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Abstract

This paper extends past analysis of an optimal source distribution around a

homogeneous sphere of muscle tissue by using a 3-D finite difference time domain (FDTD)

scenario in which an anatomically correct human head model is irradiated. It first

duplicates the analytical solution within an FDTD space using an FDTD computer code

developed at Penn State University. This duplication uses a 9.45 cm radius sphere

represented in an FDTD space of 2.55 mm cubic cells. FDTD simulations are then

peformed on four, three, and two layer laminated spheres, designed to provide simple

models of a head. Finally, four simulations were performed in FDTD on the human head

model developed at Penn State from an MRI scan of an actual human head. The

comparison of analytic simulations to the FDTD simulations on a homogeneous sphere

showed a pixel by pixel average of 5.34% error between the two with a standard deviation

of 7.84%. The layered sphere models showed considerable spiking at the two poles along

with a small amount of spiking due to the stair-step approximation of the spheres. None of

these spikes increased the power beyond that at the surface and hence were not critical.

The simulations on a true human head showed improvement in depth due to the low-loss of

the bone tissue. This study demonstrates that microwave hyperthermia with good

resolution is possible in an anatomically correct head model.



1. Introduction

Cancer has been a leading cause of death in the United States for several decades

and remains so today; therefore, it is a leading topic of research. Current researchers

employ several methods to destroy and limit the growth of cancerous tissue. However, all

methods contain a similar characteristic; they destroy the healthy tissue as well as the

tumor. One promising form of treatment for cancer, for limiting the damage to healthy

tissue, is non-invasive hyperthermia. In this method of therapy either ultrasound or

electromagnetic waves are inserted into the tissue from many different locations. These

waves induce molecular vibrations that heat and kill the cancer. The waves pass through

the tissue and cross at one point where constructive interference occurs. At this location,

the waveform amplitude is significantly higher than at any other point in the tissue. Since

the amplitude of the wave dictates the amount of molecular vibration and the amount of

vibration in turn dictates the amount of heat, the amplitude controls the heat produced. In

other words, the location of constructive interference, with its increased amplitude, is

heated more than other locations in the tissue.

The current drawback to non-invasive hyperthermia is achieving the optimal

solution of resolution and deep penetration. The two waveforms, ultrasound and

electromagnetic waves, used in this treatment both have their limitations. Ultrasound

provides good resolution, however, it has large reflections at the boundaries of the different

materials. These reflections make it difficult to treat tumors near dense bone tissue or open

air cavities, such as tumors in the head or chest. Electromagnetic waves, on the other

hand, can penetrate these substances with little reflection, but high frequencies have not

been able to penetrate deeply into high water-content tissue such as muscle.

Problem Statement

This research focuses on using high-frequency electromagnetic waves as part of

non-invasive hyperthermia in treating brain cancers. Although deep penetration through the
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muscular tissue of the brain has been impossible in the past, this study will show that with

the combination of high frequencies and constructive interference, resolution at depth

improves and electromagnetic waves become the treatment of choice.

Summary of Chapters

This thesis is broken into six main chapters, introduction, background, theory,

methodology, results and conclusions. The introduction you have just completed reading

and requires little explanation. The background section describes the work that has been

done in the past on sphere analysis, FDTD development, and material characteristics of

biological tissue. The theory section provides a brief survey of the theories necessary to

complete the research set out in this thesis. This includes a description of Rappaport's

optimization process and Luebbers' FDTD code. The Methodology section describes the

modifications made on Luebbers' code as well as the configuration of each of the FDTD

simulations. The results section describes the power patterns created from each FDTD

simulation. Finally, the conclusion section provides the conclusions which can be drawn

from this research as well as some suggestions for future work.
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2. Background

A significant amount of research has evolved the tools necessary to carryout a task

as difficult as analyzing an inhomogeneous 3-D model of an actual human head. The most

important is the work by Rappaport to derive an optimal field distribution for irradiating a

tumor within a homogeneous sphere of muscle tissue. This research demonstrates the

potential of microwave hyperthermia. To apply this theory to the inhomogeneous structure

of a human head, this thesis will implement the finite difference time domain technique for

electromagnetics. This theory approximates Maxwell's derivative equations as finite

differences and directly solves them across time and space. Finally, a good understanding

of the electrical properties of biological tissues was necessary to model adequately the

different tissue types of a human head.

2.1 The Sphere Analysis

Current research analyzes only perfect spheres of homogeneous tissue [ 1,2,3,4].

Dr. Carey Rappaport at Northeastern University leads the work in spherical source

radiation for hyperthermia treatment of cancer. In his work he has dealt solely with analytic

solutions to homogeneous spheres. He began with the optimization of a spherical source

distribution to irradiate a tumor at the center of a sphere of homogeneous tissue. Following

the analysis at the center of a sphere, he continued on to investigate heating off-center

targets with both a longitudinally and azimuthally polarized E-field.

The earliest work comes from Dr. Rappaport and Dr. Morgenthaler, a professor at

Massachusetts Institute of Technology [1]. They place a tumor at the center of a sphere of

muscle tissue and determine the maximum radius through which the tumor can be heated.

By determining the maximum radius with an ideal distribution, this research produces a

benchmark other methods such as adaptive nulling can try to obtain but never improve. To

define this maximum radius, they first set up a uniform amplitude and longitudinally

polarized current distribution around the sphere. They then calculate the radiation pattern

4



within the sphere. To kill only the cancer cells it is imperative the power at the focus be

greater than at all other points within the sphere. An analysis of the power distribution

which the surface current produces reveals that the point where power at the surface is the

same as that at the focus defines the maximum depth obtainable. A power profile along the

axis of the sphere is computed for several frequencies from 100 MHz to 2 GHz. The large

range of frequencies tested was to examine the differing characteristics of high and low

frequencies. Higher frequencies have better precision but exceptionally small penetration

depths, whereas lower frequencies have excellent penetration but poor precision. This

analysis shows the optimal frequency to be 915 MHz. This occurs because, due to the

electrical characteristics of the muscle tissue, 915 MHz actually has better precision and

better depth than the next frequency down, 700 MHz. Rappaport and Morgenthaler

compute the maximum radius to be just under 9 cm for 915 MHz.

To increase this maximum radius obtainable, Rappaport and Morgenthaler turn to a

modal analysis in which they add higher order spherical harmonics to the field distribution

around the sphere. The modal analysis allows higher order modes, which have no power

at the center, to destructively interfere near the edges around the equator of the sphere.

Since surface power is highest at the equator of the sphere, this technique attempts to force

the surface poWer around the equator to decrease, spreading that energy toward the poles.

However, even with these higher harmonics, the theoretical maximum radius through

which a tumor can be heated increased to only 9.45 cm from 9 cm at 915 MHz. Although

this is close to a typical head size, it assumes an ideal source; thus, achieving it in practice

would be impossible.

Rappaport, with his graduate student Pereira, then turned toward radiating off

center targets. The one difference between the off-center heating scheme and the center

heating configuration lies in polarization. For a tumor located at the center of a sphere, the

polarization of the field at the focus is not a factor. The polarization of the field distribution

on the surface must be in the same direction over the entire surface; however, the direction
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of this polarization is unimportant. If there is the desire to have another polarization at the

center of the sphere, the source distribution need only to be rotated about the outside of the

sphere. If the field distribution rotates in the case of an off-center focus, the location of the

focus would move.

The off-center focus requires two separate derivations, one for each polarization.

To define these polarizations, it is necessary to define two axes of the sphere. The first

axis defined passes directly through the center of the tumor and is therefore called the

centered axis. The second axis simulations perpendicular to the first and is labeled the off-

center axis. Figure 1.1 illustrates the two axes' definitions. The polarization is then set

parallel to the off-center axis (azimuthal polarization) or parallel to the centered axis

(longitudinal polarization).

Figure 2.1: This figure illustrates the definition of the centered and

off-center axes.

Rappaport and Pereira's paper looks at longitudinal polarization. They closely

followed what Rappaport had done with Morgenthaler [2,3]. The difference is the location

of the origin. For the off-center study, they locate the origin of analysis at the tumor

location. Computing the fields that correspond to a source at that location, they set up a

field distribution that focused at the off-center location. In other words, they place the

center of the spherical wave distribution at the tumor location and determine the

6



corresponding field at locations on the surface of the sphere. With a modal analysis similar

to the one used for heating a centered target, they are able to increase precision at the off

center location. For heating a location at six-tenths of the radius, they are able to penetrate

through a 12 cm radius sphere at 915 MHz.

Upon completing the longitudinal analysis with Pereira, Rappaport published a

paper looking at the azimuthal polarization of the off-center target[4]. The azimuthal

polarization analysis entails a similar analysis as the longitudinal, except polarization of the

field is parallel to the off-center axis. This polarization is not as effective as longitudinal

polarization. For treatment at six-tenths of the radius Rappaport is only able to penetrate

through a 9 cm radius sphere at 915 MHz. It is possible to understand the difference from

an intuitive sense. The maximum power addition comes from the sources near the equator

of the source distribution, for these are the strongest sources. For the longitudinal case,

these sources all lay equal distances from the tumor. In azimuthal polarization some of

these tangential sources are located further than the sphere's radius away. Transmission

through lossy tissue attenuates the field significantly, reducing the power contribution of

these sources, which in turn reduces the maximum radius through which tumor treatment is

possible.

2.2 FDTD Background

The computational finite difference time domain (FDTD) method also provides a

method for analysis of electromagnetic wave propagation through tissue. FDTD breaks

time and space into finite increments. It then applies Maxwell's equations directly to this

grid, with the derivatives approximated as differences. Dr. Raymond Luebbers of Penn

State University developed a general purpose 3-D FDTD code that is extremely versatile

and easy to use [5]. It includes a graphical user interface (GUI) for inputting the

geometries as well as displaying results. Although developed for backscatter predictions

and antenna design problems, this codes versatility allows straightforward modification to

handle a biological tumor treatment scenario. In addition, Mr. David Steich has produced a
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human head model capable of use with this FDTD code. This geometry mesh was created

from an MRI scan of an actual human head. It is important to note that this is an

approximate model but will prove to be adequate for judging the effects of the

inhomogeneities of the human head.

Om Ghandi and Carl Durney at the University of Utah have done a great deal of

research in the field of biological FDTD research. Their research concerns the biological

effects of electromagnetic waves, rather than the treatment of biological tumors. However,

the methods they use to predict field propagation through tissue directly apply to the

treatment scenario [6].

The research done by Ghandi and Durney has two important lessons that pertain to

my research. First, It demonstrates the versatility of the FDTD code as a tool for analyzing

electromagnetic effects in biological tissue. The grid set up in FDTD may contain several

different electric or magnetic materials in virtually any configuration. This allows relatively

easy modeling of the complex, inhomogeneous structure of the human body. The study

also demonstrates the limits of actual applicators. Rappaport's studies, as well as mine,

assume the ability to produce an E-field distribution exactly as desired. The study by

Dumey et. al. shows that in practice this will be nearly impossible because of the capacitive

effects that occur due to the high conductivity of the muscle tissue. The muscle acts as a

second plate of a parallel plate capacitor, hence the field does not behave as it would for a

simple radiating dipole [6]. It is essential to keep this drawback in mind when doing

research with ideal distributions. The ideal distribution will never be obtainable; therefore,

to have hope of a workable system, the ideal maximum depth must be somewhat deeper

than real applications will ever encounter. This will allow for the loss of depth that will

come as a result of the inability to create a source distribution exactly as predicted in the

ideal scenario.
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2.3 Electrical Properties of Human Tissue

Curtis Johnson and Arthur Guy published a paper in 1972 from which most

research in 1993 has obtained model electrical characteristics for human tissue [7]. In this

paper, they discuss the electric properties of differing forms of tissue. The study shows

that muscle tissue is the lossiest tissue of the human body. That is, electromagnetic waves

attenuate more quickly through muscle than any other form of tissue. This characteristic

dictates muscle tissue as the tissue of choice for calculating the performance of

electromagnetic treatment. This provides a worst- case scenario. In a real head model,

there is relatively low-loss bone tissue and open air cavities. This means more boundary

reflections, but also means less loss as the wave propagates through the tissue.

In 1980 Stuchly and Stuchly published a more complete set of dielectric properties

of biological tissues [8]. This list breaks down the material characteristics more

completely, giving the permitivities of bone, muscle, white matter, gray matter, etc. This

indicates the brain itself also has lower loss than muscle tissue. Thus, there remains the

possibility that a small deep-set tumor within an actual human head model may be treatable,

given an optimal source distribution.

The research done to date indicates that although there are certain limitations to

electromagnetic hyperthermia treatment for cancer reduction, the technique still holds many

benefits over other forms of hyperthermia and is worthy of continued study. The limited

precision at deep locations is a shortcoming of electromagnetic waves that is avoidable, as

seen in Rappaport's work and will be shown here. In any event, it is an area that clearly

deserves more research. The inability of ultrasound to penetrate bone and air pockets

makes it impossible to use ultrasound waves for treatment in the skull and chest region.

The low loss of bone tissue and air cavities leaves electromagnetics a strong contender for

future research in cranial and cardial tumors. Optimization of the source distribution using

an FDTD analysis of an inhomogeneous head can be done to develop a microwave system

capable of heating only the cancerous tissue, leaving the remaining tissues unharmed.
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3. Theory:

There are two main theories used throughout this research. The first is the Finite

Difference Time Domain (FDTD) technique for electromagnetics. This theory uses finite

difference approximations for the derivatives of Maxwell's equations. It then cycles

through time steps and solves these equations at every location within the FDTD space. In

this way predicting the propagation of electromagnetic waves through complex media is a

matter of solving millions of simple calculations. The second theory to be understood is

the solution to the vector wave equation in spherical coordinates and how it applies to the

optimization technique developed by Rappaport. This theory defines the optimal source

distribution for irradiating deep set tumors.

3.1 Finite Difference Time Domain Technique

Unlike Rappaport's work, this thesis will not use an analytic approach for solving

for the electromagnetic fields. Instead, it uses a numerical approximation technique known

as the Finite Difference Time Domain (FDTD). FDTD approximates the differential form

of Maxwell's equations with finite differences. To do this, it is necessary to break both

time and space down into small increments. The method then directly applies Maxwell's

equations to each of these cubes at each time increment thereby propagating the

electromagnetic fields through the space. This allows application of any material

characteristic to any cube within the space, making analysis of inhomogeneous bodies in

the near field exceptionally simple. The following derivation is from [9].

As stated above, FDTD is simply a finite difference application of Maxwell's

equations in differential form. Let us therefore begin at Maxwell's equations in differential

form in the time domain.
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V X E = -dB I dt
VxH=dDIdt+J

V.D=p

V.B=O

Where
D=e*E
B =/*H

It is important to stop and point out that the constitutive relations here are

convolutions and not simple multiplications. This is because these equations apply to the

time domain, and not the frequency domain. Because the equations in the frequency

domain are multiplications, in the time domain they become convolutions. If we deal with

only one frequency and assume a scalar permifivity and permeability, multiplications

replace these convolutions.

Before going any further, we can reduce the derivation to only the two curl

equations by noting that the divergence equations are redundant. To show these are

unnecessary, start by taking the divergence of each of the curl equations.

V.(V x E)=V. -- t (1)

V.(VxH)=V.(t+J ) (2)

Now by using V. V x A = 0 it is easy to see eq(1) and eq(2) transform into

0= d(V. B) (3)dt

0= +(V.D) -V.J (4)
dt

Eq (3) implies

V. B = constant wrt time (5)

By using the continuity equation, V. J + -± = 0, eq(4) can be rewritten as
dt

dt[(V• D) - p]=0 which implies
dt

V. D- p = constant wrt time. (6)
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Since there will be no sources or currents at t--O, V. B = 0 and V . D - p = 0 at initial time.

Eq(5) and eq(6) show that these equalities must hold for all time. Since we have just

derived the divergence equations from the curl equations, the divergence equations are

redundant.

Now, to allow for magnetic loss we will introduce a magnetic current term

M = a*H, then rearrange the first two equations to produce two differential equations of

the form
dH _1

-(VxE)- H (7)
A 1

S(8)
dt e E

In taking this step, the I and e were removed from within the time derivative. This

requires that the permittivity and permeability cannot be functions of time (or frequency).

Since in human tissue this is not the case, the analysis will use only one frequency with

p and e given by a constant. This frequency limitation converts the convolution in the

constitutive relations to a multiplication with a scalar, and allows the removal of the

permitivity and permeability from within the derivative.

The total E-field can be written as the sum of an incident field and a scattered field.

The incident field is defined as propagating through free space everywhere throughout the

problem space and the scattered field is defined as propagating through free space outside

the scatterer and propagating through the media inside the scatterer. This sum is then be

inserted into eq(7) and eq(8) to produce
d(H +Hs)_ 1 (v x (E' + Es) - (Hi + H) (9)

and
d(E' +Es) =1(v ×(nZ +Hs))--E(Ei +ES) (10).

dt E

Since the incident field is defined in free space it has to obey the equations

V xEz =E' (dH dt) (11)

and
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V×H = eo(dEi/ dt) (12).

The incident fields are generally known quantities. Therefore, to produce an equation for

the scattered field, subtract the value for the incident field from eq(7) and eq(8). At the

same time, the corresponding values in eq( 11) and eq(12) replace the curl of the incident

field. These substitutions produce two equations for the scattered fields of the form

EEs__ E. + ______ (VxH") (13)
dt e E e dt E

and
M i.\7 H' 1= cr* Hs --- H1 -- (V xEs) (14).

dt p P Ai dt p

These differential equations are then put into finite difference form by implementing

the definition of a derivative,

df Lim f(x,t2)-f(x.tl) _ f(x,t2 )-f(x.tl) (15)

dt At-- 0 At At

df - Lim f(x 2,t)- f(x,t) f(x 2,t)- f(x1 ,t) (16)

dx Ax -- O Ax Ax

Note that the del operator in eq(13) and eq(14) contains the spatial derivative. After

producing these finite difference equations, it is a simple matter of breaking down the

equations into x, y, and z components and implementing the finite difference equations on a

computer.

Implementing the differential form of the time derivative on eq(9) and eq(10)

produces the following difference/derivative equations.

(Es'n - Es'n-1) + 'AtEs'n = -cAtEi'n- (E _ E• )AtE&'n + At(V x H' 2-2) (17)
1

M(H ,n - Hs'n')+ a*AtHs'n = -c*AtHi', -(p -po)AtH4 -At(V xE+) (18)

The introduction of the superscript n represents the nth time. In addition the shorthand

notation t represents the derivative with respect to time. The "leapfrog" method of

updating the fields is also evident in these equations in the half time step offset of the

13



electric and magnetic fields. The "leapfrog" technique will be discussed more fully in the

discussion of implementing the code.

Solving eq(13) and eq(14) for the scattered fields yields

E"f=( -0 )E"nl -( Y En
S + UAt 1 + 7At)

((E -E)At Atn

H"~ =H ( 1 ( G*At )H
I&L + (FAt) P + Ca*At)(0) 1 (20).

_ -- A)At At 2)

14 p+a J (T*t I+ aAtl)V

A computer code then solves these equations across time and space to predict

electromagnetic interactions with scattering objects. The methodology section of this thesis

discusses implementation of these equations in complete detail.

Before implementation of FDTD, the cell size and time step size have to be

determined. In general, the cell size determines the accuracy. The cells have to be at least

one tenth of the shortest wavelength within the materials. The smaller the cell size, the

more accurate the results will be. If the scattering object has ramped or spherical surfaces,

a quantization error will result. This error is commonly referred to as the "staircase" error.

Smaller cells can reduce this error by producing a more accurate rendering of the actual

geometry. Reducing the cell size has its drawbacks, however. Reduction of the cell size

requires subsequent reduction of the time step size. With smaller time step increments, the

code must cycle through more time steps to allow for the same amount of time and the same

field propagation distance.

The cell size determines the size of the time step to ensure stability in the solution.

The FDTD simulation can only propagate the field across one cell in each time step. Too

long of a time step forces the FDTD simulation to propagate the field across multiple cells

in one time step, which it is unable to do. Thus, the solution becomes unstable. In order
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to determine what the optimal time step is, we turn to the Courant stability condition [9]

which states that for a propagation speed v within the material, the time step must be

chosen to satisfy the condition,

vAt_ x 1 1y )2+ (21).

This condition specifies the longest time step that will maintain stability. The use of shorter

time steps is possible, but show little improvement and are not worth the added

computation time [9].

From this equation it can be seen that to ensure stability, the time step size must be

reduced when the cell size is reduced. In addition, raising the frequency forces reduction

of the cell size due to the shortening of the wavelengths; thus, reduction of the time step is

necessary. To produce the best results in the shortest time, it is necessary to weigh the

accuracy desired at a given frequency against the computation time necessary to set up the

optimal simulation configuration. The methodology section describes the simulation

configuration which this research uses.

3.2 Source Optimization

The source optimization developed by Rappaport and Morgenthaler uses the

solution to the vector wave equation in spherical coordinates. Appendix A gives a complete

derivation of this solution. The solution is [10]

02 n 0"M 0"M
1(,,) ifmn, kR ' .____ 1 d "Rfi 6

E(R,9,)= k dJR2  +k Ryf + kR dRd 0 kRsinO dR-do (22)

Where
cos

fe j=(kR)PZ(cos0) sin m. (23) [10]
0
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Before going further, it is important to note a few of the dependencies within this

equation. The spherical Bessel function of order n predominately controls the radial

dependence. The m and n modes of the Legendre function dictate the theta dependence.

Finally, the- 4 dependence varies as sin mo. Figure 3.1 describes the location of all of

these components

xZ

/ Y

Figure 3.1: The Spherical coordinate system as used in this thesis

Rappaport and Morgenthaler began at eq (22) to find the optimal source

distribution. The following description of this optimization comes from [1]. Solving

eq(22) for the derivatives and using only the m--O modes produces
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ER pn(n +1)

E(R) = j,, (kR)P, (cos s)
n=1 k

,O I_~k) (kR (24)

*[ncos O (cos 0) - nP,,_ (cos 0)]( )

Figure 3.2 shows a plot of the power across a vertical cut through the sphere. This

is a plot of the power with only the first mode excited. It is clear from this plot that the

power is concentrated near the equator. Increasing the power near the poles will allow

reduction of the power near the equator, without reducing the power at the focus. In other

words, the power at the equator needs to be spread out toward the poles.

Using only the m--O modes spreads the field as evenly around the sphere as

possible. Higher order m modes would force a sinusoidal variation in the Phi direction.

This variation would produce nulls at evenly placed intervals, depending on the value of m.

These nulls would, in turn, force higher power at the peak areas on the surface to get the

same amount of power to the center due to the absence of power at the nulls. Thus, unless

there was for some reason a location where the E-field had to be kept at zero, it would be

counterproductive to use higher order m modes.

The higher n modes, however, can be used to our advantage. Because j, (kR)

varies as (kR)' for small values of R, the n=l mode is the only mode that has power at

r=O, all other modes are zero at the center. Figure 3.3 shows this characteristic of higher

order n modes. It is a plot of the first three n modes peak E-field value versus radius,

where R=O is the center of the sphere and increasing R goes out along an equatorial cut of

the sphere. Therefore, addition of higher order n modes out of phase with the first mode,

will allow their use to reduce the power on the surface without affecting the power at the

center.

17



Power Distribution Across Central YZ Plane with only the N=1 Mode. Power (W/mA2)
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Figure 3.2: Plot of the power distribution across the central YZ cut with only the N=1

mode excited.
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Theta Component of First Three Modes Versus Radius.
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Figure 3.3: Peak E-field strength versus radius for the first three n modes. R=O

represents the center of the sphere.

However, optimization does not require the use of the even n modes. This can be

seen from looking at the instantaneous E-field values along the surface of the sphere. For
1

large radii, the - dependence reduces the P component and the 0 component becomeskR

the dominating factor. Therefore, to reduce the power levels at the surface (large R) the e
component is the component most important to reduce. Since we are dealing only with the

m=O mode, there is no 0 dependence in the 4 direction, see eq(22). Therefore, the

optimization must deal with the 6 dependence in the 6 direction.
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N=2 Mode Versus Angle Theta.
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Figure 3.4: This figure is a plot of the instantaneous E-field versus angle theta

for the n=2 mode at R=9.45 cm (along the surface of the sphere).

Eq(19) shows the 0 dependence to be

dP,(cosO) (25)d6

P, (cos 0) is an even function of 0 for even values of n; therefore, its derivative will be an

odd function of 0 and will have a null at 0= - . Figure 3.4 demonstrates this in a plot of
2

the instantaneous b component of the E-field for the n=2 mode at a radius of 9.45 cm (the

surface of the sphere). Since these even order modes have a null at the equator, where we

hope to reduce the power level, they will be of no help in optimization. In addition, since
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N=3 Mode Versus Angle Theta.
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Figure 3.5: This is a plot of the instantaneous E-field versus angle theta for n=3

mode at R=9.45 cm.

they are odd functions, when the fields subtract in the lower hemisphere they will add in

the upper and vice-versa.

The Legendre functions of odd order n, however are odd functions of 9.

Therefore, their derivatives are even functions of theta and will have a peak at 0 = --
2

Figure 3.5 illustrates this idea in a plot of the instantaneous E-field for the n=3 mode versus

angle theta along the surface of the sphere. From this plot it can be seen how the odd order
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n modes can be used to reduce the power near the equator. It is the same idea as Fourier

analysis of periodic time signals to produce a pulse, only it is using spatial harmonics rather

than time harmonics. The reasons given above demonstrate the optimization should deal

solely with-the odd order harmonics of index n. It is interesting that because the P

dependence varies with P, (cos 0), its even order harmonics would be preferential for

optimization, but because they are less dominate, we deal only with the 0 component.

The optimization plan was to add these first three odd order harmonics in such a

way to reduce the power at the equator as much as possible. To do this, start at the 0

dependence of the derivative of the Legendre function for n=1,3 and 5.

Eel - -sin 015 215

Ee3 --- cos 0sin 0+ sin 6 (26)
2 2

E 35 --- 315 s cos0 + 10-5 cos, 0sin 0 - 15-sin 0
8 4 8

Using trigonometric identities, rewrite these equations in terms of odd multiples of e.

Eel - -sin 0

E9 3 ~ - 15 sin30+ 3-sin 0 (27)
8 8

E65 - 315 sin50- 105 sin30- 30 sin 0
128 128 128

It is now possible to rewrite the three equations (27) into one equation describing

the 0 dependence as

f(0) =sinO+ Bsin330 + B2sin50 (28)

Next, solve this equation for the B coefficients to minimize the maximum value of (f(0))2

from 0 to 7t. This produces coefficients of value B• =. 2365 and B2 =. 0640. The resulting

form of the equation has three peaks at the maximum value .685 of the previous maximum.

Figure 3.6 shows a plot of the equation for the first three odd harmonics as well as for the

first harmonic alone.
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Power at R=9.45 cm Versus Angle Theta from the Z Axis.
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Figure 3.6: This figure is a plot of (f(e))2 for the first three odd modes

compared to the plot of only the first mode.

From here it can be seen how this could be extended out in terms of SIN's of

higher multiples of e to reduce the ripple further. However, because there is a great deal

of error inherent in determining the material characteristics of the head, this decreased ripple

will not not be worth the extra time required for analysis.
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The next step is to add in the spherical Bessel function scaling factors on each

mode. This is done by introducing the coefficients J,, = AA[n -j(kR) - - j,, (kR)].

Combining this definition with the B coefficients, eq (28) for f(6), and the three equations

(27) produces a system of equations for the J coefficients of the form

J1 (-1)+ J3 - 28J
J3 -5+ j- 105) = 0.2365. (29)

\8J \ 128)
J5(_115) = 0. 0640

The solution for this system is J1 = -0.9509, J 3 = -0.1148, and J5 = -0.0260.

The first J coefficient is reduced from unity due to the sin 0 terms in the higher

order modes. Thus, the power at the center of the sphere is reduced by the same amount

(the higher order modes due not contribute to the power at the center). Division of these

three coefficients by -0.9509 produces a J1 coefficient equal to unity and

3= 0.1207, and J5 = 0.0288. Thus, the power at the surface will be 72% the value of a

single mode excitation.

From here the optimization changes based on the characteristics of the material and

the frequency used. This research uses a frequency of 915 MHz which corresponds to a

relative permittivity in muscle tissue equal to 51 and a conductivity of 1.26. These values

are used to solve for the value of k and substituted back into the definition of the J

coefficients to find values for the A coefficients. In solving for the optimal value of the A

coefficients, the equations change for each choice of radius R, thus the optimization is an

iterative process. When these iterations are complete, the optimal A coefficients for a

homogeneous sphere of muscle tissue are found to be A1=1.21 + 0.89j, A3=-. 19 - 0.05i,

and A5=.05 - .02i.
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4. Methodology

This research entails setting up three distinct simulations. The first is an analytic

simulation that serves as a comparison for the FDTD results to validate the FDTD code.

For this simulation, a FORTRAN program solves the spherical vector wave equation on a

homogeneous sphere of muscle tissue. A series of FDTD simulations on laminated spheres

comprise the second set of simulation. This set provides insight into the effects of

inhomogeneities on the propagation of the ideal source radiation. A series of FDTD

simulations on an actual model of a human head developed from an MRI scan at Penn State

comprise the final set of simulations.

4.1 Spherical Vector Wave Equation Computer Code

The first step entails duplicating Rappaport's analytic results to use as a control with

which to compare FDTD solutions. A FORTRAN code solves Rappaport's optimized

solution in a space that has the same grid size as the proposed FDTD space. Solving this

equation across a grid identical to the one used in the FDTD simulation allows easy

comparison. Figure 4.1 shows the flow diagram of the code.
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Figure 4.1: This figure shows the flow diagram of the FORTRAN

code to compute the analytic solution to spherical vector wave

equation.

26



The main body of the code steps through x, y, and z increments each running from

one to seventy-five. As in the FDTD grid that will be used, each 'cell' is cubic with a

length of .002554 m. As the code steps through each cube in the grid, it computes the

angle 0 down from the z axis and the angle 0 off the x axis, as well as the distance, R,

from the center of the cube of interest to the center of the sphere, that is located at x=37.5,

y=37.5, and z=38. The code then calls the subroutine COMPUTEEF which computes the

R and 0 directed components of the E-field (recall that there is no 0 component). It then

calls the subroutine CONVERTEF to transform these components into x, y, and z directed

components for comparison to the FDTD results that are in Cartesian, not polar

coordinates. The program then writes out the value of the E-field to a data file for Matlab to

read.

This field distribution is assumed to be throughout a muscle-filled space; therefore,

the field grows everywhere outside the sphere of muscle tissue. The FDTD code defines

the E-Field source distribution at Rappaport's maximum 9.45 cm radius. Defining this

surface around the sphere electrically isolates the inside and outside. In this manner, the

inside of the sphere should contain the same distribution as the analytical solution within

the 9.45 cm radius. Outside this radius of interest, the fields will be drastically different,

thus all analysis ignores this region.

This field distribution is then compared with the FDTD solutions of the same sphere

geometry. This provides an analysis to test the validity of the FDTD code and its

modifications. This simulation provides a simple duplication of Rapport's work.

4.2 FDTD Computer Code

The code for producing the analytic solution is used to specify the incident field in

the FDTD space. This code sets up an electric 'shell' around the sphere by setting the E-

field values at every cube along the 9.45 cm radius. This distribution then radiates, and the

field propagates through the FDTD grid and produces the same results as the analytic
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version. This simulation validated the use of FDTD in this way to simulate a constant E-

field around a sphere.

4.2.1 FDTD Geometry Implementation

Before discussing the implementation of the equations, it is important to discuss the

definition of geometries in FDTD and the layout of the Yee cell [9]. An understanding of

this geometry is essential to understand the FDTD equations.

The design of the Yee cell offsets the magnetic and the electric fields by one half a

cell size. Along with being offset by a half step in space, the code also updates the E and H

fields a half time step apart. Figure 4.2 shows the geometry of the Yee cell. The cell

shows the location of each of the E and H field components. The user creates a geometry

by assigning a material ID number to each field component location that defines its electrical

characteristics.
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Figure 4.2: This figure shows the geometry of the Yee Cell

[91.

The user builds FDTD structure by assigning a material ID number to each position.

These numbers run from 0 to the number of materials in the space. Zero specifies free

space, 1 specifies perfect electric conductors (PEC) and numbers two and up have a

corresponding permeability, permittivity, conductivity and magnetic conductivity stored in

a matrix. This building process defines six matrices containing an ID number

corresponding the material at each position. The matrix IDONE contains the material ID

number for each of the X directed components in the FDTD space; likewise, IDTWO and

IDTHRE correspond to the material ID number at the Y and Z locations respectively.

IDFOUR, IDFIVE, and IDSIX contain the ID numbers for the materials located at the X,

29



Y, and Z components of the magnetic grid in the FDTD space. These six matrixes define

the objects in the FDTD space [9].

4.2.2 FDTD Implementation in FORTRAN

Implementing FDTD in a computer code involves solving eq(15) and eq(16) over

time and space. This can take an immense amount of time if the problem space is large or

the frequency high. Therefore, it is important to implement the code in the most efficient

manner possible.

The first step in doing this is to note that the code does not have to recalculate the

multipliers before each field component for every cell at every time step [9]. Since most

problems will have a small number of different scattering materials, the program calculates

and stores these multipliers away ahead of time in a matrix. To do this, define the

following FORTRAN equalities [9]:
DT At

ECRLY(M) = DTA
(EPS(M) + SIGMA(M) * DT) * DY (e + oAt)AY

DT AtECRLZ(M) ==
(EPS(M) + SIGMA(M) * DT) * DZ (e + aAt)AZ

EPS(M) e
ESCTC(M) = -P(M E

(EPS(M) + SIGMA(M) * DT) e + oAt

SIGMA(M) * DT oAt

(EPS(M) + SIGMA(M) * DT) e + oAt

EDEVCN(M) = DT * (EPS(M) - EPSO) (e - e,)At

(EPS(M) + SIGMA(M) * DT) e + oAt

Where M is an index representing the different material types present in the problem space.

Defining and solving these equations ahead of time reduces the computation time

considerably. These numbers are then input into eq (19) page 14 to produce a form

suitable for FORTRAN code [9].

EXS(I, J, K) = EXS(I, J, K) * ESCTC(IDONE(I, J, K))

-EINCC(IDONE(I, J, K)) * EXI(I, J, K)

-EDEVCN(IDONE(I, J, K)) * DEXI(I, J, K) (6)
+(HZS(I, J, K) - HZS(I, J - 1, K)) * ECRLY(IDONE(I, J, K))

-(HYS(I, J, K) - HYS(I, J, K - 1)) * ECRLZ(IDONE(I, J, K))
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Similar equations are also formulated for the Y and Z components of the electric field as

well as for the X, Y, and Z components of the magnetic field.

"- N=1 to Num time Steps]

( Calculate the E-Field
Components

[Calculate and define
The Source Distribution

[Advance time by 1/2 step

Calculate the H-Field
Components

Apply the Boundary
Condition

SCall the Save routines

(FDTDSAVE.FOR)

Figure 4.3: This figure shows a flow diagram of the FDTD code.
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To solve for the field over time, the code runs through the time steps, recalculating

these equations for every component. For each of these loops, the code first runs through

all the X, Y and Z locations of the electric grid. For each location in the FDTD space, the

X, Y and Z-components of the electric field are updated using the corresponding equation

similar to eq (6). The program then calls the FEED subroutine that forces the field at the

feed locations to be equal to the specified source wave form. The time is then incremented

by half a time step and the X, Y and Z components of the magnetic grid are updated using

the corresponding magnetic equations similar to eq (6). The program then increments time

by another half step and the process repeated. Figure 4.3 shows a flow diagram of this

process.

4.2.3 Code Modifications

Two major modifications had to be made on the Penn State code. First, the FEED

subroutine had to be changed. The design of the code is for use in antenna calculations;

thus, it is set up to have a small number of feeds, one for each antenna. Forcing an E-field

around the surface requires around 50,000 feeds. Specifying each one individually proves

to be both time consuming and memory intensive. To avoid this pitfall, the FEED

subroutine is modified to calculate each value using the analytic field equations. Figure 4.4

and figure 4.5 show flow diagrams of two modifications of the subroutine.

The first modification cycles through the FDTD space and determines if each point

is along the surface of the sphere. When it comes across a point on the surface, it calls the

COMPUTEEF subroutine from the analytic program. This computes the amplitude and

phase for the R and THETA components of the E-field. It then uses a simple conversion

routine to convert into x, y and z directed field components and forces the E-field at the

location to have the desired value. The Yee cell geometry places each field component in a

slightly different location. The first modification computes the location of each component

and then figures the analytic value of the field individually for each component. This
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requires computing 6 values for every cube. This subroutine repeats every time step, so

increasing its speed can significantly increase computing time.
[Sub. Source.for

For I Compute Ey at
Sto75I,J,K.

•-tForJ=1lto 75 o u ya ]
Compute Ey at

For K=1 to 75 I+1,J,K.

Computempute
Compute R at the I Compute Eya~t

Center of I,J,K Cube I,J,K+1.

I Compute Ey at
I+1,J,K+1.

Ron the "i
Source Radius? I Compute Ez at

noI,J,K.j

Compute Ez atS~I+I,J,K.

ompute Ex at I
I,J,K Compute Ez at

LI,J+I,K.( Compute Ex at
I,J+1,K Computte Ez at

I+1,J+1,K.

Compute Ex at ] iu

1,J+1,K+I l Continue

Figure 4.4: Flowchart of FEED subroutine that defines the exact

source distribution.
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[Sub. S~ource.for

-11 For I=l to 75

vIFor J=1 to 75 ]

For K=I to75

Compute R at the
Center of I,J,K Cube

SoreRadius?

Compute E field at th
center of cube I,J,K

Assign values for
each of the twelve
source components
on the cube.

S Coginue

[ Continue J

Figure 4.5: Flowchart of FEED subroutine that defines an

approximate source distribution based on the E-field at the center of

each cube.
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To reduce the computational time at each time step, the second modification

approximates the source. This code does not compute a different value for each

component. Instead, the code computes the analytical value the components would have at

the center of the cube and gives all six components their value based on this result. A

further modification to decrease computation time would be to cycle through theta and phi

at the radius 9.45 cm rather than cycling through all space thereby reducing the cycle

length.

The second major modification is the addition of a peak E-field storage array. This

allows the user to specify an area over which the peak E-field value will be recorded.

Figure 4.6 shows the code of the implementation of this in the DATSAV subroutine.

C WRITES OUT MAX VALUES FOR A BLOCK DEFINED BY TWO POINTS
C (ONLY USEFUL FOR SINGLE FREQUENCY RUNS)

ELSE IF (NTYPE(NPT).EQ.19) THEN
IF (N.GT.(.9*NSTOP)) THEN
REWIND (50+NPT)

DO 246 I=IOBS(NPT),IOBSE(NPT)
DO 247 J=JOBS(NPT),JOBSE(NPT)

DO 248 K=KOBS(NPT),KOBSE(NPT)

EX=ABS(EXS(I,J,K)+FINC(IJ,K,4))
EY=ABS(EYS(I,J,K)+FINC(I,J,K,5))
EZ=ABS(EZS(I,J,K)+FINC(I,J,K,6))

IF (EX.GT.EXM(I,J,K)) EXM(I,J,K)=EX
IF (EY.GT.EYM(I,J,K)) EYM(I,J,K)=EY
IF (EZ.GT.EZM(I,J,K)) EZM(I,J,K)=EZ
WRITE((50+NPT),*) EXM(I,J,K),EYM(I,J,K),EZM(I,J,K)

248 CONTINUE
247 CONTINUE
246 CONTINUE

ENDIF

Figure 4.6: The Code of the DATSAV modification.

This is only useful because the FDTD simulations are using one electromagnetic frequency.

By recording the peak value of the E-field, the power deposited can be easily calculated

using P = 1E1 cr. Where ar represents the conductivity of the material. Thus a simple
2

conversion into the frequency domain has been made for comparison to the analytical

results.
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Simulation description Cell Size Srce Radius Location of Schematic

Homogeneous Sphere 2.55 mm 9.45 cm N/A

4-Layer Laminated Sphere 2.55 mm 9.45 cm Figure 4.6a

3-Layer Laminated Sphere 2.55 mm 9.45 cm Figure 4.6b

2-Layer Laminated Sphere 2.55 mm 9.45 cm Figure 4.6c

Small Head w/ Muscle Bolus 2.55 mm 9.45 cm Figure 4.7 and 4.8

Small Head w/ Bone Bolus 2.55 mm 9.45 cm Figure 4.7 and 4.8

Large Head w/ Muscle Bolus 3.2 mm 11.8 cm Figure 4.7 and 4.8

Large Head w/ Bone Bolus 3.2 mm 11.8 cm Figure 4.7 and 4.8

Table 4.1: This table gives a description of each of the setups along with

the locations of their schematics.

These two modifications allow the source distribution to be specified, and the

resultant field to be recorded and analyzed. The first modification allows the FDTD code to

implement the source distribution around any geometry specified in the FDTD space. The

code propagates the field through the space and the second modification allows the

frequency response to be recorded for analysis in matlab. Appendix B gives a number of

matlab routines that aid in analysis of the field distributions. These routines make it

possible to look at any slice through the head as well compute errors and hot spots.

4.3 FDTD RUNS

Three basic forms of FDTD simulations are done. Table 4.1 gives a description of

each setup as well as the figure numbers of the schematics. These are set up with identical

FDTD space parameters, but the geometry is changed for each simulation. For these

simulations, a 92x92x95 grid is set up with cubic cells 2.55 millimeters on a side. The
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Courant stability condition (page 16) produces a 49.19 picosecond time step. The outer

sphere in each simulation has a radius of 37 FDTD cells, or 9.45 cm. The analytical

solution sets the spherical source distribution at the radius of 37 FDTD cells.

The first simulation is on a simple homogeneous sphere. This simulation serves as

a validation of the code. It is to demonstrate the ability to use the FDTD code with an entire

incident field specified. The results of this simulation are compared with the analytic

results.

For the second simulations, a series of laminated spheres simulates the skin-bone-

brain structure of the human head. Figure 4.7 shows a schematic of each of these

simulations. The first of these is a two level sphere the outer shell being bone, the inner

being muscle. This model defines an inner sphere at a radius of 32 FDTD cells. The next

simulation is of a three-layer model composed of an outer muscle layer to simulate the skin

and bolus, a layer of bone to simulate the skull and an inner sphere of muscle simulating

the brain. The radius for the inner sphere was 18 cells, the outer radius for the bone sphere

is 19 cells and the outer sphere is again at a radius of 37 FDTD cells. A four layer model

comprises the final simulation. This contained an outer shell of bone, to simulate a bone-

like fluid bolus, a thin layer of muscle tissue, simulating the skin layer, a bone sphere to

simulate the skull and finally an inner shell of muscle, simulating the brain. For this

simulation, the radius of the inner sphere is thirty-two FDTD cells. The outer radius of the

bone layer is thirty-four FDTD cells, and the radius of the skin shell is 35 FDTD cells.
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Bone

Figure 4.7a: 2-Layer Model

379 cells

37 Celsl8lcll

Fiigure 4.7b: 3-Layer Model

Figure 4.7: This figure shows a schematic of each of the laminated

sphere simulations (not to scale). 4.7a is the four layer sphere,

4.7b is the three layer sphere and 4.7c is the two layer sphere.

38



An FDTD model of an actual human head provides the basis for the final

simulations. This model is made by converting an MRI scan of a human head into a head

mesh to be read in by the Penn State FDTD code. This is a four tissue model of the head.

To create it, the MRI scan creates a map of the different materials of the head. It is then

necessary to determine the actual tissue type at each location. Once the operator determines

the exact tissue type, the typical electrical characteristics of each tissue are assigned to each

point in the FDTD space. In doing this, the actual permeabilities, permitivities,

conductivities and magnetic conductivities are never directly measured. Typical values are

inserted for each material type. This provides a first level approximation to the human

head. The addition of a basic neck extension was added to the Penn State head to simulate

the inability to place a source in the neck region. The addition of a neck is a simple

extension of the final layer in the head down to the edge of the FDTD grid. Figures 4.8

and 4.9 show two cuts through the head model. X--O is the back of the head, Y--O is the

left side of the head and Z=O corresponds to the bottom of the head.
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Horizontal Cut Through the Head Model at Z=38. Material ID #
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Coronal Cut Through the Head Model at X=38. Material ID #
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Figure 4.9: This figure shows a longitudinal cut through the center of the head

model. Y=0 is the left side of the head and Z=O is the bottom of the head.

mesh cell size of 3.2 mm is reduced to 2.554 millimeters. The material characteristics of

the bolus can be set at any value desired. The first simulation gives muscle-like

characteristics to the bolus. The second simulation uses a bone-like bolus. These two

simulations provide a comparison to determine which material characteristics in the bolus

are preferred.
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Along with the simulations using a small head model, two simulations use the full

size human head. For these simulations, the cell size increases from 2.554 millimeters to

3.2 millimeters on each side of the FDTD cubes. These simulations provide an opportunity

to determine if increasing the penetration depth in the actual head is possible. Brain tissue

is less lossy than muscle tissue; therefore, it is conceivable that greater penetration may be

possible in the presence of the inhomogeneities of the human head. These two simulations

also contain one simulation with a bone-like bolus and one done on a head with a muscle-

like bolus.
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5. Results

The results for all the simulations proved to be very encouraging. The analytic

simulation duplicates Rappaport's work with excellent accuracy, indicating a 9.45 cm

sphere as the maximum size sphere through which a centrally located tumor could be

irradiated. The FDTD simulation on a homogeneous sphere shows excellent correlation

with the analytic simulations. These results show it is possible to model this scenario using

the FDTD method. The laminated sphere simulations demonstrate a "staircase" effect error

introduced from the cubed approximation of spheres. This illustrates an error to watch for

in the head simulations. Finally, the head simulations prove that not only will this

technique work on a small head within the 9.45 cm optimal radius, it will also work on a

full sized human head.

All the figures in this section refer to levels within the spheres. These levels

correspond to grid cells within the FDTD space; e.g., X=38 refers to 38th plane forward

from the back of the head. FDTD simulation requires a 10 cell empty space region around

the spheres that is cut out to clarify the results' descriptions; therefore, the levels run from

1 to 75. Since the spheres were 37 cells in radius, the exact center of the spheres and head

are at X=38, Y=38, Z-=38. The bottom of the head is at Z=I, the back of the head is at

X=1 and the left side of the head is located at Y=1.

5.1 Analytical Simulation

The first simulation solves the analytic solution across space for the homogeneous

sphere. This simulation serves as the control to ensure FDTD gives reasonable results in

this treatment scenario. Figures 5.1 and 5.2 show the results for this simulation. These

figures show a cut through the equator of the sphere (figure 5.1) and a cut through a

meridian of the sphere (figure 5.2). Each grid increment represents an increase of 2.554

millimeters. Therefore, the 37 cell radius sphere is equivalent to the 9.45 centimeter radius

source shell. The matlab analysis removes everything outside the location of the
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Analytical Results for the Homogeneous Sphere at Z=38. Normalized Power
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Figure 5.1: This figure shows the analytical results for the power distribution

across the center XY plane of the homogeneous sphere (normalized to one at the

center). Everything outside the proposed source location is removed for clarity.

theoretical source to clarify the plots. In reality, the field would continue to grow towards

the corners. This is because the analytic solution describes an E-field distribution and not a

radiating source.
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Analytical Results for the Homogeneous Sphere at X=38. Normalized Power
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Figure 5.2: This figure shows the analytical results for the power distribution

across the center YZ plane of the homogeneous sphere (normalized to one at the

center). Everything outside the proposed source location is removed for clarity.

Figure 5.1 shows the central XY plane of the sphere. The light circle in the center

is the location of the power concentration. Because the pattern as no phi dependence, this

pattern is completely symmetric. Figure 5.2 shows the central YZ plane of the sphere.

Again the light spot in the center of the sphere illustrates the power focus. Unlike the XY

plane, this power profile is not symmetric. This would be expected due to the theta
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dependence produced by the optimization process. Recall that the final field had very little

strength near the poles and a power maximum at three points near the equator (figure 3.6).

5.2 FDTD Simulations on a Homogeneous Sphere

The first simulation on the FDTD sphere proved to be ineffective. This simulation

produced significant spikes along the poles. An analysis of this simulation displays spikes

of over four hundred times the value of the E-field at the center along the top and bottom of

the sphere. Therefore, the power is not completely coupling into the sphere. Defining the

source as a surface causes these spikes. That is, when the code reaches a point in a grid

that is along the spherical source, it sets the three field components corresponding to that

cell location to the value the optimal analytical solution dictates. This produces a surface of

sources. This surface contains small holes along the stepped edges of the sphere. Becauge

of these holes, the source does not isolate the inside of the sphere from the outside and the

E-field circulates through the holes which prevents it from completely coupling into the

muscle sphere and creates the spikes. This obstructs the power at the center from reaching

its full potential value.

To reduce this effect, the source was redefined as a cubic volume instead of a

surface. In other words, at each source point the code defines six source components

instead of three. This cubic volume eliminates the holes and creates a continuous spherical

source.

There remains one other consideration in the source distribution. Recall that the

Yee cell geometry places each field component in a slightly different spatial location.

Therefore, to be completely accurate in defining the source distribution, the code must

recalculate the value for each field component based on its specific position. This requires

six individual calculations for each source cube at every time step, adding tremendous

computation time to an already slow process.

Therefore, two more homogeneous simulations investigate the effect of an exact

source distribution versus an approximate distribution to speed computation time. The
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approximate source code calculates what the source component values should be at the

center of the cube and defines all six components based on these values. This reduces the

computation time by a factor of six with a minimal loss in accuracy. Table 5.1 shows a

comparison of the results. The table gives the percent error and standard deviation versus

the analytic results.

FDTD Simulation Mean % Error Vs. Standard Deviation

Analytic Simulation Vs. Analytic

Simulation

Exact 5.39% 7.84%

Approximate 6.00% 8.49%

TableS.1: Comparison of exact and approximate source

distributions for homogeneous sphere FDTD simulations

The error shown in table 5.1 indicates very little loss in accuracy due to the

approximation of the source. The tremendous gain in computation time and small loss in

accuracy dictates the use of the approximate solution for remaining simulations. Figure 5.3

shows a mesh of the power distribution across the YZ plane of the FDTD approximate

source simulation. Again, each grid increment is equivalent to 2.554 millimeters. The

spikes along the top and bottom of the sphere show locations where the field is not

completely coupling into the muscle tissue. This effect is pronounced at the top and bottom

of the sphere because of the polarization. Since the tangential component of the E-field is

always continuous and the field is essentially Z-polarized, the field along the equator is

tangential and couples completely. The field near the poles is normal to the sphere's

surface. Because the normal E-field is discontinuous by a factor of the difference in the

permitivities, the field at the poles does not completely couple into the muscle tissue;

forming the spikes.
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E-Field Across the Homnogeneous Sphere at Z=38 (approximate source).
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Figure 5.3: Mesh of the power distribution across the YZ plane of the

homogeneous sphere. The results shown are of the FDTD simulation on the

homogeneous sphere with an approximate source distribution (normalized to one at

the center).

Despite this incomplete coupling, the field profiles show good correlation to the

analytical results. Comparing the similarities between the FDTD field solution in figure 5.4

and 5.5 and the analytical solutions shown in figures 5.1 and 5.2 shows this correlation.

Figure 5.4 is a cut through the equator of the sphere showing the power profile calculated

by the FDTD model. Figure 5.5 shows the power profile across the center YZ plane
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through the sphere. Both of these plots have the fields set to zero outside the sphere to

clarify the display. Again the bright spot at the center shows the focusing of the power.

FDTD Results for the Homogeneous Sphere at Z=38. Normalized Power
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Figure 5.4: Power profile across the equatorial cut through the homogeneous

sphere with an approximate source distribution (normalized to one at the center,

source removed).

Figures 5.6 and 5.7 shows the FDTD power profile along with the analytical

solution along the central Y and Z lines in figures 5.6 and 5.7. These plots show extremely

strong correlation between the analytical and the FDTD solutions along the central lines.
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FDTD Reults for the Homogeneous Sphere at X=38. Normalized Power
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Figure 5.5: Power Profile across the central YZ cut through the homogeneous

sphere with an approximate source (normalized to one at the center, source

removed).

50



Power Comparison Along Line X=38, Z=38.
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Figure 5.6: Power comparison along the line X=38, Z=38 showing Analytical

and FDTD results (normalized to one at the center).
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Power Comparison Along Line X=38, Y=38.
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Figure 5.7: Power comparison along the line X=38, Y=38 showing Analytical

and FDTD results (normalized to one at the center).
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Error Between Analytic and FDTD Results on a Homogeneous Sphere at Z=38.
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Figure 5.8: Equatorial cut showing the error between the analytical and FDTD

results for the homogeneous sphere.

Figure 5.8 shows the error between the analytical simulation and the FDTD

simulation with an approximate source distribution. This figure shows the error across the

equatorial cut of the sphere. As expected, this central plane has exceptionally low error,

with a maximum around 8%. With such strong correlation along the central lines and the

equatorial cut the question becomes where the error lies.
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The answer to this question comes by looking at figure 5.9 which shows the error

across the central YZ plane. It is clear from this mesh that the majority of the error is

coming along the central core of the sphere along the Z-axis. This is expected because

figure 5.3 showed earlier that the power was not completely coupling into the sphere near

the poles. Since the power is not completely entering the sphere in these regions due to the

E-field discontinuity, the power profile of the FDTD solution will differ from that of the

analytical solution near the poles. In addition, the interference of all the sources in the

respective hemisphere forms the power along the central core. Thus, the lack of complete

coupling at the poles only slightly effects the power near the edges. However, the small

effects on the edges will combine in the central region where interference occurs producing

expanded error. In other words, although the majority of the interference occurs at the

focus, there will also be some amount of interference in the central region that will combine

the small loss along the poles into a significant amount of error.
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Error Between Analytic and FDTD Results for a Homogeneous Sphere at X=38.
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Figure 5.9: Central YZ cut showing the error between the analytical and FDTD

results for the homogeneous sphere.

5.3 FDTD simulations on Laminated Spheres

The next series of simulations are done on laminated spheres to investigate the

effects of adding simple inhomogeneous geometries into FDTD. These simulations all

demonstrated the same stair step spikes introduced by the stair step approximation

necessary in modeling a sphere as a series of cubes. The schematics for each of the

simulations is shown in figrue 4.6.
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Mesh of the E-Field Across the 4-Layer Sphere at Z=38.
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Figure 5.10: 3-D plot of the E-field across the equatorial cut of the four-layer

laminated sphere.

The first of these simulations is on a four-layer sphere (figure 4.7a). The material

properties of the outer sphere model bone-like material. The next layer down patterns

muscle material. The third layer is defined as bone material. Finally, the properties of the

inner sphere imitate muscle tissue. Therefore, this simulation is attempting to recreate a

liquid bolus with bone-like electrical characteristics around a head. This simulation models

the head as a muscle-like brain core surrounded by a spherical 'skull' of bone and finally a

thin 'skin' layer of muscle tissue.
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Figure 5.10 shows the E-field distribution across the central XY cut of the

laminated sphere normalized to one at the center. The field along the equator of the sphere

is predominately directed in the Z direction. Thus, along this equatorial cut, the field will

be tangent to the surface of each sphere. Because the tangential E-field has to be

continuous across a dielectric boundary, along this cut the field should be continuous

everywhere. Figure 5.10 shows this is not the case. There are E-field spikes along the

edges of the inner spheres. The stair stepped edges of the spheres causes this

phenomenon. Instead of having a smooth surface, small cubes compose the edge. At

some point a given layer of cubes ends producing an edge. This edge produces a locally

horizontal rather than vertical surface. At this point the E-field becomes normal rather than

tangential. The amount of the discontinuity of the normal E-fields is proportional to the

difference in relative permitivities of the two materials; therefore, the field spikes in the

cube.
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E-Field Across the 4-Layer Sphere at Z=39. E-Field (V/m)
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Figure 5.11: 2-D image of the E-field distribution across the Z=39 cut of the 4-

layer laminated sphere.

Figures 5.11 and 5.12 illustrate the effect of the staircase errors. Figure 5.11

shows the E-field distribution across the sphere in a two-dimensional image. The spikes

show up as single pixels slightly darker or lighter than those around them. Figure 5.12 is

plot of the changes in the IDTHRE components from level Z=39 to level Z=40. Recall that

the IDTHRE array contains the material ID's for the Z-directed geometry components.
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Changes in IDTHRE Components of 4-Layer Sphere From Z=40 to Z=39.
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Figure 5.12: This figure shows a 2-D image of the changes in the Z-directed

material components from Z=39 to Z=40.

That is, where the IDTHRE, or Z-directed component changes from one level to the next,

there is a locally horizontal surface where it should be vertical. Therefore, figure 5.12

shows only the location of each stair step. Investigation of figures 5.11 and 5.12 reveals

that every spike corresponds to the edge of a stair step. These spikes are numerical artifacts

which will not occur in actual practice.
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E-Field Across 4-Layer Sphere at X=38.
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Figure 5.13: This figure shows a 3-D mesh of the E-field distribution across the

central YZ cut of the four-layer model.

Figure 5.13 shows the E-field distribution across the central YZ plane of the 4-layer

sphere. As expected, the field is continuous along the central Y line. The discontinuities

through the center spheres become more apparent near the poles. This is because the field

is predominately Z-directed; therefore nearer the poles the field is normal rather than

tangential to the dielectric interface so the discontinuity will be larger.
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The next simulation incorporated three layers as compared to the former 4-layer

model. The 3-layer simulation produced the same stair step spikes along with a new

phenomenon. The 3-layer model had a much smaller 'skull' layer than any of the other

models (figure 4.7b). As the field nears the center, the radial component becomes more

pronounced. Thus, along the equatorial cut, shown in figure 5.14, the field has a

noticeable discrepancy as it passes through the dielectric interfaces. The radial component

is more prominent near the center of the sphere causing the discontinuity. The field thus

has a larger normal component to produce the discontinuity.

E-Field Across 2-Layer Sphere at Z=38.
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Figure 5.14: This figure shows the E-Field across the equatorial cut of the 3-layer

sphere model (normalized to one at the center).

61



E field along line X=38, Z=38.
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Figure 5.15: Plot of the X and Y E-field components along an equatorial radial

line in the 3-layer Sphere model (E-field normalized to one at the center).

Figure 5.15 is a plot of the x and y components of the E-field along an equatorial

radial line. The Z directed component contains the theta component along equatorial plane.

The X and Y directed components contain the radial component. Figure 5.15 shows these

two components along an equatorial line. From this plot the discontinuity can be seen to be

due to the larger radial component that is normal to the interface.

Using the 2-layer model (figure 4.7c) in the next simulation showed the same stair

step spikes seen in the other laminated sphere simulations. Figures 5.16 and 5.17 show
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the results of this simulation. Figure 5.16 is a mesh of the field strength across the

equatorial cut of the 2-layer sphere. Figure 5.17 shows the field strength across the central

YZ plane.

E-Field Across 2-Layer Sphere at Z=38.
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Figure 5.16: This figure shows a 3-D mesh of the E-field strength across the

equatorial plane of the two-layer model (normalized to one at the center).
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E-Field Across 2-Layer Sphere at X=38.
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Figure 5.17: This figure shows a 3-D mesh of the E-field strength across the

central YZ plane of the two-layer model (normalized to one at the center).

These simulations on laminated spheres show several important aspects that will be

seen in the simulations on the actual head model. The most important of these lessons is

the presence of the "staircase" spikes. The head simulation shows these spikes as well. It

is important to keep in mind that extended spikes due to a true horizontal surface will occur;

the single cell spikes, however, are due to the "staircase" error and would not occur in

actual practice. Another lesson this illustrates is the spiking due to the horizontal surfaces
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near the poles. Computing the power will significantly reduce the spiking due to the very

low conductivities of the bone tissue where the spiking occurs. If it does become a

problem, going back to the original field distribution that concentrates the source power

more near the equator can reduce this spiking.

5.4 FDTD Simulations on the Head Model

After investigating the effects of the simple inhomogeneities, The next simulation

places the head model derived from an MRI scan within the homogeneous sphere. The

sphere will then act as a model of a liquid bolus placed around the patient's head. This

bolus is used to help the field couple more completely into the tissue. To investigate the

effects of bolus composition, two different bolus types are used, a bone-like bolus and a

muscle-like bolus. This provides the basis for five different head simulations. The first iý

an error, reported here to demonstrate the importance of proper characteristics. The next

two simulations use a shrunken head with both a bone-like and a muscle-like bolus. The

final two simulations use a full size head model, one with a bone-like bolus and one with a

muscle-like bolus.

The first simulations on the head model produce troubling results. The

inhomogeneous head model had absolutely no correlation to the simulation on the head

model. A mesh across the central horizontal slice is shown in figure 5.18. This plot

shows tremendous spiking throughout the edge regions and practically no focusing.

Further investigation shows these discrepancies are due to inaccurate material

characteristics in the head model. The model had been given the material characteristics of

fat rather than muscle for the brain tissue. These results demonstrate the importance of the

optimization process. The focusing could be accomplished on such a head; however, a

new optimization would have to be done to account for the different material characteristics

associated with fat.
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Power Across Fat Head Model at Z=38.
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Figure 5.18: Power across the central horizontal slice of the head model

(normalized to one at the center). These results are of a head with a bone-like

bolus and brain tissue defined as fat.

The remaining four simulations again use the model of the head developed from an

MRI scan, except with proper material characteristics. The material characteristics define

three different materials with muscle-like properties representing skin and white and gray

matter, and one material with the low-water content properties of bone. The first two of

these uses a head that is reduced to fit within the 9.45 cm source shell. The second two use

a full size head, with an enlarged source shell to fit around the enlarged head. Each of

these sets contains one simulation with a bone-like bolus and one done with a muscle-like
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bolus. Figures 5.19 through 5.22 show a plot across the central XY plane of each of these

simulations.

Horizontal cut of the small head with muscle-like bolus at Z=38.
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Figure 5.19: Power across the central XY plane of the simulation of a small head

model with a muscle bolus (normalized to one at the center).

67



Horizontal cut of the small head with bone-like bolus at Z=38.
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Figure 5.20: Power across the central XY plane of the simulation of a small head

model with a bone bolus (normalized to one at the center).
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Horizontal cut of the large head with muscle-like bolus at Z=38.
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Figure 5.21: Power across the central XY plane of the simulation of a large head

model with a muscle bolus (normalized to one at the center).
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Horizontal cut of the large head with bone-like bolus at Z=38.
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Figure 5.22: Power across the central XY plane of the simulation of a large head

model with a bone bolus (normalized to one at the center).

Table 5.2 shows a comparison of the analysis statistics on each of the simulations.

Center mean is a measure of the mean power in the center three-cell cube of the head.

Because the power is normalized to one at the center, this will always be near one. The

smaller it is, however, the more narrow the spike will be near the center, thereby producing

a more accurate focusing. Total mean is a measure of the mean power everywhere else in

the head. This does not include the power in the bolus because circulation of the bolus

liquid can prevent overheating in the bolus. The lower this value, the smaller the risk will
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be of over-heating undesirable locations. The third value in the table is the ratio of the

mean power at the center to the total mean power. The higher this value, the easier it will

be to heat the tumor without affecting healthy tissue. The final three numbers are

percentages of cells over various thresholds, the first column gives the percent of cells

with a value greater than 1. Each of these points will reach temperatures higher than the

central tumor, thus destroying the healthy tissue at that location. It is preferable this

number remains small. The next two are similar to this, however they are the percent of

cells over .9 and .8 the power at the center. Although these points would not be raised to

fatal temperatures, the high temperature levels may be dangerous to the healthy tissue.

Simulation Cntr Total CM/FM % cells % cells % cells

Mean Mean over 1 over .9 over .8

Fat Headwith Bone .9910 2.946 .3364 72.7 % 75.9% 79.3%

Bolus (W/mA2) (W/mA2)

Small Head with .8982 .2187 4.108 .26% .39% .58%

Bone Bolus (W/mA2) (W/mA2)

Small Head with .8795 .1142 7.203 .01% .05% .08%

Muscle Bolus (W/mA2) (W/mA2)

Full Head with Bone .9057 .2942 3.078 1.66% 2.33% 3.32%

Bolus (W/mA2) (W/mA2)

Full Head with .8436 .2389 3.531 1.33% 2.0% 2.89%

Muscle Bolus (W/mA2) (W/mA2)

Table 5.2: Statistics on the FDTD Head model simulations

Table 5.2 shows the muscle bolus is the preferred bolus type. However, as the

head size becomes larger, the bolus composition becomes less important. This is because
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the increased power necessary in the larger head models. The spikes are predominately

introduced in the neck region. This is because the source distribution is abruptly turned off

at the edge of the neck. Because there is an abrupt change in the source distribution from

outside an& inside the neck region, the field diffracts along the edge of the source

distribution introducing the large spikes. The larger this discrepancy the larger the

diffracted field spikes. In the small head models, the change in material characteristics in

going from the bone of the bolus to the muscle of the neck has the predominate effect in

introducing the diffracted field. In the larger head, the higher source power makes the

stepped edge of the source power the larger contributor to the diffracted field. Figure 5.19

shows the power spikes in the neck for each of the four simulations.

In both cases, the muscle bolus produces a more precise heating pattern. This is -

because the optimization is designed around a muscle sphere. The phase of the source is

designed for propagation through muscle. Passing through bone changes the velocity of

the wave, thereby reducing the focusing, and smearing the central spike across a larger

area.
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6. Conclusions

This research provided seeral valueable insights into electromagnetic therapy as well

presenting some important areas for further research. The final simulations on the complete

head model illustrated the potential of microwave therapy. These simulations showed with

proper optimization, it may be possible to irradiate a deep set tumor within a full size

human head with adequate precision. The research also demonstrated the need for

improved head modeling to ensure proper material characteristics are given to the tissue of

the head.

6.1 Findings

FDTD proved to be an effective tool in this field of research. The initial simulations

duplicating the optimal analytical solution derived by Rappaport demonstrated the validity

of the FDTD numerical approach for treatment scenario.

The inhomogeneous simulations on laminated spheres demonstrated the effects

inherent in an FDTD Approach. The stairstep approximation of a spherical surface

introduced 'stairstep spikes' due to a locally horizontal surface along an otherwise vertical

interface. In addition to these spikes, the FDTD approach proved to be difficult in

obtaining complete coupling from the source to the sphere of treatment. These drawbacks

not only demonstrate the effects of an FDTD approximations, but also introduce an area to

be considered in microwave treatment. Because the head is not spherical, there will be

horizontal sections of interface along what would otherwise be a vertical interface. For

example, along the base of the mandible, there is a long vertical interface. In addition,

along the inside of the occipital cavity there are vertical interfaces. All of these areas will be

candidates for the 'stairstep spiking' phenomenom.

The simulations on the actual head models proved very encouraging. The results

demonstrated a muscle-like bolus is preferred over a bone-like bolus. The muscle-like
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bolus provided better precision as well as reduced spiking outside of the center. The

source distribution placed around a small head within a spherical water bolus produced

excellent focusing. There were only 20 cells above that at the center, all of which were

confined to-the neck region. This came about due to the stepped-edge of the source

distribution near the neck. There was no taper down as the source neared the edge of the

neck, thus a diffracted field was created near the edge of the source distribution creating

several small, but strong spikes in the neck region.

These spikes are troubling, although not discouraging. As mentioned above, there

was no attempt made to taper the edge of the field distribution, in addition the neck region

itself was extremely approximate. The MRI scan produced no neck region, therefore the

head was simply continued down from the base to the edge of the FDTD space. There was

no spinal chord, esophagus, or trachea modeled. In addition, the head itself was

approximated from an MRI scan. Although serving to produce an example of what could

be possible in this area, it still needs a great deal of research and refinement.

The final head simulations showed it is possible to get good resolution at the center

of an actual human head with minimal destruction to healthy tissue. With the addition of an

optimization process, this precision can be furhter enhanced. This can also be used to

reduce the unwanted fatal spikes in the neck region.

The simulations done on a full size head demonstrated two critical lessons. First,

these are the first simulations to show FDTD can be used on a complete 3-D model of a

human head in a treatment scenario. Second, and most important, these simulations show

that even without any form of optimization to account for the inhomogeneous structure of

the human head, it is possible to irradiate a deep-set tumor with decent precision.

6.2 Recommendations

The results obtained in this research shows an avenue for continued research in the

field of microwave therapy. The simulations on the head model demonstrated the ability to
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concentrate microwave energy in an actual head model. The results obtained thus far

contain no optimization done based on the inhomogeneities of the head.

Several areas present themselves as prime candidates as a result of the simultations

presented here. The most intuitively obvious of these follow-on oppurtunities is to derive a

optimal source distribution taking into account the presence of the neck. The inability to

place the source within the neck region requires some form of optimization in defining the

taper. This can be done in several ways, by introducing a spatial filter or by customizing

the spherical harmonics to concentrate the power near the top reducing it near the lower

pole.

A comparison of the FDTD results to actual measurements of a real head also needs

to be done. This research demonstrated FDTD's ability to duplicate analytic results. It was

assumed the ability to model analytic homogeneous solutions implied the ability to model

inhomogeneous geometries. A simulation of these solutions compared to actual

measurements is needed to further prove this method is a valid modeling tool.

Another area open for research is in developing a more accurate modeling system

for creating the head mesh. The head mesh used in this research is only an approximate

rendering of an MRI scan. The method used to model the brain has no connection to the

actual electrical charateristics of the that individual's head tissue. The parameters used were

'typical' values for average tissue. The actual properties in real tissue vary immensely from

individual to individual. For this reason, a system is needed to non-invasively measure

material parameters of the head region.

This research serves to illustrate the potential inherent in microwave treatment. The

results show that electromagnetic field propagation can be predicted in an inhomogeneous,

three-dimensional scenario. In addition, the resutls show that good penetration and

precision can be obtained in an actual human head with proper optimization. This research

clearly indicates the need for continued research in the area of microwave hyperhtermia of

cancerous tissue.
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Appendix A: The Vector Wave Equation in Spherical Coordinates

The source optimization developed by Rappaport and Morganthaler is based upon

solution to the wave equation in the spherical coordinate system. The geometry of this

coordinate system is shown in figure 2.1. Before discussing this optimization it is

important to go over the basics of the solution to the spherical vector wave equation.
Z

S1~0y

Figure A.1: The Spherical coordinate system as used in this thesis

Solution to the Spherical Vector Wave Equation

Any electromagnetic wave in an isotropic, homogeneous, source free region must

satisfy the vector wave equation [10]
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d2C dCV'c- = o.0(1)
dt

Where C represents a field vector (E, B, D, or H) and tp, and c represent permeability,

permittivity and electrical conductivity as usual. The analysis presented here will deal

exclusively with the electric and magnetic field intensities, E and H. The linearity of this

equation allows the vectors E and H to be expanded by Fourier analysis into time

harmonics of the form C = •CeC with no loss in generality. This allows the entire time

dependence to be expressed as e-"' and will be left out in the interest of clarity. If it is

then noted that V 2C = VV. C - V x V x C and that Egiw 2 + io7Iwo = k2, eq (1) can be

rewritten as

VV.C-VxVxC+k 2C = O. (2)

There exists a solution set to equation (2) containing three forms of waves, a

longitudinally polarized wave and two transverse waves commonly referred to as

transverse electric (TE) and transverse magnetic (TM) waves dependent upon whether the

magnetic or electric field is tangential to the direction of propagation (in this case along a

radial line from the center of the sphere of interest). This thesis is based only on the electric

field solution for a TM wave.

To find an expression for the TM wave, we will look for a magnetic field solution

to (2) of the form

H = V x (?u(R) V) (3)

Where u(R) is a function of R yet to be determined and V is a scalar function of R, 0, and

Sand a solution to the equation

V2 Vf +k 2yf = 0. (4)

Employing the del operator of the spherical coordinate system, the three components of H

can be written as
1 d_ 1 d

H, =0, H - -(uV), HO -R- (uyi') (5)
sne dO R 7
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The divergence of the cross product of any two vectors is identically zero, thus the

divergence of H will be zero and (2) can be rewritten as

VxVxH-k 2 H=0. (6)

Expanding this out in spherical coordinates reveals that the r component is identically zero

and the 6 component is satisfied by the equation
1__ _ _ 1 1 d3

R31 sin2 0 d-'• i _.(UVt)x + Iu d
R2 s3 0773 (UV3J +

__dRsi' ~do (7)1 d 3 k 2 d
2 (uv) +---(uv)

Rsinedr do -RdO(uv

The 4 component is satisfied by the equation

d 1[ sine (u f)] R3sin2 d 2d
de R 3 Sin 0 d e I OWsn2e;T( fId d' k 2 d (8)

R ar2 de v Ra6de

Both eq(7 ) and eq(8) will be satisfied by the equation
d2  1 d si d (u V)1 d ( 2uf=O. (9)

dr2 (UY)+-[sm-u 1 jT uVR' sinu0- de de Rsi 2 sie 00

If we know take a look at the requirement placed on V/ by eq (4); expanding that equation

yields
I d_2r _ 1 d s yin 1 d' 2R2 C . -+ R2 sin ine + ) sin2 2 = 0 . (10)

When this is done, it immediately becomes apparent that if we let u(R)=R eq. (5) will be

satisfied.

This shows one solution to the vector wave equation is given by H whose

components are

Hr:, =0 H 1 diji HO=- dV (11)H•=0 H° sin030 He' A

The optimization is based upon the electric field solution to a TM wave which can easily be

found from the relation

kE=VxH. (12)

Which produces an electric field of the form
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1 d 2 (RV) +k2 R yf, E = 1 do2 (RV) E0 1 d2 (R V) (13)
Er -k dR 2  -kR dRdG ' kRsin e dRdO ( 1

Solution for the Elementary Wave Function

Those paying attention will be quick to point out that this expression for the electric

field means absolutely nothing without an expression for it. You will remember this

variable was introduced as the solution to the scalar wave equation (4) in spherical

coordinates. In order to find this solution, start with the assumption that it can be written

as

f =(R,O,, O)e-i°-. (14)

Which will result in no loss of generality if the time dependence is left out as described

earlier.

Therefore, in a homogeneous isotropic medium, the functionf must satisfy the

scalar wave eq (4) which, when expanded, looks like eq (10). Iff can be written as

f = fR(R)fe(O)fO (P), then eq(10) is separable into

R2d2fR +2R-d& (k 2  -p 2)fR =0 (15)
dR2  dR

1 d 2 + (k2q2 =

sined sind2 e

d' +q2 fo =0 (17)

Where p and q are introduced as variables of separation yet to be determined. Since we are

working in a homogeneous, isotropic medium, the properties of the medium will be

independent of equatorial angle 0. In addition, it is physically impossible for a field to

have two different values at the same point in space, therefore eq(17) must be periodic

function of 0 with a period of 21r. To avoid the complications involved in introducing a

complex function, set f = cos m4 Thus, q must be an integer of the form
sinmo

m=O,+l,±2 .....
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Finding a value for q is slightly more complicated. To find this solution, start by

noting the remarkable resemblance of eq (16) to the associated Legendre equation [11]

1 -d sino f9dPs0) +[n(n+l)- m IPn(cosO)=O (18)
sin 0 dOat dO sin2 0

In fact, if we set p2 =n(n + 1), where n--O,1,2... we have the same equation, if fe is an

associated Legendre polynomial of the form
( cos6)m /2 dr

f0 (O) = P(cos 0) = - dcosr( _ P" (cos 0). (19)

This all works out mathematically but it is also important to understand it

physically. f, must be periodic in theta with a period of 27t, symmetric about 7c, single

valued and finite for this to physically make sense. Since we are defining the Legendre

function as a function of cosO, it will be periodic in theta with a period of 27r and

symmetric about nt. Examining the definition in eq(19) it quickly becomes apparent that the

associated Legendre function will be zero at ±1, and single-valued and finite everywhere in

between. With this, p and q have been determined as well as solutions for

f0 (O) andf (o).

The final step is to determine a solution for fR(R). This stems from the solution

to eq (15) with p 2 replaced by n(n+l). In addition, if fR(R)is replaced by
-1

fR(R) = kR 2v(R) eq (15) can be put in the form

2-1+R- + kR n+- v=0. (20)
dJ2 dR 1 2J

Thus, v(R) is given by a cylindrical Bessel function of half order. From this the radial

dependence can be given as

fR(R) J 1(kR) (21)

This is actually a much simpler equation to employ than the cylindrical Bessel function.

Because of its frequent occurrence, this is redefined as a spherical Bessel function.

*(M) J 1 j (kR). (22)

Which leaves the final form of the elementary wave function as
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Cos
fe =j(kR)P:(cos0) . mo. (23)

0

This equation can then be placed back into the solution for the E-field to give the final

equation for the solution to the spherical vector wave equation.

______ mnd2RfJ m 1 d 2(Rf,
0 21 0 02

E(R,O,q¢)= k1 R +k2 Rig, + -1___ + 1_____
0 k R2 kR dRdO0 kRsin 0 ARdo4 (24)
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Appendix B: Power Across Full Head with Bone Bolus

This appendix contains selected power profiles across the full head with bone tissue

simulation. The slices were selected to show a good representation of the power profile

near the center along with a basic view of the power near the edges. Note most spiking

occurs in the neck region with a little along the outside skin surface.
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Coronal Cut Through the Head Model at X=38. Material ID #
6

70

5
60

50 4

• 03
.....

10

0

10 20 30 40 50 60 70
Y Location

83



Power at X=1 2.

60 146

600

10 0.2

40 50 60 7

70 44

60 358

303
2.5

20 0.

10 0.5

0
10 20 30 40 50 60 70

Y Value

844



Power at X=20.

70

60 2

50

50~ 1.5

~40

N 1
30

200.

10.

100
10 2 0 40 50 60 70

10~~~ 20 3 Value0

Power at X=24.
2.5

70

60 2

50 
1.5

.40

N 1
30

200.

10

10 2 0 40 50 60 70
10~~~ 20 3 Value0

85



Power at X=28.
1.6

1.4

60
1.2

50)

.40 0.8
N

30 0.6

20 0.4

10 0.2

10 2 0 40 50 60 70
10~~~ 20 3Value0

Power at X=32-

1.5

50

aD

.40 1
N

30

20 0.5

10

10 2 0 40 50 60 70
10~~~ 20 3Value0

86



Power at X=34.

70

602

50 15

~40

30 1

20
0.5

10

10 2 0 40 50 60 70
10~~~ 20 3 Value0

Power at X=36.

70 ýX*. .

60 1

50

-401

N

30

20 0.5

10

10 2 0 40 50 60 70
10~~~ 20 3Value0

87



Power at X=37.

60 1.5

50

N
30

20 0.5

10

10 2 0 40 50 60 70
10~~~ 20 3Value0

Power at X=38.

60 1.5

50

:3401

N
30

20 0.5

10

130 40 50 60 70
10~~~ 20 3Value0

88



Power at X=39-

1.5

N

20 0.5

10

10 2 0 40 50 60 70
10~~~ 20 3 Value0

Power at X=40.

2

60

S 1 .5

> 1

20 0.5

10

10 2 0 40 50 60 70
10~~~ 20 3 Value0

89



Power at X=42.

60 2

30

20
0.5

10

102330~au

20 0 .2
60

300

10 2 0 40 50 60 70
10~~~ 20 3 Value0

790



Power at X=48.

2.5

60

50

.~40 1.5

N
30 1

20
0.5

10

10 2 0 40 50 60 70
10~~~ 20 3 Value0

Power at X=52.
0.8

7 0........
0.7

600.

50 0.5
(D

.40 0.4

N30 0.3

20 0.2

10 0.1
100

10 20 30 40 50 60 70
Y Value

91



Power at X=56.

708

0.2
10

40 50 60 7

Power t X0.6

60

N~ 0.8

30

200.

10.

100

10 20 30 40 50 60 70
Y Value

Poe9t2 =0



Power at X=64.

70

0.8
60

00.4

20 0.2

10 200

10 20 30 40 50 60 70
Y Value

Power at X=68.

70

0.6
60

0.5
50

m) 0.4

>
N 0.3

30

0.2
20

10 
0.1

10 20 30 40 50 60 70

Y Value

93



Appendix C: FORTRAN Programs

ANALYTIC.F code

PROGRAM~ Analytic

C This program computes the exact field distribution for

a sphere

C of tissue with a given epsr and sigma

INTEGER COUNT,T,J,K,RADTUS,I

COMPLEX JN, EFLDR, EFLDT

REAL THETA, PHI, PT,ICNTR,JCNTR,KCNTR

EXTERNAL JN, PN

C ** INITIALIZE **

PI=ACOS (-1.)

COUNT= 0

CELLSIZE= .002554

ICNTR=3 8

KCNTR=37 .5

JCNTR=3 8

RADIUS=3 7

OPEN(l5,file=lanalytic.dat' ,status='unknown')

DO 163 I=1,75

WRITE(6,*) i=,,i

DO 162 J=1,75

DO 161 K=1,75

C

R=SQRT ((I-ICNTR) **2 . +(J-JCNTR) **2 . +(K-KCNTR) **2.)

R=R*CELLSIZE

IF (R.LT.0.003) R=.003

THETA=ATAN2( (SQRT( (I*l.-ICNTR)**2

& +(J*1.-JCNTR)**2)), (K*l.-KCNTR))
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PHI=-PI/2

ELSE

PHI=ATAN2 ((J*1.-~JCNTR), (I*1.-ICNTR))

ENDIF

IF (PHI.LT.O) PHI=PHI+2*PI

IF (THETA.EQ.O) THETA=.OOOOOOO1

IF (PHI.EQ.O) PHI=.OOOOOO1

CALL COMPUTEAP (R,THETAEFLDR, EFLDT)

C CALL CONVERTEF

(THETA, PHI, EFLDR, EFLDT, EFLDX, EF'LDY, EFLDZ)

WRITE (15,*)

& sqrt((CABS(EFLDR)**2+CABS(EFLDT)**2))/.002554

161 CONTINUE

162 CONTINUE

163 CONTINUE

STOP

END

COMPUTEAP code:

C FIELD AMP AND PHASE COMPUTATION SUBROUTINE ******C

SUBROUTINE COMPUTEAP (R, THETA, EFIELDR, EFIELDT)

INTEGER I,N,IM

REAL R, THETA, PI,MU,EPS,FREQ, PN, OMEGA

COMPLEX EFIELDR, EFIELDT, AN(5),KR,K, JN

EXTERNAL JN, PN

PARAMETER (EPSR=51, SIGMA=1 .28)
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PI=acos (-1.)

FREQ=9 140 00000

OMEGA=2 *PI*FREQ

MrJ4*PI*1E-7

EPS=8 .854e-12* (EPSR)

c K=(0.,-l1.)*OMEGA*SQRT(MU*EPS)*SQRT(.5*(SQRT(1.

c & (1.28/(OMEGA*EPS))**2.)+1.))

c WRITE(6,*) K

K= (0.1-1.) *(SQRT((0., 1.) *OMEGA*MU* (STGMA+ (0.11.) *

& OMEGA*EPS)))

c K=IMAG(SQRT(-(OMEGA)**2.*MU*EPS+I(0,1.)*OMEGA*MU*1.28))

c WRITE(6,*) K

KR=K*R

c WRITE(6,*) KR

AN(1)=(1.20600400996, .891938522519)

AN(2)= (0,0)

AN(3)=(-.19024554426,-.0548692344507)

AN(4)=(0, 0)

AN(5)=(.050541055694,-.0191137469021)

An(2)= (0,0)

An(4)= (0,0)

EFTELDR=0

EFIELDT=0

DO 500 N=1,3

T=2*N-1

IM= I-i

EFIELDR=EFIELDR+AN(T) *((I* (1+1)) /(KR)) *

& JN (I, KR) *PN (I, COS (THETA) )

EFIELDT=EFIELDT+AN (I) *(JN ((IM) ,KR) -

(I/KR)*JN(I,KR) )*(I/SIN(THiETA))*(COS(THETA)*PN(I,COS(THETA))-

& PN((TM),COS(THETA)))

500 CONTINUE

RETURN

END
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CONVERTEF code:

C * FIELD CONVERSION SUBROUTINE (COMPUTES FROM SPHERICAL TO

RECT) *** C

SUBROUTINE CONVERTEF

(THETA, PHI,EFLDR,EFLDT,EFLDX,EFLDY,EFLDZ)

COMPLEX EFLDR, EFLDT, EFLDX, EFLDY, EFLDZ

REAL THETA, PHI

EFLDX=SIN(THETA)*COS(PHI)*EFLDR+COS(THETA)*COS(PHI)*EFLDT

EFLDY=SIN(THETA)*SIN(PHI)*EFLDR+COS(THETA)*SIN(PHI)*EFLDT

EFLDZ=COS(THETA)*EFLDR-SIN(THETA)*EFLDT

RETURN

END'

C

DIRECT.F Code

PROGRAM direct

C This code is modified often to produce plots of different

areas of the exact source.

INTEGER I,J,K,KCNTR, ICNTR, JCNTR,RADIUS
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REAL THETA, PI,R, PN, PHI,CELLSIZE, EFXR,EFYR,EPZR

REAL EFXI, EFYT, EFZI ,MAGEX, MAGEY ,MAGEZ

COMPLEX EFLDT, EFLDR, JN, EFLDX, EFLDY, EFLDZ

EXTERNAL JN, PN

c READ (5,*) N, z

c WRITE(6,*) JN(N,Z)

KCNTR=40

JCNTR=40

ICNTR=40

RADIUS=30

CELLSIZE:=.0032

R=. 0945

THETA=ACOS (-1. )/2.

PI= ACOS(-1.)

PHI=PI/2

DO 100 I=0, 90

theta= (1/90.) *pj

IF (R.LT.0.004) R=.004

c WRITE(6,*) R,THETA,PHI

CALL COMPUTEAP (R, THETA, EFLDR, EFLDT)

WRITE (6, *)

((sqrt (cabs (EFLDT) **2 .+cabs (EFLDR) **2. )**2. )/2.) *1.28

c CALL CONVERTEF (THETA, PHI, EFLDR, EFLDT, EFLDX, EFLDY, EFLDZ)

c WRITE(6,*) R, CABS(EFLDT)

100 CONTINUE

STOP

END

IDROT.F Code

program id~rot

C This program wioll rotate the ID matrix to make it

compatible
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C with the power matrix.

REAL idl(75,75,75),id2(75,75,75),id3(75,75,75)

INTEGER I,J,K

OPEN(22,FILE='S6ID2.dat',STATUS='OLD')

OPEN(23,FILE='S6ID3.dat',STATUS='UNKNOWNI)

DO 101 K=1,75

DO 102 J=1,75

DO 103 I=1,75

READ(22,*) idl(I,J,K),ID2(I,J,K),id3(I,J,K)

103 CONTINUE

102 CONTINUE

101 CONTINUE

DO 104 I=1,75

DO 105 J=1,75

DO 106 K=1,75

WRITE(23,*) idl(I,J,K),id2(I,J,K),id3(I,J,K)

106 CONTINUE

105 CONTINUE

104 CONTINUE

CLOSE(22)

CLOSE(23)

STOP

END

JN code:

C****** Spherical Bessel Function Subroutine ***********C

COMPLEX FUNCTION JN (N,Z)
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INTEGER N,II

COMPLEX Z,JJN(20),JNO

JNO=CSIN(Z) /z

IF (N.EQ.0) THEN

JN=JNO

RETURN

END IF

JJN(1)=CSIN(Z)/Z**2.0-CCOS(Z)/Z

IF (N.EQ.1) THEN

JN=JJN (1)

RETURN

END IF

JJN(2)=(3./z**3.0-l1./Z)*CSIN(Z)-(3./Z**2.)*CCOS(Z)

IF (N.EQ.2) THEN

JN=JJN(2)

RETURN

ENDIF

IF (N.GT.2) THEN

DO 100 II=3,N

10 CONTINUE

JN=JJN (N)

RETURN

ENDIF

RETURN

END

MODIFYGEOM.f Code

PROGRAM MODIFYGEOM
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C THIS PROGRAM MODIFIES THE GEOMETRY FILE TO SHOW WHERE

SOURCES WERE

C SET.

REAL R

REAL TMP1 ,TMP2 ,TMP3 ,TMP4 ,TMP5

INTEGER

I,J,K,IDONE(92,92,95),IDTWO(92,92,95),IDTHRE(92,92,95)

INTEGER NX,NY,NZ, ITMP1, ITMP2

PARAMETER (ICNTR=48 ,JCNTR=48 ,KCNTR=4)

PARAMETER (RADIUS=37)

OPEN (22,FILE='SPHERE3 .id' ,STATUS='OLD')

OPEN (23,FILE='SPHERE3.m.id' ,STATUS='UNKNOWN')

REWIND (23)

READ (22,*) NX,NY,NZ

WRITE(23,*) NX,NY,NZ

READ(22,*) TMPl,TMP2,TMP3

WRITE(23,*) TMP1,TMP2,TMP3

CELLSIZE=TMP1

READ(22,*) ITMP1

WRITE(23,*) ITMP1

DO 100 I=l, 14

READ(22,*) TMP1, TMP2, TMP3, TMP4, TMP5

WRITE(23,*) TMP1, TMP2, TMP3, TMP4, TMP5

100 CONTINUE

READ(22,*) ITMP1,ITMP2

WRITE(23,*) ITMPl,ITMP2

WRITE(6, *) ICNTR,KCNTR,JCNTR

DO 101 K=1, NZ

WRITE(6,*) K

DO 102 J~l, NY

DO 103 I=l, NX
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R .EAD(22,*) IDONE(I,J,K) ,IDTWO(I,J,K) ,IDTHRE(I,J,K)

C FIRST CHECK THE RADIUS AT THE CENTER OF THE CUBE OF

INTEREST

R=SQRT(((I*1.+.5)-ICNTR*1.)**2.+((J*1.+.5)-

JCNTR*1. )**2.+

& ( (K'*1.+.5)-~KCNTR*1. )**2.)

C IF IT IS WITHIN 1/2 CELL OF TEH RADIUS THEN SET THE 12 E

COMPONENTS

IF((R.GT.RADIUS-.5).AND.(R.LE.RADIUS+.5)) THEN

C START BY SETTING THE EX(I,J,K) COMPONENT

IDONE (I,J,K) =10

C NOW SET THE EX(I,J,K+1) COMPONENT

IDONE (I,J,K+1) =10

C NOW SET THE EX(I,J+1,K+1) COMPONENT

IDONE(I,J+1,K+1) =0

C NOW SET THE EX(I,J+1,K) COMPONENT

IDONE(I,J-i1,K) =10

C NOW SET THE EY(I,J,K) COMPONENT

IDTWO (I, J,K) =10

C NOW SET THE EY(I+1,J,K) COMPONENT

IDTWO (I+1,J,K) =10

C NOW SET THE EY(I+1,J,K-i-) COMPONENT

IDTWO (I+1,J,K+1) =0

C NOW SET THE EY(I,J,K-i-)

IDTWO(I,J,K+1) =10

C NOW SET THE EZ(I,J,K) COMPONENT

IDTHRE(I,J,K) =10

C NOW SET THE EZ(I+1,J,K) COMPONENT

IDTHRE(I+1,J,K) =10

C NOW SET THE EZ(I+1,J+1,K) COMPONENT

IDTHRE(I+1,J+1,K) =10

C NOW SET THE EZ(I,J+1,K) COMPONENT

IDTHRE(I,J+1,K) =10
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ENDIF

WRITE(23,*) IDONE(I,J,K) ,IDTWO(I,J,K) ,IDTHRE(I,J,K)

103 CONTINUE

102 CONTINUE

101 CONTINUE

CLOSE (22)

CLOSE (23)

STOP

END

NECKEXTEND.F Code

PROGRAM NECKEXTEND

C THIS PROGRAM EXTENDS THE NECK DOWN TO THE EDGE OF FDTD

SPACE

REAL TMP1 ,TMP2, TMP3, TMP4 ,TMP5

INTEGER

I,J,K,IDONE(92,92,95),IDTWO(92,92,95),IDTHRE(92,92,95)

INTEGER NX, NY, NZ, ITMP1, ITMP2, z

OPEN (22,FILE='head5.id' ,STATUS='OLD')

OPEN (23.,FILE='head6.id',STATUS='UNKNOWN')

REWIND (23)

READ (22,*) NX,NY,NZ

WRITE(23,*) NX,NY,NZ

READ(22,*) TMP1,Tmp2,TMP3

WRITE(23,*) TMP1,TMP2,TMP3

CELLS IZE=TMP1

READ(22,*) ITMP1
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WRITE(23,*) ITMPI

DO 100 I=1, 14

READ(22,*) TMP1, TMP2, TMP3, TMP4, TMP5

WRITE(23,*) TMP1, TMP2, TMP3, TMP4, TMP5

100 CONTINUE

READ(22,*) ITMP1,ITMP2

WRITE(23, *) ITMP1,ITMP2

DO 101 K=1, NZ

DO 102 J=1, NY

DO 103 I=1, NX

READ(22,*) IDONE(I,J,K) ,IDTWO(I,J,K) ,IDTHRE(I,J,K)

103 CONTINUE

102 CONTINUE

101 CONTINUE

DO 104 K=1, 17

WRITE(6,*) K

DO 105 J=1, NY

DO 106 I=1, NX

Z=18-K

IF (IDONE(I,J,Z+1).NE.0.AND.IDONE(T,J,Z+1).NE.2)

& IDONE(I,J,Z) =IDONE(I,J,Z+1)

IF (IDTWO(I,J,Z+1).NE.0.AN~D.IDTWO(I,J,Z+1).NE.2)

& IDTWO(I,J, Z) =IDTWO (I,J, Z+1)

IF (IDTHRE(I,J,Z+1) .NE.0.AND.IDTHRE(I,J,Z+1) .NE.2)

& IDTHRE(I,J,Z) =IDTHRE(I,J,Z+1)

106 CONTINUE

105 CONTINUE

104 CONTINUE
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DO 107 K=1, NZ

DO 108 J=l, NY

DO 109 I=l, NX

WRITE(23,*) IDONE(I,J,K),IDTWO(I,J,K),IDTHRE(I,J,K)

109 CONTINUE

108 CONTINUE

107 CONTINUE

STOP

END

OPTIMIZE.F Code

PROGRAM Optimize

C This program computes the An coefficients for a given

C eps and sigma at 915 MHZ for a sphere of radius 9.45

cm

INTEGER I,N

COMPLEX KR,JN,K,AN(5)

REAL PI,FREQ,EPS,EPSR,SIGMA,RADIUS,OMEGA,MU,JNP(5)

EXTERNAL JN, PN

C INITIALIZE *** C

PI=ACOS(-1.)

RADIUS=. 0945

WRITE(6,*) 'EPSR=?'

READ(5,*) EPSR
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WRITE(6,*) 'Sigma-?'

READ(5,*) sigma

JNP (1)=. 9509

JNP (3) =.1148

JNP (5) =.0260

FREQ=9 140000 00

OMEGA-2 *PT*FREQ

MU= 4* PT *1E -7

EPS=8 .854e-12* (EPSR)

K=(0., -1.) *(SQRT ((0. 1.) *OMEGA*MU* (Sigma+ (0.11.) *

&OMEGA*EPS)))

KR=K* RADIUS

WRITE(6, *)KKR

DO 100 I=1,3

WRITE(6,*) IT=I,I

N= (I*2)-1

An(N)=JNP(N)/(JN(N-1,KR)-(N/KR)*JN(N,KR))

WRITE(6,*) 'An(',N,')= ',An(N)

100 CONTINUE

STOP

END

PN code:

C LEGENDRE POLYNOMIAL FUNCTION, CALCULATES LEGENDRE

C POLYNOMIALS OF ORDER n (n=0-5)

REAL FUNCTION PN (N,x)

INTEGER N

REAL X
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IF (N.EQ.O) PN=1

IF (N.EQ.1) PN=X

IF (N.EQ.2) PN=.5*(3.*X**2.-1.)

IF (N.EQ.3) PN=O.5* (5.*X**3.-3.*X)

IF (N.EQ.4) PN=(1./8. )*(35.*X**4.30.*X**2+3.)

IF (N.EQ.5) PN=(1./8. )*(63.*X**5.70.*X**3+15.*x)

RETURN

END

C

SOURCE.FOR code for the approximate source distribution

C FIRST CHECK THE RADIUS AT THE CENTER OF THE CUBE OF

INTEREST

R=SQRT((I*1.+.5-ICNTR)**2.+(J*1.+.5-JCNTR)**2.+

& (K*1.+.5-~KCNTR)**2.)

C IF IT IS WITHIN 1/2 CELL OF TEH RADIUS THEN SET THE 12 E

COMPONENTS

-IF((R.GT.RADIUS-.5).AND.(R.LE.RADIUS+.5)) THEN

C START BY SETTING THE EX(I,J,K) COMPONENT

R=R*CELLSIZE

IF (K.EQ.KCNTR) THEN

THETA=ACOS (-1.) /2.

ELSE

THETA=ATAN2((SQRT((I*1.+.5-ICNTR)**2.

& +(J*1.-JCNTR)**2.)),(K*1.-KCNTR))

ENDIF

PHI=ATAN2((J*1.-~JCNTR), (I*1.+.5-ICNTR))

IF (THETA.EQ.O) THETA=.OOOOOOO1'

IF (PHI.EQ.O) PHI=.0000001

CALL COMPUTEAP (R, THETA, EFLDR, EFLDT)
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CALL CONVERTEF

(THETA, PHI, EFLDR, EFLDT, EFLDX, EFLDY, EFLDZ)

EFXR=REAL (EFLDX)

EFXT=IMAG (EFLDX)

MAGEX=CABS (EFLDX)

IF (MAGEX.GT.LIMIT) THEN

IF (EFXR.NE.O.) THEN

PHASEX=ATAN2 (EFXI, EFXR)

ELSE

PHASEX=ACOS (-1. )/2.

ENDIF

NTAU=NINT (T/DT)

EXS (I,J,K) =MAGEX/DELX

& *FLOAT(MIN(NTAU,NRISE) )/NRISE*COS(W1*T±PHASEX).

EXS (I,J,K+1) =MAGEX/DELX

& *FLOAT(MIN(NTAUNRISE) )/NRISE*COS(Wl*T+PHASEX)

EXS (I,J+1,K+1) =MAGEX/DELX

& *FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (w1*T+PHASEX)

EXS (I,J-i1,K) =MAGEX/DELX

& *FLOAT(MIN(NTAUNRISE) )/NRISE*COS(W1*T+PHASEX)

ENDIF

EFYR=REAL (EFLDY)

EFYI=IMAG (EFLDY)

MAGEY=CABS (EFLDY)

IF (MAGEY.GT.LIMIT) THEN

IF (EFYR.NE.O.) THEN

PHASEY=ATAN2 (EFYT, EFYR)

ELSE

PHASEY=ACOS (-1. )/2.

ENDIF

EYS (I,J,K) =MAGEY/DELY

& *FLOAT (MIN(NTAUINRISE) )/NRISE*COS (W1*T+PHASEY)

EYS (I+1,J,K) =MAGEY/DELY

& *FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (W1*T+PHASEY)

EYS (I+1, J, K+1) =MAGEY/DELY

& *FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (w1*T+PHASEY)
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PHASEY=ACOS (-1. )/2.

EYS (I,J,KA-1) =MAGEY/DELY

& *FLOAT(MIN(NTAU,NRISE) )/NRISE*COS(W1*T+PHASEY)

ENDIF

EFZR=REAL (EFLDZ)

EFZI=IMAG (EFLDZ)

MAGEZ=CABS (EFLDZ)

IF (MAGEZ.GT.LIMIT) THEN

IF (EFZR.NE.O.) THEN

PHASEZ=ATAN2 (EFZI, EFZR)

ELSE

PHASEZ=ACOS (-1. )/2.

ENDIF

EZS (I,J,K) =MAGEZ/DELZ

& *FLOAT(MIN(NTAU,NRISE) )/NRISE*COS(W1*T+PHASEZ)

EZS (I+1,J,K) =MAGEZ/DELZ

& *FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (W1*T+PHASEZ)

EZS (I+1,J+1,K)=MAGEZ/DELZ

& *FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (w1*T+PHASEz)

EZS (I,J+1,K) =MAGEZ/DELZ

& *FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (W1*T±PHASEZ)

ENDIF

ENDIF

SOURCE.FOR Code for an exact field distribution:

C FIRST CHECK THE RADIUS AT THE CENTER OF THE CUBE OF

C INTEREST

R=SQRT ((I*1. +.5-ICNTR) **2 . +(J*1 .+. 5-JCNTR) **2. +

& (K*1.+.5-~KCNTR)**2.)

C IF IT IS WITHIN 1/2 CELL OF TEH RADIUS THEN SET THE 12 E

C COMPONENTS

IF((R.GT.RADIUS-.5).AND.(R.LE.RADIUS+.5)) THEN
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C START BY SETTING THE EX(T,J,K) COMPONENT

R=SQRT((I*1.+.5-TCNTR)**2.+(J*1.-JCNTR)**2.+

& (K*1. -KCNTR) **2. )*CELLSIZE

IF (K.EQ.KCNTR) THEN

THETA=ACOS(-1. )/2.

ELSE

THETA=ATAN2((SQRT((I*1.+.5-ITCNTR)**2.

& +(J*1.-JCNTR)**2.)),(K*1.-KCNTR))

ENDIF

PHT=ATAN2((J*1.-JCNTR), (I*1.+.5-ICNTR))

IF (THETA.EQ.O) THETA=.OOOOOOO1

IF (PHI.EQ.O) PHI=.OOOOOO1

CALL COMPUTEAP (R, THETA, EFLDR, EFLDT)

CALL CONVERTEF

(THETA, PHI,EFLDR,EFLDT,EFLDX,EFLDY,EFLDZ)

EFXR=REAL (EFLDX)

EFXI=IMAG (EFLDX)

MAGEX=CABS (EFLDX)

IF (MAGEX.GT.LIMIT) THEN

IF (EFXR.NE.O.) THEN

PHASEX=ATAN2 (EFXI, EFXR)

ELSE

PHASEX=ACOS (-1. )/2.

ENDIF

NTAU=NINT (T/DT)

EXS (I, J,K) =MAGEX/DELX

& *FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (W1*T+PHASEX)

ENDIF

C NOW SET THE EX(I,J,K-4-) COMPONENT

R=SQRT((I*1.+.5-~ICNTR)**2.+(J*1.-JCNTR)**2.+

& (K*1. .i--KCNTR) **2. )*CELLSIZE

IF ((K+1).EQ.KCNTR) THEN

THETA=ACOS(-1. )/2.

ELSE

THETA=ATAN2((SQRT((I*1.±.5-ICNTR)**2.

& +(J*1.-~JCNTR)**2.)), (K*1.+l-KCNTR))
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END IF

PHI=ATAN2((J*1.-JCNTR), (I*1.+.5-ICNTR))

IF (THETA.EQ.O) THETA=.OOOOOOO1

IF (PHI.EQ.O) PHI=.OOOOOO1

CALL COMPUTEAP (R,THETA,EFLDR,EFLDT)

CALL CONVERTEF

(THETA,PH, EFLDR, EFLDT, EFLDX, EFLDY, EFLDZ)

EFXR=REAL (EFLDX)

EFXI=IMAG (EFLDX)

MAGEX=CABS (EFLDx)

IF (MAGEX.GT.LIMIT) THEN

IF (EFXR.NE.O.) THEN

PHASEX=ATAN2 (EFXI, EFXR)

ELSE

PHASEX=ACOS (-1.) /2.

ENDIF

NTAU=NINT (T/DT)

EXS (I,J,K+1) =MAGEX/DELX

& ~*FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (W1*T+PHASEX)

ENDIF

C NOW SET THE EX(I,J+1,K+1) COMPONENT

R=SQRT((I*1.+.5-ICNTR)**2.+(J*1.+1-JCNTR)**2.+

& ~(K*1. +1-KCNTR) **2. )*CELLSIZE

IF ((K+1).EQ.KCNTR) THEN

THETA=ACOS(-1. )/2.

ELSE

THETA=ATAN2((SQRT((I*1.+.5-ICNTR)**2.

& +(J*1.+1-JCNTR)**2.)), (K*1.+1-KCNTR))

ENDIF

PHI=ATAN2((J*1.+1-JCNTR), (I*1.+.5-ICNTR))

IF (THETA.EQ.O) THETA=.OOOOOOO1

IF (PHI.EQ.O) PHI=.OOOOOO1

CALL COMPUTEAP (R, THETA, EFLDR, EFLDT)

CALL CONVERTEF

(THETA, PHI, EFLDR, EFLDT, EFLDX, EFLDY, EFLDZ)

EFXR=REAL (EFLDX)



EFXI=IMAG (EFLDX)

MAGEX=CABS (EFLDX)

IF (MAGEX.GT.LIMIT) THEN

IF (EFXR.NE.O.) THEN

PHASEX=ATAN2 (EFXI, EFXR)

ELSE

PHASEX=ACOS (-1.) /2.

ENDIF

NTAU=NINT (T/DT)

EXS (I, J-41, K+1) =MAGEX/DELX

& *FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (W1*T+PHASEX)

ENDIF

C NOW SET THE EX(I,J+1,K) COMPONENT

R=SQRT((I*1.+.5-ICNTR)**2.±(J*1.+1-JCNTR)**2.+

& (K*1. -KCNTR) **2. )*CELLSIZE

IF (K.EQ.KCNTR) THEN

THETA=ACOS (-1.) /2.

ELSE

THETA=ATAN2((SQRT((I*1.+.5-ICNTR)**2.

& +(J*1.±1-JCNTR)**2.)), (K*1.-KCNTR))

ENDIF

PHI=ATAN2((J*1.+1-JCNTR), (I*1.+.5-TCNTR))

IF (THETA.EQ.O) THETA=.OOOOOOO1

IF (PHI.EQ.O) PHI=.OOOOOO1

CALL COMPUTEAP (R, THETA, EFLDR, EFLDT)

CALL CONVERTEF

(THETA, PHI, EFLDR, EFLDT, EFLDX, EFLDY, EFLDZ)

EFXR=REAL (EFLDX)

EFXI=IMAG (EFLDX)

MAGEX=CABS (EFLDX)

IF (MAGEX.GT.LIMIT) THEN

IF (EFXR.NE.O.) THEN

PHASEX=ATAN2 (EFXI, EFXR)

ELSE

PHASEX=ACOS(-l. )/2.

ENDIF
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NTAU=NINT (T/DT)

EXS (I ,J+1 ,K) =MAGEX/DELX

& *FLOAT(MIN(NTAU,NRISE) )/NRTSE*COS(W1*T+4PHASEX)

END IF

C NOW SET THE EY(I,J,K) COMPONENT

R=SQRT((I*1.-~ICNTR)**2.+(J*1.+.5-JCNTR)**2.+

& (K*1. -KCNTR) **2. )*CELLSIZE

IF (K.EQ.KCNTR) THEN

THETA=ACOS (-1. )/2.

ELSE

THETA=ATAN2( (SQRT( (I*1.-ICNTR)**2.

& +(J*1.+.5-JCNTR)**2.)), (K*1.-KCNTR))

ENDIF

PHI=ATAN2((J*1.+.5-JCNTR), (I*1.-TCNTR))

IF (THETA.EQ.O) THETA=.OOOOOOO1

IF (PHI.EQ.O) PHI=.OOOOOO1

CALL COMPUTEAP (R,THETAEFLDR, EFLDT)

CALL CONVERTEF

(THETA,PHIEFLDR, EFLDT, EFLDX, EFLDY, EFLDZ)

EFYR=REAL (EFLDY)

EFYI=IMAG (EFLDY)

MAGEY=CABS (EFLDY)

IF (MAGEY.GT.LIMIT) THEN

IF (EFYR.NE.O.) THEN

PHASEY=ATAN2 (EFYI,EFYR),

ELSE

PHASEY=ACOS (-1.) /2.

ENDIF

NTAU=NINT (T/DT)

EYS (I,J,K) =MAGEY/DELY

& *FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (W1*T+PHASEY)

END IF

C NOW SET THE EY(I-i1,J,K) COMPONENT

R=SQRT((I*1.+l-1ICNTR)**2.+(J*1.±.5-JCNTR)**2.+

& (K*1. -KCNTR) **2. )*CELLSIZE

IF (K.EQ.KCNTR) THEN
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THETA=ACOS(-1. )/2.

ELSE

THETA=ATAN2 ((SQRT( (I*1.+1-ICNTR) **2.

& +(J*1.+.5-JCNTR)**2.)),(K*1.-KCNTR))

ENDIF

PHI=ATAN2((J*1.+.5-JCNTR), (I*1.+1-ICNTR))

IF (THETA.EQ.O) THETA=.OOOOOOO1

IF (PHI.EQ.O) PHI=.OOOOOO1

CALL COMPUTEAP (R, THETA, EFLDR, EFLDT)

CALL CONVERTEF

(THETA,PHIEFLDR, EFLDT, EFLDX, EFLDY, EFLDZ)

EFYR=REAL (EFLDY)

EFYI=IMAG (EFLDY)

MAGEY=CABS (EFLDY)

IF (MAGEY.GT.LIMIT) THEN

IF (EFYR.NE.O.) THEN

PHASEY=ATAN2 (EFYT, EFYR)

ELSE

PHASEY=ACOS (-1. )/2.

ENDIF

NTAU=NINT (T/DT)

EYS (I+1,J,K) =MAGEY/DELY

& *FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (W1*T+PHASEY)

ENDIF

C NOW SET THE EY(I+1,J,K+1) COMPONENT

R=SQRT( (I*1.+l-ICNTR)**2.+(J*1.+.5-JCNTR)**2.+

& (K*1. +1-KCNTR) **2.) *CELLSIZE

IF ((K-41).EQ.KCNTR) THEN

THETA=ACOS(-1. )/2.

ELSE

THETA=ATAN2( (SQRT( (I*1.+1-ICNTR)**2.

& +(J*1.+.5-JCNTR)**2.)),(K*1.+l-KCNTR))

ENDIF

PHI=ATAN2((J*1.+.5-JCNTR), (I*1.±1l-ICNTR))

IF (THETA.EQ.O) THETA=.OOOOOOO1

IF (PHI.EQ.O) PHI=.OOOOOO1
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CALL COMPUTEAP (R,THETA,EFLDR,EFLDT)

CALL CONVERTEF

(THETA, PHI, EFLDR, EFLDT, EFLDX, EFLDY, EFLDZ)

EFYR=REAL (EFLDY)

EFYI=IMAG (EFLDY)

MAGEY=CABS (EFLDY)

IF (MAGEY.GT.LIMIT) THEN

IF (EFYR.NE.O.) THEN

PHASEY=ATAN2 (EFYI, EFYR)

ELSE

PHASEY=ACOS (-1. )/2.

ENDIF

NTAU=NINT (T/DT)

EYS (I-i1,J,K+1) =MAGEY/DELY

& *FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (W1*T±PHASEY)

ENDIF

C NOW SET THE EY(I,J,K+1)

R=SQRT((I*1.-ICNTR)**2.+(J*1.+.5-JCNTR)**2.+

& (K*1. -l1-KCNTR) **2. )*CELLSIZE

IF ((K-41).EQ.KCNTR) THEN

THETA=ACOS(-1. )/2.

ELSE

THETA=ATAN2 ((SQRT( (I*1.-ICNTR) **2.

& + (J*1. +. 5-JCNTR) **2.) ) ,(K*1 . +-KCNTR))

END IF

PHI=ATAN2((J*1.+.5-JCNTR), (I*1.-ICNTR))

IF (THETA.EQ.O) THETA=.OOOOOOO1

IF (PHI.EQ.O) PHI=.OOOOOO1

CALL COMPUTEAP (R, THETA, EFLDR, EFLDT)

ICALL CONVERTEF

(THETA, PHI, EFLDR, EFLDT, EFLDX, EFLDY, EFLDZ)

EFYR=REAL (EFLDY)

EFYI=IMAG (EFLDY)

MAGEY=CABS (EFLDY)

IF (MAGEY.GT.LIMIT) THEN

IF (EFYR.NE.O.) THEN
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PHASEY=ATAN2 (EFYT, EFYR)

ELSE

PHASEY=ACOS (-1. )/2.

ENDIF

NTAU=NTNT (T/DT)

EYS (I,J,K+1) =MAGEY/DELY

& *FLOAT(MIN(NTAUNRTSE) )/NRTSE*COS(W1*T+PHASEY)

ENDIF

C NOW SET THE EZ(I,J,K) COMPONENT

R=SQRT ((I*1. -ICNTR) **2 . +(J*1.-JCNTR) **2. +

& (K*1 +5-K.CNTR) **2. )*CELLSIZE

THETA=ATAN2 ((SQRT ((I*1. -ICNTR) **2.

&: +(J*1.-JCNTR)**2.)), (K*1.+.5-~KCNTR))

IF (I.EQ. ICNTR.AND.J.EQ.JCNTR) THEN

PHI=-ACOS (-1.) /2.

ELSE

PHI=ATAN2 ((J*1.-JCNTR), (I*1.-~ICNTR))

END IF

IF (THETA.EQ.O) THETA=.OOOOOOO1

IF (PHI.EQ.O) PHI=.OOOOOO1

CALL COMPUTEAP (R,TT, EFLDR, EFLDT)

CALL CONVERTEF

(THETA,PHIEFLDR, EFLDT, EFLDX, EFLDY, EFLDZ)

EFZR=REAL (EFLDZ)

EFZI=IMAG (EFLDZ)

MAGEZ=CABS (EFLDZ)

IF (MAGEZ.GT.LIMIT) THEN

IF (EFZR.NE.O.) THEN

'PHASEZ=ATAN2 (EFZI, EFZR)

ELSE

PHASEZ=ACOS (-1.) /2.

ENDIF

NTAU=NINT (T/DT)

EZS (I,J,K) =MAGEZ/DELZ

& *FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (W1*T+PHASEZ)

ENDI F
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C NOW SET THE EZ(I+1,J,K) COMPONENT

R=SQRT((I*1.+1-ICNTR)**2.+(J*1.-JCNTR)**2.+

& (K*1. +. 5-KCNTR) **2. )*CELLSTZE

THETA=ATAN2 ((SQRT( (I*1.+l-1ICNTR) **2.

& +(J*1.-JCNTR)**2.)),(K*1.±.5-KCNTR))

IF ((I-i-) .EQ.ICNTR.AND.J.EQ.JCNTR) THEN

PHT=-ACOS (-1. )/2.

ELSE

PHT=ATAN2((J*1.-JCNTR), (T*1.+l~.-ICNTR))

ENDIF

IF (THETA.EQ.O) THETA=.OOOOOOO1

IF (PHI.EQ.O) PHI=.OOOOOO1

CALL COMPUTEAP (R, THETA, EFLDR, EFLDT)

CALL CONVERTEF

(THETA,PHIEFLDR, EFLDT, EFLDX, EFLDY, EFLDZ)

EFZR=REAL (EFLDZ)

EFZI=IMAG (EFLDz)

MAGEZ=CABS (EFLDZ)

IF (MAGEZ.GT.LIMIT) THEN

IF (EFZR.NE.O.) THEN

PHASEZ=ATAN12(EFZI, EFZR,)

ELSE

PHASEZ=ACOS (-1. )/2.

ENDIF

NTAU=NINT (T/DT)

EZS (I+1,J,K) =MAGEZ/DELZ

& *FLOAT(MIN(NTAU,NRISE) )/NRISE*COS(W1*T+IPHASEZ)

ENDIF

C NOW SET THE,.EZ(I+1,J+1,K) COMPONENT

IR=SQRT( (I*1.+l-ICNTR)**2.+(J*1.+1.-JCNTR)**2.+

& (K*1. +. 5-KCNTR) **2. )*CELLSIZE

THETA=ATAN2( (SQRT( (I*1.+1.-~ICNTR)**2.

& ~+(J*1.+1.-JCNTR)**2.)),(K*1.+.5-~KCNTR))

IF ((I+1).EQ.ICNTR.AND.(J-41).EQ.JCNTR) THEN

PHI=-ACOS (-1.) /2.

ELSE
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PHI=ATAN2((J*1.±1-JCNTR), (I*1.±1.-ITCNTR))

ENDIF

IF (THETA.EQ.O) THETA=.OOOOOOO1

IF (PHI.EQ.O) PHI=.OOOOOO1

CALL COMPUTEAP (R, THETA, EFLDR, EFLDT)

CALL CONVERTEF

(THETA, PHI, EFLDR, EFLDT, EFLDX, EFLDY, EFLDZ)

EFZR=REAL (EFLDZ)

EFZI=IMAG (EFLDZ)

MAGEZ=CABS (EFLDZ)

IF (MAGEZ.GT.LIMIT) THEN

IF (EFZR.NE.O.) THEN

PHASEZ=ATAN2 (EFZI, EFZR)

ELSE

PHASEZ=ACOS (-1.) /2.

ENDIF

NTAU=NINT (T/DT)

EZS (I+1,J+1,K)=MAGEZ/DELZ

& *FLOAT(MIN(NTAUNRISE) )/NRISE*COS (W1*T+PHASEz)

END IF

C NOW SET THE EZ(I,J±1,K) COMPONENT

R=SQRT((I*1.-ICNTR)**2.+(J*1.4+1.-JCNTR)**2.+

& (K*1. +. 5-KCNTR) **2. )*CELLSIZE

THETA=ATAN2( (SQRT( (I*1.-ICNTR)**2.

& +(J*1.+1.-JCNTR)**2.)), (K*1.+I.5-KCNTR))

IF (I.EQ.ICNTR.AND.(J+1).EQ.JCNTR) THEN

PHI=-ACOS(--1. )/2.

ELSE

PHI=ATAN2 ((J*1.+4l1-JCNTR), (I*1.-ICNTR))

ENDIF

IF (THETA.EQ.O) THETA=.OOOOOOO1

IF (PHI.EQ.O) PHI=.OOOOOO1

CALL COMPUTEAP (R, THETA, EFLDR, EFLDT)

CALL CONVERTEF

(THETA, PHI, EFLDR, EFLDT, EFLDX, EFLDY, EFLDZ)

EFZR=REAL (EFLDZ)



EFZI=IMAG (EFLDZ)

MAGEZ=CABS (EFLDZ)

IF (MAGEZ.GT.LIMIT) THEN

IF (EFZR.NE.O.) THEN

PHASEZ=ATAN2 (EFZI, EFZR)

ELSE

PHASEZ=ACOS (-1. )/2.

ENDIF

NTAU=NINT (T/DT)

EZS (I,J-+1,K) =MAGEZ/DELZ

& *FLOAT (MIN(NTAU,NRISE) )/NRISE*COS (W1*T+PHASEZ)

ENDIF

£NI

WRITEEF code:

C *** SUBROUTINE TO WRITE OUT FIELDS TO A FILE *********C

SUBROUTINE WRITEEF (EFLDX, EFLDY, EFLDZ, I, J,K, COUNT)

COMPLEX EFLDX, EFLDY, EFLDZ

REAL

EFXR, EFXI ,EFYR, EFYI, EFZR, EFZI, TESTX, TESTY, TESTZ, LIMIT

REAL PHASEX, PHASEY, PHASEZ

INTEGER I,J,K,COUNT

LIMIT=.01

OPEN (UNIT=25,FILE=" SPHERESOURCE.DAT" ,STATUS="OLD" ,ACCESS= 'APP

END')

EFXR=REAL (EFLDX)
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EFYR=REAL CEELDY)

EFZR=REAL (EFLDZ)

EFXI=IMAG (EFLDX)

EEYI=TMAG (EFLDY)

EFZI=IMAG (EFLDZ)

TESTX=CABS (EFLDX) *1000

TESTY=CABS (EFLDY) *1000

TESTZ=CABS (EFLDZ) *1000

IF (TESTX.GT.LIMTT) THEN

COUNT=COUNT+1

IF (EFXR.NE.0) THEN

PHASEX=ATAN2 (EFXI, EFXR)

ELSE

PHASEX= (ACOS (-1.) /2)

END IF

WRITE(25, 80) I,J,K,0,TESTX,PHASEX

END IF

IF (TESTY.GT.LIMIT) THEN

COUNT=COUNT+1

IF (EFYR.NE.0) THEN

PHASEY=ATAN2 (EFYT, EFYR)

ELSE'

PHASEY=ACOS (-1.)/2

END IF

WRITE(25, 80) I,J,K,1,TESTY,PHASEY

ENDIF

IF (TESTZ.GT.LIMIT) THEN

COUNT=COUNT+1

IF (EFZR.NE.0) THEN

PHASEZ=ATAN2 (EFZI, EFZR)

ELSE

PHASEZ=ACOS (-1.)/2

ENDIF

WRITE(25, 80) I,J,K,2,TESTZ,PHASEZ

END IF
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80 FORMAT(i3,T3, 13, 12,E14.6,E14. 6)

CLOSE (25)

RETURN

END

C
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Appendix D: Matlab Programs

AVG.M Code

function y=avg(file, file2)

% This function computes the average material characteritics

% throughout the head/bolus structure. File is the ID file.

% File2 is a file containing the electrical characteristics

% of each material.

% Initialize

top=size (file)

count (1) =0;

count (2) =0;

count (3) =0;

y(l,l)=O;

y(l,2)=O;

y(1,3)=0;

y(2,1)=0;

y(2,2)=0;

y(2,3)=O;

% Run through the locations and the x,y and z components

% keeping a running tally of permitivity and permeability.

for i=l:top(l,l)

for j=l:top(l,2)

% If the location isn't free space (Is part of the head/bolus

% structure).

if file(i,j)>i,

y(l,j)=y(l,j)+file2(file(i,j)-I,1);

y(2,j)=y(2,j)+file2(file(i,j)-l,2);

count (j)=count (j) +1;

end
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end

end

% Compute the average across all three components

y(l,4)=(y(l,l)+y(l,2)+y(l,3))/(count(l)+count(2)+count(3));

y(2,4)=(y(2,1)+y(2,2)+y(2,3))/(count(l)+count(2)+count(3));

% Compute the x,y, and z averages

for j=l:top(l,2)

y(l,j)=y(l,j)/count(j);

y(2,j)=y(2,j)/count(j);

end

AXY.M Code

function y=axy(file,idfile,level,stat)

% this function will analyze an xy level of an output file
% First plot the ids for the level, file is the power file,

% ID file is a file of the id's, level is the level to be

% analyzed, stat is a string file that describes the files

% (for display)

idpxy(idfile,level,stat);

%now plot the power picture

pwrpxy(file,level,stat);

% Now plot the normalized power.

meshxyn(file,level,[-60 45],stat);
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AYZ.M Code

function y=ayz(file,idfile,level,stat)

% this function will analyze an yz level of an output file

% First plot the ids for the level, file is the power file,

% ID file is a file of the id's, level is the level to be

% analyzed, stat is a string file that describes the files

% (for display)

idpyz(idfile,level,stat);

%now plot the power picture

pwrpyz(file,level,stat);

% Now plot the normalized power.

meshyzn(file,level,[-60 45],stat);

CLEARSOURCE.M Code

function y=clearsource (meshfile,x)

% This function clears everything from the source out for a

% particular cut of the sphere. meshfile is a file of a

% single layer of the power file. X is the level of the

% layer.

y=file;

for i=1:75

for j=1:75

% Compute the radius at the point

r=sqrt((i-37.5)^2+(j-37.5)^2+(x-37.5)^2);

% if the point is outside th esource, replace it with an NaN

if r>36.5000001,
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y(i,j)=NaN;

end

end

end

DIFF.M Code

function y=DIFF(file,level,type)

% this function computes the id changes across two level

% changes. file is th eidfile of interes, level is the level

% of interes, and type is a string to describe the scenario

% (for display). Insert (:,1,2 or 3) after the TEST* files

% to plot the cahnges of only the x,y or z componenets.

TESTl=meshxy(file,level-l);

TEST2=meshxy(file,level);

TEST3=meshxy(file,level+l);

figure

pcolor(TESTl-TEST2)

colormap(gray)

colorbar

ylabel('Y Value')

xlabel('X Value')

title(['Changes in ',type,' From Z=',num2str(level-l),' to

Z=',num2str(level),'.'1)

figure

pcolor(TEST3-TESTl)

colormap(gray)

colorbar

ylabel('Y Value')

xlabel('X Value')
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title(['Changes in ',type,' From Z=',num2str(level+1),- to

Z=' ,num2str(level),-g *

ERRYZ Code:

function y=erryz (fulel, file2, level)

% This function computes the error along one YZ slice of two

% files. Filel is the "correct", fiel and file2 is the file

%which is being compared. level is the level of interest.

y=zeros(75,75);

tmpl=clearsource (meshyz (filel, level) ,level);

tmp2=clearsource(meshyz (file2,level) ,level);

for i=1:75

for j=l:75

if tmpl(i,j)-=NaN,

y(i,j)=((trnpl(i,j)-tmp2(i,j) )/tmpl(i,j))*lOO;-

else

y(i, j)=NaN;
end

end

end

mesh (y)

ERRXY.M Code

function y=errxy (filel, file2, level)
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% This function computes the error along one XY slice of two

% files. Filel is the "correct" fiel and file2 is the file

%which is being compared. level is the level of interest.

y=zeros (75,75);

tmpl=clearsource(meshxy(filel,level),level);

tmp2=clearsource(meshxy(file2,level) ,level);

for i=l:75

for j=1:75

if tmpl(i,j)-=NaN,

y(i,j)=((tmpl(i,j)-tmp2(i,j) )/tmpl(i,j))*i00;

else

y (i, j ) =NaN;

end

end

end

mesh (y)

EXPAND.M Code

function y=expand (FILE, THRSH)

% This function takes a file and sets any value above a

% threshold to 30 in order to make the hot points standout.

y=FILE;

for i=l:75

for j=1:75

if y(i,j)>THRSH,

y(i,j)=30;
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end

end

end

GETAXIS.M Code

function y=getaxis(file);

% This function computes the maximum and minimum of a power

% file in order to get values for the axes of a movie plot.

SIZE=size(file);

ZMAX=l;

ZMIN=O;

for i=I:SIZE(I,l)

filel=sqrt(file(i,l)^2+file(i,2)A2+file(i,3)A2);

if filel>ZMAX,

ZMAX=filel;

end

if filel<ZMIN,

ZMIN=filel;

end

end

y=[ZMIN ZMAX];

IDPXY.M Code

function y=idpxy (idfile,level,stat)
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% This function plots a picture of the specified XY plane of

% an ID file. stat is a string describing the IDfile.

figure

idxy=clearsource (meshxy (idfile, level) ,level);

idxy= idxy;

colormap (hsv);

colorbar

pcolor(idxy);

xlabel 'X Value'

ylabel 'Y Value'

title (['material id' 's across an XY cut at

z=' ,num2str(level) ,'.*'3)

text(15,-7,['Results for ',statl);

IDPYZ.M Code

function y=idpyz (idfile, level, stat)

% This function plots a picture of the specified level of an

% idfile. stat is a string description of the idfile.

figure

idyz=clearsource (meshyz (idfile, level) ,level);

idyz=idyz*75/6;

colormap (hsv);

colorbar;

pcolor(idyz);

xlabel 'Z Value'

ylabel 'Y Value'

title (['Material id' 's across an YZ cut at

X=' ,num2str(level), ' *'1)

text(15,-7,['Results for ',stat]);

129



MESHXY.M Code

function y=meshxy (file,pln)

% This file creates a mesh in the specified xy plane

% It also tests the file and plots the total field if

% multiple fields are given in the input.

count= (pln);

test=size (file);

for i=l:75

for j=1:75

if test(2)==l,

y(i,j)=file(count);

end

if test(2)==2,

y(i,j)=sqrt(file(count,l)^2+file(count,2)A 2)/2;

end

if test(2)==3,

y (i, j ) =sqrt (file (count, 1) ̂2+file (count, 2) ^2+

file (count,3) "2);

end

count=count+75;

end

end

MESHXYN.M Code

function y=meshxyn(filel,x,view,TXT)

% This function creates a mesh of the specified yz plane

% and plots the mesh fully formatted.
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y=nrml(meshxy(filel,x),vlu(filel,38,38,38));

figure

y=clearsource(y,x);

colormap (hsv);

mesh(y,view)

xlabel 'X Value'

ylabel 'Y Value'

ziabel IEK^2 normalized to 1 at center'

title (['E Field Distribution Across XY ',num2str(x),'

Plane. '])
msg=['Results for ',TXT];

text (-40,35,0,msg)

MESHYZ.M CODE

function y=meshyz(file,pln)

% This file creates a mesh in the specified yz plane

% It also tests the file and plots the total field if
% multiple fields are given in the input.

count= (pln-1)*75*75+1;

test=size(file);

for j=1:75

for k=1:75

if test(2)==l,
y(j,k)=file(count);

end

if test (2)==2,

y(j,k)=file(count,l)+file(count,2)

end

if test(2)==3,
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y(j,k)=sqrt(file(count,l)-2+file(count,2)'2+

file(count,3)^2) /2;

end

count=count+l;

end

end

MESHYZN.M Code

function y=meshyzn(file,x,view,TXT)

% This function creates a mesh of the specified yz plane

% and plots the mesh fully formatted.

y= (meshyz (file,x))

yzclearsource (y,x);

figure;

colormap (hsv);

mesh (y,view);

shading faceted;

xlabel 'z Value'

ylabel 'Y Value'

ziabel I IEI^2'

title (['E Field Distribution Across YZ Plane at

x=' ,num2str(x)])

msg=['Results for ',TXT];

text (-69,35,-17,msg)
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MMOVIE.M Code

function y=mmovie(file,name,A)

% This function creates a movie through the xy slices of a

% file. This allows cycling through the levels quickly to

% spot hotspots easily.

Y=moviein(75);

for i=1:75

j=i

pcolor(meshxy(file,j));

caxis(A);

colorbar;

colormap(jet);

title ([name,' at Z=',num2str(j),'.'])

xlabel 'Y Location'

ylabel 'X Location'

y(:,i)=getframe;

end

movie(y)

PLOTCY.M Code

function y=plotcy(filel,file2,x,Z)

% This fnction plots the power along a y line along with the

% material id's along the line.Filel is the idfile, file2 is

% the power file, and X and Z define the line of interest.

tmpl=meshyzid(filel(:,l),x);
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tmp2=meshyzid (filel (: 2) ,x);

tmp3=meshyzid(filel(:,3) ,x);

tmp4=meshyz (file2,x);

k=x2;

I=1:75;

plot(I,trnpl(:,k),'x',I,tmp2(:,k),'o,,i,tmp3(:,k),'+',

I, tmp4 (:,k) ,-)

xlabel 'Y Value'

ylabel 'Power (W/mA2)'

tmp3=['Total Power with material ID's at X='];

title ([tmp3,num2str(x),' Z=',num2str(x2),'.1])

PLOTCZ.M Code

function y=plotcz (filel, file2,x,x2)

% This function plots the power along a Z line along with the

% material id's along that line different files. fulel is the

% id file, file2 is the power file of interest. X and Y

% define the line of interest.

tmpl=meshyzid(filel(: ,l),x);

tmp2=meshyzid(filel( :,2) ,x);

tmp3=meshyzid(filel( :,3) ,x);

tmp4=meshyz (file2,x);

k=x2;

I=1:75;

plot(I,tmpl(k,:),'o',I,tmp2(k,:),'+',i,tmp2(k,:),

'x',I,tmp4(k, :), '-')

xlabel 'Z Value'

ylabel 'Power'

tmp3=['Plot of Power and Material ID's at X='];

title ([tmp3,num2str(x),' Y=',num2str(x2),'.'1)
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PLOTX.M Code

function y=plotx(file,x,x2,type);

% This function plots a power file along a y line. X is the

% Y value, X2 is the Z location of the line. type is a

% string giving the style of line to draw.

tmp=meshxy(file,x2);

k=x;

plot (tmp(:,k),type);

xlabel 'Y Value'

ylabel 'E-field strength'

title (['E field along line X=',num2str(x),',

Z=',num2str(x2), 'I])

PLOTY.M Code

function y=ploty(file,x,x2,type);

% This function plots the power file along a y line. x is

% the S value, X2 is the Z value and type is the type of line

% to plot the line as.

tmp=meshyz(file,x);

k=x2;

plot (tmp(:,k),type);

xlabel 'Y Value'

ylabel 'E-field strength'

title (['E field along line X=',num2str(x),',

Z=',num2str(x2),' '])
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PLOTZ.M Code

function y=plotz(file,x,x2,type);

% This function plots the power file along a y line. x is

% the X value, X2 is the Y value and type is the type of line

% to plot the line as.

tmp=meshyz(file,x);

k=x2;

plot (tmp(k,:),type);

xlabel 'Y value'

ylabel 'E-field strength'

title (['E field along line X=',num2str(x),',

Z=',num2str(x2),' '])

POWERAVG.M Code

function y=poweravg(pfile,idfile,matpar)

% This function computes the average power at the center of

% the head as well as across the entire head. It also

% computes the power over three different thresholds. pfile

% is a file of the E-field over the head, idfile is the id's

% of the head mesh, matpar is a file of th ematerial

% characteristics for each id.

Tmp(:,l)=matpar(round(idfile(:,l))+l);

Tmp(:,2)=matpar(idfile(:,2)+l);

Tmp(:,3)=matpar(idfile(:,3)+l);

power=pfile.*Tmp;

powerl=sqrt(power(:,l).^2+power(:,2).^2+power(:,3).^2);
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power~l=powerl/vlu (poweri, 38, 38, 38);

% Compute the average power at the center.

Tmp=O;_

count=O;

for i=37:39

for j=37:39

for k=37:39

Tmp=Tmp~vlu (powerli,1,j ,k);

count =count +1;

end

end

end

cent eravg=Tmp/ count

y (1,1) =centeravg;

% Now compute the average power across the entire head

hpower=powerl(-isnan(powerl));

totalavg=mean (hpower)

y (1,2) =totalavg;

y(l,3)=y(l) /y(2);

% Now compute the power spikes

STZE=size (hpower)

numspikes=O;

num9spikes=O;

num8spikes=O;

count=O;

for i=1:SIZE(1,1);

count=count+l;

if hpower(count)>=.8,

num8spikes=num8spikes+1;

if hpower(count)>=.9,

num9spikes=num9spikes+1;
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if hpower (count) >=l,

numspikes=numspikes+l;

end

end

end

end

numspikes

y(l, 4) =numspikes;

num9spikes

y(l, 5) =num9spikes;

num8 spikes

y(l, 6) =num8spikes;

PWRPXY.M Code

function y=pwrpxy (file, level, stat)

% This functione plots a picture of the power across the

% level specified. stat is a string decripter to be printed

% on the plot.

pxy=clearsource (nrml (meshxy (file, level),

vlu(file,38,38,38) ),level);

figure

colormap (hsv);

pcolor (pxy);

colorbar;

brighten( .75);

xlabel 'X Value'

ylabel 'Y Value'

title (['E field magnitude across an XY cut at

Z=' ,num2str(level), ' *'1)
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text(15,-7,['Results for ',stat]);
text(74.5,77,'E field Mag');

PWRPYZ.M Code

function y=pwrpyz(file,level,stat)

% This function plots apicture of the power across the YZ

% plane specified. stat is a string descriptor to be used in

% the title of the plot.

pyz=clearsource(meshyz(file,level),level);

figure

colormap(hsv);

pcolor(pyz);

brighten(.75);

colorbar;

xlabel 'Z Value'

ylabel 'Y Value'

title (['E field magnitude across an YZ cut at

X=',num2str(level),, I])

text(15,-7,['Results for ',stat]);

text(74.5,77,'E field Mag');

SHRINK.M Code

function y=shrink(file)

% This function shrinks an idfile from the 92X92X95 grid down

% to a 75X75X75 grid to match the E-field files.

count=O;

counts=O;
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yzeros (42 1875,3)

for k=1:92

disp (k)

for j=1:95

for i=1:92

counts=counts+1;

if (i>10 & i<86 & j>10 & j<86 & k>10 & k<86),

count=count+l;

y (count,:) =file (counts, :);

end

end

end

end

end

TERRAM Code

function y=terr (fulel, file2)

% this function calculates teh error between two files across

% all of space.

y=zeros (211873,1);

count=0;

countl=0;

for i=1:75

i

for j=1:75

for k=1:75

count =count-i-;

if sqrt((i3)2 j3)2(-3)2<7

countl=countl+l;

y(countl)=abs( (filel(count) -

file2 (count)) /filel (count)) *100;
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end

end

end

end

VLU.M Code

function y=vlu(file,x,y, z)

% This function finds the value of the file at the specified

% location.

test=size(file);

count= (x-l) *5625+ (y1) *75k (z-l) +1;

if test(2)==l,

y=file(count,l);

end

if test(2)==3,

y~sqrt(file(count,l)A2+file(count,2)^2+file(count,3 )A 2);

end
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