
M

THE RE-ENGINEERING OF THE AIR FORCE
INSTITUTEOF TECHNOLOGY

STUDENT INFORMATION SYSTEM

THESIS

Douglas James Wu. Captain, USAF

AFIT/GCS/ENG/94D-27
CO

ro

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
d-O1

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/94D-27

,V.r i
THE RE-ENGINEERING OF THE AIR FORCE

INSTITUTEOF TECHNOLOGY
STUDENT INFORMATION SYSTEM

! DTiC IAH n THESIS
! Ui

I Ju Douglas James Wu, Captain, USAF

AFIT/GCS/ENG/94D-27

\M ■^■j'iiiiD a

Approved for public release; distribution unlimited

AFIT/GCS/ENG/94D-27

THE RE-ENGINEERING OF THE AIR FORCE INSTITUTE OF TECHNOLOGY
STUDENT INFORMATION SYSTEM

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Masters of Science in Computer Science

Douglas! Wu,B.S.

Captain, USAF

DECEMBER, 1994

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the United States Government.

ACKNOWLEDGMENTS

I would like to thank my advisor, Lieutenant Colonel Patricia Lawlis, for her

guidance and assistance during this research effort. I also wish to thank my readers,

Lieutenant Colonel Mark Roth and Doctor Eugene Santos.

Additional thanks to my soul mate and ray of sunshine, Priscilla, for her support

and understanding.

Douglas J. Wu

in

Table of Contents

Page

Acknowledgements iii

List of Figures vi

List of Tables ix

Abstract x

I. Introduction 1-1
Background 1-1
Problem 1-2
Hypothesis 1-2
Research Objectives 1-2
Assumptions 1-2
Sequence of Presentation 1-3

II. Summary of Current Knowledge 2-1
Topic Statement and Key Terms 2-1
Treatment and Organization 2-1
Discussion of the Literature 2-2

Object-Oriented Methodology 2-2
Relational Databases 2-3
Object-Oriented Databases 2-5
OODBMS versus RDBMS 2-6

Conclusion 2-9

III. Analysis and Design 3-1
Introduction 3-1
Analysis 3-2

Problem Statement 3-3
Object Model 3-4

Identify Object Classes 3-4
Identify Associations 3-6
Identify Attributes 3-7
Access Paths for Likely Queries 3-10
Refine Object Model 3-11

Dynamic Model 3-11
Scenarios 3-11

iv

Events Between Objects 3-13
Event Flow Diagrams 3-14
State Diagrams 3-15
Verify Consistency 3-19

Functional Model 3-19
Input and Output Variables 3-20
Data Flow Diagrams (DFD) 3-20
Constraints 3-22
Optimization Criteria 3-22

Final Analysis 3-23
Add Functional Model Operations 3-23
Compare Models with Problem Statement 3-23
Develop More Detailed Scenarios 3-24

System Design 3-24
Object Model Mapped to Database 3-25

Mapping Object Classes 3-27
Mapping Ternary Associations 3-29
Mapping associations with link attributes 3-36

Summary ...3-37

IV Implementation Issues 4-1
Introduction 4-1

Student Class Schedule 4-1
SQL versus OQL Comparison 4-3

Class Roster 4-8
SQL versus OQL 4-10

Summary 4-11

V. Summary and Conclusions 5-1
Summary 5-1
Conclusions 5-3
Future Plans for AFITSIS 5-4

Appendix A - AFITSIS Design A-l

Appendix B - Relational Tables B-l

Appendix C - List of Abbreviations C-l

Bibliography

Vita

List of Figures

Figure Page

3.1 Overview of the analysis process 3-1

3.2 Student Tracking and Registration System Problem Statement 3-3

3.3 Candidate object classes 3-4

3.4 Current Object Classes 3-6

3.5 Candidate Associations 3-7

3.6 Relational table for Person 3-8

3.7 One-to-many Association 3-8

3.8 Ternary Association 3-8

3.9 Inheritance 3-9

3.10 Multiple inheritance 3-9

3.11 Association with link attribute 3-10

3.12 Aggregation 3-10

3.13 Faculty User Scenario 3-12

3.14 Administrative User Scenario 3-12

3.15 Event trace for faculty user scenario 3-13

3.16 Event trace for administrative user scenario 3-14

3.17 Event flow diagram for scenarios 3-14

3.18 Application state diagram 3-15

3.19 Substates ofInJJse state 3-16

3.20 Present Options Menu state as dependent state 3-17

3.21 Partial substates for Process Selection state 3-17

3.22 Input and output values for application 3-20
vi

3.23 STARS Application Level 0 DFD 3-21

3.24 Perform Action Level 1 DFD 3-21

3.25 Validate User Login Level 2 DFD 3-21

3.26 Function description for Validate User Login process 3-22

3.27 Comparison of Database Management System Architectures 3-26

3.28 Mapping object class to relational database 3-28

3.29 Mapping object class to object-oriented database 3-29

3.30 Mapping ternary association to relational database 3-30

3.31 Ternary association with binary relationships 3-31

3.32 ODL for ternary association modeled with binary relationships 3-32

3.33 Abstracting the ternary relationship as an object 3-33

3.34 ODL for abstract ternary relationship 3-33

3.35 Mapping ternary association to object-oriented database 3-35

3.36 Mapping association with link attribute to object database 3-37

4.1 Student class schedule 4-2

4.2 Student class schedule object model 4-2

4.3 Class roster 4-9

4.4 Class Roster Object Model 4-9

A.1 School Object Diagram A-2

A.2 Person Object Diagram A-3

A.3 Multiple Inheritance Person Object Diagram A-4

A.4 Course Object Diagram A-5

A.5 Student user scenario A-5

A.6 Event trace for student user scenario A-6

A.7 Application event flow diagram A-6

vii

A.8 Application state diagram A-7

A.9 Substates of In_Use state A-7

A. 10 Possible generalization of Present Options Menu State A-7

A.ll Partial substates of Process Selection state A-8

A. 12 Process Selection state A-8

A.13 State diagram for Database System A-10

A.14 STARS Application Level 0 DFD A-10

A.15 Perform Action Level 1 DFD A-10

A.16 Offer Menu Options Level 2 DFD A-ll

A.17 Handle Selection Level 2 DFD A-ll

A.18 Do Event Level 3 DFD A-12

A.19 Create Level 4 DFD A-12

A.20 Modify Level 4 DFD A-13

A.21 Save Level 5 DFD A-13

A22 Display Level 4 DFD A-13

A23 Print Level 4 DFD A-14

A24 Delete Level 4 DFD A-14

A.25 Mapping association to relational database A-15

A26 Mapping association to object-oriented database A-16

A.27 Student Class Schedule Object Model A-17

A28 Class Roster Object Model A-24

A.29 Assign Student Academic Advisor Object Model A-30

A30 AFIT Course Catalog Object Model A-34

A.31 Student Transcript Object Model A-35

viu

List of Tables

Table Page

3.1 Partial state transition table for Application 3-19

A.l State transition table for Application A-9

A.2 State transition table for Database System A-10

IX

AFIT/GCS/ENG/94D-27

Abstract

This research describes the design and implementation issues associated with re-

engineering the Air Force Institute of Technology Student Information System

(AFITSIS). Currently, AFITSIS executes on aging relational database technology and has

unfriendly user interface mechanisms. The two research objectives met were to research

current AFITSIS requirements, design, and implementation, and use object-orient methods

to design an alternative implementation based on proposed object database management

system standards. This research explores how AFITSIS performance and capabilities

might be enhanced by taking advantage of new object-oriented software engineering

techniques. One of the primary benefits of this research is a detailed object modeling

technique analysis and design that may be used as a foundation for upgrading the current

AFITSIS.

THE RE-ENGINEERING OF THE AIR FORCE INSTITUTE OF
TECHNOLOGY STUDENT INFORMATION SYSTEM

I. Introduction

Many information systems suffer from old technology which no longer adequately meets

the needs of the users. The Air Force Institute of Technology Student Information System

(AFITSIS) is such a system. This research explored how AFITSIS's performance and capabilities

might be enhanced by taking advantage of new object-oriented software engineering techniques.

Background. In 1987 the Air Force Institute of Technology (AFIT) contracted Systems

Research Laboratories, Inc. to develop an automated system, called the Student Tracking and

Registration System (STARS), for scheduling courses, registering students for courses, tracking

students' academic histories, and generating related reports. The STARS application uses the

Structured Query Language (SQL) to access an Oracle Relational Database Management System

(RDBMS) [21:1].

In the seven years since the initial STARS development three other applications have been

developed (and others continue to be developed) sharing tables with relevant attributes within the

RDBMS [11]. This group of applications is referred to as AFITSIS and is accessible to any user

with a designated Username and Password through the AFITNET communications network [6].

In addition to the AFITSIS applications there are a number of other applications that share

student-related information from the Oracle RDBMS. The 8-member AFIT/SCV organization is

responsible for providing maintenance and upgrades to all applications as requested by users from

all administrative offices as well as from faculty and staff of AFIT's schools [11]. Planned

expansion of AFIT's educational boundaries for the Dayton Area Graduate Studies Institute

(DAGSI), to include Wright State University and the University of Dayton graduate students, will

no doubt increase the requirements of the current DBMS.

1-1

Problem. AFITSIS is currently designed and implemented upon aging relational

database technology and unfriendly user interface mechanisms.

Hypothesis. AFITSIS capabilities and performance can be substantially improved by:

(1) redesigning the system using an object-oriented design methodology, (2) converting from the

relational database management system to a new object-oriented database management system,

and (3) implementing a user interface in a Windows environment. These steps will not only

provide a basis for an improved system now, it will also aid software maintainers faced with

adding capabilities in the future.

Research Objectives. In order to address the problem stated above and establish the

validity of the above hypothesis, the following research objectives were established:

1. Research current AFITSIS requirements, design, and implementation. Document

current system performance benchmarks and maintainability metrics for comparison with a

prototype system.

2. Use object-oriented methods to design and implement an object-oriented database

management system (OODBMS) prototype system. Use current requirements as stated by

AFIT/SC and STARS users (performance and user interface requirements). Create the design

structure with possible upgrades in mind.

3. Test OODBMS prototype against current requirements. Compare performance

benchmarks and maintainability predictions with current RDBMS.

In the end, a working prototype proved impractical to develop as a part of this thesis.

However, this thesis development produced detailed design information adequate for a

straightforward prototype development.

Assumptions. The following assumptions were made during the thesis effort:

1. Access to AFITSIS database and query information is available.

2. Access to an OODBMS is available for use with the prototype to be developed.

1-2

3. The OODBMS will work with a Windows-based prototype.

Assumption two proved to be only partly true. Ongoing commercial development should

soon result in an ODBMS adequate for prototyping. However, the currently available ODBMSs

still do not support the interface standard required to support implementation of a useful

prototype.

Sequence of Presentation. The thesis is divided into five chapters. Chapter I,

Introduction, has provided an overview of the work. Chapter II, Summary of Current

Knowledge, discusses the background information which provides the foundation for this thesis

research. Chapter III, Analysis and Design, expands in detail the analysis performed by designing

an Object Modeling Technique (OMT) model for this research. Chapter IV, Implementation

Issues, discusses important issues relating to the implementation of a subset of the object classes

contained in STARS. Lastly, Chapter V, Summary and Conclusions, summarizes the results of

the research, draws conclusions from the summary, and makes recommendations for future

research in this area.

1-3

II. Summary of Current Knowledge

Topic Statement and Key Terms. This literature review provides the

foundation on which to begin the re-engineering and improvement of AFITSIS. AFITSIS

is a software database application used by AFIT (orderly room, faculty, administration,

etc.) to query, archive, and output data on past and present students, faculty,

administration personnel, curriculum, schedules, and assignments [21:1]. The four

applications forming AFITSIS are STARS, QUEST, CCQ, and ISA. Their functions are

described briefly below [6]:

STARS maintains AFIT student information from admittance to graduation.

QUEST, QUota Education and Selection Transactions, tracks information

related to students' selection for AFIT or Civilian Institution program, and

associated Air University quotas.

CCQ, maintains orderly room applicable information, such as box numbers,

locker numbers, sections leaders, security access badges, building access cards,

weigh-in, aerobic data, weight management program statistics, emergency locator

information, and other current student information.

ISA, International Student Affairs, maintains information on international

students attending AFIT, such as family, funding, sponsor, and program data.

Treatment and Organization. The Discussion of the Literature section is

divided into four subsections labeled Object-Oriented Methodology, Relational Databases,

Object-Oriented Databases, and OODBMS versus RDBMS. The Object-Oriented

Methodology subsection describes the stages used by the developer to analyze a problem,

design a system, and implement the system into a usable product. The Relational

Database subsection is required to understand how current relational systems operate, so

AFITSIS capabilities may be provided for in an object-oriented system. The Object-

2-1

Oriented Database subsection discusses engineering features important to developers and

the system functions required by the end users. Lastly, the OODBMS versus RDBMS

subsection outlines the facilities that will be required for the next generation of database

technology.

Discussion of the Literature.

Object-Oriented Methodology. Object-oriented methodologies allow

developers to analyze problems and divide them into entities residing in specific states and

exhibiting certain dynamic behaviors. The entities become objects in the system. The

designer further defines the relationships between the objects to determine how the system

functions as a whole [12:1-2]. The object-oriented methodology used in this research is

OMT described in Object-Oriented Modeling and Design [19:4-6]. The four specific

OMT stages are:

1. Analysis. During the analysis stage, the developer defines the system

requirements. Objects are identified and their relationships to other objects are recorded.

Implementation decisions are specifically avoided. OMT recommends defining three

models during analysis: an object relationship model, a dynamic relationship model, and a

functional model.

2. System Design. In this stage the system's architecture is determined. The

application is broken into subsystems, and the subsystems into sub-subsystems (if

required). Resources (such as storage, processors, etc.) are allocated to each subsystem.

Control mechanisms (procedural, event-driven, etc.) are defined for each subsystem. The

overall focus is on what needs to be done, independently of how it is to be done.

3. Object Design. During the object design phase, the object relationship model,

dynamic model, and functional model are evaluated to determine what operations must be

2-2

implemented for each object. Algorithms for these operations are designed. Structures

for representing the relationships between objects are defined.

4. Implementation. The final stage of OMT involves transforming the design into

an executable system. This is dependent on whether the software language selected

supports object-oriented programming. Chapter IV discusses implementation of object

models from the student tracking and registration system into the relational database

Structured Query Language and into the proposed object database Object Query

Language (OQL).

Relational Databases. Traditional database applications are built around

relational database management systems where data is stored in two-dimensional

tables[2:45]. It is a cumbersome approach in which data has two distinct representations

between in-memory or stored on-disk. The DBMS queries and shared access support only

record-based disk stored data. To read data from the database, the programmer needs to

allocate a buffer and issue a DBMS query. The DBMS selects the record and copies it to

the buffer. The programmer treats the data stored in the buffer as though it is an instance

of the programming language type by mapping the data structure declaration for the type

(within the program) over the buffer. Type safety is lost in the interface and problems that

may arise include, buffers that are too small or too large, misaligning the overlaid

template, or defined template fields not agreeing with the record representation chosen by

the database [3:32-33].

Queries returning sets of records require a cursor mechanism to coordinate

between the programming language runtime and the DBMS runtime as the programmer

iterates through the resultant set; mapping one record at a time into his buffer. Programs

using anything more complex than records requires the programmer to write code

reassembling the database records into the program's data structure [3:33]. All of this

2-3

requires time and makes relational databases less desirable for many real world

applications [2:45].

Relational database management systems are derived from strict mathematical

concepts [18:162]. These systems evolved to support such common database features as

[16:425]:

• Uniformity. Large numbers of similarly structured data items.

• Fixed record size. Data items with fixed record lengths; approximately the same

number of bytes.

• Small data items. Records rarely larger than 300 bytes long.

• Atomic fields. Short fixed-length record fields.

• Short transactions. Generally little or no human interaction; users prepare

transactions, submit for execution, and await the outcome.

• Static schemes. Database schemes changed infrequently and changes are simple,

such as create a relation, remove a relation, add attributes, or remove attributes.

These features make relational databases less capable of dealing with data types

not easily manipulated with conventional functions, such as those used in manufacturing,

engineering, software management, and document management [18:162]. The new

systems require the ability to handle evolving features, such as [16:426-427]:

• Complex objects. Objects modeling the real-world with relationships stored

within objects and nested relationships stored within relationships.

• Behavioral data. Objects responding to the same command in different ways.

• Meta knowledge. General rules of the application which maybe represented with

the database.

• Long-duration transactions. Those seen more often with Computer-Aided

Design (CAD) and Computer-Aided Software Engineering (CASE) applications where

2-4

human interaction often leads to modification of design. These cause transaction aborts,

waits for locks, and are more complex than short duration business-type transactions.

Object-Oriented Databases. Object-oriented techniques give a developer

powerful tools to define requirements and translate them into working code. These

techniques are valuable not only in programming languages, but also in defining the next

generation of database systems ~ object-oriented databases [4:33-34]. It is open to

discussion as to what precise features a database must contain to be considered an object-

oriented database. One author maintains an object-oriented database management system

must support complex objects, unique object identifiers, object encapsulation, data types,

inheritance, persistence, extendibility, and other software engineering features [1:27]. All

of these software engineering features are invisible to the database management system

user, but are important in supporting the database management systems' main

responsibilities: sharing files among users, ensuring data integrity and recovery with

failures, distributing data in a network, and managing the search through large amounts of

data [2:44-45].

Two years ago in an effort to establish an industry-wide agreement for object-

oriented database technology a consortium of object-oriented database companies formed

the Object Database Management Group (ODMG). This group of technical experts

published The Object Database Standard: ODMG-93 which defines a standard for object

database management systems [5:1-15]. This standard is referred to throughout the

remainder of the text as the ODMG-93 standard or simply ODMG-93. The primary goal

of ODMG-93 was to introduce proposed standards allowing portable applications to be

written. For this goal to be achieved the data schema, programming language binding,

data manipulation, and data query languages must be portable. This goal of source code

2-5

portability makes database objects appear as programming language objects, in one or

more existing programming languages [5:2-3].

OODBMS versus RDBMS. For the past three decades applications have

grown in functionality, and the cost of implementing, maintaining, and extending them has

risen while software has evolved through four generations of database technology: file,

hierarchical, COD ASYL, and relational. The evolution of computer applications and

database technology requires a management system that can meet both today's and newly

emerging requirements. Since the late 1970s relational products have handled most

conventional information systems applications, but appear not as adept for new and future

information system needs. These applications, such as computer-aided design,

engineering, and manufacturing software systems, require the ability to create, access,

manipulate, and save large amounts of persistent data as well as be available to a large and

diverse number of users. The next generation of database technology must build upon the

conventional database technologies meeting today's requirements and exploit current

technology to meet the growing new requirements. The database technology must

provide the capabilities required by conventional information systems before they can

successfully evolve to the fifth generation database technology [14:35-36].

The two contending database technologies to capture this next generation appear

to be extended relational database technology and object-oriented database technology.

The extended relational approach extends the current relational model of data and

provides a query language to broaden the applicability of the model without sacrificing the

relational foundation. Extended relational data models allow recursive queries, relations

that are not in first normal form, complex objects, and the combining of logic-base rules

with triggers. The object-oriented approach starts with an object-oriented data model and

a language that captures it and extends them so that database objects appear as

2-6

programming language objects. Experts argue over the capabilities and liabilities of the

extended relational approach versus object-oriented, but conventional wisdom suggests

that both approaches will coexist. The potential savings in development and maintenance

of the object-oriented technology seems to be balanced by the widespread use of long-held

relational-based applications [14:35-36].

An object-oriented database system is a persistent and shareable repository and

manager of an object-oriented database ~ itself a collection of objects defined by an

object-oriented data model. A data model is a logical organization of real-world entities.

Object-oriented concepts form a good basis for developing a rich data model for next-

generation database applications. There is no standard data model on which to construct

an object-oriented database language from which to program applications [14:36-40].

Won Kim proposes a set of rules to define object-oriented database systems. First,

an object-oriented database system must provide all conventional database facilities.

Second, an object-oriented database systems must allow the following [14:36-40]:

• Real world entities must be modeled as objects with a unique identifier for each

object.

• Every object must have a state and a behavior (attributes).

• Objects may be grouped into classes according to attributes and methods.

• A class attribute's domain (type) may be a class.

• Classes must be organized into a rooted directed acyclic graph or hierarchy.

• An object's state and behavior can only be accessed or invoked from outside the

object through an explicit message.

Kim maintains that these concepts form the basis of any viable object-oriented data

model, and any database language that would evolve. The three components of a database

language are data definition, data manipulation, and data control. The first component,

2-7

data definition allows a programmer to specify a database schema or framework. In an

object-oriented database a specification will define the interfaces to object types as

described in the object model. The ability to treat any real world entity as an object

simplifies the user's view of the world. Object identifiers are important to object-oriented

systems because objects consist of attributes with values, and the system (as well as

object-oriented languages) assume objects exist in a large virtual memory. The class

concept is important to object-oriented database systems because it captures semantic

data-modeling concepts (relationships), it is the base on which queries may be formed, it

enhances integrity by virtue of type checking, and allows sharing of attributes and methods

[14:42].

The second database language component, data manipulation provides facilities to

express queries and updates to a specified database. The object-oriented database must

allow users to [15:33]:

• Create, update, and delete individual instances of a class.

• Fetch an object using the object's unique identifier, or a collection of objects

rooted at a user-specified object (navigational fetch).

• Fetch a set of objects satisfying user specified search conditions (declarative

fetch).

• Allow queries on a single class and queries on more than one class.

The third database language component, data control, provides integrity protection

of the database and manages system resources. The data control must allow specification

of transactions (commit and abort), semantic integrity control (class methods),

authorization (limit access), and management of access methods [15:36].

2-8

According to John Joseph and associates, the five principle reasons that

conventional databases are inadequate in serving the needs of the next generation

applications are [13:46-47]:

1) Lack of expressive data modeling. Next-generation applications require the

same level of expressive power as programming languages, such as complex data types

(arrays, records, class definitions, and functions) or control structures (conditional clauses

and procedure calls).

2) "Impedance mismatch" between programming languages and database systems.

Impedance mismatch is the difference between the programming languages required to

support differing data models and paradigms for object manipulation. This mismatch

decreases application programmer productivity by requiring complex problems to be

mapped to the conventional database. The mismatch also requires programmers to use

two programming languages and paradigms in the two environments.

3) Interactive performance does not support next generation applications. The

expense of a relational query to fetch a single, identified object is too high because it often

requires burdensome overhead when compared with the simple offset addressing of an

object-oriented database.

4) Lack of mechanisms to support long transactions. Long transactions require

cooperative transactions, in contrast to the short duration of conventional database

transactions locking very little data and involving infrequent locking conflicts.

5) Lack of mechanisms to support schema evolution and version management. By

conventional thinking databases only have a single state ~ the current state; there is no

version management.

Conclusion. In conclusion, this literature review has provided an overview of the

Object Modeling Technique, presented limitations of a relational database system, and

2-9

discussed the engineering features of object-oriented databases to support database system

functions. All three of these areas are required for the successful analysis and re-

engineering of the AFITSIS.

2-10

III. Analysis and Design

Introduction. This chapter presents the steps necessary to construct an analysis

model and the process in building the subsequent design model for STARS as a proof of

concept for this research. The approach includes the use of the analysis process presented

with the Object Modeling Technique (OMT) as documented in Object-Oriented Modeling

and Design, by Rumbaugh and associates, and pictured in Figure 3.1 [19:149]. To

maintain the distinction between the analysis model and design model it is useful to

remember the following general definitions. The analysis model includes information

meaningful to the client of the system; it is an external view of the system. The design

model is constructed for computer implementation; it must be efficient and practical to

encode.

Developers

Generate \
Requests 1

Build Y
Models J

Users

Managers

Problem
Statement

User Interviews Analysis

Domain Knowledge

Real-World Experience

Object Model
Dynamic Model
Functional Model

..y..
Design

Figure 3.1 Overview of the analysis process (Rumbaugh ^ others, P.M9).

3-1

Although many courses and research revolve around object-oriented programming

languages and coding, Rumbaugh and associates emphasize from the beginning that OMT

applies to a system's entire software development cycle. The OMT cycle begins with the

analysis of a system problem statement and continues until the end of the software

system's life-cycle. The results from the analysis phase is carried forward to system and

object design. Finally, the results are used by software programmers to implement the

final system. The key part of this whole process are the three models - object, dynamic,

and functional. Although developed at the beginning of the process from the problem

statement, all three models undergo constant scrutiny and revision from start to finish and

in effect become extremely valuable documentation, not only for the system designers, but

also the maintainers late in the software's life-cycle.

Analysis. The OMT approach was followed in this paper and begins with the a

simple problem statement upon which three models are constructed to capture the system

from three related but differing viewpoints. The three models as introduced in chapter

two are: the object model, the dynamic model, and the functional model. The object

model captures the static, structural, or "data" aspects of the system. The dynamic model

captures the behavioral, or "control" aspects of the system. The functional model

captures the transformational, or "functional" aspect of a system. Systems developed

under such an approach may rely heavily upon one or more aspects of the three models

depending upon software requirements. For example, in the database portion of the

STARS software where data persistence and manipulation are the main focus, the object

model is the most important model. The object model shows which objects are

responsible for what data (attributes) and how the different objects are related with one

another (relationships). The object model is followed, in importance, by the dynamic

model which shows concurrent access of distributed information, and may be used to

3-2

estimate transaction throughput. The functional model is less important because

operations are usually predefined and tend to focus on creating, updating, and querying

information [19:148-149].

The following sections outline the creation of the analysis model beginning with

the problem statement, detailing construction of the object, dynamic, and functional

models, and discussing the final analysis of the three models.

Problem Statement. The maintainers and users of the current system,

along with development documentation, provided the requirements necessary to

The Student Tracking and Registration System (STARS) should be designed for use by students, faculty, and administration

personnel. The system shall distinguish between authorized and unauthorized users. Among authorized users operations shall be granted

depending upon their authority. For example, faculty and administrative personnel will have privileges that a student will not.

The database system will perform such typical operations as:

a. creating data,

b. storing persistent data,

c. retrieving data,

d. editing data, and

e. deleting data.

The database system will save information relevant to students, instructors, dependents of military members, and sponsors of research

areas. The system will also track school and course registration data, such as course sections, class rosters, grades assigned, GPAs, etc. A

user will log into the database application and be provided operation choices. Only those functions for which the user has authorization

will be offered. Typical user queries will be provided. For example, the user should be able to view and output the courses scheduled for a

particular quarter including instructors, times, days, and assigned room(s). Queries will be possible on a student's overall, planned,

completed, and present schedules. Modifications shall be allowed on planned and current schedules by proper personnel. Modifications to

course grades will only be allowed by authorized authority. Access to database information for purposes of printing or viewing should be

allowed concurrently by any number of users. Access to data being created or modified should prevent other users from accessing and/or

modifying the information at the same time. Historical records must be maintained for changes to certain database fields (i.e. SS AN, Name,

Rank, Program, Graduation Date).

Figure 3.2 Student Tracking and Registration System Problem Statement

implement a system, as well as future requirements for anticipated growth. From this

foundation a STARS problem statement was formed as shown in Figure 3.2.

3-3

Object Model. The object model describes the identity, relationships,

attributes, and operations of objects in a system. An object model was constructed by

[19:21-47]:

i) identifying objects and classes from the problem statement,

ii) identifying associations between objects,

iii) identifying attributes of the objects and links,

iv) verifying access paths exist for queries, and

v) refining the object model with numerous iterations.

Identify Object Classes. All relevant objects were identified from

the database domain. Explicit object classes are the easiest to identify by extracting the

nouns present in the overall requirements statement. Figure 3.3 lists the tentative object

classes obtained from the requirements statement.

authorized users students
unauthorized users database system
data personnel
records instructors
students grades
database system courses
persistent data rooms
instructors authority
dependents application
military members operation
sponsors functions
research areas historical records
schedule 26 menus (main menu/25 submenus)
planned schedule completed schedule
present schedule

Figure 3.3 Candidate object classes

Additional implicit classes are not as easy to identify and must be obtained by knowledge

of the problem domain. The implicit object classes such as forms, international students,

3-4

and departments were derived from interviews with the maintainers and development

documentation.

Object classes were eliminated from the candidate list for the following reasons:

a) Redundant classes expressing the same information. Duplicate classes of

students, database system, and instructors may be eliminated.

b) Irrelevant classes having nothing to do with the problem. Personnel does not

adequately describe the object class and is replaced with person.

c) Vague classes too broad in scope. Records, historical records, data, and

persistent data all describe the information we wish to maintain through the use of

objects' specific attributes.

d) Classes that are attributes of another class. Grades are attributes of a person

class or an attribute of the relationship between a, person and a course.

e) Class is an operation of another class. Functions and operations are too general

to implement and will become specific object functions or procedures during design and

implementation.

f) Implementation construct. Authority will be decided during implementation; it

could also be viewed as an attribute of a user of the application.

The result of identifying object classes is documented in a data dictionary

identifying each class and describing its relationship to the problem being modeled. The

data dictionary for the STARS object model is provided in Appendix A. Current object

classes are depicted in Figure 3.4.

3-5

DEPARTMENT

SUSPENSE

THESIS

BOOK

SECTION

ORGANIZATION

QUARTER

DEGREE

SCHOOL

CURRICULUM

COURSE

FORMS

BUILDING

ROOM

INTN'L SPONSOR

ADMINISTRATIVE

PERSON

DEPENDENT

THESIS SPONSOR

STUDENT

FACULTY

MILITARY

CIVILIAN

INTERNATIONAL

Figure 3.4 Current Object Classes

Identify Associations. Next, all dependencies were identified

between two or more classes and documented as associations between classes. Figure 3.5

lists all candidate associations from the problem statement and problem domain. Explicit

associations can usually be identified as verbs or verb phrases within the problem

statement. Other associations were identified from user documentation or as part of the

inherit problem domain.

3-6

Verb Phrases:
distinguish between authorized or unauthorized user save information
distinguish among : provide menus

1. Student User store persistent data
2. Faculty User retrieve data
3. Administrative User edit data

query student schedules create data
modify schedules delete data
printing or viewing by any number of users log into application
limit user access for creating and modifying modify grades
perform authorized functions access database
maintain historical records

Implicit Verb Phrases:
faculty may be either civilian or military persons faculty are a type of person
students may be either civilian or military persons students are a type of person
dependents are ä type of person sponsors are a type of person
international students are a type of person

Knowledge of Problem Domain:
faculty teach courses students take courses
faculty advise students academically courses require book(s)
faculty advise thesis students sections meet in rooms
faculty are members of theses committees courses require prerequisites
sections are offered by quarter courses are taught as sections
curricula are made up of courses rooms are part of buildings
students write theses

Figure 3.5 Candidate Associations

Identify Attributes. Attributes were identified by consulting the

STARS Users Manual and a listing of the 151 relational tables in the current AFITSIS

database system. Appendix B provides the menus and possible operations as depicted in

the STARS Users Manual, and the relational tables with fields from the current system.

As an example, Figure 3.6 is a current relational table in the AFIT database used by

STARS to represent a Person. Attributes that could be used to represent characteristics

of a person class could be social security account number, grade/rank, name prefix, first

name, last name, middle initial, date of birth, etc.

3-7

Person (SSAN, GradeRankAbbrev, NamePrefix, NameSuffix, FirstName, LastName,
Middle_Initial, Birth_Date, SexCode, RaceCode, MaritalStatusCode, ReligionCode,
Blue_Chip_Indicator, Aka_FName, Aka_LName, Prior AFIT_Months, TAFMS_Date,
Ethnic_Group_Code, Aero_Rating_Code, Manning_Code, DEROS_Date, SeparationDate,
CommissionCode, GradeRankDate, CitizenshipOOCountryCode, DepartmentCode,
DutyTitle, Duty_Phone, DutyAreaCode, BadgeNumber, BranchServiceCode,
LoginName, InputDate, DutyPhoneExt)

Figure 3.6 Relational table for Person

The object classes, relationships, and attributes identified in the sections above were then

arranged in the object diagrams pictured as part of the Data Dictionary at Appendix A.

Figures 3.7 through 3.12 exhibit basic object modeling concepts (without object class

attributes) used in development of the final object diagrams.

DEGREE
pursue

pursued_by pursues
STUDENT

Figure 3.7 One-to-many Association

The one-to-many association in Figure 3.7 captures the relationship between

Degree and Student. A degree is pursued by many students, or the inverse relationship of

a student pursuing a degree.

QUARTER

STUDENT <i>
registration

SECTION

Figure 3.8 Ternary Association

3-8

The ternary association in Figure 3.8 shows the Student registration relationship

with Quarter and Section object classes. A student may be enrolled in multiple quarters

and multiple sections. A quarter will have many students registered for multiple sections.

Finally, a section will be offered in specific quarter(s) and enroll a number of students.

PERSON

STUDENT

person_type

MILITARY FACULTY CIVILIAN

Figure 3.9 Inheritance

MILITARY

T
FACULTY

X
CIVILIAN

MILITARY FACULTY

X.
CIVILIAN FACULTY

Figure 3.10 Multiple inheritance

The inheritance and multiple inheritance object diagrams shown in Figures 3.9 and

3.10 model the different types of people within the school.

3-9

SECTION
schedule for

BUILDING
meetsjn W holds

StartTime

EndTime

Days

Room

Figure 3.11 Association with link attribute

The link attributes, shown in Figure 3.11, on the schedule Jor association between

Section and Building captures attributes unique to the relationship between the two

objects.

SCHOOL

V
made_ jp_of

i i < 1 <>

BUILDING DEPARTMENT PERSON

Figure 3.12 Aggregation

The aggregation modeled in Figure 3.12 depicts the Building, Department, and

Person objects necessary to construct the school object.

Access Paths for Likely Queries. One way to verify that the

object diagrams obtained thus far are accurate is to trace access paths through the object

model to see if they yield sensible results. One would assume when a user to the STARS

entered the application that they would have a particular interest in mind for the data.

This would probably be creating, modifying, displaying, or deleting records or data. Paths

for likely queries would be to obtain information from one of the objects (such as a

student's GPA) or to be able to obtain relationships between objects (such as a list of

3-10

classes being taken by a student for a particular quarter). The object model in the STARS

database contains a large number of possible queries depending upon the user and the

interests in the data. An administrative user may wish to know how many students were

enrolled per department for the last ten years. Registration personnel may be interested in

whether all student records are complete and up to date. Student's may be interested in

their schedules for past, present, and future quarters. Faculty members may be concerned

with inputting the final grades for the quarter. No matter what the intent of the user, the

application needs to access the database and provide the function requested by the user.

Because of the large number of queries possible, the implementation of the proof

of concept for this thesis focuses on a user viewing a class roster and a student's schedule.

Refine Object Model. Refining the object model is a continuous

process of iteration, not just during the object modeling phase, but at every stage of the

analysis and design process. Object classes that are found to be needed during later stages

of the analysis process need to be incorporated into the object model at that time.

Complex object models can be grouped by classes into modules which represent some

logical subset of the entire model.

Dynamic Model. The dynamic model shows the time-dependent behavior

of a system and objects within it. A dynamic model for STARS was constructed by

[17:84-113]:

i) preparing scenarios of typical interaction sequences,

ii) identifying events between objects,

iii) preparing an event flow diagram for the system,

iv) building state diagrams and state transition tables, and

v) matching events between objects to verify consistency.

Scenarios. Scenarios were created to better understand typical

exchanges between a user and the system. Two scenarios for the student tracking and

3-11

registration system are presented. First, a faculty user scenario (Figure 3.13) describes the

steps an instructor uses to print out a class roster. Figure 3.14 depicts the second scenario

of an administrative user creating a new instance of a student. (Note: the second scenario

only considers the steps changed from the first scenario.)

The user starts Window application.
The application requests user name and password; the user enters name and

password.
The application verifies user name and password with database system; system

recognizes authorized user (as type faculty) and notifies application.
The application presents faculty user with menu of operations (view student

schedule, print student schedule, view faculty schedule, print faculty
schedule, view class roster, print class roster,...); the user selects print
class roster.

The application asks user to identify the class by section and quarter; the user
identifies class.

The application sends system roster request.
The system passes application the requested class roster.
The application prints class roster.
The application presents user with menu of operations; user selects exit.
The application terminates.

Figure 3.13 Faculty User Scenario

The first three steps are the same as Figure 3.13 above.
Application presents administrative user with menu of operations (create

student, create faculty, modify student, modify faculty, delete student,
delete faculty,...); the user selects create new student.

The application sends system create new student request.
The system presents application with a blank form to be filled out by user.
The user fills in form (student's last name, first name, middle initial, SSAN,...)
The user submits data.
The application passes data to system.
The application presents administrative user with menu of operations; the user

selects exit.
The application terminates.

Figure 3.14 Administrative User Scenario

3-12

Events Between Objects. Events to and from a typical user

and/or any external devices were identified from the two scenarios in Figures 3.13 and

3.14. Event traces were constructed from the scenarios described exhibiting the events

that arise between the objects of different classes. The user in Figures 3.15 and 3.16

represents a person being queried for information and responding to the requests.

Although not shown on these event traces, error conditions and unusual events need also

to be considered when listing all possible events between objects.

User Application Database System

start application

request name

enter name

request password

enter password

present options menu

enter selection (print roster)

request section and quarter

enter section and quarter

request number to be printed

enter number

print class roster

present options menu

enter selection (exit)

verify name and password

authorized faculty user

Forms
find query parameters |

return query parameters;

request data (class roster)

return data (class roster)

Figure 3.15 Event trace for faculty user scenario

3-13

User Application Database System

^ present options menu

enter selection (create studentt

request data entry

enter data

commit (student)

^ present suboptions menu

enter subselection (main menu

Forms
find query parameters >

|retjji irn query parameters i

check if data exists

boolean (false)

save (student) data

"student data saved"

Figure 3.16 Event trace for administrative user scenario

request name
request password
present options menu
request query data
request number to print
request data entry
print form (with data)
request suboption selection

start application
enter name
enter password
enter selection

(print roster, create student, view schedule, exit)
enter query data
enter number to print
enter suboption selection (commit, cancel, repeat)

request form

verify name and password
request data (class roster, student schedule, student data)

Database
System

return user_type (faculty, admin, student)
return data (class roster, student schedule, student data)
return boolean

provide form

Figure 3.17 Event flow diagram for scenarios

Event Flow Diagrams. The event flow diagram in Figure 3.17

summarizes the events between classes without regard to sequencing. The event flow

3-14

diagram shows the information flow and serves as a dynamic counterpart to an object

diagram.

State Diagrams. The next step in dynamic modeling is

constructing state diagrams for each object class with nontrivial dynamic behavior

showing the events that the object receives and sends. Every scenario corresponds to a

path through the state diagram. A single object was considered and arranged with arrows

labeling the input and output events from one state to the next. The intervals between two

events can be considered a state. Merging states and events from other scenarios provides

alternative paths, and traversal loops that allow scenarios to have differing outcomes when

traversed in different permutations.

The state diagram process began by modeling the application object in its simplest

form ~ either Idle (following application start-up) or InUse (beginning when the user

logs-in and ending with either an invalid login or program exit). At this high level, the

application is either Idle or InUse. Following application start-up a user could enter a

name, fail user authorization, in which case the application will return to the Idle state, or

use the application and then exit.

All four of the events are shown in the state diagram of Figure 3.18 below.

StartApplication begins the diagram (represented with the single solid dot) and the

[EXIT] criteria ends the flow through the state diagram (represented with the circled solid

dot).

] ^ UserLogin(name)
StartApplication

IDLE
do: offer login

IN_USE
do: work

[EXITl

!-►<•>

Loginlnvalid/"Login Denied"

Figure 3.18 Application state diagram

3-15

The InUse state in Figure 3.18 can be modeled with three substates identified

from the event trace diagrams (Figures 3.15 and 3.16). Figure 3.19 shows the three

substates (Process Login, Present Options Menu, and Process Selection) and the events

triggering movement from one state to the next.

UserLogin(name) Loginlnvalid"Login Denied"

a
[EXIT]

f
IN USE

[EXIT]

f
>

PROCESS
LOGIN

do: verify name
and password

LoginValid(userJype) PRESENT
OPTIONS

MENU

Request(selection)
PROCESS

SELECTION

I
ExceptionHandling [TRUE][CREATE]/"Data Exists"

ExceptionHandling[FALSE] {[MODIFY][PRINT][DISPLAY][DELETE]}/"Data Does Not Exist"
/ [MAIN MENU] [ABORT] >

Figure 3.19 Substates of InUse state

Figure 3.20 shows the Present Options Menu state as a dependent state on the

guard variable user type. The type of user identified during the Process Login state will

dictate the menu options offered to the user. The three different types of users,

administrative, faculty, and student, will have an assortment of options, some of which

may or may not be the same as those offered to another type of user.

3-16

PRESENT OPTIONS MENU

LoginValid [ADMIN] DISPLAY
ADMINISTRATIVE
OPTIONS MENU

MakeSelection(selection) VERIFY
ADMINISTRATIVE

SELECTION

Login Valid[FACULTY;

• ►
DISPLAY
FACULTY

OPTIONS MENU

MakeSelection(selection) VERIFY
FACULTY

SELECTION

LoginValid [USER]

• W
DISPLAY

USER OPTIONS
MENU

MakeSelection(selection) VERIFY
USER

SELECTION

Reques [(selection)

[EXIT]

[EXIT]

Reques [(selection)

[EXIT]

►®
Reques [(selection)

Figure 3.20 Present Options Menu state as dependent state

The modeling of the menus and submenus presents an interesting relationship

between the two types of menus. A submenu, in general, is a lower tiered menu from the

main menu. The main menu will contain a list of options from which a user selects.

Menus may have a title and a list of options from which to make a selection. The first

option of the menu will be the default selection. Only those options for which the user has

authorization will be displayed as menu options.

[FALSE][PRINT]/"D ata Does Not Exist"

f PROCESS SELECTION >
S >

Request(selection)

r >

SELECT FORM
do: display form

(ssan) CHECK
DATABASE

do: look for object

f PRINT } [MAIN MENU]

PRINT
SUBMENU i l [TRUE :][PRINT]

^ /
[R EPEAT]

s> ^ /

Figure 3.21 Partial substates for Process Selection state

3-17

The Process Selection substate shown in Figure 3.21 is further broken down into

states required to handle the Print class roster request made by the faculty user in the

earlier scenario (Figure 3.13). The substates for the Process Selection state consist of

finding the type of form involved with the users request, using query data (in this case a

person's SSAN) to see if the objects exist, and if the answer is true then the request is

executed. If the answer is false then the user is notified and the application waits for

another request.

A form is a screen display of a printed document. It may be in a fill-in-the-blank

format and designed to a level where the user need not have any programming skills. The

purpose of the form is to organize and display database information in a manner that is

easily understandable and recognizable to the user.

Although not mentioned by Rumbaugh and others in their modeling technique, a

state transition table provides a simple way of summarizing data provided in state

diagrams. It also allows personnel responsible for the final analysis models and design to

check if all entrance and exit criteria between states have been satisfied, as well as

checking possible error conditions. Consider the Idle and InUse states from Figures 3.18

and 3.19. When the event UserLogin occurs the parameter name is passed to the next

state InUse. The Process Login state (first substate ofInUse) then becomes the current

state at which time one of four events could occur. The login could be invalid, in which

case the control is passed back to the Idle state, or one of three types ofLoginValid

events could be triggered depending upon the user type guard condition. A partial state

transition table (Table-3.1) is shown below to coincide with the state diagrams just

discussed. The complete set of state diagrams and state transition tables is provided in

Appendix A.

3-18

Table 3.1 Partial state transition table for Application
Current State Event Parameters Guard Next State Action
Idle UserLogin name Process Login

Process Login

Process Login

Process Login

Process Login

LoginValid

LoginValid

LoginValid

Loginlnvalid

ADMIN

FACULTY

STUDENT

Display Admin Menu

Display Faculty Menu

Display Student Menu

Idle "Login Denied"

Additional substates for the Present Options Menu and Process Selection substates

are presented as part of the Data Dictionary. States not considered in either the faculty or

administrative scenarios are essential to the proper execution of a STARS application.

These states have been combined with Figure 3.21 resulting in a final state diagram for the

Process Selection state and complete state transition table shown in Appendix A.

Verify Consistency. Now that the state diagrams are complete we

can check for consistency and completeness at the system level by following events

through the state diagrams. There should be paths from initialization (StartApplication) to

the termination of the state diagram (EXIT). Events should have both a sender and

receiver. Corresponding events on different state diagrams should be consistent. The

state transition tables aid the designer in this verification by tracking events, parameters,

guard conditions, and actions from one state to another [12].

Functional Model. The functional model diagrams the flow of data

among processes with data flow diagrams. The functional model complements the

dynamic model in specifying the system's behavior. A functional model was constructed

by:

i) identifying input and output variables,

ii) drawing data flow diagrams (DFD) with functional dependencies,

iii) describing functions,

3-19

iv) identifying constraints, and

v) specifying optimization criteria.

Input and Output Variables. Input and output variables are
'•v

parameters of events between the system and the outside world. Figure 3.22 shows the

input and output variables for the STARS application. Since all interactions between

STARS and the outside world pass through the application, all input and output values are

parameters of application events. Input events that only affect the flow of control, such as

Display, Print, Abort, or Commit, do not supply input values.

USER

messages
printed data
menu displays '

user name v

password x

select menu options
enter data

APPLICATION

Figure 3.22 Input and output values for application

Data Flow Diagrams (DFD). Data flow diagrams show how each

output value is computed from input values. The DFDs that follow were constructed in

layers. Figure 3.23 shows the top-level (level 0) DFD for the STARS application. User

represents an external object that supplies and consumes input and output values,

respectively. Data flows are represented by the labeled arrows, data stores by the

'sandwiched' labels, and processes by labeled ovals. From this top-level diagram each

non-trivial process may be expanded recursively into lower level DFDs until all processes

are trivial. For example, the perform action process from Figure 3.23 is expanded into

three processes, validate user login, offer menu options, and handle selection, as

3-20

exhibited in Figure 3.24. This level 1 DFD in turn is expanded into three level 2 DFDs.

The first process, validate user login is shown in Figure 3.25. The remaining DFDs are

contained in the Data Dictionary.

USER

DATABASE

display message
forms

Figure 3.23 STARS Application Level 0 DFD

Invalid

selection

Figure 3.24 Perform Action Level 1 DFD

password

fcf ve rify ^\
me)

invalid

\. na
Valid

/^ verify ^
^oassword J

\ Invalid ^^

Valid (user_type)

DATABASE

Figure 3.25 Validate User Login Level 2 DFD

3-21

operations. Higher-level processes may also be considered operations, although

optimization may allow for a varying implementation. The specifications for non-trivial

operations are contained in the Data Dictionary. Non-trivial operations can be divided

into three categories: queries, actions, and activities. The function description for the

validate user login process is outlined in Figure 3.26. Note the process relies on two

variables, name and password as input, and provides messages and a userjype as output.

Validate User Login (name, password) -> user type, messages

If the name entered matches a valid user then

allow password verification

If the password entered matches a valid password then

send a message notifying user of valid access

If name or password entered does not match valid user then

send message notifying user of denied access

Figure 3.26 Function description for Validate User Login process

Constraints. Constraints show relationships between two objects

at the same time or between different values of the same object at different times.

Constraints may appear in all three analysis models. Preconditions on functions are

constraints input values must satisfy, and post conditions are constraints that output values

are guaranteed to hold. The conditions under which constraints must hold are stated in

brackets.

Optimization Criteria. Potential optimizing criteria for a database

system are to minimize the time objects are locked, or if needed the entire database is

3-22

locked. Another criteria is to maximize the use of functions and procedures by taking

advantage of superclass-subclass relationships, and multiple inheritance.

Final Analysis. When the analysis is complete, the models should reflect

the requirements expressed in the problem statement and those requested by the user. In

an effort to provide a good final design the analysis process is wrapped up (but may

continue through the software's life-cycle) by adding operations to the object model and

verifying the models meet requirements.

Add Functional Model Operations. The defining of operations

for objects is an open-ended process, but it is useful to try to identify potentially useful

operations and summarize them on the object model. The operations are obtained from

many of the diagrams and models we have already constructed. For example, the object

model implies reading and writing attribute values and association links (such as

getattribute and set attribute). Events sent to objects correspond to an operation on an

object. Actions and activities in the state diagram may be functions (such as Process

Login or Verify Selection). Each function in the DFD corresponds to an operation on an

object or several objects.

After organizing all the operations on the object model, examine it for duplicate

operations or variations of a single operation. Sometimes an object class will suggest

operations that should be included for possible use in other problems (i.e. initialization or

finalization). These should be added. The final object diagrams with operations are

shown in Appendix A.

Compare Models with Problem Statement. One way to judge a

design for soundness is to compare the models to the problem statement. The models

should capture most requirements, and requirements involved with performance

constraints should clearly be stated in the optimization criteria.

3-23

Develop More Detailed Scenarios. Another way of verifying

correctness is by going back to the user, or consulting with an application domain expert.

These activities amount to testing the domain limits by developing more detailed scenarios

and verify that the models handle varying static, dynamic, and functional conditions.

Additional scenarios are provided in Appendix A.

System Design. In Object-Oriented Modeling and Design, Rumbaugh and

associates present an ideal life cycle for a database application as [19:367]:

1. Design the application.

2. Devise an architecture for coupling the application to a database.

3. Select a specific DBMS platform.

4. Design the database. Write DBMS code to set up the proper database

structures.

5. Write programming language code to provide user interface, validate data, and

perform computations.

6. Populate the database with information.

7. Run the application.

For the purpose of this research the first four of the seven stages of the

application's life-cycle are of interest. Since we are not implementing executable code the

last three stages are of little interest to us and are presented to provide for a complete life-

cycle process. The first of the seven stages is captured as a result of OMT analysis effort -

- the three models forming the framework of the design. The architecture chosen to

couple the applicationto a database is transparent, as will be shown in the upcoming

section on mapping object models to an OODBMS. This is contrasted with the more

traditional approach of the table architecture supported by relational databases. The

DBMS platform selected is one proposed as an ODBMS standard in R.G.G. Cattell and

3-24

others' book, The Object Database Standard [5]. Finally, designing the database is

discussed in the following subsections and the Implementation chapter.

When using an existing database management system the main concern is to

construct an object model and decide upon the transactions that must be considered

atomic by the system. Steps in designing a transaction manager are [19:216]:

1. Map the object model directly into the database.

2. Determine which resources cannot be shared (units of concurrency).

3. Determine the set of resources that must be accessed together during a

transaction (unit of transaction).

4. Design concurrency control for transactions.

The steps presented for designing a transaction manager deal with making sure

that the integrity and consistency of stored data is maintained. This transaction

management is atomic, which means that transactions either happen as a whole or do not

happen. This research does not discuss the implementation of transaction control,

although it is discussed in ODMG-93 and would be imperative to operating any

information system that has multiple users and is expected to share data. The first step for

the transaction manager is to map the object model into the DBMS. This is discussed in

the next subsection. The remaining steps are not discussed and are provided to keep a

complete representation of the process to be followed.

Object Model Mapped to Database. A relational database logically

appears as a collection of tables. In the design of a relational database application it is

necessary for the designer to map an object model (or entity-relationship diagram) into a

table model. The programmer then takes this table model and implements it in a relational

database language. SQL is used for the examples that follow since it the most widely used

relational database language.

3-25

In contrast to this three-level approach of mapping design to implementation,

object-oriented databases offer the potential of doing away with the table level of mapping

and allowing the designer/implementor to map directly from the object model to

implementation. Figure 3.27 summarizes this concept. The impact of this change will aid

both developers and maintainers because software will be more tightly coupled to design

and maintenance documentation.

Object
Model

Table
Model

*

Implementation

Figure 3.27 Comparison of Database Management System Architectures

In the book Object-Oriented Design [9:82-83], Coad and Yourdon describe this

mapping from the object model to implementation as "a seamless view of objects;

translating between storage data structures and program data structures is no longer

needed" because object-oriented DBMS will take care of saving and restoring the objects.

Designers and programmers will rely upon the ability of object-oriented DBMS to handle

this type of activity and their work will involve mapping the object model into a feasible

3-26

design. Mapping basic modeling concepts to an implementation is relatively

straightforward and easy to visualize. An example of mapping an object class to

implementation is discussed for the Person object class below. Additional comparisons

(i.e. associations, inheritance, multiple inheritance) are contained in Appendix A.

Advanced modeling concepts are more difficult to map to object-oriented

databases. The two advanced modeling concept examples presented are for a ternary

association and an association with link attributes. The following sections illustrate the

differences experienced in mapping an object model into a relational database versus an

object oriented database. In the examples, SQL and OQL (proposed in R.G.G. Cattell's

book The Object Database Standard: ODMG-93 [5]) are used to show a pseudo-code

implementation.

Mapping Object Classes. The object class is the basic building

block of object oriented design. Figure 3.28 illustrates the steps necessary to implement

the Person object class in a relational database. First, the class Person is mapped to the

Person table where a unique key is assigned for handling activities. Attributes of the class

are assigned fields with data types defined by the domain, and required input constraints

are defined by the predefined rNull' constant. From this table the person class is

implemented in a relational database with the SQL code shown.

3-27

Object
Model

Person
Last Name
First Name
Middle Initial
SSAN

Table
Model

Person Table
Attribute name Nulls Domain
person-ID N ID
last-name N name
middle-initial Y char
first-name Y name
SSAN N SSAN

Candidate Key: (person-ID)
Primary Key: (person-ID)
Frequently accessed: (person-ID) (SSAN) (last-name)

CREATE TABLE Person

SQL
Code

(person-ID ID
last-name char(30)
middle-initial char

not null,
not null,

first-name char(30)
SSAN integer(9)

3

not null,
PRIMARY KEY (person-ID));

CREATE SECONDARY INDEX Person-index-name
ON Person (last-name)

CREATE SECONDARY INDEX Person-index-name
ON Person(SSAN)

Figure 3.28 Mapping object class to relational database

In comparison to the relational SQL implementation required to prepare the

database for data input, the object-oriented database is more direct (object model to

implementation) and easier to understand (no table concepts to interpret), as shown in

Figure 3.29. The Person Object Identifiers (OED) are assigned with the key declaration,

and attributes not assigned default values require input upon creation. The keys in Figure

3-28

3.29 are SSAN and lastname which allow an instance of the Person object to be uniquely

identified. The key designator also requires that the attributes listed be provided values

upon an object instance creation, just as the 'not null' did in the relational example. In

contrast to the relational depiction in Figure 3.28 where likely access paths are identified

through the creation of indexes access through objects will take place through the

associations modeled in the OMT object diagrams. The relationship identifier recipient is

shown with an inverse identifier of awarded Jo shows a likely access path between the

two objects Person and Award.

Person
Last Name
First Name

Object
Model

Middle Initial
SSAN

1 INTERFACE Person

X (EXTENT persons

T KEYS SSAN, last name)

{
ATTRIBUTE String last_name;

OQL ATTRIBUTE String firstjiame;
ATTRIBUTE Character middlejnitial;
ATTRIBUTE Integer(9) SSAN;
RELATIONSHIP Set<Award> recipient

INVERSE Award: :awarded_to;}

Note: Attributes may be assigned default values.

Figure 3.29 Mapping object class to object-oriented database

Mapping Ternary Associations. Mapping ternary associations into a relational

database is handled by creating a table of table keys for the ternary association and any

additional fields for link attributes. An example of this mapping is shown in Figure 3.30.

A primary key is created on the tuple (student-ID, quarter-ID, section-ID). Additional

access to the tables is provided through each foreign key on student, quarter, or section.

3-29

Object
Model

STUDENT
enrolled in

QUARTER

' ^contains

Student-Quarter-Section

SECTION

candidate key(student-ID, quarter-ID, section-ID)

Table
Model

Student, Quarter, and Section Tables created similar to Figure 3.28

 Student-Quarter-Section Table
Attribute name
student-ID
quarter-ID
section-ID

Nulls
N
N
N

Domain
ID
ID
ID

Candidate key: (student-ID, quarter-ID, section-ID)
Primary key: (student-ID, quarter-ID, section-ID)
Frequently accessed: (student-ID)(quarter-ID)(section-ID)

SQL
Code

CREATE TABLE Student
(student-ID ID not null,

attributes,
PRIMARY KEY (student-ID));

Similar CREATE TABLES for Quarter and Section

CREATE TABLE Student-Quarter-Section-ternary
(student-ID ID not null,

quarter-ID ID not null,
section-ID ID not null,

PRIMARY KEY (student-ID, quarter-ID, section-ID)
FOREIGN KEY (student-ID) REFERENCES Student,
FOREIGN KEY (quarter-ID) REFERENCES Quarter,
FOREIGN KEY (section-ID) REFERENCES Section);

Figure 3.30 Mapping ternary association to relational database

3-30

In the ODMG-93 standard [5] the authors specifically define relationships as types

between object types. The ODMG-93 object model can support only binary relationships

(no «-ary relationships). An object model allowing only binary relationships forces

designers to break w-ary relationships into some binary equivalent. As pointed out in

Object Modeling and Design, the majority of w-ary relationships can successfully be

modeled as binary relationships[19:159].

QUARTER

has offers

registered_for offeredjn

STUDENT
contains

SECTION
takes

Figure 3.31 Ternary association with binary relationships

Figure 3.31 demonstrates one approach to modeling the ternary association with

binary relationships. The difficulty in implementing this approach is that the enforcement

of rules managing the access of objects via relationships is left to the implementor. Take

as an example, a known student OID, and a requested output of all sections taken in all

quarters for the given student. This output requires the traversal of the many-to-many

relationship between Student and Quarter to obtain the set of quarters for which the

student is enrolled. Each quarter results in another many-to-many relationship between

Quarter and Section. Traversing this relationship for each quarter in the set produces the

set of course sections offered in those quarters. The implementor would then use the

many-to-many Student-Section relationship to obtain the set of course sections for which

the student is taking courses. This set would then need to be logically intersected with the

3-31

previous set of course sections to obtain the common subset of courses. This subset could

then be further divided into smaller subsets by using the offers relationship and obtaining

the sets of sections taken by the student for each quarter in which they were enrolled.

Implementing this object model requires each of the object classes Student,

Quarter, and Section to define two binary relationships; one each to the other two object

classes. The corresponding Object Data Language for the Section object is shown in

Figure 3.32. The operations defined by the user would need to take into account both the

offered jn and enrolls relationships as well as the existence of any link attributes

embedded in one of the other objects.

interface Section
(extent sections)
{

attribute Character symbol;
relationship Set<Quarter> offeredin

inverse Quarter::offers;
relationship Set<Student> enrolls

inverse Student: :enrolled_in;
operations

};

Figure 3.32 ODL for ternary association modeled with binary relationships

Another approach to modeling the ternary association is to abstract the

relationship as an object consisting of inverse pointers to the objects forming the

association. Figure 3.33 shows this modeling approach with each object class, Student,

Quarter, and Section having a one-to-many relationship with the object Registration, thus

forming the ternary relationship among the three objects. Figure 3.34 presents the

corresponding Object Data Language for the Section and Registration objects from Figure

3.33. As shown in the figures, the relationship object Registration will contain the

3-32

operations permissible for the ternary relationship among the objects Student, Quarter,

and Section.

QUARTER

contains

STUDENT
enrolledjn

DCrüCTDÄTIAM
offered

SECTION

Figure 3.33 Abstracting the ternary relationship as an object

interface Section
(extent sections)
{

attribute Character symbol;
relationship Set<Registration> offeredjn inverse Registration::offers;
operations

}

Similar implementation for Student and Section

interface Registration
(extent registration)
{

link attributes as required
relationship Set<Section> offers inverse Section: :offered_in;
relationship Set<Student> enrolled inverse Student::enrolledjn;
relationship Set<Quarter> contains inverse Quarter: xontainedin
operations

Figure 3.34 ODL for abstract ternary relationship

Considering this example is one of six scenarios for acquiring data from this

ternary association it is easy to see why making provisions for ternary associations within

3-33

an OODBMS would be a useful and powerful addition. An additional object modeling

constraint arises when a link attribute to the ternary association is considered. The link

attribute modeling notation causes similar problems as previously discussed because the

embedding of link attributes to one of the three classes requires the implementor to

provide access to the link attributes from any of the other object classes.

Rumbaugh and associates also note the fact that certain ternary relationships

cannot be successfully broken into binary relationships without losing some information

captured in the model [19:159]. The Student-Quarter-Section relationship is one such

example. Considering this observation and the added complexity forced upon the

database user in trying to manage ternary relationships, a more effective solution would be

to extend the ODMG-93 standard [5:59-64] to allow ternary associations and manage the

traversals among the three objects and any link attributes.

The proposed Backus Naur Form (BNF) for an «-ary relationship specification

follows:

<ternary_rel_declaration> ::= ternaryjrelationship
<relationships_list>
[traverse <identifier_list>]
[{order_by <attribute_list>}]

<relationships_list> ::= <target_of_path> <identifier>
| <target_of_path> <identifier>, <relationships_list>

<target_of_path> : := <identifier>
| <relationship_collection_type>«identifier»

<identifier_list> ::= <identifier>
| <identifier> :: <identifier>
| <identifier> :: <identifier>, <identifier_list>

<attribute_list> . ::= <scoped_name> <attribute_list>

This extension allows the ternary relationship Student-Quarter-Section to be defined and

added to the objects' specifications. As an example, Figure 3.35 shows the ternary

association with the proposed BNF specification applied to the Section type's interface

3-34

specification. Similar specifications would be created for the Student and Quarter object

classes.

Object
Model

♦
OQL

QUARTER

STUDENT

•contains

^X,^ offered o •
registration

SECTION

interface Section
(extent sections

keys symbol): persistent
{

attribute String symbol
ternaryjrelationship Set<Students> classroster,

Set<Quarters> offered_in
traverse Set<Quarters> :: schedule_of_courses
traverse Set<Students> :: registered_for };

Figure 3.35 Mapping ternary association to object-oriented database

This approach to capturing ternary associations follows the guidelines set forth in ODMG-

93 for relationships (except for no «-ary relationships) [4:23,45,54]:

• relationship types are defined between (mutable) object types

• traversal paths are defined between (mutable) object types

• traversal names are defined for each direction of traversal

• traversal names are declared within the interface definitions of the object type

• relationshipsmaintain referential integrity

• relationship instances do not have OIDs

This proposed extension would group an objects' relationships together so that operations

affecting the Student-Quarter-Section ternary association could be handled by the ODMS.

However, it does not solve the problem of implementing a ternary association with link

3-35

attributes. Since relationships do not have OEDs, link attributes cannot be stored in a

relationship itself. The designer or implementor is thus forced to implement link attributes

as part of one of the objects in the relationships.

Mapping associations with link attributes. A second proposed

extension to ODMG-93 would relax three guidelines of the standard for implementing a

relationship (besides no w-ary relationships) and allow for link attributes on all

relationships. The guidelines that would be broken are:

• traversal paths are defined between (mutable) object types

• traversal names are defined for each direction of traversal, and

• relationship instances do not have OIDs

Conceptually, what this second approach proposes is to treat relationships as an object, in

which object pointers involved in the relationship are stored along with link attributes.

Permissible operations on the association or link attributes would reside with the

relationship object. The BNF for this second approach would be:

<link_relationship_declaration> ::= link_relationship <relationship_identifier>

As an example, the Student-Quarter-Section ternary relationship would now be

implemented as shown in Figure 3.36. This approach to implementing a ternary

relationship allows the implementor to associate link attributes with the relationship in

which they logically occur.

3-36

Object
Model

QUARTER

1 'contains

STUDENT
enrolled in ottered

SECTION 9

registration >f I Type
Status
Grade

T
OQ, interface Section

(extent sections
keys symbol): persistent

{
attribute String symbol
linkrelationship Registration };

Similar interface specifications for Quarter and Student

interface Registration
(keys student-ODD

quarter OID
section-OID): persistent

relationship Set <Students>
relationship Set <Quarters>
relationship Set <Sections>
attribute Enumeration type
attribute Enumeration status
attribute Enumeration grade };

Figure 3.36 Mapping association with link attribute to object database

Summary. This chapter has presented the four OMT steps used to build the

three analysis models for an AFIT information system. A problem statement was

developed by reading software support documentation, and consulting with present

AFITSIS users and maintainers. An object model was constructed from the problem

statement and problem domain. Dynamic and functional models were constructed from

3-37

system scenarios. Object model updating continued as data was viewed from different

perspectives, or changes to object relationships were identified. As noted in the section on

Mapping Ternary Associations the two approaches that were proposed to aid in the

implementation of ternary and link attribute modeling concepts in object-oriented database

systems still result in the loss of ternary modeling information. The proposed approaches

called for expanding the ODMG-93 standard to make provisions for both of the modeling

concepts freeing developers and designers from 're-inventing' code to manage such data.

The object database management system standard, ODMG-93, specifically prohibits w-ary

relationships and ignores the existence of link attributes. Therefore, in order to map the

modeling of such associations into the ODBMS defined by the ODMG-93 standard the

design presented calls for abstracting the relationship into an object and enforcing ternary

rules through the operations provided by the relationship object.

The next chapter discusses the implementation issues which must be resolved in

order to implement the AFITSIS revision. Emphasis is on the data manipulation language

required to implement object models in both relational database management systems and

object-oriented database management systems. The three database languages compared

are the relational SQL, the SQL-like OQL, and a 'future' OQL.

3-38

IV. Implementation Issues

Introduction. A prototype of the student tracking and registration system was

not implemented on the ODMG-93 ODBMS standards because such systems are still

under development. This paper analyzes and designs an information system to the

proposed standards to study how object-oriented analysis and design fit with the

anticipated OODBMS interfaces. An advertised advantage of object-oriented database

management systems is the ability to create different views of persistent data. This chapter

presents views from the student tracking and registration system, and the database

language (SQL and OQL) pseudo code necessary to implement those views. The first

view considered is that of a student's class schedule. The second example expands upon

the student class schedule object model by adding a relationship to obtain more

information from the same objects. Additional models are contained in Appendix A.

Student Class Schedule. A student class schedule represents perhaps

the most often used form from a school's database. The schedule represents the current

student's schedule information with respect to the quarter enrolled, degree and program

being pursued, and classes being taken. Figure 4.1 presents the general outline of a blank

student class schedule. Figure 4.2 is the class schedule object model constructed to

support the class schedule in Figure 4.1. For the sake of simplicity the object model

presented lists only those attributes associated with the student class schedule.

4-1

Student Name
Box Number

Year Quarter:. Dates Inclusive

COURSE TITLE
GRD

HRS TYP DAYS
START END
TIME TIMEBLDG ROOM INSTRUCTOR

SCHOOL: DEGREE:

CLASS: PROGRAM:

Figure 4.1 Student class schedule

SCHOOL

Name

<
part_of

DEPARTMENT
offers offered_by __

COURSE m

Symbol Number
Title
CreditHours

QUARTER

Term
Year
StartDate
EndDate

i
1 assigned_to i

has

1 belongsjo

STUDENT
▼ contains SECTION

meets in holds
BUILDING

enrolledjn ^J«^ offered _
• 11 •

Last Name
First Name
Middle Initial
Box Number

Symbol Number

registration V^l StartTime
EndTime
Days
Room

Type < k
< 9 pursues

pursued_by

DEGREE teaches

Type
Title
Status

-
FACULTY

Last Name

Figure 4.2 Student class schedule object model

4-2

As described in Chapter III the object model shown in Figure 4.2 can be designed

for either a relational or object database management system. The examples that follow

assume that the relational tables and objects have been created and databases are

populated with valid data. In the SQL and OQL pseudo-code presented the bold faced

text represent reserved words. As part of the analysis and design it is necessary to decide

on what information is required from the database and to construct the algorithms

necessary to get that data. The following algorithm constructs a student class schedule

from the object diagram; the algorithm assumes input of the student's social security

account number and the quarter of interest (asterisks in the left margin identify the portion

of the algorithm discussed in the next subsection):

Build schedule on student's identification and quarter.
Obtain Instance of Student and Quarter.
** Output Student's First Name, Middle Initial, Last Name, and Box Number.
Output Year, Term, Start Date and End Date for instance of quarter.
** (With student id and quarter) Traverse Student-Section-Quarter enrolledin ternary association
to get instances of sections student is enrolled in.
** For each section instance:
** Output Section Symbol.
** Output enrolled_in ternary association linked attribute Grade Type.
** Traverse Section-Course belongsto association to get instance of Course.
** Output Course's Number, Title, and Credit Hours.
** For each course instance:
* * Traverse Course-Department offers association to obtain instance of Department.
* * Output Department symbol.
** Traverse Section-Faculty taughtby association to obtain instance of Faculty.
** Output Faculty's Last Name.
** Traverse Section-Room meets_in association to obtain instance of Room.
** Output Building Number.
** Output meets_in linked attributes Room, Days, Start Time, and End Time.
Traverse Student-Degree pursues association to obtain instance(s) of Degree.
Output Degree Title (Degree) and Type (Class).
Traverse Student-Department assignedjo association to obtain instance of Department.
Output assignedjo linked attribute Program.
Traverse Department-School part_of aggregation to obtain instance of School.
Output School.

SQL versus OQL Comparison. The discussion of SQL versus

OQL considers the retrieval of a student's name and course information, shown by

4-3

asterisks along the left margin of the algorithm above. Examples of the full SQL and full

OQL implementations of the complete algorithm creating a student schedule is

documented in Appendix A along with additional views of the information system. For

both implementations the user inputs are assumed to be InputSSAN and InputTerm.

Assume the following relational tables exist (fields not associated with this example have

been left out for simplicity):

Course_Taught_By(CourseTaughtOOTermCode, CoursePrefixCode, CourseNumber,
CourseSection, Faculty_SSAN)

Grade_History(CoursePrefixCode, CourseNumber, CourseSection, ScheduleOOTermCode,
SSAN, Credit_Hours, Grade_Type_Code)

Schedule(CoursePrefixCode, CourseNumber, CourseSection, CourseStartTime,
Course_End_Time, CourseTitle, DayCode, ScheduleOOBuildingCode,
ScheduleOORoom_Code, ScheduleOOTerm_Code)

Person(SSAN, First_Name, Last_Name, Middle_Initial)
Resident_Student(SSAN, ClassificationCode, AFITDegreeCode, ProgramCode, BoxNumber,

Selected_Type_Code)
Terms(Term_Code, Term)
Term_Date(TermCode, Term_Start_Date, Term_End_Date)

From the Person and Resident Student relational tables a view is created,

ViewPersonResident, to simplify the amount of data being handled by the system. The

ViewPersonResident table is then joined with tables Terms and Term Date so a

selection on the input variables InputSSAN and InputTerm will result in the student's name,

box number, and term information. Next, the Grade History and Schedule tables are

joined and a set of courses extracted on InputSSAN and InputTerm. The courses of this

set are those in which the student is enrolled for the given term. Joining the Person and

Course Taught By tables and using the courses' identifiers, InputSSAN, and InputTerm

the instructor for each course may be obtained. The pseudo-code (with SQL) is shown

below:

create view View_Person_Resident(SSAN, LastName, First_Name, Middlelnitial,
BoxNumber) as

(select SSAN, LastName, FirstName, Middle_Initial

4-4

from Person, ResidentStudent
where Person. SSAN = Resident_Student.SSAN)

select First_Name|r '||Middle_Initial||']|Last_Name, Box_Number, Term||': '||Term_Start_Date||'
to' ||Term_End_Date

into Name, Box_Number, Term_Info
from ViewPersonResident, Terms, TermDate
where View_Person_Resident.SSAN = InputSSAN
and Terms.Term_Code = InputTerm
and Term_Date.Term_Code = InputTerm

Output(Name, BoxNumber, Termlnfo)

select Grade_History.Course_Prefix_Code, GradeHistory.CourseNumber,
Grade_History.Course_Section, Course_Title, Grade_History.Credit_Hours,
Grade_Type_Code, NVL(Day_Code,'TBA'), Course_Start_Time, Course_End_Time,
NVL(ScheduleOOBuilding_Code, 'TBA'), NVL(ScheduleOORoom_Code, 'TBA')

into CoursePrefixCode, CourseNumber, Course_Section, CourseTitle, CreditHours,
Grading_Type, Days, Start_Time, End_Time, Building, Room

from Grade_History, Schedule
where Grade_ffistory.SSAN = InputSSAN
and GradeHistory. ScheduleOOTermCode = InputTerm
and Schedule. ScheduleOOTermCode = InputTerm
and GradeHistory.CoursePrefixCode = Schedule.Course_Prefix_Code
and GradeHistory.CourseNumber = Schedule. CourseNumber
and Grade_History.Course_Section = Schedule.Course_Section

Output(Course_Prefix_Code, Course_Number, Course_Section, Course_Title, Credit_Hours,
Grading_Type, Days, Start_Time, End_Time, Building, Room)

LocalCourse prefix Code = Course_Prefix_Number
LocalCourse Number = Course_Number
LocalCourse Section = Course_Section

select Last_Name
into Instructor

from Person, Course_Taught_By
where Person.SSAN = Course_Taught_By.Faculty_SSAN
and Course_Taught_By.Course_TaughtOOTerm_Code = InputTerm
and CourseTaughtBy.CoursePrefixCode = LocalCourse PrefixCode
and Course_Taught_By.Course_Number = LocalCourse_Number
and Course_Taught_By.Course_Section = LocalCourseJSection

Output(Instructor)

In a similar fashion queries were constructed on objects of an object-oriented

database system. As with the relational example above it is assumed that the objects from

Figure 4.2 have been created, data is available, and the user inputs are InputSSAN and

4-5

InputTerm. The pseudo-code (using proposed ODMG-93 OQL) to construct the student

schedule follows:

select distinct LocalStudent
from x in Students
where x.SSAN = InputSSAN

Output(LocalStudent.First_Name, LocalStudent.Middlelnitial, LocalStudent.LastName,
LocalStudent. BoxNumber)

select ScheduleClasses
from x in StudentRegistration

y in Quarter.Registration
where x.SSAN = InputSSAN
and y.Term = InputTerm. Term
and y. Year = InputTerm. Year

for index in first(ScheduleClasses).. last(ScheduleClasses) loop
element(select LocalCourse

from x in ScheduleClasses[index].belongs_to)
select LocalDepartment

from x in Course
y in x.offeredby

where x = LocalCourse

Output(LocalDepartment. Symbol, LocalCourse.Number,
ScheduleClasses[index]. Symbol, LocalCourse.Title, LocalCourse.CreditHours,
ScheduleClassespndex] .Registration.Type)

select LocalBuilding
from x in ScheduleClasses[index]

y in x.meetsin
where x = LocalCourse

Output(ScheduleClassespndex] .Plan.Days, ScheduleClasses[index] .Plan. StartTime,
ScheduleClasses[index].Plan.End_Time, LocalBuilding.Niunber,
ScheduleClasses[index].Plan.Room)

element(select Locallnstructor
from x in ScheduleClasses[index].taught_by)

Output(Locallnstructor.LastName)
end loop

The student information is obtained by selecting an instance of a student with

InputSSAN from the collection of students. Next, a set of sections is created,

4-6

ScheduleClasses, from the Student-Quarter-Section tuple by selecting on InputSSAN and

InputTerm. This query on the ternary association assumes the mapping of a ternary

association is provided for as discussed earlier in Chapter III. The set of sections is

traversed from the first instance of section to the last. Additional traversals, nested within

the outer for-loop, provide related section information, such as, the course title, number of

credit hours, and the instructor.

The OQL as defined in the ODMG-93 standard is SQL-like. The difference at the

programmer level is not having to deal with table operations. The programmer must be

familiar with the object model to know which objects to query and relationships to

traverse. The ODMG-93 standard is a way of bridging from today's database binding to a

more robust, programming language-like future binding. This future binding will require a

complex implementation allowing programmers to use the same pointer for either transient

or persistent class instances and a sophisticated query language interpreter to locate, bind,

and execute the methods for query functions. A pseudo-code example of this future

binding to construct the student schedule queries for a student's name and course

information is presented below:

LocalStudent : Student := students! SSAN = InputSSAN]

Output(LocalStudentFirstName, LocalStudent.Middle_Initial, LocalStudentLastName,
LocalStudent. Box Number)

ScheduledClasses : set(" Section")
ScheduledClasses := sections{ classroster Student[SSAN = InputSSAN]

and offeredin Quarter[Term = InputTerm. Term, Year = InputTerm. Year] }

LocalCourse : Course
LocalDepartment : Department
LocalBuilding : Building
Locallnstructor : Faculty

for index in first(ScheduleClasses).. last(ScheduleClasses) loop
LocalCourse
LocalDepartment
LocalBuilding

= courses! has Section! ScheduledClasses[index]]]
= departments! offer Course! LocalCourse]]
= buildings[hold Section! ScheduledClasses[index]]]

4-7

Locallnstructor := faculty[teaches Section[ScheduledClasses[index]]]
LINK_ATTRIBUTE := TERNARY_RELATIONSHIP[Student[SSAN = InputSSAN],

Quarter[Term = InputTerm. Term, Year = InputTerm. Year],
Section[ScheduledClasses [index]]

LINK_ATTRIBUTES := LINK_RELATIONSHIP[Section[ScheduledClasses [index]],
Building[LocalBuilding]]

Output(LocalDepartment. Symbol, LocalCourse.Number,
ScheduledClasses[index]. Symbol, LocalCourse.Title, LocalCourse. CreditHours,
LINK_ATTRIBUTE.Type, LINK_ATTRIBUTES.Days,
LINK_ATTRIBUTES.Start_Time, LINK_ATTRffiUTES.End_Time,
LocalBuilding.Number, LINKATTRIBUTES.Room,
Locallnstructor.LastName)

end loop

In the future binding example, the LocalStudent is declared a student type and

assigned the value of the instance of a student from the collection of students whose

SSAN is equal to the InputSSAN. Relevant student information can be obtained. In the

next query, a collection of sections, ScheduleClasses, is created for the student by forming

a predicate from InputSSAN and InputTerm. The ScheduleClasses collection is then

traversed much like an array in a programming language. This handling of objects in

collections allows the programmer to work in one language and not have to perform

queries in a database language and functions in a programming language. The benefit is

that programmers can learn one language, and effectively use these 'future OQL' bindings

much like functions within the programming language. These functions must be provided

by the DBMS and would be used like I/O programming language operations.

Class Roster. The class roster depicted in Figures 4.3 and 4.4 repeat much

of the same information and many of the same objects as examined in Figures 4.1 and 4.2,

respectively. Two of the differences encountered in the class roster example are the

addition of the graduates many-to-one Student-Quarter relationship with link attribute

Symbol and the additional attributes for Student and Degree, such as

Program_Sequence_Code and Program_Code, respectively. Much of the querying and

4-8

SCHOOL:
Year Quarter:

COURSE

Dates Inclusive

TITLE HRS INSTRUCTOR DAYS
START END
TIME TIME BLDG ROOM

STUDENTS (LAST NAME, FIRST M.I.) SSAN TYPE PROGRAM GRADUATION CODE

Figure 4.3 Class roster

SCHOOL

Name

\ made_up_of

offered_by

COURSE

< Number
1 Title

CreditHours

DEPARTMENT
offere

I

Symbol QUARTER

Term
Year
StartDate
EndDate

gradua tes

<

has

1 belongsjo assigned_to
I t

\J
1

STUDENT Symbol ▼ contains

JL offered

SECTION
meetsjn holds

BUILDING
• ii •

Last Name
First Name
Middle Initial
SSAN
Program_Sequence_Code

enrolledjn Symbol
w

Number
m

StartTime
EndTime
Days
Room

Type >

1 ► pursues

pursued_by teaches

DEGREE FACULTY

Program_Code Last Name

Figure 4.4 Class Roster Object Model

4-9

data manipulation will resemble that already performed in the earlier student class schedule

example, and is provided in more detail in Appendix A.

The following excerpt from the class roster algorithm demonstrates the use of the

new attributes and graduates association with link attributes (assume a user input of

course identifier and quarter of interest):

For each student instance:
Output Last Name, First Name, Middle Initial, SSAN, and ProgramSequenceCode.
Output Student-Section-Quarter ternary association link attribute Type.
Traverse Student-Degree pursues association to obtain instance of Degree.
Output ProgramCode.
Traverse Student-Quarter graduates association to obtain instance of Quarter.
Output Year and link attribute Symbol.

SQL versus OQL. The class roster comparison traverses the new

Student-Quarter graduates relationship and outputs the Program_Code link attribute. In

the SQL pseudo-code example provided the Program Sequences table and earlier

ViewPersonResident table are joined and the student's Program_Sequence_Code

selected from the set of students whose Program_Code, Class_Code, and YearPrefix are

equivalent between tables and the student's SSAN matches the one entered by the user.

The pseudo-code is shown below for the addition of the graduates link attribute

association. Assume that all previous tables are available and the Program Sequence

table has also already been created.

Program_Sequences(Program_Code, ClassCode, YearPrefix, ProgramSequenceCode)

select Program_Sequence_Code
from ProgramSequences, ViewPersonResident
where ViewPersonResident. SS AN = LocalSSAN
and ProgramSequences.ProgramCode = ViewPersonJResident.ProgramCode
and ProgramSequences.ClassCode = View_Person_Resident.Class_Code
and ProgramSequences.YearPrefix = View_Person_Resident.Year_Prefix

Output(ProgramSequenceCode)

4-10

The SQL example shows that without embedded pointers to define relationships at

the implementation level a table is required with keys allowing for a relationship among

the objects to be modeled and to store the link attribute data. In much the same way the

object oriented database (as expanded for link attributes) allows the user to select the

relationship and output the link attribute. The pseudo-code (with proposed OQL) to

construct class roster is:

select LINKATTRIBUTE
from x in Students

y in x. graduates
where x = StudentRosterfindex]

Output(LocalDegree.ProgramCode, LocalQuarter.Year, LINKATTRIBUTE. Symbol)

In contrast to these SQL and OQL approaches, the future OQL approach will need

to provide the functions necessary to select a given object from a collection identified

through the relationship given a predicate identifying a single instance of the related object

or an instance ofthat object. The pseudo-code (with proposed 'fixture OQL') to construct

class roster is:

LocalDegree
LocalQuarter
LINK ATTR

Degree := degree[pursued_by Student! StudentRoster[index]]
Quarter := quarter! graduates Student[StudentRosterf index]]

= LINK_RELATIONSHIP[Section! ScheduledClassesf index]],
Building! LocalBuilding]]

Output(LocalDegree.ProgramCode, LocalQuarter.Year, LINK_ ATTR. Symbol)

Both OQL examples demonstrate that much like relational database

implementations, when a relationship between two or more objects is required, that

relationship must be defined by a pointer structure between the two objects.

Summary. This chapter has presented the pseudo-code implementation for the

construction of a student's class schedule and a department's (instructor's) class rosters

assuming the user provides the necessary input variable(s) from which to construct a

predicate. The implementation is presented for both a relational database and an object-

4-11

oriented database. By comparing implementations we can see that the fundamental

requirement of DBMSs being designed to the ODMG-93 standard is to provide the

programmer with the functionality necessary to make the database and the programming

languages unified.

4-12

V. Summary and Conclusions

Summary. The most important result of this research is the AFITSIS object

modeling technique detailed analysis and design. The analysis resulted in the

documentation of general student information system requirements, multiple object models

developed to capture the data and attributes of the objects involved in such an information

system, a dynamic model, resulting state transition diagrams, capturing the control aspects

of the system, and the functional model, resulting in data flow diagrams, capturing the

functional aspects of the system. The design resulted in the presentation of the mapping of

objects and associations contained in an object model DBMS.

As part of the analysis it was shown that the ODMG-93 ODBMS standard does

not plan for direct implementation of »-ary relationships or link attribute modeling

concepts. To meet the requirement of implementing an w-ary relationship a modeling

approach was presented in which the «-ary relationship is abstracted as an object. This

relationship object will then contain all the associations and inverse associations with the n

objects forming the n-ary relationship. As it was pointed out in Chapter III, this same

modeling approach will allow the modeling of link attributes on any relationship.

This research has compared and contrasted the two different implementation

approaches for mapping a database design from an object model to its respective database

and database language, relational and object databases and SQL and OQL, respectively.

The biggest advantage is the elimination of the intermediate table model required for the

relational database implementation and allowing the implementation to map directly from

the object model to the database language.

5-1

In terms of having the ability of meeting information system requirements and

comparing the two database implementations, there seems to be no impact in adopting an

object-oriented database versus a relational database. As discussed in Chapter I, Joseph

points to five principles for moving to the next generation database:

1. Lack of expressive data modeling. Although the implementation of the system

with relational tables prohibits direct modeling of complex data types the developers and

maintainers are able to work around this by storing information in tables and extracting

information by joining tables with related information and selecting on predicates.

2. Impedance mismatch does not exist because the AFITSIS application is built,

maintained, and operates in the SQL/Oracle environment to which it is specifically

targeted. A mismatch could occur if for some unlikely reason the database was required

to operate outside this host environment.

3. Interactive performance does not support next generation applications. The

AFITSIS implementation does inherit the expense of the relational query, but with the

speed of the hardware and by developers/maintainers optimizing queries to only select and

pass necessary fields, the additional expense may be minimized. From the end user

perspective the operations performed are not restrictive in performance of their daily

duties.

4. Mechanisms to support long transactions. These mechanisms are non-existent

in AFITSIS, but are not required. Operations required of the database are of fixed length,

with known input, and known output. The transactions within AFITSIS are of short-

duration with little or no user interface. The user simply builds a request for information,

such as a student schedule, and the system returns the request.

5. Lack of schema evolution mechanism. Although a shortfall in AFITSIS, the

maintainers and administrators work around this limitation by developing a process in

which database versions are archived. For example, when students graduate from AFIT

5-2

they are no longer active, so their student information is removed from the Student

Tracking and Registration System database and archived in an 'alumni' file. Developing

this process allows the system users to treat all data in a single state ~ the current state.

Conclusions. The three research objectives, as stated in Chapter I, were:

1. Research current AFITSIS requirements, design, and implementation.

Document current system performance benchmarks and maintainability metrics for

comparison with prototype system.

2. Use object-oriented methods to design and implement an object-oriented

database management system (OODBMS) prototype system. Use current requirements

as stated by AFIT/SC and STARS users (performance and user interface requirements).

The design structure will be created with possible upgrades in mind.

3. Test OODBMS prototype against current requirements. Compare performance

benchmarks and maintainability predictions with current RDBMS.

The research was successful in about half of the original objectives. Research of

the current AFITSIS operations and software support documentation led to the creation

of an application problem statement. Three analysis models, object, dynamic, and

functional models were constructed to capture the requirements of the information system.

Finally, from these analysis models a proof of concept detailed design was constructed to

show how the information contained within the object model may be retrieved. This was

presented for both a relational database, which the current AFITSIS is built upon, and a

object database showing possible implementations on a proposed ODBMS standard.

Currently no ODBMSs support this ODBMS standard and the advertised

unification of database and programming languages. This along with time constraints

prevented a working prototype from being implemented with which to compare similar

functionality from the current AFITSIS. This could be a possible area in which future

research could be conducted.

5-3

There are four main conclusions that may be reached from this research:

1. Using the OMT a proposed model has been developed with which a student

tracking and registration system application could be developed.

2. Examples have shown that an implementation of the information system

application is possible with either a relational or object-oriented database management

system.

3. Examples demonstrate that removal of the table modeling level of design allows

for more straight-forward implementation of database applications; two-levels of mapping

versus three. This should lead to design documentation matching implementation more

closely which will aid in both development and maintenance of database applications.

4. Future object database binding will go a long way in solving the "impedance

mismatch" principle of implementing database applications.

Future Plans for AFITSIS. AFIT/SC has recently acquired the hardware

necessary to upgrade versions of the AFITSIS database, with others to follow at a later

date, and the AFIT/SCV personnel are preparing to perform the hardware migration and

software version updates. This planned upgrade will allow AFITSIS to move from

PL/SQL version 6.0 to version 7, Oracle*Forms version 2.3 to version 4, and

Oracle*Menus version 4.1 to version 5. This upgrade effort most likely will aid in the

'look and feel' of the AFITSIS system, but software maintainability at best will remain

constant. In the conversion of the existing code it is estimated that 30% of the code will

need some changes in order for the information system to operate in the new environment.

This modification obviously involves a substantial amount of effort and could provide an

area for future research. Specifically in the area of code reuse, automated code

generation, measuring performances, and the drawbacks and benefits to performing the

upgrade.

5-4

The maintainability issue needs to be studied further in terms of what the Air Force

currently spends and is projected to spend in life-cycle maintenance and support costs

versus what it would cost to re-engineer an information system and its associated life-

cycle costs. If the latter option is viable this research would be a valuable asset in

beginning this effort. Suggestions for re-engineering the system are: identify a

requirements group early in the process made up of current maintainers, users, and

developers to define preliminary system requirements, prototype the dynamic aspects of

the system allowing the users to provide feedback on success of implementation decisions,

prototype report designs and user required queries, and baseline the system requirements.

The OMT models provided as part of this research provide the developers a framework

from which to begin requirements definition and dynamic prototyping. All three of the

models should be able to be used directly with modifications made according to changing

requirements and changes to dynamic operations. The object and functional models will

most likely need extending to accept the additional forms and reports that were not

captured as part of this research effort.

This approach to re-engineering the AFIT information system is important for

three reasons: (1) the end user is involved in the application development making their

recommendations a top priority, (2) as opposed to the original development effort, a

majority of requirements are known allowing developers more flexibility in their

implementation, and (3) object-oriented principles and DBMS should provide better

maintainable software.

Malcolm Atkinson estimated as much as 30% of a program's lines of code could be

eliminated by having a single unified system in which programming and database

languages are transparent [3:33]. When ODBMSs based on the ODMG-93 standard

finally make it to market, an interesting case study would be to compare the effort

required to generate an identical application based upon a RDBMS versus an ODBMS.

5-5

An argument for the use of object-oriented analysis, design, and programming is the ability

to reuse objects. Corporate America and the DoD have been trying to justify and estimate

the savings of reuse and object-oriented approaches. Despite all this attention, not a single

study exists on the development of an application using two approaches ~ one with reuse

and the other without.

5-6

APPENDIX A

AFITSIS DESIGN

Appendix A contains the OMT object, dynamic, and functional models necessary

to implement a student tracking and registration system. The object model consists of

object diagrams for school, person, and course views. The dynamic model has an

additional scenario, the related event trace, an application event flow diagram, a complete

collection of state diagrams, and the resulting state transition table. The functional model

consists of data flow diagrams for the information system application. Following these

OMT models is a design mapping comparison for implementing an association OMT

modeling concept in a RDBMS versus an ODBMS. Then examples are provided along

with possible algorithms for extracting data from the object models presented earlier.

Finally, data dictionary descriptions are provided capturing the attributes of the objects

and the range of values permitted.

A-l

SCHOOL

Name
Code
Abbreviation
City
State
Country
MPCSchoolCode
CivilianlnstCode

INVENTION

dean_of
Name
Year
NationCode

\

S\
' made_up_of

1
»

lt ,
BUILDING

locatedjn DEPARTMENT PERSON *

Name
Number

Name
Symbol_Code
RCCCCode
DSNPhoneNumber

See Figure A.2

offers
if

—~>
contains -" Date

certifies
i»

presented

< > DEGREE AWARD
ROOM i >

COURSE Type
Title
Symbol_Code
ABETAccreditedlndic

Name
See Figure A.3

See Figure A.3

offers

assigned

locatedjn ^

LOCKER

Number
Size

Figure A. 1 School Object Diagram

A-2

ORGANIZATION

Name
Type
Abbreviation
Address

point_of_contact

PERSON

LastName
FirstName
Middlelnitial
SSAN
NamePrefix
NameSufix
Gender
BirthDate
LoginName
LoginDate

CIVILIAN

Grade
DateOfGrade
ManningCode
DEROSDate
OccupationSeries

has L

POTENTIAL *-

Admittedlndicator
EvaluationResultRemark
EvalRequestDate
EvalForwardDate
ProgramRequested

THESIS SPONSOR

FirmOrOrgnization
DutyAddress
DutyPhone

DEPENDENT

AIRPLANE

Name E
RatedType
AeroRatingCode

MILITARY

Branch
Rank
DateOfRank
AFSC
DateOfCommision
DateOfSeparation
ManningCode
DEROSDate
DutyEffectiveDate
CBPOCode
MAJCOMCode
OrgLocCode
DutyTrtle
BaseCode
FitnessCategory
MeasurementUnit
LowAgeRange
HighAgeRange
Trial Date
ElapsedTime
Distance
PayTypeCode
PayLevelCode
NCOIndicator
MPCCode

recall_roster_responsibility

2 types_of

ADMIINISTRATIVE

FACULTY
Marita IStatus
Race
EthnicGroup
Religion
BadgeNumber
DutyAddress
BoxNumber
HomeAddress
eMailAddress
AcademicEdStatus
DutyTitle
SecurityClea ranee
TotalCreditHours
MPCSchoolCode
ASCCode
Operatorsinitials
LastYrAttended
EdLevelCode
ABETAccredlndicat
EdH istory Re marks
AcademicRankDate
AcademicRnkCode
AcademicStep
NumberOfChildren

STUDENT

MaritalStatus
Race
EthnicGroup
Religion
BadgeNumber
DutyAddress
BoxNumber
HomeAddress
eMailAddress
AcademicEdStatus
DutyTitle
SecurityClea ranee
TotalCreditHours
MPCSchoolCode
ASCCode
Operatorsinitials
LastYrAttended
EdLevelCode
ABETAccredlndicat
EdHistoryRemarks
Major
Ed Plan
Type {tun, part)
GradePoints
EarnedHrs
TotalCreditHrs
GPA
QuarterGPA
NumberOfChildren

INTR'L SPONSOR

Occupation
ACCCompPreferen
ceCode
StartDate
EndDate

sponsor

sponsored_by

INTERNATIONAL

Country
WSCN
ITO
CaseNumber
DLIReqlndicator
DLIIndicator
CountryNotifiedDate
AFSATNotifiedDate
AFSATQuotaindicator
FirstSponsorSSAN
SecondSponsorSSAN
SourceOfFunds
AFSATCountryCode

section leader

Figure A.2 Person Object Diagram

A-3

8 /

■ HI >

CO

z

z
D <
> -(

2 O

<

z 2 <
_J

>
Ü —<

2 a
<

2 E
2
CD
CO

>- a
Of

<

15
5*

2 3
Ü O

Z
LU

<
Li.
>
o

c
o

CD a. r Q CD
—i
3
Ü < -<

=3
1-
CO

>
Ü

3
Ü

O e
OB

•c
a>
.c
c

LL a.
1- z H 2 "5
ID
Q
3
1-
co

"<

Z
LU a
3
(-
CO
_J

2 3

2

<

CO

<
z

Ü <
LL

LL

o
<

t- z
-K h-

Z
LU
a
3
1-

F-
z

W

f-
<

1 o ^

■

Q.

A-4

SCHOOL

See Figure A.1

part_of

DEPARTMENT

Symbol

assigned_to

offered_by

graduates

STUDENT

Last Name
First Name
Middle Initial
SSAN
Program_Sequence_Code

See Figure A.2
pursues

pursued_by

iqut

1L
Symbol

QUARTER

Term
Year
StartDate
EndDate

' 'contain:

COURSE

advised_by

DEGREE

Program_Code
Type
Title
Symbol_Code
ABETAccreditlndctr

Number
Title
CreditHours
MinCreditHours
MaxCreditHours
InstrContactHrs
IndividualContactHrs
LabContactHours
Remarks

SECTION

Symbol
MinEnrollLimit
MaxEnrollLimit
Enrollment
StartDate
EndDate

taught_by

FACULTY

See Figure A.2

betongs_to

requires
BOOK

Title
Author
Publisher
CopyRightYear

prerequisites

T7"
Effective Date

required_text

U.
StartTime
EndTime
Days

BUILDING

Number

made_up_of schedules 9 made-u

exam scheduled for

2
ExamDate
ExamTime

ROOM

Number
RoomType
Size
Seats
Whiteboard
Chalkboard
ViewgraphScreen
ViewgraphProjector

Figure A.4 Course Object Diagram

First three steps same as Figure 3.10.
The application presents student user with menu of operations (create

schedule, modify schedule, view schedule, print schedule); user selects
view schedule.

The application sends system view schedule request.
The system passes application the requested student schedule.
The application displays schedule and presents student user with a submenu of

operations; the user selects print schedule.
The application prints schedule.
The application presents user with menu of operations; the user selects exit.
The application terminates.

Figure A.5 Student user scenario

A-5

User Application Database System

start application

request name

enter name

request password

enter password

present options menu

enter selection (print schedu
%*

request section and quarter

enter section and quarter

request number to be printed

enter number

print student schedule

present options menu

enter selection (exit)

verify name and password

authorized student user

Forms
find query parameters |

rgjurn query parameters;

request data (student schedule)!

return data (student schedule)

Figure A.6 Event trace for student user scenario

User

request name
request password
present options menu
request query data
request number to print
request data entry
print form (with data)
request suboption selection

Application

start application
enter name
enter password
enter selection

(print roster, create student, view schedule, exit)
enter query data
enter number to print
enter suboption selection (commit, cancel, repeat)

request form '

verify name and password
request data (class roster, student schedule, student data)

Database
System

return user_type (faculty, admin, student)
return data (class roster, student schedule, student data)
return boolean

provide form

Forms

Figure A.7 Application event flow diagram

A-6

StartAppücation
UserLogin(name)

IDLE
do: offer login

Loginlnvalid/"Login Denied"

[EXIT]

IN_USE I—►{•)

Figure A.8 Application state diagram

UserLogin(name) Loginlnvalid/"Login Denied"
[EXIT]

f
IN USE

1.
PROCESS

LOGIN
do: verify name
and password

LoginValid(user_type) PRESENT
OPTIONS

MENU

Request(selection)

I
ExceptionHandling [TRUE][CREATE]rData Exists"

ExceptionHandling[FALSE] {[MODIFY][PRINT][DISPLAY][DELETE]rData Does Not Exist"
/ [MAIN MENU] [ABORT] J

Figure A.9 Substates of InUse state

LoginValid (userjype)

PRESENT OPTIONS MENU

Selection Invajlid/Try again" \ f (selection) yj Selection Invalid/Try again"

Request(sele :tion) VERIFY
SELECTION

I [EXIT]

Figure A.10 Possible generalization of Present Options Menu State

A-7

[TRUE][CREATE]/"Data Exist"

4

Request(selection) :,r
PROCESS SELECTION

SELECT FORM
do: display form

(ssan) CHECK
DATABASE

do: look for object

[FALSE][CREATE]

f CREATE }

CREATE
SUBMENU

[COMMIT] I
[REPEAT]

C SAVE)
SAVE

SUBMENU

[CANCEL]

[MAIN MENU]

Figure A. 11 Partial substates of Process Selection state
ExceptionHandling [TURE][CREATE]/"Data Exists'
ExceptionHandling [FALSE] {[MODIFY][PRINT][DISPLAY][DELETE]}/"Data Does Not Exist"

o
Request(selection)

PROCESS SELECTION

SELECT FORM
do: display form

(ssan) CHECK
DATABASE

do: look for object

[REPEAT]

[TRUE][DELETE]

[FALSE] ± [TRUE]
[CREATE] Y [MODIFY]'

(CREATE) (MODIFY)

CREATE
SUBMENU

MODIFY
SUBMENU

T[COMMiTI"
f[COMMIT] f

C SAVE)
SAVE

SUBMENU

I [REPEAT]

[MAIN MENU]

[MAIN MENU]

[PRINT]
[MAIN MENU]

[REPEAT]'

T T
[CANCEL] [MAIN MENU] [CANCEL]

Figure A. 12 Process Selection state
A-8

Current State Event Parameter Guard Next State Action

Idle UserLogin name Process Login

Process Login LoginValid ADMIN Display Admin Menu

Process Login LoginValid FACULTY Display Faculty Menu

Process Login LoginValid STUDENT Display Student Menu

Process Login Loginlnvalid Idle "Login Denied"

Display Admin Menu Request selection Select Form

Display Faculty Menu Request selection Select Form

Display Student Menu Request selection Select Form

Display Student Menu EXIT terminal

Select Form SSAN Check Database

Check Database TRUE, CREATE Display Option Menu "Data Exists"

Check Database FALSE, CREATE Create/Submenu

Check Database FALSE, MODIFY Display Option Menu "No Data Exists"

Check Database FALSE, PRINT Display Option Menu "No Data Exists"

Check Database FALSE, DISPLAY Display Option Menu "No Data Exists"

Check Database FALSE, DELETE Display Option Menu "No Data Exists"

Check Database TRUE, MODIFY Modify/Submenu

Check Database TRUE, PRINT Print/Submenu

Check Database TRUE, DISPLAY Display/Submenu

Check Database TRUE, DELETE Delete/Submenu

Create/Submenu SelectSubmenu suboption COMMIT Save Data/Submenu -

Create/Submenu SelectSubmenu suboption CANCEL Display Option Menu

Create/Submenu SelectSubmenu suboption SubPRINT Print/Submenu

Save Data/Submenu SelectSubmenu suboption REPEAT Select Form

Save Data/Submenu SelectSubmenu suboption MAIN MENU Display Option Menu

Modify/Submenu SelectSubmenu suboption COMMIT SaveData/Submenu

Modify/Submenu SelectSubmenu suboption CANCEL Display Option Menu

Modify/Submenu SelectSubmenu suboption SubPRINT Print/Submenu

Print/Submenu SelectSubmenu suboption REPEAT Select Form

Print/Submenu SelectSubmenu suboption MAIN MENU Display Option Menu

Display/Submenu SelectSubmenu suboption REPEAT Select Form

Display/Submenu SelectSubmenu suboption MAIN MENU Display Option Menu

Display/Submenu SelectSubmenu suboption SubPRINT Print/Submenu

Delete/Submenu SelectSubmenu suboption REPEAT Select Form

Delete/Submenu SelectSubmenu suboption MAIN MENU Display Option Menu

Table A.1 State transition table for Application

A-9

PROCESS
REQUEST

do: get data

DataRequest(selection) f
return data

v UserLogin(name, password)

IDLE

Loginlnvalid/"Login Denied"
/(userjype)

USER
VERIFICATION
do: check login

Figure A. 13 State diagram for Database System

Table A.2 State transition table for Database System
Current State Event Parameters Guard Next State Action

Idle

Idle

UserLogin

DataRequest

name, password

form type

User Verification

Process Request

User Verification user type Idle

Process Request {data} Idle

USER
display message
forms

DATABASE

Figure A.14 STARS Application Level 0 DFD

name
password

selection

Invalid

Figure A.15 Perform Action Level 1 DFD

A-10

(user_type)

selection

Valid (selection)

Figure A.16 Offer Menu Options Level 2 DFD

FORM

(selection)

query data

Figure A.17 Handle Selection Level 2 DFD

A-ll

(selection)

Figure A. 18 Do Event Level 3 DFD

(selection)

data

option

Invalid Data

Valid Data

[MAIN MENU] or [REPEAT]

Figure A.19 Create Level 4 DFD

A-12

(selection)

data

option ^adcommK lCANCEiL
or cancel

Figure A.20 Modify Level 4 DFD

[MAIN MENU] or [REPEAT]

(data)

suboption

DATABASE

[REPEAT]

[MAIN MENU]

Figure A.21 Save Level 5 DFD

(selection, data)

suboption

[MAIN MENU]

Figure A.22 Display Level 4 DFD
A-13

(selection, data)

PRINTER

suboption fed submenu tREPEAJL
selection

[MAIN MENU]

Figure A.23 Print Level 4 DFD

(data)

boolean

suboption

DATABASE

[REPEAT]

[MAIN MENU]

Figure A.24 Delete Level 4 DFD

A-14

Object
Model STUDENT

pursues pursued_by

DEGREE

Create Person Table (Figure 3.28)
Create Student and Degree Tables, similar to Figure 3.28

Table
Model

Attribute name
person-ID
degree-ID

pursue Table
Nulls
N
N

Domain
ID
ID

Candidate Key: (person-ID)
Primary Key: (person-ID)
Frequently accessed: (person-ID) (degree-ID)

Create table and indexes for Person (Figure 3.28)
Create table and indexes for Degree (similar to Figure 3.28)

CREATE TABLE pursues
SQL (person-ID ID not null,
Code degree-ID ID not null,

PRIMARY KEY (person-ID, degree-ID)
FOREIGN KEY (degree-ID) REFERENCES Degree,
FOREIGN KEY (person-ID) REFERENCES Person);

Figure A.25 Mapping association to relational database

A-15

Object
Model

STUDENT
pursues pursued_by

DEGREE

♦
OQL

INTERFACE Student
(EXTENT students

KEYS SSAN, last_name)
{

ATTRIBUTE String last_name;
ATTRIBUTE String first_name;
ATTRIBUTE Character middlejnitial;
ATTRIBUTE Integer(9) SSAN;
ATTRIBUTE Integer(4) Box_Number;
RELATIONSHIP Degree pursues INVERSE Degree::pursued_by }

Note: The 1:N pursues relationship will have an effect on Degree.pursuedby.

Figure A.26 Mapping association to object-oriented database

A-16

Student Class Schedule Report:

Student Name
Box Number

Year Quarter: Dates Inclusive

COURSE TITLE
GRD START END

HRSTYP DAYS TIME TIME BLDG ROOM INSTRUCTOR

SCHOOL:

CLASS:

DEGREE:

PROGRAM:

SCHOOL

Name

7 made_up_o f

part of
| " nftor« offered by

COURSE

< Number
Title
CreditHours

DEPARTMENT m

Symbol QUARTER

Term
Year
StartDate
EndDate

has

1 belongs_to
i 1 assigned_to

STUDENT
▼ contains SECTION

meets_in holds
BUILDING

enrolledjn ^^^^ offered
• ii ■

Last Name
First Name
Middle Initial
Box Number

Symbol Number
V

StartTime
EndTime

Days
Room Type < \

(r pursues

pursued_by

DEGREE teaches

Type " FACULTY

Title
Status Last Na Tie

Figure A.27 Student Class Schedule Object Model

A-17

Algorithm to construct student schedule from object diagram:

Build schedule on student's identification and quarter. Input student's social security number and quarter.
Obtain Instance of Student Object and Quarter.

Output Student's First Name, Middle Initial, Last Name, and Box Number.
Output Year, Term, Start Date and End Date for instance of quarter.
(With student id and quarter) Traverse Student-Section-Quarter enrolledin ternary association

to get instances of sections student is enrolled in.
For each section instance:

Output Section Symbol.
Output enrolled_in ternary association linked attribute Grade Type.
Traverse Section-Course belongs_to association to get instance of Course.
Output Course's Number, Title, and Credit Hours.
For each course instance:

Traverse Course-Department offers association to obtain instance of Department.
Output Department symbol.

Traverse Section-Faculty taughtby association to obtain instance of Faculty.
Output Faculty's Last Name.
Traverse Section-Room meetsin association to obtain instance of Room.
Output Building Number.
Output meetsin linked attributes Room, Days, Start Time, and End Time.

Traverse Student-Degree pursues association to obtain instance(s) of Degree.
Output Degree Title (Degree), Status (Class) and Type (Program).
Traverse Student-Department assignedto association to obtain instance of Department.
Traverse Department-School partof aggregation to obtain instance of School.
Output School.

SQL versus OQL Comparison

Assume inputs from user are InputSSAN and InputTerm.
Assume following relational tables exist:

Course_Taught_By(CourseTaughtOOTermCode, Course_Prefix_Code, CourseNumber,
Course_Section, Faculty_SSAN)

Grade_History(CoursePrefixCode, CourseNumber, CourseSection, ScheduleOOTermCode,
SSAN, Credit_Hours, Grade_Type_Code)

Schedule(CoursePrefixCode, CourseNumber, CourseSection, CourseStartTime,
CourseEndTime, CourseJTitle, DayCode, ScheduleOOBuildingCode,
ScheduleOORoom_Code, ScheduleOOTerm_Code)

Person(SSAN, First_Name, LastName, Middlelnitial)
Resident_Student(SSAN, ClassificationCode, AFITDegreeCode, ProgramCode, BoxNumber,

Selected_Type_Code)
Terms(TermCode, Term)
Term_Date(TermCode, Term_Start_Date, Term_End_Date)
AFIT_School_Valid(AFIT_School_Code, AFIT_School)
AFIT_Degree_Valid(AFIT_Degree_Code, AFITJDegree)
Classification_Valid(ClassificationCode, Classification)
Program(ProgramCode, Program)

Pseudo-code (with SQL) to construct student schedule:

A-18

create view View_Person_Resident(SSAN, Last_Name, First_Name, Middlelnitial,
Box_Number) as

(select SSAN, LastName, FirstName, Middlelnitial
from Person, ResidentStudent
where Person.SSAN = Resident_Student.SSAN)

select First_Name||' '||Middle_Initial||']|Last_Name, Box_Number, Term||': ,||Term_Start_Date||'
to' ||Term_End_Date

into Name, Box_Number, Termlnfo
from ViewPersonResident, Terms, TermDate
where View_Person_Resident.SSAN = InputSSAN
and Terms.Term_Code = InputTerm
and Term_Date.Term_Code = InputTerm

Output(Name, BoxNumber, Termlnfo)

select GradeHistory.CoursePrefixCode, Grade_History.Course_Number,
GradeHistory.CourseSection, CourseTitle, Grade_History.Credit_Hours,
Grade_Type_Code, NVL(Day_Code,'TBA'), Course_Start_Time, Course_End_Time,
NVL(ScheduleOOBuilding_Code, 'TBA'), NVL(ScheduleOORoom_Code, 'TBA')

into CoursePrefixCode, Course_Number, CourseSection, CourseTitle, CreditHours,
GradingType, Days, Start_Time, EndTime, Building, Room

from GradeHistory, Schedule
where Grade_History. SSAN = InputSSAN
and Grade_History.ScheduleOOTerm_Code = InputTerm
and Schedule. ScheduleOOTermCode = InputTerm
and GradeHistory.CoursePrefixCode = Schedule. CoursePrefixCode
and GradeHistory.CourseNumber = Schedule.CourseNumber
and Grade_History.Course_Section = Schedule. CourseSection

Output(CoursePrefixCode, CourseNumber, CourseSection, CourseTitle, CreditHours,
GradingType, Days, StartTime, EndTime, Building, Room)

LocalCoursePrefixCode = CoursePrefixNumber
LocalCourse Number = CourseNumber
LocalCourseJSection = CourseSection

select Last_Name
into Instructor

from Person, CourseTaughtBy
where Person. SSAN = Course_Taught_By.Faculty_SSAN
and Course_Taught_By.Course_TaughtOOTerm_Code = InputTerm
and CourseTaughtBy.CoursePrefixCode = LocalCourse PrefixCode
and Course_Taught_By.Course_Number = LocalCourse_Number
and CourseTaughtBy.CourseSection = LocalCourseJSection

Output(Instructor)

select AFIT_School
into School

from AFIT_School_Valid, Resident_Student

A-19

where SSAN = InputSSAN
and AFIT_School_Valid. AFIT_School_Code = Resident_Student.Selected_Type_Code

Output(School)

select AFITDegree
into Degree

from AFIT_Degree_Valid, Resident_Student
where SSAN = InputSSAN
and AFIT_Degree_Valid.AFIT_Degree_Code = Resident_Student.AFIT_Degree_Code

Output(Degree)

select Classification
into Class

from Classification_Valid, ResidentStudent
where SSAN = InputSSAN
and ClassificationValid.ClassificationCode = ResidentStudent.ClassificationCode

Output(Class)

select Program
from Program, Resident_Student
where SSAN = InputSSAN
and Program.Program_Code = ResidentStudent.ProgramCode

Output(Program)

Pseudo-code (with proposed OQL) to construct student schedule:

Assume inputs from user are InputSSAN and InputTerm.

select distinct LocalStudent
from x in Students
where X.SSAN = InputSSAN

Output(LocalStudentFirstName, LocalStudent.Middle Initial, LocalStudentLastName,
LocalStudent. BoxNumber)

select distinct LocalTerm
from x in Quarters
where x.Term = InputTerm. Term
and x. Year = InputTerm. Year

Output(LocalTerm.Term, LocalTerm.Year, LocalTerm. Start_Date, LocalTerm.End_Date)

select ScheduledClasses
from x in Srudents.Registration

y in Quarters.Registration
where X.SSAN = InputSSAN

A-20

and y.Term = InputTerm. Term
and y.Year = InputTerm. Year

for index first(ScheduleClasses) to Iast(ScheduleClasses) loop

element(select LocalCourse
from x in ScheduleClasses[index].belongs_to)

select LINK_ATTRIBUTE
from x in Sections

y in Quarters
z in Students

where x = ScheduleClasses [index]
and y.Term = InputTerm. Term
and y.Year = InputTerm. Year
andz.SSAN = InputSSAN

select LocalDepartment
from x in Course

y in x.offered_by
where x = LocalCourse

Output(LocalDepartment. Symbol, LocalCourse.Number,
ScheduleClasses[index]. Symbol, LocalCourse.Title, LocalCourse.CreditHours,
LINK_ATTRIBUTE.Type)

select LINK_ATTRIBUTES
from x in Sections

y in x.meets_in
where x = ScheduleClassesfindex]

select LocalBuilding
from x in ScheduleClassesfindex]

y in x.meetsin
where x = LocalCourse

Output(LINK_ATTRIBUTES.Days, LINK_ATTRIBUTES.Start_Time>
LINK_ATTRIBUTES.End_Time, LocalBuilding.Number,
LINK_ATTRIBUTES.Room)

element(select Locallnstructor
from x in ScheduleClasses[index].taught_by)

Output(LocalInstructor.Last_Name)

end loop

select distinct LocalDegree
from x in Students

y in x.pursues
where x.SSAN = InputSSAN

select distinct LocalDepartment
from x in Students

A-21

y in x.assignedto
where x.SSAN = InputSSAN

select distinct LocalSchool
from x in Students

y in x.assigned_to
z in y.partof

where x.SSAN = InputSSAN

Output(LocalSchool. School, LocalDegree.Title, LocalDegree. Status, LocalDegree.Type)

Pseudo-code (with proposed OQL) to construct student schedule:

Assume inputs from user are InputSSAN and InputTerm.

LocalStudent : Student := students[SSAN = InputSSAN]

Output(LocalStudent.First_Name, LocalStudentMiddlelnitial, LocalStudent.LastName,
LocalStudent. Box_Number)

LocalTerm : Quarter := quarter[Term = InputTerm. Term, Year = InputTerm. Year]

Output(LocalTerm.Term, LocalTerm.Year, LocalTerm. Start_Date, LocalTerm.End_Date)

ScheduledClasses : set(" Section")
ScheduledClasses := sections{ classroster Student[SSAN = InputSSAN]

and offeredin Quarter[Term = InputTerm. Term, Year = InputTerm. Year] }

LocalCourse
LocalDepartment
LocalBuilding
Locallnstructor

Course
Department
Building
Faculty

for index in first(ScheduleClasses).. iast(ScheduleClasses) loop
LocalCourse := courses[has Sectionf ScheduledClasses[index]]]
LocalDepartment := departments[offer Course[LocalCourse]]
LocalBuilding := buildings[hold Section[ScheduledClasses [index]]]
Locallnstructor := faculty[teaches Section[ScheduledClasses[index]]]
LrNK_ATTRffiUTE := TERNARY_RELATIONSHIP[Student[SSAN = InputSSAN],

Quarter[Term = InputTerm. Term, Year = InputTerm. Year],
Sectionf ScheduledClasses[index]]

LrNK_ATTRIBUTES := LINK_RELATIONSHIP[Section[ScheduledClasses[index]],
Building! LocalBuilding]]

Output(LocalDepartment. Symbol, LocalCourse.Number,
ScheduledClasses[index]. Symbol, LocalCourse.Title, LocalCourse. CreditHours,
LINK_ATTRIBUTE.Type, LINK_ATTRIBUTES.Days,
LINK ATTRIBUTES.Start_Time, LINK_ATTRIBUTES.End_Time,

A-22

LocalBuilding.Number, LINKATTRIBUTES.Room,
LocalInstructor.Last_Name)

end loop

LocalDegree := degree[pursued_by[Student = LocalStudent]]
LocalDepartment := department! has[Student = LocalStudent]]
LocalSchool := school[made_up_of[Department = LocalDepartment]]

Output(LocalSchool. School, LocalDegree.Title, LocalDegree. Status, LocalDegree.Type)

A-23

Class Roster:

SCHOOL:
Year Quarter: Dates Inclusive

COURSE TITLE HRS INSTRUCTOR
START END

DAYS TIME TIME BLDG ROOM

STUDENTS rLAST NAME. FIRST M.I.) SSAN TYPE PROGRAM GRADUATION CODE

SCHOOL

Name

\ made_up_of

offered_by

COURSE

i
pan_or

Number
1 Title

CreditHours

DEPARTMENT
offers

1

Symbol QUARTER

Term
Year
StartDate
EndDate

graduate 3

i

has

1 belongs_to assignedjo
1 1 , A^

STUDENT Symbol ▼ contains

^^JL^^ offered

SECTION meets in holds BUILDING
• ii •

Last Name
First Name
Middle Initial
SSAN
Program_Sequence_Code

enrolledjn Symbol
w

Number
9

StartTime
EndTime
Days

Room Type k

9 pursues

pursued_by teaches

DEGREE

■■

FACULTY

Program_Code Last Name

Figure A.28 Class Roster Object Model

A-24

Algorithm to construct class roster from object diagram:

Build class roster on course identification (Department Symbol, Course Number, Course Section) and
Quarter. Input course identification and quarter.

Obtain Instance of Department, Course, Section, and Quarter.
Output Department Symbol, Course Number, Section Symbol, Course Title, and CreditHours.
Traverse Department-School partof aggregation to obtain instance of School.
Output School Name.
Output Year, Term, Start Date and End Date for instance of quarter.
Traverse Section-Faculty taughtby association to obtain instance of Faculty.
Output Faculty's Last Name.
Traverse Section-Building meetsin association to obtain instance of Building.
Output Building Number.
Output meetsin linked attributes Days, Start Time, End Time, and Room.
(With Course Section and quarter) Traverse Student-Section-Quarter ternary association to get

instances of students enrolled in section for the quarter.
For each student instance:

Output Last Name, First Name, Middle Initial, SSAN, and ASC_Code.
Output Student-Section-Quarter ternary association link attribute Type.
Traverse Student-Degree pursues association to obtain instance of Degree.
Output ProgramCode.
Traverse Student-Quarter graduates association to obtain instance of Quarter.
Output Year and link attribute Symbol.

SQL versus OQL Comparison

Assume inputs from user are InputCourse Prefix, InputCourse Number,
InputCourse Section, and InputTerm.
Assume following relational tables exist:

Course_Taught_By(CourseTaughtOOTermCode, CoursePrefixCode, CourseNumber,
Course_Section, Faculty_SSAN)

Grade_History(CoursePrefixCode, CourseNumber, Course_Section, ScheduleOOTermCode,
SSAN, CreditJHours, Grade_Type_Code)

Schedule(CoursePrefixCode, CourseNumber, CourseSection, Course_Start_Time,
CourseEndTime, CourseTitle, DayCode, ScheduleOOBuildingCode,
ScheduleOORoom_Code, ScheduleOOTerm_Code, AFIT_School_Code)

Person(SSAN, FirstName, Last_Name, Middlelnitial)
Resident_Student(SSAN, ProgramCode, ClassCode, ProgramYearPrefix)
Terms(Term_Code, Term)
Term_Date(Term_Code, TermStartJDate, Term_End_Date)
AFIT_School_Valid(AFIT_School_Code, AFIT_School)
Program_Sequences(Program_Code, ClassCode, YearPrefix, ProgramSequenceCode)

Pseudo-code (with SQL) to construct class roster:

select AFITSchool
into School

from AFIT_School_Valid, Schedule
where AFIT_School_Valid.AFIT_School_Code = Schedule.AFIT_School_Code

Output(School)

A-25

select SSAN, CourseJTitle, Grade_History.Credit_Hours, Grade_Type_Code,
NVL(Day_Code,'TBA'), Course_Start_Time, Course_End_Time,
NVL(ScheduleOOBuilding_Code, 'TBA'), NVL(ScheduleOORoom_Code, 'TBA')

into CoursePrefixCode, CourseNumber, CourseSection, CourseTitle, CreditHours,
GradingType, Days, Start_Time, EndTime, Building, Room

from Grade_History, Schedule
where Grade_Histoiy.ScheduleOOTerm_Code = InputTerm
and Schedule. ScheduleOOTerm_Code = InputTerm
and GradeHistory.CoursePrefixCode = InputCourse Prefix
and GradeHistory.CourseNumber = InputCourse ^Number
and GradeHistory.CourseSection = InputCourse Section
and Schedule.CoursePrefixCode = GradeHistory.CoursePrefixCode
and Schedule.CourseNumber = GradeHistory.CourseNumber
and Schedule. Course_Section = Grade_History.Course_Section

Output(CoursePrefixCode, CourseNumber, CourseSection, CourseTitle, CreditHours,
SSAN, Grading_Type, Days, Start_Time, End_Time, Building, Room)

Local SSAN = Grade_History.SSAN

create view View_Person_Resident(SSAN, LastName, FirstName, Middlelmtial,
Class_Code, ProgramCode, ProgramYearPrefix) as

(select SSAN, LastName, FirstName, Middlelmtial, Class_Code, ProgramCode,
ProgramYearPrefix
from Person, ResidentStudent
where Person. SSAN = Resident_Student. SSAN)

select First_Name||' 'IIMiddleJrutialll' '||Last_Name, Class_Code, Term||': '||Term_Start_Date|r to
' ||Term_End_Date

into Name, ClassCode, Termlnfo
from View_Person_Resident, Terms, TermDate
where View_Person_Resident. S SAN = LocalSSAN
and Terms.Term_Code = InputTerm
and TermDate.TermCode = InputTerm

Output(Name, Termlnfo, ClassCode)

select LastName
into Instructor

from Person, Course_Taught_By
where Person. SSAN = Course_Taught_By.Faculty_SSAN
and Course_Taught_By.Course_TaughtOOTerm_Code = InputTerm
and Course_Taught_By.Course_Prefix_Code = InputCourse Prefix
and Course_Taught_By.Course_Number = InputLocalCourse Number
and Course_Taught_By.Course_Section = InputCourse Section

Output(Instructor)

select ProgramSequenceCode
from ProgramSequences, ViewPersonResident
where View_Person_Resident.SSAN = LocalSSAN
and ProgramSequences.ProgramCode = View_Person_Resident.Program_Code
and Program_Sequences.Class_Code = View_Person_Resident.Class_Code

A-26

and ProgramSequences.YearPrefix = ViewPersonResident.YearPrefix
Output(Program_Sequence_Code)

Pseudo-code (with proposed OQL) to construct class roster:

Assume inputs from user are InputCourse Prefix, InputCourse Number,
InputCourse Section, and InputTerm.

select distinct LocalSchool
from x in Department

y in x.partof
where x. Symbol = InputCourse Prefix

Output(LocalSchool. School)

select distinct LocalTerm
from x in Quarters
where x.Term = InputTerm. Term
and x. Year = InputTerm. Year

Output(LocalTerm.Term, LocalTerm.Year, LocalTerm. Start_Date, LocalTerm.End_Date)

select distinct LocalDepartment
from x in Departments
where x. Symbol = InputCourse Prefix

select distinct LocalCourse
from x in Courses
where x.Number = InputCourse _Number

select distinct LocalSection
from x in Sections
where x. Symbol = InputCourse Section

LocalSectionOutput(LocalDepartment. Symbol, LocalCourse.Number, LocalSection. Symbol,
LocalCourse. Title, LocalCourse. CreditHours)

element(select Locallnstructor
from x in LocalSection.taught_by)

Output(LocalInstructor.Last_Name)

select LINKATTRIBUTES
from x in Sections
y in x.meetsin
where x = InputCourse Section

Output(LINKATTRIBUTES.Days, LrNKATTRIBUTES.Start_Time,
LINKATTRIBUTES.End_Time, LINKATTRIBUTES.Room)

select LocalBuilding
from x in Sections
y in x.meetsin
where x = InputCourse Section

Output(LocalBuilding.Number)

A-27

select StudentRoster
from x in Sections.Registration

y in Quarters.Registration
where x. Symbol = InputCourse Section
and y.Term = InputTerm. Term
and y. Year = InputTerm. Year

for index first(StudentRoster) to last(StudentRoster) loop

Output(StudentRoster[index] .LastName, StudentRoster[index] .FirstName,
StudentRoster[index].Middle_Initial, StudentRoster[index].SSAN,
StudentRoster[index].Program_Sequence_Code)

select LrNK_ATTRTBUTE
from x in Sections

y in Quarters
z in Students

where x. Symbol = InputCourse Section
and y.Term = InputTerm. Term
and y. Year = InputTerm. Year
and z = StudentRoster[index]

Output(LINKATTRIBUTE.Type)

select LocalDegree
from x in Students

y in x.pursues
where x = StudentRosterfindex]

select LocalQuarter
from x in Students

y in x. graduates
where x = StudentRosterpndex]

select LINKATTRIBUTE
from x in Students

y in x. graduates
where x = StudentRoster[index]

Output(LocalDegree.Program_Code, LocalQuarter. Year, LINKATTRIBUTE. Symbol)

end loop

Pseudo-code (with proposed OQL) to construct class roster:

Assume inputs from user are InputCourse Prefix, InputCourse Number,
InputCourse Section, and InputTerm.

LocalSchool := school[made_up_of Department Symbol = InputCourse Prefix]]
Output(LocalSchool. School)

LocalTerm : Quarter := quarter[Term = InputTerm. Term, Year = InputTerm. Year'_

A-28

Output(LocalTerm.Term, LocalTerm.Year, LocalTerm.StartDate, LocalTerm.EndDate)

LocalDepartment: Department := departments[Symbol = InputCourse Prefix]
LocalCourse : Course := courses[Number = InputCourse ^Number]
LocalSection : Section:= sections[Symbol = InputCourse JSection]
Output(LocalDepartment. Symbol, LocalCourse.Number, LocalSection. Symbol,

LocalCourse.Title, LocalCourse. CreditHours)

Locallnstructor : Faculty := faculty[teaches Section[LocalSection]
Output(Locallnstructor.LastName)

LocalBuilding := buildings[hold Sectionf LocalSection]]
Output(LocalBuilding.Number)

LINK_ATTRIBUTES := LINK_RELATIONSHTP[Section[LocalSection],
Buildingf LocalBuilding]]

Output(LINK_ATTRIBUTES.Days, LINK_ATTRIBUTES.Start_Time,
LINK_ATTRIBUTES.End_Time, LINK_ATTRIBUTES.Room)

StudentRoster : set(" Student")
StudentRoster := students{ enrolledin Section[Symbol = InputCourse Section]

and offered_in Quarter[Term = InputTerm. Term, Year = InputTerm. Year] }

for index in first(StudentRoster).. last(StudentRoster) loop

Output(StudentRosterpndex] .Last_Name, StudentRoster[index] .FirstName,
StudentRoster[index] .Middlelnitial, StudentRoster[index]. SS AN,
StudentRoster[index] .ProgramSequenceCode)

LrNK_ATTRTBUTE := TERNARY_RELATIONSHIP[Student[StudentRoster[index]
Quarter[Term = InputTerm. Term, Year = InputTerm. Year],
Section[LocalSection]

Output(LINK_ATTRIBUTE.Type)

LocalDegree
LocalQuarter
LINK ATTR

Degree := degree[pursuedby Student[StudentRoster[index]]
Quarter := quarter[graduates Student[StudentRoster[index]]

= LINK_RELATIONSHTP[Section[ScheduledClasses[index]],
Building[LocalBuilding]]

Output(LocalDegree.ProgramCode, LocalQuarter. Year, LINKATTR. Symbol)

end loop

A-29

Assign Student Academic Advisor Form:

Student:
Last Name. First Name MI SSAN Rank Graduation Code

Academic Advisor:
Last Name First Name MI SSAN Rank Department

DEPARTMENT

QUARTER Name

Year
employs

J graduates Symbol

< I advised_by advises
assigned_to

STUDENT FACULTY 9

Last Name
First Name
Middle Initial
SSAN
Rank

Last Name
First Name
Middle Initial
SSAN
Rank

I ' pursues

pursued_by

DEGREE

Program_Code

Figure A.29 Assign Student Academic Advisor Object Model

Algorithm to construct assign student academic advisor form from object diagram:

Build assign student academic advisor form on student identification. Input Student's social security
account number. (Note: Similar procedures followed given instructor's identification.)

Obtain Instance of Student.
Output Student's Last Name, First Name, Middle Initial, SSAN, and Rank.
Traverse Student'Degree pursues association to obtain instance of Degree.
Output ProgramCode.
Traverse Student-Quarter graduates association to obtain instance of Quarter.
Output Year and link attribute Symbol.
Traverse Student-Faculty advises association to obtain instance of Faculty
Output Faculty's Last Name, First Name, Middle Initial, SSAN, and Rank.
(With Faculty instance) Traverse Faculty-Department association for instance of Department
Output Department Name.

A-30

SQL versus OQL Comparison

Assume input from user is InputSSAN (Student's SSAN).
Assume following relational tables exist:

Faculty_Civilian(SSAN, OccupationSeriesCode)
Faculty_History(SSAN, AcademicRankCode)
Faculty_Type_Valid(Faculty_Type_Code, Faculty_Type)
Rank_History(SSAN, Grade_Rank_Abbrev)
Person(SSAN, FirstName, LastName, Middlelnitial, DepartmentCode)
Resident_Student(SSAN, Class_Code, Faculty_Advisor_SSAN)

Pseudo-code (with SQL) to construct assign advisor to student with identification.:

create view View_Person_Resident(SSAN, LastName, First_Name, Middlelnitial,
Class_Code, FacultyAdvisorSSAN) as

(select Person. SSAN, LastName, FirstName, Middlelnitial, ClassCode,
Faculty_Advisor_SSAN
from Person, ResidentStudent
where Person. SSAN = Resident_Student.SSAN)

select First_Name||' '||Middle_Initial|}' '||Last_Name, Class_Code, SSAN, Grade_Rank_Abbrev,
Faculty_Advisor_SSAN

into Name, Class_Code, SSAN, Rank, AdvisorSSAN
from View_Person_Resident, RankHistory
where ViewPersonResident.SSAN = InputSSAN
and View_Person_Resident. SSAN = Rank_History. SSAN

Output(Name, SSAN, Rank, Class_Code)

select SSAN, LastName, FirstName, Middlelnitial, DepartmentCode,
AcademicRankCode

into SSAN, Last_Name, FirstName, Middlelnitial, Department, AcademicRank
from Person, FacultyHistoiy
where Person. SSAN = FacultyJHistory.SSAN
and Person. SSAN = Advisor_SSAN

Output(Last_Name, FirstName, Middle_Initial, SSAN, Department)

select FacultyJType
from Faculty_Type_Valid
where FacultyTypeCode = AcademicRank

if FacultyJType is Military then
select Grade_Rank_Abbrev
into Rank

from Person, RankHistory
where Person. SSAN = Rank History. SSAN
and Person. SSAN = Faculty_Advisor_SSAN

Output(Rank)
else

select OccupationSeriesCode
into Rank

A-31

from Person, FacultyCivilian
where Person. S SAN = Faculty_Civilian.SSAN
and Person. SSAN = Faculty_Advisor_SSAN

Output(Rank)
end if

Pseudo-code (with proposed OQL) to construct assign advisor to student with id:

Assume input from user is InputSSAN (Student's SSAN).

select distinct LocalStudent
from x in Students
where x.SSAN = InputSSAN

Output(LocalStudent.LastName, LocalStudentFirstName, LocalStudent.Middlelnitial,
LocalStudent. SSAN, LocalStudentRank)

select distinct LocalDegree
from x in Students

y in x.pursues
where X.SSAN = InputSSAN

select distinct LocalQuarter
from x in Students

y in x. graduates
where x.SSAN = InputSSAN

select ATTRIBUTE
from x in Students

y in x. graduates
where x.SSAN = InputSSAN

Output(LocalDegree.Program_Code, LocalQuarter.Year, ATTRIBUTE. Symbol)

select distinct LocalFaculty
from x in Students

y in x.advisedby
where x. SSAN = InputSSAN

Output(LocalFaculty.Last_Name, LocalFaculty.First_Name, LocalFaculty.Middle_Initial,
LocalFaculty. SSAN, LocalFaculty.Rank)

select distinct LocalDepartment
from x in Faculty

y in x.assigned_to
where x = LocalFaculty

Output(LocalDepartmentName)

Pseudo-code (with proposed OQL) to assign academic advisor to student:

Assume input from user is InputSSAN (Student's SSAN).

LocalStudent : Student := student[SSAN = InputSSAN]]

A-32

Output(LocalStudent.Last_Name, LocalStudent.First_Name, LocalStudent.Middle_Initial,
LocalStudent. SS AN, LocalStudent.Rank)

LocalDegree : Degree := degree[pursuedby Student[LocalStudent]
LocalQuarter : Quarter := quarter[graduates Student[LocalStudent]
ATTRIBUTE := LINK_RELATIONSHIP[Student[LocalStudent],

Quarter[LocalQuarter]]
Output(LocalDegree.ProgramCode, LocalQuarter. Year, ATTRIBUTE. Symbol)

LocalAdvisor : Faculty := faculty[advises Student[LocalStudent]]
Output(LocalAdvisor.Last_Name, LocalAdvisor.FirstName, LocalAdvisor.Middlelnitial,

LocalAdvisor. SSAN, LocalAdvisor.Rank)

LocalDepartment: Department := department[employs Faculty[LocalAdvisor]
Output(LocalDepartment.Name)

A-33

AFIT Course Catalog:

SCHOOL:
Year Quarter: Dates Inclusive

COURSE TITLE
CREDIT ACTIVITY MAX
HOURS TYPE ENROLL

NOTES
CODE NOTES

QUARTER

Term
Year
StartDate
EndDate

SCHOOL

Name

f made_up_of offers

<
part of

offers offered_by
offered in

DEPARTMENT COURSE

Symbol Number
Title
CreditHours
Activity_Type
MaxEnrollment
Note Code
Notes

Figure A.30 AFIT Course Catalog Object Model

A-34

Student Transcript:

STUDENT NAME (LAST NAME. FIRST M.i.1 SSAN PROGRAM CLASS CODE ADVISOR

QUARTER YEAR

COURSE TITLE INSTRUCTOR CREDIT HRS GRADE POINTS

QUARTER HOURS QUARTER GPA CUMULATIVE HOURS CUMULATIVE GPA

offered_by offers

DEPARTMENT DEGREE
i^uuKae •

Number
Title
CreditHours

Symbol Program_Code

pursued_by

graduates QUARTER

k i

I i
Term
Year

k pursues
Symbol

i
~ belongs__to

STUDENT
▼ contains SECTION

Last Name
First Name
Middle Initial
SSAN
Proflram_SequencB_Cod»

Points
Quarter_Hours
Quarter_GPA
Cum_Hours
Cum_GPA

enrolled_in ^J^^ offered Symbol *

Grade (

es

taught_by

teaches advis

FACULTY

- Last Name

Figure A.31 Student Transcript Object Model

A-35

Person Structure Definition

Object Name: Person

Object Number:

Object Description: General model of a person

Date: 07/28/94
History: Thesis

Author: Capt Douglas Wu

Superclass: None

Components: None

Context: None

Attributes:
lastname String Person's last name.
firstname
initial

String
character

Person's first name.
Person's middle initial.

nameprefix
namesuf fix
ssan
gender
birthdate

prefix type
suffix type
String
{male, female}
date type

Person's name prefix.
Person's name suffix.
Social Security Account Number

Date of birth.
loginname
logindate

String
date type

Person's computer login name.
Date of last activity.

Constraints:

Z Static Schema:
Let SSAN_TYPE be the set of all Social Security Account Numbers.
Let DATE_TYPE be the set of all possible dates.
Let PREFIX-TYPE be the set of all possible name prefixes.
Let SUFFIX_TYPE be the set of all possible name suffixes.

, Person.
lastname : String
firstname : String
initial: Character
nameprefix : PREFIX-TYPE
namesuf fix : SUFFIX-TYPE
ssan : String
gender : {male, female}
birthdate : DATE-TYPE
loginname : String
logindate : DATE-TYPE

A-36

Faculty Structure Definition

Object Name: Faculty

Object Number:

Object Description: General model of faculty class.

Date: 07/28/94
History: Thesis

Author: Capt Douglas Wu

Superclass: Person

Components: None

Context: None

Attributes:
marital-status
race
ethnic-group
religion
badge-number
duty-phone
duty-address
home-phone
home-address
e — mail-address

academic-advisees
thesis-advisees
academic-rank-date
academic-rank-code
academic-step

Constraints:

{single, married, divorced}
race type
ethnic type
religion type
badge number type
phone type
address type
phone type
address type
String

Person set type
Person set type
date type
academic rank type
academic step type

Race.
Ethnicity.
Religion.
Badge number.
Duty telephone number.
Duty address.
Home telephone number.
Home address.
Electronic mail address.

set of pointers to students,
set of pointers to students,
date of academic rank,
academic rank,
academic step.

Z Static Schema:
Let RACE_TYPE be the set of all race types.
Let ETHNIC_TYPE be the set of all ethnic types.
Let RELIGION_TYPE be the set of all religions.
Let BADGE_NUMBER_TYPE be the set of all possible badge numbers.
Let PHONE_TYPE be the set of all possible phone numbers.
Let ADDRESS_TYPE be the set of all valid addresses.

Let PERSON_PTR_TYPE be a pointer to a particular person.
Let PERSON_PTR_SET_TYPE be a set of pointers to particular people.
Let COURSE_PTR_SET_TYPE be a set of pointers to a quarter's courses.
Let ACADEMIC_RANK_TYPE be a set of valid academic ranks.
Let ACADEMIC_STEP_TYPE be a set of valid academic steps.

A-37

. Faculty
maritalstatus : {single, married, divorced}
race : RACEJTYPE
ethnic-group-. ETHNIC-TYPE
religion : RELIGION-TYPE
badge-number : BADGE-NUMBER-TYPE
duty-phone : PHONEJTYPE
duty-address : ADDRESS-TYPE
home-phone : PHONE-TYPE
home-address : ADDRESS-TYPE
e — mail-address : String
academic-advisees : PERSON-PTR-SETJTYPE
thesis-advisees : PERSON-PTRSET-TYPE
academic-rank-date : Person.DATEJTYPE
academic-rank-code : ACADEMIC-RANK-TYPE
academic-step: ACADEMIC-STEP-TYPE

A-38

Student Structure Definition

Object Name: Student

Object Number:

Object Description: General model of a student

Date: 07/28/94
History: Thesis

Author: Capt Douglas Wu

Superclass: Person

Components: None

Context: None

Attributes:
marital-status
race
ethnic-group
religion
badge-number
duty-phone
duty-address
home-phone
home-address
e — mail-address

{single, married, divorced}
race type
ethnic type
religion type
badge number type
phone type
address type
phone type
address type
String

academic-advisor Person Pointer
thesis-advisor
thesis-readers
ed-jplan
quarter schedule

Constraints:

Person Pointer
Person set type
quarter set type
Course Pointer set

Race.
Ethnicity.
Religion.
Badge number.
Duty telephone number.
Duty address.
Home telephone number.
Home address.
Electronic mail address.

Pointer to academic advisor.
Pointer to thesis advisor,
set of thesis readers,
set of academic quarters,
set of pointers to courses.

Z Static Schema:
Let RACE_TYPE be the set of all race types.
Let ETHNIC_TYPE be the set of all ethnic types.
Let RELIGION_TYPE be the set of all religions.
Let BADGE_NUMBER_TYPE be the set of all possible badge numbers.
Let PHONE_TYPE be" the set of all possible phone numbers.
Let ADDRESS_TYPE be the set of all valid addresses.

Let PERSON_PTR_TYPE be a pointer to a particular person.
Let PERSON_PTR_SET_TYPE be a set of pointers to particular people.
Let QUARTER_SET_TYPE be a set of pointers to academic quarters.
Let COURSE_PTR_SET_TYPE be a set of pointers to a quarter's courses.

A-39

. Student
maritalstatus : {single, married, divorced}
race : RACEJTYPE
ethnic-group-. ETHNIC-TYPE
religion : RELIGION-TYPE
badge-number : BADGE-NUMBER-TYPE
duty-phone : PHONE-TYPE
duty-address : ADDRESS-TYPE
home-phone : PHONE-TYPE
home-address: ADDRESS-TYPE
e — mail-address : String
academic-advisor : PERSONJPTRJTYPE
thesis-advisor : PERSON-PTRJTYPE
thesis-readers : PERSON-PTR-SETJTYPE
ecLplan : QUARTERS ET-TYPE
quarter-schedule : COURSE-PTR-SET-TYPE

A-40

MilitaryFaculty Structure Definition

Object Name: MilitaryFaculty

Object Number:

Object Description: General model of a military faculty

Date: 07/29/94
History: Thesis

Author: Capt Douglas Wu

Superclass: Faculty

Components: None

Context: None

Attributes:
rank
branch
dateofrank
AFSC
aeroratingcode
dateof commission
dateof separation

manningcode
DEROSdate

Constraints:

rank type
branch type
date type
AFSC type
rating type
date type
date type

date type

Military rank.
Branch of service.
Date of rank.
AFSC code.
Aero rating.
Date of commission.
Date of separation.

Z Static Schema:
Let RANK_TYPE be the set of military rank types.
Let BRANCH-TYPE be the set of all armed service branches types.
Let DATE_TYPE be the set of all dates.
Let APSC-TYPE be the set of all possible AFSC codes.
Let AERO_RATING_TYPE be the set of all aero ratings.

,_ MilitaryFaculty
rank : RANK-TYPE
branch: BRANCH-TYPE
dateofrank : DATE-TYPE
AFSC : AFSCJTYPE
aeroratingcode : AERO-RATING-TYPE
dateof commission : DATE-TYPE
dateof separation : DATE-TYPE
manningcode :
DEROSdate :

A-41

CivilianFaculty Structure Definition

Object Name: CivilianFaculty

Object Number:

Object Description: General model of a civilain faculty

Date: 08/03/94
History: Thesis

Author: Capt Douglas Wu

Superclass: Faculty

Components: None

Context: None

Attributes:
grade grade type Civilian grade.
dateof grade date type Date of grade.

manningcode
DEROSdate date type

Constraints:

Z Static Schema:
Let GRADE-TYPE be the set of civilain grade types.
Let DATE_TYPE be the set of all dates.

. CivilianFaculty.
grade : GRADE-TYPE
dateof grade : DATE-TYPE
manningcode :
DEROSdate :

A-42

CivilianStudent Structure Definition

Object Name: CivilianStudent

Object Number:

Object Description: General model of a civilian student.

Date: 08/03/94
History: Thesis

Author: Capt Douglas Wu

Superclass: Student

Components: None

Context: None

Attributes:
grade grade type Civilian grade.
dateof grade date type Date of grade.

manningcode
DEROSdate date type

Constraints:

Z Static Schema:
Let GRADE_TYPE be the set of civilain grade types.
Let DATE_TYPE be the set of all dates.

. CivilianStudent.
grade : GRADEJTYPE
dateof grade : DATE-TYPE
manningcode :
DEROSdate :

A-43

MilitaryStudent Structure Definition

Object Name: MilitaryStudent

Object Number:

Object Description: General model of a military student

Date: 07/29/94
History: Thesis

Author: Capt Douglas Wu

Superclass: Student

Components: None

Context: None

Attributes:
rank
branch
dateofrank
AFSC
aeroratingcode
dateof commission
dateof separation

manningcode
DEROSdate

Constraints:

rank type
branch type
date type
AFSC type
rating type
date type
date type

date type

Military rank.
Branch of service.
Date of rank.
AFSC code.
Aero rating.
Date of commission.
Date of separation.

Z Static Schema:
Let RANK-TYPE be the set of military rank types.
Let BRANCH-TYPE be the set of all armed service branches types.
Let DATE_TYPE be the set of all dates.
Let AFSC-TYPE be the set of all possible AFSC codes.
Let AERO_RATING_TYPE be the set of all aero ratings.

. MilitaryStudent
rank : RANK-TYPE
branch: BRANCH -TYPE
dateofrank : DATE-TYPE
AFSC : AFSC-TYPE
aeroratingcode : AERO-RATING-TYPE
dateofcommission : DATE-TYPE
dateof separation : DATE-TYPE
manningcode :
DEROSdate :

A-44

InternationalStudent Structure Definition

Object Name: InternationalStudent

Object Number:

Object Description: General model of an international student.

Date: 08/03/94
History: Thesis

Author: Capt Douglas Wu

Superclass: Student

Components: None

Context: None

Attributes:
WSCN WSCN type
ITO

Constraints:

Z Sij&iiic Scheinet"
Let WSCN_TYPE be the set of WSCN types.
Let DATE_TYPE be the set of all dates.

,_ InternationalStudent
WSCN : WSCNJTYPE
ITO:

A-45

Course Structure Definition

Object Name: Course

Object Number:

Object Description: General model of an AFIT course class.

Date: 07/29/94
History: Thesis

Author: Capt Douglas Wu

Superclass: None

Components: None

Context: None

Attributes:
pre fix
number
section
title
instructor
students
instructor contacthr
labcontact hour s
mineredithours
maxcredithours
classstarttime
classendtime
classmeetingdays
classroom
labstarttime
labendtime
labmeetingdays
labroom
term
quarter
yearprefix

Constraints:

String
integer
character
String
Person pointer
Person pointer set
integer
integer
integer
integer
time type
time type
day type set
Room pointer
time type
time type
day type
Room pointer
term type
quarter type
Year type

Course prefix.
Course number.
Course section.
Course title.
Pointer to instructor.
Set of pointers to students.
Class time.
Lab time.
minimum credit hours.
maximum credit hours.
Time class starts.
Time class ends.
Set of days class meets.
Pointer to classroom.
Time lab starts.
Time lab ends.
Day lab meets.
Pointer to lab.
Term scheduled.
Quarter.
Year prefix.

Z Static Schema:

A-46

Let PERSON-PTR be a pointer to a person.
Let PERSON_PTR_SET be the set of pointers to people.
Let TIME be the data type of all valid times.
Let DAY_SET be a set of days.
Let ROOM_PTR be a pointer to a room.
Let DAY_TYPE be a data type for days.
Let TERM_TYPE be a data type for academic term.
Let QUARTER-TYPE be a data type for academic quarter.
Let YEAR-TYPE be a data type for year.

, Course
prefix : String
number : Af
section : character
title : String
instructor : PERSON^PTR
students : PERSON-PTRSET
instructor-contact—kr : Af
lab-contact-hours : Af
min-credit-hours : Af
max-credit-hours: Af
class-start-time : TIME
class-endJtime : TIME
class-meeting-days : DAY SET
classroom : ROOMJTR
lab-start-time : TIME
lab-encLtime : TIME
lab-meeting-days : DAY-TYPE
lab-room: ROOM-PTR
term: TERM-TYPE
quarter : QUARTER-TYPE
year-prefix : YEARTYPE

A-A 7

Book Structure Definition

Object Name: Book

Object Number:

Object Description: General model of a book class.

Date: 07/29/94
History: Thesis

Author: Capt Douglas Wu

Superclass: None

Components: None

Context: None

Attributes:
title
author
copyrightyear
publisher
usedbycourses

Constraints:

String
String
integer
String

Book title.
Book author.
Book copyright year.
Book publisher.

Course pointer set Set of pointers to course.

Z Static Schema:
Let COURSE_PTR_SET be the set of pointers to courses requiring book.

.Book
title : String
author : String
copyright : Af
publisher : String
used-by-courses : COURSE-PTRSET

A-48

Building Structure Definition

Object Name: Building

Object Number:

Object Description: General model of a building class.

Date: 08/03/94
History: Thesis

Author: Capt Douglas Wu

Superclass: None

Components: None

Context: None

Attributes:
name String
number integer

Building name.
Building number.

rooms Room pointer set Pointers set to rooms in building.

Constraints:

Z Static Schema:
Let ROOM_PTR_SET be the set of pointers to rooms in building.

. Building
name : String
number : Af
rooms : ROOM-PTRJ5ET

A-49

Room Structure Definition

Object Name: Room

Object Number:

Object Description: General model of a room class.

Date: 08/03/94
History: Thesis

Author: Capt Douglas Wu

Superclass: Building

Components: None

Context: None

Attributes:
number
size
seats
chalkboard
whiteboard
viewgraphscreen
viewgraphprojector
usedbycourses

Room number.
Room dimensions in feet.
Number of seats.

integer
dimension type
integer
boolean
boolean
boolean
boolean
Course pointer set Set of pointers to course

Constraints:

Z Static Schema:
Let DIMENSION-TYPE be a pair of integers (width and legnth) of a room.
Let COURSE_PTR_SET be the set of pointers to courses requiring book.

.Room
number : Af
size : DIMENSION-TYPE
seats : Af
chalkboard: boolean
whiteboard: boolean
viewgraphscreen : boolean
viewgraphprojector : boolean
usedJby-courses : COURSE-PTRSET

A-50

APPENDIX B

STARS Relational Tables provided by Katherine Hale, 16 June 1994

Primary keys are underlined and foreign keys emphasized.

Academic_Action_Valid(Academic Action Code. Academic_Action, Input_Date, Login_Name)
Academic_Ed_Status_Valid(Academic Ed Status Code. Academic_Ed_Status, Input_Date,

LoginName)
Academic_Rank_Valid(Academic Rank Code. AcademicRank, Input_Date, Login_Name)
Activity_Type_Valid(Activity Type Code. Activity_Type, Login_Name, Input_Date)
Address(SSAN. Address_Type Code, Firm_Name_Office_Symbol, Additional AddressJnformation,

Street_Address, City, State_Code, Zipcode, Zipcode_Extension, Street Type Code,
AddressRoomTypeCode, Address_Room_Type_Number, Area_Code, Phone_Number,
Address_Effective_Date, DSNPrefix, LoginName, Revision_Name, RevisionDate, Country,
LoginDate, Address_Line_l, Address_Line_2, Address_Line_3, CountryCode)

Address_Room_Type_Code_Valid(Address Room Type Code. Address_Room_Type_Code_Des,
InputDate, InputName, RevisionDate, RevisionName)

Address_Type_Valid(Address Type Code. AddressType, Input_Date, Login_Name)
Admission Type Valid(Admission Type Code. Admission_Type, LoginName, InputDate)
AFIT_Degree_Valid(AFIT Degree Code. AFITJDegree, Input_Date, Login_Name, Type Degree Code,

ABETAccreditedlndicator)
AFSC_Valid(AFSC Code. AFSC, Enlistedjndicator, Input_Date, LoginName)
Award_Valid(Award Code. Award, InputDate, LoginName)
Box_Number_Valid(Box Number. LoginName, InputDate)
Branch_Service_Valid(Branch Service Code. BranchService, Input_Date, LoginName,

MPCBranchServiceAbbrev)
Building_Valid(Building Code. Building, Input_Date, LoginName)
Career Pointer Valid(Career PointerCode. CareerPointer, Input_Date, LoginName)
Countries_Attending_AFIT (AFSAT Country Code. Country, CountryCount)
Country_Valid(Country Code. Country, Login_Name, Input_Date)
Course_Books(Course Prefix Code. Course Number. Course Section. Book)
Course Books UnofficiaKCourse Prefix Code. Course Number. Course Section. Book)
Course Coreqs UnofliciaKCourse Number. Course Prefix Code. Course Section.

Coreq_Effective_Date, Coreq_Text, Coreq_Text_Line_Number)
Course_Corequisites(Course Number. Course Prefix Code. Course Section. Coreq_Effective_Date,

Coreq_Text, CoreqJTextJLineNumber)
Course_Notes_Unofficial(Course Number. Course Prefix Code. Course Section. Note_Code)
Course_Offerings(Course Prefix Code. Course Number. Course Section. Course_Title,

Projected_Sections, ScheduleOOTermCode, Schedule OOQuarter Code, ScheduleJearPrefix,
Examlndicator, Instructor_Contact_Hours, Lab_Contact_Hours, Min_Credit_Hours,
Max_Credit_Hours, Course OfferingStatusCode, CourseOODepartmentCode, Remarks,
InputDate, LoginName)

Course_Offerings_Remarks(ScheduleOOTermCode, ScheduleOOQuarterjCode, Schedule Year Prefix,
CourseOODepartmentCode, Remark, RemarkSequenceNumber)

Course Offering Instructor(Course Prefix Code. Course Number. Course Section. Faculty SSAN.
Course_TaughtOOTerm_Code,lastructor_Load,Course_TaughtOOQuarter_Code,
Course Taught Year_Prefix, Enrollment_Limit)

Course_Offer_Status_Valid(Course Offering Status Code. Course_Offering_Status, Input_Date,
Login_Name)

B-l

Course_Prerequisites(Course Number, Course Prefix Code. Course Section. Prereq_Effective_Date,
Prereq_Text, Prereq_Text_Line_Number)

Course_Prereq_Sub_Course(Course Prefix Code. Course Number. PrereqOOCourse Number,
PrereqOOCourse_Prefix_Code, PrereqJSub OOCourse Prefix Code,
PrereqSubOOCourse Number, Prereq_Sub_Effective_Date)

Course_Room_Requirements(Course Number. Course Prefix Code. Course Section.
RoomRequirementCode)

Course_Unofficial(Activity_Type Code, AFIT_School_Code, CourseOODepartmentCode,
Course_Effective_Date, Course Level Code, Course Number. Course Prefix Code.
Course Section. CourseTitle, Credit CheckCode, Examlndicator, IndividualContactHours,
Input_Date, InstructorContactHours, LoginName, MaxCreditHours,
MaxEnrollmentLimit, MinCreditHours, MinEnrollmentLimit, Releasibilitylndicator,
Special Grading Code, WaitListCode, GradingOODepartmentCode, Lab_Contact_Hours,
Full_Course_Title)

Degree_Candidates(SSAN. Degree_Candidate_Date, AFIT Degree Code)
Department_Valid(Department Code. Department, Department_Head_SSAN,

DirectorateOODepartmentCode, Input_Date, Login_Name, RCCCCode, DSN_Phone)
Dependent_Children(SSAN. Dependent_Child_Birth_Date, Child_Last_Name, Child_First_Name,

Dependent At_AFIT_lndicator, ChildOOSexCode)
Dependent_Information(SSAN. NumberChildren, SngleDepChldrnlndicator,

DependentatAFITIndicator)
Distribution_Valid(Distribution Code. Distribution, InputDate, LoginName)
Duty_ffistory(SSAN. Duty_Effective_Date, CBPOCode, MAJCOMjCode, OrgLocCode, Duty_Title,

Base Code, DutyOOAFSCjCode, Duty_Phone, DSNPhone, DSNPrefix, Input_Date,
Login_Name)

Edplan_Desc(SSAN. Career Pointer Code, Description, DescriptionLineNumber)
Edplan_Errors(Course Prefix Code. CourseNumber, CourseSection, ScheduleOOTermjCode,

ScheduleOOQuarterCode, Schedule Year Prefix)
Education_History(SSAN. Quality_Points, Total_Credit_Hours, MPC_School_Code,ASC_Code,

MethodOfObtainmentCode, Academic_Ed_Status Code, Input_Date, Operators_Initials,
LoginName, Last_Year_Attended, EdJevelCode, ABETAccreditedlndicator,
Ed_History_Remarks, WorkJDJProcessedCode, TrnscrptOOCareerPointerCode,
Type Degree Code, Duty_Location Code, Degree_CUM_GPA, Degree_Title)

Ed_Level_Valid(Ed- Level Code. EdLevel, InputDate, LoginName)
Ethnic_Group_Valid(Ethnic Group Code. EthnicGroup, LoginName, InputDate)
Evaluation_By_School(SSAN. Admittedlndicator, EvaluationResultRemark,

EvaluationForwardedDate, ForwardedJToOODepartmentCode, Evaluation_Returned_Date)
Evaluation_Status_Valid(Evaluation Status Code. EvaluationStatus, LoginName, InputDate)
Exam_Schedule(Course Number. Course Prefix Code. Course Section. ExamOOTermCode,

Exam_Date, Exam_Time, ExamOORoomjCode, ExamOOBuildingCode, ExamOOQuarterCode,
ExamYearJPrefix)

Exceptionf SSAN, Address Type Code, Address_Linel, Address_Line2, Address_Line3)
Faculty_Civilian(SSAN, Occupation SeriesCode)
Faculty_History(SSAN. Academic_Rank_Date, Academic RankCode, Academic_Step)
Faculty_Type_Valid(Faculty Type Code. FacultyType, InputDate, LoginName)
Fitness_Category_Valid(Fitness Category Code. Fitness_Category, InputDate, LoginName,

MeasurementUnit)
Fitness_Performance(SSAN, Fitness_Category_Code, ElapsedTime, TrialDate, InputDate,

LoginName, Distance)
Fitness_Standards_Valid(Low_Age_Range, HighAgeRange, Fitness Category Code. SexJCode,

ElapsedTime, Input_Date, LoginName, Distance)
Funding(SSAN. Disbursement_Date, FundingjCode, FundingAmount)
Funding_Valid(Funding Code. Funding, InputDate, LoginName)

B-2

Grade_Change_History(SSAN, Course Prefix Code, Course Number. Course Section.
Prior OOGrade Code, ScheduleOOTermCode, Grade_Effective_Date, ScheduleOOQuarter_Code,
ScheduleJfear Prefix)

Grade_History(SSAN. ApprovalCode, ApprovalDate, CareerPointerCode, CreditHours,
Earned_Hours_Indicator, GPA_Indicator, Course Prefix Code, Course Number, Input_Date,
Course Section, ScheduleOOTermCode, GradeCode, Grade Type _Code, Login_Name,
Prior OOGrade Code, Grade Effective Date, ScheduleOOQuarterCode, Schedule Year Prefix)

Grade_Type_To_Grade_Valid(Grade Type Code. GradeCode, LoginName, InputDate)
Grade_Type_Valid(Grade Type Code. Grade_Code, LoginName, Input_Date, GPAIndicator,

EarnedHoursIndicator)
Grade_Valid(Grade Code. Grade, Input_Date, LoginName, Grade_Points, GPAIndicator,

Earned_Hours_Indicator)
Graduation_Attendees(SSAN. GraduationOOTermCode, GraduationOOQuarterCode,

Graduation Year^Prefix)
Graduation_Date(GraduationDate, Graduation_Place, GraduationOOTermjOode, Login_Name,

Input_Date, GraduationOOQuarter_Code, Graduation_Year Prefix)
Grad_Audit(Grad_Audit_Code, Grade_Audit, Input_Date, LoginName)
Grad_Status_Valid(Grade Status Code. Grade_Status, LoginName, Input_Date)
ED(ID)
Intl_Sponsor(Intl Sponsor SSAN. IntlJSponsorOccupation, ACComp Preference Code,

Avail_Start_Date, Avail_End_Date)
Intl_Student(SSAN, WSCN, ITO, Case_Number, DLI_Req_Indicator, DLIJndicator,

Evaluation_Request_Date, RequestedOOProgramCode, Eval_Forward_Date,
ForwardToOODepartmentCode, Eval_Returned_Date, Admission Status Code, Eval_Remarks,
Country_Notified_Date, AFSAT_Notified_Date, AFSAT_Quota_Indicator, First_Sponsor_SSAN,
Second_Sponsor_SSAN, Source Of Funds_Code,AFSAT Country Code)

Invention(Invention, Inventor. Year, NationCode)
rP_Activity_Objectives(IP Activity Code. IP Objective Code)
IP_Activity_Valid(IP Activity Code. IP_Activity, Login_Name, Input_Date)
IP_Objective_Valid(IP Objective Code. IPObjective, Input_Date, LoginName)
IP_Resource(IP Activity Code, Activity_Address_l, Activity_Address_2, Activity_Address_3,

Activity_City, Activity_State, Activity_Zipcode, Activity_POC, Activity_POC_Phone,
Availability_Comment, Activity_Evaluation, POC_Area_Code, Firm_Name_Office_Symbol,
AdditionalAddressInformation, Street_Address, Street_Type_Code,
Address_Room_Type_Code,Address_Room_Type_Number, Activity_Zipcode_Extension,
LoginName, LoginDate, RevisionName, RevisionDate)

Job_Title_Valid(Job Title Code, Job_Title, Login_Name, Input_Date)
Language_Valid(Language Code. Language, Input_Date, Login_Name)
Leader Valid(Leader Code. Leader, LoginName, Input_Date)
Letter_Status(Letter Status Code. Letter_Status, Login_Name, Input_Date)
Locker ValidfLocker Number. Combination, Locker_Size, Login_Name, Input_Date)
LS_Part_Time(SSAN. Pt_LS_StudentOOProgram_Code)
Mail_Building(AFIT School Code. Building Code. Login_Name, Input_Date)
MAJCOM_Valid(MAJCOM Code. MAJCOM_Abbrev, MAJCOM, Input_Date, Login_Name)
Majors(SSAN, Career Pointer Code. Major, LoginName, Input_Date)
Majors_Valid(Major, Login_Name, Input_Date)
Manning_Code(Manning Code. Manning, LoginName, Input_Date, Branch Service Code)
Marital_Status_Valid(Marital Status Code. Marital_Status, Input_Date, Login_Name)
Method_Of_Obtainment(Method Of Obtainment Code. Method_Of_Obtainment, Input_Date,

LoginName)
Name_History(SSAN. Name_Change_Date, First_Name, LastName, Middlelnitial, NameSuffix,

Name_Prefix, Login_Name, Marital Status Code)

B-3

Newsletter^ Addressee, Address_Line_l, Address_Line_2, Address_Line_3, City, State_Code, Zipcode,
ZipcodeExtension, CountryCode)

New_Table(SSAN. AFSC)
Notes_Code(Note Code. Note, Login_Name, InputDate)
Occupation_Series_Valid(Occupation Series Code. OccupationSeries, LoginName, Input_Date)
Options(SSAN. Career Pointer Code. Options, LoginName, Input_Date)
Options_Valid(Options, Login_Name, Input_Date)
Person(SSAN. Grade_Rank_Abbrev, Name_Prefix, Name_Suffix, First_Name, Last_Name,

Middlejnitial, Birth_Date, SexCode, Race Code, Marital Status Code, Religion Code,
Blue_Chip_Indicator, Aka_FName, Aka_LName, Prior_AFIT_Months, TAFMS_Date,
Ethnic Group Code, AeroRatingCode, Manning Code, DEROS_Date, Separation_Date,
Commission Code, Grade_Rank_Date, CitizenshipOOCountryCode, Department Code,
DutyTitle, Duty_Phone, DutyAreaCode, BadgeNumber, Branch Service Code,
LoginName, InputDate, Duty_Phone_Ext)

Person_Job_Title(SSAN. Job Title Code)
Planes_Flown(SSAN. Plane_Name)
POC_Address(Civilian Institution Code, SchoolJnCiv Ins_Code, POC_Type_Code, POC_Type_Seq,

Department_Name, Hospital_Firm_Name, Street_Address, Street Type Code,
AddressRoomTypeCode, Room Type_Numb er, City, StateJZode, Zip, Zip_Extension,
Country Code, Department_Entering_POC, Dept_Entering_ Address, Dept_EnteringJPOC,
Login_Name, InputDate)

Prof_Military_Ed Valid(PME Level Code. PMEDescription, Login_Name, Input_Date)
Program_Advisor(Program Code. ProgramGraduationOOTermCode, ClassCode,

ProgramYearPrefix, Program Advisor SSAN)
Program_Grad_Adit(AuditOOProgram Code. Audit_Effective_Date, Course Number,

Course_Preflx_Code, Grad_Audit_Code)
Program_Option(Program Code. OptionOOProgramCode, Program_Option, Input_Date, LoginName)
Program_Plan(Program Code. ProgramGraduationOOTermCode, ClassCode, Program_Year_Prefix,

Course Section, Course Number, Course PrefixjCode, Credit_Hours, EdPlanOOTermCode,
EdPlanOOQuarterCode, EdPlanYearPrefix, Input_Date, Login_Name, Course Type Code)

Program_Sections(Section Nuvctosi, ProgramCode, Program GraduationOOTermjCode, ClassCode,
ProgramYearPrefix)

Program_Sequences(Program Code. Class Code. Year Prefix. Program_Sequence_Code,
Advisor OOSSAN, Input_Date, LoginName)

Program_Seq_Courses(Program Sequence Code. ProgSeqCoursesOOTermCode,
ProgSeqCoursesOOQuarterCode, Prog_Seq_CoursesOOYear_Prefix, Course PrefixjCode,
Course Number, Course_Section, Grade_Type Code, Credit_Hours)

Program_Std_Sections(SSAN. SectionNumber)
Race_Valid(Race Code. Race, LoginName, Input_Date)
Rank_History(SSAN. Grade_Rank_Date, Grade_Rank_Abbrev, LoginName, Input_Date,

ManningCode, BranchJService Code)
Rank_Valid(Pay Type Code. Pay Level Code. NCOJndicator, Rank_Code, Rank,

Branch Service Code. LoginName, InputDate, MPCCode, PrintedRank)
Recall_Roster(SSAN, Ho'me_Phone_Number, Next_In_Chain_SSAN)
Registration_Verification (SSAN. Term Code. Quarter Code. Year Prefix. RegistrationNotice)
Religion(Religion Code. Religion, InputDate, LoginName)
Reselection(Reselection Code. Reselection, InputDate, LoginName)
Resident_Student(SSAN. Academic Action Code. Overdue_Indicator, Classification Code,

Part_Record_Indicator, Admin_Hold_Indicator, MajorOOASCCode,
ProgramGraduationOOTermCode, ClassCode, Program JYear_Prefix, Selected TypeCode,
AFITJDegreeCode, GraduationOOTermCode, GraduationOOQuarterCode,
Graduation Year_Prefix, Grad Status_Code, Departure_Date, BoxNumber, Card_Number,
EncodedCardNumber, LibraryNumber, LockerNumber, Admit_Date,

B-4

StudentSponsorSSAN, EntryYearPrefix, Admission Type Code, AdmissionActionCode,
Career Pointer_Code, GainingOOAFSCCode, Faculty ^Advisor SSAN,
RegistrationOODepartmentCode, Program EffectiveOOTermCode, EffectiveOOQuarterCode,
Effective YearPrefix, Leader-Code, Program_Section_Number, GainOOMAJCOM_Abbrev,
GainOODuty_Station, LosingOOMAJCOM_Abbrev, PSE_Code)

Resident_Student_Default(Ed_Level_Code, Classification_Code, Grad_Status_Code,
Admission_Type_Code, AdminHoldJndicator, Part_Record_Indicator, AcademicActionCode,
AdmissionActionCode, Overduelndicator, CareerPointerCode)

Room(BuildingCode, Room Code, RoomSize, RoomRemark, InputDate, LoginName)
Room_Requirement(Room Code. BuildingCode, Room Requirement Code)
Room_Requirements(Room Requirement Code, RoomRequirement, LoginName, InputDate)
Room_Schedule(Building Code. Room Code, RoomStartTime, RoomEndTime,

RoomScheduleDate, RoomScheduleRemark, RoomScheduleContact)
Schedule(Activity TypejCode, AFITJSchoolCode, Course_End_Date, Course_End_Time,

Course Level Code, Course Number. Course Prefix Code. Course Section. Course_Start_Date,
Course_Start_Time, Course_TiÜe, CourseOODepartment Code, CeditCheckCode, DayjCode,
Examlndicator, IndividualContactHours, InstructorContactHours, MaxCreditHours,
Max_Enrollment_Limit, MinCreditHours, MinEmollmentLimit, Releasibilitylndicator,
ScheduleOOBuildingCode, ScheduleOORoomCode, ScheduleOOTermCode,
Special GradingCode, Wait List Code, ScheduleOOQuarterCode, ScheduleJYearPrefix,
GradingOODepartmentCode)

Schedule Mandatorv(Mandatory Code. Mandatory, LoginName, Input_Date)
Schedule_Notes(Course Number. Course Prefix Code. Course Section. Note Code.

ScheduleOOTermCode, ScheduleOOQuarterCode, Schedule _Year_Prefix)
Schedule_Room_Requirements(Course Number, Course Prefix Code. Course Section.

Room Requirement Code. ScheduleOOTermCode, ScheduleOOQuarterCode,
Schedule_Year_Prefix)

Schools(MPC School Code. School_Abbrev, School, StateCode, City, Input_Date, LoginName,
Country'Code)

School_In_Civ_Ins(Civilian Institution Code. School_In_Civ_Ins_Code, SchoolName, Login Name.
Input_Date)

Section_Leaders(SSAN. Leader Code. Program Code, ClassjCode, ProgramSectionNumber)
Security Class Valid(Securitv Class Code, Security_Class,Login_Name, InputDate)
SecurityClearanceValid (Security Clearance Code. SecurityDescription, Input_Date, LoginName)
Selected_Comments(SSAN. SelectedComment)
Selected_Projection(SSAN. GainOOMAJCOMCode, Gain00MAJCOM_Abbrev, Gain_MAJCOM_

Supervisor, Gain_MAJCOM_Supervisor_Phone, Gain_MAJCOM_DSN_Prefix,
GainMAJCOMOODepartmentCode, PositionNumberProjected)

Selected_Type(Selected Type Code. SelectedJType, Input_Date, LoginName)
Sex(Sex Code. Sex, Input_Date, LoginName)
Source_Of_Funds_Valid(Source_Of_Funds_Code, SourceOfFunds, LoginName, InputDate)
Special_Grading(Special Grading Code. SpecialGrading, InputDate, LoginName)
Special_Sched_Request(Approval Code, ApprovalDate, CourseNumber, Course_Prefix_Code,

Course_Section, Day_Code, Faculty_SSAN, MandatoryCode, Priority,
Request_Alternative_Number, RequestEndTime, RequestJustification, Request_Start_Time,
RequestOOActivity_Type_Code, RequestOOBuildingCode, RequestOORoomCode,
RequestOOTerm_Code, RequestOOQuarterCode, Request_Year_Prefix)

Sponsors_Country_Preference(SSAN. PreferredOOCountryCode)
Status_Change(Status Change Code. StatusChange, InputDate, LoginName)
Street_Type_Code_Valid(Street Type Code, Street_Type_Code_Description, InputDate, InputName,

RevisionDate, RevisionName)
Student_Duty_History(SSAN. Duty_Title, DutyOOAFSC Code, Duty_Organization, Duty_Station,

Duty_Assigned_Date, LoginName, Duty_Sequence_Number)

B-5

Student_Sequences(SSAN, Program Sequence Code)
Suspense_Calender(Suspense Code. FromOODepartment_Code, ToOODepartmentCode, Suspense_Date,

TermCode, QuarterCode, YearPrefix)
Suspense_User_Class(Suspense Code. Security_Class_Code, Username)
Suspense_Valid(SuspenseCode, Suspense, Login Name. InputDate)
Swim_Times(SSAN. EffectiveDate, SwimTime)
TDY Attendees(SSAN. Left_For_TDY_Date, Retumed_From_TDY_Date, TDY Destination Code,

TDY_Purpose)
TDY_Destination_Valid(TDY Destination Code. TDYDestination, Login Name. InputDate)
Terms(Term Code. Term, LoginName, InputDate, QuarterCode, ClassCode, YearPrefix)
Term_Date(Term Code. Term_Start_Date, Term_End_Date, Input_Date, LoginName,

Regs_Cutoff_Date, QuarterCode, YearPrefix, OfferingCutoffDate,
Grad_Stud_Grades_Cutoff_Date, Nongrad_Grades_Cutoff_Date, Thesis_Cutoff_Date,
School_Schedule_Start_Date, School_Schedule_End_Date)

Term_Entry(SSAN. EntryOOTermjCode, EntryOOQuarterCode, EntryJear Prefix,
Admission Type Code, Admission Action Code)

Term_Entry_History(SSAN. EntryOOTermjCode, EntryOOQuarterjCode, Entry Jear Prefix,
Admission TypejCode, Admission Action Code)

Test_Type(Test Type Code. TestType, LoginName, InputDate, Maximum_Score)
Thesis_Sponsor(Thesis Sponsor Code. ThesisSponsor, SponsorPOC, DSNPrefix,

Thesis_Sponsor_Phone)
Thesis_Title(Thesis Piss Key. ThesisTitle, ThesisSequenceNumber)
Wait_List(SSAN. Course Prefix Code, Course_Number, Course Section)
Wait_List_Types(Wait List Code, WaitList, LoginName, InputDate)
Waived_Course(SSAN. WaivedOOCourse Prefix_Code, WaivedOOCourseJNumber,
WaivedOOGradeCode, Waived_Date)

B-6

APPENDIX C

LIST OF ABBREVIATIONS

AFIT - Air Force Institute of Technology

AFITSIS - Air Force Institute of Technology Student Information System

BNF - Backus Naur Form

CAD - Computer-Aided Design

CASE - Computer-Aided Software Engineering

CCQ - AFIT orderly room

DAGSI - Dayton Area Graduate Studies Institute

DBMS - Database Management System

DFD - Data Flow Diagram

ISA - International Student Affairs

LOC - lines of code

ODMG-93 - Object Database Management Group

ODBMS - Object-Database Management System

ODL - Object Data Language

OID - Object Identifier

OMT - Object Modeling Technique

OODBMS - Object-Oriented Database Management System

OQL - Object Query Language

QUEST - Quota Education and Selection Transactions

RDBMS - Relational Database Management System

SQL - Structured Query Language

STARS - Student Tracking and Registration System

C-l

Bibliography

1. Ahmed, Shamin, Albeit Wong, Duwuru Sriram, and Robert Logcher. "Object-
Oriented Database Management Systems for Engineering: A Comparison," Journal of
Object-Oriented Programming. June 1992. pp. 27-44.

2. Atwood, Thomas. "The Case for Object-Oriented Databases," IEEE Spectrum,
February 1991, pp. 44-47.

3. Atwood, Thomas. "ODMG-93: The Object DBMS Standard, part 2," Object
Magazine, January 1994, pp. 32-37.

4. Bertino, Elisa and Lorenzo Martino. "Object-Oriented Database Management
Systems: Concepts and Issues," IEEE Computer. April 1991. pp. 33-47.

5. Cattell, R.G.G., Tom Atwood, Joshua Duhl, Guy Ferran, Mary Loomis, Drew Wade.
The Object Database Standard: ODMG-93. Morgan Kaufmann Publishers, Inc, 1994.

6. Cerney, Caroline. AFIT/SCQ Personal Interview, April 1994.

7. Coad, Peter and Edward Yourdon. Object-Oriented Design. Yourdon Press, 1991.

8. Cohen, Norman. Ada as a Second Language. McGraw-Hill Book Company, 1986.

9. Davis, Richard. Thesis Projects in Science and Engineering. St. Martin's Press, 1980.

10. Feldman, Michael, and Elliot Koffman. Ada: Problem Solving and Program Design.
Addison-Wesley Publishing Company, 1993. pp. 1-795.

11. Hale, Katherine. AFIT/SCQ Personal Interview, April 1994.

12. Hartrum, Thomas and Paul Bailor. A Formal Extension to 00A (Unpublished). Air
Force Institute of Technology, April 1993. pp. 1-70.

13. Joseph, John, Satish Thatte, Craig Thompson, and David Wells. "Object-Oriented
Databases: Design and Implementation". Proceedings of the IEEE. Vol. 79. No. 1,
January 1991. pp. 42-64.

14. Kim, Won. "A New Database For New Times". Datamation: 35-42. 15 January
1990.

BIB-1

15. Kim, Won. "Defining Object Databases Anew". Datamation: 33-36. 1 February
1990.

16. Korth, Henry, and Abraham Silberschatz. Database System Concepts. Second
Edition. McGraw-Hill, Inc., 1991.

17. Nyberg, Karl. The Annotated Ada Reference Manual. 2nd Edition. Grebyn
Corporation, 1991. pp. 1-500.

18. Rasmus, Daniel. "Relating to Objects". Byte: 161-165. December 1992.

19. Rumbaugh, James and others. Object-Oriented Modeling and Design. Prentice-Hall,
1991.

20. Itasca LISP API User Manual for Release 2.2. Itasca Systems, Inc., 1993.

21. STARS User's Manual (AFIT Database). Systems Research Laboratories, 1987.

BIB-2

Vita

Captain Douglas James Wu was born in Springfield, Vermont on 22 July 1967.

He graduated from Black River High School in Ludlow, Vermont in 1985. He attended

the Military School of Vermont, Norwich University, where he was awarded the degree of

Bachelor of Science in Electrical Engineering in May of 1989. After commissioning

through Reserve Officers Training Corps, he was assigned to the Ballistic Missile

Organization, Norton AFB, San Bernadino, CA where he was the Intercontinental

Ballistic Missile Trainer Software Project Manager for the Rapid Execution and Combat

Targeting modification program. In May 1993 Captain Wu entered the Air Force Institute

of Technology as a Masters candidate in computer systems.

Permanent address: 48 Andover Street
Ludlow, Vermont 05149

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting buroen for this collection of information is estimated to average l hour per response, including the time for reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing ana reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information,"including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204. Arlington, VA 22202-4302. and to the Off ice of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1994

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

The Re-Engineering of the Air Force Institute of Technology
Student Information System

5. FUNDING NUMBERS

6. AUTHOR(S)

Douglas J. Wu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/94D-27

\ S. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

i

I

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

■

: 11. SUPPLEMENTARY NOTES

!

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution Unlimited

12b. DISTRIBUTION CODE

12. ABSTRACT (Maximum 200 words) , .

This research describes the design and implemetation issues associated with re-engineering the Air Force Insti-
tute of Technology Student Information System (AFITSIS). Currently, AFITSIS executes on aging relational
database technology and has unfriendly user interface mechanisms. The two research objectives met were to
research current AFITSIS requirements, design, and implementation, and use object-oriented methods to de-
sign an alternative implementation based on proposed object database management system standards. This
research explores how AFITSIS performance and capabilities might be enhanced by taking advantage of new
object-oriented software engineering techniques. One of the primary benefits of this research is a detailed object
modeling technique analysis and design that may be used as a foundation for upgrading the current AFITSIS.

■

:

K. SüC.'FC"' TF ►.!/,.-
AFITSIS, AFIT Student Information System, information system design, OODBMS
Design, ODBMS Design, Database OMT

! 16. PRICE CODE

i7. SECURITY CLASSIFICATION t 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

NUMBER OF PAGES

142

I

20. LIMITATION OF ABSTRACT

UL

MSN 7540-0'i-280-5500 Standard Form 29S (Rev. 2-89)
Pr<?SCrib<.'d bv ANS: >.tC Z39-1?.

