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Abstract

Development of new imaging sensors has created a need for image processing techniques

that can fuse images from different sensors or multiple images produced by the same sensor.

The methods presented here focus on combining image data from the Airborne Visual and

Infrared Imaging Spectrometer (AVIRIS) hyperspectral sensor into a single or smaller subset

of images while maintaining the visual information necessary for human analysis.

Three hierarchical multi-resolution image fusion techniques are implemented and tested

using the AVIRIS image data and test images that contain various levels of correlated or

uncorrelated noise. Two of the algorithms are published fusion methods that combine images

from multiple sensors. The third method was developed to fuse any co-registered image data.

This new method uses the spatial frequency response (contrast sensitivity) of the human visual

system to determine which parts of the input images contain the salient features that need to

be preserved in the composite image(s).

After analyzing the signal-to-noise ratios and visual aesthetics of the fused images,

contrast sensitivity based fusion is shown to provide excellent fusion results and, in every

case, clearly outperformed the other two methods.

Finally, as an illustrative example of how the fusion techniques are independent of

the hyperspectral application, they are applied to fusing multiple polarimetric images from a

Synthetic Aperture Radar to enhance automated targeting techniques.

xii



Perceptual Based Image Fusion

with Applications to Hyperspectral Image Data

I. Introduction

1.1 Introduction

Development of new imaging sensors has created a need for image processing techniques

that can fuse images from different sensors or from multiple images produced by the same

sensor [5, 2, 18, 19, 9]. For example, the Air Force is fusing information from multiple sensors

to obtain a multi-spectral analysis of potential targets. The advantage of multi-spectral data is

that it provides better target detection and identification than a single wide-band sensor [5, 14].

This allows a flexibility in choosing a particular narrow-spectral-band for individual types of

targets [14]. The disadvantage with using multiple sensors to obtain a multi-spectral signature

is that it is difficult and sometimes impossible to fully register the different input sources.

Usually the different sensor recordings will differ in scale, rotation, or shift. To overcome

the multi-sensor problems, research is being conducted with single sensors that simultane-

ously collect data in several bands. The Airborne Visual and Infrared Imaging Spectrometer

(AVIRIS) is an example of a sensor that simultaneously records information in hundreds of

spectral bands [14]. However, there is a price to pay for the fully registered hyperspectral

data. Three particular problems, resulting from the use of the AVIRIS hyperspectral sensor,

will be addressed in this thesis.

The first problem is what to do with all of the information generated by hyperspectral

sensors. For example, a single AVIRIS sensor image requires approximately 140 megabytes

of disk storage. However, only a fraction of that data provides unique or usable information

about a target area. The rest is redundant information along multiple bands or is noise due

to atmosphere. Thus, it would be beneficial to extract the relevant information from the
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hyperspectral images. The need to interpret hyperspectral sensor data by photo analysts poses

the second problem. Since a hyperspectral sensor records information along hundreds of

spectral bands, each of these bands generates a single image for the analysts to interpret.

Because human operators cannot physically or mentally integrate information from multiple

source images [2, 18, 19], a method to fuse the relevant information into a single image, or at

least a smaller subset of images, is needed.

A third problem results when an automated targeting system is used to find targets in

remote sensor data. These automated systems are inundated with the vast amounts of infor-

mation that modem imaging sensors produce about a target area, including many irrelevant

details. This increases the chances for false alarms and missed detections. For example, the

Air Force is investigating the idea of using different polarimetric orientations from a Synthetic

Aperture Radar (SAR) for automated target recognition systems. Therefore, a fusion method

that represents or preserves the details in the input images that are most relevant to the task at

hand (i.e., target detection) and at the same time, provides better target detail [5], is needed.

1.2 Problem Statement

Can the data from a hyperspectral sensor, or from a SAR sensor, be combined into a

smaller subset of images and still maintain the information from the input sources necessary

for human or machine analysis?

1.3 Scope and Assumptions

The scope of this thesis is to investigate the image fusion algorithms developed by

Peter Burt [5] and Alexander Toet [2, 18, 19], and then develop a new fusion method. The

image fusion algorithms will be analyzed using test images with known image characteristics,

image data from the AVIRIS hyperspectral sensor, and SAR sensor data. It is assumed that the

images to be fused will either come from a single sensor that produces fully registered images,

or from multiple sensors that have been pre-registered. It is also assumed the data produced

from the sensors may be treated as image data and that contrast sensitivity, as related to human
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visual perception, is the key for determining the salient features of an image [12, 13, 10, 16].

Furthermore, it is assumed that the key to multi-image fusion is to fuse based upon the salient

features, (i.e., pattern primitives), and not at the pixel level alone [3, 4, 5, 2, 18, 19, 9].

The usefulness of the algorithms will be evaluated in three different ways. First the

algorithms' visual aesthetic performances will be evaluated by fusing a set of test images

with known image characteristics. Second the algorithms' usefulness in fusing SAR data

will be analyzed by fusing SAR data and then measuring the effects on the automated target

recognition of the scenes. Third, the algorithms' ability to fuse different spectral bands from

the AVIRIS hyperspectral sensor will be evaluated.

1.4 Approach/Thesis Organization

Chapter one described data processing problems generated by using hyperspectral sen-

sors and how image fusion may help solve them. Specifically, it discussed the need for data

compression and how human photo analysts and machine vision systems may benefit from

image fusion. Chapter two provides background information describing Burt's and Toet's

algorithms along with a discussion on the AVIRIS sensor and contrast sensitivity. Chapter

three details the algorithm developed in this thesis for image fusion. Chapter four describes

the results of image fusion on the test images, the SAR image data (including the automated

target recognition results) , and the AVIRIS hyperspectral image data. Conclusions and

recommendations are discussed in chapter five.
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II. Background

2.1 Introduction

This chapter will provide the background material necessary to understand the al-

gorithms developed in chapter three. Specifically, it will detail the AVIRIS hyperspectral

sensor data, a Gaussian decomposition with max contrast fusion algorithm by Alexander

Toet [2, 18, 19], a wavelet decomposition with match and saliency fusion algorithm by Peter

Burt [5], and contrast sensitivity as related to images. The algorithms discussed in this chapter

are implemented using Matlab version 4.2 and are referenced in Appendices D and E.

2.2 AVIRIS Hyperspectral Data

This section describes the AVIRIS hyperspectral sensor and how images are produced

from its data. It also describes the AVIRIS hyperspectral image data used in this thesis.

AVIRIS is an imaging spectrometer that simultaneously collects spectral information

in the visual to infrared ranges. It records information in 224 spectral bands that range

from 0.4/im to 2.5Atm in approximately lOnm increments with a pixel resolution of roughly

20 meters at operational altitude. The AVIRIS sensor is a "whisk broom" type sensor that

simultaneously collects spectral data in the 224 bands by sweeping a narrow band sensor back

and forth as it is flown over a target area. Each sweep, from left to right or right to left, is

called a line. Each line may contain up to 614 pixels of data. Typically the AVIRIS sensor

collects 512 lines of image data in a single pass over an area. Figure 2.1 gives a pictorial

representation of the hyperspectral AVIRIS sensor data collected from a 110 square kilometer

area around Moffett Field, CA.

Creating the hyperspectral set of images is a two step process. First, a spectrometer

measures the electro-magnetic energy reflected or emitted from a surface. The sampled energy

may be in the visual or infrared spectral bands. The spectral range depends on the type of sensor

employed. Since the spectral or luminance characteristic of a surface depends on the object's

composition, targets comprised of different materials will have different reflected/emitted
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intensity values for a given spectral band. The result is a set of intensity values that represent

the target area in each band sampled. After the sensor collects the image data, the next step is

to convert the data into a set of images.

Converting the data into an image is done by treating each sample as a piece of image

information called a pixel. Each sample or pixel represents a single intensity value associated

with a physical location in the target area. For example, each pixel value, in the AVIRIS

data investigated in this thesis, covers a 20 square meter area of ground. The size of the area

represented by each pixel is a function of the type of sensor, bandwidth, and altitude. The pixel

values are used to form an image cube, where the X and Y axis of the cube represent the pixel

location, and the Z axis represents the intensity of the sample in that spectral band(Figure 2.1).

Figure 2.1 Hyperspectral Image Cube Representation taken from an AVIRIS Sensor, over
Moffett Field, CA

2-2



The hyperspectral data used in this thesis is from an AVIRIS sensor that was flown over

Moffett Field, CA. The sampled data representing the various intensities in each of the 224

spectral bands was used to create a hyperspectral image cube. The result is an image cube

with 224 pictures of the same scene; one picture for each band. The image cube is like a deck

of cards where each card represents a picture for a given band and the deck of cards is ordered

by spectral band. The image, on the face of Figure 2.1, is an example of a picture from band

30. Band 30 represents the spectral information in the 0.67/tm to 0.68/im bandpass range. It

clearly shows the unique reflectance for the different types of materials: land, water, runway,

etc.

2.3 Hierarchical Image Fusion

2.3.1 Gaussian Decomposition with Max Contrast Fusion. This section describe

a multi-resolution image fusion technique developed by Alexander Toet [2, 18, 19] that uses

maximum contrast as a criteria to preserve image details.

Toet's method involves a four step approach. The first step, which produces a multi-

resolution pyramid, is depicted in Figure 2.2. The reduce function represents a convolution

with a 5 x 5 filter and then a subsampling of the filtered image. First the input image is

convolved with a 5 x 5 matrix (filter). A typical filtering window proposed by Toet [2, 18, 19]

is represented by the following 5 x 5 weight matrix:

"0.04 0.10 0.08 0.10 0.04'

0.10 0.25 0.20 0.25 0.10

w = 0.08 0.20 0.16 0.20 0.08

0.10 0.25 0.20 0.25 0.10

0.04 0.10 0.08 0.10 0.04

Figure 2.3 is a gray-scale plot of the weight matrix w after the resolution was enhanced by

interpolating with a cubic spline. Toet states that this is a Gaussian-like filter, but the numbers

he recommended for the 5 x 5 filter do not make a Gaussian filter, see Figure 2.3. He references
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Reduce FunctionR d

(10x8

Reduced Image

e - Reduced Image
\ j//(160 X 128)

• ReducedlImage
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( e d. u ce F u nt ion) (6 4 0 X 5 12 )

Figure 2.2 Multi-resolution decomposition algorithm that generates a reduction pyramid
based on a single input image [2, 18, 19] .
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the derivation for the filter from an article by Peter Burt ??. In that article, the filters produced

are Gaussian-like, but the numbers recommended by Toet do not match the method presented

'in that article. The 5 x 5 filter presented by Toet is used in this thesis. After the image is

filtered, it is down-sampled by a factor of two to produce an image that is half the resolution of

the level below. Down-sampling by a factor of two is accomplished for two reasons. The first

is the filtering operation removes the high frequency components so now the filtered image

can be represented by only half the original pixel values. The second reason is that the same

5 x 5 filter can be used on the filtered and down-sampled image to further reduce the frequency

components. Thus, the reduction pyramid contains a set of low-pass-filtered versions of the

input image each with a band-limit one octave lower than the level below [2, 18, 19]. They are

band-limited in one octave increments because the down-sampling cuts the frequency content

by half each time.

0.3,

0.25,

0.15,,

0.1,

0.05,

2-

1

Figure 2.3 Resolution enhanced image representation of Alexander Toet's weight matrix w

The method of filtering and down-sampling is given by the equation,

2
P,(i, j) E w(mn,n)P,_j(2i +m, 2j +n) (2.1)
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where P1 represents the (reduced) output level and P1- 1 represents the (higher resolution)

input level. The indices on the sum define the size of neighborhood that will be weighted to

obtain the filtered image. Thus, the weight matrix w, defined above, is the convolution mask

that is used to filter the image. Down-sampling, by a factor of 2, is accomplished by selecting

every other point in the filtered image. By successively filtering and down-sampling, an

image pyramid that has the original image at the pyramid base with successive levels that are

filtered and down-sampled versions of the level below is generated. Figure 2.4 is a pictorial

example of a three level pyramid. The first level is the original input image. The second is

the filtered and down-sampled version of the input image. The third level is the filtered and

down-sampled version of level two.

The second step in the process uses the reduction pyramid created in step one to create

a ratio pyramid. Toet calls this a Ratio-of-Low-Pass (ROLP) [2, 18, 19]. The ratio pyramid

is created by a point-by-point division of the lower level of the reduction pyramid by the

expanded upper level of the same pyramid (Figure 2.5). The expand function is as follows:

2 i+mj+n

P!,k(i,j)=4 1 w(m,n)PI,k-1 2 ' (2.2)
re,n=-22 2

where PI,k represents the expanded output level, w is the same weight matrix as in Equation

1, PI,k-1 represents the input level, and only integer indices contribute to the sum. The index

k describes the number of expand operations that have been performed. In Toet's algorithm,

there is only one expand operation per level.

The expand function is accomplished by padding every other column and row with

zeros and then convolving the zero padded image with the weight matrix w. In effect, an

upsampling by a factor of two is being accomplished. Now that the upper level has been

upsampled, the two levels have the same number of pixel elements and a point-by-point

division (of the gray-scale values) can be performed. The output of this stage is a ratio

pyramid that represents the contrast information in the image at varying resolutions. The

definition Toet gives for contrast [2, 18, 19] which is also defined in Peli's work on image
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Reduced Image Level 2

Reduced Image Level 1

Original Image Level 0

Figure 2.4 Pictorial Representation of Alexander Toet's Multi-resolution Image Pyramid
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analysis [12] is:
L - Lb L

Lb Lb

where C is the contrast, L is the local luminance in the image plane, Lb is the local background

luminance, and I(ij) = 1 for all i, j. Therefore, when C, is defined as:

Ci = EX A DGj +I - I
EXPAND[Gj+j]

the relationship between the ratio pyramid and the contrast is seen by:

Ri = C, + I

This relationship is why Toet refers to the ratio pyramid as the contrast pyramid [2, 18,

19]. The number of levels in the ratio pyramid is one less than in the reduction pyramid, since

each level (in the ratio pyramid) is created by dividing two levels (in the reduction pyramid).

Also, the top level of the reduction pyramid and the ratio pyramid are the same, since there is

no level above the top to divide by. Steps one and two are performed for every input image so

that a ratio pyramid will be created for each image.

The third step in Toet's fusion method is to fuse all of the ratio pyramids into a single

ratio pyramid which represents all of the input images. Figure 2.6 is a graphical depiction

of the fusion stage. Toet uses the maximum contrast value to decide which value from the

ratio pyramids will be retained. Since the ratio pyramid is a contrast representation [2, 18, 19,

12], a point-by-point comparison is made between all the ratio pyramids and the maximum

value is retained for the composite ratio pyramid (Figure 2.6). The fourth and final step

uses the fused ratio pyramid generated in step three to reconstruct the final fused image.

Reconstruction is accomplished by reversing the steps it took to generate a ratio pyramid. The

only difference between Figure 2.7, which shows the reconstruction, and Figure 2.5, which

shows the generation of the ratio pyramid, is that instead of dividing by the expanded level
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Figure 2.5 Multi-resolution contrast algorithm used to generate a ratio pyramid from an
input reduction pyramid.
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above you multiply. The end result is an image that is comprised of the maximum contrast

details selected from the input images.
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best visual image, it does not account for the fact that a noisy image is typically of higher

contrast than an image that is not. Therefore, Toet's method would select the noisier parts

of the images to be retained in the composite, which presents a potential loss of infornation

about desired targets. Figure 2.8, which is an example from chapter four, illustrates where
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Toet's method would fail. The two images are from the same original image of a well known

model named Lenna, but the second figure has added white Gaussian noise in one area of the

image. Toet's method would select the area that has the added noise because it has higher

contrast, even though the human analyst would select the less noisy parts of the two images.

Thus, a method for selection that is based upon the perceptual sensitivity of the human visual

system and not just pure contrast is needed.

Figure 2.8 Image of Lenna on the left and on the right is the same image with white Gaussian
Noise added to one section.

2.3.3 Wavelet Decomposition with Match and Saliency Fusion. In the previous

section an algorithm for image fusion by Alexander Toet was presented. Toet's work was

based upon image fusion research published by Peter Burt in the early to middle 1980s. This

section will discuss a recently published image fusion algorithm proposed by Peter Burt [5].

Burt's new method, which post-dates Toet's, is also a multi-resolution fusion algorithm that

uses decomposition, fusion, and reconstruction.

First an image decomposition is performed. The first stage of Burt's image decompo-

sition, which produces a multi-resolution image pyramid, is similar to Toet's reduction stage
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above, see Figure 2.2. The reduce function filters an input image from a lower pyramid level

with a 5 x 5 Gaussian filter. The filtered image is then down-sampled by a factor of two, by

selecting every other pixel value, to produce an image that is half the resolution of the level

below. The only difference between Burt's reduction method and Toet's is the type of 5 x 5

filter used to filter the successive levels of the image pyramid. A typical filtering window

proposed by Burt [5], which is shown in a resolution enhanced gray-scale plot in Figure 2.9,

is represented by the 5 x 5 weight matrix,

1 4 6 4 1

4 16 24 16 4
1

w =zb zb=- 6 24 36 24 6
256

4 16 24 16 4

1 4 6 4 1

where,

1 21v=• 2 42

16
-1 2 1

and * is the convolution operator. Recalling the reduction method mentioned above for

Toet [2], the effect of convolving each layer with the w weight matrix and then down-

sampling by a factor of two is that a 2-D filtering operation is performed in the frequency

domain.

The next stage in image decomposition is performed by extracting the orientation

gradient details and a gross approximation from the multi-resolution pyramid. The detail

extraction is not the same as what would be expected in a Mallat [11] decomposition, but

the fact that the detail filters described below are compact, self-similar, and of many scales,

they are considered wavelets [5]. The multi-scale orientation gradient details are extracted

by using the filters, defined below, on multi-scaled versions of the image, Figure 2.10. The

gross approximation is just the top level of the reduction (Gaussian) pyramid. Burt calls this

step creating the orientation gradient pyramid [5]. It is called the orientation gradient because
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Figure 2.9 Resolution enhanced image representation of Peter Burt's weight matrix matrix
w and ?b

the basis functions used for detail extraction are gradients of Gaussian patterns [5]. They are

called gradients of Gaussians because the gradient filters d, thru d4, defined below, are used

to extract information from the reduced (Gaussian) pyramid. The following equations define

this stage of the decomposition:

Dkl = *d[Gk + ti) * Gk]

d,1  [1 -1]

d2= [i -i]
0 1]d = 1 0

0 1]
where * is the convolution operator, DkI are the details for level k and orientation 1, Gk is the

level k input from the reduced image pyramid, and d, thru d4 are the oriented gradient filters.
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k is the level of the resolution from the Gaussian pyramid and the orientation 1 is simply

the index of the d, thru d4 filter used. Figure 2.11 presents the magnitude of the frequency

response of filters d, thru d4. Figure 2.12 is an example of one of the detail orientation gradient

pyramids with three levels of resolutions and one orientation.

Figure 2.12 depicts one orientation from the oriented gradient detail pyramid that would

be obtained from decomposing the image representing Band 30 of the AVIRIS sensor.

Now that the orientation details and gross approximation have been extracted, the second

stage of Burt's fusion algorithm is ready to begin. This stage of Burt's algorithm is the main

difference between Burt's method and Toet's [2, 18, 19]. Burt's fusion is performed in two

parts. The first part is a comparison. If the details or "pattern primitives represented by the

oriented gradients" [4, 5] from different pyramids (i.e. from different input images) are similar

or match, they are averaged and the average value is retained. If they are very different, then

the second part of the fusion method uses a saliency measure to decide which details will

be retained. The actual equation for match is defined later, but in short, the weighted details

from the orientation gradient pyramids are compared and a number is computed. The number

ranges between a one and a minus one. A value of one means that the input gradient details

are identical and a minus one means that they are identical but opposite in sign. If the match is

above some threshold, say 0.85 [5], then the details from the input images for that particular

location will be weighted as defined in the weighting equation below. If the match value is

not above the threshold (the details are not similar enough), the detail that is most salient will

be weighted with a value of one and the less salient detail will be weighted with a value of

zero. The equation that defines Saliency for the image I is:

Saliency = S 1 (m,n,k,l) = Ep (rh,r) D&(m + rh, n + A, k, 1)2

where, m, n defines the location of the detail at a given level k in the oriented gradient pyramid,

I defines the layer (i.e., which detail filter was used to extract the oriented detail) and p (rhgA)

is a weight matrix with a neighborhood (rh,A) of 5 x 5, 3 x 3, or just the point itself. Thus,
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Figure 2.10 Orientation gradient pyramid algorithm used to extract the details and gross
approximation from the reduction pyramid.
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Figure 2.11 Filters d, Thru d4 Magnitude Frequency Response.
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weights are chosen for the p matrix to determine how a particular neighborhood around each

detail is weighted for importance. A typical weight matrix, which is recommended by Burt

and used in this thesis, has all entries equal to one, so that saliency is the local gradient energy

in some neighborhood, defined by the matrix p, around each point in the gradient pyramid.

D1 represents the details from the orientation gradient pyramid from image I. The equation

that defines Match between image A and image B is:

Match = MAB (m, n, k, 1) = 2 E2,,A p(rh, A)DA(m + rh, n + A, k, l)DB(m + ?n, n + A, k, 1)

SA(m + rh, n + A, k, l)SB(m + rh, n + A, k, 1)

Where DA and DB are the details from the orientation gradient pyramids from input images

A and B. SA and SB are the salience values for the input images A and B. The match values

range between the value 1 for identical input patterns and the value -1 for identical detail

patterns that are opposite in sign.

In this way, images that may each contain a piece of the complete picture will contribute

to the composite picture in some amount. The end result is an image that is composed of a

combination of weighted averages of the details across several images.

The fused detail pyramid is created by summing the weighted details from image A and

image B and choosing the gross approximation from one of the input sources, Figure 2.13.

The weights and the weighted sum equations are defined as follows:

Dc(m,n,k,1) = wA(m,n,k,l)DA(m,n,k,1) + wB(m,n,k,l)DB(m,n,k,1)

1 1 (1 - MAB\

Wmax = 1 - Wmin

Where DC is the fused detail and WA, WB are the appropriate weight matrices. The weights

are assigned based upon which input source had the largest salience value. If WA had the

larger salience then WA = Wmax and WB = Wmin otherwise, WB = Wma, and WA = Wmin
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Once the oriented gradient pyramids have been fused into a single pyramid, the third and

final stage of Burt's algorithm is performed. This is the reconstruction phase. Reconstruction

is performed by combining the four layers of details into a single layer and then combining

the gross approximation with the different levels of details, Figure 2.14. The first part of

reconstruction results in a pyramid with multiple levels of combined details and a top level

of a gross approximation, Figure 2.13. The final stage of reconstruction combines the gross

approximation and the details to obtain the composite image, Figure 2.14. The method of

reconstruction is further explained in chapter three.

(1600X 126)

IDetail
&

Z Gross Approximation 
(320 X 236)Pyramid ,.

(640223( 2)

-d IIo ,o

Image Im~age

Redcton((05 00

Figure 2.14 Burt reconstruction algorithm used to Combine the Gross Approximations and
Details into a composite image.

2.3.4 Limits to Wavelet Decomposition with Match and Saliency Fusion. The

fusion algorithm proposed by Burt has several advantages over the method proposed by Toet.

Since it averages similar input sources, instead of just picking some maximum value, it offers
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a potential for better noise reduction, which is shown in chapter four. It also allows the low

contrast details to be preserved, if they are the salient features. The main disadvantage is

that a template (weight matrix p) is needed to decide which features are salient. Since there

are always problems with size, orientation, translation, etc., finding a template that will work

well as a salient measure, will be very difficult if not impossible. One possible weight matrix,

proposed by Burt, is a 3 x 3 matrix of ones; this allows the saliency to be based upon the local

energy in the details. Although this provides a measure that has some useful applications,

local energy in the details of some images may reflect a high value strictly due to noise in

the image. Figure 2.15 is one such example. The two images are of the same scene, but

the second image has some white Gaussian noise added to the center of the image. Burt's

method would weight the noisy part of the second image more heavily than the corresponding

non-noisy part of the first image, due to the energy in the noise. Another drawback to Burt's

method is energy in the images that may not fall within human perception (see section 2.4)

may play a large part in the decision of how the images will be fused. Again, see Figure 2.15.

Therefore, a method that uses the strengths of Burt's fusion scheme, and still addresses the

human visual system, is needed.

2.4 Contrast Sensitivity

Contrast is a measure of the difference in brightness across an image or scene. It is

also the difference between the brightness of an object and its surroundings or background.

For example, a black object on a white background would have a high contrast, whereas a

gray object on a slightly lighter gray background would have a low contrast. Figure 2.16

represents two sinusoidally varying gratings one with a high contrast value of 0.8 and one

with a low contrast value of 0.1, using the Michelson contrast equation defined later. As

depicted in Figure 2.16 it is the relative differences in luminance between an object and

its surroundings that determines the amount of contrast in a given scene. How well an

individual can discern those relative differences in luminance determines the amount of

contrast sensitivity an individual has. Contrast sensitivity is a measure of how a person
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Figure 2.15 Image of Lenna on the left and on the left is the same image with white Gaussian
Noise added to one section.

responds to contrast at threshold [17, 12]. Mathematically, contrast sensitivity is defined as

the reciprocal of contrast.

Even though the definition for contrast seems fairly straight-forward, there are several

methods to measure the contrast in a given scene [12]; each one has a unique application to

a particular image analysis task. The measure of how the human visual system responds to

contrast, i.e., contrast sensitivity, is a function of the spatial frequencies in the image [12, 17].

For example, it has been shown that the human visual system responds better, or is more

contrast sensitive, to low spatial frequency components than it is to high spatial frequency

components [17]. For instance, referring to the contrast sensitivity plot in Figure 2.19 [17],

the sensitivity clearly peaks for the frequency ranges 2 through 10 cpd and then falls off

sharply [17, 12].

When measuring visual acuity, the Snellen letters, black letters on a white background

are used. Snellen letters are an example of high contrast, high frequency stimuli. Using

this kind of test gives us no information about how well an individual can discern low

contrast, low frequency stimuli such as a car on the road at night or a person in a dark movie
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Figure 2.16 The figure on the left is an example of a low frequency high contrast sinusoidally
varying gradient and the one on the right is a low frequency low contrast gradient

theater [17]. Examples of low contrast, low frequency stimuli include picking out a runway

in the fog, looking for an individual in a dark theatre, or analyzing camouflaged targets in

photo reconnaissance pictures. Because of the limited amount of information standard visual

acuity tests provide, contrast sensitivity is becoming a more acceptable measurement criteria.

Evans and Ginsburg showed that contrast sensitivity was better in determining a person's

ability to discriminate highway signs and Stager and Hameluck showed that the same was true

of air-to-ground search performance [17]. It is suspected that contrast sensitivity may even

provide the Air Force with better information on an individual's visual capabilities than the

standard visual acuity tests.

There are several methods to measure an individual's contrast sensitivity. One method

is to present a subject with a series of bars at varying spatial frequencies and contrasts to

determine, at each spatial frequency, what the necessary contrast is for the individual to see

that there are bars in the image and not just a constant grey-scale image. This method measures

an individual's contrast sensitivity threshold. Another method is to present a subject with a

series of sinusoidally varying gratings, Figure 2.17, each with different spatial frequencies and
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contrasts to measure the minimum contrast needed for an individual to detect the orientation

of the grating. Figure 2.17 is an example of a high contrast vertically oriented test grating. To

Figure 2.17 Example of a low frequency high contrast sinusoidally varying test gradient

determine the contrast for a particular grating the modulation contrast (or Michelson contrast)

is generally computed [17, 12]. Michelson contrast is defined as:

Contrast = Lmax - Lmi

Lmax + Lm,,in

where Lmax, Lmin represent the maximum and minimum luminance values. For gray-scale

images, Lmax, Lmin are the maximum and minimum values of the sinusoid. Spatial frequency

is defined as the number of cycles per degree of visual angle. Therefore, assuming that a

person is viewing an image on a computer screen 24 inches away, Figure 2.18, one degree of

visual angle would relate to a physical viewing radius of:

Y = D x tan(0) = 24 x tan(l) = 0.2095 e
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where 0 is the desired visual angle, and 24 is the distance in inches from the CRT. Therefore,

on a typical CRT with a resolution of 1024 x 1280, the spatial frequency would be related to

how many cycles are completed in roughly 40 pixels. This is why the window size of 40 x 40

Figure 2.18 Diagram of how distance from CRT relates to Spatial Frequencies

is chosen for the image fusion algorithm developed in this thesis. The image fusion algorithm

is designed to optimally fuse images for analysis on a CRT with a resolution of 1024 x 1280

and an average viewing distance of 24 inches from the screen. If a different presentation of

the image is used, the window size can be altered to optimize for the viewing resolution and

distance. The contrast sensitivity response used in this thesis is represented by the vector:

c = [0 50 100 150 160 150 145 142 164 130 120 110 100 90 80 70 66.5 63 59.5 56 52.5]

and is depicted in Figure 2.19. The c vector above represents the frequency response in cycles

per degree of spatial resolution. Again, see Figure 2.18 for an understanding of how the

distance from an object changes the spatial frequencies observed by the viewer. The contrast

sensitivity response is provided as a one dimensional response to visual stimuli which vary

only along one dimension (either vertically or horizontally) with no combination of vertical

and horizontal. The image fusion algorithm developed in this thesis fuses images which are

two dimensional. Thus, a weight matrix that provides the frequency response (i.e., contrast

sensitivity) of the human visual system in a two dimensional response is needed. The one
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dimensional c matrix is converted to the two dimensional response C by utilizing the following

formula:

C(m,n) sqrt [c(m) 2 + c(n)2 ]

200-

150-

100-

50-

05 10 15 20 25
Cycles Per Degree of Spatial Resolution

Figure 2.19 Contrast sensitivity response of the 95th percentile.

The success of this conversion relies on the assumption that the response of the human visual

system is the same both horizontally and vertically [6, 8]. Also, the response can be extended

to the other orientations by using a linear combination of the components of the horizontal

and vertical responses [6, 8]. The two dimensional weight matrix C is shown below and is

illustrated in the resolution enhanced Figure 2.20.
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0 140 180 220 250 249 248 247 246 220 195 185 170 160 150 145 140 130 120 110 100

140 198 228 261 287 286 285 284 283 261 240 232 220 213 205 202 198 191 184 178 172

180 228 255 284 308 307 306 306 305 284 265 258 248 241 234 231 228 222 216 211 206

220 261 284 311 333 332 332 331 330 311 294 287 278 272 266 263 261 256 251 246 242

250 287 308 333 354 353 352 351 351 333 317 311 302 297 292 289 287 282 277 273 269

249 286 307 332 353 352 351 351 350 332 316 310 301 296 291 288 286 281 276 272 268

248 285 306 332 352 351 351 350 349 332 315 309 301 295 290 287 285 280 276 271 267

247 284 306 331 351 351 350 349 349 331 315 309 300 294 289 286 284 279 275 270 266

246 283 305 330 351 350 349 349 348 330 314 308 299 293 288 286 283 278 274 269 266

220 261 284 311 333 332 332 331 330 311 294 287 278 272 266 263 261 256 251 246 242

C = 195 240 265 294 317 316 315 315 314 294 276 269 259 252 246 243 240 234 229 224 219

185 232 258 287 311 310 309 309 308 287 269 262 251 245 238 235 232 226 221 215 210

170 220 248 278 302 301 301 300 299 278 259 251 240 233 227 223 220 214 208 202 197

160 213 241 272 297 296 295 294 293 272 252 245 233 226 219 216 213 206 200 194 189

150 205 234 266 292 291 290 289 288 266 246 238 227 219 212 209 205 198 192 186 180

145 202 231 263 289 288 287 286 286 263 243 235 223 216 209 205 202 195 188 182 176

140 198 228 261 287 286 285 284 283 261 240 232 220 213 205 202 198 191 184 178 172

130 191 222 256 282 281 280 279 278 256 234 226 214 206 198 195 191 184 177 170 164

120 184 216 251 277 276 276 275 274 251 229 221 208 200 192 188 184 177 170 163 156

110 178 211 246 273 272 271 270 269 246 224 215 202 194 186 182 178 170 163 156 149

100 172 206 242 269 268 267 266 266 242 219 210 197 189 180 176 172 164 156 149 141

400,

300,

200,

100,

0

Figure 2.20 Contrast Sensitivity Response Weight Matrix C

Some research shows that an individual's perception of contrast will be different for

contrasts that are above threshold [10, 13, 16] and the curve actually begins to flatten out as the

contrast is increased. However, the fusion method proposed here is based upon the threshold
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frequency response. Although it has not been tested, if the contrast sensitivity curve that

matches the contrast in the images to be fused is available, replacing the contrast weighting

matrix C with a new response curve, should only serve to further optimize the fusion method.

2.5 Conclusion

This chapter presented two image fusion techniques, one by Alexander Toet [2, 18, 19]

and one by Peter Burt [5] and a discussion on contrast sensitivity. Contrast sensitivity

is a measure of how the human visual system responds to certain visual stimuli. It is a

valuable tool in analyzing the visual capabilities of a particular individual, and as such, will be

invaluable when determining how images should be fused. The fusion methods presented had

characteristics that make them both useful and practical. However, they each have limitations

that need to be addressed. Toet's method, which is based upon maximum contrast, has the

potential to lose information about low contrast targets. While Burt's method may overcome

the contrast problem, it suffers from a need to find a good weight matrix p to define the saliency

for a given application. The next chapter describes the fusion algorithm developed in this

thesis and the test images that will be used to compare and contrast the different image fusion

schemes.
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III. Approach

3.1 Introduction

In the previous chapter, two multi-resolution image fusion algorithms were presented [ 18,

5], along with a discussion of how contrast sensitivity plays an important role in the human

visual system. This chapter will describe the image fusion technique proposed in this thesis,

the data used to evaluate the three image fusion algorithms, and the methods by which the

three image fusion algorithms will be compared and contrasted. The contrast sensitivity algo-

rithm discussed in this chapter is implemented using Matlab version 4.2 and is referenced in

Appendix F.

3.2 Hierarchical Image Fusion with Contrast Sensitivity Saliency

This section describes an image fusion technique based upon previously successful

multi-resolution decomposition and reconstruction methods [5, 15, 2, 18, 19, 9], with an

added ability to tailor the selection criteria ( i.e., what is salient between images) to the contrast

sensitivity of the photo analyst. The basic approach, which is similar to the fusion methods

discussed in chapter two, employs a multi-resolution algorithm that uses decomposition,

fusion, and reconstruction. The decomposition and reconstruction phases will be identical to

those employed by Peter Burt [5]. Those methods work well with an acceptable reconstruction

error of approximately 2% of the original energy. The decomposition and reconstruction phases

will be defined again here to provide a stand-alone picture of the fusion algorithm developed

for this thesis.

First the image decomposition is performed. The first step in performing image decom-

position is constructing the reduction or Gaussian pyramid, Figure 3.1.

The

5x5

3-1



Reduce Function

Reduc Fleduted Imag0X1 6

S•[ Reduced Image

~(640 X 562)

L velO

Figure 3.1 Multi-resolution decomtion ion algorithm that generates a Gaussian pyramid
based on a single input image.
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Gaussian kernel used in the reduction stage is represented by the weight matrix,

1 4 6 4 1

4 16 24 16 4
1

w-- *w=- 6 24 36 24 6
256

4 16 24 16 4

1 4 6 4 1

where,

5 2 1
16

1 2 1-

The

5x5

filter is resolution enhanced using a cubic spline to provide a better visual representation of

how the filter looks, Figure 3.2. The method of filtering and down-sampling is defined by:

2

Pj(i, j) = E w(m,n)P1_j(2i + m,2j + n) (3.1)

where P1 represents the (reduced) output level and PI- 1 represents the (higher resolution)

input level, and the indices on the sum define the size of neighborhood that will be weighted

to obtain the filtered image. Thus, the weight matrix w, defined above, is the convolution

mask that is used to filter the image. Down-sampling, by a factor of 2, is accomplished by

selecting every other point in the filtered image. By successively filtering and down-sampling,

an image pyramid that has the original image as the pyramid base with successive levels that

are low-pass filtered and down-sampled versions of the level below is generated. Recall,

Figure 3.3 is a pictorial example of a three level pyramid. The first level is the original input

image. The second level is the filtered and down-sampled version of level one (the input

image). The third level is the filtered and down-sampled version of level two. The effect of
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convolving each layer with the w weight matrix and then down-sampling by a factor of two is

that a 2-D filtering operation is performed in the frequency domain.

0.25

0.15,
0.2,

0.01, 0.15,

0, 35 A4 
2 2.5

1.515

1 J 1 J

Figure 3.2 Image representation of resolution enhanced weight matrix matrix w and ib

The next stage in image decomposition is performed by extracting the orientation

gradient details and a gross approximation from the multi-resolution pyramid. The detail

extraction is not the same as what would be expected in a Mallat [11] decomposition, but

the fact that the detail filters described below are compact, self-similar, and of many scales,

they are considered wavelets [5]. The multi-scale orientation gradient details are extracted

by using the filters, defined below, on multi-scaled versions of the image, Figure 3.4. The

gross approximation is just the top level of the reduction (Gaussian) pyramid. Burt calls this

step creating the orientation gradient pyramid [5]. It is called the orientation gradient because

the basis functions used for detail extraction are gradients of Gaussian patterns. They are

called gradients of Gaussians because the gradient filters d, thru d4, defined below, are used

to extract information from the reduced (Gaussian) pyramid. The following equations define

this stage of the decomposition:

Dkt = dl * [Gk + ? * Gk]
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Reduced Image Level 2

Reduced Image Level 1

Original Image Level 0

Figure 3.3 Pictorial Representation of the Multi-resolution Image Pyramid
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di = [1 -1]

d2 =[ 7]

d3 = 1]

d4 = [ 1]

where * is the convolution operator, Dkl are the details for level k and orientation 1, Gk is the

level k input from the reduced image pyramid, and d, thru d4 are the oriented gradient filters.

The index k is the level of the resolution from the Gaussian pyramid and the orientation 1

is simply the index of the d, thru d4 filter used. Figure 3.5 presents the magnitude of the

frequency response of filters d, thru d4 . Figure 3.6 is an example of a single orientation from

an orientation gradient pyramid with three different levels of resolution.

Figure 3.6 also depicts a single orientation from the oriented gradient detail pyramids

that would be obtained from decomposing the image of Lenna.

Now that the oriented gradient pyramid has been formed for each input image, the next

stage in the fusion process is performed. This is where the main difference lies between the

method proposed here and Burt's method [5], which was presented in chapter 2. Burt uses a

match and saliency measure, which is based upon the weighted energy in the detail domain,

to decide how the oriented gradient pyramids will be combined. The method presented in

this thesis uses an idea similar to Burt's match and saliency, but instead of using localized

energy in the detail domain to compute the weighted averages, the method presented here uses

a weighted energy in the perceptual domain; where the perceptual domain is based upon the

frequency response (i.e., contrast sensitivity) of the human visual system.

The idea is that the human visual system responds to certain spatial frequencies dif-

ferently than it does to others. In other words, some spatial frequencies are more important

to the human observer, than others. Therefore, when evaluating whether two images would

be perceived as different (determining a match value), and deciding which details are more
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Figure 3.4 Orientation gradient pyramid algorithm used to extract the details and gross
approximation from the reduction pyramid.
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Figure 3.5 Plots of the Magnitude Frequency Response of filters d, thru d4.
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Figure 3.6 This figure provides an example of one particular orientation at three resolutions
from the Orientation Gradient Pyramid which was obtained by using the d,
(horizontal) gradient filter.
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important (determining a saliency value), we need to base the evaluation on the perceptual

abilities of the human observer. Thus, the criteria to decide which parts of the input images

will averaged to form the composite image and which ones will not is determined by the

contrast sensitivity response of the human analyst.

The fusion stage is performed in the following manner:

1. Corresponding neighborhoods from the orientation gradient pyramids to be fused will

be compared using the contrast sensitivity response of the analyst.

2. If the corresponding neighborhoods differ by more than some threshold, the one that

is more salient (i.e., has more energy in the contrast sensitivity frequency domain or

"perceptual domain") will be retained in the fused orientation gradient pyramid.

3. If the perceived difference is less than some threshold, the two neighborhoods will be

summed according to a weighted average.

First a relative perceptual distance D is computed for each layer of the orientation pyramid.

D =(SA - SB)

(SA ± SB)

where D is the percent difference and SA, SB are the saliencies computed for a neighborhood

from level k and orientation I of orientation gradient pyramids I and 2, respectively. Saliency

is computed as the amount of perceptual energy in a given set of oriented details, as related to

the frequency response C of the analyst. Saliency is defined by:

Saliency ZC(mn)XI(mnk,1)
mTn

where C is the contrast sensitivity weight matrix for a given analyst [17] and Xr is the

magnitude of the energy normalized low frequency 2-dimensional Fourier components from

some neighborhood at level k and orientation I of the orientation gradient pyramid. The

indices m, n are defined by the window size.
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A typical weight matrix C, representing the 2-dimensional frequency response for the

human visual system, is depicted in Figure 3.7 and is defined as:

0 140 180 220 250 249 248 247 246 220 195 185 170 160 150 145 140 130 120 110 100

140 198 228 261 287 286 285 284 283 261 240 232 220 213 205 202 198 191 184 178 172

180 228 255 284 308 307 306 306 305 284 265 258 248 241 234 231 228 222 216 211 206

220 261 284 311 333 332 332 331 330 311 294 287 278 272 266 263 261 256 251 246 242

250 287 308 333 354 353 352 351 351 333 317 311 302 297 292 289 287 282 277 273 269

249 286 307 332 353 352 351 351 350 332 316 310 301 296 291 288 286 281 276 272 268

248 285 306 332 352 351 351 350 349 332 315 309 301 295 290 287 285 280 276 271 267

247 284 306 331 351 351 350 349 349 331 315 309 300 294 289 286 284 279 275 270 266

246 283 305 330 351 350 349 349 348 330 314 308 299 293 288 286 283 278 274 269 266

220 261 284 311 333 332 332 331 330 311 294 287 278 272 266 263 261 256 251 246 242

C= 195 240 265 294 317 316 315 315 314 294 276 269 259 252 246 243 240 234 229 224 219

185 232 258 287 311 310 309 309 308 287 269 262 251 245 238 235 232 226 221 215 210

170 220 248 278 302 301 301 300 299 278 259 251 240 233 227 223 220 214 208 202 197

160 213 241 272 297 296 295 294 293 272 252 245 233 226 219 216 213 206 200 194 189

150 205 234 266 292 291 290 289 288 266 246 238 227 219 212 209 205 198 192 186 180

145 202 231 263 289 288 287 286 286 263 243 235 223 216 209 205 202 195 188 182 176

140 198 228 261 287 286 285 284 283 261 240 232 220 213 205 202 198 191 184 178 172

130 191 222 256 282 281 280 279 278 256 234 226 214 206 198 195 191 184 177 170 164

120 184 216 251 277 276 276 275 274 251 229 221 208 200 192 188 184 177 170 163 156

110 178 211 246 273 272 271 270 269 246 224 215 202 194 186 182 178 170 163 156 149

100 172 206 242 269 268 267 266 266 242 219 210 197 189 180 176 172 164 156 149 141

400,

300,

200,

100,

Figure 3.7 Median Contrast Sensitivity Response Weight Matrix C

The previous definition for the C matrix applies to the level zero version of the contrast

sensitivity matrix. When the saliency is computed for successive levels of the oriented gradient
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pyramid, the C matrix needs to be scaled appropriately. The level of scaling would correspond

to the type of resolution scaling being performed on the original image. Therefore, if the image

has been reduced three times, i.e., the fourth level of the oriented gradient pyramid, then the

C matrix needs to be reduced three times as well. This allows the response of the contrast

sensitivity function to remain at the same level of analysis as it did at the original level zero

of the pyramid. Thus, to obtain the appropriate C matrix for a given level the relation:

Ck = Reducek(C)

where Ck is the C matrix used in the saliency formula for a given level k. The subscript k on

the Reducek function defines how many times the reduce function needs to be performed on

the original C matrix.

The method for extracting the saliency is to first energy normalize each level and

orientation of the oriented gradient pyramid by dividing by the square root of the sum of the

squares at each level and orientation. Next, extract the magnitude of the Fourier coefficients

of an m, n sliding window over each input level and orientation. The size of the window and

the step size may vary. A 40 x 40 window and a step size of eight was used in this thesis. To

extract the Fourier coefficients, the 40 x 40 window is passed over the image, according to

the step size, and the Fourier transform is computed for each resulting 40 x 40 set of values.

Then, the non-zero frequency components are energy normalized by dividing each coefficient

by the square root of the sum of the squares of the non-zero frequency coefficients. The

zero frequency component values are not used. This type of normalization allows images

to be compared in the same manner as a photo analyst would. That is, the photo analyst's

visual system automatically discounts the illuminant in images that have large differences in

average intensity, but are of the same scene. They are perceived as equivalent. Figure 3.8 is

an example of two images that are identical except for some average intensity offset.

After the percent difference D is computed, it is compared to some threshold T. If the

difference is greater than T, the input detail with the higher saliency value will be retained for
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Figure 3.8 Images only differ by some dc bias

the fused oriented gradient pyramid and the other detail will not. If the perceived difference

is not greater than the threshold T, the input details will receive the following weights:

WA ( SaliencyB )
1B =- Weightiniga

The fused detail pyramid is created by summing the weighted details from image A and

image B and choosing the gross approximation from one of the input sources, Figure 3.9. The

weighted sum is defined as follows:

Dc =WADA ±- WBDB

Here Dc is the fused detail and WA and WB are the appropriate weight matrices and DA and

DB are the details from the oriented gradient pyramids from image A and B. The weighting

is performed by a point-by-point multiplication of the weight matrix and the detail matrix.
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Once the gross approximation and detail pyramids have been fused into a single pyramid,

the third and final stage is performed. This is the reconstruction phase. Reconstruction is

performed by combining the four layers of details into a single layer and then combining the

gross approximation with the different levels of details, Figure 3.10, to form the composite

image. The order of reconstruction is

1. Convert the oriented gradient pyramid into the second derivative pyramid, or what Burt

calls the oriented Laplacian pyramid [5].

2. Convert the oriented Laplacian pyramid into the FSD (filter-subtract-decimate) Lapla-

cian pyramid [3].

3. Convert the FSD Laplacian pyramid into the RE (reduce-expand) Laplacian pyramid.

4. Convert the RE Laplacian pyramid into the Gaussian pyramid.

5. Recover the composite image from the Gaussian.

Converting the oriented gradient pyramid into the oriented Laplacian pyramid is repre-

sented by the following formula:

Lkl =--d 1 d* Dkl
8

where Lkl is the level k and orientation I of the oriented Laplacian pyramid, d, is one of the

detail filters described above for d, thru d4, and Dkl is the input level k and orientation I from

the oriented gradient pyramid.

Converting the oriented Laplacian pyramid into the FSD Laplacian pyramid is repre-

sented by the following formula:
4

Lk =ZLkI
l11

where Lk is the level k of the FSD laplacian pyramid and Lkl is the level k and orientation l

of the oriented Laplacian.
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Converting the FSD Laplacian pyramid into the RE (reduce-expand) Laplacian pyramid

is defined as follows:

Lk - [1 + w] * Lk

Where Lk is the level k of the RE (reduce-expand) Laplacian pyramid, Lk is the level k of

the FSD laplacian pyramid, w is the 5 x 5 filter defined above, and 6 is a matrix defined as

follows:
0 0 0 0 0

0 0 0 0 0

6= 0 0 1 0 0 (3.2)

0 0 0 0 0

0 0 0 0 0

Converting the RE Laplacian pyramid into the Gaussian pyramid and then recovering

the composite image from the Gaussian, is performed by repeatedly applying the following

formula:

Gk = Lk + 4w * [Gk±]T2

Where 6k is the level of reconstruction, * is the convolution operator, 4w is 4 times the 5 x 5

w matrix above, and [Gk+I]T2 represents an upsampling of the layer k + 1 above to match

the resolution of the current layer Lk of the RE Laplacian pyramid. If the formula has been

applied enough times to successfully recover G0, it will be the reconstructed composite image.

The upsampling (expand function) is represented by the following equation:

2 i+m j +n

PI,k(i,j) = 4 E w(m,n)Pl,k-1( 2 ' 2(3.3)
re,n=-22 2

where PI,k represents the expanded output level, w is the same 5 x 5 weight matrix defined

above, PI,k-1 represents the input level, and only integer indices contribute to the sum. The

expand function is accomplished by padding every other column and row with zeros and then

convolving the zero padded image with the weight matrix w. In affect, an upsampling by a

factor of two is being accomplished.
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Figure 3.10 Reconstruction algorithm combines the gross approximation and details into a
composite image.
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3.3 Test Images

In order to evaluate the capabilities of the three fusion algorithms presented, multiple

test images are generated with varying signal-to-noise ratios (SNR) and types of backgrounds.

Random noise, with a uniform distribution on the interval (0.0,1.0), is scaled by a constant

and is then added to various locations in the images. Where SNR is defined by:

Energy in Signal
SNR = logio Energy in Noise

The energy in the signal is simply the sum of the squared pixel grey-scale values in the

pure unmodified images of Lenna or Band 30. These are considered the "Golden" images for

the test cases. The energy in the noise is computed by first subtracting the modified image

from the unmodified image to get the noise. Then the sum of the squared difference provides

the energy in the noise. Two different base images are used to obtain multiple types of

backgrounds. The first image is the original (clean) version of Lenna [1 ] which contains areas

of high frequencies, vertical/horizontal edges, low frequencies, and circular oriented details,

left image in Figure 3.8. The second image is the image representation of band 30 from the

AVIRIS hyperspectral sensor, Figure 4.9. Band 30 contains natural scenes (water, trees, fields)

and urban structure (streets, runway, buildings). Correlated or uncorrelated noise was added

to the test images in three different regions, thus creating sets of three images to be fused. The

correlated noise was generated by convolving the uncorrelated noise with a low-pass filter.

The level of correlation was computed as the full-width-half-max of the maximum amplitude

of the autocorrelation of the convolution filter [7]. The low-pass filter used to generate the

correlated noise was the same

5x5

w filter used in Burt's fusion algorithm [5]. The full-width-half-max value was computed to

be 4 pixels. Thus, each 4 x 4 neighborhood of noise is fully correlated. Figure 3.11 provides

an example of three images containing uncorrelated noise with a SNR of 10db, within the area

the noise was added. Figure 3.12 provides an example of three images containing correlated
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Image Name Correlated/Uncorellated SNR of Affected Areas (db) SNR of Overall Image (db)
Lenna_ 10dbl Uncorrelated 10 21.9
Lenna l0db2 Uncorrelated 10 23.9
Lenna 10db3 Uncorrelated 10 20.0
Lenna 5dbl Uncorrelated 5 16.9
Lenna 5db2 Uncorrelated 5 18.9
Lenna 5db3 Uncorrelated 5 15.0

Lenna_ 2.5db 1 Uncorrelated 2.5 14.4
Lenna_ 2.5db2 Uncorrelated 2.5 16.3
Lenna_ 2.5db3 Uncorrelated 2.5 12.5

Lenna_ 5dbcorrl correlated 5 17.1
Lenna_ 5dbcorr2 correlated 5 18.9
Lenna_ 5dbcorr3 correlated 5 15.1

Table 3.1 Signal-to-Noise Ratios for the Lenna Modified Test Images.

Image Name Correlated/Uncorellated SNR of Affected Areas (db) SNR of Overall Image (db)
band30- 5dbcorrl correlated 5 21.1
band30_ 5dbcorr2 correlated 5 19.8
band30- 5dbcorr3 correlated 5 15.9

Table 3.2 Signal-to-Noise Ratios for the Band 30 Modified Test Images.

noise with a SNR of 10db, within the area the noise was added. Table 3.1 provides a listing

of the SNRs for all of the test images using Lenna. Table 3.2 provides a listing of the SNRs

for the test images using Band30. The tables include a column for the overall image SNR to

provide for a comparison to the fused image results, since there will be reconstruction error to

consider.

3.4 Conclusion

This chapter defined an image fusion algorithm which was based upon the visual

perception of the human analyst. The fusion algorithm uses contrast sensitivity to determine

the salient parts of the input images to be fused. The method of generating test images to

evaluate the three fusion algorithms was also presented. The test images are generated by

adding uncorrelated or correlated noise to images with various backgrounds. The next chapter
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Figure 3.11 Three Test Images of Lenna with 5db energy SNR of uncorrelated noise added
at three different locations.
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Figure 3.12 Three Test Images of Lenna with 5db energy SNR of correlated noise added at
three different locations.
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discusses the results of image fusion using the three fusion algorithms presented in chapters

three and four.
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IV Results

4.1 Introduction

This chapter provides examples of fusion that employ all three of the image fusion

techniques previously described in chapters two and three. The first example fuses the test

images described in section 3.3 to illustrate the capabilities and limitations of the different

methods. The second example combines three SAR images to evaluate how fusion affects

the automated target recognition of the scenes. The third example integrates three bands of

AVIRIS data to provide a pictorial representation of IR and Visual data fusion from a single

sensor. A fourth example employs only the algorithm developed in this thesis to fuse nine

bands from the AVIRIS sensor.

4.2 Hierarchical Image Fusion of Test Images

In this section, the results of fusing the test images described in section 3.3 are presented.

The test images were fused using the algorithms by Burt [5] and Toet [2, 18, 19] described in

chapter two and the method developed in this thesis which was detailed in chapter three.

All of the fusion performed in this thesis was implemented using the recommended

parameters from Burt [5] and Toet [2, 18, 19]. The parameters were the same for every fusion

example regardless of the type of data fused (AVIRIS, SAR or test images). Neither Burt [5]

nor Toet [2, 18, 19] stated in their articles that their algorithm's parameters were problem

dependent, therefore no attempt was made to alter the parameters to optimize a fusion result.

The parameters used for the fusion method developed here were also the same for all fusion

examples. The parameters for each algorithm are as follows:

Burt's fusion algorithm was implemented using the following parameters:

1. Six layers of decomposition (i.e., 5 levels of details) using Burt's recommended w

matrix and dl thru d4 filters [5].

2. A 3 x 3 p matrix of all ones.
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3. An alpha of 0.9.

Alexander Toet's fusion algorithm was implemented using six layers of decomposition

and Toet's recommended weight matrix w [2, 18, 19].

The method developed in this thesis was implemented using the following parameters:

1. Six layers of decomposition (i.e., 5 levels of details) using Burt's recommended w

matrix [5]

2. A window size of 40 x 40.

3. A shift of 8.

4. A threshold of 0.05.

Three sets of results are presented here for comparison. One shows the results of fusion

using uncorrelated noise and the other two using correlated noise and different backgrounds.

The remaining fusion results are shown in Appendix C. Figure 4.1 represents the results of

fusing the first three images defined in Table 3.1. Figure 4.2 represents the results of fusing the

three images defined in Table 3.1 that use correlated noise. Figure 4.3 represents the results

of fusing the three images defined in Table 3.2 that use correlated noise.

Three composite images were created for visual reference to aid in analysis of the

fusion results, Figures 4.4, 4.5, 4.6. The composite images were created by inserting the

noise from each input image into their respective locations in the original image of Lenna

or Band 30, respectively. It can be seen by comparing the fused images in Figure 4.1 with

the reference images of Figure 4.4, and by looking at the fusion results in Table 4.1 that the

method developed in this thesis does a better job of de-emphasizing uncorrelated noise in the

input images than either Burt's or Toet's methods. It can also be seen by comparing the fused

images in Figures 4.2 and 4.3 with the reference images of Figures 4.5 and 4.6 and by looking

at the fusion results in Table 4.2 that the method developed here also does a better job of

de-emphasizing correlated noise in the input images. In most cases, see Table 4.1 , the method

developed in this thesis even increased the SNR of the fused results above that of any input

image. However, even though the fused SNR was better than either Burt's or Toet's results,

4-2



Figure 4.1 Fusion results of test images are arranged as follows: Burt top left, Toet top right,
and Contrast sensitivity bottom. The input images, which contain uncorrelated
noise, are the first three images defined in Table 3.1
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Figure 4.3 Fusion results of test images are arranged as follows: Burt top left, Toet top right,
and Contrast sensitivity, bottom. The input images are the three images defined
in Table 3.2 that contain correlated noise.
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the fusion method developed here did not improve the SNR of the fused Band 30 images over

the SNR of the Band 30 input images. Two possible explanations for the differences in the

results of that for the Lenna noise images and the Band 30 image are:

1. The frequency of the added noise and the spatial content for some parts of the Band 30

images were such that when combined they provided enough energy in the perceptual

domain to make that area more salient.

2. The reconstruction error was larger due to the higher energy content of the Band 30

images, thus creating a larger difference between the fused composite and the ideal

Band 30 image.

It is also important to note that just because two images differ in Euclidean space, they may not

be perceived as different. How well changes to local contrast can be perceived is a function

of the contrast sensitivity [17, 12, 10].

Comparing Burt's method to Toet's shows that Burt's method provided better noise

reduction, but it still weighted the noisy parts of the images as more salient than the non-noisy

parts. It can also be seen from the fusion results that Toet's method selected the high energy

noisy parts of the input images to retain in the composite, even though the lower frequency parts

of the input images contained the information desired. This loss of information in the input

images, due to selecting the high energy noisy parts of the input images clearly demonstrates

a limitation to both Toet's and Burt's fusion methods, see sections 2.8 and 2.15. The noise

sensitivity of Toet's and Burt's methods is clearly overcome using the method proposed in this

thesis.

4.3 Hierarchical Image Fusion of Synthetic Aperture Radar (SAR) Image Data

In this section, the results of fusing three separate SAR images are presented. Fusion

of SAR data is presented as one example of how fusion may affect ATR methods and that the

fusion algorithms are not strictly limited to hyperspectral data. It was not intended to provide

a Stochastic analysis of how fusion affects ATR.
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Figure 4.4 Original image of Lenna and a composite image where each area of noise contains
a 10 db SNR of uncorrelated noise added.

Figure 4.5 Original image of Lenna and a composite image where each area of noise contains
a 10 db SNR of correlated noise added.
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Figure 4.6 Original image of Band 30 and a composite image where each area of noise
contains a 10 db SNR of correlated noise added.

Image Method Image Group SNR of Overall Image (db)
Burt Lenna 10db 20.0
Toet Lenna 10db 14.6

Contrast Sensitivity Lenna 10db 24.2
Burt Lenna 5db 14.5
Toet Lenna 5db 9.5

Contrast Sensitivity Lenna 5db 19.6
Burt Lenna_ 2.5db 11.7
Toet Lenna_ 2.5db 6.9

Contrast Sensitivity Lenna_ 2.5db 17.1

Table 4.1 Signal-to-Noise Ratios for the Fused Test Images Containing Uncorrelated Noise.

Image Method Image Group SNR of Overall Image (db)
Burt Lenna_ 5dbcorr 15.5

Toet Lenna_ 5dbcorr 9.9
Contrast Sensitivity Lenna_ l0dbcorr 19.6

Burt band30- 5dbcorr 16.0
Toet band30- 5dbcorr 11.2

Contrast Sensitivity band30_ 5dbcorr 20.0

Table 4.2 Signal-to-Noise Ratios for the Fused Test Images Containing Correlated Noise.
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Input Image Hits Misses False Alarms
KM15hh 4 2 7
KMl5hv 3 3 4
KM15vv 3 3 4

Table 4.3 Results of Automated Target Recognition of Individual SAR Images.

The SAR images are of the same scene and radar angle, but with three different po-

larimetric filter combinations. A target recognition algorithm was applied to the individual

input images and then to the fused images to analyze the effects of fusion on automated target

recognition. The three SAR images were fused using the same three methods described in

section 4.2. Figure 4.7 represents the three SAR input images.

The target recognition algorithm used to analyze the images declares a pixel as a target

if its intensity value is at least one standard deviation above the mean of the image. A

neighborhood of 10 x 10 is used to mark the location of possible targets. Thus, for every

10 x 10 neighborhood of pixels, if a single pixel is determined to be a target an x will be placed

over the individual pixel. If more than one pixel within the 10 x 10 box is determined to be a

target, the x is placed in the center of the possible targets. The data has been ground-truthed

and all possible targets in the scene are marked with a plus sign. Therefore, when an x is

placed in the same spot as a plus sign this is called a hit, meaning a correct classification has

been made. If an x is placed somewhere other than over a plus sign a false classification

or false positive has occurred. If a plus sign has no x placed over it then a miss or false

negative has occurred. Figure 4.7 also shows the results of the target recognition analysis of

the individual input images by the placement of the x 's and ±'s. Figure 4.8 show the results

of image fusion and target recognition analysis of the fused SAR images. Table 4.3 provides

a tally of the target recognition results using the individual images and Table 4.4 provides the

target recognition results of the fused data.

Burt's fusion method obtained the best results for the automated target recognition. It

maintained the best target recognition results obtained using the individual images alone of 4

hits and 2 misses while lowering the false alarm rate by 3. Toet's method obtained the same
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Target detection of kml5hh Image T=9 Target detection of km15hv Image T=8

,, Xi- 
AN,.. .

Target detection of kml5hh Image T=9

. . ... . .. , . .,• .. .L..:

Figure 4.7 SAR images with polanimetric orientations horizontal/horizontal, horizon-
tal/vertical, and vertical/vertical are located at top left, top right, and bottom,
respectively. An ± indicates an actual target and an x indicates where the ATR

algorithm says a target is.
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Figure 4.8 Fusion results of SAR images are arranged as follows: Burt top left, Toet top

right, and Contrast sensitivity bottom. An ± indicates an actual target and an x
indicates where the ATR algorithm says a target is.

[1 Input Image Hits Misses False Alarms
Burt 4 2 j 4
Toet 4 217

Contrast sensitivity 3 3 0_

Table 4.4 Results of Automated Target Recognition of Fused SAR Images.
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results as the best individual image case. The fusion algorithm developed in this thesis did

not achieve the same number of hits as the best of the individual case, however, it did improve

upon the accuracy of two of the three input images by lowering the false alarm rate to 0. Thus,

demonstrating that while fusion based upon contrast sensitivity does a good job for human

analysis, it doesn't necessarily do a good job for automated target recognition.

4.4 Hierarchical Image Fusion of IR and Visual Bands of A VIRIS Image Data

In this section, the results of fusing three bands of image data from the AVIRIS hyper-

spectral sensor are presented. The three bands include one image from the visual frequency

range and two from the infrared. Specifically, they are band numbers 30, 60, and 90, which

are in the 0.67/um to .68[im, the 0.94p.m to .951tm, and the 1.2 2 /tm to 1.2 3 Atm band-pass

ranges, respectively. Again, fusion was performed using the same methods as in section 4.2.

Figures 4.9, 4.10, and 4.11, represent the three AVIRIS input images.

It can be seen by comparing the fused images in Figures 4.12, 4.13, and 4.14 with the

input images in Figures 4.9, 4.10, and 4.11 that all three methods do a good job of preserving

visual information from each input image. However, comparing the three fused results to

each other, Toet's fusion method does not have the same amount of detail that is present in

the other two. For example, looking at the upper right hand comer of the fused images, it is

easy to see that Toet's method causes the details to become washed out. In order to make the

details in the upper comer more distinguishable, the overall intensity level of the image has

to be reduced. The reduction in intensity then causes the other areas of the image to become

less distinct. Also the runway and surrounding area is more clear in Burt's method and the

contrast sensitivity method than it is in Toet's fusion method.

Comparing the fusion results of the method developed in this thesis with Burt's shows

that they both have similar characteristics. Each method appears to preserve features in the

input images that are dominant. An example of this preservation is observed by looking at the

road that is a dominant feature in bands 60 and 90 but not in band 30. The road is located in the

lower third of the image and extends from the left edge of the image all the way to the right.
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Figure 4.9 AVIRIS image representing band 30
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Figure 4.10 AVIRIS image representing band 60
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Figure 4.11 AVIRIS image representing band 90
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Figure 4.12 Burt fusion results of AVIRIS bands 30, 60, and 90.
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Figure 4.13 Toet fusion results of AVIRIS bands 30, 60, and 90.
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Figure 4.14 Contrast sensitivity fusion results of AVIRIS bands 30, 60, and 90.
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It can clearly be seen as a continuous road in bands 60 and 90, but it is hard to distinguish in

band 30. Looking at the fused results in figures 4.12 and 4.14 it can be seen that the road is

preserved in the composite.

An example of how fusion of the input bands provides better detail in the composite than

in the individual input images alone is also shown in the fused images of all three methods. The

airport that can be seen in the lower right quadrant of the input images has been combined in

the composite image to provide more detail than was in all three of the input images separately.

4.5 Hierarchical Image Fusion of 10 Bands of AVIRIS Image Data

This section is intended to provide an example of how the fusion method developed in

this thesis can successfully fuse many bands from the AVIRIS sensor while causing no loss of

information nor a loss of dynamic range.

The input images are from bands 30 through 40 from the AVIRIS hyperspectral sensor.

The combined band-pass range of the images is from 0.67/im to .75/tm. The Figures repre-

senting the input images are displayed in Appendix B. Figure 4.15 represents the results of

fusion.

4.6 Conclusion

This chapter presented the results of hierarchical image fusion using two methods

presented by Peter Burt [5] and Alexander Toet [2, 18, 19], and a third method which was

developed in this thesis. The fusion algorithms were tested using test images defined in the

previous chapter, SAR images with different polarimetric orientations (to evaluate the effect

of fusion on automated target recognition), and images from the AVIRIS hyperspectral sensor.

The results showed that contrast sensitivity based fusion was superior in noise reduction than

either Burt's [5] or Toet's [2, 18, 19] methods no matter what type (correlated/ uncorrelated) or

level of noise was added to the images. It was also shown that contrast sensitivity based fusion

could successfully fuse many bands from the AVIRIS hyperspectral sensor. An example that
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Figure 4.15 Contrast Sensitivity Fusion results of AVIRIS bands 30 through 40, Excluding
33.
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fused ten bands was given. The next chapter will provide a discussion on the conclusions of

this research and some recommendations for follow-on research.
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V Conclusions and Recommendations

The conclusions and recommendations presented in this chapter are based upon the

results detailed in the previous chapter. First, conclusions derived from the results of fusing

the test images in chapter four is given. Second, a discussion on the affects that fusion may

have on automated target recognition of Synthetic Aperture Radar data is provided. Third, an

analysis of the fusion of AVIRIS data is presented. Fourth, general conclusions about all three

of the image fusion techniques used in this research are detailed. Finally, some follow-on

research recommendations are given.

5.1 Contrast Sensitivity Fusion

Referring to Figures 4.1, 4.2, and 4.3, image fusion using contrast sensitivity as a

salience measure produces fused images that are visually better than either Burt's [5] or

Toet's [2, 18, 19] methods. In every instance, the amount of noise that is retained in the

composite images is lower for the contrast sensitivity method than it is for either of the other

two methods.

The limits to Burt's and Toet's methods which were discussed in sections 2.15 and 2.8,

respectively, are clearly displayed in the results. Again, referring to Figures 4.1, 4.2, and 4.3,

Toet's method definitely emphasizes the noise in the input images and Burt's approach selects

the higher energy in the noise as most salient. It is also shown in Tables 3.1 and 3.2 that contrast

sensitivity based fusion provides better SNRs over a wide range of noises and backgrounds,

and that the results are independent of the type (correlated vs uncorrelated) and strength of

the added noise. Also, as the noise in the images is increased, the performance of the contrast

sensitivity based fusion actually improved over the other methods.

It is important to note that SNR analysis alone is not enough to judge a good fusion

result. Some of the noise may be in a less "contrast sensitive" region of the visual system and

it would not be visually noticeable. Therefore, even though an image may have a better SNR

than another image, a visual inspection of the fused images must confirm the results.
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5.2 Synthetic Aperture RADAR (SAR) Image Fusion and Automated Targeting

The fusion of SAR data was only provided as an example to show that the fusion

methods developed and investigated in this thesis are not strictly limited to hyperspectral data.

This was not an attempt to provide a stochastic analysis about how fusion impacts ATR of

SAR data.

The results of target recognition of the SAR data, after fusion, indicates that image

fusion based upon contrast sensitivity, while shown to be good for visual analysis, may not

be the best approach when the recognition algorithm uses thresholding as a criteria, see

Tables 4.3 and 4.4. However, the results do indicate that the fusion algorithms proposed by

Burt and Toet are possibly viable means of combining the different polarimetric images to aid

in target recognition. In the worst case, Toet's method maintained the best results of target

recognition using the input images separately. In the best case, image fusion using Burt's

method maintained the best number of correct classification and at the same time reduced the

number of false alarms by half, again refer to Tables 4.3 and 4.4.

5.3 AVIRIS Hyperspectral Data Fusion

Referring to the results of chapter four, contrast sensitivity based fusion successfully

fuses image data from the AVIRIS hyperspectral sensor and still maintains the relevant visual

information in the input scenes. Figures 4.14 and 4.15 clearly demonstrate that images from

multiple spectral bands can be fused to reduce image storage and increase the amount of

information in a given scene, as was discussed in the previous chapter. Even though the

contrast sensitivity method provided the best results, Burt's and Toet's methods were also

capable of fusing AVIRIS data with some limitations. One important limitation is that both

methods considered noise in the images to be very important. Thus, creating lower SNRs in

the fused images than the contrast sensitivity method. Another limitation, that Toet's method

experienced, was a reconstruction halo or edge effect, Figure 4.3. This reconstruction effect

was caused by selecting the maximum point in each ratio pyramid, then the point's value was

propagated into a wider and wider area as the images were reconstructed.
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5.4 Overall Conclusions

Toet's [2, 18, 19] maximum contrast fusion method is less computationally intense than

either of the other two methods discussed, but it is more susceptible to noise. Burt's [5] match

and saliency fusion method is less susceptible to noise than Toet's method, but it suffers from

a need to define an arbitrary weight matrix p to determine saliency. No method of determining

an optimal p matrix was provided by Burt or found during the implementation of Burt's

algorithm during this research. Finally, the new multi-resolution fusion algorithm, which uses

contrast sensitivity as a salience criteria, has been demonstrated to be a successful method

of image fusion. It works well on hyperspectral image data, is resistant to image noise, and

provides better SNRs and aesthetic quality than either Burt"s [5] or Toet's [2, 18, 19] fusion

methods.

5.5 Recommendations for Follow-On Research

There are several areas of interest that still need to be explored. For example, six levels

of decomposition were used in the fusion methods implemented in this thesis, but an analysis

of how many levels are actually needed for a given scene still needs to be investigated.

Also, the decomposition and reconstruction methods implemented in the contrast sen-

sitivity approach had reconstruction errors of about 2%. A method of deconstruction and

reconstruction that minimizes the error is still needed.

Further study is also recommended to analyze the results of using an individuals contrast

sensitivity response to evaluate the improvement to the image fusion algorithm. It would be

useful as well to research the benefits of using suprathreshold contrast as the contrast response

of the human visual system.

Finally, a wavelet decomposition method that functionally relates directly to the human

contrast sensitivity response would be helpful because it would eliminate the need for the

Fourier analysis. The energy in the detail coefficients could be compared directly as with

Toet's method, because now the energy domain has been transformed to the perceptual domain,
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Appendix A. Test Images

This Appendix provides a figure for every test image used in this thesis.
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Figure A. 1 Three Test Images of Lenna with 10db SNR of uncorrelated noise
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Figure A.2 Three Test Images of Lenna with 5db SNR of uncorrelated noise
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Figure A.3 Three Test Images of Lenna with 2.5db SNR of uncorrelated noise
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Figure A.4 Three Test Images of Lenna with 10db SNR of correlated noise

A-5



Figure A.5 Three Test Images of Band 30 with 5db SNR of uncorrelated noise
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Appendix B. AVIRIS Hyperspectral Images

This Appendix provides a figure for every AVIRIS image used in this thesis.

Figure B.1 AVIRIS Hyperspectral Image Representing Band 30
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Figure B.2 AVIRIS Hyperspectral Image Representing Band 30
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Figure B.3 AVIRIS Hyperspectral Image Representing Band 32
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Figure B.4 AVIRIS Hyperspectral Image Representing Band 34
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Figure B.5 AVIRIS Hyperspectral Image Representing Band 35
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Figure B.6 AVIRIS Hyperspectral Image Representing Band 36
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Figure B.7 AVIRIS Hyperspectral Image Representing Band 37
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Figure B.8 AVIRIS Hyperspectral Image Representing Band 38
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Figure B.9 AVIRIS Hyperspectral Image Representing Band 39
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Figure B.10 AVIRIS Hyperspectial Image Representing Band 40
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Figure B.11 AVIRIS Hyperspectral Image Representing Band 60
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Figure B. 12 AVIRIS Hyperspectral Image Representing Band 90
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Appendix C. Fusion Results Images

This Appendix provides a figure for every fusion result obtained in this thesis.

C.1 Fusion Results of Test Images
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C.2 Synthetic Aperture Radar Image Fusion Results

C-2



Figure C.1 Fusion results of test images are arranged as follows: Burt Top left, Toet top

right, and Wilson bottom. The input images, which contain uncorrelated noise,

are the first three images defined in Table 3.1
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Figure C.2 Fusion results of test images are arranged as follows: Burt Top left, Toet top right,
and Wilson bottom. The input images, which contain a 5db SNR of uncorrelated
noise and are defined in Table 3.1
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Figure C.3 Fusion results of test images are arranged as follows: Burt Top left, Toet top
right, and Wilson bottom. The input images, which contain a 2.5db SNR of
uncorrelated noise and are defined in Table 3.1
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Figure C.4 Fusion results of test images are arranged as follows. Burt Top left, Toet top right,

and Wilson bottom. The input images, which contain a 5db SNR of correlated

noise and are defined in Table 3.1
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Figure C.5 Fusion results of test images are arranged as follows: Burt Top left, Toet top right,
and Wilson bottom. The input images, which contain a 5db SNR of correlated
noise and are defined in Table 3.2
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C.3 AVIRIS Hyperspectral Image Fusion Results
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Figure C.6 Fusion results of SAR images are arranged as follows: Burt Top left, Toet top
right, and Wilson bottom.
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Figure C.7 Burt fusion results of AVIRIS bands 30, 60, and 90.
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Figure C.8 Toet fusion results of AVIRIS bands 30, 60, and 90.
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Figure C.9 Wilson fusion results of AVIRIS bands 30, 60, and 90.
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Appendix D. Toet Algorithm Implemented with Matlab M-Files

D.1 Image Fusion Algorithm For Bands 30 60 and 90
%This program fuses three AVIRIS images. In this case they are bands 30, 60, 90. The resulting
% output is a single image that has the same dimensions as the input images, but has now fused all
% three. Each input image is padded before it is deconstructed. It performs 6 levels of
% deconstruction and the first band (Band 30) is the band that is chosen f or the gross approximation.

clear
toetweights

step = 1 % create the filtered and down-sampled pyramid for band30
band30 = getim(30);
band30Ll = reduce(band30,M);
band3OL2 = reduce(band3OLl,M);
band30L3 = reduce(band30L2,M);
band3OL4 = reduce(band30L3,M);
band3OL5 = reduce(band3OL4,M);
band3OL6 = reduce(band3OL5,M);

step = 2 %create the ratio pyramid for band30
band3OR6 = band3OL6;
band30R5 - band3OL5 ./ (expand(band3OL6,M));

clear band3OL6
band30R4 = band3OL4 ./ (expand(band3OL5,M));

clear band3OL5
band3OR3 = band3OL3 ./ (expand(band3OL4,M));

clear band3OL4
band3OR2 = band3OL2 ./ (expand(band3OL3,M));

clear band3OL3
band3OR1 = band3OLl ./ (expand(band3OL2,M));

clear band30L2
band30R = band30 ./ (expand(band3OLl,M));

clear band3OLl

step = 3 % create the filtered and down-sampled pyramid f or band60
band60 = getim(60);
band60Ll = reduce(band60,M);
band60L2 = reduce(band60Ll,M);
band60L3 = reduce(band60L2,M);
band6OL4 = reduce(band60L3,M);
band60L5 = reduce(band6OL4,M);
band6OL6 = reduce(band6DL5,M);

step = 4 %create the ratio pyramid for band60

band6OR6 = band6OL6;
band60R5 = bandEOL5 ./ (expand(band6OL6,M));

clear band6OL6
band60R4 = band6OL4 ./ (expand(band6OL5,M));

clear band6OL5
band60R3 = band6OL3 ./ (expand(band6OL4,M));

clear band6OL4
band6OR2 = band6OL2 ./ (expand(band6OL3,M));

clear band60L3
band6ORl = band6OL1 ./ (expand(band6OL2,m));

clear band60L2
band60R = band60 ./ (expand(band6OLl,M));

clear band6OLl
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step = 5 % start fusing by creating the max ratio pyramid

diff6 = maxdif(band30R6,band6OR6);
clear band30R6
clear band60R6

diff5 = maxdif(band30R5,band6OR5);
clear band30R5
clear band60R5

diff4 = maxdif(band30R4,band6OR4);
clear band30R4
clear band60R4

diff3 = maxdif(band30R3,band6OR3);
clear band30R3
clear band60R3

diff2 = maxdif(band30R2,band6OR2);
clear band30R2
clear band60R2

diffl = maxdif(band30Rl,band6ORl);
clear band30Rl
clear band60Rl

diff = maxdif(band30R,band6OR);
clear band30R
clear band6OR

step = 6 % create the filtered and down-sampled pyramid for band90
band90 = getim(90);
band90Ll = reduce(band90,M);
band90L2 = reduce(band90Ll,M);
band90L3 = reduce(band90L2,M);
band90L4 = reduce(band90L3,M);
band90L5 = reduce(band90L4,M);
band90L6 = reduce(band90L5,M);

step = 7 %create the ratio pyramid for band90
band90R6 = band90L6;
band90R5 = band90L5 ./ (expand(band90L6,M));

clear band90L6
band90R4 = band90L4 ./ (expand(band90L5,M));

clear band90L5
band90R3 = band90L3 ./ (expand(band90L4,M));

clear band90L4
band90R2 = band90L2 ./ (expand(band90L3,M));

clear band90L3
band90Rl = band90Ll ./ (expand(band90L2,M));

clear band90L2
band90R = band90 ./ (expand(band90Ll,M));

clear band90Ll

step = 8 % start fusing by creating the max ratio pyramid

diff6 = maxdif(band90R6,diff6);
clear band90R6

diff5 = maxdif(band90R5,diff5);
clear band90R5
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diff4 = maxdif(band90R4,diff4);
clear band90R4

diff3 = maxdif(band90R3,diff3);
clear band90R3

diff2 = maxdif(band90R2,diff2);
clear band90R2

diffl = maxdif(band90Rl,diffl);
clear band90Rl

diff = maxdif(band90R,diff);
clear band90R

step = 9 %reverse the steps to compress the pyramid to the final image

fuse5 = diff5 .* expand(diff6,M);
clear diff6
clear diff5

fuse4 = diff4 * expand(fuse5,M);
clear diff4
clear fuse5

fuse3 = diff3 .* expand(fuse4,M);
clear diff3
clear fuse4

fuse2 = diff2 .* expand(fuse3,M);
clear diff2
clear fuse3

fusel = diffl .* expand(fuse2,M);

clear diffl
clear fuse2

GO = clean(diff .* expand(fusel,M));
clear diff
clear fusel

save fu306090 GO

D.2 Image Fusion Algorithm For Lenna Test Images

%This program fuses three test images of Lenna. In this case they are the images 431,432,433
% which relate to the test images of Lenna that have added noise. The resulting output is a single
% image that has the same dimensions as the input images, but has now fused all three. Each input
% image is padded before it is deconstructed.

clear
toetweights

step = 1 % create the filtered and down-sampled pyramid for band431
band431 = getim(431);
band43lLl = reduce(band431,M);
band43lL2 = reduce(band431LI,M);
band43lL3 = reduce(band431L2,M);
band43lL4 = reduce(band43lL3,M);
band431L5 = reduce(band43lL4,M);
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band43lL6 = reduce(band43lL5,M),

step = 2 %create the ratio pyramid for band43l
band43lR6 = band43lL6;
band43lR5 = band43lL5 ./ (expand(band43lL6,M));

clear band43lL6
band43lR4 = band43lL4 ./ (expand(band43lL5,M));

clear band43lL5
band43lR3 = band43lL3 ./ (expand(band43lL4,M));

clear band43lL4
band43lR2 = band43lL2 ./ (expand(band43lL3,M));

clear band43lL3
band43lRl = band43lUl ./ (expand(band43lL,M));

clear band43lL2
band43lR = band43l ./ (expand(band43lLl,M));

clear band43lLl

step = 3 % create the filtered and down-sampled pyramid for band432
band432 = getim(432);
band432Ll = reduce(band432,M);
band432L2 = reduce(band432Ll,M);
band432L3 = reduce(band432L2,M);
band432L4 = reduce(band432L3,M);
band432L5 = reduce(band432L4,M);
band432L6 = reduce(band432L5,M);

step = 4 %create the ratio pyramid for band432

band432R6 = hand432L6;
band432R5 = band432L5 ./ (expand(band432L6,M));

clear band432L6
band432R4 = band432L4 ./ (expand(band432L5,M));

clear band432L5
band432R3 = band432L3 ./ (expand(band432L4,M));

clear band432L4
band432R2 = band432L2 ./ (expand(band432L3,M));

clear band432L3
band432Rl = band432Ll ./ (expand(band432L2,M));

clear band432L2
band432R = band432 ./ (expand(band432Ll,M));

clear band432Ll

step =5 % start fusing by creating the max ratio pyramid

diff6 =maxdif(band43lR6,band432R6);

clear band43lR6
clear band432R6

diff5 = maxdif(band43lR5,band432R5);
clear band43lR5
clear band432R5

diff4 = maxdif(band43lR4,band432R4);
clear band43lR4
clear band432R4

diff3 = maxdif(band43lR3,band432R3);
clear band43lR3
clear band432R3

diff2 = maxdif(band43lR2,band432R2);
clear band43lR2
clear band432R2
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diffi = maxdif(band43lRl,band432Rl);
clear band43lRl
clear band432Rl

diff = maxdif(band43lR,band432R);
clear band43lR
clear band432R

step = 6 % create the filtered and down-sampled pyramid for band433
band433 = getim(433);
band433Ll = reduce(band433,M);
band433L2 = reduce(band433Ll,M);
band433L3 = reduce(band433L2,M);
band433L4 = reduce(band433L3,M);
band433L5 = reduce(band433L4,M);
band433L6 = reduce(band433L5,M);

step = 7 %create the ratio pyramid for band433
band433R6 = band433L6;
band433R5 = band433L5 ./ (expand(band433L6,M));

clear band433L6
band433R4 = band433L4 ./ (expand(band433L5,M));

clear band433L5
band433R3 = band433L3 ./ (expand(band433L4,M));

clear band433L4
band433R2 = band433L2 ./ (expand(band433L3,M));

clear band433L3
band433Rl = band433Ll ./ (expand(band433L2,M));

clear band433L2
band433R = band433 ./ (expand(band433Ll,M));

clear band433Ul

step = 8 % start fusing by creating the max ratio pyramid

diff6 = maxdif(band433R6,diff6);
clear band433R6

diff5 = maxdif(band433R5,diff5);
clear band433R5

diff4 = maxdif(band433R4,diff4);
clear band433R4

diff3 = maxdif(band433R3,diff3);
clear band433R3

diff2 = maxdif(band433R2,diff2);
clear band433R2

diffl = maxdif(band433Rl,diffl);
clear band433Rl

diff = maxdif~band433R,diff);
clear band433R

step = 9 %reverse the steps to compress the pyramid to the final image

fuse5 = diff5 .* expand (diff6,M);
clear diff6
clear diff5
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fuse4 = diff4 .* expand(fuse5,M);
clear diff4
clear fuse5

fuse3 = diff3 .* expand(fuse4,M);

clear diff3
clear fuse4

fuse2 = diff2 .* expand(fuse3,M);

clear diff2
clear fuse3

fusel = diffl .* expand(fuse2,M);

clear diffl
clear fuse2

GO = clean(diff .* expand(fusel,M));
clear diff
clear fusel

save tband3Onoise GO

D.3 Image Fusion Algorithm For SAR Imagery

%This program fuses three SAR images. The resulting output is a single image that has the same
% dimensions as the input images, but has now fused all three. Each input image is padded and
% isn't energy normalized before it is deconstructed. It performs 6 levels of deconstruction and the

% first SAR image is chosen for the gross approximation.

clear
toetweights

step = 1 % create the filtered and down-sampled pyramid for band30
band30 = getim-sar('kml5hhl');
band30Ll = reduce(band30,M);
band30L2 = reduce(band30Ll,M);
band30L3 = reduce(band30L2,M);
band30L4 = reduce(band30L3,M);
band30L5 = reduce(band30L4,M);
band30L6 = reduce(band30L5,M);

step = 2 %create the ratio pyramid for band30
band30R6 = band30L6;
band30R5 = band30L5 ./ (expand(band30L6,M));

clear band30L6
band30R4 = band30L4 ./ (expand(band30L5,M));

clear band30L5
band30R3 = band30L3 ./ (expand(band30L4,M));

clear band30L4
band30R2 = band30L2 ./ (expand(band30L3,M));

clear band30L3
band30Rl = band30Ll ./ (expand(band30L2,M));

clear band30L2
band30R = band30 ./ (expand(band30Ll,M));

clear band30Ll

step = 3 % create the filtered and down-sampled pyramid for band60
band60 = getim-sar('kml5hvl');
band60Ll = reduce(band60,M);
band60L2 = reduce(band60Ll,M);
band6OL3 = reduce(band60L2,M);
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band60L4 = reduce(band60L3,M);
band60L5 = reduce(band60L4,M);
band60L6 = reduce(band60L5,M);

step = 4 %create the ratio pyramid for band60

band60R6 = band60L6;
band60R5 = band60L5 ./ (expand(band60L6,M));

clear band60L6
band60R4 = band60L4 ./ (expand(band60L5,M));

clear band60L5
band60R3 = band60L3 ./ (expand(band60L4,M));

clear band60L4
band60R2 = band60L2 ./ (expand(band60L3,M));

clear band60L3
band60Rl = band60Ll ./ (expand(band60L2,M));

clear band60L2
band60R = band60 ./ (expand(band60Ll,M));

clear band60Ll

step = 5 % start fusing by creating the max ratio pyramid

diff6 = maxdif(band30R6,band6OR6);
clear band30R6
clear band60R6

diff5 = maxdif(band30R5,band6OR5);
clear band30R5
clear band60R5

diff4 = maxdif(band30R4,band6OR4);
clear band30R4
clear band6OR4

diff3 = maxdif(band30R3,band6OR3);
clear band30R3
clear band60R3

diff2 = maxdif(band30R2,band6OR2);
clear band30R2
clear band6OR2

diffl = maxdif(band30Rl,band6ORl);
clear band30Rl
clear band60Rl

diff = maxdif(band30R,band6OR);
clear band30R
clear band60R

step = 6 % create the filtered and down-sampled pyramid for band90
band90 = getim-sar('kml5vvl');
band90Ll = reduce(band90,M);
band90L2 = reduce(band90Ll,M);
band90L3 = reduce(band90L2,M);
band90L4 = reduce(band90L3,M);
band90L5 = reduce(band90L4,M);
band90L6 = reduce(band90L5,M);

step = 7 %create the ratio pyramid for band90
band90R6 = band90L6;
band90R5 = band90L5 ./ (expand(band90L6,M));
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clear band90L6
band90R4 = band9OL4 ./ (expand(band9OL5,M));

clear band90L5
band90R3 = band90L3 ./ (expand(band90L4,M));

clear band9OL4
band90R2 = band90L2 ./ (expand(band90L3,M));

clear band90L3
band90Rl = band90Ll ./ (expand(band90L2,M));

clear band90L2
band90R = band90 ./ (expand(band9OLl,M));

clear band90Ll

step = 8 % start fusing by creating the max ratio pyramid

diff6 = maxdif(band90R6,diff6);
clear band90R6

diff5 = maxdif(band90R5,diff5);
clear band90R5

diff4 = maxdif(band90R4,diff4);
clear band90R4

diff3 = maxdif(band90R3,diff3);
clear band90R3

diff2 = maxdif(band90R2,diff2);
clear band90R2

diffl = maxdif(band90Rl,diffl);
clear band90Rl

diff = maxdif(band90R,diff);
clear band90R

step = 9 %reverse the steps to compress the pyramid to the final image

fuse5 = diff5 .* expand(diff6,M);

clear diff6
clear diff5

fuse4 = diff4 .* expand(fuse5,M);

clear diff4
clear fuse5

fuse3 = diff3 .* expand(fuse4,M);
clear diff3
clear fuse4

fuse2 = diff2 .* expand(fuse3,M);

clear diff2
clear fuse3

fusel = diffl .* expand(fuse2,M);

clear diffl
clear fuse2

GO = cleansar(diff .* expand(fusel,M));

clear diff
clear fusel

save fusarml5 GO
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D.4 Image Fusion Subroutines

D.4.1 Reduction Algorithm.

% This function takes in an input matrix and produces the output layer. It takes the input layer and
% convolves it with the w weight matrix in toetweights, which is a gaussian type gradient function,
% and then downsamples by a factor of 2.

function RED = reduce(IMAGE,CONVOLVEFUNCTION)

TEMP = conv2(IMAGE,CONVOLVEFUNCTION);

[Y,X] = size(TEMP);

RED =TEMP((3:2:Y-2),(3:2:X-2));

clear TEMP IMAGE CONVOLVEFUNCTION X Y
return

D.4.2 Ratio Algorithm.

% This function creates the ratio of two input levels from the reduce pyramid. It does this by
% dividing the lower level (LEVELA) by an expanded upper level (LEVELB). The output is
% a matrix with the same dimensions as the input level A.

function RAT = ratio(LEVELA,LEVELB,M)
temp = expand(LEVELB,M);

RAT = LEVELA/temp;

clear temp
return

D.4.3 Maxdif Algorithm.

% This function compares the two input matrices point-by-point nad outputs the maximum value of
% each comparison. The results is a matrix the same size as the input matrices that contains the
% maximum value for each position in the pair wise comparisons.

function MD = maxdif(MATRA,MATRB)
[Y,X] = size(MATRA);
for i = 1:Y

for j = l:X
MD(i,j) = max([MATRA(i,j) MATRB(i,j)]);

end
end

return

D.4.4 Weight Matrix Generation Code.

% This is the weight matrix w referred to in Toet's paper on image fusion.
% It will be used to generate the Gaussian reduced Pyramid.

% X = [.4 .5 .2);
X = [.4 .25 .05];

for m = -2:2
for n = -2:2

M(m+3,n+3) = X(abs(m)+l) * X(abs(n) + 1);
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end %end for m

end %end for n

M
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Appendix E. Burt Matlab M-Files

E.1 Image Fusion Algorithm For Bands 30 60 and 90
%This program fuses three AVIRIS images. In this case they are bands 30, 60, 90. The resulting
% output is a single image that has the same dimensions as the input images, but has now fused all
% three. Each input image is padded and energy normalized before it is deconstructed. It performs
% 6 levels of deconstruction and the first band (Band 30) is the band that is chosen for the gross
% approximation. The threshold value is .90.

weights

fuGO = ennormal(getim(30));

[fuDO1 fuD02 fuD03 fuD04] = OrientGrad_Pyramid(fuGO,w,4);
fuGl = Grad reduce(fuG0,W);
clear fuGO

for band = 60:30:90
bandAGO = ennormal(getim(band));

[bandAD01 bandAD02 bandAD03 bandAD04] = OrientGradPyramid(bandAG0,w,4);

bandASALl = salience(bandAD01);
fuSALI = salience(fuDOl);
bandmatch = match(bandADOl, fuDOR,bandASALl, fuSALl);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y
for j = l:X

if bandmatch(i,j) < alpha
if bandASALl(i,j) > fuSALl(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end %if else

else
wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASALl(i,j) > fuSALl(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end %end if else

end %end if else
end

end
fuDOl = (weightmatrixA .* bandAD01) + (weightmatrixB .* fuDO0);

clear weightmatrixA bandAD01 weightmatrixB bandmatch fuSALl
clear bandASALl

bandASAL2 = salience(bandAD02);
fuSAL2 = salience(fuD02);
bandmatch = match(bandAD02, fuDO2,bandASAL2, fuSAL2);
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[Y X) = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = l:Y
for j = l:X

if bandmatch(i,j) < alpha
if bandASAL2(i,j) > fuSAL2(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wmin = .5 - .5*(Cl-bandmatch~i,jfl/(l-alpha));
wmex = 1 - wmin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = winax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuDO2 =(weightmatrixA .* bandADO2) + (weightmatrixB .*fuDO2);

clear weightmatrixA bandADO2 weightmatrixB bandaatch fuSAL2
clear bandASAL2

bandASAL3 = salience(bandADO3);
fuSAL3 = salience(fuDO3);
bandmatch = match (bandADO3, fuDO3, bandASAL3, fuSAL3);
[Y X) = size(bandaatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wmex;
weightmatrixB(i,j) = wisin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuDO3 =(weightrnatrixA .* bandADO3) + (weightmatrixs . fuDO3);

E-2



clear weightmatrixA bandADO3 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 =salience(bandADO4);
fuSAL4 = salience~fuDO4);
bandmatch = match (bandADO4, fuDO4, bandASAL4, fuSAL4);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:x

if bandmatch(i,j) < alpha
if bandASAL4(i,j) > fuSAL4(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wmin = .5 - ,5*((l-bandmatch(i,j))/Cl-alpha));
wmax = 1 - wmin;

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB (i, j) = wmnin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmnax;

end

end
end
end

fuDO4 =(weightmatrixA .* bandADO4) + (weightmnatrixB .*fuDO4);

clear weightmatrixA bandADO4 weightmatrixB bandmatch fuSAL4
clear bandASAL4

end %for loop

[OLDOl OLD02 OLD03 OLDO4] = OLP(fuDOl, fuDO2, fuDO3, fuDO4,4);
clear fuDOl fuDQ2 fuDQ3 fuDO4

[FSD ] = FSDLP(OLD0l, OLDO2, OLDO3, OLDO4);
clear OLD01 OLD02 OLD03 OLD04

[RELAP I = RELP(FSD,W);
clear FSD

[fu~ll fuDl2 fuDl3 fuDl4] = OrientGrad Pyramid(fuGl,w,4);
fuG2 = Grad~reduce(fuGl,W);
clear fuGl

for band =60:30:90,

bandAGO =ennoraal (getim (band));

bandAG1 Grad-reduce(bandAG0,W);
clear bandAGO

[bandADll bandADl2 bandADl3 bandADl4] = OrientGrad_.Pyramid(bandAGl,w,4);
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bandASALl = saliencec(bandAoll);
fuSAUl = salience(fuDll);
bandrnatch = msatch (bandADll, fuDll, bandASALl, fuSALl);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = l:Y
for j = l:X

if bandmatch(i,j) < alpha
if bandASALl(i,j) > fuSALl(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASALl(i,j) > fuSALl(i,j)
weightsiatrixA(i,j) = wmax;
weightmatrixB(i,j) = mn

else
weightmatriXA(i,j) = wmin;
weightmatrixBci,j) = wmax;

end

end
end
end

fuDll (weightmatrixA .* bandAD1l) + (weightmatrixB .*fuDli);

clear weightmatrixA bandADil weightmatrixB bandeatch fuSALl
clear bandASALl

bandASAL2 = salience(bandADl2);
fuSAL2 = salience(fuDl2);
bandmatch = match (bandADl2, fuDl2, bandASAL2, fuSAL2);
[Y X] = size(bandmatch);
weightmatrixA = zercs(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = L~X
if bandmatch(i,j) < alpha

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = wmax;
weightsiatrixB(i,j) = wmin;

else
weightmatrixA~i,j) = webn;
weightrnatrixB(i,j) = wisax;

end

end
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end
end

fuDl2 = (weightstatrixA .*bandADl2) + (weightmatrixB .*fuDl2);

clear weightinatrixA bandADl2 weightinatrixB bandmatch fuSAL2
clear bandASAL2

bandASAL3 = salience(bandADl3);
fUSAL3 = saiience(fuDl3);
bandmatch = match(bandADl3, fuDl3,bandASAL3, fuSAL3);
(Y X] = size(bandmatch);
weightmatrixA = zercs(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL3Ci,j) > fuSAL3(i,j)
weightrnatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - *5*(Cl-bandrnatch(i,j))/(l-alphafl;
wmax = 1 - wain;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wm~in;
weightrnatrixB~i,j) = wmax;

end

end
end
end

fuDl3 =(weightmatrixA .* bandADl3) + (weightmatrixB .~fuDl3);

clear weightmatrixA bandADl3 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandADl4);
fuSAL4 = saiience(fuDl4);
bandmatch = match (bandADl4, fuDl4, bandASAL4, fuSAL4)
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zercs(Y,X);
alpha = .9

for i = 1:Y

for j = l:X
if bandmatch(i,j) < alpha

if bandASAL4(i,j) > fuSAL4(i,j)
weightmnatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wnin = .5 - .5*((l-bandmatch(i,j))/Cl-aipha));
wmax = 1 - wmin;

if bandASAL4(i,j) > fuSAL4(i,j)
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weightisatrixA(i,j) = wear;
weightmatrixB(i,j) = mn

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = weax;

end

end
end
end

fuDl4 = (weighttatrixA .* bandADl4) + (weighteatrixE .* fuDl4);

clear weighteatrixA bandADl4 weightmatrixB bandeatch fuSAL4
clear bandASAL4

end

[OLDll OLD12 OLD13 00014] = OLP(fuDll, fuDl2, fuDl3, fuD14,4);
clear fuoll fuDl2 fuDl3 fuDl4

[F901] = FSDLP(OLnll, 00012, 00D13, 00D14);
clear OLD11 OLD12 00013 OLD14

[RELAP1] = RELP(FSDl,W);
clear FSDl

[fuD2l fuD22 fuD23 fuD24) = OrientGrad-Pyraeid(fuG2,w,4);
fuG3 = Grad-reduce~fuG2,W);
clear fuG2

for band =60:30:90,

bandAGO =ennoreal (getim (band));

bandAGl Grad-reduce~bandAGO,W);
clear bandAGO
bandAG2 = Grad-reduce(bandAG1,W);
clear bandAGl

[bandAD2l bandA022 bandAD23 bandAD24] =Orient_GradPyraeid(bandAG2,w,4);

bandAG3 = Gradjreduce(bandAG2,W);
clear bandAG2

bandASAUl = salience(bandAD2l);
fuSAUl = salience(fuD2l);
bandeatch = match (bandAD2l1, fuD2l1, ban dASALl, fuSAl);
[Y X] = size(bandeatch);
weightmatrixA = zeros(Y,X);
weightmatrixE = zerns(Y,X);
alpha = .9

for i = 1:Y'
for j =1:

if bandmatch(i,j) < alpha
if bandASALl(i,j) > fuSALl(i,j)

weightmatrixA(i,j) = 1;
else

weighteatrixB(i,j) = 1;
end

else
wein = .5 -. 5*(Cl-bandeatch(i,j))/(l-alpha));
wear = 1 -wein;
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if bandASAU1(i,j) > fuSAL1(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmnax;

end

end
end
end

fuD2l (weightmatrixA .* bandAD2l) + (weightmatrixB .*fuD2l);

clear weightmatrixA bandAD2l weightmatrixB bandmatch fuSALl
clear bandASAUl

bandASAL2 = salience(bandAD22);
fuSAL2 = salience(fuD22);
bandamatch = match(bandAD22, fuD22,bandASAL2, fuSAL2);
[Y X] = size(bandmatch);
weightmnatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = l:Y
for j = 1:X

if bandmatch(i,j) < alpha
if bandASAL2(i,j) > fuSAL2(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixfl(i,j) = 1;
end

else
wmin = .5 - ,5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmnax;

end

end
end
end

fuD22 =(weightnmatrixA .* bandAD22) + (weightmatrixs . fuD22);

clear weightmatrixA bandAD22 weightmnatrixB bandmatch fuSAL2
clear bandASAL2

bandASAL3 = salience (bandAD23);
fuSAL3 = salience(fuD23);
bandmatch = match (bandAD23, fuD23, bandASAL3, fuSAL3);
[Y X] = size (bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL3(i,j) > fuSAL3(i,j)
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weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wmn= .5 - .5*((l-bandmatch(i,j))/(l-alpha));

wisax = 1 - winin;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = winax;

end

end
end
end

fuD23 =(weightmatrixA .* bandAD23) + (weightinatrixB .*fuD23);

clear weightmatrixA bandAD23 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandAD24);
fuSAL4 = salience(fuD24);
bandmatch = match (bandAD2 4, fuD2 4, bandASAL4, fuSAL4)
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmnin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmnax = 1 - wmsin;

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = wmnax;
weightmatrixB(i,j) = wmsin;

else
weightmatrixA(i,j) = wmnin,
weightmatrixB(i,j) = wmnax;

end

end
end
end

fuD24 =(weightmatrixA .* bandAD24) + (weightmnatrixB .*fuD24);

clear weightmnatrixA bandAD24 weightmatrixB bandmatch fuSAL4
clear bandASAL4

end

[OLD2l OLD22 OLD23 0LD24] = OLP(fuD2l, fuD22, fuD23, fuD24,4);
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clear fuD2l fuD22 fuD23 fuD24

[FSD2] = FSDLP(OLD21, OL.D22, 0LD23, OLD24);
clear OLD21 OLD22 OLD23 OLD24

[RELAP2] = RELP(FSD2,W);
clear FSD2

[fuD3l fuD32 fuD33 fuD34] = OrientGradPyramid(fuG3,w,4);
fuG4 = Grad-reduce(fuG3,W);
clear fuG3

for band =60:30:90,

bandAGO =ennormal (getim (band));

bandAGi Grad-.reduce(bandAGO,W);
clear bandAGO
bandAG2 = Grad-reduce(bandAGl,W);
clear bandAGl
bandAG3 = Grad reduce(bandAG2,W);
clear bandAG2

[bandAD3l bandAD32 bandAD33 bandAD34] =Orient-Grad-Pyramid(bandAG3,w,4);

clear bandAG3

bandASAL1 = salience(bandAn31);
fuSALl = salience(fuD31);
bandmatch = match (bandAD3l1, fuD 31, ban dASALl, fuSAl);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASALl(i,j) > fuSALl(i,j)
weightmatrixA(i,j) = 1;

elsae
weightmatrixB(i,j) = 1;

end
else

wlain = .5 - .5*((1-bandmatch(i,j))/(l-alpha));
winax = 1 - wmin;

if bandASALl(i,j) > fuSALl(i,j)
weightmatrixA(i,j) = wrnax;
weightrnatrixB(i,j) = wnnin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD31 (weightmatrixA .* bandAD3l) + (weightmatrixs . fuD3l);

clear weightmatrixA bandAD3l weightmatrixB bandmatch fuSALl
clear bandASALl

bandASAL2 = salience(bandAD32);
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fuSAL2 = salience(fuD32),
bandmatch = mnatch(bandAD32, fuD32,bandASAL2, fuSAL2);
[Y X] = size(bandrnatch);
weightmatrixA = zerns(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = l:X
if bandmatch(i,j) < alpha

if bandASAL2(i,j) > fuSAZ2(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmn= .5 - .5*C(l-bandmatchci,jfl/Cl-alpha));
wmax = 1 - lenin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = lenin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD32 =(weightmatrixA .* bandAD32) + (weighteatrixs . fuD32);

clear weightmatrixA bandAD32 weightmatrixB bandmatch fuSAL2
clear bandASAL2

bandASAL3 = salience(bandAD33);
fuSAL3 = salience(fuD33);
bandmatch = match (bandAD3 3, fuD33, bandASAL3, fuSAL3);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = L:X
if bandmatch(i,j) < alpha

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) =1;

else
weightmatrixB(i,j) =1;

end
else

wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmnin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmnax;

end

end
end
end
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fuD33 = (weightmatrixA .* bandAD33) + (weightmfatrixB .* fuD33);

clear weightmatrixA bandAD33 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandAD34);
fuSAL4 = salience(fuD34);
bandmatch = match(bandAD34, fuD34,bandASAL4, fuSAL4);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = l:Y
for j = 1:X

if bandmatch(i,j) < alpha
if bandASAL4(i,j) > fuSAL4(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - winin;

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB~i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB~i,j) = wmax;

end

end
end
end

fuD34 (weightmatrixA .* bandAD34) + (weightmatrixH . fuD34);

clear weightmatrixA bandAD34 weightmatrixB bandmatch fuSAL4
clear bandASAL4
end

[OLD3l OLD32 OLD33 0LD34] = OLP(fuD31, fuD32, fuD33, fuD34,4);
clear fuD3l fuD32 fuD33 fuD34

[FSD3] = FSDLP(OLD31, 0LD32, 0LD33, 0LD34);
clear OLD31 OLD32 OLD33 OLD34

[RELAP3] = RELP(FSD3,W);
clear FSD3

[fuD4l fuD42 fuD43 fuD44] = Orient-GradyPyramid(fuG4,w,4);
fuG5 = Grad-reduce(fuG4,W);
clear fuG4

for band =60:30:90
bandAGO =ennormal (get im (band));

bandAG1 Gradreduce(bandAG0,W);
clear bandAGO
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bandAG2 = Grad-reduce(bandAGl,W);
clear bandAGi
bandAG3 = Grad-reduce(bandAG2,W);
clear bandAG2
bandAG4 = Grad-reduce~bandAG3,W);
clear bandAG3

[bandAD4l bandAD42 bandAfl43 bandAD44] = Orient__GradPyramid(bandAG4,w,4);
clear bandAG4

bandASALl = salience(bandAD4l);
fuSALl = salience(fuD4l);
bandmatch = match (bandAD4l, fuD4l, bandASAL1, fuSALl);
[Y X) = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = l:X
if bandmatch(i,j) < alpha

if bandASALl(i,j) > fuSAU1(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) =1;

end %if else
else

wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASALl(i,j) > fuSALl(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB~i,j) = wmax;

end %end if else

end %end if else
end

end
fuD4l = (weightmatrixA .* bandAD4l) + (weightmatrixB .*fuD4l);

clear weightmatrixA bandAD4l weightmatrixB bandmatch fuSALl
clear bandASALl

bandASAL2 = salience(bandAD42);
fuSAL2 = salience(fun42);
bandmatch = match (bandAD4 2, fuD4 2, ban dASAL2, f uSAL2)
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixAci,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL2(i,j) > fuSAL2(i,j)
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weightrnatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD42 =(weightmatrixA .* bandAD42) + (weightmatrixB .*fuD42);

clear weightmatrixA bandAD42 weightmatrixB bandmatch fuSAL2
clear bandASAL2

bandASAL3 = salience (bandAD43);
fuSAL3 = salience(fuD43);
bandmatch = match (bandAD4 3, fuD4 3, bandASAL3, fuSAL3);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5* ( (1-bandisatch (i, j) )/(l -alpha));
wmax = 1 - wmin;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD43 =(weightmatrixA .* bandAD43) + (weightmatrixH . fuD43);

clear weightmatrixA bandAD43 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandAD44);
fuSAL4 = salience(fuD44);
bandmatch = match (bandAD4 4, fuD4 4, bandASAL4, fuSAL4);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = 1;
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else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*((l-bandmatch~i,jfl/(l-alpha));
wmax = 1 - wmfin;

if bandASAL4(i,j) > fuSAt4(i,j)
weightrnatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = whifl;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD44 =(weightmetrixA .* bandAD44) + (weightaatrixB .*fuD44);

clear weightmatrixA bandAD44 weightmatrixE bandmatch fuSAL4
clear baridASAL4

end %for loop

[OLD4l 0LD42 OLD43 0LD44] = OLP~fuD4l, fuD42, fuD43, fuD44,4);
clear fuD4l fuD42 fuD43 fuD44

[FSD4 I = FSDLP(OLD4l, 0LD42, 0LD43, 0LD44);
clear OLD41 0LD42 0LD43 0LD44

[RELAP4 I = RELP(FSD4,W);
clear FSD4

[fuD5l fuD52 fuD53 fuD54] = OrientjGradjPyramid(fUG5,w,4);
fuG6 = Grad-reduce(fuG5,W);
clear fuG5

for band =60:30:90
bandAGO =ennormal (getim (band));

bandAGl Grad-reducecbandAG0,W);
clear bandAGO
bandAG2 =Grad-reduce(bandAGl,W);
clear bandAGl
bandAG3 = Grad reduce(bandAG2,W);
clear bendAG2
bandAG4 = Gradtreduce(bandAG3,W);
clear bandAG3
bandAG5 = Gradtreduce(bandAG4,W);
clear bandAG4
[bandAD5l bandAD52 bandAD53 bandAD54] =Orient..GradPyramidcbandAG5,w,4);

clear bandAG5

bandASALI = saliencel(bandADbl);
fuSALl = salience(fuD5l);
bandmatch = match (bandAD5 1, f uD51, bandASALl, f uSALl);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
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for ± = 1: Y
for j = 1:X

if bandmatch(i,j) < alpha
if bandASALl(i,j) > fuSALl(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end %if else

else
wmin = .5 - .5*(Cl-bandmatch~i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAU1(i,j) > fuSAU1(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = mx

end %end if else

end %end if else
end

end
fuD5l = (weightmatrixA .* bandAD5l) + (weightmatrixB .*fuD5l);

clear weightmatrixA bandAD5l weightmatrixs bandmatch fuSALl
clear bandASALl

bandASAL2 = salience(bandAD52);
fuSAL2 = salience(fuD52);
bandmatch = match (bandADS2, fuD52, bandASAL2, fuSAL2);
[Y X] = aize(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD52 =(weightmatrixA .* bandAD52) + (weightmatrixs . fuD52);

clear weightmatrixA bandAD52 weightmatrixB bandmatch fUSAL2
clear bandASAL2

handASAL3 = salience(bandAD53);
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fuSAL3 = salienoe(fuD53);
bandrnatch = match(bandADS3, fuD53,bandASAL3, fuSAL3);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*C(l-bandmatoh~i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = lenin;
weightrnatrixB(i,j) = wmax;

end

end
end
end

fuD53 = weightmatrixA .* bandAD53) + (weightmatrixB .*fuD53);

clear weightmatrixA bandAD53 weightinatrixB bandeatch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandAD54);
fuSAL4 = salience(fuD54);
bandmatch = mnatch (ban dAD5 4, fuDS 4, bandASAL4, fuSAL4;
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightaatrixB = zeros(Y,X);
alpha = .9
for i = l:Y
for j = 1:X

if bandmatch(i,j) < alpha
if bandASAL4(i,j) > fuSAL4(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wmin = .5 - ,5*((l-bandmatch~i,jfl/(l-alpha));
wmax = 1 - wmin;

if bandASAL4(i,j) > fuSAL4(i,j)
weightrnatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmnin;

else
weightmatrixA(i,j) = wain;
weightmatrixB~i,j) = wmax;

end

end
end
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end

fuD54 = (weightmatrixA .* bandAD54) + (weightmatrixB .* fuD54);

clear weightmatrixA bandAD54 weightmatrixB bandmatch fuSAL4
clear bandASAL4

end %for loop

[OLDSI OLD52 OLD53 OLD54] = OLP(fuD51, fuD52, fuD53, fuD54,4);
clear fuD51 fuD52 fuD53 fuD54

[FSD5 ] = FSDLP(OLD51, OLD52, OLD53, OLD54);
clear OLD51 OLD52 OLD53 OLD54

[RELAP5 ] = RELP(FSD5,W);
clear FSD5

% Now the reconstruction of the Image begins. Using the results of
% equation (A3) Note: I use the original top level from the Gaussian
% Pyramid to start the reconstruction. i.e. G6 = bandAG6
band30G0 = ennormal(getim(30));
band30Gl = Grad-reduce(band30G0,W);
clear band30G0
band30G2 = Grad~reduce(band30Gl,W);
clear band30Gl
band30G3 = Gradreduce(band30G2,W);
clear band30G2
band30G4 = Gradreduce(band30G3,W);
clear band30G3
band30G5 = Grad_reduce(band30G4,W);
clear band30G4
G6 = Grad-reduce(band30G5,W);
clear band30G5

G5 = RELAP5 + Gauss-expand(G6,W);
clear RELAP5 G6

G4 = RELAP4 + Gauss-expand(G5,W);
clear RELAP4 G5

G3 = RELAP3 + Gauss-expand(G4,W);
clear RELAP3 G4

G2 = RELAP2 + Gauss-expand(G3,W);
clear RELAP2 G3

G1 = RELAPl + Gauss__expand(G2,W);
clear RELAP1 G2

GO = RELAP + Gauss-expand(Gl,W);
clear RELAP G1

save fused306O9O6 GO

quit

E.2 Image Fusion Algorithm For Lenna Test Images
%This program fuses three test images of Lenna. In this case they are the images 331,332,333
% which relate to the test images of Lenna that have added noise. The resulting output is a single
% image that has the same dimensions as the input images, but has now fused all three. Each input
% image is padded and energy normalized before it is deconstructed.
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weights %get the weights used for the decomposition

fuGO =ennormal(getim5l2(331)); % energy normalize the input images.

[fuDOl fuDO2 fuDO3 fuDO4] = Orient-Grad-Pyramid(fuGO,w,4);
fuGi = Grad-reduce~fuGO,W);
clear fuGO

for band =332:333

bandAGO =ennormal (getim5l2 (band));

[bandAD0l bandADO2 bandADO3 bandADO4] = Orient Grad-Pyramid(bandAGO,w,4);

bandASALl = salience(bandAD0l);
fuSAUl = salience(fuDOl);
bandmatch = match (bandAD0l, fuDOl, bandASALl, fuSALl);
[Y X] = size (bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASALl(i,j) > fuSAL1(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end %if else
else

wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASALl(i,j) > fuSAU1(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB~i,j) = wmin;

else
weightmatriXA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end %end if else

end %end if else
end

end
fuDOl = (weightmatrixA .* bandAD0l) + (weightmatrixs . fuD0l);

clear weightmatrixA bandAD01 weightmatrixB bandmatch fuSAL1
clear bandASALl

bandASAL2 = salience (bandADO2);
fuSAL2 = salience(fuDO2);
bandmatch = match (bandADO2, fuDO2, bandASAL2, fuSAL2);
[Y X] = size (bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j =l:X
if bandmatch(i,j) < alpha

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else
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wmin = .5 -.5* ((l-bandmatch(i, j) )/(l-alpha));
wmax = 1 -wmin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightinatrixB(i,j) wmax;

end

end
end
end

fuDO2 =(weightmatrixA .* bandADO2) + (weightmatrixB .*fuDO2);

clear weightmatrixA bandADO2 weightmatrixB bandmatch fuSAL2
clear bandASAL2

bandASAL3 = salience(bandADO3);
fuSAL3 = salience(fuDO3);
bandmatch = match (bandADO 3, fuDO 3, bandASAL3, fuSAL3);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandrnatchci,j) < alpha

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA~i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmn= .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuDO3 =(weightmatrixA .* bandADO3) + (weightmatrixB .~fuDO3);

clear weightmatrixA bandADO3 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandADO4);
fuSAL4 = salience(fuDO4);
bandmatch = match (bandADO4, fuDO 4, bandASAL4, fuSAL4)
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = l:Y
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for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) =1;

else
weightmatrixB(i,j) = 1;

end
else

vnnin = .5 - ,5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = wmax;
weightinatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuDO4 =(weightmatrixA .* bandADO4) + (weightmatrixs . fuDO4);

clear weightmatrixA bandADO4 weightmatrixB bandmatch fuSAL4
clear bandASAL4

end %for loop

[00001 OLD02 OLD03 OLDO4] = OLP(fuDOl, fuDO2, fuDO3, fuDO4,4);
clear fuDOl fuD02 fuD03 fuD04

[FSD I = FSDLP(OLn0l, 00002, 00D03, 00D04);
clear OLD01 OLD02 OLD03 OLD04

[RELAP I = RELP(FSD,W);
clear FSD

[fuDll fuD12 fuD13 fuDl4] = OrientGrad Pyramid(fuGl,w,4);
fuG2 = Grad~reduce(fuGl,W);
clear fo~i

for band =332:333,

bandAGO =ennormal (getim5l2 (band));

bandAGi Grad-reduce(bandAG0,W);
clear bandAGO

[bandADll bandADl2 bandAD13 bandAD14] = OrientGrad-Pyramid(bandAGl,w,4);

bandASALl = salience(bandAD11);
fuSALl = salience(fuDll);
bandmatch = match (bandADll, fuDll, bandASALl, fuSALl);
[Y X) = size(bandmatch);
weightmatrixA =zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y
for j = 1:X

if bandmatch(i,j) < alpha
if bandASAL1(i,j) > fuSAL1(i,j)

weightmatrixA(i,j) = 1;
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else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*C(l-bandmatchci,j))/(l-alpha));
wmax = 1 - wmin;

if bandASALl(i,j) > fuSALl(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = 14mi;
weightmatrixB(i,j) = wfl5x;

end

end
end
end

fuDil (weightmatrixA .* bandADil) + (weightmatrixB .~fuDli);

clear weightmatrixA bandADli weightmatrixB bandmatch fuSALl
clear bandASALl

bandASAL2 = salience (bandADl2);
fuSAL2 = salience(fuDl2);
bandmatch = match (bandADl2, f uDl2, bandASAL2, f uSAL2);
[Y X]3 = size (bandmatch) ;
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X(
if bandmatch(i,j) < alpha

if bandASAL2(i,j) > fuSAL2Ci,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*((l-bandmatch~i,j))/(l-alpha));
wmax = 1 - 14mi;

if bandASAL2(i,j) > fuSAL2(i,j)
waightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA~i,j) = 14mi;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuDl2 =(weightmatrixA .* bandADl2) + (weightmatrixB .*fuDl2);

clear weightmatrixA bandADl2 weightaatrixB bandmatch fuSAL2
clear bandASAL2

bandASAL3 = salience(bandADl3);
fuSAL3 = salience(fuDl3);
bandmatch = match (bandADl3, f uDl3, bandASAL3, f uSAL3);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
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weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5* ( (-bandmatchci, j) )/(l-alpha));
wmax = 1 - wmln;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wm~in;

else
weightmatrixA(i,j) = wm~in;

waightmatrixB(i,j) = wmax;
end

and
end
end

fuDl3 =(weightmatrixA .* bandADl3) + (weightmatrixB .*fuDl3);

clear weightmatrixA bandADl3 weightmatrixB bandmasch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandADl4);
fuSAL4 = salienoe(fuI~l4);
bandmatch = match (bandADl4, fuDl4, bandASAL4, fuSAL4);
[Y X) = size(bandmatch);
waightmatrixA = zeros(Y,X);
waightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y
for j = 1:X

if bandmatch~i,j) < alpha
if bandASAL4(i,j) > fuSAL4(i,j)

weightmatrixAci,j) = 1;
else

weightmatrixB~i,j) = 1;
end

else
winin = .5 - .5*((l-bandmatch(i,j))/Cl-alpha));
wmax = 1 - wnin;

if bandASAL4(i,j) > fuSAL4(i,j)

weightrnatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixH(i,j) = wmax;

end

and
end
end

fuDl4 =(weightmatrixA .* bandADl4) + (weightmatrixB .*fuDl4);
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clear weightmatrixA bandADl4 weightmatrixE bandmatch fuSAL4
clear bandASAL4

end

[091311 0OLD12 OLDl3 OLD14] = OLP(fuDll, fuDl2, fuDl3, fuDl4,4);
clear fuDll fuDl2 fuDl3 fuDl4

[FSDl] = FSDLP(OLDll, OLDl2, OLDl3, 011314);
clear OLD11 OLD12 OLD13 OLD14

[RELAPl] = RELP(FSDl,W);
clear FSDl

[fuD2l fuD22 fuD23 fuD24] = Orient..Grad-Pyramid(fuG2,w,4);
fuG3 = Grad reduce(fuG2,W);
clear fuG2

for band =332:333,

bandAGO =ennormal (getim5l2 (band));

bandAGl Grad-reduce(bandAGO,W);
clear bandAGO
bandAG2 = Grad-reduce(bandAG1,W);
clear bandAG1

[bandAD2l bandAD22 bandAD23 bandAD24] OrientGradPyramid(bandAG2,w,4);
bandAG3 = Grad-reduce~bandAG2,W);
clear bandAG2

bandASALl = saaience(bandAD2l);
fuSALl = aalience~fuD2l);
bandmatch = mnatch (bandAD2l, fuD2l, bandASALl, fuSALl);
[Y X] = aize(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zercs(Y,X);
alpha = .9

for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASALl(i,j) > fuSALl(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*C(l-bandmatch(i,j))/(l-aipha));
wmax = I - wmin;

if bandASALl(i,j) > fuSALl(i,j)
weightrnatrixA(i,j) = wmax;
weightrnatrixB~i,j) = wmin;

else
weightmatrixA(i,j) = winin;
weightmatrixB(i,j) = wmax;

end

end
end
end
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fuD2l = (weightmatrixA .* bandAD2l) + (weightmatrixB .* fuD2l);

clear weightmatrixA bandAD2l weightmatrixB bandmatch LuSALl
clear bandASALl

bandASAL2 = salience (bandAD22);
fuSAL2 = salience(fuD22);
bandmatch = match (bandAD22, fuD22, bandASAL2, fuSAL2);
[Y X] = size(bandstatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = l:X
if bandmatch(i,j) < alpha

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wnin = .5 - .5*((l-bandmatch(i,jfl/(l-alpha));
wnax = 1 - wisin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = wsiax;
weightmatrixfl(i,j) = wmin;

else
weightmatrixA(i,j) = winin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD22 =(weightmatrixA .* bandAD22) + (weightmatrixB .*fuD22);

clear weightmatrixA bandAD22 weightmatrixs bandaatch fuSAL2
clear bandASAL2

bandASAL3 = salience (bandAD23);
fuSALS = salience(fuD23);
bandmatch = match (bandAD23, fuD23, bandASAL3, fuSAL3);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);

weightsiatrixB = zeros(Y,X);
alpha = .9

for i = l:Y
for j = 1:X

if bandmatch(i,j) < alpha
if bandASAL3(i,j) > fuSAL3(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wmin = .5 - .5*((l-bandmatch(i,j))/(l-alphan);
winax = 1 - wisin;

if bandASAL3(i,j)"> fuSAL3(i,j)
weightmatrixA(i,j) = winax;
weightmnatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
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weightmatrixB(i,j) = winax;
end

end
end
end

fuD23 = (weightmatrixA .* bandAD23) + (weightmatrixB .* fuD23);

clear weightmatrixA bandAD23 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandAD24);
fuSAL4 = salience(fuD24);
bandmatch = match(bandAD24, fuD24, bandASAL4, fuSAL4);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5* ( (1-bandmatch (i, j) )/(l -alpha));
wmax = 1 - wmin;

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wm~in;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD24 =(weightmatrixA .* bandAD24) + (weightmatrixB .*fuD24);

clear weightmatrixA bandAD24 weightmatrixB bandmatch fuSAL4
clear bandASAL4

end

[OLD21 OLD22 OLD23 0LD24] = OLP(fuD2l, fuD22, fuD23, fuD24,4);
clear fuD2l fuD22 fuD23 fuD24

[PSD2] = FSDLP(OLD2l, 0LD22, 0LD23, 0LD24);
clear OLD21 OLD22 OLD23 OLD24

[RELAP2] = RELP(FSD2,W);
clear FSD2

[fuD31 fuD32 fuD33 fuD34] = OrientGrad-Pyramid(fuG3,w,4);
fuG4 = Grad reduce(fuG3,W);
clear fuG3
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for band =332:333,

bandAGO =ennormal (get im5l2 (band));

bandAGI= Grad~reduce(bandAGO,W);
clear bandAGO
bandAG2 = Grad-reduce~bandAGl,W);
clear bandAGi
bandAG3 = Grad-reduce~bandAG2,W);
clear bandAG2

[bandAD3l bandAD32 bandAD33 bandAD34] =Orient_Grad-Pyramid(bandAG3,w,4);

clear bandAG3

bandASAUl = salience(bandAD31);
fuSALl = salience(fuD3l);
bandmatch = match (bandAD3l1, fuD31, bandASALl, fuSAl);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightinatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y
for j = 1:X

if bandmatch(i,j) < alpha
if bandASALl(i,j) > fuSALl(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wmin = .5 - .5*((1-bandmatch(i,j))/(l-alpha));
wmax = 1 - wm~in;

if bandASAU1(i,j) > fuSAU1(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wimin;

else
weightmatrixAci,j) = wm~in;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD3l (weightmatrixA .* bandAD3l) + (weightmatrixs . fuD3l);

clear weightmatrixA bandAD3l weightrnatrixB bandmatch fuSALl
clear bandASALl

bandASAL2 = salience(bandAD32);
fuSAL2 = salience(fuD32);
bandmatch = match (bandAD3 2, fuD3 2, bandASAL2, fuSAL2);
[Y X] = size (bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = l:Y
for j = 1:X

if bandmatch(i,j) < alpha
if bandASAL2(i,j) > fuSAL2(i,j)

weightmatrixA~i,j) = 1;
else

weightmatrixB(i,j) = 1;
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end
el se

winin = .5 - .5*(Cl-bandmatch~i,j))/(l-alpha));
winax = 1 - wmin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = wmax,
weightmatrixH(i,j) = win,

else
weightmatrixA(i,j) = wmin,
weightmatrixB(i,j) = mx

end

end
end
end

fuD32 =(weightmnatrixA .* bandAD32) + (waightmatrixE . fuD32);

clear weightmatrixA bandAD32 weightnmatrixB bandmatch fuSAL2
clear bandASAL2

bandASAL3 = salience(bandAD33);
fuSAL3 = salience(fuD33);
bandsatch = match (bandAD3 3, fuD3 3, bandASAL3, LuSAL3);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zercs(Y,X);
alpha = .9

for i = 1:Y

for j = l:X
if bandmatch(i,j) < alpha

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixH(i,j) = 1;

end
else

wminj = .5 - .5*((l-bandmatch(i,jfl/(l-alpha));
wmax = 1 - wmin;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = winin;
weightmnatrixB(i,j) = wmax;

end

end
end
end

fuD33 =(weightmatrixA .* bandAD33) + (weightmatrixB .*fuD33);

clear weightmnatrixA bandAD33 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandAD34);
fuSAL4 = saliance(fuD34);
bandmatch = match (bandAD3 4, fuD34, bandASAL4, fuSAL4);
[Y X) = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
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alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL4(i,j) > fuSAL4(i,j)

weightmatrixA(i,j) = 1;
else

weightinatrixB(i,j) = 1;
end

else
wmn= .5 - .5* (l(1bandmatch(i, j) )/(l-alpha));

wmax =1 - wmin;

if bandASAL4(i,j) > fuSAL4(i,j)
weightmnatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;

weightmatrixB(i,j) = wmax;
end

end
end
end

fuD34 =(weightmatrixA .* bandAD34) + (weightmnatrixB .*fuD34);

clear weightmnatrixA bandAD34 weightmatrixB bandmatch fuSAL4
clear bandASAL4
end

[OLD3l OLD32 OLD33 OLD341 = OLP(fuD31, fuD32, fuD33, fuD34,4);
clear fuD3l fuD32 fuD33 fuD34

[FSD3] = FSDLP(OLD3l, 0LD32, OLD33, OLD34);
clear OLD31 OLD32 OLD33 OLD34

[RELAP3] = RELP(FSD3,W);
clear FSD3

[fuD4l fuD42 fuD43 fuD44] = Orient_ Grad-Pyramid(fuG4,w,4);
fuG5 = Grad-reduce(fuG4,W);
clear fuG4

for band =332:333
bandAGO =ennormal (get im5l2 (band));

bandAG1 Grad~reduce(bandAGO,W);
clear bandAGO
bandAG2 = Grad..yeduce(bandAG1,W);
clear bandAGl
bandAG3 = Grad-reduce(bandAG2,W);
clear bandAG2
bandAG4 = Grad-reduce(bandAG3,W);
clear bandAG3

[bandAD4l bandAD42 bandAD43 bandAD44] =OrientGrad-Pyramid(bandAG4,w,4);

clear bandAG4

bandASALl = salience(bandAD4l);
fuSAUl = salience(fuD41);
bandmatch = match (bandAD4l1, fuD4l, bandASALl, fuSALl);
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[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = l:Y
for j = l:X

if bandmatch(i,j) < alpha
if bandASALl(i,j) > fuSALl(i,j)

weightmatrixA~i,j) = 1;
else

weightaatrixB(i,j) = 1;
end %if else

else
wmin = .5 - ,5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAU1(i,j) > LuSALl(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wisin;

else
weightmatrixA(i,j) = wmin;
weightmatrixH(i,j) = wmnax;

end %enmd if else

end %end if else
end

end
fuD4l = (weightmatrixA .* bandAD4l) + (weightmatrixB .*fuD4l);

clear weightmatrixA bandAD4l weightmatrixB handmnatch fuSALl
clear bandASALl

bandASAL2 = salience(bandAD42);
fuSAL2 = salience(fuD42);
bandmnatch = msatch (bandAD4 2, fuD4 2, bandASAL2, fuSAL2);
[Y X] = size(bandeatch);
weightmnatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - ,5*((l-bandmatchci,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightsmatrixA(i,j) = wmax;
weightmnatrixB(i,j) = wmin;

else
weightmatrixA~i,j) = wein;
weightmatrixB(i,j) = wmnax;

end

end
end
end

fuD42 =(weightmatrixA .* bandAD42) + (weightmatrixB ŽfuD42);
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clear weightrsatrixA bandAD42 weightaatrixB bandmatch fuSAL2
clear bandASAL2

bandASAL3 = salience (bandAD43);
fuSAL3 = salience(fuD43);
bandmatch = match(bandAD43, fuD43,bandASALS, fuSAL3);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeroscY,X);
alpha = .9
for i = 1:Y'
for j =1:

if bandmatch(i,j) < alpha
if bandASAL3(i,j) > fuSAL3(i,j)

weightmatrixA~i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wrnin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wisax = 1 - wmin;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wmnax;
weightmatrixB(i,j) = wmnin;

else
weightmatrixA(i,j) = wmin;
weightmatrixH(i,j) = wmax;

end

end
end
end

fuD43 =(weightmatrixA .* bandAD43) + (weightmnatrixB .*fuD43);

clear weightmnatrixA bandAD43 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandAD44);
fuSAL4 = salience(fuD44);
bandmatch = match(bandAD44, fuD44,bandASAL4, fuSAL4);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = 1;

else
weightmnatrixB(i,j) = 1;

end
else

wmsin = .5 - .5*U(l-bandmatch(i,j))/(l-alphafl;
wsmax = 1 - wmsin;

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmnin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmnax;
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end

end
end
end

fuD44 = (weightinatrixA .* bandAD44) + (weightmatrixB ,* fuD44);

clear weightmatrixA bandAD44 weightmatrixB bandmatch fuSAL4
clear bandASAL4

end %for loop

[01.041 OLD42 OLD43 0LD44] = OLP(fuD4l, fuD42, fuD43, fuD44,4);
clear fuD4l fuD42 fuD43 fuD44

[FSD4 I = FSDLP(OLD4l, 0LD42, 0LD43, 01.044);
clear OLD41 OLD42 OLD43 OLD44

[RELAP4 ] = RELP(FSD4,W);
clear FSD4

[fuD5l fuD52 fuD53 fuD54] = OrientGradPyramid(fuG5,w,4);
fuG6 = Grad_reduce(fuG5,W);
clear fuG5

for band =332:333
bandAGO =ennormal (get im5l2 (band));

bandAGI Grad reduce(bandAGO,W);
clear bandAGO
bandAG2 = Gradreduce(bandAGI,W);
clear bandAGl
bandAG3 = Grad-reduce(bandAG2,W);
clear bandAG2
bandAG4 = Grad-reduce(bandAG3,W);
clear bandAG3
bandAG5 = Grad-reduce(bandAG4,W);
clear bandAG4
[bandAD5l bandAD52 bandAD53 bandAD54] Orient__GradPyramid~bandAG5,w,4);
clear bandAG5

bandASALl = salience(bandAD51);
fuSALl = salience(fuD5l);
bandmatch = match (bandAD5l, fUD51, bandASALl, fuSALl);
[Y X] = size(bandmatch);
weightmatrixA = zeros(YX);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = :Y
for j = l:X

if bandmatch(i,j) < alpha
if bandASALl(i,j) > fuSALl(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end %if else

else
wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
winax = 1 - wmin;

if bandASAU1(i,j) > fuSALl(i,j)
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weightmatrixA~i,j) = wmax;
weightmatrixB(i,j) = winin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end %end if else

end %end if else
end

end
fuD5l = (weightmatrixA .* bandAD5l) + (weightmatrixB .*fuD5l);

clear weightmatrixA bandAD5l weightmatrixB bandmatch fuSALl
clear bandASAUl

bandASAL2 = salience (bandAD52);
fuSAL2 = salience(fuD52);
bandmatch = mnatch (bandAD52, fuD52, bandASAL2, fuSAL2);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = 1;

else
weightmnatrixB(i,j) = 1;

end
else

wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wain;
weightmatrixB(i,j) = walax;

end

end
end
end

fuD52 =(weightmatrixA .* bandAD52) + (weightmatrixB .*fun52);

clear weightmnatrixA bandAn52 weightmatrixB bandmatch fuSAL2
clear bandASAL2

bandASAL3 = salience (bandAD53);
fuSAL3 = salience(fuD53);
bandmatch = match (bandAD53, fuD53, bandASAL3, fuSAL3);
[Y X] = size(bandmatch);
weightmnatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;
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end
else

wmjn = .5 - .5*(Cl-bandmatch(i,jfl/(l-alpha));
wmiax = I - wm~in;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) - wmax;
weightmatrixB(i,j) -wmin;

else
weightrnatrixA(i,j) =wmin;
weightmatrixB(i,j) -wmax;

end

end
end
end

fuD53 =(weightmatrixA .* bandAD53) + (weightmatrixB <kfuD53);

clear weightmetrixA bandAD53 weightmatrixs bandmetch fuSALS
clear bandASAL3

bandASAL4 = salience(bandAD54);
fuSAL4 = salience(fuD54);
bandmatch = match (bandAD54, fuDS4, bandASAL4, fuSAL4);
[Y X1 = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = l:Y
for j = l:X

if bandmatch(i,j) < alpha
if bandASAL4(i,j) > fuSAL4(i,j)

weightmatrixA(i,j) - 1;
else

weightrnatrixB(i,j) -1;
end

else
wmin = .5 - .5*( (1-bandmatch(i, j) )/(l -alpha));
wmax = I - wmin1;

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wain;

else
weightmatrixA(i,j) = ¶4mi;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD54 =(weightmatrixA .* bandAD54) + (weightmatrixs B fuD54);

clear weightmatrixA bandAD54 weightmatrixs baodmatch fuSAL4
clear bandASAL4

end %for loop

[OLD5l 0LD52 0LD53 0L054] = OLP(fuD5l, fuD52, fuD53, fuD54,4);
clear fuD5l fuD52 fuD53 fuD54

[FSD5 I=FSDLP(0L051, 0LD52, 0LD53, 0LD54);
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clear OLD51 OLD52 OLD53 OLD54

[RELAP5 I = RELP(FSD5,W);
clear FSD5

% Now the reconstruction of the Image begins. Using the results of
% equation (A3) Note: I use the original top level from the Gaussian
% Pyramid to start the reconstruction. i.e. G6 = bandAG6
band231GO = ennormal(getim5l2(331));
band23lGl = Grad-reduce(band231GO,W);
clear band231GO
band231G2 = Grad reduce(band23lGl,W);
clear band23lGl
band23lG3 = Grad-reduce(band23lG2,W);
clear band23lG2
band231G4 = Grad-reduce(band231G3,W);
clear band23lG3
band23lG5 = Grad-reduce(band231G4,W);
clear band231G4
G6 = Gradreduce(band231G5,W);
clear band231G5

G5 = RELAP5 + Gauss-expand(G6,W);
clear RELAP5 G6

G4 = RELAP4 + Gauss-expand(G5,W);
clear RELAP4 G5

G3 = RELAP3 + Gauss-expand(G4,W);
clear RELAP3 G4

G2 = RELAP2 + Gauss.expand(G3,W);
clear RELAP2 G3

Gl = RELAPI + Gauss-expand(G2,W);
clear RELAPI G2

GO = clean512(RELAP + Gauss-expand(Gl,W));
clear RELAP Gl

save blenna62 GO

quit

E.3 Image Fusion Algorithm For SAR Imagery

%This program fuses three SAR images. The resulting output is a single image that has the same
% dimensions as the input images, but has now fused all three. Each input image is padded and
% energy normalized before it is deconstructed. It performs 6 levels of deconstruction and the first
% SAR image is chosen for the gross approximation. The threshold value is .90.

weights

fuGO = getimasar('kml5hhl');

[fuDOl fuD02 fuD03 fuD041 = OrientGradPyramid(fuGO,w,4);
fuGl = Grad&reduce(fuGO,W);
clear fuGO

for band = 60:30:90

if (band == 60)

E-34



bandAGO = getim..sar('kml5hvl')
else

bandAGO = getim..sar('kml5vvi')
end

[bandAD0l bandADO2 bandADO3 bandADO4] = Orient-Grad-Pyramid(bandAGO,w,4);

bandASALl = salience (bandADOl);
fuSALl = salience(fuDOl);
bandmatch = match (bandAD0l, fuDOl, bandASALl, fuSALl);
[Y X) = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = l:Y
for j = 1:X

if bandmatch(i,j) < alpha
if bandASALl(i,j) > fuSALl(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end %if else

else
wmin = .5 - .5*C(l-bandmatch(i,j))/(l-alpha));
winax = 1 - wmin;

if bandASALl(i,j) > fuSALl(i,j)
weightsatrixA(i,j) = wmax;
weightsatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wisin;
weightmatrixB(i,j) = wmsax;

end %end if else

end %end if else
end

end
fuDO1 = (weightmatrixA A* bandAD0l) + (weightsatrixB .*fuD0l);

clear weightmatrixA bandAD0l weightmatrixs bandmatch fuSALl
clear bandASALl

bandASAL2 = salience(bandADO2);
fuSAL2 = salience(fuDO2);
bandmnatch = match (bandADO02, fuDO 2, bandASAL2, fuSAL2);
EY X] =size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixs = zeros(Y,X);
alpha = .9

for i = l:Y
for j = 1:X

if bandmatch(i,j) < alpha
if bandASAL2(i,j) > fuSAL2(i,j)

weightmnatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wmnin = .5 - .5*((l-bandmnatch(i,j))/(l-alphafl;
wmax = 1 - wmin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = wmax;
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weightmatrixB(i,j) = warn;
else

weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = watax;

end

end
end
end

fuDO2 =(weightmatrixA .* bandADO2) + (weightmatrixE fuDO2);

clear weightinatrixA bandADO2 weightaatrixB bandmatch fuSAL2
clear bandASAL2

bandASAL3 = salience(bandADO3);
fuSAL3 = salience(fuDO3);
bandmatch = match(bandADO3, fuDO3,bandASAL3, fuSAL3);
[Y X] = size(bandmatch);
weightmatrixA = zercs(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = L:X
if bandmatch(i,j) < alpha

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB~i,j) = 1;

end
else

wmin = .5 - .5*((l-bandmatchli,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wisin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wnax;

end

end
end
end

fuDO3 =(weightmatrixA .* bandADO3) + (weightmatrixB AfuDO3);

clear weightmatrixA bandADO3 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 = aalience(bandADO4);
fuSAL4 = salience(fuDO4);
bandmatch = mnatch (bandADO4, fuDO4, bandASAL4, fuSAL4;
[Y X] = aize(bandaatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeroa(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = 1;

else
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weightmatriXB(i,j) = 1;
end

else
wmin = .5 - .5*((l-bandmatch(i,jfl/(l-alpha));
wisax = 1 - wmin;

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wrnin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuDO4 =(weightmatrixA .* bandAD04) + (weightmatrixO . fuDO4);

clear weightmatrixA bandAD04 weightmnatrixB bandmatch fuSAL4
clear bandASAL4

end %for loop

[OLD0l OLD02 OLD03 0LD04] = OLP(fuDOl, fuDO2, fuDO3, fuDO4,4);
clear fuDOl fuDO2 fuDO3 fuDO4

[FSD ]= FSDLP(OLDO1, 0LD02, OLDO3, OLDO4);
clear OLD01 OLD02 OLD03 OLD04

[RELAP ] = RELP(FSD,W);
clear FSD

[fuDll fuDl2 fuDl3 fuDl4] = OrientGrad Pyramid(fuGl,w,4);
fuG2 = Grad reduce(fuGl,W);
clear fu~l

for band =60:30:90,

if (band ==60)

bandAGO = getim-sar('kml5hvl');
else

bandAGO = getim-sar('kml5vvl');
end

bandAG1 = Grad-reduce(bandAG0,W);
clear bandAGO

[bandADll bandADl2 bandAD13 bandAD14] = Orient_Grad-Pyramid(bandAGl,w,4);

bandASALI = salience(bandAD11);
fuSALl = salience(fuDll);
bandmnatch = match (bandADll, fuDll, bandASALl, fuSAl);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = l:X
if bandmnatch(i,j) < alpha

if bandASALl(i,j) > fuSALl(i,j)
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weightmatrixA(i,j) = 1;
else

weightaatrixB(i,j) = 1;
end

else
wmn= .5 - .5*((l-bandmatch(i,j))/(l-slphafl;
wmx= 1 - wmin;

if bandASALl(i,j) > fuSALl(i,j)
weightmatrixA(i,j) = wmsax;
weightmatrixB(i,j) = mn

else
weightmetrixA(i,j) = wmin;
weightmatrixB(i,j) = wnsx;

end

end
end
end

fuDl = (weightmatrixA .* bandADil) + (weightmatrixB .~fuDil);

clear weightmatrixA bandADli weightmatrixB bandaatch fuSALl
clear bandASALl

bandASAL2 = salience (bandADl2);
fuSAL2 = salience (f uDl2);
bandmatch = match (bsndADl2, f uDl2, bsndASAL2, f uSAL2);
[Y X] = size(bandmnatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y
for j = 1:X

if bandaatch(i,j) < alpha
if bandASAL2(i,j) > fuSAL2(i,j)

weightaatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wisin = .5 - .5*((l-bandmstch(i,j))/(l-slpha));
wmsax = 1 - winin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightaatrixA(i,j) = wmax,
weightaatrixB(i,j) = wmin,

else
weightmatrixA(i,j) = wmian,
weightaatrixB(i,j) = wmax;

end

end
end
end

fuDl2 =(weightmatrixA .* bandADl2) + (weightaatrixs . fuDl2);

clear weightmatrixA bandADl2 weightmatrixs bandaatch fuSAL2
clear bandASAL2

bandASAL3 = salience (bsndADl3);
fuSAL3 = sslience(fuDl3);
bsndaatch = match (bandADl 3, f uDl 3, bandASAL3, f uSAL3)
[Y X] = size(bendmatch);
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weightmatrixA = zeros(Y,X);
weightisatrixE = zeros(Y,X);
alpha = .9
for i = l:Y
for j =l:X

if bandmatchci,j) < alpha
if bandASAL3(i,j) > fuSAL3(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wmin = .5 - .5* ( C-bandmatch~i, j) )/(l-alpha));
wmax = 1 - wmin;

if bandASAL3(i,j) > fuSAL3(i,j)
weightrnatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightrnatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmnax;

end

end
end
end

fuDl3 =(weightmatrixA .*bandADl3) + (weightmnatrixfl. fuDl3);

clear weightmatrixA bandADl3 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 = salience~bandADl4);
fuSAL4 = salience(fuDl4);
bandmatch = match (bandADl4, fuDl4, bsndASAL4, fuSAL4);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixE = zeros(Y,X);
alpha = .9
for i = l:Y

for j = l:X
if bandmstch(i,j) < alpha

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatriXA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB~i,j) = wmin;

else
weightmstrixA(i,j) = wmin;
weightmnatrixB(i,j) = wmnax;

end

end
end
end

fuDl4 =(weightmatrixA .* bandADl4) + (weightmatrixB .~fuDl4);
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clear weightmatrixA bandADl4 weightmatrixB bandmatch fuSAL4
clear bandASAL4

end

(OLDil OLD12 OLD13 OLDl4] = OLP(fuDll, fuDl2, fuDl3, fuDl4,4);
clear fuDil fuDl2 fuDl3 fuDl4

[FSDl] = FSDLP(OLDll, OLDl2, OLDl3, OLDl4);
clear OL.D11 OLD12 OLD13 OLD14

[RELAPi] = RELP(FSDl,W);
clear FSDl

[fuD2l fUD22 fuD23 fuD24] = OrientGrad Pyramid(fuG2,w,4);
fuG3 = Grad~reduce(fuG2,W);
clear fuG2

for band =60:30:90,

if (band ==60)

bandAGO = getim-sar('kal5hvl');
else

bandAGO = getim-Sar('kml5vvl');
end

bandAG1 = Grad-reduce(bandAGO,W);
clear bandAGO
bandAG2 = Grad reduce(bandAGl,W);
clear bandAGl

[bandAD2l bandAD22 bandAD23 bandAD24]= Orient-Grad-Pyramid(bandAG2,w,4);
bandAG3 = Grad-reduce(bandAG2,W);
clear bandAG2

bandASALl = salience(bandAD2l);
fuSALl = salience(fuD21);
bandmatch = match (bandAD2l1, fuD21, bandASALl, fuSALl);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = 1:x
if bandmatch(i,j) < alpha

if bandASALl(i,j) > fuSALI(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wlain;

if bandASALl(i,j) > fuSALl(i,j)
weightmatrixA(i,j) = wisax,

weightmatrixB(i,j) = wmin,
else

weightmatrixA(i,j) = wehin,
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weightmatrixBci,j) = wmax;
end

end
end
end

fuD2l = (weightmatrixA *kbandAD2l) + (weightmatrixB .*fuD2l);

clear weightmatrixA bandAD2l weightmatrixB bandmatch fuSAUl
clear bandASALl

bandASAL2 = salience~bandAD22);
fuSAL2 = salience(fuD22);
bandmatch = match(bandAD22, fuD22,bandASAL2, fuSAL2);
[Y X] = size(bandmatch);
weightinatrixA = zeros(Y,X);
weightinatrixB = zeros(Y,X);
alpha = .9

for i = l:Y
for j = 1:X

if bandmatch(i,j) < alpha
if bandASAL2(i,j) > fuSAL2(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wm~in = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wm~in;

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = wslax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wm~in;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD22 =(weightmatrixA .* bandAD22) + (weightmatrixB .*fuD22);

clear weightmatrixA bandAD22 weightmatrixB bandmatch fuSAL2
clear bandASAL2

bandASAL3 = salience(bandAD23);
fuSAL3 = salience(fuD23);
bandmatch = match(bandAD23, fuD23,bandASAL3, fuSAL3);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wm~in = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
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wmax = 1 - wHmi;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatriXA(i,j) = wHmax;
weightmatrixB(i,j) = wHmi;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD23 =(weightmatrixA .'* bandAD23) + (weightmatrixB .*fuD23);

clear weightmatrixA bandAD23 weightaatrixs bandaatch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandAD24);
fuSAL4 = salience(fuD24);
bandmatch = match (bandAD24, f uD2 4, bandASAL4, f uSAL4)
[Y X] = size(bandmatch);
weightmatrixA = zercs(Y,X);
weightmatrixB = zercs(Y,X);
alpha = .9

for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL4(i,j) > fuSAL4(i,j)
weightrnatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*(Cl-bandmatch(i,j))/(1-alphafl;
wmax = 1 - wHmi;

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = winin;

else
weightmatrixA(i,j) = wHmi;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD24 =(weightmatrixA .* bandAD24) + (weightaatrixB .*fuD24);

clear weightaatrixA bandAD24 weightmatrixB bandaatch fuSAL4
clear bandASAL4

end

[OLD2l 0LD22 0LD23 0LD24] = OLP(fuD2l, fuD22, fuD23, fuD24,4);
clear fuD2l fuD22 fuD23 fuD24

[FSD2] = FSDLP(OLD2l, 0LD22, OLn23, oLn24);
clear OLD21 0LD22 0LD23 0LD24

[RELAP2] = RELP(FSD2,W);
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clear FSD2

[fuD3l fuD32 fuD33 fuD34] = OrientGrad Pyramid(fuG3,w,4);
fuG4 = Grad-reduce(fuG3,W);
clear fuG3

for band =60:30:90,

if (band ==60)

bandAGO = getim-sar('kel5hvl');
else

bandAGO = getim-sar('kml5vvl');
end

bandAG1 = Grad-reduce(bandAG0,W);
clear bandAGO
bandAG2 = Grad-reduce(bandAG1,W);
clear bandAGl
bandAG3 = Grad-reduce(bandAG2,W);
clear bandAG2

[bandAD3l bandAD32 bandAD33 bandAD34] =Orient Grad-Pyramid~bandAG3,w,4);
clear bandAG3

bandASALl = salience(bandAD31);
fuSALl = salience(fuD31);
bandmatch = match (bandAD3l1, fuD3l, bandASALl, fuSALl);
[Y X] = size (bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = l:X
if bandmatch(i,j) < alpha

if bandASALl(i,j) > fuSALl(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*((l-bandmatch(i,j)l/(l-alpha));
wmax = I - wmin;

if bandASALl(i,j) > fuSALl(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD31 (weightmatrixA .* bandAD31) + (weightmatrixB .*fuD3l);

clear weightmatrixA bandAD3l weightmatrixB bandmatch fuSALl
clear bendASALl
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bandASAL2 = saliencec(bandAo32);
fuSAL2 = salience(fuD32);
bandmatch = match (bandAD32, fuD3 2, bandASAL2, fuSAL2);
[Y X] = size(bandsiatch);
weightmatrixA = zeros(,)
weightmatrixs = zeros (Y,X);
alpha = .9
for i = l:Y
for j =1:

if bandmatch~i,j) < alpha
if bandASAL2(i,j) > fuSAL2(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wmin = .5 - .5*((1-bandmatch(i,j))/C1-alpha));
weax = 1 - mn

if bandASAL2(i,j) > fuSAL2(i,j)
weightsiatrixA(i,j) = wmax;
weightmatrixH(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD32 =(weightmatrixA .* bandAD32) + (weightmatrixB .*fuD32);

clear weightmatrixA bandAD32 weightmatrixs bandmetch fuSAL2
clear bandASAL2

bandASAL3 = salience(bandAD33);
LuSAL3 = salience(fuD33);
bandmatch = match (bandAD33, fuD33, bandASAL3, fUSAL3);
[Y X] = size(bandmatch);
weightmnatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1Y
for j = 1:x

if bandmnatch(i,j) < alpha
if bandASAL3(i,j) > fuSAL3(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wmin = .5 - ,5*((l-bandmatch(i,j))/(l-alphay);
wmnax = 1 - wmin;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wsmax;
weightmatrixB(i,j) = wsmin;

else
weightmatrixA(i,j) = wein;
weightmatrixB(i,j) = weax;

end

end
end
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end

fuD33 = (weightmatrixA .* bandAD33) + (weightmatrixB .* fuD33);

clear weightmatrixA bandAD33 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandAD34);
fuSAL4 = salience(fuD34);
bandmatab = match(bandAD34, fuD34,bandASAL4, fuSAL4);
[Y X] = size (bandmatch);
weightinatrixA = zeros(Y,X);
weightmatrixH = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) <alpha

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

winin = .5 - .5* ( (-bandmatch~i, j) )/(l-alpha));
wmax = 1 - wmin;

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = wmax;
weightrnatrixB(i,j) = wmin;

else
weightrnatrixA(i,j) = wisin;
weightrnatrixB(i,j) = wmax;

end

end
end
end

fuD34 =(weightmatrixA .* bandAD34) + (weightmatrixB AfuD34);

clear weightmnatrixA bandAD34 weightmatrixB bandmnatch fuSAL4
clear bandASAL4
end

[OLD3l OLD32 OLD33 0LD34] = OLP(fuD3l, fuD32, fuD33, fuD34,4);
clear fuD3l fuD32 fuD33 fuD34

[FSD3] = FSDLP(0LD31, 01032, 0LD33, 0LD34);
clear OLD31 OLD32 01D33 0LD34

[RELAP3] = RELP(FSD3,W);
clear FSD3

[fuD4l fuD42 fuD43 fuD44] = OrientGrat-Pyraaid(fuG4,w,4);
fuG5 = Grad-reduce(fuG4,W);
clear fuG4

for band =60:30:90

if (band ==60)

bandAGO = getim-sar('kml5hvl');
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else

bandAGO = getim-sar('kml5vvl')
end

bandAGi = Grad-reduce(bandAGO,W);
clear bandAGO
bandAG2 = Grad-reduce(bandAGl,W);
clear bandAGi
bandAG3 = Grad-reduce(bandAG2,W);
clear bandAG2
bandAG4 = Grad-reduce(bandAG3,W);
clear bandAG3

[bandAD4l bandAD42 bandAD43 bandAD44]= Orient-Grad-Pyramid(bandAG4,w,4);
clear bandAG4

bandASALl = salience(bandAD4l);
fuSALl = salience(fuD4l);
bandaatch = match (bandAD4l1, f uD41, bandASALl, f uSALl);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAU1(i,j) > fuSALl(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end %if else
else

wmn= .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wain;

if bandASALl(i,j) > fuSALl(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB~i,j) = wmax;

end %end if else

end %end if else
end

end
fuD41 = (weightaatrixA .* bandAD4l) +- (weightmatrixB .*fuD4l);

clear weightmatrixA bandAD4l weightmatrixB bandmatch fuSALl
clear bandASALl

bandASAL2 = salience (bandAD42);
fuSAL2 = salience(fUD42);
bandmatch = match (bandAD4 2, f uD42, bandASAL2, f uSAL2);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL2(i,j) > fuSAL2(i,j)
weightaatrixA(i,j) = 1;

else
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weightmatrixB(i,j) = 1;
end

else
wmn= .5 - .5*((l-bandmatch(i,j))/(l-aipha));

wsiax = 1 - wehin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightmnatrixA(i,j) = wmax;
weightmatrixB(i,j) = woin;

else
weightmatrixA(i,j) = wmin;
weighttatrixB(i,j) = wmax;

end

end
end
end

fuD42 =(weightmatrixA .* bandAD42) +- (weightmatrixB .*fuD42);

clear weightmatrixA bandAD42 weightmatrixB bandmatch fuSAL2
clear bandASAL2

bandASAL3 = salience(bandAD43);
fuSAL3 = salience(fuD43);
bandmatch = match (bandAD4 3, fuD4 3, bandASAL3, fuSAL3)
[Y X] = size~handmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zercs(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL3Ci,j) > fuSAL3(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else

wmin = .5 - .5*((l-bandmatch(i,j))/(l-alphafl;
wmax = 1 - wmin;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wisax;

end

end
end
end

fuD43 =(weightmatrixA .* bandAD43) + (weightaatrixB .*fuD43);

clear weightmatrixA bandAD43 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandAD44);
fuSAL4 = salience(fuD44);
bandmatch = match (bandAD4 4, fuD4 4, bandASAL4, fuSAL4);
[Y X] = aize(bandmatch);
weightmatrixA = zeros(Y,X);
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weightmatrixB = zeros(Y,X);
alpha = .9
for i = l:Y
for j = l:X

if baodmatch(i,j) < alpha
if baodASAL4(i,j) > fuSAL4(i,j)

weightmatrixA(i,j) = 1;
else

weightmatrixB(i,j) = 1;
end

else
wmin = .5 - .5* ( (-bandmatch(i, j) /(l-alpha));
wmax = 1 - wmin;

if beodASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightsatrixB(i,j) = wmax;

end

end
end
end

fuD44 =(weightmatrixA .* bandAD44) + (weightmatrixH . fuD44);

clear weightmatrixA bandAD44 weightmstrixB beodmatch fuSAL4
clear bandASAL4

end %for loop

[OLD4l OLD42 0LD43 0LD44] = OLP(fuD4l, fuD42, fuD43, fuD44,4);
clear fuD4l fuD42 fuD43 fuD44

[FSD4 I = FSDLP(OLD4l, 0LD42, 0LD43, 0LD44);
clear OLD41 0LD42 0LD43 0LD44

[RELAP4 I = RELP(FSD4,W);
clear FSD4

[fuD5l fuD52 fuD53 fu054] = Orient..GradtPyramid(fuG5,w,4);
fuGE = Grad-reduce(fuGS,W);
clear fuG5

for band =60:30:90
if (band ==60)

bandAGO = getim..sar('kml5hvl');
else

bandAGO = getim-sar('kml5vvl');
end

bandAGI = Gradreduce(bandAG0,W);
clear bandAGO
bandAG2 = Grad reduce(bandAGl,W);
clear bandAGl
bandAG3 = Grad reduce(bandAG2,W);
clear bandAG2
bandAG4 = Grad-reduce(bandAG3,W);
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clear bandAG3
bandAG5 = Grad..reduce(bandAG4,W);
clear bandAG4
[bandAD5l bandAD52 bandAD53 bandADS4] = OrientGradPyramid(bandAG5,w,4);
clear bandAG5

bandASALl = salience(bandAD5l);
fuSALl = salience(fuD5l);
bandmatch = match (bandAD5l1, fuD51, bandASALl, fuSALl);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zercs(Y,X);
alpha = .9
for i = 1:Y

for j = l:X
if bandmatch(i,j) < alpha

if bandASALl~i,j) > fuSALl(i,j)
weightmatrixA~i,j) = 1;

else
weightmatrixB~i,j) = 1;

end %if else
else

wmin = .5 - .5*((l-bandmatch(i,j))/Cl-alpha));
wmax = 1 - wrnin;

if bandASALl(i,j) > fuSALl(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB~i,j) = winin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmnax;

end %end if else

end %end if else
end

end
fuD5l (weightmatrixA .* bandAD5l) + (weightmatrixB .*fuD5l);

clear weightmatrixA bandAD5l weightmatrixB bandmatch fuSALl
clear bandASALl

bandASAL2 = salience (bandAD52);
fuSAL2 = aalience(fuDS2);
bandmatch = match (bandAD52, fuD5 2, bandASAL2, fuSAL2);
[Y X] = aize(bandaatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeroa(Y,X);
alpha = .9
for i = 1:Y

for j = l:X
if bandmatch(i,j) < alpha

if bandASAL2(i,j) > fuSAL2(i,j)
weightmnatrixA(i,j) = 1;

else
weightmnatrixB(i,j) = 1;

end
else

wmin = .5 - .5*U(l-bandmatch(i,j))/(l-alpha)l;
wmax = 1 - wmnin;

if bandASAL2(i,j) > fuSAL2(i,j)
weightmatrixA(i,j) = wmnax;
weightmatrixB(i,j) = winin;

else
weightmatrixA(i,j) = wmin;
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weightmatrixB(i,j) = wisax;
end

end
end
end

fuD52 = (weightmatrixA .* bandAD52) + (weightmatrixB .* fuD52);

clear weightmatrixA bandAD52 weightmnatrixB bandmatch fuSAL2
clear bandASAL2

bandASAL3 = salience (bandAD53);
fuSAL3 = salience(fuD53);
bandmatch = match (bandAD53, fuD53, bandASAL3, fuSAL3);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightmatrixB = zeros(Y,X);
alpha = .9
for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = 1;

else
weightrnatrixB(i,j) = 1;

end
else

winin = .5 - .5*((1-bandmatch(i,jfl/(l-alpha));
wmax = I - wisin;

if bandASAL3(i,j) > fuSAL3(i,j)
weightmatrixA(i,j) = wmax;
weightinatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD53 =(weightmatrixA .* bandAD53) + (weightmatrixB .*fuD53);

clear weightmatrixA bandAD53 weightmatrixB bandmatch fuSAL3
clear bandASAL3

bandASAL4 = salience(bandAD54);
fuSAL4 = salience(fuD54);
bandmatch = match (bandAD54, fuD54, bandASAL4, fuSAL4);
[Y X] = size(bandmatch);
weightmatrixA = zeros(Y,X);
weightinatrixB = zeros(Y,X);
alpha = .9

for i = 1:Y

for j = 1:X
if bandmatch(i,j) < alpha

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = 1;

else
weightmatrixB(i,j) = 1;

end
else
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wmin = .5 - .5*((l-bandmatch(i,j))/(l-alpha));
wmax = 1 - wmin;

if bandASAL4(i,j) > fuSAL4(i,j)
weightmatrixA(i,j) = wmax;
weightmatrixB(i,j) = wmin;

else
weightmatrixA(i,j) = wmin;
weightmatrixB(i,j) = wmax;

end

end
end
end

fuD54 = (weightmatrixA .* bandAD54) + (weightmatrixB .* fuD54);

clear weightmatrixA bandAD54 weightmatrixB bandmatch fuSAL4
clear bandASAL4

end %for loop

[OLDSI OLD52 OLD53 OLD54] = OLP(fuD5l, fuD52, fuD53, fuD54,4);
clear fuD51 fuD52 fuD53 fuD54

[FSD5 ] = FSDLP(OLD51, OLD52, OLD53, OLD54);
clear OLD51 OLD52 OLD53 OLD54

[RELAP5 I = RELP(FSD5,W);
clear FSD5

% Now the reconstruction of the Image begins. Using the results of
% equation (A3) Note: I use the original top level from the Gaussian
% Pyramid to start the reconstruction. i.e. G6 = bandAG6
band30GO = getim-sar('kml5hhl');
band30Gl = Grad reduce(band30GO,W);
clear band30GO
band30G2 = Gradreduce(band30Gl,W);
clear band30Gl
band30G3 = Grad-reduce(band30G2,W);
clear band30G2
band30G4 = Grad-reduce(band30G3,W);
clear band30G3
band30G5 = Grad-reduce(band30G4,W);
clear band30G4
G6 = Gradreduce(band30GS,W);
clear band30G5

G5 = RELAP5 + Gauss-expand(G6,W);
clear RELAP5 G6

G4 = RELAP4 + Gauss-expand(G5,W);
clear RELAP4 G5

G3 = RELAP3 + Gauss-expand(G4,W);
clear RELAP3 G4

G2 = RELAP2 + Gauss-expand(G3,W);
clear RELAP2 G3

G1 = RELAP1 + Gauss-expand(G2,W);
clear RELAP1 G2

GO = cleansar(RELAP + Gauss-expand(Gl,W));
clear RELAP Gi
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save fusarml5 GO

quit

E.4 Image Fusion Subroutines

E.4.1 Reduction Algorithm.

% This function takes in a layer from a gaussian pyramid and produces the
% output layer. It takes the input layer and convolves it with the weight
% matrix in weights, which is a gaussian type gradient function, and then
% downsamples by a factor of 2.

function reduce = Gradreduce(IMAGE, FIVECONVOLVEFUNCTION)
tempi = pad(IMAGE,FIVECONVOLVEFUNCTION);
temp2 = conv2(tempi,FIVECONVOLVEFUNCTION, 'valid');
clear templ

[Y X] = size(temp2);
reduce = temp2((l:2:Y),(l:2:X));

return

E.4.2 Oriented Gradient Pyramid Algorithm.

% This function takes in a layer from a gaussian pyramid and produces the
% orientation gradient pyramid. It takes the input layer and convolves
% it with the kernels specified by dl-dn, where the letter 1 tells how many
% kernel will be used. Each kernel represent a type of filter or wavelet.

function [DI, D2, D3, D4) = OrientGradPyramid(IMAGE,THREECONVOLVEFUNCTION,l)

dl = [1 -1];
d2 = i/(sqrt(2)) * [0 -1;

1 0];
d3 = [-1;

1];
d4 = i/(sqrt(2)) *[-l 0;

0 1];
templ = pad(IMAGE,THREECONVOLVEFUNCTION);
temp2 = conv2(templ,THREECONVOLVEFUNCTION,'valid');
clear templ
TEMP = temp2 + IMAGE;
clear temp2

for i = 1:1

if i == 1
templ = pad(TEMP,dl);
Dl = conv2(templ,dl,'valid');

elseif i == 2
templ = pad(TEMP,d2);
D2 = conv2(templ,d2,'valid');

elseif i == 3
templ = pad(TEMP,d3);
D3 = conv2(templ,d3,'valid');

else
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templ = pad(TEMP,d4);
D4 = conv2(templ,d4,'valid');

end %end if
end %end for

clear dl d2 d3 d4 TEMP

return

E.4.3 Oriented Laplacian Pyramid Algorithm.

% This fuction takes in a layer from an oriented gradient pyramid and converts
% it to a second derivative pyramid (or oriented Laplacian Pyramid). It takes
% the input layer and convolves it with the kernels specified by dl-dn, where
% the letter 1 tells how many kernels will be used. Each kernel represent a
% type of filter or wavelet. They may or may not be the valid ones used in
% creating the Oriented Gradient Pyramid.

function [Dl, D2, D3, D4] = OLP(W, X, Y, Z ,1)

dl = [1 -1];

d2 = i/(sqrt(2)) * [0 -1;
1 0];

d3 = [-1;
1];

d4 = i/(sqrt(2)) *[-l 0;
0 1];

for i = 1:1

if i == 1

W = pad2(W,dl);
Dl =conv2(W,((-l/8)*dl),'valid');

elseif i == 2
X = pad2(X,d2);
D2 = conv2(X,((-I/8)*d2),'valid');

elseif i == 3
Y = pad2(Y,d3);
D3 = conv2(Y,((-I/8)*d3),'valid');

else
Z = pad2(Z,d4);
D4 = conv2(Z,((-l/8)*d4),'valid');

end %end if
end %end for

clear dl d2 d3 d4

return

E.4.4 FSD Laplacian Pyramid Algorithm.

% This fuction takes in a layer from an oriented Laplacian pyramid and converts
% it to an FSD Laplacian Pyramid. It takes the input layer and sums over all
% of the orientations.

function [FSD] = FSDLP(DI, D2, D3, D4)
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FSD = D1 + D2 + D3 + D4;

return

E.4.5 RE Laplacian Pyramid Algorithm.

% This fuction takes in a layer from an FSD Laplacian pyramid and converts
% it to an RE Laplacian Pyramid. It takes the input layer and convolves it
% with the weight matrix (1 + W) where W is the original 5 x 5 Gaussian
% filter used to generate the Gaussian pyramid.

function [RELAP] = RELP(FSD,W)

[A B] = size(W);

C = zeros(A,B);
C(3,3) = 1;
CON1 = C + W;

temp = pad(FSD,CONI);
RELAP = conv2(temp,CONl,'valid');

return

E.4.6 Salience Algorithm.

% INPUTS: single pyramid level
% OUTPUT: salience matrix

function SAL = salience(PYRl)

P = [l];

templ = PYRl.*PYRI;

temp = pad(templ,P);
SAL = conv2(temp,P,'valid');

return

E.4.7 Match Algorithm.

% INPUTS: single pyramid levels from 2 input images, and its salience matrix
% OUTPUT: matrix containing the match values

function MTCH = match(PYRI,PYR2,SPYRI,SPYR2)

zeroprotection = .0000001;

temp2 = PYRI.* PYR2;

numerator = 2*temp2 + zeroprotection;
clear temp2

denominator = SPYRI + SPYR2 + zeroprotection;

MTCH = numerator./denominator;
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return

E.4.8 Expand Algorithm.

% This function takes an input image (IMAGE) and an extrapolating kernel (W) and doubles the size
% of the input image. The doubling is performed by first adding zeros to every other row and
% column and then convolving with the extrapolating kernel to fill in the zeros. In most cases the
% kernel (W) was a Gaussian type of filter.

function EXP = Gauss-expand(IMAGEW)

[Y,X] = size(IMAGE);

wider = zeros(Y,2*X);
wider(:,l:2:2*X) = IMAGE;
taller = zeros(2*Y,2*X);
taller(l:2:2*Y,:) = wider;
%fluffedandpadded = pad(taller,W);
%upsampled = conv2(fluffedandpadded,W, 'valid');

W2 = 4*W;
temp = pad(taller,W2);
EXP = (conv2(temp,W2,'valid'));

return

E.4.9 Weight Matrrix Generation Code.

% This is the weight matrix referred to in Burt's paper on image fusion.
% it is from the appendix A, pg 182. It will be used to generate the
% Gaussian Gradient Pyramid.

w = 1/16 * [1 2 1;
2 4 2;
1 2 1;];

% W = w*w (w convolved with w)

W = 1/256 * [ 1 4 6 4 1;
4 16 24 16 4;
6 24 36 24 6;
4 16 24 16 4;
1 4 6 4 1];

return
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Appendix F. Contrast Sensitivity Matlab M-Files

F1 Image Fusion Algorithm For Bands 30 60 and 90

% This program is used to tell the fuse program what set of images to fuse. It calls the fuse program
% that is designed to fuse AVIRIS images.

bands = [431 432 4331;

GO = wfuseennormal(8,bands, 0.05);

save wband30noise GO

quit

F.2 Image Fusion Algorithm AVIRIS data
%INPUTS:
% step: The step size that the 40x40 window will be shifted.
% bands: vector containing the AVIRIS images to be fused%
%OUTPUTS: cleaned up version of the fused AVIRIS image.

% This algorithm performs a six layer decomposition fusion of the input data.
% The fusion weights are determined by a weighting metric that is based upon the contrast
% sensitivity response of the analyst.. The weights are derived from the weights.m file, which uses
% the Peter Burt, wavelet filters and the Contrast sensitivity numbers. The file weightings.m
% computes the desired fusion weights for the details. This program is specifically designed to
% fuse the AVIRIS images used in this thesis. The images are also energy normalized before
% decomposition takes place.

function GO = wfuse(step, bands, delta);
weights

[Y loop] = size(bands);

bandAGO = ennormal(getim(bands(1)));

[fuDOl fuD02 fuD03 fuD04] = Orient_.GradPyramid(bandAGO,w,4);
bandAGl = Grad~reduce(bandAGO,W);
clear bandAGO
[fuDll fuDl2 fuDl3 fuDl4] = OrientGradPyramid(bandAGl,w,4);

bandAG2 = Grad-reduce(bandAGl,W);
clear bandAGl
[fuD21 fuD22 fuD23 fuD24] = OrientGradPyramid(bandAG2,w,4);

bandAG3 = Grad-reduce(bandAG2,W);
clear bandAG2
[fuD31 fuD32 fuD33 fuD34] = OrientGradPyramid(bandAG3,w,4);

bandAG4 = Grad-reduce(bandAG3,W);
clear bandAG3
[fuD41 fuD42 fuD43 fuD44] = OrientGradPyramid(bandAG4,w,4);

bandAG5 = Grad-reduce(bandAG4,W);
clear bandAG4
[fuD51 fuD52 fuD53 fuD54] = OrientGradPyramid(bandAG5,w,4);

G6 = Gradreduce(bandAG5,W);
clear bandAG5
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for i = 2:loop,

bandBGO = ennormal (get im (bands (i)));
band =bands(i) % This is just for output messages to the logfile

level =0

[bandBDOl bandBDO2 bandBDO3 bandBDO4] = Orient-Grad-Pyramid(bandBGO,w,4);

wOl =detailyweightings (step, fuDOl,bandBDOl, CO, delta);
wOb =ones(size(wOl)) - wOl;
fuDOl = (wOl .* fuD0l) + (wOb .* bandBDOl);
clear wOl wOb

w02 =detail_weightings (step, fuDO2,bandBDO2, CO, delta);
wOb =ones(size(w02)) - w02;
fuD02 = (w02 .* fuDO2) + (wOb .* bandBDO2);
clear w02 wOb

w03 =detail-weightings (step, fuDO3,bandBDO3, CO, delta);
wOb =ones(size(w03)) - w03;
fuDO3 = (w03 .* fuDO3) + (w~b .* bandBDO3);
clear w03 wOb

w04 =detail_weightings (step, fuDO4,bandBDO4,CO, delta);
wOb =ones(size(w04)) - w04;
fuDO4 = (w04 .* fuDO4) + (wOb .* bandBDO4);
clear w03 wOb

level = I

bandBG1 = Grad-reduce(bandflGO,W);
clear bandEGO

[bandBDll bandBDl2 bandBDl3 bandBDl4] = Orient Grad-Pyramid(bandBG1,w,4);

wll =detail-weightings (step, fuDll,bandBDll, Cl, delta);
wlb =ones(size(wll)) - wll;
fu~ll = (wll .* fuDll) + (wlb .* bandBDll);
clear wll wlb

w12 =detailwyeightings (step, fuDl2,bandBD12,Cl, delta);
wlb =ones(size(wl2)) - w12;
fuD12 = (w12 .* fuDl2) + (wlb .* bandBDl2);
clear w12 wlb

w13 =detail-weightings (step, fuDl3,bandBDl3, Cl, delta);
wlb =ones(size(wl3)) - w13;
fuD13 = (w13 .* fuDl3) + (wlb .* bandBDl3);
clear w13 wlb

w14 =detail-weightings (step, fuDl4,bandBDl4, Cl, delta);
wlb =ones(size(w14)) - w14;
fuD14 = (w14 .* fuDl4) + (wlb .* bandBD14);
clear w13 wlb

level = 2

bandBG2 = Grad reduce(bandBG1,W);
clear bandBGl

[bandBD2l bandBD22 bandBD23 bandBD24] = Orient_Grad-Yyramid(bandBG2,w,4);
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w21 detailwyeightings (step, fuD2l,bandBD2l, C2, delta);
w2b = nes(size(w21)) - w21;
fuD2l = (w21 ."* fuD2l) + (w2b .* bandBD2l);
clear w21 w2b

w22 =detail~yeightings (step, fuD22,bandBD22, C2, delta);

w2b =ones(size(w22)) - w22;
fuD22 = (w22 .* fuD22) + (w2b .* bandBD22);
clear w22 w2b

w23 =detail-weightings (step, fuD23,bandBD23, C2, delta);
w2b =ones(size(w23)) - w23;
fuD23 = (w23 .* fuD23) + (w2b .* bandBD23);
clear w23 w2b

w24 =detailwyeightings (step, fuD24,bandBD24, C2, delta);
w2b =ones(size(w24)) - w24;
fuD24 = (w24 .* fuD24) + (w2b .* bandBD24);
clear w23 w2b

level = 3

bandBG3 = Grad-reduce(bandBG2,W);
clear bandBG2

[bandBD3l bandBD32 bandBD33 bandBD34] = OrientGrad-Pyramid(bandBG3,w,4);

w31 detail_weightings (step, fuD3l,bandBD3l, C3, delta);
w3b =ones(size~w3l)) - w3l;
fuD3l = (w31 .* fuD31) + (w3b .* bandBD3l);
clear w31 w3b

w32 =detailyweightings (step, fuD32,bandBD32, C3, delta);
w3b =ones(size(w32)) - w32;
fuD32 = (w32 .* fuD32) + (w3b .* bandBD32);
clear w32 w3b

w33 =detailwyeightings (step, fuD33,bandBD33, C3, delta);
w3b =ones(size(w33)) - w33;
fuD33 = (w33 .* fuD33) + (w3b .* bandBD33);
clear w33 w3b

w34 =detail-weightings (step, fuD34,bandHD34,C3, delta);
w3b = nes(size(w34)) - w34;
fuD34 = (w34 .* fuD34) + (w3b .* bandBD34);
clear w33 w3b

level = 4

bandBG4 = Grad-reduce(bandBG3,W);
clear bandBG3

[bandBD4l bandBD42 bandBD43 bandBD44] = OrientGrad-Pyramid(bandBG4,w,4);

w41 detail-weightings (step, fuD4l,bandBD4l, C4, delta);
w4b =ones(size(w4l)) - w41;
fuD4l = (wAl .* fuD4l) + (w4b .* bandBD4l);
clear w41 w4b

w42 =detail-weightings (atep, fuD42,bandBD42,c4, delta);
w4b =ones(size(w42)) - w42;
fuD42 = (w42 .* fuD42) + (w4b .* bandBD42);
clear w42 w4b
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w43 = detail.weightings(step,fuD43,bandBD43,C4, delta);
w4b = ones(size(w43)) - w43;

fuD43 = (w43 .* fuD43) + (w4b .* bandBD43);
clear w43 w4b

w44 = detail_weightings(step,fuD44,bandBD44,C4, delta);
w4b = ones(size(w44)) - w44;

fuD44 = (w44 .* fuD44) + (w4b .* bandBD44);
clear w43 w4b

level = 5

bandBG5 = Grad-reduce(bandBG4,W);
clear bandBG4

[bandBD51 bandBD52 bandBD53 bandBD54] = OrientGradPyramid(bandBG5,w,4);
clear bandBG5

w51 = detailyweightings(step,fuD51,bandBD51,C5, delta);
w5b = ones(size(w51)) - w51;
fuD51 = (w51 .* fuD51) + (w5b .* bandBD51);

clear w51 w5b

w52 = detail_weightings(step,fuD52,bandBD52,C5, delta);
w5b = ones(size(w52)) - w52;
fuD52 = (w52 .* fuD52) + (w5b .* bandBD52);
clear w52 w5b

w53 = detail.weightings(step,fuD53,bandBD53,C5, delta);
w5b = ones(size(w53)) - w53;
fuD53 = (w53 .* fuD53) + (w5b .* bandBD53);
clear w53 w5b

w54 detail.weightings(step,fuD54,bandBD54,C5, delta);
w5b = ones(size(w54)) - w54;
fuD54 = (w54 .* fuD54) + (w~b .* bandBD54);

clear w53 w5b

% create the Orientation Gradient Pyramid with the 1st orientation filter dl.
% The levels are indexed by bandxij where i is the pyramid level and
% j is the orientation (dl,d2, ... dn) (see fig 3 and equation A9).

% create the Orientation Laplacian Pyramid with the lst orientation filter dl.
% The levels are indexed by bandxij where i is the pyramid level and
% j is the orientation (dl,d2, .. .dn) (see fig 3 and equation A9).

% create the FSD Laplacian Pyramid

% create the RE Laplacian Pyramid

end % end for i

% Now the reconstruction of the Image begins. Using the results of
% equation (A3) Note: I use the original top level from the Gaussian
% Pyramid to start the reconstruction. i.e. G4 = bandAG4

recreate = 1

[OLD01 OLD02 OLD03 OLD04] = OLP(fuD01, fuD02, fuD03, fuD04,4);
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clear fuDOl fuDO2 fuDO3 fuDO4

[FSD I = FSDLP(OLDO1, OLDO2, 0LD03, OLDO4);

clear OLD01 OLD02 OLD03 OLD04

[RELAP ] = RELP(FSD,W);

clear FSD

[OLDil OLD12 OLD13 OLDl4] = OLP(fuDll, fuDl2, fuDl3, fuDl4,4);

clear fuDli fuD12 fuDl3 fuDl4

[FSDl) = FSDLP(OLDll, OLDl2, OLDl3, OLDl4);

clear OLD11 OLD12 OLD13 OLD14

[RELAP1] = RELP(FSDlfW);

clear FSDl

[OLD2l OLD22 OLD23 0LD24] = OLP(fuD2l, fuD22, fuD23, fuD24,4);

clear fuD2l fuD22 fuD23 fuD24

[FSD2] =FSDLP(OLD21, 0LD22, 0LD23, 0LD24);

clear OLD21 OLD22 OLD23 OLD24

[RELAP2] = RELP(FSD2,W);

clear FSD2

[OLD3l OLD32 OLD33 OLD34] = OLP(fuD3l, fuD32, fuD33, fuD34,4);

clear fuD3l fuD32 fuD33 fuD34

[FSD3] = FSDLP(0LD31, 0LD32, 0LD33, 0LD34);

clear OLD31 OLD32 OLD33 OLD34

[RELAP3] = RELP(FSD3,W);

clear FSD3

[OLD4l OLD42 OLD43 0LD44) = OLP(fuD4l, fuD42, fuD43, fuD44,4);

clear fuD4l fuD42 fuD43 fuD44

[FSD4 ] = FSDLP(OLD4l, 0LD42, 0LD43, 0LD44);

clear OLD41 OLD42 OLD43 OLD44

[RELAP4 ] = RELP(FSD4,W);

clear FSD4

[OLD5l OLD52 OLD53 0LD54] =OLP(fuD5l, fuD52, fuD53, fuD54,4);

clear fuD51 fuD52 fuD53 fuD54

[FSD5 ] = FSDLP(0LD51, 0LD52, 0LD53, 0LD54);

clear OLD51 OLD52 OLD53 OLD54

[RELAP5 ] = RELP(FSD5,W);

clear FSD5

G5 = RELAP5 + Gauss~expand(G6,W);
clear RELAP5 G6

G4 = RELAP4 + Gauassexpand(G5,W);
clear RELAP4 G5
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G3 = RELAP3 + Gaussexpand(G4,W);
clear RELAP3 G4

G2 = RELAP2 + Gaussexpand(G3,W);
clear RELAP2 G3

Gl = RELAPI + Gauss.expand(G2,W);
clear RELAPI G2

GO = RELAP + Gauss-expand(G1,W);
clear RELAP G1

GO = clean(GO);

return

F.3 Image Fusion of Lenna Test Images

% This program is used to tell the fuse program what set of images to fuse. It calls the
%fuse program that is designed to fuse Lenna images.

bands = [331 332 333];
GO = wfuse5l2(8,bands, 0.05);
save newlennanoise GO
quit

F.4 Image Fusion Algorithm For Lenna Test Images

%INPUTS:
% step: The step size that the 40x4O window will be shifted.
% bands: vector containing the image files to be fused
%OUTPUTS: cleaned up version of the fused images.

% This algorithm performs a six layer decomposition fusion of the input data.
% The fusion weights are determined by a weighting metric that is based upon the contrast
% sensitivity response of the analyst.. The weights are derived from the weights.m file, which uses
% the Peter Burt, wavelet filters and the Contrast sensitivity numbers. The file weightings.m
% computes the desired fusion weights for the details. This program is specifically designed to
% fuse the Lenna images used in this thesis.

function GO = wfuse(step, bands, delta);
weights

[Y loop] = size(bands);

imagea = bands(l);
eval(['bandAGO = getim512(' ' images 1 1);']);

[fuDOl fuD02 fuD03 fuD04] = OrientGradPyramid(bandAGO,w,4);
bandAGl = Grad-reduce(bandAGO,W);
clear bandAGO
[fuDll fuDl2 fuDl3 fuDl4] = Orient_GradPyramid(bandAGl,w,4);

bandAG2 = Grad-reduce(bandAGI,W);
clear bandAGl
[fuD21 fuD22 fuD23 fuD24] = OrientGradPyramid(bandAG2,w,4);
bandAG3 = Grad-reduce(bandAG2,W);
clear bandAG2
[fuD31 fuD32 fuD33 fuD34] = OrientGradPyramid(bandAG3,w,4);
bandAG4 = Grad-reduce(bandAG3,W);
clear bandAG3
[fuD41 fuD42 fuD43 fuD44] = OrientGradPyramid(bandAG4,w,4);
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bandAG5 = Grad reduce~bandAG4,W);
clear bandAG4
[fuD5l fuD52 fuD53 fuD54] = Orient -GradPyramid(bandAG5,w,4);
G6 = Grad-reduce(bandAG5,W);
clear bandAG5

for i = 
2 :loop,

imageb = bands(i);
eval(['bandBGO = getim5l2(' ' imageb ' )';

band =bands(i) % This is just for output massages to the logfile

level =0

[bandBDOI bandBD02 bandBDO3 bandBDO4] = Orient-Grad-Pyramid(bandBGO,w,4);

wOl =detailyweightings(step,fuDOl,bandBDOl,CO,delta);

wOb =ones(size(wOl)) - wOl;
fuDOl = (wOl .* fuD0l) +- (wOb .* bandBDOI);
clear wOl wOb

w02 =detail-weightings (step, fuDO2,bandBDO2, CO, delta);
wOb =ones(size(w02)) - w02;
fuD02 = (w02 .* fuDO2) + (wOb .'* bandBDO2);
clear w02 wOb

w03 =detailwyeightings (step, fuDO3,bandBDO3, CO, delta);
wOb =ones(size(w03)) - w03;
fuD03 = (w03 .* fuDO3) + (wOb .* bandBDO3);
clear w03 wOb

w04 =detailweightings (step, fuD04, bandBDO4, CO, delta);
wOb =ones(size(w04)) - w04;
fuDO4 = (w04 .* fuDO4) + (wOb .* bandBOO4);
clear w03 wOb

level = 1

bandBG1 = Grad-reduce(bandBGO,W);
clear bandBG0

[bandBDll bandBD12 bandBDl3 bandBDl4] = Orient_Grad-.Pyramid(bandflGl,w,4);

wll =detail-weightings(step,fuDll,bandBDII,Cl,delta);

wlb =ones(size(wll)) - wil;
fu~ll = (wll .* fuDll) + (wlb .* bandBDll);
clear wll wib

w12 =detailwyeightings(step,fuD12,bandBD12,Cl,delta);

wlb =ones(size(wl2)) - w12;
fuD12 = (w12 .* fuDl2) + (wlb .* bandBDl2);
clear w12 wib

w13 =detail-weightings(step,fuDl3,bandHDl3,Cl,delta);

wlb =ones(size(w13)) - w13;
fuD13 = (w13 .* fuDl3) + (wlb .* bandBDl3);
clear w13 wlb

w14 =detailwyeightings(step,fuDl4,bandBDl4,Cl,delta);

wlb =ones(size(wl4)) - w14;
fuD14 = (w14 .* fuDl4) + (wlb .* bandBDl4);
clear w13 wlb
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level = 2

bandBG2 = Grad-reduce(bandBGl,W);
clear bandBGl

[bandBD2l bandBD22 bandBD23 bandBD24] = Orient-Grad-Pyramid(bandBG2,w,4);

w21 detail-weightirigs (step, fuD2l,bandBD2l, C2, delta);
w2b =ones(size(w21)) - w21;
fuD2l = (w21 . fuD2l) + (w2b .*bandBD2l);

clear w21 w2b

w22 =detail-weightings(step,fuD22,bandBD22,C2,delta);

w2b =ones(size(w22)) - w22;
fuD22 = (w22 .* fuD22) + (w2b *~ bandBD22);
clear w22 w2b

w23 =detail-weightings (step, fuD23,bandBD23,C2, delta);
w2b =ones(size(w23)) - w23;
fuD23 = (w23 .* fuD23) + (w2b .* bandBD23);
clear w23 w2b

w24 =detail..weightings (step, fuD24,bandBD24, C2, delta);
w2b =ones(size(w24)) - w24;
fuD24 = (w24 .* fuD24) + (w2b .* bandBD24);
clear w23 w2b

level = 3

bandBG3 = Grad reduce(bandBG2,W);
clear bandBG2

[bandBD3l bandBD32 bandBD33 bandBD34] = Orient Grad-Pyramid(bandBG3,w,4);

w3l detail_weightings (step, fuD3l,bandBD3l, C3, delta);
w3b =ones(size(w31)) - w31;
fuD3l = (w31 .* fuD3l) + (w3b .* bandBD3l);
clear w31 w3b

w32 =detailwyeightings (step, fuD32, bandBD32, C3, delta);
w3b =ones(size(w32)) - w32;
fuD32 = (w32 .* fuD32) + (w3b .* bandBD32);
clear w32 w3b

w33 =detail-weightings (step, fuD33,bandBD33, C3, delta);
w3b =ones(size(w33)) - w33;
fuD33 = (w33 .* fuD33) + (w3b .* bandHD33);
clear w33 w3b

w34 =detail_:weightings (step, fuD34,bandBD34, C3, delta);
w3b = nes(size(w34)) -w34;

fuD34 =Cw34 .~fuD34) + (w3b .~bandBD34);

clear w33 w3b

level = 4

bandBG4 = Grad-reduce(bandBG3,W);
clear bandBG3

[bandBD4l bandBD42 bandBD43 bandBD44] = OrientGrad-Pyramid(bandBG4,w,4);

w41 detail-weightings(step,fuD4l,bandBD4l,C4,delta);
w4b ones(size(w4l)) - w41;
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fuD4l = (w4l .* fuD4l) + (w4b .* bandBD4l);
clear w41 w4b

w42 =detailuweightings(step,fuD42,bandBD42,C4,delta);

w4b =ones(size(w42)) - w42;
fuD42 = (w42 .* fuD42) + (w4b .* bandBD42);
clear w42 w4b

w43 =detail_weightings (step, fuD43,bandBD43, C4, delta);
w4b =ones(size(w43)) - w43;
fuD43 = (w43 .* fuD43) + (w4b .* bandBD43);
clear w43 w4b

w44 =detail-weightings(step,fuD44,bandBD44,C4,delta);

w4b =ones(size(w44)) - w44;
fuD44 = (w44 .* fuD44) + (w4b .* bandBD44);
clear w43 w4b

level = 5

bandeG5 = Grad reduce(bandBG4,W);
clear bandBc4

[bandBD5l bandED52 bandBDS3 bandBDS4] = OrientGrat-Pyramid(bandBGt,w,4);
clear bandBaS

w~l =detail-weightings(step,fuD5l,bandED5l,C5,delta);

w5b =ones(size(w51)) - w~l;
fuD5l = (w51 .* fuD5l) + (w5b .* bandBD5l);
clear w51 w5b

w52 =detail~weightings (step, fuD52,bandBD52,05, delta);
w5b =ones(size(w52)) - w52;
fuD52 = (w52 .* fuD52) + (w5b .* bandBD52);
clear w52 w5b

w53 =detailwyeightings (step, fuD53,bandBDS3,C5, delta);
w5b =ones(size(w53)) - w53;
fuD53 = (w53 .* fuD53) + (w5b .* bandBlD53);
clear w53 w5b

w54 =detail-weightings(step,fuD54,bandBD54,C5,delta);

w5b =ones(size(w54)) - w54;
fuD54 = (w54 .* fuD54) + (w5b .* bandBD54);
clear w53 w5b

% create the Orientation Gradient Pyramid with the 1st orientation filter dl.
% The levels are indexed by bandxij where i is the pyramid level and
% j is the orientation (dl,d2,....dn) (see fig 3 and equation A9).

% create the Orientation Laplacian Pyramid with the 1st orientation filter dl.
% The levels are indexed by bandxij where i is the pyramid level and
% j is the orientation (dl,d2, ... .dn) (see fig 3 and equation A9).

% create the FSD Laplacian Pyramid

% create the RE Laplacian Pyramid

end % end for i
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% Now the reconstruction of the Image begins. Using the results of

% equation (M3) Note: I use the original top level from the Gaussian

% Pyramid to start the reconstruction. i.e. G4 = bandAG4

recreate = 1

[OLD0l OLD02 OLD03 OLDO4] = OLP(fuDOl, fuDO2, fuDO3, fuDO4,4);

clear fuDOl fuDO2 fuDO3 fuDO4

[FSD ) = FSDLP(OLDOl, OLDO2, OLDO3, OLDO4);

clear OLD01 OLD02 OLD03 OLD04

[RELAP ] = RELP(FSD,W);

clear FSD

[OLDll OLD12 OLD13 OLDl4] = OLP(fuDll, fuDl2, fuDl3, fuDl4,4);

clear fuDll fuDl2 fuDl3 fuDl4

[FSDl] = FSDLP(OLDll, OLDl2, OLDl3, OLD14);

clear OLD11 OLD12 OLD13 OLD14

[RELAP1] = RELP(FSD1,W);

clear FSDl

(OLD2l OLD22 OLD23 0LD24] = OLP(fuD2l, fuD22, fuD23, fuD24,4);

clear fuD2l fuD22 fuD23 fuD24

[FSD2] = FSDLP(OLD21, 0LD22, 0LD23, 0LD24);

clear OLD21 OLD22 OLD23 OLD24

[RELAP2] = RELP(FSD2,W);

clear FSD2

[OLD3l OLD32 OLD33 0LD34] = OLP(fuD3l, fuD32, fuD33, fuD34,4);

clear fuD3l fuD32 fuD33 fuD34

[FSD3] = FSDLP(0LD31, 0LD32, 0LD33, 0LD34);

clear OLD31 OLD32 OLD33 OLD34

[RELAP3] = RELP(FSD3,W);

clear FSD3

[OLD4l OLD42 OLD43 0LD44] = OLP(fuD4l, fuD42, fuD43, fuD44,4);

clear fuD4l fuD42 fuD43 fuD44

[FSD4 ] = FSDLP(OLD4l, 0LD42, 0LD43, 0LD44);

clear OLD41 OLD42 OLD43 OLD44

[RELAP4 ] = RELP(FSD4,W);

clear FSD4

[OLD5l OLD52 OLD53 0LD54] = OLP(fuD5l, fuD52, fuD53, fuD54,4);

clear fuD5l fuD52 fuD53 fuD54

[FSD5 ] FSDLP(0LD51, 0LD52, OLD53, OLD54);

clear OLD51 OLD52 OLD53 OLD54

[RELAP5 ] = RELP(FSD5,W);

clear FSD5
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G5 = RELAP5 + Gaussexpand(G6,W);
clear RELAP5 G6

G4 = RELAP4 + Gauss expand(G5,W);

clear RELAP4 G5

G3 = RELAP3 + Gauss-expand(G4,W);
clear RELAP3 G4

G2 = RELAP2 + Gaussexpand(G3,W);
clear RELAP2 G3

G1 = RELAPI + Gaussexpand(G2,W);
clear RELAPI G2

GO = RELAP + Gaussexpand(Gl,W);
clear RELAP Gl

GO = clean512(GO);

return

F5 Image Fusion of SAR Test images

% This program is used to tell the fuse program what set of images to fuse. It calls the fuse program
% that is designed to fuse SAR images.

bands = ['kml5hhl'; 'kml5hvl'; 'kml5vvl'];

GO = wfuse_sar(8,bands, 0.05);

save fused-sarml5 GO

quit

F.6 Image Fusion Algorithm For SAR Imagery

%INPUTS:
% step: The step size that the 40x4O window will be shifted.
% bands: vector containing the sarfiles to be fused%
%OUTPUTS: cleaned up version of the fused sar image.

% This algorithm performs a six layer decomposition fusion of the input data.
% The fusion weights are determined by a weighting metric that is based upon the contrast
% sensitivity response of the analyst.. The weights are derived from the weights.m file, which uses
% the Peter Burt, wavelet filters and the Contrast sensitivity numbers. The file weightings.m
% computes the desired fusion weights for the details. This program is specifically designed to
% fuse the SAR images used in this thesis. %

function GO = wfuse-sar(step, bands, delta);
weights

[loop X] = size(bands);

imagea = bands(l,:);
eval(['bandAG0 = getim.sar(' ' imagea ' I

[fuDOl fuD02 fuD03 fuD04] = OrientGradPyramid(bandAGO,w,4);
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bandAGi = Grad..reduce(bandAGO,W);
clear bandAGO
[fuDIl fuDl2 fuDl3 fuDl4] = OrientGrad-Pyramid(bandAGl,w,4);
bandAG2 =Grad..reduce(bandAGl,W);
clear bandAGI
[fuD2l fuD22 fuD23 fuD24) = Orient_Grad-Pyramid(bandAG2,w,4);

bandAG3 = Grad-reduce(bandAG2,W);
clear bandAG2
[fuD3l fuD32 fuD33 fuD34] = OrientGrad-Pyramid(bandAG3,w,4);
bandAG4 = Grad-reduce(bandAG3,W);
clear bandAG3
[fuD4l fuD42 fuD43 fuD44] = Orient Grad Pyrarnid(bandAG4,w,4);
bandAG5 = Grad-reduce(bandAG4,W);
clear bandAG4
[fuD5l fuD52 fuD53 fuD54] = OrientGrad-Pyramid(bandAG5,w,4);
G6 = Grad-reduce(bandAG5,W);
clear bandAG5

for i = 
2:loop,

imageb = bands (i,:)
eval(['bandBGO =getim-sar(' ' imageb'
band = bands (i, :)%This is just for output messages to the logfile

level = 0

[bandBDOl bandBDO2 bandBDO3 bandBDO4] = Orient__Grad-Pyramid(bandBG0,w,4);

wOl =detail-weightinga (step, fuDOl,bandBDOl, CO, delta);
wOb =ones(aize(wOl)) - wOl;
fuDOl = (wOl .* fuD0l) + (wOb .* bandBDOI);
clear wOl wOb

w02 =detail_weightings (step, fuDO2,bandBDO2, CO, delta);
wOb =ones(size(w02)) - w02;
fuDO2 = (w02 .* fuDO2) + (wOb .* bandBDO2);
clear w02 wOb

w03 =detail-weightings(step,fuDO3,bandBDO3,CO,delta);

wOb =ones(size(w03)) - w03;
fuDO3 = (w03 .* fuDO3) + (wOb .* bandBDO3);
clear w03 wOb

w04 =detail__yeightings (step, fuDO4,bandBDO4,CO, delta);
wOb =ones(size(w04)) - w04;
fuD04 = (w04 .* fuDO4) + (wOb .* bandBDO4);
clear w03 wOb

level = I

bandBGl = Grad-reduce(bandBGO,W);
clear bandBG0

[bandBDll bandBDl2 bandBDl3 bandBDl4] = Orient__Grad-Pyramid(bandBG1,w,4);

wll detail_ýweightinga(atep,fuDll,bandBDll,Cl,delta);
wlb =ones(size(wll)) - wll;
fuDll = (wll .* fu~ll) + (wlb .* bandBDll);
clear wll wlb

w12 = detailwyeightings(step,fuDl2,bandBDl2,Cl,delta);
wlb = ones(size(w12)) - w12;
fuD12 = (w12 .* fuDl2) + (wlb .* bandBDl2);

F- 12



clear w12 wib

w13 =detail-weightings(step,fuDl3,bandBDl3,Cl,delta);

wib =ones(size(w13)) - w13;
fuDl3 = (w13 .* fuDl3) + (wib .* bandBDl3);
clear w13 wib

w14 =detail-weightings(step,fuDl4,bandBDl4,Cl,delta);

wlb =ones(size(w14)) - w14;
fuDl4 = (w14 .'* fuDl4) + (wib .* bandBDl4);
clear w13 wib

level = 2

bandBG2 = Grad-reduce(bandBGl,W);
clear bandBGl

[bandBD2l bandBD22 bandBD23 bandBD24] = Orient-Grad-Pyramid(bandBG2,w,4);

w2l = detail-weightings(step,fuD2l,bandBD2l,C2,delta);
w2b = ones(size(w2l)) - w2l;
fuD21 = (w2l .* fuD21) + (w2b .* bandBD2l);
clear w21 w2b

w22 = detail-weightings (step, fuD22,bandBD22, C2, delta);
w2b = ones(size(w22)) - w22;
fuD22 = (w22 .* fuD22) + (w2b .* bandBD22);
clear w22 w2b

w23 =detail-weightings (step, fuD23, bandBD23, C2, delta);
w2b =ones(size(w23)) - w23;
fuD23 = (w23 .* fuD23) + (w2b .* bandBD23);
clear w23 w2b

w24 =detail..weightings (step, fuD24,bandBD24, C2, delta);
w2b =ones(size(w24)) - w24;
fuD24 = (w24 .* fuD24) + (w2b .* bandBD24);
clear w23 w2b

level = 3

bandBG3 = Grad~reduce(bandBG2,W);
clear bandBG2

[bandBD3l bandBD32 bandBD33 bandBD34] = OrientGrad Pyrarnid(bandBG3,w,4);

w3l detail..weightings (step, fuD3l,bandBD3l,C3, delta);
w3b =ones(size(w3l)) - w3l;
fuD3l = (w31 .* fuD3l) + (w3b .* bandBD3l);
clear w31 w3b

w32 =detail-weightings (step, fuD32,bandHD32,C3, delta);
w3b =ones(size(w32)) - w32;
fuD32 = (w32 .* fuD32) + (w3b .* bandBD32);
clear w32 w3b

w33 =detailwyeightings (step, fuD33,bandBD33,C3, delta);
w3b =ones(size(w33)) - w33;
fuD33 = (w33 .* fuD33) + (w3b .* bandBD33);
clear w33 w3b

w34 =detailyweightings (step, fuD34,bandBD34, C3, delta);
w3b =ones(size(w34)) - w34;
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fuD34 = (w34 .* fuD34) + (w3b .* bandHD34);
clear w33 w3b

level = 4

bandBG4 = Grad-reduce(bandBG3,W);
clear bandflG3

[bandBD4l bandBD42 bandBD43 bandBD44] = OrientGrad-Pyramid~bandBG4,w,4);

w41 detail-weightings(step,fuO4l,bandBD4l,C4,delta);
w4b =ones(size(w41)) - w41;
fuD4l = (w4l .* fuD4l) + Cw4b .* bandBD4l);
clear w41 w4b

w42 =detail-weightingscstep,fuD42,bandBD42,C4,delta);

w4b =ones(size(w42)) - w42;
fuD42 = (w42 .* fuD42) + (w4b .* bandED42);
clear w42 w4b

w43 =detail-weightings(step,fuD43,bandHD43,C4,delta);

w4b =ones(size(w43)) - w43;
fuD43 = (w43 .* fuD43) + (w4b .* bandBD43);
clear w43 w4b

w44 =detail~weightings (step, fuD44,bandBD44,C4, delta);
w4b =ones(size(w44)) - w44;
fuD44 = (w44 .* fuD44) + (w4b .* bandBD44);
clear w43 w4b

level = 5

bandBG5 = Grad-reduce(bandBG4,W);
clear bandBG4

[bandBD5l bandBD52 bandBDS3 bandBDS4] = OrientGrat-Pyramid(bandBG5,w,4);
clear bandBG5

w51 detail-weightings(step,fuD5l,bandBD5l,C5,delta);
w5b =ones(size(w51)) - w51;
fuD51 = (w51 .* fuO5l) + (w5b .* bandBD5l);
clear w51 w5b

w52 =detail-weightings (step, fuD52, bandBDS2, C5, delta);
w5b =ones(size(w52)) - w52;
fuD52 = (w52 .* fu052) + (w5b .* bandBDS2);
clear w52 w5b

w53 =detail-weightings(step,fuD53,bandBD53,05,delta);

w5b =ones(size(w53)) - w53;
fu053 = (w53 .* fuD53) + (w5b .* bandBOS3);
clear w53 w5b

w54 =detail._weightings (step, fu054,bandBD54,C5, delta);
w5b =ones(size(w54)) - w54;
fuD54 = (w54 .* fuDS4) + (w5b .* bandBDS4);
clear w53 w5b

% create the Orientation Gradient Pyramid with the 1st orientation filter dl.
% The levels are indexed by bandxij where i is the pyramid level and
% j is the orientation (dl,d2, ... .dn) (see fig 3 and equation A9).

% create the Orientation Laplacian Pyramid with the 1st orientation filter dl.
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% The levels are indexed by bandxij where i is the pyramid level and

% j is the orientation (dl,d2,... dn) (see fig 3 and equation A9).

% create the FSD Laplacian Pyramid

% create the RE Laplacian Pyramid

end % end for i

% Now the reconstruction of the Image begins. Using the results of

% equation (A3) Note: I use the original top level from the Gaussian

% Pyramid to start the reconstruction, i.e. G4 = bandAG4

recreate = 1

[OLD01 OLD02 OLD03 OLD04] = OLP(fuDO1, fuD02, fuD03, fuD04,4);

clear fuDO1 fuD02 fuD03 fuD04

[FSD I = FSDLP(OLD01, OLD02, OLD03, OLD04);

clear OLDOl OLD02 OLD03 OLD04

[RELAP ] = RELP(FSD,W);
clear FSD

[OLD11 OLD12 OLD13 OLD14] = OLP(fuDll, fuDl2, fuDl3, fuDl4,4);

clear fuDll fuDl2 fuDl3 fuDl4

[FSDI] = FSDLP(OLDll, OLD12, OLD13, OLD14);

clear OLD11 OLD12 OLD13 OLD14

[RELAP1] = RELP(FSDI,W);

clear FSDl

[OLD21 OLD22 OLD23 OLD24] = OLP(fuD21, fuD22, fuD23, fuD24,4);

clear fuD21 fuD22 fuD23 fuD24

[FSD2] = FSDLP(OLD21, OLD22, OLD23, OLD24);

clear OLD21 OLD22 OLD23 OLD24

[RELAP2] = RELP(FSD2,W);
clear FSD2

[OLD31 OLD32 OLD33 OLD34] = OLP(fuD31, fuD32, fuD33, fuD34,4);

clear fuD31 fuD32 fuD33 fuD34

[FSD3] = FSDLP(OLD31, OLD32, OLD33, OLD34);
clear OLD31 OLD32 OLD33 OLD34

[RELAP3] = RELP(FSD3,W);

clear FSD3

[OLD41 OLD42 OLD43 OLD44] = OLP(fuD41, fuD42, fuD43, fuD44,4);

clear fuD41 fuD42 fuD43 fuD44

[FSD4 ] = FSDLP(OLD41, OLD42, OLD43, OLD44);

clear OLD41 OLD42 OLD43 OLD44

[RELAP4 ] = RELP(FSD4,W);
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clear FSD4

[OLD51 OLD52 OLD53 OLD54] = OLP(fuD51, fuD52, fuD53, fuD54,4);

clear fuD51 fuD52 fuD53 fuD54

[FSD5 ] = FSDLP(OLD51, OLD52, OLD53, OLD54);
clear OLD51 OLD52 OLD53 OLD54

[RELAP5 I = RELP(FSD5,W);
clear FSD5

G5 = RELAP5 + Gauss-expand(G6,W);
clear RELAP5 G6

G4 = RELAP4 + Gauss-expand(G5,W);
clear RELAP4 G5

G3 = RELAP3 + Gaussexpand(G4,W);
clear RELAP3 G4

G2 = RELAP2 + Gauss-expand(G3,W);
clear RELAP2 G3

Gl = RELAP1 + Gaussexpand(G2,W);
clear RELAPI G2

GO = RELAP + Gauss expand(Gl,W);
clear RELAP G1

GO = cleansar(GO);
return

F.7 Image Fusion Subroutines

F.7.1 Reduction Algorithm.

% This fuction takes in a layer from a gaussian pyramid and produces the
% output layer. It takes the input layer and convolves it with the weight
% matrix in weights, which is a gaussian type gradient fuction, and then
% downsamples by a factor of 2.

function reduce = Grad_reduce(IMAGE,FIVECONVOLVEFUNCTION)
templ = pad(IMAGE,FIVECONVOLVEFUNCTION);
temp2 = conv2(templ,FIVECONVOLVEFUNCTION, 'valid');
clear templ

[Y X1 = size(temp2);
reduce = temp2((l:2:Y),(l:2:X));

return

F.7.2 Oriented Gradient Pyramid Algorithm.

% This fuction takes in a layer from a gaussian pyramid and produces the
% orientation gradient pyramid. It takes the input layer and convolves
% it with the kernels specified by dl-dn, where the letter 1 tells how many
% kernel will be used. Each kernel represent a type of filter or wavelet.
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function [Dl, D2, D3, D4] = OrientGrad_Pyramid(IMAGE,THREECONVOLVEFUNCTION,l)

dl = [1 -1];

d2 = 1/(sqrt(2)) * [0 -1;
1 0];

d3 = [-l;
1];

d4 = 1/(sqrt(2)) *[-l 0;
0 1];

templ = pad(IMAGE,THREECONVOLVEFUNCTION);
temp2 = conv2(templ,THREECONVOLVEFUNCTION,'valid');
clear templ
TEMP = temp2 + IMAGE;
clear temp2

for i = 1:1

if i == 1

templ = pad(TEMP,dl);
Dl = conv2(templ,dl,'valid');

elseif i == 2
templ = pad(TEMP,d2);
D2 = conv2(templ,d2,'valid');

elseif i == 3
templ = pad(TEMP,d3);
D3 = conv2(templ,d3,'valid');

else
templ = pad(TEMP,d4);
D4 = conv2(templ,d4,'valid');

end %end if
end %end for

clear dl d2 d3 d4 TEMP

return

F.7.3 Oriented Laplacian Pyramid Algorithm.

% This fuction takes in a layer from an oriented gradient pyramid and converts
% it to a second derivative pyramid (or oriented Laplacian Pyramid). It takes
% the input layer and convolves it with the kernels specified by dl-dn, where
% the letter 1 tells how many kernels will be used. Each kernel represent a
% type of filter or wavelet. They may or may not be the valid ones used in
% creating the Oriented Gradient Pyramid.

function [Dl, D2, D3, D4] = OLP(W, X, Y, Z ,l)

dl = [1 -1];
d2 = i/(sqrt(2)) * [0 -1;

1 0];
d3 = [-I;

1];
d4 = i/(sqrt(2)) *[-l 0;

0 1];

for i = 1:1

if i == 1
W = pad2(W,dl);
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D1 = conv2(W,((-1/8)*dl),'valid');

elseif i == 2

X = pad2(X,d2);
D2 = conv2(X,((-l/8)*d2),'valid');

elseif i == 3

Y = pad2(Y,d3);

D3 = conv2(Y,((-l/8)*d3),'valid');

else
Z = pad2(Z,d4);
D4 = conv2(Z,((-l/8)*d4),'valid');

end %end if
end %end for

clear dl d2 d3 d4

return

F.7.4 FSD Laplacian Pyramid Algorithm.

% This fuction takes in a layer from an oriented Laplacian pyramid and converts
% it to an FSD Laplacian Pyramid. It takes the input layer and sums over all
% of the orientations.

function [FSD] = FSDLP(D1, D2, D3, D4)

FSD = Dl + D2 + D3 + D4;

return

F.7.5 RE Laplacian Pyramid Algorithm.

% This fuction takes in a layer from an FSD Laplacian pyramid and converts
% it to an RE Laplacian Pyramid. It takes the input layer and convolves it
% with the weight matrix (1 + W) where W is the original 5 x 5 Gaussian
% filter used to generate the Gaussian pyramid.

function [RELAP] = RELP(FSD,W)
[A B] = size(W);

C = zeros(A,B);
C(3,3) = 1;
CON1 = C + W;

temp = pad(FSD,CONI);
RELAP = conv2(temp,CONl,'valid');

return

F.7.6 Expand Algorithm.

% This function takes an input image (IMAGE) and an extrapolating kernel (W) and doubles the size
% of the input image. The doubling is performed by first adding zeros to every other row and
% column and then convolving with the extrapolating kernel to fill in the zeros. In most cases the
% kernel (W) was a Gaussian type of filter.

function EXP = Gauss-expand(IMAGE,W)

[Y,X] = size(IMAGE);
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wider = zeros(Y,2*X);
wider(: 1:2:2*X) = IMAGE;
taller = zeros(2*Y,2*X);

taller(l:2:2*Y,:) = wider;
%fiuffedandpadded = pad(tallerW);
%upsampled = conv2 (fluffedandpaddedW, 'valid');

W2 = 4*W;
temp = pad(tallerW2);
EXP = (conv2(tempW2,'valid'));

return

F.7.7 Contrast Sensitivity Weight Matrix (C) Generation Code.

% This function creates the appropriately scaled C matrix to use at each level of image analysis.

tempCO = zeros(64,64);
tempCO(l:21,l:21) C;

tempCOifft = ifft2(tempCO);
tempClifft = Gradreduce(tempCOifftW);
tempC2ifft = Grad reduce(tempClifftW);
tempC3ifft = Gradreduce(tempC2ifftW);
tempC4ifft = Gradreduce(tempC3ifftW);
tempC5if ft = Grad reduce(tempC4ifftW);

tempCl = abs(fft2(tempClifft));
tempC2 = abs(fft2(tempC2ifft));
tempC3 abs(fft2(tempC3ifft));
tempC4 = abs(fft2(tempC4ifft));
tempC5 = abs(fft2(tempC5ifft));

CO = tempCO(l:21,l:21);
Cl = tempClCl:2ll:21);

C2 = zerosC2l,21);
[Y X] = size(tempC2);
C2(l:Yl:X) = tempC2;

C3 = zeros(21,2l);
[Y X] = size(tempC3);
C3(l:Yl:X) = tempC3;

C4 = zeros(21,21);
[Y X] = size(tempC4);
C4(l:Yl:X) = tempC4;

C5 = zeros(21,21);
[Y Xl = size(tempC5);
C5(l:Yl:X) = tempC5;

clear C Y X
clear tempCOifft tempClifft tempC2ifft tempC3ifft tempC4ifft tempC5ifft
clear tempCO tempCl tempC2 tempC3 tempC4 tempC5

if (0 > 1)

figure
mesh(CO)
figure
mesh(Cl)
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figure
mesh(C2)
figure
mesh(C3)
figure
mesh(C4)
figure
mesh(C5)

end %end if

F.7.8 Weight Matrix Generation Code.

% This is the weight matrix referred to in Burt's paper on image fusion.
% it is from the appendix A, pg 182. It will be used to generate the
% Gaussian Gradient Pyramid.

w = 1/16 * [1 2 1;
2 4 2;
1 2 1;];

% W = w*w (w convolved with w)

W = 1/256 * [ 1 4 6 4 1;
4 16 24 16 4;
6 24 36 24 6;
4 16 24 16 4;
1 4 6 4 1];

dl = [1 -1];
d2 = 1/(sqrt(2)) * [0 -1;

1 0];
d3 = [-1;

1];
d4 = 1/(sqrt(2)) *[-i 0;

0 1];
X [0 140 180 220 250 249 248 247 246 220 195 185 170 160 150 145 140 130 120 110 100];

C = zeros(21,21);

for m = 1:21
for n = 1:21

C(m,n) = sqrt((X(m)^2) + (X(n)^2));

end %end for m

end %end for n

wpad = zeros(64,64);
wpad(1:3,1:3) = w;

paddl = zeros(64,64);
paddl(l,1:2) = dl;

padd2 = zeros(64,64);
padd2(1:2,1:2) = d2;

padd3 = zeros(64,64);
padd3(l:2,1) = d3;
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padd4 = zeros(64,64);
padd4(l:2,l:2) = d4;

fftwpad =fft2(wpad);
fftpaddl =fft2(paddl);
fftpadd2 =fft2(padd2);
fftpadd3 fft2(padd3);
fftpadd4 =fft2(padd4);

magfftpaddlw = aba(fftpaddl + fftpaddl.*fftwpad);
magfftpadd2w = abs(fftpadd2 + fftpadd2.*fftwpad);
magfftpadd3w = abs~fftpadd3 + fftpadd3.*fftwpad);
magfftpadd4w = abs(fftpadd4 + fftpadd4.*fftwpad);

Dl = magfftpaddlw(2:21,2:21);
D2 = magfftpadd2w(2:21,2:21);
D3 = magfftpadd3w(2:21,2:21);
D4 = magfftpadd4w(2:21,2:21);

createC

clear magfftpaddlw magfftpadd2w magfftpadd3w magfftpadd4w
clear fftwpad fftpaddl fftpadd2 fftpadd3 fftpadd4
clear dl d2 d3 N4 X ans paddi padd2 padd3 padd4 wpad m n

return

F.7.9 Weighting Matrix Generation Code For the Detail Weightings.

% INPUTS:
% Dl, D2: detail matrix from the oriented gradient pyramid 1 and 2
% C: contrast sensitivity matrix correaponding to the gradient level
% OUTPUT:
% w: weight matrix

% This function analyzes a set of details from two different orientation gradient pyramids to
% determine the weights that should be used to fuse them.

function wl = detail-weightings (step, Dl,D2, C, delta)

zeroprotection = .000000001;

[Y X] = size(Dl);

Dlnorm = zeros(Y+40,X+40);
Dlnorm(l:Y,l:X) = Dl;
clear Dl

D2norm. = zeros(Y+40,X+40);
D2norm(l:Y,l:X) = D2;
clear D2

wl = zeros(Y,X);

templ = zeros(64,64);
temp2 = zeros(64,64);

ycount = 0;
xcount = 0;
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for i = 1:step:Y-step,
ycount = ycount + 1

for j = 1:step:X-step,
xcount = xcount + 1;

templ(1:40,1:40) = Dlnormn(i:i+39,j:j+39);
teinp2(1:40,1:40) = D2normn(i:i+39,j :j+39);

fftternpl = abs(fft2(templ));
aol = ffttempl(1:21,1:21);
ennormalaci = acl./(sgrt(sum(sum(acl.^2))) + zeroprotection);

ffttemp2 = abs~fft2(temp2));
ac2 = ffttemp2Cl:21,1:21);
ennormalac2 = ac1./(sqrt(sum(sum(acl.^2))) + zeroprotection);

conweightedenl = sum(sum(C.*ennormalacl)) + zeroprotection;
conweighteden2 = sum(sum(C,*ennormalac2)) + zeroprotection;

conweighteddiff = conweightedeni - conweighteden2;

numdiff =abs(conweighteddiff);

denomsum =conweightedeni + conweighteden2 + zeroprotection;

percentdiff = numdiff/denomsum;

if (percentdiff > delta) & (conweighteddiff > 0)
wl(i:i+(step-l),j:j+(step-l)) = onesa(step, step);

elseif (percentdiff < delta) & (conweighteddiff >= 0)
wl(i:i+(step-l),j:j+(step-l)) = (1 - (conweighteden2/conweightedenl * 0. 5) )*ones (step, step);

elseif (percentdiffl < delta) & (conweighteddiff < 0)
wl~i:i+(step-l),j:j+(step-l)) = (1 - (conweightedenl/conweighteden2 * 0. 5) )*ones (step, step);

end %if

end %for j
xcount = 0;

end % for i

return
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