
REPORT DOCUMENTATION PAGE
Form Approved

OMS No. 0704-0768

h i ii i n i n -1 ..^if.mM S.V.J wurt«.

...„„, .coon-; --«r£v^;r ^^^^^ Iäää

D»v.» M,qh>-.,v. Su..C UC. -M.r.g.cn. ,/ _ nrnAC- Tv„ aun HATES COVERED

1. AGENCY USE ONLY (Leove b!o: 2. RE.PORT DATE 3. REPORT TYPE AND DATES COVERED

6. AUTHOR(S)

| 5. FUNDING NUMBERS

ftnrWc nn.lk*
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFIT Students Attending:

IRING/MONITORING AGENCY NAME(S) AND ADDRESSES)

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/CI/CIA

^H33
9. SPONSO

DEPRTMENT OF THE AIR FORCE
AFIT/CI
2950 P STREET
WRIGHT-PATTERSON AFB OH 45433-7765

11. SUPPLEMENTARY NOTES

Ti'a. DISTRIBUTION/AVAILABILITY STATEMENT ^

Approved for Public Release IAW 190-1 ^;
Distribution Unlimited
MICHAEL M. BRICKER, SMSgt, USAF
Chief Administration

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

19950103 035 :~r(~ fiTT/1' A-'/A^ ; SlLow 7 KKSPECTBD 8

H. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

IB. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

3J-
16. PRICE CODE

20. LIMITATION OF ABSTRACT

Title: A Demonstration of Client/Server Technology
Using Remote Procedure Calls
For An Application of File Migration
For Moving Records Based on Location

Author: Andrea Miller
Rank : 2nd Lieutenant, USAF
Degree: Master of Science in Decision Information Systems
School: Arizona State University
Date: 1994
Pages: 38 (text) 18 (code)

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification _

By
Distribution /

D

Availability Codes

Dist

m
Avail and | or

Special

Andrea MiCkr 524-17-6305

ABSTRACT

Client/Server Computing is one of the newest technologies in distributed systems. It

allows different computers to communicate and share resources. The idea is relatively simple

however, the underlying factors make it difficult. This paper explores the use of remote

procedure calls (RPC) to create a distributed, client/server application. The presentation includes

a discussion of RPC along with a simple application that introduce the reader to RPC. Finally,

an application in the area of file migration is presented.

The program is designed to receive a requested file from the user, it then accesses a file to find

the location of the requested record and then the record is retrieved. For the purpose of the

simulation the file is transferred when it is located in a different place than that of its owner.

While this is not a complex file migration algorithm it lends itself to such applications as moving

personnel records, dynamically, so that they reside in the same location as their owner in order

to facilitate communication and reduce costs. Similarly, another application might involve having

medical records follow a person from place to place. It is easy to see that client/server computing

has the potential to be powerful and tools such as remote procedure calls are essential to this

technology

(Remote (Procedure Calk (Page 2

Andrea Mitter __ 524-17-6305

BIBLIOGRAPHY

Bloomer, John. Power Programming with RPC. Sebastopol: O'Reilly and Associates, Inc., 1991.

Carpenter, B. E. and R. Cailliau. "Experience with Remote Procedure Calls in a Real-time

Control System." Software- Practice and Experience. Vol. 14. September 1984, pp.

901-07.

Comer, Douglas E. and David L. Stevens. Internetworking with TCP/IP. Vol 3.

Inglewood Cliffs: Prentice Hall, Inc., 1993.

Curry, David A. Using C on the UNIX System. Sebastopol: O'Reilly and Associates, Inc., 1989.

Hac, Anna. "A Distributed Algorithm for Performance Improvement Through File Replication,

File Migration, and Process Migration." IEEE Transactions on Software Engineering. Vol

15, No 2. November 1989, pp. 1459-1470.

Hahn, Harley. A Student's Guide to UNIX. New York: McGraw-Hill, 1993.

Hewlett-Packard Company. HP Visual User Environment 3.0 User's Guide. Hewlett-

Packard Company, 1992.

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language. 2nd ed. Murray Hill:

AT&T Bell Laboratories, 1988.

Korzeniowski, Paul. "Make Way for Data." Byte. June 1993, pp. 113-115.

Levy, Henry M and Ewan D. Tempero. "Modules, Objects and Distributed Programming:

Issues in RPC and Remote Object Invocation." Software-Practice and Experience.

Vol. 21.January 1991, pp. 77-90.

(Remote (Procedure Catts (Page 35

Andrea Mifor 524-17-6305

Soto, J. L. Cruz, M. C. Calzada Canalejo and M. Marin Beitran. "Parallelization of Differential

Problems by Partitioning Method (Synchronized Algorithm)." Computers and

Mathematics with Applications. July 1993, pp. 25-31.

Sun Microsystems. Network Programming Guide. Sun Microsystems, Inc., 1990.

Waite, Mitchell and Stephen Prata. New C Primer Plus. Carmel: Sams Publishing, 1993.

([(emote (Procedure Catts (Page 36

A Demonstration of Client-Server Technology

Using Remote Procedure Calls

For An Applications of File Migration

For Moving Records Based on Location

by

Andrea Miller

An Applied Project Presented in Partial Fulfillment O
of the Requirements for the Degree

Master of Science in Decision and Information Systems

Arizona State University

December 1, 1994

Andrea Mifor 524-17-6305

EXECUTIVE SUMMARY

Client/Server Computing is one of the newest technologies in distributed systems. It

allows different computers to communicate and share resources. The idea is relatively simple

however, the underlying factors make it difficult. This paper explores the use of remote

procedure calls (RPC) to create a distributed, client/server application. The presentation includes

a discussion of RPC along with a simple application that introduce the reader to RPC. Finally,

an application in the area of file migration is presented.

The program is designed to receive a requested file from the user, it then accesses a file to find

the location of the requested record and then the record is retrieved. For the purpose of the

simulation the file is transferred when it is located in a different place than that of its owner.

While this is not a complex file migration algorithm it lends itself to such applications as moving

personnel records, dynamically, so that they reside in the same location as their owner in order

to facilitate communication and reduce costs. Similarly, another application might involve having

medical records follow a person from place to place. It is easy to see that client/server computing

has the potential to be powerful and tools such as remote procedure calls are essential to this

technology

(Remote (Procedure Catts (Page 2

ßnärea Mißer 524-17-6305

TABLE OF CONTENTS

EXECUTIVE SUMMARY 2

TABLE OF CONTENTS 3

PREFACE 4

INTRODUCTION 6

REMOTE PROCEDURE CALLS 8

RPCs vs. LOCAL PROCEDURE CALLS 9
A FOUNDATIONAL CLIENT/SERVER DEMONSTRATION 11
ADVANCED RPCs 13

FILE MIGRATION 15

A CASE FOR COMPUTER-INTEGRATED FILE MIGRATION 15
A CASE FOR COMPUTER-INTEGRATED FILE REPLICATION 16
THE BENEFITS OF COMPUTER-INTEGRATED FILE MIGRATION 17
ANALYSIS OF COMPUTER-INTEGRATED FILE MIGRATION 18

THREE APPLICATIONS FOR FILE MIGRATION 19

SHARED APPLICATION FEATURES 20

THE APPLICATION 22

APPLICATION FEATURES 24
figure 1 25
figure 2 25
Protocol Definition File 26
Client Code 26
Server Code 27

RPC FRONT ENDS WITH HP-UX 29

THE HP-UX WORKSPACE ENVIRONMENT 29
DEVELOPING A CONTROL 30

Building Icons. 30
Creating Actions 30
Adding a Control to the HP-UX VUE Session 31

RESTARTING THE WORKSPACE 31

CONCLUSIONS 33

LESSONS LEARNED 33
FUTURE ENDEAVORS 34

BIBLIOGRAPHY 35

APPENDICES 37

(Remote (Procedure Catts (Page 3

JLndreaMiCkr 524-17-6305

PREFACE

This project represents one part of three related and closely coordinated projects. In total,

the three projects provide: a) exposition and programming examples needed to understand the

use of Remote Procedure Calling (RPC) for distributed Client/Server processing in networks, b)

extensions needed for RPC applications that migrate files among hosts in a network based on

several interesting and practical criteria, and c) a discussion and code pertaining to the

development of a Graphical User Interface (GUI) for the on-line demonstration of concepts

spanning the collection of projects.

Working as a team, Eric DeLange, Andrew Jank and Andrea Miller jointly participated in

developing a tutorial discussion of RPC concepts and programming techniques. After the

development of fundamental RPC programs which illustrate these techniques, the team

collaborated to develop a foundational set of code pertinent to file migration among networked

hosts. Thereafter, each team member individually expanded this code to model specific RPC

applications of file migration.

Finally, a jointly-developed GUI to facilitate the convenient on-line execution and

demonstration of all applications was added. Source files and a discussion of the GUI are of

considerable instructional interest because they present techniques for synthesizing window

programming and C programs that not only make RPC calls but also make system calls to invoke

UNIX scripts and utilities.

For the convenience of the reader, each of the related project reports contain the source

code and discussion of the applications developed by the companion authors. This project report

<Rftnote (Procedure Cads (Page 4

Andrea Witter 524-17-6305

uniquely contains the discussion and source code developed by the author for moving records

based on location. Readers who are interested in time migration or heuristic migration are free to

reference the reports authored by Andrew Jank and Eric DeLange respectively.

<R$mote (Procedure Caßs <Page 5

ßndrea Miter 524-17-6305

INTRODUCTION

With the vast technological advances in computer capabilities, specifically in the

distributed environment, organizations are moving away from centralized systems in order to avail

themselves of the various advantages offered by distributed systems. Often, organizations are

geographically dispersed which leads them to a natural distribution of computing resources.

Furthermore, distribution provides a business with enhanced reliability by allowing data

replication across multiple sites. Finally, given the size of organizations in today's business arena,

a distributed environment facilitates high transaction rates and also allows for the integration of

heterogeneous platforms that often accompany mergers between companies or the addition of

new locations.

With the advantages of a distributed environment comes the added complexity of

communicating among multiple machines across a network. Since the information is no longer on

a single machine, there must be a way to track the identities of the requester and the recipient as

well as the location of the information required for the transaction. Client/Server technology is an

approach which deals with this complexity. In essence, the requesting computer is viewed as a

client which asks for a particular service from another machine (the server). When the client

requests a service from the server, control is passed to the server until it has completed processing

the request, at which time the client receives the requested information and regains control. For

example, if a client needs the result of a complex mathematical function, but lacks the processing

power to compute it within a reasonable amount of time, it can request the services of another

processor (server) that has the necessary capabilities to perform the calculation. Once the

<Rgmote (Procedure Calk <Page 6

Andrea Mitter 524-17-6305

calculation has been performed, the server passes the answer, and control, back to the awaiting

client.

The above example looks very much like a function call in any standard language such as

C or FORTRAN and, in fact, it is. The only difference is that the function call is made over a

network to a different machine. In truth, making a function call to another machine is aptly

accomplished through the implementation of Remote Procedure Calls (RPC). RPC is a popular

framework for programming in a distributed client/server environment. It provides a means by

which a client can communicate with a server.

This project develops an application using RPC. Specifically, it illustrates the usefulness

of RPC and its applicability in the area of file migration. In achieving this end, a small, simple

program was developed to provide a basic understanding of RPC. Once a working application in

the area of file migration was achieved, each member of the group modified the program to

accommodate variations in the file migration model. Finally, a front-end was added on the

Hewlett-Packard UNIX System to make the program more user-friendly.

<R$mote (Procedure Catts (Page 7

Andrea Mitter 524-17-6305

REMOTE PROCEDURE CALLS

Remote Procedure Calling permits a client to execute procedures on other networked

computers. In fact, RPCs serve as the basis for a majority of the distributed system utilities

currently in use (i.e. NFS and NIS). A major reason for RPC utilization is the ease with which

RPCs can be implemented, when compared to the lower-level network socket interfaces which

have been required prior to the advent of RPCs. Moreover, RPCs are perceived as powerful

programming tools, especially for users, since their implementation resembles traditional

programming methodologies and the network interfaces are provided with increased transparency

to the users (Bloomer 1).

RPC has been identified as a type of middleware. Middleware is software that translates

communication between different machines or platforms. This type of software protocol is often

necessary for communications within a client/server environment. RPC has been deemed one of

the two primary types of client/server middleware; the other is message processing (Korzeniowski

114). In order to use RPC, synchronous links between computers must be established, either

using datagram or TCP transports. If no transport is available at the time of initiation, the client

application will automatically wait for an answer from the server, and eventually "time out" (halt)

when no reply is gathered. Message passing differs from RPC protocol in that messaging systems

work on the store and forward principle (Korzeniowski 114). Store and forward systems allow a

server to read a computer request message at its own convenience. Since message passing

systems do not wait for a response from the server function, these types of systems support

asynchronous client/server interaction. However, the synchronous connection supported by RPC

Remote (Procedure Catts Wage 8

Andrea MiOer 524-17-6305

communication maintains a higher degree of reliability than message processing. In a message

passing system, for example, it is possible that a message may never be received and neither the

source, nor the receiver, would be aware of a problem.

RPCs have many other advantages, beyond the simple benefit of enhanced reliability.

Some other advantages include the ability of RPCs to run on hosts having different operating

systems, the ease of incorporation of RPC into various software products, and the ability to utilize

unused CPU time at distant machines. However, RPC implementation has its drawbacks. RPC

lacks flexibility and is often difficult to use with many servers. Message passing offers a greater

degree of flexibility, along with an easier programming procedure for establishing asynchronous

communication between processes in a networked environment. In summary, message passing

lacks the reliability and standards that RPC provides and is limited in use (Korzeniowski 115).

RPCs vs. Local Procedure Calls

A remote procedure call appears extremely similar to a local procedure call—as intended.

The difference between the two procedures is that in a local procedure call, the client process

initiates a procedure in its own address space, whereas with RPC the server and client exist as two

separate processes, usually on different machines (Comer 289). It is this separation of processes

that allows the server function to reside on a different machine. Nevertheless, it is important to

note that RPC can still be utilized when the client and the server execute on the same machine

(Comer 306).

<R§mote (Procedure CaCCs (Page 9

JlndreaMiOer 524-17-6305

During normal implementation of RPC, the client process and the server process

communicate to each other via two stubs (Levy 79), namely the client stub and the server stub. A

stub is a communications interface that establishes the RPC protocol and determines how each

message is constructed by the processes and interchanged between the two. The client process

first consults its own stub to locate any remote processes that are required for program operation.

Subsequently, the client makes the necessary requests of those processes. Meanwhile, the server

(daemon) perpetually listens to the network, through the server stub, for any requests transmitted

by clients. More specifically, one daemon, the Inetd, serves as a "grandfather" daemon for all

other daemons. Inetd runs perpetually and starts other server daemons upon receipt of requests

for server services. The server fulfills each request in succession, returning to its waiting state

after completion of each request (Bloom 2).

At a more basic level, each server process is identified by a port (logical network

communication channel) by which it establishes communications for client requests. When a

server is initiated on a machine, the computer establishes an address (port) for server

communications. This address, which is unique, is registered with the server machine's

portmapper (Bloom 11-12).

The portmapper itself provides a crucial network service for all client/server

communication. Its job is to keep track of all services that are available on a machine and their

port addresses. Whenever a client requests a service from a particular machine, the client

petitions the portmapper for the service. If the requested server exists, the portmapper establishes

a communication channel between the client and the server. Even when a client and server reside

<Rgmote (Procedure Catts (Page 10

Andrea Mitter 524-17-6305

on the same computer, the operation for establishing a link between the client and the server is the

same; the network is still involved in the communication. The client still checks with its stub for

the server's address, only in this case the address provided by the portmapper would correspond

to the same machine. In effect, the request travels across the network only to return to its origin

(Sun MicroSystems 36).

A Foundational Client/Server Demonstration

To facilitate the comprehension of programs upon approaching the tasks entailing RPC, it

is helpful to begin with a straight-forward application. For this purpose, a client/server RPC

demonstration has been developed wherein a client process passes an integer to a server that

increments the integer and returns the updated value to the client. The files necessary to perform

this, and any other, RPC application include a protocol definition file, client program, server

program, and the stubs and header file generated by the RPC compiler after these are created.

Before programming the client and server processes, it is first necessary to create a

protocol definition in the remote procedure call language (RPCL). A protocol definition is a file

that describes both the list of data structures that will be passed between the client and server, and

the function call required from the client in order to use the server's resources. The initial

protocol definition file, addit.x, can be referenced in Appendix A.

The critical elements in the protocol definition include a unique program number and

version numbers within each program. In this example, the program is called ADDPROG and is

assigned the unique number 0x20000002. It is imperative that this value be unique since it is used

(Remote (Procedure Calk (Page 11

ßndrea Miller 524-17-6305

by the portmapper to identify the process (from poignant experience, the author can readily attest

to the confusion that results from having multiple programs with the same program number). The

version numbers are useful when updates warrant the need for a distinction between the original

version, and the subsequent update (Bloomer 43). For example, the addit protocol definition file

contains one version with a simple function definition called ADD_NUM which receives and

returns an integer. Another version could be defined (identified by the number 2) which passes a

structure instead of an integer. RPCL is similar to the C language, though this simple example

does not make this apparent; however, the protocol definition file for the author's application

(Appendix B) demonstrates the similarity between declared constants, structure definitions, and

additional functions.

Once the user has created the protocol definition file, a UNIX program, called RPCGEN,

compiles the definition and produces several files. RPCGEN creates both the client and server

stubs, as well as a header file that defines the RPC parameters that are included in both the server

and client routines. After compilation of the RPC definition file, the next task entails developing

the client and server code.

In the addjt example, the client code is labeled addit.c. The code is written in C and

contains familiar formats like include statements, variable declarations, etc. Additionally, the

code includes features that are unique to RPC. First, the rpc/rpc.h library must be included along

with the header file add_it.h which is produced by the compiler rpcgen. Next, a special pointer of

type CLIENT is declared which points to a structure that contains information about the port and

socket addresses (Bloomer 7). The value ofthat pointer is determined by the function clnt_create

(Remote (Procedure Calls Wage 12

Andrea Milkr 524-17-6305

which establishes a connection between the server and client machines. This function requires the

name of the host with which to establish a connection (can be the same), program name, version

name, and the type of transport protocol (tcp or udp). If no connection can be established, the

function clnt_pcreateerror is called to inform the user that no connection could be made to the

host (Sun MicroSystems 45). Finally, the function that was declared in the protocol definition file

(addjt.x) is called (the version number is appended to the function name by rpcgen). Passed to

the function are the integer which will be manipulated and the CLIENT pointer which contains the

communication information.

The last component of the addjt example is the server code, which is also coded in the C

language. Again, the rpc/rpc.h library is included as well as the header file add_it.h. Noticeably

different from the client code is the lack of a main declaration. In essence, the server code is

simply a function declaration and can be considered as a function within the client code, only

residing on a different machine. Furthermore, all communication between the client and the

server is accomplished through pointers. Thus, the client passed the pointer to the integer num

and the server returns a pointer to the new number which is, ironically, called oldnum. The

descriptive "Hello People" statement was included to provide optional output to confirm that the

server was responding (debugging tool).

Advanced RPCs

Once this simple RPC application that adds two integers over a network was completed,

the level of difficulty was increased by working with strings and structures, until the author was

versed enough in RPC protocol and application specification to begin work on the file migration

(Remote (Procedure Cads (Page 13

Andrea Witter 524-17-6305

application itself. It uses many of the fundamental concepts of the simpler RPC application, as

well as additional, more complex concepts. A copy of the code is included in Appendices B

through E. Appendix B is the protocol definition file, Appendix C contains the client code,

Appendix D contains the server code, and Appendix E has all of the scripts written in UNIX that

are used through system calls by the client and server code as well as the protocol definition file

and server code for the second server.

The application of file migration, of course, is not the only area where RPC can be

employed effectively. There are many other applications which lend themselves to the advantages

of RPC, including using RPC to calculate partial derivatives. In this application, the equations are

partitioned and numerically solved on different computers. The fragmented solutions are then

pooled to obtain the final result (Soto 25-27). Another application area encompasses using RPC

as a tool for software applications dealing with real-time process control systems that are large

and complex (Carpenter 901-902). Undoubtedly, the use of RPC will become more widespread

and, as it does, we will see an increase in the number of applications in this area.

<Rgmote (Procedure Catts Vage 14

ßndrea Mitter 524-17-6305

FILE MIGRATION

Many organizations have expanded significantly, in a physical and geographical sense,

over the past few decades. This growth has been accelerated by the fast-paced nature of the

advancing computing environment. Many organizations have noticed that it can be beneficial to

modify the location of various frequently accessed company files from their current locations to

others. By varying the location of files appropriately, communication costs and file transfer

duration times, which typically result from locating and acquiring large files (such as company

accounting histories or files containing multiple graphic bitmaps), can be minimized. Companies

have often solved these problems by manually modifying the primary location of particular files, or

by replicating the files to multiple locations.

A Case for Computer-integrated File Migration

For example, most world-wide corporations maintain personnel files for each and every

member of their company. Regardless of each member's current location, it is imperative that the

data contained within each file remains current. In order to maintain currency, the file must be

updated continually as to reflect each person's current location, position, job status, possible job

qualifications, personal preferences, etc. Most companies maintain each member's personal

record at one specific site. The file is usually located closest to where that person normally

conducts business (at some home-base location). Whenever their particular personnel file must be

updated, their central file must be found and modified. Although this method may seem prudent,

as long as the person remains at that specific location for an extended period of time and rarely

(Remote (Procedure Catts (Page 15

Andrea MiOer 524-17-6305

deviates far from that location on business ventures, the reality of global business dictates that

many personnel are frequently dispatched world-wide for extended periods of time at irregular

intervals.

If a person is temporarily reassigned from one business site to another, for example, as the

schedule of a sales representative could require, maintaining a file at a central location may be

considered unwise. It makes sense, then, to have each company member's personal file "follow"

them to their current business location, as required by their occupation. Many organizations have

implemented this concept by manually moving personnel files from one location to another, as

warranted. The process of moving this file is usually performed manually, but why bother when a

computer system can perform the necessary file transfers, at close to optimal times, and minimize

transferal and access costs concurrently? In most cases, the manual process of moving files is

either cost-ineffective, inefficient, or subject to oversight errors.

A case for Computer-integrated File Replication

Related to the prior example, a person may perform certain business functions at two or

more distant locations on a frequent and extended basis. In order to minimize communication

costs, their personal file could be manually moved between these locations as their business

functions require. However, this method may not be the most efficient and cost-effective one for

determining the timing of file relocations. Routinely moving a file among two or more locations

seems like a senseless task. If the employee regularly returns to a limited set of specific locations,

having information specialists repeatedly relocate the member's personal file to each of these

(Remote (Procedure Cads (Page 16

JLndrea MOer 524-17-6305

locations could result in unnecessary file transfer costs. If this person's file is only needed at each

location for read-only applications, a simple file copy at each location would minimize the cost of

access times and would require only one file transfer for each location. Any competent computer

specialist could determine when a file should be copied to another location, but why employ one if

the computer system can perform this function on its own? The system could apply a set of

criteria and automatically determine when a file should be copied to another location. The

possibility of automatically moving files to the optimal locations leads to the concept of file

migration.

The Benefits of Computer-integrated File Migration

The two preceding examples illustrate the advantages of computer-integrated file

migration. Although many methods can be employed to determine when a file should be either

replicated or moved, there is little evidence to support that the file transfers themselves should be

performed manually by the computer system monitors. A computer routine can be developed that

determines the optimal distribution of each file and performs the necessary relocation(s) without

human involvement.

The concept of file migration is, more or less, an automatic process. In this process, the

organization pre-defines a specific set of criteria that must be met before a file is either relocated

or replicated to another site. When the pre-specified criteria are met, the awaiting computer

functions perform the desired file relocation and replication without any interaction by the

computer system monitor. In this scenario, a centralized database would maintain the criteria as

(Remote (Procedure Catts (page 17

JLndrea MCter 524-17-6305

well as current information on the location of each file, the type of each file, and the types of

accesses available to each file (e.g. if a file is read-only, write-only, or both). If the file location(s)

have been modified, only a simple change to the database is required.

Although it may seem expensive to require each file query to consult the central database

prior to any, and every, file access, the cost will usually be negligent, especially when compared to

normal file transfers. For example, a personnel file that contains complex images (including dental

exam x-rays, photographs, and other bitmaps) can often take hours to transfer error-free over a

large distance, while a simple database call to another machine takes much less than a few

seconds.

Analysis of Computer-integrated File Migration

So, as far as the added communication overhead is concerned, file migration adds little to

the overall cost. Actually, this extra overhead cost is required from all personnel database

systems, since any distributed system requires the existence of, and access to, some type of

database to determine a particular file's location. The real savings from the file migration concept

comes from the efficiency gained by the elimination of human interaction at the file transfer level.

The transferal/replication criteria are only specified at a single point, with periodic updates,

eliminating the necessity of human decision-makers to determine the location of each file at each

point in time. The system itself takes care of the implementation issue.

(Remote (Procedure Cads (Page 18

Andrea Mitter 524-17-6305

THREE APPLICATIONS FOR FILE MIGRATION

In order to demonstrate RPC, three different, but related, file migration applications were

chosen with regard to unit personnel records. For instance, in the Air Force, currently all records

are kept on one database in one location. While this may seem like the simplest way to maintain a

database, it might be more cost-effective to distribute the files and move them electronically. This

is the basic idea behind the applications. While each option is a slightly different scenario with

respect to migrating personnel records, all three applications have an underlying goal as well as a

communal set of code.

This shared objective is to create an application that will maintain databases of the actual

personnel records along with a database that knows the location of each record. Furthermore,

each application will display a set of statistics regarding the location and number of accesses of a

particular file from a particular location. This enables an individual to keep track of where the file

is used and requested most often. Finally, based on some predetermined set of rules (here is

where the different options are derived) the file is transferred to a different location and a message

appears telling the user that the file has been transferred to a new location. The transfer is also

updated in the database that tracks the locations of the files.

As mentioned before, the file transfer is governed by a set of rules. Here is where each

application finds its identity. The first option deals with transferring a file based on a location that

is different from the current location of the file. The second option transfers a file based on the

percentage of requests made. The final option transfers a file at regularly scheduled times to

given locations. There exist complex algorithms that dictate when a file should be migrated based

<Rftnote (Procedure Catts <Page 19

Andrea Mitter 524-17-6305

on a system's resource utilization, file sizes, and the number of write and read accesses to those

files (Hac 1459); however, because the emphasis of this paper is on remote procedure calls rather

than file migration techniques, these algorithms are beyond the scope of this project.

Shared Application Features

Though each of the three applications address a different decision rule, they all share

certain attributes, processes, and implementation techniques. Since the authors developed a

generic set of code around which the applications are built, each application shares a number of

the same variables. Furthermore, many of the functions within the server code are identical since

the same file information is being processed in each application.

Of special interest is the use of the rdbpt server as a client of the fts server. In other

words, the same process can function as a server and a client! The server process need only make

a request of another server to become a client, too. This feature in the code required extensive

debugging for two reasons: first, the location in the code of the second server call was important

to the server's operation and second, the structure of the compilation file was altered significantly

in order to integrate the additional stubs into the original configuration.

Finally, each application implements C's capability to make UNIX system calls. This

capability allows the integration of UNIX scripts which are triggered by C with a simple system

call to the name of the script. In this way, the various tasks of the applications are performed in

the most appropriate environment.

(Rgmote (Procedure Calk (Page 20

Mdrea Milter 524-17-6305

For example, it is easier to work with files using UNIX rather than C since the code resides on

UNIX machines. The UNIX system calls are easily identified throughout the code.

Remote (Procedure Catts (Page 21

JLndrea Miller 524-17-6305

THE APPLICATION

Keeping track of personnel records for a large organization can be very cumbersome. If

the organization had the ability to let the computer keep track of the location of each person's

records and distribute them in a way that minimizes costs, such as communication and storage

costs, they would be eager to use it. This RPC application deals with migrating files based on the

owner's current location.

There are many potentially interesting applications of file migration based on the location

of the owner and file. One application is having medical records follow a patient from one

medical center to another, this would be especially favorable if all records are stored in computer

databases. Another application is for storing social security records near the location of the

individual that they belong to. These records are frequently accessed, thus locating them with the

individual would reduce communication costs. Academic institutions could benefit by

automatically receiving copies of transcripts from previous schools that a student has attended

because the transcripts would electronically follow the student. One final application would

involve Email or voice mail addresses following the user from site to site. This would make it

possible for individuals to need only one address in a lifetime. These are only a few possibilities

the reader is free to explore other possibilities.

In order to make this application work, several pieces of information must be kept track of

by the computer. First, it must have the information contained in the actual file whether it be a

person's medical records or mail. Next, there must be a database that knows the location ofthat

file, and finally another database must know the location of the owner of the file. A daemon

<Rgmote (Procedure Calls (Page 22

Andrea Mitter 524-17-6305

could then be invoked that periodically checks the two locations and if they are different then the

file is transferred to the location of the owner. However, this is similar to the application done by

Andrew Jank (reference Andrew Jank's Project). For the purpose of this project all requests for a

particular file must be made to a central location, that of the location of the owner.

The crucial assumption for this model is that the requesting server is located in the same

location as that of the individual. Therefore, all access to an individual's records is made via their

"home office". Even if an individual does much of his business out of town, he is generally

assigned one office as his primary place of employment (the "home office" can apply to any of the

above situations and is being used here in one situation for ease of reading). Thus, based on the

assumption, if someone other than the home office wants access to an individual's records, that

request must be made to the individual's home office and they will get the information or perform

the necessary transactions. While this may be a big assumption, it is likely that some

organizations will find this to their liking. The basic reason is that organizations like to maintain

control. Upper management, in particular, does not like the idea of distributing data because it is

then no longer necessarily under their control. By the same token, by requiring that outside

requests come through the home office, control is maintained over the files at its site. This

assumption makes it easier for the file migration routine to know when to transfer a file.

Since the assumption is that the requesting server is located in the same place as the

individual, and because all requests are made via that server, to determine if the file is in the

correct location, the file location can simply be compared to the location of the requesting server.

If they are different the file should be transferred to the same location as the owner. This is

(Remote (Procedure Catts <Page 23

Mdrea Mtter 524-17-6305

exactly what the first application does. It transfers files if the requesting location is different from

where the owner and file currently reside. Once the file has been moved, the database containing

the directory of where all the files are located is also updated.

The first application simply moves files based on location. It does not take into account

the number of accesses from a different location or calculate any costs or ratios. In this respect,

this option may be lacking. Because location is the only decision factor, it may overlook many

other factors. Two ensuing applications attempt to address these additional factors (Reference

papers by Andrew Jank and Eric DeLange).

Application Features

In order to present some of the features of the code it is first necessary to describe more

specifically what the application does. When the application is initially run two windows will pop

up on the screen. One window is the file transfer window the other is the active window. The file

transfer window displays transfer status (see figure 1). It informs the user of files that have been

transferred or that a file will remain where it currently resides. The active window has two

functions (see figure 2). The first is that it receives requests for a particular file. The requested

file is found and then displayed along with statistical information regarding how many requests

have been made from a particular server. In this application, the statistical information is simply

additional information. It could be used in more complex file migration algorithms in the future.

(Remote (Procedure Catts (Page 24

Jlndrea MiOer

iTransfer Status;

The file 222222222 has been moved
from sunrise to hpnotic.Q

figure 1

524-17-6305

SSN

222222222

Sunrise

0

PROJECT ONE?

Name Address

REED.HANSCOM

Sunburn

0

19898.GRANDVIEW.DRIVE

Sunspot

0

Hpnotic

1

andreami@hpnotic:24 []

figure 2

<Rfmote (Procedure Catts <Page 25

Andrea Miller 524-17-6305

Protocol Definition File

Now that the reader is more familiar with the functionality of the code it is possible to

highlight some of the areas of interest in its design. First the protocol definition file is in itself

unique because most computer science programs require nothing similar to it. For this application

the records are defined as structures {rdbpt.x 15-20, 25-33). In some cases it is easier to pass an

entire structure back and forth over a network than to individually pass data. The type "string" is

also something not found in a C program. In RPC this type is only defined in the protocol

definition file. Finally, for this particular application only two functions make requests to the

server {rdbpt.x 50-51). As earlier mentioned, each RPC application must have code for both the

client and the server. Highlights of the client code will be discussed next.

Client Code

The client is the process that makes requests from the server to complete its task and it

also establishes the connection to the server. The connection function is predefined and requires

four arguments: hostname, program name, program version, and transport type. To see its use

see rdbpt.c lines 56-61. Once the connection has been made, the client can then make requests to

the server. In this application two procedures, ssnkey and getrec are requested (In 64 and 67

respectively). The server will execute the procedure and first send back the location of the

requested file and then will retrieve the file itself. Once that information has been returned to the

client, it then has the job of presenting it. In this application the formatting and printing of the

<Rgmote (Procedure Calk (Page 26

ßnifrea Mitkr 524-17-6305

information (the requested record and statistics) are done in the client (rdbpt.c 73-87). While the

client makes the requests and formats the output it is the server that does the majority of the

work.

Server Code

In this application the server code reads the database and finds the location of the

requested record, along with the record itself. It also keeps track of file location updates and

statistics regarding the number of accesses from a particular location. Finally, the server in this

application also functions as the client process for another server. Lines 30 though 43 of the

server code show the procedure for reading the central database that keeps a record of where

certain files are located as well as, statistics regarding the number of accesses from a particular

location. First space must be allocated for the data and then the information can be read.

Counters are used to keep track of the number of accesses from each location (rdbpt_svc_proc.c

57-64). Once the information has been read a comparison is made that determines if the file

resides in the same location as the owner (rdbpt_svc_proc.c 66-72). For simulation purposes it is

also here that the file location is changed. For this application the file is not actually moved

anywhere. The migration is simulated by changing the location of the file in the central database.

Once the data has been read and modified it can be written back to the database

(rdbpt_svc_proc.c 73-80). A final highlight of the server code is the code that allows the server

to be a client for another server process (rdbpt_svc_proc.c 157-170). In this application the

requested file along with the old and new locations (possibly the same) are passed to another

Remote (Procedure Cads <Page 27

Andrea Milter 524-17-6305

server process. While for the purpose of this simulation the second server process only serves as

an informer, it is here that the file migration routines could actually be invoked and the file would

actually be moved. One element that is essential to RPC that can be seen both in the server and in

the client code is that all variable that are passed between processes are referenced as pointers

(rdbptsvcjproc.c 17-22). The protocol definition file and server code for the additional server

(fts.x andfts_svc_proc.) are located in appendix E.

This discussion is not all encompassing however it does show some of the more important

and interesting elements of the program.

<R$mote (Procedure CaOs <Pnge 28

Andrea Mitter 524-17-6305

RPC FRONT ENDS WITH HP-UX

The front-end display is an important addition to any application, especially for users.

Applications that use RPC technology typically produce a large number of complicated, and

almost indecipherable, files. Additionally, in order to run any RPC application, the server

application must already be waiting for a request at the server end, before the client can be

executed. The typical user does not know, or care, about any of the implementation issues. One

attractive quality of client/server computing is that the complicated aspects of computer

integration and application are transparent to the user. Therefore, it is important that any user

interface that utilizes RPC functions facilitates running the program, and all of its additional files,

without involving the end-user in the details of its underlying operation.

The HP-UX Workspace Environment

The HP-UX machines provide several different viewing sessions that offer applications

and tools that can be accessed by simply clicking a pointing device (ex. a mouse) on an icon. Two

of these sessions are HP VUE and HP VUE lite. The basic differences between the two are that

the HP VUE lite session has a front panel with different features and different methods for

determining how the view manager interprets the information provided by the user. These panels

are typically displayed whenever the user logs on, much how Microsoft Windows provides a set

of panels, each of which contains a set of program icons. Users can customize their own panels,

but only within the limits set by the System Administrator, who determines what type of options

are available to each class of user.

(Rfmote (Procedure Catts <Page 29

ßnärea Mitter 524-17-6305

Developing a Control

The application was developed within the HP VUE session. The HP VUE session panel

consists of a top and bottom row. In order to modify these rows several changes must be

performed: an icon must be constructed, an action that will be associated with that icon must be

defined, the action must then be linked to the icon to define a control, and finally the control (the

icon with an underlying action) must be added to the front panel by editing the ".vuemrc" file.

Building Icons
Creating an icon is relatively easy for anyone who has a creative mind and likes to draw.

The IconEditor is specifically designed for this purpose; it provides the user with a drawing

screen and tools to construct various icons. Once the icon is finished, the constructor need only

save it for future use. In order to have the icon associated with an application, an action must be

specified and attached to the icon.

Creating Actions
Creating an action is accomplished by simply using the CreateAction icon in the HP-UX

General Toolbox. The user inputs the action name, a command line to initiate the application, and

a type of window to display the action results within. An action can only be specified once; if

future modifications must be made, a new icon-action definition must be specified. Once the icon

and action associated with it have been created, the newly defined control can be added to the

panel.

(Rßmote (Procedure Catts (Page 30

Jlndrea Mitter 524-17-6305

Adding a Control to the HP-UX VUE Session
The ".vuemrc" file must be edited to include the new control. The ".vuemrc" file contains

all the control definitions, as well as the names for the controls that reside in the top and bottom

rows of the panel. These controls can take on different actions, as well as combinations of

behaviors including: push button, drop zone, file monitor, client window, and toggle button.

To include a new control to the ".vuemrc" file, several steps must be taken. Initially, the

icon controls are placed in the appropriate box and are then defined. The box placement describes

in what order the various controls will be displayed. The word "CONTROL" along with the

name for a new control are included among the other control definitions for a desired box (top or

bottom) and position within the box. The type of control must also be defined. In the case of the

application, a button "TYPE" control is used to initiate the application. For any control addition,

the "PUSH_ACTION" for the button must also be specified. The "PUSH_ACTION" can either

be an action similar to the one created above, or an executable command. An action similar to the

one created above is incorporated into the author's RPC application. Finally, an "IMAGE" must

be specified for each control. The image is simply the icon name. Little more is involved with

modifying the view configuration of the HP-UX

machines to include any, and all, new applications to the window manager.

Restarting the Workspace

In order to incorporate the new controls to the window manager, all one needs to do is

restart the workspace manager. The new control definitions will take effect and function in all

(Remote (Procedure Catts (Page 31

Andrea Mitter 524-17-6305

future uses of the start-up window manager workspace. By using icons and associating them with

actions it is possible to execute the RPC application in an environment that not only preserves the

benefits of client/server computing, but also retains the invaluable element of end-user

transparency by isolating the user from the underlying complications involved with RPC

technology.

Remote (Procedure Catts <Page 32

Andrea Mtter 524-17-6305

CONCLUSIONS

Though the author's experience in the area of RPC is limited, by researching the subject

and working on a project that incorporates its capabilities, the usefulness of RPC in

communicating in a client/server environment was recognized. Moreover, even though the

project was somewhat limited, the complexity involved in implementing client/server technology

is readily discerned. Of course, the project was not completed without learning something, nor

were the possible applications of RPC in the realm of file migration exhausted.

Lessons Learned

As with any project, there is no substitute for the lessons one learns from experience. This

project is no exception. First and foremost, it cannot be stressed enough how important it is that

the program number defined in the protocol definition file be unique. If there are two programs

with identical values, a clear communication channel cannot be established between a client and

one server since, according to a client's stub, two server's will exist for the same purpose.

Another important issue in dealing with RPC is passing parameters. It is necessary that all

variables be passed as pointers for RPC to work properly. Additionally, the value that is to be

returned from the server function must be declared as a static variable.

(Remote (Procedure Catts <Page 33

Andrea Wider 524-17-6305

Future Endeavors

In order to keep the scope of this project within reason, the three file migration

applications were approached from a simulation perspective. That is, no physical migration of

files actually occurs. When a file is said to have been moved from one host to another, the only

thing that has changed is the database file that would track the migration of files. Obviously, this

leaves open the possibility of expanding the project by physically migrating the files. Furthermore,

additional applications can be developed such as maintaining duplicated files at separate sites

(read-write and read-read access are important in this area). Along with this, more research can

be done in adequate rules that define at what point a file is to be moved or duplicated. This does

not comprise an exhaustive list of supplementary application areas to the project and the reader is

free to explore their own possibilities.

<Rgmote (Procedure Catts Page 34

Andrea Mitter 524-17-6305

BIBLIOGRAPHY

Bloomer, John. Power Programming with RPC. Sebastopol: O'Reilly and Associates, Inc., 1991.

Carpenter, B. E. and R. Cailliau. "Experience with Remote Procedure Calls in a Real-time

Control System." Software- Practice and Experience. Vol. 14. September 1984, pp.

901-07.

Comer, Douglas E. and David L. Stevens. Internetworking with TCP/IP. Vol 3.

Inglewood Cliffs: Prentice Hall, Inc., 1993.

Curry, David A. Using C on the UNIX System. Sebastopol: O'Reilly and Associates, Inc., 1989.

Hac, Anna. "A Distributed Algorithm for Performance Improvement Through File Replication,

File Migration, and Process Migration." IEEE Transactions on Software Engineering. Vol

15, No 2. November 1989, pp. 1459-1470.

Hahn, Harley. A Student's Guide to UNIX. New York: McGraw-Hill, 1993.

Hewlett-Packard Company. HP Visual User Environment 3.0 User's Guide. Hewlett-

Packard Company, 1992.

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language. 2nd ed. Murray Hill:

AT&T Bell Laboratories, 1988.

Korzeniowski, Paul. "Make Way for Data." Byte. June 1993, pp. 113-115.

Levy, Henry M and Ewan D. Tempero. "Modules, Objects and Distributed Programming:

Issues in RPC and Remote Object Invocation." Software—Practice and Experience.

Vol. 21January 1991, pp. 77-90.

<Rßmote (Procedure Catts <Page 35

Andrea Mitkr 524-17-6305

Soto, J. L. Cruz, M. C. Calzada Canalejo and M. Marin Beitran. "Parallelization of Differential

Problems by Partitioning Method (Synchronized Algorithm)." Computers and

Mathematics with Applications. July 1993, pp. 25-31.

Sun Microsystems. Network Programming Guide. Sun Microsystems, Inc., 1990.

Waite, Mitchell and Stephen Prata. New C Primer Plus. Carmel: Sams Publishing, 1993.

(Remote (Procedure Calls <Page 36

Andrea Mißer 524-17-6305

APPENDICES

Remote (Procedure Catts <Page 37

ßppencfbc

A

add it.x add it.x

1 /* ADDJTX */

2 /* THIS FILE IS USED BY RPCGEN TO PRODUCE THE HEADER FILE ADD IT.H * I

3 program ADDPROG {
4 version ADDVERS {
5 int ADD_NUM(int) = 1;
6 } = 1;
7 } = 0x20009300;

Nov 22 11:55 1994 Page 1 ofadd_it.x

add it.c add it.c

1 /* ADDJT.C * I

2 /* THIS IS THE CLIENT PROCEDURE * I

3 #include <stdio.h>
4 #include <ctype.h>
5 #include <rpc /rpc.h>
6 «include "add_it.h"

7 main()
8 {
9 CLIENT *cl;

10 int num;
11 char *hostname[20];

12 printf("\nPlease enter the remote host name: ");
13 gets(hostname);

14 printf("\n\nPlease enter the number to increment: ");
15 scanf("%d", &num);

16 /* THIS IS THE CLIENT HANDLE THAT ESTABLISHES THE CONNECTION * I
17 /* BETWEEN THE CLIENT AND THE SERVER * I

18 if (!(cl = clnt_create(hostname, ADDPROG, ADDVERS, "top")))
19 {
20 clnt_pcreateerror(hostname);
21 exit(l);
22 }

23 /* HERE IS THE PROCEDURE CALL * I

24 printf("Vi\nThe new number is %d\n", *(add_num_l(&num, cl)));

25 }

Nov 22 11:55 1994 Page 1 of addjt.c

add it svcproc.c additsvcproc.c

1 /* ADDITSVCPROC.C * I

2 /* THIS IS THE SERVICE PROCEDURE * I

3 #include <stdio.h>
4 #include <string.h>
5 #include <rpc /rpc.h>
6 «include "add it.h"

int *add_num_l(oldnum)
int *oldnum;

9 /* THIS FUNCTION ADDS 21 TO THE INPUT NUMBER AND THEN RETURNS THE NUMBER * I

10 {
11 printf("\nHello People");
12 *(oldnum) += 21;
13 return oldnum;

14 }

Nov 22 11:55 1994 Page 1 of add_it_svcj)wc.c

jZppendht

(B

rdbpt.x rdbpt.x

1 /*
2 /*
3 /*
4 /*
5 /*
6 /*
7 /*

*** project 1

RDBPTX

This program is used by RPCGEN to produce the header
file for the RDBPT RPC.

8 const MAX_REC_LEN = 255;
9 const SSN_SIZE = 9;

10 const NAME_SIZE = 80;
11 const ADDR_SIZE = 80;

12 const HOST SIZE = 255;

/* max personal record length
I* size of Social Security Number
I* size of person's name
/* size of person's address

I* size of host computer

13 /*
14 /*

15 struct pers rec
16 {
17 string ssn<SSN SIZE>;
18 string name<NAME SIZE>;
19 string address<ADDR_SIZE>
20 };

21 /*
22 /*
23 /*
24 /*

25 struct dbase rec
26 {
27 string ssn<SSN SIZE>;
28 string loc<HOST_SIZE>;
29 int sunrise;
30 int sunburn;
31 int sunspot;
32 int hpnotic;
33 };

Defines the structure of each personal
record: SSN, name, and address

Defines the structure of the database
record for each file: ssn (filename),
current location, 4 counters to measure
file accesses from each server.

34 /*
35 /*
36 /*
37 /*
38 /*

39 struct inputrec
40 {
41 string ssn<SSN SIZE>;
42 string lc hosKHOST SIZE>;
43 string h name<HOST SIZE>

Defines the structure of an information
record about a specific file, including
the SSN (filename), the local host from
the file has been requested, and where
the file is actually located.

Nov 17 14:37 1994 Page 1 of rdbptjc

rdbpt.x rdbpt.x

44 };
45

46 program RDBPT PROG
47 {
48 version RDBPT_VERS
49 {
50 dbase_rec SSN_KEY(inputrec) = 1
51 pers_rec GET_REC(inputrec) = 2;
52 } = l;
53 } = = 0x20009302;

Nov 17 14:37 1994 Page 2 of rdbpt.x

jippencCvt

C

rdbpt.c rdbpt.c

10
11

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

project 1

RDBPT.C

This is the client code for the RDBPT service.
The client receives as input the hostname and the file- * /
name for access. The code translates these inputs into * /
the proper form, contacts the RDBPT server to find the
actual location of the file, then retrieves and prints
the file for the user.

* I
* I
* I
* I
* I

* I
* I
* I
* /

12
13
14
15
16

#include
#include
#include
#include
#include

<stdio.h>
<string.h>
<rpc /rpc.h>
"rdbpth"
<stdlib.h>

22

24

26

17
18
19

20
21

23

25

27
28

main (arge, argv)
int
char

{
CLIENT

dbase_rec
pers_rec

inputrec
FILE

FILE
char

arge;
*argv[];

/* Client handle
I* Retrieved dbase record

I* Retrieved personal record
I* Information record (ARGV's)

c_fp = NULL; / FP for hostname conversion
= NULL; /* FP for SSN sonversion
HSTN AME[HOST_SIZE];

/* Temp variable for hostname

*cl;
*d_record;

*p_record;
inrec;

*ssn p

29
30

31
32

/*
/*

Assign filename and hostname to
variables for use

inrec.ssn = argv[2];
inrec.h_name = argv[l];

33 /*
34 /*

35 system ("find hname");
36 c fp = fopen("hname.txt","r");
37 fscanf (c fp, "%s", HSTNAME)
38 fclose (c fp);
39 inrec.lc host = HSTNAME;

Convert hostname to proper
representation

40 /*
41 /*

42
43
44
45

Convert SSN filename to proper
representation

ssn_p = fopen("ssn.txt", "w");
fprintf(ssn_p, "%s", inrec.ssn);
fclose(ssn_p);
system("ssn_ident");

Nov 17 14:36 1994 Page 1 of rdbpt.c

rdbpt.c rdbpt.c

46
47

p_record
d record

(char *)
(char *)

malloc(sizeof(pers_rec));
malloc(sizeof(dbase_rec));

48
49
50
51
52
53

Provide error usage message
if ((arge != 3))
{

fprintf(stderr, "SnUsage: %s local.server SSNVi", argv[0]);
exit(l);

}

54 /* Establish
55 /* (RDBT)

56 if (!(cl = = clnt create(argv[l], RDBPT PROG,
57 RDBPT VERS, "top")))
58 {
59 clnt_pcreateerror(argv[1]);
60 exit(l);
61 }

Establish connection to the server

62 /*
63 /*

64

65

d_record = ssn_key_l (&inrec, cl);

strcpy(inrec.h_name,d_record->loc);

Retrieve file location and access
information

66

67

/*

p_record = get_rec_l (&inrec, cl);

Retrieve actual file

68 /*
69 /*
70 /*

Print out the contents of the file, the
current file location, and the current
file access statistics.

71

72
73
74
75
76

77
78

system ("clear");

"Ww —

"\t SSN\t\t
-W);

NameMNt AddressW);

-W);
-");

printf (
printf (
printf (
printf (
printf (

printf ("Sn\t%s\t%s\l\t%sViNn\n\n", p_record->ssn, p_record->name,
p_record->address);

Nov 17 14:36 1994 Page 2 of rdbpt.c

rdbpt.c rdbptc

printf ("MSunriseVMSunburnNtVSunspotMNtHpnoticNn");
%dV\t %d\r\t %d\t\t %d\nW,

d_record->sunrise, d_record->sunburn, d_record->sunspot,
d_record->hpnotic);

79 printf C
80 printf C
81
82

83 printf ("
84 printf ("
85 printf ("
86 printf ("
87 }

 ");
-\n");

");
-\n\n\n");

Nov 17 14:36 1994 Page 3 of rdbpt.c

flppendht

<D

rdbpt_svc_proc.c rdbptsvcproc.c

1 /*
2 /*
3 /*
4 /*
5 /*
6 /*
7 /*
8 /*
9 /*
0 /*

project 1

RDBPT SVC PROC.C

This is the program that provides services to the
RDBPT clients. The server has two main server functions: one
that contacts the central database and retrieves statistical
and location information about the desired file, and another
that actually retrieves the contents of the personal file.

11
12
13
14
15
16

#include
#include
#include
#include
#include
#include

<stdio.h>
<string.h>
<rpc /rpc.h>
"rdbpt.h"
"fts.h"
<ctype.h>

17 FILE *fpl = NULL; /*
18 FILE *fp2 = NULL; /*
19 FILE *ssn_p = NULL; /*
20 static pers rec *p rec = NULL; /*
21 static dbase rec *d rec = NULL; /*
22 char *oldname[30]; /*

FP for accessing central database
FP for retrieving personnel record
FP for opening temporary files
pointer for personnel record
pointer for database record
temp variable for old file location

23 /*
24 /*
25 /*
26 /*
27 /*

READDBASE

This function allocates internal memory and reads the central
database, retrieving the statistics and host information about
the desired personnel file.

28
29

30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45

int read_dbase(inrec)
inputrec

{
if (!d_rec)
{

}

*inrec;

d_rec = (dbase_rec *) malloc(sizeof(dbase_rec));
d_rec->ssn = (char *) malloc(sizeof(SSN_SIZE));
d_rec->loc = (char *) malloc(sizeof(HOST_SIZE));
d_rec->sunrise = (int) malloc(sizeof(int));
d_rec->sunburn = (int) malloc(sizeof(int));
d_rec->sunspot = (int) malloc(sizeof(int));
d_rec->hpnotic = (int) malloc(sizeof(int));

if (fscanf(fpl, "%s %s %d %d %d %d",
d_rec->ssn, d_rec->loc,
&d_rec->sunrise, &d_rec->sunburn, &d_rec->sunspot,
&d_rec->hpnotic) != 6)

return (0);

46 return (1);

Nov 17 14:37 1994 Page 1 ofrdbpt_svc_proc.c

rdbpt_svc_proc.c rdbptsvcproc.c

47

48 /*
49 /*
50 /*
51 /*

WRITE_DBASE

This function modifies the statistic counter and file location
information and updates the applicable central database record. * I

52 int write_dbase(inrec)
53 inputrec
54 {

55 /*
56 /*

57
58
59
60
61
62
63
64

*inrec:

Increment appropriate counter if same as the
local host requesting service.

if (strcmp(inrec->lc_host, "sunrise") == 0)
d_rec->sunrise += 1;

if (strcrnp(inrec->lc_host, "sunburn") = 0)
d_rec->sunburn += 1;

if (strcmp(inrec->lc_host, "sunspot") == 0)
d_rec->sunspot += 1;

if (strcmp(inrec->lc_host, "hpnotic") == 0)
d_rec->hpnotic += 1;

65 /* Modify new file location

66
67

68
69
70
71
72

system ("clear");
strcpy(oldnaine, d_rec->loc);

if (strcmp(inrec->lc_host, d_rec->loc))
{

strcpy (oldname, d_rec->loc);
strcpy (d_rec->loc, inrec->lc_host);

}

73 /* Write new database changes to disk files

74 fprintf(ssn p
75 (
76 t

77 (

78
79 return (1);
80 }

fprintf(ssn_p, "%s %s %d %d %d %d\n",
d_rec->ssn, d_rec->loc,
d_rec->sunrise, d_rec->sunburn, d_rec->sunspot,
d_rec->hpnotic);

Nov 17 14:37 1994 Page 2 of rdbpt_svc_proc.c

rdbpt_svc_proc.c rdbptsvcproc.c

81 /* READ_PERS_REC *
82 /* *
83 /* This function reads the desired personnel record into the *
84 /* structure p_rec. *

85 int read_pers_rec()

86 {
87 if (!p_rec)
88 {
89 P_rec = (pers_rec *) malloc(sizeof(pers_rec));
90 p_rec->ssn = (char *) malloc(sizeof(SSN_SIZE));
91 p_rec->name = (char *) malloc(sizeof(NAME_SIZE));
92 p_rec->address = (char *) malloc(sizeof(ADDR_SIZE));
93 }

94 if (fscanf(fp2, "%s %s %s",
95 p_rec->ssn, p_rec->name, p_rec->address) != 3)
96 return (0);
97 return (1);
98 >

99 /*
100 /*
101 /*
102 /*
103 /*
104 /*
105 /*

106 db£
107
108 i
109

110
111

112
113
114

115
116
117

118

119
120
121
122
123

SSN_KEY_1 *
*

This function is called remotely by an established client. *
The client sends the local host location and personnel filename* I
and this server returns the actual location of the personnel *
file, as well as the accumulated statistical information about *
that perticular file. *

dbase_rec *ssn_key_l(input_rec)
inputrec *input_rec;

char *DFILE;

DFILE = (char *) calloc(MAX_REC_LEN+l, sizeof(char));
strncpy(DFILE, "filedb.txt",MAX_REC_LEN);

if (!(fpl = fopen (DFILE, "r+")))
return ((dbase_rec *) NULL);

while (read_dbase(input_rec))
if (!strcmp(d_rec->ssn, input_rec->ssn))

break;

ssn_p = fopen("tempdb2", "w");

if feof (fpl)
{

fclose (fpl);
return ((dbase rec *) NULL);

}

Nov 17 14:37 1994 Page 3 of rdbpt_svc_proc.c

rdbptsvcproc.c rdbptsvcproc.c

124 write_dbase(input_rec);
125 fclose (fpl);
126 fclose(ssn_p);
127 system("/users/andyjank/projectl/changefile");
128 return ((dbase_rec *) d_rec);
129 }

130 /*
131 /*
132 /*
133 /*
134 /*

135 per
136

137 {
138
139
140
141
142

143
144

GETRECJ

This function is called remotely by an established client.
The client sends the host location and personnel filename, and
this server returns the personnel file.

pers_rec *get_rec_l(input_rec)
inputrec *input_rec;

CLIENT *c2;
info_rec info;
char *number[20];
char *PFILE;
pers_rec *error;

PFILE = (char *) calloc(MAX_REC_LEN+l, sizeof(char));
strncpy(PFILE, "D.",MAX_REC_LEN);

145 strcat(PFILE, input_rec->ssn);

146 if (!(fp2 = fopen (PFILE, "r")))
147 return ((pers_rec *) NULL);

148 while (read_pers_rec())
149 if (!(strcmp(p_rec->ssn, input_rec->ssn)))
150 break;

151 if feof (fp2)
152 {
153 fclose (fp2);
154 return ((pers_rec *) NULL);
155 }
156 fclose (fp2);

157 /* This code section contacts the file transfer server (that would *
158 /* actually perform the file transfer in a fully implemented *
159 /* application. *

160 info.oldloc = oldname;
161 info.newloc = input_rec->h_name;
162 info.filename = d_rec->ssn;

163 if (!(c2 = clnt_create("hpnotic",FTSPROG, FTSVERS, "tcp")))

Nov 17 14:37 1994 Page 4 of rdbpt_svc_proc.c

rdbptsvcproc.c rdbptsvcproc.c

164 {
165 clnt_pcreateerror("hpnotic");
166 exit(l);
167 }

168 trans_l(&info, c2);

169 return ((pers_rec *) p_rec);
170 }

Nov 17 14:37 1994 Page 5 of rdbpt_svc_proc.c

flypendht

<E

fts.x fts.x

1
2
3
4
5
6
7

/*
/*
/*
/*
/*
/*
/*

*** project 1 ***

FTSJC

This file is compiled by RPCgen to produce the
header file for our file transfer server.

* I
* I
* I
*/
*/
*/
*/

8
9

10
11

const HOST_SIZE = 255;
const F NAME SIZE = 255;

/* Structure that contains the original location of the
I* file, the filename, and the desired new file location* I

12 struct info_rec
13 {
14 string
15 string
16 string
17 };

oldloc<HOST_SIZE>;
newloc<HOST_SIZE>;
filename<F NAME SIZE>;

18 program FTSPROG
19 {
20 version FTSVERS
21 {
22 int TRANS(info rec)
23 } = l;
24 } = = 0x20009301;

= 1;

Nov 17 14:34 1994 Page 1 offtsjc

fts svc procc ftssvcproc.c

1 /*
2 /*
3 /*
4 /*
5 /*
6 /*
7 /*
8 /*
9 /*

10 /*

11 #include <stdio.h>
12 #include <string.h>
13 #include <rpc /rpc.h>
14 #include "fts.h"

*** project 1 *** * /
*/

FTSSVCPROCC * /
*/

This file is compiled by RCPgen to produce the * I
file transfer server executable. The executable itself * /
does not actually perform the file transfer to the new * /
server; it only produces a message informing the user * I
that this is where the actual transfer would take place* I

15 int *trans_l(h_info)

16 info_rec *h_info;

17 {
18 static int num;
19 num = 1;

20
21 if(strcmp (h_info->oldloc, h_info->newloc) == 0)
22 printfCVThe file %s will remain \nat the server %s.",
23 h_info->filename, h_info->oldloc);
24
25 else
26 printf("\nThe file %s has been moved\nfrom %s to %s.",
27 h_info->filename, h_info->oldloc, h_info->newloc);
28 return (&num);
29 }

Nov 17 14:35 1994 Page 1 offts_svc_proc.c

ssn ident ssn ident

1 #! /bin/csh -f

2 # SSNJDENT: #
3 # #
4 # This UNIX script takes the input SSN and creates a file #
5 # that includes all non-matches of that SSN. #

6 grep -v vcat ssn.txf /users /andyjank /projectl /filedb.txt > tempdb

Nov 17 14:38 1994 Page 1 of ssnjdent

changefile changefile

1 #! /bin/csh -f

2 # CHANGEFILE: #
3 # #
4 # This UNIX script updates the database file. #
5 # #

6 cat tempdb2 » tempdb
7 cat tempdb >! filedb.txt

Nov 17 14:33 1994 Page 1 of changefile

find hname find hname

1 #! /bin /csh -f

2 # FIND_HNAME: #
3 # #
4 # This UNIX script finds the hostname of the client. #

5 echo ^hostname" >! hname.txt

Nov 17 14:34 1994 Page 1 of findjiname

