
REPORT DOCUMENTATION PAGE
form Approved
OMS No. 0704-0 768

 ____——— .,,„ ,..,, .-- t,-c ict rrv»«-na iwrjniow, icarcn.r,; .,-irr.c e.V.» lour*«.

1. AGENCY USE ONLY (leave Won*) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

V'K"U or cUoM^r T^lo,y ^ e^oic
S>roceA»re rcxlls WWW ft* apPlicd.'on ofFik (W,Sr^O^

fi>r- /DfAi^a (p.^cry-rk r^,rr> o^ 1 > m^- _
6. AUTHOR(S)

5. FUNDING NUMBERS

^^ArP;^ C Jfrn Y\
T. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFIT Students Attending:

J—S-;—\ < \ '> lw f r/c\ «Kin flnnpcic

8. PERFORMING ORGANIZATION
REPORT NUMBER
AFIT/CI/CIA

9f (55
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DEPRTMENT OF THE AIR FORCE
■- AFIT/CI
2950 P STREET
WRIGHT-PATTERSON AFB OH 45433-7765

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

I

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for Public Release IAW 190-1
Distribution Unlimited
MICHAEL M. BRICKER, SMSgt, USAF
Chief Administration

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

19950103 044
tTt AIJIYX XE'G?K0TKI} 8

H. SUBJECT TERMS
15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

J

ABSTRACT

As the computing resources of the world are quickly becoming integrated into a vast

network of interconnected machines, client/server technology is becoming more prevalent as a

method to utilize unused resources and to distribute complex systems. Remote Procedure Calls

(RPCs) serve as one of the means to implement this technology. This report, combined with

those produced by 2Lt Andrea Miller and 2Lt Eric DeLange, provide an overview of both the

complexity and the benefits of using RPC in a distributed environment. The report initially

investigates the fundamentals of RPC and follows with a discourse of RPCs suitability for

implementation as a means for computer-integrated file migration. The report presents an

application involving RPC for timed file migration and concludes with a discussion of

implementing user-friendly front-ends to hide the complex nature of RPC from the user. This

specific application investigates the applicability of RPC to developing a distributed file migration

application. The application allows the user to access files that may reside on various hosts by

querying a central database for a file's location via RPC. Some of the files, however, are

dynamically relocated, based on a timing procedure. This could be very advantageous for global

organizations that maintain a core set of organization files that must be accessed at a specific time

of day (which, of course varies, depending on the time zone of the requester).

CIS 593 Page 2 Fall 1994

Title: A Demonstration of Client-Server Technology Using Remote Procedure Calls
With an Application of File Migration for Moving Records Based on Time

Author: 2Lt Andrew C. Jank, USAF

Date: December 1994

Pages: 60

Degree: Master of Science in Decision and Information Systems

Institution: Arizona State University

>:

j/H

ABSTRACT

As the computing resources of the world are quickly becoming integrated into a vast

network of interconnected machines, client/server technology is becoming more prevalent as a

method to utilize unused resources and to distribute complex systems. Remote Procedure Calls

(RPCs) serve as one of the means to implement this technology. This report, combined with

those produced by 2Lt Andrea Miller and 2Lt Eric DeLange, provide an overview of both the

complexity and the benefits of using RPC in a distributed environment. The report initially

investigates the fundamentals of RPC and follows with a discourse of RPCs suitability for

implementation as a means for computer-integrated file migration. The report presents an

application involving RPC for timed file migration and concludes with a discussion of

implementing user-friendly front-ends to hide the complex nature of RPC from the user. This

specific application investigates the applicability of RPC to developing a distributed file migration

application. The application allows the user to access files that may reside on various hosts by

querying a central database for a file's location via RPC. Some of the files, however, are

dynamically relocated, based on a timing procedure. This could be very advantageous for global

organizations that maintain a core set of organization files that must be accessed at a specific time

of day (which, of course varies, depending on the time zone of the requester).

CIS 593 Page 2 Fall 1994

BIBLIOGRAPHY

Bloomer, John. Power Programming with RPC. Sebastopol: O'Reilly and Associates, Inc., 1991.

Carpenter, B. E. and R. Cailliau. "Experience with Remote Procedure Calls in a Real-time

Control System." Software-Practice and Experience. Vol. 14. September 1984, p. 901-

07.

Comer, Douglas E. and David L. Stevens. Internetworking with TCP/IP. Vol 3. Inglewood

Cliffs: Prentice Hall, Inc., 1993.

Curry, David A. Using C on the UNIX System. Sebastopol: O'Reilly and Associates, Inc., 1989.

Hac, Anna. "A Distributed Algorithm for Performance Improvement Through File Replication,

File Migration, and Process Migration." IEEE Transactions on Software Engineering. Vol

15, No 2. November 1989, pp. 1459-1470.

Hahn, Harley. A Student's Guide to UNIX. New York: McGraw-Hill, 1993.

Hewlett-Packard Company. HP Visual User Environment 3.0 User's Guide. Hewlett-Packard

Company, 1992.

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language. 2nd ed. Murray Hill:

AT&T Bell Laboratories, 1988.

Korzeniowski, Paul. "Make Way for Data." Byte. June 1993, pp. 113-115.

Levy, Henry M. and Ewan D. Tempero. "Modules, Objects and Distributed Programming:

Issues in RPC and Remote Object Invocation." Software-Practice and Experience.

Vol. 21. January 1991, pp. 77-90.

CIS 593 Page 3 Fall 1994

Soto, J. L. Cruz, M. C. Calzada Canalejo and M. Marin Beltran. "Parallelization of Differential

Problems by Partitioning Method (Synchronized Algorithm)." Computers and

Mathematics with Applications. July 1993, pp. 25-31.

Sun MicroSystems. Network Programming Guide. Sun MicroSystems, Inc., 1990.

Waite, Mitchell and Stephen Prata. New C Primer Plus. Carmel: Sams Publishing, 1993.

CIS 593 Page 4 Fall 1994

A Demonstration of Client-Server Technology

Using Remote Procedure Calls

With an Application of File Migration

for Moving Records Based on Time

by

2Lt Andrew C. Jank

An Applied Project Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science in Decision and Information Systems

Arizona State University

December, 1994

EXECUTIVE SUMMARY

As the computing resources of the world are quickly becoming integrated into a vast

network of interconnected machines, client/server technology is becoming more prevalent as a

method to utilize unused resources and to distribute complex systems. Remote Procedure Calls

(RPCs) serve as one of the means to implement this technology. This report, combined with

those produced by 2Lt Andrea Miller and 2Lt Eric DeLange, provide an overview of both the

complexity and the benefits of using RPC in a distributed environment. The report initially

investigates the fundamentals of RPC and follows with a discourse of RPCs suitability for

implementation as a means for computer-integrated file migration. The report presents an

application involving RPC for timed file migration and concludes with a discussion of

implementing user-friendly front-ends to hide the complex nature of RPC from the user. This

specific application investigates the applicability of RPC to developing a distributed file migration

application. The application allows the user to access files that may reside on various hosts by

querying a central database for a file's location via RPC. Some of the files, however, are

dynamically relocated, based on a timing procedure. This could be very advantageous for global

organizations that maintain a core set of organization files that must be accessed at a specific time

of day (which, of course varies, depending on the time zone of the requester).

CIS 593 Page 2 Fall 1994

TABLE OF CONTENTS

EXECUTIVE SUMMARY 2

TABLE OF CONTENTS 3

PREFACE 4

INTRODUCTION 6

REMOTE PROCEDURE CALLS 8

RPCs vs. LOCAL PROCEDURE CALLS 9
A FOUNDATIONAL CLIENT/SERVER DEMONSTRATION 11
ADVANCED RPCs 13

FILE MIGRATION 15

A CASE FOR COMPUTER-INTEGRATED FILE MIGRATION 15
A CASE FOR COMPUTER-INTEGRATED FILE REPLICATION 16
THE BENEFITS OF COMPUTER-INTEGRATED FILE MIGRATION 17
ANALYSIS OF COMPUTER-INTEGRATED FILE MIGRATION 18

APPLICATIONS FOR FILE MIGRATION 19

SHARED APPLICATION FEATURES 20
AN APPLICATION FOR TIMED FILE MIGRATION 21
RUNNING THE APPLICATION 22
DISCUSSION OF RPC OPERATION AND PROGRAMMING CODE 25
DISCUSSION OF TIMED FILE TRANSFERS 27

RPC FRONT ENDS WITH HP-UX 28

THE HP-UX WORKSPACE ENVIRONMENT 28
DEVELOPING A CONTROL 29

Building Icons. 29
Creating Actions 29
Adding a Control to the HP-UX VUE Session 30

RESTARTING THE WORKSPACE 30

CONCLUSIONS 32

LESSONS LEARNED 32
FUTURE ENDEAVORS 32

BIBLIOGRAPHY 34

APPENDICES .. 36

APPENDDCA 37
APPENDDCB 41
APPENDIX C 46
APPENDKD 52
APPENDDCE 55
APPENDKF 60

CIS 593 Page 3 Fall 1994

PREFACE

This project represents one part of three related and closely coordinated projects. In total,

the three projects provide: a) exposition and programming examples needed to understand the

use of Remote Procedure Calling (RPC) for distributed Client/Server processing in networks, b)

extensions needed for RPC applications that migrate files among hosts in a network based on

several interesting and practical criteria, and c) a discussion and code pertaining to the

development of a Graphical User Interface (GUI) for the on-line demonstration of concepts

spanning the collection of projects.

Working as a team, Eric DeLange, Andrew Jank and Andrea Miller jointly participated in

developing a tutorial discussion of RPC concepts and programming techniques. After the

development of fundamental RPC programs which illustrate these techniques, the team

collaborated to develop a foundational set of code pertinent to file migration among networked

hosts. Thereafter, each team member individually expanded this code to model specific RPC

applications of file migration.

Finally, a jointly-developed GUI to facilitate the convenient on-line execution and

demonstration of all applications was added. Source files and a discussion of the GUI are of

considerable instructional interest because they present techniques for synthesizing window

programming and C programs that not only make RPC calls but also make system calls to invoke

UNIX scripts and utilities.

For the convenience of the reader, each of the related project reports contain the source

code and discussion of the applications developed by the companion authors. This project report

uniquely contains the discussion and source code developed by the author for an application in file

migration based on timed file transfers. Readers who are interested in immediate file migration or

CIS 593 Page 4 Fall 1994

migration based on heuristics are free to reference the reports authored by Andrea Miller and Eric

DeLange, respectively.

CIS 593 Page 5 Fall 1994

INTRODUCTION

With the vast technological advances in computer capabilities, specifically in the

distributed environment, organizations are moving away from centralized systems in order to avail

themselves of the various advantages offered by distributed systems. Often, organizations are

geographically dispersed which leads them to a natural distribution of computing resources.

Furthermore, distribution provides a business with enhanced reliability by allowing data

replication across multiple sites. Finally, given the size of organizations in today's business arena,

a distributed environment facilitates high transaction rates and also allows for the integration of

heterogeneous platforms that often accompany mergers between companies or the addition of

new locations.

With the advantages of a distributed environment comes the added complexity of

communicating among multiple machines across a network. Since the information is no longer on

a single machine, there must be a way to track the identities of the requester and the recipient as

well as the location of the information required for the transaction. Client/Server technology is an

approach which deals with this complexity. In essence, the requesting computer is viewed as a

client which asks for a particular service from another machine (the server). When the client

requests a service from the server, control is passed to the server until it has completed processing

the request, at which time the client receives the requested information and regains control. For

example, if a client needs the result of a complex mathematical function, but lacks the processing

power to compute it within a reasonable amount of time, it can request the services of another

processor (server) that has the necessary capabilities to perform the calculation. Once the

calculation has been performed, the server passes the answer, and control, back to the awaiting

client.

CIS 593 Page 6 Fall 1994

The above example looks very much like a function call in any standard language such as

C or FORTRAN and, in fact, it is. The only difference is that the function call is made over a

network to a different machine. In truth, making a function call to another machine is aptly

accomplished through the implementation of Remote Procedure Calls (RPC). RPC is a popular

framework for programming in a distributed client/server environment. It provides a means by

which a client can communicate with a server.

This project develops an application using RPC. Specifically, it illustrates the usefulness

of RPC and its applicability in the area of file migration. In achieving this end, a small, simple

program was developed to provide a basic understanding of RPC. Once a working application in

the area of file migration was achieved, each member of the group modified the program to

accommodate variations in the file migration model. Finally, a front-end was added on the

Hewlett-Packard UNIX System to make the program more user-friendly.

CIS 593 Page 7 Fall 1994

REMOTE PROCEDURE CALLS

Remote Procedure Calling permits a client to execute procedures on other networked

computers. In fact, RPCs serve as the basis for a majority of the distributed system utilities

currently in use (i.e. NFS and NIS). A major reason for RPC utilization is the ease with which

RPCs can be implemented, when compared to the lower-level network socket interfaces which

have been required prior to the advent of RPCs. Moreover, RPCs are perceived as powerful

programming tools, especially for users, since their implementation resembles traditional

programming methodologies and the network interfaces are provided with increased transparency

to the users (Bloomer 1).

RPC has been identified as a type of middleware. Middleware is software that translates

communication between different machines or platforms. This type of software protocol is often

necessary for communications within a client/server environment. RPC has been deemed one of

the two primary types of client/server middleware; the other is message processing (Korzeniowski

114). In order to use RPC, synchronous links between computers must be established, either

using datagram or TCP transports. If no transport is available at the time of initiation, the client

application will automatically wait for an answer from the server, and eventually "time out" (halt)

when no reply is gathered. Message passing differs from RPC protocol in that messaging systems

work on the store and forward principle (Korzeniowski 114). Store and forward systems allow a

server to read a computer request message at its own convenience. Since message passing

systems do not wait for a response from the server function, these types of systems support

asynchronous client/server interaction. However, the synchronous connection supported by RPC

communication maintains a higher degree of reliability than message processing. In a message

CIS 593 Page 8 Fall 1994

passing system, for example, it is possible that a message may never be received and neither the

source, nor the receiver, would be aware of a problem.

RPCs have many other advantages, beyond the simple benefit of enhanced reliability.

Some other advantages include the ability of RPCs to run on hosts having different operating

systems, the ease of incorporation of RPC into various software products, and the ability to utilize

unused CPU time at distant machines. However, RPC implementation has its drawbacks. RPC

lacks flexibility and is often difficult to use with many servers. Message passing offers a greater

degree of flexibility, along with an easier programming procedure for establishing asynchronous

communication between processes in a networked environment. In summary, message passing

lacks the reliability and standards that RPC provides and is limited in use (Korzeniowski 115).

RPCs vs. Local Procedure Calls

A remote procedure call appears extremely similar to a local procedure call-as intended.

The difference between the two procedures is that in a local procedure call, the client process

initiates a procedure in its own address space, whereas with RPC the server and client exist as two

separate processes, usually on different machines (Comer 289). It is this separation of processes

that allows the server function to reside on a different machine. Nevertheless, it is important to

note that RPC can still be utilized when the client and the server execute on the same machine

(Comer 306).

During normal implementation of RPC, the client process and the server process

communicate to each other via two stubs (Levy 79), namely the client stub and the server stub. A

stub is a communications interface that establishes the RPC protocol and determines how each

CIS 593 Page 9 Fall 1994

message is constructed by the processes and interchanged between the two. The client process

first consults its own stub to locate any remote processes that are required for program operation.

Subsequently, the client makes the necessary requests of those processes. Meanwhile, the server

(daemon) perpetually listens to the network, through the server stub, for any requests transmitted

by clients. More specifically, one daemon, the Inetd, serves as a "grandfather" daemon for all

other daemons. Inetd runs perpetually and starts other server daemons upon receipt of requests

for server services. The server fulfills each request in succession, returning to its waiting state

after completion of each request (Bloom 2).

At a more basic level, each server process is identified by a port (logical network

communication channel) by which it establishes communications for client requests. When a

server is initiated on a machine, the computer establishes an address (port) for server

communications. This address, which is unique, is registered with the server machine's

portmapper (Bloom 11-12).

The portmapper itself provides a crucial network service for all client/server

communication. Its job is to keep track of all services that are available on a machine and their

port addresses. Whenever a client requests a service from a particular machine, the client

petitions the portmapper for the service. If the requested server exists, the portmapper establishes

a communication channel between the client and the server. Even when a client and server reside

on the same computer, the operation for establishing a link between the client and the server is the

same; the network is still involved in the communication. The client still checks with its stub for

the server's address, only in this case the address provided by the portmapper would correspond

to the same machine. In effect, the request travels across the network only to return to its origin

(Sun MicroSystems 36).

CIS 593 Page 10 Fall 1994

A Foundational Client/Server Demonstration

To facilitate the comprehension of programs upon approaching the tasks entailing RPC, it

is helpful to begin with a straight-forward application. For this purpose, a client/server RPC

demonstration has been developed wherein a client process passes an integer to a server that

increments the integer and returns the updated value to the client. The files necessary to perform

this, and any other, RPC application include a protocol definition file, client program, server

program, and the stubs and header file generated by the RPC compiler after these are created.

Before programming the client and server processes, it is first necessary to create a

protocol definition in the remote procedure call language (RPCL). A protocol definition is a file

that describes both the list of data structures that will be passed between the client and server, and

the function call required from the client in order to use the server's resources. The initial

protocol definition file, additx, can be referenced in Appendix A.

The critical elements in the protocol definition include a unique program number and

version numbers within each program. In this example, the program is called ADDPROG and is

assigned the unique number 0x20000002. It is imperative that this value be unique since it is used

by the portmapper to identify the process (from poignant experience, the author can readily attest

to the confusion that results from having multiple programs with the same program number). The

version numbers are useful when updates warrant the need for a distinction between the original

version, and the subsequent update (Bloomer 43). For example, the addit protocol definition file

contains one version with a simple function definition called ADDNUM which receives and

returns an integer. Another version could be defined (identified by the number 2) which passes a

CIS 593 Page 11 Fall 1994

structure instead of an integer. RPCL is similar to the C language, though this simple example

does not make this apparent; however, the protocol definition file for the author's application

(Appendix B) demonstrates the similarity between declared constants, structure definitions, and

additional functions.

Once the user has created the protocol definition file, a UNIX program, called RPCGEN,

compiles the definition and produces several files. RPCGEN creates both the client and server

stubs, as well as a header file that defines the RPC parameters that are included in both the server

and client routines. After compilation of the RPC definition file, the next task entails developing

the client and server code.

In the addit example, the client code is labeled addit.c. The code is written in C and

contains familiar formats like include statements, variable declarations, etc. Additionally, the

code includes features that are unique to RPC. First, the rpc/rpc.h library must be included along

with the header file addjt.h which is produced by the compiler rpcgen. Next, a special pointer of

type CLIENT is declared which points to a structure that contains information about the port and

socket addresses (Bloomer 7). The value ofthat pointer is determined by the function clnt_create

which establishes a connection between the server and client machines. This function requires the

name of the host with which to establish a connection (can be the same), program name, version

name, and the type of transport protocol (tcp or udp). If no connection can be established, the

function clnt_pcreateerror is called to inform the user that no connection could be made to the

host (Sun MicroSystems 45). Finally, the function that was declared in the protocol definition file

(addjt.x) is called (the version number is appended to the function name by rpcgen). Passed to

the function are the integer which will be manipulated and the CLIENT pointer which contains the

communication information.

CIS 593 Page 12 Fall 1994

The last component of the addjt example is the server code, which is also coded in the C

language. Again, the rpc/rpc.h library is included as well as the header file addit.h. Noticeably

different from the client code is the lack of a main declaration. In essence, the server code is

simply a function declaration and can be considered as a function within the client code, only

residing on a different machine. Furthermore, all communication between the client and the

server is accomplished through pointers. Thus, the client passed the pointer to the integer man

and the server returns a pointer to the new number which is, ironically, called oldnum. The

descriptive "Hello People" statement was included to provide optional output to confirm that the

server was responding (debugging tool).

Advanced RPCs

Once this simple RPC application that adds two integers over a network was completed,

the level of difficulty was increased by working with strings and structures, until the author was

versed enough in RPC protocol and application specification to begin work on the file migration

application itself. It uses many of the fundamental concepts of the simpler RPC application, as

well as additional, more complex concepts. A copy of the code is included in Appendices B

through E. Appendix B is the protocol definition file, Appendix C contains the client code,

Appendix D contains the server code, and Appendix E has all of the scripts written in UNIX that

are used through system calls by the client and server code.

The application of file migration, of course, is not the only area where RPC can be

employed effectively. There are many other applications which lend themselves to the advantages

of RPC, including using RPC to calculate partial derivatives. In this application, the equations are

CIS 593 Page 13 Fall 1994

partitioned and numerically solved on different computers. The fragmented solutions are then

pooled to obtain the final result (Soto 25-27). Another application area encompasses using RPC

as a tool for software applications dealing with real-time process control systems that are large

and complex (Carpenter 901-902). Undoubtedly, the use of RPC will become more widespread

and, as it does, we will see an increase in the number of applications in this area.

CIS 593 Page 14 Fall 1994

FILE MIGRATION

Many organizations have expanded significantly, in a physical and geographical sense,

over the past few decades. This growth has been accelerated by the fast-paced nature of the

advancing computing environment. Many organizations have noticed that it can be beneficial to

modify the location of various frequently accessed company files from their current locations to

others. By varying the location of files appropriately, communication costs and file transfer

duration times, which typically result from locating and acquiring large files (such as company

accounting histories or files containing multiple graphic bitmaps), can be minimized. Companies

have often solved these problems by manually modifying the primary location of particular files, or

by replicating the files to multiple locations.

A Case for Computer-integrated File Migration

For example, most world-wide corporations maintain personnel files for each and every

member of their company. Regardless of each member's current location, it is imperative that the

data contained within each file remains current. In order to maintain currency, the file must be

updated continually as to reflect each person's current location, position, job status, possible job

qualifications, personal preferences, etc. Most companies maintain each member's personal

record at one specific site. The file is usually located closest to where that person normally

conducts business (at some home-base location). Whenever their particular personnel file must be

updated, their central file must be found and modified. Although this method may seem prudent,

as long as the person remains at that specific location for an extended period of time and rarely

CIS 593 Page 15 Fall 1994

deviates far from that location on business ventures, the reality of global business dictates that

many personnel are frequently dispatched world-wide for extended periods of time at irregular

intervals.

If a person is temporarily reassigned from one business site to another, for example, as the

schedule of a sales representative could require, maintaining a file at a central location may be

considered unwise. It makes sense, then, to have each company member's personal file "follow"

them to their current business location, as required by their occupation. Many organizations have

implemented this concept by manually moving personnel files from one location to another, as

warranted. The process of moving this file is usually performed manually, but why bother when a

computer system can perform the necessary file transfers, at close to optimal times, and minimize

transferal and access costs concurrently? In most cases, the manual process of moving files is

either cost-ineffective, inefficient, or subject to oversight errors.

A case for Computer-integrated File Replication

Related to the prior example, a person may perform certain business functions at two or

more distant locations on a frequent and extended basis. In order to minimize communication

costs, their personal file could be manually moved between these locations as their business

functions require. However, this method may not be the most efficient and cost-effective one for

determining the timing of file relocations. Routinely moving a file among two or more locations

seems like a senseless task. If the employee regularly returns to a limited set of specific locations,

having information specialists repeatedly relocate the member's personal file to each of these

locations could result in unnecessary file transfer costs. If this person's file is only needed at each

CIS 593 Page 16 Fall 1994

location for read-only applications, a simple file copy at each location would minimize the cost of

access times and would require only one file transfer for each location. Any competent computer

specialist could determine when a file should be copied to another location, but why employ one if

the computer system can perform this function on its own? The system could apply a set of

criteria and automatically determine when a file should be copied to another location. The

possibility of automatically moving files to the optimal locations leads to the concept of file

migration.

The Benefits of Computer-integrated File Migration

The two preceding examples illustrate the advantages of computer-integrated file

migration. Although many methods can be employed to determine when a file should be either

replicated or moved, there is little evidence to support that the file transfers themselves should be

performed manually by the computer system monitors. A computer routine can be developed that

determines the optimal distribution of each file and performs the necessary relocations) without

human involvement.

The concept of file migration is, more or less, an automatic process. In this process, the

organization pre-defines a specific set of criteria that must be met before a file is either relocated

or replicated to another site. When the pre-specified criteria are met, the awaiting computer

functions perform the desired file relocation and replication without any interaction by the

computer system monitor. In this scenario, a centralized database would maintain the criteria as

well as current information on the location of each file, the type of each file, and the types of

CIS 593 Page 17 Fall 1994

accesses available to each file (e.g. if a file is read-only, write-only, or both). If the file location(s)

have been modified, only a simple change to the database is required.

Although it may seem expensive to require each file query to consult the central database

prior to any, and every, file access, the cost will usually be negligent, especially when compared to

normal file transfers. For example, a personnel file that contains complex images (including dental

exam x-rays, photographs, and other bitmaps) can often take hours to transfer error-free over a

large distance, while a simple database call to another machine takes much less than a few

seconds.

Analysis of Computer-integrated File Migration

So, as far as the added communication overhead is concerned, file migration adds little to

the overall cost. Actually, this extra overhead cost is required from all personnel database

systems, since any distributed system requires the existence of, and access to, some type of

database to determine a particular file's location. The real savings from the file migration concept

comes from the efficiency gained by the elimination of human interaction at the file transfer level.

The transferal/replication criteria are only specified at a single point, with periodic updates,

eliminating the necessity of human decision-makers to determine the location of each file at each

point in time. The system itself takes care of the implementation issue.

CIS 593 Page 18 Fall 1994

APPLICATIONS FOR FILE MIGRATION

In order to demonstrate RPC, three different, but related, file migration applications were

chosen with regard to unit personnel records. For instance, in the Air Force, currently all records

are kept on one database in one location. While this may seem like the simplest way to maintain a

database, it might be more cost-effective to distribute the files and move them electronically. This

is the basic idea behind the applications. While each option is a slightly different scenario with

respect to migrating personnel records, all three applications have an underlying goal as well as a

communal set of code.

This shared objective is to create an application that will maintain databases of the actual

personnel records along with a database that knows the location of each record. Furthermore,

each application will display a set of statistics regarding the location and number of accesses of a

particular file from a particular location. This enables an individual to keep track of where the file

is used and requested most often. Finally, based on some predetermined set of rules (here is

where the different options are derived) the file is transferred to a different location and a message

appears telling the user that the file has been transferred to a new location. The transfer is also

updated in the database that tracks the locations of the files.

As mentioned before, the file transfer is governed by a set of rules. Here is where each

application finds its identity. The first option deals with transferring a file based on a location that

is different from the current location of the file. The second option transfers a file based on the

percentage of requests made. The final option transfers a file at regularly scheduled times to

given locations. There exist complex algorithms that dictate when a file should be migrated based

on a system's resource utilization, file sizes, and the number of write and read accesses to those

CIS 593 Page 19 Fall 1994

files (Hac 1459); however, because the emphasis of this paper is on remote procedure calls rather

than file migration techniques, these algorithms are beyond the scope of this project.

Shared Application Features

Though each of the three applications address a different decision rule, they all share

certain attributes, processes, and implementation techniques. Since the authors developed a

generic set of code around which the applications are built, each application shares a number of

the same variables. Furthermore, many of the functions within the server code are identical since

the same file information is being processed in each application.

Of special interest is the use of the rdbpt server as a client of the fts server. In other

words, the same process can function as a server and a client! The server process need only make

a request of another server to become a client, too. This feature in the code required extensive

debugging for two reasons: first, the location in the code of the second server call was important

to the server's operation and second, the structure of the compilation file was altered significantly

in order to integrate the additional stubs into the original configuration.

Finally, each application implements C's capability to make UNIX system calls. This

capability allows the integration of UNIX scripts which are triggered by C with a simple system

call to the name of the script. In this way, the various tasks of the applications are performed in

the most appropriate environment. For example, it is easier to work with files using UNIX rather

than C since the code resides on UNIX machines. The UNIX system calls are easily identified

throughout the code.

CIS 593 Page 20 Fall 1994

An Application for Timed File Migration

In real-world applications for file migration, most files are relocated when specific criteria

are met. In other situations, however, the criteria of basing file relocation due to the number and

location of accesses from various hosts is inadequate or inefficient.

For example, a global corporation may have a specific set of general files that must remain

current on a company-wide basis. Let us also suppose that these files are only accessed at specific

times of the workday (e.g. files that each company location must access at 9 a.m. to start the

workday, and again at 5 p.m. to report changes to the files). Although it may seem easier to the

casual observer to simply let a set of criteria determine the optimal file locations, it should be

noted that 9 a.m. and 5 p.m. are different for each time zone in which the company operates.

Why not just automatically relocate the file on the hour as each of the companies in a specific time

zone are expected to begin accesses, rather than force the system to determine the proper timing?

This application demonstrates one technique for addressing this type of problem by

invoking a computer-clocking routine to automatically move the files at certain times to specific

locations. A process is located at the central database that performs this function. Although the

files are automatically moved at the desired times to the new time zone locations, other processes

can be involved, concurrently, to determine the optimal location for the files within each time

zone.

The application scenario typifies an application for a continental US corporation. In our

example, we assume that the one server exists in each of the time zones, and at specific intervals,

a subset of three "organizationally important" files are dynamically moved across the US from

east to west as the time zone shifts would require. The remaining set of files are kept at their

CIS 593 Page 21 Fall 1994

current iocations and can be relocated either manually, or by some concurrently operating

optimization process.

Running the Application

To initiate the application, the user may either click on the appropriate icon, or simply

execute the RUN_IT script (Appendix F). The script itself merely removes all of the temporary

files created by the last run of the application, re-initializes the data to the beginning state, and

executes the application in the proper application windows. In order to facilitate the compilation

process, RUN_IT also executes the MAKEFILE script (Appendix F) which automates the

process of integrating the program stubs generated by RPCGEN (from the two files RDBPT.X

and FTS.X, Appendices B and D, respectively) into a cohesive application.

PROJECT THREE;

SSN Name Address

111111111

Sunrise

0

JOHN.OFFUTT 2343.SANDSTONE.DRIVE

Sunburn Sunspot Hpnotic

0 0 1

andyjank@hpnotic:22 |

Figure 1.

CIS 593 Page 22 Fall 1994

When the application is executed, the user will initially see three windows. The main

(active) window, titled "Project Three", displays the user's prompt and the results of each

database query. The results include not only the desired record, but also the current number of

accesses to that file from each server. To make a database query, the user would input a

command of the form > rdbpt hpnotic 111111111 (indicating a request for the personnel file

"111111111" from the central database located at server "hpnotic"). After executing the query,

the database will be updated and the results will be displayed in the main window (see Figure 1).

m ■ ransfer Statir

total: 1
jMax: 0
jMaxname:
Ratio: 0.000000

The file 111111111 will remain
at the server sunrise.|

Figure 2.

CIS 5T: Page 23 Fall 1994

As the query is processed, the second window, titled "Transfer Status", will display the

status of the requested file (see Figure 2). The status indicates whether or not the file has been

dynamically relocated from its current server to another. Incidentally, the window also displays a

set of diagnostic statistics that keep track of the total number of accesses for that file. For a more

complete description of these values and their implications, please refer to the report on migration

based on heuristics by Eric DeLange.

Timed File transfer iiMi&nM^mmMim \i

THE FOLLOWING FILES HAVE BEEN TRANSFERRED:

SSN FROM TO

111111111
222222222
333333333
I

sunburn
sunrise
sunspot

sunrise
hpnotic
sunburn

Figure 3.

At one-minute intervals (simulating a one-hour time-elapse), a third window, titled "Timed

File Transfers", will appear for ten seconds (see Figure 3). This window displays the timed file

migration of the three "organizationally important" files across time zones. The window reports

CIS 593 Page 24 Fall 1994

what files have been migrated and their new locations. Future accesses to these files via the main

window will prove that the files have, indeed, changed locations (as indicated in the Transfer

Status window).

As long as both of the two server processes are active, queries to the database can be

completed from any of the valid server locations. It should also be noted that no actual file

relocations are performed by the application, since it is beyond the scope of the project.

Discussion of RPC Operation and Programming Code

At a first glance, the application may seem relatively simple, but in reality, only an

examination of the underlying programming code can reveal the complexity of the application.

The application itself consists of one client process, RDBPT.C, and two server processes,

RDBPT_SVC_PROC.C and FTS_SVC_PROC.C. When a query is made to the database, in this

case, for the file "111111111" from central database server "hpnotic", the RDBPT.C client code

is executed (Appendix B). Initially, the client uses two UNIX scripts, FIND_HNAME and

SSNIDENT (Appendix F), to convert portions of the query into the proper variable

representation, and subsequently establishes a connection with the RDBPT server. The client

then uses this connection to query the central database for the actual location of the requested file

and waits for the result.

At this time, the awaiting server (RDBPTSVCPROC.C) receives the request to execute

the function ssnkeyJ and return the current location and updated statistics for that file, the

function executes the sub-functions readdbase and write dbase to get the current file location,

CIS 593 Page 25 Fall 1994

update the file's access statistics, and write the new information to the database. The server

returns the information to the client and awaits another request.

Once the waiting client receives the actual location of the file, it makes another request to

the server to return the file contents. To limit the scope of this project, this request is also made

to the RDBPT server at the same host location. However, the application is designed to

accommodate distributed systems, such that an identical server residing on another host could be

queried, given that a few modifications must be made to the RDBPT code. The server executes

the getrecl function to retrieve the record.

The getrecJ function establishes a connection with the file transfer server,

FTSJSVCPROC.C (Appendix D), that resides on the host owning the desired information file.

In this case, the file is located on the same host as the central database, but, in an actual

distributed system application, the file could be located on any known host. The RDBPT server

now acts as a client, passes the request for file information, and waits for an answer.

The file transfer server receives the request and executes function transl to return the file

information. Although the file transfer is not actually performed, this is the server that would

discharge that duty in a fully developed distributed application. Instead, the function simply

displays a message to the "Transfer Status" window, indicating the location of the desired file and

whether or not the file has been moved.

The file transfer server returns a status code to the RDBPT server, which, in turn, returns

the record information to the initial client. The client then displays the file contents and the file's

access statistics in the "Project Three" window.

Discussion of Timed File Transfers

CIS 593 Page 26 Fall 1994

The above process continues as long as both servers are active and awaiting requests from

various clients. However, an additional set of processes are also running concurrently. At timed

intervals, as dictated by the ATFTLE (Appendix E), a certain set of "important" files

(111111111, 222222222, 333333333) are migrated from host to host as a group, simulating the

hourly time zone changes. At each timed execution, the script TBvT£_WINDOW (Appendix E)

displays the "Timed File Transfers" window and automatically moves the files. The

TIME_WINDOW script executes another script, TIMECOP (Appendix E), that actually updates

the central database with the new locations of each file. Again, the file transfers are not actually

performed, but a fully developed distributed application would include a function to perform the

necessary file transfers. The script ends by presenting the file transfer information.

The effect of this event-driven procedure can be inspected by querying the database for

one of the "important" files both before and after a timed file transfer has occurred. The

"Transfer Status" window will indicate the new location of the file.

Notice that in this application, the clock time is an event that triggers file migration. The

application can be classified as an example of an "active" or "event driven" file migration system.

Although clock time is the only event affecting migration in this application, other events could be

integrated into the system (such as current processor loads, remaining disk capacity, status of

other network hosts, the arrival of a message signaling specific file transferals, and so forth).

Accordingly, the application is consistent with a growing body of active system literature that is

attracting considerable attention in information technology.

CIS 593 Page 27 Fall 1994

RPC FRONT ENDS WITH HP-UX

The front-end display is an important addition to any application, especially for users.

Applications that use RPC technology typically produce a large number of complicated, and

almost indecipherable, files. Additionally, in order to run any RPC application, the server

application must already be waiting for a request at the server end, before the client can be

executed. The typical user does not know, or care, about any of the implementation issues. One

attractive quality of client/server computing is that the complicated aspects of computer

integration and application are transparent to the user. Therefore, it is important that any user

interface that utilizes RPC functions facilitates running the program, and all of its additional files,

without involving the end-user in the details of its underlying operation.

The HP-UX Workspace Environment

The HP-UX machines provide several different viewing sessions that offer applications

and tools that can be accessed by simply clicking a pointing device (ex. a mouse) on an icon. Two

of these sessions are HP VUE and HP VUE lite. The basic differences between the two are that

the HP VUE lite session has a front panel with different features and different methods for

determining how the view manager interprets the information provided by the user. These panels

are typically displayed whenever the user logs on, much how Microsoft Windows provides a set

of panels, each of which contains a set of program icons. Users can customize their own panels,

but only within the limits set by the System Administrator, who determines what type of options

are available to each class of user.

CIS 593 Page 28 Fall 1994

Developing a Control

The application was developed within the HP VUE session. The HP VUE session panel

consists of a top and bottom row. In order to modify these rows several changes must be

performed: an icon must be constructed, an action that will be associated with that icon must be

defined, the action must then be linked to the icon to define a control, and finally the control (the

icon with an underlying action) must be added to the front panel by editing the ".vuemrc" file.

Building Icons

Creating an icon is relatively easy for anyone who has a creative mind and likes to draw.

The IconEditor is specifically designed for this purpose; it provides the user with a drawing

screen and tools to construct various icons. Once the icon is finished, the constructor need only

save it for future use. In order to have the icon associated with an application, an action must be

specified and attached to the icon.

Creating Actions

Creating an action is accomplished by simply using the CreateAction icon in the HP-UX

General Toolbox. The user inputs the action name, a command line to initiate the application, and

a type of window to display the action results within. An action can only be specified once; if

future modifications must be made, a new icon-action definition must be specified. Once the icon

and action associated with it have been created, the newly defined control can be added to the

panel.

CIS 593 Page 29 Fall 1994

Adding a Control to the HP-UX VUE Session

The ".vuemrc" file must be edited to include the new control. The ".vuemrc" file contains

all the control definitions, as well as the names for the controls that reside in the top and bottom

rows of the panel. These controls can take on different actions, as well as combinations of

behaviors including: push button, drop zone, file monitor, client window, and toggle button.

To include a new control to the ".vuemrc" file, several steps must be taken. Initially, the

icon controls are placed in the appropriate box and are then defined. The box placement describes

in what order the various controls will be displayed. The word "CONTROL" along with the

name for a new control are included among the other control definitions for a desired box (top or

bottom) and position within the box. The type of control must also be defined. In the case of the

application, a button "TYPE" control is used to initiate the application. For any control addition,

the "PUSH_ACTION" for the button must also be specified. The "PUSH_ACTION" can either

be an action similar to the one created above, or an executable command. An action similar to the

one created above is incorporated into the author's RPC application. Finally, an "IMAGE" must

be specified for each control. The image is simply the icon name. Little more is involved with

modifying the view configuration of the HP-UX machines to include any, and all, new

applications to the window manager.

Restarting the Workspace

In order to incorporate the new controls to the window manager, all one needs to do is

restart the workspace manager. The new control definitions will take effect and function in all

future uses of the start-up window manager workspace. By using icons and associating them with

CIS 593 Page 30 Fall 1994

actions it is possible to execute the RPC application in an environment that not only preserves the

benefits of client/server computing, but also retains the invaluable element of end-user

transparency by isolating the user from the underlying complications involved with RPC

technology.

CIS 593 Page 31 Fall 1994

CONCLUSIONS

Though the author's experience in the area of RPC is limited, by researching the subject

and working on a project that incorporates its capabilities, the usefulness of RPC in

communicating in a client/server environment was recognized. Moreover, even though the

project was somewhat limited, the complexity involved in implementing client/server technology

is readily discerned. Of course, the project was not completed without learning something, nor

were the possible applications of RPC in the realm of file migration exhausted.

Lessons Learned

As with any project, there is no substitute for the lessons one learns from experience. This

project is no exception. First and foremost, it cannot be stressed enough how important it is that

the program number defined in the protocol definition file be unique. If there are two programs

with identical values, a clear communication channel cannot be established between a client and

one server since, according to a client's stub, two server's will exist for the same purpose.

Another important issue in dealing with RPC is passing parameters. It is necessary that all

variables be passed as pointers for RPC to work properly. Additionally, the value that is to be

returned from the server function must be declared as a static variable.

CIS 593 Page 32 Fall 1994

Future Endeavors

In order to keep the scope of this project within reason, the three file migration

applications were approached from a simulation perspective. That is, no physical migration of

files actually occurs. When a file is said to have been moved from one host to another, the only

thing that has changed is the database file that would track the migration of files. Obviously, this

leaves open the possibility of expanding the project by physically migrating the files. Furthermore,

additional applications can be developed such as maintaining duplicated files at separate sites

(read-write and read-read access are important in this area). Along with this, more research can

be done in adequate rules that define at what point a file is to be moved or duplicated. This does

not comprise an exhaustive list of supplementary application areas to the project and the reader is

free to explore their own possibilities.

CIS 593 Page 33 Fall 1994

BIBLIOGRAPHY

Bloomer, John. Power Programming with RPC. Sebastopol: O'Reilly and Associates, Inc., 1991.

Carpenter, B. E. and R. Cailliau. "Experience with Remote Procedure Calls in a Real-time

Control System." Software-Practice and Experience. Vol. 14. September 1984, p. 901-

07.

Comer, Douglas E. and David L. Stevens. Internetworking with TCP/IP. Vol3. Inglewood

Cliffs: Prentice Hall, Inc., 1993.

Curry, David A. Using C on the UNIX System. Sebastopol: OReilly and Associates, Inc., 1989.

Hac, Anna. "A Distributed Algorithm for Performance Improvement Through File Replication,

File Migration, and Process Migration." IEEE Transactions on Software Engineering. Vol

15, No 2. November 1989, pp. 1459-1470.

Hahn, Harley. A Student's Guide to UNTX. New York: McGraw-Hill, 1993.

Hewlett-Packard Company. HP Visual User Environment 3.0 User's Guide. Hewlett-Packard

Company, 1992.

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language. 2nd ed. Murray Hill:

AT&T Bell Laboratories, 1988.

Korzeniowski, Paul. "Make Way for Data." Byte. June 1993, pp. 113-115.

Levy, Henry M. and Ewan D. Tempero. "Modules, Objects and Distributed Programming:

Issues in RPC and Remote Object Invocation." Software-Practice and Experience.

Vol. 21. January 1991, pp. 77-90.

CIS 593 Page 34 Fall 1994

Soto, J. L. Cruz, M. C. Calzada Canalejo and M. Marin Beltran. "Parallelization of Differential

Problems by Partitioning Method (Synchronized Algorithm)." Computers and

Mathematics with Applications. July 1993, pp. 25-31.

Sun MicroSystems. Network Programming Guide. Sun MicroSystems, Inc., 1990.

Waite, Mitchell and Stephen Prata. New C Primer Plus. Carmel: Sams Publishing, 1993.

CIS 593 Page 35 Fall 1994

APPENDICES

CIS 593 Page 36 Fall 1994

Appendix A

Contents:

Add_it.x

Add_it.c

Add_it_svc_proc.c

CIS593 Page 37 Fall 1994

add it.x add it.x

1 /* ADDJTJC * /

2 /* THIS FILE IS USED BY RPCGEN TO PRODUCE THE HEADER FILE ADD IT.H * I

3 program ADDPROG {
4 version ADDVERS {
5 int ADD_NUM(int) = 1;
6 } = 1;
7 } = 0x20009300;

Nov 22 11:55 1994 Page 1 ofaddjtx

add_it.c add_it.c

1 /* ADDJT.C * I

2 /* THIS IS THE CLIENT PROCEDURE * I

3 #include <stdio.h>
4 #inclnde <ctype.h>
5 #include <rpc /rpc.h>
6 #include "addit.h"

7 main()
8 {
9 CLffiNT *cl;

10 int num;
11 char *hostname[20];

12 prinrf('\iPlease enter the remote host name: ");
13 gets(hostname);

14 printf("\n\nPlease enter the number to increment: ");
15 scanf("%d", &num);

16 /* THIS IS THE CLIENT HANDLE THAT ESTABLISHES THE CONNECTION * I
17 /* BETWEEN THE CLIENT AND THE SERVER * I

18 if (!(cl = clnt_create(hostname, ADDPROG, ADDVERS, "tcp")))
19 {
20 clnt_pcreateerror(hostname);
21 exit(l);
22 }

23 /* HERE IS THE PROCEDURE CALL * I

24 printf("Sn\nThe new number is %d\n", *(add_num_l(&num, cl)));

25 }

Nov 22 11:55 1994 Page 1 ofaddjt.c

add_it_svc_proc.c additsvcproc.c

1 /* ADDJTJVCPROC.C * I

2 /* THIS IS THE SERVICE PROCEDURE * I

3 #include <stdio.h>
4 tinclude <string.h>
5 tinclude <rpc /rpc.h>
6 #include "add_it.h"

7 int *add_num_l(oIdnum)
8 int *oldnum;

9 /* THIS FUNCTION ADDS 21 TO THE INPUT NUMBER AND THEN RETURNS THE NUMBER * I

10 {
11 printf("\nHello People");
12 *(oldnum) += 21;
13 return oldnum;

14 }

Nov 22 11:55 1994 Page 1 of add_it_svc_proc.c

Appendix B

Contents:

Rdbpt.x

Rdbpt.c

CIS 593 Page 41 Fall 1994

rdbpt.x rdbpt.x

1 /*
2 /*
3 /*
4 /*
5 /*
6 /*
7 /*
8 /*

*** PROJECT THREE ****

RDBPTX

This program is used by RPCGEN to produce the header file
for the RDBPT RPC.

MAXRECLEN = 255;
SSN_SIZE = 9;
NAME_SEE = 80;
ADDR SIZE = 80;

13 const HOST SIZE = 255;

9 const
10 const
11 const
12 const

/* max personal record length
/* size of Social Security Number
I* size of person's name
I* size of person's address

I* size of host computer

14
15
16

/*
/*
/*

Defines the sturcture of each personal record:
SSN, name, and address

17 struct pers_rec
18
19
20
21
22

{

};

string
string
string

ssn<SSN_SIZE>;
name<NAME_SIZE>;
address<ADDR SIZE>;

23
24
25
26

/*
/*
/*
/*

Defines the structure of the database record for each file:
ssn (filename), current location, four counters to measure
file accesses from each server.

27 struct dbase_rec
28 {
29 string
30 string
31 int
32 int
33 int
34 int
35 };

ssn<SSN_SIZE>;
loc<HOST_SIZE>;
sunrise;
sunburn;
sunspot;
hpnotic;

36 /*
37 /*
38 /*
39 /*

Defines the structure of an information record about a specific
file, including the SSN (filename), the local host from the file* I
has been requested, and where the file is actually located

40 struct inputrec
41
42
43
44
45
46

{

};

string ssn<SSN_SEE>;
string lc_host<HOST_SIZE>;
string h_name<HOST_SIZE>;

Nov 17 14:20 1994 Page 1 of rdbptx

rdbpt.x rdbpt.x

47 program RDBPT PROG
48 {
49 version RDBPTVERS
50 {
51 dbase_rec SSN_KEY(inputrec) = 1;
52 pers_rec GET REC(inputrec) = 2;
53 } = l;
54 } = 0x20009306;

Nov 17 14:20 1994 Page 2 of rdbptjc

rdbpt.c rdbpt.c

1 /*
2 /*
3 /*
4 /*
5 /*
6 /*
7 /*
8 /*

9 #include <stdio.h>
10 #include <string.h>
11 #include <rpc /rpc.h>
12 #inciude "rdbpth"
13 #include <stdlib.h>

14 main (arge, argv)
15 int
16 char

17 {
18 CLIENT
19 dbase_rec
20 pers_rec
21 inputrec
22 FILE
23 FILE
24 char
25

*** project 3 ***

RDBPT.C

This is the client code for the RDBPT service.

arge;
*argv[];

*cl;
*d_record;
*p_record;
inrec;
*c_fp = NULL;
*ssn_p = NULL;
HSTNAME[HOST SIZE];

/* client handle * /
'* retrieved db record

I* retrieved personal record * /
/* information record (ARGV'S) * I

I* FP for hostname conversion * I
I* FP for ssn conversion * I

I* temp variable for hostname * /

*/
*/
*/
*/
*/
*/
*/
*/

26 Assign filename and hostname to variables for use

27
28

inrec.ssn = argv[2];
inrec.h_name = argv[l];

29 Convert hostname to proper representation

30
31
32
33
34

system ("findhname");
c_fp = fopen("hname.txt","r");
fscanf (c_fp, "%s", HSTNAME);
fclose (c_fp);
inrec.lc host = HSTNAME;

35 Converts SSN filename to proper representation

36
37
38
39

40
41

ssn_p = fopen("ssn.txt", "w");
fprintf(ssn_p, "%s", inrec.ssn);
fclose(ssn_p);
system("ssn_ident");

p_record
d record

= (char *)
= (char *)

malloc(sizeof(pers_rec));
malloc(sizeof(dbase rec));

42 Provides error usage message

43
44

if ((arge != 3))
{

Nov 17 14:19 1994 Page 1 of rdbpt.c

rdbpt.c rdbpt.c

45 fprintf(stderr, "NnUsage: %s local.server SSN\n", argv[0]);
46 exit(l);
47 }

48 /* Establishes connection to the server (RDBPT) process

49 if (!(cl = clnt_create(argv[l], RDBPT_PROG,
50 RDBPT.VERS, "top")))
51 {
52 clnt_pcreateerror(argv[l]);
53 exit(l);
54 }

55 /* Retrieve file location and access information

56 d_record = ssn_key_l (&inrec, cl);

57 /* Retrieve actual file

58 p_record = get_rec_l (&inrec, cl);

59 system ("clear"); /* Clear screen

60 /* print out the contents of the file, the current file loclion
61 /* and the current file access statistics

62 printf ("\n\n -");
63 printf (" W);
64 printf ("\t SSNMNt NameMNt AddressW);
65 printf (" ");
66 printf (" Nn");

67 printf ('\iSt%s\t%s\r\t%sViSri\nNn", p_record->ssn, p_record->name,
68 p_record->address);

69 printf ('\Sunrise\fMSunbum\t\tSunspofSrMHpnoticNn");
70 printf ("\n\t %d\t\t %d\f\I %cMNt %dW,
71 d_record->sunrise, d_record->sunburn, d_record->sunspot,
72 d_record->hpnotic);

73 printf (" ");
74 printf (" Nn");
75 printf (•• ••);
76 printf (" \n\nW);
77 }

Nov 17 14:19 1994 Page 2 of rdbpt.c

Appendix C

Contents:

Rdbpt_svc_proc.c

CIS 593 Page 46 Fall 1994

rdbpt_svc_proc.c rdbpt_svc_proc.c

1 /*
2 /*
3 /*
4 /*
5 /*
6 /*
7 /*
8 /*

*/
project 3 *** * /

*/
RDBPTJVCJPROC.C * I

* I
This is the program that provides services to the * I

RDBPT clients. * /
*/

9 #include <stdio.h>
10 #include <string.h>
11 #inclnde <rpc /rpc.h>
12 «include "rdbpth"
13 «include "fts.h"
14 «include <ctype.h>

15 FILE *fpl = NULL; /* FP for accessing central DB
16 FILE *fp2 = NULL; /* FP for retrieving personnel record
17 FILE *ssn_p = NULL; /* FP for opening temporary files * I
18 static pers_rec *p_rec = NULL; /* pointer for personnel record * I
19 static dbase_rec *d_rec = NULL; /* pointer for database record
20 char *maxname[15]; /* name of location with the max accesses * /
21 char *temp_Ioc[15]; /* temp vor for old file location

22 /* READDBASE
23 /* This function allocates internal memory and reads the central
24 /* database, retrieving the statistics and host information about
25 /* the desired personnel file
26 /*

27 int read_dbase(inrec)
28 inputrec *inrec;

29 {
30 if (!d_rec)
31 {
32 d_rec = (dbase_rec *) malloc(sizeof(dbase_rec));
33 d_rec->ssn = (char *) malloc(sizeof(SSN_SIZE));
34 d_rec->loc = (char *) malloc(sizeof(HOST_SIZE));
35 d_rec->sunrise = (int) malloc(sizeof(int));
36 d_rec->sunbum = (int) malloc(sizeof(int));
37 d_rec->sunspot = (int) malloc(sizeof(int));
38 d_rec->hpnotic = (int) malloc(sizeof(int));
39 }

40 if (fscanf(fpl, "%s %s %d %d %d %d",
41 d_rec->ssn, d_rec->loc,
42 &d_rec->sunrise, &d_rec->sunburn, &d_rec->sunspot,
43 &d_rec->hpnotic) != 6)
44 return (0);

45 return (1);

46 }

Nov 17 14:20 1994 Page 1 of rdbpt_svcj>roc.c

rdbpt_svc_proc.c rdbptsvcjproc.c

47 /*
48 /*
49 /*
50 /*

WR1TE_DBASE

This function modifies the statistics counter and file location * I
information and updates the applicable central database records * I

51 int write_dbase(inrec)
52 inputrec
53 {
54 int
55 float

56 /*
57 /*

*inrec;

total, maximum;
ratio;

increment appropriate counter if same as the
local host requesting service.

58
59
60
61
62
63
64
65

66
67

68
69
70

if (strcmp(inrec->lc_host, "sunrise") = 0)
d_rec->sunrise += 1;

if (strcmp(inrec->lc_host, "sunburn") = 0)
d_rec->sunburn += 1;

if (strcmp(inrec->lc_host, "sunspot") = 0)
d_rec->sunspot += 1;

if (strcmp(inrec->lc_host, "hpnotic") = 0)
d_rec->hpnotic += 1;

calculates the total number of accesses from all locations

total = (d_rec->sunrise + d_rec->sunburn + d_rec->sunspot +
d_rec->hpnotic);

71
72
73
74
75
76
77
78
79
80
81

82

system("clear");
printf ('Vw\ntotaI: %d", total);
if (total > 5)

maximum = max();
printf("\nMax: %d", maximum);
printf("\nMaxname: %s", maxname);
ratio = (float) maximum /total;

/* Only calcs max if total is over * I
I* some given number

l*calculaies the comparison
printf ("\nRatio: %f\n",ratio); /* ratio

strcpy(temp_loc, d_rec->loc);

Evaluation criteria for file transfer

83 if (ratio > 0.2)
84 {
85 strcpy (d_rec->loc, maxname);
86 d rec->sunrise = 0;
87 d_rec->sunburn = 0;
88 d_rec->sunspot = 0;
89 d rec->hpnotic = 0;
90 }

Nov 17 14:20 1994 Page 2 of rdbpt_svc_proc.c

rdbpt_svc_proc.c rdbpt_svc_proc.c

91 /* Writes the new database changes to the disk files

92 rprintf(ssn_p, "%s %s %d %d %d %dW',
93 d_rec->ssn, d_rec->loc,
94 d_rec->sunrise, d_rec->sunburn, d_rec->sunspot,
95 d_rec->hpnotic);

96
97 return (1);
98 }

99 /* This function finds the location with the max number of accesses * I

100 int max()
101 {
102 int maximum;

103 maximum = d_rec->sunrise;
104 strcpy(maxname, "sunrise");

105 if (d_rec->sunburn > maximum)
106 {
107 maximum = d_rec->sunburn;
108 strcpy(maxname, "sunburn");
109 }

110 if (d_rec->sunspot > maximum)
111 {
112 maximum = d_rec->sunspot;
113 strcpy(maxname, "sunspot");
114 }

115 if (d_rec->hpnotic > maximum)
116 {
117 maximum = d_rec->hpnotic;
118 strcpy(maxname, "hpnotic");
119 }

120 return maximum;

121 }

122 /* READ_PERS_REC *
123 /* * /
124 /* This function reads the desired personnel record into the *
125 /* structure p_rec. *

126 int read_pers_rec()

127 {
128 if (!p_rec)
129 {
130 P_rec = (pers_rec *) malloc(sizeof(pers_rec));
131 p_rec->ssn = (char *) malloc(sizeof(SSN_SIZE));
132 p_rec->name = (char *) malloc(sizeof(NAME_SIZE));
133 p_rec->address = (char *) maUoc(sizeof(ADDR_SIZE));
134 }

Nov 17 14:20 1994 Page 3 of rdbpt_svc_proc.c

rdbpt_svc_proc.c rdbpt_svc_proc.c

140 /*
141 /*
142 /*
143 /*
144 /*
145 /*
146 /*

135 if (fscanf(fp2, "%s %s %s",
136 p_rec->ssn, p_rec->name, p_rec->address) != 3)
137 return (0);
138 return (1);
139 |

SSNKEYJ

This function is called remotely by an established client
The client sends the local host location and personnel filename * /

and this server returns the actual location of the personnel
file, as well as the accumulated statistical information about * /

that parlicualar file

147 dbase_rec *ssn_key_l(input_rec)
148 inputrec *input_rec;
149 {
150 char »DFILE;

151 DFILE = (char *) calloc(MAX_REC_LEN+l, sizeof(char));
152 strncpy(DFILE, "filedb.txt",MAX_REC_LEN);

153
154 if (!(fpl = fopen (DFILE, "r+")))
155 return ((dbase_rec *) NULL);

156 while (read_dbase(input_rec))
157 if (!strcmp(d_rec->ssn, input_rec->ssn))
158 break;

159 ssn_p = fopen("tempdb2", "w");

160 if feof (fpl)
161 {
162 fclose (fpl);
163 return ((dbase_rec *) NULL);
164 }

165 write_dbase(input_rec);
166 fclose (fpl);
167 fclose(ssn_p);
168 system("/users/andyjank/project3/changefile");

169 return ((dbase_rec *) d_rec);
170 }

171 /* GET REC 1
172 / *

*
*

Nov 17 14:20 1994 Page 4 of rdbpt jvcjproc.c

rdbpt_svc_proc.c rdbpt_svc_proc.c

173 /* This function is called remotely by an established client
174 /* The client sends the host location and personnel filename and * I
175 /* this server returns the personnel file.

176 pers_rec *get_rec_l(input_rec)
177 inputrec *input_rec;

178 {
179
180
181
182

CLIENT *c2;
inforec info;
char *number[20];
char »PFILE;

183 pers_rec

184 PFILE
185 stmcpy(PFILE, "D.'

* error;

= (char *) caUoc(MAX REC_LEN+1, sizeof(char));

186 strcat(PFILE, input_rec->ssn);

187 if (!(fp2 = fopen (PFILE, "r")))
188 return ((pers_rec *) NULL);

189 while (read_pers_rec())
190 if (!(strcmp(p_rec->ssn, input_rec->ssn)))
191 break;

192 if feof (fp2)
193 {
194 fclose (fp2);
195 return ((pers rec *) NULL);
196 }
197 fclose (fp2);

198 /* This will call another server that would actually perform the file * I
199 /* transfer in a fully implemented application

200 info.oldloc = temp_loc;
201 info.newloc = d_rec->loc;
202 info.filename = d rec->ssn;

203 if (!(c2 = clnt_create("hpnotic",FTSPROG, FTSVERS, "top")))
204 {
205 clnt_pcreateerror("hpnotic");
206 exit(l);
207 }

208 trans_l(&info, c2);

209 return ((pers_rec *) p_rec);

210 }

Nov 17 14:20 1994 Page 5 of rdbpt_svc_proc.c

Appendix D

Contents:

Fts.x

Fts_svc_proc.c

CIS 593 Page 52 Fall 1994

fts.x fts.x

1 /*
2 /*
3 /*
4 /*
5 /*
6 /*
7 /*

8 const HOSTSIZ
9 const F_NAME_

10
11

12 struct info rec
13 {
14 string
15 string
16 string
17 };

*** project 3

FTSX

This file is compiled by RPCgen to produce the
header file for our file transfer server.

* I
* I
* I
* I
* I
* I
* I

I* Structure that contains the original location of the
I* file, the filename, and the desired new file location* I

oldloc<HOST_SIZE>;
newloc<HOST_SIZE>;
filename<F NAME SIZE>;

18 program FTSPROG
19 {
20 version FTSVERS
21 {
22 int TRANS(info rec) = 1;
23 } = l;
24 } = 0x20009305;

Nov 17 14:19 1994 Page 1 offtsjc

fts_svc_proc.c ftssvcproc.c

1 /*
2 /*
3 /*
4 /*
5 /*
6 /*
7 /*
8 /*
9 /*

10 /*

11 #include <stdio.h>
12 #include <string.h>
13 #include <rpc /rpc.h>
14 ^include "fts.h"

*** project 3 *** *
*

FTSSVCPROC.C *
*

This file is compiled by RPCgen to produce the *
file transfer server executable. The executable itself *
does not actually perform the file transfer to the new *
server; it only produces a message informing the user *
that this is where the actual transfer would take place. *

15 int *trans_l(h_info)

16 info_rec *h_info;

17 {
18 static int num;
19 num = 1;

20 if (strcmp(h_info->oldloc,h_info->newloc) = 0)
21 printf("\nThe file %s will remain Nnat the server %s.",
22 h_info->filename,h_info—>oldloc);
23 else
24 printf("\nThe file %s has been Vimoved from %s to %s.",
25 h_info->filename, h_info->oldloc, h_infb—>newloc);

26 return (&num);
27 }

Nov 17 14:19 1994 Page 1 offts_svc_proc.c

Appendix E

Contents:

Timecop

Time_window

At file

CIS 593 Page 55 Fall 1994

timecop timecop

1 #! /bin /csh -f

2 # TIMECOP
3 #
4 # This UNIX script is used to identify those files which will be
5 # moved based on our third application of time dependency.
6 # The files are isolated and their current locations are
7 # identified at which point they can be moved to the appropriate
8 # host and then the information is outputted to the screen.
9 #

10 #
11 # These are the files that will be moved every time period
12 #

13 grep 111111111 filedb.txt >! filejemp
14 grep 222222222 filedb.txt » filejemp
15 grep 333333333 filedb.txt » file_temp

16 #
17 # Identify what host the file is currently at and move
18 # it to the host which needs it next according to some
19 # established time sequence.
20 #

21 grep -q hpnotic file_temp
22 if ($status = 0) then
23 grep hpnotic file_temp I sed s /hpnotic /sunspot / » file_templ
24 endif

25 grep -q sunrise file_temp
26 if (Sstatus = 0) then
27 grep sunrise file_temp I sed s /sunrise /hpnotic / » file_templ
28 endif

29 grep -q sunburn file_temp
30 if (Sstatus = 0) then
31 grep sunburn file_temp I sed s /sunburn /sunrise / » file_templ
32 endif

33 grep -q sunspot file_temp
34 if (Sstatus = 0) then
35 grep sunspot file_temp I sed s /sunspot /sunburn / » file_templ
36 endif

37 #
38 # Sort the files and join them so that it can be printed
39 #

40 sort file_temp >! filel
41 sort file_templ >! file2

42 join -jl 1 -j2 1 -o 1.1 1.2 2.2 filel file2 >! displaytempjile

43 sed s A A\\\\\\ /g display_temp_file >! display_file

44 egrep -v "(11111111112222222221333333333)" filedb.txt » filejempl

45 cat file_templ >! filedb.txt
46 sort filedb.txt >! file3
47 cat file3 >! filedb.txt

48 #

Nov 17 14:21 1994 Page 1 of timecop

timecop timecop

49
50

51
52

53
54
55

56
57
58
59
60
61
62
63

Remove all temporary files

rm file_temp*
rm filel file2 file3 display_temp_file

Standardize the screen output

THE FOLLOWING FILES HAVE BEEN TRANSFERRED:'

echo
echo
echo
echo
echo
echo
cat display_file
sleep 10

SSN FROM TO

Nov 17 14:21 1994 Page 2 of timecop

time window time window

1 #! /bin /csh -f

2 *
3 # TIME_WINDOW
4 #
5 # This short UNIX script creates a window so that the results
6 # from the script timecop can be output to the screen.
7 #

8 xterm -title "Timed File Transfers" -geometry 53x18+644+5 -e /users /andyjank /project3 /timecop

Nov 17 14:21 1994 Page 1 of time_window

at file at file

#! /bin /csh -f

2 #
3 # At_File
4 #
5 # This file conntrols the timed executions of application 3
6 #

7 at -f time_window now
8 at -f time_window now + 1 minutes
9 at -f time_window now + 2 minutes

10 at -f time_window now + 3 minutes

Nov 17 14:16 1994 Pagelofatjle

Appendix F

Contents:

Changefile

Find_hname

Makefile

Ssn_ident

Run it

CIS 593 Page 60 Fall 1994

changefile changeflle

1 #! /bin /csh -f

2 # CHANGEFILE: #
3 # #
4 # This UNIX script updates the database file. #
5 # #

6 cat tempdb2 » tempdb
7 cat tempdb >! filedb.txt

Nov 17 14:18 1994 Page 1 of changefile

find hname und hname

1 #! /bin /csh -f

2 # FEMD_HNAME: #
3 # #
4 # This UNK script finds the hostname of the client #

5 echo ^hostname* >! hname.txt

Nov 17 14:18 1994 Page 1 offindjiname

makefile makefile

1 #! /bin /csh

2 # MAKEFILE: #
3 # #
4 # This file compiles the rdbpt RPC and form the needed #
5 # object files. #

6 makedata
7 rpcgen rdbpt.x
8 rpcgen fts.x

9 cc -c -o rdbpt.o rdbpt.c
10 cc —c rdbpt_clnt.c
11 cc -c rdbpt_xdr.c
12 cc -o rdbpt rdbpt.o rdbpt_clnt.o rdbpt_xdr.o

13 cc -c -o rdbpt_svc_proc.o rdbpt_svc_proc.c
14 cc -c rdbpt_svc.c

15 cc -c ftsxdr.c
16 cc -c -o fts_svc_proc.o fts_svc_proc.c
17 cc -c fts svc.c

18 cc -o fts_svc fts_svc_proc.o fts_svc.o fts_xdr.o
19 cc -o rdbpt_svc rdbpt_svc_proc.o rdbpt_svc.o rdbpt_xdr.o fts_svc_proc.o

Nov 22 13:42 1994 Page 1 of makefile

ssn ident ssn ident

1 #! /bin/csh -f

2 # SSNJDENT: #
3 # #
4 # This UNK script takes the input SSN and creates a file #
5 # that includes all non-matches of that SSN. #

6 grep -v Ncat ssn.txf /users /andyjank /projecß /filedb.txt > tempdb

Nov 17 14:21 1994 Page 1 of ssnjdent

run it run it

1 #! /bin /csh -f

2 # RUNJT: #
3 # #
4 # This UNIX script starts the two servers and positions #
5 # their corresponding windows appropriately. #

6 cd /users /andyjank /projecß
7 /users /andyjank /projecß /clean
8 /users /andyjank /projecß /makefile

9 xterm -title "Transfer Status" -geometry 53x18+5+5 -e /users /andyjank /project3 /rdbpt_svc&

10 /users /andyjank /project3 /fts_svc&

11 /users /andyjank /projecß /at_file

12 xterm -title "PROJECT THREE" -geometry 80x24+200+400

Nov 22 12:54 1994 Page I of runjt

