
CakrkingeTechniquesior

The Robop Ishtedin

.NSTITUTE Te dchn i ~ca a Rep~aiot

ADA281TR9435

Backtracking Techniques for
the Job Shop Scheduling

Constraint Satisfaction Problem
Norman Sadeh, Katia Sycara and Yalin Xiong

CMU-RI-TR.94-31

L L.

JY1 0 3 1995000 Forbes Avenue
L) ,The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3891

This paper, which will appear in a special issue of the Artificial Intelligence journal on
"Planning and Scheduling", is an improved version of CMU.RI.TR.92-06

J. , 1994 Sadeh,Sycara&Xiong

This research was supported, in part, by the Defense Advanced Research Projects Agency under
contract #F30602-91-F-0016, and in part by grants from McDonnell Aircraft Company and
Digital Equipment Corporation,

ADA289435

Table of Contents
1. Introduction
2. The job shop constraint satisfaction Problem 3
3. UPe Searhs oedr S
4. Dynamic Consistency Enforcement (DCE) 9

4.1. Identifying Critical Resource Subproblem 10
4.2. Backctrackting While Selectively Eeforcing Consistency 12
4.3. Storing Information About Padt Backtracking Episodes 12
4A4. An Example 13
4.5. Additional "Watch Dog" Consistency Checks 13

S. Leaing Ordering From Failures (LOFT) 1s
6. An incomplete Dackghnping Heuristic 16
7. Empirical Evaluation 16

7.1. performance Evaluation On a First Suite of Problems 17
7.2. Further Evaluation 151
7.3. Complete v&. Incomplete Search Procedures 21

S. Concluding Remairks 22

ADA289435

ADA289435

List of Figures
Figure 1: A simple problem with 4 Jobs. Each node is labeled by the operation that it represents, its 5

duration and the resource it requires.
Figure 2: Basic depth.first backtrack search procedure. 6
Figure 3: Consistency with respect to precedence constraints. 7
Figure 4: Forward consistency checks with respect to capacity constraints. 8
Figure 5: Detecting situations where two unscheduled operations requiring the some re-o-urce are 9

In conflict.
Figure 6: DCE Procedure. 11
Figure 7: An edited trace illustrating the DCE procedure. 14

ADA289435

ly

An

V

List of Tables
Table 1: Comparison of Chronological Backtracking and DCE&LOFF&IBH on 6 sets of 10 job 1

shop problem.
Table 2: Results of One.Bottleneck Experiments. 20
Table 3: Results of Two-bottleneck Experiments 21
Table 4: Results of One-bottleneck Experiments. 21
Table 5: Results of Two-bottleneck Experiments 22

Abstract

This paper studies a version of the job shop scheduling problem in which sonie operations have
to be scheduled within non-relaxable time windows (i.e earliest/latest possible start time
windows). This problem is a well-known NP-complete Constraint Satisfaction Problem (CSP).
A popular method for solving this type of problems involves using depth-first backtrack search.
In our earlier work, we focused on the development of consistency enforcing techniques and
variable/value ordering heuristics that improve the efficiency of this search procedure. In this
paper, we combine these techniques with new look-back schemes that help the search procedure
recover from so-called deadend search states (i.e. partial solutions that cannot be completed
without violating some constraints). More specifically, we successively describe three
"intelligent" backtracking schemes: (I) Dynamic Consistency Enforcement dynamically
identifies critical subproblems and determines how far to backtrack by selectively enforcing
higher levels of consistency among variables partictpating in these critical subproblems, (2)
Learning Ordering From Failure dynamically modifies the order in which variables are
instantiated based on earlier conflicts, and (3) Incomplete Backjumping Heuristic abandons areas
of the search space that appear to require excessive computational efforts. These schemes are
shown to (1) irther reduce the average complexity of the backtrack search procedure, (2) enable

our system to efficiently solve problems that could not be solved otherwise due to excessive
computation cost, and (3) be more effective at solving job shop scheduling problems than other
look-back schemes advocated in the literature.

ADA289435

i. Introduction
This paper is concerned with the design of recovery schemes for incremental scheduling

approaches that sometimes require undoing earlier scheduling decisions in order to complete the
construction of a feasible schedule

Job shop scheduling deals with the allocation of resources over time to perform a collection of
tasks. The job shop scheduling model studied in this paper further allows for operations that
have to be scheduled within non-relaxable time windows (e.g. earliest possible start time/latest
possible finish time windows). This problem is a well-known NP-complete Constraint
Satisfaction Problem (CSP) [Garey 79]. Instances of this problem include factory scheduling
problems, in which some operations have to be performed within one or several shifts, spacecraft
mission scheduling problems, in which time windows are determined by astronomical events
over which we have no control, factory rescheduling problems, in which a small set of operations
need to be rescheduled without revising the schedule of other operations, etc.

One approach to solving CSPs is to use depth-first backtrack search [Walker 60, Golomb
65, Bitner 75]. Using this approach, scheduling problems can be solved through the iterative
selection of an operation to be schcduled next (i.e. variable selection) and the tentative
assignment of a reservation (i.e. value) to that operation. If in the process of constructing a
schedule, a partial solution is reached that cannot be completed without violating some of the
problem constraints, one or several earlier assignments need to be undone. This process of
undoing earlier assignments is referred to as backtracking. It deterio'ates the efficiency of the
search procedure and increases the time required to come up with a solution. While the worst-
case complexity of backtrack search is exponential, several techniques to reduce its average-case
complexity have been proposed in the literature [Dechter 88]

* Consistency Enforcing Schemes: These techniques prune the search space from
alternatives that cannot participate in a global solution [Mackworth 85]. There is
generally a tradeoff between the amount of consistency enforced in each search
stateI and the savings achieved in search time.

" Variable/Value Ordering Heuristics. These heuristics help judiciously decide which
variable to instantiate next and which value to assign to that variable [Bitner
75, Haralick 80, Purdom 83, Dechier 88, Fox 89, Sadeh 91]. By first instantiating
difficult variables, the system increases its chances of completing the current partial
solution without backtracking [Haralick 80, Fox 89, Sadeh 91]. Good value ordering
heuristics reduce backtracking by selecting values that are expected to participate in
a large number of solutions [Dechter 88, Sadeh 91].

" Look-back Schemes: [Stallman 77, Doyle 79, Gaschnig 79, Dechter 89a] While it is
possible to design consistency enforcing schemes and variable/value ordering
heuristics that are, on average, very efective at reducing backtracking, it is
generally impossible to efficiently guarantee backtrack-free search. Look-back
schemes are designed to help the system recover from deadend states and, if
possible, learn from past mistakes.

'A search siate is associated with edch partial solution lach search state defines a new CSP whose %artables are
the variables that have not yet been nstantiated and whose constramns are ,he initial problem constraints along with
constraints reflecting current assignments

ADA289435

2

In our earlier work, we focused on the development of efficient consistency enforcing
techniques and variable/value ordering heuristics for job shop scheduling CSPs [Sadeh 88, Sadeh
89, Fox 89, Sycara 91, Sadeh 90, Sadeh 91, Sadeh 92]. In this paper, we combine these
techniques with new look-back schemes. These schemes are shown to further reduce the average
complexity of the search procedure. They also enable our system to efficiently solve problems
that could not be efficiently solved otherwise Finally, experimental results indicate that these
techniques are more effective at solving job shop scheduling problems than other look-back
schemes advocated in the literature.

The simplest deadend recovery strategy goes back to the most recently instantiated variable
with at least one alternative value left, and assigns ones of the remaining values to the variable.
This strategy is known as chronological backtracking. Often the source of the current deadend
is not the most recent assignment but an earlier one. Because it typically modifies assignments
that have no impact on the conflict at hand, chronological backtracking often returns to siular
deadend states. When this happens, search is said to be thrashing. Thrashing can be reduced
using backjumping schemes that attempt to backtrack all the way to one of the variables at the
source of the conflict [Gaschnig 79] Search efficiency can be further improved by learning
from past mistakes. For instance, a system can record earlier conflicts in the form of new
constraints that will prevent it from repeating earlier mistakes [Stallman 77, Doyle 79].
Dependency-directed backtracking is a technique incorporating boh backjumping and constraint
recording [Stallman 77]. Although dependency-directed backtracking can greatly reduce the
number of search states that need to be explored, this scheme is often impractical due to the
exponential worst-case complexity of its constraint recording component (both in time and
space) Simpler techniques have also been developed that approximate dependency-directed
backtracking. Graph-based backjwnping reduces the amount of book-keeping required by full-
blown backjumping by assuming that any two variables directly connected by a constraint may
have been assigned conflicting values [Dechter 89a] 2. N-th order deep and shallow learning
reduce the constraint recording complexity of dependency-directed backtracking by only
recording conflicts involving N or fewer variables [Dechter 89a].

Graph-based backjumping works best on CSPs with sparse constraint graphs jDechter 89a].
Instead, job shop scheduling problems have highly interconnected constraint graphs.
Furthermore graph-based backjumping does not increase search efficiency when used in
combination with forward checking [Haralick 80] mechanisms or stronger consistency enforcing
mechanisms such as those entailed by job shop scheduling problems [Sadeh 91]. Our
experiments suggest that N-th order deep and shallow learning techniques often fail to improve
search efficiency when applied to job shop scheduling problems. This is because these
techniques use constraint size as the only criterion to decide whether or not to record earlier
failures. When they limit themselves to small-size conflicts, they fail to record some important
constraints. When they do not, their complexities become prohibitive

Instead, this paper presents three look-back techniques that have yielded good results on job
shop scheduling problems-

1. Dynamic Consistency Enforcement (DCE): a selective dependency-directed

2Two variables are sid to be "coneccd' by a constraint ,f they both pancipate i ihat constraint

ADA289435

3

scheme that dynamically focuses its effort on critical resource subproblemS,

2. Learning Ordering From Failure (LOFF): an adaptive scheme that suggests new
variable orderings based on earlier conflicts,

3. Incomplete Backjumping Heuristic (1BH) a scheme that gives up searching areas of
the search space that require too much work,

Related work in scheduling includes that of Prosser and Burke who use N-th order shallow
learning to solve one-machine scheduling problem; [Burke 89], and that of Badie et al. whose
system implements a variation of deep learning in which a minimum set is heuristically selected
as the source of the conflict (Badie et al 90].

The remainder of this paper is organized as follows. Section 2 provides a more formal
definition of the job shop CSP. Section 3 describes the backtrack search procedure considered in
this study. Sections 4, 5 and 6 successively describe each of the three backtracking schemes
developed in this study. Experimental results are presented in section 7. Section 8 summarizes
the contributions of this paper.

2. The Job Shop Constraint Satisfaction Problem
The job shop scheduling problem requires scheduling a set of jobs J= J "..',in } on a set of

resources RES= R1 ,.... Rm }. Each jobj consists of a set of operations O= 1 O,..., O1) to be
scheduled according to a process routing that specifies a partial ordering among these operations
(e.g. o BEFORE

In the job shop CSP studied in this paper, each jobj, has a release date rd, and a due-date ddi
between which all its operations have to be performed. Each operation O, has a fixed duration
du, and a variable start time si. The domain of possible start times of each operation is initially
constrained by th- release and due dates of the job to which the operation belong.. If necessary,
the model allows for additional unary constraints that further restrict the set of admissible start
times of each operation, thereby defining one or several time windows within which an operation
has to be carried out (e.g. one or several shifts in factory scheduling). In order to be successfully
executed, each operation d, requires p, different resources (e.g. a milling machine and a
machinist) R' (I <j<pt), for each of which there may be a pool of physical resources from

which to choose, Q2!, F RES (e.g. one or several milling machines).

More formally, the problem can be defined as follows:

VARIABLES:

A vector of variables is associated with each operation, 01 (1 5 1 n,, 1 :- i : q1]), which consists
of:

1. the start time, s, of the operation, and

2. its resource requirements, R,", (I :sj S P5.

4

CONSTRAINTS

The non-unary constraints of the problem are of two types:
1. Precedence constraints defined by the process routings translate into linear

inequalities of the type: s?+du <- st' (i.e. 0 BEFORE 0).

2. Capacity constraints that restrict the use of each resource to only one operation at a
time translate into disjunctive constraints of the form:
(VpVq R! , R) v s? +du k st v st+du':<s?. These constraints simply express
that, unless they use different resources, two operations 0 ' and d cannot overlap3 .

Additionally, our model can accommodate unary constraints that restrict the set of possible
values of individual variables. These constraints include non-relaxable due dates and release
dates, between which all operations in a job need to be performed. More generally, the model
can accommodate any type of unary constraint that further restricts the set of possible start times
of an operation.

Time is assumed discrete, i e. operation start times and end times -an only take integer values
and each resource rquirement R' has to be selected from a set of resource alternatives,

V g RES.

OBJECTIVE:

In the job shop CSP studied in this paper, the objective is to come up with a feasible solution as
fast as possible. Notice that this objective is different from simply minimizing the number of
search states visited. It also accounts for the time spent by the system deciding which search state
to explore next.

EXAMPLE.

Figure I depicts a simple job shop scheduling problem with four jobs J= {J1 ,J2 ,J3 ,j4} and four
resources RES=(R1 ,R 2 ,R 3,R4 }. In this example, each operation has a single resource
requirement with a single possible value. It is further assumed that all jobs are released at time 0
and have to '-e completed by time 20. Please note that none of these simplifying assumptions is
required by the techniques to be discussed: jobs can have different releas and due dates,
operations can have several resource requirements, and several alternatives for each of these
requirements. Note also that the problem we have just defined is infeasible. None of the
operations on resource R2 can start before time 3 and the sum of durations of these operations is
18. Hence, it is impossible to complete these operations before time 21. As we will see, this
observation can easily be operationalized in the form of a simple consistency checking rule.
However, as the number of operations to schedule grows, the exponential complexity of applying
this simple rule to all possible subsets of operations on a given resource quickly becomes
prohibitive, hence the need to be more selective in applying such checks. Additionally, passing
such a check is no guarantee that a problem is feasible, hence the need to also rely on more

1'lhese constraints have to be generalized whhen dealing with resources of capacity larger than one

ADA289435

5

...

I 3

01 431 3R

a4

4- \

-3 \ I -

capacity constraint

- precedence constraint

Figure 1: A simple problem with 4 jobs. Each node is labeled
by the operation that It represents, its duration and

the resource it requires.

complex mechanisms, as described below.

3. The Search Procedure
A depth-first backtrack search procedure is considered, in which search is interleaved with the

application of consistency enforcing mechanisms and variable/value ordering heuristics that
attempt to steer clear of deadcnd states, as described in Figure 2.

Specifically, search starts in a state where all operations still have to be scheduled. The
BASIC-DEPTH-FIRST procedure proceeds by incrementally scheduling operations one by one.
Each time an operation is scheduled, a new search state is created in which a consistency
enforcing procedure (or constraint propagation procedure) is first applied to update the set of
possible reservations of unscheduled operations. Next, an operation is selected to be scheduled
and a reservation is selected for that operation. The procedure goes on, recursively calling itself,
until either all operations are successfully scheduled or an inconsistency (or conflict) is detected
In the latter case, the proceure needs to undo earlier decisions or backtrack. The backtracking

ADA289435

6

Procedure BASIC-DEPTH-FIRST ()
If UNSCEED-OP 0 Then solution found, STOP.
Let CONFLICT - FALSE
Call CONSTRAINT-PROPAGATrON
If CONFLICT - FALSE

Then Begin
Let OP - OPER-SELECTION (UNSCSED-OP)
Lot RRNAINXNG-RESERV(OP) - list of possible reservations for OP

ordered according to the value ordering
beuristic (beat reservations first)

Let RESERV - Pop first reservation in REMAINING-RESERV(OP)
Push (OP,RESERV) onto SCHEDULE
Remove OP from UNSCEED-OP
Call BASIC-DEPTH-FIRST C)

End
Else Call SIMPLE-BACKTRACK)

End If
End Procedure

Procedure 8IMPLE-BACKTRACS ()
If SCHEDULE - 0 Then Let NO-SOLUTION - TRUE and STOP.
Remove the last (operation, reservation) pair pushed onto SCHEDULE
and Let OP be the operation in that pair
Insert OP in UNSCHED-OP
It RZHAINING-REeEAV(OP) * 0

Then Begin
RESERV - Pop first reservation in REMAINING-RESERV(OP)
Push (OP,RESERV) onto SCHEDULE
Remove OP from UNSCHED-OP
Call BASIC-DEPTH-FIRST ()

End
Else Call SIMPLE-BACKTRACK)

End If
End Procedure

Begin Program
Lot SCHEDULE - 0
Let UNSCUD-OP - 22' ""o".o' o-0o'.
Let NO-SOLUTION - FALSE
Call UASIC-DEPTH-FIRST()
It NO-SOLUTION - FALSE

Then PRINT-SOLUTION
Else PRINT "Infeasible Problem*

nd If
End Program

Figure 2: Basic depth-first backtrack search procedure.

mechanism in Figure 2, SIMPLE-BACKTRACK, is a chronological backtracking procedure that
systematically goes back to the most recently scheduled operation and tries alternative
reservations for that operation If no alternative reservation is left, the procedure goes back to
the next most recently scheduled operation and so on. If the procedure returns to the initial
search state (i.e. the state with an empty schedule), the problem is infeasible.

ADA289435

7

The default consistency enforcing mechanisms and variable/value ordering heuristics used in
our study are the ones described in [Sadeh 91]. These mechanisms, which have been favorably
compared against a number of other heuristics [Sadeh 91, Sadeh 92], are briefly described below.

Consistency Enforcing Procedure: The consistency enforcing procedure we us combines
three consistency mechanisms:

1. Consistency with respect to precedence constraints: Consistency with respect to
precedence constraints is maintained using a longest path procedure that
incrementally updates, in each search state, a pair of earliest/latest possible start
times for each unscheduled operation. Essentially, as in PERT/CPM [Johnson 74],
earliest start time constraints are propagated downstream within the job whereas
latest start time constraints are propagated upstream (Figure 3). The complexity of
this simple propagation mechanism is linear in the number of precedence
constraints. In the absence of capacity constraints, the procedure can be shown to
guarantee decomposability (Dechter 89b], i.e. it is sufficient to guarantee
backtrack-free search [Sadeh 91].

Before propagation

[o,-.] (0,-] [(o,1]

Downstream Propagation

0,-1 (3,.-1 [7,15]

Upstream Propagation

(0,8] [3,111 [7,15]

, 0 precedence constraint

Figure 3: Consistency with respect to precedence constraints

2. Forward consistency checks with respect to capacity constraints- Enforcing
consistency with respect to capacity constraints is more difficult due to the
disjunctive nature of these constraints. Whenever a resource is allocated to an
operation over some time interval, a "forward checking" mechanism [Haralick

ADA289435

80]checks the set of remaining possible reservations of other operations rcquinng
that same resource, and removes those reservations that would conflict with the
new assignment, as first proposed in [LePape 87] (See Figure 4)

O -' Before propagation. [7 15After propagation (10 1S

scheduled to start at time 6

capacity constraint

Figure 4: Forward consistency checks with respect to capac:ty constraints

3. Additional consistency checks with respect to capacity constraints: Additionally,
our default consistency enforcing mechanism checks that no two unscheduled
operations require overlapping resource/time intervals. An example of such a
situation is illustrated in Figure 5, where two operations requiring the same
resource, 0, and O, rely on the availability of overlapping time intervals, namely
the intervals between their respective latest start times and earliest finish times
([lst,ef?] and ilst!,efl). This additional consistency mechanism has been shown to
often increase search efficiency, while only resulting in mnor computational
overheads [Sadeh 91].

Variable/Value Ordering Heuristics: The default vanable/value ordering heuristics used by
our search procedure are the Operation Resource Reliance (ORR) variable ordering heuristic
and Filtered Survivable Schedules value ordering heuristic described in [Sadeh 91]. The ORR
variable ordering heuristic aims at reducing backtracking by first scheduling difficult operations,
namely operations whose resource requirements are expected to conflict with those of other
operations. The FSS value ordering heuristic is a least constraining value ordering heuristic. It
attempts to further reduce backtracking by selecting reservations that are expected to be
compatible with a large number of schedules.

These default heuristics have been reported to outperform several other schemes described in
the literature, both generic CSP heuristics and specialized heuristics designed for similar
scheduling problems ISadeh 91, Sadeh 92]. They seem to provide a good compromise between
the efforts spent enforcing consistency, ordering variables, or ranking assignments for a variable
and the actual savings obtained in search time. Nevertheless, the job shop CSP is NP-complete
and, hence, these efficient procedures are not sufficient to guarantee backtrack-free search

The remainder of this paper describes new backtracking schemes that help the system recover
from deadend states. We show that, when the default consistency enforcing mechanisms and/or

ADA289435

9

0-.

oversub -rbedInterval i "

eatk I~tk eat'1 tetl Sftk e ft K~ ft time
J I J I I

earliest possible reservation

latest possible reservation

time Interval absolutely rquIred by the operation,
whatever Its start time

Figure 5: Detecting situations where two unscheduled operations requiring the same
resource are in conflict.

variable ordering heuristics are not sufficient to steer clear of deadends, look-back mechanisms
can be devised that modify these schemes so as to avoid repeating past mistakes (i.e.so as to
avoid reaching similar deadend states).

4. Dynamic Consistency Enforcement (DCE)
Backtracking is generally an indication that the default consistency enforcing scheme and/or

variable/value ordering heuristics used by the search procedure are insufficient to deal with the
subproblems at hand. Consequently, if search keeps on relying on the same default mechanisms
after reaching a deadend state, it is likely to start thrashing. Experiments reported in [Sadeh
91, Sadeh 92), in which search always used the same set of consistency enforcing procedures and
variable/value ordering heuristics, clearly illustrated this phenomenon. Search in these
experiments exhibited a dual behavior. The vast majority of the problems fell in either of two
categories: a category of problems that were solved with no backtracking whatsoever (by far the
largest category) and a category of problems that caused the search procedure to thrash.

Theoretically, thrashing could be climinated by enforcing full consistency in each search state.
Clearly, such an approach is impractical as it would amount to performing a complete search.
Instead, our approach involves (I) heuristically identifying one or a few small subproblems that

AQA2R94i

10

are likely to be at the source of the conflict, (2) determining how far to backtrack by enforcing
full consistency among the variables in these small subproblems, and (3) recording conflict
information for possible reuse in future backtracking episodes. This approach is operationalized
in the context of a backtracking scheme called Dynamic Consistency Enforcement (I)CE). Given
a deadend state and a history of earlier backtracking episodes within the same search space (i e
while working on the same problem), this technique dynamically identifies small critical
resource subproblems expected to be at the source of the current deadend. DCE then backtracks,
undoing assignments in a chronological order, until a search state is reached, within which
consistency has been fully restored in each critical resource subproblem (i.e. consistency with
respect to capacity constraints in these subproblems). Experimental results reported in Section 7
suggest that often, by selectively checking for consistency in small resource subproblems, DCE
can quickly recover from deadends. The remainder of this section further describes the
mechanics of this heuristic.

4.1. Identifying Critical Resource Subproblems
The critical resource subproblems used by DCE consist of groups of operations participating in

the current conflict along with groups of critical operations identified during earlier backtracking
episodes involving the same resources Below,, we refer to the group of (unscheduled)
operations identified by the default consistency enforcing mechanism as having no possible
reservations left as the Partial Conflicting Set of operations (PCS) (See Figure 6). In order to
restore consistency, the search procedure needs to at least go back to a search state in which each
PCS operation has one or more possible reservations 4 . DCE attempts to identify such additional
operations by maintaining a group of critical resource subproblems identified during earlier
backtracking episodes. Below, we refer to this data structure as the Former Dangerous Groups
of operations (FDG). Details on how this data structure is created and maintained are provided in
Subsection 4.3.

For each capacity constraint violation among operations in the PCS, DCE checks the FDG data
structure and retrieves all related resource subproblems. A resource subproblem in the FDG is
considered related to a capacity constraint violation in the PCS if, in an earlier backtracking
episode, operations in that resource subproblem were involved in a capacity constraint violation
on the same resource and over a "close" time interval A system parameter is used to determine
if two resource conflicts are "close". In the experiments reported at the end of this paper, two
conflicts were considered close if the distance separating them was not greater than twice the
average operation duration. Related critical subproblems identified by inspecting the FDG data
structure are then merged with corresponding operations in the PCS to form a new set of one or
more critical resource subproblems, which we refer to as the as the Dangerous Group of
operations (DG) for the conflict at hand Like the FDG, the DG is organized in subgroups of
resource subproblems consisting of operations contending for the same resource over close or
overlapping time intervals. While backtracking, operations that are unscheduled are inserted in
the DG, either by being added to existing resource subproblems or by creating new resource
subproblems.

4Clearly, this is not gua4ranteed to be sufficient, a; other operations ma also contribute to the tunfl ti

Procedure DEPTH-PIRST-WIT1-DCE)
If UNSCBED-OP - 0 Then solution found, STOP.
Lot PCs - 0
Call CONSTRAINT-PROPAGATION, which places all operations with

no remaining reservations in PCs

If PCs 0
Then Begin

Let OP - OP&R-SELECTION (UNSc e -OP)
Lot REUZMNING-RIBERV(OP) - list of possible reservations for OP

ordered according to the value ordering
heuristic (beat reservations first)

Lot siSERV - Pop first reservation in REMAINING-RESERV(OP)
Push (OPRBSXRV) onto XCJMDML
Remove OP from UNSCMM-OP
Call DBPTH-FIRST-WITR-DC ()

End
Else Begin

Let DO be the set of consolidated resource subproblems obtained
by merging resource subproblem in PCB with related resource
subproblems in FD

Call DCZ-DACXTRACX (DO)
End

End If
End Procedure

Procedure DCE-BACXTRACX (DO)
If QCHZIDLZ - 0 Then Let NO-SOLUTIZON m TRUE and STOP.
Remove the last (operation, reservation) pair pushed onto SCHEDULE
and Let OP be the operation in that pair
Insert OP in 0NBCmW-OP .td in DO
Let CONFLICT - FALSE
For each resource subproblem in Do, prune the set of remaining reservations

of each operation in that subproblem by enforcing full consistency
with respect to capacity constraints. In the process, if an operation
is found to have no possible reservations left then stop enforcing
consistency and Let CONFLICT - TRUE

If CONFLICT - FALSE
Then begin

EZSRV - Pop first reservation in RZMA IrNONG-IzsMV(OP)
Push (OP,REBERV) onto BCUDULE
Remove OP from UXWCUED-OP
UPDAT-FDG(DG)
Call DEPTE-FIRIT-WITH-DCE)

End
Else Call DCE-ACXTRACK (DG)

End If
End Procedure

Begin Program
Let SCM2MA - 0 Let YD m 0 Let NOo-OLUTIO16 M XE

L -1 2 2Lot NC -OP - .Oq;.,O7,. .O-)
Call EPTZ-PXIXIT-WZTH-DCE()
If NO-SOLUTION - FALSE

Then PR3IT-BOLUTLON
Else PRINT -Infeasible Problem-

End If
End Program

Figure 6: DCE Procedure.

12

4.2. Backtracking While Selectively Enforcing Consistency
Once the initial DG has been identified, DCE backtracks, undoing assignments in a

chronological order, until it reaches a search state in which consistency is restored within each of
the resource subproblems defined by operations in the DG (See Figure 6). This is done by
enforcing full consistency with respect to capacity constraints in each of the resource
subproblems in the DG. As long as conflicts are detected, the procedure continues to backtrack
and unscheduled operations are inserted into existing or new resource subproblems in the DG.
While restoring consistency within each of these resource subproblems is a necessary condition
to backtrack to a consistent search state, it is not always a sufficient one. In other words, the
effectiveness of DCE critically depends on its ability to heuristically focus on the right resource
subproblems 5.

Because full consistency checking can be expensive on large subproblems, if a resource
subproblem in the DG becomes too large, k-consistency is enforced instead of full-consistency,
where k is a parameter of the system [Freuder 821. In the experiments reported at the end of this
paper, k was set to 4. At the end of a backtracking episode, the DG has maximum size, call it
DG,, . . Assuming that the procedure was able to backtrack to a consistent search state, DG'.
is expected to contain all the operations at the origin of the deadend 6 and often more. DGma, is
then saved for later use in the FDG data structure. Additional details regarding the management
of this data structure are provided in the next subsection. If a related backtracking episode is
later encountered by the system, DG,,, can be retrieved and combined with the PCS of this new
episode.

4.3. Storing Information About Past Backtracking Episodes
The purpose of the Former Dangerous Groups of operations (FDG) maintained by the system

is to help determine more efficiently and more precisely the scope of each deadend by focusing
on critical resource subproblems. Each group of operations in the FDG consists of operations
that are in high contention for the allocation of a same resource. Accordingly, whenever, a
conflict is detected that involves some of the operations in one group, the backtracking procedure
checks for consistency among all operations in that group.

The groups of operations in the FDG are built from the Dangerous Groups (DGs) obtained at
the end of previous backtracking episodes (DGma5). Indeed, whenever a backtracking episode is
completed, DGmax is expected to contain all the conflicting operations at the origin of this
episode. Generally, DGmax may involve one or several resource subproblems (i.e. groups of
operations requiring the same resource). Each one of these subproblems is merged with related
subproblems currently stored in the FDG. If there is no related group in FDO, the new group is
separately added to the data structure. Finally, as operations are scheduled, they are removed
from the FDO.

5
Note that DCE is not expected to be very effective at recosring from complex conflicts in'olving interactions

between mutiple resource subproblems A heuristic which is often more effective for these complex conflicts is
described in Section 6

6
CIearly, white this is not guaranteed, experinmentil results suggest that this is owirn the case

13

4.4. An Example
Figure 7 illustrates the behavior of DCE on the small scheduling problem introduced in Figure

I. After scheduling operations 04 and O on resource R2, the procedure detects that operation O
has no possible reservations left. Given that the FDG data structure is initially empty (no prior
backtracking episode), we have PCS=DG= (O). The procedure unschedules the most recently

scheduled operation, namely 02, and inserts it in DG together with operation O., as both of these
operations require the same resource. At this point, DCE enforces full consistency with respect
to capacity constraints between these two operations 7 and finds that, after consistency checking,
the operations still admit some possible reservations. This marks the end of the first backtracking
episode. The procedure saves the current DG in FDG, for possible reuse, then schedules
operation O at its next best available start time8, namely start time 6. In the process, O is
removed from the FDG Another conflict is detected in this new search state, which marks the
beginning of a second backtracking episode. This time the consistency enforcing procedure finds
that operation O has no possible reservations left (i.e. PCS= (O)). Using the FDG, the system
adds operation O to the group of dangerous operations, DG= { ,0 1. Accordingly, this time,

when it unschedules operation 02, DCE enforces full consistency 9 with respect to capacity

constraints in DG= [, , . When it finds that the current search state is still inconsistent,

DCE proceeds and unschedules operation O4, thereby returning to the root search state with

DG 0 , , ' In this search state, full consistency with respect to capacity constraints
between operations in DG indicates that the problem is infeasible. In total, the system only
generates three search states to find that the problem is infeasible. In contrast, a total of 50
search states is required for the same small problem, when relying on the SIMPLE-
BACKTRACK procedure outlined in Figure 2. The example also shows how the use of the
Formerly Dangerous Groups (FDG) of operations helps the system identify critical resource
subproblems. If it was not for this mechanism, the procedure would not detect an inconsistency
when it comes back to Depth 1 in the second backtracking episode, as it would only check for
consistency between O and &.4. More generally, experimental results presented in Section 7
show that DCE often results in important increases in search efficiency and important reductions
in computation time.

4.5. Additional "Watch Dog" Consistency Checks
Because groups of operations in the FDG are likely deadend candidates, our system further

performs simple "watch dog" checks on these dynamic groups of operations.

More specifically, for each group G of operations in FDG, the system performs a rough check
to see if the resource can still accommodate all the operations in the group. This is done using
redundant constraints of the form:

7This is equivalent to 2-consitency or arc-consistency. aiven that there are only 2 operations [Freuder 821.

8
Actually, strt time 6 is not the start time picked by our reservation ordering heuristic. The system was manually

forced to pick this value to make the example more interesting

9
This time the system enforces 3-consistency, given that there are 3 operations in DG.

ADA289435

14

>> Depth: 0, Number of states visited: 0, FDG=0

04 in scheduled between 14 and 20 on R2

>> Depth: 1, Number of states visited: 1, FDG=O

0 2 is scheduled between 9 and 14 on R,

>> Depth: 2, Number of states visited: 2, FDG=0

Conflict detected: 03 has no possible reservations left:

PCS:DG:O ~03]) (Beginning of first backtracking epi ode]

02 is unscheduled

>> Depth: 1, Number of states visited: 2, FDG=O

DG=I[~ 3~ 2
Full consistency checking with respect to capacity constraints in DG:

Remaining possible start times:

2 t 13,4,5,6)

03: 3 8,9,t0,111

DG={[O~,~0,]) (End of first backtracking episode]
2 is scheduled between 6 and 11 on

>> Depth: 2, Number of states visited: 3, bG=[O]

Conflict detected: 0 has no possible reservations left:

PCS=j[O[]l, DG=(O,']) [Beginning of second backtracking episode]
02 i unscheduled

>> Depth: 1, Number of states visited: 3, FDG={fO])}
123Doo1[o2,o ,o 3

00=~ ~~ 10201)
Full consistency checking with respect to capacity contstraints in DG:
Conflict detected

2is unscheduled

>> Depth: 0, Number of states visited: 3, FDG={[03)
DG((1 123 4

0210i,03,0,]1)
lull consistency checking with respect to capacity constraints in DG:
Conflict detected
Infeasible Problem (End of second backtracking episode]

Figure 7: An edited trace illustrating the DCE procedure.

ADA289435

15

Max(lst,+du,,Oe G)-Min(estOe G) : X du,
0, G

where esl, and l1 are respectively the earliest and latest possible start times of O in the current
search state.

Whenever such a constraint is violated, an inconsistency has been detected. Though very
simple and inexpensive, these checks enable to catch inconsistencies involving large groups of
operations that would not be immediately detected by the default consistency mechan;sms.
Clearly, some inconsistencies can still escape these rough checks.

While backtracking, the same "watch dog" checks can be used prior to enforcing full
consistency with respect to capacity constraints in the critical resource subproblems in DG. This
can significantly reduce computation time. For instance, in the second backtracking episode in
Figure 7, these simple checks are sufficient to detect inconsistencies at depth I and 0. For
example, at depth 1, where DG = ([02, O', O] },0

Max(Ist+duf, 0, e DG) - Min (est',, 0: - DG)= 14-3 = I1,

while I du= 12.
01 e DG

5. Learning Ordering From Failures (LOFF)
Often, reaching a deadend state is also an indication that the default variable ordering was not

adequate for dealing with the subprob!em at hand. Typically, the operations participating in the
deadend turn out to be more difficult to schedule than the ones selected by the default varabnle
ordering heuristic. In other words, it is often a good idea to first schedule the operations
participating in the conflict that was just resolved. Learning Ordering From Failure (LOFF) is
an adaptive procedure that overrides the default variable ordering in the presence of conflicts.

After recovering from a deadend, namely after backtracking all the way to an apparently
consistent search state, LOFF uses the Partial Conflicting Set (PCS) of the deadend to reorganize
the order in which operations will be rescheduled and make sure that operations in the PCS are
scheduled first. This is done using a quasi-stack, QS, on which operations in the PCS are pushed
in descending order of domain size, i.e. PCS operations with a large number of remaining
reservations are pushed first on the quasi-stack. When the quasi-stack is empty, the procedure
uses its default variable ordering heuristic, as described in Section 3. However, when QS
contains some operations, the procedure first schedules these operations, starting with the ones
on top of the quasi-stack, namely those QS operations with the smallest number of remaining
reservations.

If a candidate operation is already in QS, i.e. if it is encountered for a second time, it is pushed
again on QS as if it had a smaller domain. This orders operations based on the recency of the
conflict in which they were last involved and based on their number of remaining reservations.

ADA289435

16

6. An Incomplete Backjumping Heuristic
Traditional backtrack search procedures only undo decisions that have been proven to be

inconsistent. Proving that an assignment is inconsistent with others can be very expensive,
especially when dealing with large conflicts. Graph-based backjumping and N-th order
shallow/deep learning attempt to reduce the complexity of full-blown dependency-directed
backtracking by either simplifying the process of identifying inconsistent decisions (e.g. based
on the topology of the constraint graph) or restricting the size of the conflicts that can be
detected. The Dynamic Consistency Enforcement (DCE) procedure described in Section 6 also
aims at reducing the complexity of identifying the source of a conflict by dynamically focusing
its effort on small critical subproblems. Because these techniques focus on smaller conflicts, they
all have problems dealing with more complex conflicts involving a large number of variablest

It might in fact turn out that the only effective way to deal with more complex conflicts is by
using heuristics that undo decisions not because they have been proven inconsistent but simply
because they appear overly restrictive. This is the approach taken in the heuristic described in
this section. Clearly, the resulting search procedure is no longer complete and may fail to find
solutions to feasible problems, hence the name of Incomplete Backjumping Heuristic (IBH).

Texture measures such as the ones described in (Fox 89] could be used to estimate the
tightness of different search states, for instance, by estimating the number of global solutions
compatible with each search state. Clearly, a search state whose partial solution is compatible
with a large number of global solutions is loosely constrained, whereas one compatible with a
small number of global solutions is tightly constrained. Assignments leading to much tighter
search states would be prime candidates to be undone when a complex conflict is suspected. The
Incomplete Backjuniping Heuristic (IBH) used in this study is simpler and, yet, often seems to be
sufficient Whenever the system starts thrashing, this heuristic backjumps all the way to the first
search state and simply tries the next best value (i.e. reservation) for the critical operation in that
state (i.e. the first operation selected by the variable ordering heuristic) IBH consider, that the
search procedure is thrashing, and hence that it is facing a complex conflict, when more than 0
assignments had to be undone since the last time the system was thrashing or since the procedure
began, if no thrashing occurred earlier 0 is a parameter of the procedure.

7. Empirical Evaluation
This section reports the results of empirical studies conducted to assess the performance of the

look-back scheme presented in this paper. The first study reports performance on a suite of 60
benchmark pioblms introduced in [Sadeh 91]. This is followed by a more detailed study
comparing the ierformance of the first two look-back schemes introduced in this paper
(DCE&LOFF) against that of sccond-order deep learming [Dechter 89a] and chronological
backtracking. Finally, we compare the performance of the complete search procedure relying on
DCE&LOFF with that of an incomplete procedure combining all three of the look-back schemes
presented in this paper (DCE&LOFF&IBH).

1
t

Clearly, there are sone confhcts inolving large nubntKrs ot viables that are easy to rt .h, as illustrated by the

satch dog checks described in Sction 4

ADA289435

17

7.1. Performance Evaluation On a First Suite of Problems
A first set of experiments was run on a testsuite of 60 job shop scheduling problems first

introduced in [Sadeh 91]. In the experiments reported in [Sadeh 91], the default variable and
value ordering heuristics used in our study (i.e. the ORR and FSS heuristics described in Section
3) were shown to outperform a variety of other variable/value ordering combinations, though
they still failed to solve 8 out of the 60 problems. In contrast, the results presented below indicate
that the combination of our three look-back techniques (DCE&LOFF&IBH) can efficiently solve
all 60 problems in the testsuite.

Specifically, the testsuite consists of 6 groups of 10 problems each. Each problem requires
scheduling 10 jobs on 5 resources and involves a total of 50 operations (5 operations per job).
Each job has a linear process routing specifying a sequence in which it has to visit each one of
the five resources. This sequence varies from one job to another, except for a predetermined
number of bottleneck resources (one or two in these -xperiments) which are always visited after
the same number of steps. The six groups of problems were obtained by varying two
parameters:

1. the number of apriori bottlenecks (BTNK): one (BTNK=1) or two (BTNK=2), and

2. the spread (SP) of the release and due dates between which each job has to be
scheduled: wide (SP=W), narrow (SP=N), or null (SP = 0)

The SP parameter and the operation durations have been adjusted so that bottleneck utilization
remains close to 100% over most of the span of each problem. In these problems, each operation
had slightly over 100 possible start times (i.e. values) after application of the consistency
enforcing techniques in the initial search state. Additional details on these problems can be
found in [Sadeh 91]11.

Table I compares the performance of the following two procedures:
1. the basic depth-first procedure described in Figure 2, namely a procedure relying

on chronological backtracking and on the default consistency enforcing techniques
and variable/value ordering heuristics described in Section 3. This is also the
procedure reported to perform best in [Sadeh 91].

2. the same procedure enhanced with the DCE, LOFF and IBH look-back schemes
presented in this paper.

For each of the 60 problems, search was stopped if it required more than 500 search states.
Performance in each problem category is reported along three dimensions:

1. Search efficiency: the average ratio of the number of operations to be scheduled
over the total number of search states that were explored. In the absence of
backtracking, only one search state is generated for each operation, and hence
search efficiency is equal to 1.

2. Number of experiments solved in less than 500 search states.

3. CPU seconds: this is the average CPU time required to solve a problem. When a

I
t
The problems are also accessible via anonymous fip to cnmdq3,clmds,ricniu edu, where they can be found ia

/usr/sadehVpublcsp.jest_suite. A README file details the content of the varinous files in the directory

ADA289435

18

solution could not be found, this time was approximated as the CPU time taken to
explore 500 search states (this approximation was only used for Chronological
Backtracking, since DCE&LOFF&IBH solved all problems). All CPU times were
obtained on a DECstation 5000 running Knowledge Craft on top of Allegro
Common Lisp, Experimentation with a variation of the system written in C
indicates that the search procedure would run about 30 times faster if
reimplemented in this language [Sadeh 94].

Chronological DCE&LOFF&IBH

Search Efficiency 0.96 0.96

SP=W Nb. exp. solved 10 10
BTNK-- (out of 10)

CPU seconds 88.5 90.5

Search Efficiency 0.99 0.99

SP=W Nb. exp. solved 10 10
BTNK-2 (out of 10)

CPU seconds 93 95

Search Efficiency 0.78 0.91

SP=N Nb. exp. solved 8 10
BTNK-! (out of 10)

CPU seconds 331.5 16

Search Efficiency 0.87 0.93
SP=N Nb. exp. solved 9 10
BTNK=2 (out of 10)

CPU seconds 184 119.5

Search Efficiency 0.73 0.88
SP=-0 Nb. exp. solved 7 10
BTNK=l (out of 10)

CPU seconds 475 134.5

Search Efllciency 0.82 0.84

SP=0 Nb. exp. solved 8 10
BTNK=2 (out of 10)

CPU seconds 300.5 226.5

Search Efficiency 0.86 0.92

Overall Nb. exp. solved 52 60
Performance (out of 60)

CPU seconds 245.5 128.7
Table 1: Comparison of Chronological Backtracking and DCE&LOFF&lBll on 6 sets

of 1Ojob shop problems.

The results indicate that DCE&LOFF&TBH consistently outperformed the chronological
backtracking scheme in terms of CPU time, search efficiency and number of problems solved.
On the easier problems (SP=W), both techniques solved ai 20 problems in approximately the
same amount of time. On the more difficult problems (SP=N and SP=O), DCE&LOFF&IBH
clearly dominated chronological backtracking. In particular, on problems with SP=0 and BK--,

19

DCE&LOFF&IBH solved 40% more problems than the chronological backtracking scheme and,
on average, proved to be 3.5 times faster. O crall, whilc chronological backtracking failed to
solve 8 problems out of 60, DCE&LOFF&IBH efficiently solved all 60 problems, and, on
average, was almost twice as fast as the procedure with chronological backtracking. Had we not
stopped the chronological backtracking procedure after 500 search states, the speedup achieved
by DCE&LOFF&IBH would be even more significant. In fact, based on a couple of problems
for which the chronological procedure was allowed to expand a larger number of search states, it
appears that problems that are not solved in 500 states often require thousands more to be solved
(with chronological backtracking).

7.2. Further Evaluation
To further evaluate our look-back schemes, we picked the most difficult problem category in

the testsuite, namely the category for which the default consistency enforcing procedure and
variable/value ordering heuristics are least effective (SP--0) and generated an additional 80
scheduling problems, 40 with BTNK=I and 40 with BTNK=2. The SP-O problem category was
also the most difficult one for all the other combinations of variable and value ordering heuristics
tested in the study reported in [Sadeh 91]. It corresponds to problems in which all jobs are
released at a common date and need to be completed by a common due date. Among the
resulting 80 problems, we only report performance on those problems for which the default
schemes were not sufficient to guarantee backtrack-free search12. This leaves 16 scheduling
problems with one bottleneck (SP=0 and BTNK=I), and 15 with two bottlenecks (SP-0 and
BTNK=2).

Below, we successively report the results of two studies. The first one compares the
performance of three complete backtracking schemes: chronological backtracking, 2nd-order
deep learning, and the procedure combining the DCE and LOFF back'racking heuristics13, The
second study compares the complete search procedure using DCE and LOFF with the incomplete
search procedure combining DCE, LOFF and IBH.

The results of the firft study comparing chronological backtracking, 2nd-order deep learning
[Dechter 89a1 and the DCE & LOFF procedures advocated in Section 4 and 5 are summarized in

Table 2 and 3. The results reported here were obtained using a search limit of 500 nodes and a
time limit of 1800 seconds (except fo. deep learning, for which the time limit was increased to
36,000 secondsl'4). All CPU times reported below were obtained on a DECstation 5000 running
Knowledge Craft on top of Allegro Common Lisp. As already indicated above, comparison
between C and Knowledge Craft implementations of similar variable and value ordering
heuristics indicates that the code would run about 30 times faster in C [Sadeh 94].

12cearly, performance on problems that do not require backtracking is of no interest, since our backtracking
schemes never get invoked, and hence CPU time remains unchanged

1
3
Besides the experiments reported below, additional cxperitents were performed to assess the benefits of using

DCE and LOFF separately. These experiments show that both techniques contribute to the improvements reported in
this section.

4
'This was motivated by the fact that our implementaton of deep learning may not be optimal.

20

Table 2: Results of One-Bottleneck Experiments.

Exp Chronological DCE & LOFF Deep LearningNO

No of CKI ReSult No. of CPU Reil1t No of CPU Result
XoaS ('0C) .odes of - Node (se1

1 500 1427 F 122 12321 S' 500 5756 F
2 5CC 1587 F 5CC 1272 F 502 5834 p
3 74 148 S 63 117 S 25 36200 F
4 69 152 S 52 120 S 69 .91 S
5 50 1407 F 65 134 S 5c2 21762 F
6 500 1469 F 500 1486 F 500 8769 F
7 500 1155 F 59 130 S SoC 9" F
8 52O 1705 F 41 145 S Soc 9521 F
9 53 108 S 53 102 S 53 122 S

10 502 1529 F 500 1536 F 500 9114 F
12 50 1480 F 85 1823 F 500 14611 F
12 500 1694 F 500 1131 F 500 21283 F
13 51 1C9 S 51 81 S 51 88 S
14 5C 1762 F 63 139 S 50 18934 F
15 500 1798 F 69 142 S 500 9600 F
16 500 1584 P 500 183 F 95 36020 F

S Solved F Failaze; S' Proved infeasible
Tlme Limit 1800 sec (Except Deep Learning)
Node L2l1t 50D

On the one-bottleneck problems. chronological backtracking solved only 4 problems out of 16
(See Table 2). Interestingly enough, deep learning showed no imp-ovement over chronological
backtracking either in the number of problems solved or in CPU time. As a matter of fact, deep
learning was even too slow to find solutions to some of the problems solved by chronological
backtracking. This is attributed to the fact that the constraints in job shop scheduling are more
tightly interacting than those in the zebra problem, where the improvement of deep learning over
chronological backtracking was originally ascertained [Dechter 89a]. On the other hand, DCE &
LOFF solved 10 problems out of 16 (2 out of these 10 problems were successfully proven
infeasible), As expected, by focusing on a small number of critical subproblems, DCE & LOFF
is able to discover larger more useful conflicts than 2nd-order deep learning, while requiring
only a fraction of the time. Another observation is that DCE & LOFF expanded fewer search
states than chronological backtracking for the problems that chronological backtracking solved.
However, each of the DCE & LOFF expansions took slightly more CPU time, due to the higher
level of consistency enforcement.

Results for the set of two-bottleneck problems are reported in Table 3. Similar results are
observed here again: deep learning shows no improvement over chrone!ogical backtracking and
seems significantly slower. The difference between chronological backtracking and
DCE&LOFF is not as impressive as in the first set of experiments. As can be seen in Table 3,
chronological backtracking solved 7 out of 15 problems, whereas DCE & LOFF solved 8. On the
problems solved by both chronological backtracking and DCE & LOFF, DCE & LOFF turned
out to be slightly faster overall. These less impressive results suggest that the presence of
multiple bottlenecks often introduces more complex conflicts. Results presented in the following
subsection suggest that in this case incomplete backtracking procedures such as the one entailed
by the IBH heuristic are often much more effective.

ADA289435

21

Table 3: Results of Two-bottleneck Experimefits

No. chronological DCE & .OFF Deep Learning

No of CPU Result No. of rPU result No. of CPU Result
Nodes)oe) Nodes (see) Nodes (c) _____

1 500 1139 F 113 1800 P 18 36000 F
2 500 1444 r 425 1800 F 115 36000 F
3 84 175 S 109 202 S 84 811 S
4 56 123 S 56 112 S 56 213 S
5 51 101 S 51 113 S 13 36000 F
6 500 1531 F 321 1800 F 328 36000 F
7 500 1775 F 500 1357 F 500 2793 F
8 52 102 S 52 115 S 33 36000 F
1 500 1634 F 247 974 S 500 1519 P
20 500 1676 F 91 2800 F 26 36000 F
11 66 163 S 59 104 S 66 2240 S
12 56 139 S 58 104 S 58 281 S
13 54 129 S 52 91 S 54 28900 S
14 500 1676 P 346 1800 F 500 9031 F
15 500 1522 P 324 1800 F 296 36000 P

St Solved F Failure: S- Proved infeasible
Time Limit . 1800 eec (36000 sec for Deep Learning)
Node Limit 500

7.3. Complete vs. Incomplete Search Procedures

Table 4: Results of One-bottleneck Experiments.

EI CE & LOFF DCC & LOFF & IBH
NO

No. of CPU lesult No. o CPU Resul
Nodes 'e) -. e -e sl

1 122 1232 S. 350 100 F
2 500 1272 F 203 1124 S
3 63 117 s 63 123 S
4 52 120 S 52 '16 S
5 65 134 S 65 144 S
6 S00 1485 F 127 424 S
7 59 130 S 09 125 S
8 41 145 S 457 1800 F
9 53 108 S 53 100 S
10 500 1536 F 67 170 S
11 865 1600 F 74 170 S
12 S00 1131 F 164 616 S
13 51 81 S 51 92 S
14 63 135 S 63 149 S
15 69 142 S 69 15 S
1 16 151 1 lilL I - 1 M6 5 2 -..1..

S- Solved ; F: Failure: S*: Proved infeesible
Time Limit' 1800 see Node Limit 500

Table 4 and 5 compare the performance of the complete search procedure based on DCE &
LOFF against that of an incomplete search procedure using DCE & LOFF in combination with
the IBH heuristic described in Section 6. While DCE & LOFF could only solve 10 out of 16
one-bottleneck problems and 8 out 15 two-bottleneck problems, DCE & LOFF combined with
IBH solved 14 one-bottleneck problems and 13 two-bottleneck problems. The only one-
bottleneck problems that were not solved by DCE & LOFF & IBH are the two problems
identified as infeasible by the complete procedure with DCE & LOFF (see Table 2). This is
hardly a surprise. While the addition of IBH to DCE & LOFF enables the search procedure to
solve a larger number of problems, it also makes the procedure incomplete (ie. infeasible
problems can no longer be identified). Additional experiments combining IBH with a simple
chronological backtracking scheme produced results that were not as good as those obtained by

ADA289435

22

Table5: Results of Two-bottleneck Experiments

E.P DCE & LOFF DCE & LOFF & IBH
No.

go of CPU Result NO o CP2 0esa1
Kt- (Pec) N odmO f_')

1 113 1800 F 151 456 S
2 425 1800 F 371 178C S
3 109 202 S 95 210 S
4 56 112 S 56 108 S
5 51 113 S 51 97 S
6 321 1800 F 420 1800 F
7 100 1357 F 159 534 S
8 52 115 S 52 96 S
9 247 974 0 423 1705 S

10 91 1800 F 440 1800 F
ii 59 104 S 59 113 S
12 58 104 S 58 112 S
13 52 91 S 52 102 S
24 340 380 F 239 512 Sis 324 1600 F 73 195 S

S Solved . F Failure, S* Proved infeasible
Time LIt- 1600 see. Node Limit 500

DCE & LOFF & IBH, indicating that both IBH and DCE & LOFF contribute to the performance
improvement observed in Table 4 and 5.

Results on two-bottleneck problems (See Table 5) also suggest that the impact of ITJH is
particularly effective on these problems This is attributed to the fact that two-boadeneck
problems give rise to more complex conflicts Identifying the assignments participating in these
more complex conflicts might simply be too difficult for any exact backtracking scheme Instead,
because it can undo assignments that are not provably wrong but simply appear overly
restrictive, IB1 seems more effective at solving these problems.

8. Concluding Remarks
We have presented three look-back techniques for the job shop scheduling CSP:

1. Dynamic Consistency Enforcenment (DCE), a heuristic that dynamically focuses on
restoring consistency within small critteal subproblems,

2. Learning Ordering Front Failure (LOFF), a technique that modifies the order in
which variables are instantiated based on earlier conflicts, and

3. Incomplete Backyiumping Heuristic (IBH) which, when thrashing occurs, can undo
assignments that are not provably inconsistent but appear overly restrictive.

The significance of this reseaich is twofold:
1. Job shop scheduling problems wtth non-relaxable time windows have multiple

applications (e.g. manufacturng, space, transportation, health care, etc.). We have
shown that our look-back heuristics combined with powerful techniques that we
had previously developed (1) further reduce the average complexity of backtrack
search, and (2) enable this search procedure to efficiently solve problems that could
not be solved otherwise due to excessive computational requirements. While the
results reported in this study were obtained on problems that require finding a
feasible schedule, the backtracking schemes presented in this paper can also be
used on optimization versions of the scheduling problem, such as the Just-In-Time
job shop scheduling problems described in [Sadeh 94],

ADA289435

23

2. This research also points to shortcomings of dependency-directed backtracking
schemes advocated earlier in the literature. In particular, comparison with 2nd-
order deep learning indicates that this technique failed to improve performance on
our set of job shop scheduling problems. More generally, N-th order deep and
shallow learning techniques often appear inadequate when applied to job shop
scheduling problems because they rely solely on constraint size to decide whether
or not to record earlier failures. When these techniques limit themselves to small-
size conflicts, they often fail to record some important constraints; when they
consider larger conflicts, their computational complexity becomes prohibitive. A
more general weakness of traditional backtracking schemes has to do with the fact
that they never undo assignments unless they can be proven to be at the source of
the conflict. When dealing with large complex conflicts, proving that a particular
assignment should be undone can be very expensive. Instead, our experiments
suggest that, when thrashing cannot easily be avoided, it is often a better idea to
use incomplete backjumping heuristics that undo decisions simply because they
appear overly restrictive.

ADA289435

24

References

[Badie et at 90] C. Bade and G. Bel and E. Bensana and G. Verfaillie.
Operations Research and Artificial Intelligence Cooperation to solve

Scheduling Problems.
In First International Conference on Expert Planning Systems. 1990.

[Bitncr 75] J.R. Bitner and E.M. Reingold.
Backtrack Programming Techniques.
Communications of the ACM 18(11):651-655, 1975.

[Burke 89] Peter Burke and Patrick Prosser.
A DistributedAsynchronous System for Predictive and Reactive Scheduling.
Technical Report AISL-42, Department of Computer Science, University of

Strathclyde, 26 Richmond Street, Glasgow, GI IXH, United Kingdom,
October, 1989.

[Dechter 88] Rina Dechter and Judea Pearl.
Network-Based Heuristics for Constraint Satisfaction Problems.
Artificial Intelligence 34(1): 1-38, 1988.

[Dechter 89a] Rina Dechter.
Enhancement Schemes for Constraint Processing: Backjumping, Learning,

and Cutset Decomposition.
Artificial Intelligence 41'273-312, 1989.

(Dechter 89b] Rina Dechter and Itay Meir.
Experimental Evaluation of Preprocessing Techniques in Constraint

Satisfaction Problems.
In Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence, pages 271-277. 1989.

[Doyle 79] John Doyle.
A Truth Maintenance System.
Artificial Intelligence 12(3):231-272, 19-

[Fox 89] Mark S. Fox and Norman Sadeh and Can Baykan.
Constrained Heuristic Search.
In Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence, pages 309-315. 1989.

[Freuder 82] E.C. Freuder.
A Sufficient Condition for Backtrack-free Search.
Journal of the ACM 29(1):24-32, 1982.

[Garey 79] M.R. Garey and DS. Johnson.
Computers and lntractabihty: A Guide to the Theory of NP-Completeness.
Freeman and Co., 1979.

[Gascbnig 79] John Gaschnig.
Performance Measurement and Analysis of Certain Search Algorithms.
Technical Report CMU-CS-79-124, Computer Science Department, Carnegie

Mellon University, Pittsburgh, PA 15213, 1979.

ADA289435

25

[Golomb 65] Solomon W. Golomb and Leonard D. Baument.
Backtrack Programming
Journal of the Association for Computing Machine- !2(4)'516-524, 1965

[Haralick 80] Robert M. Haralick and Gordon L. Elliott.
Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Artificial Intelligence 14(3):263-313, 1980.

[Johnson 741 L.A. Johnson and D.C. Montgomery.
Operations Research in Production Planning, Scheduling, and Inventory

Control.
Wiley, 1974.

[LePape 871 Claude Le Pape and Stephen F. Smith.
Management of Temporal Constraints for Factory Scheduling.
Technical Report, The Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA 15213, 1987.
also appeared in Proc. Working Conference on Temporal Aspects in

Information Systems, Sponsored by AFCET and IFIP Technical
Committee TC8, North Holland Publishers, Paris, France, May 1987.

[Mackworth 85] A.K. Mackworth and E.C. Freuder.
The Complexity of some Polynomial Network Consistency Algorithms for

Constraint Satisfaction Problems.
Artificial Intelligence 25(1):65-74, 1985.

(Purdom 83] Paul W. Purdom, Jr.
Search Rearrangement Backtracking and Polynomial Average Time.
Artificial Intelligence 21:117-133, 1983.

[Sadeh 88] N. Sadeh and M.S. Fox.
Preference Propagation in Temporal/Capaciy Constraint Graphs.
Technical Report CMU-CS-88-193, Computer Science Department, Carnegie

Mellon University, Pittsburgh, PA 15213, 1988.
Also appears as Robotics Institute technical report CMU-RI-TR-89-2.

[Sadeh 89] N. Sadeh and M.S. Fox.
Focus of Attention in an Actvity-based Scheduler.
In Proceedings of the NASA Conference on Space Telerobotics. January,

1989.

[Sadeh 90] Norman Sadeh, and Mark S. Fox.
Variable and Value Ordering Heuristics for Activity-based Job-shop

Scheduling.
In Proceedings of the Fourth International Conference on Expert Systems in

Production and Operations Management, Hilton Head Island, S.C., pages
134-144. 1990.

[Sadeh 9 11 Norman Sadeh.
Look-ahead Techniques for Micro-opportunistic Job Shop Scheduling.
PhD thesis, School of Computer Science, Carnegie Mellon University, March,

1991.

ADA289435

26

[Sadeh 92] N. Sadeh and M.S. Fox.
Variable and Value Ordering Heuristics for Hard Constraint Satisfaction

Problems: an Application to Job Shop Scheduling.
Technical Report CMU-RI-TR-91-23, The Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA 15213, 1992.

[Sadeh 94] Norman Sadeh.
Micro-Opportunistic Scheduling: The MICRO-BOSS Facto,, Scheduler.
Intelligent Scheduling.
In Mark Fox and Monte Zweben,
Morgan Kaufmann Publishers, 1994, Chapter 4.

[Stallman 77] R. Stallman and G. Sussman.
Forward Reasoning and Dependency-directed Backtracking in a Sysem for

Computer-aided Circuit Analysis.
Artificial Intelligence 9:135-196, 1977.

[Sycara 91] Sycara, K. and Roth, S. and Sadeh, N. and Fox, M.
Distributed Constrained Heuristic Search.
IEEE Transactions on System, Man and Cybernetics 21(6), 1991.

[Walker 60] R.J. Walker.
An Enumerative Technique for a Class of Combinatorial Problems.
Combinatorial Analysis, Proc. Sympos. Appl. Math.
In R. Bellman and M. Hall,
American Mathematical Society, Rhode Island, 1960, pages 91-94, Chapter 7.

ADA289435

