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BACKGROUND 

In developing a probabilistic decompression model it was found that asymmetrical gas 

kinetics proved to fit the available human exposure data much better than symmetrical 

exponential kinetics (1-3).  This asymmetrical model used exponential kinetics for gas uptake, 

but when tissue gas tension exceeded ambient pressure by a specified amount the kinetics 

became linear, dramatically slowing the rate of gas elimination.  This so-called linear 

exponential (LE) model was initially developed for computing fixed oxygen partial pressure 

decompression tables (4,5), but had been extended to air in some exploratory trials (6). 

The success of the LE model led us to seek a physiologic rationale that might explain 

its performance.  One rationale was that the change in kinetics described slowing of gas 

elimination as a result of gas phase formation.  This hypothesis is supported qualitatively by 

observations that the slowing of inert gas elimination during decompression (7-9). Could the 

slow pace of gas elimination implied by the success of the LE model be confirmed by a 

physiologically and physically plausible approximation to gas elimination in the presence of 

bubbles? 

To answer this question we wanted to model gas phase growth and dissolution in 

heterogeneous architectures representative of actual tissue.  Previously, a Monte Carlo 

simulation of diffusion had been developed in a tissue model to explore the effect of tissue 

heterogeneity and microvascular architecture on gas exchange (with no gas phase present) 

under normobaric conditions (10-12).  As a first step towards modeling gas phase dynamics 

in that environment, we have developed a model of bubble evolution during decompression in 

a homogeneous and uniformly perfused tissue by extending the Monte Carlo methods used in 



previous simulations.  Using a homogenous and uniformly perfused tissue allows for 

comparisons using well established methods of modeling bubble evolution (13).  However, in 

principle the Monte Carlo approach should allow modeling in architectures of any 

complexity.  This report presents the methods employed and their derivations, results of tests 

examining the model's ability to predict bubble radii under equilibrium conditions, a 

comparison of the time course of bubble evolution predicted by the Monte Carlo model with 

that predicted from the numerical solution of a partial differential equation model, and the 

model's performance at different levels of precision.  Application of the model in reports to 

follow will help us see if gas elimination can be delayed as much as predicted by the LE 

model. 

METHODS 

Overview 

This section provides a brief description of the bubble-liquid module, the Monte Carlo 

method, initial conditions, and the simulation structure.  Details regarding the derivation and 

implementation of the techniques described are presented in the sections that follow. 

As a first approximation of a physiological model of bubble evolution in tissue, we 

developed a model of a single spherical bubble evolving in a homogenous liquid of fixed and 

finite volume.  The volume of the liquid surrounding a single bubble can be interpreted to be 

the inverse of the bubble density (number of bubbles per volume of liquid).  A tissue might 

consist of many such bubbles, each associated with its own liquid volume as shown in Figure 

1.  The system is open to mass transfer. 



FIGURE 1 - Schematic diagram of a single bubble-liquid module.  The shaded central region 
represents the bubble.  The concentric spheres surrounding the bubble are the shells used to 
simulate the concentration gradient in the liquid.  The number and size of the shells and the 
size of the bubble vary according to the parameters of the model. 



The traditional approach to modeling the temporal and spatial evolution of inert gas in 

tissues using a system of partial differential equations becomes intractable when the 

architecture of the tissue is complex.  An alternative to this type of deterministic modeling is 

a Monte Carlo simulation (10-14).  The essence of this approach involves the placement of 

inert gas particles in a bubble-liquid module and allowing them to take random steps to 

simulate diffusion for a short period of time.  At the end of the time period the distribution of 

the particles is used to calculate the number of moles of gas in the bubble and liquid.  The 

new bubble volume is then calculated from the ideal gas law.  This process is repeated many 

times to obtain the time course of bubble evolution. 

We start our simulation with the liquid saturated with inert gas at one ambient 

pressure and then make a step decrease in the pressure.  Since there is little information 

about the initial formation of bubbles (15,16), we simply assume that the gas phase initially 

has a radius close to the critical radius computed by Ward and Tikuisis (17,18).  We then 

place the bubble centered in the liquid region. 

We obtain the value of the critical radius from calculations of equilibrium radii for a 

closed system with a finite gas supply carried out by Ward and Tikuisis; the first is an 

unstable radius, referred to as the critical radius rc.  Gas phases smaller than rc will shrink 

and disappear, those larger will grow until the second stable equilibrium radius, re is reached. 

Bubbles with radii larger than re will shrink until re is reached.  The quartic polynomial from 

which rc and re are obtained is given in Appendix A.  The specific initial condition values we 

used in our system test are given in the section entitled "Model Testing" and Table 1. 



TABLE 1: Model Parameters by Equation Number 

Eq No.  Parameter 

(1) 

(3) 

(23) 

Ptis02 = 39.76 mmHg 
Ptisco2 = 44-26 mmHg 

3 PDE (2)      Vliq = 0.000125 cm3, 0.0005 cm 
Cliq = 0.055140 moles/cm3 

P^ = 1520 mmHg, (2 ATA) 
Pvap = vapor pressure of water at 37 °C= 46.52 mmHg 
a = Ostwald solubility N2 = 0.0143 
R, = 62358 (cm3 mmHg)/(mole K) 
T = 310.1 K, (37 °C) 

P^b = 760 mmHg, (1 ATA) 
y = surface tension = 0.037515 mmHg-cm, (50 dynes/cm) 
rbub = 0.00065 cm, 0.00092 cm PDE 

post-bubble formation boundary condition = uniform from all shells 

DN2 = 0.5 X 10"5 cm2/sec, 0.75 X 10"5 cm2/sec PDE 

(26) grid size = 0.00025 cm 
[derived: diffusion step size, (a), = 0.00043 cm] 

(27) n^ = 50 
[derived: tcycle = 0.3125 seconds] 
[derived: tcycle = 0.2100 seconds] PDE 

(57) X = 2.5 minutes, 10 minutes PDE 

(62)    Fio2 = 0.21, (air) 

Reference 

27 

see text 
1/molecular wt 

see text 
27 
28 
36 

see text 
15 

see text 

see text 

see text 

see text 

see text 



The amount of gas required to fill this initial bubble is taken from the liquid phase. 

This can be done either by removing gas uniformly from within the liquid, leaving no initial 

gas gradient or by removing gas non-uniformly, yielding an initial gradient.  In either case 

we keep track of the gas concentration with a series of concentric shells constructed around 

the bubble.  The shells expand or contract with the expansion or contraction of the bubble. 

The fraction of total gas in the module that is present in the liquid is the same whether or not 

an initial gradient is present.  The details of these procedures are explained in the sections 

entitled "Calculation of Mole Fraction in the Bubble and Liquid Shells" and "Simulation of 

the Gas Gradient in the Liquid." 

After the initial placement of a bubble in the module and the establishment of the gas 

gradient in the liquid, the simulation begins a repeating cycle of particle placement, random 

walks, gas wash-out, and adjustment of the bubble size and gas gradient in the liquid.  We 

refer to each repetition of this sequence of events as a bubble growth cycle, shown 

schematically in Figure 2.  The simulation consists of many bubble growth cycles.  During 

each cycle, bubble radius is kept constant and no gas washout occurs while the gas particles 

diffuse throughout the module. 

Simulating diffusion using a Monte Carlo process involves many particles, 

representing idealized gas molecules, being placed one at a time within the bubble-liquid 

module.  For each particle the location of the placement is randomly selected to be in either 

the bubble or the liquid, based on the fraction of total gas in each region.  The derivation of 

this placement procedure is contained in the section entitled "Placement of Particles in the 

Bubble-liquid Module" and Appendix B. 
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FIGURE 2 - Bubble growth cycle structure. 



After placement, each particle walks randomly through the module for a length of 

time specified as tcycle, the bubble growth cycle time.  At the completion of the random walk, 

the particle's new position (i.e., which shell the particle is in) is recorded.  Then another 

particle is placed and walked through the module.  This is repeated for all of the particles (at 

least 2 x 108 particles/(ml of liquid in the module)).  The details of this procedure are in the 

section entitled "Random Walk Procedure." 

For purposes of the random walk procedure, gas particles in the bubble and liquid 

phase are treated differently.  If the gas particles are in the bubble, then they are assumed to 

be uniformly distributed and transition from the bubble to the liquid can only occur if the 

particle begins its step from within a shell just inside the bubble-liquid boundary.  The 

probability of crossing from the bubble to the liquid in a particular step is the product of 

three probabilities: the probability of being in the transition region, the probability of striking 

the bubble-liquid interface, and the probability of crossing the interface if struck. 

If in the liquid, the particles are allowed to cross from the liquid to bubble if the 

bubble-liquid boundary is struck.  If a particle strikes the outer liquid boundary during a step 

it is reflected back into the module.  This simulates a zero pressure gradient with no mass 

transfer across the outer tissue boundary. Details are in the section entitled "Derivation of the 

Transition Probability." 

After all particles have been placed and undergone the random walk, there will be a 

new particle distribution.  The number of particles in the gas phase and each individual shell 

is divided by the respective volumes of the gas phase or shell, to get the mean concentration 

in the gas phase and in each shell.  Next, the concentration in each shell is adjusted to 
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account for the wash-in or wash-out that occurred during the cycle time.  Thus, the gas 

concentration gradient in the liquid is established for the beginning of the next cycle.  The 

bubble radius is adjusted according to the number of moles in the gas phase assuming the 

ideal gas law as explained in the section entitled "Calculation of the New Bubble Radius." 

Once this new radius is established the thickness of the shells is adjusted.  The new shell 

radii and the mean gas concentration in each of the shells are the initial conditions for the 

next cycle.  Details of this process are given in the section entitled "Simulation of the Gas 

Gradient in the Liquid." 

In summary, we begin with a liquid saturated with inert gas at some ambient pressure, 

reduce the ambient pressure, and insert a spherical bubble with a radius just above the critical 

radius for the system.  For a short time interval we fix the bubble size while gas in the 

bubble-liquid module is redistributed using a Monte Carlo simulation of diffusion.  At the end 

of this time interval, the bubble size and gas gradient in the liquid are adjusted based on this 

new particle distribution.  The next cycle then begins, and this process continues indefinitely. 

Figures 3 and 4 present flow charts that summarize the model's logical structure.  Details of 

the derivation and implementation of the method follow. 

Calculation of Mole Fraction in the Bubble and Liquid Shells 

The number of moles of inert gas dissolved in the liquid at the start of the simulation 

before a bubble forms (n^d is calculated from the saturated volume of inert gas at the ambient 

pressure just before the pressure reduction.  In living organisms the metabolic gases oxygen 

and carbon dioxide are present and must be taken into account.  We first define the partial 

pressure from metabolic gases (Pmg) to be, 

11 



p    = p.   +p. (I) 

where Ptis02 = partial pressure of tissue oxygen (rnmHg) 
PtisC02 = partial pressure of tissue carbon dioxide (rnmHg) 

For simulations not involving metabolic gases pmg is assumed to be 0.  n^ is then calculated 

as, 

V -C  -P 
V   q   q   q (2) 

tOt TT 

where, 

Vliq = volume of liquid, (cm3) 
Cliq = molar concentration of the solvent, (moles/cm3) 
Pliq = pressure of inert gas in the liquid, (rnmHg) 

= fP    _p   _P  i 
vx ambO x vap x mg/ 

Pambo = ambient pressure before pressure reduction, (rnmHg) 
Pvap = vapor pressure of water, (rnmHg) (constant) 

KH = Henry's coefficient = PH/([(Rg-T/(VL-a-PH)) + l]1), (mmHg)(35) 
VL = molar volume of solvent (1/Cliq), (cm3/mole) 

a = Ostwald solubility coefficient 
PH = 760 rnmHg 
Rg = Universal gas constant in (cm3 mmHg)/(mole K) 
T = temperature in Kelvin 

Once a bubble is placed in the liquid, the liquid is assumed to remain at constant 

volume as the bubble expands.  All the gas in the bubble comes from the liquid phase, 

keeping the total amount of gas in the module constant during a bubble growth cycle. 

Assuming an ideal gas and negligible liquid elastic forces, the number of moles of inert gas 

in the bubble (n,,^) is determined by, 

12 



P    'V „ bub    bub cx\ 
Hbub   =        R ,T V> 

where, 

Pbub = inert gas pressure in the bubble = Painb-Pvap-Pmg+PY, (mmHg) 
Pamb = ambient pressure after pressure reduction, (mmHg) 
Py = surface tension pressure = (2-y)/rbub, (mmHg) 
y = surface tension, (mmHg-cm) 

[y (mmHg-cm) = y (dynes/cm) / 1332.8 dynes/(mmHg-cm2)] 
rbub= bubble radius, (cm) 

Vbub = bubble volume, (cm3).  (Vbub is the volume of a bubble of radius rbub selected to be 
just above the critical radius for a pressure reduction from P^y, to V^.) 

Because placement of particles in the module for the Monte Carlo simulation of 

diffusion depends on the relative amount of gas in each region of the bubble-liquid module, it 

is necessary to calculate the mole fraction of gas in each region.  The initial 

mole fraction in the bubble is simply, 

x      = -5£ (4) 
"tot 

and the initial mole fraction in the liquid is, 

*» -l - — (5> »«to n 
"tot 

The initial mole fraction in each shell, xshelli0, is determined from the equation, 

13 



x       . n-^i (6) 

At the start of the simulation, the number of moles of gas in each shell, n^,,;, is determined 

by the selection of the gas gradient in the liquid. We have provided for one of two 

alternative gas distributions: the gas for the bubble can be taken uniformly from all of the 

shells in the liquid so that there is no initial gradient in the liquid, or the inner-most shells 

can be depleted of the gas that makes up the bubble so that partial pressure equilibrium 

across the boundary is maintained.  (These two choices represent the largest and smallest 

gradients for gas diffusion.  We may then evaluate the effect of these two extreme post- 

bubble formation boundary conditions on bubble evolution.) In the uniform distribution case, 

the number of moles in each shell is the same and is simply, 

n 
n tot 

shell. 
(7) 

*'  number of shells 

In the other case, the procedure for calculating the number of moles in each shell is more 

complex.  Gas is taken from the innermost shell until the partial pressure is equal to the 

calculated partial pressure for inert gas in the bubble.  If additional gas is required to fill the 

bubble, the same procedure is applied to succeeding shells until the total gas needed has been 

taken.  Appendix D4 contains the FORTRAN code that implements this procedure. 

After the first bubble growth cycle, the particles will have a different distribution than 

before their random walks simulating diffusion began.  This new distribution forms the basis 

for placement to begin the next bubble growth cycle.  Consequently, it is necessary to 

calculate the mole fraction in each region of the module at the end of the cycle.  In this case, 

14 



the mole fraction in each region is determined by the fraction of particles that are in the 

region at the end of a particular bubble growth cycle, which is given by, 

Xbub 
number of particles in the bubble 

total number of particles in the module 

The mole fraction in the liquid is, 

*bub 

and the mole fraction in each shell is, 

(8) 

number of particles in the liquid     _1  _ ,gs 
09  total number of particles in the module 

number of particles in shel^ ,*„. 
shel1'  total number of particles in the module 

Placement of Particles in the Bubble-liquid Module 

In order to obtain the correct distribution of particles after they are subject to diffusion 

and wash-out, the placement of particles at the beginning of each bubble growth cycle cannot 

be done haphazardly, but must follow certain rules. 

First, a random number between 0 and 1 is compared with the mole fraction in the 

bubble.  If the random number is less than the mole fraction the particle is assigned to the 

15 



bubble, otherwise it is assigned to the liquid.  The liquid is divided into concentric shells of 

equal width, which are used to simulate the concentration gradient of inert gas in the liquid. 

Within the liquid, the probability of placement in each shell is proportional to the mole 

fraction of gas in the shell.  In order to weight the particle placement by the mole fraction in 

each shell, a random number between 0 and 1 is compared with the serially accumulating 

mole fraction beginning from the inner most shell.  At the point the random number is less 

than that value, that shell is selected for particle placement.  The smooth gradient in the 

liquid is approximated by the series of shells with different mean concentrations in each shell, 

forming a step gradient.  However, the concentration is uniform within each shell, implying 

that the probability of a particle being placed in any two regions of equal volume within a 

given shell must be the same.  Within a shell, our spherical coordinate system requires that 

more particles be placed farther from the bubble because a spherical sub-shell far from the 

bubble will occupy more volume than one of equal width nearer the bubble. 

We use the spherical coordinates p, 0, and (|) to place the particles within a shell, 

where p is the radial coordinate, 0 the azimuthal angle between 0 and 7C, and <j) orthogonal to 

0, between 0 and 27E.  In order to ensure the proper values for these variables, we must 

transform the uniformly distributed random numbers (u) between 0 and 1 generated by the 

computer.  We do this using the transformations hp, he, and h^ derived in Appendix B (19). 

l 

„ yii\ = Ku U< s       P   3 (ID p = h(u) = Ru 

where R is the radius of the sphere. However, since placement is to occur in a shell and not 

16 



an entire sphere, pmust be adjusted accordingly, 

,3 ,3     3 v,3 (12) 

with p between the outer (r;) and inner (r^) shell radii. 

0 = he(u) = arccos(l-2«) (13) 

and 

* = \{u) = 2%-u (14) 

These functions map the uniformly distributed random variable u between 0 and 1 into the 

values p, 0 and (() which are uniformly distributed by volume within a shell.  These 

coordinates are translated to cartesian coordinates, 

x = p-sin(8)-cos(4>) (15) 

y = p-sin(6)-sin(<|>) (16) 

z = p-cos(ö) (I7) 

Random-walk Procedure 

The simplest way of simulating diffusion with a Monte-Carlo process is to translate 

from the spherical coordinate system of Figure 1 into a cartesian coordinate system using 

Equations 15-17.  A random number generator would be used to specify positive or negative 

movement in the X, Y, and Z directions (10-12), with the length of the movement in each 

17 



dimension being equal to a cartesian grid unit.  The particle would end up on one of the 8 

corners of the cube with sides 2 grid units in length centered on the original position.  Thus 

the effective distance traveled, which we refer to as the diffusion step size (a), would be 

V"3-(length of the grid unit).  This process would be repeated for a predetermined number of 

steps and would result in the generation of the particle's path through the module. 

Unfortunately, this method requires large amounts of computer execution time. We 

took advantage of the fact that the region outside the bubble is isotropic to diffusion by 

calculating the distribution of distances a particle will travel in a relatively large amount of 

time under the influence of diffusion alone. We refer to this as the Bigstep distribution. This 

distribution is computed as follows. If an amount of substance M is deposited at a point in 

an infinite volume, then the concentration C at a distance r from the point source under the 

influence of diffusion alone is given by Crank (20) as, 

-r 
M    T5t (18) 

(4nDtfß 

By dividing both sides of this equation by M we obtain the probability density function (PDF) 

of the distance r, a particle will travel in time t from a point in the volume, 

(4TzDtfß 

The cumulative distribution function (CDF) can then be obtained by integrating the PDF over 

the volume, 
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r 2n n     -r2 

F(r,t)= [ffe^'^sindddd^dr (2°) 

which reduces to, 

F(r,t)=     47t      fr2-emdr (21) 

r 
z=- 

If we let v2^     this becomes, 

F(z)= 
\ 

2 
z2 

^.fz2.e  *dz C22) 

Since a closed form solution of this integral cannot be obtained, we integrate it numerically to 

obtain F(z), which is the probability a particle will travel the normalized distance z in time t. 

We set the upper bound of the CDF integral at 5 normalized distance units (     5 \2Dt     ) 

because 99.99% of the particles will travel less than or equal to this distance in time t. 

Graphs of the PDF and numerically obtained CDF are shown in Figure 5. 

By applying the inverse transformation method (13) to the CDF by randomly 

generating a number between 0 and 1, we can select the normalized distance z a particle 

travels. We do this by discretizing F(z) into increments of 0.0001 and assign to each the 

value of z needed to obtain it.  These z values are stored in a 10,000-element array.  We 
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FIGURE 5 - Probability and cumulative distribution functions of normalized diffusion 
distances in three dimensions.  The solid line represents the PDF and the dashed line 
represents the CDF. 
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then randomly generate a value for F(z) and go to the array to find the associated value of z. 

r 
z-- 

Since v2Dt     , we must either select a value for r and compute t, or conversely specify 

t and compute r.  We elect to keep the diffusion time increment, t, constant and compute the 

distance traveled as, 

r = zfZDt (23) 

The value we choose for t is limited by the architecture of the module.  One 

constraint placed on the procedure is that we do not want the particle to cross the liquid-gas 

boundary during a bigstep.  Once a particle enters the bubble it must be given the opportunity 

to exit, diffuse in the liquid and reenter the bubble, perhaps on several occasions.  If we 

allowed the particle to enter the bubble on a bigstep this opportunity would not be provided 

and we would end up with the wrong distribution of particles between the phases of the 

module. 

We apply this constraint by first requiring that the bigstep only be allowed for 

particles outside of the first shell.  Secondly, we require that the probability of the particle 

reaching the bubble boundary during a bigstep be very small (< 0.0001).  Since the upper 

limit of the integral in Equation 22 is 5 normalized distance units, the probability of attaining 

a distance of greater than or equal to 5 normalized distance units is less than 0.0001.  If the 

r0 
particle is a distance r0 from the boundary, then as long as      —— ^5     the particle has a 

JlDi 
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very small chance (< 0.0001) of reaching the bubble boundary during time t. 

We define the largest distance a particle can travel in a straight line on a single 

diffusion step to be the mean squared distance.  The mean squared distance (MSD) a particle 

travels under the influence of diffusion in three dimensions is (20), 

MSD = 6Dt <24> 

where D is the diffusion coefficient and t is the time allowed for diffusion.  At the beginning 

of the simulation, we assign a value for the mean squared distance on a single diffusion step 

to be a2 where, 

a> - Ukm OS) 

We solve Equation 25 for t^, to get the time to travel the distance (a) that corresponds to a 

single diffusion step, 

,72 

step        6D 
±- (26) 

We also assign a value to the number of single steps each particle will undergo during each 

bubble growth cycle, n,^, and compute the time for each bubble growth cycle, tcycle, as 

t      = n     -t (27) 
cycle cycle step 

The time tcycle is the longest time allowed for a bigstep, so if *5 then there is 
fi^tcycle 
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almost no chance the particle will reach the boundary during time tcycle.   In this case the 

distance rT actually traveled during the time tcycle can be calculated directly from Equation 23 

as rr = zfiDt~;e- 

The procedure can be illustrated with an example.  If the computer generated random 

number is 0.12145673, we multiply it by 10,000 and round to obtain the array index, 1,215. 

The associated z value of 0.823 (obtained from a table look-up) combined with D of 0.5X10"5 

cmVsec and t equal to tcycle of 0.3125 sec in Equation 23, gives the actual distance traveled of 

0.00173 cm (17.3 microns). 

r0 
If <5 then the time allowed for bigstep is reduced as follows.  First, the 

number of single steps of length a in a direct path to the boundary is calculated as, 

r, 
»step =   a 

0 (28) 

then 

t        = n    -t (29) bigstep step step v     ' 

and 

'T Z* V25W <30) 
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The probability of all of the random walk steps occurring in the same direction is small, so 

by computing the distance traveled in time tbigstep using the Bigstep distribution, the particle 

will have almost no chance of stepping distance r0 and entering the bubble. 

Although this is the method we have used in the current version of our program, a 

more consistent approach would be to calculate ty^ from Equation 23 after transforming the 

radial distance to the bubble boundary into 5 normalized distance units. 

t       =A2.(JL) (3D 
bigstep   v c'   K2D 

Then by randomly generating z as previously described, and using t,,^^ from Equation 31, 

the distance traveled can be calculated using Equation 30. 

This approach guarantees that the particle will have less than a 0.01 % chance of 

entering the bubble on a bigstep. 

The direction of the step is obtained by randomly generating two orthogonal angles, 0 

and (j) using Equations 13 and 14.  Thus, a particle will be placed randomly on the surface of 

a sphere centered at its initial location with a radius obtained randomly from the Bigstep 

distribution. 

For those particles with tbigstep<tcycle, the particles must be given the opportunity to 

take individual diffusion steps as described in the beginning of this section to complete the 

bubble growth cycle.  The time remaining in the bubble growth cycle after taking the bigstep 

is obtained and the number of single diffusion steps is calculated as, 
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_     cycle    bigstep C\1\ 
nstep . V     ' 

step 

If the particle has crossed the bubble boundary and entered the gas phase, a different 

stepping procedure is invoked.  We can calculate the probability the particle will be available 

to exit from the bubble during a single step, which is equal to the product of three individual 

probabilities: the probability of being in the transition region, the probability of striking the 

bubble-liquid interface from the transition region, and the probability of crossing the interface 

if struck.  If a random number generated by the computer is less than the product of these 

probabilities, the particle is placed in the transition region uniformly by volume as described 

in the section on placement of particles.  It is then allowed to take a single step to the surface 

of a sphere of radius (a), centered at its location in the transition region.  If this step does not 

take the particle outside the boundary, it is "returned" to the well-mixed bubble region and 

given another opportunity to be available for exiting.  This cycle is repeated until the particle 

steps out of the bubble or the number of steps allowed in a bubble growth cycle is reached. 

The derivation of this procedure is described in the section "Derivation of the Bubble 

Transition Probability." 

Any particle that reaches the outer boundary of the liquid module is reflected inward 

to simulate a particle entering from an adjacent bubble-liquid module.  A slight error is 

introduced because packed spheres are not space filling, and particles can never enter this 

intersphere region. 

Simulation of the Gas Gradient in the Liquid 

In order to simulate a concentration gradient within the liquid, "shells" consisting of 
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concentric spheres are placed around the bubble.  At the start of each bubble growth cycle 

the width of each shell is k-J2Dt cle ,where D is the diffusion coefficient, tcycle is cycle time, 

and k is a constant between 0 and 1.  The root mean square distance the particle will travel 

in tcycle is JßDt cle-  Since a particle will travel this average distance in tcycle, the assumption 

that the shells are well mixed is consistent with a maximum shell width of J2Dt cle ■  This 

choice for shell width is also convenient, since it is proportional to the normalized distance 

unit of the Bigstep distribution.  For greater resolution of the gradient, k can be selected 

smaller than 1. 

After the random walk portion of the growth cycle the bubble will change size.  This 

will result in a change in the thickness of the shells surrounding the bubble.  For example, if 

the bubble grows the inner and outer radii of each shell increase, which makes the shell 

thickness become smaller since the shell volume is held constant during expansion.  For a 

growing bubble the shell width would eventually become very small.  In order to adjust for 

this, a new set of shells of width k-J2Dt cle is created at the beginning of each cycle.  These 

new shells will overlap the expanded or contracted shells of the previous cycle as shown in 

Figure 6.  While they are the same thickness as the previous set of shells before the bubble 

changed size, they will not have the same volume as the expanded or contracted shells of the 

previous cycle.  Particles are placed using the expanded/contracted shells of the previous 

cycle.  The new set of shells is used to record the final position of the particles at the end of 

their random walks. 
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FIGURE 6 - Schematic diagram of cross-sectional view of changes in shells during bubble 
expansion.  In the first frame, the dashed lines represent the location of the shell boundaries 
prior to expansion.  After the bubble expands, the shell boundaries also expand to the solid 
lines so that shell volumes are the same.  In the second frame, a new set set of shells, all 
with the same width, are overlayed on the expanded shells of frame 1.  Placement of 
particles in these new shells is weighted by the expanded shells. 
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Derivation of the Bubble Transition Probability 

In our simulation the gas phase is assumed homogeneous and a particle in the gas 

phase has an equal probability of being anywhere in the bubble.  If a particle initially in the 

liquid phase encounters the bubble boundary, it is allowed to cross the boundary.  Since a 

single diffusion step is the largest straight line distance a particle is allowed to travel 

(representing the Mean Squared Distance), a particle is not allowed to enter and again exit 

the bubble during a single diffusion step. 

If a particle is placed in the bubble, we then compute a probability that it will exit on 

a particular step.  To compute this probability we first define an inner transition region within 

the bubble which is a spherical shell of thickness (a), whose outer boundary is the gas-liquid 

interface.  Only particles placed in this inner transition region are allowed to exit the bubble 

(with a certain probability), particles not in the transition region cannot exit the bubble. 

The probability of exiting the bubble is the product of three individual probabilities: 

the probability of being in the inner transition region, the probability of striking the bubble- 

liquid interface from the transition region and the probability of crossing the interface if 

struck. 

The probability of being in the inner transition region is simply the ratio of the inner 

transition region volume to the bubble volume, 

= R3-(R-a? (33) 
R3 

Once in the inner transition region the probability of striking the interface is derived 

as follows.  The particle can step from point P in the inner transition region to any point a 
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nner Transition Region 

FIGURE 7 - Schematic diagram of transition region inside the bubble.  The upper part of this 
illustration represents a cross section through the bubble centered at point C with radius R. 
The transition region (T.R.) extends a distance a inward from the bubble boundary.  The 
lower part of the illustration is a cross section through the transition sphere of radius a 
centered at point P in the transition region.  The point I is as the intersection of the transition 
sphere and the bubble cross section,  r is the distance of point P from the surface of the 
bubble. 
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distance (a) away, as illustrated in Figure 7.  The probability of striking the interface (Pint) is 

the fractional surface area of the sphere of radius (a) that lies outside of the bubble.  The 

fraction of this small sphere outside of the bubble is given by, 

P. (e)=U-coswJ (34) 

where 0 is the angle between line CP and line PI, and I is a point of intersection of the two 

spheres.  Using the law of cosines, we obtain the following expression for cos(9), 

C0S(e)= 2rR-r2-"2 (35) 
2a{R-r) 

where r is the distance of point P from the surface of the bubble.  The probability that a 

particle strikes the bubble interface from point P is then, 

r2-2(a+R)r+a2
+2aR (36) 

imK} Aa{R-r) 

To get the probability of striking the interface from anywhere in the transition region, we 

need to integrate this expression over the entire region, weighted appropriately. 

a 

fPJM4*(R-rf)dr 

Pint= ~  <37) mt a 

f(4n(R-r)2)dr 
o 

Substituting in the expression for Pint(r), and integrating yields 
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P   =    gfl2*z-fl*) (38) 

"*    l6(R3-(R-a?) 

If the particle strikes the interface, the probability of crossing the interface is simply the 

Ostwald solubility coefficient, 

p      = a (39) across v     ' 

The individual probabilities can be combined to obtain the probability of exiting the 

bubble on a single diffusion step pexit, 

P : = P     v~   V . (40) rexa      r cross r trans * mt 

which reduces to, 

. aa02R^ (41) 

16/?3 

Verification of the Transition Algorithm - Because the transition algorithm extends methods 

originally developed assuming diffusivity was approximately the same in high and low 

solubility regions, we felt obligated to present an alternative argument in support of using this 

method in our simulation.  The second approach to calculating the probability of leaving a 

gas bubble begins by defining several probabilities. 

We define an outer transition region, also of thickness (a), in the liquid immediately 

adjacent to the bubble as shown in Figure 8. P(t |g) is the probability of entering the outer 

transition region given that the particle is in the gas phase.  P(g |t) is the probability of 

entering the gas phase given that the particle is in the outer transition region.  If P(t) is the 

probability of being in the outer transition region, and P(g) is the probability of being in the 

31 



Outer Transition Region 

FIGURE 8 - Schematic diagram of transition region outside the bubble.  The upper part of 
this illustration represents a cross section through the bubble centered at point C with radius 
R.  The transition region (T.R.) extends a distance a outward from the bubble boundary. 
The lower part of the illustration is a cross section through the transition sphere of radius a 
centered at point P in the transition region.  The point I is at the intersection of the transition 
sphere and the bubble cross section,  z is the distance of point P from the surface of the 
bubble. 
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gas phase then, at equilibrium, particles must be transferring from liquid to gas at the same 

rate as from gas to liquid, so we have, 

P(t\g)P(g) = P(g\t)P(t) (42) 

Also, at equilibrium, since the partial pressures of the gas must be equal on either side, the 

probabilities, P(i) of being in phase i with volume Vj are related to the Ostwald solubility 

coefficient a by, 

m = A (43) 
Pit)       Vt<t 

These two equations may be solved for P(t |g) as a function of P(g |t), the volumes, 

and the solubility coefficient. 

P(g |t) is a geometric factor that we calculate as follows. Imagine a particle within the 

outer transition region, a shell of thickness (a) surrounding the bubble of radius R, and 

located a distance z < a from the gas phase boundary as in Figure 7.  The next diffusion step 

of size (a) defines a sphere of radius (a).  The probability that the particle will enter the gas 

phase is proportional to the surface area of this small sphere, which lies within the bubble.  If 

the sphere of radius (a) intersects the bubble at an angle 0 from the line normal to the surface 

of both spheres, then 0 satisfies, 

Cos(B) = fl2+2fe+*2 (44) 
2a(R+z) 

and P(g |t) is given by the fraction 
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P(g\t) = ^0 (45) 

Then P(t |g) can be obtained in terms of a, R, z, and a by substitution into the equation for 

P(t |g) above with the expression for P(g |t) and writing Vg in terms of R. 

mg) = «(l-cose)((/g+a)3-/g3) (46) 

2R3 

Using the expression for cosG, we obtain, 

P(t\g) = a[2a(R+z)-(a2+2Rz+z2)]KR+ä)3-R3] (47) 

4aR\R+z) 

Notice that as z tends to (a), P(t |g) tends to zero. We interpret this to mean that exits 

into the transition region do not occur with a frequency representing the volume, but are 

biased in closer to the bubble.  The cumulative probability of exit is, 

faP(t\g)4%(R+zfdz 
F(t\g) = i«  (48) 

[a4%(R+z)zdz 
Jo 

which integrates directly to give, 

F(t\g) = a°(UR2-"2) (49) 
16R3 

This is equivalent to the expression Pexit used in the transition algorithm. 

Calculation of the New Bubble Radius 

After completing a bubble growth cycle, the location of all particles placed during the 

cycle is known.  The mole fraction in the bubble, xbub is taken to be the ratio of the number 
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of particles ending in the bubble and the total number of particles placed during the cycle 

from Equation 8.  The number of moles of gas in the bubble is then calculated as, 

"bub = Xbubntot <5°) 

Assuming the ideal gas law and using the expression for bubble pressure derived in equation 

3 gives, 

(Pa.ö^-P^-P^i^-rl^n^RT (51) 
rbub 3 

This reduces to the cubic polynomial, 

^amb-Pvap-Pmybub^rlb-nhubRT = 0 (52) 

The real positive root of this polynomial is the new bubble radius.  If the bubble radius 

becomes less than the step size or the critical radius, the bubble vanishes. 

Derivation of Wash-out Probability 

Our intention is to apply the model to study gas wash-out from animals and humans 

during decompression. Although this goal requires us to model heterogeneously distributed 

sources and sinks, we begin with tissue taken to be homogeneously perfused for simplicity. 

This assumption implies that the amount of gas washed out per unit time from the 

tissue is inversely proportional to the tissue time constant, T.  Thus during a single diffusion 

step of time t^, tstep/T of the material will wash out.  This allows us to define pwash = tstep/T 

as the probability of washing out on a single step so that we can calculate the wash-out 

probability after n^,,, steps as, 
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Pcycle=Pwash^ +(* -PwaJ^1 -Py**?*" ^wash^1 -/\WB/**~1 (53) 

which can be expressed as, 

p       =D       .1~^~Pwasl)nCyCle (54) 
cycle rWash       i    /i    _       \ 

which reduces to, 

cycle~      "•     "wash' 

Alternatively for ease of calculation, this can be expressed as an exponential since if e" 

pwash is expanded as a Taylor series it is easy to see that for small values of pwash, (l-pwash) is 

approximately equal to e"pwash.  In fact, if pwash< 0.075 this approximation is accurate to within 

4%.   Since pwash is generally smaller than this we can rewrite pcycle as, 

p     =\-e -no*k:p'"»A (56) 
cycle 

Since n^'Pwash = n^-t^/T = tcycle/T, this can be written as, 

P     =\-e    T r
cycle   x   e 

The inert gas concentration in tissue after wash-out (Cadj) can be obtained by 

recognizing that Pcycle is simply the fraction of the concentration above the asymptotic value 

(concentration when t = oo) removed during wash-out, so that, 

or 
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P   ,  = C° Cadj (58) 
«*       CQ-Cm 

Caäj  =  Co-PcycleVo-CJ <59) 

where 

C0 = concentration before adjusting for wash-out 
Coo = concentration when t=oo . 

and Co, is computed from the arterial inert gas tension, (Painert), which we assume to be equal 

to the alveolar inert gas tension, (PMmrt) calculated as (22), 

P^ = p^-(Vpv,+iV (60) 

where, 

P^ = vp-*"p^"%i (61) 

Combining these two equations yields, 

^ = (P->-r^V-\) (62) 

where: 
PAC02 = Alveolar carbon dioxide partial pressure (mmHg) 
PA02 = Alveolar oxygen partial pressure (mmHg) 
Fi02 = Inspired oxygen fraction 

so that, 

Cnr
P-W   1   (wotes).a (63) 
760  22.4   l-ata 
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and 

P 
C     = C -P     <C -   ""*"•   x   -a\ (^ <-adj       L0   ^cycle^O     ?6()    ^ ^ 

Mxsfe/ Testing 

We tested our model by first verifying that the equilibrium conditions predicted by 

Tikuisis and Ward (17,18) were met for closed systems with one gas as calculated by the 

equations in Appendix A.  Wash-out was then simulated without the presence of a bubble and 

compared with the expected single exponential curve.  Next, we compared the solution with 

that of a partial differential equation model.  Finally, we developed measures for 

summarizing the inherently variable Monte Carlo simulations and examined the model's 

performance at different levels of precision. 

For comparison of the time course of bubble evolution with that produced by a 

standard method, we solve the partial differential equation (PDE): 

dl*L = D^bl + 2 ^£) (65) 
dt dr2        r    dr 

where Pliq is the pressure of inert gas in the tissue, D is the diffusion coefficient, t is time, 

and r the radial coordinate.  The boundary at the bubble-liquid interface satisfies the 

condition that the inert gas partial pressure near the bubble in the liquid is the same as that in 

the bubble and also satisfies the condition that the flux into the bubble is dependent on the 

gradient in the liquid near the bubble so that, 
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—l- = -aDA.—^ I  r (66) 

Where n, is the number of moles in the tissue, a is the solubility, and Abub is the surface area 

of the bubble of radius rbub.  The outer boundary is a reflection boundary.  The internal 

bubble pressure is given by Equation 3.  The real positive root of Equation 52 is the new 

bubble radius.  Gas wash-out is assumed to be uniform throughout the liquid.  It is calculated 

assuming the rate of gas elimination is proportional to the amount of gas present.  We have 

developed a solution to this system using the Crank-Nicholson method. 

Because Monte Carlo models are based on random samples from the distributions of 

interest, no two simulations will be the same.  As a consequence it is necessary to do 

multiple runs and use summary measures for comparisons.  To estimate the variability in our 

model predictions we did 10 runs at 3 different levels of particle density precision: 2 x 108 

particles/cm3, 4 x 108 particles/cm3, and 8 x 108 particles/cm3.  (For comparison, water in 

equilibrium with nitrogen gas at 1 ATA and room temperature has approximately 5 x 1017 

molecules of N2/cm3.) When summarizing the 10 runs at a given level of precision, five 

measures are of particular interest: the maximum radius achieved (r,^), time to maximum 

radius (t,^), time to bubble dissolution (tdis), mean transit time (TT), and relative dispersion 

of the transit times (RD) (2325).  RD is equal to the standard deviation of the TT divided by 

the mean TT.  From the moment of the step change in P.^,,, t^ and tdis are measured. 

Mean TT and RD do not represent the parameters of a single transit time distribution, as they 

do under normobaric conditions.  This is because the evolving bubble continuously changes 
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the transit time distribution of the system.  Nevertheless, this approach was selected because 

these measures represent a simple means for quantifying the effect of bubble evolution on gas 

transit through tissue, which is readily comparable with prior work. 

The transit time probability density function describes the distribution of the transit 

times of all the inert gas particles in the tissue.  If we express the transit time probability 

density function f(t) as, 

M =£, Bf -'/P.- (67) 

where the B; and ßj constants, the wash-out function g(t) is given by, 

8(t) = QcJLl-ffMdx) <68) 

which reduces to, 

where Qca is a scaling factor attributable to the blood flow and wash-in concentration. 

Furthermore, we know that, 

TT = £. ß,ß? (70) 
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and 

m _ /P(E, ß,P')-"-2l (71) 
7T 

In order to estimate TT and RD, we fit g(t) to the simulated wash-out curves produced by the 

model, then use the exponential parameters to calculate our estimates of the mean transit time 

and relative dispersion of transit times (26). 

Model Parameters 

The parameters for the model can be divided into three categories: (1) the physical 

variables, (2) the boundary values immediately after the bubble is formed, and (3) the 

simulation control inputs.  The physical variables include the pressure profile, surface 

tension, bubble density, washout time constant, the diffusion coefficient, and the Ostwald 

solubility coefficient for the liquid.  The immediate post-bubble formation boundary 

conditions can range from uniform gas distribution to depletion of the inner most shells of the 

inert gas in the bubble but maintaining partial pressure equilibrium across the boundary.  The 

simulation control parameters, grid size, and bubble growth cycle time were selected so as to 

assure the stability of the solution.  The simulation results were considered stable when 

changes in either variable did not substantially alter the bubble evolution curves. 

The values of the parameters used for the test runs are summarized in Table 1 by 

equation number and reference.  Those values marked with a PDE, were used in the Monte 

Carlo - PDE comparison.  The remainder of the physiological parameters were the same for 
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all comparisons.  For those parameters marked "see text" in the reference column, the 

following provides the rationale for the values selected. 

The values selected for Vliq were chosen for computational efficiency, but as close as 

possible to the physiological range. Francis et al. (31,32) reported bubble densities in cross 

sections of dog spinal cords ranging from 0.007 ± 0.017 bubbles/mm2 to 0.251 ± 0.487 

bubbles/mm2.  This corresponds to an intrabubble distance of approximately 10 mm to 2 mm. 

If these values are assumed to also represent the vertical intrabubble distance and bubbles are 

assumed to be uniformly distributed, the bubble density would range from 1 bubble/cm3 to 

125 bubbles/cm3.  Since some cord sections had 1 bubble/mm2 the maximum density may 

extend to 1000 bubbles/cm3.  Low-density systems require more computer execution time 

because of the larger liquid volume they represent.  Densities in the physiological range are 

impractical given our current computer technology.  Consequently, we arbitrarily selected 

2000 bubbles/cm3 and 8000 bubbles/cm3 even though such densities might exist only in 

extremely severe decompression sickness.  These represent tissue volumes of 0.0005 and 

0.000125 cm3, respectively. 

The pressure step from P^ (2 ATA) to P^,, (1 ATA) was selected arbitrarily. 

The value for the initial bubble size (rbub) for the equilibrium test was 6.5 microns. 

Ten to twenty percent of the bubbles with this starting radius shrink below the step size 

because of random fluctuations before they are able to reach a size close to the equilibrium 

radius.  We increased the starting radius to 9.2 microns for the Monte Carlo and PDE 

comparison tests to avoid this problem. 

Diffusion coefficients for nitrogen range from 0.6 x 10"5 cm2/sec to 2.2 x 10s cm2/sec 
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for tissue with water content between 65% and 100%.  Tendon and bone are approximately 

65% water, muscle is approximately 75% water, and brain is approximately 85% water with 

corresponding diffusion coefficients of about 0.6 x 10"5, 0.75 x 10"5, and 1.5 x 10s cm2/sec 

(29,30).  The choice of diffusion coefficient affects computer execution speed, i.e., in that 

slower diffusion requires less computer execution time.  We ran the equilibrium test at 0.5 x 

10"5 cm2/sec, but to remain in a physiological range, we used a diffusion coefficient of 0.75 x 

10"5 cm2/sec for the Monte Carlo - PDE comparison tests. 

The grid size for all tests was 2.5 microns, which corresponds to a diffusion step size, 

(a), of 4.3 microns.  Diffusion step size in the Monte Carlo model and the grid size in the 

PDE model were selected to assure that smaller values would not change the solution. 

The number of steps in a bubble growth cycle was set at 50 for both the equilibrium 

and Monte Carlo - PDE comparison tests.   Because the diffusion coefficients were different 

for the two tests while the grid size remained the same, the time for a single step as 

calculated by Equation 26 was different.  This results in bubble growth cycle time of 0.3125 

seconds for the equilibrium test, but 0.21 seconds for the Monte Carlo - PDE comparison 

test. 

Longer tissue wash-out times require more computer execution time, so we selected 

tissue times that were relatively fast but close to the physiologic range.  This resulted in our 

choice of 2.5 and 10 minutes for the tests. 

RESULTS 

The critical (r^ and equilibrium (r^ radii for our system with a volume of 0.000125 

cm3 (8,000 bubbles/cm3) and 0.0005 cm3 (2,000 bubbles/cm3) without mass transfer were 1.4 
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microns and 70.4 microns, respectively.  Figure 9 demonstrates the model's ability to reach 

the predicted equilibrium radius (re) when the system is closed to mass transfer.  A bubble 

with a radius greater than re shrinks to re and a bubble smaller than re grows to it. 

The simulated inert gas wash-out without a bubble precisely matched the expected 

single exponential curve predicted by a well-stirred model. 

The Monte Carlo and PDE predictions are compared in Table 2 and an illustrative 

condition is presented in Figures 10 and 11.  The four combinations of bubble density and 

wash-out time referred to as conditions I-IV are presented in Table 2.  Condition IV was not 

calculated for the PDE model because of the computational time required.  Mean transit time 

and relative dispersion for condition II and the PDE model were not calculated because of 

difficulties encountered in fitting the wash-out curves with Equation 69.  Values for the 

Monte Carlo mean r^ compare favorably with the PDE r,^ for conditions I-EQ.  Because of 

the variability in the Monte Carlo method, the remainder of the measures are not as closely 

matched.  However, almost all fall within one standard deviation of the mean.  In general, 

the predictions of the Monte Carlo and PDE models are similar as is graphically illustrated 

for condition I in Figures 10 and 11.  Figures 12 and 13 show the variability of the model 

predictions according to the number of particles in each simulation for bubble radius verses 

time; Figure 12 has 2 x 108 particles/cm3 and Figure 11 has 8 x 108 particles/cm3. Figures 14 

and 15 are the corresponding graphs for gas wash-out.  They show the number of moles of 

gas in the system over time.  Each figure contains curves from 10 separate simulations using 

the same starting conditions.  The expected single exponential curves for inert gas wash-out 

without the presence of a bubble are shown for comparison in the bottom of Figures 14 and 

44 



o 
JD 
ID 
Z> 

85 

68   - 

co 
c 
o » 

I 51 
CO 

cr 34   - 

17 

0 
0 220 440 660 880 1100 

T irr.e (sec) 

FIGURE 9 - Graph of simulation output for bubble evolution in a system closed to inert gas 
transport with initial bubble radii greater than and less than the expected equilibrium bubble 
radius.  Tissue volume is 1.25 x 10"4 cm3.   Note that both simulations converge to the 
equilibrium radius predicted by the quartic polynomial in Appendix A (70.4 microns). 
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TABLE 2- Comparison of Monte Carlo and partial differential equation model 
predictions of the time course of bubble evolution 

Condition I II III rv 
Bubble Density 
(bubbles/cm3) 

8,000 8,000 2,000 2,000 

Wash-out Time 
(sec) 

150 600 150 600 

critical radius 
(microns) 

1.4 1.4 1.4 1.4 

equilibrium radius 
(microns) 

70.4 70.4 112.3 112.3 

Monte Carlo Model 

number of runs 10 10 10 10 

fmax1 (microns) 43.0±2.7 61.7±2.1 42.8±5.3 80.3±1.5 

tmax' (Sec) 342.1 ±146.1 545.6± 133.9 282.7± 107.9 820.8± 143.6 

tdis1 (sec) 950.4 ±140.5 3799.6±349.4 771.3±203.3 4918.5±845.8 

Mean Transit Time1'5 286.8±37.23 2039.2±227.33 177.1±17.43 1403.0±164.74 

Relative Dispersion1'5 1.44±0.133 1.16±0.043 1.19±0.143 1.0* 

Partial Differential 
Equation Model 

r-nax (microns) 40.5 59.5 43.2 * 

tmax (SeC) 236.0 504.3 277.2 * 

tdis (sec) 965.0 3930.0 1013.0 * 

Mean Transit 
Time2'3'5 

301.3±26.5 * 185.5±3.0 * 

Relative 
Dispersion2,3'5 

1.26±0.07 * 1.21±0.009 * 

1. Mean ± s.d., coefficient of variation (s.d./mean)). 2. Estimated from 1 (1,2, and 1 runs respectively) and 2 exponential fits of 
simulated wash-out data. 3. Mean transit time for liquid without a bubble is 150 seconds with a relative dispersion of 1. 4. Estimated from 
1-exponential fit of simulated wash-out data. 4. Estimated from 1-exponential fit of simulated wash-out data. 5. Mean transit time for 
liquid without a bubble is equal to the wash-out time.  The relative dispersion is 1.Dissolution for the Monte Carlo model occurs when rbub 

is 4.3 microns. * - not studied. 

46 



50 

40   - 

GO c 
o 
Ü 

E   30 
00 

03 
cc 
-^ 
-Q 
_Q 
Z) 
m 

20 

10 

0 
0 500 1000 1500 

Time (sec) 

FIGURE 10 - Graph of Monte Carlo 
course for condition I. 

and PDE (O) predictions of bubble evolution time 
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FIGURE 12 - Graph of bubble radius versus time for low precision simulation (2 x 108 

particles/cm3).   Tissue volume is 1.25 x 10"4 cm3. 
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FIGURE 13 - Graph of bubble radius versus time for higher precision simulation (8 x 108 

particles/cm3).   Tissue volume is 1.25 x 10"4 cm3. 
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FIGURE 14 - Graph of gas wash-out versus time for low precision simulation (2 x 108 

particles/cm3).  Thin line represents the expected wash-out for the tissue without a bubble. 
Tissue volume is 1.25 x 10"4 cm3. 
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FIGURE 15 - Graph of gas wash-out versus time for higher precision simulation (8 x 108 

particles/cm3).   Thin line represents the expected wash-out for the tissue without a bubble. 
Tissue volume is 1.25x 10"4 cm3. 
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15.  These figures illustrate the variability inherent in a method based on Monte Carlo 

methods, and the need for summary measures for comparing results. 

The summary measures, mean ± S.D. and coefficients of variation (S.D./mean) of 

the maximum radius achieved (r^J, time to maximum radius (t^J, time to bubble 

dissolution (tdis), mean transit time, and relative dispersion of the transit times, for 10 

simulation runs at each of the three particle density precisions (2 x 108/cm3, 4 x 108/cm3, and 

8 x 108/cm3) are presented in Table 3.  In our test system, 10 - 20 % of the bubbles with a 

starting radius of 6.5 microns shrink below the step size before they are able to reach a size 

close to the equilibrium radius.  As a consequence, the results are biased towards fast- 

growing bubbles, although the size of the bias is probably small. 

These results illustrate that increasing particle density in a bubble growth cycle does 

not affect the precision of outcome measures equally;  since each particle's transit through the 

module is independent, we might expect that the precision of the outcome measures improves 

proportionally to the square root of the relative increase in particle density.  This would 

imply that the coefficient of variation (cv) for the highest particle density run in Table 3 

would be half the cv for the lowest density run. While r,^, t,^ and tdis approximate this 

expected improvement, the mean transit time and relative dispersion of the transit times do 

not.  Since precision for all measures will improve proportionally with the square root of the 

number of complete runs, multiple runs at low particle density may be a more efficient use of 

computer resources than a few high precision runs for estimating the mean transit time and 

the relative dispersion.  More exhaustive testing will be required to determine this 

definitively. 
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TABLE 3: Precision of Outcome Measures as a Function of Particle Density 

Particle Density 

2 x lOVcm3 4 x lOVcm3 8 x 108/cm3 

(n=10) (n=10) (n=10) 

Tmax1 0*) 34.5±7.6, 0.22 33.3±4.6, 0.14 32.5±4.7, 0.14 

Os) 228.3±127.2, 0.56 271.9±122.2, 0.45 280.6±83.8, 0.30 

tdiAs) 657.1 ±273.4, 041 793.4±274.6, 0.35 838.1 ±177.4,0.21 

Mean Transit Time1'2,3 204.3±45.3, 0.22 196.9±25.4, 0.13 200.4±28.9, 0.14 

Relative Dispersion1'2*3 1.21±0.18, 0.15 1.23±0.17, 0.14 1.27±0.17, 0.13 

1. Mean ± s.d., coefficient of variation (s.d./mean)). 
2. Estimated from 1 (1,2, and 1 runs respectively) and 2 exponential fits of simulated wash-out data. 
3. Mean transit time for liquid without a bubble is 150 seconds with a relative dispersion of 1.4. Estimated from 
1-exponential fit of simulated wash-out data. 
4. Estimated from 1-exponential fit of simulated wash-out data. 
5. Mean transit time for liquid without a bubble is equal to the wash-out time.  The relative dispersion is 1. 
Dissolution for the Monte Carlo model occurs when rbub is 4.3 microns. 
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The program execution speed is directly proportional to the number of particles 

simulated.  Since larger volumes require more particles to obtain the same number of bubble- 

liquid transitions, larger volumes require longer execution speeds.  The relationship among 

the number of steps taken in a bubble growth cycle, the grid size and volume and execution 

speed is more complex since all these factors influence the proportion of particles that will be 

able to take a bigstep in the liquid region. 

DISCUSSION 

Our ultimate goal is the development of a physiologically based method of 

constructing decompression schedules.  Since the effect of extravascular bubbles on inert gas 

exchange must be included in such an endeavor, we set out to develop a method for 

constructing models of bubble evolution during decompression that would allow for 

previously excluded details of the physiological environment such as complex microvascular 

architectures. 

As a first step in this direction, this report introduces a model of bubble evolution 

during decompression in a homogenous liquid based on a Monte Carlo simulation of 

diffusion.  The major advantage of this method is that in theory, details of the biological 

environment can be incorporated that are not feasible using traditional modeling methods. 

The major disadvantage is that Monte Carlo simulations require large amounts of computer 

execution time.  Other disadvantages include the inherent variability in the model predictions, 

which requires multiple runs and the use of summary measures for comparisons, and the 

dependence of execution time on the volume of the liquid being simulated.  Limitations of the 

current simplified model are the assumptions of liquid homogeneity, uniform gas wash-out, 

55 



uniform bubble size and distribution, radial symmetry, and the use of a spherical region 

which is not space filling. 

Two features of this approach are novel to Monte Carlo models of diffusion and 

contribute to its relative efficiency.  First, use of the probability distribution of the distance a 

particle travels in the liquid phase to replace many single diffusion steps dramatically 

increases the program's execution speed.  It also invites the development of other 

distributional approaches.  Second, treating the bubble as a high solubility region allows us to 

model gas particle flux without developing a detailed kinetic model of particle behavior inside 

the bubble. 

The results presented in this report confirm the fact that a Monte Carlo approach can 

produce the equilibrium results expected from independent calculations and compares 

favorably with the predicted time course of bubble evolution predicted by a PDE model. 

Future model development could progress in several ways.  Effort at improving the 

efficiency of the algorithm could result in execution times that are competitive with traditional 

methods.  One approach is to attempt to generalize the probability distribution function so as 

to calculate in advance a distribution that includes both diffusion and transition into and out 

of the bubble.  Sampling from the distribution of particle residence times in the bubble could 

also improve efficiency.  The final step would be to develop a single distribution which 

would combine all of these elements.  For the special case of the spherically symmetric 

bubble-liquid module, the problem can be reduced to a one dimensional random walk.  The 

theoretical background for these approaches is outlined in Appendix D. 

Moving the program to a computer capable of parallel or vector processing might also 
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improve execution speed since each particle's path is independent of every other particle and 

could be calculated separately (33). 

In the current implementation we treat metabolic gases as constants for simplicity. 

Alternatively, each type of gas could be treated stochastically based on its solubility, tissue 

time and diffusion coefficient and tracked separately through a bubble growth cycle.  An 

additional "metabolic conversion" probability would need to be applied to account for the 

consumption of oxygen and production of carbon dioxide.  Multiple inert gases could also be 

handled individually.  Multiple gas simulations are restricted by execution speed since each 

new gas requires the addition of an equal number of particles to maintain precision.  So a 

model with nitrogen, helium and oxygen would require three times as many particles as the 

simulations in this report. 

The influence of bubble interactions may be another area of study.  This would 

require a further partitioning of the liquid region in order to more precisely record the 

gradient in the liquid.  Since each liquid region requires a minimum number of particles to 

ensure a large enough number of particle transitions between regions in each bubble growth 

cycle, this approach would also require considerably more execution time.  A similar 

approach could be taken to include details of the tissue micro-architecture.  Incorporation of a 

symmetrical, space-filling liquid region would allow generalization from one liquid module to 

an entire liquid slab without concern about errors introduced by the use of non space-filling 

liquid regions currently employed (34). 

Ultimate model testing depends on experiments conducted in in vitro and in vivo 

systems.  If experimental methods with sufficient resolving power are developed, direct 
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testing could be conducted by comparing predicted rmax, t^ and tdis with experimental results. 

An indirect approach could be taken with present technology by comparing predicted transit 

time measures with those observed in animal experiments conducted with radiolabeled gases 

(24,25). 
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APPENDIX A: Determination of Equilibrium Radii 

The polynomial (17,18) which describes the 2 equilibrium radii in a closed system with 
one inert gas is: 

a4r
4 + a3r

3 + axr + aQ = 0 (Al) 

where: 

a4 = AU'P(l-PJP)ß-cs-k-T 
a3 = 8n-Y/3-cs*-T 

«i = V(\-PJP)-Nlcs 

a0 = 2rV/P 

and 
r = bubble equilibrium radii, (cm) 
P = ambient inert gas partial pressure after pressure step, (mmHg) 
Pvap = vapor pressure of water, (constant), (mmHg) 
cs = saturation concentration of inert gas in the solvent, (moles/cm3) 

For weak solutions cs = c,-P/KH, where: 
c, = molar concentration of the solvent, (moles/cm3) 
KH = Henry's coefficient = PH/([(k-T/(VL-a-PH))+l]1), (mmHg) (35) 
where: 

VL = molar volume of solvent (1/c,), cmVmole 
a = Ostwald solubility coefficient 
PH = 760 mmHg 

k = Universal gas constant in (cm3 mmHg)/(mole K) 
T = temperature in Kelvin 
y = surface tension, (mmHg-cm) 
V = volume of depleted region (inverse of bubble density), (cm3) 
N = number of moles of inert gas in the volume V at cs, (moles) 
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APPENDIX B: Derivation of Initial Particle Placement Coordinates 

We need to create the desired distribution from a uniform random variable between 0 and 

1 generated by the computer. Because our volume is a sphere, we begin in spherical coordinates 

p, 9 and (|) where p is the radial coordinate, 0 the azimuthal angle between 0 and 71, and (j) 

orthogonal to 0, between 0 and 27t. These variables are mutually independent, therefore we must 

generate a distribution for each of thenu 

Let U be a uniform random variable on [0,1], with the probability density function (PDF) 

f(u) and the cumulative distribution function (CDF) F(u), where u is a particular value of U. 

Let p, 0 and (j) be random variables with PDF's gp, ge and g^ and CDF's Gp, G0 and G$ such 

that p, 0 and § are distributed uniformly by volume. For illustrative purposes we will 

demonstrate the procedure in detail for p, although similar expressions can be written for the 

other variables, 0 and (().  By definition, 

volume of a sphere with pn^p^p,  ^^ 
Prob{pQ±p±p1}=Gp(pl)-Gp(Po)= .     , . ,       ,° l  W p p total volume of the sphere 

where p, and f\ are arbitrarily selected values. 

We need to find the monotonic transformations hp(u), he(u) and h,j,(u), such that p=hp(u), 

0=he(u) and (|)=h^(u).  So for example, we must find hp(u) such that, 

volume ofasphere with p0 <. p <. p, 
Prob{p0zh (K)*Pik p totalvolume of the sphere 

^(P?-PJ> w 

3 
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where R is the radius of the sphere. 

To generate the desired distribution from the uniform distribution,  we require, 

Prob{p3ip(u)} = Prob{U^i} which by definition of a CDF implies that Gp(hp(u)) = F(u). 

Gp(hp(u)) =   F(u) (B3a) 

Differentiating both sides of (B3a) and applying the chain rule gives, 

5p(p)-Ä'p(«)=A") (B3b> 

By substituting hp'^p) for u and recognizing that f(u)=l on [0,1], we obtain, 

1    _        1 (B4) 
8pP    *>)   h>p(h-p\p)) 

Integrating gives, 

GP(P)=/ \ dp 
Ä'pCftp (P)) 

Combining equations Bl, B2, and B5 for p we obtain, 

f——dp 

3 

Taking the derivative with respect to P! yields, 

K(h:\p))   R2 
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471.   3      3, 
Pl-      « T(Pi-Po) m 

3p? (B7) 



which is equivalent to, 

1      3AP
2(«) (B8) 

V«)      *3 

since hp(u) = p by definition.  We can rearrange to obtain the differential equation, 

dhp_   R3 (B9) 
du   3h2

p(u) 

which can be integrated to obtain the expression, 

h=Ru3 
p 

(BIO) 

Recognizing that for 0, 

/ t       u :ua    o   a     —Ä3(-COS(e,)+008(6-)) volume of a sphere with QQzQzd1     3 
x «^ 

toto/ volume of the sphere 4n_ „ 3 
3 

(Bll) 

and for (J), 

2 
volume of a sphere with $^$4^   "3    Wl    °^ (B12) 

tota/ volume of the sphere 4rc „ 3 

3 

similar approaches can be taken to obtain results for these other variables. Solving for h in each 

case we obtain, 
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and 

fte(w) = 6 = arccos(l-2w) 

h^u) = $ = 2-K-U 
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APPENDIX C: Approaches to Increasing Execution Speed 

1.  Distribution of Particle Residence Times in the Bubble 

The probability of the particle being available to exit the bubble after n steps can be 

calculated. During a single step the particle has one chance of being available to exit, so the 

probability of being available after n steps can be calculated as, 

(Cl) 
P»*PJV +d -PJ> 

+d -pj1*- +PJH -PJT1) 

which can be expressed as, 

P D 
l-v-p«r <C2> 

From this we can solve for (l-pexit)
n, 

P„ (C3) 

Pexit 

then applying logarithms we obtain, 

lnd-Ad-d-p^))) 
Pent n =  —  
W-PeJ 

(C4) 

Since pexit=l-(l-pexit), 

ln(l-P„) (C5) 

so that if we randomly generate Pn between 0 and 1, the number of steps before the particle is 

available can be calculated. 
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Alternatively, for pexi<D.075 the geometric distribution can be approximated by the 

exponential distribution (21) so that, 

n=-—-ln(«) (C6) 
exit 

where u is a uniform random variable. 

If the number of steps generated from the distribution is greater than the number of steps 

in a bubble growth cycle, n^, the particle remains unavailable to exit during the bubble growth 

cycle. If it is less than n^^ then for (n,.yüe - n) the particle takes individual steps. 

This approach can be applied if pexit is defined as described in the main body of the text 

or if the additional pout factor were included. 

2. Distribution of particles outside the bubble 

If x is the random variable that describes the distance outside the bubble boundary, we 

can obtain an expression for the distribution of the particles outside the bubble by integrating 

P(t | g) with respect to z and normalizing the result by the expression for pexit, 

r 3a\2aiR+z)-(a2+2Rz+z3)]lR+z]dz 

«A - i **!  
a(12R2-a2) 

16/?3 

(C7) 

which reduces to, 

H(x)= 
_ -x(3x3-Sax2+12Rx2+l2xR2-24axR+6a2x+12Ra2-24aR2) (C8) 

a\\2Rl-al) 
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3.  One dimensional random walk for a spherically symmetric bubble-liquid module 

The algorithm described in the main body of this report is general enough to 

accommodate a heterogeneous, asymmetric diffusion environment. However, a spherically 

symmetric bubble-liquid module can be studied as a first approximation to a more complicated 

geometry. Because of the symmetry in this environment, the three-dimensional random walk can 

be reduced to a one-dimensional random walk in order to increase the efficiency of the 

algorithm. A subroutine FASTSTEP has been developed that implements this one-dimensional 

algorithm. 

Subroutine FASTSTEP uses the law of cosines to generate a new position r' for a particle 

initially at a distance r from the origin, and stepping a distance (a) at an angle (|) to the radius 

vector, as shown in Figure 14.  The equation giving r' is then, 

(C9) 
/2 =   a2+r2-2wr-cos($) 

where the cosine term is randomly generated from a uniform random distribution by, 

cos(4>) =   1 - 2-RAN(Il) (CIO) 

and where II is a seed for the random number generating function RAN(x). 

Using the geometry of Figure 15, subroutine FASTREFL takes particles that have stepped 

out of the system and return them back into the system using reflection from the outer boundary. 

In Figure 15, a particle initially at point P steps to point P', which is at a distance greater than 

R, the radius of the system. In order to reflect the particle from the outer boundary to point P", 

FASTREFL: 
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(1) Uses the quantities r,  R,  and cos((j))  (which is returned from subroutine 

FASTSTEP) and the law of cosines to find distance d1? 

d\ =   r2+/?2-2r-/2-cos((j)) (Cll) 

(2) Uses the law of sines to determine angle 0, 

sin(6) =   -sin(<J)) (C12) 

R 

(3) Applies the law of cosines a final time to determine r", 

2    , (C13) 
r"2 =   4+R2-2-d2-R-cos(Q) 

where dj = a - dv 
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APPENDIX D: Fortran Source Code 

The program was written using a Fortran compiler for Avalon accelerator boards installed 

in a Vax 3800. The Fortran source code for the program is listed in Section Dl. In order to 

execute the program, in addition to the executable code, an input file such as the example in 

Section D2, and a file "DISTPROB.DAT" (which contains the values of the diffusion probability 

distribution function obtained from numerical integration) are required. This file is produced by 

the program listed in Section D3. An additional binary file, "BUBMOD.DMP", must also exist 

prior to execution. This file contains information on the gradient that can be used to restart the 

program in the middle of a run. The statement, iprofile=l in the input file tells the program 

to use the information in the file. The output file created by the program contains information 

on the time course of the bubble radius. A program listed in Section D4 can create alternative 

initial boundary value conditions for the liquid surrounding the bubble. Section D5 contains 

subroutines that can be used to implement the one-dimensional random walk version of the 

program. 
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Section Dl. FORTRAN source code for Monte Carlo bubble simulation. 

C- This program simulates bubble growth beginning with a bubble of 
C- critical radius as defined by Tikuisis.  The bubble is represented as 
C- a region of high solubility surrounded by a "depleted region" from 
C- which the inert gas is extracted.  These two regions are placed in 
C- a third region which represents the surrounding tissue. 

implicit real*8 (a-h,o-z) 
common /coml/xmin,xmax,ymin,ymax,zmin,zmax,rbub,rdep 

common/com2/pi, i 1 
common/distarr/distance(10000) 
common/sincos/fact, scale, sinmat(0:9999) ,cosmat(0:9999) 

common/com3/IA(3,24) ,aa(3,24) 
common /com5/twopi,onethird 

real*8 N2,N2dep,k,kH,molezone(500) 
Dimension xx(3),rzonebeg(0:500),rzoneend(0:500),widezone(500) 
dimension strtzone(500),endzone(500),fraczone(500),conczone(500) 
dimension cummsum(0:500), vzone(500) ,rzsq(0:500) 
data IA/1,1,1,1,1,-1,1,-1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1, 

+   1,-1,-1,-1, 
+   1,1,1,-1,1,1,1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1, 
+   1,1,1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1/ 

C- Define constants 
zed=0.d0 

Pi=4.d0*datan(l.d0) 
twopi=2.d0*pi 
scale=10000.d0 
fact=scale/twopi 
call gensine 

c 
c    change 12/16/92 to include oxygen and co2 as additional gas 
c    components of the bubble, using values from van liew, pg. 336 
c 
c       ph2o      = 6.2 kPa = 46.52 mmHg 
c       po2       = 5.3 kPa = 39.76 mmHg 
c       pco2      = 5.9 kPa = 44.26 mmHg 
c       pco21ung = 5.3 kPa = 39.76 mmHg 
c pvap= 46.52d0 + 39.76d0 + 44.26d0 
c   read in from input file below    1/18/93 
c ph2o=46.52d0 
c po2=39.76d0 
c pco2=44.26d0 
c pco21ung=39.76d0 
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c pvap=ph2o+po2+pco2 
C- vapor pressure of water in bubble @ 37 C in mmHg 

C1125 =0.055346 
Cll=0.055140 

C- pure solvent cone of water @ 37 C in moles/cc 
k=62358.0 

C- Boltzman's gas constant in mmHG-cc/mole-K 
C- based on PV=kNT and STP conditions 

R=62358.0 
C- Universal gas constant in mmHg-cc/mole-K 
C- based on published value of 0.08205 L-atm/mole-K 

T=37.0+273.1 
C- temperature in Kelvin 

onethird=l.d0/3.d0 
C Pvap=Pvap25 
C cll=cll25 

C- Input initial conditions and control variables. 
C- ngrow=number of bubble growth cycles, 
C- ntrip=number of independent trips thru tissue, nstep=number of steps per 
C- trip, Suiten=surface tension of bubble (dynes/cm), PCbub=partition 
C- coefficient of bubble (1/ostwald coefficient), D=diffusion coefficient 
C- (cm sq/sec), Voldep0=initial volume of the depleted region (cu cc), 
C- Voltiss = volume of cubical tissue region 
C- P01=initial tissue pressure (mmHg), Pstep=decompression step (mmHg) 

Rewind(l) 
Read(l,900)ngrow,ntrip,nstep,surten,Pcbub,D,gridsize,Voldep0, 

+ Voltiss,P01,Pstep,bubfact 
900      Format(I12/I12/I12/gl5.7/gl5.7/gl5.7/gl5.7/gl5.7/ 

+ g15.7/gl5.7/gl5.7/gl5.7) 
read(l, 1900)iprofile,nmicro,washoutt,pctn2 

1900 format(il2/il2/gl5.7/gl5.7) 
read(l, 1901)switch,volref,fracsd,ph2o,po2,pco2,pco21ung 

1901 format(gl5.7) 
close(l) 
pvap=ph2o+po2+pco2 

C- Input the array of diffusion distances as a function of probability 
C- given in terms of the standard deviation 

Open(unit = 1 ,file = 'distprob.dat' ,type = 'old') 
Read(l ,899)(distance(i),i= 1,10000) 

899      Format(fl7.2) 
Close(l) 

76 



vol=voltiss+voldepO 
C- Calculate dimensions of cubical region 

call resize(vol,cubeside) 
C- adjust units to mmHG-cm knowing 760 mmHg = 1.013X10*6 dyn/cm*2 

Surten=Surten/1332.8 
C- Calculate Henry's coefficient from PCbub 

KH=760./((((R*T)/((l ./cll)*(l./PCbub) *760.)) +1)**-1.) 
C- Calculate stepsize 
c modify stepping array 

call regrid(ia,aa,gridsize,stepsize) 
C- Calculate bubble growth cycle time and tissue washout time 

Dtime=stepsize*stepsize/(6. *D) 
eyelet=nstep*Dtime 
poofprob=1 .dO-dexp(-cyclet/washoutt) 
if(washoutt.gt.86400.d0)poofprob=0.d0 

C- Calculate the maximum distance a particle can travel by diffusion 
onesd=dsqrt(2. dO*d*cyclet) 
diffdist=5. d0*onesd 

c 
c   figure out the width of the diffusion shells, switch = 0 is for 
c   a dimensionless run, with reference volume volref. switch < > 0 is 
c   an absolute run, with parameters unsealed, 
c 

if(switch.eq.0.dO)then 
width=onesd *fracsd*(vol/volref)**onethird 
if (width, gt. onesd)width=onesd 

else 
width=onesd*fracsd 

end if 
C- Write out the starting conditions 

Open(unit=2,file='for002.dat' ,type= 'new') 
Write(2,901)Ngrow,Ntrip,Nstep,Surten*1332.8,PCbub,D, 

+  gridsize, stepsize ,P01 ,Pstep, VoldepO, voltiss 
Close(2) 

901      Format(3I9/5G15.4/4G15.4) 

C- Begin a bubble growth cycle 
time=0. 
P1=P01 
pln2==(p01-ph2o-pco21ung)*pctn2 
pfn2=(p01-pstep-ph2o-pco21ung)*pctn2 
Voldep=VoldepO 
il = 182361+2*secnds(0.0) 
lstrt=l 
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if(iprofile. ne. 0)then 
c     for a nonuniform initial concentration profile, put code in here 

open(unit=7,file= 'bubmod.dmp' ,type= 'old' ,form= 'unformatted') 
rewind(7) 
read(7)lstrt,il,nzonebeg,time,volbub,calcpc,rbub,rdep,rbub0 
read(7)re ,rc, currmole 
read(7)(fraczone(i),molezone(i),conczone(i),i= 1 ,nzonebeg) 
read(7)(rzonebeg(i),rzsq(i),vzone(i),i=1 ,nzonebeg) 
close(7) 
lstrt=lstrt+l 
cs=cll*pln2/kh 
N2=Cs*Vol 
N2dep=Cs*Voldep 
orgmoles=N2 
If (VoldepO.gt.vol) orgmoles=n2dep 
Pl=Pl-Pstep 
csequil=c 1 l*pfn2/kh 
rzonebeg(0)=0.dO 
rzoneend(0)=0.dO 
bubmoles=molezone(l) 
open(unit=3,file= * for003.dat',type = 'new') 
write(3,3000)0,time,rbub,volbub,calcpc, 

+ (fraczone(i),rzonebeg(i),conczone(i),i=1 ,nzonebeg) 
close(3) 
depmoles=currmole-bubmoles 
bubfrac =bubmoles/currmole 
depfrac=depmoles/currmole 

end if 
Do 10 L=lstrt,ngrow 

C- Calculate number of moles of inert gas (N2) at start of the cycle 
C- in the entire tissue and in the depleted region alone (N2dep). 

If((L.eq.l).and.(iprofile.eq.O)) then 
5432       continue 

cs=cll*pln2/kh 
N2=Cs*Vol 
N2dep=Cs*Voldep 
orgmoles=N2 
If (VoldepO.gt.vol) orgmoles=n2dep 
currmole=orgmoles 

Pl=Pl-Pstep 
csequil=cll*pfn2/kh 

C- Calculate bubble dimensions 
C- First, calculate the critical and equilibrium radii 

78 



aO=2. *surten* Voldep/Pl 
Cs=Cll*Pl/KH 
al = Voldep*(l .-Pvap/Pl)-N2dep/Cs 
a3=8. *pi*surten/(3. *Cs*k*T) 
a4=4. *pi*Pl*(l .-Pvap/Pl)/(3. *Cs*k*T) 
c0=a0/a4 
cl=al/a4 
c3=a3/a4 
Call roots(c0,cl,c3,rc,re) 
if (rc.lt.O.) goto 999 

C- Assign radius to test bubble 
rbub=re*bubfact+rc*(l.dO-bubfact) 
rbub=dmaxl(rbub,(l .5d0*stepsize)) 

rbubO=rbub 
VolBub=4. *pi*rbub*rbub*rbub/3. 
rdep=(3.*(Voldep+Volbub)/(4*pi))**(l./3.) 

c    check here to make sure the bubble fits inside the cube, if not, spread 
c    the excess volume onto the depleted region, and make it larger 

if((rdep .gt. xmax). and. (voltiss. gt.zed))then 
voldepO=vol 
voldep=voldepO 
voltiss=zed 
goto 5432 

end if 
rzonebeg(0)=0.dO 
rzoneend(0)=0.dO 
call genzone(rbub,rdep,width,nmicro,rzonebeg,rzsq,vzone,nzonebeg) 

Bubmoles=Volbub*(Pl-Pvap+2. *surten/rbub)/(R*T) 
Depmoles=N2Dep-Bubmoles 
Tismoles=N2-N2dep 
Bubfrac=Bubmoles/orgmoles 
Depfrac=Depmoles/orgmoles 
Tisfrac=Tismoles/orgmoles 
if(iprofile.eq.O)then 

fraczone(l)=bubfrac 
molezone(l)=bubmoles 
conczone(l)=bubmoles/volbub 
do 1100 izone=2,nzonebeg 

fraczone(izone)=depfrac *vzone(izone)/voldep 
molezone(izone)=fraczone(izone)*orgmoles 
conczone(izone)=depmoles/voldep 

1100 continue 
end if 

End if 
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call genzone(rbub,rdep,width,nmicro,rzoneend,rzsq,vzone,nzoneend) 

C- Adjust the dimensions of the module 
Volcube=vol+volbub 
call resize(volcube,cubeside) 

C- Begin the random walk thru the module 
C- Calculate the probability of staying in the bubble 

shellsize=rbub-stepsize 
stepsiz2=stepsize*stepsize 
shelsiz3=shellsize *shellsize*shellsize 

rbub2=rbub*rbub 
rbub3=rbub2*rbub 
rdep2=rdep*rdep 

Pf = 1 .dO/Pcbub*(rbub3-shelsiz3)/rbub3 
If (rbub.lt.stepsize) pf=l.dO/PCbub 
xldpf=-l.dO/pf 
Startbub=0. 
Startdep=0. 
Starttis=0. 
Endlnbub=0. 
EndIndep=0. 
EndIntis=0. 
do 1005 izone=l,nzoneend 

strtzone(izone)=0.d0 
endzone(izone)=0. dO 

1005   continue 
cummsum(O)=0. dO 
do 1004 izone=l,nzonebeg 

cummsum(izone)=cummsum(izone-l)+fraczone(izone) 
1004   continue 

tisfrac = 1 .dO-cummsum(nzonebeg) 
if(tisfrac.lt.0.dO)tisfrac=0.d0 
tismoles=tisfrac *currmole 

C- Calculate the number of particles to be place 
Do20n=l,Ntrip 

C- Place a particle randomly in the module with probability weighted 
C- by mole fraction. 

prob=ran(il) 
c 
c   new code to place particles in the various zones 

if (prob. ge. cummsum(nzonebeg))then 
callputinbox(xx(l),xx(2),xx(3),zed,zed,zed,cubeside,partdist) 

else 
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do 1001 izone = l,nzonebeg 
if (prob. It. cummsum(izone))then 

call zone(xx(l),xx(2),xx(3),zed,zed,zed,rzonebeg(izone-l), 
+ rzonebeg(izone),partdist) 

goto 1002 
end if 

1001 continue 
1002 continue 

end if 

C- If the particle is placed so far from the bubble that it cannot 
C- reach it in nstep steps and the module only consists of the 
C- bubble and a depleted region, the particle will stay in the depleted 
C- region. 

x=xx(l) 
y=xx(2) 
z=xx(3) 
If (partdist.gt.(diffdist+rbub)) then 

Call Bigstep(x,y,z,D,cyclet) 
C- Check to see if the particle is outside the spherical depleted region. 
C- If it is reflect it back. 

if(voltiss. le. zed)then 
else 

call inbox(x,y,z) 
end if 

Istep=nstep 

C- The particle can reach the bubble by diffusion 
Else If (partdist.gt.rbub) then 

Istep=int((partdist-rbub)/stepsize) 
Steptime=Istep*Dtime 
Call Bigstep(x,y,z,D,steptime) 
if(voltiss.le.zed)then 
else 

call inbox(x,y,z) 
end if 

C- The particle is in the bubble 
Else 

Istep=0 
End if 

C- Carry out random walk for NSTEP steps of "stepsize" 
Do 30 JJ=Istep+1,nstep 
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Inbub=0 
C- Check to see if particle is in the bubble by comparing the 
C- particle distance from origin with bubbble radius 

if(distfun2(x,y,z,zed,zed,zed).le.rbub2) 
+       inbub=l 

C- If the particle is in the bubble place in the transition shell 
C- based on the probability factor. 

If (Inbub.eq.l) then 
if (ran(il).lt.pf)then 

if(rbub. le. stepsize)then 
call putinorb(x,y,z,zed,zed,zed,rbub) 

else 
call zone(x,y,z,zed,zed,zed,rbub-stepsize,rbub,dummyr) 

end if 
call step(x,y,z,gridsize) 

end if 
else 

C- Take a step 
call step(x,y,z,gridsize) 

c 
c    assume now that if particle has just left the bubble, it cannot 
c     reach the boundaries of the system during a single time cycle, 
c    we can thus eliminate the rest of this do loop. 
c 

End if 
30       Continue 

If (distfun2(x,y,z,zed,zed,zed).gt.rdep2) 
+ Call Reflect(x,y,z,xx(l),xx(2),xx(3),zed,zed,zed,rdep) 

C- Reassign coordinates 
xx(l)=x 
xx(2)=y 
xx(3)=z 

C- Keep track of the region in which the particle ends 
dist=distfun2(x,y,z,zed,zed,zed) 
do 1010 izone=l,nzoneend 

if(dist. It. rzsq(izone))then 
endzone(izone)=endzone(izone)+1 .d0 

goto 1011 
end if 
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1010 continue 
1011 continue 

If (dist.le.rbub2) then 
Endlnbub=Endlnbub+1. 

else If(dist.le.rdep2) then 
Endlndep=Endlndep +1. 

else 
Endlntis=Endlntis +1. 

end if 

20       Continue 
if((voltiss. le. zed). and. (endintis. gt. zed))then 
open(unit=2,file= 'for002.dat',type = 'old',access = 'append') 
write(2,8888)endintis,l 

8888       formatC  accounting error...',fl0.2,'particles in tissue'/ 
+ ' on the',i8,'th cycle') 

stop 
end if 

C- Calculate the gas content in each region 
If (L.eq.l) then 

open(unit=2,file = 'for002.dat' ,type='old',access = 'append') 
write(2,904)time ,rbub, volbub, voldep, 

+  (vol-voldep) 
write(2,904)cyclet,poofprob,washoutt 
Write (2,905) rc,re,rbub0 

close(2) 
end if 

c 
c   this is where washout takes place, in older versions (commented out) 
c   washout was done on a zone by zone basis, this version (2/23/93) does 
c   washout over the entire depletion region at the same time, this is the 
c   same mathematically as doing them separately. 
c 

dfnt=dfloat(ntrip) 
dfnt0=dfht 
actual=endindep 
if(poofprob. gt. 0. d0)then 

const=dfht*csequil/currmole 
expected=const*voldep 
actual=endindep-(endindep-expected)*poofprob 
dfnt=actual+endinbub 

1025   continue 
1015       continue 
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if (voltiss. gt. zed)dfnt=dfnt+endintis 
currmole=currmole *dfnt/dfntO 

end if 
c 
c end of washout code 
c 
c    bookkeeping, note if statement to get proper amount in bubble 
c 

do 1020 izone = l,nzoneend 
fraczone(izone)=endzone(izone)*actual/endindep/dfnt 
if(izone.eq.l)fraczone(izone)=endzone(izone)/dfnt 
molezone(izone)=fraczone(izone) *currmole 
conczone(izone)=molezone(izone)/vzone(izone) 

1020   continue 
calcpc=fraczone( 1) *vzone(2)/(fraczone(2)*vzone( 1)) 

Bubfrac=EndlnBub/dfht 
depfrac=actual/dfht 
Tisfrac=Endintis/dfnt 
bubmoles=currmole*bubfrac 
depmoles=currmole*depfrac 
tismoles=currmole*tisfrac 

C- If Bubfrac is very small it will soon vanish so trap it 
If (bubfrac.lt.0.0000000001) goto 999 

C- Calculate the new volume of each region 
C- the volume of the depleted region plus the volume of 
C- the supersaturated tissue region is a constant, so bubble 
C- growth only adds to max and min dimensions, but not volumes 

A3=(4.*pi*(Pl-Pvap))/3. 
A2=(8.*pi*surten)/3. 
aO=-molezone(l)*R*T 

C0=A0/A3 
C2=A2/A3 
Call Roots2(c0,c2,rbub) 
if(rbub.lt.stepsize)goto 999 

VolBub=(4*pi*(rbub)**3 .)/3. 
tisVNew=Tismoles/(Cll*P01/KHX 
Voldep=Vol-tisvnew 
If (VoldepO.ge.vol) Voldep=voldepO-tisvnew 
rdep=(3. *(Voldep+Volbub)/(4*pi))**(l ./3.) 
call expand(rbub,rdep,rzoneend,rzonebeg,nzoneend) 
nzonebeg=nzoneend 
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Volcube=vol+volbub 
call resize(volcube,cubeside) 

C- Output information for 1 bubble growth cycle 
time=time+eyelet 
open(unit=2,file = 'for002.dat' ,type = 'old' ,access = 'append') 
Write(2,904) time,rbub,calcpc,currmole 
close(2) 

904 Format(5G15.7) 
3000   formatC  cycle # \i5,4gl2.4/50(3gl5.6/)) 

open(unit=7,file= 'bubmod.dmp' ,type='old' ,form= 'unformatted') 
rewind(7) 
write(7)L,il,nzonebeg,time,volbub,calcpc,rbub,rdep,rbub0 
write(7)re ,rc ,currmole 
write(7)(fraczone(i),molezone(i),conczone(i),i=l,nzonebeg) 
write(7)(rzonebeg(i),rzsq(i),vzone(i),i=1 ,nzonebeg) 
close(unit=7) 

10       Continue 
999      Continue 
905 Format(3G15.4) 

Stop 
End 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c   generate sin and cos matrices 
c 

subroutine gensine 
implicit real*8 (a-h,o-z) ■ 
common/sincos/fact, scale, sinmat(0:9999) ,cosmat(0:9999) 
do 10 i=0,9999 

cosmat(i)=dcos(dfloat(i)/fact) 
sinmat(i)=dsin(dfloat(i)/fact) 

10       continue 
return 
end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

subroutine expand(rbub,rdep,rzl,rz2,nz) 
implicit real*8 (a-h,o-z) 
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dimension rzl(0:500),rz2(0:500) 
common /com2/pi,il 
common /com5/twopi,onethird 
data nzmax,eps/50,l-d-05/ 
coeff=4. dO*pi *onethird 
rz2(l)=rbub 
do 10 i=2,nz 

rz2(i)=(rzl(i)**3-rzl(i-l)**3+rz2(i-l)**3)**onethird 
10       continue 

do 20 i=nz+l,nzmax 
rz2(i)=0.d0 

20       continue 
if(dabs(rz2(nz)-rdep). gt. eps)then 

write(6,100)nz,rz2(nz),rdep 
100        formate  expansion error:  rz2(',i2,') = \fl0.3, 

+ ' rdep = \fl0.3) 
stop 

end if 
return 
end 

c 
c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

subroutine genzone(rbub,rdep,width,nm,rzone,rzsq,vzone,nzone) 
implicit real*8 (a-h,o-z) 
dimension rzone(0:500) ,rzsq(0:500), vzone(500) 

common/com2/pi, i 1 
common /com5/twopi,onethird 
nzone = 1 
rzone(0)=0.d0 
rzone(l)=rbub 
coeff=4. d0*pi*onethird 
vzone( 1)=coeff*rzone( 1) * *3 
vtot=vzone(l) 
do 10 i=2,500 

nzone=nzone+1 
rzone(i)=rzone(i-1)+width 
if(rzone(i).gt.rdep)rzone(i)=rdep 
v=coeff*rzone(i) * *3 
vzone(i)=v-vtot 
if(rzone(i).ge.rdep)goto 20 
vtot=v 

10       continue 
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20       continue 
do 40 i=0,nzone 

rzsq(i)=rzone(i)*rzone(i) 
40       continue 

return 
end 

c 

Subroutine Roots(c0,cl,c3,rc,re) 
implicit real*8 (a-h,o-z) 

C- This subroutine calculates the roots of the Tikuisis polynomial. 
C- First, find the minimum because 1 root is below it and the other 
C- root is above it. 
100     formatC # \i5) 

If (cl.ge.O.)then 
re=-999. 

else 
xl=-c0/cl 

10 x=xl 
g=cl+x*x*(3.*c3+4.*x) 
dgdx=x*(6.*c3 + 12.*x) 
xl=x-g/dgdx 
if((abs(g).gt.0.0000001).or.(abs(xl-x).gt.0.0000001)) 

+     goto 10 
C- Now apply Newton's method to find the roots 

f=rcrunc(xl,c0,cl,c3) 
if (f.gt.0.) then 

re=-998 
else 
dolj = l,2 

if (j.eq.l) then 
mult=-l 

else 
mult=l 

end if 
x2=xl*l.+0.1*mult 

20 x=x2 
fö=rcfunc(x,c0,cl ,c3) 
fl=cl+x*x*(3.*c3+4.*x) 
dxl=-f0/fl 
x2=dxl+x 
if (abs(l.-(x2/x)).gt.0.0001) goto 20 
if (mult.lt.0) rc=x2 
if (mult.gt.0) re=x2 
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continue 
end if 

end if 
return 
end 

Real*8 Function rcfunc(x,c0,cl,c3) 
implicit real*8 (a-h,o-z) 
z=c0+x*(cl+x*x*(c3+x)) 
rcfunc=z 
return 
end 

Subroutine Roots2(c0,c2,rbub) 
implicit real*8 (a-h,o-z) 

C- This subroutine calculates the roots of the polynomial describing 
C- bubble radius. 
C- Apply Newton's method to find the roots 

x2=rbub 
20 x=x2 

f0=rbubfunc(x,c0,c2) 
fl=x*(2.*c2+3.*x) 
dxl=-fl)/fl 
x2=dxl+x 
if (abs(l.-(x2/x)).gt.0.0001) goto 20 
rbub=x2 

return 
end 

Real*8 Function rbubfunc(x,c0,c2) 
implicit real*8 (a-h,o-z) 
z=cO+x*x*(c2+x) 
rbubfunc=z 
return 
end 

c 
c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c subroutine to reflect a particle from the inside surface of a sphere 
c 
c (x,y,z) current position of the particle 
c (xo,yo,zo)        previous position of particle 
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c (xc,yc,zc)       center of the bubble/depleted region 
c r radius of the depleted region 
c 

subroutine reflect(x,y,z,xo,yo,zo,xc,yc,zc,r) 
implicit real*8 (a-h,o-z) 
iperm=0 
xosave=xo 
yosave=yo 
zosave=zo 

10       continue 
delx=x-xo 
dely=y-yo 
delz=z-zo 
if((delx.eq.0.dO).and.(dely.eq.0.dO).and.(delz.eq.0.dO))retum 
if(delz.eq.0.dO)then 

call permute(x,y,z,xo,yo,zo,xc,yc,zc) 
iperm=iperm+l 
goto 10 

end if 
cx=delx/delz 
cy=dely/delz 
dx=xo-xc-cx*zo 
dy=yo-yc-cy*zo 
aq=cx*cx+cy*cy+l.dO 
bq=2. d0*(cx*dx+cy *dy-zc) 
cq=dx*dx+dy*dy+zc*zc-r*r 
root=dsqrt(bq*bq-4. d0*aq*cq) 
zplus=(-bq+root)/(2. d0*aq) 
zminus=(-bq-root)/(2.d0*aq) 
xplus=cx*(zplus-zo)+xo 
yplus=cy *(zplus-zo)+yo 
xminus=cx*(zminus-zo)+xo 
yminus=cy *(zminus-zo)+yo 
dplus=distfun2(x,y,z,xplus,yplus,zplus) 
dmmus=distfun2(x,y,z,xmmusjminus,zminus) 
if(dplus. It. dminus)then 

xp=xplus 
yp=yplus 
zp=zplus 

else 
xp=xminus 
yp=yminus 
zp=zminus 

end if 
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cpx=xp-xc 
cpy=yp-yc 
cpz=zp-zc 
ptx=x-xp 
pty=y-yp 
ptz=z-zp 

c get dot product between these two vectors 
dot=cpx*ptx+cpy *pty+cpz*ptz 
dt2or2=2.d0*dot/(r*r) 
x=x-dt2or2*cpx 
y=y-dt2or2*cpy 
z=z-dt2or2*cpz 
if(distfiinc(x,y,z,xc,yc,zc).gt.r)then 

xo=xp 
yo=yp 
zo=zp 
goto 10 

end if 
if(iperm.ne.O)then 

do 20 i=jmod(iperm+l,3),jmod(iperm+3,3) 
call permute(x,y,z,xo,yo,zo,xc,yc,zc) 

20 continue 
end if 
xo=xosave 
yo=yosave 
zo=zosave 
return 
end 

c 
c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

subroutine permute(al,bl,cl,a2,b2,c2,a3,b3,c3) 
implicit real*8 (a-h,o-z) 
savel=al 
save2=a2 
save3=a3 
al=bl 
bl=cl 
cl=savel 
a2=b2 
b2=c2 
c2=save2 
a3=b3 
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b3=c3 
c3=save3 
return 
end 

c 
c 

c 
c subroutine to take a random step to a solid angle on a sphere 
c of radius a 
c 

subroutine stepout(x,y,z,x0,y0,z0,bigr2,a) 
implicit real*8 (a-h,o-z) 
common /com2/pi,il 
common/sincos/fact,scale,sinmat(0:9999),cosmat(0:9999) 

get the distance from the center of the sphere 

rx=x-xO 
ry=y-yO 
rz=z-zO 
d2=rx*rx+ry*ry+rz*rz 
d=dsqrt(d2) 
costhetb=(bigr2-a*a-d2)/(2.d0*a*d) 
ranmax=(l .d0-costhetb)/2.d0 
costheta=(l .d0-2.d0*ranmax*ran(il)) 
sintheta=dsqrt(l .dO-costheta*costheta) 
delr=a*costheta 
delperp=a*sintheta 
urx=rx/d 
ury=ry/d 
urz=rz/d 
rperp=dsqrt(urx*urx +ury *ury) 
if(rperp.gt.0.dO)then 

ulx=-ury/rperp 
uly=urx/rperp 

else 
ulx=l.dO 
uly=0.dO 

end if 
u2x=uly*urz 
u2y=-ulx*urz 
u2z=ulx*ury-urx*uly 
index=scale *ran(i 1) 
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anorm=delr/d 
x=x+delperp*(cosmat(index)*ulx+sinmat(index)*u2x)+anorm*rx 
y=y+delperp *(cosmat(index) *u 1 y+sinmat(index) *u2y)+anorm*ry 
z=z+delperp*(sinmat(index)*u2z)+anorm*rz 
return 
end 

c 
c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c subroutine to move distance a from a point in the boundary region 
c away from the center of a sphere, 
c 

subroutine outstep(x,y,z,xO,yO,zO,a) 
implicit real*8 (a-h,o-z) 
dx=x-xO 
dy=y-yO 
dz=z-zO 
anorm=a/dsqrt(dx*dx+dy *dy+dz*dz) 
x=x+anorm*dx 
y=y+anorm*dy 
z=z+anorm*dz 
return 
end 

c 
c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c subroutine to take a single large diffusion step in three 
c dimensions, uses subroutine stepit, the random direction 
c stepping routine, and also calculates a normally distributed 
c distance that the particle steps. 
c 

subroutine bigstep(x,y,z,diffcoef,t) 
implicit real*8 (a-h,o-z) 
common /com2/pi,il 
common/distarr/distance( 10000) 

c 
c the distance stepped as a function of the probability, given in terms 
c of the standard deviation, is located infile distprob.dat 
c 

index=aint(l .d0+10000.d0*ran(il)) 
sd=dsqrt(2.d0*diffcoef*t) 
d=sd*distance(index) 
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call stepit(x,y,z,d) 
return 
end 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c subroutine to take a random step of length rO in 3 dimensions 
c 

subroutine stepit(x,y,z,rO) 
implicit real*8 (a-h,o-z) 
common /com2/pi,il 
common/sincos/fact, scale, sinmat(0:9999) ,cosmat(0:9999) 
common /com5/twopi,onethird 
xr=l.d0-2.d0*ran(il) 
sintheta=dsqrt(l .dO-xr*xr) 
index=scale*ran(il) 
x=x+rO*sintheta*cosmat(index) 
y=y+rO*sintheta*sinmat(index) 
z=z+rO*xr 
return 
end 

c 
c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c subroutine to position a particle randomly within a spherical 
c shell with outer radius router,and inner radius rinner 
c 
c 

subroutine zone(x,y,z,xO,yO,zO,rinner,router,rho) 
implicit real*8 (a-h,o-z) 
common /com2/pi,il 
common/sincos/fact,scale,sinmat(0:9999),cosmat(0:9999) 
common /com5/twopi,onethird 

c 
c use spherical coordinates rho,theta,phi 
c 

x=xO 
y=yO 
z=zO 
if (rinner. le. 0. dO)then 

rho=0.dO 
return 

end if 
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rin3=rinner *rinner*rinner 
rout3=router *router*router 
range=rout3-rin3 
rho=(rin3 + range *ran(i 1)) * *onethird 
call stepit(x,y,z,rho) 
return 
end 

c 

c 
c subroutine to position a particle randomly, within a spherical 
c shell with outerradius bigr,and inner radius bigr-a 
c 
c 

subroutine shell(x,y,z,xO,yO,zO,rO,a) 
implicit real*8 (a-h,o-z) 
common /com2/pi,il 
common/sincos/fact, scale, sinmat(0:9999) ,cosmat(0:9999) 
common /com5/twopi,onethird 

c 
c        use spherical coordinates rho,theta,phi 
c 

if(r0.1t.a)then 
call putinorb(x,y,z,xO,yO,zO,rO) 
return 

end if 
bma=rO-a 
bma3 =bma*bma*bma 
b3=r0*r0*r0 
range=b3-bma3 
rho=(bma3+range *ran(i 1)) * *onethird 
phi=twopi*ran(il) 
theta=dacos(l.d0-2.d0*ran(il)) 
x=xO+rho*dsin(theta)*dcos(phi) 
y=yO+rho*dsin(theta)*dsin(phi) 
z=zO+rho *dcos(theta) 
return 
end 

c 

C 
subroutine step(x,y,z,grid) 
implicit real*8 (a-h,o-z) 
common/com2/pi, i 1 
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common/com3/IA(3,24),aa(3,24) 

JA=l+int(24.*ran(il)) 
x=x+aa(l,ja) 
y=y+aa(2,ja) 
z=z+aa(3,ja) 

return 
end 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c subroutine to test for presence of a particle in a sphere of radius r 
c centered at (xO,yO,zO), given position (x,y,z) 
c 

subroutine insphere(x,y,z,xO,yO,zO,r,in) 
implicit real*8 (a-h,o-z) 
logical in 
r2=r*r 
if(distfun2(x,y,z,x0,y0,z0).le.r2)then 

in=.true. 
else 

in =. false. 
end if 
return 
end 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c subroutine to place particle randomly within a sphere of radius r 
c centered at (xO,yO,zO) 
c 

subroutine putinorb(x,y,z;xO,yO,zO,rO) 
implicit real*8 (a-h,o-z) 
common /com2/pi,il 
common/sincos/fact,scale,sinmat(0:9999),cosmat(0:9999) 
common /com5/twopi,onethird 

c 
c use spherical coordinates rho,theta,phi 
c 

rho=rO*(ran(il)**onethird) 
x=xO 
y=yO 
z=zO 
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call stepit(x,y,z,rho) 
return 
end 

c 
c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c subroutine to see if particle has left the box and if so, to 
c reflect it from the boundary. 
c 

subroutine inbox(x,y,z) 
implicit real*8 (a-h,o-z) 
common /coml/xmin,xmax,ymin,ymax,zmin,zmax,rbub,rdep 

c 
c reflection conditions 
c 

if(x.lt.xmin)x=xmin+(xmin-x) 
if(x. gt. xmax)x=xmax+(xmax-x) 
if(y .lt.ymin)y=ymin+(ymin-y) 
if(y. gt. ymax)y=ymax+(ymax-y) 
if(z. It. zmin)z=zmin+(zmin-z) 
if(z.gt.zmax)z=zmax+(zmax-z) 

c 
c translation conditions 
c 
c if(xx(l).lt.xmin)xx(l)=xmax-(xmin-xx(l)) 
c if(xx( 1). gt. xmax)xx( 1)=xmin-(xmax-xx( 1)) 
c if(xx(2).lt.ymin)xx(2)=ymax-(ymin-xx(2)) 
c if(xx(2).gt.ymax)xx(2)=ymin-(ymin-xx(2)) 
c if(xx(3).lt.zmin)xx(3)=zmax-(zmin-xx(3)) 
c if(xx(3).gt.zmax)xx(3)=zmin-(zmax-xx(3)) 
c 

return 
end 

c 
c 

c function to find the distance between two points 
c 

function distfunc(x,y,z,xO,yO,zO) 
implicit real*8 (a-h,o-z) 
dx=x-xO 
dy=y-yO 
dz=z-zO 
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distfunc=dsqrt(dx *dx+dy *dy+dz *dz) 
return 
end 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c   function to calculate the square of the distance between points 
c 

function distfun2(x,y,z,x0,y0,z0) 
implicit real*8 (a-h,o-z) 
dx=x-xO 
dy=y-yO 
dz=z-zO 
distfun2=dx*dx+dy *dy+dz*dz 
return 
end 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

subroutine regrid(ia,aa,gridsize,stepsize) 
implicit real*8 (a-h,o-z) 
dimension ia(3,24),aa(3,24) 
do 1901 iii=l,3 

do 1901 iiii=1,24 
aa(iii, iiii)=dfloat(ia(iii, iiii)) *gridsize 

1901   continue 
stepsize=gridsize*dsqrt(3 .d0) 
return 
end 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

subroutine resize(vol.s) 
implicit real*8 (a-h,o-z) 
common/coml/xmin,xmax,ymin,ymax,zmin,zmax,rbub,rdep 
common /com5/twopi,onethird 

s==(vol**onethird) 
xmax=s/2. 
xmin=-xmax 
ymax=xmax 
ymin=xmin 
zmax=xmax 
zmin=xmin 

97 



return 
end 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

subroutine putinbox(x,y,z,xO,yO,zO,s,dist) 
implicit real*8 (a-h,o-z) 
common /coml/xmin,xmax,ymin,ymax,zmin,zmax,rbub,rdep 
common /com2/pi,il 

10      continue 
x=xmin+s *r an(i 1) 
y=ymin+s *ran(i 1) 
z=zmin+s *ran(i 1) 
dist=distfiinc(x,y,z,xO,yO,zO) 
if(dist.lt.rdep)goto 10 
return 
end 
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Section D2.  Sample input file for source code of Section Dl. 

8000, number of cycles 
400000, number of trips per cycle 

50, number of steps per trip 
50.00, surface tension 
70.00, partition coefficient 

.0000050, diffusion coeff 

.00025, grid size 

.125E-03, depletion region volume 
0.0, extra-depletion volume 
1520.00, initial inert gas partial pressure 
760.00, pressure step 

.1706, initial bubble radius (as fraction of equil. radius) 
0, iprofile         # of initial concentration profile 
0, nmicro            # of sub-zones to be used 

150., washoutt         tissue time constant in seconds 
0.7900, pctn2            percent nitrogen during washout 
l.dO, switch    =0 = >   dimensionless run 

.100e-02, volref           reference vol for dimless run 
l.dO, fracsd          fraction of onesd for shell widths 
46.52d0, ph2o         partial pressure water vapor 
39.76d0, po2         partial pressure oxygen in bubble 
44.26d0, pco2         partial pressure C02 in bubble 
39.76d0, pco21ung         part, press. C02 in lungs 
l.dO, bndfact           boundary factor for PDE3 

1/19/93 test run for .ch9 
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Section D3. FORTRAN source code for generation ofcummulative distribution function for diffusion in three 
dimensions. 

c        program to generate the file 'distprob.dat', which contains the 
c number of standard deviations stepped by a diffusing particle as 
c a function of probability, it uses integration routine from the 
c numerical recipes directory on piggy, 

implicit real*8 (a-h,o-z) 
npts = 10000 
nstep= 1000000 
dfnp=dfloat(npts) 
sum=0.d0 
sumnext=0.d0 
xlow=0.d0 
delx=0.0001 
open(unit= 1,file = 'distprob.dat' ,type= 'new') 
do 10 i=l,npts-l 

prob=dfloat(i)/dfhp 
xhigh=xlow 
do 20 j = l,nstep 

xhigh=xhigh+delx 
call qromb(xlow,xhigh,sumnext) 
if((sum+sumnext).lt.prob)goto 20 
sum=sum+sumnext 
write(l, 100)(xlow+xhigh)/2.d0,i 

100 format(fl5.6,il0) 
xlow=xhigh 
goto 10 

20 continue 
10       continue 

close(l) 
stop 
end 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 
function func(t) 
implicit real*8 (a-h,o-z) 
data init/0/ 
if(init.eq.0)then 

pi=4.d0*datan(l.d0) 
const=dsqrt(2.d0/pi) 
init=l 
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end if 
func=const*t*t*exp(-t*t/2. dO) 
return 
end 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

SUBROUTINE QROMB(A,B,SS) 
implicit real*8 (a-h,o-z) 

PARAMETER(EPS=l.E-6,JMAX=20,JMAXP=JMAX+1,K=5,KM=4) 
DIMENSION S(JMAXP),H(JMAXP) 
H(l) = l. 
DO 11 J=1,JMAX 

CALL TRAPZD(A,B,S(J),J) 
IF (J.GE.K) THEN 

L=J-KM 
CALL POLINT(H(L),S(L),K,0.,SS,DSS) 
IF (ABS(DSS).LT.EPS*ABS(SS)) RETURN 

ENDIF 
S(J+1)=S(J) 
H(J+1)=0.25*H(J) 

11     CONTINUE 
PAUSE 'Too many steps.' 
END 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

SUBROUTINE TRAPZD(A,B,S,N) 
implicit real*8 (a-h,o-z) 

IF(N.EQ.1)THEN 
S=0.5*(B-A)*(FUNC(A)+FUNC(B)) 
IT=1 

ELSE 
TNM=IT 
DEL=(B-A)/TNM 
X=A+0.5*DEL 
SUM=0. 
DO 11 J=1,IT 

SUM=SUM+FUNC(X) 
X=X+DEL 

11       CONTINUE 
S=0.5*(S+(B-A)*SUM/TNM) 
IT=2*IT 

ENDIF 
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RETURN 
END 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

SUBROUTINE POLINT(XA,YA,N,X,Y,DY) 
implicit real*8 (a-h,o-z) 

PARAMETER (NMAX=10) 
DIMENSION XA(N),YA(N),C(NMAX),D(NMAX) 
NS = 1 
DIF=ABS(X-XA(1)) 
DO 11 I=1,N 

DIFT=ABS(X-XAa)) 
IF (DIFT.LT.DIF) THEN 

NS=I 
DIF=DIFT 

ENDIF 
Ca)=YA(I) 
D(I)=YA(I) 

11 CONTINUE 
Y=YA(NS) 
NS=NS-1 
D0 13M = 1,N-1 

D0 12I=1,N-M 
HO=XA(I)-X 
HP=XA(I+M)-X 
w=ca+i)-Da> 
DEN=HO-HP 
IF(DEN.EQ.O.)PAUSE 
DEN=W/DEN 
D(I)=HP*DEN 
C(I)=HO*DEN 

12 CONTINUE 
IF (2*NS.LT.N-M)THEN 

DY=C(NS + 1) 
ELSE 

DY=D(NS) 
NS=NS-1 

ENDIF 
Y=Y+DY 

13 CONTINUE 
RETURN 
END 
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Section D4.    FORTRAN source code for the generation of non-uniform initial gas concentration distributions. 

c this program is a modification of the beginning of the bubble simulation 
c program, it is designed to generate a particular non-uniform concentration 
c gradient for use by the main program, the main program assumes an initial 
c uniform concentration profile wherein the gas used to create the bubble 
c is drawn from throughout the tissue volume, this program generates a 
c profile from the opposite extreme; the gas for the bubble is taken from 
c the innermost shells, leading to a step function profile, shells near the 
c bubble have initial concentration cs = concentration of gas in the bubble. 
c shells far from the bubble have concentration csO, in equilibrium with 
c the initial pressure of inert gas. there is one transition shell with a 
c concentration between these two values, the concentration profile is then 
c written out to file bubmod.dmp, where it can be used by the main program 
c by setting iprofile = 1 

implicit real*8 (a-h,o-z) 
common /coml/xmin,xmax,ymin,ymax,zmin,zmax,rbub,rdep 

common/com2/pi, i 1 
common/com3/IA(3,24),aa(3,24) 
common /com5/twopi,onethird 

real*8N2,N2dep,k,kH,molezone(500) 
Dimension xx(3),rzonebeg(0:500),rzoneend(0:500),widezone(500) 
dimension strtzone(500) ,endzone(500) ,fraczone(500) ,conczone(500) 
dimension cummsum(0:500),vzone(500), rzsq(0:500) 
data IA/1,1,1,1,1,-1,1,-1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1, 

+   1,-1,-1,-1, 
+   1,1,1,-1,1,1,1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1, 
+   1,1,1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1/ 

C- Define constants 
zed=0.d0 

Pi=4.d0*datan(l.d0) 
twopi=2.d0*pi 
fourpio3 =4.d0*pi/3 .d0 
onethird=l.d0/3.d0 

c Pvap25=23.756 
c Pvap=47.067 
c    change 12/16/92 to include oxygen and co2 as additional gas 
c    components of the bubble, using values from van liew, pg. 336 
c 
c ph2o = 6.2 kPa = 46.52 mmHg 
c po2 = 5.3 kPa = 39.76 mmHg 
c       pco2      = 5.9 kPa = 44.26 mmHg 
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c       pco21ung = 5.3 kPa = 39.76 mmHg 
c pvap= 46.52d0 + 39.76d0 + 44.26d0 

ph2o=46.52d0 
po2=39.76d0 
pco2=44.26d0 
pco21ung=39.76d0 
pvap=ph2o+po2+pco2 

C- vapor pressure of water in bubble @ 37 C in mmHg 
C1125 =0.055346 
Cll=0.055140 

C- pure solvent cone of water @ 37 C in moles/cc 
k=62358.0 

C- Boltzman's gas constant in mmHG-cc/mole-K 
C- based on PV=kNT and STP conditions 

R=62358.0 
C- Universal gas constant in mmHg-cc/mole-K 
C- based on published value of 0.08205 L-atm/mole-K 

T=37.0+273.1 
C- temperature in Kelvin 
C Pvap=Pvap25 
C cll=cll25 

C- Input initial conditions and control variables. 
C- ngrow=number of bubble growth cycles, 
C- ntrip=number of independent trips thru tissue, nstep=number of steps per 
C- trip, Surten=surface tension of bubble (dynes/cm), PCbub=partition 
C- coefficient of bubble (1/ostwald coefficient), D=diffusion coefficient 
C- (cm sq/sec), Voldep0=initial volume of the depleted region (cu cc), 
C- Voltiss = volume of cubical tissue region 
C- P01=initial tissue pressure (mmHg), Pstep=decompression step (mmHg) 

Rewind(l) 
Read(l,900)ngrow,ntrip,nstep,surten,Pcbub,D,gridsize,VoldepO, 

+  Voltiss,P01,Pstep,bubfact 
900      Formata9/I9/I9/F9.2/F9.2/F9.7/F9.7/F9.7/F9.7/F9.2/F9.2/F9.7) 

read(l, 1900)iprofile,nmicro,washoutt,pctn2 
1900   format(il2/il2/gl5.7/gl5.7) 

close(l) 

vol=voltiss+voldepO 
C- Calculate dimensions of cubical region 
C- adjust units to mmHG-cm knowing 760 mmHg=1.013X10^6 dyn/cmA2 

Surten=Surten/1332.8 
C- Calculate Henry's coefficient from PCbub 

KH=760./((((R*T)/((l./cll)*(l./PCbub)*760.))+!)**-!.) 
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C- Calculate stepsize 
c modify stepping array 

call regrid(ia,aa,gridsize,stepsize) 
C- Calculate bubble growth cycle time and tissue washout time 

Dtime=stepsize*stepsize/(6. *D) 
eyelet=nstep*Dtime 

C- Calculate the maximum distance a particle can travel by diffusion 
onesd=dsqrt(2 .dO*d*cyclet) 

C- Begin a bubble growth cycle 
time=0. 
P1=P01 
p 1 n2=(p01-ph2o-pco21ung) *pctn2 
pfh2=(p01-pstep-ph2o-pco21ung)*pctn2 

Voldep=VoldepO 
lstrt=l 

C- Calculate number of moles of inert gas (N2) at start of the cycle 
C- in the entire tissue and in the depleted region alone (N2dep). 
5432       continue 
c Cs=Cll*Pl/KH 

cs=cll*pln2/kh 
csO=cs 

N2=Cs*Vol 
N2dep=Cs*Voldep 
orgmoles=N2 
If (VoldepO.gt.vol) orgmoles=n2dep 
currmole=orgmoles 

Pl=Pl-Pstep 
csequil=cll*pfn2/kh 

C- Calculate bubble dimensions 
C- First, calculate the critical and equilibrium radii 

aO=2. *surten* Voldep/Pl 
c Cs=Cll*Pl/KH 

cs=cll*(pl-pvap)/kh 
al = Voldep*(l.-Pvap/Pl)-N2dep/Cs 
a3=8. *pi*surten/(3. *Cs*k*T) 
a4=4. *pi*Pl*(l .-Pvap/Pl)/(3. *Cs*k*T) 
c0=a0/a4 
cl=al/a4 
c3=a3/a4 
Call roots(c0,cl,c3,rc,re) 
if (rc.lt.O.) goto 999 

C- Assign radius to test bubble 
rbub=re*bubfact 
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rbub=dmaxl(rbub,(1.5dO*stepsize)) 
rbubO=rbub 
VolBub=4. *pi*rbub*rbub*rbub/3. 

c rdep=(3. "(Voldep+Volbub)/(4*pi))**(l ./3.) 
rdep=((voldep+volbub)/fourpio3)* *onethird 

c    check here to make sure the bubble fits inside the cube, if not, spread 
c    the excess volume onto the depleted region, and make it larger 

if ((rdep. gt. xmax). and. (voltiss. gt. zed))then 
voldepO=vol 
voldep=voldepO 
voltiss=zed 
goto 5432 

end if 
rzonebeg(0)=0.dO 
rzoneend(0)=0. dO 
call genzone(rbub,rdep,onesd,nmicro,rzonebeg,rzsq,vzone,nzonebeg) 

Bubmoles=Volbub*(Pl-Pvap+2.*surten/rbub)/(R*T) 
Depmoles=N2Dep-Bubmoles 
Tismoles=N2-N2dep 
Bubfrac=Bubmoles/orgmoles 
Depfrac=Depmoles/orgmoles 
Tisfrac=Tismoles/orgmoles 
fraczone( 1)=bubfrac 
molezone( 1)=bubmoles 
conczone(l)=bubmoles/volbub 
deles=csO-cs 
vinner=bubmoles/delcs 
vrunold=0.dO 
do 1100 izone=2,nzonebeg 

vrun=vrunold+vzone(izone) 
if(vrun. le. vinner)then 

conczone(izone)=cs 
else if ((vrunold. le. vinner). and. (vinner. It. vrun))then 

conczone(izone)=((vinner-vrunold) *cs+(vrun- vinner) *cs0)/ 
+ vzone(izone) 

else 
conczone(izone)=csO 

end if 
vrunold=vrun 
molezone(izone)=conczone(izone)*vzone(izone) 
fraczone(izone)=molezone(izone)/orgmoles 

1100 continue 
3000   formate  cycle # \i5,4gl2.4/50(3gl5.6/)) 

1=0 

106 



rbubO=rbub 
time=0.dO 
il =237645 +2*secnds(0.0) 
calcpc=fraczone( 1) *vzone(2)/(fraczone(2) *vzone( 1)) 
open(unit=7,file= 'bubmod.dmp' ,type= 'new' ,form= 'unformatted') 
rewind(7) 
write(7)L,il,nzonebeg,time,volbub,calcpc,rbub,rdep,rbubO 
write(7)re,rc,currmole 
write(7)(fraczone(i),molezone(i),conczone(i),i = 1 ,nzonebeg) 
write(7)(rzonebeg(i),rzsq(i),vzone(i),i= 1 ,nzonebeg) 
close(unit=7) 

999      Continue 

Stop 
End 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

subroutine genzone(rbub,rdep,width,nm,rzone,rzsq,vzone,nzone) 
implicit real*8 (a-h,o-z) 
dimension rzone(0:500),rzsq(0:500),vzone(500) 

common/com2/pi, i 1 
common /com5/twopi,onethird 
nzone=l 
rzone(0)=0.dO 
rzone(l)=rbub 
coeff=4 .dO*pi*onethird 
vzone(l)=coeff*rzone(l)**3 
vtot=vzone(l) 
do 10 i=2,50 

nzone=nzone+l 
rzone(i)=rzone(i-1)+width 
if(rzone(i). gt. rdep)rzone(i)=rdep 
v=coeff*rzone(i)**3 
vzone(i)=v-vtot 
if(rzone(i).ge.rdep)goto 20 
vtot=v 

10       continue 
20       continue 

do 40 i=0,nzone 
rzsq(i)=rzone(i)*rzone(i) 
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40       continue 
return 
end 

c 

Subroutine Roots(c0,cl,c3,rc,re) 
implicit real*8 (a-h,o-z) 

C- This subroutine calculates the roots of the Tikuisis polynomial. 
C- First, find the minimum because 1 root is below it and the other 
C- root is above it. 
100     formatC # \i5) 

If (cl.ge.O.) then 
re=-999. 

else 
xl=-c0/cl 

10 x=xl 
g=cl+x*x*(3.*c3+4.*x) 
dgdx=x*(6.*c3 + 12.*x) 
xl=x-g/dgdx 
if ((abs(g).gt.0.0000001).or.(abs(xl-x).gt.0.0000001)) 

+     goto 10 
C- Now apply Newton's method to find the roots 

f=rcfunc(xl,c0,cl,c3) 
if (f.gt.0.) then 

re=-998 
else 
dolj = l,2 

if (j.eq.l) then 
mult=-l 

else 
mult=l 

end if 
x2=xl*l.+0.1*mult 

20 x=x2 
f0=rcfunc(x,c0,cl,c3) 
fl =cl+x*x*(3.*c3+4.*x) 
dxl=-f0/fl 
x2=dxl+x 
if (abs(l.-(x2/x)).gt.0.0001) goto 20 
if (mult.lt.O) rc=x2 
if (mult.gt.0) re=x2 

1 continue 
end if 

end if 
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return 
end 

Real*8 Function rcfunc(x,c0,cl,c3) 
implicit real*8 (a-h,o-z) 
z=c0+x*(cl+x*x*(c3+x)) 
rcrunc=z 
return 
end 

c 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

subroutine regrid(ia,aa,gridsize,stepsize) 
implicit real*8 (a-h,o-z) 
dimension ia(3,24),aa(3,24) 
do 1901 in=1,3 

do 1901 iiii=l,24 
aa(iii, iiii)=dfloat(ia(iii,iiü))*gridsize 

1901   continue 
stepsize=gridsize*dsqrt(3 .d0) 
return 
end 
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Section D5. Fortran source code for Monte Carlo simulation which utilizes radially symmetry of problem to 
speed computation 

C- This program simulates bubble growth beginning with a bubble of 
C- critical radius as defined by Tikuisis.  The bubble is represented as 
C- a region of high solubility surrounded by a "depleted region" from 
C- which the inert gas is extracted. These two regions are placed in 
C- a third region which represents the surrounding tissue. 
c   this program also uses 1 dimension, the radial one, to keep 
c   track of the particle, should speed things up considerably. 

implicit real*8 (a-h,o-z) 
common/com2/pi, i 1 
common/comroot/probroot,firstime 
common/distarr/distance(10000),sd(500) 
common /com5/twopi,onethird,vcoeff 

real*8 N2,N2dep,k,kH,molezone(500) 
Dimension xx(3),sumcumm(0:500) 
dimension endzone(500),fraczone(500),conczone(500) 
dimension cummsum(0:500),rzrngb(500),rzrnge(500) 
dimension rzb(0:500),rz2b(0:500),rz3b(0:500),vzb(500) 
dimension rze(0:500),rz2e(0:500),rz3e(0:500),vze(500) 

C- Define constants 
zed=0.dO 

Pi=4.d0*datan(l.d0) 
onethird=l.d0/3.d0 
vcoeff=4. dO*pi*onethird 
twopi=2.d0*pi 

c    change 12/16/92 to include oxygen and co2 as additional gas 
c    components of the bubble, using values from van liew, pg. 336 
c 
c       ph2o      = 6.2 kPa = 46.52 mmHg 
c       po2       = 5.3 kPa = 39.76 mmHg 
c       pco2      = 5.9 kPa = 44.26 mmHg 
c       pco21ung = 5.3 kPa = 39.76 mmHg 
c        pvap= 46.52d0 + 39.76d0 + 44.26d0 
c   read in from input file below   1/18/93 
c        ph2o=46.52d0 
c po2=39.76d0 
c        pco2=44.26d0 
c        pco21ung=39.76d0 
c        pvap=ph2o+po2+pco2 
C- vapor pressure of water in bubble @ 37 C in mmHg 

C1125=0.055346 
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01=0.055140 
C- pure solvent cone of water @ 37 C in moles/cc 

k=62358.0 
C- Boltzman's gas constant in mmHG-cc/mole-K 
C- based on PV=kNT and STP conditions 

gasR=62358.0 
C- Universal gas constant in mmHg-cc/mole-K 
C- based on published value of 0.08205 L-atm/mole-K 

T=37.0+273.1 
C- temperature in Kelvin 

C- Input initial conditions and control variables. 
C- ngrow=number of bubble growth cycles, 
C- ntrip=number of independent trips thru tissue, nstep=number of steps per 
C- trip, Surten=surface tension of bubble (dynes/cm), PCbub=partition 
C- coefficient of bubble (1/ostwald coefficient), D=diffusion coefficient 
C- (cm sq/sec), VoldepO=initial volume of the depleted region (cu cc), 
C- Voltiss = volume of cubical tissue region 
C- P01=initial tissue pressure (mmHg), Pstep=decompression step (mmHg) 

Rewind(l) 
Read(l,900)ngrow,ntrip,nstep,surten,Pcbub,D,gridsize,VoldepO, 

+ Voltiss,P01,Pstep,bubfact 
900      Format(I12/I12/I12/gl5.7/gl5.7/gl5.7/gl5.7/gl5.7/ 

+ gl5.7/gl5.7/gl5.7/gl5.7) 
read(l, 1900)iprofile,nmicro,washoutt,pctn2 

1900 format(il2/il2/gl5.7/gl5.7) 
read(l, 1901)switch,volref,fracsd,ph2o,po2,pco2,pco21ung 

1901 format(gl5.7) 
close(l) 
pvap=ph2o+po2+pco2 

C- Input the array of diffusion distances as a function of probability 
C- given in terms of the standard deviation 

Open(unit= 1 ,file = 'distprob.dat' ,type = 'old') 
Read(l,899)(distance(i),i= 1,10000) 

899      Format(fl7.2) 
Close(l) 

vol=voltiss+voldepO 
C- adjust units to mmHG-cm knowing 760 mmHg=1.013X10A6 dyn/cmA2 

Surten=Surten/1332.8 
C- Calculate Henry's coefficient from PCbub 

KH=760./((((gasR*T)/((l./cll)*(l./PCbub)*760.))+l)**-l.) 
C- Calculate stepsize 
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stepsize=gridsize *dsqrt(3. dO) 
C- Calculate bubble growth cycle time and tissue washout time 

Dtime=stepsize*stepsize/(6. *D) 
eyelet=nstep *Dtime 
do 333 kk=l,nstep 

xtime=kk*dtime 
sd(kk)=dsqrt(2.d0*d*xtime) 

333     continue 
poofprob=1 .dO-dexp(-cyclet/washoutt) 
if(washoutt.gt.86400.d0)poofprob=0.d0 

C- Calculate the maximum distance a particle can travel by diffusion 
onesd=dsqrt(2 .dO*d*cyclet) 
diffdist=5. dO*onesd 

c 
c   figure out the width of the diffusion shells, switch = 0 is for 
c   a dimensionless run, with reference volume volref. switch <> 0 is 
c   an absolute run, with parameters unsealed. 
c 

if (switch. eq. 0. dO)then 
width=onesd*fracsd*(vol/volref)**onethird 
if (width, gt. onesd)width=onesd 

else 
width=onesd*fracsd 

end if 
if(iprofile. eq. 0)then 

C- Write out the starting conditions 
Open(unit=2,file = 'for002.dat' ,type= 'new') 
Write(2,901)Ngrow,Ntrip,Nstep,Surteh*1332.8,PCbub,D, 

+     gridsize,stepsize,P01,Pstep,VoldepO,voltiss 
Close(2) 

901        Format(3I9/5G15.4/4G15.4) 
end if 

C- Begin a bubble growth cycle 
time=0. 
P1=P01 
pln2=(p01-ph2o-pco21ung)*pctn2 
pfh2=(p01-pstep-ph2o-pco21ung)*pctn2 

Voldep=VoldepO 
il = 182361 +2*secnds(0.0) 
lstrt=l 
if (iprofile. ne. 0)then 

c    for a nonuniform initial concentration profile, put code in here 
open(unit=7,file= 'bubmod.dmp',type= 'old',form= 'unformatted') 
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rewind(7) 
read(7)lstrt,il,nzonebeg,time,volbub,calcpc,rbub,rdep,rbub0 
read(7)re, rc, currmole 
read(7)(fraczone(i),molezone(i),conczone(i),i = 1 ,nzonebeg) 
read(7)(rzb(i),rz2b(i),rz3b(i),vzb(i),rzmgb(i),i= 1 ,nzonebeg) 
read(7)(rze(i),rz2e(i),rz3e(i),vze(i),rzrage(i),i = 1 ,nzoneend) 
close(7) 
lstrt=lstrt+l 
cs=cll*pln2/kh 
N2=Cs*Vol 
N2dep=Cs*Voldep 
orgmoles=N2 
If (VoldepO.gt.vol) orgmoles=n2dep 
Pl=Pl-Pstep 
csequil=c 11 *pfn2/kh 
rzb(0)=0.dO 
rze(0)=0.dO 
bubmoles=molezone( 1) 
open(unit=3,file= 'for003.dat',type='new') 
write(3,3000)0,time,rbub,volbub,calcpc, 

+ (fraczone(i),rzb(i),conczone(i),i= l,nzonebeg) 
close(3) 
depmoles=currmole-bubmoles 
bubfrac=bubmoles/currmole 
depfrac=depmoles/currmole 

end if 
Do 10 L=lstrt,ngrow 

C- Calculate number of moles of inert gas (N2) at start of the cycle 
C- in the entire tissue and in the depleted region alone (N2dep). 

If((L.eq.l).and.(iprofile.eq.O)) then 
5432       continue 

cs=cll*pln2/kh 
N2=Cs*Vol 
N2dep=Cs*Voldep 
orgmoles=N2 
If (VoldepO.gt.vol) orgmoles=n2dep 
currmole=orgmoles 

Pl=Pl-Pstep 
csequil=cll*pfh2/kh 

C- Calculate bubble dimensions 
C- First, calculate the critical and equilibrium radii 

aO=2.*surten*Voldep/Pl 
Cs=Cll*Pl/KH 
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al = Voldep*(l .-Pvap/Pl)-N2dep/Cs 
a3=8. *pi*surten/(3. *Cs*k*T) 
a4=4. *pi*Pl*(l .-Pvap/Pl)/(3. *Cs*k*T) 
c0=a0/a4 
cl=al/a4 
c3=a3/a4 
Call roots(cO,cl,c3,rc,re) 
if (rc.lt.O.) goto 999 

C- Assign radius to test bubble 
rbub=re*bubfact+rc*(l.dO-bubfact) 
rbub=dmaxl(rbub,(l .5d0*stepsize)) 

rbubO=rbub 
VolBub=4. *pi*rbub*rbub*rbub/3. 
rdep=(3. *(Voldep+Volbub)/(4*pi))**(l ./3.) 

c    check here to make sure the bubble fits inside the cube, if not, spread 
c    the excess volume onto the depleted region, and make it larger 

rzb(0)=0.dO 
rze(0)=0.dO 
call fastgenz(rbub,rdep,width,nzonebeg,rzb,rz2b,rz3b,vzb,rzrngb) 

Bubmoles=Volbub*(Pl-Pvap+2. *surten/rbub)/(gasR*T) 
Depmoles=N2Dep-Bubmoles 
Tismoles=N2-N2dep 
Bubfrac=Bubmoles/orgmoles 
Depfrac=Depmoles/orgmoles 
Tisfrac=Tismoles/orgmoles 
if(iprofile.eq.O)then 

fraczone( 1)=bubfrac 
molezone(l)=bubmoles 
conczone( 1)=bubmoles/volbub 
do 1100 izone=2,nzonebeg 

fraczone(izone)=depfrac *vzb(izone)/voldep 
molezone(izone)=fraczone(izone)*orgmoles 
conczone(izone)=depmoles/voldep 

1100 continue 
end if 

End if 
call fastgenz(rbub,rdep,width,nzoneend,rze,rz2e,rz3e,vze,rzrnge) 

C- Begin the random walk thru the module 
C- Calculate the probability of staying in the bubble 

rbpw=rbub+width 
stepsiz2=stepsize*stepsize 

rbub2=rbub *rbub 
rbub3=rbub2*rbub 
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rdep2=rdep*rdep 
pf=stepsize*(12.d0*rbub2-stepsiz2)/(16.d0*(rbub3)*pcbub) 
ddprbub=diffdist+rbub 
firstime=zed 

EndInbub=0. 
EndIndep=0. 
EndIntis=0. 
do 1005 izone=l,nzoneend 

endzone(izone)=O.dO 
1005   continue 

sumcumm(O)=zed 
cummsum(O)=0. dO 
do 1004 izone = 1 ,nzonebeg 

cummsum(izone)=cummsum(izone-1)+fraczone(izone) 
1004   continue 

if(cummsum(nzonebeg).gt.zed)then 
if(voltis. le. zed)then 

do 1904 izone=0,nzonebeg 
cummsum(izone)=cummsum(izone)/cummsum(nzonebeg) 
sumcumm(nzonebeg-izone)=1 .dO-cummsum(izone) 

1904 continue 
end if 

end if 
C- Calculate the number of particles to be place 

Do20H=l,Ntrip 
C- Place a particle randomly in the module with probability weighted 
C- by mole fraction. 

prob=ran(il) 
c 
c   new code to place particles in the various zones 

do 1001 izone=l,nzonebeg 
if (prob. It. sumcumm(izone))then 

call place(r,rz3b(nzonebeg-izone),rzrngb(nzonebeg-izone+1)) 
r2=r*r 
rp=r 
rp2=r2 
goto 1002 

end if 
1001 continue 
1002 continue 

C- If the particle is placed so far from the bubble that it cannot 
C- reach it in nstep steps and the module only consists of the 
C- bubble and a depleted region, the particle will stay in the depleted 
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C- region. 

If (r.gt.ddprbub) then 
Istep=nstep 
call getsize(a,a2,istep) 
call faststep(a,a2,r,r2,rp,rp2,cosphi) 
goto 31 

Else If (r.gt.rbpw) then 
C- The particle can reach the bubble by diffusion 

Istep=int((r-rbub)/stepsize) 
call getsize(a,a2,istep) 
call faststep(a,a2,r,r2,rp,rp2,cosphi) 

Else 
C- The particle is in the bubble 

Istep=0 
End if 

C- Carry out random walk for NSTEP steps of "stepsize" 

a=stepsize 
a2=stepsiz2 

Do 30 JJ=Istep+l,nstep 
lnbub=0 

C- Check to see if particle is in the bubble by comparing the 
C- particle distance from origin with bubbble radius 

if(rp.lt.rbub)inbub=1 

C- If the particle is in the bubble, leave it 
C- based on the probability factor. 

If (Inbub.eq.l) then 
if (ran(il).lt.pf)then 

call fastout(r,a,rbub) 
rp=r 
rp2=rp*rp 

end if 
else 

C- Take a step 
r=rp 
r2=rp2 
call faststep(a,a2,r,r2,rp,rp2,cosphi) 
if(rp.gt.rdep)then 
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call fastrefl(a,r,r2,rp,rp2,rdep,rdep2,cosphi) 
r=rp 
r2=rp2 

end if 
End if 

30 Continue 
31 Continue 

if(rp.gt.rdep)then 
call fastrefl(a,r,r2,rp,rp2,rdep,rdep2,cosphi) 
r=rp 
r2=rp2 
if(r.gt.rdep)then 

c   if the particle is still outside the depletion region after reflection, 
c   assume that further reflections will leave it in the outermost zone, 

call place(r,rz3b(nzonebeg-l),rzrngb(nzonebeg)) 
r2=r*r 

end if 
else 

r=rp 
r2=rp2 

end if 

C- Keep track of the region in which the particle ends 
do 1010 izone=l,nzoneend 

if(r. It. rze(izone))then 
endzone(izone)=endzone(izone)+1 .d0 

goto 1011 
end if 

1010 continue 
1011 continue 

If (r.le.rbub) then 
Endlnbub=Endlnbub+1. 

else If(r.le.rdep) then 
Endlndep=Endlndep4-1. 

else 
Endlntis=Endlntis +1. 

end if 

20      Continue 
if((voltiss.le.zed).and.(endintis.gt.zed))then 
open(unit=2,file= 'for002.dat' ,type= 'old', access = 'append') 
write(2,8888)endintis,l 

8888       formatC  accounting error...' ,f 10.2,' particles in tissue'/ 
+ ' on the',i8,'th cycle') 
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stop 
end if 

C- Calculate the gas content in each region 
If (L.eq.l)then 

open(unit=2,file = 'for002.dat' ,type= 'old' ,access = 'append') 
write(2,904)time,rbub,volbub,voldep, 

+  (vol-voldep) 
write(2,904)cyclet,poofprob,washoutt 
Write (2,905) rc,re,rbubO 

close(2) 
end if 
dfht=dfloat(ntrip) 
dfntO=dfnt 
actual=endindep 
if(poofprob.gt.0.dO)then 

const=dfnt*csequil/currmole 
expected=const*voldep 
actual=endindep-(endindep-expected)*poofprob 
dfnt=actual+endinbub 

1025   continue 
1015       continue 

if(voltiss. gt. zed)dfnt=dfnt+endintis 
currmole=currmole*dfnt/dfntO 

end if 
do 1020 izone=l,nzoneend 

fraczone(izone)=endzone(izone)/dfnt*actual/endindep 
if(izone.eq. l)fraczone(izone)=endzone(izone)/dfnt 
molezone(izone)=fraczone(izone)*currmole 
conczone(izone)=molezone(izone)/vze(izone) 

1020   continue 
calcpc=fraczone(l)*vze(2)/(fraczone(2)*vze(l)) 

Bubfrac=EndlnBub/dfnt 
depfrac=actual/dfnt 
Tisfrac=Endintis/dfnt 
bubmoles=currmole *bubfrac 
depmoles=currmole *depfrac 
tismoles=currmole *tisfrac 

C- If Bubfrac is very small it will soon vanish so trap it 
If (bubfrac.lt.0.0000000001) goto 999 

C- Calculate the new volume of each region 
C- the volume of the depleted region plus the volume of 
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C- the supersaturated tissue region is a constant, so bubble 
C- growth only adds to max and min dimensions, but not volumes 

A3=(4.*pi*(Pl-Pvap))/3. 
A2=(8.*pi*surten)/3. 
aO=-molezone(l)*gasR*T 

C0=A0/A3 
C2=A2/A3 
Call Roots2(c0,c2,rbub) 
if(rbub.lt.stepsize)goto 999 

VolBub=(4*pi*(rbub)**3 .)/3. 
tisVNew=Tismoles/(Cll*P01/KH) 
Voldep=Vol-tisvnew 
If (VoldepO.ge.vol) Voldep=voldepO-tisvnew 
rdep=((voldep+volbub)/vcoeff)**onethird 
call fastexpnd(rbub,rdep,nzoneend,rzb,rz2b,rz3b,rzrnge,rzrngb) 
nzonebeg=nzoneend 

C- Output information for 1 bubble growth cycle 
time=time+eyelet 
open(unit=2,file = 'for002.dat' ,type = 'old' »access = 'append') 
Write(2,904) time,rbub,calcpc,currmole 
close(2) 

904 Format(5G15.7) 
3000   formate  cycle # \i5,4gl2.4/50(3gl5.6/)) 

open(unit=7,file = 'bubmod.dmp' ,type = 'old' ,form= 'unformatted') 
rewind(7) 
write(7)L,il,nzonebeg,time,volbub,calcpc,rbub,rdep,rbubO 
write(7)re,rc,currmole 
write(7)(fraczone(i),molezone(i),conczone(i),i= 1 ,nzonebeg) 
write(7)(rzb(i),rz2b(i),rz3b(i),vzb(i),rzrngb(i),i=1 ,nzonebeg) 
write(7)(rze(i),rz2e(i),rz3e(i),vze(i),rzrnge(i),i=l,nzoneend) 
close(7) 

10       Continue 
999      Continue 
905 Format(3G15.4) 

Stop 
End 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

subroutine fastout(r,a,rb) 
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implicit real*8 (a-h,o-z) 
common /com2/pi,il 
common/comroot/probroot,firstime 
probroot=ran(il) 
s=rtsafe(0.d0,l.d0,l.d-10,rb,a)*a 
r=s+rb 
return 
end 

c 
c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c   subroutines to generate c.d.f. for particles stepping out of a bubble. 
c   some parameters are supplied to the subroutine via the common block 
c   comroot. 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

FUNCTION RTSAFE(Xl,X2,XACC,b,a) 
implicit real*8 (a-h,o-z) 

PARAMETER (MAXIT=100) 
CALL FUNCD(Xl,FL,DF,b,a) 
CALL FUNCD(X2,FH,DF,b,a) 
IF(FL*FH.GE.O.) PAUSE 'root must be bracketed' 
IF(FL.LT.O.)THEN 

XL=X1 
XH=X2 

ELSE 
XH=X1 
XL=X2 
SWAP=FL 
FL=FH 
FH=SWAP 

ENDIF 
RTSAFE=.5*(X1+X2) 
DXOLD=ABS(X2-Xl) 
DX=DXOLD 
CALL FUNCD(RTSAFE,F,DF,b,a) 
DO 11 J=1,MAXIT 

IF(((RTSAFE-XH)*DF-F)*((RTSAFE-XL)*DF-F).GE.O. 
*       .OR. ABS(2.*F).GT.ABS(DXOLD*DF)) THEN 

DXOLD=DX 
DX=0.5*(XH-XL) 
RTSAFE=XL+DX 
IF(XL.EQ.RTSAFE)RETURN 

ELSE 
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DXOLD=DX 
DX=F/DF 
TEMP=RTSAFE 
RTS AFE=RTS AFE-DX 
IF(TEMP.EQ.RTSAFE)RETURN 

ENDIF 
IF(ABS(DX).LT.XACC) RETURN 
CALL FUNCD(RTSAFE,F,DF,b,a) 
IF(F.LT.O.) THEN 

XL=RTSAFE 
FL=F 

ELSE 
XH=RTSAFE 
FH=F 

ENDIF 
11     CONTINUE 

PAUSE 'RTSAFE exceeding maximum iterations' 
RETURN 
END 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

subroutine funcd(x,f,d,b,a) 
implicit real*8 (a-h,o-z) 
common/comroot/probroot,firstime 
if(firstime. eq. 0. dO)then 

roa=b/a 
roa2=roa*roa 
fl =(12.d0*roa-24.d0*roa2) 
f2=(6.d0-24.d0*roa+12.d0*roa2) 
O=(12.d0*roa-8.d0) 
f4=3.d0 
dO=fl 
dl=2.d0*f2 
d2=3.d0*f3 
d3=4.d0*f4 
firstime=l.dO 

end if 
f0=(12.d0*roa2-l.d0)*probroot 
f=((((f4*x+f3)*x+f2)*x+fl)*x+f0) 
d=(((d3*x+d2)*x+dl)*x+d0) 
return 
end 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

subroutine fastexpnd(rb,rd,nz,rz,rz2,rz3,rzre,rzrb) 
implicit real*8 (a-h,o-z) 
dimension rz(0:500),rz2(0:500),rz3(0:500),rzre(500),rzrb(500) 
common/com5/twopi,onethird,coeff 
data nzmax,eps/500,l-d-5/ 
rz(0)=0.dO 
rz2(0)=0.d0 
rz3(0)=0.d0 
rz(l)=rb 
rz2(l)=rb*rb 
rz3(l)=rb*rz2(l) 
rzrb(l)=rzre(l) 
do 10 i=2,nz 

rz3(i)=rz3(i-l)+rzre(i) 
rz(i)=rz3(i)**onethird 
rz2(i)=rz(i)*rz(i) 
rzrb(i)=rzre(i) 

10       continue 
do 50 i=nz+l,nzmax 

rz(i)=0.dO 
rz2(i)=0.d0 
rz3(i)=0.d0 
rzrb(i)=rzre(i) 

50       continue 
if(dabs(rz(nz)-rd). gt. eps)then 

write(3,100)nz,rz(nz),rd 
100        formatC   expansion error:    rz(',i3,') = \gl5.6, 

+ '    rdep = \gl5.6) 
stop 

end if 
return 
end 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c   variables: a = stepsize 
c rl        = initial radial position 
c rl2      = rl*rl 
c r2        = radial distance > rd (do not use) 
c r22      = r2*r2 (do not use) 
c r3        = final radial position 
c r32      = r3*r3 
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rd = depletion radius 
rd2 = rd*rd 
cp = cos(phi), from faststep 
St = sin(theta) 
st2 = st*st 
ct = cos(theta) 

c 
c 
c 
c 
c 
c 
c 
c     NOTE:  even after reflection from the outer surface, the particle 
c may still be outside the depletion region, have to check for 
c this in the main program. 
c 

subroutine fastrefl(a,rl,rl2,r3,r32,rd,rd2,cp) 
implicit real*8 (a-h,o-z) 
common/com2/pi, i 1 
common/com5/twopi,onethird,coeff 
cp2=cp*cp 
sp2=l.d0-cp2 
if(sp2.1t.0.d0)sp2=0.d0 
dl =rl*cp+dsqrt(rd2-rl2*sp2) 
St2=rl2*sp2/rd2 
if(st2.ge.l.d0)then 

ct=0.dO 
else 

ct=dsqrt(l.d0-st2) 
end if 
d2=a-dl 
d22=d2*d2 
r32=rd2+d22-2.d0*rd*d2*ct 
r3=dsqrt(r32) 
return 
end 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

subroutine faststep(a,a2,r,r2,rp,rp2,cosphi) 
implicit real*8 (a-h,o-z) 
common/com2/pi,il 
common/com5/twopi,onethird,coeff 
cosphi= 1 .d0-2.d0*ran(il) 
rp2=a2+r2-2 .dO*a*r*cosphi 
rp=dsqrt(rp2) 
return 
end 
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FIGURE 16 - Geometry used in subroutine FASTSTEP for a radially symmetric bubble- 
liquid module 
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FIGURE 17 - Geometry used in subroutine FASTREFL for a radially symmetric bubble- 
liquid module. 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
r* 

subroutine place(r,rz3,rzrng) 
implicit real*8 (a-h,o-z) 
common/com2/pi,il 
common/com5/twopi,onethird,coeff 
r=(rz3 +rzrng*ran(il))**onethird 
return 
end 

c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 

subroutine fastgenz(rb,rd,w,nz,rz,rz2,rz3,vz,rzrng) 
implicit real*8 (a-h,o-z) 
dimension rz(0:500),rz2(0:500),rz3(0:500),vz(500),rzrng(500) 
common/com5/twopi,onethird,coeff 
data nzmax/500/ 
nz=l 
rz(0)=0.dO 
rz(l)=rb 
do 10 i=2,nzmax 

nz=nz+l 
rz(i)=rz(i-l)+w 
if(rz(i).ge.rd)then 

rz(i)=rd 
goto 20 

end if 
10       continue 
20       continue 

rz2(0)=0.d0 
rz3(0)=0.d0 
do 40 i=l,nz 

rz2(i)=rz(i)*rz(i) 
rz3(i)=rz2(i)*rz(i) 
rzrng(i)=rz3(i)-rz3(i-l) 
vz(i)=coeff*rzrng(i) 

40       continue 
do 50 i=nz+l,nzmax 

rz2(i)=0.d0 
rz3(i)=0.d0 
rzrng(i)=0.d0 
vz(i)=0.d0 

50       continue 
return 
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end 
c 

Subroutine Roots(c0,cl,c3,rc,re) 
implicit real*8 (a-h,o-z) 

C- This subroutine calculates the roots of the Tikuisis polynomial. 
C- First, find the minimum because 1 root is below it and the other 
C- root is above it. 
100     formate # '45) 

If (cl.ge.O.) then 
re=-999. 

else ' 
xl=-cO/cl 

10 x=xl 
g=cl+x*x*(3.*c3+4.*x) 
dgdx=x*(6. *c3 +12. *x) 
xl=x-g/dgdx 
if((abs(g).gt.0.0000001).or.(abs(xl-x).gt.0.0000001)) 

+     goto 10 
C- Now apply Newton's method to find the roots 

f=rcfunc(xl,c0,cl,c3) 
if (f.gt.O.) then 

re=-998 
else 
dolj = l,2 

if (jeq.l) then 
mult=-l 

else 
mult=l 

end if 
x2=xl*l.+0.1*mult 

20 x=x2 
f0=rcfunc(x,c0,cl,c3) 
fl=cl+x*x*(3.*c3+4.*x) 
dxl=-f0/fl 
x2=dxl+x 
if (abs(l.-(x2/x)).gt.0.0001) goto 20 
if (mult.lt.0) rc=x2 
if (mult.gt.0) re=x2 

1 continue 
end if 

end if 
return 
end 
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Real*8 Function rcfunc(x,c0,cl,c3) 
implicit real*8 (a-h,o-z) 
z=c0+x*(cl+x*x*(c3+x)) 
rcfiinc=z 
return 
end 

Subroutine Roots2(c0,c2,rbub) 
implicit real*8 (a-h,o-z) 

C- This subroutine calculates the roots of the polynomial describing 
C- bubble radius. 
C- Apply Newton's method to find the roots 

x2=rbub 
20 x=x2 

f0=rbubfunc(x,c0,c2) 
fl=x*(2.*c2+3.*x) 
dxl=-f0/fl 
x2=dxl+x 
if (abs(l.-(x2/x)).gt.0.0001) goto 20 
rbub=x2 

return 
end 

Real*8 Function rbubfunc(x,c0,c2) 
implicit real*8 (a-h,o-z) 
z=c0+x*x*(c2+x) 
rbubfunc=z 
return 
end 

c 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c subroutine to take find the size of a single large diffusion 
c step for use in subroutine faststep 
c 
c subroutine getsize(a,a2,diffcoef,t) 

subroutine getsize(a,a2,isd) 
implicit real*8 (a-h,o-z) 
common /com2/pi,il 
common/distarr/distance(10000),sd(500) 

c 
c the distance stepped as a function of the probability, given in terms 
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c of the standard deviation, is located infile distprob.dat 
c 

index=aint(l.d0+10000.d0*ran(il)) 
a=sd(isd) *distance(index) 
a2=a*a 
return 
end 
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