
S ELU.gTE,

JAN 0 3 1994%

OF 'Origi•,l oOntainzs colorplates: All DTIC reproduot..
ions will be in black and
white-

DESIGN AND IMPLEMENTATION OF TOOLS
TO INCREASE USER CONTROL AND KNOWLEDGE

ELICITATION IN A VIRTUAL BATTLESPACE

THESIS

Ti Jim J. Rohrer, Lt, USAF
AFIT/GCS/ENG-94D-20

Ti~j / : -., i ._V I•

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AF1T/GCS/ENG/94D-20

JAN Cl 5 1I994

DESIGN AND IMPLEMENTATION OF TOOLS
TO INCREASE USER CONTROL AND KNOWLEDGE

ELICITATION IN A VIRTUAL BATTLESPACE

_SFJ7 h- For THESIS

•! -Jim J. Rohrer, Lt, USAF
S . -AFIT/GCS/ENG-94D-20

-y-------

By

Ava -bii.hV Cv dI

r'c c7-iT'J D7Ti. ' D 5Sfr1 .,

DSCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. TUE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

ANID WH[ITE MICROFICHE.

The views expressed in this thesis are those of the author and do not reflect
the official policy of the Department of Defense or the U.S. Government

AFIT/GCS/ENG/94-20

Design and Implementation of Tools to Increase User Control and Knowledge

Elicitation in a Virtual Battlespace

THESIS

Presented to the Faculty of the Graduate School of Engineering of the Air Force

Institute of Technology

Air University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science (Computer Systems)

Jim J Rohrer, B.S.

Lieutenant, USAF

November, 1994

Approved for public release, distribution unlimited

III

Acknowledgments

Thanks to my advisor LtCol Marty Stytz for his guidance and confidence. My

appreciation extends to my ARPA sponsors whose support helped make the whole

project possible. I am also very thankful to my friends in the graphics lab, who made

this fun, I would especially like to thank Jim, John, and Milt.

IV

Table of Contents

1. INTRODUCTION .. 2

1. 1 INTRODUCTION ... 2
1.2 PROBLEM STATEM ENT .. 4
1.3 APPROACH .. 5

2. BACKGROUND .. 7

2.1 INTRODUCTION ... 7
2.2 DISTRIBUTED SIMULATION ... 7
2.3 VIRTUAL ENVIRONMENTS .. 9
2.4 SYNTHETIC BATTLEBRIDGE .. 10
2.5 CONCLUSION .. 12

3. REQUIREM ENTS ... 13

3.1 INTRODUCTION ... 13
3.2 GENERAL REQUIREMENTS .. 13
3.3 SPECIFIC REQUIREMENTS ... 13
3.4 CONCLUSION .. 14

4. DESIGN AND IM PLEM ENTATION ... 15

4.1 INTRODUCTION ... 15
4.2 FOUNDATION SOFTWARE .. 15

4.2.1 ObjectSim /Performer .. 15
4.2.2 SBB Architecture .. 17

4.3 SBB ARCHITECTURE .. 23
4.4 VISUAL RE ALISM .. 24

4.4.1 Background, Weather ... 25
4.4.2 Design and Implementation .. 25
4 .4 .3 S u n .. 2 7
4.4. 4 Sky Coloring ... 30
4 .4 .5 S ta rs .. 3 2
4 .4 .6 M o o n .. 3 4
4 .4 .7 C lo u d s ... 3 5
4 .4 .8 F o g ... 3 9

4.5 M OVEME NT .. 39
4.5.1 Absolute Positioning .. 40
4.5.2 Site to Site M ovement ... 40
4.5.3 Vehicle to Vehicle M ovement ... 42

4.6 SITUATIONAL AWARENESS ... 43
4.6. 1 Threat Detection ... 43
4.6.2 Remote Cameras ... 46
4.6. 3 Video M issile .. 49
4 .6 .4 R a d a r .. 5 1
4.6 5 Space Scope .. 56
4 .6 .6 P a use .. 6 0

4.7 PERFORMANCE ... 61
4.7.1 Level of Detail/ Transparency ... 61

4.8 HARDWARE .. 62
4. 8.1 Computer .. 62
4.8.2 Headtiracking .. 62
4.8.3 Display Devices .. 63

4.9 CONCLUSION .. 63

V

5. RESULTS ... 65

5.1 INTRODUCTION ... 65

5.2 HARDWARE .. 67
5.2 .1 C om p u ter .. 6 7
5.2.2 Head iracking .. 67
5.2.3 Display Devices .. 67

5.3 W EATHER ... 68
5 .3 .1 S u n .. 6 8
5 .3 .2 M o o n .. 6 9
5.3.3 Sky Coloring ... 70
5 .3 .4 S ta rs .. 7 1
5 .3 .5 C lo u d s ... 72
5 .3 .6 F og ... 73

5.4 SITUATIONAL AWARENESS ... 75
5 .4 .1 R a d a r .. 75
5.4.2 Space Scope .. 76
5.4.3 Remote Camera .. 77
5.4.4 Video M issile .. 78
5.4.5 Threat Ranges! Radar Cones 78

5.5 PERFORMANCE ... 79
5 .5 .1 P a use .. 8 0
5.5.2 Level of Detail! Transparency ... 80

5.6 RECOMMENDATIONS .. 80

5 .6. 1 W ea th er .. 8 0
5.6.2 M ovement ... 81
5.6. 3 Situation Awareness ... 81

5.7 CONCLUSION .. 82

6. APPENDIX A ... 83

7. BIBLIOGRAPHY .. 84

8. VITA ... 86

VI

List of Tables

Table 1: Weather Components 26
Table 2. Algorithms for Weather App thread and Weather Draw thread 27

Table 3: Sun Calls 30
Table 4: Sky Coloring Phases 32
Table 5: Sky Coloring Calls 32
Table 6: Star Calls 34
Table 7: Moon Calls 35
Table 8: Cloud Calls 38
Table 9: Fog Calls 39
Table 10: Site-to-Site Calls 42
Table I1.: Threat and Radar Calls 45
Table 12: Radar Blip Calls 53
Table 13: Draw Scope Calls 54
Table 14: Algorithm for Drawing Radar 55
Table 15. Synthetic Battlebridge Capabilities - Past and Present 66

List of Figures
Figure 1. The Sequencing of Performer 16
Figure 2: The Process Domains of Object Sim Calls 17
Figure 3: Object Diagram for Synthetic BattleBridge 18
Figure 4: Unmoveable Structures 19
Figure 5: Module Communication 20
Figure 6: SBB Structure with Example Hooks 22
Figure 7: Overall SBB Structure 24
Figure 8: The Sun's Relation to the Equator 29
Figure 9: The Sun's Angle Above the Horizon 29
Figure 10: Cloud Building Block and Construction 38
Figure 11: Radar Ranges and Threat Ranges 44
Figure 12: Performer Tree for Threats and Radar 45
Figure 13: Remote Camera 48
Figure 14: Video Missile 50
Figure 15: Plane Blip 52
Figure 16. Ground Blip 52
Figure 17: Satellite Blip 60
Figure 18: Level of Detail Tree 62
Figure 19: Sun Low in the Sky 69
Figure 20: Moon 70
Figure 21: Looking Away From Low Sun 71
Figure 22: Full Night with Stars 72
Figure 23: Clouds During the Day (Using Light Cloud Model) 73
Figure 24: Clouds at Night (Using Dark Cloud Model) 73
Figure 25: Light Fog 74
Figure 26: Heavy Fog 74
Figure 27: Radar Scope (On Lower Panel) 75
Figure 28: Radar Scope (As a HUD in the Overlay Plane) 76
Figure 29: Space Scope 77
Figure 30: Remote Camera (No Head Tracking) 77
Figure 31: Video Missile 78
Figure 32: Mig-31 Radar Cone 79
Figure 33: SA-6 Threat Envelope 79

VII

viii

Abstract

AFIT's Synthetic BattleBridge is an immersive command observatory for

viewing large-area activity within a virtual environment. Three basic areas for

improvement are addressed: 1) an improved, immersive, user interface, 2) direct

control of atmospheric effects, and 3) improved knowledge elicitation by means of

remote viewers, a new space scope and an enhanced RADAR scope. These

requirements are analyzed and implemented. Some functionality was lost but the

results show a general improvement of environmental control and knowledge

elicitation.

1. Introduction

1.1 Introduction

My understanding of how great generals win commenced with realizing
how not-so-great generals don't win. .. I stood in a valley of the
Taebaek Mountains of eastern Korea and watched American artillery
pulverize Hill 983 about 1,000 yards in front of me. ... It all worked out
as programmed - the superior UN fire-power at last wrested the peaks
from the Communists - but the cost was staggering. UN causalities, the
vast bulk of them American, totaled 6,400, while Communist losses may
have reached 40,000. Yet the UN command gained nothing. Its strategic
position in Korea was not affected one iota, and there were almost no
tactical gains: behind Heartbreak loomed another ridgeline equally pitted
with bunkers. ... The only thing achieved ... was that American
command finally realized the futility of frontal attacks against prepared
positions. This was no great intellectual awakening... (pg. 19,20)

- Bevin Alexander, How Great Generals Win

All warfare is based on deception.

- Sun Tzu The Art of War

Over the years, a large number of lives, many of them American, have been

lost because learned lessons were forgotten, or the fog of war caused good commanders

to make ill-fated decisions. Even though military lessons are taught, sometimes they

can only be assimilated by first hand experience. The Army Simnet and CCTT

projects are formed on this premise. This is the perfect realm for large scale exercises

such as Red Flag and REFORGER, where a commander can get a chance to wage a

battle, learn some lessons, and not pay for any mistakes. REFORGER had the

advantage of training over the terrain of central Europe, where conflict was most likely

to occur (Gerhard). Although extremely valuable, the high cost associated with such

exercises either severely curtails their frequency or ends them altogether.

2

New command specific tools available to the modern commander help him make

better command decisions. My research is based on the proposition that tools that

build upon the experiences of the past will further increase the commander's ability to

make informed and timely decisions. During the Civil War, a scout on horseback rode

ahead of the army and then reported back to the commander with an assessment of the

situation. Today's commander can get near-real-time satellite photographs of the

enemy's position and supplement that information with a J-STARS radar image of the

area. The actual sorting of the information and conceptualizing the results can be a

time-consuming process. The United States had six months to prepare for the attack on

Iraq and sift through thousands of intelligence reports and satellite photographs before

firing a single bullet. This extended grace period is unlikely to be offered again but the

problem of having too much information for commanders to disseminate to troops and

assimilate for himself will only get worse. A single commander is unlikely to absorb

all of the available information in a timely manner, nor can he get all of the relevant

information to the people who need it. On tomorrow's battlefield we will not have the

man power to properly sort all intelligence nor the time to do it before the actual

fighting. The next generation of command tools must address the issue of information

overload while maintaining a cost conscious outlook.

Recent advancements in computer technology have the potential to supplement

traditional full scale training exercises and provide some additional commander's tools,

without the associated cost or extensive expenditure of material. The development of

high speed computer graphics workstations provide a means of visually creating a battle

with significant realism at manageable cost. Also, the advancement of wide area

computer networks offer the potential for a large number of people to participate in a

single, real-time computer established battle. Hundreds of commanders, in-training,

can watch the battle while some of them practice making command decisions. The

fight can be recorded and analyzed so that other's can learn from the same battle. The

3

same computer technology used to recreate the battle can also be used to assist the

commander. Computer operated command tools can integrate the known information

about the battle and help the commander fully conceptualize the essence of the battle

with neither the aid of a large staff nor the need for significant preparatory time.

These issues have become contemporary topics, especially since the conclusion

of Desert Storm. Related research is being sponsored by the Advanced Research

Projects Agency (ARPA). The Air Force Institute of Technology has been contributing

to this research by developing the Synthetic BattleBridge (SBB) which uses the latest

off-the-shelf hardware and software to provide an immersive observatory for large

spaces in the virtual environment with a fundamental emphasis on commander rehearsal

and command tool development.

1.2 PROBLEM STATEMENT

This thesis effort was directed at improving the situation awareness, monitoring

capability, environmental effects, and human-computer interface of the Synthetic

BattleBridge. The research and work done on the SBB over the previous two years has

laid down a solid foundation on which to build, however more work remained to be

done. (Wilson, Hadix) An improved user interface and an increased set of knowledge

elicitation tools will allow the battlefield commander to capture information about the

battle and give him a higher degree of conceptualization of actual battle progress.

Explicit focus will also be placed on tools for the commander to manipulate the visual

atmospheric conditions of the battlefield, and to provide direct view reconnaissance to

the commander using remote observation techniques.

The previous version of the SBB provided a useful interface for viewing and

moving within the battlefield environment, however the old interface does not readily

translate to an interface which emphasizes complete human computer interaction using

4

virtual reality technology. The old interface assumes a constant resolution display

device which inherently conflicts with changing virtual reality technology.

This thesis effort is divided into three components. The first component

addresses the problem of translating the human-computer interface into a paradigm that

is conducive to work within an immersive environment. The second component is to

design and implement tools for the commander which expand his ability to view and

control atmospheric phenomena from within the virtual environment. The last

component concentrates on the design and implementation of tools which provide the

commander a means to improve his battlefield situational awareness through the use of

remote view reconnaissance.

1.3 APPROACH

This thesis effort was based upon the assumption that all research would be

conducted in AFIT's Virtual Environments, 3D Medical Imaging and Computer

Graphics Lab. All software would meet the following guidelines:

"* All software would make use of the ObjectSim development framework as well as

the Silicon Graphics Performer real-time development libraries.

"* All software would be executed on Silicon Graphics Onyx Reality Engine2

computers running Irix 5.2

"* All software would be written in AT&T C + +

The thesis work is broken into three primary steps. The first step was the

design and implementation of a general user interface that could be used within an

immersive environment. Second, the functionality of the old SBB had to be

5

incorporated into the new virtual environment. Lastly, the new tool set had to be

designed and implemented to work with the rest of the SBB.

The design of a new three dimensional interface was a large effort conducted by

Capt. Jim Kestermann, Capt. John Vanderburgh, and myself. We had to examine the

current virtual reality interfaces and consider their advantages and disadvantages and

compare their design to our software and hardware requirements. The results of these

efforts are discussed in (Kestermann).

CONCLUSION

This thesis will address the issue of expanded commander knowledge elicitation

and the expansion of tools for atmospheric manipulation. The thesis proceeds as

follows: following this introduction is a discussion on the background relevant to the

SBB, followed by requirements, design considerations, and their implementation. The

results with illustrations and final recommendations for future work will conclude this

thesis.

6

2. Background

2.1 Introduction

The SBB is an immersive observatory for large spaces in the virtual

environment, much as the Virtual Windtunnel is an observatory for aerodynamics

effects around an airframe (Bryson,92, Levit 92). An emphasis is placed upon active

environments with autonomous vehicles operating within the commander's sphere of

interest. The vehicles can be anything from aircraft flown by pilots in simulators to

computer generated enemies that are meant to represent fictitious forces. Key issues as

to the effectiveness of the SBB are its ability to represent the battlefield in a real-time

manner, sustaining an adequate graphical frame rate, and substantial environmental

interaction with a wide variety of object types, location, and sizes. The visual quality

of the environment must be representative of the actual battlefield and must also be

customizable to meet changing exigencies so that the battlefield commander can fully

control and comprehend the virtual battlespace.

2.2 Distributed Simulation

The long-haul network connections allow air defense, attack helicopter, and

close air support flight simulators to interact in the same environment (Gerhard).

Simulations are no longer confined to a single machine. There can be many people in a

7

machine working together either in close physical proximity or extremely far apart, all

without affecting the appearance to the simulation. The Army has, at Fort Knox, over

60 M-1 Abrams tank simulators networked together to allow the crews to fight in the

same environment (Gerhard). Apache helicopter simulators at Fort Rucker are also

connected to the network, enabling this combined training. The combination of these

elements, along with Air Force and Naval resources to make a complete battle, is the

work of the Advanced Research Project Agency's (ARPA) WAR BREAKER project.

As a way of evaluating future doctrine, new weapons systems and training methods,

ARPA is creating this simulation environment.

All simulation traffic is passed on the Defense Simulation Internet. This

network conveys important vehicle information from one person to the rest of the

people participating in the battle. DIS is an IEEE standard in which there is no central

computer arbitrating among the various players (Sheasby). Each participant is

responsible for maintaining the state of the world. This means that participants must

tell others when they have been hit, their location, orientation, and vehicle type..

AFIT is supporting DIS and WAR BREAKER by creating the Synthetic BattleBridge as

a tool for commanders, as well as the Virtual Cockpit, the Satellite Modeler, and the

Red Flag Remote Debriefing tool (Diaz, Vanderburgh, Fortner). All four of these

projects run on Silicon Graphics machines and the first three have a strong emphasis

virtual reality technology.

To date, most of the research done on distributed virtual environments has

concentrated on war fighting training for individual or small group. The SBB project

8

builds upon previous work in distributed simulation for small groups or individuals to

provide a training platform for the needs unique to battlefield commanders.

Commanders are currently trained to understand and act upon the situations in a

battlespace that are outside virtual environments (Block). The SBB is being developed

as an supplement to future training that includes the recreations of battles and the

immersion of the commander into that environment.

2.3 Virtual Environments

Anecdotal evidence from previous ARPA projects suggest that virtual

environment training effectively prepares individuals for the actual battlefield (Block).

This is supported by studies of pilots and air traffic controllers that indicate training in

a realistic environment translates to operational gains quickly and inexpensively.

Current theory submits that the degree of training benefit is related to the extent of

realism in the simulation.

Virtual environments involve the immersion of the user into the world created

by the computer. In the past, immersion primarily focused on the creation of the

computer generated world that supplemented physical props, such as a mock-up of an

airplane cockpit. Recent advances in head-mounted displays are allowing users to

completely immerse themselves into the computer generated world, so that no matter

where they look they will only see more computer generated images. Ideally the

display should be light weight, have a wide field of view, and have very high

9

resolution (Chung, Walser). The computer should track the user's head movement and

display a view appropriate to where the user is looking. Such environments offer

special challenges for computer-human interface design. The immersion of the user

requires a paradigm shift in how input can be given to the application primarily because

the user can no longer see his hands.

The update rates of these computer generated worlds greatly affects the

interactivity of the application. At approximately 1 frame per second the program is

unusable. Six frames per second represents the lower bounds of usability. 20 frames

per second marks the point of diminishing returns for program interaction (Airey).

The SBB is developed upon the Performer framework because of its ability to take

advantage of its specialization in multi-processor, real-time, virtual reality applications.

Performer has special support for fixed frame rates and offers run-time profiling of the

application (Rohlf).

2.4 Synthetic Battlebridge

The Synthetic BattleBridge is in it's third year of research at the Air Force

Institute of Technology. Others have also built virtual environments that were meant to

either orient commanders in a large scale environment or orient them and allow them to

interact with their environment (Stytz). The work completed at the Naval Post

Graduate School complements the AFIT work for implementing large-scale virtual

environments on commercial workstations (Cooke).

10

The previous version of the SBB by Capt. Kirk Wilson focused on navigation

and information displays in a large, distributed simulation environment (Wilson). An

underlying assumption of his work was that the user would be sitting in front of a

computer screen with easy access to the mouse, keyboard, and high resolution monitor.

However, when using immersive virtual reality, many of the features in Wilson's SBB

might not be practical because of his non-immersive assumptions for the interface.

Also, the state of the art in HMD display resolution and clarity demand a

reconsideration of the size graphical interface.

The SBB's need to function as a platform for commander and staff training

demands that the interface impart a sense of the spatial orientation, motion, and

distribution of objects across the environment. The raw, unanalyzed information is

provided using a combination of icons and text. The positions of all vehicles or actors

in the environment are computed in real-time and displayed using a three-dimensional

rendering of the battlespace. Locators, which are large opaque bubbles, are placed

around objects to help the user identify vehicle location and orientation when beyond

visual range. Aircraft trails show the flight path of the vehicle over the past several

seconds, allowing quick flight path acquisition and velocity estimations. Trails are also

applied to other vehicles, such as tanks and missiles, and the models themselves are

represented with accurate 3-D geometric representation. All of these features are

encapsulated in the previous SBB.

The user interface of the SBB plays a considerable roll in the final effectiveness

of any new functionality. The overall layout and design the interface is covered in-

11

depth by Capt. Jim Kestermann, but an overview is provided for reference. The

paradigm of the SBB interface centers around the concept of the information pod. This

pod is the abstract place in the virtual world where the user is sitting. In this pod are

all of the controls and displays that are available to the user, such as controls to move

around the battle space or a display of the current vehicle locations as seen on a radar

scope. These displays and controls are placed on flat panels located around the pod.

Logically coherent features appear on the same panel. These features are controlled by

pushing buttons on the panel. The buttons are pushed by moving a mouse around

which in turn move a cursor on the panel, a push of the mouse button activates a button

on the panel. The user is assumed to be wearing a head mounted display with head

tracking equipment. This gives him a complete 3600 degree field of view without

sacrificing any ease of use.

2.5 Conclusion

The development of the Synthetic Battlebridge builds upon the work of others.

This chapter explored some the development in distributed simulations. The

fundamentals of virtual environments were examined and the recent work on the SBB

was discussed. The next chapter will discuss the requirements for this thesis effort.

12

3. Requirements

3.1 Introduction

This chapter presents the overall requirement for the Synthetic Battlebridge.

The requirements described here determine the overall thesis effort. This chapter will

proceed as follows: a discussion about the general requirements of the SBB which is

then followed with the specific requirements. This will then be followed by a chapter

conclusion.

3.2 General Requirements

The Synthetic Battlebridge is of a virtual observatory into a battle recreated by

the computer. This thesis effort is to make enhancements to the SBB that facilitate

greater knowledge elicitation and control of the virtual environment. This will be

accomplished with enhancements to the user interface, additional situation awareness,

and improvements that make the environment more visually realistic and

manipulateable.

3.3 Specific Requirements

The specific requirements for the Synthetic Battlebridge come from ARPA's Lt

Col Dave Neyland.

0 Make the viewing environment totally immersive

* Create a user interface that can work within this immersive environment

9 Incorporate previous SBB tools

* Make the environment more visually realistic

0 Create clouds and fog

0 Incorporate the sun

13

0 Incorporate the moon

0 Add nighttime

* Add stars

* Add tools to increase situational awareness

0 Improve the monitoring capability for air and ground actors

0 Add a space resource evaluation tool

* Create a remote camera

• Create a video missile

3.4 Conclusion

This chapter presented the requirements for this SBB thesis effort.

Enhancements are to be made to the user interface. Basic weather representation is

required as well as tools to increase the commander's situational awareness. The next

chapter describes the design and implementation of these requirements.

14

4. Design and Implementation

4.1 Introduction

A commander utilizing a virtual reality environment wants to maximize the

conceptualization of available intelligence with the least amount of effort. This chapter

addresses the design and implementation of enhancements made to the SBB The

remainder of this chapter will proceed as follows: the software that the SBB is built

upon is discussed, which is then followed by an overview of the SBB architecture.

This is followed by a discussion of how the new tools are designed and how both new

and old tools are implemented in the SBB. These characteristics are broken into the

classification of weather manipulation, control of movement, and tools to enhance

situational awareness. A description of the required hardware, and a conclusion will

complete this chapter.

4.2 Foundation Software

4.2.1 ObjectSim / Performer

The SBB is built upon the ObjectSim framework, which in turn is built upon the

Performer development environment. Performer breaks every application into three

processes, the App process, the Cull process, and the Draw process (Performer). The

App process is responsible for all non-graphical computations. Performer repeatedly

runs once through the application loop, culls the geometric scene, and then draws the

image to the screen. Figure 1 shows the pipelining of the App, Cull, and Draw

processes. At time 1 the App process will be processing information pertaining to the

first frame. At time 2 the App process will be working on information pertaining to the

second frame, and the Cull process will be culling the scene for the first frame. At

time 3 the App is working of the third frame, the Cull is culling the second frame, and

15

the Draw process is drawing the first frame to the screen. If the program is being run

on a multi-processor machine then each process will run on its own processor.

T e I T me 2 T me3 T e4 T me ...

App App App p

CulCull Cull

Figure 1. The Sequencing of Performer

The application process is driven by ObjectSim, which calls the routine init at

the beginning of every program. After the initialization propagate, pre-draw, draw,

and post-draw code is executed by its respective process. Figure 2 shows the process

domain of ObjectSim, where the Initialize and Propagate routines are called from the

App process and the Pre-Draw, Draw, and Post-Draw modules are called from the

Draw process. The propagate code contains all normal functionality and will always

be executed by the App process, this is were the majority of the application resides.

The pre-draw, draw, and post-draw portions of the code are reserved for routines that

need to communicate with the draw process by specifying display information such as

line drawings color or text manipulation..

16

•Obj ect S rimPo~

Figure 2: The Process Domains of Object Sim Calls

4. 2.2 SBB Architecture

The previous SBB assumes, throughout the code, the presence of a non-

immersive interface. Because of this, the integration of the enhanced functionality and

immersive user interface of the new SBB into the previous SBB architecture proved

impractical. The SBB was therefore re-written, old SBB functionality was duplicated

where ever possible. The previous SBB VehicleManager class was reused in the new

SBB. Several new objects where created to facilitate the new user interface and the

new enhancements. The class structure as it relates to ObjectSim can be seen in Figure

3. This is the complete object hierarchy for the SBB. Figure 4 shows View Player,

and Vehicle-Manager as being fixed in their hierarchy. View, and Player are integral

ObjectSim components and are therefore expected to be found in designated locations

within the hierarchy. The Vehicle-Manager must remain under SBBSimulation in

17

order for the module to be effectively reused. The design of the remaining structure is

addressed in the subsequent sections.

SBB_.Simul atio

'Modifier $ Player
Vehicle-Manager

HM~boifer J T-- aylPodlye M oanage Loads

epad-Mdod ifier F• -Plye

SRemoe_]Battlefield

CameraModel

,, Derived From [els-- Earth

0 Comprises Models

Figure 3: Object Diagram for Synthetic BattleBridge

18

SSBBSimulatfon

.... ---- -Te r in

A c Derived From Battlefield

wih PreviousP r i . .O, Batt leBridge
Grouping Suggested ----- --i-.- -

by ObjectSim

Figure 4: Unmoveable Structures

When a module, say a fog generator, is designed for the SBB, the placement of

the module within object hierarchy creates a situation which requires design tradeoffs

to be made. If the interface for fog is created using an object oriented methodology it

is natural to have that interface own a fog object and then invoke fog methods to

control environmental fog. In order for this embedded fog to control the environment

it must have access to the environment control variables. However, if the current

interface is based upon mouse movement, and then a new voice control interface is

created, the new voice interface would also have a fog object. Since there is only one

environmental control variable that can adjust fog, two different fog instantiations can
4

not be possible. In order to avoid conflicts between interface methods, the interface

and the functionality are separated into two distinct objects, one addresses functionality

and the other addresses interface. Only one instance of the functionality portion of the

tools is ever created, but several versions of the tool's interface can be created. For

example, one interface for mouse controlled fog and another interface for voice

19

controlled fog. This method also facilitates placing the functional portions of the code

within a portion of the overall hierarchy that is the most appropriate. This allows the

functionality portion of the radar scope to lie within the Vehicle-Manager and the

interface to lie within a player. Figure 5 illustrate the parallel nature of this approach.

The left side of the figure shows the methods associated with the VehicleManager,

the right side of the figure shows the methods associated with the weather module.

The lines between methods indicate lines of communications.

F iu 5Simulateomn u

-Vehicle- -Pod- -Weather--Manager- I Movement I -Manager-

[Attach to Player ýýVe~iein> [AtchT-lyr

information Feature h

F- I- e S --To -S-ite -- - - -

I~~tte to7-ransporter Interface

fSet Radar Cones icati Thoea ts o noti ee h

BB prora fola Rantd es Interfacetl

Draw Radar] .-• ýGrod,
IScowpe s..... K-7,

[. Space Scope Interface
D1.raw Space
Scope Lounoh, d°M'se

mh l a f h I Time of Day Interfate r
1 CloudsInterface I-Clouds

ISite__ _ I Iog Densit Interface I o
1 Pause Interfc D ...nity¢--:

Figure 5: Module Communication

Objects communicate with each other by either invoking class methods or

changing feature hooks. Feature hooks are global variables used in one section of code

for the purpose of communicating with objects not in the same hierarchy. The entire

SBB program follows an Object Oriented Design methodology, but deviations from this

methodology arise from the use of global variables that serve as hooks for functionality

20

that cross components. An advantage to this technique is that objects low in the

hierarchy can communicate directly with objects elsewhere in the tree. This need

manifested itself when the ability to manipulate the weather was added to the SBB. The

user interface had already been designed and implemented when the

Weather-Manager was added. The WeatherManager needs several pointers found

in the highest level of the hierarchy, and the user interface only needed access to a

couple of state variables, such as fog density or time of day to control the weather.

There were two basic choices, the first being to put the weather object underneath the

user interface, the second being to put the weather object immediately underneath the

simulation driver and use a couple of global variables to allow communication with the

interface (See Figure 7). Since the user interface had become several levels deep, the

primary disadvantage with the former method was the need to reprogram much of the

interface to pass the needed pointers down through Pod-Player and the Panels and the

Sub-Panels and the User Controls, this would make the user interface specific to the

SBB instead of a generic 3-D interface. Global variables solve the problem with a

minimum of extra work and they don't sacrifice the portability of the user interface.

21

Main

Vehicle Manager Weather Manager User Interface

SPanels

Fog Density

Hook Sub-Panels

User Controls

Figure 6: SBB Structure with Example Hooks

Every feature interface within the SBB either controls functional hooks or

embeds the functionality in the interface portion of code. Figure 5 shows which

features are controlled by hooks and which and embedded in the interface.

4.2.2.1 The Terrain

All ObjectSim applications must have one terrain. The origin of the terrain

defines the origin for the entire simulation. The Terrain class transforms the

coordinates of all vehicles retrieved from the network and translates them into local

coordinates. The ObjectSim programming format requires that the Terrain class be

placed underneath the simulation. Since a model of the Earth is required in the SBB,

the model is loaded by the Terrain object. The alternative was to create a new class

that controls the Earth model, however this would not have taken advantage of the

Terrain's ability to load models and place them in the world.

22

4.2.2.2 The View

All ObjectSim applications must have at least one instance of a View

object which determines where the user is looking into the scene. Every view must be

attached to an AttachablePlayer, which determines where the user is in the world.

The AttachablePlayer is analogous to the user's body and the view is analogous to

the user's head, where ever the Attachable-Player moves to, the View follows. The

direction in which the user is looking is determined by a Modifier object. Since the

SBB is designed to be an immersive application the Modifier should track head

movement, this is done by the IIMDModifier class, which is a subclass of the

Modifier class.

4.3 SBB Architecture

The specific structure unique to the SBB is broken into three components over

five levels (see Figure 7). The SBBSimulation forms the top level of this hierarchy.

Underneath the SBBSimulation are the remaining three components, the

VehicleManager class, also known as the sbbnetmanager, the WeatherManager

class, and the PodPlayer class, which functions as the user interface.

4.3.1.1 The Pod Player

The PodPlayer, or Pod, is the manifestation of the immersive user interface.

The PodPlayer is an attachable player and is the only class that the View can

communicate with. The Pod-Player encapsulates all the SBB controls as seen in

Figure 3.

23

Main

Vehicle Manager Weather Manager User Inteae

(Pod) efc

Panels

Sub-Panels

User Controls

Figure 7: Overall SBB Structure

4.4 Visual Realism

The visual realism of a simulation effects the extent in which a user can

immerse himself and concentrate on his objectives. Several aspects of the previous

SBB environment where unrealistic enough to be noticeable. Improving battlefield

effects such as fire, dust, and explosions would increase the realism of the simulation.

The creation of such particle system based effects are realistic but computationally

expensive, alternative, non-particle, methods provide notional views of the effect at a

lesser cost. The Naval Post-Graduate school, among others, have created preliminary

version of these effects, consequently this avenue was postponed for the SBB. The

improvement of vehicle representation and part articulation would also improve the

realism of the environment. This area was also rejected because of its lack of

relevance to a large scale battle, for example, a rough model of an F-16 communicates

24

its aircraft type just as effectively as a highly detailed model. Atmospheric

representation would improve the visual realism of the environment. Weather always

has an impact on how a mission is planned and executed. The development of real-

time 3-D weather generation is an relatively unexplored topic. These factors lead to

the creation of several sample atmospheric effects which can serve as a baseline for

future research in real-time weather creation within an immersive environment.

4.4.1 Background, Weather

The virtual reality commander wants control of the environment's weather

representation. During a military engagement the weather conditions always affect

how the battle must be fought. A low level air strike on a clear day would be

approached with a completely different attitude than the same air strike at night in the

fog. A commander must be able to visualize the actual and possible weather

conditions of a battle so that he can better judge his force capabilities and inclement

weather limitations. ARPA directed research is creating a computationally expensive

weather generation ability along with a DIS extension that will broadcast weather to the

using applications. The recreation of the weather information should be done in a

manner that is not computationally intensive and should concentrate and user

tailorability of the environment.

4.4.2 Design and Implementation

The Weather-Manager can logically be thought of as consisting of seven

distinct components (see Table 1), the Sun, the Moon, the stars, the sky, clouds, and

fog. Each component represents a particular atmospheric or astronomical effect. The

overall weather object must be initialized before any weather effects can be seen in the

simulation. The initialization is broken up into two parts, one gives the weather

25

module all of its needed visualization information, the other takes that information and

initializes all of the individual weather components.

After the weather object is initialized then the individual weather components

must be constantly updated. This is accomplished by having a single update method

that calls all of the individual update components. Since some of the components deal

exclusively with how an image is displayed, they must be called in the draw thread, so

the update portion of the weather object is broken in half, one side dedicated to the

application thread and the other side dedicated to the draw thread. The algorithm for

each thread can be seen in Table 2. The APP module first updates the time of day, it

next checks for major position changes such as jumping into space, and then updates

the sky color. The APP thread ends with updating the position of the moon and the

displaying of the clouds. The Draw thread updates the fog, the sun position, and

finally the displaying of the stars.

Table 1: Weather Components

COMPONENT DESCRIPTION

SUN Moves Sun and light source

MOON Moves moon

STARS Displays stars at correct location

SKY Adjusts color of the sky according to time

of day and viewing direction

CLOUD Draws clouds out in the scene

FOG Draws fog out in the scene

26

Table 2. Algorithms for Weather App thread and Weather Draw thread

App Draw

"* Update time of day * Update the fog

"* Check to see if pod had a major 9 Update the sun position

position change (such as jumping into

space)

"* Update the sky color 0 Update the stars

"• Update the moon position

"* Update cloud appearance

4.4.3 Sun

4.4.3.1 Background

The position of the sun is very important in many navigation and tactical

situations. An individual can use the sun to gain rough orientation cues, or an Air

Force navigator can use it to pinpoint his position over a battlefield without having to

rely upon electronic instruments. Tactically, a battlefield commander usually wants the

sun at his back, whether he is on the ground or in the air. The visual flare makes it

difficult to see objects that are visually in line with the sun. Knowing the sun position

will affect many tactical decisions made in small scale and large scale engagements.

Many heat seeking missiles are confused when flying along a vector coinciding with the

sun and pilots will consciously use this fact when making flight decisions. These

consideration lead to the inclusion of the sun in the SBB.

The sun can be represented in more than one manner. A simple circle straight

up in the sky suffices for some purposes, others require perfect visual simulation,

including the camera flare seen when looking at bright objects. Precise location is

27

required when trying to use the sun's blinding effect in a real-time engagement, but not

all of these considerations are relevant to the large scale battlefield commander. The

commander may want to know the sun's general location so that the enemy is looking

into the sun when the forces are sent to attack, or equally important, so that the

commander doesn't order his troops to attack along a vector that has them looking

directly at the sun. Camera flare caused by the sun is usually only relevant when

generating photorealistic environments and doesn't contribute to the decisions

concerning large scale vehicle movements. The tactical effects of sun heat and sun

blinding effects are only relevant to individuals who rely on those artifacts to make

decisions, such as a pilot engaged in combat. These effects must be accurately

recreated for the individual combatant but are not relevant to the commander.

The sun tracks across the sky depending upon the time of day and the viewers

latitude. The SBB sun is always at its highest point at 1200 hours. The sun rises 0600

hours and set at 1800 hours, these numbers are only relevant to the SBB sun and do not

correspond to any standard clock. The current sun clock can be changed dynamically

while in the simulation and the illumination of the environment changes according to

sun position. This allows a commander to either view the battle under full illumination

by setting the sun clock to 1200 or he can view the battle under darker conditions by

setting the sun clock to later or earlier in the day.

4.4.3.2 Design and Implementation

The time of day and the sun's relative height above the horizon is used to

determine the position of the sun in the sky. The time of day tells us how high the sun

is in the East-West plane, the Sun then rides along the arc that is formed by the angle

of the Sun above the southern horizon which is constant for a particular location on

Earth. Figure 8 and Figure 9 illustrate how to the Sun's position in space relates to its

28

position above the horizon. For the purposes of the SBB the Sun is assumed to be at its

highest point along the arc when the clock is set to 1200 noon.

)Angle Sun above

Eqator (Tilt)

Earth

Figure 8: The Sun's Relation to the Equator

Earth South

Figure 9: The Sun's Angle Above the Horizon

The color of the Sun is changed by switching out different models that represent

the sun in its different phases. When the sun in high in the sky, a yellow sphere is

29

loaded in for the sun, but when the sun is very low on the horizon a dark orange sphere

is displayed. It is important to point out that when a different model is used to

represent the Sun, or when the Sun is moved across the sky, the scene lighting does not

actually change, the lighting is done separately to coincide with where the Sun in

drawn.

The position of the light source used to render the scene is adjusted by the

pfLightPos command. The position of the Sun is passed to this command. The Color

of the light source also needs to reflect the position of the Sun. Calls to pfLightColor

and pfLightAmbient are made to make the light source darker and more orange at

dusk and dawn, and finally very dark when the Sun is completely below the horizon.

Table 3 shows the calls needed to create and update the Sun.

Table 3: Sun Calls

Calls Roots Passed Variables Files Needed

Initialize Sun Sun Root pfLight Bright Sun.flt,

Sun at Dawn/Dusk.flt

Update Sun Time of Day

4.4.4 Sky Coloring

4.4.4.1 Background

The position of the sun obviously effects the coloring of the sky. The primary

importance of coloring the sky is it's qualitative association with sun positioning, if the

sky always maintained the same coloration regardless of sun position then any observer

would be distracted by the dichotomy between what they are seeing in the sky and how

they know sky should really be colored. The sky must be red when looking in line

30

with the setting sun and a darker blue when looking away from the sun. Daytime

colorization has a graduation of blues that arc across the day sky. The SBB

incorporates these features to create a visually realistic sky that corresponds to sun

position and viewer orientation

4.4.4.2 Design and Implementation

The color of the sky is rendered by Performer and is broken into three areas,

the horizon, transition zone, and the upper sky. The color of each of these three parts

is programmable, so color of the sky can be programmed to reflect the colors seen at

various times of the day. Also, since the color of the sky is very orange and bright

when looking in the direction of the setting sun, and very blue and dark when looking

away from the setting sun, color of the sky must be adjusted to take viewing direction

into consideration.

The method of coloring the sky is broken into three phases. During all phases

the coloring algorithms picks the color of the horizon and the color in the upper sky

and colors the transition zone based on the average of the first two colors. The first

phase is when the Sun is high in the sky, during this phase the color of the sky is a

washed out blue when looking straight up and a purer blue when looking at the

horizon. The colors were matched manually to the real sky. The second phase occurs

when the Sun transitions from day to night. During this time the horizon near the Sun

goes from blue to red, and then to black, the rest of the sky goes black, the program

examines where the user is looking to determine how to color the horizon, red or dark

blue. The third phase is when the Sun is below the horizon and the sky goes from dark

blue to black, this is also shown in Table 4.

An additional phase of coloring must be added for when the user is in outer

space. Since there is no atmosphere in space, the sky should be black no matter what

time of day it is. Whether or not the user is in space is checked by a variable that

31

reflects major position changes. This variable is updated every frame by the main

weather code and is available to all weather components. Table 5 shows the calls

needed to create and update the coloring of the sky.

Table 4: Sky Coloring Phases

Phase Horizon Color High Sky Color Where User is Looking

I-Sun is high in the Blue Washed out blue Doesn't Matter

sky

II-Sun is near the Red Dark Blue User is looking at Sun

horizon

II-Sun is near the Dark Blue Darker Blue User is looking away

horizon from Sun

III-Night Black Black Doesn't Matter

IV-Space Black Black Doesn't Matter

Table 5: Sky Coloring Calls

Calls Hooks Passed Variables

Initialize Sky pfEarthSky,

Update Sky Time of Day, Major Position Change

Where the User is Looking

4.4.5 Stars

4.4.5.1 Background

The appearance of stars in the night sky is useful for navigation and provides a

visually convincing effect. An Air Force navigator can use celestial positioning to find

32

his location without relying upon electronic devices, a individual on the ground can

look up at the night sky and if he sees nothing, he will interpret that as an indication of

a cloud layer, since clouds are not readily seen at night. An overcast sky means that

the chances of seeing military activity at distant locations is relatively slim. Pilots are

less likely to see lights on the ground, and people on the ground are less likely to here

the planes above. The commander of a battle space does not need the accurate star

representation required by navigators since he can use the computer for his navigation,

he will instead use the presence of stars at night as a visual cue for a lack of cloud

cover. When planning a night mission, overall visibility is an important issue, the

commander needs to know the likelihood of visually acquiring the enemy and the

chance of being visually acquired by the enemy, the stars are a natural way of

supplementing a user's inherent system of viewing the night environment.

4.4.5.2 Design and Implementation

The stars in the sky are created by using pfLighPoints which are each

represented as a single pixel on the screen. The star positions are read in from the file

starfield.txt and then transformed into the Performer coordinate system. The actual

code to read in the stars and convert the coordinate developed by (Koonse). The

intensity of the stars is determined by the time of day. When the Sun enters the

transition phase the stars slowly start lighting up, this is done by changing the color of

all of the light points. The stars fade at dawn by changing the color value from an

opaque representation to a transparent representation. To ensure fast execution, the

light points are only changed when the time of day has been changed.

A final consideration for the stars is whether or not the user is within the

atmosphere or out in space. When in space all of the above considerations do not

apply, the stars should always be rendered using their night time values. This is

determined by checking the major position change variable, which indicates whether or

33

not the user has just gone into space or has just come back from space. Table 6 shows

the calls needed to instantiate and update the stars in the SBB.

Table 6: Star Calls

Calls Roots Passed Variables

Initialize Star Root Max Stars starfield.txt

Update Stars Time of Day Major Position

Change

4.4.6 Moon

4.4.6.1 Background

The presence of the moon is also another important environmental factor. This

is especially true during night operations. It is desirable to know how much

illumination a night moon might provide. A moon on a clear night will make visual

acquisition of targets easier than when the moon is darkened or not visible. This can

effect a battle group's vulnerability to visual detection. Similar to the presence of

stars, the presence of the moon immediately provides even the casual observer a

method of determining evening visibility ranges. When down on the ground, if an

individual looks up and sees a clear bright moon then he knows that everybody else

will have that same ability to see through the atmosphere. When, on the other hand, an

individual looks up and sees the moon through an overcast sky and is only able to make

out the moon's fuzzy edges, he knows that nobody can see very far. If a military

movement is going to come in on a position a commander can intuitively tell that they

will not be able to visually acquire the target until relatively close, under the clouds.

34

4.4.6.2 Design and Implementation

The SBB employs a moon the tracks across the sky in the same manner as the

sun. The height of the moon above the equator and the moon's position relative to the

sun are both programmed into the weather software and are controlled in the same

manner that the Sun is controlled. Table 7 indicates the calls needed to create and

update the moon.

Table 7: Moon Calls

Calls Roots Files Needed

Initialize Moon Moon Root Moon.flt

Update Moon Time of Day

Moon Angle

Above

Horizon

4.4.7 Clouds

4.4. 7.1 Background

The commander wants the ability to see how different cloud covers will effect

the events of the battle. The commander can use different cloud configurations to

visualize battlefield visibility under different weather conditions. Being able to

visualize actual cloud layout provides an intuitive level of realism and capability

estimations. The SBB employs a notional set of clouds that can be turned on and off,

and the density coverage modified.

35

4.4.7.2 Design and Implementation

The clouds in the SBB are represented as polygonal models created to roughly

represent a typical cloud. A small chunk of nimbus cloud, made of several small

spheres, is modeled and all other cloud types are created by this basic building block.

In order to make larger clouds from this small piece the programmer must decide how

he wants to build the cloud, such as stacking the pieces together to form a column, or

spreading them out to form an overcast, and then instantiate each piece giving it its

location, orientation, and scale. All calls to New-Cloud put the new cloud piece under

the single cloud root, this keeps the main program from having to add any of the new

pieces into its rendering tree. Figure 10 shows a single cloud building block on the left

side of the picture, the larger cloud on the right is creating by making multiply copies

of the building block. The cloud models are created with two sided polygons so that

when the user enters a cloud the inside of the cloud model obscures the rest of the

scene.

Two models of the cloud building block are used, one for the day and one for

the night. The night model is a darkened version of the day model. Since the cloud

building block is pure white it appears too bright at night, detracting from realism of

the scene, a darkened cloud model at night solves this problem. When the cloud object

is updated it checks the time of day to determine which model should be used. Also,

when updated a cloud hook corresponding to a cloud category is checked to see

whether the clouds should be turned on or off, currently this supports nimbus type

clouds, other categories could be programmed in by creating a pattern of instantiation

to match the desired size and shape of the new category.

An example of how to make an overcast sky of nimbus cloud is presented in the

cloud gaggle routine. The cloud gaggle goes through a loop and places a new cloud

piece at position over the terrain so that the whole area is roughly covered. Each piece

is also given a different orientation and scaling factor. Table 8 shows the calls needed

36

to create clouds. Initialize Cloud is first called to set up the clouds, then Update

Cloud is called every frame, this ensures the proper cloud model is user and that

clouds are removed when necessary. A call to New Cloud puts a single cloud building

block out in the scene with the given position, orientation, and scale. A call to Make

Overcast calls New Cloud several times, placing the building blocks over the scene

until a layer of clouds is created.

37

Single CloudBuilding Block

"M",

Cumulonimbus Cloud Made
From Several Building Blocks

Figure 10: Cloud Building Block and Construction

Table 8: Cloud Calls

Calls Roots Hooks Passed Files Needed

Variables

Initialize Cloud Root Day Cloud.fit,

Clouds Night

Cloud.fit

New Cloud Position,

Orientation,

Scale

Update Cloud Show Nimbus

____ ____ ___ Clouds__ _ _ _ _ _ _ _ _ _ _ _ _

Make Overcast

38

4.4.8 Fog

4.4.8.1 Background

Fog is the specialized case when a cloud is on the ground. Controlling fog

density provides benefits very similar to those attributed to clouds. Since fog can be

created in a slightly different manner, taking advantage of the hardware generated fog

and fog-like effects, we can compare the visual impact of fog on the commander and

contrast that with the impact of clouds. Insights into the strengths and weaknesses of

both rendering methods should provide a good starting point for the next generation of

atmospheric phenomena. The SBB allows the user to turn fog on and off and then

manually adjust the density of the fog.

4.4.8.2 Design and Implementation

The fog object uses the pfFog variable to controls fog color and intensity. The

intensity is controlled by the global hook FogDensity and the color is always to same

as the ambient color of the Sun. The calls needed to create and update the fog are

represented in Table 9

Table 9: Fog Calls

Calls Hooks Passed Variables

Initialize Fog pfFog

Update Fog Fog Density

4.5 Movement

When a commander is viewing a battle field , the ability to view the battle from

more than one perspective is extremely valuable. In order for the commander to have a

complete conceptual understanding of the battle he must understand the big picture and

39

he must also understand the small picture. He will want to view the whole area from a

God's eye view of the world, and he will also want to view the battle from close in.

This allows the commander to know what is going on the front line as well as getting

the overall picture.

4.5.1 Absolute Positioning

The most obvious movement requirement is the need to position the Pod at any

particular desired location within the virtual environment. A Commander needs to be

able to direct his position so that he may achieve the desired view of the battle. The

Pod to provides the user with the means to position himself anywhere within the virtual

environment. The movement in the new SBB is done in the same manner as the

previous SBB. Graphical buttons are presented to the user that represent forward/

backward, up/ down, left/ right, and heading/ pitch as described in (Wilson).

4.5.2 Site to Site Movement

4.5.2.1 Background

Once a commander has gone to a particular location, he will likely want to

move on to somewhere else, but if he has been to a place once, the chances are high

that he will want to return. Instead of manually repositioning himself to the previous

location, a means of instantly going to any location of interest would save effort and

time. This capability first implemented in (Wilson) but has been implemented in a

different manner in the current SBB.

4.5.2.2 Design and Implementation

This functionality was re-programmed in order to work with the new user

interfaces. The transporter is now implemented by calling an object that stores a list of

pre-defined locations, these locations are referred to by their order in the list, so the

40

first location in the list would be site one. The user tells the object which location he

wishes to go to and the object returns a variable with the coordinates of that location.

The coordinates of the new location are then copied into the variable that represents the

Pod's location, moving the Pod to that location.

When the Site to Site object is initialized it creates an array of coordinates and

then reads a file of predefined positions and stores them in the array. When the

method Skip To Site (int site number) is called, the input is checked for range

errors, then the coordinates stored in that position of the array are copied to the

Current Site Location variable, and the site number is copied to the Current Site

Number variable. All variations of Skip To Site are based on this one method, so the

code for NextSite simply call SkipToSite and passes the current site number

incremented by one. Table 10 shows the needed calls to created the Site To Site

capability and the procedures available to extract site information.

41

Table 10: Site-to-Site Calls

Call Passed Variables Returned Variables Files Needed

Initialize site to site.dat

Get Number of Haw many sites

Sites there are.

Current Site What stored

Number location is currently

selected

Current Site The coordinates of

Location the current site

Skip to a Site New Site Number

Next Site

Go Back One Site

Jump By X Sites How far forward

New Site (1) The coordinates to

be stored in the

current site

New Site (2) The coordinates to

be stored,

The number of the

site in which the

coordinates are to

be stored

4.5.3 Vehicle to Vehicle Movement

42

Since the virtual battle space is often heavily populated with various vehicles, a

commander would like to be able to position himself where the vehicles are. He may

wish to see an F- 15 view of the battle field or get a tank's perspective of the

environment. The SBB provides a means of cycling through all vehicles that are

represented in the virtual environment. This capability is discussed in further detail in

(Wilson).

4.6 Situational Awareness

Situational awareness, for the purposes of this thesis, refers to the commander's

need to keep track of several aspects of a battle at the same time. Although it will be

important to closely watch a particular hill, or keep a close eye on a nearby road, the

commander can't afford to loose track of what is going on elsewhere. The commander

needs the ability to keep track of the second location without actually taking the time

and effort of going there to watch it. Functionality regarding situational awareness

makes it easier for a commander to keep track of several things while not diverting his

attention from his main point of interest.

4.6.1 Threat Detection

4.6. 1.1 Background

The simplistic view of a vehicle's capability corresponds directly to the

vehicle's radar emission. When a Mig-31 isn't picking up an F-15 on his radar then

the F-15 know that the Mig-31 does not currently pose a threat. Representation of

battlefield radar coverage simultaneously illustrates which planes are emitting radar and

the extent of coverage provided by that radar. The SBB represents friendly and enemy

capabilities by physically drawing the radar cone out into the environment, providing a

43

visual representation of active radar coverage. Radar range is sometimes different than

threat range. Anti-aircraft installations can detect enemy aircraft before they can

realistically engage that same plane. The range within which a vehicle can successfully

engage another vehicle is the threat range, Figure 11 illustrates how the ranges might

be displayed.

Plane

Shadwý

Anti-Air Radar Range
(It will see the plane
when it gets to his Anti-Air Threat Range

ring) (It will start shootingat the plane when it
gets inside this ring)

Figure 11: Radar Ranges and Threat Ranges

4.6.1.2 Design and Implementation

Threat ranges and radar emission visualization are programmed in identical

manners. Models of the effects are created in MultiGen, one for threat ranges and

another for the radar emissions. These files associate a vehicle with a model that

represents the corresponding effort. This is done in the vehicle manager code and

utilizes the model manager code developed by (Wilson). When a vehicle's geometric

model is loaded from the disk the threat association file and the radar association file

are examined and the corresponding geometric files for those effects are loaded and

permanently associated with the vehicle. The vehicle manager then puts these effects

44

in Performer tree, (see "Figure 12) with pfSwitches above each branch so they can be

toggled on and off. Object methods are provided to turn the effects on and off. These

methods go through each player and assert the associated switch to represent the

current state wanted by the user. Table 11 lists the calls available to control the

representation of threat ranges and radar emission. Threat and radar visualization is

implemented for the Mig-31, F-15, and SA-6 which can serve a basis on which the

effectiveness of this method can be evaluated. Threat and radar visualization can then

be implemented for all other vehicles.

The Root for

. Vehicle

Figure 12: Performer Tree for Threats and Radar

Table 11: Threat and Radar Calls

Calls Passed Variables

See F-15 Radar On or Off

See F-15 Range info On or Off

See Mig-31 Radar On or Off

45

See Mig-31 Range info On or Off

See SA-6 Radar On or Off

See SA-6 Range info On or Off

4.6.2 Remote Cameras

4.6.2.1 Background

When a commander has a particular hot spot in mind, he can benefit from being

able to keep a constant eye on that point. Leaving his current location and going to the

second spot forces him to loose track of the first place. A commander riding along the

wing of a B-52 might want to know if the airport is safe and not under attack. Instead

of constantly jumping to the airport and then back to the B-52, the ability to watch both

places at the same time would save effort and time and improve situational awareness.

There are several ways to keep track of the activity of a location, one method used

successfully in the past is the use of a Sentinel (Soltz). A Sentinel is an entity that

keeps track of activity at an area and reports back to the commander, used fuzzy logic

to develop a computer program to perform this task. Another method of remote

observation is to have another person, possibly using another SBB, observe that place

of interest and physically or electronically relay the desired information to the first

person. A view onto the location of interest would allow the commander to directly

watch the sight without diverting attention from his primary point of interest, this

would also allow him to gain a first hand understanding of the location and gain other

insights not available with the alternative methods. Besides freeing up the other

person, he could assess a site's terrain or other visual characteristics that are

inappropriate to a Sentinel. Figure 13 shows three camera situated in the terrain, the

46

boxes at the bottom of the figures represent what would be see at those camera

positions..

Another issue to address is how this view in into different spots of the world is

to be presented to the commander. The view can be presented as a display on the panel

of the information pod, with the commander having to look at the screen to see the

information, a drawback to this method is that it requires conscious effort by the user

to monitor the virtual screen, if he is looking away from the screen then he must

constantly divert his attention and physically move his head so that he is again able to

see the display. A second alternative would be to have the screen move around with

the commander, so if the commander looks behind him then the screen will be in front

of his nose, and not at his back. This provides the same effect as tying a display device

right onto the user's head, so that no matter where you look, that display goes along

with you. In order for the screen to avoid obscuring the commander view out into the

environment of primary interest, it should not be too large, yet still big enough to

recognize terrain and vehicles.

47

-Camera 3

Camea ICamea 2Camera 2

Camue1:remta Cmr
-Z7

I/

Camera 1 Camera 2 Camera 3

Figure 13: Remote Camera

4.6.2.2 Design and Implementation

The drop camera can provide the user with a view to any other location, this is

done using the same object as used by the SiteToSite code but instead of bring the

whole pod to a designated location, the camera goes to that location. The Camera

objects creates an instance of SiteToSite and reuses that functionality. The actual

view generated by the remote camera is created by using a pfView and by specifying

the window location and dimensions to correspond to the position of the viewport. The

coordinates of the camera positions are copied to pfView, so now this window on the

screen is showing what would be seen at the camera site.

48

4.6.3 Video Missile

4.6.3.1 Background

A variation of the remote camera gives the commander the ability to go search

out locations of interest. Finding locations of interest can be accomplished in at least

three ways. The first way is to use a human, using another SBB, to move around the

battlefield until he finds a new location of interest and then relay that information to the

commander, who would then go to that location. One draw back to this method is its

reliance upon using another person. A second method could use computer Sentinels to

not only watch locations of interest, but to also seek out new locations. Since the

Sentinel is not currently integrated into the SBB this approach was postponed. A third

method launches a video missile ahead of the user and relies upon the user's analysis of

the image. A major advantage to this approach is that it allows the commander to

explore an area of possible interest without leaving his current location. The

implementation of the missile can also reuse code the remote camera, making it quick

to implement. The video missile can serve as a reference to the effectiveness of a

wandering Sentinel or wandering SBB. The SBB provides the user the means to launch

a virtual missile from his present location. This missile has a camera attached to its

nose so that the user can see through the missile in the same manner as the remote

camera. This gives the user a means of reconnaissance without leaving his present

location. Figure 14 shows a missile flying away from the POD and going straight until

it reaches the airfield, at which point the commander order the missile to circle the

field. The box at the bottom of the figure shows the view from the missile, which is

also seen by the commander.

49

User Pod

Figure 14: Video Missile

4.6.3.2 Design and Implementation

The video missile serves a similar purpose as the remote camera, the ability to

watch something far away. The missile, like the drop camera, acts like a HUD and can

only be seen as a window on the overlay plane. This is because the view from the

missile is rendered in the same fashion as the view associated with the remote camera.

The illusion of a missile is accomplished by giving a Performer view a starting position

the same as the Pod. If the user chooses a straight launch pattern then the position of

the view simply moves forward in a straight line each frame. The flight path can also

be circular, which allows the missile to loiter around a spot of interest for an indefinite

amount of time. The ObjectSim function MoveAlongHeading is used to achieve

50

these effects, for a straight line, the heading doesn't change, for a circle, the heading is

incremented every frame.

4.6.4 Radar

4.6.4.1 Background

A commander may wish a non-first-person view of the battle space. This can

allow him to view the battle in a more abstract manner than direct observation. The

concept behind using a radar screen in a virtual environment is covered in more detail

in (Wilson). On the SBB radar scope the aircraft are represented by small icons, as are

ground vehicles and missiles (see Figure 15 and Figure 16). All of the icons are color

coded to represent either friend, foe, or neutral.

The commander examining a battlefield via the radar scope needs the ability to

adjust the range of inspection. Another need of the commander is the ability to filter

out unwanted radar information. The SBB radar scope provides an interface to

dynamically adjust the magnification or range on the scope, also the commander can

filter some of the information that can be displayed. The radar can filter what force

type is displayed, such as only viewing enemy forces on the scope. The radar can also

filter force domain which allows the user to categorically view either air or ground

vehicles. This filtering and range manipulation adds enhancement to the radar.

51

Figure 15: Plane Blip

Figure 16. Ground Blip

4.6.4.2 Design and Implementation

The radar scope represents the position of other vehicles relative to the user.

Since the scope deals extensively with vehicle location and identification the method for

drawing the scope is put within the vehicle manager hierarchy. The actually drawing

of the grid is accomplished using GL calls and can be thought of as a three step

process. The first two steps are executed by the VehicleManager and the third step is

accomplished by the user interface section of the code.

The first step represents the lowest level of abstraction, the drawing of a single

radar blip. This procedure is given information about a vehicle's parameters that

indicate what type of vehicles should be displayed and how they should be drawn.

Vehicle characteristics, such as friendly status and domain, are examined and compared

to the passed parameters. If it is determined that the calling code wants this type of

vehicle displayed then a icon of the vehicle is drawn in GL. If the vehicle is a ground

52

vehicle then an icon for a tank is drawn, otherwise an icon for an airplane is drawn.

The icons can either be drawn as solids or as wireframe drawings. The characteristics

of the vehicle are carried within the SBBNetPlayer structure are discussed in

(Wilson). Table 12 shows the call to draw the radar blip and the parameters that need

to be passed.

Table 12: Radar Blip Calls

Calls Passed Variables

DrawRadar Blip Vehicle,

Show Friendly Flag,

Show Enemy Flag,

Show Air Flag,

Show Ground Flag,

Fill Polygons Flag

The next step of the radar encompasses the drawing of the whole radar scope.

This code examines every vehicle in the battle and compares their position to the user's

position. Then using the range and the screen size it determines whether the vehicle is

on the screen or off the screen. The screen is assumed to be square and the ranges are

based on the center of the aircraft. If the vehicle is on the screen then a call to Draw

Radar Blip is made and all visibility flags passed to the Draw-Scope code are passed

to DrawRadarBlip. This effectively draws a radar scope.

The last step puts the scope where it is supposed to be. The above code is not

aware whether it is drawing itself somewhere on the screen or out in the environment,

this allows the user interface designer to specify exactly where the scope will be drawn

without changing the underlying code. This portion of the code must push the matrix

53

stack so that the drawing commences where it wants the scope. There are two different

ways of viewing the radar scope, one way is to see it on the lower panel in the Pod, the

other way is to draw the radar so that it acts as a HUD, always on the overlay plane.

When the radar scope is on the lower panel, the viewing stack is pushed and then

translated to the panel. A black background is drawn with a GL box command and

then the Draw Radar Scope command is called. The flagged parameters are

determined by user input and then passed to the Draw Radar Scope method. When

the method returns to the main, the viewing stack is popped to return the viewing

matrix to its original state. Table 13 shows the call to Draw Radar Scope and the

parameters the need to be passed to it. Table 14 shows the complete algorithm for

drawing a radar scope.

Table 13: Draw Scope Calls

Calls Passed Variables

Draw Radar Scope Range,

Screen Size,

Show Friendly Flag,

Show Enemy Flag,

Show Air Flag,

Show Ground Flag,

Fill Polygons Flag

54

Table 14: Algorithm for Drawing Radar

Get the users viewing parameters (See friendly, See ground, Range, etc.)

Push the viewing matrix

Translate to where the scope is to drawn

Draw a black background

Call Draw Radar Scope

For each vehicle in the battle

Calculate the vehicles position relative to the user

If the vehicle is within range of the radar

Push the viewing matrix

Translate to where that vehicle is relative to the user

Call Draw Radar Blip

If the Vehicle should be drawn (According to

the passed parameters, i.e. don't draw a tank if the

user doesn't want to see ground vehicles)

Check the vehicle's allegiance -

(if friendly then draw blue, enemy draw

red, natural then draw white)

Check vehicle's domain -

(if an aircraft then draw a plane,

if its a ground vehicle then draw a box,

if its a spacecraft then don't draw it at all)

Pop the viewing matrix (Go back to scope's origin)

Pop the viewing matrix (Go back to user interface origin)

55

4.6.5 Space Scope

4.6.5.1 Background

On the modern battle field, space based assets are playing ever increasingly

important roles. In Desert Storm, the periodic nature of a particular GPS satellite

dictated the timing of at navigation sensitive missions (Class Notes). Also, the

detection of SCUD launches relied at least in part on space based surveillance. A

battlefield commander needs to quickly ascertain available resources, and space based

resources should be included. He also wants to know the space based capabilities of

his enemy. There are several ways in which this information can be presented to the

commander. One way is to simply write out to the screen what he has available to him

and what the enemy has available to them. A significant drawback to this method is its

inconvenience in the sense that a user cannot quickly conceptualize what is being

presented to him, he must read each line and then interpret the information, all of

which takes time and is always error prone when in a virtual environment. Another

alternative is to realistically render the satellites so that the commander can look out

and view what is available to him and ascertain their relative positions over the

battlespace. Although the SBB is meant to represent large scale information, the

distances associated with satellites is roughly an order of magnitude larger than those

associated with a battlefield. This makes it difficult for the commander to

conceptualize both frames of reference. In addition to this, there is no intuitive

translation between space based motion and battlefield motion. To elaborate, satellites

travel in elliptical orbits and their movements are nonlinear, and if an individual thinks

about them in a linear manner then they will become confused. Battlefield movement

is all linear, for example, people don't worry that the surface of the Earth is curved

when driving down the road, they pretend the world is flat and that works fine when

not traveling long distances. The extra work associated with presenting satellites in

56

their real positions rules against accurate rendering satellites as a primary method of

presenting space information to the battlefield commander.

A third option is to aggregate the available satellite information and present the

result to the commander in some format that can be quickly conceptualized by the

commander. Laying the satellite resources out on a screen and iconizing the satellite

capabilities would allow the commander to quickly glance at the screen and see the

pictures of the satellites and immediately determine force type and relative position.

The graphical nature of the display facilitates immediate comprehension of available

resources and the 2-dimensional display avoids any reference frame transformations by

the commander. The previous method of realistically recreating the space environment

was implemented for comparison with the space scope.

Like the radar scope, the space scope should also be customizable, allowing the

commander to focus only on the information that is relevant to his particular situation.

For example, a commander might only be interested in US satellites resources and

therefore would wish to turn off any outputs that relate enemy satellite information.

4.6. 5.2 Design and Implementation of Space Environment

In order to model space based assets and high altitude observations the inclusion

of the space environment is incorporated into the SBB. The space environment, which

is populated with satellites, provides an environment for commander to visually inspect

space based resources such as intelligence and navigation satellites. Vehicles in space

generally have velocity and altitudes an order of magnitude higher than battlefield

confined vehicles. This distinction between space and Earth vehicles requires extra

consideration. The incorporation of the space environment into a simulation that also

incorporates a ground based environment can be approached in three ways. The first

approach is to lay aside the differences in scale between environments and insert all

space based geometry into the normal battlefield environment. This method fails in

57

practice because of the limitations of SGI hardware and lag associated with ObjectSim

dead-reckoning algorithms. The effect is of the satellite displaying exaggerated jitter to

the extent that the view is non-functional. The second approach creates two completely

different descriptions of the world, one which includes only the battlefield confined

vehicles and another which includes only the space based vehicles, each with their own

scale. This is analogous to techniques used to solve interplanetary trajectories where

the focus shifts from a planet based scale to a solar system based scale, except that

instead the focus shifts from a battlefield scale to a planetary scale. This method does

not readily integrate into the SBB architecture and was not implemented for this reason.

The third approach partitions the scene into two distinct geographical sections, one

section being the area near the battlefield, the other section being out in space. The

section near the battlespace is stored and manipulated at one scale while the section out

in space is stored and manipulated at another scale. This method is in the SBB because

it achieves a space environment without changing the scaling of the current

implementation of the SBB. The extent of the battlefield measures approximately

300,000m on a side, the area beyond the 300,000m boundary is compressed 1000

times. Figure 15: Partitioning shows how the Earth is modeled as being around the

terrain with the scale on the inside of the planet, near the battlefield, as being scaled

1:1, the scale outside the battlefield is scaled 1,000:1. The algorithm for inserting the

vehicles into the environment now follows this algorithm:

* For each vehicle

* If the vehicle is confined to the battlespace then

* insert the vehicle into the scene, don't scale

* Else // (The vehicle is in space)

* Scale the vehicle's coordinates by 1/1000

* insert the vehicle into the scene

58

Outer-Space
Scale = 1:1.000

50,O00m 500,O00m

Figure 15: Partitioning of Terrain Between Scales

4.6.5.3 Design and Implementation of Space Scope

The space scope radar barrows heavily from the radar scope. The radar

discussion applies perfectly to the space scope except for one aspect of the algorithm.

The radar algorithm, (see Table 14) needs to replace the portion where it identifies the

vehicles as either ground or air and instead say that it only draws those vehicles that

are space objects. A single representation for all satellite types is used, a small icon of

a generic satellite is drawn using GL and colored according to force type (see Figure

17).

59

Figure 17. Satellite Blip

4.6.6 Pause

4.6.6.1 Background

The battlefield is an active and rapidly changing environment. The commander

may wish to stop all of the action and force the normally dynamic environment into a

lifeless static environment that could be explored and examined at leisure. A function

that freezes the updating of vehicle position and orientation in the environment would

facilitate this need. This would allow the commander to roam the battlefield at his own

pace and observe a particular instant in time. One obvious drawback is that even

though the commander's view of the battle is stopped, the real fighting is still

continuing. Although this is a potential problem for a single commander in a real-time

scenario, it could be a useful tools when other SBBs are being utilized at the same time

or when the battle is only a re-creation of an original conflict that can be paused

without consequence.

4.6.6.2 Design and Implementation

The pausing of the battlefield is controlled by a global Pause hook. When this

hook is set to 1 the VehicleManager stops update the network and stops updating

vehicle positions. All other SBB code is updated.

60

4.7 Performance

4. 7.1 Level of Detail! Transparency

Whenever semi-transparent materials are rendered on the Silicon Graphics

computer, the frame rate suffers considerably, especially when the transparencies

occupy a large percentage of the screen. In order to minimize this problem a general

rule is adopted that avoids the use of semi-transparent materials unless they have a

significant impact upon the display of information. Currently, the biggest user of semi-

transparent material is the locator. The locator had been semi-transparent so that when

a vehicle got close to the commander he could still see the vehicle inside.

The locators are now opaque and implemented as levels of detail of the original

aircraft. When the vehicle manager creates the performer tree for the vehicles, it puts

a level of detail node above each vehicle model (see Figure 18). The other child of this

node is the locator associated with the vehicle (Wilson). The range is set so the vehicle

will no longer be rendered when the craft is too distant to see. This switching of the

levels of detail is then automatically executed by Performer.

61

The Root for
aVehicle

LOD Node

4.8 Hardware

4. 8.1 Computer

Silicon Graphics Inc. (SGI) computers were used to test and develop the SBB.

An SGI Reality Engine2 Onyx with four 100Mhz MIPS processors, Z-buffered

graphics, 4MB texture RAM, and 128 MB of processor RAM served as the test

platform for the SBB. The SBB has also been run on slower machines, a two processor

Reality Engine2 Onyx is the lowest acceptable configuration.

4.8.2 HIeadtracking

Since the SBB is now designed for an inmmersive environment, the application

must have some method of tracking where the user is looking. When the application

knows where the user is looking it can then render the new view into the environment.

62

The Polhemus headtracking device is used for the purpose, it provides head position

information over the RS232 line. A routine was written to parse the input and convert

it into a form usable by ObjectSim. The packets sent to the serial port are retrieved and

broken into components representing position and orientation. A coordinate

transformation converts the user's head position from room coordinates to Pod

coordinates. This is discussed in greater detail in (Vanderburgh).

4.8.3 Display Devices

Three different display devices were used during the development of the SBB.

The first device was an extremely low resolution, about 200 x 200, head mounted

display. The second device was the PT-O1 head mounted device. This device is a

relatively low cost, about a thousand dollars, device that is also comfortable to wear.

The PT-O1 has a narrow field of view and a resolution comparable to a poor quality

TV set. The SBB interface is geared primarily to a head mounted display that is

comparable to the PT-O1. At this resolution, the text is large enough to be legible.

The highest quality head mounted display used was the N-Vision. This provided

resolution comparable to the computer CRT, the $50,000 unit is somewhat heavy to

wear and takes about five minutes to install. Display devices used for the SBB are

discussed in greater detail in (Kestermann).

4.9 Conclusion

This chapter presents some of the most important features of the Synthetic

BattleBridge. Some meaningful components of the SBB such as movement, situation

awareness, and weather have been discussed as they relate to the battle field

commander and how they were implemented in the SBB. The old SBB was

reprogrammed to work with an immersive user interface. The next chapter presents

63

the results of the enhancements and the thesis concludes with recommendations for

future work.

64

5. Results

5.1 Introduction

AFIT's Synthetic BattleBridge is a functional prototype that can provide help to

a DIS battlefield commander. An unintrusive system has been implemented that

improves the commander's ability to elicit knowledge of the battle being fought over

the network. This chapter follows by addressing each significant new SBB feature with

an accompanying figure to help illustrate its final version as it appears to the user. A

discussion about new performance enhancements will follow the photographs and a

conclusion is at the end of the chapter.

65

Table 15. Synthetic Battlebridge Capabilities - Past and Present
Capability previous SBB current SBB

Performance 3-30 fps 5-30 fps
Viewing Devices

CRT X X
Boom X
Head Mounted Displays X

Radar X X
Variable Range 2 ranges infinite
View only Friend/ Foe X
View only Air! Ground X
Click on icon - attach to X
player

Space Scope X
Site -to-Site transport X X

Store sites in a file X
Threat Ranges & Radar 92' version by Hadix X
Attach to Vehicle X X

Detach from Vehicle X
Move around vehicles Heading change gives Movement is relative to the

different view of the vehicle
vehicle

Display Number of X X
Vehicles
Display Vehicle Speed & X X
Direction
Weather X

Clouds Nimbus
Fog X
Sun Manual movement
Moon Manual movement
Stars X
Sky coloring X

Remote Camera X
Head Tracking X

Video Missile X
Head Tracking X

Fuzzy Logic Sentinel X
Plan View (Overhead view) X Must maneuver into

position
Pause X
HUD Everything Remote Camera,

66

Video Missile,
Radar,
Pod Position

5.2 Hardware

5.2.1 Computer

Silicon Graphics Inc. (SGI) computers were used to test and develop the SBB.

An SGI Reality Engine2 Onyx with four 100Mhz MIPS processors, Z-buffered

graphics, 4MB texture RAM, and 128 MB of processor RAM served as the test

platform for the SBB. The SBB has also been run on slower machines, a two processor

Reality Engine2 Onyx is the lowest acceptable configuration.

5.2.2 Headtracking

Since the SBB is now designed for an immersive environment, the application

must have some method of tracking where the user is looking. When the application

knows where the user is looking it can then render the new view into the environment.

The Polhemus headtracking device is used for the purpose, it provides head position

information over the RS232 line. A routine was written to parse the input and convert

it into a form usable by ObjectSim. The packets sent to the serial port are retrieved and

broken into components representing position and orientation. A coordinate

transformation converts the user's head position from room coordinates to Pod

coordinates. This is discussed in greater detail in (Vanderburgh).

5.2.3 Display Devices

Three different display devices were used during the development of the SBB.

The first device was an extremely low resolution, about 200 x 200, head mounted

67

display. The second device was the PT-O1 head mounted device. This device is a

relatively low cost, about a thousand dollars, device that is also comfortable to wear.

The PT-O1 has a narrow field of view and a resolution comparable to a poor quality

TV set. The SBB interface is geared primarily to a head mounted display that is

comparable to the PT-O1. At this resolution, the text is large enough to be legible.

The highest quality head mounted display used was the N-Vision. This provided

resolution comparable to the computer CRT, the $50,000 unit is somewhat heavy to

wear and takes about five minutes to install. Display devices used for the SBB are

discussed in greater detail in (Kestermann).

5.3 Weather

5.3.1 Sun

Figure 19 shows the sun near the horizon. The picture shows how the yellow

model for the Sun has been switched out for a darker version.

68

Figure 19: Sun Low in the Sky

5.3.2 Moon

The moon's orbit is represented by a notional path across the sky, similar to the

Sun's orbit. The sphere of the moon is in a position relative to the Sun so that a person

on the battle field only sees the ambient lit sphere, creating the impression that the

moon is a circle instead of a sphere.

69

Figure 20: Moon

5.3.3 Sky Coloring

The coloring of the sky corresponds to the sun position and view direction. The

actual colors provide a rough approximation of the real sky but the match is not exact.

Figure 19 shows the graduation of blues going from the horizon on up to the top of the

screen, also note the bright color of the sun which will contrast with the Figure 21

where the view is looking away from the Sun.

70

Figure 21: Looking Away From Low Sun

5.3.4 Stars

The stars in the SBB slowly come out at night and provide a realistic simulation

of the night sky. The star positions are accurate relative to each other. Figure 22

shows the stars at night.

71

Figure 22: Full Night with Stars

5.3.5 Clouds

The clouds in the SBB represent what can be done in a real time environment.

The clouds created can represent nimbus type clouds and are convincing during the day

and night. The figure of night time clouds shows how the clouds effectively obscure

the stars. The polygon count for an individual cloud element is in the hundreds and the

count for an entire overcast uses several thousand polygons, noticeably slowing down

the frame rate. One possible alternative is to render the clouds using only square

building blocks, or even simple squares that pivot around a point and always face the

viewing. The construction of a complex clouds would become more difficult but the

new method might allow the denser clouds without compromising performance.

Polygon count will become even more important when complex cloud structures are

created.

72

Figure 23: Clouds During the Day (Using Light Cloud Model)

5.3.6 Fog

The SBB fog was created using built-in hardware routines supporting fog

effects. The density of the fog is adjusted dynamically by the user. The hardware fog

assumes that the viewer is inside the fog bank, which keeps us from rendering any

73

clouds using this technique. Even though clouds and fogs are essentially the same

thing in nature, the hardware's ability to assist in fog creation dramatically affects the

visual quality of the scene.

MIR

Figure 25: Light Fog

Figure 26: Heavy Fog

74

5.4 Situational Awareness

5.4.1 Radar

The radar scope is visually very different from the previous implementation.

The radar on the lower panel is controlled by buttons next to the scope. The radar that

appears in the overlay plane in controlled by buttons on the side panel. The overlay

radar always stays in the same spot on the screen, the controls do not follow the view.

Figure 27: Radar Scope (On Lower Panel)

75

N

Figure 28: Radar Scope (As a HUD in the Overlay Plane)

5.4. 2 Space Scope

The space scope is positioned on a panel slightly above and in front of the user.

The controls are positioned next to the scope. The controls to filter satellite types are

disabled because these identifiers are not yet part of the DIS standard.

76

Figure 29: Space Scope

5.4.3 Remote Camera

Figure 30 shows the Pod at the canyon with the remote camera showing the

view from the lake.

Figure 30: Remote Camera (No Head Tracking)

77

5.4.4 Video Missile

Figure 31 shows the view from a missile that launched over the lake and is now

at the far shore. Tanks can be seen on the horizon.

Figure 31: Video Missile

5.4.5 Threat Ranges!Radar Cones

The threat cones and radar cones are represented as models in the SBB and can

be turned on and off. The translucent nature of the cones slows the frame rate and

there are some Z-buffer artifacts when they are rendered. The Z-buffer problem can be

solved in software with some redesign of the rendering process but at the cost of a

performance penalty. The cones go all the way to the ground and into revines and

valleys, as opposed to being blocky near the ground. This previous limitation is

overcome because I used polygon models to represent the cone. Figure 32 shows a

78

radar cone generated by a Mig-31, which is inside the locator. Figure 33 shows the

threat envelope of an SA-6 site.

Figure 32: Mig-31 Radar Cone

Figure 33: SA-6 Threat Envelope

5.5 Performance

79

5.5.1 Pause

The pause function stops the update of vehicles in the environment. When this

is activated all Pod functionality remains fully active. When the pause is removed a

period of about 45 seconds when the display is inaccurate.

5.5.2 Level of Detail! Transparency

The locators are no longer semi-transparent, they are now opaque. This doesn't

to detract from the effectiveness of the locators. The locators now also act as a levels

of detail on all vehicles. This helps the display rate in extreme situations when the

polygon count is high. It is difficult to measure the exact effects because there is no

easy way to switch the effect on and off, but the theory of Performer says the reduction

in polygon count should have a positive impact on the frame rate.

5.6 Recommendations

5.6.1 Weather

Two major categories of improvement can be made to the weather generator.

Firstly, the weather should be more accurately/scientifically rendered. Secondly, an

extension of current available weather features is needed.

The position of the sun and moon currently makes a notional orbit around the

battlefield, it would better to have a sun and moon position server. This server could

be a program executing on a physically separate computer that can calculate the precise

position of the sun and moon in the sky given a location on the planet and a precise

time and date. Such calculation would surely not be unique to just the SBB and a

remote server would allow the SBB and all future program to have accurate weather

positioning.

80

The clouds in the SBB could also be improved. The current set of nimbus

clouds are a notional representation of what the clouds might look like under one

particular circumstance. An accurate real-time and simulated cloud server, similar to

the sun/ moon server, would be extremely beneficial. Tough technical questions must

first be addressed in order to ensure that all players in a DIS exercise are using the

same weather information before this is feasible. An additional issue of how to quickly

render more complex cloud formations on a computer must also be addressed.

Significant progress has been made in rendering realistic looking clouds and similar

weather phenomena in a non-real-time application but there has not been any noticeable

research addressing the issue of representing clouds in a real-time, polygon based

computer.

5.6.2 Movement

The current method of attaching yourself to a desired vehicle can be improved.

If the user knows that he wants to attach and fly along with the F-15 cruising down the

canyon he must currently cycle through all players until he finds the right plane.

Perhaps a method of specifying airplane type and geographical location could be

employed to accelerate vehicle acquisition.

5.6.3 Situation Awareness

]Improvement could also come from the full incorporation of the Fuzzy Logic

Sentinel into the current SBB. Software incompatibilities have slowed integration, if

these can be overcome then remote monitoring of sites of interest can be obtained

without direct visual observation, the computerized sentinel can watch the interesting

positions and report to the commander the activity levels of the area.

81

Another area of improvement would be the ability for multiple Simulate Battle

Bridges to communicate and cooperate with each other. Commanders in one room

could communicate with another commander across the nation and have a meaningful

tactical dialogue without leaving the virtual environment.

5.7 Conclusion

The Synthetic Battlebridge has been implemented with tools to improve

knowledge elicitation and control while in a virtual environment. The weather effects

provide a greater sense of immersion and realism in the environment and the ability to

control these elements adds to the control available to the commander. The addition

tools affecting situational awareness provide the means for the commander to observe

more than one position at a time without diverting resources from the primary area of

interest. The overall design has been directed toward a virtual environment but the

tools can also readily translate to normal CRT based operation. The SBB has the

potential to be a powerful training tools as well as an aid to commanders on

tomorrow's battlefield.

82

Appendix A. Users Manual

This user manual is intended to give simple and direct instructions for

the first time user. Note that the Daemons and Fastrak must be up and

running before the SBB can be executed; however, if you are not using a head

mounted display (HMD), then you will not need the Fastrak.

A.1 How to Run the Daemons

The SBB will not run unless the Daemons are up and running on the

intended workstation. The Daemons allow the SBB to receive PDUs across

the network. There are two ways to execute and terminate the Daemons:

by using script files or manual commands.

A.1.1 The Script (Easy) Method for Running the Daemons

To start the Daemons

"* go to the directory that the Daemons are in

"• type: startnet

To stop the Daemons

"* go to the directory that the Deamons are in

"* type: stopnet

To see what port the Daemons are running on

"* go to the directory that the Deamons are in

"* type: port

To see if the Daemons are running

"* go to the directory that the Deamons are in

"* type: statnet

"* You should see something like this:

IPC status from /dev/kmem as of Wed Sep 7 12:22:22 1994
T ID KEY MODE OWNER GROUP
Message Queues:
Shared Memory:
m 0 0x000009a4 --rw-rw-rw- mdiaz eng
m 1101 OxOObacOed --rw-rw-rw- rohrer eng
m 1102 Oxccbac0ed --rw-rw-rw- jrohrer eng
m 903 OxOObac0ec --rw-rw-rw- ssheasby eng
m 904 Oxccbac0ec --rw-rw-rw- ssheasby eng
Semaphores:
s 110 OxOObacOed --ra-ra-ra- jrohrer eng
s 91 OxOObac0ec --ra-ra-ra- ssheasby eng
6959 ttyql 0:00 sgisendd -p3000
24945 24:22 sgirecvd -p3000

A properly functioning Daemon will have four shared memory

ids, two semaphores ids, a sgisendd process running, and a

sgirecvd process running.

A.1.2 The Manual (Hard) Method for Running the Daemons

To start the receive Daemon

"* go to the directory that the Deamons are in

"* type: sgirecvd -p3000 -b50 &

"* You should see something like this:

Starting send Daemon on
Version 2.00
Mode: DIS
Broadcast address: 129.92.101.111
Number of buffers: 50
Network interface: etO
Port: 3000
Buffer size: 552

To start the send Daemon

"* go to the directory that the Deamons are in

"* type: sgisendd -p3000 -b50 &

*You should see something like this:

Starting send Daemon on
Version 2.00
Mode: DIS
Broadcast address: 129.92.101.111
Number of buffers: 50
Network interface: etO
Port: 3000
Buffer size: 552

To kill the receive Daemon

"* go to the directory that the Deamons are in

"* type: sgirecvd -p3000 -q

"* You should see something like this:

Stopping network Daemon and cleaning up

To kill the send Daemon

"* go to the directory that the Deamons are in

"• type: sgisendd -p3000 -q

"* You should see something like this:

Stopping network Daemon and cleaning up

If you don't see this, then the above method did not work, and

you must kill the Daemons manually.

To kill the Daemons manually (if necessary)

"• type: ps -elf I grep sgi (shows the proccess id's)

"* You should see something like this:

30 S ssheasby 24943 1 0 28 20 * 300:102
83bc5b00 Aug 29? 16:46 sgisendd -p3000 -blO0
30 S ssheasby 24945 1 0 26 20 * 300:113
80186850 Aug 29 ? 24:18 sgirecvd -p3000 -blO0

"• type: kill 24943 24945 (XXXXX is the process #)

"* type: ipcs (This will list the shared memory id's)

"* You should see something like this:

IPC status from /dev/kmem as of Wed Sep 7 12:01:38 1994
T ID KEY MODE OWNER GROUP
Message Queues:
Shared Memory:
m 0 0x000009a4 --rw-rw-rw- mdiaz eng
m 1001 0x0ObacOed --rw-rw-rw- ssheasby eng
m 1002 Oxccbac0ed --rw-rw-rw- ssheasby eng
m 903 Ox00bacOec --rw-rw-rw- ssheasby eng
m 904 Oxccbac0ec --rw-rw-rw- ssheasby eng
Semaphores:
s 100 Ox00bacOed --ra-ra-ra- ssheasby eng
s 91 Ox00bacOec --ra-ra-ra- ssheasby eng

9 type: ipcrm -m1001 -m1001 -m903 -m904 -slOO -s91

* type: ipcs (verify that everything is gone, except the root)

A.2.2 Details on the Fastrak Hardware Ensure you have the following

external settings on the POLHEMUS 3SPACE FASTRAK unit:

A.2.2.1 Front panel Settings of Fastrak Unit For all the 94d

applications, you should be using one receiver and one transmitter. Not

surprisingly, the transmitter cord plugs into the outlet labeled

TRANSMITTER on the front side of the box. The one receiver should be

plugged into receiver port ONE (there are a total on four receiver ports

available).

IMPORTANT: The select receivers switch on the front of the box

should have the following settings:

1 - OFF
2 - ON

3 - ON

4 - ON

Yes, this is counter-intuitive and does not make sense. But that is the

way it needs to be to work.

A.2.2.2 Rear panel Settings of Fastrak Unit First, make sure you

have power applied to the unit. You can confirm this by checking if the little

fan in the back is blowing-out air. Also, when disconnecting/connecting the

power, do this with the plug at the transformer. It is not recommended to

frequently plug/unplug directly into the unit itself. Fortunately, the newer

Fastrak models have a on/off switch in the back with a power indicator on

the front panel.

Connect your cable from the computer port to the RS-232 outlet on the

FASTRAK unit. Note that you need a special cable for this. For our SGI

applications, the cord should be customized such that pin numbers 12345678

correspond to 12352678 (not one-to-one). A one-to-one connection will also

work, but you will have to re-start the FASTRAK twice before it works

properly because the grounding is not proper.

Finally, make sure the I/O SELECT port is properly set. For all our

afa94 applications, the setting should be as follows:

Switch Setting Comments
1 0 9600 baud
2 0 9600 baud
3 1
4 1
5 1 8 bits/character
6 0 no parity
7 0 no parity
8 1 RS232

This should be enough information to get all the 94d applications up

and running with the position tracker on the HMD. Finally, realize that the

transmitter and receiver work off of electromagnetic fields. That means

keeping the transmitter and receiver relatively close together, and away from

metal or any monitors.

Refer to the 3SPACE USER'S MANUAL for more detail.

A.3 How to Run the Gaggle

The gaggle software generates players for the SBB to read off of the

network. The gaggle allows for 10 to 500 players to be generated and

broadcasted. Note that the gaggle and the SBB cannot be run on the same

machine because the Daemons were designed to handle only one application

at a time. Thus the Daemons must also be running on the machine the

gaggle is running on. Finally, it is not necessary for the gaggle to be running

prior to starting the SBB.

To start the gaggle

"* Ensure that the send and receive Daemons are running.

"* Go to the directory that the gaggle is in

"* Decide how many people that you want to be in the gaggle.

This number must be a multiple of 10! The first line in the

fileinit-gaggle should reflect the number of players divided by

10.

ex 1. If you want 100 players broadcast by the gaggle then
you would put a 10 in the file init-gaggle.

ex 2. If you want 30 players broadcast by the gaggle then
you would put a 3 on the first and only line of
the file init-gaggle.

Note:
Max Players = 500 (50 on first line)
Min Players = 10 (1 on the first line)

* type: gaggle

To Stop the gaggle

* type: CTRL C

A.4 How to Run the SBB

To start the SBB

"* Ensure the receive Daemon is running

"* If you do not want to use the Fastrak, then the last line of

the file fastrak.dat should be set to '0'. If you want to use the

head tracking abilities (Fastrak) then do the following:

o Ensure that the first line of fastrak.dat is set to the

port that the Fastrak is hooked up to.

o Ensure that the last line of fastrak.dat is set to '1'.

This tells the SBB to use the Fastrak instead of the

keyboard.

o Ensure the FastrakServer is running.

"* Go to the SBB directory

"* type: SBB

Expect the screen to be black/blank for about a minute

before the SBB is up and running.

To run the SBB

"* There are a total of five panels to choose from:

1. Front panel
2. Left panel
3. Right panel
4. Top panel
5. Bottom panel

"* Only one panel is active at a time. The panel the viewer is

looking at is the panel currently active. To change the active

panels, just look in the direction of the desired panel.

* The keyboard mouse moves the X on the selected panel. Use

the X to select a button by positioning the X over the desired

button.

o The left mouse button activates the selected button on the

panel.

* If the Fastrak/HMD is not used, you can change your view by

putting the mouse in the SBB window and then using the

keypad.

Look up

<8>

Rotate left <4> <6> Rotate right

<2>
Look down

Move Up

<up arrow>

Move left <left arrow> <right arrow> Move right

<down arrow>
Move down

<+> Move forward

<enter> Move back

To Stop the SBB

* Hit ESC to quit. The mouse must be in the SBB window, but it

will not be visible.

7. Bibliography

Aeiry, John M. et al. "Towards Image Realism with Interactive Update Rates in
Complex Virtual Building Environments" Proceedings of the Human Factors in
Computing Systems conference, 1989.

Bevin, Alexander. How Great Generals Win. New York: W W Norton & Company,
1993

Block, Elizabeth G. and Martin R. Stytz. "Tools for Commander and Staff Training in
Large-Scale, Distributed Virtual Realities: Concepts and Implementation." Proceeding
of the Military, Government and Aerospace Simulation Conference. 1994

Bryson and Levision, as cited in Block

Chung, J.C. et al. "Exploring Virtual Worlds with Head-Mounted Displays."
Proceedings from the Nonholographic True-3 Dimensional Display Technologies,
SPIE. 1989

Cooke, Joseph M. and Michael Zyda. "NPSNET: Flight Simulation Dynamic
Modeling Using Quaternions," Presence, 404-420. Fall 92

Diaz, Milton E. The Photo Realistic AFIT Virtual Cockpit. MS thesis,
GCS/ENG/94D-02, Air Force Institute of Technology, Wright-Patterson AFB, OH,
December 1994

Fortner, Jon L. Distributed Interactive Simulation Virtual Cassette Recorder (DIS
VCR): A Datalogger with Variable-Speed Replay. MS thesis, GCS/ENG/94D-10, Air
Force Institute of Technology, Wright-Patterson AFB, OH, December 1994

Gerhard, Jr., William E. Weapon System Integration for the AFIT Virtual Cockpit. MS
thesis, GCS/ENG/93D-10, Air Force Institute of Technology, Wright-Patterson AFB,
OH, December 1993

Kestermann, Jim B. Immersing the User in a Virtual Environment: The AFIT
Information Pod Design and Implementation. MS thesis, GCS/ENG/94D-13, Air Force
Institute of Technology, Wright-Patterson AFB, OH, December 1994

Levison and Bryson, as cited in Block

Rohlf, John and James Helman "IRIS Performer: A High Performance Multiprocessing
Toolkit for Real-Time 3D Graphics." Proceeding of the SIGGRAPH 94. 1994

84

Sheasby, Steven. Management of Simnet and DIS Entities in Synthetic Environments.
MS thesis, GCS/ENG/92D-16, Air Force Institute of Technology, Wright-Patterson
AFB, OH, December 1992

Snyder, Mark. ObjectSim Application Developers Manual. Air Force Institute of
Technology, Wright-Patterson AFB, OH

Stytz, Martin R. and Elizabeth Block. "Providing Situation Awareness Assistance to
Users of Large-Scale, Dynamic, Complex Virtual Environments," Presence, 297-313.
Fall 93

Sun Tzu. The Art of War

Walser, Randal. "Doing It Directly- the Experiential Design of Cyberspaces."
Proceedings from the 1990 Symposium on Interactive 3D Graphics: 1990

Vanderburgh, John. Space Modeler: an Expanded, Distributed, Virtual Environment
for Space Visualization. MS thesis, GCS/ENG/94D-23, Air Force Institute of
Technology, Wright-Patterson AFB, OH, December 1994

85

8. Vita

Lieutenant J.J. Rohrer was born on 4 Nov, 1970 in Seattle Washington. He

graduated from Liberty High School and then attended the US Air Force Academy,

graduating in 1993. The Air Force Institute of Technology was his first assignment as

a commissioned officer.

Permanent address: 13817 162nd Ave SE

Renton, WA 98059

86

Form Approved
REPORT DOCUM~ENTATION PAGE 3MB1 No. 0704-0188

Pu~ic t: h!rr n for !t-s r~lec-ion of nformatirn 5s estimated to averrrge 1 hour oer -esono.se, inciuzinc tirhe time tor Pore ew tr, c~or s±rh,-ýnq exist'ro: ata sourc,?r.
qacrherfno srrd riainrtainmg the a ata needed, a od comoietina and r,,viewing the coll Iection of ofcrmation send cýmmeot s eq a inr' rrrs but Ion estimate or iny Other .3toect of t~lw-

try. Icr 0n, inclaoa.oSin g ttt 0.g- i- s ror reouirc:n this burcner to Vacshingronr -ýeaconc-t Services, Drectorate ri.-To: ir Oocerrtiono ino Repo~ts. 125 jeffersorr
H. L 204. .Ar! i atcnr, A 22 212 -1302, area tc tihe Office of Ma naocement 3 oo Budcee, erper-uork Recuct!,,r- . Ic l0C44) 135) _sraso ýct , 1,C 205D3,

4.L IC' 152Z ONLY' *Loavte ./ank)]2. REPORT OAT3 3. REEPCRT N,? j~ 0A CT 35 : 0 VE 0
December 1994 IMaster's Thesis

DESIGN AND IMPLEMENTATION OF TOOLS TO INCREASE
USER CONTROL AND KNOWLEDGE ELICITATION IN A
VIRTUAL BATTLESPACE

AoUoi

Jim J. Rohrer

N00 I: I".'R03,ANZAI0HJ NAIAJE(S) Ai"M AODRE3S(ESSI-S;3 RA!Zj t~

Air Force Institute of Technology,
WPAFB OH 4533-6583 AFIT/GCS/ENG/94D-20

Lt Col F.T. Case ~~~,3
ARPA/ASTO
Advance Simulation Technology office
3701 North Fairfax Drive
Arlington VA 22203

Distribution Unlimited

AFIT's Synthetic BattleBridge is an immersive command observatory
for viewing large-area activity within a virtual environment.
Three basic areas for improvement are addressed: 1) an
improved, immersive, user interface, 2) direct control of
atmospheric effects, and 3) improved knowledge elicitation
by means of remote viewers, a new space scope, and an enhanced
RADAR scope. These requirem ents are analyzed and implemented.
Some functionality was lost ~but the results show a general
improvement of environmental - control---anid.knowileýdge2L ------ -

elicitation.

sId. SuIJ8JET TERMS 1I5. NUMBER OF PAGES
Synthetic BattleBridge, Sktellite Modeler, R4_______
Virtual Reality, Pod, Panel, Commander 116. PRICE CODE

17. SECURITY CLASSIFICATION4 '13. SECURITY CLASSIFICATION 19. SECURITY CLASSiF!:ATION j20. LIMITATION OF ABSTRACT
07 REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 75d-O-0i-280-55500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-18
295-102

