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Abstract

In recent years, researchers have been dedicated to the study of underactuated manipulators
which have more joints than control actuators. In previous works, one always assumes that

there is enough dynamic coupling between the active and the passive joints of the manipula-

tor, for it to be possible to control the position of the passive joints via the dynamic cou-

pling. In this work, the authors alm to develop an index to measure the dynamic coupling, so

as to address when control of the underactuated system is possible, and how the motion and

robot configuration can be designed. We discuss extensively the nature of the dynamic cou-

pling and of the proposed coupling index, and their applications in the analysis and design

of underactuated systems, and in control and planning of robot motion configuration.
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1 Introduction

In recent years, researchers have been turning their attention to so called underactuated

systems, where the term underactuated refers to the fact that the syster. has more joints than

control actuators. Some examples of underactuated systemsa rot mt-ipulators ,with

failed actuators; free-floating space robots, where the base can be considered as a virtual

passive linkage in inertia space; legged robots with passive joints; hyper-redundant (snake-

like) robots with passive joints, etc.

From the examples above, it is possible to justify the importance of the study of

underactuated systems. For example, if some actuators of a conventional manipulator fail, the

loss of one or more degrees of freedom may compromise an entire operation. In free-floating

space systems, the base (satellite) can be considered as a 6-DOF device without positioning

actuators. Finally, manipulators with passive joints and hyper-redundant robots with few

actuators are important from the viewpoint of energy saving, lightweight design and

compactness.

Most of the results available in the literature for fully-actuated systems are difficult to

apply to these new ones, because of the complications that appear in their dynamic

formulation. Manipulators with passive joints present nonholonomic constraints, and the

conditions for integrability of these constraints are too stringent [9]. In g( neral, the control

system must cope with these constraints and hopefully take advantage of them to guarantee

stability and performance requirements. Furthermore, as opposed to conventional

manipulators, in this problem there is a guarantee that no smooth control law can achieve

stability of the system to an equilibrium point [7], [9]. Thus, one is left with the choice of

procuring a discontinuous control law to reach a desired equilibrium position, or being

content with controlling the system to an equilibrium manifold.

Some recent works present a control strategy to deal with the joint and Cartesian control

problem of underactuated manipulators. Arai and Tachi 1] presented a method which

required brake, to be installed on each passive joints. The basic idea was to use the dynamic

coupling between the active and the passive joints, in order to drive the passive joints to a

desired set-point. Later, Bergerman and Xu [2] enhanced this method to deal with parameter
uncertainty and provide the system with a greater deal of robustness. This is specially

important in these systems because the Jacobian mapping from Cartesian to joint space

depends on the dynamic parameters, once again differently from conventional robots, where
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the Jacobian depends solely on kinematic parameters. Parameter uncertainty can lead the

system to a very poor or even unstable performance. Another interesting control strategy
requiring the use of brakes was done by Papado..ulo. ad Du,,.s, [1] this ti,, fr,
space manipulator.

In every work mentioned above, the authors had to assume that "enough" coupling

existed between the passive and the active joints, so that the controller could "transmit" the
forces/torques to the passive joints in order to drive them. However, no attempts were made

to quantify this coupling, or to identify the cases when it is too small as to be practically

unfeasible to control the passive joints. To give the reader an introductory feeling of the

importance of the dynamic coupling in underactuated mechanisms, consider a Cartesian 3-
DOF manipulator, where the joint axes are mutually perpendicular. it can be verified that the

inertia matrix for this manipulator is diagonal and constant, corresponding to the physical fact

that there is no coupling at all between the joints. No matter how much one joint travels, the

other ones are unaffected. Consequently, the absence of coupling does not allow this

mechanism to be controlled at all if passive joints are present.

In this work, the authors aim to provide a measure of the dynamic coupling present in
underactuated systems. This measure is useful not only for the design of an underactuated

manipulator, so as to maximize the coupling and hopefully minimize the energy necessary to
perform control; it is also useful for such important issues as actuator placement and control

strategies. In cases for which the number of actuators is greater than the number of passive

joints, such a measure can also be used in connection with a redundant control scheme [8],

in order to maintain the system as far as possible from the positions that yield low dynamic

coupling.

2 Dynamic Coupling

As -nentioned before, the nonholonomic constraints present in the dynamic equation of a

manipulator with passive joints cannot be integrated in general. Even partial integrability of

the acceleration relationships to velocity ones is not possible in most cases [9]. This
restriction makes it impossible to obtain a direct relationship between the angles of the

passive joints and that of the active ones. Thus, it is necessary to work with the dynamic

equations in their original form, and to try to derive acceleration relationships to quantify the

dynamic coupling.
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In order to derive the measure of dynamic coupling between the accelerations of the
passive and active joints of an underactuated manipulator, we must first present the dynamic

equations governing the behavior of the system. Let n be the total number of joints, r the

number of active joints, and p = n - r the numb of passive ones. By Uing eitber the

Newton-Euler or the Lagrangian formulation [31, one can obtain the following set of

differential equations relating the accelerations of the joints to the torques supplied by the

actuators:

M(q)#+b(q,4)= ()

Here, the matrix M is the n x n inertia matrix of the manipulator, b is ave co.taig l- 1

the centrifugal, Coriolis and gravitational torques, and T is the vector of torques applied at
the active joints. Note that 'T has always p components equal to zero, corresponding to the

absence of actuators at the passive joints.

Equation (1) is not useful in its current form, for it does not reveal the relationship
between the active and the passive joints' velocitis and acceleration.s. If e prtt ion the

joint vector q as:

q [qP] (2)

where q, correspond to the active joint angles and q to the passive ones, the following
partition can be performed on the dynamic equation:

r-[Maa M .P [ ]

PIM M ,J IJ 0o (3)

r p

It must be noted that M as defined in (3) is not always equal to the conventional inertia

matrix of mechanical manipulators. Nonetheless, M still preserves important properties of the
original inertia matrix, such as symmetry and positive-definiteness. To see this, note that the

new inertia matrix is obtained from the original one after the swapping of rows and columns

in an orderly fashion: if rows i andj are swapped, so must be columns i andj.

This swapping operation can be represented as a matrix product. In order to avoid

confusion, let's denote by M o the original manipulator's inertia matrix, and by M the one

ADA289404



4

representing the active and passive joints of the system, as in (3). The process of obtaining M

via the swapping of rows and columns of M. can be described mathematically as:

M = TMoT (4)

where Tis a transformation matrix obtained from the identity matrix by the swapping of rows

i andj (or columns i and j):

1 row i
0 1

T = rowj (5)
1 0

Since T is obtained from the identity matrix via an elementary operation, it is invertible

(actually, Tis also an elementary matrix). Furthermore, it can be verified that it is equal to its

inverse:

T=T-  (6)

This allows us to write:

M = TM0 
-1  (7)

and to establish that M and M o are similar matrices. Now it is a knowt fact that the specttim

of similar matrices are the same (for a proof, see [5], p. 152), and so we can conclude that the
new inerlia matrix of the manipulator, M, is positive definite.

Additionally, we can show that M is also symmetric. It is known that the original inertia
matrix is symmetric, and that the transformation T is , Ths ,ows ,o wri e,:..

M (TM0?) = TMor = M (8)

and to conclude on the symmetry of M,
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The submatrices of M in (3) receive their indexes according to the variables they relate.

For example, Mpa relates the (null) torques at the passive joints to the acceleration of the

active ones. The same reasoning is true for the other three submatrices. From the second line

of (3). we can write:

Mpaa +MPP4P+bP = 0 (9)

or, in the cases where M pp is invertible:

4 -M -IM 4 -M -1b (10)p p pa a pp p

The second term on the right-hand side of(l0) is a function only of q and 4, and as such is

completely determined once measurements of these variables are available. Because we are
focusing on the acceleration relationship between the active and the passive joints, we rewrite

equation (10) as:

MA

where

4p 4P+M PPb P (12)

The acceleration 4P can be viewed as a virtual acceleration of the passive joints, generated

by the acceleration of the active ones, and by the nonlinear torques due to velocity effects.

Given a desired acceleration of the passive joints, q A dI we can always determine at every

sampling instant the desired acceleration for iii, as:

= , + Mppbp (t - At) (13)

The control problem reduces to finding the qa in (11) that guarantees that:

q p Q Ip,d (14)

Equation (11) is important in the understanding of how an underactuated system works.

Torques can only be applied at those joints % hich contain an actuator, or the active joints.

These torques produce the accelerations 4,,, which indirectly produce the accelerations 4P
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at the passive joints. The passive joints' accelerations can only be controlled if the p x r

matrix Mc possesses a structure that allows the actuators torques to be transmitted

reasonably "well" (in a sense to be defined later) to the passive joints. Thus, the study of this

matrix is of fundamental importance for the design and control of underactuated

manipulators.

To begin the analysis, note that matrix M, is a function only of the robot's configuration

q, and thus is completely determined based on the readings of the encoders in all joints. It

does not depend on 4a or ij.. Thus, equation (11) can be regarded as a linear system of p

equations Ax = b, underconstrained for r > p and overconstrained for r < p.

One result that can be immediately derived from the structure of (11) is:

Proposition 1 If row i, 1 5 isp, in matrix M, contains only zeros, then the i-th passive

joint cannot be controlled via the dynamic coupling with the active joints.

This propositions follows from the fact that, if Mc has a line of zeros, then the i-th line

in equation (10) reduces to:

_ -M P , (15)

This equality indicates that the acceleration of the i-th passive joint is not a function of any

of the active joints' accelerations, and thus cannot be controlled dir ctly.

Example I Consider a simple two-link manipulator as shown in Figure 1. Jn rotates

around the Z axis, while joint 2 rotates around an axis perpendicular to the first joint axis. The

inertia matrix M for this system is:

M = 2 lsin(0 2) +1,+ 2  ] (16)
20 m2 21

where m2 is the mass of fink 2, 1, are the inertias of links i = 1, 2, and I., is the distance

between joint 2 and the center of gravity of link 2. Two cases can be considered here: either

joint I iq active and joint 2 is passive, or vice-versa. For the first case, we have:
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U =0 = o, Mpp = m2 C2 + I2  (17)

and therefore:

M, = 0 (18)

Equation (17) indicates that it is not possible to control 42 via its coupling with ..1 "Pus,
this underactuated system would not be useful for practical purposes. In the case for which
joint I is passive, the result is the same:

Mpa =0, Mpp = m2 1zSin (62)2 +1 +12 (19)

and therefore:

M = 0 (20)

We can conclude that this mechanism's structure does not allow its passive joint to be

controlled through the coupling with the active one, whether the active joint is joint I or 2.

Note that the above statement does not imply that the joints do not have any coupling at all.

In fact, the second term in the right-hand side of(10) is generally non-zero, and so the passive

joint may be disturbed for a given motion of the active one. However, the acceleration of the

passive joint due to the coupling is non-controllable. 0

Example 2 Consider now the 2-link planar manipulator shown in Figure 2. For this system,
we have:

M. 1 mfl,221 1 cO&(e 2)J +1I 2  m2 t1?1  1 ,COSt(2) ] +12 (21
S 2 + I

M m1[2 4.IcCost (02)] 1
2 

2 t,+t2  2

Considering joint I active, and joint 2 passive, we have:

12 (22
Mpa = in2[N 2 + 1u212c os (02)] + 2 , t= 2 +12

M, = -[l + 2 (62) (23)
m2 C2 + 12

iuI " ' ... .ADA289404
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Note that for this mechanism the structure does not prevent torque from being transmitted

from the active to the passive joint, as it was the case in example 1, A numerical

characterization of this transmission will be given in section 3 U

3 Dynamic Coupling Measure

As long as the sub-matrix M,, is invertible, we can study the relationship between the

accelerations of the passive and active joints:

qP = Mia

According to our definition, M. is ap x r matrix. We must study the various possibilities that

can arise depending on whether there are more active or more passive joints in the
mechanism. The first consideration that can be made regards the rank of matrix Mc . It is

known that this rank obeys:

rank (M.) min (p, r) (24)

This fact will be used in the sequence.

*Case 1: r<p

Although this may not be common, it may happen that the number of actuators is smaller

than the number of passive joints (eg., when two actuators of a 3-DOF arm fail). In this case,

Mc has maximum rank r, and equation (11) has at most one solution. However, this solution

(if it exists) is not interesting in practice, because the accelerations of p - r passive joints will
depend linearly on the accelerations of the other r passive joints. In other words, r passive
joints can be controlled at every instant, while the other p - r of them cannot. We can
conclude that it is necessary to have at least p actuators in the underactuated mechanism to

be possible to control all p passive joints independently. Note that this result was already
established by Arai and Tachi [1]; however in their work, the authors reached this conclusion
only after a study of the linearized dynamic equations of the system.

Although it is not possible to control all p passive joints when r <p, we can resort to the
least-square solution in order to find the q. that generates the "best" 4p (in a least-squares

sense) for all (or some) passive joints.

ADA289404



- Case 2: r = p

In this case we can obtain at most one solution, which exists if the r x r matrix M. is

invertible (or, in other words, if both matrices M and Mpa are invertible). A case-by-case

pre-analysis of M C can show whether it will be possible to control qp using the actuators at

the active joints.

*Case3: r>p

This is probably the most common case, and certainly the most interesting one. Here, we

can obtain at least one solution for the problem of finding the 4a that will generate the

desired p,, provided the rank of matrix M c is at least equal top. In the general case, infinite

solutions can be found. One can choose among these solutions the one that provides the

minimum norm of 4a, so as to save energy, or effectively make use of this redundancy to

accomplish tasks such as obstacle avoidance, actuability maximization [6], etc.

In any of the cases above, it is useful to define a measure of the dynamic coupling at any

given instant. For example, when dealing with case 3, we can try to maximize the coupling

via the use of the redundancy present in the system. Following [6], [11], it is natural to think

of the singular values of M c, which quantify its "degree of invertibility" and thus its capacity

to "transmit" the torque from the active to the passive joints. Based on this, let

01 > a2 >... a CF be the c = min (p, r) singular values of M,. Possible measures of the

dynamic coupling are;

rdet 7,T~cif r< p
PC =  det(Mc) I  if r=p (25)

S et if r>p

C
In any case,

PC CF[[ , (26)

We call PC as above the coupling index of the underactuated manipulator. As will be shown

in the sequence, the coupling index can be used as a design tool for actuator placement,
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desirable robot configuration, or as a quantity to be used on the real-time control of the

manipulator.

Example 3 Let's retake example 2, and apply the o.pling index concept to it. We saw that:

[ rn211cCos (02)1

M =-1 22 +12 (27)

Since M. is a scalar, we have:

I m211 1cCos (02)
Pc= 1+I m 2+1 (28)

M 2 ?I + 12

Let's adopt the following parameters for the quantities above: m2 = 1Kg, 0.3m.
2

/C2 = 0.15m, 12 = O.lKg. m.Then:

pc = 11 +0.37cos02l (29)

We see that, for this manipulator, the matrix Mc is always invertible, and thus control of
the passive joint via the dynamic coupling is always possible. Based on the present study, one
can now pre-analyze the system in order to determine whether or not control is possible,

before making any attempt to control it.

4 Manipulator Design

The coupling index derived previously can be used effectively on the design of the
underactuated system as a mathematical tool that determines the optimal actuator placement

of an underactuated manipulator. In the following we will use a series of examples to
illustrate its importance.

Example 4 If we consider the same manipulator as in example 3, but now with joint I as
the passive joint, we have the following results t :

I. The bars over the matrices were added so as to aoid confusion with the previous example.
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M + 2,2[12
+  21,Cos (0 +)P Itl 2lt2 i 2  (2)] + 2

Therefore:

2 +1 1 Cos (62]0(1
M/c 2 2_ (31)

In I t + m2 III+ I c2 + 2 11ic, Cos (62) 1 + 1 1 + 12

Substituting the values m, 2Kg, It = 0.2Kg. m2 in addition to the ones previously

adopted, we have:

0.1225 + 0.045cosO2

c 0.4575 + 0.090cos02 (32)

0.1225 + 0.045cos02
10.4575 + 0.090cosO2

Figure 3 shows how p, and PC vary as a function of 02. From this figure, we can infer
that it is "easier" for joint 1 to drive joint 2 than vice-versa, because of the greater coupling
available in the average for the lower-actuated manipulator than that for the upper-actuated
one. Thus, the coupling index indicates that, for the purpose of maximizing the dynamic

coupling, joint 1 should be the active one, and joint 2 should be passive. M

Note how this approach differs from the one studied by Lee and Xu [6], where the authors
defined the actuability index of underactiated manipulators. The actuability index measures
the arbitrariness of the actuator's ability to cause acceleration at the end-effector. Thus, it

relates torques in the active jonts and accelerations at the end-effector in Cartesian space,
while the coupling index defined in this work relates accelerations of the active joints to
accelerations of the passive ones. The conclusions derived in [6] and the ones here should
not be compared, for the indexes operate in different manners. To be more specific, the
coupling index indicates how much acceleration is possible to be obtained at the passive
joints given limited accelerations at the active joints. There is no attempt to quantify the

accelerations possible to be obtained at the end-effector, The actuability index indicates how
much acceleration can be obtained at the end-effector given limited torques at the active
joints. It does not attempt to quantify the accelerations at the passive joints.

ADA289404
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In order to better provide the reader with an understanding of the difference between
these two measures, we will briefly present the relationship of the acceleration of the end-
effector to the torque at the active joint of the Mnip,,ldtor ;n examnlp A fr hnth uer. and

lower-actuated cases. In the sequence, the subscripts u and I will be used to denote variables
when the manipulator is, respectively, upper-actuated or lower-actuated.

The accelerations of the end-effector in x and y directions can be easily found to be:

* = -[tCl + 12 c1 2 )01+2l 2 1 02  + 2 c12 02 + (1lS1 +I12 s1 2) 01 +i12 s12 02 ]
2 .2

$1 = -[ (lisi + 12s12) Ol + 212s12016 2 + 12s1262-(1C1 + 12Cl2) 01 - 2c12 2] (33)

As before, we can consider the following virtual Cartesian accelerations, generated by the
accelerations at the joints and the nonlinear effects:

I = -[ (11 SI + 12 S12) 01 + 12 S1262]

J"= F[(itc + 12ct2) O, + (34)02"

Ignoring the nonlinear effects provenient from centrifugal, Coriolis and gravitational torques,
from (I) we can write for the upper-actuated mechanism:

M 2,161 +M 2,26 2 = 0 62 = W2, I/Mf2,2)6I

MI, l1 +Mt, 2 62 = 6u 1 = (M2,2/det(M))z

where M ,,j denotes the (ij) element of the original ineria matrix. Substituting (35 ..into (IA

we get:

I IS + S Mzi M2.2
2 ,2)] det (M)

= let +1 2C2(l1 M2 M  (36)
LII~tiM,,2 det (M) u

For the lower-actuated manipulator, the results ax:

M 1iOi+Mt.20 2  0 0 = -(Ml, 2/MI) 2 (37)
M 2, IO +M2,262 =I => 62 = (MI, t/det(M))ct
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r. (MiJ+22(l . MI.2J] MI,t'

M de M (38)
III( "2,='1( -L-]",)] Mi I,,/ -

MI, IMI, Idet (M)

Flgr .4 resents a comparison of the norm of the end-effector acceleration,
U7; 2r

Ial = y-- , which is a function of 02 only. The full line represents the upper-actuated
mechanism, and the dashed line, the lower-actuated one. As we can see, the actuability of the
upper-actuated mechanism is always greater than that of the lower-actuated one. This result

contrasts with that represented by Figure 3, where we can see that the coupling index of the
lower-actuated mechanism is always greater.

Finally, we borrow here an example from [6], to illustrate the comments above. For the
same manipulator, the actuability ellipsoid is shown in Figures 5 and 6, respectively for the
lower- and the upper-actuated mechanism. As we can see, the actuability index, which is

proportional to the volume (length, in this case) of the actuability ellipsoid, is greater for
upper-actuated mechanisms. We refer the reader to reference [6] for more detailed

information on the actuability index.

Example 5 Let's consider now a "richer" example of a 3-DOF planar manipulator with
rotary joints, as shown in Figure 7. The inertia matrix is giver by:

M M12 MI31

Al 41: M 22  M 23  
(39 )

M w31 M 32 M 33j
2 2 3 12 2 3

M1 o 31 = '"( iic 2 + 3(i +i2 + 1 r 3C+11! C)+ 1 : .

M22 = r2(, + 3(12 + IC) + 212 1cc 3) + '2 + 13

M23 = M32 = m3(1 +121, £3) +13
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M33 = m3I? - 13

For simplicity, let's adopt the same parameters as in ,ape 4, and ,,Pt .. .-. 155
i ,

same mass, length and inertia of link 2. Then:

0747i+027~c2 .0Yo6Oc3."O6Oc 03225+0135Oe24OO Oc 23 OO060c3 01100+003Oc30030c

, 7. : IO2 0ol 3 0+ooO23*o6O3 03225+ 0 3 00O+0033 0 (40)
0 1100 +0030c23 4003c 3  0 1100O+30c3  0iI0 J

Let's assume r = 2, i.e., we have two actuators to be placed either on joints 1 and 2. 1

and 3 or 2 and 3. In either case, M C is a I x 2 matrix, what indicates that at least one solution
to the problem of finding 4la for a desired ifp exists, provided that both elements of Mc are

not equal to zero at the same instant (one such possible solution was demonstrated in [2]).
Let's compute the coupling index for each case2:,

" Case 1: Joints I and 2 are active, joint 3 is passive

i = -[I + 02727(c,+ c3) I +02727c 3] (41)

" Case 2: Joints I and 3 are active, joint 2 is passive

0.3225 + 0.1350c2 0 030c23 + 0 060r3 0 i100 + 0 030 3  (42)
03225 + 0.6Oc3  0 3225 + 0 060c3(

" Case 3: Joints 2 and 3 are active, joint 1 is passive

-0 3225 + 0 1350c 2 + 0.030c 23 +0 060c 3  0.1100 +0 030c2 40 030C3  (43)
M 7475+ 0.2700c2 +O,060CX4060c3  0.7475 +027(00c,.Otuc 23  I060(c3

Figures 8, 9 and 10 show the value of Pc, i = 1, 2, 3 as a function both 02 and 03.

Figure II shows all these indexes combined. A careful consideration of these figures shows
that, for most values of the joint angles, pck is the greatest index of all three. This can be
verified by the values in table 1. As we see, in none of the cases does pc becomes zero (or

"dangerously" close to zero). This indicates that at least one solution will always exist, no
matter which joint is the passive one. Also, the choice ofjoint 3 as the passive joint increases
the dynamic coupling, and enhances the control of the passive joint by the active ones. I

2 Here, the indexes 1, 2 and 3 will be used to differeilalr each €aqo
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Ibble 1: Maximum, minimum, average and standard deviation values
attained by P,, t = 1,2,3.

i max p,,) min p,, avg[ P ,) std / P )

1 2.0021 0.8576 1.4211 0.3033
2 1.4774 0.6645 1.0607 0.2811
3 0.5104 0.3912 0.4556 0.0374

5 Sensitivity Analysis

As explained in [8], other indexes derived from the singular values of MC can be useful.

One of them is the condition number K, of M., defined as the ratio of the greatest to the
smallest singular values, The condition number is very useful in the analysis of the sensitivity
of equation (11). Even in the cases where pc is "big" enough to guarantee the existence of
dynamic coupling, the condition number can indicate that the relative errors between the
acceleration of the active and the passive joints is also too big. In these cases, amplified noise

can disturb the performance of the mechanism.

We will perform here a brief sensitivity analysis of (11), and see how this can influence
the use of the coupling index. It is known that the norms of the accelerations in (11) obey:

1 1 (44)

If noise is present in the system and exhibits itself in the form of an eror o n -4 ,th,,.

the corresponding error Aqa on 4a obeys:

± <(45)

If the smallest singular value ofif i s too smal1. equation ( 45 show. th.at the acceleration ofl
the active joints may include a magnified error due to the noise present in 4P.1

Furthermore, from equations (44) and (45) we can conclude that the ratio of the relative

errors obeys:
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_ _ < _____ (46)
ot-It I

or, equivalently,

As we can see, the ratio of the relative errors is never smaller than the inverse of the
condition number, and never larger than the condition number. If K . is too big, errors will
easily "travel" along the mechanism making the control scheme more difficult and the
performance worst. These ill-conditioned matrices M. can render the control scheme
useless, even in the cases where the dynTic coupling-is quite big.

Example 6 This example is intended to demonstrate the different conclusions that car be

drawn from the analysis of the singular values of the mauix MC. Namely, we reexamine

example 5 considering now as a measuring index the condition number of Mc. Since M, is

a I x 2 matrix, it has only one singular value; consequently, its condition number is always

equal to 1.0, no matter where the actuators are placed.

This example demonstrates that different measures baied on the same matrix can lead to

different conclusions: although the condition number of Mc is constant for any positioning

of the actuator, the coupling index is greater when the actuator is located closer to the base.

0

A final remark that can be made here is that the coupling index can be used ,. the design

of the underactuated system in different ways than it was used in example 5. Namely, one

may design a manipulator where some pairs of active-passive joints have maximum

coupling, for easy of driving of the passive joints; at the same time, the designer may want to

minimize the coupling between specific pairs of active-active, ic:ive-passive or passive-

passive joints. This is reasonable, since the coupling present in manipulators is configuration-
varying and highly nonlinear. At the same time the mechanism has maximum coupling

between certain joints to drive the passive joints, it has minimum coupling between other

joints to minimize nonlinear effects.
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6 Implementation Issues

6.1 Configuration Design

After going through the analysis in section 4, one can determine the best actuator

placement so as to maximize the dynamic coupling between the active and the passive joints.

One may also be interested in finding out the arm configurations that yield the maximum
dynamic coupling for a given design of the manipulator and its workspace. Mathematically

this corresponds to finding the joint angles q that maximize the coupling index. We will
illustrate this concept with an example.

Example 7 Given the underactuated manipulator in Figure 2, let's suppose an actuator is
placed at joint 1. As we saw, P, is this case is given by (28):

P= + n2111c 2Cos (02)

m 2 12 + 12

The joint angle 02 that maximizes expression (28) can be found via:

dpc  m2111c2 sin (02)
=A = 0 (48)

d 2

or:

62 = 0 (49)

(note that 02 = 1t corresponds to a point of minimum - see also Figure 3).

As wc can see, the arm configuration that yields maximum dynamic coupling is the one
where the arm is fully extended. Note how this differs from the results otherwise obtained

when one considers the classical manipulability measure, introduced by Yoshikawa [12]. For

a regular fully-actuated 2-DOF planar manipulator similar to the one treated in this example,
this configuration yields the minimum of the manipulability measure. U
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6.2 Individual Joint Coupling

The coupling index, in addition to being useful on the design of the underactuated system,
can also be used for real-time control. In [2], Bergerman and Xu demonstrated the feasibility
of driving a three-link planar manipulator with only two actuators. The passive joint and one
active joint (the one closest to the base) were controlled first. After the passive joint reached

its set-point, it was braked, and then both active joints were controlled to their desired set-

points. The active joint closer to the base was chosen to be controlled first on a rationale of
reduced settling time. However, it may be the case that this joint has greater coupling with

the passive joint than the other active one, so it should be used to drive the passive joint, and

only be controlled after the passive joint is braked.

Basically, the idea here is to define an individual joint coupling index relating each
passive joint to each active one. Working with these pairs of active-passive joints, we can
measure the dynamic coupling existent between each of them. Ultimately, our objective will
be that of determining which active joint should be chosen to drive each passive one.

Recall equation (11):

'p = Mdia

If we split the expression above on its constituting lines, we have:

q P, = Mc,. 1 4, 1+ ... +Mc",.O, (50)

In order to study the coupling between the i-th passive and the... activejoint, we can assign
zero values to all except the j-th active joint's acceleration:

ip, = MlJ (51)

This equation resembles (I )and so we ca, define thC coup1,,gindex bene', i-, passive

and the j.th active joinr,

M = I(52)

For every row in the matrix Mc , the element (1,j) with greater magnitude will indicate

that the greatest dynamic coupling ror the passive joint i comes from the active joint j.
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Example 8 We will review the example presented in [2], using the concept of individual
joint coupling index defined above. The system under discussion is the one shown in Figure
7, where joints I and 2 are active and joint 3 is passive (according to the results in example

5). For this system, the matrix Mc was given by (41):

MC = -[1+0.2727 (c23 + C3 ) 1 + 0 2727c 3]

Equation (41) can also be read as:

#P = - [ 1 + 0.2727 (c23 + c3 ) I - (1 + 0.2727 c3] a2  (53)

According to (52) we have:

P' I =  11 + 0.2727 (c23 + c3)1

PC = 1 + 0.2727c3
(

Figures 12 and 13 present the values of Pc1 and p for all possible combinations of 0,
and 03, Figure 14 present both figures combined. Table 2 presents the maximum, minimum,
average and standard deviation values for each of them.

Table 2: Maximum, minimum, average and standard deviation values
attained by pcI and pC.

, max( P. min( P J avg(pcj std (PiJ

11 1.5454 0.4546 1.0000 0.2728

12 1.2727 0.7273 1.0000 0.1929

For this system it is difficult to tell which active joint has greater coupling with the
passive one. Although PC attains greater values than Pc , it also attains smaller values;
and the averages of both indexes are the same. This example shows that the coupling index,
although useful, may not provide the control engineer with sufficient information to decide
on which active joint should drive the passive one. Global indexes, based on the integral of
the coupling index, may be more useful in this case, as it will be shown in the sequence. I
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6.3 Global Coupling Index

The coupling index defined previously is a local measure; it measures the "amount" of
dynamic coupling between the active and the passive joints at every point in the joint space.
The greater the coupling index at a particular onfguration of the maiulator the easier for

the active joints to drive the passive ones.

However, in design and path planning problems, one is more interested in the coupling

index in a global sense, so as to measure the dynamic coupling existent within the workspace
of the manipulator. In this case, a global coupling index is more useful, for it will measure
the coupling between the joints at all points in the joint space.

One possible way of defining a global coupling index is as follows [4]:

J2Pede
p e (55)
PC fd

where the integrals above are taken over the entire joint space 0 e 96V of the manipulator.
The use of the squared value of the coupling index is inert because the coupling index is
always non-negative; and this choice facilitates the problem of finding a closed-form solution
to the above integral, because the singular values ofa rnatrixA are equal to the p .sM4 w.ua
ronts of the nonzero eigenvalues of A TA..

This choice of the global coupling index will take into account not only the local coupling
between the joints, but that available over the entire joint space, as the next examples show.

Example 9 We re-analyze now example 5, where the objective was to determine the best
actuator placement based on the dynamic coupling bctwcen the joints. There, the decision to
place the actuators on joints 1 and 2 was based on the maximum, minimum and average
values of p. for the various possible configurations. Here we can base this decision on a
global index, which already takes into account all these quantities.

For a I x 2 matrix, the unique singular value is computed easily as:

A = [a1 412] a,+2(56)

Consequently, comparing A above with the,, -arious M , i = ',2,3,.fex.p. ,. hv..e:
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12
p = ec, f dO (7

We considered in the following calculations .1-.. ..-

respective axis from 0 to 2t. In cases where there are physical joint limits this can be taken
into account in the calculation of the integrals in (55). For cases 1,2, and 3 studied in example
5, we have the results shown in table 3.

Table 3: Global coupling index pc, i = 1, 2, 3.

PC,

1 2.1115
2 1.2041

3 0.2090

We can immediately conclude that case I is the one which provides greater dynamic

coupling between the active and the passive joints in a global sense. Note that this is the same
conclusion as the one drawn in example 5, reached in a much simpler way. I

Example 10 The global coupling index can also be used in conjunction with the individual
joint coupling index defined in section 6.2. The idea is to use the later instead of p. in
equation (55):

p p 2 p dO)

PC*Jde

Calculating the above global individual joint coupling index for the manipulator in
example 8, we have the results shown in table 4.

As the result shows, the global coupling between the first and second active joints and the
passive joint is exactly the same. For control purposes, then, one can choose either active
joint to dynamically control the passive joint.
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Table 4: Global individual joint coupling indexes " 9 ,,and pgFell I 12'

it 1.0372

12 1.0372

Note again that this conclusion was drawn immediately, as opposed to example 8, where
no conclusion could be drawn. M

Example 11 The coupling index can also be useful for the purpose of designing the links of
an underactuated mechanism. Suppose in the manipulator of Figure 2, with joint 1 active, we

2have available the following parameters: m2 = 1Kg, 12 = 0.1Kg, m , lI =lm.

Additionally, suppose we want to determine 1,2 so as to maximze the global coupling index

pg. In this case we have:

1ccos ( 2

PC 1+ oIC2 (2 (59)
2

1+701 2 +lOO
Pc9 C2 2 (60)

C 2 4
1+2012 +1001:C

Figure 15 presents the global coupling index as a function of Ic . As we can see, forC2
I = 0.316m, it atains the maximum value pl = 2.250. This example shows how the
C2?

global coupling index can be used for design issues other than actuator placement.

7 Conclusion

There has been considerable progress recently in the area of analysis and control of
underactuated manipulators. The current literature in this area however, has always assumed
that sufficient dynamic coupling was available between the active and passive joints for
effective control of the manipulator. Because this assumption is not always valid, it is vital
for design, analysis, and control of these systems that the amount of available coupling be
quantified.
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In this work, the authors have proposed a measure of the dynamic coupling between the

active and passive joints of an underactuated manipulator. The coupling index indicates

precisely the amount of coupling available for the purpose of controlling the passive joints of

the manipulator through the application of torques in the active joints. We have also proposed

a global coupling index, which indicates the amount of coupling available over the entire

workspace of the manipulator.

As we have shown through a series of illustrative examples, the proposed indices can be

used effectively within the contexts of mechanical design. configuration optimization, and
real-time control. Moreover, when redundant degrees of freedom are available in an

underactuated manipulator, these indices may be used as local measures for use within a

redundant control scheme.
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Figure 1: Two-link manipulator with rotary joints.
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Figure 2: Two-link planar manipulator with rotary joints.
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Figure 3: Coupling index between the joints of the robot in Figure 2.
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Figure 4: End-effector acceleration for the mechanism in Figure 2.

Figure 5: Actuability index for the lower-actuated mechanism in Figure 2.

Figure 6: Actuability index for the upper-actuated mechanism in Figure 2.
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Figure 7: Three-link planar manipulator with rotary joints.

Figure 9: Coupling index for the manipulator in Figure 7l, when joint 2 is passive.
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Figure 10: Coupling index for the manipulator in Figure 7, when joint I is passive.
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Figure 1 : Coupling index e for the manipulator in Figure 7.itI spsie
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Figure 12: Individual coupling index between joints I and 3 of the manipulator in Figure 7.
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Figure 13: Individual coupling index between joints 2 and 3 of the manipulator in Figure 7.

Figure 14: Individual coupling indexes for the manipulator in Figurec7.

Figure 15: Global coupling index in example 11.
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