/9' angular acceleration 
b 1 1 Euler parameters 
c 1 1 Euler parameters 
ei234 1 1 Euler parameters 
fs Hz 1/9 sampling frequency 
g ft/s' L/9' gravitational acceleration 
g lbf.kip ML/9' gravity 
1 1 1 identity 
J ft/s' L/9' jerk 
j ft/s* L/9' jerk 
© rad/s, rpm 1/9 angular velocity 
P ft, mi L position 
p rad/s, deg/s 1/9 pitch rate 
p ft, mi L position 
q rad/s, deg/s 1/9 roll rate 
r ft, mi L range (mg) 
r rad/s, deg/s 1/9 yaw rate 
s 1 1 Euler parameters 
T s 9 period 
T °C T temperature 
T s 9 time 
t s 9 time 
9 rad, deg 1 angular position 
AV ft/s, kt L/9 speed error 
V kt, ft/s L/9 velocity 
v kt, ft/s L/9 velocity 
x ft, mi L position 
y ft, mi L position 
z ft, mi L position 

Greek standard primary 
svmbol units units meaning 
<0 rad/s, Hz 1/9 damped frequency 
CDC rad/s, Hz 1/9 cutoff frequency 
On rad/s, Hz 1/9 natural frequency 
o rad, deg 1 roll 

♦ rad, deg 1 roll 

<t> rad/s, deg/s 1/9 roll rate 
¥ rad, deg 1 yaw 

V rad, deg 1 yaw 

V rad/s, deg/s 1 yaw rate 
T s 9 time constant 
9 rad, deg 1 pitch 
9 rad, deg 1 pitch 
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e rad/s, deg/s 
1 

l/e 
l 

pitch rate 
damping ratio 

notation meaning 
5(t) unit impulse 
_xdt integral 
A matrix 
IAI determinant 
arctan x arctangent 
atanx arctangent 
[aij] matrix 
COS X cosine 
ex cosine 
Dx derivative 
det[l] determinant 
dx/dt derivative 
ex exponential 
expx exponential 
lnx logarithm 
logx logarithm 
logbX logarithm 
max(X) xn) maximum 
min(xi xnl minimum 
sgnx sign 
sin x sine 
sx sine 
sx + x(0+) derivative 
tan x tangent 
tarr'x arctangent 
tan-'(y.x) arctangent 
u(t) unit step 
u.,(t) unit step 
u.:(t) unit ramp 
uk(t) unit functions 

Uo(t) unit impulse 
X1 inverse 
XT transpose 
X scalar 
X derivative 
x(l) derivative 
x-i inverse 
Ixl absolute value 
X' derivative 
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vector 

subscript meaning example 
-2 ramp unit ramp (u.2(t) 
-1 step unit step (u.i(t), u(t)) 

0 impulse unit impulse (u0(t), 5(t)) 

b base logarithm (In x, log x, logbx) 

c Coriolis Coriolis acceleration (ac) 

c cutoff cutoff frequency (oc) 

k order unit functions (ujc(t)) 

max maximum limiter 
min minimum limiter 
n cycle n first-order, integrator, second-order filter 
n natural natural frequency (on) 

s sampling sampling frequency (fs) 
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E.4      Category Index 

computer, communication 
. Arcnet 
CANBus 
dedicated channel 
PAMUXbus 
sensor/effector bus 

computer science 
algorithm 
analog input/output 
Ascn 
autonomous control 
batch execution 
binary coded decimal 
checkpointing 
commit 
computer cycle 
computing platform 
concurrency 
database 
database management system 
data bus 
data structure 
device driver 
discrete I/O 
distributed database 
dynamic binding 
exception handling 
graphical user interface 
hierarchical control 
human user interface 
information base 
information base application 
interrupt 
knowledge base 
knowledge base management 
system 
latency 
locking 
logging 

operating system 
protocol 
schema 
semantics 
syntax 
trigger 
user interface 

control law, categories of 
linear force/torque 
linear position/velocity 
rotational force/torque 
rotation position/velocity 

controller, concepts regarding 
block 
block cycle time 
canned cycle 
controls standardized application 
conversational part programming 
data starvation 
diagnostic 
drawing interchange file 
feedback 
forward kinematics 
interpolation 
interpolation block 
inverse kinematics 
leadscrew mapping 
multiaxis mode 
offset 
overshoot 
part program 
part programming 
quadrature 
roughing pass 
servo-loop closure rate 
stepper motor control 
target position 
torque compensation 
transfer speed 
waypoint 

controller, parts of 
control law 
interpolater 
kinematic model 
machine model 
path planner 
servo control 

control, types of 
adaptive control 
binary cutter location 
closed loop 
computer numerical control 
continuous path control 
direct numerical control 
distributed control 
endpoint control 
motion control 
numerical control 
open loop 
point-to-point control 
sensor control 
stand alone control 

engineering & mathematics 
absolute 
acceleration 
accelerometer 
accuracy 
angle 
angular acceleration 
angular position 
angular velocity 
aperiodic 
asynchronous 
axis 
bias 
coefficient of friction 
coordinate 
correlation 
delta 
desired 
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deviation 
dimension 
dimensionless 
discrete time 
distance 
domain 

■drift 
error 
euler angles 
euler parameters 
function 
granularity 
gravitational acceleration 
impulse 
jerk 
metrology 
model 
noise 
non-uniform rational b-spline 
orientation 
period 
periodic 
position 
precision 
radius 
ramp 
rate 
real time 
reference 
relative 
resolution 
root mean square 
root sum square 
sampling frequency 
scalar 
semicircle 
signal 
signal-to-noise ratio 
speed 
s-plane 
standard notation 
standard units 
step 
synchronous 
tachometer 
temperature 

time 
tolerance 
torque 
transducer 
unit 
unit impulse 
unitless 
unit ramp 
unit step 
vector 
velocity 
z-axis 
z-plane 

english 
abort 
activity 
clockwise 
counterclockwise 
operational 
situation 

error 
abbe error 
dynamic error 
dynamic following error 
following error 
geometric error 
kinematic error 

filter, concepts regarding 
cutoff frequency 
damped frequency 
damping ratio 
hysteresis 
natural frequency 
time constant 
transient-free switch 

filter, types of 
averaging filter 
band-pass filter 

complementary filter 
first-order filter 
high-pass filter 
integrator 
kalman filter 
limiter 
low-pass filter 
rate limiter 
second-order filter 
smoothing filter 
wash-out filter 

fixture, types of 
bolt 
chuck 
clamp 

jig 
parallels 
steel block 
tape 
vice 

functions, types of 
absolute value 
arctangent 
continuous-time equation 
cosine 
derivative 
determinant 
difference equation 
differential equation 
discrete-time equation 
exponential 
extrapolate 
identity 
interpolate 
inverse 
Laplace transform 
logarithm 
magnitude 
matrix 
maximum 
minimum 
normalizer 
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sign moving column machine nut compliance 
sine Programmable Universal one-shot 
tangent Machine operator interface 
transpose for Assembly orthogonality 
z transform punch part transformation 

saw part zero 
ultrasonic machine pitch 

grinding, types of universal mill machine plan 
centerless grinding vertical mill machine planning 
endfeed grinding prismatic 
end mill sharpening process 
face mill cutter sharpening manufacturing, concepts in radial error probability 
form cutter sharpening 2.5 D rapid traverse 
form grinding aiding reference frame 
infeed grinding application-specific repeatability 
internal grinding integrated circuit revolutions per minute 
plain mill sharpening approach vector roll 
plunge grinding availability safety 
reamer sharpening backlash safety envelope 
slabbing cutter sharpening chatter safety interlock 
tap sharpening circular error probability scalability 
throughfeed grinding close dancing sensor feedback 
traverse grinding computer-aided spherical error probability 
wheel dressing manufacturing spindle lock 

configuration statistical process control 
consumable tool path 

ladder logic control plan tooth loading 

ladder diagram emergency stop travel 

ladder logic execution encoder feedback tuning 

ladder logic programming external communication upgradeability 

programmable logic controller external interface virtual machine 
feature-based definition working envelope 
feedrate working range 

machine, types of feedrate override world coordinate 

abrasive waterjet machine function block diagram world model 

bed mill geometry yaw 

saw goal 
coordinate measuring I/O interfaces 
machine lead manufacturing, languages in 

electrochemical machine lead error dimensional measurement 

electrodischarge machine lead through teach interface 

electron beam machine look ahead specification 

knee mill machine materials resource planning EXPRESS 

lathe modal FLEXIS 

manual machine network interfaces IEC1131-3 

milling machine NGIS-NC Inspection Project instruction list 
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interactive graphics feature microstepping 
exchange specification fixture phase current 
Karel gripper phase sequence 
ladder logic Hall effect sensor ramp 
M & G codes hand crank resonance 
man-machine language home switch stall speed 
neutral manufacturing instrumentation start/stop speed 
language iron step rate 
Product Data Exchange joint 
using STEP leadscrew 
programmable application limit switch motor, types of 
logic link AC induction motor 
RS-274-D lubricant brushless motor 
sequential function chart machinist DC motor 
structured text manipulator servo motor 
VAL manufacturing workstation 

mold 
motor 

stepper motor 

manufacturing, levels of operator PID 
cell operator console deadband 
center optical encoder PID control loop 
enterprise original equipment scaling 
factory manufacturer zero-crossing 
job shop pallet 

pallet shuttle 
part saw, types of 

manufacturing, objects in remote jog pendant band saw 
actuator resolver jig saw 
asset resource reciprocating saw 
automated ground vehicle retro fitter rotary saw 
bed robot saber saw 
chip sensor 
controller spindle 
conventional machine tool sprayer software engineering, concepts 
coolant stock in 
coolant mechanism table actor 
coordinated joint tactile sensor agent 
drive tool changer application program 
effector ways architecture description 
electrical cabinet welder language 
enclosure workpiece application programming 
encoder workstation interface 
end effector attribute 
end user class 
environment motor, concepts about commercial off-the-shelf 
face plate holding torque package 
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component open applications failure recovery 
computer-aided design primitive function fault detection/isolation 

configuration management product definition data fault management 

domain-independent product definition data feed 

application interchange finish 

dynamically linked library real-time operation grind 

field replaceable unit recovery initialization 

holon replication integrate/configure 

input/output artifacts sensor/effector standardized jog 
instance application mark 

installation sensor hierarchy mill 
integration architecture single instruction odd pockets with islands 

interchangability single-step normal production milling 

interface standardized application orient 

interoperability surface representation plane 

life cycle costs system development tool plate 

modular task execution standardized probing 

object application ream 
object module task schedule saw 
object-oriented transaction spotface 
object-oriented programming two-phase commit tap 
object-oriented structures user interface application thread 

open system user interface device turn 
open system architecture user interface support package 
open system interconnection workstation management 
open technology standardized application tool, concepts regarding 
polymorphism workstation model cutter compensation 
portability workstation planning cutter compensation plane 

product life cycle standardized application cutter compensation radius 
reusable software offset 
reverse engineering flute 
service task, types of gauge vector 
software library area clear milling home position 
verification blue in-process gauging 
version bore length offset 
view break chip optimal feedrate 
viewpoint broach optimal spindle speed 

calibration tool centerpoint 
climb milling tool change position 

SOSAS, concepts in conventional milling 
conformance counterbore 
conformance class countersink tool, types of 
element drag drill bit 
mode drill end mill 
machine under control dwell flat end mill 
multiprocessor control etch flexible tap 
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grind belt 
grind wheel 
rigid tap 
saw belt 
saw blade 

viewpoint, types of 
application viewpoint 
architecture viewpoint 
communications viewpoint 
component viewpoint 
design viewpoint 
executive services viewpoint 
physical resource viewpoint 
solution viewpoint 

other 
command 
context 
look and feel 
override 
planner based 
power-up 
reliability 
requirement 

recently added 
abstract data type 
American National 
Standards Institute . 
artificial intelligence 
assembly 
cache 
canonical 
class hierarchy 
data 
data dictionary 
European Strategic 
Programme for 

Research and 
Development of 

Information 
Technology 

expert system 
fabrication 
geometric modeling 
applications 

program 
integrated computed aided 

manufacturing 
intelligent machining 
workstation 
inventory 
International Organization 
for 

Standardization 
Industrial Real-Time 
Operating System 

Nucleus 
just-in-time 
low rate initial production 
maintainability 
maintenance 
manufacturing 
Manufacturing Automation 
Protocol 
Open System 
Interconnection 
paperless factory 
part geometry 
part number 
platform 
predicate 
process plan 
quality 
query 
query language 
real-time function 
referential integrity 
sculpted surface 
shared axis 
shop floor 
simultaneous axes 
slaved axis 
system 
terminal emulation 
third party vendor 
top-down methodology 
total quality management 

tuple 
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APPENDIX F — ARCHITECTURE DESCRIPTION LANGUAGE (ADL)  

The  architecture  description language  (ADL)  describes rules  for composing  application 

architectures.   The language constrains responsibilities, components, and interfaces.   It is a 

f " constraint-based rather than a computational language. Categories of ADL rules include: 

• applicable to architectural concepts, such as messages; 

• applicable to domain concepts, such as mode; 

• applicable to responsibilities, such as tool verification; 

• applicable to components, such as motion control. 

In a general sense, the ADL may contain a rule stating that the application architecture is not 

complete until all resources required by components are supplied by other components in the 

application. However, a great deal of domain knowledge is embodied in the ADL. More 
domain knowledge is necessary with rules that require the selection of particular primitive 

components, such as the technical selection of forward and inverse kinematics. 

Future efforts in language research are focusing on communication concepts that will support the 
dynamic construction of component-based architectures. One such language is the Adaptive 

Semantic Language, described below. 

THE ADAPTIVE SEMANTIC LANGUAGE 

Introduction 

As the complexity of software systems has increased, a number of formal models have been 

proposed to address the decomposition of large software systems into sets of reusable 

components. The Object Oriented (00) paradigm is only the latest in a collection of models 

designed to divide the responsibilities of systems into separate objects which can provide a 
service to the rest of the system through a standard set of messages. The strength of the OO 
paradigm is that the methods and data needed to fulfill a message request can be completely held 

within an object, and therefore, hidden from the rest of the system. Thus, the high-level system 
designer needs only to understand the message-passing aspects of the object, not how the object 

internally deals with the requested service. At a higher level of abstraction, the complete set of 
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objects making up a sub-component of a very large system can be abstracted to a single unit, an 

agent, which itself can provide a higher level of services to the overall system through a standard 
set of messages. 

Both the object and the agent model have the potential of greatly reducing the amount of new 

- software required to build a new system by allowing a standard method for the reuse of existing 

components. However, neither of these models addresses the complexity of design at the high 

level. Without clear documentation of a component's services and message interface, the 

component becomes unusable, but even with good documentation the selection of components 

requires a complex search over a database of standard messages and services. Further, new 

components cannot be considered for use by the system designer until their services and message 

requirements are added to this database. If this database exists within a standards document the 

process of adding new components can be very slow and not easily automated. 

A better solution than a static database which must be modified for every change and addition to 

the set of available components would be a method by which the components themselves could 

contain semantic knowledge about their abilities and interface requirements. A system could 
then be designed by providing a set of system-construction agents with an ability to query the 

components, and then, based on the set of selected components tailor the system's internal 
interfaces to allow these components to carry out their required communication. However, such 
a method would require that both the abilities and interface information of a component be held 
in a common semantic representation which can be communicated between components using a 
semantic language. 

Since the required semantic language would require an adaptiveness similar to human language 

while maintaining the non-ambiguity of a formal language, the logical source of such a language 

should be found by first formally defining the syntactic and semantic features of a human 

language required, and then, attempting to formally define the resulting features into a 
knowledge representation model which will allow the programmatic storage and transmission of 

the model's syntactic and semantic components. To accomplish this, both the requirements of 

the adaptive semantic language and a model for the semantic representation must be determined. 

Further, a testing platform must be constructed to ensure the resulting theory can be proven to 
be achievable. 

This appendix will provide the theoretical support for an adaptive semantic language and the n- 

Towers model for the semantic representation which supports its use for communication from 
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programmatic agent to programmatic agent and from programmatic agent to human. The 
method by which this model can interface to sub-language elements of the programmatic agents 

will also be addressed. 
r 

The n-Towers Model 

(^ The n-Towers model's purpose is to provide a method for computers to understand HL and to 

communicate with each other through a connection at the Adaptive Semantic Language (ASL) 
layer. The model has been based largely on the principles of Government and Binding (GB) 
linguistic theory. Using this foundation, the model attempts to incorporate the best features of 

three current semantic theories; 1) Situation Semantics, 2) Possible Worlds Semantics, and 3) 

Conceptual Semantics. Since no existing Knowledge Representation (KR) was found to be 

adequate, the model is based on the completely new KR defined as Situational Dependencies. 

Figure 1 presents one tower of the of n-Towers Model. In this model there are five levels (or 
layers) between the Human Language (HL) Surface Structure and the Symbol Grounding Plane. 
The two lowest levels (Meta-Semantics and Situational Dependencies) are viewed as below 

linguistic knowledge. The model's breaking of HL syntactic processing into two layers (the 

surface and deep structure) should not be viewed as a total embracing of GB theory. The Deep 

Structure layer may best be viewed as a place holder for any HL information which cannot be 

captured at the surface layer. Thus, the contents of these two layers could depend on the 
requirements of any linguistic theory chosen to support the language processing above the ASL 

layer. 

The interface between the HL layers and the lower three layers is the ASL layer. This layer 
provides a non-ambiguous language syntax which attempts to capture the ability to express the 

full semantic richness of the HL above it. Based on a GB model, an expression in ASL best 
maps to a logical form. The three lowest layers, as well as, the ASL and Symbol Grounding 

Plane will be discussed in more detail in the next four sections. 
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HL Surface Structure 
21 

HL Deep Structure 
z: 
Adaptive Semantic Language 

2: 
Lexical Semantics 

Meta-Semantics 

Situational Dependencies 

Symbol Grounding plane 

Figure F-l.   A Tower of the n-Towers Model 

The actual number of towers needed by a system will depend on the application being 

considered. For the communication of two agents within a generic system, each agent would 
normally need only one tower. If these agents were collocated within a discrete portion of the 

system, even some portions of these towers could be shared. An example of the way in which a 

group of agents controlling various portions of a factory floor would communicate is given in 
Figure 2. In this example, only the one agent whose duties include the system's man-machine 

interface would need the top two HL levels of the n-Towers model. 

Theoretical Basis for an Adaptive Semantic Language 

As stated above, the purpose of the ASL is to provide a non-ambiguous interface between the 
HL layers and the three lowest layers of the n-Towers model. As its name implies, ASL is 
viewed as semantic language. This means it theoretically falls between the syntactic D-structure 

and the conceptual structure represented by the three lower layers of the n-Towers model. This 
positioning in the HL model requires that the resolution of at least syntactic and semantic 

ambiguity be done in the top two layers of the model. This does not force a restriction in the 

expressive power of the n-Towers model as a whole since there is nothing to preclude the two 

top layers from generating any number of different ASL sentences for a given HL sentence. 

> 
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( 

Before the concepts of the ASL can be fully defined, a formal definition of the syntax of both a 

standard formal language and HL must discussed. 

Operator 

* 

J 
ASL 

ASL 

Symbol Grounding plane 

Grounding plane 

1 

ASL 

Symbol Grounding plane 

Robot Arm Scheduler 

I 
Process 
Control 

Figure F-2. A Factory Application of the n-Towers Model 

The Standard Formal Language Model 

Given a grammar G = (V, T, P, S), a standard formal language L(G) is the set: 

{w | we T* and S => w} 

This definition assumes that both the set of terminal symbols {t 11 (E T} and the set of variables 
{v I v (E V) are finite sets of pre-defined symbols from which a potentially infinite set of 

sentences can be constructed. The actual number of well formed sentences which can be 
generated by a non-recursive set of production rules {p I p CE P} depends on the total number of 

elements in the sets P, T and V. Any form of recursion over the set P will cause the number of 

well formed sentences to increase to infinity. 
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While the addition of recursion to the set P allows the standard formal language L(G) to produce 
an infinite number of sentences, the fact that such a L(G) depends on an increasing sentence 

length to increase its expressional power presents a problem in attempting to use any semantic 

model based on L(G). As the length of the sentence grows, the overall meaning of the sentence 

will begin to become computationally clouded due to the exploding size of the semantic 

" representation. This problem becomes especially acute if the recursion is indirect, due to the 

lack of predictability about which portion of the representation will grow. Further, since only 

the syntactic meaning of sentences can be dynamically varied, the rate of increase in the 

expressional power of L(G) will naturally decay as the sentence length increases due to 

reduction in the contribution of the more powerful lexical elements of semantics. 

The Human Language Model 

In contrast to the grammar which generates a standard formal language, a human language 

HL(HG) can be defined using elements of GB theory as: 

HG = (Xv, Gw, Px, C, CP). 

Here the set of variables {v I v CE V} has been replaced with the set of word categories {x I x, x', 
x" CE Xv} which can be plugged into the X-bar rules. The set of terminal symbols {t 11 (E T} has 
been replaced with a word grammar, Gw, which using its own grammar can generate the word 

level elements of the top level sentence grammar. In contrast to a formal language, a set of 
production rules {p I p CE P} is not sufficient to capture the nature of the GB rules which control 
syntax, so a set Px and C are provided as a replacement. The set Px consists of the three X-bar 

rules from GB theory. The set C consists of all rules generated by the other five modules of the 

GB theory (i.e., Binding Theory, Bounding Theory, Case Theory, Control Theory and Theta 

Theory). The start symbol S has been replaced by the CP symbol which is the top phrase 

marker of a sentence in GB theory. 

The word generation grammar can be defined as Gw = (M, LU, P, R) where M is a set of 

morphological variables, LU is a set of stored lexical units (u I u (E LU), MP is a set 
morphology rules, and R is the set of word roots {r I r CE R} which can grow over time. Thus, W 
is the set of well formed words generated from Gw by: 

IWIWG LU*and R ^ w} 11 WG 
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As can be seen from these definitions of HL(HG) and Gw, human language allows for both the 

growth of the word set W (the resulting set of all possible word generations from all possible 
roots) and the recursive application of X-bar production rules within the set Px under the control 

of C. In HL(HG), the extent of recursion of the X-bar rules within the set P is somewhat 

controlled by the set C which places some constraints on the application of the X-bar rules. 

" Further, the power of the set W to grow and the resulting increase in the lexical semantics that 

results, reduces the need to draw additional semantic value from a more complex syntactic form. 

The result is a dynamic language which can adapt to changing semantic requirements without 

increasing the mean-length-of-utterance required for communication. In a massively parallel 

system such as our brains, the resulting optimization toward increased search complexity does 

not present a processing problem; however, in a modern computer such a complex grammar 

within a grammar construction for a language does present a substantial processing problem. 

The Adaptive Semantic Language Model 

Clearly the best language model for the syntax of the ASL, based on its role as a computer to 

computer communication language, would be one which is as expressive as the human language 

model but as algorithmically efficient as the standard formal language model. Of course, such a 

model cannot be constructed since these two requirements are nearly mutually exclusive, but 

there is a large middle ground between the two models in which to select a compromise solution. 

To determine exactly where the ASL model should fit between these two models, the syntactic 

and lexical requirements of the ASL are discussed. Based on these requirements an ASL model 

is proposed. 

ASL Syntax Requirements 

One of the difficulties in the processing of a HL is the complexity of the syntax necessary to 

provide the richness of expressions required for the socialization of humans. Since the surface 

structure form of a sentence needs to take in account the social environment of the utterance, a 

number of pragmatically different forms of a semantically identical D-structure form can be 

generated by a set of rules provided for this expressiveness. Further, since the human brain uses 

a massively parallel processor which can store a great deal of information in temporary registers 

and process the stored utterances almost simultaneously with the completion of input, the S- 

structure ordering of phrases presents little or no problem to the parsing of the utterances, as 

long as, this ordering falls within the range of acceptable possibilities. 

Since the top two levels of the n-Towers model can handle the pragmatic aspects of a HL, the 

language selected for the ASL does not need a number of surface variations of the D-structure of 
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an utterance. Thus, a model based on the logical forms of HL expressions is sufficient to 

express almost all of the semantic meaning needed. The only surface marker that needs to be 
preserved is one which differentiates between a declarative and interrogative utterance. 

However, a simple pre-punctuation of the utterance will convey the information without the 

need of the redundant word order changes used in such languages as English. 

Based on ASL's proposed position below the D-structure, the need for the ASL to allow any 

recursion over its set of syntactic production rules can be eliminated if the lexical forms used 

have sufficient semantic power. In fact, based on the reduced scope of the semantic transmission 

inherent in a formal language, a major portion of the structure of the language can be contained 

within the lexicon. This assumes that the concept of external and internal q-roles is eliminated 

within the lexical entries, and that the potential difficulty in parsing a SVO or OVS word order 

is addressed. 

Since the formal language of predicate calculus is very similar to a VSO or VOS language and 

presents little problem to a trained user, the mapping of the lexical forms to a predicate syntax 
would provide both a powerful level of expression and a very simple language to parse. Since 
the parser would be provided with the lexical unit's identity first (as the predicate label), it could 

easily look up the unit in the lexicon to determine its expected syntax and the number of 
thematic roles and start mapping the semantics of the contents as the terms of the predicate are 

read in. If the complete syntactic form of a predicate in predicate calculus is maintained, 

recursion within the s-grids could be easily recognized and interpreted. 

Tiie ASL's Lexical Requirements 

During the natural evolution of a human language, the language's lexicon constantly changes. 
The phonology, morphology, syntactic relation and meaning of a lexical unit will naturally 

change over time and lexical units will be added or lost to the corpus of the language as the need 

to express new sets of ideas is created. Attempts to stop this evolution have proven fruitless 

since human language is closely tied to human society, and social change is a natural force not 

easily controlled. As a result of this natural change, human language contains methods of 
controlling the effect of a changing lexicon which can be exploited by an n-Towers model to 
allow the language to change to support the expression of new sets of ideas. Since the major 

forces for change in a human language reside outside the language, these control methods can be 
exploited without fear of encountering an internal force within the n-Towers model which would 

cause an uncontrollable change to the ASL. 
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Research in GB theory has provided evidence that all human languages use a concept of q-grids 

within the their lexicon to govern sentence construction and that the types of lexical categories 

containing the q-grids are remarkably uniform across all human languages. However, the 

number of lexical categories which have associated q-grids in HL is somewhat controversial. In 

addition, the amount of information stored in the q-grids varies greatly within different views of 

' GB theory. Since there is some debate as to what amount, if any, of syntactic information is 

stored in the q-grid, the term s-grid (author's convention) will be used to refer to syntactic 

information stored in the lexicon. In addition a third grid, the a-grid (again author's convention) 

will be added to the lexicon to support the connection to the Symbol Grounding Plane. 

In summary, the supporting lexicon will need to provide 1) the internal syntactic realization for 

all lexical units which can vary their internal syntactic realization, 2) a method of describing the 

semantic linking for lexical units of governing categories and 3) a method of firing some action 

as a result of the occurrence of a word in the ASL sentence. This will be done using s-grids, q- 

grids and a-grids, respectively. Since our goal is a formal semantic language which by nature 

will limit the number of ways the same semantic meaning can be expressed within the ASL 

syntax, the storage of a good portion of the language's syntax within the lexicon should be 

achievable, assuming that the number of lexical categories is reduced to a small set. 

Lexical Categories 

Human languages vary in the number of lexical categories used to logically divide the lexicon. 

For a majority of human languages, a set of 12 lexical categories will be sufficient to separate 

the language's lexicon. These are: 

1) adjective 5) determiner 9) participle 

2) adverb 6) infinitive 10) particle 

3) auxiliary verb 7) main verb 11) preposition 

4) conjunctions 8) noun 12) pronoun 

Although this richness in the number of categories forces a complex syntax, the disadvantage of 

this complexity is far outweighed by the extreme expressive power it provides. Our task is 

reducing the number of categories which must exist at the semantic level while maintaining all 

of the expressive power of HL. 

Due to their semantic importance, neither the noun nor preposition category can be eliminated or 

reduced in any real fashion. However, in almost all human languages, prepositions are notorious 

for having broad overlapping meanings.    This fact can be remedied in the ASL since 
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prepositions are a closed category, thus, allowing a more careful definition which is both narrow 

and non-overlapping. 

The first reduction which can be made is in the number of categories required to express the 

overall concept of a verb. The major reason why this concept is spread over the auxiliary verb, 

■ main verb, infinitive and participle is to allow for the expression of mood, aspect, tense and 

voice. If given a method in which to encode a verb's usage within the lexical form, the ASL 

only needs to express externally the concept in the present active indicative without aspect and 

these categories can be reduced to a single 'verb' category. 

Adverbs, in human language, normally qualify the meaning of the main verb. This qualification 

is normally in relative terms and often difficult to interpret in any concrete way. For these 

reasons, it seems best to eliminate adverbs from the list of the ASL's lexical categories. This 

may again force some sort of encoding of verb category or addition of verbs like 'run quickly' 

unless a method can be found to make adverbs act as more well behaved members of the 

adjective category. 

Particles are sort of the waste bucket of human language lexical categories. Any concept which 

cannot be fully expressed by another category or any difficulty in syntactic construction may 

result in the use of a particle. In the ASL, the need for particle can be eliminated by a careful 

definition of the syntax and other lexical categories. 

The discussion of pronouns is slightly more complex since their number and use varies greatly 

from human language to human language. For the sake of our discussion, we will take a 

'standard' view based on a number of Indo-European languages. Based on this view, the 

personal, reflexive and relative pronouns will be treated as pronouns and other types will be 

treated as either adjectives or determiners. 

In most human languages, a personal pronoun is normally coreferential with either a referent 

which has already been described in the discourse by a Noun Phrase (NP) or has been associated 

to a grounded symbol by some non-language method. Since we are dealing with a formal 

language, we can dismiss the non-language symbol grounding condition as beyond our realm of 

interest and assume that for our purposes all personal pronouns will be coreferential with a 

referent which has been described by a NP. The use of personal pronouns as external referents is 

driven mostly by the need to reduce the amount of redundant information being transmitted in 

HL. In a formal language, this need is less important and use of the personal pronoun can be 

eliminated. 
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The reflexive pronoun can be eliminated from a formal language for the same reason as the 

personal pronoun. The need for the ASL to support relative clauses, and thus, relative pronouns 

can be eliminated, but only if some type of conjunction with a temporal meaning is supplied at 

the syntactic level. 

As with pronouns, adjectives serve to shorten the utterance by allowing a qualification of the NP 

to be directly stated within the NP. Therefore, adjectives can also be eliminated from the ASL 

without any loss of semantic expressive power as long as nouns with the same semantic value 

are provided. 

Determiners on the other hand serve to quantify, not qualify, their associated NP. As such, they 

cannot be fully eliminated from the ASL without losing semantic value. Since their semantic 

value will need to be carefully defined for a proper semantic interpretation of the whole 

utterance, they will need to be a closed category in the ASL. This follows from human language 

where they are a closed category for the same reason. 

The semantic value of conjunctions also cannot be eliminated from the ASL without losing 

semantic value. However, since the number of conjunctions needed at both the lexical and 

syntactic level is very small, they can be formalized in the ASL syntax. 

Based on all the justifications given, the number of open categories needed in the ASL can be 

reduced to two; 1) nouns and 2) verbs. The number of closed categories required can be reduced 

to three; 1) determiners, 2) conjunctions, and 3) prepositions. Of these, verbs and prepositions 

will require q-grids. Only verbs and nouns will require s-grids. 

Lexical Entries 

Since the purpose of the lexicon is to support adaptive change within the ASL, the number of 

entries in the lexicon must be allowed to change over time. This will require some set of 

components in the ASL model to have meta-knowledge about how to interpret the syntactic and 

semantic information stored in the lexicon. The meta-knowledge about syntax can be relatively 

straightforward since a category will either have a built-in syntactic realization or a s-grid which 

can be directly read for this information. The meta-knowledge about the semantic model of the 

ASL will need to be a little more complex since the interpreting component will need to do more 

than simply read an entry's q-grid. This component will need to understand both, 1) the number 

of possible thematic roles and how these roles map into a semantic understanding of the 
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language and 2) how to read a semantic description of a verb or preposition to complete the 

semantic understanding. 

For a verb entry, the q-grid will need to consist of the required thematic elements and their -* 

thematic roles.   To aid in parsing, no optional q-roles should be permitted.   To allow some 

■ optional forms of a verb, the ASL should allow two or more entries for the same verb name in N 

the lexicon. The s-grid for the verb will provide the phrase level constituents (either NP or PP) 

for each actor in the q-grid. For a preposition entry, the q-grid will need to consist of the 

thematic role of its actor. Since only NP's can fill this role, no s-grid will be required. 

For a noun entry, the s-grid will define the other elements which can be used with the noun to 
form a NP. These elements will include determiners, conjunctions, prepositional phrases, and 

other NP's. 

Determiners and conjunctions will be atomic elements within the ASL, and therefore, will have 

neither a s-grid or q-grid. Since determiners and conjunctions are both closed categories and are 

tightly defined, their storage in the lexicon is optional. 

The ASL Model 

Based on the requirements provided above, the grammar rules and lexical syntax can be now be 

defined for the ASL model. This is done in the next two sections. A set of examples is then 

given to show how the ASL could be used. 

Grammar Level Syntax 

Using a predicate syntax where a verb name is the predicate label and the verb's governed q-roles 
are the terms, the syntactic production rules of the ASL grammar can be reduced to the 

following non-recursive set of rules: 

S JE SI I ?(SI) 
SI JE VP I NOT VP 
VP^V|V/VIViEVIV>V ^ 

where: V is a verb predicate, 
VP is a verb phrase, 
SI is an declarative sentence, and . 

?(SI) is interrogative sentence. * 
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This language allows a syntactic level negation (NOT) of the sentence. In addition, the 

following syntactic level conjunctions are allowed across two V's: 

1) a logical disjunction      (/) 
2) an if-then relationship   (JE) 
3) a temporal ordering      (>) 

A logical conjunction (AND) is not provided at the syntactic level since there is no semantic 

value added to two simple sentences being ANDed together to make a complex sentence over 

the same two simple sentences being stated as totally separate statements. 

A more powerful recursive language could also be defined as: 

S JE SI I ?(SI) 
SI JE V? 
VP JE V I V / VP I V JE VP I V > VP INOT (VP) 

However, such a language would present a more difficult semantic evaluation and may be overly 

expressive for the average domain. 

Lexical Unit Level Syntax 

As stated above, only verb phrases will appear at the sentence level. The syntax of the verb 

phase will be controlled by the grammar and the lexical syntax of the verb. The syntax of a verb 

will be: 

verb-name ( So, S\ ... SN ) 

where the number of s-roles (sx) is determined by the verb's s-grid. These s-roles can either be 

filled by a NP or a PP. The syntax of these will be: 

noun-name ( So, S\ ... SN )0 [ j noun-name ( so, si ... SN )| 

... j noun-name ( So, s\ ... SN )N ] 
preposition-name ( NP) 

where the symbol, j, stands for either a logical AND (Y) or OR (/) operator and the number of s- 

roles (sx) for the noun element within the NP is determined by the noun's s-grid. The SQ position 

of this s-grid can only be filled by a determiner. The s, position will be reserved for NP's acting 

as adjectives. The remaining s-roles are optional and can be either filled by a NP or a PP. 
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Example Expressions 

Based on the above design, the following sentence examples for a NGC type domain are given: 

English:       The lathe rounds the part with a cutting tool. 

ASL: rounds(lathe(the, 0), part(the, 0), with(tool(a, cutting))) 

English:       Pick up the blue part on the green table with the   stationary robot arm. 

ASL: pick-up (   part(the, blue, 0, on(table(the, green, 0,0))), 
with(robot-arm(the, stationary(0)))) 

English:       Get the cutting tool from the tool caddie, and then, cut     a 2mm deep 
pocket in part. 

ASL: get( tool(the, cutting(0), 0,0), 
from(caddie(the, tool(a, 0, 0, 0), 0, 0)))   > 

cut(pocket(a, 2mm), part(a, 0,0,0)) 

English:       Move the tool alone the x-axis plus 5mm. 

ASL: move-linear (      tool(the, 0,0,0), 
position(relative, x-axis, +5mm)) 

In the examples, the 0 symbol indicates a required s-role within a lexical unit being used for 

which no (or NULL) information is needed to complete the English sentence being translated. 

Situational Dependencies 

As stated above, the Situational Dependencies layer provides the basic semantic network for the 
storage of the Lexical Semantics. This semantic network allows for the existence of three types 

of nodes: 1) verb, 2) noun and 3) preposition. As shown in Figure 3, each of these node types 

provide the required storage of the tag and the needed grids. 

\ 

) 
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p <timefworld> 

p <time,world> 

Figure F-3. Situational Dependency Nodes with Theta Relations 

The expressive power of this network comes from the ability of the directed arcs (relations) to 

contain both type and situation information about the relation (i.e., the time and world in which 
the relation applies). Thus, procedural events, scenarios, and even beliefs can be directly 
superimposed on the lexical semantics without any risk of the information being misused by the 
system. As a result of this ability, the concept of long term and short term memory can be used 

with the n-Towers model without any of the complexity normally associated with systems that 

store these two types of knowledge in two different places. 

As shown in Figures 3, 4, and 5, there are five different classes of situational relations define in 

the Situational Dependencies KR. These are: 

rq relations -     defines the noun or preposition node allowed to fill a verb's 
theta role. 

rc relations -     defines the noun or preposition node allowed to fill a noun's 
epsilon role, 

r; relations -      defines a pure reciprocal relation between nodes of the same 
type. 
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rn relations -     defines non-reciprocal relation between nodes of the same 
type. 

rw relations -    defines two relations which when taken to together produce a 
reciprocal relation between nodes of the same type. 

• The actual number and names of the relations allowed in a relation class is defined in the Meta- 

Semantic level of the n-Towers model. 

p <time,world> 

Figure F-4. Epsilon Relations of Situational Dependency Nodes 

Meta-Semantics 

The Meta-Semantics layer allows the definition of the legal relations allowed in a tower of the n- 
Tower model and the inferencing methods associated with those relations. Since relations must 

be defined as one of the five classes stated above, inferencing method can be associated with 

either a relation or a relation class. 

The Meta-Semantics layer also handles the housekeeping for the reciprocal relations, ensuring 

that when a reciprocal relations is defined between Node A and Node B, the correct relation is 
defined between Node B and Node A.   As an example of this, if the relation A NC-machine 
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always is-a machine in the real-world Ö is added to the semantic knowledge, then the relation A 
machine always could-be-a NC-machine in the real-world Ö would be added by the meta- 
semantics if a reciprocal relation between is-a and could-be has been defined. 

/     Node \  p <time,world> /                               \ 

I    Type 
/                 \     Type      1 

p <timefworld>\ u           />"p <time,world> 
A ^ _^^ St*r 

Node      \ 
Type      / 

Figure F-5. Other Relations of Situational Dependency Nodes 

Lexical Semantics 

As stated above, the verbs, nouns and prepositions which can be used by the ASL will be stored 

in a lexicon which is free to grow as new concepts are needed to be expressed. In the n-Towers 

model, this lexicon will exist in the Lexical Semantic layer. The amount of information which 
must be stored in the Lexical Semantic layer for a lexical unit will depend on the category of the 

lexical unit. For all entries, a tag and the set of current situational links to the semantic 

representation of the domain knowledge (i.e., the other lexical units) will be required. 

If the lexical unit is a verb, a q-grid containing the number and type of q-roles associated with 
the unit will be maintained to allow a road map to which noun and preposition nodes in the 

domain can be legally linked to that verb. If the lexical unit is a preposition, a single q-role will 

be maintained for this purpose. If the lexical unit is a noun, a e-grid containing the number and 
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type of e-roles associated with the unit will be maintained to allow a road map to which noun 

and preposition nodes in the domain can be legally linked to that noun. The q-grid, q-role and 
the e-grid are represented as a simple ordered list of roles that corresponds to the unit's s-grid 

and a-grid. 

■ Since a verb is one of the most complex types of entry, a verb will be used as an example. 

Given the verb, 'rounds', as used in the sentence: 

The lathe rounds the part with a cutting tool. 

The following lexical entry for 'rounds' would appear in the lexicon: 

Tag:       hit 

q-grid:   1) Agent s-grid:     1) NP a-grid:    1) action X 
2) Patient 2) NP 2) action Y 
3) Instrument 3)  PP 3) action Z 

Both the domain knowledge and general knowledge of a tower will be contained in a set of 

situational dependent links between the lexical unit elements in the network (the nodes). The 
Meta-Semantic layer will determine the set of inferencing methods needed for this knowledge. 

As a result of the language information stored in the Lexical Semantic layer, the ASL layer is 

able to prohibit meaningless sentences. For example, given the sentence: 

English:    The part rounds the lathe with a cutting tool. 
ASL:        rounds(part(the, 0), lathe(the, 0), with(tool(a, cutting))) 

using the information stored in the Lexical Semantic layer, the ASL parser would be able to 

determine that the q-roles for 'rounds' have been violated by the use of the NP:'the part' as a 

agent and the NP:'the lathe' as a patient. 
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