
Naval Medical Research Institute

 ^ NMRI 94-36 August 1994

8901 Wisconsin Avenue
Bethesda, MD 20889-5607

A MODEL OF BUBBLE EVOLUTION DURING DECOMPRESSION
BASED ON A MONTE CARLO SIMULATION OF INERT GAS DIFFUSION

R. Ball
J. Himm
L. D. Homer
E. D. Thalmann

Naval Medical Research
and Development Command
Bethesda, Maryland 20889-5606

Department of the Navy
Naval Medical Command
Washington, DC 20372-5210

W12D9 023

Approved for public release;
distribution is unlimited

NOTICES

The opinions and assertions contained herein are the private ones of the writer and are not to be
construed as official or reflecting the views of the naval service at large.

When U. S. Government drawings, specifications, or other data are used for any purpose other than
a definitely related Government procurement operation, the Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the Government may have
formulated, furnished or in any way supplied the said drawings, specifications, or other data is not
to be regarded by implication or otherwise, as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

Please do not request copies of this report from the Naval Medical Research Institute. Additional
copies may be purchased from:

National Technical Information Service
5285 Port Royal Road

Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical
Information Center should direct requests for copies of this report to:

Defense Technical Information Center
Cameron Station

Alexandria, Virginia 22304-6145

TECHNICAL REVIEW AND APPROVAL

NMRI 94-36

The experiments reported herein were conducted according to the principles set forth in the current
edition of the "Guide for the Care and Use of Laboratory Animals," Institute of Laboratory Animal
Resources, National Research Council.

This technical report has been reviewed by the NMRI scientific and public affairs staff and is
approved for publication. It is releasable to the National Technical Information Service where it
will be available to the general public, including foreign nations.

ROBERT G. WALTER
CAPT, DC, USN
Commanding Officer
Naval Medical Research Institute

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1994
3. REPORT TYPE AND DATES COVERED

TECHNICAL
4. TITLE AND SUBTITLE

A model of bubble evolution during decompression based
on a Monte Carlo simulation of inert gas diffusion-

6. AUTHOR(S)

Ball, R-, J- Himm, L.D. Homer/ and E.D. Thalmann

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Medical Research Institute
Commanding Officer
8901 Wisconsin Avenue
Bethesda, Maryland 20889-5607

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Naval Medical Research and Development Command
National Naval Medical Center
Building 1, Tower 12
8901 Wisconsin Avenue
Bethesda, Maryland 20889-5606

6/92-5/93
5. FUNDING NUMBERS

PE - 62233N
PR - MM33P30
TA- .004
WU- 1050

8. PERFORMING ORGANIZATION
REPORT NUMBER

NMRI 94-36

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

DN249500

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Previously, a Monte Carlo simulation of inert gas diffusion in a capillary bed bad been developed at this laboratory to
explore the effect of tissue heterogeneity and microvascular architecture on gas exchange under normobaric conditions.
Because we needed a method of looking at gas phase dynamics during decompression in this environment, the Monte
Cario method was extended to simulate bubble growth and dissolution during decompression. The essence of our
approach involves the placement of inert gas particles in a bubble-liquid module and simulating diffusion with random
displacements within the module for a short, fixed time period. At the end of the time period the distribution of the
particles is used to calculate the number of moles of gas inside the bubble. The new bubble volume is then calculated
from the ideal gas law. We developed methods to speed up the simulation by computing distributions of displacements
following many random steps so that the simulation of many steps might be made with a simple calculation. In addition,
we can calculate the amount of time a particle will stay inside the bubble based on the solubility of the inert gas. We
demonstrate that a bubble evolves to the expected equilibrium size and the time course of the evolution compares
favorably with that predicted by a partial differential equation model. A Monte Carlo approach is successful in simulating
bubble evolution during decompression and is potentially suitable for studying the influence of tissue micro-architecture
on gas phase dynamics.

14. SUBJECT TERMS decompression, bubble, model, monte carlo;
stochastic, diffusion, markov process, diving, gas exchange,
kinetics, dynamics, supercomputer, parallel processor, partial
differential equation, probability distribution, simulation
 - .,,.^.-S,M.—I .o c!i-,mirv rx »ccinrATIDN 19 SECURITY CLASSIFICA1 17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

IB. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

N'SN 7540-01-280-5500

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited
Standard form 298 (Rev 2-89)
P'«CM>M <» ***' V" 2J»-1»
29B1CJ

mC^Aimmspm^B 4

TABLE OF CONTENTS
page

ACKNOWLEDGEMENTS vi

BACKGROUND 1

METHODS 2

Overview 2

Calculation of Mole Fraction in the Bubble and Liquid Shells 11

Placement of Particles in the Bubble-liquid Module 15

Random-Walk Procedure 17

Simulation of the Gas Gradient in the Liquid 25

Derivation of the Transition Probability 28

Calculation of the New Bubble Radius 34

Derivation of Wash-out Probability 35

Model Testing 38

Model Parameters 41

RESULTS 43

DISCUSSION 55

REFERENCES 59

LIST OF APPENDICES

APPENDDC A: Calculation of Equilibrium Radii 65

APPENDIX B: Derivation of Initial Particle Placement 66

APPENDIX C: Approaches to Increasing Execution Speed 70

in

APPENDIX D: Fortran Source Code 74

LIST OF TABLES

TABLE 1: Model parameters by equation number 5

TABLE 2: Comparison of Monte Carlo and partial differential
equation model predictions of the time course of bubble evolution 46

TABLE 3: Precision of outcome measures as a function of particle density 54

LIST OF FIGURES

FIGURE 1 - Schematic diagram of a single bubble-liquid module 3

FIGURE 2 - Bubble growth cycle structure 7

FIGURE 3 - Bubble simulation flow chart 9

FIGURE 4 - Stepping loop flow chart 10

FIGURE 5 - Probability and cumulative distribution functions of normalized diffusion
distances in three dimensions 20

FIGURE 6 - Schematic diagram of cross sectional view of changes in shells during
bubble expansion 27

FIGURE 7 - Schematic diagram of transition region inside the bubble
(inner transition region) 29

FIGURE 8 - Schematic diagram of transition region outside the bubble
(outer transition region) 32

FIGURE 9 - Graph of simulation output for bubble evolution in a system
closed to inert gas transport with initial bubble radii greater than and less than
the expected equilibrium bubble radius 45

FIGURE 10 - Graph of Monte Carlo and PDE predictions of bubble evolution time course
for condition 1 47

FIGURE 11 - Graph of Monte Carlo and PDE predictions of gas wash-out versus time
for condition 1 48

IV

FIGURE 12 - Graph of bubble radius versus time for low precision simulation 49

FIGURE 13 - Graph of bubble radius versus time for higher precision simulation 50

FIGURE 14 - Graph of gas wash-out versus time for low precision simulation 51

FIGURE 15 - Graph of gas wash-out versus time for higher precision simulation 52

FIGURE 16 - Geometry used in subroutine FASTSTEP for a radially symmetric
bubble-liquid module 124

FIGURE 17 - Geometry used in subroutine FASTREFL for a radially symmetric
bubble-liquid module 125

ACKNOWLEDGEMENTS

This work was supported by NMRDC work unit No. 62233N MM33P30.004-1050.

We are grateful to Paul Massell for his mathematical insights, as well as Susan Mannix for

her editorial assistance.

Computer time provided by the National Cancer Institute's biomedical supercomputer

center, Frederick, MD; Uniformed Services University of the Health Sciences, Bethesda,

MD; the Naval Health Research Center, San Diego, CA; and by several departments of the

Naval Medical Research Institute.

The opinions expressed in this paper are those of the authors and do not reflect the

official policy or position of the Department of Navy, Department of Defense, or the U.S.

Government.

VI

BACKGROUND

In developing a probabilistic decompression model it was found that asymmetrical gas

kinetics proved to fit the available human exposure data much better than symmetrical

exponential kinetics (1-3). This asymmetrical model used exponential kinetics for gas uptake,

but when tissue gas tension exceeded ambient pressure by a specified amount the kinetics

became linear, dramatically slowing the rate of gas elimination. This so-called linear

exponential (LE) model was initially developed for computing fixed oxygen partial pressure

decompression tables (4,5), but had been extended to air in some exploratory trials (6).

The success of the LE model led us to seek a physiologic rationale that might explain

its performance. One rationale was that the change in kinetics described slowing of gas

elimination as a result of gas phase formation. This hypothesis is supported qualitatively by

observations that the slowing of inert gas elimination during decompression (7-9). Could the

slow pace of gas elimination implied by the success of the LE model be confirmed by a

physiologically and physically plausible approximation to gas elimination in the presence of

bubbles?

To answer this question we wanted to model gas phase growth and dissolution in

heterogeneous architectures representative of actual tissue. Previously, a Monte Carlo

simulation of diffusion had been developed in a tissue model to explore the effect of tissue

heterogeneity and microvascular architecture on gas exchange (with no gas phase present)

under normobaric conditions (10-12). As a first step towards modeling gas phase dynamics

in that environment, we have developed a model of bubble evolution during decompression in

a homogeneous and uniformly perfused tissue by extending the Monte Carlo methods used in

previous simulations. Using a homogenous and uniformly perfused tissue allows for

comparisons using well established methods of modeling bubble evolution (13). However, in

principle the Monte Carlo approach should allow modeling in architectures of any

complexity. This report presents the methods employed and their derivations, results of tests

examining the model's ability to predict bubble radii under equilibrium conditions, a

comparison of the time course of bubble evolution predicted by the Monte Carlo model with

that predicted from the numerical solution of a partial differential equation model, and the

model's performance at different levels of precision. Application of the model in reports to

follow will help us see if gas elimination can be delayed as much as predicted by the LE

model.

METHODS

Overview

This section provides a brief description of the bubble-liquid module, the Monte Carlo

method, initial conditions, and the simulation structure. Details regarding the derivation and

implementation of the techniques described are presented in the sections that follow.

As a first approximation of a physiological model of bubble evolution in tissue, we

developed a model of a single spherical bubble evolving in a homogenous liquid of fixed and

finite volume. The volume of the liquid surrounding a single bubble can be interpreted to be

the inverse of the bubble density (number of bubbles per volume of liquid). A tissue might

consist of many such bubbles, each associated with its own liquid volume as shown in Figure

1. The system is open to mass transfer.

FIGURE 1 - Schematic diagram of a single bubble-liquid module. The shaded central region
represents the bubble. The concentric spheres surrounding the bubble are the shells used to
simulate the concentration gradient in the liquid. The number and size of the shells and the
size of the bubble vary according to the parameters of the model.

The traditional approach to modeling the temporal and spatial evolution of inert gas in

tissues using a system of partial differential equations becomes intractable when the

architecture of the tissue is complex. An alternative to this type of deterministic modeling is

a Monte Carlo simulation (10-14). The essence of this approach involves the placement of

inert gas particles in a bubble-liquid module and allowing them to take random steps to

simulate diffusion for a short period of time. At the end of the time period the distribution of

the particles is used to calculate the number of moles of gas in the bubble and liquid. The

new bubble volume is then calculated from the ideal gas law. This process is repeated many

times to obtain the time course of bubble evolution.

We start our simulation with the liquid saturated with inert gas at one ambient

pressure and then make a step decrease in the pressure. Since there is little information

about the initial formation of bubbles (15,16), we simply assume that the gas phase initially

has a radius close to the critical radius computed by Ward and Tikuisis (17,18). We then

place the bubble centered in the liquid region.

We obtain the value of the critical radius from calculations of equilibrium radii for a

closed system with a finite gas supply carried out by Ward and Tikuisis; the first is an

unstable radius, referred to as the critical radius rc. Gas phases smaller than rc will shrink

and disappear, those larger will grow until the second stable equilibrium radius, re is reached.

Bubbles with radii larger than re will shrink until re is reached. The quartic polynomial from

which rc and re are obtained is given in Appendix A. The specific initial condition values we

used in our system test are given in the section entitled "Model Testing" and Table 1.

TABLE 1: Model Parameters by Equation Number

Eq No. Parameter

(1)

(3)

(23)

Ptis02 = 39.76 mmHg
Ptisco2 = 44-26 mmHg

3 PDE (2) Vliq = 0.000125 cm3, 0.0005 cm
Cliq = 0.055140 moles/cm3

P^ = 1520 mmHg, (2 ATA)
Pvap = vapor pressure of water at 37 °C= 46.52 mmHg
a = Ostwald solubility N2 = 0.0143
R, = 62358 (cm3 mmHg)/(mole K)
T = 310.1 K, (37 °C)

P^b = 760 mmHg, (1 ATA)
y = surface tension = 0.037515 mmHg-cm, (50 dynes/cm)
rbub = 0.00065 cm, 0.00092 cm PDE

post-bubble formation boundary condition = uniform from all shells

DN2 = 0.5 X 10"5 cm2/sec, 0.75 X 10"5 cm2/sec PDE

(26) grid size = 0.00025 cm
[derived: diffusion step size, (a), = 0.00043 cm]

(27) n^ = 50
[derived: tcycle = 0.3125 seconds]
[derived: tcycle = 0.2100 seconds] PDE

(57) X = 2.5 minutes, 10 minutes PDE

(62) Fio2 = 0.21, (air)

Reference

27

see text
1/molecular wt

see text
27
28
36

see text
15

see text

see text

see text

see text

see text

The amount of gas required to fill this initial bubble is taken from the liquid phase.

This can be done either by removing gas uniformly from within the liquid, leaving no initial

gas gradient or by removing gas non-uniformly, yielding an initial gradient. In either case

we keep track of the gas concentration with a series of concentric shells constructed around

the bubble. The shells expand or contract with the expansion or contraction of the bubble.

The fraction of total gas in the module that is present in the liquid is the same whether or not

an initial gradient is present. The details of these procedures are explained in the sections

entitled "Calculation of Mole Fraction in the Bubble and Liquid Shells" and "Simulation of

the Gas Gradient in the Liquid."

After the initial placement of a bubble in the module and the establishment of the gas

gradient in the liquid, the simulation begins a repeating cycle of particle placement, random

walks, gas wash-out, and adjustment of the bubble size and gas gradient in the liquid. We

refer to each repetition of this sequence of events as a bubble growth cycle, shown

schematically in Figure 2. The simulation consists of many bubble growth cycles. During

each cycle, bubble radius is kept constant and no gas washout occurs while the gas particles

diffuse throughout the module.

Simulating diffusion using a Monte Carlo process involves many particles,

representing idealized gas molecules, being placed one at a time within the bubble-liquid

module. For each particle the location of the placement is randomly selected to be in either

the bubble or the liquid, based on the fraction of total gas in each region. The derivation of

this placement procedure is contained in the section entitled "Placement of Particles in the

Bubble-liquid Module" and Appendix B.

Bubble Growth Cycle

Di ffusion
Cycl e

Particle Placement

Random Walk

Washout
Phase

Gas Exchange

Adjustment of

Bubble size

and Gradient

in Liquid

FIGURE 2 - Bubble growth cycle structure.

After placement, each particle walks randomly through the module for a length of

time specified as tcycle, the bubble growth cycle time. At the completion of the random walk,

the particle's new position (i.e., which shell the particle is in) is recorded. Then another

particle is placed and walked through the module. This is repeated for all of the particles (at

least 2 x 108 particles/(ml of liquid in the module)). The details of this procedure are in the

section entitled "Random Walk Procedure."

For purposes of the random walk procedure, gas particles in the bubble and liquid

phase are treated differently. If the gas particles are in the bubble, then they are assumed to

be uniformly distributed and transition from the bubble to the liquid can only occur if the

particle begins its step from within a shell just inside the bubble-liquid boundary. The

probability of crossing from the bubble to the liquid in a particular step is the product of

three probabilities: the probability of being in the transition region, the probability of striking

the bubble-liquid interface, and the probability of crossing the interface if struck.

If in the liquid, the particles are allowed to cross from the liquid to bubble if the

bubble-liquid boundary is struck. If a particle strikes the outer liquid boundary during a step

it is reflected back into the module. This simulates a zero pressure gradient with no mass

transfer across the outer tissue boundary. Details are in the section entitled "Derivation of the

Transition Probability."

After all particles have been placed and undergone the random walk, there will be a

new particle distribution. The number of particles in the gas phase and each individual shell

is divided by the respective volumes of the gas phase or shell, to get the mean concentration

in the gas phase and in each shell. Next, the concentration in each shell is adjusted to

/Input run /
parameters, /
Initialize /

arrays, /
constants /

Cat cuI ate
equi I. Rad i i
initial i ze

growth
parameters

P I ace
parti cIe

Random Walk
Loop

I
Ves No

BIG
Step

Stepp i ngr
Loop
<FI» 4>

Record
final

posIti on

Washout gas
Calculate new
bubble radius

expand/contract
zones

FIGURE 3 - Bubble simulation flow chart,
radius, whichever is larger.

rmin is equal to the diffusion step size or critical

1
From BubbIe
S i muI at i on

Chart (Fig 3)

CaIcuI ate
time to reach

bubble
^BIÜSTEp'

B i gstep.
corresponding

to t i me
^BIGSTEP

No

Ves

Ves Smal
Step

FIGURE 4 - Stepping loop flow chart. This algorithm is followed whenever the particle has
a chance of entering the bubble during a bubble growth cycle of length tcycle.

10

account for the wash-in or wash-out that occurred during the cycle time. Thus, the gas

concentration gradient in the liquid is established for the beginning of the next cycle. The

bubble radius is adjusted according to the number of moles in the gas phase assuming the

ideal gas law as explained in the section entitled "Calculation of the New Bubble Radius."

Once this new radius is established the thickness of the shells is adjusted. The new shell

radii and the mean gas concentration in each of the shells are the initial conditions for the

next cycle. Details of this process are given in the section entitled "Simulation of the Gas

Gradient in the Liquid."

In summary, we begin with a liquid saturated with inert gas at some ambient pressure,

reduce the ambient pressure, and insert a spherical bubble with a radius just above the critical

radius for the system. For a short time interval we fix the bubble size while gas in the

bubble-liquid module is redistributed using a Monte Carlo simulation of diffusion. At the end

of this time interval, the bubble size and gas gradient in the liquid are adjusted based on this

new particle distribution. The next cycle then begins, and this process continues indefinitely.

Figures 3 and 4 present flow charts that summarize the model's logical structure. Details of

the derivation and implementation of the method follow.

Calculation of Mole Fraction in the Bubble and Liquid Shells

The number of moles of inert gas dissolved in the liquid at the start of the simulation

before a bubble forms (n^d is calculated from the saturated volume of inert gas at the ambient

pressure just before the pressure reduction. In living organisms the metabolic gases oxygen

and carbon dioxide are present and must be taken into account. We first define the partial

pressure from metabolic gases (Pmg) to be,

11

p = p. +p. (I)

where Ptis02 = partial pressure of tissue oxygen (rnmHg)
PtisC02 = partial pressure of tissue carbon dioxide (rnmHg)

For simulations not involving metabolic gases pmg is assumed to be 0. n^ is then calculated

as,

V -C -P
V q q q (2)

tOt TT

where,

Vliq = volume of liquid, (cm3)
Cliq = molar concentration of the solvent, (moles/cm3)
Pliq = pressure of inert gas in the liquid, (rnmHg)

= fP _p _P i
vx ambO x vap x mg/

Pambo = ambient pressure before pressure reduction, (rnmHg)
Pvap = vapor pressure of water, (rnmHg) (constant)

KH = Henry's coefficient = PH/([(Rg-T/(VL-a-PH)) + l]1), (mmHg)(35)
VL = molar volume of solvent (1/Cliq), (cm3/mole)

a = Ostwald solubility coefficient
PH = 760 rnmHg
Rg = Universal gas constant in (cm3 mmHg)/(mole K)
T = temperature in Kelvin

Once a bubble is placed in the liquid, the liquid is assumed to remain at constant

volume as the bubble expands. All the gas in the bubble comes from the liquid phase,

keeping the total amount of gas in the module constant during a bubble growth cycle.

Assuming an ideal gas and negligible liquid elastic forces, the number of moles of inert gas

in the bubble (n,,^) is determined by,

12

P 'V „ bub bub cx\
Hbub = R ,T V>

where,

Pbub = inert gas pressure in the bubble = Painb-Pvap-Pmg+PY, (mmHg)
Pamb = ambient pressure after pressure reduction, (mmHg)
Py = surface tension pressure = (2-y)/rbub, (mmHg)
y = surface tension, (mmHg-cm)

[y (mmHg-cm) = y (dynes/cm) / 1332.8 dynes/(mmHg-cm2)]
rbub= bubble radius, (cm)

Vbub = bubble volume, (cm3). (Vbub is the volume of a bubble of radius rbub selected to be
just above the critical radius for a pressure reduction from P^y, to V^.)

Because placement of particles in the module for the Monte Carlo simulation of

diffusion depends on the relative amount of gas in each region of the bubble-liquid module, it

is necessary to calculate the mole fraction of gas in each region. The initial

mole fraction in the bubble is simply,

x = -5£ (4)
"tot

and the initial mole fraction in the liquid is,

*» -l - — (5> »«to n
"tot

The initial mole fraction in each shell, xshelli0, is determined from the equation,

13

x . n-^i (6)

At the start of the simulation, the number of moles of gas in each shell, n^,,;, is determined

by the selection of the gas gradient in the liquid. We have provided for one of two

alternative gas distributions: the gas for the bubble can be taken uniformly from all of the

shells in the liquid so that there is no initial gradient in the liquid, or the inner-most shells

can be depleted of the gas that makes up the bubble so that partial pressure equilibrium

across the boundary is maintained. (These two choices represent the largest and smallest

gradients for gas diffusion. We may then evaluate the effect of these two extreme post-

bubble formation boundary conditions on bubble evolution.) In the uniform distribution case,

the number of moles in each shell is the same and is simply,

n
n tot

shell.
(7)

*' number of shells

In the other case, the procedure for calculating the number of moles in each shell is more

complex. Gas is taken from the innermost shell until the partial pressure is equal to the

calculated partial pressure for inert gas in the bubble. If additional gas is required to fill the

bubble, the same procedure is applied to succeeding shells until the total gas needed has been

taken. Appendix D4 contains the FORTRAN code that implements this procedure.

After the first bubble growth cycle, the particles will have a different distribution than

before their random walks simulating diffusion began. This new distribution forms the basis

for placement to begin the next bubble growth cycle. Consequently, it is necessary to

calculate the mole fraction in each region of the module at the end of the cycle. In this case,

14

the mole fraction in each region is determined by the fraction of particles that are in the

region at the end of a particular bubble growth cycle, which is given by,

Xbub
number of particles in the bubble

total number of particles in the module

The mole fraction in the liquid is,

*bub

and the mole fraction in each shell is,

(8)

number of particles in the liquid _1 _ ,gs
09 total number of particles in the module

number of particles in shel^ ,*„.
shel1' total number of particles in the module

Placement of Particles in the Bubble-liquid Module

In order to obtain the correct distribution of particles after they are subject to diffusion

and wash-out, the placement of particles at the beginning of each bubble growth cycle cannot

be done haphazardly, but must follow certain rules.

First, a random number between 0 and 1 is compared with the mole fraction in the

bubble. If the random number is less than the mole fraction the particle is assigned to the

15

bubble, otherwise it is assigned to the liquid. The liquid is divided into concentric shells of

equal width, which are used to simulate the concentration gradient of inert gas in the liquid.

Within the liquid, the probability of placement in each shell is proportional to the mole

fraction of gas in the shell. In order to weight the particle placement by the mole fraction in

each shell, a random number between 0 and 1 is compared with the serially accumulating

mole fraction beginning from the inner most shell. At the point the random number is less

than that value, that shell is selected for particle placement. The smooth gradient in the

liquid is approximated by the series of shells with different mean concentrations in each shell,

forming a step gradient. However, the concentration is uniform within each shell, implying

that the probability of a particle being placed in any two regions of equal volume within a

given shell must be the same. Within a shell, our spherical coordinate system requires that

more particles be placed farther from the bubble because a spherical sub-shell far from the

bubble will occupy more volume than one of equal width nearer the bubble.

We use the spherical coordinates p, 0, and (|) to place the particles within a shell,

where p is the radial coordinate, 0 the azimuthal angle between 0 and 7C, and <j) orthogonal to

0, between 0 and 27E. In order to ensure the proper values for these variables, we must

transform the uniformly distributed random numbers (u) between 0 and 1 generated by the

computer. We do this using the transformations hp, he, and h^ derived in Appendix B (19).

l

„ yii\ = Ku U< s P 3 (ID p = h(u) = Ru

where R is the radius of the sphere. However, since placement is to occur in a shell and not

16

an entire sphere, pmust be adjusted accordingly,

,3 ,3 3 v,3 (12)

with p between the outer (r;) and inner (r^) shell radii.

0 = he(u) = arccos(l-2«) (13)

and

* = \{u) = 2%-u (14)

These functions map the uniformly distributed random variable u between 0 and 1 into the

values p, 0 and (() which are uniformly distributed by volume within a shell. These

coordinates are translated to cartesian coordinates,

x = p-sin(8)-cos(4>) (15)

y = p-sin(6)-sin(<|>) (16)

z = p-cos(ö) (I7)

Random-walk Procedure

The simplest way of simulating diffusion with a Monte-Carlo process is to translate

from the spherical coordinate system of Figure 1 into a cartesian coordinate system using

Equations 15-17. A random number generator would be used to specify positive or negative

movement in the X, Y, and Z directions (10-12), with the length of the movement in each

17

dimension being equal to a cartesian grid unit. The particle would end up on one of the 8

corners of the cube with sides 2 grid units in length centered on the original position. Thus

the effective distance traveled, which we refer to as the diffusion step size (a), would be

V"3-(length of the grid unit). This process would be repeated for a predetermined number of

steps and would result in the generation of the particle's path through the module.

Unfortunately, this method requires large amounts of computer execution time. We

took advantage of the fact that the region outside the bubble is isotropic to diffusion by

calculating the distribution of distances a particle will travel in a relatively large amount of

time under the influence of diffusion alone. We refer to this as the Bigstep distribution. This

distribution is computed as follows. If an amount of substance M is deposited at a point in

an infinite volume, then the concentration C at a distance r from the point source under the

influence of diffusion alone is given by Crank (20) as,

-r
M T5t (18)

(4nDtfß

By dividing both sides of this equation by M we obtain the probability density function (PDF)

of the distance r, a particle will travel in time t from a point in the volume,

(4TzDtfß

The cumulative distribution function (CDF) can then be obtained by integrating the PDF over

the volume,

18

r 2n n -r2

F(r,t)= [ffe^'^sindddd^dr (2°)

which reduces to,

F(r,t)= 47t fr2-emdr (21)

r
z=-

If we let v2^ this becomes,

F(z)=
\

2
z2

^.fz2.e *dz C22)

Since a closed form solution of this integral cannot be obtained, we integrate it numerically to

obtain F(z), which is the probability a particle will travel the normalized distance z in time t.

We set the upper bound of the CDF integral at 5 normalized distance units (5 \2Dt)

because 99.99% of the particles will travel less than or equal to this distance in time t.

Graphs of the PDF and numerically obtained CDF are shown in Figure 5.

By applying the inverse transformation method (13) to the CDF by randomly

generating a number between 0 and 1, we can select the normalized distance z a particle

travels. We do this by discretizing F(z) into increments of 0.0001 and assign to each the

value of z needed to obtain it. These z values are stored in a 10,000-element array. We

19

-I—'

75

O

1.0

0.8 L

0.6 -

&- 0.4

0.2

0.0
0 2 3 5

Normalized Distance

FIGURE 5 - Probability and cumulative distribution functions of normalized diffusion
distances in three dimensions. The solid line represents the PDF and the dashed line
represents the CDF.

20

then randomly generate a value for F(z) and go to the array to find the associated value of z.

r
z--

Since v2Dt , we must either select a value for r and compute t, or conversely specify

t and compute r. We elect to keep the diffusion time increment, t, constant and compute the

distance traveled as,

r = zfZDt (23)

The value we choose for t is limited by the architecture of the module. One

constraint placed on the procedure is that we do not want the particle to cross the liquid-gas

boundary during a bigstep. Once a particle enters the bubble it must be given the opportunity

to exit, diffuse in the liquid and reenter the bubble, perhaps on several occasions. If we

allowed the particle to enter the bubble on a bigstep this opportunity would not be provided

and we would end up with the wrong distribution of particles between the phases of the

module.

We apply this constraint by first requiring that the bigstep only be allowed for

particles outside of the first shell. Secondly, we require that the probability of the particle

reaching the bubble boundary during a bigstep be very small (< 0.0001). Since the upper

limit of the integral in Equation 22 is 5 normalized distance units, the probability of attaining

a distance of greater than or equal to 5 normalized distance units is less than 0.0001. If the

r0
particle is a distance r0 from the boundary, then as long as —— ^5 the particle has a

JlDi

21

very small chance (< 0.0001) of reaching the bubble boundary during time t.

We define the largest distance a particle can travel in a straight line on a single

diffusion step to be the mean squared distance. The mean squared distance (MSD) a particle

travels under the influence of diffusion in three dimensions is (20),

MSD = 6Dt <24>

where D is the diffusion coefficient and t is the time allowed for diffusion. At the beginning

of the simulation, we assign a value for the mean squared distance on a single diffusion step

to be a2 where,

a> - Ukm OS)

We solve Equation 25 for t^, to get the time to travel the distance (a) that corresponds to a

single diffusion step,

,72

step 6D
±- (26)

We also assign a value to the number of single steps each particle will undergo during each

bubble growth cycle, n,^, and compute the time for each bubble growth cycle, tcycle, as

t = n -t (27)
cycle cycle step

The time tcycle is the longest time allowed for a bigstep, so if *5 then there is
fi^tcycle

22

almost no chance the particle will reach the boundary during time tcycle. In this case the

distance rT actually traveled during the time tcycle can be calculated directly from Equation 23

as rr = zfiDt~;e-

The procedure can be illustrated with an example. If the computer generated random

number is 0.12145673, we multiply it by 10,000 and round to obtain the array index, 1,215.

The associated z value of 0.823 (obtained from a table look-up) combined with D of 0.5X10"5

cmVsec and t equal to tcycle of 0.3125 sec in Equation 23, gives the actual distance traveled of

0.00173 cm (17.3 microns).

r0
If <5 then the time allowed for bigstep is reduced as follows. First, the

number of single steps of length a in a direct path to the boundary is calculated as,

r,
»step = a

0 (28)

then

t = n -t (29) bigstep step step v '

and

'T Z* V25W <30)

23

The probability of all of the random walk steps occurring in the same direction is small, so

by computing the distance traveled in time tbigstep using the Bigstep distribution, the particle

will have almost no chance of stepping distance r0 and entering the bubble.

Although this is the method we have used in the current version of our program, a

more consistent approach would be to calculate ty^ from Equation 23 after transforming the

radial distance to the bubble boundary into 5 normalized distance units.

t =A2.(JL) (3D
bigstep v c' K2D

Then by randomly generating z as previously described, and using t,,^^ from Equation 31,

the distance traveled can be calculated using Equation 30.

This approach guarantees that the particle will have less than a 0.01 % chance of

entering the bubble on a bigstep.

The direction of the step is obtained by randomly generating two orthogonal angles, 0

and (j) using Equations 13 and 14. Thus, a particle will be placed randomly on the surface of

a sphere centered at its initial location with a radius obtained randomly from the Bigstep

distribution.

For those particles with tbigstep<tcycle, the particles must be given the opportunity to

take individual diffusion steps as described in the beginning of this section to complete the

bubble growth cycle. The time remaining in the bubble growth cycle after taking the bigstep

is obtained and the number of single diffusion steps is calculated as,

24

_ cycle bigstep C\1\
nstep . V '

step

If the particle has crossed the bubble boundary and entered the gas phase, a different

stepping procedure is invoked. We can calculate the probability the particle will be available

to exit from the bubble during a single step, which is equal to the product of three individual

probabilities: the probability of being in the transition region, the probability of striking the

bubble-liquid interface from the transition region, and the probability of crossing the interface

if struck. If a random number generated by the computer is less than the product of these

probabilities, the particle is placed in the transition region uniformly by volume as described

in the section on placement of particles. It is then allowed to take a single step to the surface

of a sphere of radius (a), centered at its location in the transition region. If this step does not

take the particle outside the boundary, it is "returned" to the well-mixed bubble region and

given another opportunity to be available for exiting. This cycle is repeated until the particle

steps out of the bubble or the number of steps allowed in a bubble growth cycle is reached.

The derivation of this procedure is described in the section "Derivation of the Bubble

Transition Probability."

Any particle that reaches the outer boundary of the liquid module is reflected inward

to simulate a particle entering from an adjacent bubble-liquid module. A slight error is

introduced because packed spheres are not space filling, and particles can never enter this

intersphere region.

Simulation of the Gas Gradient in the Liquid

In order to simulate a concentration gradient within the liquid, "shells" consisting of

25

concentric spheres are placed around the bubble. At the start of each bubble growth cycle

the width of each shell is k-J2Dt cle ,where D is the diffusion coefficient, tcycle is cycle time,

and k is a constant between 0 and 1. The root mean square distance the particle will travel

in tcycle is JßDt cle- Since a particle will travel this average distance in tcycle, the assumption

that the shells are well mixed is consistent with a maximum shell width of J2Dt cle ■ This

choice for shell width is also convenient, since it is proportional to the normalized distance

unit of the Bigstep distribution. For greater resolution of the gradient, k can be selected

smaller than 1.

After the random walk portion of the growth cycle the bubble will change size. This

will result in a change in the thickness of the shells surrounding the bubble. For example, if

the bubble grows the inner and outer radii of each shell increase, which makes the shell

thickness become smaller since the shell volume is held constant during expansion. For a

growing bubble the shell width would eventually become very small. In order to adjust for

this, a new set of shells of width k-J2Dt cle is created at the beginning of each cycle. These

new shells will overlap the expanded or contracted shells of the previous cycle as shown in

Figure 6. While they are the same thickness as the previous set of shells before the bubble

changed size, they will not have the same volume as the expanded or contracted shells of the

previous cycle. Particles are placed using the expanded/contracted shells of the previous

cycle. The new set of shells is used to record the final position of the particles at the end of

their random walks.

26

\ ■•

\ \

I I
I I

/;

/ /
/ /

/
/

/

FIGURE 6 - Schematic diagram of cross-sectional view of changes in shells during bubble
expansion. In the first frame, the dashed lines represent the location of the shell boundaries
prior to expansion. After the bubble expands, the shell boundaries also expand to the solid
lines so that shell volumes are the same. In the second frame, a new set set of shells, all
with the same width, are overlayed on the expanded shells of frame 1. Placement of
particles in these new shells is weighted by the expanded shells.

27

Derivation of the Bubble Transition Probability

In our simulation the gas phase is assumed homogeneous and a particle in the gas

phase has an equal probability of being anywhere in the bubble. If a particle initially in the

liquid phase encounters the bubble boundary, it is allowed to cross the boundary. Since a

single diffusion step is the largest straight line distance a particle is allowed to travel

(representing the Mean Squared Distance), a particle is not allowed to enter and again exit

the bubble during a single diffusion step.

If a particle is placed in the bubble, we then compute a probability that it will exit on

a particular step. To compute this probability we first define an inner transition region within

the bubble which is a spherical shell of thickness (a), whose outer boundary is the gas-liquid

interface. Only particles placed in this inner transition region are allowed to exit the bubble

(with a certain probability), particles not in the transition region cannot exit the bubble.

The probability of exiting the bubble is the product of three individual probabilities:

the probability of being in the inner transition region, the probability of striking the bubble-

liquid interface from the transition region and the probability of crossing the interface if

struck.

The probability of being in the inner transition region is simply the ratio of the inner

transition region volume to the bubble volume,

= R3-(R-a? (33)
R3

Once in the inner transition region the probability of striking the interface is derived

as follows. The particle can step from point P in the inner transition region to any point a

28

nner Transition Region

FIGURE 7 - Schematic diagram of transition region inside the bubble. The upper part of this
illustration represents a cross section through the bubble centered at point C with radius R.
The transition region (T.R.) extends a distance a inward from the bubble boundary. The
lower part of the illustration is a cross section through the transition sphere of radius a
centered at point P in the transition region. The point I is as the intersection of the transition
sphere and the bubble cross section, r is the distance of point P from the surface of the
bubble.

29

distance (a) away, as illustrated in Figure 7. The probability of striking the interface (Pint) is

the fractional surface area of the sphere of radius (a) that lies outside of the bubble. The

fraction of this small sphere outside of the bubble is given by,

P. (e)=U-coswJ (34)

where 0 is the angle between line CP and line PI, and I is a point of intersection of the two

spheres. Using the law of cosines, we obtain the following expression for cos(9),

C0S(e)= 2rR-r2-"2 (35)
2a{R-r)

where r is the distance of point P from the surface of the bubble. The probability that a

particle strikes the bubble interface from point P is then,

r2-2(a+R)r+a2
+2aR (36)

imK} Aa{R-r)

To get the probability of striking the interface from anywhere in the transition region, we

need to integrate this expression over the entire region, weighted appropriately.

a

fPJM4*(R-rf)dr

Pint= ~ <37) mt a

f(4n(R-r)2)dr
o

Substituting in the expression for Pint(r), and integrating yields

30

P = gfl2*z-fl*) (38)

"* l6(R3-(R-a?)

If the particle strikes the interface, the probability of crossing the interface is simply the

Ostwald solubility coefficient,

p = a (39) across v '

The individual probabilities can be combined to obtain the probability of exiting the

bubble on a single diffusion step pexit,

P : = P v~ V . (40) rexa r cross r trans * mt

which reduces to,

. aa02R^ (41)

16/?3

Verification of the Transition Algorithm - Because the transition algorithm extends methods

originally developed assuming diffusivity was approximately the same in high and low

solubility regions, we felt obligated to present an alternative argument in support of using this

method in our simulation. The second approach to calculating the probability of leaving a

gas bubble begins by defining several probabilities.

We define an outer transition region, also of thickness (a), in the liquid immediately

adjacent to the bubble as shown in Figure 8. P(t |g) is the probability of entering the outer

transition region given that the particle is in the gas phase. P(g |t) is the probability of

entering the gas phase given that the particle is in the outer transition region. If P(t) is the

probability of being in the outer transition region, and P(g) is the probability of being in the

31

Outer Transition Region

FIGURE 8 - Schematic diagram of transition region outside the bubble. The upper part of
this illustration represents a cross section through the bubble centered at point C with radius
R. The transition region (T.R.) extends a distance a outward from the bubble boundary.
The lower part of the illustration is a cross section through the transition sphere of radius a
centered at point P in the transition region. The point I is at the intersection of the transition
sphere and the bubble cross section, z is the distance of point P from the surface of the
bubble.

32

gas phase then, at equilibrium, particles must be transferring from liquid to gas at the same

rate as from gas to liquid, so we have,

P(t\g)P(g) = P(g\t)P(t) (42)

Also, at equilibrium, since the partial pressures of the gas must be equal on either side, the

probabilities, P(i) of being in phase i with volume Vj are related to the Ostwald solubility

coefficient a by,

m = A (43)
Pit) Vt<t

These two equations may be solved for P(t |g) as a function of P(g |t), the volumes,

and the solubility coefficient.

P(g |t) is a geometric factor that we calculate as follows. Imagine a particle within the

outer transition region, a shell of thickness (a) surrounding the bubble of radius R, and

located a distance z < a from the gas phase boundary as in Figure 7. The next diffusion step

of size (a) defines a sphere of radius (a). The probability that the particle will enter the gas

phase is proportional to the surface area of this small sphere, which lies within the bubble. If

the sphere of radius (a) intersects the bubble at an angle 0 from the line normal to the surface

of both spheres, then 0 satisfies,

Cos(B) = fl2+2fe+*2 (44)
2a(R+z)

and P(g |t) is given by the fraction

33

P(g\t) = ^0 (45)

Then P(t |g) can be obtained in terms of a, R, z, and a by substitution into the equation for

P(t |g) above with the expression for P(g |t) and writing Vg in terms of R.

mg) = «(l-cose)((/g+a)3-/g3) (46)

2R3

Using the expression for cosG, we obtain,

P(t\g) = a[2a(R+z)-(a2+2Rz+z2)]KR+ä)3-R3] (47)

4aR\R+z)

Notice that as z tends to (a), P(t |g) tends to zero. We interpret this to mean that exits

into the transition region do not occur with a frequency representing the volume, but are

biased in closer to the bubble. The cumulative probability of exit is,

faP(t\g)4%(R+zfdz
F(t\g) = i« (48)

[a4%(R+z)zdz
Jo

which integrates directly to give,

F(t\g) = a°(UR2-"2) (49)
16R3

This is equivalent to the expression Pexit used in the transition algorithm.

Calculation of the New Bubble Radius

After completing a bubble growth cycle, the location of all particles placed during the

cycle is known. The mole fraction in the bubble, xbub is taken to be the ratio of the number

34

of particles ending in the bubble and the total number of particles placed during the cycle

from Equation 8. The number of moles of gas in the bubble is then calculated as,

"bub = Xbubntot <5°)

Assuming the ideal gas law and using the expression for bubble pressure derived in equation

3 gives,

(Pa.ö^-P^-P^i^-rl^n^RT (51)
rbub 3

This reduces to the cubic polynomial,

^amb-Pvap-Pmybub^rlb-nhubRT = 0 (52)

The real positive root of this polynomial is the new bubble radius. If the bubble radius

becomes less than the step size or the critical radius, the bubble vanishes.

Derivation of Wash-out Probability

Our intention is to apply the model to study gas wash-out from animals and humans

during decompression. Although this goal requires us to model heterogeneously distributed

sources and sinks, we begin with tissue taken to be homogeneously perfused for simplicity.

This assumption implies that the amount of gas washed out per unit time from the

tissue is inversely proportional to the tissue time constant, T. Thus during a single diffusion

step of time t^, tstep/T of the material will wash out. This allows us to define pwash = tstep/T

as the probability of washing out on a single step so that we can calculate the wash-out

probability after n^,,, steps as,

35

Pcycle=Pwash^ +(* -PwaJ^1 -Py**?*" ^wash^1 -/\WB/**~1 (53)

which can be expressed as,

p =D .1~^~Pwasl)nCyCle (54)
cycle rWash i /i _ \

which reduces to,

cycle~ "• "wash'

Alternatively for ease of calculation, this can be expressed as an exponential since if e"

pwash is expanded as a Taylor series it is easy to see that for small values of pwash, (l-pwash) is

approximately equal to e"pwash. In fact, if pwash< 0.075 this approximation is accurate to within

4%. Since pwash is generally smaller than this we can rewrite pcycle as,

p =\-e -no*k:p'"»A (56)
cycle

Since n^'Pwash = n^-t^/T = tcycle/T, this can be written as,

P =\-e T r
cycle x e

The inert gas concentration in tissue after wash-out (Cadj) can be obtained by

recognizing that Pcycle is simply the fraction of the concentration above the asymptotic value

(concentration when t = oo) removed during wash-out, so that,

or

36

P , = C° Cadj (58)
«* CQ-Cm

Caäj = Co-PcycleVo-CJ <59)

where

C0 = concentration before adjusting for wash-out
Coo = concentration when t=oo .

and Co, is computed from the arterial inert gas tension, (Painert), which we assume to be equal

to the alveolar inert gas tension, (PMmrt) calculated as (22),

P^ = p^-(Vpv,+iV (60)

where,

P^ = vp-*"p^"%i (61)

Combining these two equations yields,

^ = (P->-r^V-\) (62)

where:
PAC02 = Alveolar carbon dioxide partial pressure (mmHg)
PA02 = Alveolar oxygen partial pressure (mmHg)
Fi02 = Inspired oxygen fraction

so that,

Cnr
P-W 1 (wotes).a (63)
760 22.4 l-ata

37

and

P
C = C -P <C - ""*"• x -a\ (^ <-adj L0 ^cycle^O ?6() ^ ^

Mxsfe/ Testing

We tested our model by first verifying that the equilibrium conditions predicted by

Tikuisis and Ward (17,18) were met for closed systems with one gas as calculated by the

equations in Appendix A. Wash-out was then simulated without the presence of a bubble and

compared with the expected single exponential curve. Next, we compared the solution with

that of a partial differential equation model. Finally, we developed measures for

summarizing the inherently variable Monte Carlo simulations and examined the model's

performance at different levels of precision.

For comparison of the time course of bubble evolution with that produced by a

standard method, we solve the partial differential equation (PDE):

dl*L = D^bl + 2 ^£) (65)
dt dr2 r dr

where Pliq is the pressure of inert gas in the tissue, D is the diffusion coefficient, t is time,

and r the radial coordinate. The boundary at the bubble-liquid interface satisfies the

condition that the inert gas partial pressure near the bubble in the liquid is the same as that in

the bubble and also satisfies the condition that the flux into the bubble is dependent on the

gradient in the liquid near the bubble so that,

38

—l- = -aDA.—^ I r (66)

Where n, is the number of moles in the tissue, a is the solubility, and Abub is the surface area

of the bubble of radius rbub. The outer boundary is a reflection boundary. The internal

bubble pressure is given by Equation 3. The real positive root of Equation 52 is the new

bubble radius. Gas wash-out is assumed to be uniform throughout the liquid. It is calculated

assuming the rate of gas elimination is proportional to the amount of gas present. We have

developed a solution to this system using the Crank-Nicholson method.

Because Monte Carlo models are based on random samples from the distributions of

interest, no two simulations will be the same. As a consequence it is necessary to do

multiple runs and use summary measures for comparisons. To estimate the variability in our

model predictions we did 10 runs at 3 different levels of particle density precision: 2 x 108

particles/cm3, 4 x 108 particles/cm3, and 8 x 108 particles/cm3. (For comparison, water in

equilibrium with nitrogen gas at 1 ATA and room temperature has approximately 5 x 1017

molecules of N2/cm3.) When summarizing the 10 runs at a given level of precision, five

measures are of particular interest: the maximum radius achieved (r,^), time to maximum

radius (t,^), time to bubble dissolution (tdis), mean transit time (TT), and relative dispersion

of the transit times (RD) (2325). RD is equal to the standard deviation of the TT divided by

the mean TT. From the moment of the step change in P.^,,, t^ and tdis are measured.

Mean TT and RD do not represent the parameters of a single transit time distribution, as they

do under normobaric conditions. This is because the evolving bubble continuously changes

39

the transit time distribution of the system. Nevertheless, this approach was selected because

these measures represent a simple means for quantifying the effect of bubble evolution on gas

transit through tissue, which is readily comparable with prior work.

The transit time probability density function describes the distribution of the transit

times of all the inert gas particles in the tissue. If we express the transit time probability

density function f(t) as,

M =£, Bf -'/P.- (67)

where the B; and ßj constants, the wash-out function g(t) is given by,

8(t) = QcJLl-ffMdx) <68)

which reduces to,

where Qca is a scaling factor attributable to the blood flow and wash-in concentration.

Furthermore, we know that,

TT = £. ß,ß? (70)

40

and

m _ /P(E, ß,P')-"-2l (71)
7T

In order to estimate TT and RD, we fit g(t) to the simulated wash-out curves produced by the

model, then use the exponential parameters to calculate our estimates of the mean transit time

and relative dispersion of transit times (26).

Model Parameters

The parameters for the model can be divided into three categories: (1) the physical

variables, (2) the boundary values immediately after the bubble is formed, and (3) the

simulation control inputs. The physical variables include the pressure profile, surface

tension, bubble density, washout time constant, the diffusion coefficient, and the Ostwald

solubility coefficient for the liquid. The immediate post-bubble formation boundary

conditions can range from uniform gas distribution to depletion of the inner most shells of the

inert gas in the bubble but maintaining partial pressure equilibrium across the boundary. The

simulation control parameters, grid size, and bubble growth cycle time were selected so as to

assure the stability of the solution. The simulation results were considered stable when

changes in either variable did not substantially alter the bubble evolution curves.

The values of the parameters used for the test runs are summarized in Table 1 by

equation number and reference. Those values marked with a PDE, were used in the Monte

Carlo - PDE comparison. The remainder of the physiological parameters were the same for

41

all comparisons. For those parameters marked "see text" in the reference column, the

following provides the rationale for the values selected.

The values selected for Vliq were chosen for computational efficiency, but as close as

possible to the physiological range. Francis et al. (31,32) reported bubble densities in cross

sections of dog spinal cords ranging from 0.007 ± 0.017 bubbles/mm2 to 0.251 ± 0.487

bubbles/mm2. This corresponds to an intrabubble distance of approximately 10 mm to 2 mm.

If these values are assumed to also represent the vertical intrabubble distance and bubbles are

assumed to be uniformly distributed, the bubble density would range from 1 bubble/cm3 to

125 bubbles/cm3. Since some cord sections had 1 bubble/mm2 the maximum density may

extend to 1000 bubbles/cm3. Low-density systems require more computer execution time

because of the larger liquid volume they represent. Densities in the physiological range are

impractical given our current computer technology. Consequently, we arbitrarily selected

2000 bubbles/cm3 and 8000 bubbles/cm3 even though such densities might exist only in

extremely severe decompression sickness. These represent tissue volumes of 0.0005 and

0.000125 cm3, respectively.

The pressure step from P^ (2 ATA) to P^,, (1 ATA) was selected arbitrarily.

The value for the initial bubble size (rbub) for the equilibrium test was 6.5 microns.

Ten to twenty percent of the bubbles with this starting radius shrink below the step size

because of random fluctuations before they are able to reach a size close to the equilibrium

radius. We increased the starting radius to 9.2 microns for the Monte Carlo and PDE

comparison tests to avoid this problem.

Diffusion coefficients for nitrogen range from 0.6 x 10"5 cm2/sec to 2.2 x 10s cm2/sec

42

for tissue with water content between 65% and 100%. Tendon and bone are approximately

65% water, muscle is approximately 75% water, and brain is approximately 85% water with

corresponding diffusion coefficients of about 0.6 x 10"5, 0.75 x 10"5, and 1.5 x 10s cm2/sec

(29,30). The choice of diffusion coefficient affects computer execution speed, i.e., in that

slower diffusion requires less computer execution time. We ran the equilibrium test at 0.5 x

10"5 cm2/sec, but to remain in a physiological range, we used a diffusion coefficient of 0.75 x

10"5 cm2/sec for the Monte Carlo - PDE comparison tests.

The grid size for all tests was 2.5 microns, which corresponds to a diffusion step size,

(a), of 4.3 microns. Diffusion step size in the Monte Carlo model and the grid size in the

PDE model were selected to assure that smaller values would not change the solution.

The number of steps in a bubble growth cycle was set at 50 for both the equilibrium

and Monte Carlo - PDE comparison tests. Because the diffusion coefficients were different

for the two tests while the grid size remained the same, the time for a single step as

calculated by Equation 26 was different. This results in bubble growth cycle time of 0.3125

seconds for the equilibrium test, but 0.21 seconds for the Monte Carlo - PDE comparison

test.

Longer tissue wash-out times require more computer execution time, so we selected

tissue times that were relatively fast but close to the physiologic range. This resulted in our

choice of 2.5 and 10 minutes for the tests.

RESULTS

The critical (r^ and equilibrium (r^ radii for our system with a volume of 0.000125

cm3 (8,000 bubbles/cm3) and 0.0005 cm3 (2,000 bubbles/cm3) without mass transfer were 1.4

43

microns and 70.4 microns, respectively. Figure 9 demonstrates the model's ability to reach

the predicted equilibrium radius (re) when the system is closed to mass transfer. A bubble

with a radius greater than re shrinks to re and a bubble smaller than re grows to it.

The simulated inert gas wash-out without a bubble precisely matched the expected

single exponential curve predicted by a well-stirred model.

The Monte Carlo and PDE predictions are compared in Table 2 and an illustrative

condition is presented in Figures 10 and 11. The four combinations of bubble density and

wash-out time referred to as conditions I-IV are presented in Table 2. Condition IV was not

calculated for the PDE model because of the computational time required. Mean transit time

and relative dispersion for condition II and the PDE model were not calculated because of

difficulties encountered in fitting the wash-out curves with Equation 69. Values for the

Monte Carlo mean r^ compare favorably with the PDE r,^ for conditions I-EQ. Because of

the variability in the Monte Carlo method, the remainder of the measures are not as closely

matched. However, almost all fall within one standard deviation of the mean. In general,

the predictions of the Monte Carlo and PDE models are similar as is graphically illustrated

for condition I in Figures 10 and 11. Figures 12 and 13 show the variability of the model

predictions according to the number of particles in each simulation for bubble radius verses

time; Figure 12 has 2 x 108 particles/cm3 and Figure 11 has 8 x 108 particles/cm3. Figures 14

and 15 are the corresponding graphs for gas wash-out. They show the number of moles of

gas in the system over time. Each figure contains curves from 10 separate simulations using

the same starting conditions. The expected single exponential curves for inert gas wash-out

without the presence of a bubble are shown for comparison in the bottom of Figures 14 and

44

o
JD
ID
Z>

85

68 -

co
c
o »

I 51
CO

cr 34 -

17

0
0 220 440 660 880 1100

T irr.e (sec)

FIGURE 9 - Graph of simulation output for bubble evolution in a system closed to inert gas
transport with initial bubble radii greater than and less than the expected equilibrium bubble
radius. Tissue volume is 1.25 x 10"4 cm3. Note that both simulations converge to the
equilibrium radius predicted by the quartic polynomial in Appendix A (70.4 microns).

45

TABLE 2- Comparison of Monte Carlo and partial differential equation model
predictions of the time course of bubble evolution

Condition I II III rv
Bubble Density
(bubbles/cm3)

8,000 8,000 2,000 2,000

Wash-out Time
(sec)

150 600 150 600

critical radius
(microns)

1.4 1.4 1.4 1.4

equilibrium radius
(microns)

70.4 70.4 112.3 112.3

Monte Carlo Model

number of runs 10 10 10 10

fmax1 (microns) 43.0±2.7 61.7±2.1 42.8±5.3 80.3±1.5

tmax' (Sec) 342.1 ±146.1 545.6± 133.9 282.7± 107.9 820.8± 143.6

tdis1 (sec) 950.4 ±140.5 3799.6±349.4 771.3±203.3 4918.5±845.8

Mean Transit Time1'5 286.8±37.23 2039.2±227.33 177.1±17.43 1403.0±164.74

Relative Dispersion1'5 1.44±0.133 1.16±0.043 1.19±0.143 1.0*

Partial Differential
Equation Model

r-nax (microns) 40.5 59.5 43.2 *

tmax (SeC) 236.0 504.3 277.2 *

tdis (sec) 965.0 3930.0 1013.0 *

Mean Transit
Time2'3'5

301.3±26.5 * 185.5±3.0 *

Relative
Dispersion2,3'5

1.26±0.07 * 1.21±0.009 *

1. Mean ± s.d., coefficient of variation (s.d./mean)). 2. Estimated from 1 (1,2, and 1 runs respectively) and 2 exponential fits of
simulated wash-out data. 3. Mean transit time for liquid without a bubble is 150 seconds with a relative dispersion of 1. 4. Estimated from
1-exponential fit of simulated wash-out data. 4. Estimated from 1-exponential fit of simulated wash-out data. 5. Mean transit time for
liquid without a bubble is equal to the wash-out time. The relative dispersion is 1.Dissolution for the Monte Carlo model occurs when rbub

is 4.3 microns. * - not studied.

46

50

40 -

GO c
o
Ü

E 30
00

03
cc
-^
-Q
_Q
Z)
m

20

10

0
0 500 1000 1500

Time (sec)

FIGURE 10 - Graph of Monte Carlo
course for condition I.

and PDE (O) predictions of bubble evolution time

47

1.10

0.88

o

LU
0.66

x

© 0.44
o

0.22

0.00
0 500 1000 1500

'ime (sec)

FIGURE 11 - Graph of Monte Carlo
time for condition I.

and PDE (O) predictions of gas wash-out versus

48

50

40

CO

O
o

"c Q

CO

03
CC

jQ
_Q
Z>

CD

0

20

0

0
0 500 1000 1500

Time (sec)

FIGURE 12 - Graph of bubble radius versus time for low precision simulation (2 x 108

particles/cm3). Tissue volume is 1.25 x 10"4 cm3.

49

50

00 c
o
o
'E
CO
D
'u
CO
rr

®
JD
JD
Z5

CD

40 -

30

20 -i

10

0
0 500 1000 1500

ime (sec)

FIGURE 13 - Graph of bubble radius versus time for higher precision simulation (8 x 108

particles/cm3). Tissue volume is 1.25 x 10"4 cm3.

50

o

LLI

X

1.10

0.88 -

0.66 r

© 0.44
o

0.22

0.00
0 v_; 00 1000 1500

Time (sec)

FIGURE 14 - Graph of gas wash-out versus time for low precision simulation (2 x 108

particles/cm3). Thin line represents the expected wash-out for the tissue without a bubble.
Tissue volume is 1.25 x 10"4 cm3.

51

1.10

0.88 -

o

LU

X

0.66 -

o 0.44
o

0.22

0.00
0 500 1CC0 1500

Time (sec)

FIGURE 15 - Graph of gas wash-out versus time for higher precision simulation (8 x 108

particles/cm3). Thin line represents the expected wash-out for the tissue without a bubble.
Tissue volume is 1.25x 10"4 cm3.

52

15. These figures illustrate the variability inherent in a method based on Monte Carlo

methods, and the need for summary measures for comparing results.

The summary measures, mean ± S.D. and coefficients of variation (S.D./mean) of

the maximum radius achieved (r^J, time to maximum radius (t^J, time to bubble

dissolution (tdis), mean transit time, and relative dispersion of the transit times, for 10

simulation runs at each of the three particle density precisions (2 x 108/cm3, 4 x 108/cm3, and

8 x 108/cm3) are presented in Table 3. In our test system, 10 - 20 % of the bubbles with a

starting radius of 6.5 microns shrink below the step size before they are able to reach a size

close to the equilibrium radius. As a consequence, the results are biased towards fast-

growing bubbles, although the size of the bias is probably small.

These results illustrate that increasing particle density in a bubble growth cycle does

not affect the precision of outcome measures equally; since each particle's transit through the

module is independent, we might expect that the precision of the outcome measures improves

proportionally to the square root of the relative increase in particle density. This would

imply that the coefficient of variation (cv) for the highest particle density run in Table 3

would be half the cv for the lowest density run. While r,^, t,^ and tdis approximate this

expected improvement, the mean transit time and relative dispersion of the transit times do

not. Since precision for all measures will improve proportionally with the square root of the

number of complete runs, multiple runs at low particle density may be a more efficient use of

computer resources than a few high precision runs for estimating the mean transit time and

the relative dispersion. More exhaustive testing will be required to determine this

definitively.

53

TABLE 3: Precision of Outcome Measures as a Function of Particle Density

Particle Density

2 x lOVcm3 4 x lOVcm3 8 x 108/cm3

(n=10) (n=10) (n=10)

Tmax1 0*) 34.5±7.6, 0.22 33.3±4.6, 0.14 32.5±4.7, 0.14

Os) 228.3±127.2, 0.56 271.9±122.2, 0.45 280.6±83.8, 0.30

tdiAs) 657.1 ±273.4, 041 793.4±274.6, 0.35 838.1 ±177.4,0.21

Mean Transit Time1'2,3 204.3±45.3, 0.22 196.9±25.4, 0.13 200.4±28.9, 0.14

Relative Dispersion1'2*3 1.21±0.18, 0.15 1.23±0.17, 0.14 1.27±0.17, 0.13

1. Mean ± s.d., coefficient of variation (s.d./mean)).
2. Estimated from 1 (1,2, and 1 runs respectively) and 2 exponential fits of simulated wash-out data.
3. Mean transit time for liquid without a bubble is 150 seconds with a relative dispersion of 1.4. Estimated from
1-exponential fit of simulated wash-out data.
4. Estimated from 1-exponential fit of simulated wash-out data.
5. Mean transit time for liquid without a bubble is equal to the wash-out time. The relative dispersion is 1.
Dissolution for the Monte Carlo model occurs when rbub is 4.3 microns.

54

The program execution speed is directly proportional to the number of particles

simulated. Since larger volumes require more particles to obtain the same number of bubble-

liquid transitions, larger volumes require longer execution speeds. The relationship among

the number of steps taken in a bubble growth cycle, the grid size and volume and execution

speed is more complex since all these factors influence the proportion of particles that will be

able to take a bigstep in the liquid region.

DISCUSSION

Our ultimate goal is the development of a physiologically based method of

constructing decompression schedules. Since the effect of extravascular bubbles on inert gas

exchange must be included in such an endeavor, we set out to develop a method for

constructing models of bubble evolution during decompression that would allow for

previously excluded details of the physiological environment such as complex microvascular

architectures.

As a first step in this direction, this report introduces a model of bubble evolution

during decompression in a homogenous liquid based on a Monte Carlo simulation of

diffusion. The major advantage of this method is that in theory, details of the biological

environment can be incorporated that are not feasible using traditional modeling methods.

The major disadvantage is that Monte Carlo simulations require large amounts of computer

execution time. Other disadvantages include the inherent variability in the model predictions,

which requires multiple runs and the use of summary measures for comparisons, and the

dependence of execution time on the volume of the liquid being simulated. Limitations of the

current simplified model are the assumptions of liquid homogeneity, uniform gas wash-out,

55

uniform bubble size and distribution, radial symmetry, and the use of a spherical region

which is not space filling.

Two features of this approach are novel to Monte Carlo models of diffusion and

contribute to its relative efficiency. First, use of the probability distribution of the distance a

particle travels in the liquid phase to replace many single diffusion steps dramatically

increases the program's execution speed. It also invites the development of other

distributional approaches. Second, treating the bubble as a high solubility region allows us to

model gas particle flux without developing a detailed kinetic model of particle behavior inside

the bubble.

The results presented in this report confirm the fact that a Monte Carlo approach can

produce the equilibrium results expected from independent calculations and compares

favorably with the predicted time course of bubble evolution predicted by a PDE model.

Future model development could progress in several ways. Effort at improving the

efficiency of the algorithm could result in execution times that are competitive with traditional

methods. One approach is to attempt to generalize the probability distribution function so as

to calculate in advance a distribution that includes both diffusion and transition into and out

of the bubble. Sampling from the distribution of particle residence times in the bubble could

also improve efficiency. The final step would be to develop a single distribution which

would combine all of these elements. For the special case of the spherically symmetric

bubble-liquid module, the problem can be reduced to a one dimensional random walk. The

theoretical background for these approaches is outlined in Appendix D.

Moving the program to a computer capable of parallel or vector processing might also

56

improve execution speed since each particle's path is independent of every other particle and

could be calculated separately (33).

In the current implementation we treat metabolic gases as constants for simplicity.

Alternatively, each type of gas could be treated stochastically based on its solubility, tissue

time and diffusion coefficient and tracked separately through a bubble growth cycle. An

additional "metabolic conversion" probability would need to be applied to account for the

consumption of oxygen and production of carbon dioxide. Multiple inert gases could also be

handled individually. Multiple gas simulations are restricted by execution speed since each

new gas requires the addition of an equal number of particles to maintain precision. So a

model with nitrogen, helium and oxygen would require three times as many particles as the

simulations in this report.

The influence of bubble interactions may be another area of study. This would

require a further partitioning of the liquid region in order to more precisely record the

gradient in the liquid. Since each liquid region requires a minimum number of particles to

ensure a large enough number of particle transitions between regions in each bubble growth

cycle, this approach would also require considerably more execution time. A similar

approach could be taken to include details of the tissue micro-architecture. Incorporation of a

symmetrical, space-filling liquid region would allow generalization from one liquid module to

an entire liquid slab without concern about errors introduced by the use of non space-filling

liquid regions currently employed (34).

Ultimate model testing depends on experiments conducted in in vitro and in vivo

systems. If experimental methods with sufficient resolving power are developed, direct

57

testing could be conducted by comparing predicted rmax, t^ and tdis with experimental results.

An indirect approach could be taken with present technology by comparing predicted transit

time measures with those observed in animal experiments conducted with radiolabeled gases

(24,25).

58

REFERENCES

1. Weathersby, P.K., Homer, L.D., Parker, E.C., Thalmann, E.D., "Predicting the time of

occurrence of decompression sickness," Journal of Applied Physiology. Vol. 72, pp. 1541-

1548, 1992.

2. Parker, E.C., Survanshi, S.S., Weathersby, P.K., Thalmann, E.D., Statistically based

decompression tables VIII: Linear-exponential kinetics, NMRI No. 92-73, Naval Medical

Research Institute, Bethesda, MD, 1992.

3. Weathersby, P.K., Survanshi, S.S., Nishi, R.Y., Thalmann, E.D., Statistically Based

Decompression Tables VII: Selection and Treatment of Primary Air andN202 Data.

NSMRL No. 1182 and NMRI No. 92-85, Naval Submarine Medical Research Laboratory,

Groton, CT; Naval Medical Research Institute, Betheda, MD, 1992.

4. Thalmann, E.D., Phase II testing of decompression algorithms for use in the U.S. Navy

underwater decompression computer, NEDU No. 1-84, Navy Experimental Diving Unit,

Panama City, FL, 1984.

5. Thalmann, E.D., Development of a decompression algorithm for constant 0.7 ATA

oxygen partial pressure in helium diving, NEDU No. 1-85, Navy Experimental Diving

Unit, Panama City, FL, 1985a.

59

6. Thalmann, E.D., Air-N202 decompression computer algorithm development, NEDU No.

8-85, Navy Experimental Diving Unit, Panama City, FL, 1985b.

7. D'Aoust, B.G., Smith, K.H., Swanson, H.T., "Decompression-induced decrease in

nitrogen elimination rate in awake dogs," Journal of Applied Physiology, Vol. 41, pp. 348-

355, 1976.

8. Hills, B.A., "Effect of decompression per se on nitrogen elimination," Journal of

Applied Physiology: Respiration, Environmental, and Exercise Physiology, Vol. 45, pp. 916-

921, 1978.

9. Kindwall, E.P., Baz, A., Lightfoot, E.N., Lanphier, E.H., Seirig, A. , "Nitrogen

elimination in man during decompression," Undersea Biomedical Research, Vol 2, pp 285-

297, 1975.

10. Homer, L.D., Weathersby, P.K.. "How well mixed is inert gas in tissues?" Journal of

Applied Physiology, Vol. 60, pp. 2079-2088, 1986.

11. Homer LD, Weathersby PK, Survanshi S. How countercurrent blood flow and uneven

perfusion affect the motion of inert gas. J Appl Physiol 69:162-170, 1990.

60

12. Himm, J., Homer, L.D., Novotny, J.A., "The effect of lipid on xenon kinetics,"

Journal of Applied Physiology (in press),

13. Epstein, P.S., Plesset , "On the stability of gas bubbles in liquid-gas solutions," Journal

of Chemistry and Physics, Vol. 18, pp. 1505-1509, 1950.

14. Law, A.M., Kelton, W.D., Simulation Modeling and Analysis, McGraw-Hill, 1982.

15. Weathersby, P.K., Homer, L.D., Flynn, E.T., "Homogenous nucleation of gas bubbles

in vivo," Journal of Applied Physiology, Vol. 53, pp. 940-946, 1982.

16. Tikuisis, P,. "Modeling the observations of in vivo bubble formation with hydrophobic

crevices," UnderseaBiomedicalResearch, Vol. 13, pp. 165-180, 1986.

17. Ward, CA., Tikuisis, P., Venter, R.D., "Stability of bubbles in a closed volume of

liquid-gas solution," Journal of Applied Physics, Vol. 53, pp. 6076-6084, 1982.

18. Tikuisis, P., Ward, C.A., Venter, R.D., "Bubble evolution in a stirred volume of liquid

closed to mass transport," Journal of Applied Physics, Vol. 54, pp. 1-9, 1983.

19. Wilks, S.S., Mathematical Statistics, John Wiley and Sons, New York, 1962.

61

20. Crank, J., Mathematics of Diffusion, Oxford University Press, 1975, p 29.

21. Cussler, E., Diffusion mass transfer in liquid systems. Section 5.1, Cambridge

University Press, New York, 1984.

22. West, JB., Respiratoryphysiology-The essentials, Williams and Wilkins, 1979

23. Weathersby, P.K., Barnard, E.E.P., Homer, L.D., Mendenhall, K.G., "A stochastic

description of inert gas exchange.," Journal of Applied Physiology, Vol. 47, pp. 1263-69,

1979.

24. Weathersby, P.K., Mendenhall, K.G., Barnard, E.E.P., Homer, LD., Survanshi, S.,

Vieras, F., "Distribution of xenon exchange rates in dogs," Journal of Applied Physiology,

Vol. 50, pp. 1325-1336, 1981.

25. Novotny, J.A., Mayers, D.L., Parsons, Y.J., Survanshi, S.S., Weathersby, P.K.,

Homer, L.D., "Xenon kinetics in muscle are not explained by a model of parallel perfusion-

limited compartments," Journal of Applied Physiology, Vol. 68:, pp. 76-890, 1990.

26. SYSTAT: The system for statistics, Evanston, IL: SYSTAT, Inc, 1990.

62

27. Van Liew, H.D., "Simulation of the dynamics of decompression sickness bubbles and

the generation of new bubbles," Undersea Biomedical Research, Vol. 18, pp. 333-345, 1991.

28. Weathersby, P.K., Homer, L.D., "Solubility of inert gases in biological fluids and

tissues: a review," Undersea Biomedical Research, Vol. 7, pp. 277-296, 1980.

29. Varysel, P., "Effect of percentage water content in tissues and solids on the diffusion

coefficients of 02, C02, and N2," Pfluegers Archives, Vol. 361, pp. 201-204, 1976.

30. Allen, T.H., Krzywicki, HJ., Roberts, J.E., "Density, fat, water and solids in freshly

isolated tissues," Journal of Applied Physiology, Vol. 4, pp. 1005-1008, 1959.

31. Francis, T.J.R., Pezeshkpour, G.H., Dutka, J., Hallenback, J.M., Flynn, E.T., "Is

there a role for autochthonous bubbles in the pathogenesis of spinal cord decompression

sickness?" Journal of Neuropathology and Experimental Neurology, Vol. 47, pp. 475-487,

1988.

32. Francis, T.J.R., Griffin, J.L., Homer, L.D., Pezeshkpour, G.H., Dutka, A.J., Flynn,

E.T., "Bubble-induced dysfunction in acute spinal cord decompression sickness," Journal of

Applied Physiology, Vol. 68, pp. 1368-1375, 1990.

63

33. International youth workshop on Monte Carlo methods and parallel algorithms, Sendov,

B.H., Dimov, I., eds., World Scientific, 1989.

34. Theodorou, D.N., Suter, U.W., "Geometrical considerations in model systems with

periodic boundaries," Journal of Chemistry and Physics, Vol. 82, pp.955-966, 1985.

35. Pollack, G.L., Kennan, R.P., Himm, J.F., Carr, P.W., "Solubility of xenon in 45

organic solvents including cycloalkanes, acids and alkanals: Experiment and theory,"

Journal of Chemistry and Physics, Vol. 90, pp. 6569-6579, 1989.

64

APPENDIX A: Determination of Equilibrium Radii

The polynomial (17,18) which describes the 2 equilibrium radii in a closed system with
one inert gas is:

a4r
4 + a3r

3 + axr + aQ = 0 (Al)

where:

a4 = AU'P(l-PJP)ß-cs-k-T
a3 = 8n-Y/3-cs*-T

«i = V(\-PJP)-Nlcs

a0 = 2rV/P

and
r = bubble equilibrium radii, (cm)
P = ambient inert gas partial pressure after pressure step, (mmHg)
Pvap = vapor pressure of water, (constant), (mmHg)
cs = saturation concentration of inert gas in the solvent, (moles/cm3)

For weak solutions cs = c,-P/KH, where:
c, = molar concentration of the solvent, (moles/cm3)
KH = Henry's coefficient = PH/([(k-T/(VL-a-PH))+l]1), (mmHg) (35)
where:

VL = molar volume of solvent (1/c,), cmVmole
a = Ostwald solubility coefficient
PH = 760 mmHg

k = Universal gas constant in (cm3 mmHg)/(mole K)
T = temperature in Kelvin
y = surface tension, (mmHg-cm)
V = volume of depleted region (inverse of bubble density), (cm3)
N = number of moles of inert gas in the volume V at cs, (moles)

65

APPENDIX B: Derivation of Initial Particle Placement Coordinates

We need to create the desired distribution from a uniform random variable between 0 and

1 generated by the computer. Because our volume is a sphere, we begin in spherical coordinates

p, 9 and (|) where p is the radial coordinate, 0 the azimuthal angle between 0 and 71, and (j)

orthogonal to 0, between 0 and 27t. These variables are mutually independent, therefore we must

generate a distribution for each of thenu

Let U be a uniform random variable on [0,1], with the probability density function (PDF)

f(u) and the cumulative distribution function (CDF) F(u), where u is a particular value of U.

Let p, 0 and (j) be random variables with PDF's gp, ge and g^ and CDF's Gp, G0 and G$ such

that p, 0 and § are distributed uniformly by volume. For illustrative purposes we will

demonstrate the procedure in detail for p, although similar expressions can be written for the

other variables, 0 and ((). By definition,

volume of a sphere with pn^p^p, ^^
Prob{pQ±p±p1}=Gp(pl)-Gp(Po)= . , . , ,° l W p p total volume of the sphere

where p, and f\ are arbitrarily selected values.

We need to find the monotonic transformations hp(u), he(u) and h,j,(u), such that p=hp(u),

0=he(u) and (|)=h^(u). So for example, we must find hp(u) such that,

volume ofasphere with p0 <. p <. p,
Prob{p0zh (K)*Pik p totalvolume of the sphere

^(P?-PJ> w

3

66

where R is the radius of the sphere.

To generate the desired distribution from the uniform distribution, we require,

Prob{p3ip(u)} = Prob{U^i} which by definition of a CDF implies that Gp(hp(u)) = F(u).

Gp(hp(u)) = F(u) (B3a)

Differentiating both sides of (B3a) and applying the chain rule gives,

5p(p)-Ä'p(«)=A") (B3b>

By substituting hp'^p) for u and recognizing that f(u)=l on [0,1], we obtain,

1 _ 1 (B4)
8pP *>) h>p(h-p\p))

Integrating gives,

GP(P)=/ \ dp
Ä'pCftp (P))

Combining equations Bl, B2, and B5 for p we obtain,

f——dp

3

Taking the derivative with respect to P! yields,

K(h:\p)) R2

67

(B5)

471. 3 3,
Pl- « T(Pi-Po) m

3p? (B7)

which is equivalent to,

1 3AP
2(«) (B8)

V«) *3

since hp(u) = p by definition. We can rearrange to obtain the differential equation,

dhp_ R3 (B9)
du 3h2

p(u)

which can be integrated to obtain the expression,

h=Ru3
p

(BIO)

Recognizing that for 0,

/ t u :ua o a —Ä3(-COS(e,)+008(6-)) volume of a sphere with QQzQzd1 3
x «^

toto/ volume of the sphere 4n_ „ 3
3

(Bll)

and for (J),

2
volume of a sphere with $^$4^ "3 Wl °^ (B12)

tota/ volume of the sphere 4rc „ 3

3

similar approaches can be taken to obtain results for these other variables. Solving for h in each

case we obtain,

68

and

fte(w) = 6 = arccos(l-2w)

h^u) = $ = 2-K-U

69

(B13)

(B14)

APPENDIX C: Approaches to Increasing Execution Speed

1. Distribution of Particle Residence Times in the Bubble

The probability of the particle being available to exit the bubble after n steps can be

calculated. During a single step the particle has one chance of being available to exit, so the

probability of being available after n steps can be calculated as,

(Cl)
P»*PJV +d -PJ>

+d -pj1*- +PJH -PJT1)

which can be expressed as,

P D
l-v-p«r <C2>

From this we can solve for (l-pexit)
n,

P„ (C3)

Pexit

then applying logarithms we obtain,

lnd-Ad-d-p^)))
Pent n = —
W-PeJ

(C4)

Since pexit=l-(l-pexit),

ln(l-P„) (C5)

so that if we randomly generate Pn between 0 and 1, the number of steps before the particle is

available can be calculated.

70

Alternatively, for pexi<D.075 the geometric distribution can be approximated by the

exponential distribution (21) so that,

n=-—-ln(«) (C6)
exit

where u is a uniform random variable.

If the number of steps generated from the distribution is greater than the number of steps

in a bubble growth cycle, n^, the particle remains unavailable to exit during the bubble growth

cycle. If it is less than n^^ then for (n,.yüe - n) the particle takes individual steps.

This approach can be applied if pexit is defined as described in the main body of the text

or if the additional pout factor were included.

2. Distribution of particles outside the bubble

If x is the random variable that describes the distance outside the bubble boundary, we

can obtain an expression for the distribution of the particles outside the bubble by integrating

P(t | g) with respect to z and normalizing the result by the expression for pexit,

r 3a\2aiR+z)-(a2+2Rz+z3)]lR+z]dz

«A - i **!
a(12R2-a2)

16/?3

(C7)

which reduces to,

H(x)=
_ -x(3x3-Sax2+12Rx2+l2xR2-24axR+6a2x+12Ra2-24aR2) (C8)

a\\2Rl-al)

71

3. One dimensional random walk for a spherically symmetric bubble-liquid module

The algorithm described in the main body of this report is general enough to

accommodate a heterogeneous, asymmetric diffusion environment. However, a spherically

symmetric bubble-liquid module can be studied as a first approximation to a more complicated

geometry. Because of the symmetry in this environment, the three-dimensional random walk can

be reduced to a one-dimensional random walk in order to increase the efficiency of the

algorithm. A subroutine FASTSTEP has been developed that implements this one-dimensional

algorithm.

Subroutine FASTSTEP uses the law of cosines to generate a new position r' for a particle

initially at a distance r from the origin, and stepping a distance (a) at an angle (|) to the radius

vector, as shown in Figure 14. The equation giving r' is then,

(C9)
/2 = a2+r2-2wr-cos($)

where the cosine term is randomly generated from a uniform random distribution by,

cos(4>) = 1 - 2-RAN(Il) (CIO)

and where II is a seed for the random number generating function RAN(x).

Using the geometry of Figure 15, subroutine FASTREFL takes particles that have stepped

out of the system and return them back into the system using reflection from the outer boundary.

In Figure 15, a particle initially at point P steps to point P', which is at a distance greater than

R, the radius of the system. In order to reflect the particle from the outer boundary to point P",

FASTREFL:

72

(1) Uses the quantities r, R, and cos((j)) (which is returned from subroutine

FASTSTEP) and the law of cosines to find distance d1?

d\ = r2+/?2-2r-/2-cos((j)) (Cll)

(2) Uses the law of sines to determine angle 0,

sin(6) = -sin(<J)) (C12)

R

(3) Applies the law of cosines a final time to determine r",

2 , (C13)
r"2 = 4+R2-2-d2-R-cos(Q)

where dj = a - dv

73

APPENDIX D: Fortran Source Code

The program was written using a Fortran compiler for Avalon accelerator boards installed

in a Vax 3800. The Fortran source code for the program is listed in Section Dl. In order to

execute the program, in addition to the executable code, an input file such as the example in

Section D2, and a file "DISTPROB.DAT" (which contains the values of the diffusion probability

distribution function obtained from numerical integration) are required. This file is produced by

the program listed in Section D3. An additional binary file, "BUBMOD.DMP", must also exist

prior to execution. This file contains information on the gradient that can be used to restart the

program in the middle of a run. The statement, iprofile=l in the input file tells the program

to use the information in the file. The output file created by the program contains information

on the time course of the bubble radius. A program listed in Section D4 can create alternative

initial boundary value conditions for the liquid surrounding the bubble. Section D5 contains

subroutines that can be used to implement the one-dimensional random walk version of the

program.

74

Section Dl. FORTRAN source code for Monte Carlo bubble simulation.

C- This program simulates bubble growth beginning with a bubble of
C- critical radius as defined by Tikuisis. The bubble is represented as
C- a region of high solubility surrounded by a "depleted region" from
C- which the inert gas is extracted. These two regions are placed in
C- a third region which represents the surrounding tissue.

implicit real*8 (a-h,o-z)
common /coml/xmin,xmax,ymin,ymax,zmin,zmax,rbub,rdep

common/com2/pi, i 1
common/distarr/distance(10000)
common/sincos/fact, scale, sinmat(0:9999) ,cosmat(0:9999)

common/com3/IA(3,24) ,aa(3,24)
common /com5/twopi,onethird

real*8 N2,N2dep,k,kH,molezone(500)
Dimension xx(3),rzonebeg(0:500),rzoneend(0:500),widezone(500)
dimension strtzone(500),endzone(500),fraczone(500),conczone(500)
dimension cummsum(0:500), vzone(500) ,rzsq(0:500)
data IA/1,1,1,1,1,-1,1,-1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,

+ 1,-1,-1,-1,
+ 1,1,1,-1,1,1,1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,
+ 1,1,1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1/

C- Define constants
zed=0.d0

Pi=4.d0*datan(l.d0)
twopi=2.d0*pi
scale=10000.d0
fact=scale/twopi
call gensine

c
c change 12/16/92 to include oxygen and co2 as additional gas
c components of the bubble, using values from van liew, pg. 336
c
c ph2o = 6.2 kPa = 46.52 mmHg
c po2 = 5.3 kPa = 39.76 mmHg
c pco2 = 5.9 kPa = 44.26 mmHg
c pco21ung = 5.3 kPa = 39.76 mmHg
c pvap= 46.52d0 + 39.76d0 + 44.26d0
c read in from input file below 1/18/93
c ph2o=46.52d0
c po2=39.76d0
c pco2=44.26d0
c pco21ung=39.76d0

75

c pvap=ph2o+po2+pco2
C- vapor pressure of water in bubble @ 37 C in mmHg

C1125 =0.055346
Cll=0.055140

C- pure solvent cone of water @ 37 C in moles/cc
k=62358.0

C- Boltzman's gas constant in mmHG-cc/mole-K
C- based on PV=kNT and STP conditions

R=62358.0
C- Universal gas constant in mmHg-cc/mole-K
C- based on published value of 0.08205 L-atm/mole-K

T=37.0+273.1
C- temperature in Kelvin

onethird=l.d0/3.d0
C Pvap=Pvap25
C cll=cll25

C- Input initial conditions and control variables.
C- ngrow=number of bubble growth cycles,
C- ntrip=number of independent trips thru tissue, nstep=number of steps per
C- trip, Suiten=surface tension of bubble (dynes/cm), PCbub=partition
C- coefficient of bubble (1/ostwald coefficient), D=diffusion coefficient
C- (cm sq/sec), Voldep0=initial volume of the depleted region (cu cc),
C- Voltiss = volume of cubical tissue region
C- P01=initial tissue pressure (mmHg), Pstep=decompression step (mmHg)

Rewind(l)
Read(l,900)ngrow,ntrip,nstep,surten,Pcbub,D,gridsize,Voldep0,

+ Voltiss,P01,Pstep,bubfact
900 Format(I12/I12/I12/gl5.7/gl5.7/gl5.7/gl5.7/gl5.7/

+ g15.7/gl5.7/gl5.7/gl5.7)
read(l, 1900)iprofile,nmicro,washoutt,pctn2

1900 format(il2/il2/gl5.7/gl5.7)
read(l, 1901)switch,volref,fracsd,ph2o,po2,pco2,pco21ung

1901 format(gl5.7)
close(l)
pvap=ph2o+po2+pco2

C- Input the array of diffusion distances as a function of probability
C- given in terms of the standard deviation

Open(unit = 1 ,file = 'distprob.dat' ,type = 'old')
Read(l ,899)(distance(i),i= 1,10000)

899 Format(fl7.2)
Close(l)

76

vol=voltiss+voldepO
C- Calculate dimensions of cubical region

call resize(vol,cubeside)
C- adjust units to mmHG-cm knowing 760 mmHg = 1.013X10*6 dyn/cm*2

Surten=Surten/1332.8
C- Calculate Henry's coefficient from PCbub

KH=760./((((R*T)/((l ./cll)*(l./PCbub) *760.)) +1)**-1.)
C- Calculate stepsize
c modify stepping array

call regrid(ia,aa,gridsize,stepsize)
C- Calculate bubble growth cycle time and tissue washout time

Dtime=stepsize*stepsize/(6. *D)
eyelet=nstep*Dtime
poofprob=1 .dO-dexp(-cyclet/washoutt)
if(washoutt.gt.86400.d0)poofprob=0.d0

C- Calculate the maximum distance a particle can travel by diffusion
onesd=dsqrt(2. dO*d*cyclet)
diffdist=5. d0*onesd

c
c figure out the width of the diffusion shells, switch = 0 is for
c a dimensionless run, with reference volume volref. switch < > 0 is
c an absolute run, with parameters unsealed,
c

if(switch.eq.0.dO)then
width=onesd *fracsd*(vol/volref)**onethird
if (width, gt. onesd)width=onesd

else
width=onesd*fracsd

end if
C- Write out the starting conditions

Open(unit=2,file='for002.dat' ,type= 'new')
Write(2,901)Ngrow,Ntrip,Nstep,Surten*1332.8,PCbub,D,

+ gridsize, stepsize ,P01 ,Pstep, VoldepO, voltiss
Close(2)

901 Format(3I9/5G15.4/4G15.4)

C- Begin a bubble growth cycle
time=0.
P1=P01
pln2==(p01-ph2o-pco21ung)*pctn2
pfn2=(p01-pstep-ph2o-pco21ung)*pctn2
Voldep=VoldepO
il = 182361+2*secnds(0.0)
lstrt=l

77

if(iprofile. ne. 0)then
c for a nonuniform initial concentration profile, put code in here

open(unit=7,file= 'bubmod.dmp' ,type= 'old' ,form= 'unformatted')
rewind(7)
read(7)lstrt,il,nzonebeg,time,volbub,calcpc,rbub,rdep,rbub0
read(7)re ,rc, currmole
read(7)(fraczone(i),molezone(i),conczone(i),i= 1 ,nzonebeg)
read(7)(rzonebeg(i),rzsq(i),vzone(i),i=1 ,nzonebeg)
close(7)
lstrt=lstrt+l
cs=cll*pln2/kh
N2=Cs*Vol
N2dep=Cs*Voldep
orgmoles=N2
If (VoldepO.gt.vol) orgmoles=n2dep
Pl=Pl-Pstep
csequil=c 1 l*pfn2/kh
rzonebeg(0)=0.dO
rzoneend(0)=0.dO
bubmoles=molezone(l)
open(unit=3,file= * for003.dat',type = 'new')
write(3,3000)0,time,rbub,volbub,calcpc,

+ (fraczone(i),rzonebeg(i),conczone(i),i=1 ,nzonebeg)
close(3)
depmoles=currmole-bubmoles
bubfrac =bubmoles/currmole
depfrac=depmoles/currmole

end if
Do 10 L=lstrt,ngrow

C- Calculate number of moles of inert gas (N2) at start of the cycle
C- in the entire tissue and in the depleted region alone (N2dep).

If((L.eq.l).and.(iprofile.eq.O)) then
5432 continue

cs=cll*pln2/kh
N2=Cs*Vol
N2dep=Cs*Voldep
orgmoles=N2
If (VoldepO.gt.vol) orgmoles=n2dep
currmole=orgmoles

Pl=Pl-Pstep
csequil=cll*pfn2/kh

C- Calculate bubble dimensions
C- First, calculate the critical and equilibrium radii

78

aO=2. *surten* Voldep/Pl
Cs=Cll*Pl/KH
al = Voldep*(l .-Pvap/Pl)-N2dep/Cs
a3=8. *pi*surten/(3. *Cs*k*T)
a4=4. *pi*Pl*(l .-Pvap/Pl)/(3. *Cs*k*T)
c0=a0/a4
cl=al/a4
c3=a3/a4
Call roots(c0,cl,c3,rc,re)
if (rc.lt.O.) goto 999

C- Assign radius to test bubble
rbub=re*bubfact+rc*(l.dO-bubfact)
rbub=dmaxl(rbub,(l .5d0*stepsize))

rbubO=rbub
VolBub=4. *pi*rbub*rbub*rbub/3.
rdep=(3.*(Voldep+Volbub)/(4*pi))**(l./3.)

c check here to make sure the bubble fits inside the cube, if not, spread
c the excess volume onto the depleted region, and make it larger

if((rdep .gt. xmax). and. (voltiss. gt.zed))then
voldepO=vol
voldep=voldepO
voltiss=zed
goto 5432

end if
rzonebeg(0)=0.dO
rzoneend(0)=0.dO
call genzone(rbub,rdep,width,nmicro,rzonebeg,rzsq,vzone,nzonebeg)

Bubmoles=Volbub*(Pl-Pvap+2. *surten/rbub)/(R*T)
Depmoles=N2Dep-Bubmoles
Tismoles=N2-N2dep
Bubfrac=Bubmoles/orgmoles
Depfrac=Depmoles/orgmoles
Tisfrac=Tismoles/orgmoles
if(iprofile.eq.O)then

fraczone(l)=bubfrac
molezone(l)=bubmoles
conczone(l)=bubmoles/volbub
do 1100 izone=2,nzonebeg

fraczone(izone)=depfrac *vzone(izone)/voldep
molezone(izone)=fraczone(izone)*orgmoles
conczone(izone)=depmoles/voldep

1100 continue
end if

End if

79

call genzone(rbub,rdep,width,nmicro,rzoneend,rzsq,vzone,nzoneend)

C- Adjust the dimensions of the module
Volcube=vol+volbub
call resize(volcube,cubeside)

C- Begin the random walk thru the module
C- Calculate the probability of staying in the bubble

shellsize=rbub-stepsize
stepsiz2=stepsize*stepsize
shelsiz3=shellsize *shellsize*shellsize

rbub2=rbub*rbub
rbub3=rbub2*rbub
rdep2=rdep*rdep

Pf = 1 .dO/Pcbub*(rbub3-shelsiz3)/rbub3
If (rbub.lt.stepsize) pf=l.dO/PCbub
xldpf=-l.dO/pf
Startbub=0.
Startdep=0.
Starttis=0.
Endlnbub=0.
EndIndep=0.
EndIntis=0.
do 1005 izone=l,nzoneend

strtzone(izone)=0.d0
endzone(izone)=0. dO

1005 continue
cummsum(O)=0. dO
do 1004 izone=l,nzonebeg

cummsum(izone)=cummsum(izone-l)+fraczone(izone)
1004 continue

tisfrac = 1 .dO-cummsum(nzonebeg)
if(tisfrac.lt.0.dO)tisfrac=0.d0
tismoles=tisfrac *currmole

C- Calculate the number of particles to be place
Do20n=l,Ntrip

C- Place a particle randomly in the module with probability weighted
C- by mole fraction.

prob=ran(il)
c
c new code to place particles in the various zones

if (prob. ge. cummsum(nzonebeg))then
callputinbox(xx(l),xx(2),xx(3),zed,zed,zed,cubeside,partdist)

else

80

do 1001 izone = l,nzonebeg
if (prob. It. cummsum(izone))then

call zone(xx(l),xx(2),xx(3),zed,zed,zed,rzonebeg(izone-l),
+ rzonebeg(izone),partdist)

goto 1002
end if

1001 continue
1002 continue

end if

C- If the particle is placed so far from the bubble that it cannot
C- reach it in nstep steps and the module only consists of the
C- bubble and a depleted region, the particle will stay in the depleted
C- region.

x=xx(l)
y=xx(2)
z=xx(3)
If (partdist.gt.(diffdist+rbub)) then

Call Bigstep(x,y,z,D,cyclet)
C- Check to see if the particle is outside the spherical depleted region.
C- If it is reflect it back.

if(voltiss. le. zed)then
else

call inbox(x,y,z)
end if

Istep=nstep

C- The particle can reach the bubble by diffusion
Else If (partdist.gt.rbub) then

Istep=int((partdist-rbub)/stepsize)
Steptime=Istep*Dtime
Call Bigstep(x,y,z,D,steptime)
if(voltiss.le.zed)then
else

call inbox(x,y,z)
end if

C- The particle is in the bubble
Else

Istep=0
End if

C- Carry out random walk for NSTEP steps of "stepsize"
Do 30 JJ=Istep+1,nstep

81

Inbub=0
C- Check to see if particle is in the bubble by comparing the
C- particle distance from origin with bubbble radius

if(distfun2(x,y,z,zed,zed,zed).le.rbub2)
+ inbub=l

C- If the particle is in the bubble place in the transition shell
C- based on the probability factor.

If (Inbub.eq.l) then
if (ran(il).lt.pf)then

if(rbub. le. stepsize)then
call putinorb(x,y,z,zed,zed,zed,rbub)

else
call zone(x,y,z,zed,zed,zed,rbub-stepsize,rbub,dummyr)

end if
call step(x,y,z,gridsize)

end if
else

C- Take a step
call step(x,y,z,gridsize)

c
c assume now that if particle has just left the bubble, it cannot
c reach the boundaries of the system during a single time cycle,
c we can thus eliminate the rest of this do loop.
c

End if
30 Continue

If (distfun2(x,y,z,zed,zed,zed).gt.rdep2)
+ Call Reflect(x,y,z,xx(l),xx(2),xx(3),zed,zed,zed,rdep)

C- Reassign coordinates
xx(l)=x
xx(2)=y
xx(3)=z

C- Keep track of the region in which the particle ends
dist=distfun2(x,y,z,zed,zed,zed)
do 1010 izone=l,nzoneend

if(dist. It. rzsq(izone))then
endzone(izone)=endzone(izone)+1 .d0

goto 1011
end if

82

1010 continue
1011 continue

If (dist.le.rbub2) then
Endlnbub=Endlnbub+1.

else If(dist.le.rdep2) then
Endlndep=Endlndep +1.

else
Endlntis=Endlntis +1.

end if

20 Continue
if((voltiss. le. zed). and. (endintis. gt. zed))then
open(unit=2,file= 'for002.dat',type = 'old',access = 'append')
write(2,8888)endintis,l

8888 formatC accounting error...',fl0.2,'particles in tissue'/
+ ' on the',i8,'th cycle')

stop
end if

C- Calculate the gas content in each region
If (L.eq.l) then

open(unit=2,file = 'for002.dat' ,type='old',access = 'append')
write(2,904)time ,rbub, volbub, voldep,

+ (vol-voldep)
write(2,904)cyclet,poofprob,washoutt
Write (2,905) rc,re,rbub0

close(2)
end if

c
c this is where washout takes place, in older versions (commented out)
c washout was done on a zone by zone basis, this version (2/23/93) does
c washout over the entire depletion region at the same time, this is the
c same mathematically as doing them separately.
c

dfnt=dfloat(ntrip)
dfnt0=dfht
actual=endindep
if(poofprob. gt. 0. d0)then

const=dfht*csequil/currmole
expected=const*voldep
actual=endindep-(endindep-expected)*poofprob
dfnt=actual+endinbub

1025 continue
1015 continue

83

if (voltiss. gt. zed)dfnt=dfnt+endintis
currmole=currmole *dfnt/dfntO

end if
c
c end of washout code
c
c bookkeeping, note if statement to get proper amount in bubble
c

do 1020 izone = l,nzoneend
fraczone(izone)=endzone(izone)*actual/endindep/dfnt
if(izone.eq.l)fraczone(izone)=endzone(izone)/dfnt
molezone(izone)=fraczone(izone) *currmole
conczone(izone)=molezone(izone)/vzone(izone)

1020 continue
calcpc=fraczone(1) *vzone(2)/(fraczone(2)*vzone(1))

Bubfrac=EndlnBub/dfht
depfrac=actual/dfht
Tisfrac=Endintis/dfnt
bubmoles=currmole*bubfrac
depmoles=currmole*depfrac
tismoles=currmole*tisfrac

C- If Bubfrac is very small it will soon vanish so trap it
If (bubfrac.lt.0.0000000001) goto 999

C- Calculate the new volume of each region
C- the volume of the depleted region plus the volume of
C- the supersaturated tissue region is a constant, so bubble
C- growth only adds to max and min dimensions, but not volumes

A3=(4.*pi*(Pl-Pvap))/3.
A2=(8.*pi*surten)/3.
aO=-molezone(l)*R*T

C0=A0/A3
C2=A2/A3
Call Roots2(c0,c2,rbub)
if(rbub.lt.stepsize)goto 999

VolBub=(4*pi*(rbub)**3 .)/3.
tisVNew=Tismoles/(Cll*P01/KHX
Voldep=Vol-tisvnew
If (VoldepO.ge.vol) Voldep=voldepO-tisvnew
rdep=(3. *(Voldep+Volbub)/(4*pi))**(l ./3.)
call expand(rbub,rdep,rzoneend,rzonebeg,nzoneend)
nzonebeg=nzoneend

84

Volcube=vol+volbub
call resize(volcube,cubeside)

C- Output information for 1 bubble growth cycle
time=time+eyelet
open(unit=2,file = 'for002.dat' ,type = 'old' ,access = 'append')
Write(2,904) time,rbub,calcpc,currmole
close(2)

904 Format(5G15.7)
3000 formatC cycle # \i5,4gl2.4/50(3gl5.6/))

open(unit=7,file= 'bubmod.dmp' ,type='old' ,form= 'unformatted')
rewind(7)
write(7)L,il,nzonebeg,time,volbub,calcpc,rbub,rdep,rbub0
write(7)re ,rc ,currmole
write(7)(fraczone(i),molezone(i),conczone(i),i=l,nzonebeg)
write(7)(rzonebeg(i),rzsq(i),vzone(i),i=1 ,nzonebeg)
close(unit=7)

10 Continue
999 Continue
905 Format(3G15.4)

Stop
End

ccc
c
c generate sin and cos matrices
c

subroutine gensine
implicit real*8 (a-h,o-z) ■
common/sincos/fact, scale, sinmat(0:9999) ,cosmat(0:9999)
do 10 i=0,9999

cosmat(i)=dcos(dfloat(i)/fact)
sinmat(i)=dsin(dfloat(i)/fact)

10 continue
return
end

ccc
c

subroutine expand(rbub,rdep,rzl,rz2,nz)
implicit real*8 (a-h,o-z)

85

dimension rzl(0:500),rz2(0:500)
common /com2/pi,il
common /com5/twopi,onethird
data nzmax,eps/50,l-d-05/
coeff=4. dO*pi *onethird
rz2(l)=rbub
do 10 i=2,nz

rz2(i)=(rzl(i)**3-rzl(i-l)**3+rz2(i-l)**3)**onethird
10 continue

do 20 i=nz+l,nzmax
rz2(i)=0.d0

20 continue
if(dabs(rz2(nz)-rdep). gt. eps)then

write(6,100)nz,rz2(nz),rdep
100 formate expansion error: rz2(',i2,') = \fl0.3,

+ ' rdep = \fl0.3)
stop

end if
return
end

c
c
ccc
c

subroutine genzone(rbub,rdep,width,nm,rzone,rzsq,vzone,nzone)
implicit real*8 (a-h,o-z)
dimension rzone(0:500) ,rzsq(0:500), vzone(500)

common/com2/pi, i 1
common /com5/twopi,onethird
nzone = 1
rzone(0)=0.d0
rzone(l)=rbub
coeff=4. d0*pi*onethird
vzone(1)=coeff*rzone(1) * *3
vtot=vzone(l)
do 10 i=2,500

nzone=nzone+1
rzone(i)=rzone(i-1)+width
if(rzone(i).gt.rdep)rzone(i)=rdep
v=coeff*rzone(i) * *3
vzone(i)=v-vtot
if(rzone(i).ge.rdep)goto 20
vtot=v

10 continue

86

20 continue
do 40 i=0,nzone

rzsq(i)=rzone(i)*rzone(i)
40 continue

return
end

c

Subroutine Roots(c0,cl,c3,rc,re)
implicit real*8 (a-h,o-z)

C- This subroutine calculates the roots of the Tikuisis polynomial.
C- First, find the minimum because 1 root is below it and the other
C- root is above it.
100 formatC # \i5)

If (cl.ge.O.)then
re=-999.

else
xl=-c0/cl

10 x=xl
g=cl+x*x*(3.*c3+4.*x)
dgdx=x*(6.*c3 + 12.*x)
xl=x-g/dgdx
if((abs(g).gt.0.0000001).or.(abs(xl-x).gt.0.0000001))

+ goto 10
C- Now apply Newton's method to find the roots

f=rcrunc(xl,c0,cl,c3)
if (f.gt.0.) then

re=-998
else
dolj = l,2

if (j.eq.l) then
mult=-l

else
mult=l

end if
x2=xl*l.+0.1*mult

20 x=x2
fö=rcfunc(x,c0,cl ,c3)
fl=cl+x*x*(3.*c3+4.*x)
dxl=-f0/fl
x2=dxl+x
if (abs(l.-(x2/x)).gt.0.0001) goto 20
if (mult.lt.0) rc=x2
if (mult.gt.0) re=x2

87

continue
end if

end if
return
end

Real*8 Function rcfunc(x,c0,cl,c3)
implicit real*8 (a-h,o-z)
z=c0+x*(cl+x*x*(c3+x))
rcfunc=z
return
end

Subroutine Roots2(c0,c2,rbub)
implicit real*8 (a-h,o-z)

C- This subroutine calculates the roots of the polynomial describing
C- bubble radius.
C- Apply Newton's method to find the roots

x2=rbub
20 x=x2

f0=rbubfunc(x,c0,c2)
fl=x*(2.*c2+3.*x)
dxl=-fl)/fl
x2=dxl+x
if (abs(l.-(x2/x)).gt.0.0001) goto 20
rbub=x2

return
end

Real*8 Function rbubfunc(x,c0,c2)
implicit real*8 (a-h,o-z)
z=cO+x*x*(c2+x)
rbubfunc=z
return
end

c
c
cc
c subroutine to reflect a particle from the inside surface of a sphere
c
c (x,y,z) current position of the particle
c (xo,yo,zo) previous position of particle

88

c (xc,yc,zc) center of the bubble/depleted region
c r radius of the depleted region
c

subroutine reflect(x,y,z,xo,yo,zo,xc,yc,zc,r)
implicit real*8 (a-h,o-z)
iperm=0
xosave=xo
yosave=yo
zosave=zo

10 continue
delx=x-xo
dely=y-yo
delz=z-zo
if((delx.eq.0.dO).and.(dely.eq.0.dO).and.(delz.eq.0.dO))retum
if(delz.eq.0.dO)then

call permute(x,y,z,xo,yo,zo,xc,yc,zc)
iperm=iperm+l
goto 10

end if
cx=delx/delz
cy=dely/delz
dx=xo-xc-cx*zo
dy=yo-yc-cy*zo
aq=cx*cx+cy*cy+l.dO
bq=2. d0*(cx*dx+cy *dy-zc)
cq=dx*dx+dy*dy+zc*zc-r*r
root=dsqrt(bq*bq-4. d0*aq*cq)
zplus=(-bq+root)/(2. d0*aq)
zminus=(-bq-root)/(2.d0*aq)
xplus=cx*(zplus-zo)+xo
yplus=cy *(zplus-zo)+yo
xminus=cx*(zminus-zo)+xo
yminus=cy *(zminus-zo)+yo
dplus=distfun2(x,y,z,xplus,yplus,zplus)
dmmus=distfun2(x,y,z,xmmusjminus,zminus)
if(dplus. It. dminus)then

xp=xplus
yp=yplus
zp=zplus

else
xp=xminus
yp=yminus
zp=zminus

end if

89

cpx=xp-xc
cpy=yp-yc
cpz=zp-zc
ptx=x-xp
pty=y-yp
ptz=z-zp

c get dot product between these two vectors
dot=cpx*ptx+cpy *pty+cpz*ptz
dt2or2=2.d0*dot/(r*r)
x=x-dt2or2*cpx
y=y-dt2or2*cpy
z=z-dt2or2*cpz
if(distfiinc(x,y,z,xc,yc,zc).gt.r)then

xo=xp
yo=yp
zo=zp
goto 10

end if
if(iperm.ne.O)then

do 20 i=jmod(iperm+l,3),jmod(iperm+3,3)
call permute(x,y,z,xo,yo,zo,xc,yc,zc)

20 continue
end if
xo=xosave
yo=yosave
zo=zosave
return
end

c
c
cc
c

subroutine permute(al,bl,cl,a2,b2,c2,a3,b3,c3)
implicit real*8 (a-h,o-z)
savel=al
save2=a2
save3=a3
al=bl
bl=cl
cl=savel
a2=b2
b2=c2
c2=save2
a3=b3

90

b3=c3
c3=save3
return
end

c
c

c
c subroutine to take a random step to a solid angle on a sphere
c of radius a
c

subroutine stepout(x,y,z,x0,y0,z0,bigr2,a)
implicit real*8 (a-h,o-z)
common /com2/pi,il
common/sincos/fact,scale,sinmat(0:9999),cosmat(0:9999)

get the distance from the center of the sphere

rx=x-xO
ry=y-yO
rz=z-zO
d2=rx*rx+ry*ry+rz*rz
d=dsqrt(d2)
costhetb=(bigr2-a*a-d2)/(2.d0*a*d)
ranmax=(l .d0-costhetb)/2.d0
costheta=(l .d0-2.d0*ranmax*ran(il))
sintheta=dsqrt(l .dO-costheta*costheta)
delr=a*costheta
delperp=a*sintheta
urx=rx/d
ury=ry/d
urz=rz/d
rperp=dsqrt(urx*urx +ury *ury)
if(rperp.gt.0.dO)then

ulx=-ury/rperp
uly=urx/rperp

else
ulx=l.dO
uly=0.dO

end if
u2x=uly*urz
u2y=-ulx*urz
u2z=ulx*ury-urx*uly
index=scale *ran(i 1)

91

anorm=delr/d
x=x+delperp*(cosmat(index)*ulx+sinmat(index)*u2x)+anorm*rx
y=y+delperp *(cosmat(index) *u 1 y+sinmat(index) *u2y)+anorm*ry
z=z+delperp*(sinmat(index)*u2z)+anorm*rz
return
end

c
c
ccc
c
c subroutine to move distance a from a point in the boundary region
c away from the center of a sphere,
c

subroutine outstep(x,y,z,xO,yO,zO,a)
implicit real*8 (a-h,o-z)
dx=x-xO
dy=y-yO
dz=z-zO
anorm=a/dsqrt(dx*dx+dy *dy+dz*dz)
x=x+anorm*dx
y=y+anorm*dy
z=z+anorm*dz
return
end

c
c
ccc
c
c subroutine to take a single large diffusion step in three
c dimensions, uses subroutine stepit, the random direction
c stepping routine, and also calculates a normally distributed
c distance that the particle steps.
c

subroutine bigstep(x,y,z,diffcoef,t)
implicit real*8 (a-h,o-z)
common /com2/pi,il
common/distarr/distance(10000)

c
c the distance stepped as a function of the probability, given in terms
c of the standard deviation, is located infile distprob.dat
c

index=aint(l .d0+10000.d0*ran(il))
sd=dsqrt(2.d0*diffcoef*t)
d=sd*distance(index)

92

call stepit(x,y,z,d)
return
end

c
ccc
c
c subroutine to take a random step of length rO in 3 dimensions
c

subroutine stepit(x,y,z,rO)
implicit real*8 (a-h,o-z)
common /com2/pi,il
common/sincos/fact, scale, sinmat(0:9999) ,cosmat(0:9999)
common /com5/twopi,onethird
xr=l.d0-2.d0*ran(il)
sintheta=dsqrt(l .dO-xr*xr)
index=scale*ran(il)
x=x+rO*sintheta*cosmat(index)
y=y+rO*sintheta*sinmat(index)
z=z+rO*xr
return
end

c
c
ccc
c
c subroutine to position a particle randomly within a spherical
c shell with outer radius router,and inner radius rinner
c
c

subroutine zone(x,y,z,xO,yO,zO,rinner,router,rho)
implicit real*8 (a-h,o-z)
common /com2/pi,il
common/sincos/fact,scale,sinmat(0:9999),cosmat(0:9999)
common /com5/twopi,onethird

c
c use spherical coordinates rho,theta,phi
c

x=xO
y=yO
z=zO
if (rinner. le. 0. dO)then

rho=0.dO
return

end if

93

rin3=rinner *rinner*rinner
rout3=router *router*router
range=rout3-rin3
rho=(rin3 + range *ran(i 1)) * *onethird
call stepit(x,y,z,rho)
return
end

c

c
c subroutine to position a particle randomly, within a spherical
c shell with outerradius bigr,and inner radius bigr-a
c
c

subroutine shell(x,y,z,xO,yO,zO,rO,a)
implicit real*8 (a-h,o-z)
common /com2/pi,il
common/sincos/fact, scale, sinmat(0:9999) ,cosmat(0:9999)
common /com5/twopi,onethird

c
c use spherical coordinates rho,theta,phi
c

if(r0.1t.a)then
call putinorb(x,y,z,xO,yO,zO,rO)
return

end if
bma=rO-a
bma3 =bma*bma*bma
b3=r0*r0*r0
range=b3-bma3
rho=(bma3+range *ran(i 1)) * *onethird
phi=twopi*ran(il)
theta=dacos(l.d0-2.d0*ran(il))
x=xO+rho*dsin(theta)*dcos(phi)
y=yO+rho*dsin(theta)*dsin(phi)
z=zO+rho *dcos(theta)
return
end

c

C
subroutine step(x,y,z,grid)
implicit real*8 (a-h,o-z)
common/com2/pi, i 1

94

common/com3/IA(3,24),aa(3,24)

JA=l+int(24.*ran(il))
x=x+aa(l,ja)
y=y+aa(2,ja)
z=z+aa(3,ja)

return
end

c
ccc
c
c subroutine to test for presence of a particle in a sphere of radius r
c centered at (xO,yO,zO), given position (x,y,z)
c

subroutine insphere(x,y,z,xO,yO,zO,r,in)
implicit real*8 (a-h,o-z)
logical in
r2=r*r
if(distfun2(x,y,z,x0,y0,z0).le.r2)then

in=.true.
else

in =. false.
end if
return
end

c
ccc
c
c subroutine to place particle randomly within a sphere of radius r
c centered at (xO,yO,zO)
c

subroutine putinorb(x,y,z;xO,yO,zO,rO)
implicit real*8 (a-h,o-z)
common /com2/pi,il
common/sincos/fact,scale,sinmat(0:9999),cosmat(0:9999)
common /com5/twopi,onethird

c
c use spherical coordinates rho,theta,phi
c

rho=rO*(ran(il)**onethird)
x=xO
y=yO
z=zO

95

call stepit(x,y,z,rho)
return
end

c
c
ccc
c
c subroutine to see if particle has left the box and if so, to
c reflect it from the boundary.
c

subroutine inbox(x,y,z)
implicit real*8 (a-h,o-z)
common /coml/xmin,xmax,ymin,ymax,zmin,zmax,rbub,rdep

c
c reflection conditions
c

if(x.lt.xmin)x=xmin+(xmin-x)
if(x. gt. xmax)x=xmax+(xmax-x)
if(y .lt.ymin)y=ymin+(ymin-y)
if(y. gt. ymax)y=ymax+(ymax-y)
if(z. It. zmin)z=zmin+(zmin-z)
if(z.gt.zmax)z=zmax+(zmax-z)

c
c translation conditions
c
c if(xx(l).lt.xmin)xx(l)=xmax-(xmin-xx(l))
c if(xx(1). gt. xmax)xx(1)=xmin-(xmax-xx(1))
c if(xx(2).lt.ymin)xx(2)=ymax-(ymin-xx(2))
c if(xx(2).gt.ymax)xx(2)=ymin-(ymin-xx(2))
c if(xx(3).lt.zmin)xx(3)=zmax-(zmin-xx(3))
c if(xx(3).gt.zmax)xx(3)=zmin-(zmax-xx(3))
c

return
end

c
c

c function to find the distance between two points
c

function distfunc(x,y,z,xO,yO,zO)
implicit real*8 (a-h,o-z)
dx=x-xO
dy=y-yO
dz=z-zO

96

distfunc=dsqrt(dx *dx+dy *dy+dz *dz)
return
end

c
ccc
c
c function to calculate the square of the distance between points
c

function distfun2(x,y,z,x0,y0,z0)
implicit real*8 (a-h,o-z)
dx=x-xO
dy=y-yO
dz=z-zO
distfun2=dx*dx+dy *dy+dz*dz
return
end

c
ccc
c

subroutine regrid(ia,aa,gridsize,stepsize)
implicit real*8 (a-h,o-z)
dimension ia(3,24),aa(3,24)
do 1901 iii=l,3

do 1901 iiii=1,24
aa(iii, iiii)=dfloat(ia(iii, iiii)) *gridsize

1901 continue
stepsize=gridsize*dsqrt(3 .d0)
return
end

c
ccc
c

subroutine resize(vol.s)
implicit real*8 (a-h,o-z)
common/coml/xmin,xmax,ymin,ymax,zmin,zmax,rbub,rdep
common /com5/twopi,onethird

s==(vol**onethird)
xmax=s/2.
xmin=-xmax
ymax=xmax
ymin=xmin
zmax=xmax
zmin=xmin

97

return
end

c
ccc
c

subroutine putinbox(x,y,z,xO,yO,zO,s,dist)
implicit real*8 (a-h,o-z)
common /coml/xmin,xmax,ymin,ymax,zmin,zmax,rbub,rdep
common /com2/pi,il

10 continue
x=xmin+s *r an(i 1)
y=ymin+s *ran(i 1)
z=zmin+s *ran(i 1)
dist=distfiinc(x,y,z,xO,yO,zO)
if(dist.lt.rdep)goto 10
return
end

98

Section D2. Sample input file for source code of Section Dl.

8000, number of cycles
400000, number of trips per cycle

50, number of steps per trip
50.00, surface tension
70.00, partition coefficient

.0000050, diffusion coeff

.00025, grid size

.125E-03, depletion region volume
0.0, extra-depletion volume
1520.00, initial inert gas partial pressure
760.00, pressure step

.1706, initial bubble radius (as fraction of equil. radius)
0, iprofile # of initial concentration profile
0, nmicro # of sub-zones to be used

150., washoutt tissue time constant in seconds
0.7900, pctn2 percent nitrogen during washout
l.dO, switch =0 = > dimensionless run

.100e-02, volref reference vol for dimless run
l.dO, fracsd fraction of onesd for shell widths
46.52d0, ph2o partial pressure water vapor
39.76d0, po2 partial pressure oxygen in bubble
44.26d0, pco2 partial pressure C02 in bubble
39.76d0, pco21ung part, press. C02 in lungs
l.dO, bndfact boundary factor for PDE3

1/19/93 test run for .ch9

99

Section D3. FORTRAN source code for generation ofcummulative distribution function for diffusion in three
dimensions.

c program to generate the file 'distprob.dat', which contains the
c number of standard deviations stepped by a diffusing particle as
c a function of probability, it uses integration routine from the
c numerical recipes directory on piggy,

implicit real*8 (a-h,o-z)
npts = 10000
nstep= 1000000
dfnp=dfloat(npts)
sum=0.d0
sumnext=0.d0
xlow=0.d0
delx=0.0001
open(unit= 1,file = 'distprob.dat' ,type= 'new')
do 10 i=l,npts-l

prob=dfloat(i)/dfhp
xhigh=xlow
do 20 j = l,nstep

xhigh=xhigh+delx
call qromb(xlow,xhigh,sumnext)
if((sum+sumnext).lt.prob)goto 20
sum=sum+sumnext
write(l, 100)(xlow+xhigh)/2.d0,i

100 format(fl5.6,il0)
xlow=xhigh
goto 10

20 continue
10 continue

close(l)
stop
end

c
ccc

c
function func(t)
implicit real*8 (a-h,o-z)
data init/0/
if(init.eq.0)then

pi=4.d0*datan(l.d0)
const=dsqrt(2.d0/pi)
init=l

100

end if
func=const*t*t*exp(-t*t/2. dO)
return
end

c
ccc
c

SUBROUTINE QROMB(A,B,SS)
implicit real*8 (a-h,o-z)

PARAMETER(EPS=l.E-6,JMAX=20,JMAXP=JMAX+1,K=5,KM=4)
DIMENSION S(JMAXP),H(JMAXP)
H(l) = l.
DO 11 J=1,JMAX

CALL TRAPZD(A,B,S(J),J)
IF (J.GE.K) THEN

L=J-KM
CALL POLINT(H(L),S(L),K,0.,SS,DSS)
IF (ABS(DSS).LT.EPS*ABS(SS)) RETURN

ENDIF
S(J+1)=S(J)
H(J+1)=0.25*H(J)

11 CONTINUE
PAUSE 'Too many steps.'
END

c
ccc
c

SUBROUTINE TRAPZD(A,B,S,N)
implicit real*8 (a-h,o-z)

IF(N.EQ.1)THEN
S=0.5*(B-A)*(FUNC(A)+FUNC(B))
IT=1

ELSE
TNM=IT
DEL=(B-A)/TNM
X=A+0.5*DEL
SUM=0.
DO 11 J=1,IT

SUM=SUM+FUNC(X)
X=X+DEL

11 CONTINUE
S=0.5*(S+(B-A)*SUM/TNM)
IT=2*IT

ENDIF

101

RETURN
END

c
ccc
c

SUBROUTINE POLINT(XA,YA,N,X,Y,DY)
implicit real*8 (a-h,o-z)

PARAMETER (NMAX=10)
DIMENSION XA(N),YA(N),C(NMAX),D(NMAX)
NS = 1
DIF=ABS(X-XA(1))
DO 11 I=1,N

DIFT=ABS(X-XAa))
IF (DIFT.LT.DIF) THEN

NS=I
DIF=DIFT

ENDIF
Ca)=YA(I)
D(I)=YA(I)

11 CONTINUE
Y=YA(NS)
NS=NS-1
D0 13M = 1,N-1

D0 12I=1,N-M
HO=XA(I)-X
HP=XA(I+M)-X
w=ca+i)-Da>
DEN=HO-HP
IF(DEN.EQ.O.)PAUSE
DEN=W/DEN
D(I)=HP*DEN
C(I)=HO*DEN

12 CONTINUE
IF (2*NS.LT.N-M)THEN

DY=C(NS + 1)
ELSE

DY=D(NS)
NS=NS-1

ENDIF
Y=Y+DY

13 CONTINUE
RETURN
END

102

Section D4. FORTRAN source code for the generation of non-uniform initial gas concentration distributions.

c this program is a modification of the beginning of the bubble simulation
c program, it is designed to generate a particular non-uniform concentration
c gradient for use by the main program, the main program assumes an initial
c uniform concentration profile wherein the gas used to create the bubble
c is drawn from throughout the tissue volume, this program generates a
c profile from the opposite extreme; the gas for the bubble is taken from
c the innermost shells, leading to a step function profile, shells near the
c bubble have initial concentration cs = concentration of gas in the bubble.
c shells far from the bubble have concentration csO, in equilibrium with
c the initial pressure of inert gas. there is one transition shell with a
c concentration between these two values, the concentration profile is then
c written out to file bubmod.dmp, where it can be used by the main program
c by setting iprofile = 1

implicit real*8 (a-h,o-z)
common /coml/xmin,xmax,ymin,ymax,zmin,zmax,rbub,rdep

common/com2/pi, i 1
common/com3/IA(3,24),aa(3,24)
common /com5/twopi,onethird

real*8N2,N2dep,k,kH,molezone(500)
Dimension xx(3),rzonebeg(0:500),rzoneend(0:500),widezone(500)
dimension strtzone(500) ,endzone(500) ,fraczone(500) ,conczone(500)
dimension cummsum(0:500),vzone(500), rzsq(0:500)
data IA/1,1,1,1,1,-1,1,-1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,-1,

+ 1,-1,-1,-1,
+ 1,1,1,-1,1,1,1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,
+ 1,1,1,1,1,-1,-1,1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,1,-1,-1,-1/

C- Define constants
zed=0.d0

Pi=4.d0*datan(l.d0)
twopi=2.d0*pi
fourpio3 =4.d0*pi/3 .d0
onethird=l.d0/3.d0

c Pvap25=23.756
c Pvap=47.067
c change 12/16/92 to include oxygen and co2 as additional gas
c components of the bubble, using values from van liew, pg. 336
c
c ph2o = 6.2 kPa = 46.52 mmHg
c po2 = 5.3 kPa = 39.76 mmHg
c pco2 = 5.9 kPa = 44.26 mmHg

103

c pco21ung = 5.3 kPa = 39.76 mmHg
c pvap= 46.52d0 + 39.76d0 + 44.26d0

ph2o=46.52d0
po2=39.76d0
pco2=44.26d0
pco21ung=39.76d0
pvap=ph2o+po2+pco2

C- vapor pressure of water in bubble @ 37 C in mmHg
C1125 =0.055346
Cll=0.055140

C- pure solvent cone of water @ 37 C in moles/cc
k=62358.0

C- Boltzman's gas constant in mmHG-cc/mole-K
C- based on PV=kNT and STP conditions

R=62358.0
C- Universal gas constant in mmHg-cc/mole-K
C- based on published value of 0.08205 L-atm/mole-K

T=37.0+273.1
C- temperature in Kelvin
C Pvap=Pvap25
C cll=cll25

C- Input initial conditions and control variables.
C- ngrow=number of bubble growth cycles,
C- ntrip=number of independent trips thru tissue, nstep=number of steps per
C- trip, Surten=surface tension of bubble (dynes/cm), PCbub=partition
C- coefficient of bubble (1/ostwald coefficient), D=diffusion coefficient
C- (cm sq/sec), Voldep0=initial volume of the depleted region (cu cc),
C- Voltiss = volume of cubical tissue region
C- P01=initial tissue pressure (mmHg), Pstep=decompression step (mmHg)

Rewind(l)
Read(l,900)ngrow,ntrip,nstep,surten,Pcbub,D,gridsize,VoldepO,

+ Voltiss,P01,Pstep,bubfact
900 Formata9/I9/I9/F9.2/F9.2/F9.7/F9.7/F9.7/F9.7/F9.2/F9.2/F9.7)

read(l, 1900)iprofile,nmicro,washoutt,pctn2
1900 format(il2/il2/gl5.7/gl5.7)

close(l)

vol=voltiss+voldepO
C- Calculate dimensions of cubical region
C- adjust units to mmHG-cm knowing 760 mmHg=1.013X10^6 dyn/cmA2

Surten=Surten/1332.8
C- Calculate Henry's coefficient from PCbub

KH=760./((((R*T)/((l./cll)*(l./PCbub)*760.))+!)**-!.)

104

C- Calculate stepsize
c modify stepping array

call regrid(ia,aa,gridsize,stepsize)
C- Calculate bubble growth cycle time and tissue washout time

Dtime=stepsize*stepsize/(6. *D)
eyelet=nstep*Dtime

C- Calculate the maximum distance a particle can travel by diffusion
onesd=dsqrt(2 .dO*d*cyclet)

C- Begin a bubble growth cycle
time=0.
P1=P01
p 1 n2=(p01-ph2o-pco21ung) *pctn2
pfh2=(p01-pstep-ph2o-pco21ung)*pctn2

Voldep=VoldepO
lstrt=l

C- Calculate number of moles of inert gas (N2) at start of the cycle
C- in the entire tissue and in the depleted region alone (N2dep).
5432 continue
c Cs=Cll*Pl/KH

cs=cll*pln2/kh
csO=cs

N2=Cs*Vol
N2dep=Cs*Voldep
orgmoles=N2
If (VoldepO.gt.vol) orgmoles=n2dep
currmole=orgmoles

Pl=Pl-Pstep
csequil=cll*pfn2/kh

C- Calculate bubble dimensions
C- First, calculate the critical and equilibrium radii

aO=2. *surten* Voldep/Pl
c Cs=Cll*Pl/KH

cs=cll*(pl-pvap)/kh
al = Voldep*(l.-Pvap/Pl)-N2dep/Cs
a3=8. *pi*surten/(3. *Cs*k*T)
a4=4. *pi*Pl*(l .-Pvap/Pl)/(3. *Cs*k*T)
c0=a0/a4
cl=al/a4
c3=a3/a4
Call roots(c0,cl,c3,rc,re)
if (rc.lt.O.) goto 999

C- Assign radius to test bubble
rbub=re*bubfact

105

rbub=dmaxl(rbub,(1.5dO*stepsize))
rbubO=rbub
VolBub=4. *pi*rbub*rbub*rbub/3.

c rdep=(3. "(Voldep+Volbub)/(4*pi))**(l ./3.)
rdep=((voldep+volbub)/fourpio3)* *onethird

c check here to make sure the bubble fits inside the cube, if not, spread
c the excess volume onto the depleted region, and make it larger

if ((rdep. gt. xmax). and. (voltiss. gt. zed))then
voldepO=vol
voldep=voldepO
voltiss=zed
goto 5432

end if
rzonebeg(0)=0.dO
rzoneend(0)=0. dO
call genzone(rbub,rdep,onesd,nmicro,rzonebeg,rzsq,vzone,nzonebeg)

Bubmoles=Volbub*(Pl-Pvap+2.*surten/rbub)/(R*T)
Depmoles=N2Dep-Bubmoles
Tismoles=N2-N2dep
Bubfrac=Bubmoles/orgmoles
Depfrac=Depmoles/orgmoles
Tisfrac=Tismoles/orgmoles
fraczone(1)=bubfrac
molezone(1)=bubmoles
conczone(l)=bubmoles/volbub
deles=csO-cs
vinner=bubmoles/delcs
vrunold=0.dO
do 1100 izone=2,nzonebeg

vrun=vrunold+vzone(izone)
if(vrun. le. vinner)then

conczone(izone)=cs
else if ((vrunold. le. vinner). and. (vinner. It. vrun))then

conczone(izone)=((vinner-vrunold) *cs+(vrun- vinner) *cs0)/
+ vzone(izone)

else
conczone(izone)=csO

end if
vrunold=vrun
molezone(izone)=conczone(izone)*vzone(izone)
fraczone(izone)=molezone(izone)/orgmoles

1100 continue
3000 formate cycle # \i5,4gl2.4/50(3gl5.6/))

1=0

106

rbubO=rbub
time=0.dO
il =237645 +2*secnds(0.0)
calcpc=fraczone(1) *vzone(2)/(fraczone(2) *vzone(1))
open(unit=7,file= 'bubmod.dmp' ,type= 'new' ,form= 'unformatted')
rewind(7)
write(7)L,il,nzonebeg,time,volbub,calcpc,rbub,rdep,rbubO
write(7)re,rc,currmole
write(7)(fraczone(i),molezone(i),conczone(i),i = 1 ,nzonebeg)
write(7)(rzonebeg(i),rzsq(i),vzone(i),i= 1 ,nzonebeg)
close(unit=7)

999 Continue

Stop
End

c
ccc
c

subroutine genzone(rbub,rdep,width,nm,rzone,rzsq,vzone,nzone)
implicit real*8 (a-h,o-z)
dimension rzone(0:500),rzsq(0:500),vzone(500)

common/com2/pi, i 1
common /com5/twopi,onethird
nzone=l
rzone(0)=0.dO
rzone(l)=rbub
coeff=4 .dO*pi*onethird
vzone(l)=coeff*rzone(l)**3
vtot=vzone(l)
do 10 i=2,50

nzone=nzone+l
rzone(i)=rzone(i-1)+width
if(rzone(i). gt. rdep)rzone(i)=rdep
v=coeff*rzone(i)**3
vzone(i)=v-vtot
if(rzone(i).ge.rdep)goto 20
vtot=v

10 continue
20 continue

do 40 i=0,nzone
rzsq(i)=rzone(i)*rzone(i)

107

40 continue
return
end

c

Subroutine Roots(c0,cl,c3,rc,re)
implicit real*8 (a-h,o-z)

C- This subroutine calculates the roots of the Tikuisis polynomial.
C- First, find the minimum because 1 root is below it and the other
C- root is above it.
100 formatC # \i5)

If (cl.ge.O.) then
re=-999.

else
xl=-c0/cl

10 x=xl
g=cl+x*x*(3.*c3+4.*x)
dgdx=x*(6.*c3 + 12.*x)
xl=x-g/dgdx
if ((abs(g).gt.0.0000001).or.(abs(xl-x).gt.0.0000001))

+ goto 10
C- Now apply Newton's method to find the roots

f=rcfunc(xl,c0,cl,c3)
if (f.gt.0.) then

re=-998
else
dolj = l,2

if (j.eq.l) then
mult=-l

else
mult=l

end if
x2=xl*l.+0.1*mult

20 x=x2
f0=rcfunc(x,c0,cl,c3)
fl =cl+x*x*(3.*c3+4.*x)
dxl=-f0/fl
x2=dxl+x
if (abs(l.-(x2/x)).gt.0.0001) goto 20
if (mult.lt.O) rc=x2
if (mult.gt.0) re=x2

1 continue
end if

end if

108

return
end

Real*8 Function rcfunc(x,c0,cl,c3)
implicit real*8 (a-h,o-z)
z=c0+x*(cl+x*x*(c3+x))
rcrunc=z
return
end

c

ccc
c

subroutine regrid(ia,aa,gridsize,stepsize)
implicit real*8 (a-h,o-z)
dimension ia(3,24),aa(3,24)
do 1901 in=1,3

do 1901 iiii=l,24
aa(iii, iiii)=dfloat(ia(iii,iiü))*gridsize

1901 continue
stepsize=gridsize*dsqrt(3 .d0)
return
end

109

Section D5. Fortran source code for Monte Carlo simulation which utilizes radially symmetry of problem to
speed computation

C- This program simulates bubble growth beginning with a bubble of
C- critical radius as defined by Tikuisis. The bubble is represented as
C- a region of high solubility surrounded by a "depleted region" from
C- which the inert gas is extracted. These two regions are placed in
C- a third region which represents the surrounding tissue.
c this program also uses 1 dimension, the radial one, to keep
c track of the particle, should speed things up considerably.

implicit real*8 (a-h,o-z)
common/com2/pi, i 1
common/comroot/probroot,firstime
common/distarr/distance(10000),sd(500)
common /com5/twopi,onethird,vcoeff

real*8 N2,N2dep,k,kH,molezone(500)
Dimension xx(3),sumcumm(0:500)
dimension endzone(500),fraczone(500),conczone(500)
dimension cummsum(0:500),rzrngb(500),rzrnge(500)
dimension rzb(0:500),rz2b(0:500),rz3b(0:500),vzb(500)
dimension rze(0:500),rz2e(0:500),rz3e(0:500),vze(500)

C- Define constants
zed=0.dO

Pi=4.d0*datan(l.d0)
onethird=l.d0/3.d0
vcoeff=4. dO*pi*onethird
twopi=2.d0*pi

c change 12/16/92 to include oxygen and co2 as additional gas
c components of the bubble, using values from van liew, pg. 336
c
c ph2o = 6.2 kPa = 46.52 mmHg
c po2 = 5.3 kPa = 39.76 mmHg
c pco2 = 5.9 kPa = 44.26 mmHg
c pco21ung = 5.3 kPa = 39.76 mmHg
c pvap= 46.52d0 + 39.76d0 + 44.26d0
c read in from input file below 1/18/93
c ph2o=46.52d0
c po2=39.76d0
c pco2=44.26d0
c pco21ung=39.76d0
c pvap=ph2o+po2+pco2
C- vapor pressure of water in bubble @ 37 C in mmHg

C1125=0.055346

110

01=0.055140
C- pure solvent cone of water @ 37 C in moles/cc

k=62358.0
C- Boltzman's gas constant in mmHG-cc/mole-K
C- based on PV=kNT and STP conditions

gasR=62358.0
C- Universal gas constant in mmHg-cc/mole-K
C- based on published value of 0.08205 L-atm/mole-K

T=37.0+273.1
C- temperature in Kelvin

C- Input initial conditions and control variables.
C- ngrow=number of bubble growth cycles,
C- ntrip=number of independent trips thru tissue, nstep=number of steps per
C- trip, Surten=surface tension of bubble (dynes/cm), PCbub=partition
C- coefficient of bubble (1/ostwald coefficient), D=diffusion coefficient
C- (cm sq/sec), VoldepO=initial volume of the depleted region (cu cc),
C- Voltiss = volume of cubical tissue region
C- P01=initial tissue pressure (mmHg), Pstep=decompression step (mmHg)

Rewind(l)
Read(l,900)ngrow,ntrip,nstep,surten,Pcbub,D,gridsize,VoldepO,

+ Voltiss,P01,Pstep,bubfact
900 Format(I12/I12/I12/gl5.7/gl5.7/gl5.7/gl5.7/gl5.7/

+ gl5.7/gl5.7/gl5.7/gl5.7)
read(l, 1900)iprofile,nmicro,washoutt,pctn2

1900 format(il2/il2/gl5.7/gl5.7)
read(l, 1901)switch,volref,fracsd,ph2o,po2,pco2,pco21ung

1901 format(gl5.7)
close(l)
pvap=ph2o+po2+pco2

C- Input the array of diffusion distances as a function of probability
C- given in terms of the standard deviation

Open(unit= 1 ,file = 'distprob.dat' ,type = 'old')
Read(l,899)(distance(i),i= 1,10000)

899 Format(fl7.2)
Close(l)

vol=voltiss+voldepO
C- adjust units to mmHG-cm knowing 760 mmHg=1.013X10A6 dyn/cmA2

Surten=Surten/1332.8
C- Calculate Henry's coefficient from PCbub

KH=760./((((gasR*T)/((l./cll)*(l./PCbub)*760.))+l)**-l.)
C- Calculate stepsize

111

stepsize=gridsize *dsqrt(3. dO)
C- Calculate bubble growth cycle time and tissue washout time

Dtime=stepsize*stepsize/(6. *D)
eyelet=nstep *Dtime
do 333 kk=l,nstep

xtime=kk*dtime
sd(kk)=dsqrt(2.d0*d*xtime)

333 continue
poofprob=1 .dO-dexp(-cyclet/washoutt)
if(washoutt.gt.86400.d0)poofprob=0.d0

C- Calculate the maximum distance a particle can travel by diffusion
onesd=dsqrt(2 .dO*d*cyclet)
diffdist=5. dO*onesd

c
c figure out the width of the diffusion shells, switch = 0 is for
c a dimensionless run, with reference volume volref. switch <> 0 is
c an absolute run, with parameters unsealed.
c

if (switch. eq. 0. dO)then
width=onesd*fracsd*(vol/volref)**onethird
if (width, gt. onesd)width=onesd

else
width=onesd*fracsd

end if
if(iprofile. eq. 0)then

C- Write out the starting conditions
Open(unit=2,file = 'for002.dat' ,type= 'new')
Write(2,901)Ngrow,Ntrip,Nstep,Surteh*1332.8,PCbub,D,

+ gridsize,stepsize,P01,Pstep,VoldepO,voltiss
Close(2)

901 Format(3I9/5G15.4/4G15.4)
end if

C- Begin a bubble growth cycle
time=0.
P1=P01
pln2=(p01-ph2o-pco21ung)*pctn2
pfh2=(p01-pstep-ph2o-pco21ung)*pctn2

Voldep=VoldepO
il = 182361 +2*secnds(0.0)
lstrt=l
if (iprofile. ne. 0)then

c for a nonuniform initial concentration profile, put code in here
open(unit=7,file= 'bubmod.dmp',type= 'old',form= 'unformatted')

112

rewind(7)
read(7)lstrt,il,nzonebeg,time,volbub,calcpc,rbub,rdep,rbub0
read(7)re, rc, currmole
read(7)(fraczone(i),molezone(i),conczone(i),i = 1 ,nzonebeg)
read(7)(rzb(i),rz2b(i),rz3b(i),vzb(i),rzmgb(i),i= 1 ,nzonebeg)
read(7)(rze(i),rz2e(i),rz3e(i),vze(i),rzrage(i),i = 1 ,nzoneend)
close(7)
lstrt=lstrt+l
cs=cll*pln2/kh
N2=Cs*Vol
N2dep=Cs*Voldep
orgmoles=N2
If (VoldepO.gt.vol) orgmoles=n2dep
Pl=Pl-Pstep
csequil=c 11 *pfn2/kh
rzb(0)=0.dO
rze(0)=0.dO
bubmoles=molezone(1)
open(unit=3,file= 'for003.dat',type='new')
write(3,3000)0,time,rbub,volbub,calcpc,

+ (fraczone(i),rzb(i),conczone(i),i= l,nzonebeg)
close(3)
depmoles=currmole-bubmoles
bubfrac=bubmoles/currmole
depfrac=depmoles/currmole

end if
Do 10 L=lstrt,ngrow

C- Calculate number of moles of inert gas (N2) at start of the cycle
C- in the entire tissue and in the depleted region alone (N2dep).

If((L.eq.l).and.(iprofile.eq.O)) then
5432 continue

cs=cll*pln2/kh
N2=Cs*Vol
N2dep=Cs*Voldep
orgmoles=N2
If (VoldepO.gt.vol) orgmoles=n2dep
currmole=orgmoles

Pl=Pl-Pstep
csequil=cll*pfh2/kh

C- Calculate bubble dimensions
C- First, calculate the critical and equilibrium radii

aO=2.*surten*Voldep/Pl
Cs=Cll*Pl/KH

113

al = Voldep*(l .-Pvap/Pl)-N2dep/Cs
a3=8. *pi*surten/(3. *Cs*k*T)
a4=4. *pi*Pl*(l .-Pvap/Pl)/(3. *Cs*k*T)
c0=a0/a4
cl=al/a4
c3=a3/a4
Call roots(cO,cl,c3,rc,re)
if (rc.lt.O.) goto 999

C- Assign radius to test bubble
rbub=re*bubfact+rc*(l.dO-bubfact)
rbub=dmaxl(rbub,(l .5d0*stepsize))

rbubO=rbub
VolBub=4. *pi*rbub*rbub*rbub/3.
rdep=(3. *(Voldep+Volbub)/(4*pi))**(l ./3.)

c check here to make sure the bubble fits inside the cube, if not, spread
c the excess volume onto the depleted region, and make it larger

rzb(0)=0.dO
rze(0)=0.dO
call fastgenz(rbub,rdep,width,nzonebeg,rzb,rz2b,rz3b,vzb,rzrngb)

Bubmoles=Volbub*(Pl-Pvap+2. *surten/rbub)/(gasR*T)
Depmoles=N2Dep-Bubmoles
Tismoles=N2-N2dep
Bubfrac=Bubmoles/orgmoles
Depfrac=Depmoles/orgmoles
Tisfrac=Tismoles/orgmoles
if(iprofile.eq.O)then

fraczone(1)=bubfrac
molezone(l)=bubmoles
conczone(1)=bubmoles/volbub
do 1100 izone=2,nzonebeg

fraczone(izone)=depfrac *vzb(izone)/voldep
molezone(izone)=fraczone(izone)*orgmoles
conczone(izone)=depmoles/voldep

1100 continue
end if

End if
call fastgenz(rbub,rdep,width,nzoneend,rze,rz2e,rz3e,vze,rzrnge)

C- Begin the random walk thru the module
C- Calculate the probability of staying in the bubble

rbpw=rbub+width
stepsiz2=stepsize*stepsize

rbub2=rbub *rbub
rbub3=rbub2*rbub

114

rdep2=rdep*rdep
pf=stepsize*(12.d0*rbub2-stepsiz2)/(16.d0*(rbub3)*pcbub)
ddprbub=diffdist+rbub
firstime=zed

EndInbub=0.
EndIndep=0.
EndIntis=0.
do 1005 izone=l,nzoneend

endzone(izone)=O.dO
1005 continue

sumcumm(O)=zed
cummsum(O)=0. dO
do 1004 izone = 1 ,nzonebeg

cummsum(izone)=cummsum(izone-1)+fraczone(izone)
1004 continue

if(cummsum(nzonebeg).gt.zed)then
if(voltis. le. zed)then

do 1904 izone=0,nzonebeg
cummsum(izone)=cummsum(izone)/cummsum(nzonebeg)
sumcumm(nzonebeg-izone)=1 .dO-cummsum(izone)

1904 continue
end if

end if
C- Calculate the number of particles to be place

Do20H=l,Ntrip
C- Place a particle randomly in the module with probability weighted
C- by mole fraction.

prob=ran(il)
c
c new code to place particles in the various zones

do 1001 izone=l,nzonebeg
if (prob. It. sumcumm(izone))then

call place(r,rz3b(nzonebeg-izone),rzrngb(nzonebeg-izone+1))
r2=r*r
rp=r
rp2=r2
goto 1002

end if
1001 continue
1002 continue

C- If the particle is placed so far from the bubble that it cannot
C- reach it in nstep steps and the module only consists of the
C- bubble and a depleted region, the particle will stay in the depleted

115

C- region.

If (r.gt.ddprbub) then
Istep=nstep
call getsize(a,a2,istep)
call faststep(a,a2,r,r2,rp,rp2,cosphi)
goto 31

Else If (r.gt.rbpw) then
C- The particle can reach the bubble by diffusion

Istep=int((r-rbub)/stepsize)
call getsize(a,a2,istep)
call faststep(a,a2,r,r2,rp,rp2,cosphi)

Else
C- The particle is in the bubble

Istep=0
End if

C- Carry out random walk for NSTEP steps of "stepsize"

a=stepsize
a2=stepsiz2

Do 30 JJ=Istep+l,nstep
lnbub=0

C- Check to see if particle is in the bubble by comparing the
C- particle distance from origin with bubbble radius

if(rp.lt.rbub)inbub=1

C- If the particle is in the bubble, leave it
C- based on the probability factor.

If (Inbub.eq.l) then
if (ran(il).lt.pf)then

call fastout(r,a,rbub)
rp=r
rp2=rp*rp

end if
else

C- Take a step
r=rp
r2=rp2
call faststep(a,a2,r,r2,rp,rp2,cosphi)
if(rp.gt.rdep)then

116

call fastrefl(a,r,r2,rp,rp2,rdep,rdep2,cosphi)
r=rp
r2=rp2

end if
End if

30 Continue
31 Continue

if(rp.gt.rdep)then
call fastrefl(a,r,r2,rp,rp2,rdep,rdep2,cosphi)
r=rp
r2=rp2
if(r.gt.rdep)then

c if the particle is still outside the depletion region after reflection,
c assume that further reflections will leave it in the outermost zone,

call place(r,rz3b(nzonebeg-l),rzrngb(nzonebeg))
r2=r*r

end if
else

r=rp
r2=rp2

end if

C- Keep track of the region in which the particle ends
do 1010 izone=l,nzoneend

if(r. It. rze(izone))then
endzone(izone)=endzone(izone)+1 .d0

goto 1011
end if

1010 continue
1011 continue

If (r.le.rbub) then
Endlnbub=Endlnbub+1.

else If(r.le.rdep) then
Endlndep=Endlndep4-1.

else
Endlntis=Endlntis +1.

end if

20 Continue
if((voltiss.le.zed).and.(endintis.gt.zed))then
open(unit=2,file= 'for002.dat' ,type= 'old', access = 'append')
write(2,8888)endintis,l

8888 formatC accounting error...' ,f 10.2,' particles in tissue'/
+ ' on the',i8,'th cycle')

117

stop
end if

C- Calculate the gas content in each region
If (L.eq.l)then

open(unit=2,file = 'for002.dat' ,type= 'old' ,access = 'append')
write(2,904)time,rbub,volbub,voldep,

+ (vol-voldep)
write(2,904)cyclet,poofprob,washoutt
Write (2,905) rc,re,rbubO

close(2)
end if
dfht=dfloat(ntrip)
dfntO=dfnt
actual=endindep
if(poofprob.gt.0.dO)then

const=dfnt*csequil/currmole
expected=const*voldep
actual=endindep-(endindep-expected)*poofprob
dfnt=actual+endinbub

1025 continue
1015 continue

if(voltiss. gt. zed)dfnt=dfnt+endintis
currmole=currmole*dfnt/dfntO

end if
do 1020 izone=l,nzoneend

fraczone(izone)=endzone(izone)/dfnt*actual/endindep
if(izone.eq. l)fraczone(izone)=endzone(izone)/dfnt
molezone(izone)=fraczone(izone)*currmole
conczone(izone)=molezone(izone)/vze(izone)

1020 continue
calcpc=fraczone(l)*vze(2)/(fraczone(2)*vze(l))

Bubfrac=EndlnBub/dfnt
depfrac=actual/dfnt
Tisfrac=Endintis/dfnt
bubmoles=currmole *bubfrac
depmoles=currmole *depfrac
tismoles=currmole *tisfrac

C- If Bubfrac is very small it will soon vanish so trap it
If (bubfrac.lt.0.0000000001) goto 999

C- Calculate the new volume of each region
C- the volume of the depleted region plus the volume of

118

C- the supersaturated tissue region is a constant, so bubble
C- growth only adds to max and min dimensions, but not volumes

A3=(4.*pi*(Pl-Pvap))/3.
A2=(8.*pi*surten)/3.
aO=-molezone(l)*gasR*T

C0=A0/A3
C2=A2/A3
Call Roots2(c0,c2,rbub)
if(rbub.lt.stepsize)goto 999

VolBub=(4*pi*(rbub)**3 .)/3.
tisVNew=Tismoles/(Cll*P01/KH)
Voldep=Vol-tisvnew
If (VoldepO.ge.vol) Voldep=voldepO-tisvnew
rdep=((voldep+volbub)/vcoeff)**onethird
call fastexpnd(rbub,rdep,nzoneend,rzb,rz2b,rz3b,rzrnge,rzrngb)
nzonebeg=nzoneend

C- Output information for 1 bubble growth cycle
time=time+eyelet
open(unit=2,file = 'for002.dat' ,type = 'old' »access = 'append')
Write(2,904) time,rbub,calcpc,currmole
close(2)

904 Format(5G15.7)
3000 formate cycle # \i5,4gl2.4/50(3gl5.6/))

open(unit=7,file = 'bubmod.dmp' ,type = 'old' ,form= 'unformatted')
rewind(7)
write(7)L,il,nzonebeg,time,volbub,calcpc,rbub,rdep,rbubO
write(7)re,rc,currmole
write(7)(fraczone(i),molezone(i),conczone(i),i= 1 ,nzonebeg)
write(7)(rzb(i),rz2b(i),rz3b(i),vzb(i),rzrngb(i),i=1 ,nzonebeg)
write(7)(rze(i),rz2e(i),rz3e(i),vze(i),rzrnge(i),i=l,nzoneend)
close(7)

10 Continue
999 Continue
905 Format(3G15.4)

Stop
End

c
ccc
c

subroutine fastout(r,a,rb)

119

implicit real*8 (a-h,o-z)
common /com2/pi,il
common/comroot/probroot,firstime
probroot=ran(il)
s=rtsafe(0.d0,l.d0,l.d-10,rb,a)*a
r=s+rb
return
end

c
c
ccc
c subroutines to generate c.d.f. for particles stepping out of a bubble.
c some parameters are supplied to the subroutine via the common block
c comroot.
ccc
c

FUNCTION RTSAFE(Xl,X2,XACC,b,a)
implicit real*8 (a-h,o-z)

PARAMETER (MAXIT=100)
CALL FUNCD(Xl,FL,DF,b,a)
CALL FUNCD(X2,FH,DF,b,a)
IF(FL*FH.GE.O.) PAUSE 'root must be bracketed'
IF(FL.LT.O.)THEN

XL=X1
XH=X2

ELSE
XH=X1
XL=X2
SWAP=FL
FL=FH
FH=SWAP

ENDIF
RTSAFE=.5*(X1+X2)
DXOLD=ABS(X2-Xl)
DX=DXOLD
CALL FUNCD(RTSAFE,F,DF,b,a)
DO 11 J=1,MAXIT

IF(((RTSAFE-XH)*DF-F)*((RTSAFE-XL)*DF-F).GE.O.
* .OR. ABS(2.*F).GT.ABS(DXOLD*DF)) THEN

DXOLD=DX
DX=0.5*(XH-XL)
RTSAFE=XL+DX
IF(XL.EQ.RTSAFE)RETURN

ELSE

120

DXOLD=DX
DX=F/DF
TEMP=RTSAFE
RTS AFE=RTS AFE-DX
IF(TEMP.EQ.RTSAFE)RETURN

ENDIF
IF(ABS(DX).LT.XACC) RETURN
CALL FUNCD(RTSAFE,F,DF,b,a)
IF(F.LT.O.) THEN

XL=RTSAFE
FL=F

ELSE
XH=RTSAFE
FH=F

ENDIF
11 CONTINUE

PAUSE 'RTSAFE exceeding maximum iterations'
RETURN
END

c
ccc
c

subroutine funcd(x,f,d,b,a)
implicit real*8 (a-h,o-z)
common/comroot/probroot,firstime
if(firstime. eq. 0. dO)then

roa=b/a
roa2=roa*roa
fl =(12.d0*roa-24.d0*roa2)
f2=(6.d0-24.d0*roa+12.d0*roa2)
O=(12.d0*roa-8.d0)
f4=3.d0
dO=fl
dl=2.d0*f2
d2=3.d0*f3
d3=4.d0*f4
firstime=l.dO

end if
f0=(12.d0*roa2-l.d0)*probroot
f=((((f4*x+f3)*x+f2)*x+fl)*x+f0)
d=(((d3*x+d2)*x+dl)*x+d0)
return
end

121

cc
c

subroutine fastexpnd(rb,rd,nz,rz,rz2,rz3,rzre,rzrb)
implicit real*8 (a-h,o-z)
dimension rz(0:500),rz2(0:500),rz3(0:500),rzre(500),rzrb(500)
common/com5/twopi,onethird,coeff
data nzmax,eps/500,l-d-5/
rz(0)=0.dO
rz2(0)=0.d0
rz3(0)=0.d0
rz(l)=rb
rz2(l)=rb*rb
rz3(l)=rb*rz2(l)
rzrb(l)=rzre(l)
do 10 i=2,nz

rz3(i)=rz3(i-l)+rzre(i)
rz(i)=rz3(i)**onethird
rz2(i)=rz(i)*rz(i)
rzrb(i)=rzre(i)

10 continue
do 50 i=nz+l,nzmax

rz(i)=0.dO
rz2(i)=0.d0
rz3(i)=0.d0
rzrb(i)=rzre(i)

50 continue
if(dabs(rz(nz)-rd). gt. eps)then

write(3,100)nz,rz(nz),rd
100 formatC expansion error: rz(',i3,') = \gl5.6,

+ ' rdep = \gl5.6)
stop

end if
return
end

c
cc
c
c variables: a = stepsize
c rl = initial radial position
c rl2 = rl*rl
c r2 = radial distance > rd (do not use)
c r22 = r2*r2 (do not use)
c r3 = final radial position
c r32 = r3*r3

122

rd = depletion radius
rd2 = rd*rd
cp = cos(phi), from faststep
St = sin(theta)
st2 = st*st
ct = cos(theta)

c
c
c
c
c
c
c
c NOTE: even after reflection from the outer surface, the particle
c may still be outside the depletion region, have to check for
c this in the main program.
c

subroutine fastrefl(a,rl,rl2,r3,r32,rd,rd2,cp)
implicit real*8 (a-h,o-z)
common/com2/pi, i 1
common/com5/twopi,onethird,coeff
cp2=cp*cp
sp2=l.d0-cp2
if(sp2.1t.0.d0)sp2=0.d0
dl =rl*cp+dsqrt(rd2-rl2*sp2)
St2=rl2*sp2/rd2
if(st2.ge.l.d0)then

ct=0.dO
else

ct=dsqrt(l.d0-st2)
end if
d2=a-dl
d22=d2*d2
r32=rd2+d22-2.d0*rd*d2*ct
r3=dsqrt(r32)
return
end

c
cc
c

subroutine faststep(a,a2,r,r2,rp,rp2,cosphi)
implicit real*8 (a-h,o-z)
common/com2/pi,il
common/com5/twopi,onethird,coeff
cosphi= 1 .d0-2.d0*ran(il)
rp2=a2+r2-2 .dO*a*r*cosphi
rp=dsqrt(rp2)
return
end

123

FIGURE 16 - Geometry used in subroutine FASTSTEP for a radially symmetric bubble-
liquid module

124

FIGURE 17 - Geometry used in subroutine FASTREFL for a radially symmetric bubble-
liquid module.

125

cc
r*

subroutine place(r,rz3,rzrng)
implicit real*8 (a-h,o-z)
common/com2/pi,il
common/com5/twopi,onethird,coeff
r=(rz3 +rzrng*ran(il))**onethird
return
end

c
cc
c

subroutine fastgenz(rb,rd,w,nz,rz,rz2,rz3,vz,rzrng)
implicit real*8 (a-h,o-z)
dimension rz(0:500),rz2(0:500),rz3(0:500),vz(500),rzrng(500)
common/com5/twopi,onethird,coeff
data nzmax/500/
nz=l
rz(0)=0.dO
rz(l)=rb
do 10 i=2,nzmax

nz=nz+l
rz(i)=rz(i-l)+w
if(rz(i).ge.rd)then

rz(i)=rd
goto 20

end if
10 continue
20 continue

rz2(0)=0.d0
rz3(0)=0.d0
do 40 i=l,nz

rz2(i)=rz(i)*rz(i)
rz3(i)=rz2(i)*rz(i)
rzrng(i)=rz3(i)-rz3(i-l)
vz(i)=coeff*rzrng(i)

40 continue
do 50 i=nz+l,nzmax

rz2(i)=0.d0
rz3(i)=0.d0
rzrng(i)=0.d0
vz(i)=0.d0

50 continue
return

126

end
c

Subroutine Roots(c0,cl,c3,rc,re)
implicit real*8 (a-h,o-z)

C- This subroutine calculates the roots of the Tikuisis polynomial.
C- First, find the minimum because 1 root is below it and the other
C- root is above it.
100 formate # '45)

If (cl.ge.O.) then
re=-999.

else '
xl=-cO/cl

10 x=xl
g=cl+x*x*(3.*c3+4.*x)
dgdx=x*(6. *c3 +12. *x)
xl=x-g/dgdx
if((abs(g).gt.0.0000001).or.(abs(xl-x).gt.0.0000001))

+ goto 10
C- Now apply Newton's method to find the roots

f=rcfunc(xl,c0,cl,c3)
if (f.gt.O.) then

re=-998
else
dolj = l,2

if (jeq.l) then
mult=-l

else
mult=l

end if
x2=xl*l.+0.1*mult

20 x=x2
f0=rcfunc(x,c0,cl,c3)
fl=cl+x*x*(3.*c3+4.*x)
dxl=-f0/fl
x2=dxl+x
if (abs(l.-(x2/x)).gt.0.0001) goto 20
if (mult.lt.0) rc=x2
if (mult.gt.0) re=x2

1 continue
end if

end if
return
end

127

Real*8 Function rcfunc(x,c0,cl,c3)
implicit real*8 (a-h,o-z)
z=c0+x*(cl+x*x*(c3+x))
rcfiinc=z
return
end

Subroutine Roots2(c0,c2,rbub)
implicit real*8 (a-h,o-z)

C- This subroutine calculates the roots of the polynomial describing
C- bubble radius.
C- Apply Newton's method to find the roots

x2=rbub
20 x=x2

f0=rbubfunc(x,c0,c2)
fl=x*(2.*c2+3.*x)
dxl=-f0/fl
x2=dxl+x
if (abs(l.-(x2/x)).gt.0.0001) goto 20
rbub=x2

return
end

Real*8 Function rbubfunc(x,c0,c2)
implicit real*8 (a-h,o-z)
z=c0+x*x*(c2+x)
rbubfunc=z
return
end

c
ccc
c
c subroutine to take find the size of a single large diffusion
c step for use in subroutine faststep
c
c subroutine getsize(a,a2,diffcoef,t)

subroutine getsize(a,a2,isd)
implicit real*8 (a-h,o-z)
common /com2/pi,il
common/distarr/distance(10000),sd(500)

c
c the distance stepped as a function of the probability, given in terms

128

c of the standard deviation, is located infile distprob.dat
c

index=aint(l.d0+10000.d0*ran(il))
a=sd(isd) *distance(index)
a2=a*a
return
end

129

