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Abstract

Viscoplastic characterization and fatigue modeling of titanium-based metal matrix

composites (MMCs) was accomplished by combining a unified viscoplastic theory, a

nonlinear micromechanics model, and a linear damage accumulation model. For the

viscoplastic characterization, constant strain rate tension tests were performed on the

titanium 15-3 matrix. Ti-15-3 was then successfully characterized using the Bodner-

Partom viscoplastic theory with directional hardening. Subsequently, the new parameters

required for this theory for Ti- 15-3 as well as previously determined parameters for

titanium 0321 s were incorporated into the micromechanics model, and results from this

model demonstrated excellent correlation with the known material response of the MMiC.

Microstress information extracted from the micromechanics was then employed in a linear

damage accumulation fatigue model. This successfully accounted for the time-dependent

fatigue behavior of silicon carbide fiber and titanium 032 is composites for isothermal

fatigue at 650'C, in phase thermomechanical fatigue (150°C-650°C), and out of phase

thermomechanical fatigue (150°C-650°C). The laminates modeled were [0]4, [0/90]s, and

[0/±45/90],. A new linear damage accumulation model was developed based on the

fatigue behavior of the constituents of the composite. This model was applied to

unidirectional and cross-ply SCS-6/Ti-15-3 laminates at room temperature and 4270 C.

Both models can be used to produce at least an estimate of the fatigue behavior of

titanium matrix composites.

xi



VISCOPLASTIC CHARACTERIZATION AND FATIGUE MODELING OF

TITANIUM BASED METAL MATRIX COMPOSITES

I. Introduction

In recent years, composites have received a lot of attention in a wide variety of

uses. Continuous fiber reinforced composites have been extensively examined since they

are generally very strong in the fiber direction. Historically, polymeric composites have

dominated this field. In such composites, the fibers carried the vast majority of the load,

and the matrix was present just to hold the fibers in place. This yielded a lamina that was

very strong in uniaxial tension along the fiber axis, but very weak in transverse tension or

shear. Another disadvantage is that the matrix material (usually an epoxy compound) had

a low melting temperature. Thus, these composites were poorly suited to high

temperature applications. Since there are many aerospace requirements for performance

at elevated temperatures, epoxy composites have limited use in the aerospace field. As a

result, more robust composite matrix materials such as ceramics and metals were required.

Titanium based metal matrix composites have been the focus of study in recent

years and show good promise in high temperature composite uses. Two such systems

have been tested significantly in the last few years. The first is TIMETAL®21 S, also

known as titanium 0321s (Ti-l5Mo-3Nb-3A1-0.2Si wt-%). The second is titanium 15-3

(Ti-l5V-3Cr-3A1-3 Sn). Both of these alloys maintain workable mechanical properties up

to about 800'C and have been successfully combined with silicon carbide fibers (SCS-6)

to form viable metal matrix composites.



Although metal matrix composites (MMCs) solve the problem of operating at

elevated temperatures, they introduce many other factors which must be resolved before

being put into use. One of these characteristics is the fact that the matrix material in an

MMC has comparable strength to that of the fiber material. This is contradictory to the

behavior of epoxy matrix composites used in the past. In an epoxy matrix composite,

failure of the composite is based almost entirely on the failure of the fibers. Since the

matrix material can hold a more equal percentage of the load in an MMC, composite

failure is more complex. This even load distribution results in a greater importance of the

micromechanical interaction between the fibers and the matrix.

Another trait of MMCs which must be understood is the nature of the matrix

material itself Since the matrix material is metallic, it usually exhibits some degree of

inelastic behavior, making analysis substantially more difficult. Many of the metals being

examined as matrix materials are relatively new alloys and viscoplastic characterization is

incomplete. To accurately predict the fatigue behavior of MMCs, it is necessary to model

the micromechanical behavior of the composite as well as the viscoplastic behavior of the

matrix material.

The present study has 3 distinct phases. The objective of the first phase is to

determine the viscoplastic material constants for Titanium 15-3 at temperatures ranging

from 25'C to 700'C using the Bodner Partom theory with directional hardening [1, 2]

based on experimental constant strain rate data. In order to span the entire temperature

range, experimental data from a previous study [3] are combined with the data obtained

under the present effort. These parameters will then be integrated into a micromechanics
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model [4] to accurately predict behavior of a titanium matrix composite under a variety of

mechanical and thermal loading cycles.

The second phase of the present study will attempt to modify an existing fatigue

behavior model [5-8] by removing the time dependent damage terms. The information in

these terms will be replaced by information from the micromechanics model which

accounts for the time dependent viscoplastic behavior of the matrix material. Results from

the model are compared to data for titanium 0321s matrix composite fatigue data for

different frequencies in both isothermal and thermomechanical fatigue. Since the model to

be modified is purely empirical, removing the time dependent terms will reduce the

number of parameters required to predict the composite's behavior. Additionally,

allowing the micromechanics model to address the time dependency through viscoplastic

behavior theory results in a more physically based model.

Most fatigue prediction models (including the model used in phase II of this study)

rely on empirical curve fitting to experimental data. The constants involved have little

relation to the physical properties of the constituents. The goal of the third phase is,

therefore, to develop a new model based on the physical constituent properties of a

titanium 15-3 matrix composite. This model would predict composite fatigue behavior of

a lamina based on the behavior of the matrix material, the fibers, and the interface region.

It would then predict behavior of a laminate by that of each of the layers. Results from the

model are compared with isothermal fatigue data for titanium 15-3 matrix composites.

A model based on the physical properties of a composite's individual components

has many advantages. It is easier and more intuitive to determine the properties of each

3



individual component, and then combine these in a relatively straight forward manner than

empirically establishing a set of different constants which might change for each new

loading combination. Additionally, a model based on the behavior. of the constituents will

be more apt to work for a variety of materials with little alteration.

In the present study, the two models discussed in phases II and III are presented as

simple approaches for predicting the fatigue life of metal matrix composites. The more

complicated attributes of viscoplasticity and time dependency are handled by the

micromechanics model. Both fatigue prediction models prove to work fairly well at

modeling the existing experimental data.

4



H. Background

Titanium matrix composites have recently received significant attention for use in

high temperature aerospace applications because of high stiffness and strength

characteristics at elevated temperatures. The use of metal as a matrix, however,

introduces several new difficulties when attempting to predict the composite's behavior

under either static or cyclic load. Since the properties of the metal matrix are comparable

to the properties of the silicon carbide fibers, the behavior of the matrix material can no

longer be neglected as in classical composite behavior theory. Thus, it is necessary to be

able to predict the behavior of the constituents at the micromechanical level to successfully

predict the behavior of the composite. This requires knowledge of how the fiber material

and the matrix material behave under load.

Although the fiber material can be modeled as a linear elastic material due to its

brittleness, this is not true for the metal matrix material. Like most metals, titanium

exhibits linear elastic behavior at stresses below its yield point, but demonstrates plastic

behavior above yield. Therefore, a more complicated micromechanical model with the

capability to handle viscoplastic effects is required to predict the material's behavior.

2.1 Viscoplasticity

Time-dependent material behavior is generally accounted for by assuming the

material represents either viscoelastic or viscoplastic response. These two theories model

unique material responses. Viscoelastic theories improve on linear elastic theories by

taking into account the effects of strain rates in the form of creep and stress relaxation.

5



Viscoelasticity is discussed in texts at the graduate level [9]. Generally, viscoelastic

behavior can be expressed as in Equation (1) [10]:

M N
bm-a(t) = a a-8(t) (1)

m=O 
n=O dt

where a is stress, e is strain, and the a's and b's are material constants. Several

researchers have proposed a more advanced variation of this theory with the integer

derivative being replaced by one of fractional order [10, 11]. Since viscoelasticity theory

accounts for time dependent behavior, it will generally be more accurate than linear elastic

theory. However, it requires the solution of potentially complicated differential equations

and still does not address inelastic behavior.

Viscoplastic theories seek to model the time-dependent material behavior in the

plastic realm. As a result, they can be very complicated and often do not yield a closed

form solution. Viscoplastic theories can be generally divided into two subsets: classical

and unified. Classical viscoplastic theories generally separate the total strain rate into four

terms as follows:

*TOT E *TH *P CR
TOT =sEj +i+jij (2)

where BE is elastic strain, e1T is thermal strain, BP is plastic strain, and 6CR is strain due to

creep. In contrast, unified viscoplastic theories combine the creep and plastic strain terms

into a single inelastic strain term:

*TOT - E THJ +*1j
ji =.I +si +a (3)

where e, is inelastic strain. There are many viscoplastic theories of material behavior in

literature, but only three unified models will be discussed in the present document: the

6



Miller, Walker, and Bodner-Partom theories [3, 12-17].

2.1.1 Internal State Variables [31

Each of the three unified viscoplastic theories discussed in the present effort have a

number of state variables such as applied stress, elastic modulus, etc. In addition, the

models also have at least two internal state variables. For the three theories discussed

here, the internal state variables are inelastic strain, back stress, and drag stress. Inelastic

strain is defined as the total strain minus the elastic and thermal strains. Back stress is

used to account for kinematic hardening. During inelastic deformation, dislocations

accumulate on the slip planes in the material resisting the applied stress. When the loading

is reversed, the amassed dislocations aid in movement. Drag stress corresponds to the

average dislocation density, which leads to isotropic hardening. Drag stress also accounts

for cyclic hardening or softening of the material.

2.1.2 The Miller Model [121

The Miller model of viscoplasticity is strongly related to underlying microscopic

physical mechanisms. It is based on a single hyperbolic sine strain rate function and two

equations to account for work-hardening and recovery. The three independent state

variables (ISVs) in the Miller model are inelastic strain, rest (or back) stress, and drag

stress. Since a single strain rate equation generates all of the inelastic strain, the model is

unified. The Miller model requires the determination often constants to model

viscoplastic behavior of a material, not including the elastic modulus, E. It is difficult to

characterize a material using this model because it requires cyclic constant strain rate tests

7



which are difficult to perform [3].

2.1.3 The Walker Model [13, 31

The Walker model is based on a nonlinear modification to a three-parameter solid

comprised of a spring and Voigt element in series. Like the Miller model, it is a unified

theory with three ISVs: back stress, drag stress, and inelastic strain. The Walker theory

requires 16 material parmaters to model viscoplastic behavior. With several assumptions,

the number of constants required to characterize a material using this model can be

reduced to 9. However, like the Miller model, the Walker model requires the use of cyclic

constant strain rate tests to provide the experimental basis [3].

2.1.4 The Bodner-Partom Model

The Bodner-Partom theory was originally proposed as a unified viscoplastic theory

with inelastic strain and drag stress as the only two ISVs [1]. It assumes isotropic

behavior and isothermal loading. Later efforts modify the original Bodner-Partom theory

to include kinematic hardening, back stress, and nonisothermal effects [2, 14-17]. The

basic Bodner-Partom theory can be represented in three dimensions by these equations:

• (nSij1) (nl) __) n1

91. = Do Sjexp - (4)

M* Zo Z (5)

Wp = C•ijgij (6)

where Sij is deviatoric stress, J2 is the second invariant of deviatoric stress, Z is the state

8



variable drag stress, Wp is plastic work, and the remaining undefined terms are material

constants.

When the basic theory is modified to include directional hardening and

nonisothermal effects, the equations are changed to the following:

Do ! (ZI +zD)2jn(

where the major alteration is the separation of the drag stress, Z, into two terms, Z' and

ZD. Z' represents the isotropic hardening effects, and ZD represents the directional

hardening effects. Z' and ZD are given by:
I _ ri

ZI = mJWp (Z ZI - AZ I--Z

+,[A7 I-2 Zl +(z l-Z2 (8)

ZD 3ijUij (9)

S-- m2 Wp(Z 3 uij - Oij)

-ij -.jr 2 T + zij Z 3  
( 1 0 )

-21 Z 1  Z 3 OT

- i (11)uij Yi

where all terms defined earlier keep those definitions, and the new terms are additional

material constants.

9



For unidirectional loading, the Bodner-Partom theory with directional hardening

simplifies to the following equations:

o= E(c -c 1 -s T) (12)

2D0 [e (z +ZD 1 j (13)

2 1 =mlWp-1AIZ zI-z2

(14)

eZ z, (zOZ z2]

*D _D "Dr'. ZD aZ 3

ZD =m 2 WV Z 3_zDA 2 Z __ + (15)2 '\ = M2a lJZ A Z ) 2 Z 3 fT

" -p =OaK (16)

where all terms are as defined previously. All the material properties, except for Do, but

including E, are dependent upon temperature. It is this form of the Bodner-Partom theory

which is used in the present effort.

Researchers have found that the Bodner-Partom model is the easiest to use to

characterize the viscoplastic behavior of titanium alloys for two reasons: there is a

procedure available to find the constants [18], and the experiments required (constant

strain rate tests) are relatively easy to perform [3]. The modified Bodner-Partom theory is

used in the present study both directly in the determination of constants to characterize

titanium 15-3 and indirectly through the use of the micromechanics model.

10



2.2 Micromechanics

To predict the behavior of a composite, it is necessary to understand how the

constituents of the composite behave micromechanically. This is especially true for metal

matrix composites. There have been several micromechanical models developed in recent

years to predict the behavior of metal matrix composites. One approach is to model the

composite as a finite element mesh with the elements having the properties of the fiber or

the matrix as appropriate [19]. Other models use some elements of the mesh to model the

interface between the fiber and matrix, but use matrix properties to characterize the

interface [20]. Still others attempt to model the interface as a distinct entity which has

unique properties which model the debonding or slippage that occurs during composite

loading [4, 21-23].

The present study uses one of these latter types of models to provide the

micromechanical predictions of titanium matrix composites. The model was developed at

the Air Force Institute of Technology by Robertson and Mall [4, 23]. It is based on an

Aboudi unit cell [24] as shown in Figure 1. The stresses in each of the four regions is

assumed to be constant. The model uses the Bodner-Partom theory of viscoplasticity to

characterize the matrix material. It treats the fiber material as linear elastic and allows for

damage in the interface between the fiber and matrix.
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Figure 1. Representative Volume Element and Analysis Cell

The laminate analysis is achieved by employing the classical laminated plate and

assembling the nonlinear constitutive relations from each ply into a global laminate

nonlinear equation. The general form of the assembled equation is:

[ P' ]{ : }{} T N - ~ ]{4g} (19)

where 0s and k are the midplane strain and curvature, respectively, oYreg is the region

stresses for each ply, fAT is the thermal component, N and M are the applied forces and
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moments, and SPreg represents the region plastic strains in each ply. The matrices, P, PN,

and PP relate the various quantities according to the model [26-27].

Since all the fibers do not debond at exactly the same time when the interface

maximum stress is reached, a statistical model must be used to predict the behavior of the

interface in the micromechanics model [27]. The model assumes that debonded interfaces

carry zero stress and that the interfacial stresses can be represented by a single Gaussian

distribution. From this assumption, the average interfacial displacement is determined to

be:

,avg { (I,ult_ m)2 j + m I - erf(.Iult -_ j (20)

where cym is the mean interfacial stress, Cyult is the stress at which all interfaces have failed,

S is the standard deviation of the stress distribution, and erf is the error function.

Equation 20 forms the basis of the interfacial damage model. The value 65avg divided by

the fiber diameter yields an effective way to measure the average interfacial damage in the

composite as determined by the micromechanics model. For the purposes of this study, a

61,avg/fiber diameter ratio of .04 is considered to be fully debonded.

2.3 Fati2ue Life Models

Fatigue in any material, homogeneous or not, is often hard to predict. Over

multiple load cycles, surface or interior flaws may dramatically affect the behavior of the

material under load. This is especially true for either very high or very low applied loads.

Fatigue behavior in composites is even harder to predict due to the presence of an

imbedded flaw: the interface between the fiber and matrix materials. The interfacial

13



reactions to loading makes accurate modeling of fatigue behavior even more difficult.

This difficulty is somewhat lessened when modeling unidirectional composites with the

fiber axis parallel to the applied load, because interfacial failure no longer plays a major

role.

Despite the apparent difficulties in modeling composite fatigue, many researchers

have attempted with varying degrees of success to model fatigue in titanium matrix

composites. Several have proposed models based on statistical considerations of the

behavior exhibited by one or more constituents of the composite [28-30]. Other

researchers have developed empirical functions to model fatigue based on the behavior of

the components [6, 31]. Still other researchers have developed a model based on the

stress redistribution between layers of the composite as the various layers reach their

maximum stress [32]. In this latter approach, the fatigue of a composite containing 0'

plies is assumed to be controlled primarily by the behavior of the 0' plies [32].

The present effort modifies one of the empirical models by using micromechanics.

This model was developed by Nicholas, et. al. in a series of publications [5-8, 33]. The

basis of the model for isothermal fatigue is shown in Equation (21):

1 1 1 (21)
N =NC Nt

where N is the cycles to failure of the composite, N, is the cycles to failure due to cyclic

effects, and Nt is the cycles to failure due to time dependent conditions. N, and Nt are

further expanded as follows for isothermal fatigue:

Nc = A(Acy)- m  (22)
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1 1 O'max dc•

Nt f (max(l-R) Ra tc() (23)

tc = BY-n (24)

where f is frequency, R is the stress ratio, Acy is the applied stress range, and t, is the time-

to-failure under constant stress. All other parameters in the Equations (22-24) are

empirical constants. The model was later modified [7] by adding an interaction term to

better match experimental data:

1 1 1 1 (25)

N Nc Nt Ni

Ni=C NcNt (26)

where Ni is the interaction term and C is another empirical constant. In this model, the

empirical parameters are functions of temperature.

A nonlinear variation of this model is presented in reference [5] for isothermal

fatigue. In this model, the interaction term is eliminated and the time dependent term is

replaced by a nonlinear term:

N + = 1 (27)

The cyclic damage term is further modified as follows:

Nc = A(Aaeff)- m  (28)

Ac eff = a max(1 - R)p (29)

where R is the stress ratio and p is an additional empirical constant. For p=l, Ac is the

governing term. For p=O, cmax is the governing term. The empirical constants in this
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model are not the same as the constants for the linear damage accumulation model

discussed above.

A thermomechanical fatigue prediction model has been developed which was also

based on the isothermal nonlinear model described by Equation (27) [5]. In this model,

the cyclic term is further broken down into terms governed by the fiber and matrix stresses

as follows:

1 1 +1 (0I -I+ (30)
Nc Nf Nm

where Nf is the fiber stress based term, and Nm is the matrix stress based term. Nf and Nm

are defined as follows:

N,0I- cyf'na(l-Rf)p1

Nf_ 0 a (31)

Nm Bm(A(Ym)-nm (32)

where cfnm is maximum stress in the fiber, Rf is the stress ratio of the fiber, ACm is the

stress range in the matrix, and No, c0, p, B., nm are empirical constants. c5m and cf must be

determined by a micromechanics model of the composite. After some assumptions on the

nature of the temperature depency of B and n in Equation (24), N, is redefined for

thermomechanical fatigue as:
n

1= - max F (33)

Nt fB(1- R)2
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I R_ -for in - phase TMF

F= n+2 n+1 (34)
1 1

- nfor out - of - phase TMFn+1 n+2

where f, B, n, R are as defined in Equations (23) and (24). F produces very accurate

results for n>2 and R=O. 1 [5]. Once again, the empirical parameters in this model are not

necessarily the same as the parameters developed for the other two models.

An earlier variation of the thermomechanical fatigue model does not use a time

dependent term [8]. Thus the cycles to failure of the composite based on the

micromechanic stresses is given as:

1 1 1 - + -- (35)
N Nf Nm

Nf 10 g (36)

Nm B(Acym)-n (37)

where all parameters are as defined previously with one exception: ca0 in this formulation

represents the fiber stress when the laminate is subjected to a static load at its ultimate

tensile strength. This model yields another set of empirical constants.

A common characteristic of all of the above models is the inability to predict the

behavior of the composite under varying loading conditions using just one model with one

set of constants. The present effort attempts to eliminate the time dependent terms by

allowing the micromechanic model to account for time dependent phenomena. The

primary equation used in the present method is Equation (35). The fiber and matrix terms
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are defined by Equations (31) and (32).

2.4 Experimental Work

Most of the experimental data used for the present effort were generated

previously by a variety of agencies including AFIT, Wright Laboratories, and NASA.

Stress-strain data for titanium 15-3 at varying strain rates and elevated temperatures

(482+) were generated by NASA's Langley Research Center [3]. Titanium 15-3's elastic

properties for temperatures up to 650'C were also generated by researchers at NASA

Langley [34]. Thus, only data for temperatures under 482°C were required to be

generated by this study to characterize this alloy. The Air Force Wright Laboratories

Materials Directorate has already tested and characterized titanium 0321 s using the

Bodner-Partom with directional hardening model [35].

Metal matrix composites using titanium 1321 s or titanium 15-3 as the matrix have

been extensively tested at a variety of research institutions under isothermal and

thermomechanical fatigue loading. Table 1 shows the composite layups, load cases, and

references available to the present study for titanium 032 Is based systems, and Table 2

contains the same information for titanium 15-3 based systems. Unless otherwise noted,

the load ratio, R, is equal to 0.1 in all cases.
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Table 1. SCS-6/Ti-0321s Fatigue Data

Layup Iso/TMF Temp (°C) Freq (Hz) Ref Notes

[0/90], Iso 650, 815 0.01, 0.1, 1, 5
200

[0/90], TMF 150-650 0.00556, 5 In Phase & Out of
0.000556 Phase

[0]4 TMF 150-650 0.00556 36 In Phase & Out of
Phase

[0/±45/90], TIF 150-650 0.00556 36 In Phase & Out of
Phase

Table 2. SCS-6/Ti-15-3 Fatigue Data

Layup Iso/TMF Temp (°C) Freq (Hz) Ref Notes

[0]8 Iso 25 1, 10 37-39
427 0.33 40 R=0
650 10 41

[0]8 TIF 93-538 0.0056 40 In/Out of
Phase, R=0

[90]8 Iso 25 1 37, 38
427 .33,0083 40 R=0

[90]8 TMF 200-427 0.0083 40 In/Out of
Phase, R=0

[0/90]s Iso 25 10 37
427 2, 0.02 42
650 10 41

[0/90]s TMF 149-427 0.02 42 In/Out of
Phase

[0/±45/90]s Iso 25 10 37
427 0.02 43
650 10 41

[0/±45/90]s TNF 149-427 0.02 43

[±45]2s Iso 427 0.02 44

[±45]2s TNF 149-427 0.02 44
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II. Methodology

Titanium based metal matrix composites have been extensively examined recently

for use in high performance aerospace applications at elevated temperatures. Because of

the relatively high cost of titanium matrix composites, it is highly desirable to develop an

accurate model to predict the behavior the these materials under a variety of load cases.

This effort uses two different approaches to predict fatigue life. One modifies an existing

model [5-8] by replacing the time dependent terms with information from a

micromechanics model [4]. The other creates a new model based on the fatigue behavior

of the homogeneous matrix material and the micromechanical stresses [4].

Since stress strain behavior of titanium is dependent on the loading rate, both of

these approaches require a good understanding of the viscoplastic behavior of the matrix

material. The modified Bodner-Partom unified viscoplastic theory [1, 2, 16] is used to

characterize the titanium matrix; thus, requiring the development of a set of material

dependent constants. Constant strain rate tensile tests are required to provide

experimental data to calculate these parameters. Other researchers have done this and

developed the constants for titanium P321s [35]. However, this has not yet been

accomplished for the titanium 15-3 alloy using the Bodner-Partom theory with directional

hardening.

3.1 Viscoplastic Characterization of Ti-15-3

Characterizing the titanium 15-3 matrix required two distinct tasks. The first was

to select and perform experiments at appropriate temperatures to compliment the data

already available in the literature [3]. The second task was to determine what constants in
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the Bodner-Partom model will best predict the experimental curves.

3.1.1 Experimental Procedure

The material used for the experimental portion of the present study was titanium

15-3. The test panel used was fabricated using the same procedure as for the composite

form. The matrix layers are thin, cold-rolled sheets of titanium. Usually, the fibers and

titanium sheets are arranged in the desired layup and then joined by hot isostatic pressing

[3]. This process was used on the titanium sheets without the fibers to produce a

homogeneous panel of titanium. The panel was then cut into individual rectangular

samples, 152.4 mm x 12.7 mm x 1. 84 mm in size. A total of 5 tests were accomplished: 1

at room temperature and a strain rate of 0.00 1/s, 2 each at 3 15'C and 427°C with strain

rates of 0.01/s and 0.0001/s.

The tests were conducted on a servo-hydraulic test stand (Material Test System

808) equipped with a 10 kip load cell and programmed for constant strain rate. The data

collection was accomplished on a Zenith 248 computer with the AFIT developed program,

BETASTAT. After receiving test parameters from the user, this program records the data

from the test stand into ASCII files. In all of the tests, axial strain was measured with a

0.5 inch gage length, high temperature, quartz rod extensometer (MTS model 632.5 Ob-

04). For the room temperature test, a transverse strain gage was also mounted on the

sample to measure off-axis strain. For the elevated temperature tests, a thermocouple was

mounted on each side of the sample to control temperature generated by parabolic lamps.

The lamps were mounted on the test stand to heat each side of the specimen. The thermal
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strain was measured after heating.

3.1.2 Constant Determination

Determination of the Bodner-Partom constants was accomplished on a Micro

Technix 486 DX computer using MathCad 5.0+ (MathSoft). The viscoplastic algorithm

developed by Robertson [4] was translated from FORTRAN to Borland C++ version 4.0.

It was also reformulated from uniaxial load control to uniaxial strain control. The C++

program was then linked to MathCad 5.0+ as the function bodpart(M), where the

argument M is a matrix of the constants and strain control information. The C++ code

used to create bodpart(M) is located in Appendix A.

Since the Bodner-Partom theory does not result in a closed form solution, an

iterative algorithm is required to determine the level of stress at a given level of strain.

The sequence of steps used to compute the stress for a single uniaxial strain-time

increment is given below.

(i) Initialize the stress and elastic strain rate at interval tp = tp-1 + At by assuming

that the response is purely elastic:

U p =p-1 + EAt (38)

=I 0 (39)

(ii) Calculate the inelastic strain rate resulting from the directional and isotropic

hardening resulting from the current values of GY and 0 using the Bodner-

Partom theory:

Wp = pI (40)
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Q m~palZj(l-r)(Z I -Z2)ri

Q= - -IP I P(41)

Zp

dZI mlZ 3W*p - (42)
1 

Q
At

Z4 = Zp_1 + dZI (43)

Q2 = -m 2 p (44)

- M2 Z3Wp +Q 2 p-1  (45)
1

--- Q2At

p = 4Z D (46)

[- r I D 2n-

•I 2D 0  1 (Zp + Zp ]

Cal - exp (47)
.0 2 (Y

(iii) Determine the change in the effective inelastic strain rate from the calculated

value in step (2) and the value used for the previous iteration:

50 = ýIea1 _ 6I (48)

(iv) Calculate the scaling ratio, R, by:

for 891 < 0
R = 9 8 a (49)

'ýI - for 891 >_ 089' + k59 max

where k is a user-supplied constant (usually between 2 and 30) to control
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convergence stability and 8 is the maximum change in strain rate between

iterations and is given by:

~max 32[.2 + 2(Vi)21 (50)

(v) Update the inelastic strain rate with the new scaling ratio:

I 0 + & R max (51)

(vi) Use the new inelastic strain rate to calculate the stress for the current

iteration:

CYp = CYp-1 + E(ý- I)At (2

(vii) Check convergence. If:

< 0.001 (53)

8Smax

then use the value of cp calculated in step (vi) and proceed to step (i) with the

next time step. If not, return to step (ii), using the new values of stress and

inelastic strain rate.

Once the Bodner-Partom algorithm was imbedded in MathCad, the experimental

data were imported and the two curves were compared. The constants were then varied

until a good match between the experimental and analytic curves was achieved. The

constants were assumed to be functions of temperature. Therefore, this was accomplished

at each temperature and strain rate. The constants were allowed to differ between

temperatures, but not between strain rates.
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3.2 Embeddin2 Micromechanics into Existing Model

In the first phase of the present study, the viscoplastic Bodner-Partom constants

for titanium 15-3 were determined for later use in a micromechanics model. The second

phase of the present effort employs the micromechanics to eliminate the separate time-

dependent terms in an existing fatigue life theory [5-8] previously discussed in section 2.3.

The removal of the time-dependent terms from this model leaves the following 3

equations:

1 1 1
-I + (54)

N Nm Nf

NoI1. f,m•(1-R)P-

Nf =10 (Yao ) (55)

Nm = Bm(Acm)-n- (56)

where afmax and am are the microstresses in the fiber and matrix respectively, R is the

stress ratio, and No, (o, p, Bin, and nm are empirical material constants. Unlike in earlier

versions of this model [8], c0 does not have a defined physical significance in this study. It

is used here as an additional empirical constant.

The micromechanics program, LISOL [4], was used with Neu's Bodner-Partom

constants [3 5] for titanium 0321 s and the Bodner-Partom constants developed for titanium

15-3 in this effort to determine the microstresses in the composite. The SCS-6/Ti-0321 s

composite was emphasized in this phase, because fatigue life data at varying frequencies

are readily available [5], allowing comparison's between different load rates. In each case,
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the maximum fiber stress, usually in the 0' ply, and the maximum matrix stress, usually in

region 2 of the 00 ply, were used. The values were taken from the 20th cycle to allow the

viscoplastic effects time to stabilize. The microstresses from LISOL were loaded into

MathCad and curve-fitted, using a second or third degree polynomial, to provide

continuous functions with the applied composite stress as the argument. The functions for

yf,mx and Acym were subsequently inserted into the Equations (54-56) above and compared

to experimental data. The constants were then varied until a good curve fit was achieved.

3.3 Constituent Behavior Based Model

This model was developed by assuming linear damage accumulation behavior, and

that the matrix material in a composite behaves under fatigue similarly to the

homogeneous matrix material. This theory was developed for unidirectional or cross-ply

laminates composed of 00 and/or 900 plies where the fatigue life of the 0' plies is given as:

1 1 1- I (57)
N Nm Nf

and the fatigue life of the 900 plies is given as:

1 1 1 1 (8I- I (58)
N Nm Nf N,

where N1 is a term driven by the fiber-matrix interface damage.

The behavior of the matrix material is shown in the following equation:

Nm = BmCT-n (59)

where a is the maximum applied stress, and Bm and n are material constants. The stress

ratio, R, for the development of this theory was 0.1. The fibers are assumed to behave the

same as in Equation (55) from Section 3.2. The behavior function for the interface in the
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900 ply was developed by fitting a curve to data retrieved from LISOL denoting

approximate cycle count to complete interfacial failure. The resulting curve was then

modified to account for the propagation of the interfacial cracks into the matrix material.

Experimental data from three tests [38] were required to develop this model.

Fatigue data for titanium 15-3 were needed to determine the material constants for Nm,

fatigue data for a 0' laminate were required to determine the constants for Nf, and, finally,

data for 90' plies were used to determine the constants for NI. In each case, microstresses

from LISOL were expressed as continuous functions of the overall applied stress. These

functions were then used as the input into Equations (57), (58), (59), and (55) to

determine the material constants which best matched the experimental data. Once the

constants required to predict lamina behavior were determined, LISOL was used to

determine the level of stress seen by each ply of a cross-ply laminate. These stresses were

then used to develop life predictions for each ply, and this information was used to

determine the fatigue life of a cross-ply composite. Several combination techniques were

explored; including linear damage accumulation, geometric averaging, and use of the 00

ply microstresses.
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IV. Results and Discussion

Titanium based metal matrix composites have many mechanical and thermal

properties which make them desirable for use in high performance aerospace applications.

Their cost, however, makes it even more desirable to be able to predict their behavior

under load without expending material to do so. To understand the behavior of the

composite, it is necessary to understand the micromechanical behavior of each of the

constituents in the composite. The fiber material, silicon carbide, can be accurately

depicted as a brittle linear elastic material. The matrix material, titanium, however,

requires a more complex viscoplastic theory to accurately model its behavior. The model

chosen for the present effort is the Bodner-Partom theory with directional hardening [1, 2,

16].

Since the alloys in question, titanium 0321s and 15-3, are relatively new, they must

be properly characterized before use in the micromechanics model. This has been

accomplished for the 0321s alloy [35] using the desired theory. Characterization using

Bodner Partom with directional hardening has not been done for the 15-3 alloy, although

previous efforts have characterized titanium 15-3 using an earlier variant [3]. The first

phase of the study characterizes titanium 15-3. It then puts the new material parameters

into a micromechanics model to predict the behavior of titanium 15-3 matrix composites.

The second phase of the present effort uses the microstress predictions from the

micromechanics to replace the independent temporal terms in a previously developed

fatigue model [5-8]. This model is used to predict behavior of the composite under

isothermal thermomechanical fatigue at various temperatures. The final phase of the
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present effort attempts to create a new fatigue behavior model based on the

micromechanics and constituent fatigue behavior.

4.1 Characterization of Titanium 15-3

Titanium 15-3 was characterized using the Bodner-Partom unified viscoplastic

theory with directional hardening. Experimental data for temperatures of 482'C and

above were available from other sources [3], but data for temperatures under 482'C had

to be developed as part of this effort. Once the data required were obtained, the material

constants were obtained through iterative curve-fitting in MathCad.

4.1.1 Experimental Results

Figures 2, 3, and 4 show the stress strain curves obtained by testing titanium 15-3

at constant strain rates at room temperature, 315'C, and 427°C, respectively. The strain

rates are as indicated in each figure.

Temp = 25 C, Strain Rate = .001/s
1000

500

0
0 0.005 0.01 0.015 0.02

Strain

Figure 2. Ti-15-3, Room Temperature
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Temp =315 C
1000I I

500

0

0 0.005 0.01 0.015 0.02

Strain

0.01/s
__ 0.0001/s

Figure 3. Ti-15-3, 315'C

Temp = 427 C
1000 I I

500

0
0 0.005 0.01 0.015 0.02

Strain

S....... 0.01/s
0.0001/s

Figure 4. Ti-15-3, 427'C
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Fracture was not reached in any of the five tests. The 0.0001/s curve at 427°C was cut

short due to saturation of the memory available to collect the data. In both the 315 0C and

the 427°C tests, differences in strain rate did not make a significant impact. During the

room temperature test, Poisson's ratio, v, was also determined and is graphed versus axial

strain in Figure 5:

Poisson's Ratio vs. Axial Strain

0.4

0.2

0
0 0.01 0.02

Axial Strain

Figure 5. Poisson's Ratio for Ti-15-3

The values in the elastic region vary from about 0.355 to 0.365. This corresponds very

well with the previously determined [34] value of 0.36 for titanium 15-3. The microstrain

gage slipped as the material reached its yield point resulting in the transverse strain, and

thus v, dropping down to 0 in the above graph.

The thermal expansion coefficient for titanium 15-3, (x, was determined at 315oC

and 427°C with 25°C as a reference temperature by measuring the thermal strain before

loading occurred. At 315'C, oc was calculated to be 11.1 x 10-6 m/m/IC, and at 427°C, a

was determined to be 14.7 x 10-6 m/m/0 C. Both of these values are significantly higher

than those previously determined by other researchers [34] who reported values of about
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9 x 10-6 m/m/0 C in this temperature range. Because the previously determined values have

been generally accepted by the research community, they were used in the present effort.

4.1.2 Viscoplastic Characterization

After the stress strain data were acquired from the experiments and previous

research [3], they were inputted and plotted in MathCad. The viscoplastic algorithm was

created and linked to MathCad via the function bodpart. The initial guess of the Bodner-

Partom constants was taken from reference [23]. These previous constants were

determined from an incomplete set of experimental data and were found to predict the

elastic behavior and the yield point with some degree of accuracy, but did a poor job of

predicting plastic hardening.

After several iterations, the Bodner-Partom constants for titanium 15-3 were

determined to be as follows:

Temperature dependent constants:

Table 3. Temp. Dependent Bodner-Partom Constants

Temp E Z2 Z3 n a, = a2  M2
(°C) (GPa) (MPa) (MPa) (sec-) (MPa"1)
25 86.3 1200 250 4.5 108 .005

315 80.4 1070 454 2.9 4.4x106  .04

427 77.5 1020 550 2.7 10-5 .05

482 72.2 850 1100 1.6 1 5

566 64.4 750 2400 1.05 2.5 15

650 53.0 650 3000 0.9 3 20
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Temperature independent constants:

Do = 104 s1 Z 1 = 1300 MPa r, = 3 r2 = 3 mi = 0 Mpa'

Figures 6-10 show the experimental behavior of titanium 15-3, the behavior predicted by

the previous constants, and the behavior predicted by the new constants at the six

temperatures in Table 1.

Temp = 25 C, Strain Rate = .001/s
1000

---------------------- -------------------------

r/ ,"

'" 500 -

0
0 0.005 0.01 0.015 0.02

Strain

Experiment
Present Constants

. Previous Constants

Figure 6. Ti-15-3, Room Temp, .001/s

As Figure 6 shows, both the constants from previous work and the ones

determined in the present effort correlate well with the experimental results. The present

method is slightly closer to predicting the actual behavior. As temperature increases, the

difference between the old and new constants is more pronounced.
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.Temp= 315 C, Strain Rate =.01/s

1000

,. .. - ............... ............---.............................

S500 /j

0
0 0.005 0.01 0.015 0.02

Strain
- Experiment
-- Present Constants

-------.Previous Constants

Figure 7. Ti-15-3, 315'C, .01/s

Temp = 315 C, Strain Rate = .0001/s
1000 T -

-- -- - -- - -- -- -- -- -- - -- -- -- ---- ............... . . . . . . . . . . . . . . . . . . . . .

500

0 0.005 0.01 0.015 0.02

Strain

- Experiment
Present Constants

-Previous Constants

Figure 8. Ti-15-3, 315'C, .0001/s
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Temp = 427 C, Strain Rate = .01/s

1000

.. ........................... .................... .........
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Figure 9. Ti-15-3, 427'C, .01/s

Temp = 427 C, Strain Rate = .0001/s
1000 I 1
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0 0.005 0.01 0.015 0.02
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Figure 10. Ti-15-3, 427'C, .0001/s
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Experimental data from other researchers [3] were used to generate the constants

for temperatures above 427°C. At these higher temperatures, strain rate became more of

a factor. Figures 11-16 show the stress strain curves for 482TC, 566TC, and 649TC. Each

of the graphs contains the experimental stress strain curve, the curve predicted using the

previously developed constants, and the curve predicted by the new constants.

Temp = 482 C, Strain Rate = .01/s
1000

S ., ._ . .. ............ . . . . . . . . . . . . . . . . . .

500

0 --

0 0.005 0.01 0.015 0.02

Strain
Experiment
Present Constants
Previous Constants

Figure 11. Ti-15-3, 482'C, .01/s
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Temp = 482 C, Strain Rate = .0001/s
1000
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Figure 12. Ti-15-3, 482"C, .0001/s
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Figure 13. Ti-15-3, 566'C, .01/s
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Temp = 566 C, Strain Rate = .0001/s
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Figure 14. Ti-15-3, 566°C, .0001/s
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Figure 15. Ti-15-3, 649°C, .01/s
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Temp = 649 C, Strain Rate = .0001/s
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Figure 16. Ti-15-3, 649'C, .0001/s

As can be seen in the last 6 figures, titanium 15-3 behaves substantially different at

temperatures above about 450'C than at temperatures below 450'C. Strain rate is much

more important in establishing the shape of the stress strain curves for the higher

temperatures. Additionally, the behavior after yield at the higher temperatures is nearly

perfectly plastic. Since the previously used constants predict perfect plasticity at all

temperatures, they perform nearly as well as the new constants at the higher temperatures.

The new constants tend to overpredict plastic hardening at the slower strain rates, but do a

good job of predicting the perfect plastic behavior at the high strain rates. Since the

frequencies examined in the present effort tend to be greater than 1 hertz, greater

emphasis was put on establishing a good curve fit at the higher strain rates. In no case,
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were the viscoplastic constants allowed to vary between strain rates.

4.1.3 Micromechanics Application

Once viscoplastic characterization was accomplished, the new constants were

installed into the micromechanics model, and the model was run to determine if the new

constants improved on the predictive accuracy of the model for a laminate when compared

to experimental data [44]. The angle ply layup ([±45],) was used for this analysis since it

is assumed that the matrix dominates the behavior of this particular laminate under load.

The model was applied to two different load cases: monotonic loading up to 340 MPa

and isothermal fatigue loading with a maximum stress of 300 MPa. Figure 17 shows the

monotonic load case.

Temp = 427 C
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0 0.005 0.01 0.015 0.02
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........Present
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Figure 17. Angle Ply, Stress-Strain, 427'C
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As Figure 17 shows, the new constants come closer to the actual stress strain

behavior for an angle ply layup than do the old constants. The micromechanics model

with either set of constants tends to over predict the strength of the laminate. A recent

upgrade of the micromechanics model to include shear failure of the interface nearly

eliminates this discrepancy [25]. However, this upgrade was not included in the present

effort. The older version of the micromechanics does produce a reasonable prediction of

the general shape of the stress strain curve.

Figure 18 shows the maximum and minimum strain during fatigue loading with a

maximum stress of 300 MPa, a stress ratio of 0.1, and a cycle period of 24 seconds.

Max/Min Strain vs. Cycles
0.06 I I
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Figure 18. Angle Ply, Max-Min Strain History Under
Isothermal Fatigue (Max Stress = 300 Mpa), 427°C
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Under this loading condition, neither the old nor the new constants is completely accurate.

The micromechanics model using the old constants does an excellent job for the first 100

or so cycles, but then, since the old constants do not account for plastic hardening, the

model drastically over predicts the strain. The model with the present constants converges

well, but does a poorer job during the low cycles and does not follow the experimental

curve upwards for the higher cycles. This is probably due to the micromechanics model

not accounting for the failure of fibers or matrix material over the cyclic loading.

4.1.4 Viscoplastic Discussion

Although a systematic approach to find the Bodner-Partom constants has been

developed [ 18], it was not used, because it requires more experimental data than were

available for the present study. Instead the parameters were developed empirically by

comparing the curves generated by the theory to actual experimental curves. Some initial

assumptions were made to facilitate this effort: (1) the viscoplastic behavior of titanium

15-3 is similar to that of titanium 032 is, (2) the viscoplastic constants are functions of

temperature, but not of strain rate, and (3) the elastic constants (E and v) are as

determined previously at NASA Langley [34].

The first assumption allows the previously developed constants for the 1321 s

system [35] to be used as a reference for the behavior of the constants. For example, as

temperature increases, Z2 decreases and Z3 increases for titanium 0321 s. This same

behavior was assumed in the present effort for titanium 15-3. The assumption of similar

behavior between the 1321s and 15-3 alloys also allows the same constants (Z1, mi, r1, r2,

Do, and v) to be independent of temperature, sets a, equal to a2, and lets m1 be equal to 0
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(no isotropic hardening). The first and third assumptions are important, because they

lower the number of constants which need to be determined at each temperature. The

second assumption forces a single set of constants to address both high and low strain

rates for each temperature. Others have allowed the constants to vary with strain rate [3]

which make them more difficult to use in other applications. Even with these

assumptions, there are still 35 constants to be determined with only 11 experimental data

curves.

Since there are more constants than data curves, there are probably multiple sets of

constants that can satisfactorally model the experimental data. The emphasis in this effort

was to determine constants that would accurately predict the elastic behavior, the yield

point, and the plastic hardening behavior at the faster strain rates. For example, the

transition from elastic to plastic behavior was neglected in favor of plastic hardening

behavior. Emphasis was also placed on the lower temperatures for two reasons: there is

more fatigue data available for homogeneous titanium 15-3 at under 450'C and the stress

strain curve shapes were less consistent at temperatures above 450'C.

The various constants affect the stress strain curve predictions in a variety of

interactive ways. Z, and n primarily govern the yield point and the magnitude of the stress

in the plastic region. An increase in one of these two constants shifts the plastic region of

the stress strain curve higher. m, and a, combine to determine the level of plastic

hardening. a, also affects the sensitivity of the stress strain curve to strain rate when Z3 is

greater than Z2. Figure 19 shows Z2 and Z3 plotted against temperature.
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Z2 and Z3 (MPa) vs. Temp (C)
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Figure 19. Ti-15-3, Z2 & Z3 vs Temperature

A transition occurs at about 450'C. Below this temperature, Z2 is greater than Z3, and the

stress strain behavior is relatively independent of strain rate. Above this temperature, Z3 is

greater, and the stress strain behavior is highly dependent on strain rate. r2 and r3 were not

changed from the values determined in previous efforts for titanium 15-3 [45] or titanium

0321s [35]. A large number of other efforts assume that Do is equal to 104 sec"1 [3, 4, 35,

45], and that assumption is also made for the present effort.

Once the new constants were developed, they were put into the micromechanics

model and tested for an angle ply layup. The new constants yielded discrepencies in both

the monotonic load case and the fatigue load case. The discrepancies in the monotonic

load case are probably due to the fact that the present micromechanics model only

attempts to deal with the degradation of the interface in the normal direction to the fiber

[4, 23]. Fiber failure, matrix failure, and interface shear failure are not accounted for at

all. As a result, the micromechanics model can be expected to over predict the behavior of

the composite. This is also true for the fatigue load case, which would explain the lack of
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strain increases over the number of cycles. The difference between the result generated by

the old constants and the result generated by the new is probably due to the lack of a

smooth or gradual transition between the elastic and plastic regimes. The first problem

must be addressed within the micromechanics model. The second must be addressed by

either altering the viscoplastic model or the constants used in the model.

4.2 Linear Damage Accumulation Model

A previously developed fatigue model [5-8] was modified to use time dependent

information from the viscoplastic micromechanics model, LISOL [4], instead of a

separately defined term. The model as described in the literature [5-8] is discussed in

detail in Section 2.3 of the present study. After removing the time dependent and

interaction terms, Nt and Ni, respectively, the governing equations in this model become:

1 1 1 (60)

N Nf Nm

Nf=10 U CF0 ) (61)

Nm = Bm(Aam)-nm (62)

where cf and am. are the microstresses of the fiber and matrix respectively, R is the applied

stress ratio, and the other parameters are empirical constants. This modified model was

used first to examine the fatigue behavior of SCS-6/Ti-32 Is laminates and later to predict

the fatigue life of SCS-6/Ti-15-3 composites. A single set of constants was developed for

each material and maximum temperature.
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4.2.1 SCS-6/Ti-1321s Cross-Ply Isothermal Microstresses

The first step in developing a micromechanics based fatigue model was to use

LISOL to determine the microstresses for isothermal fatigue at 650'C for a range of loads

and frequencies. For the present study, the load ratio, P, was 0.1 for all tests and

micromechanics analyses. In most cases, the microstresses from the 20th cycle were used

to allow for the stabilization of the viscoplastic effects. In the remaining cases, the

microstresses were taken from the cycle at which the fiber reached a plateau, indicating

viscoplastic stabilization. Once several microstress data points were developed by LISOL,

they were curve fitted to a polynomial using the Mathcad function linfit. This was

accomplished to provide a continuous function for c•f and a•m in the model equations,

allowing for easier curve fitting.

The frequencies researched in this effort were 0.01, 0.1, and 1 hertz. The

maximum applied loads for each frequency ranged from 200 to 600 MPa. These values

were chosen to match the experimental data available. In each case, the curve was

stabilized fairly well within the 20th cycle. The differences between the 19th and 20th

cycle fiber stresses for 0.01, 0.1, and 1 hertz were 0.5%, 0.8%, and 0.5%, respectively at a

maximum applied stress of 200 MPa. Figure 20 shows the fiber stress plotted against the

cycle count. Similar behavior was exhibited at higher stress levels with the maximum

difference being 0.6%. At 400 and 500 MPa and 0.1 Hz, the fiber stresses plateaued

before the cycle count reached 20. The plateau value was used instead of the value at the

20th cycles in these cases. The matrix microstresses also stabilized comparably to the
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fiber stresses at the 20th cycle with a worst case difference between the 19th and 20th

cycles of 1.7%. Generally, this difference was less than 1%.

Fiber Stress, 20 - 200 MPa Cycles, 650 C
800

700

~. 600----6 0 0 ....... ........... ........-.-

500

400 . . I
0 5 10 15 20

Cycle

-- .01 Hz
-...... .1 Hz
-- 1Hz

Figure 20. SCS-6/Ti-0321s Cross Ply Fiber Microstress vs Cycle,
650'C Isothermal

The resulting microstresses were then curve fitted in MathCad for ease of use. A

second order polynomial proved to perform well at approximating the microstresses as a

function of the applied composite stress. Figure 21 shows the data points and the

resulting curve fits for the fiber stress in a cross-ply laminate. The curve fit equations for

the fiber are given in Equation (63) where a is the maximum stress applied to the laminate.

The fiber stress includes LISOL's predictions for both the thermal and mechanical stresses,

while the matrix stress represents the change in stress for a given cycle.
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5.735 x10-4 a2 +3.740(y-212 for 1 Hz

af(a)= 2.589x10-4a2 +4.334a-228 forO.lHz (63)

1.480 x10-4 a2 +5.015a-224 forO.01lHz

Equation (64) show the results when this process was applied for the matrix stresses.

-2.488 x 10 -4a 2+.592a for 1 Hz

am(a) = 1-5.643 x 10-5C2 +.346a for 0.1Hz (64)

5.154 x 10-5 a 2+.092a for 0.01 Hz

Fiber Stress vs. Applied Stress
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Figure 21. SCS-6/Ti-f321s Cross Ply Fiber Microstress vs Applied
Stress, 650'C Isothermal
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4.2.2 SCS-6/Ti-0321s Cross Ply Isothermal Fatigue

Once microstress functions were developed, they were inserted into the equations

for Nm and Nf and combined into the linear damage accumulation model. The S-N curves

generated by the model for the various frequencies were then compared to experimental

data. The constants were then varied to produce the best match among isothermal, in-

phase thermomechanical, and out-of-phase thermomechanical fatigue. This occurred with

the following values:

Bm 1.4x10is nm = 5.5 p = 0.75 No = 6.8 ao =3500

The resulting S-N curves are shown in Figure 22.

S-N Curves, Varying Frequencies
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÷.0 1 Hz Exp
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Figure 22. SCS-6/Ti--21s Cross Ply, 650'C Isothermal
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4.2.3 SCS-6/Ti-[321s Cross Ply Thermomechanical Fatigue

The entire process was repeated for thermomechanical fatigue for 3 minute in-

phase and out-of-phase cycles from 150'C to 650TC. Once again the load ratio, R, was

set to be 0.1. Figure 23 shows the fiber microstress as determined by LISOL over the

course of the first 20 cycles.

Fiber Stress, 150C/650C TMF, 40-400 MPa
2000I I

1500

rj3

1000

500

0 I .I I
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- In Phase
...... Out of Phase

Figure 23. SCS-6/Ti-0321s Cross Ply Fiber Stress, In-Phase &
Out-Of-Phase TMF, 3 Min 150'C/650°C Cycles

As Figure 23 demonstrates, the viscoplastic effects as shown by the change in the

0' fiber stress are fairly well stabilized by the 20th cycle. The differences between the

fiber stresses in the 19th and 20th cycles for in-phase and out-of-phase fatigue are 0.3%

and 0.2%, respectively. The values of the microstresses were imported into MathCad, and

the curve fitting was accomplished similarly to the microstress function generation for
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isothermal fatigue, except that Aam could be fairly accurately modeled with a linear

polynomial. Fiber stress, af, is still modeled with a quadratic equation.

When the empirical constants listed in the previous section were inserted into the

model, they produced the S-N curves for in-phase (IP) and out-of-phase (OP)

thermomechanical fatigue as shown in Figure 24.

3 Min. 150 C - 650 C Cycles
700 I I I

500 .. .

0

300 -

3003

100 4 I

10 100 1000 1°10 1*10

Cycles to Failure

o IP exp
IP model

0 OP exp
__ OP model

Figure 24. SCS-6/Ti-0321s Cross Ply, 150°C/650°C TMF

4.2.4 TMF Modelin2 of Other SCS-6/Ti-021s Lay-ups

The present model was also applied to quasi-isotropic ([0/±45/90]s) and

unidirectional lay-ups under thermomechanical fatigue loading using the same constants as

generated for Sections 4.2.2 and 4.2.3. The cycle length remained at 3 minutes, and the

load ratio stayed at 0.1. In each case, as with the cross ply laminate, the fiber and matrix

microstresses were taken from the 00 ply in the 20th cycle as generated by LISOL.
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Figures 25 and 26 show the S-N curves predicted by the model along with experimental

data.

Quasi-Isotropic TWvI
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Figure 25. SCS-6ITi-f321s Quasi-Isotropic, 150'C1650'C TMF

Unidirectional TMF
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Figure 26. SCS-6/Ti-f321s Unidirectional, 1500C1650'C TMF
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The model is fairly accurate at predicting thermomechanical fatigue behavior for

the quasi-isotropic laminate while using the same empirical constants as developed for

cross ply laminates. Due to the presence of different failure mechanisms between

unidirectional composites and those containing off axis lamina, the model underpredicts

out-of-phase thermomechanical fatigue life in the unidirectional case by roughly one order

of magnitude. Figure 27 shows predictions for unidirectional lay-ups with the constant nm

revised to be 5.2 instead of 5.5.
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Figure 27. SCS-6/Ti-0321s Unidirectional, TMF, Revised nm
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4.2.5 SCS-6/Ti-15-3 Cross Ply Isothermal Fatigue

The model was also applied to fatigue of laminates with titanium 15-3 as the

matrix. As with the SCS-6/Ti-032 Is system, the microstresses were determined by LISOL,

and a single set of empirical constants was developed for use in both isothermal and

thermomechanical fatigue. First, the cross-ply configuration was examined under

isothermal fatigue at 427°C. With the Ti-15-3 matrix, the fiber stresses were nearly

constant (less than 1% deviation between the 1 st and 20th cycles). For constistency, the

microstresses were still taken from the 20th cycle. The constants developed for the

fatigue of SCS-6/Ti-15-3 are as follows:

Bm= 1.4x1018  nm= 5.35 ao = 2500 p =.75 No = 6.5

The resulting S-N curve for isothermal fatigue at 427TC is shown in Figure 28.
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Figure 28. SCS-6/Ti-15-3 Cross Ply, 427'C Isothermal
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In this case, the model did not show any difference between frequencies. As discussed in

Section 4.1.4, at 4270C, load rate effects are minimal for titanium 15-3, and the

micromechanics model does not account for time dependent behavior in the fiber matrix

interface. Thus, the model could predict the fatigue life at the two different frequencies.

Emphasis was placed on matching the higher frequency data to minimize the time

dependent effects on interface degradation.

4.2.6 SCS-6/Ti-15-3 Laminate Thermomechanical Fati2ue

The model was also applied to cross ply and quasi-isotropic SCS-6/Ti-15-3

laminates under thermomechanical fatigue loading. The temperature was cycled between

149°C and 427°C both in-phase and out-of-phase with the mechanical loading. The cycle

period was 48 seconds, and the load ratio was 0.1. Unlike in the isothermal case, the fiber

stresses do not remain constant over the first 20 cycles. Figure 29 shows this behavior.

Fiber Stress, 149C/427C TMF, 40-400 MPa
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Figure 29. SCS-6/Ti-15-3 Cross-Ply Fiber Stresses, 149°C/427°C TMF
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As can be seen in Figure 29, the fiber stress actually plateaus at about the 4th or 5th cycle.

The microstresses used in the fatigue model were the values at these plateaus.

Figures 30 and 31 show the resulting S-N curves for in-phase (IP) and out-of-

phase (OP) thermomechanical fatigue for the two laminates when the constants in Section

4.2.5 are used.
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Figure 30. SCS-6/Ti-15-3 Cross Ply, 1490C/4270C TMF
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Quasi-Isotropic TMF
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Figure 31. SCS-6/Ti-15-3 Quasi-Isotropic, 149°C/427°C TMF

4.2.7 Linear Damage Accumulation Model Discussion

Using micromechanics to account for the time-dependent behavior of a composite under

fatigue in a linear damage accumulation model was found to correlate well with

experimental data for a variety of load cases and laminates. A wide range of frequencies

were examined using this method for cross ply SCS-6/Ti-0321s under isothermal fatigue

loading. The temperature, 650'C, was high enough such that a difference in load rate

produced a dramatic difference in stress strain behavior (see section 4.1). A comparison

of predicted cycles to failure and the actual cycles to failure is shown in Figure 32. It can

be seen in this figure that the model does the best at predicting the composite's behavior in

the mid-range of cycles to failure. For both high-cycle and low-cycle fatigue, the

predicted results tend to deviate from the actual results, although only by less than one

order of magnitude. The deviation for high cycle fatigue can be accounted for in large
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part by limitations in the original model. As o, and therefore, of and Aam, approaches 0,

Nm approaches o as expected, but Nf approaches 10 N°. Thus the cycles to failure of the

composite approaches a finite number as the fatigue load approaches 0. This occurs at all

frequencies and temperatures.

6N Pred vs. N Exp
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Figure 32. SCS-6/Ti-0321s Cross Ply, 650'C Isothermal, Npred VS. Nexp

At 427°C, the model was unable to accurately predict the effects of changing

frequencies for isothermal fatigue of SCS-6/Ti-15-3 cross ply laminates. This is due to the

fact that the micromechanics model only uses the viscoplastic behavior of the matrix

material to evaluate time dependent phenomena. As discusses in section 4.1, at 427°C and

below, titanium 15-3 is only minimally affected by the rate of load. Thus, the

micromechanics model returns nearly identical values for the microstresses even at

different frequencies. The degradation of the interface is most probably dependent upon
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load rate, but this is totally unaccounted for by the micromechanics model. This results in

underprediction of the load rate effects at the higher temperatures and load rate

independent predictions at the lower temperatures.

To limit the time dependent effects, emphasis was placed on predicting the

behavior for high frequency fatigue. This resulted in good correlation to the experimental

data for isothermal fatigue at 427°C and 2 Hz. Figure 33 compares the actual and

predicted fatigue life for this load case.
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Figure 33. SCS-6/Ti-15-3 Cross Ply, Isothermal Npred VS Nexp

Both the fiber and matrix microstresses used in this model were measured in the 0'

ply. The fiber stresses in the 90' lamina were a small fraction of those in the 00 ply. The

matrix stresses in the off axis ply were lower than in the on-axis layer by only about 15%

in the worst case. The microstresses were also measured during the 20th cycle to allow

the viscoplastic effects to stabilize. By the 20th cycle, either a plateau value of fiber stress
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was reached, or the difference in the fiber stress between consecutive cycles was less than

1%. This behavior was seen for both isothermal and thermomechanical fatigue. The

matrix microstresses behaved in a similar manner, except that while the fiber stress

increased over cycles, the matrix stress decreased.

The present model correlated well with the behavior of cross ply laminates under

thermomechanical fatigue loading. Figure 34 compares the predicted cycles to failure to

the actual cycles to failure for both in-phase and out-of-phase fatigue. The temperature

range of the cycle was 150'C to 650'C. The accuracy of the model is significantly greater

for out-of-phase thermomechanical fatigue than for in-phase. This is probably due to the

greater scatter in the in-phase fatigue data at this temperature and for this laminate. Other

load cases and laminates show better correlation for both types of thermomechanical
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Figure 34. SCS-6/Ti-0321s Cross Ply, TMF Npred VS Nexp
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fatigue. This is shown to be true for SCS-6/Ti-15-3 cross ply laminates in Figure 35

where the predicted fatigue life is very close to the experimental fatigue life for both in-

phase and out-of-phase thermomechanical fatigue.
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Figure 35. SCS-6/Ti-15-3 Cross Ply, TMF Npred VS Nexp

Even with similar model limitations as in the isothermal fatigue case, the model

provides a good estimate of thermomechanical fatigue life of both SCS-6/Ti-1321s and

SCS-6/Ti-15-3 cross ply composites. The out-of-phase data are matched within a quarter

order of magnitude, and, even in the worst case, the in-phase data are matched within one

order of magnitude.

The results when the present model was applied to quasi-isotropic lay-ups in

thermomechanical fatigue were quite good while using the same constants as for cross-ply

isothermal and thermomechanical fatigue. Figures 36 and 37 compare the predicted

fatigue life with actual fatigue life for quasi-isotropic laminates with titanium 0321 s and
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titanium 15-3 matrices, respectively. The model had a tendancy to overpredict the in-

phase thermomechanical fatigue life of the SC S-6/Ti-b21 s by roughly a half order of

magnitude.

Quasi-Isotropic TMF Predictions
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Figure 36. SCS-6/Ti-0321s Quasi-Isotropic, TMF Npred VS Nexp
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Figure 37. SCS-6/Ti-15-3 Quasi-Isotropic, TMF Npred VS Nexp
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Because there was more scatter in the data for SCS-6/Ti-l15-3, the model's

correlation was not as good as that for SCS-6/!321s. The microstresses for this lay-up

were also taken from the 00 ply. Once again, the fiber stress in the axial ply was much

greater than the fiber stress in any of the off-axis plies. The matrix stress in the 0' layer

was within 20% of the matrix stress in the other plies, and thus, could be used as the

representative microstress for the matrix material.

Application of the model to unidirectional composites under thermomechanical

fatigue loading initially produced less accurate results. The model tended to underpredict

the out-of-phase fatigue life by almost an order of magnitude for every load point due to

different failure mechanisms. Unlike in cross ply and quasi-isotropic layups, the fiber

matrix interface is not subjected to normal stresses in a unidirectional composite under

axial load. Minor adjustments to the empirical constants yielded much better results as

shown in Figure 27 in Section 4.2.4, but clearly does not satisfy the original goal of

establishing a single set of constants for each layup composition and maximum

temperature. The fatigue life predicted by the original constants is compared to the

experimental fatigue life in each case in Figure 38.
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5 Unidirectional TMF Predictions
1°10

1o10 4

Z 1000
0

a

0

10 4 5
10 100 1000 1110 1°10

N Exp

o In Phase TMF
[ Out of Phase TMF

- Reference Line

Figure 38. SCS-6/Ti-0321s Unidirectional, TMF Npred Vs Nexp

A single set of constants can be used to correlate within a single order of

magnitude with isothermal and both in-phase and out-of-phase thermomechanical fatigue

data for each material. Because the micromechanics model does not address time

dependent behavior in the fiber matrix interface, the predicted behavior is independent of

frequency at temperatures less than 450'C. The matrix microstresses tend to be much

greater for out-of-phase fatigue than for in-phase by about a factor of 3 at high stresses.

Conversely, the fiber stress is higher in in-phase fatigue. Altering the constants in Nm (Bin

and nm) tends to shift the out-of-phase curve, while changing the constants in Nf (No, To,

and p) tends to shift the in-phase curve. Each of these curve shifts leaves the other curve

relatively unaffected.
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The model could probably be enhanced by readdressing the form of Nf. Currently,

as cf approaches 0, Nf approaches some finite number. Ideally, Nf should approach

infinity as af approaches 0. Even with this potentially major flaw, the present model is

able to provide at least, and usually better than, a rough order of magnitude estimate on

the fatigue life of cross ply, quasi-isotropic, and unidirectional composites.

4.3 Constituent Based Fati2ue Model

The objective of the final phase of the present effort was to develop a fatigue

model for cross ply laminates based on the behavior of the constituent materials under

fatigue loading. The model is based on linear damage accumulation similarly to the model

described in section 4.2. The axial direction fatigue is assumed to behave as follows:

1 = 1 1 (65)- +-- (5

N0 -ply Nf Nm

where Nm is the fatigue life of the homogeneous matrix material, and Nf is the fatigue life

of the fiber material. Both of these are based on the microstresses determined by the

micromechanics model, LISOL. The fatigue life of the 900 ply is assumed to be:

1 = 1 1 1 (66)

N 90 _ply Nf Nm N,

where N, represents the effect on fatigue life due to interface damage. Once again, all

inputs were microstresses and interface damage determined by LISOL.

Once fatigue life for the individual layers were determined, the single ply

information was combined to produce a fatigue life prediction for the entire cross ply

composite. Several methods were examined to accomplish this including linear damage
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accumulation and geometric averaging. In all cases, the predictions by the model were

compared to preexisting experimental data [37-39]. The subject material for this phase

was SCS-6/Ti-15-3. The Bodner-Partom constants developed in Section 4.1 were used

for all the micromechanics calculations.

4.3.1 Matrix Fatigue Behavior

The matrix material was assumed to behave similarly to the model developed by

Nicholas, et al. [5-8] as in the following equation:

Nm = Bm(A3m)-nm (67)

The constants Bm and nm were determined to be 2x1017 and 5, respectively, by comparing

the S-N curve predicted by Equation (67) and experimental data [38] for titanium 15-3

under isothermal fatigue loading. Figure 39 shows the comparison.
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Figure 39. Ti-15-3, Isothermal Fatigue S-N, 25°C
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4.3.2 Fiber and 0' Ply Fatigue Behavior

As with the matrix material, the fiber material was assumed to behave as in section

4.2 with slight modification:

Nf = ON')10 .ut) (68)

In this equation, auwt is the ultimate strength of the fiber, 4400 MPa. When cf is equal to

a,,t, Nf equals 1, and the fiber breaks on the first cycle. Another result is that there is only

one empirical constant to determine. Unlike the function for Nf in the previous section,

there is no load ratio factor.

Since there was no fatigue data for the fiber material available for this study, it was

necessary to derive the fiber fatigue behavior from the behavior of the matrix material and

0' laminates. This was done by using the function for Nm determined in section 4.3.1 and

varying the fiber constants until a good match was achieved between the N0 -ply developed

by the model and previously developed experimental data for a unidirectional laminate

under axial fatigue [38]. The stresses used in the model were the microstresses as

determined by LISOL. For the unidirectional case, the fiber and matrix microstresses

behave in a nearly linear fashion. The equations, um. = 0.49 o-rand o-f = 1.9 77 oa- 716,

were used to provide continuous functions of the fiber and matrix stresses, respectively.

After several iterations, the optimum model performance was accomplished when No was

equal to 7.5. This predicts that the fiber material is significantly stronger in fatigue than

the matrix material which is expected. Figures 40 and 41 show the fiber and unidirectional

fatigue behaviors, respectively.
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Figure 40. SCS-6, Isothermal Fatigue Model, 25°C
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Figure 41. SCS-6/Ti-15-3 00 Ply, Isothermal Fatigue, 25°C
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4.3.3 Interface and 900 Ply Fati2ue Behavior

Since functions for Nm and Nf were determined previously in sections 4.3.1 and

4.3.2, respectively, only the interface damage term, NI, needs to be defined to predict the

fatigue life of a 90' ply. The process for determining NI has three stages. The first step is

to determine from LISOL at what cycle the interface has completely failed for several

different applied stresses. When the interface has failed, the microstresses in the fiber go to

0. In effect, this produces an S-N curve for the interface between the fiber and the matrix.

Once the "S-N" data points are developed, they are then fit with a function. This function

is then shifted so that it matches the experimental data when combined with the fiber and

matrix fatigue terms.

The function describing the interface fatigue life as developed by step one of the

above procedure is as follows:

N, = 10 (5.456-5.23x10- 3 +95.181a-') (69)

where a is the stress seen by the 900 ply. This function was then modified to fit the 90'

fatigue data:

N, = 1 0 (3-5x10--a+95a-1) (70)

The two above functions are plotted in Figure 42. The shift in the curve described by

Equation (69) to that described by Equation (70) can be accounted for by the fact that a

crack in the interface tends to extend beyond the interface itself and into the matrix

material creating a further weakness in the composite. Also, crack propagation along the

interface due to fatigue crack growth is not accounted for in the micromechanics model.

A realistic fatigue life model must include this effect.
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Figure 42. SCS-6/Ti-15-3 900 Ply, Interface Damage, Iso. Fatigue, 25°C

The resulting model predictions for isothermal fatigue of a 90' ply at room temperature

are shown in Figure 43 along with experimental data [38].

90 Degree Lamina
300

• 200

100 0

0 I I

10 100 1000 1 10 1 10

Cycles to Failure-- Model

0 Exp

Figure 43. SCS-6/Ti-15-3 90' Ply, Isothermal Fatigue S-N, 25°C
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4.3.4 Cross Ply Fatigue Behavior

Once the life prediction models were established for the 00 and 900 plies, they

were then combined to predict cross ply laminate behavior under isothermal fatigue at

room temperature. The layer stresses were determined using LISOL and then curve fitted

using mathcad. For isothermal fatigue at room temperature, the lamina stresses remain

nearly constant (less than 1% deviation between the 1st and 20th cycles). The 0' ply

stress as a function of applied stress is given as

0_ply '= 1.4 5 6 cyx-ply + 2.475 x 10-4 CYxply - 130 (71)

and the stress in the 90' ply is given as

C79O-ply = 0.544cyx(ply -2.475 x 10-4Cyx-ply + 130 (72)

These two function are plotted against the applied laminate stress in Figure 44.
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Figure 44. SCS-6/Ti-15-3 Cross Ply Lamina Stresses
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Throughout the stress range, the 0' ply carries a large majority of the stress.

Several methods of combining the 90' and 00 models to predict cross ply laminate

fatigue behavior were considered, including linear damage accumulation and various forms

of averaging. However, simply using the microstresses of the 00 ply seemed to produce a

good estimation of the fatigue behavior of the cross-ply composite. Figure 45 shows the

fatigue life predictions of the 0' and 900 layers with the microstresses seen in a cross-ply

laminate appled. The figure also contains the applicable experimental data for comparison.
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Figure 45. SCS-6/Ti-15-3 Cross Ply, Isothermal Fatigue, 25°C,
Individual Lamina Predictions

4.3.5 Constituent Fati2ue Model Discussion

The constituent fatigue model (Sections 4.3.1 - 4.3.4) was reasonably accurate in

predicting the behavior of 00, 900, and cross ply laminates under isothermal fatigue
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loading at room temperature. Room temperature was chosen to minimize the effects of

strain rate. At this temperature, the microstresses remained almost constant (less than 1%

change over 20 cycles) during the cyclic loading. As a result, the microstresses from the

1st cycle yield results equal to the those produced by the 20th cycle microstresses. The

only stress-controlled fatigue data for homogeneous titanium 15-3 had a load ratio of 0.1

or 0 [38, 39].

The assumed form of Nf is the same as that used in Section 4.2 and developed in

previous literature [5]. As a result, the same limitations exist in this model. When af

approaches 0, Nf should approach infinity, but instead, it approaches a finite number, 10NO.

Because the in situ fatigue behavior of the SCS-6 fibers is difficult to determine, the

necessary constants for Nf were determined by matching 00 ply fatigue data.

The fiber-matrix interface fatigue term, NI, was developed through a combination

of LISOL and empirical comparison to experimental data for 900 laminate fatigue. The

result was a curve that predicted a greater level of damage than the results from LISOL.

This could be used to account for any cracks in the matrix material that extend beyond the

area of the fiber-matrix interface and for fatigue crack growth along the interface. The

prediction for the fatigue life of the 900 plies turned out to be quite accurate using this

method.

A simple but effective approach in predicting the fatigue behavior of the cross ply

laminate is to assume the 0' ply dominates the behavior. Therefore, the composite fatigue

life is equal to the fatigue life of the 0' ply calculated using the microstresses determined

by LISOL. This method was more accurate than any of the other combination techniques
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considered. Using the 00 ply microstresses was also the basis of the model described in

section 4.2. The accuracy in this application helps validate the use of the 00 layer

microstresses to predict the behavior of a composite with a combination of 0' and off-axis

plies as proposed in previous literature [32].

4.4 Consolidated Constants Tables

This section provides summary tables of all of the constants developed by the

present effort. The original presentation of each set of constants can also be found in

Sections 4.1, 4.2, and 4.3.

4.4.1 Bodner Partom Viscoplastic Constants (Ti-15-3)

Table 4. Temp. Dependent Bodner-Partom Constants

Temp E Z2 Z3 n a, = a2  M2

(OC (GPa) (MPa) (MPa) (sec1) (MPa-4 )

25 86.3 1200 250 4.5 10"s .005

315 80.4 1070 454 2.9 4.4x10 6  .04

427 77.5 1020 550 2.7 10-1 .05

482 72.2 850 1100 1.6 1 5

566 64.4 750 2400 1.05 2.5 15

650 53.0 650 3000 0.9 3 20

Temperature independent constants:

Do = 104 s1 Z, = 1300 MPa r= 3 r2 =3 ml = 0 Mpa1
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4.4.2 Linear Damage Accumulation Model Constants

Table 5. Linear Damage Accumulation Model Constants

Load Case Bm nm No G0  p

SCS-6/Ti-0321s l.4x10a8  5.5* 6.8 3500 0.75
Max Temp 650'C

SCS-6/Ti-15-3 1.4x10 5.35 6.5 2500 0.75
Max Temp 427°C

* For a more exact fit of a unidirectional laminate under 150°C/650'C thermomechanical

fatigue, nm can be set to 5.2 at a cost of a loss of accuracy for all of the other tested

laminates ([0/90], [0/±45/90]).

4.4.3 Constituent Based Model Constants

Table 6. Constituent Based Model Constants

Load Case Bm nm No ao P

[0/90] Iso, 25'C 2x10 17  5 7.5 4400 0
SCS-6/Ti- 15-3 I I I I I

Since the constants for the cross ply case were developed from the behavior of the

0' and 900 orientations, the constants in Table 6 can also be used to predict the behavior

of unidirectional SCS-6/Ti- 15-3 under axial or transverse isothermal fatigue loading.
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V. Conclusions And Recommendations

Because of their high strength, light weight, and resistance to high temperatures,

titanium based metal matrix composites have received a lot of attention in recent years for

aerospace applications. Unlike polymeric matrix composites, the matrix material in a

metal matrix composite contributes significantly to the overall mechanical properties of the

composite. It is therefore necessary to understand the micromechanical behavior of the

laminate to be able to model its macroscopic behavior. Since the plastic effects of titanium

are time dependent, a viscoplastic theory must be used to accurately predict the reactions

of the titanium matrix material in the micromechanics model.

The high cost of titanium based metal matrix composites makes an accurate fatigue

behavior model highly desirable. There have been several fatigue models developed in the

past [5-8, 28-33], but few that use the composite microstresses to account for the

micromechanic behavior [5-8, 31]. Of these, none uses a unified viscoplastic theory with

the capability to model interface damage, and nearly all are purely empirical. The goals of

the present effort are to fully characterize the viscoplastic behavior of titanium 15-3 using

the Bodner Partom unified theory with directional hardening [1, 2, 16], incorporate time

dependent micromechanics in a previously developed linear damage accumulation model

[5-8], and develop a new model based at least partially on the constituent properties.

5.1 Conclusions

(1) Titanium 15-3 was characterized using the Bodner Partom unified viscoplastic

theory with directional hardening. Constant strain rate tests were accomplished on

titanium 15-3 at 25 0C, 315'C, and 427°C and combined with previously performed [3]
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tests at 482'C, 538°C, and 649°C to establish a complete set of data. With the use of this

data, the new material parameters modeled stress strain behavior of titanium 15-3 very

well. The micromechanics model with the new constants showed a marked improvement

in accuracy over the previously used constants. The Bodner-Partom constants for

titanium 15-3 are shown in Table 3 in Section 4.1.2 and reiterated in Section 4.4.1.

(2) Viscoplastic micromechanics information was in part successfully used to

replace the time-dependent terms in a previously developed linear damage accumulation

model [5-8]. The revised model produced accurate predictions for isothermal fatigue at

650'C in a cross ply SCS-6/Ti-0321s laminate and at 427°C in a cross ply SCS-6/Ti-15-3

laminate. It also correlated well with experimental thermomechanical fatigue data for

cross ply, quasi-isotropic and unidirectional layups using either matrix material. The

model was able to produce these results with no changes in the constants despite changes

in the layup and temperature. There were minor differences between the constants for the

SCS-6/Ti-0321s system and those for the SCS-6/Ti-15-3 system. Micromechanics

information could not account for time dependent fatigue behavior when the matrix

material did not exhibit viscoplastic deformation. Once the fiber matrix interface

degradation algorithm is modified in the micromechanics model, it would, hopefully, be

able to handle time dependent fatigue effects. The constants are summarized in Table 5 in

Section 4.4.2.

(3) A new fatigue model was developed based on the fatigue behavior of the

constituent properties. First, the matrix material, titanium 15-3, was modeled for

isothermal fatigue [38] at room temperature using the same form as developed for the
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linear damage accumulation model. This information was combined with previously

developed 00 orientation fatigue data [38] to develop the fatigue behavior of the fibers.

Once again, the format developed for the linear damage accumulation model was used [5].

Finally, the micromechanics model, LISOL [4], was used to develop a fatigue model for

the fiber matrix interface. Experimental data for 900 plies [38] was used to refine the

behavior estimate of the model. The model performed very well for both 00 and 900 SCS-

6/Ti-15-3 laminates subjected to isothermal fatigue at room temperature.

(4) In all cases in the present study, microstresses in the 00 lamina could be used

to accurately predict the fatigue life of any laminate containing 00 plies. This affirms the

hypothesis that the fatigue life in such composites is governed by the behavior of the 00

layers [32]. As a composite with 0' and off-axis plies is loaded, the micromechanics can

calculate what level of stress is seen by each ply. The fatigue life of the 00 ply under this

stress level produces a very accurate prediction of the cross ply fatigue life when used in

the constituent based model. Similar results occur when the 0' microstress calculations

are used in the linear damage accumulation model.

5.2 Recommendations for Future Research

There are many areas to research in order to produce more accurate results in

fatigue modeling of titanium based composites. The viscoplastic constants developed in

the present effort are empirical in nature. Other researchers [18] have developed a

systematic approach to determine these parameters, but it requires more data than is

available at the present time. Additional constant strain rate tests should be accomplished

on titanium to provide more data to develop the viscoplastic constants. This is especially
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true at the higher temperatures. Additionally, some of the simplifying solutions, such as

eliminating isotropic hardening and setting several of the constants equal to one another,

should be reexamined.

Fatigue data, in general, are in short supply. There are very rarely more than three

data points from which to try to develop a trend. This is true for nearly all lay-ups and all

temperatures. Some of the data is contradictory in that identical load cases can result in

dramatically different outcomes. Also, many of the fatigue tests do not result in failure.

All of this results in greater difficulty in model development. Much more experimental

data should be developed.

The micromechanics model, LISOL, should be modified to account for failure of

the fibers and matrix as loading occurs. Currently, LISOL can account for the degradation

of the fiber-matrix interface. Similar algorithms based on statistics should be developed to

account for degradation in the rest of the composite. Additionally, LISOL needs to have

the capability to address the time dependent degradation of the interface region.

The present model should be altered such that the fiber fatigue life term is based on

a statistical distribution. Presently, it is linear on a semilog plot. This results in a situation

where the composite will fail in a finite number of cycles even if no stress is applied. The

constituent based fatigue model should also be expanded to other temperatures and to

thermomechanical fatigue.
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Appendix A

Bodner-Partom Theory Computer Code

The following is the computer code that was used to produce the stress-strain

curves in Section 4.1. The code is written in the language, C, and was compiled using

Borland C/C++ version 4.0. The necessary code to run this algorithm as the function,

bodpart, in MathCad is also included.

#include "mcadincl.h"
#include "math.h"

#define INTERRUPTED 1
#define INSUFFICIENT MEMORY 2
#define MUSTBEREAL 3
#define NUMBEROFERRORS 3

H/table of error messages
H sets up error table
I/to allow user to interrupt by hitting Escape
H and ensures real values are used

char * myErrorMessageTable[NUMBEROFERRORS] =

"{ "interrupted",
"insufficient memory",
"must be real"

I;

LRESULT PredictStressStrainCurve(COMPLEXARRAY * const Answer,
const COMPLEXARRAY * const DataArray,
const COMPLEXARRAY * const ConstArray)

{
unsigned int count, countl, iter;
double dt, ElastStressRate, EpsDe, Z, StressTry, EpsDP, par, ZO, ttot;

double J2, RT, EpsPDIJ, WPD, Q, dZ, dum, Q2, ZD, EpsDCal,
DEpsDP, R, SigD;

double Sold[4], EpsDel[4], Snew[4], DBeta[4], U[4], Beta[4], BetaO[4];
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HI rename input variables so the program is easier to follow:

double E, nu, DO, Ml, Z1, Ri, Al, M2, Z2, R2, A2, Z3, N, k, Incr;
double EpsFinal, EpsDot;
mt Length;
Incr = ConstArray->hReal[2][10];
E = ConstArray->hReal[O][O];
nu =ConstArray->liReal[l][O];

DO =ConstArray->hReal[O][l];-

Ml ConstArray->hReal[l][l];-
Z 1I ConstArray->hReal[2] [ 1 ];
RI ConstArray->hReal[O][2];
Al =ConstArray->hReal[1] [2];
M2 =ConstArray->hReal[2] [2];
Z2 = ConstArray->hReal[O][3];-
R2 = ConstArray->hReal[l][3];
A2 = ConstArray->hReal[2] [3];
Z3 = ConstArray->hReal[O][4];
N =ConstArray->hReal[l1] [4];
k =ConstArray->hReal[2] [4];
EpsFinal = DataArray->hReal[O] [0];
EpsDot = DataArray->hReal[O][l],;
II now determine length of stress vector:
Length = Incr+ 1;

//Ensure that MathCad has sufficient memory:
if ( !MathcadArrayAllocate( Answer, Length, 3, TRUE, FALSE))

return INSUFFICIENTMEMORY;
HI now initialize all the variables to be used in the program

Answer->hReal[l][O] = 0.0;
ttot = EpsFinal/EpsDot;
dt = ttot/Incr;
Answer->hReal [2] [0] = dt;-
II now determine strain values
for (count=O; count <= Length; count++)

Answer->hReal[O] [count] count* dt*EpsDot;
ElastStressRate = E*EpsDot;
for (count=l; count <= 3; count++)

Sold[count] = 0.0;

EpsDel[l] = EpsDot;
EpsDel[2] = -1.0*nu*EpsDot;
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EpsDelII3] = -1.0*nu*EpsDot;
HI calculated effective inelastic strain rate
dum = sqrt(2.013 .0*(pow(EpsDel[l1],2.O)+

pow(EpsDel[211,2. 0)+pow(EpsDel[3 ],2 .0)));
if (dum.>pow(l10,-8))

EpsDe = dum;
else

EpsDe = pow(10,-8);
Z =Z2;
Z0 =Z2;-

for (count= 1; count <= 3; count++)
{Beta[count] =0.0;

Beta0[count] =0.0;)

HI And now for the algorithm itself

for (count= 1; count <= Incr+ 1; count++)
{ StressTry = Answer->hReal[ 1] [count-

1 ]+ElastStressRate* dt;
EpsDP=0.0;
iter= 1;
par--10.0; HI ensures that first iteration doesn't meet

tolerance
while (par>. 00 1 && iter< 100)

{// check to see if the user has interrupted
if (isUserlnterruptedo)

{MathcadArrayFree (Answer);
return INTERRUPTED;

Sne[ ]=20/ .0Stessry
Snew[2]-1 .0/3 .0*StressTry;
Snew[3]=-1 .0/3 .0*StressTry;

J2=. 5*(pow(Snew[1] ,2. 0)+pow(Snew[2],2. 0)
+pow(Snew[3],2. 0));

RT=sqrt(3 .0*J2),;
U[1]=1.0;
U[2]=0.0;
U[3]=0.0;
EpsPDIJ=1.5*EpsDP*Snew[1]/RT;
WPD=StressTry*EpsPDIJ;
Q=-1.0*M1 *V/PD.A1 *pow(Z1, 1.0-Ri)

* pow(Z-Z2,R1 )/Z;
dZ=(M1 *Z *W.PD+Z0*Q)/(1 .0/dt-Q);
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dum--sqrt(pow(Beta[ 1 ],2. 0)+pow(Beta[2],2. 0)
+pow(Beta[3 ],2. 0));

Q2=-1 .*M2*WPTD-A2*pow(dun1ZIZ,R2-1 .0)-,

for ( countl=1; countl<=3; countl++ )
{DBeta[countl1]=(M2j*Z3 *WPD*U[count 1]

+Betao[countl1] *Q2)/(1 .O/dt-Q2);
Betalcounti ]=BetaO[countlI]+DBeta[countl ];I

Z=ZO+dZ;

if (Z<Z2)
Z=Z2;-

else
if (Z>Z 1)

Z=Z1;
ZD=Beta[1] *U[ 1]+Beta[2] *U[21+Beta[3] *U[3];
EpsDCal=2.O/sqrt(3 .O)*DO*

exp(-. 5*pow((Z+ZD)/RT,2.0*N)),;
DEpsDP=EpsDCal-EpsDP,;
if (DEpsDP<O)

R=- 1.0*DEpsDP/(DEpsDP-k*EpsDe);
else

R=DEpsDP/(DEpsDP+k*EpsDe);
EpsDP += EpsDe*R;
EpsPDIJ= 1.5 *EpsDP *Snew[l1]/RT;
SigD=E*(EpsDot-EpsPDIJ);
StressTry--Answer->hReal[ 1] [count- I ]+SigD*dt;
par-abs(DEpsDP/EpsDe);
iter+= 1;

I
for (countl1= 1; count 1<3; countl1 +)

f Sold[count 1 ]=Snew[count 1]
Beta0 [count 1 ]'=Beta[count 1]

Z0=Z;
Answer->hReal [ 1 ] [count]=StressTry;
Answer-ý>hReal [2] [count] =iter;

return 0;

HI The remainder of the file registers the function bodpart with MathCad
FUNCTIONTNIFO bodpart
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H Name by which mathcad will recognize the function
"bodpart",

H description of "bodpart" parameters to be used
H by the Insert Function dialog box
"Data, Constants",

H description of the function for the Insert Function dialog box
"returns a nx2 array consisting of axial stress and strain",

H pointer to the executible code
H/i.e. code that should be executed
H when a user types in "bodpart(Data, Constants)="
(LPCFUNCTION)PredictStressStrainCurve,

H bodpart(args) returns a complex array
COMPLEXARRAY,

H bodpart takes on 2 arguments
2,

I/the 2 arguments are complex arrays
{ COMPLEXARRAY, COMPLEXARRAY }

H DLL entry point code

BOOL WINAPI DllEntryPoint (HINSTANCE hDLL, DWORD dwReason,
LPVOID lpReserved)

{
switch (dwReason)
{

case DLLPROCESSATTACH:

H DLL is attaching to the address space of
//the current process.

H register the error message table
if ( CreateUserErrorMessageTable(

hDLL, NUMBER OF ERRORS, myErrorMessageTable))
H and if the errors register OK
H go ahead and register user function
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CreateUserFunction( hDLL, &bodpart)
break;

case DLLTHRE ADATTACH:
case DLLTHREADDETACH:
case DLLPROCESSDETACH:

break;

return TRUE;

#undef INTERRUPTED
#undef INSUEFICIfiNTMIEMORY
#undef MUSTBEREAL
#undef NUMBEROFERRORS
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