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ADDRESSING TENSION INSTABDLITY IN SPH METHODS 

1. INTRODUCTION 

Smoothed particle hydrodynamics (SPH) is a Lagrangian method that requires no 

spatial mesh. SPD is really an interpolation method in which particles can be em- 

ployed as part of the approximation [1]. (Note that in this paper, the words element 

and particle will be used interchangeably when referring to SPH methods). The calcu- 

lation of interactions among the particles is based upon their separation alone. This as- 

pect along with the absence of a grid allows very large deformations to be computed 

in a straightforward fashion. In addition, arbitrary fracture surfaces can be opened 

without requiring special considerations such as an a priori knowledge of the fracture 

location as in finite element methods (FEM). SPH is thus an appealing and valuable 

computational tool, especially for high deformation events such as impact. 

However, SPH is a maturing method and still has a few technical barriers to over- 

come before becoming a widely used tool in computational mechanics. Its biggest 

drawback is the well know instability in tension - premature fragmentation of the SPH 

grid in tension. Swegle et al. [2] have done a formal stability analysis that clearly dis- 

cusses the roots of tension instability. Hicks et al. [3] have applied a conservative 

smoothing approach with some success, but tension instability remains a serious ob- 

stacle in general. Other difficulties with SPH methods include the accurate calculation 

of finite strains, inhomogeneous media, stress oscillations or "sawtooth" behavior (see 

[4]), and the application of natural boundary conditions. 

In this paper, we present a new unconventional (UC) approach to address tension 

instability (and also oscillatory stresses) in which the stresses are calculated at points 

other than the SPH nodes. In addition, stress rate calculations are briefly addressed and 

specialized to one dimension (ID) applications. 

Manuscript approved on November 8, 1994 



2. THE SPH METHOD 

The SPH method is non-local in nature and based upon interpolation - see [1], [4- 

6]. Consider the function f(x) and its kernel average (f(x)) expressed as: 

</■(?) ) = jf(x')W(z-x\h)dV (1) 

where V is the volume, x is the current position vector, and W is the kernel with a 

width measured by the parameter h. Various possibilities exist for the choice of 

W(x — x',h) with the most popular being the cubic-b-spline [4]. The kernel W 

should satisfy the following condition: 

Hmh-+0 W(x-x',h) = 8(x-x') (2) 

where 8 is Dirac's delta function. Normalization of W and compact support (W is 

zero outside a limited domain) are expressed as: 

jw(x,h)dv = 1 (3a) 

and 

W(x,h) = 0 (\x\>2h) (3b) 

Associating with a particle j, a volume 

dV' = \£ (4) 

introduces the concept of particle mass, MJ, and density, p^. The integral in (1) can 

then be replaced by the approximation: 

N j 

<f (?) > « Y /(x>) W(x - xKh)   Mj (5) 
7=1 & 

where N is the total number of particles. 

Dropping the (  ) sign, gradients off(x) can be expressed as [4]: 



N 
M7   ,, i.dW V(/(,))=-X^/(^')^e/ 

ay 
(6) 

ft* -7 

in which the subscripts denote component and ej is the / component of the unit vector 

at j. Another form for the gradient of /(x) that is widely used but which introduces 

additional approximation is [4]: 

N 
V (f(x)) = -p (x) £ MJ 

7=1 

/(?)    .   f{J) 
P2 (*)      P2 (*0 J 

aw 
ay; 

(7) 

3. THE SPH EQUATIONS (BRIEFLY) 

In subscript notation, the conservation of linear momentun is expressed as: 
dV. m i dd 1      mn 
dt P^n 

(8) 

in which V   is the velocity and O      is the Cauchy stress tensor, and the summation mn 
convention is implied by the repeated index n. Applying (6), (8) becomes at particle i: 

N : 
1    x- M7   „„.„„ 

* Pf   ~i p'   P> dx/n 

This form does not conserve momentum since the force on particle i due to j is not the 

same as j due to i. A widely used alternative to (9) that conserves momentum but in- 

troduces further approximation is obtained by substituting (7) into (8) to produce (no 

summation on i): 

dV N 

z"-5y 
& mn a' mn 

j=l (PO     (PÖ 

av^> 
ay n 

(10) 



Artifical viscosity is usually included in the linear momentun as an artifical vis- 

cous pressure. Benz[l], Libersky and Petschek [2] and Libersky etal. [7] give details 

for including it into (10). 

Mass conservation is of the form: 

dp      av. 
dt      ^xm 

p^ (ID 

Introducing (7) into (11) produces: 

N 

dt " *& mK -VX5*TT <"> 
A widely used alternative to (12) is [4]: 

N 
dp1 ; v MJ    J        i   dWlJ 

J,   =-P' I^m-O^T (13) 

The density can also be directly determined from (5) and is of the form: 

N 

p1' =  ^M'V7' (14) 

Equation (14) will be employed in this paper. 

In addition to momentum and mass conservation, energy conservation can also be 

included in the governing equations (see [1] and [2] for instance). In this work, it has 

not been introduced since a linear elastic material will be assumed. 



4. CONSTITUTIVE EQUATIONS AND STRESS RATES 

The current position x (t) of the material point X can be expressed as: 

x(t)  = X + U(t) (15) 

where U (t) is the current displacement as measured from x. In index notation, the 

rate of deformation d     (t) is of the form: mn 

dmn^  = 2 
i        m ,      n 

\dx„     oxm i \    n my 
(16) 

Note in (16), that dmn is an Eulerian variable and the derivatives are with respect to 

xn (not xn). The rate of deformation can be put in SPH form by directly applying ei- 

ther equation (6) or (7). In [2], further manipulations and approximations are intro- 

duced to produce the correct trace and to express d in terms of velocity differences. 

For ID applications, the use of (6) or (7) will suffice. 

Next consider the velocity gradient Lmn which is defined by: 

dv 
W) =ar (17) 

Using (16), Lmn can be divided into symmetric and skew-symmetric parts: 

mn        mn      mn v    ' 
where 9      is the rotation and given by 

mn      2 
lfiVm    9V 

Kdxn     dxmJ 
(19) 

and d     is determined from (16). mn 

Having defined the rate of deformation, we next seek an objective stress rate. The Jau- 

man stress rate CJ^f" is widely used [8], and is expressed as: 



ö,au = ä    -e,.a  ,-e, G . (20) mn mn      lj   ml      Im  nl v     ' 

where G   , and G      are components of the Cauchy stress and the rate of Cauchy 

stress (which is not objective). For ID applications, 9      = 0 and 

Gft" = Gu (21) 

The Jauman stress rate can be related to the rate of deformation via the constitutive 

tensor C. In component form this relation is: 

G      = C    , d, (22) mn mnlq"lq v     ' 
For ID applications and a linear material, (22) reduces to: 

öll = C1111J11 (23) 

where C^\\ = E (the modulus of elasticity and assumed to be constant), and 

"n = Wx 
(24) 

Explicit integration of G1, to obtain G,, (f) is in the form: 

Gn(0 = cyn(r-dt) +Gn (t-dt)dt (25) 

where J? is the current time step and from (23) 

Gu(t-dt) = E-dn(t-dt)dt (26) 

Because the displacement f/i is the time derivative of V, and E is constant, (26) 

can be directly integrated in time to yield: 

Gn = Een (27) 

where through (24) 



ln('} = ar^i(r) (28) 

Equations (6) or (7) are then introduced into (28) to express 6i i (0 in a SPH form. 

We note that £11, which is determined by integrating d,, in time, is not the well 

known linear strain. Rather it is an Eulerian variable because the derivative in (28) is 

with respect to x* (t) not Jci. 

5. ADDRESSING TENSION INSTABILITY 

Tension instability is a problem that has longed troubled conventional SPH meth- 

ods and greatly limited its application. In [2], a stabiltiy analysis for ID is presented. 

That analysis shows SPH calculations to be unstable when: 

<dx2 j 
On>0 (29) 

This means that the standard SPH method, in which the node and the stress point are 

both located at the centroid of the element (particle), will be unstable in tension. Swe- 

gle et al. in [2] also demonstrate that this tension instability can not be corrected by 

artifical viscosity. 

The approach in this work to overcome tension instability is indicated in Fig. 1, in 

which the stress points (denoted by x) are computed at points away from the SPH 

nodes (denoted by o and located at the center) as measured by the distance R. The lim- 

its of Rare: 

0<fl<0.5 (30) 

R = 0.5 corresponds to the conventional form in which both stress points are located 

at the centroid of the element, while R = 0 places the two stress points at the left and 

right edges of the element. In conventional SPH because the stress points coincide 

with the SPH node,   particle i does not enter into the calculation of &,,, since 



dWij 

—: = 0 for a symmetric kernel when / = j. In this new approach, which we re- 

fer to as unconventional or UC, for 0 < R < 0.5 node i will be included in the stress 

calculations for SPH element /. Thus stress calculations from the unconventional ap- 

proach should be more accurate since node i will be included at the stress points / 

and i. (see Figure 1). Also the UC method should help to lessen or eliminate oscilla- 

tion or the "sawtooth" effect evident in standard SPH stress calculations [4]. 

In additon and more importantly, however, the UC approach should also help to 

address the tension instability present in the conventional (/? = 0.5) SPH. The rea- 

son for this is as follows. Assume a uniform ID grid, as shown in Fig. 1, with the 

smoothing length 2h = 2L, where L is the length of each SPH element. For the 

conventional approach, all nodes for the SPH gradient calculations are at least h (=L) 

distance away, and node i is not included in any of the calculations for stress and linear 

momentum at i. In [2], it has been shown that instability in tension is governed by 

(29), and for the standard cubic-b-spline kernel this is satisfied in tension whenever 

X" > 0.6h (approximately). Unfortunately for conventional SPH methods, (29) is 

satisfied for all the SPH nodes included in the gradient calculations at node /. As men- 

tioned above for the UC approach, node / is included in the stress calculations at the 

stress points iQ and ib (R < 0.5) as shown in Fig. 1. Also, the stress points / and 

ifo will be included in the linear momentum calculated at node /. Thus, (29) will not 

be satisfied at these two stress points. In addition, the two SPH elements adjacent to 

i,i—\ and / + 1, may also contain stress points (depending on the value of R) which 

do not satisfy (29). Therefore, the UC method should have a strong stabilizing effect 

on the SPH mesh in tension, not allowing it to prematurely fragment. 



6. NUMERICAL IMPLEMENTATION - SPH1D 

For the unconventional (UC) formulation in our ID code SPH1D, four options 

have been programmed for the calculation of stress and linear momentum. These op- 

tions are specified by the parameter JSP. Gradient calculations used to determine the 

stress (a, j) employ either (6) or (7) in this work. Linear momentum calculations are 

based on either (9) or (10). Recall that (9) does not conserve momentum, but for the 

UC formulation (6) and (9) are more accurate than (7) and (10). Equations (7) and (10) 

represent the standard SPH approach in which additional approximations have been in- 

troduced [4,5]. 

JSP = 1 corresponds to the use of (7) and (10) or the standard SPH particle equa- 

tions, but with the UC formulation in which the stress points are not located at the SPH 

nodes (0 < R < 0.5). For JSP = 2, (6) is employed for the stresses while (9) is used 

for linear momentum calculations. JSP = 3 uses (6) for the stresses and (10) for linear 

momentum. Thus, options JSP =1 and 3 introduce additional approximations for the 

UC, but (10) does enforce the conservation of momentum. Also it is noted that for the 

linear momentum calculations using either (9) (JSP =2) or (10) (JSP = 1 or 3), each of 

the two stress points within a particular SPH element (particle) is assumed to possess 

one half of the total mass ofthat element - this allows retention of the particle concept. 

In addition, when using (10) (JSP = 1 or 3), the stress at the typical SPH node i, since 

it is not calculated, is assumed to simply be the average of the two stress points i and 

ifr (see Fig. 1) in that element. 

The fourth option (JSP = 4) in SPH ID uses the same equations as JSP =2 , or (6) 

for stress calculations and (9) for linear momentum. However, with JSP = 4 the stress 

CTJJ is calculated through (6) and (27) and (28) only at the element centroid (as if 

R = 0.5 in Figure 1) and it is assumed that: 

°ii = CTn = CTn <31> 



So a, j is assumed to be constant in SPH element /. Linear momentum is then calcu- 

lated using (9) but with the stresses applied not at i (the centroid) but rather at / and 

JV as specified in the UC approach when 0 < R < 0.5. The option JSP = 4, thus rep- 

resents a compromise between the conventional and unconventional SPH approaches, 

that may at least help to stabilize the mesh in tension, although not addressing stress 

oscillation or "sawtooth" behavior. 

Ghost particles are employed for the application of essential boundary conditions. 

See [5] for the enforcement of free and fixed end conditions. Also, explicit time inte- 

gration in the form of a modified central difference (MCD) method is applied to the 

linear momentum equations. Taylor and Flanagan [9] briefly discuss the MCD method 

which consists of a forward difference to compute the velocities followed by a back- 

ward difference to calculate the displacements. In equation form the MCD is: 

7(0 = Y(t-dt) +dt-A(t-dt) (32a) 

U(t) = U(t-dt) + dt-V(t) (326) 

where A is the acceleration and dt is the time increment. 

Overall, the SPH1D program is a relatively simple ID code, but it will be a useful 

platform to demonstrate our unconventional approach. Finally, in SPH ID only a linear 

elastic material model has been implemented at this point. 

7. APPLICATION 

In this section as test of our unconventional approach, the SPH ID code will be 

applied to the elastic ID bar described in Fig. 2. The bar is fixed at the right end B and 

the left one quarter of the bar is given an initial velocity of V0=-5 m/sec, thus putting 

the bar in tension initially. Standard SPH methods (R = 0.5) can not solve this prob- 

lem due to the tension instability that will immediately develop. As indicated in Fig. 

2a, the SPH grid is very coarse with only 40 uniform SPH elements (particles) used in 

the model. A comparable finite element model using the ABAQUS [10,11] program 

that consists of 40, 2D solid elements is described in Fig. 2b. 

10 



Fig. 3 presents the displacement time history of the left end A (SPH node 1 actu- 

ally) for the UC results with R = 0.25 (so the stress points are at the quarter points 

of the SPH elements). Also included are the finite element method (FEM) results using 

ABAQUS with implicit time integration, which is unconditionally stable. The time 

step used for the explicit SPH calculations as well as for the implicit FEM model is dt 

= 0.4 E-6 sec. This time step is based upon an estimate of the Courant stability limit 

of approximately 0.66 E-6 sec, which is determined by dividing the length of the typ- 

ical SPH element by the wave speed C. 

As indicated in Fig. 3, the SPH1D results (solid line) with R = 0.25 are very 

close to the ABAQUS predictions (dashed line) for the displacement history at the left 

end of the bar, point A. Some slight phase difference between the two analyses devel- 

ops later but this is probably due to the use of an explicit solver for SPH1D and an im- 

plicit solver for ABAQUS, as well as basic differences between the SPH and FEM 

forms of discretization. 

The JSP = 2 option was used to generate Fig. 3. This option in SPH1D employs 

(6) for stress calculations and (9) for linear momentum. The use of the other options, 

JSP =1,3 which employ (10) and do conserve momentum as well as JSP = 4, pro- 

duced results that eventually went unstable. JSP = 4 went unstable the quickest in the 

analysis. Reducing the timestep dt and increasing the artifical viscosity did not stabi- 

lize the SPH1D calculations for JSP =1, 3 or 4. Only JSP =2 remained stable and all 

the results in this section used that option. 

Various values for R in the approximate range of 0 < R < 0.40 produced SPH 

results very similar to Fig. 3 in which R = 0.25. For the range 0.4 < R < 0.5, the 

response of the bar tended to be become unstable as the two stress points approached 

the centroidofthe SPH element (R - 0.5). 

Fig. 4 indicates the predicted time history for the velocity of the left end A for 

SPH1D and ABAQUS. In general, the agreement is excellent with again some slight 

phase differences developing as the analysis goes on. 

11 



In Figs. 5 and 6, the stress O,. at SPH node 11 (stress point 11 ) is compared to 

Oj j at the centroid of finite element 11 - point C in Figs. 2a and 2b. Fig. 5 indicates 

the extended time history of CJ.,. Fig. 6 plots the results only up to .0002 sec. so that 

the differences in the two analyses are more evident. As indicated in Fig. 6, early in 

the analysis especially the SPH1D stress results do tend to fluctuate more than the 

ABAQUS results . In general, the SPH1D predictions for O^ compare reasonably 

well to AB AQUS, but not as well as did the displacement and velocity at A as indicated 

in Figures 3 and 4. This is not too surprising since stress is determined by differenti- 

ating the displacement, and the mesh is very coarse with only 40 SPH and 40 FEM 

elements used in the analyses. 

The ID bar is next given an initial velocity of V0 = 5 m/sec, thus putting the bar 

in compression initally. This is done to determine the effect of the UC formulation on 

the stress oscillation or "sawtooth" behavior encountered in the standard or conven- 

tional SPH approach (R = 0.5). Putting the bar initially in compression allows a 

comparison between the UC and the conventional SPH, since the latter is not stable in 

tension. Fig. 7 shows a snapshot of the stress G,, along the entire bar at t = 1.0 E-5 

sec. The UC results with R = 0.25 are indicated by the solid line, and the conven- 

tional SPH results in which R = 0.5 are depicted by the dashed line. In general, we 

see that the UC results are much smoother indicating a lessening of the "sawtooth" be- 

havior. 

8. CONCLUSIONS 

In this work, tension instability has been addressed for SPH methods. A new un- 

conventional (UC) approach has been presented in which the stresses are computed at 

points away from the SPH nodes. The location of these two stress points within a ID 

SPH element (particle) is controlled by the parameter R. The UC approach removed 

the tension instability in the bar considered for R in the approximate range of 

0 < R < 0.45. No optimum value of R was found in general. UC displacement and 

velocity results were in excellent agreement with a comparable ABAQUS finite ele- 

12 



ment model. Axial stress comparison to the ABAQUS model were not quite as good, 

but that probably is to be expected given the coarseness of the meshes and the non-lo- 

cal nature of the SPH method, which interpolates outside the SPH element (unlike 

FEM). In a comparison to standard SPH (R = 0.5) for the bar in compression ini- 

tially, the UC seemed to alleviate the stress oscillation or "sawtooth" effect. 

The UC approach was successful in removing tension instability, but only for the 

option JSP = 2, in which (6) and (9) were used for the stress and momentum calcula- 

tions. Equations (6) and (9) are not widely used in the SPH literature, and (9) does not 

conserve momentum. These are important points to note with the UC approach. 

Unfortunately, the JSP =4 option (like JSP =1 and 3) failed to remain stable for 

the UC method. If this option had been successful, modifications to existing SPH 

codes would have been easier and less expensive since only one stress point (the cen- 

troid) within each particle would have to be tracked. 

Overall, based on the results from the simple lDbar, the use of the unconventional 

approach for SPH calculations is very encouraging. This approach can be extended to 

2D and 3D problems, but this will be computationally expensive since additional stress 

points within each SPH element have to be tracked in the analysis besides just the cen- 

troid. Also, extension to 2D and 3D may require a rethinking of the overall particle 

concept. Finally, perhaps a method analogous to hourglass control for reduced inte- 

gration in finite element techniques [11] may be possible with the UC method. 
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o SPH Node (at Centroid) 

x Stress Point ( 0 < R < 0.5 ) 
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R R 
H      H 
R = 0.5 (conventional) 

—H 

Figure 1.   Typical ID SPH elements for the unconventional approach.   When 
R = 0.5 have the conventional SPH method. 
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Figure 2. A simple bar given an initial velocity: (a) SPH1D grid, (b) ABAQUS 
FEMgrid. 
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Figure 3. Displacement history for the left end of the bar (point A). 
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Figure 4. Velocity history for the left end of the bar (point A). 
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Figure 5. Extended stress history at node 11 (point C). 
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Figure 6. Early stress history at node 11 (point C). 
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Figure 7. SPH1D UC and conventional stress predictions for the bar at t = 1.0E-5 
sec (V0 = .5 m/sec). 
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