
1V1DTICtELECTE fJAN, 0 4 1995U

19941228 025

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio



AFIT/GAP/ENP/94D-8

FEASIBILITY EXPLORATION OF THROUGHFOLD
AS A PREDICTOR FOR TARGET LOADING

AND ASSOCIATED ERROR BOUNDS

THESIS

Kris G. Rongone, B.S.
Captain, USAF

AFIT/GAP/ENP/94D-8

DTmC QJ3AL. INSPCTEDA

Approved for public release; distribution unlimited



Form Approved
REPORT DOCUMENTATION! P[AGE oMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Lev ba) "REPORT DATEec94 " REPORT TYPE AND3 DATES COVEREDasesThis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

FEASIBILITY EXPLORATION OF THROUGHFOLD AS A PREDICTOR
FOR TARGET LOADING AND ASSOCIATED ERROR BOUNDS

6. AUTHOR(S)

Kris G. Rongone, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORFMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology AFIT/GAP/ENP/94D-8
2750 P Street
WPAFB OH 45433-6583

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPO ISORING/MONITORING
AGENCY REPORT NUMBER

N/A

11. SUPPLEMENTARY NOTES

12a. D!STRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words)

Various applications of the Fredholm integral equation appear in different fields of study. An application
of particular interest to the Air Force arises in determination of target loading from nuclear effects simulations.
Current techniques first unfold the incident spectrum then determine target loading; resulting spectrum and
loading are assumed exact.

This study investigates the feasibility of a new method, through-fold, for directly determining defensible
error bounds on target loading. Through-fold uses a priori information to define input data and represents
target response with a linear combination of instrument responses plus a remainder to derive a quadratic
expression for exact target loading. This study uses a simplified, linear version of the quadratic expression.

Through-fold feasibility is tested by comparing error bounds based on three target loading functions. The
three test cases include an exact linear combination of instrument responses, the same combination plus a
positive remainder, and the same combination plus a negative remainder.

Total error bounds reduced from 100% to 35% in cases #1 and #2. In case #3 error bound was reduced to
48%. These results indicate that through-fold has promise as a predictor of error bounds on target loading.

14. SUBJECT TERMS 15. 1t BER OF PAGES

NUCLEAR INSTRUMENTATION, SPECTRAL ENERGY DISTRIBUTION, [ _ _L_
RADIATION SIMULATION TESTS, OPTIMIZATION, THROUGH-FOLD, 16. PRICE CODE
RADIATION INSTRUMENTS

T17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102



AFIT/GAP/ENP/94D-8

FEASIBILITY EXPLORATION OF THROUGHFOLD AS A PREDICTOR

FOR TARGET LOADING AND ASSOCIATED ERROR BOUNDS

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air Education and Training Command

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Nuclear Engineering

Acaession For
1TIS QRA&I
DTIC TAB 0
Unannounceid 0

Kris G. Rongone, B.S.
-By ,

Captain, USAF Dis~r•ution/ ___'

Availe, bllity Cades

Avall ad/lor

December 1994

Approved for public release; distribution unlimited



Preface

The purpose of this study was to explore the capability of a new method, through-

fold, as a predictor of defensible error bounds on target loading. There were two specific

goals. First, to develop the required derivation of a bounded definition for target loading.

Second, to develop a method for implementing through-fold for verification of expected

performance.

Users of current unfolding processes have a need for theoretically based error

estimates of target loading in the evaluation of nuclear effects simulations. However, due

to an inherent ill-posedness, current methods lack the capability for determining error

bounds.

Guidance and support during this study was received from many individuals. First,

I am indebted to my faculty advisor, Professor Kirk A. Mathews, for his help and extreme

patience during this study. His expertise in the field and knowledge of Mathematica

proved invaluable. Next I would like to thank Capt. Russell Daniel and Capt. Dennis

Miller. Their work on unfolding problems was crucial to my understanding of the topic.

Finally I would like to thank my roommates Ron, Mike, and Michelle for their help and for

just putting up with me during the thesis quarters.

Kris G. Rongone
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Abstract

Various applications of the Fredholm integral equation appear in different fields of

study. An application of particular interest to the Air Force arises in determination of

target loading from nuclear effects simulations. Current techniques first unfold the

incident spectrum then determine target loading; resulting spectrum and loading are

assumed exact.

This study investigates the feasibility of a new method, through-fold, for directly

determining defensible error bounds on target loading. Through-fold uses a priori

information to define input data and represents target response with a linear combination

of instrument responses plus a remainder to derive a quadratic expression for exact target

loading. This study uses a simplified, linear version of the quadratic expression.

Through-fold feasibility is tested by comparing error bounds based on three target

loading functions. The three test cases include an exact linear combination of instrument

responses, the same combination plus a positive remainder, and the same combination plus

a negative remainder.

Total error bounds reduced from 100% to 35% in cases #1 and #2. In the third

test case error bound was reduced to 48%. These results indicate that through-fold has

promise as a predictor of error bounds on target loading.
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FEASIBILITY EXPLORATION OF THROUGH-FOLD AS A PREDICTOR
FOR TARGET LOADING AND ASSOCIATED ERROR BOUNDS

I. Introduction

Background

Fredholm integral equations of the first kind apply in many fields of study including

acoustics, optics, geophysics, and aerodynamics (Daniel, 1988:Chl, 1). Of particular

interest to the Air Force is the measurement of pulsed radiation emitted from nuclear

weapons tests. These measurements can be used to predict nuclear weapons effects on

hardware by folding the incident spectrum with the hardware response function.

However, the Fredholm integral equations are first used to determine the radiation

spectrum incident on the equipment. The terminology in this study originates from this

application.

The Fredholm integral equation of the first kind is:

b
Y(e) = JS(rI) R(F,,rl) dT1 (1)

a

where

Y(E) = detector output signal

S(rl) = radiation spectrum

R(F~jj) = detector response function



Currently, pulsed radiation detection is accomplished using a series of overlapping

detectors covering the energy range of interest. Thus, 8, is discretized as i, the detector

index. However, practical aspects of data collection force several limitations on a

detection system. These limitations include use of a finite number of detectors, limited

detector resolution, and errors due to recording, transmitting and calibrating. The exact

signal from each detector can be represented with the following simultaneous equations:

00

i= f S(E) Ri(E) dE (2)

0

where

Yi = the exact signal of the ith detector

S(E) = the exact or actual spectrum emitted

thRi (E) = the exact response of the i detector

Past efforts to resolve the incident spectra for determination of target loading

(nuclear effects on hardware) have culminated in a cross-validation iterative unfold

method (Miller, 1990). This method uses a predicted spectrum based on a priori data, the

calibrated response functions of the detectors, and test data (i.e., measured detector

signals) to conduct a general deconvolution of the incident spectrum. The unfolded

spectrum is then smoothed to average out the fitting process discontinuities. After

iterating the unfolded spectrum to an optimal point (determined using the cross-validation

statistical method) the final unfolded spectrum is used as an approximation of the incident
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spectrum. Typically, the analyst folds this incident spectrum with the target response

function to determine target loading. Unfortunately, the unfolded incident radiation

spectrum is assumed to be exactly correct because the iterative unfold method lacks an

independent means of determining how well this unfolded spectrum approximates the

incident spectrum.

Problem

Since there are an infinite number of incident spectra which will produce the same

detector outputs, the traditional deconvolution of the Fredholm equations is an ill-posed

problem. Coupling this ill-posed problem with the assumption that the resulting unfolded

spectrum is exact leads to target loading estimates lacking defensible error bounds.

The main purpose of this study is to investigate the feasibility of a new method for

determination of bounds (both upper and lower) on the value for target loading. This new

method (aptly termed through-fold) bypasses the intermediate step of determining the

spectrum, and the inherent errors associated with this step, to directly determine defensible

error bounds on target loading.

Scope

This study develops the through-fold method to estimate target loading due to an

incident spectrum. The through-fold method assumes the incident energy spectrum is

predictable. Since experimental data are unavailable, this study is limited to simulated

incident energy spectra. A set of synthetic test cases are developed for an energy

spectrum ranging from 1 El to 64 E 0 , where El is an arbitrary energy unit.
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Using synthetic test cases for spectra and target responses, the exact target loading

is calculated for each case via a simple folding routine. Relative errors with respect to the

through-fold bounds are then compared to predict the feasibility of the through-fold

technique.

Assumptions

Along with assumptions associated with the through-fold, additional assumptions

are required to be consistent with Miller's (1990) work.

1. The instrumentation system consists of 17 detectors, 6 open (fluorescer) response
functions and 11 closed (filtered-fluorescer) response functions.

2. Detector resolution, E/AE, is 1.5.

3. The instrument response functions, Ri(E), are exact. The exact forms are given in
Chapter II.

4. Measurement errors follow a Gaussian distribution (Carter, 1989:14-15).

5. The spectrum, S(E), is exact subject to the estimate of uncertainty, 6S(E).

6. The spectrum has a non-negative flux constraint.

7. The target response function, T(E), has a non-negative constraint.

Several other assumptions are required in the derivation and simplification of the through-

fold equations; their discussions are deferred until they become relevant.
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General Approach

This study's approach is predominantly analytical. First, the exact target loading

equation is developed. The equation derivation (detailed in Appendix A) bypasses the

intermediate step that determines the incident spectrum, and thus some of the uncertainties

associated with that process. Through-fold directly determines a bounding expression

(exact correction terms are included) for the exact target loading. Upper and lower

bounds for target loading are then expressed as linear programming problems which can

be optimized with respect to assumed known bounds on the corrections. The elegance of

the through-fold method is in the manipulation of basic definitions for exact terms to

develop the final expression. An example of the definition of an exact term is:

B= B +B (3)

where

B represents an exact value,

B is a predicted or measured value

8B is a correction term (error)

To incorporate experimental data into the equation, the exact target response function is

represented by a linear combination of the instrument response functions plus a remainder.

This is discussed further in Chapter II.

Second, data that would normally be available to the analyst is simulated. These

data include a predicted spectrum and a conservative estimate of its error (both based on a

priori information), the detector response functions, and a target response function. Once

5



the input data are developed, instrument signals are constructed by folding the simulated

spectrum with the detector response functions. Measured signals are then approximated

by simulating measurement error with random noise from a Gaussian distribution.

Third, the final expression is optimized over the choice of linear combinations

available. This reduces the overall error spread from what would be calculated without

using experimental data in the derivation.

Finally, the method is tested to confirm that the overall error spread can be

reduced via through-fold.

Sequence of Presentation

Chapter II presents a detailed discussion of the through-fold theoretical

development including potential error sources and expectations for the through-fold

technique. Chapter III covers implementation of the through-fold equations to include

input data, error considerations, and optimization. Chapter IV discusses the through-fold

test cases and results. Chapter V presents the results of this thesis. Chapter VI presents

recommendations for further study.
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II. Theoretical Development

Introduction

Along with introducing the basic concepts of the through-fold technique, Section I

defined the assumptions and goals of this study. This section provides the theoretical

background of the through-fold method. The following topics are discussed: detection

systems and their associated response functions, sources of error, a preliminary derivation

including motivation for the approach, discussion of a more detailed derivation, and

expectations of the through-fold technique.

Detection Systems

A detector response function, Ri(E), is the normalized output of the detector due

to the portion of the incident spectrum at energy level E. The response functions are

assumed to be accurately calibrated using an adjustable monoenergetic source.

In a realistic experiment, detector systems having multiple response functions are

used simultaneously and their results are compared in an effort to reduce measurement

error. The detectors used to measure spectra of nuclear simulations are designed to have

an output proportional to an incident spectrum in the energy range E to E +AE given by

yi(E)AE = Ri(E) S(E) AE (4)

where

yi (E)AE = the incremental output of detector i due to the spectrum in the energy

range E to E +AE
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Ri (E) = the response of detector i to the part of the spectrum at energy E.

S(E) AE = the amount of the spectrum that is in the energy range E to E +AE

As stated in Section I, two different types of detector systems having either open

(fluorescer) or closed (filter-fluorescer) response functions are used for this study. Both

detector response functions are based on simplified versions (Daniel: 1988, App-A) of the

detector response functions for measuring the spectra of pulsed x-radiation presented by

Gorbachenko et al. (1976).

Open (Fluorescer) Response Functions. The open detector system uses fluorescer

detectors with a zero response for photon energies less than the k-edge of the fluorescer.

Photons above the k-edge of the fluorescer material react with the fluorescer, causing a

cascade of x-ray fluorescence. The response decreases for energies above the fluorescer

k-edge due to a decreased probability of photon reactions at the higher energies. The

thickness and type of fluorescer material can be varied to achieve a desired sensitivity.

The fluorescer response function used for this study is

0 E < Ej

Ropen (E)= 3(5)
1- exp -3 E > Ei]

E1 EŽ

where

open
Rp (E) = the open function of the ith detector

0E0= k-edge of the fluorescer for the ith detector

8



E = energy

Figure 1 is an example of a typical open response function. In this example, the detector

has a k-edge of 2 E, where El is defined as the lowest k-edge energy of the entire

0detection system. All energy units in this study are given the units of El.

Linear Plot of Open Response Function

0.4

0.3

Sensitivity,
(arbitrary 0.2
units)

0.1

0 ... . .. . . . .. . . . ... . . .

0 2 4 6 8 10 12 14
Energy, E/EO

Figure 1. Typical Open Response Function

Closed (Filtered-Fluorescer) Response Functions. The closed detector system

consists of a filter and a fluorescer to shape an open response between the k-edges of the

filter and fluorescer (Carter, 1989:7-9). Photons above the filter k-edge interact causing

fluorescence and subsequently degrade in energy. Photons getting past the filer and

9



having energies above the fluorescer k-edge interact at the fluorescer in a manner similar

to those of the open detection system. Since the k-edges of the filter and fluorescer are

different, the shape of the closed response system differs from that of an open response

system (Miller, 1990:9-10). The filter-fluorescer response function used for this study is

0
0 E <E°

(E) Eed (E) E •j (6)
exp - 2  1Iexp -0.25 E0 < E<(

1{1 - exp -2L--3]]exp[-1.5 kj E1> El

where

Riclsed (E) = the closed function of the ith detector

E = the k-edge of the filter for the ith detector

0E = k-edge of the fluorescer for the ith detector

E = energy

Figure 2 is an example of a typical closed response function. In this example, the detector

has a fluorescer k-edge of 2El0 and a filter k-edge of 4E .

10



Linear Plot of Closed Response Function

0.08

0.06

Sensitivity,
(arbitrary 0.04
units)

0.02

0 2 4 6 8 10 12 14
Energy, E/EO

Figure 2. Typical Closed Response Function

Detector System Overlap. For nuclear weapons effects simulations, the array of

open and closed detection channels is designed to have overlapping response functions to

reduce calibration and measurement errors. The k-edges defining the response regions of

the seventeen detectors used in this study are listed in Table 1. The k-edges are ratios

computed with respect to E1. The overlap of closed response functions is shown in

Figure 3 (instruments 1-11 are shown left to fight). Figure 4 shows the response functions

for the collection of open detection systems (instruments 1-6 are shown left to fight).

Note that the open response detector systems completely overlap those of the closed

response systems.
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Table 1. Detector K-Edge Ratios

Detector # E0 Detector # EP E!

Open- 1 1 Closed- 1 1 2
Open - 2 2 Closed- 2 Ii 2 Ii

Open - 3 4 Closed - 3 2 4
Open- 4 8 Closed - 4 2,J2 4Vf
Open - 5 16 Closed - 5 4 8
Open-6 32 Closed-6 4VF 8,2

Closed - 7 8 16
Closed-8 8vx2 16jF
Closed - 9 16 32

Closed - 10 164•2- 3 2 r2-

Closed - 11 32 64

Log-Log Plot of Closed Response Functions

0.1

Sensitivity, 0.01
(arbitrary
units)

0.001

0.0001
2 5 10. 20. 50. 100. 200.

Energy, E/E0

Figure 3. Closed Response Functions, Instruments 1-11
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Log-Log Plot of Open Response Functions

0.1

Sensitivity, 0.01
(arbitrary
units)

0.001

0.0001
2 5 10. 20. 50. 100. 200.

Energy, E/EO

Figure 4. Open Response Functions, Instruments 12-17

Signal Detection. Practical aspects of data collection force several limitations on a

detection system. These limitations include use of a finite number of detectors, limited

detector resolution, and errors due to recording, transmitting and calibrating. As

discussed above, pulsed radiation detection is accomplished using a series of overlapping

detectors covering the energy range of interest. From Eq (4), the measured signal from

each detector due to the total spectrum is represented by

00

i = fS(E) Ri(E) dE (7)

0

where

Yi = the ideal signal of the ith detector

13



S(E) = the exact or actual spectrum emitted

Ri (E) = the actual response of the ith detector

In practice, multiple energy groups are used to numerically approximate integrals.

This technique sums over small energy groups (bins) -- in essence, a composite numerical

quadrature (Burden and Faires, 1993:Ch 4). Using the multi-group approach Eq (7) is:

N
F I Kj'(Ej)Rki(Ej)AEj (8)

j=1

where

S(Ej) = the exact spectrum value for the jth energy group

A Ej = the width of the jth energy group

N = the number of energy groups

Sources of Error

Two main sources of error contribute to uncertainties in the spectrum and signals:

measurement error (including transmission, recording and reading of the ideal signals) and

errors due to the numeric approximation of integrals.

To reduce measurement error, overlapping detector response functions are used.

In addition, two detector systems are employed. The analyst accounts for these errors by

specifying a measurement standard deviation for each detector. These deviations are

based on past experiments and detector calibrations. Measurement and calibration errors

14



associated with the detection system can be handled theoretically by applying normally

distributed random noise to simulated measured signals (Carter, 1989:14-15).

The second error source is in the mathematical process, (i.e., the evaluation of the

integrals equations via numeric quadrature). In this case, the approximation of the integral

equation by a summation of discrete values, as in Eq (8), leads to approximation errors.

These errors can be made negligible compared with other errors by selecting small bin

widths in the summation process. Relative errors associated with the number of

geometrically spaced bins used in the integral approximation are listed in Table 2.

Table 2. Relative Error Due to Numeric Approximation of Integral

15 BINS 30 BINS 60 BINS 120 BINS

Instrument

Closed #1 0.1193 0.0046 0.0011 0.0003
Closed #8 0.5008 0.4244 0.0042 0.0010
Open #1 0.0066 0.0016 0.0004 0.0001
Open #4 1.0198 0.0298 0.0075 0.0019

Target Loading 0.0040 0.0010 0.0003 0.0001

Preliminary Derivation

The through-fold process allows calculation of bounds for the target loading

without intermediate calculation of the incident spectrum. This is accomplished by

assuming exact target loading can be represented by a combination of known, predicted

and bounded terms. Bounds on target loading are subsequently expressed as linear

programming problems. The key is to develop a suitable target loading representation.

15



Definition of Exact Values. Throughout this section, the terminology will remain

consistent with that presented earlier. Summarizing the nomenclature:

tilde, denotes an exact quantity, as opposed to measured

6 = delta, denotes correction term determined from measurement error,
calibration error, or a conservative estimate

Ri (E) = instrument response as a function of energy, ith instrument

S(E) = spectrum as a function of energy

T(E) = target response as a function of energy

Yi = instrument signal, ith instrument

Z = target loading

NOTE: The absence of both tilde and delta indicates the quantity is
measured or calibrated.

The derivation begins with a definition of target loading. Target loading can be

viewed as the signal which would have been recorded by the target had it actually been an

error free instrument. Target loading is thus represented similarly to instrument signal by:

00

Z= fS(E) T(E) dE (9)

0

None of the values in Eq (9) are actually known. Each can, however, be approximated by

a measured or predicted value plus a correction term. If the target response function is

further approximated as a linear combination of instrument responses plus a remainder, to

16



keep the relationship exact, then all the terms on the right hand side of Eq (9) can be

replaced with known, predicted, or boundable values. Defining pertinent exact terms,

S(E) = S(E) + 8S(E) (10a)

T(E) = T(E) + 8T(E) (10b)

Ri (E) = Ri (E) + 8R(E) (10c)

S= +(10d)

Equations (10) should be read as 'the exact value equals a measured (or predicted) value

plus a correction term'. The correction terms are not known since the exact values are

unknown; however, they can be bounded. The four correction terms in Eqs (10) can be

based on conservative estimates, calibration error, or measurement. An examination of

the approximate magnitudes of these correction terms will help simplify the derivation.

Estimation of Error Bounds. The exact correction terms significantly influence the

solution. Although the analyst has a priori information and possibly unfolded spectra to

use in his spectrum prediction, the ill-posed problem dictates a conservative bound be

placed on the spectrum correction, 8S. For example, this bound could be ± 50% or even

+ 100%.

Measurement error, 8Y, consists of uncertainties in the measured detector output.

This study considers the cumulative error related to data collection as measurement error.

Although using two types of detector response functions helps minimize the measurement

17



error, its magnitude is still significant. This study assumes bounds on 8Y to be ± 15%.

This is consistent with previous work by Miller (1990), Carter(1989), and Daniel (1988).

The calibration error associated with the instruments, 8R, is distinct from

measurement error. Calibration error is an inherent uncertainty in the detector response

function. The experimenter minimizes the magnitude of 8R by calibrating the detection

system. This study assumes calibration error is ± 1% to ± 3%.

Finally, there is uncertainty in the target response function, ST. The inability to

directly calibrate the target would appear to dictate a conservative estimate for 8T.

However, this study will only consider well characterized target response functions.

Accepting the above magnitudes for the correction terms, a simplifying assumption

concerning correction terms is made. For the remainder of the preliminary derivation, the

magnitudes of 8T and 8R are considered negligible compared to 8Y and 8S and assumed

equal to zero.

Development of Target Loading. As mentioned in Chapter I, the key idea of the

through-fold technique is that the target response function can be represented as a linear

combination of instrument response functions and a remainder. This approach provides

the vehicle for incorporation of test data into the through-fold equations. The motive

behind this approximation is best illustrated through several examples.

Motivation. By inspection of Eqs (9) and (10) it becomes obvious that

exact target loading is driven by the large spectrum correction, 8S. If the dependence on

8S can be diminished (via incorporation of test data) then Z may have tighter bounds.
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Suppose the exact target response is the sum of two exact instrument responses:

T(E)=R6 (E) + R7 (E) (11)

By Eq (9), exact target loading is equal to the exact target response folded with the exact

spectrum. Using this definition and Eq (11), 2 reduces to the combination of exact

instrument signals shown by the following steps:

2 = S(E) T(E)dE

=fS(E) (W6 (E) + Rk7(E))dE

(12)

=fS(E) R 6 (E) dE + fS(E) k 7 (E)dE

F6 +

The exact spectrum has now been replaced by the exact signal, which can be approximated

using test data, measured signals, for Yi in Eq (10d).

Next suppose that the exact target loading can be represented by a linear

combination of the exact response of all the instruments,

T(E) = ai Ri(E) (13)
i
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where the ai's are coefficients for the i instruments. The ai's can be positive, negative, or

zero. Again, exact target loading reduces to a linear combination of response functions:

Z =fS(E) T(E) dE

=fS(E) rai Ri (E)] dE

(14)
=_ai fS(E) Ri(E) dE

i

=jai Yi
i

Finally, suppose that T(E) is not quite a linear combination of exact instrument

responses, but has a remainder term associated with it:

T(E)= ai Ri(E) + Ta(E) (15)
i

where T• (E) is the remainder term parametrically dependent on the choice of coefficients.

The expression for exact target loading now becomes:

2= f (E) T(E) dE

fJS(E) (ai Ri (E) + fa (E)J dE
(16)

=Xai fS(E) Ri(E) dE + fS(E) Ta(E) dE

-Xai Yi + fJS(E) fT(E) dE
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Although not leading to an immediate solution, these examples provide insight into

the form of the target response function approximation. The benefit from this

approximation is the conversion of the exact spectrum to the exact instrument responses,

which allows for the introduction of test data into the through-fold equations. One

obvious complication is the addition of another unknown exact value, T• (E). However,

proper selection of the ai will result in a Td (E) which will tighten (optimize) the overall

bound on Z. Conversely, a poor choice of ai will force a value for Ta (E) which will

relax the overall bound on Z.

Derivation. Since terms on the right hand sides (RHS) of Eqs (10) are

considered known, they can be substituted into the exact target loading equation,

eliminating the unknowns. Substituting Eq (10b) into Eq (9) yields

00

Z=2 S(E) [T(E)+8T(E)] dE (17)
0

Neglecting 8T (for now):

f=J(E) T(E) dE (18)
0

It now becomes beneficial to introduce an approximation for T(E). Note that the

replacement is for T(E) and not T(E) as it was in the Motivation section. Hence the

additional exact term from there will not complicate the derivation.
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Approximating T(E) by a linear combination of instrument response functions and

then making the relationship exact by carrying a remainder term yields the following:

T(E)=_ai Ri(E) + Td(E) (19)

where

ai = a constant for the ith instrument

T• (E) = a remainder based on the choice of ai, defined by Eq (19)

Substituting the last equation into the expression for exact target loading and expanding,

00 00

Z= .aifS(E)Ri(E)dE + fS(E) Td(E)dE (20)
i 0 0

Since 8R has been assumed zero, Ri(E) can be replaced with Ri (E). By also

approximating the exact spectrum with its approximation from Eq (10d), Z becomes

Z= ai f S(E) Ri(E) dE + f S(E) Td(E) dE + f S(E)Ta (E)dE

0 Lo 0

(21)

=Xai Y + f S(E)Tj (E)dE + f S(E)Ta(E)dE

i 0 0

The importance of the derivation being performed in the order shown by Eqs (17) to (21)

is to manipulate Eq (9) into the correct form for introduction of the exact instrument
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signals, F. Experimental data (measured signals) can now be explicitly introduced by

approximating the exact signal using Eq (10d)

Z=_aiYi + + fS(E)Taj(E)dE + J8S(E) Ta(E) dE (22)

i i 0 0

The final expression for target loading is found by writing the above equation

explicitly in terms of the ai by replacing Ta (E) with its value from Eq (19).

ai=i + .ai 8Yi
i i

0

+ J8S(E) T(E)-,aiRi(E) dE
0

After simplifying and reversing the order of integration and summation,

Z = aiYi + j ai 8Yi
i= +

00 00

I aifS(E) Ri(E) dE - _ai fS(E)Ri(E) dE (24)
i 0 i 0

+ fS(E) T(E) dE + f S(E) T(E) dE

0 0

Having the final analytic expression for the target loading, and bounds on the

correction terms, Eq (24) must now be converted to a numeric one.
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Conversion to a Numeric Solution. Numeric computational concerns

dictate that the integrals in Eq (24) be approximated using a summation of terms over bins

covering the full range of energy. An example of this multi-group approach was shown in

Eq (8). Using the approximation from Eq (8), Z becomes

Z= ±aiYi + Eai
ii

N N

XaiZS(Ej)Ri(Ej)AEj - XaijE S(Ej)Ri(Ej)AEj (25)
i j=1 i j=1

N N
+ YS(Ej)T(Ej)AEj + XSS(Ej)T(Ej)AEj

j=1 j=1

To make calculations easier, it is beneficial to define an instrument response matrix, R, a

spectrum vector, s, an instrument signal vector, y, a target response vector, t, and a

constant ai vector, a, as

(R)ij = Ri (Ej) AEj

(s)j =S(Ej)

(Y)i = Yi (26)

(t)j = T(Ej) AEj

(a)i = ai

Now converting the exact target loading into vector notation (detailed in Appendix A):
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Z = a.(y + -y R.s - R.8s) (27)

+ s-t + 8s-t

Equation (27) is an exact expression for target loading because the exact correction

vectors, B and By, have been carried throughout the derivation. Unfortunately, Eq (27)

can not be computed because the exact delta values are unknown.

Bounds on Exact Target Loading. The value of Z given by Eq (27) cannot be

calculated because the delta terms are not known exactly, only within the bounds on the

correction terms discussed previously. The exact target loading can be bound by

ZL <- i:5 ZU (28)

where ZU and ZL are the upper and lower bounds respectively on target loading.

The upper (or lower) target loading bounds defined above can be computed for

any fixed choice of a by choosing the values for Ss and By -- both being allowed to vary

(within the error bounds) at each energy bin -- to maximize (or minimize) the target

loading expression, which is implicitly a function of a. These bounds are computed by

solving the following linear programs for the upper and lower target loading bounds

respectively:

zU(a) = Max [a.(y + -y R-s - R.-s)+ s-t + ss.t]
By, [s

(29)
zL(a) = Min [a.(y + By- R-s - R.-s)+ s-t + &s.t]

By, 8s
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In Eq (29) Sy and 8s are variables subject to the following constraints

8Ymin < 8y:•'Y Ymax
(30)

Smin < 8S!_8Smax

R, s, t, and y are input data; and a is the variable for which the bound is to be determined.

The goal functions of both bounds in Eq (29) are the same and are given by:

f(8y,8s)=a.(y + 8y - R-s - R.-s)+ s-t + 8s.t (31)

The upper bound is found by maximizing the goal function over 8y and &s. Similarly, the

lower bound is found by minimizing the goal function over the 8y and 8s. The resulting

values for ZU (a) and ZL (a) from Eq (29) represent the largest possible values of Z

(maximum and minimum respectively) on target loading for fixed set of a. However, it

should be possible to tighten these bounds by selecting appropriate sets of a. The process

of selecting the a's resulting in the tightest possible bounds is accomplished by optimizing

the upper and lower bound over all possible choices of a. The result is a classic minimum-

maximum (mini-max) problem given by:

U [U1mu [zU/a]Zmin = Min1Z()

a
(32)

Z L = zMax[L(a)]Zmax = Z Ia
a
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zmin is the minimum upper bound (least upper bound) for target loading and is found by

minimizing ZU (a) over a. Zmrax is the maximum lower bound for target loading, found

by maximizing ZL (a) over a. The outer loop of the mini-max problem is an

unconstrained (the a vector can take on any values) optimization problem.

Standard Form. The goal function in Eq (31) can not directly be used in a linear

programming problem because it is not in standard form. The standard form for linear

programming problems requires non-negative variables. The bounded error terms are

therefore defined as the difference of two positive numbers

BY=8Y 8Y-
(33)

SS=BS 8S-

where all the terms on the RHS of Eq (33) are greater than or equal to zero.

The inner loops of the mini-max problems will force one of the terms on the RHS

of Eq (33) to zero and the other to its maximum magnitude at each energy bin. The first

term will be zero if the worst case error is negative while the second term will be zero if

the worst case error is positive. Inserting the non-negativity constraints into Eq (31), the

goal function to be maximized and minimized becomes

f(Sy, s)=a.[y + By+- By- - R-s - R.Bs+ + R.-s ]
S(34)

+ s-t + Bs+.t - 8s-.t

subject to the following constraints
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0_< yB+ < •Ymax

0• <y-<1 -Ymin!

(35)
0 <ASs+ < 8Smax

O _< _<I-Ssminl

The goal function of Eq (34) remains linear in the delta terms (as is the analytic solution).

The linearity of the goal function lends itself to a number of optimization routines. It

should be pointed out that this method is much more generally applicable than as used

here. As a point of fact, the delta terms (8Ymax, 8Ymin, 8smax,and 8smin) need not be

constants (e.g., +15%, -15%, +50%, and -50%), but can vary in magnitude with the

energy bins.

Differences In The Full Derivation

The preliminary derivation assumed instrument calibration errors and target

calibration errors were negligible. However, they are not zero and must be included in a

formal derivation of Z. Appendix A contains a formal derivation of exact target loading.

This section highlights the main differences in preliminary and formal derivations.

Processes associated with the formal derivation are similar to those found in the

preliminary derivation; therefore, the full analytic solution appears similar to the shorter

exact target loading expression from Eq (24). The full analytic solution is
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Z= _aYi + jai 8Yj
i i

00 00

- faiS(E) Ri(E) dE - ai f S(E)Ri(E) dE
i 0 i 0

00 00

a- aifS(E) 8Ri(E) dE - .ai f S(E) 8Ri(E) dE (36)
i 0 i 0

+ fS(E) T(E) dE + f S(E) T(E) dE
0 0

+ fS(E) 8T(E) dE + f6S(E) 8T(E) dE
0 0

One difference between the two derivations is that four new integrals containing

two additional error terms, 8Ri(E) and 8T(E), appear in Eq (36). The presence of the

additional terms do not in themselves change the overall technique for finding a solution.

A more significant difference between the two expressions is that two of the integrals

now contain more than one correction term. This second difference results in bounds on

Zchanging from linear programming problems to quadratic programming problems.

The non-linearity of Z is easily seen in the numerical approximation of Eq (36):

Z a + 8y Rs - R.8s

L8R.s - R.s (37)

+ s-t + 8s.t + s.8t + 8s.8t

This quadratic equation is much more difficult to solve than the simplified linear equation.

The remainder of this study considers only linear dependence on error terms.
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Through-fold Expectations

The through-fold method is beneficial only if it produces tighter bounds than can

be calculated based on estimated error bounds. As discussed under Motivation, how well

the method works depends on the choice of ai. A good choice of ai will result in a value

for Td (E) which tighten bounds on Z. Conversely, a poor choice of ai could result in

large bounds on Z. Since Td (E) is a remnant of the through-fold method, it can be

viewed as error (the correction) associated purely with the technique. How well through-

fold performs is therefore linked to how well Td (E) is optimized. Optimization over a

does not mean minimization of Td (E), but in choosing T• (E) to tighten bounds on Z.

Conservative Estimate. A conservative estimate on the exact target loading error

bounds can be calculated prior to performing an experiment. This error would be based

solely on propagation of expected errors. By utilizing the inner loop of through-folds'

mini-max routines, the conservative value can be calculated. This is done by computing

ZL (a) and ZU (a) with all ai set to zero, eliminating instrument influence on the solution.

How accurately through-fold techniques calculate the conservative value depends on the

number of bins used in the numerical integration.

Introduction of Experimental Data. The introduction of experimental data into the

through-fold routines will help optimize T• (E) and therefore tighten bounds on the exact

target loading. The reason for this is seen by comparison of two equations. The first
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equation is found from a naive approach to the original exact target loading expression,

Eq (9). Starting with Eq (9) and remembering 8T(E) has been defined as zero yields:

00

Z = JS(E) f(E) dE

0

00

fJS(E) T(E)dE

0
(9b)

00

f J[S(E) + 8S(E)] T(E)dE

0

00 00

= [S(E) T(E)dE] + f[.S(E) T(E) dE]
0 o

The second equation is Z prior to simplification, a variation of Eq (22):

Z= _aiYi + Xai8Yi + f S(E) Td(E) dE + f S(E) Ta(E) dE
i i 0 0

(22b)

=XaiYi + Xai8Yi + fS(E) Td(E) dE
i i 0

As seen by Eqs (9b) and (22b), the only error associated with the naive approach is

the a priori spectrum error (estimated at ± 50%). After applying through-fold techniques

the spectrum error is replaced with measurement error (estimated at ± 15%) propagating

into the choice of a plus the error associated with the through-fold method, T• (E),

propagating into the exact spectrum. As discussed previously, the proper choice of ai will
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optimize Td (E). If T• (E) is driven towards zero, then the resulting error is driven

towards the measurement error (assuming propagation of measurement error is not

significant). However, if T• (E) can not be driven low enough, additional error associated

with the integral will counteract some, or even all, of the difference between 8S and BY.

It is important to realize that the optimal T• (E) may not always be the minimum.

If all ai are found to be positive, or all negative, then propagation of the measurement

errors will be such that the optimal Td (E) is as small as possible. However, if the sign of

the ai vary, then propagation of measurement errors may dictate that the optimal T• (E)

not be its minimum.

Incrementing Experimental Data. As the number of instruments used in the

through-fold increases, the error bounds are expected to tighten. This occurs because the

additional test data more accurately define the incident spectrum implicitly contained in the

instrument measurements. But more importantly, with the addition of each instrument, the

routine is given two additional degrees of freedom for determining the ai. The theoretical

minimum error bound is equal to the measurement error; however, it is unlikely that this

minimum will be reached.

There are two primary reasons that the optimized error bound is not expected to

reach the theoretical minimum error bound. First, as discussed previously, all the ai are

not necessarily the same sign. Second, the target response function is not a linear

combination of the instrument response functions.
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III. Computer Implementation

Introduction

Chapter II provided the theoretical background for understanding the through-

fold concept. This section covers implementation of the through-fold equations. Included

in this discussion are the implementation platform, input data, error considerations,

optimization routines, and the final computer code.

Platform

The computer program Mathematica, ran on a personal computer, was chosen for

through-fold implementation. Along with modest built-in optimization routines and the

capability to handle the vector equations from Chapter II, Mathematica' s notebook

interface allows creation of interactive files for future use.

Input Data

As discussed in Chapter II, a variety of input data is required to perform a linear

optimization of Eq (34). The data normally available to the analyst from theoretical

treatment of the physics and from past tests will be simulated. This includes the a priori

spectrum and instrument response functions, the target response function, and all

associated error. This section will define the data used for the original validation of the

method. Instrument response functions and required errors were defined in Chapter II.

Spectrum. A continuous normalized Planckian spectrum was chosen to simulate

the incident spectrum. The equation for a one temperature Planckian spectrum is
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S(E) 15 LT (38)

where E is energy, kT is the temperature of the radiation spectrum (units of E°), and sf

is a scaling factor for the radiation spectrum. A convenient single temperature validation

spectrum (kT = 1E°) and scaling factor of one was chosen for validation. Figure 5 is a

plot of the validation spectrum.

Planckian Spectrum, Temp=l, Scale Factor=1
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Amplitude 0.1
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Figure 5. Validation Planckian Spectrum
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Target Response Function. A Gaussian distribution function was chosen to

approximate the target response function, T(E), for the validation case. The equation for a

Gaussian distribution is given by:

T(E) 1 exp[ (E_,)2] (39)

where E is energy, g is the mean of the distribution, and T is the standard deviation of

the distribution. A Gaussian distribution with a mean of zero and standard deviation of

15 El was chosen for the validation target response function. The choice of test target

response functions will be discussed Chapter IV. Figure 6 is a plot of the validation target

response function.

Gaussian Response Function(m=O,sd=15)
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0.015
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0.01

0.005

0 10 20 30 40
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Figure 6. Validation Target Response Function

35



Instrument Signal. Exact instrument signals are constructed by folding the

simulated spectrum with the detector response functions. The folding is accomplished via

the numerical approximation of Eq (7) and by assuming that the a priori spectrum

definition and calibrated instrument response functions are exact. Calculation of the exact

signal is simplified in Mathematica by using the matrix and vector definitions from Eq

(26). The exact signal can then be calculated by:

Y =R.S (40)

All matrix and vector functions from Eq (26) are evaluated at the geometric

centers of geometrically spaced energy bins. Bin spacing and centers were chosen to

correspond to the geometric spacing of the instrument response functions. Geometrically

spaced bins result in the majority of bins (60%) within the first quarter of the energy

range. Geometrically spaced energy bins are desirable for this application because of the

higher resolution provided to the lower k-edge detection systems than is possible using

linear bin spacing for the same computational costs (i.e., the same number of bins). The

advantage is due to all the interesting details of the chosen incident spectrum, target

response functions, and instrument response functions occurring at the lower energies.

The Mathematica notebook allows for computation of linearly spaced bins with linear

centers for cases having considerable detail at higher energies. Candidate test cases for

linear spacing include high temperature Planckian spectra.
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Error Considerations

Numerical Approximation. Geometric energy bin spacing is used to reduce errors

in approximating integrals with summations. As shown in Table 2, use of a 120 bin grid

produces relative errors of less than 10-3 in approximating the required integrals. To save

computational costs, the validation cases used 30 bins, producing a relative error that

varies with instrument as shown in Table 2. Unfortunately, the relative errors associated

with the instruments increase from 0.001 to 0.42 as the fluorescer k-edge increases. The

high relative error associated with closed instrument #8 would normally be unacceptable;

however, the spectrum value associated with the operational energy range of this

instrument (E > 11.5 E10) is approximately 10-3. Although the total signal generated by

this instrument is highly uncertain, its magnitude is too small (10-5 compared to 10-2 for

lower numbered instruments) to significantly influence the through-fold results.

Noise Simulation. In calculating the exact instrument signals (Eq 39), the

calibrated instrument response functions, Ri(E), are assumed exact. However, the exact

target loading equations in Chapter R require measured signals. This study simulates

measurement error by the addition of random noise. These errors are assumed normally

distributed and determined by randomly sampling a Gaussian probability distribution.

This error approximation was performed using a Mathematica statistical package.

A single random value, based on the instrument's standard deviation, was selected from a

normal distribution. In keeping with previous unfolding studies, the instrument standard

deviation is taken to be 15% and includes the totality of measurement related errors.
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Optimization Routines

Built in Mathematica routines were used for the two step mini-max optimization

discussed in Chapter II. The first routine requires maximizing and minimizing capabilities

for the linear target loading function over the bounds on the error terms. Mathematica

provides two vehicles (LinearProgramming, and ConstrainedMax /ConstrainedMin) for

computation of global maxima and minima in linearly programming problems. The

constrained commands were chosen because they easily implement variable sized problems

and automatically calculate the constrained solution based on the optimal constraints.

The second optimization routine requires minimization of all possible maximum

values and maximization of all possible minimum values to reduce the error band between

the two cases. Mathematica provides a minimization routine for unconstrained problems.

The command FindMinimum was used to optimize the solutions. The upper and lower

bounds were allowed to use different sets of ai to optimize the bound. See Appendix B

for the complete Mathematica notebook implementing these commands.

Performance of optimization routines is often linked to the initial values provided

as starting points to the program. This is a concern with Mathematica's FindMinimum

command as it is not guaranteed to return a global minimum value. As used with the

through-fold equations, the FindMinimum command requires the input of the first two

points from which to perform a search for a local minimum. A method of steepest descent

on the surface (function) is used by the routine to find the minimum.

In development of through-fold a number of tests were performed to evaluate the

sensitivity of the method to initial guesses. Although not performed in a systematic
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manner, testing of initial values around (and away from) known minimums was conducted.

The optimization routines were found to be relatively insensitive to variations in the

starting values.

ThruFold.ma

ThruFold.ma is the final version of the through-folding code. A printed copy of

ThruFold.ma is provided at Attachment B. The computer code is a Mathematica for

Windows version 2.2 notebook which optimizes bounds on exact target loading (linear

dependence on error bounds only). The code is written in three sections: 1) selection of

input data, 2) evaluation of vectors and matrixes and 3) optimization.

The first section allows the user to select from a number of incident spectra, target

response functions, and error terms through evaluation of appropriate cells. The user is

then allowed to select the number of instruments, number of bins, bin spacing (geometric

or linear), energy range to be covered, and the fluorescer k-edge of the first detector.

Finally the instrument response functions are defined. The second section of ThruFold.ma

defines vectors for the exact and measured signals, spectrum, target responses, all error

approximations, and the instrument response matrix. The final section of the notebook

defines the exact target loading using the final form of the linear programming goal

function, Eq (34), develops equations for maximum and minimum values, and provides

examples for calculation of the final bounds. Default values fit the validation test case.
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IV Validation and Testing

Introduction

In Chapter III the implementation of the through-fold methodology was

discussed. In this Chapter the validation cases and test cases are presented and compared

to the expectations from Chapter II.

Validation

A validation case was constructed to ensure proper operation of the through-fold

routine. There are two validation goals. The first validation goal is to ensure that

through-fold produces the expected conservative error when all ai are set to zero. The

second goal is to verify that error bounds decreased incrementally as additional

instruments were introduced to the through-fold.

Proper verification of the first goal involves comparing the through-fold results

with the exact target loading. As mentioned in Chapter II, the accuracy of the results are

dependent on the number of bins used to approximate the integrals. Comparisons will be

complicated by this difference if not using a substantial number of bins. For comparison

purposes only, a pseudo-exact target loading is assumed equal to the dot product between

the spectrum and target loading vector. Vector dimensions are based on the number of

bins used for a given test. This assumption alleviates numerical approximation error when

all ai are set equal to zero.
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Validation Case. The input data for validation were defined in Chapter III to be a

broad Gaussian target response function (mean = 0, standard deviation = 15), a one

temperature Planckian spectrum (temperature = 1 El°, scaling factor = 1), and 30

geometrically spaced bins covering an energy range from 1 El to 64E°. Each

geometrically spaced bin has a width ratio (upper edge to lower edge) equal to ...I2

Measurement error has been introduced to the exact signals necessitating the inclusion of

them in the constrained optimization routines. The validation case uses three test data

variations: 1) only closed instrument signals, 2) only open instrument data, and 3) signals

from both closed and open instruments in the through-fold.

Validation Results. Results of the validation method are encouraging. All three

variants determined the error computed when all ai equal zero to be ±50%. Table 3 lists

the results (maximum and minimum bounds on exact target loading) from the first

validation variant--only closed instrument signals. The instruments used in each test are

chosen sequentially based on the lowest fluorescer k-edge (e.g., No. Insts. = 4 indicates

the first four closed instruments (left to right) as shown in Figure 3).

Table 3. Validation Results (Bounds on Target Loading), Closed Instruments

No. Insts. 0 2 4 6 8 10 11

U 0.03696 0.03514 0.03971 0.03457 0.03452 0.03452 --Zmin

Pseudo Exact Z 0.02464 0.02464 0.02464 0.02464 0.02464 0.02464 0.02464
L 0.01232 0.01525 0.01849 0.02009 0.02046 0.02030 --

Zmax

Upper Bound, % + 50.0 42.6 61.2 40.3 40.1 40.1 --

Lower Bound, % - 50.0 38.1 25.0 18.4 17.0 17.6 --
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The bounds on target loading are shown as a percentage relative to the pseudo-

exact target loading. The bounds generally decrease from the naively computed maximum

of ±50% with no instruments. It is interesting that the upper and lower bounds are not

driven to the same value. This is expected as separate optimization of upper and lower

bounds allow each to have its own set of ai and hence different optimal values.

The optimization routines were unable to compute bounds when all eleven closed

instruments were used. Although unfortunate, this is not unexpected due to the extremely

small signals associated with the last few instruments. Figure 3 indicates the last closed

instrument has a maximum response less than 0.01 at an energy of 45 E°. The spectrum

value associated with this energy is -106. The Mathematica optimization routine could

not handle the small variations associated with this instrument.

Table 3 clearly shows that the optimal maximum error bound increased beyond the

naive value when computed using four instruments. This was unexpected as the routine

should have performed no worse than when using two instruments. As a check of the

expected insensitivity on the starting values provided to the FindMinimum command (see

Chapter 3, Optimization Routines), further testing was performed on this anomaly.

In all 14 additional tests were run. The first five tests varied the starting values of

all four instruments while the remaining tests concentrated on the starting location of only

one instrument. Four of the first five tests resulted in relative upper bounds near 61%,

supporting the previous conclusion, relative insensitivity to starting positions. The fifth

test resulted in a bound of 32%, less than the naive case, as expected, but also less than

other closed instrument upper bounds, this was unexpected and lead to additional testing.
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The second set of nine tests varied only the starting locations of the fourth

instrument. The fourth instrument was chosen because it was the only instrument for

which initial values were changed when the 32% bound was achieved. Eight of these nine

test found a relative bound near 32%. There does not appear to be a set pattern, but as

long as one (1) was not used as the first of the two initial starting locations (both 0.5 and

1.5 work), then the minimum upper bound was less than 35%. The second of the two

guesses did not appear to be a driver for the optimization routine.

These results indicate that there may be two local minima for the function.

However, since starting values above and below one (1) can be chosen that result in a

32% bound, the two apparent minimum values may actually indicate a slowly varying

minimum. Results from the additional testing indicate proper performance of the through-

fold method requires user artisanship. However, the importance of the user involvement

may only be a factor due to the limited capabilities of the minimization routine (a steepest

decent method) utilized by the FindMinimum command.

Another possible cause for the observed erratic behavior is inadequate resolution

of the instrument response functions as provided by the 30 bin structure. This type of

inadequacy could result in some closed instruments becoming indistinguishable in their

response from the open instruments responses. However, the exact cause for this anomaly

remains unexplained beyond the non-robustness of the Mathematica kernel.

A final observation from validation case #1 is that the total relative bound reduced

from a naive value of 100% to 57% (49% after additional testing) utilizing only closed

instrument responses.
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Validation results from the open instruments are listed in Table 4. The results are

comparable to those for closed instruments. Naive error equals ± 50%, bounds decreased

as instruments were added, and the minimization routine failed for the last instrument.

Non-robustness of the optimization routines are again expected to be the culprit.

Table 4. Validation Results (Bonds on Target Loading), Open Instruments

No. Insts. 0 1 2 4 5 6

U 0.03696 0.03576 0.03131 0.02970 0.02970 0.02970
Zmin

Pseudo Exact Z 0.02464 0.02464 0.02464 0.02464 0.02464 0.02464
L 0.01232 0.01332 0.01408 0.01639 0.01639 --

Zmax

Upper Bound, %+ 50.0 45.2 27.1 20.5 20.5 20.5
Lower Bound, %- 50.0 46.0 42.9 33.5 33.5 --

There are two differences between closed and open instruments results. First, the

open responses correspond to tighter overall bounds than for closed instruments (53%

compared to 57%). The tighter bounds are predominantly due to a large reduction of the

upper bound. Second, the overall lower bound was optimized using closed instruments

while the upper bound was optimized using the signals from open instruments. This last

difference is consistent with allowing separate optimizations based on instrument type.

The third validation case, use of open and closed instrument responses in the

through-fold failed. The optimization routines were unable to converge to a solution.

Two possible reasons are inadequate bin spacing and hence insufficient instrument

resolution and the non-robustness of the optimization routines. However, the routine
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should have been capable of producing results no worse than the best combination of the

two previous cases (i.e., an upper bound of ± 20.5 and a lower bound of ± 17.5%).

With the exception of the anomaly observed in the 4-closed channel results, the

validation test verified all expectations. Even though some limitations of the optimization

routines were found, through proper selection of the ai vector and prudent choice of

instrument response systems used in the through-fold, the overall error bound was

decreased from 100% to 38% by the through-fold technique. Remember the theoretical

minimum was 30% in the validation cases due to the built-in ± 15% measurement error.

Testing

A few changes were made to the optimization problem between the validation and

test cases. In an effort to save computational time the number of bins was reduced to 20.

In order to counteract the subsequent decrease in the accuracy of the numerical

calculations, the energy range was decreased from 64 to 40 energy units. The resulting

numerical approximation error was verified to be comparable to the original error using 30

bins (0.005 to 0.04 relative error -- with the exception of high numbered closed

instruments). This strategy worked in reducing the error due to the two factors discussed

previously, geometric bin spacing and the low spectrum values beyond energy unit 15 E.

Only 12 of the original 17 detector systems are used, eight closed and four open

detection systems. There are two reasons for this change. First, by decreasing the energy

range some instrument response functions fall predominantly outside the area of concern.

Second, the validation (along with all other trials) resulted in the optimized error bounds
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being reached prior to incorporation of the eighth closed and fourth open instrument. It

was assumed that the test cases would behave in a similar manner as long as the target

response function did not significantly increase (compared to the validation case) at

0energies above 20E, . Lastly, based on validation results from case 3, optimization was

not performed using signals from open and closed detection systems simultaneously.

Test Cases. Three test cases were constructed to study the behavior of through-

fold, specifically the influence of T•j (E) on the solution. All three cases are based on a

target response function that is a linear combination of instrument response functions.

Since through-fold is designed to optimize bounds on target loading over the ai, which

define T• (E), target response functions having specific Td (E) were chosen as test cases.

Resulting optimized bounds and Td (E) are compared to the originally defined values.

The first test case uses a linear combination of instrument response functions to define

T(E) such that the remainder is zero. In test case 2, T(E) is defined as the same linear

combination of response functions but T• (E) is defined as a positive correction outside

the instrument response envelope. The third test case is similar to the preceding case

except T3 (E) is defined as a negative correction; the same Ta (E) is subtracted from the

linear combination instead of being added to it.

Based on validation results, four variations were performed on each test case. The

first variation defined T(E) as a positive combination of closed instrument response

functions. The second variation used a positive combination of open response functions.

The third variation used positive combinations of both types of detection systems, the final
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variation was not restricted to linear combinations of positive terms (i.e., the ai can be

negative). The selection of four combinations of instrument responses requires four

Ta (E) definitions. This stems from a non-negativity constraint on the target response

function. The four linear combinations of instrument responses are listed below.

Variation A: T(E) = R1(E) + 2.5R3 (E) (41a)

Variation B: T(E)=R9 (E) + R,1 (E) (41b)

Variation C: T(E)= R1 (E) + 25R3(E) + R9 (E) + R11 (E) (41c)

[1.2RI(E) + 0.75R 3 (E) - 1.75R 7 (E) (
VariationD: T(E=2 0.15Rs(E) + 0R11(E) + R12(E(41d)

Figures 7-10 show T(E) and Figures 11-14 show the defined Tj (E) for the test cases.

Target Response, Variation A

0.25

0.2

0.15

Amplitude

0.1

0.05

0 5 10 15 20 25 30
Energy, E/EO

Figure 7. Test Target Response Function, Variation A
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Taget Response, Variation B
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Figure 8. Test Target Response Function, Variation B

Target Response, Variation C
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Figure 9. Test Target Response Function, Variation C
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Target Response, Variation D
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Figure 10. Test Target Response Function, Variation D

Defined Remainder, Variation A
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Figure 11. Defined Test Td (E) , Variation A

49



Defined Remainder, Variation B
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Figure 12. Defined Test Td (E), Variation B

Defined Remainder, Variation C
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Figure 13. Defined Test T• (E), Variation C
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Defined Remainder, Variation D
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Figure 14. Defined Test Ta (E), Variation D

Examination of Figures 11-14 show that the T• (E) values are relatively small. This is due

to the non-negativity constraint on T(E) (a concern when T7' (E) is negative) and the fact

that the T(E) responses shown in Figures 7-10 are relatively small in themselves.

Results of Test Case 1 (TO). Ti.A defined the target response function as Eq

(41a) with no correction term. The results of T1.A are summarized in Table 5.

Table 5 shows numerically calculated total target loading bounds of 30% for a

target response function exactly defined as a positive combination of instrument responses.

This supports the analytic argument from Chapter II that through-folding error simplifies

to measurement error if T(E) is an exact combination of positive (or negative) terms.

However, neither the upper nor lower defined bounds are found to be exactly 15%. The
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difference between expected and calculated results are due to additional numeric error

introduced via the numeric approximation of the instrument signal when ai is not zero.

Optimization results are also shown in Table 5. Both maximum and minimum

values were found via through-fold of closed detector system signals. This is expected as

T(E) is defined using only closed system response functions. The optimization routines

were unable to find the known minimum bound (30%); however, the total bound was

reduced from 100% to 38.5%. The large optimized minimum bound (relative to maximum

bound) is attributable to a relatively large negative value of a5 on error propagation. A

complete discussion of error propagation is found in Bevington(1969:Ch 4).

Table 5. Test Results for Case Ti.A

ai, Naive Defined Optimized Optimized
Approach ai Max Min

al 0 1 0.1284 0.3427
a2 0 0 0.1778 1.1
a3 0 2.5 2.5494 1.3688
a4 0 0 0 1.0799
a5 0 0 0.0221 -0.9621
a6 0 0 0.0193 0.7827
a7 0 0 0.0158 0.5918
a8 0 0 -0.0026 0.821
a9 0 0 0 0
alO 0 0 0 0
all 0 0 0 0
a12 0 0 0 0

ZV(a), % + 50 13.5 17.1 n/a

ZU (a), % - 50 16.5 n/a 21.4

Total Bound, % 100 30 38.5
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T1.B proved to be a trivial variation on TL.A. The linear combination of open

response functions from Eq (41b) was exactly reproduced by through-fold. The resulting

total bound was found to be 30%. Again, a slight error due to signal computation was

experienced. Results from TL.B are contained in Appendix C.

Ti.C also proved to be trivial, despite the target response being defined as the

exact linear combination of both open and closed response functions given by Eq (41c).

All linear coefficients were of the same sign resulting in the total error bound being

minimized to 30% using defined values for ai. As found in validation, the upper and lower

optimized bounds did not result from through-fold of the same type of detector systems.

The overall optimized error bound was 35.1%--a slight improvement over the simpler

model from T1.A. Results from TL.C are contained in Appendix C.

Ti.D not only utilized both types of detector systems but defined T(E) as

combinations of positive and negative terms (i.e., positive and negative ai) given by Eq

(41d). The remainder term, T• (E), remains defined as zero. The results of T .D are

summarized in Table 6. The influence of the negative coefficients on the error bound is

significant for the defined selection of ai. The total defined error bound increased from

30% to 91%. Because Td (E) is zero, the increase is attributable to numeric integration

approximations of the signals and to propagation of errors associated with these signals

due to the defined ai (some being negative, other being positive).
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Table 6. Test Results for Case Ti.D

ai, Naive Defined Optimized Optimized
Approach ai Max Min

al 0 4.2 0.829 0.762
a2 0 0 0.00002 1.3613
a3 0 1.5 1.6527 0.0002
a4 0 0 0 1.4865
a5 0 0 3.8724 -0.0002
a6 0 0 -1.7982 1.7565
a7 0 -3.5 4.7251 2.3024
a8 0 0 -5.3757 -1.7722
a9 0 -0.15 0 0
0 0 0
1 0 0

a12 0 2 0 0

ZU(a), % + 50 48.6 12.2 n/a

ZU(a), % - 50 42.8 n/a 22.6

Total Bound, % 100 91.4 34.8

Upper and lower optimized error bounds were both determined via through-fold of

closed instrument signals. Total optimized bounds were less than 35%. This is consistent

with values found in previous trials.

The importance of this variation is not only that through-fold can achieve tighter

bounds than a defined set of ai but that the optimal Tj (E) is not always the minimum.

Figure 11 plots the value of Td (E) calculated from ai for optimized upper bound. Tj1 (E)

was originally defined as zero. Figure 15 shows that the optimized Ta (E) reflect the

general characteristics (peaks and valleys) of the target response function (Figure 10).
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Optimized Remainders, T1.D
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Figure 15. Optimized Remainder (Upper Bound), Tj (E), for T1.D

Results of Test Case 2 (T2). The four variations of T2 were designed to

investigate the effect on optimization when the defined target loading function includes a

positive contribution from T• (E). Since the results of T2.A, T2.B, and T2.C were similar

to each other, their results will only be briefly discussed. Results from T2.A, T2.B, and

T2.C are contained in Appendix C.

The first three variations of T2 produced similar results. In all cases, naive error

was verified to be ±50%, the defined error increased from ±15% (analytically and in T1)

to +24%, and the optimized error bounds remained comparable to those of Ti. Defined

error increase is expected as T(E) is not an exact combination of instrument responses.

The additional error is associated with propagation of the error associated with the non-
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optimal Ta (E) propagating into the exact spectrum (see explanation of Eq 22b). Unlike

the results for the defined error bound, total optimized bounds remained constant with the

addition of a remainder term to T(E). Since the optimized bounds from T1 have the

effects of error propagation included, large additional propagation errors are not expected

in the optimized results of T2. Some additional error is expected with new selections over

ai; however, the optimization of ai minimizes additional error propagation.

Figure 16 compares T2.C's optimal Td (E) for the optimized upper bound to the

defined T• (E). Similar results were obtained for maximum and minimum bounds in

T2.A, T2.B, and T2.C. Since all defined ai were positive, the optimum Tj (E) should be

no larger than the defined Td (E). Numeric integration from 1 E? to 40E° of the curves

in Figure 16 yield optimum Ta (E) = 0.17, and defined T• (E) = 0.34.

Defined and Optimized Remainder, T2.C
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Figure 16. Case T2.C, Defined and Optimized (Upper Bound) Td (E)
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Test case T2.D used combinations of both types of detector response systems and

allowed ai to be combinations of positive and negative numbers. The remainder term was

defined positive over all energies. T2.D results are presented in Table 7.

Table 7. Test Results for Case T2.D

ai, Naive Defined Optimized Optimized
Approach ai Max Min

al 0 4.2 0.829 0.0734
a2 0 0 0.6938 1.4353
a3 0 1.5 1.606 0.454
a4 0 0 0.998 2.0913
a5 0 0 4.2905 0.0001
a6 0 0 1.2544 2.7684
a7 0 -3.5 4.1012 1.433
a8 0 -0.15 -4.614 -0.6655
a9 0 0 0 0

alO 0 0 0 0
all 0 1 0 0
a12 0 2 0 0

Zt(a), % + 50 42.1 13.3 n/a

ZU (a), % - 50 37.8 n/a 21.9

Total Bound, % 100 79.9 35.2

As seen in test case Ti.D, upon introduction of negative coefficients in the

definition of the T(E), the defined relative error bound more than doubled that of the cases

having T7 (E) = 0. Optimized upper error bound has remained at 35%. Figure 17 plots

the defined and optimized (upper bound) Ta (E) for case T2.D.
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Defined and Optimized Remainder, T2.D
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they were subtracted from Eqs (41) instead of being added. The results from test case T3

parallel those of T2. The only notable differences are that defined and optimized bounds

increased. The results of the trivial cases (T3.A, T3.B, and T3.C) are contained in

Appendix C and are briefly discussed below.

58



In all cases, naive error was verified to be ±50%, the defined error increased from

±24% in T2 to ±50% in T3, and the optimized error bounds increased from ±17% in T2 to

±21% in T3. The increase in defined error bound is again expected due to the negative

contribution of Ti (E), in effect, mimicking a large negative ai.

Figure 18 plots the defined and optimized (upper bound) remainders for T3.C.

Similar results were obtained for upper and lower bounds in T3.A and T3.B. In the

optimizer's attempt to represent the complete target response as a set of linear terms, the

total area under the optimized T7' (E) curve in Figure 18 was driven negative. The results

from the overall negative T• (E) on error propagation are akin to selection of additional

negative ai values. Hence the error bounds associated with an overall negative Tj' (E) are

expected to increase over other cases.

-... .Defined and Optimized Remainder, T3.C
S
I

0.6-l
II

0.4. i
Amplitude,,

0.2' i0.

II
'I

III::II
II, * i

% 1 I... .,,r ....... ___Legend

Def. Ta
-------- Opt. Ta

0 5 10 15 20 25 30
Energy, E0/E

Figure 18. Case T3.C, Defined and Optimized (Upper Bound) Td (E)

59



The results from T3.D are shown in Table 8. The overall influence of T(E) being

explicitly defined with a negative correction term is an increase in through-fold bounds to

47%. However, the bounds are still a considerable improvement over the naive approach.

Table 8. Test Results for Case T3.D

ai, Naive Defined Optimized Optimized

Approach ai Max Min

al 0 4.2 0.8284 0
a2 0 0 0.5878 0
a3 0 1.5 0.0871 0
a4 0 0 0 0
a5 0 0 2.6229 0
a6 0 0 -1.4672 0
a7 0 -3.5 4.679 0
a8 0 0 -5.2097 0
a9 0 -0.3 0 0.1583

alO 0 0 0 0.193
all 0 1 0 0.6819
a12 0 2 0 1.238

ZU(a), % + 50 99.8 19.1 n/a

ZU(a), % - 50 90.1 n/a 27.5

Total Bound, % 100 189.9 46.6
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V. Summary and Conclusions

Summary

Validation of Method. The purpose of the validation case is to ensure that the

through-fold routine is operating properly. The validation case was set up with two goals:

1) verifying through-folds capabilities to simulate the case of having no experiment and 2)

verification that target loading bounds can be decreased from the no experiment case.

Through-fold proved capable of predicting pre-test error bounds and of utilizing test data

to reduce the pre-test prediction.

Test Cases. The overall goal of the test cases was to explore the feasibility of

through-fold. A series of test cases was set up to compare the through-fold results to the

expectations for the method. The test cases were set up to incrementally increase the

complexity of a problem. Test case one assumed target loading was a linear combination

of instrument responses. Test case two, increased the complexity of the problem by

assuming there was a positive remainder term. Finally, test case three allowed the

remainder to be negative. To aid in evaluation, each test case consisted of four separate

combinations of detection system signals.

All basic expectations for the through-fold were met. Results from test case one

indicated that through-fold could predict reasonable bounds on an unknown function.

Results from case two demonstrated the anticipated behavior concerning error

propagation. The results from the more complicated problem presented in test case three
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showed a reduction in predicted error bounds from the naive case and from the error

bound based on the defined values for the target loading response functions.

Conclusions

The results from the validation and test cases support the following conclusions:

1. Through-fold consistently reduced the error bounds associated with the test

cases. However, the combination of energy bin resolution and small spectrum

and target loading values in some of the bins may have limited the capabilities of

the through-fold routine.

2. Optimization of error bounds has a limiting factor dependent on propagation of

errors and the actual spectrum and response functions used.

3. The optimization does not always occur when the target response function is

defined exactly.

4. Although there is some degree of user judgment involved in selection of the

starting values for the optimization routines, the resulting target loading bounds

did not appear to be sensitive to the selection.

5. The simplified target loading problem was adequately handled by through-fold.

The results of test cases two and three (where through-fold consistently

outperformed results calculated from exact target response functions) indicate

promise for the technique.
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VI. Recommendations

The following are recommendations for continued work in this area. First, a more

robust optimization routine must be found. This could solve a few of the problems

experienced. A different optimization routine may speed up calculations, should be

capable of finding exact solutions for problems used in test case one, and should be

capable of handling the quadratic problem which was simplified to a linear one for this

study. It is hoped that insight gained into the through-fold methodology from the linear

programming problem will carry over to quadratic programming problem. Second,

different choices of input data should be used to verify that through-fold results are similar

in more realistic test cases. Finally, a third area of study must consider how well through-

fold agrees with output from accepted unfolding routines.
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Appendix A: Formal Derivation of Through-Fold Equations

Definition of Terms

tilde, denotes an exact quantity, as opposed to measured

8 = delta, denotes correction term determined from measurement error,
calibration error, or a conservative estimate

Ri (E) = instrument response as a function of energy, ith instrument

S(E) = spectrum as a function of energy

T(E) = target response as a function of energy

.th.
Yi = instrument signal, i instrument

Z = target loading

NOTE: The absence of both tilde and delta indicates the quantity is
measured or calibrated.

The derivation begins with a definition of target loading. Target loading can be

viewed as the signal which would have been recorded by the target had it actually been an

error free instrument. Target loading can be represented similarly to instrument signal by:

2 fJ9(E) f(E) dE (Al)
0

None of the values in Eq (A1) are actually known. They can, however, be approximated

by a measured or predicted value plus a correction term. If the predicted target response
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is further approximated as a linear combination of the instrument responses plus a

remainder, to keep the relationship exact, then all the terms on the right hand side of Eq

(A1) can be replaced with known predicted, or boundable values. Defining the terms:

S(E) = S(E) + 8S(E) (A2.a)

T(E) = T(E) + 8T(E) (A2.b)

Ri (E) = Ri (E) + 8Ri (E) (A2.c)

Yi = Yi + 8Yi (A2.d)

Equations (A2) should be read as 'the exact value equals the measured value plus a

correction term'. The four correction terms in Eqs (A2) are based on a conservative

estimates (the first two), calibration error, and measurement error respectively.

Derivation

Since all terms on the right hand sides (RHS) of Eqs (A2) are considered known,

they can be substituted into the exact target loading equation, eliminating the unknowns.

Substituting Eq (A2.b) into Eq (A1) yields:

" 0= J S(E) [T(E) + 8T(E)] dE (A3)
0

Now let

=Z + 8Z (A4)
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CO

where, Z = f§(E) T(E) dE (A4.a)
0

00

8Z= f (E) 8T(E) dE (A4.b)

0

Assuming T(E) can be approximated by a linear combination of instrument

response functions plus a correction term (remainder), yields the following approximation:

T(E)= aja Ri(E) + Tjd(E) (A5)
i

where

ai = a constant for the ith instrument

T7 (E) = a remainder based on the choice of ai

Substituting this last equation into Eq (A4.a),

Z = §S(E) ai Ri (E) + Tdj (E) dE (A6)
01

or, by expanding the integral and reversing the order of integration and summation:

0M 00

Z ai SfS(E) Ri(E) dE + f S(E) Tgj(E) dE (A7)
i 0 0

The exact spectrum in Eq (A7) can now be replaced with its approximation from Eq

(A2.a). However instead of replacing S(E) in both integrals, it is beneficial to replace
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Ri(E) in the first integral of Eq (A7) with its value from Eq (A2.c) and then to substitute

the approximation of the exact spectrum into the second part of Eq (A7). This trick

yields:

00 00

Z=,aijS(E)jRi(E)dE - IaijS(E)PRi(E)dE

i 0 i 0
(A8)

+ fS(E) T (E) dE + f S(E) T (E) dE

o o

The above trick has introduced the exact signal, the first integral of Eq (A8), into our

equation. We will now introduce data (measured signals) into our problem by

approximating of the exact signal using Eq (A2.d).

Z = aiYi + Xait8Yi - aif S(E) 8Ri(E) dE
i i i 0

(A9)

+ f S(E) T3 (E) dE + f8S(E) Td(E) dE

0 0

Substituting the approximation of the exact spectrum for S(E).

Z= I aiY + ai8Yi
i i

00 00

- _aijS(E)8Ri(E)dE - XaijfS(E)8Ri(E)dE (AlO)
i 0 i 0
O00O

+ JS(E) T•(E)dE + f S(E) Td(E) dE
0 0
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Now that all the exact terms have been eliminated from Z, we can switch our

attention to the 8Z term from Eq (A4.b). For this term all we have to do is substitute the

approximation of the exact spectrum and simplify it to:

00 00

8z = fS(E) 8T(E) dE + f S(E) 8T(E) dE (All)
0 0

Finally, we can combine equations (Al0) and (Al l) for the exact target loading:

= aYi + ai Yi
i i

CIO 00

_YaijfS(E) 8Ri(E)dE - Xaij6S(E)8Ri(E)dE
i 0 i 0

00 00(A12)

"+ S(E) Td(E) dE + f6S(E)Ta(E)dE
0 0

"+ f S(E) 8T(E) dE + f S(E) 8T(E) dE

0 0

The final equation for target loading is found by writing the above equation

explicitly in terms of the constants, ai, by replicating T• (E) with its value from Eq (A5):
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z= ~ + a Y
i i

00 00

- aiJS(E) 8Ri(E) dE - XaijfS(E) 8Ri(E) dE
i 0 i 0

00 00(A13)

"+ fS(E) T(E) - aiRi(E) dE + f S(E) T(E) - aiRi (E) dE
0 1 0J

"+ fS(E) 8T(E) dE + f S(E) 8T(E) dE
0 0

Expanding the two integrals that were changed,

= aYi + Xai 8Yi
i i

CIO 00

- aiaJS(E)8Ri(E)dE - ,aijfS(E)8Ri(E)dE
i 0 i 0

00 W0

"+ fS(E) T(E) dE - JS(E) IaiRi(E) dE (A14)
0 0 j

00 00

"+f 8S(E) T(E) dE - J8S(E) IaiRi(E) dE

0 0 1

"+ fS(E) 8T(E) dE + f8S(E) 8T(E) dE

0 0

Reordering the terms, to include reversing the order of integration and summation:
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Z= Y_ + ai 6i
i i

00 00

-i fasS(E) Ri (E) dE - aiJf5S(E) Ri (E) dE
i 0 O0

00 00

- _aijS(E)8Ri(E)dE - .aijfS(E)8Ri(E)dE (A15)
i 0 i 0

+ iS(E) T(E) dE + f8S(E) T(E) dE

0 000 00

+ fS(E) 8T(E) dE + f S(E) 8T(E) dE
o 0

Now that we have an expression for the target loading, and bounds on all the delta

terms, we need to convert the analytic expression to a numeric one.

Conversion to a Numeric Solution

There are two forms of integrals in Eq (A15) which need conversion to numeric

techniques, those with the instrument response function involved and those with the target

response function involved. Both integrals can be numerically approximated using a

summation over the energy range of concern. Using this form of approximation, basic

instrument signal and target response integrals can be written as:

N

Y= I S(Ej) Ri(Ej) AEj (A16.a)
j=1

and
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N

z I_ S(Ej) T(Ej) AEj (A16.b)
j=l

where

Yi = a basic approximation to signal recorded by the ith instrument

S(Ej) = the predicted spectrum at energy step j

Ri(Ej) = the response function of the ith instrument (as measured)

AEj = the width of the jth energy step

z = a basic approximation to target signal

T(Ej) = the predicted target response at energy step j

N = the number of energy groups

Replacing the integrals in Eq (A15) with summations yields:

= aiYi + _ai6Yi
i i

N N
Sai I S(Ej) Ri(Ej) AEj ai Ia S(Ej) Ri(Ej) AEj
i j=1 i j=1

N N
- _aiXIS(Ej) Ri(Ej)AEj - ai I S(Ej) SRi(Ej)AEj (A17)

i j=1 i j=l

N N
"+ IS(Ej)T(Ej)AEj + 18S(Ej)T(Ej)AEj

j=l j=l

N N
"+ XS(Ej)8T(Ej)AEj + j6S(Ej)8T(Ej)AEj

j=1 j=1
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To make the above calculation easier, it is beneficial to form an instrument response

matrix, R, a spectrum vector, s, and a target response vector, t, of the predicted functions.

(R) ij = Ri (Ej) AEj

(s) j = S(Ej) (A 18)

(t)j = T(Ej) AEj

Equations (A16) can now be converted to vector notation, given by

N
I S(Ej) Ri(Ej) AEj = R's
j=1

and (A19)

N
IXS(Ej) T(Ej) AEj =s t
j=l

Utilizing the vector notation from Eq (A 18) to represent the summations:

= aiYi + Xai6Yi

_,ai Rs - ai R.s
i i

- aia8R-s - 8ai R.8s (A20)
i i

"+ s-t + 8s.t

"+ s-t + 8s.8t
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Realizing that the instrument signals can be represented by the vector (y)i [Yi] and that

the ai can be represented by a similar vector equation, allows the previous equation to be

written completely in terms of vectors and matrixes:

Z= a.y+ a.6y

- a.Rs - a.R.8s

- a.8R.s - a.8R.8s (A21)

+ s-t + 8s.t

+ s.8t + 8s.8t

Making use of the distributive property of dot products simplifies the exact target loading

equation becomes:

Z= a.(y + 8y - R-s - R.Ss - 8R.s - 8R.8s)
(A22)

+ s-t + 8s.t + s.6t + 8s.8t

Equation (A22) is an exact expression for target loading because the exact correction

vectors, 8s, 8y, 8R, and 8t have been carried throughout the derivation. Unfortunately,

Eq (A22) can not be computed because the exact delta values are unknown.

Bounds on Exact Target Loading. The value of 2 given by Eq (A22) cannot be

calculated because the delta terms are not known exactly, only within the bounds on the

correction terms discussed previously. The exact target loading can be bound by

ZL <• Z< Z• (A23)
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where ZU and ZL are the upper and lower bounds respectively on target loading,

The upper (lower) target loading bounds defined above can be computed for any

fixed choice of a by choosing the values for 8s, By, 8R, and By -- all being allowed to vary

(within the error bounds) at each energy bin -- to maximize (minimize) the target loading

expression, which is implicitly a function of a. These bounds are computed by solving the

following linear programs for the upper and lower target loading bounds respectively:

(a) = Max [a.(y + 8y R-s - R+ 6s 8R-s --R.+s)]

I + s-t + 8Sst + sS8t + Ss.8t
8y,8s,8R,8t

(A24)

zL(a) = Min Fa.(y + 8y R-s - R.6s 8 Rs - 8R.8s)]

I + s-t + Ss-t + s-t + 8s.8t
8y,8s,8R,8t

In Eq (A24) 8s, By, 8R, and 8y are the variables subject to the following constraints:

8Ymin _< 8Y _< 8Ymax

msmin <s- <smax
(A25)

8Rmin < 8R!_8Rmax

8tmin _< 8t < 8 trmax

R, s, t, and y are input data; and a is the variable for which the bound is to be determined.

The goal functions of both bounds in Eq (A24) are the same and are given by:
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f(8y,8s,8R,6t)=a.(y + 8y - R.s - R.8s - 8R.s - 8R.8s)
(A26)

+ s-t + 8s-t + s.6t + 8s.8t

The upper bound is found by maximum the goal function over the 8s, 8y, 8R, and 8y.

Similarly, the lower bound is found by minimizing the goal function over the 8s, 8y, 83R,

and 8y. The resulting values for ZU (a) and ZL (a) from Eq (A24) represent the largest

possible bounds (maximum and minimum respectively) on target loading for fixed set of a.

However, it should be possible to tighten these bounds by selecting appropriate sets of a.

The process of selecting the a's resulting in the tightest possible bounds is accomplished

by optimizing the upper and lower bound over all possible choices of a. The result is a

classic minimum-maximum (mini-max) problem given by:

U= Nhn[zU (a)]

a
(A27)

L zLa)
Zmax = Max1Z (a)]

a

u

Zmin is the minimum upper bound (least upper bound) for target loading and is found by

minimizing ZU (a) over a. Zmax is the maximum lower bound for target loading, found

by maximizing ZL (a) over a. The outer loop of the mini-max problem produces an

unconstrained (the a vector can take on any values) quadratic problem.
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Standard Form. The goal function in Eq (A26) can not directly be used in a

quadratic programming problem because it is not in standard form. The standard form for

linear programming problems generally require non-negative variables. The bounded error

terms are therefore defined as the difference of two positive numbers

By = Sy+ - By-

8s = 8s+ - 8s-
(A28)

5R= 8R+ - 8R-

8t = 8t+ - 8t-

where all the terms on the RHS of Eq (A28) are greater than or equal to zero.

The inner loops of the mini-max problems will force one of the terms on the RHS

of Eq (A28) to zero and the other to its maximum magnitude at each energy bin. The first

term will be zero if the error is negative while the second term will be zero if the error is

positive. Inserting the non-negativity constraints into the goal function, Eq (A26):

y + (By+- By-) R R-s

f(By, 8s,8R, 8t)=a. - R.(8s+- 8s-) (8R+- 8R-).s

-[(8R+ - 8R-). (8s+ - 8s-)] (A29)

+ s t + (8s+- 8s-).t + s.(8t+ - 8tC)

+ [(8s+- S-)-(8t+ -801

or

76



y + 8y+ - 8y- - R s

f(Sy,Ss,SR,St)=a. - R.6s' + R. Ss - 8R+. *s + 8R-. s

- [8R+.8s+- - 8R+ 8s 8R- .s' + 8R-.8s-

"+ s-t + 8s+.t - 8s-.t + s.t+ - s.t-

"+ [s+'St+ - 8s+'*t- - 8s-'t+ + 8s-..t-]

This final goal function remains quadratic in the delta terms (as is the analytic solution)

and is subject to the following constraints:

0_< 8y+ _< 8Ymax

0-<y- <I-YminI

0<•6s+ _< 8Smax

0•< 8s- <H -8SminI
(A31)

0<1R + <•Rmax

0 -< 8R- _< I-8R minI

0_<t+ <•8tmax

0_6C- _<Il-8tmini

The quadratic goal function Eq (A30) can be simplified to the linear goal function from

Chapter 2 by assuming 8R and 8t are negligible compared to 8y and 8s and setting them

equal to zero.
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Appendix B: Final Mathematica Code

A Mathematica notebook for through-fold
of bounds on exact target loading

SECTION I.

Data Input and Definitions of Functions

Enter the following data into the Data Input block then evaluate the cell:

Energy range required: Erange
number of bins covering eRange: numBins
number of closed instruments: nClosed
number of open instruments: nOpen
fluorescer k-edge of 1st detector: eOinitial
bin spacing (geo or lin): spacing

eRange=64;
nClosed=8;
nOpen=4;
numBins=30;
spacing=geo;

Spectrum Definition:

Choose a spectrum or create your own. Enter necessary information
and evaluate cells. Evaluate plot cell to view your selection.

Note: only one spectrum can be selected at a time. Evaluate the ClearAll[s]
cell prior to defining a second spectrum.

ClearAll[s]

Planckian (1 or 2 temp)

Spectrum Data:
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kTl= 1;
scalel=l;
kT2=1;
scale2=0O;

Spectrum:

silO] =0;
s[lO.0] =0;
s[eI :=N[scale 1(1 5/(kTl Pi)A4) (eA3/(Exp [e/kT 1] 1)) +
scale2( 15/(kT2 Pi)A4)(eA3/(Exp[e/kT2]- 1))];

Plot[s~le], f{e,0,eRange),
Plot~abel->"Planckian Spectra",
Frame->True,
FrameLabel-> f "Energy, E/EO", "Amplitude" },
PlotRange->All];

Target Response Definition:

The same guidance applies as for selection of the spectrum.

ClearAll[t]

Broad Gaussian (change shape via mean and standard deviation)

Gaussian Data:

mean=0;
sd=15;
sqrt2pi=N[lSqrt[j2Pi]];

Gausian Response:

Plod~abel->"Gausian Response Function",
Frame->True,
FrameLabel->[ "Energy, EIEO", "Amplitude")},
PlotRange->AII];
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Detector Systems Definition:

Evaluate the cells associated with this section. They are based on previous input.

K-Edges

numlnst=nClosed + nOpen;

sqrt2=N[Sqrt[2]];

eOclosed=Table[eOinitial(sqrt2An), {n,O,nClosed- 1}]

e lclosed=TableII2 eOinitial(sqrt2An), { n,O,nClosed- 1

e~open=Table[effinitial (2An), { n,O,nOpen- 1)];

eOall=Join[eOclosed, eOopen];

Detector Response Functions

rclosed[eOclosed-,el1closed.]:
Which [e<eOclosed,O,

eOclosed<=e<e 1iclosed,
(l/e)( 1-ExpII-2 (eOclosed/e)A31)
(ExpII(- 1/4)(e lclosed/e)A31),

e lclosed<=e,
(1/e)( 1-Exp[-2 (eOclosedle)A3])
(Exp[(-312)(e lclosed/e)A3])

ropenlleOopen_]:=If[e<eOopen,O,
(1/e)(1 -Exp[-3 (eOopen/e)A3])

Instrument Responses

Do[rri,e-]=rclosed[eOclosed[[i]] ,e 1lclosed[ [i]],
{ i,nClosed }

Do[r[i~nClosed,e_]--ropen[eOopen[ [i]]], { i,nOpen }];
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Energy Bins Definition:

Evaluate the cells associated with this section. They are base on previous input.

Bin Spacing:

flag=spaeing;

deltaEgeo:=TableIIN[eOinitial(eRangeA(i/numBins) -

eRangeA((i- 1)/numBins))

{ i,l1,numBins }

deltaElin:=N[Table[(eRange- 1) e~initial/numBins,
{numBins}]];

dE=W~flag==geo, deltaEgeo, flag==lin, deltaElin];

Bin Boundaries

energyBoundary [01=eOinitial;

eBound=PrependllTable[energyBoundarylli] = dEiji]] +
energyBoundarylli- 1], { i,numBins1] ,e~initial];

eLower=DroplleBound,- 1];
eUpper=RestlleBound];

Bin Center Energies (for evaluation of functions)

eGeoCen=SqrtlleUpper eLower];
eLinCen=(eUpper + eLower)/2;

eCen=If[flag==geo, eGeoCen, flag==lin, eLinCen];
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SECTION II.

Evaluation of Vectors and Matrices

Evaluate the cells associated with this section. They are based on previous input.

Evaluate the Spectrum Vector

sVec=Table[s[eCen[[i]]], {i,numBins }];

Evaluate the Target Response Vector

tCen=Table[t[eCen[[i]]], { i,numBins }];
tVec=tCen dE

Evaluate the Instrument Response Matrix

resmatrix=Table[(r[i,#]& /@ eCen) dE,
{i,numlnst}

];

Evaluate the Instrument Signal Vector

yCen--resmatrix.sVec

Add Random Noise to Signal (Note: Ym=Y+noise[])

Noise should NOT be added if using assuming no measurement error.
If this is the case, define yM=yCen + 0 prior to evaluation of the yM cell.

<<Statistics' ContinuousDistributions';
SeedRandom[l1];

noise[frac_]:=Table[Random[NormalDistribution[O,frac]],
{i,numlnst}];

measErr=noise[. 15];

yM=yCen + (measErr*yCen)
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Define All Delta Terms

The delta terms are set for up to 60 bins, any spacing, and up to 17 detectors.

For addijonal bins and instruments, the definitions must be extended.
The form is self evident.

If assuming no measurement error, dYmax and dYmin should be zero vectors.

dSpositive= [ dSp 1 ,dSp2,dSp3,dSp4,dSp5,dSp6,dSp7,dSp8,
dSp9,dSplO0,dSp 1 ,dSpl12,dSpl13,dSpl14,dSpl15,
dSpl6,dSpl7,dSpl8,dSpl9,dSp2O,dSp2l,dSp22,
dSp23,dSp24,dSp25,dSp26,dSp27,dSp28,dSp29,
dSp3O,dSp3 1 ,dSp32,dSp33,dSp34,dSp35,dSp36,
dSp37,dSp38,dSp39,dSp4O,dSp4l ,dSp42,dSp43,
dSp44,dSp45,dSp46,dSp47,dSp48,dSp49,dSp5O,
dSp5 1 ,dSp52,dSp53,dSp54,dSp55,dSp56,dSp57,
dSp58,dSp59,dSp6O 1;

dSnegative= {dSnl1,dSn2,dSn3,dSn4,dSn5,dSn6,dSn7,dSn8,
dSn9,dSnl1O,dSn 1 ,dSn 12,dSnl13,dSnl14,dSnl15,
dSn16,dSnl7,dSnl8,dSnl9,dSn2O,dSn2l,dSn22,
dSn23 ,dSn24,dSn25,dSn26,dSn27,dSn28,dSn29,
dSn3O,dSn3 1 ,dSn32,dSn33,dSn34,dSn35,dSn36,
dSn37,dSn38,dSn39,dSn4O,dSn4l ,dSn42,dSn43,
dSn44,dSn45,dSn46,dSn47,dSn48,dSn49,dSn5O,
dSn5 1 ,dSn52,dSn53,dSn54,dSn55,dSn56,dSn57,
dSn58,dSn59,dSn6O);

dYpositive= {dYpl1,dYp2,dYp3,dYp4,dYp5,dYp6,dYp7,dYp8,
dYp9,dYplO0,dYp 1 ,dYpl12,dYpl13,dYp 14,dYpl15,
dYp 16,dYp17}1;

dYnegative= {dYnl1,dYn2,dYn3,dYn4,dYn5,dYn6,dYn7,dYn8,
dYn9,dYnlO0,dYn 11 ,dYnl12,dYnl13,dYnl 4,dYnl15,
dYn 16,dYn17 1;

dSmax=TableIIO.5, ( 60}]1;
dSmiin=TablerO.5, {60}];
dYmax=TableIIO.15, { 17}];
dYmin=Table[O. 15, f 17}];
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Write Vectors to Data Files

sVec>>spectrum;
tVec>>target;
resmatrix>.>rMatrix;
yM>>instSig;

dYpositive>>dYpos;
dYnegative>>dYneg;
dYmax>>dYplus;
dYmin>>dYnminus;

dSpositive>>dSpos;
dSnegative>>dSneg;
dSmax>>dSplus;
dSmin>>dsminus;

**Additional Information (does not need to be evaluated)**

Exact Instrument Signal

Do[y 1 [i] =Nlntegratells[e] *r[i,e],
I{e,eOall[[i]],el1closed[ [i] ], 64}],

{i,nClosed}];

Do[yl1[i] =Nlntegratells[e] *r[i,e],
{ e,eOall[[i]] ,64 }], { i,nClosed.+l1,numlnst }];

yExact=TableI~y 1 [i], f i,nunIlnst}

Exact Target Loading

zExact=Nlntegrate [s [ie] t[e], f e, 0, eRange }

Pseudo-Exact Target Loading

pseudoZexact=s.t
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SECTION III.

Definition and Optimizationof Exact Target Loading Bounds

- Produces dummy files from datafiles of the required size.
- Defines target loading, maximum, and minimum functions.
- Provides input statements for calculation of:

- Reads full information from datafiles.
-- Results for no experiment (a's=0).
-- FindMinimum[MAXX]
-- FindMinimum[MINN]

Notes: 1) File written to and read from the Mathematica default directory.

2) Numbers in filenames indicate size offile (inst x bins).

3) This file must be run to create the target loading equation and the
expressions for use in the maxx and minn commands.

4) The sections starting with "How Many Instruments and Bins in
this Test ??" and ending just before "Sample Input Statements
for Results" must be evaluated for each combination of
instruments that results are desired for.

Remember to change filenames appropriately.

How Many Instruments and Bins to Through-Fold ??

If only desiring the open instruments, enter the TOTAL number of instruments
(closed + open) up to the instrument number you are interested in.

inst=8;
bins=30;

Read Information From Disk Into Dummy Variables

spec=<<spectrum;
targ=<<target;
resMat=<<rMatrix;
signal=<<instSig;
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dYpositive=«<dYpos;
dYnegative=«<dYneg;
dYmax=<«dYplus;
dYmnin=<«dYminus;

dSpositive=«<dSpos;
dSnegative=<«dSneg;
dSmax=<«dSplus;
dSm-in=<«dsminus;

Read Appropriate Parts of Dummy Variables Into Vectors:

If only want open instruments and the vectors include both, change the
instrument counters from "[i,inst} "to "[i,nclosed+1,instj "for R, y,
dYpos, dYneg, dYplus, and dYminus . It may be easiest to enter
the actual number instead of "nclosed+ 1

s=Table[specffi]], fi,bins)];
t=-Table[targll[i]], {i,binslH;
R=Table[resMat[[i~j]], ijinst}, fj ,bins 1];
y=Table[signal[[fill, { i,inst}];

dSpos=TablelldSpositive[[ljlj, { i,bins }];
dSneg=TableljdS negative[j[i] ], { i,bins }];
dSplus=Table[dSmaxIIIi]], { i,binslH;
dSminus=TableI~dSmin[[IiJ], (i,bins 1];

dYpos=TablelldYpositive[[i]], { i,inst }];
dYneg=TablelldYnegativefll], { i,inst }];
dYplus=TableI~dYmax[[Ii]], { i,inst)];
dYminus=TableI~dYminII[i]], { i,inst }];

Checking vectors to ensure the right dimensions.

Dimensions[y]
Dimensions[R]
Dimensions[s]
Dimensions[t]
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Definition of Functions

Target Loading (z):

terml=R.s;
term2=R.(dSpos s);
term3=R.(dSneg s);
term4=(dSpos s).t;
tern5=(dSneg s).t;

z[aList,dYposList,dYnegList,dSposList,
dSnegList] =

a.(y + dYpos y - dYneg y - terml -
term2 + term3) +

s.t + term4 - term5;

Writing target loading funtion (in Mathematica notation) to a file
and verifying it is there.

Note: Only evaluate the second command if you WANT to see a huge eqn.
or if you are not sure the file was written to disk and want to check.

NOMENCLATURE: File names indicate target loading (z), validation (val),
and eight instruments in the equation (8).

%>>z-val8;

!!z_val8

Maximum Target Loading (maxx):

This is a DIFFERENT correction than for z.

If only want open instruments and the vectors include both, change the instrument
counter from "{i,inst}" to "{i,inst - nclosed} "for dYpos, dYneg, dYplus, and dYminus.
It may be easiest to enter the actual number instead of "inst - nclosed".

Note: There are two counters for dYpos and dYneg each!
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maxx [a.List] =

ConstrainedMax[z[a,
Evaluate[Table~dYpos[lli]], {i,inst}],

Table[dYneg[[i]] , {ijnst}],
TablelldSposf[Ii]] , t i,bins 1],
TableI~dSnegffIi]],{( i,bins}]

Evaluate [Flatten[ f
Table[dYpos[[i]]<=dYplus[[i]], { i,inst}],
Table[dYneg[[i]]<=dYminus[[i]] , {i,inst}],
Table[dSpos[[i]]<=dSplus[[i]], { i,bins 1],
Table[dSnegll[i]] <=dSminus[[i]], {i,bins }]

EvaluateLFiattenli {Table[dYpos[[i]], { i,inst 1],
Table[dYneg[[i]], { i,inst}],
Table[dSpos[[i]], { i,bins }],
Table[dSneg[[i]], { i,bins }]

I

%>>rava18;

Minimnum Target Loading (minn):

This is the SAME correction as for minn.

If only want open instruments and the vectors include both, change
the instrument counter from "{i,inst} " to "[i, inst - nclosed} "for dYpos,
dYneg, dYplus, and dYminus. It may be easiest to enter the actual
number instead of "inst - nclosed".

Note: There are two counters for dYpos and dYneg each!

minn[a.List]=
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ConstrainedMinlizia,
Evaluate[Table[dYpos[[i]] , {i,inst)],

Table[dYneg[[i]] , {i,inst }],
Table[dSpos[[il]], {i,bins }],
Table[dSneg[[i]] , {i,bins }]

Evaluate [Flatten[
Table [dYpos [Ii] ]<=dYplus [[i] ], { i,inst}],
Table [dYneg[Iji] ]<=dYminus[[i]] , I i,inst}]
Table jdSpos[[i] ]<=dSplus[[i]]I, { i,bins 1],
Table [dSneg[[i]] <=dSminusr[i]], { i,bins I]

Evaluate[Flatten[ {Table[dYposll[i]], { i,inst }],
Table [dYneg[ [il], {i,inst}],
Table[dSpos[[i]], { i,bins)} ,
Table[dSneg[[Ii]], { i,bins }]

%>»mival8;

Sample Input Statements for Results

The form of these input statements will be consistent; however, there
are obvious changes based on the number of instruments used and the
starting points desired.

Read datafiles from disk

Target Loading:

zllaList,dYpos-List,dYneg --List,dSpos-List,
dSneg-List]=<«zval8;

Constrained Maximum:

maxxla.List]=<<maval8;
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Constrained Minimum:

minn[aList]=<<mival8;

No Experiment, ai's = 0.

MAXX=maxx[ {0,0,0,0,0,0,0,0 }]

MINN=minn[ 10,0,0,0,0,0,0,0 } ]

Optimizing MAXX and MINN over the Choice of ai's

Minimizing the maximum.

FindMinimum[First[maxx[ { al,a2,a3,a4,a5,a6,a7,
a8}]],

{aa,-1,1 }, {a2,1,-1 },{1a3,-1,1 },{[a4,1,-1 },
{a5,-1,1 },{a6,1,-1 },{la7,-1,1 },{ a8,1,-1 }]

Maximizing the minimum.

Since we are actually minimizing the negative of the minimum, the result will
be the NEGATIVE of the true answer.

FindMinimum[-First[minn[ { al,a2,a3,a4,a5,a6,a7,a8 }]],

{al,- 1,1 },{ a2,1,-1 },{a3,-1,1 },{ a4,1,-1 },
{a5,- 1,1 }, { a6,1,-1 },{a7,- 1,1 }, { a8,1,-1 }]
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Appendix C: Additional Test Results

This appendix is a continuation of the results of Chapter IV. The inputs are the
same as defined in Chapter IV.

Table 9. Test Results for Case T1.B

ai, Naive Defined Optimized Optimized
Approach ai Max Min

al 0 0 0 0
a2 0 0 0 0
a3 0 0 0 0
a4 0 0 0 0
a5 0 0 0 0
a6 0 0 0 0
a7 0 0 0 0
a8 0 0 0 0
a9 0 1 1 1

alO 0 0 0 0
all 0 1 1 1
a12 0 0 0 0

ZU(a), % + 50 18.6 18.6 n/a

ZU(a), % - 50 12.3 n/a 12.3

Total Bound, % 100 30.9 30.9
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Table 10. Test Results for Case T1.C

ai, Naive Defined Optimized Optimized

Approach ai Max Min

al 0 1 2.4452 0
a2 0 0 1 0
a3 0 2.5 2.0121 0
a4 0 0 0.1745 0
a5 0 0 3.6246 0
a6 0 0 1.5946 0
a7 0 0 1.3151 0
a8 0 0 -1.9238 0
a9 0 1 0 1.3333

alO 0 0 0 0.923
all 0 1 0 0.9613
a12 0 0 0 0.035

ZU(a), % + 50 15.8 18 n/a

ZU (a), % - 50 14.4 n/a 17.1

Total Bound, % 100 30.2 35.1
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Table 11. Test Results for Case T2.A

ai, Naive Defined Optimized Optimized

Approach ai Max Min

al 0 1 0.769 0.4971
a2 0 0 0.1211 0.9648
a3 0 2.5 3.3036 2.5402
a4 0 0 0 0.9931
a5 0 0 -0.0001 -1.1683
a6 0 0 -0.1288 0.826
a7 0 0 0.0702 -0.6397
a8 0 0 0.0897 0.8914
a9 0 0 0 0

alO 0 0 0 0
all 0 0 0 0
a12 0 0 0 0

ZU(a), % + 50 23.6 18.5 n/a

ZU (a), % - 50 26 n/a 17.6

Total Bound, % 100 49.6 36.1
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Table 12. Test Results for Case T2.B

ai, Naive Defined Optimized Optimized
Approach ai Max Min

al 0 0 2.0801 0
a2 0 0 0.9988 0
a3 0 0 0.6178 0
a4 0 0 0.1997 0
a5 0 0 5.2567 0
a6 0 0 2.0032 0
a7 0 0 1.2941 0
a8 0 0 -2.2269 0
a9 0 1 0 1.1834

alO 0 0 0 -0.03
all 0 1 0 1.4374
a12 0 0 0 -0.1321

ZU(a), % + 50 26.7 21.6 n/a

ZU(a), % - 50 22 n/a 18

Total Bound, % 100 48.7 39.6
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Table 13. Test Results for Case T2.C

ai, Naive Defined Optimized Optimized
Approach ai Max Min

al 0 1 2.4452 0
a2 0 0 1 0
a3 0 2.5 2.8914 0
a4 0 0 0.612364 0
a5 0 0 4.6113 0
a6 0 0 -0.475 0
a7 0 0 0.001 0
a8 0 0 -0.6234 0
a9 0 1 0 1.3333

alO 0 0 0 1.2265
all 0 1 0 0.3256
a12 0 0 0 -0.0881

ZU(a), % + 50 22.4 15.5 n/a

ZU(a), % - 50 21.2 n/a 18.8

Total Bound, % 100 43.6 34.3
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Table 14. Test Results for Case T3.A

ai, Naive Def'med Optimized Optimized
Approach ai Max Min

al 0 1 -0.3123 0
a2 0 0 0.4192 0
a3 0 2.5 1.4946 0
a4 0 0 -0.4488 0
a5 0 0 0.7568 0
a6 0 0 0.459 0
a7 0 0 0.3681 0
a8 0 0 -0.5048 0
a9 0 0 0 0.0993

alO 0 0 0 0.4922
all 0 0 0 0.0711
a12 0 0 0 0.0218

Z (a), % + 50 55.3 25.6 n/a

Z (a), % - 50 60.9 n/a 19.5

Total Bound, % 100 116.2 45.1
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Table 15. Test Results for Case T3.B

ai, Naive Defined Optimized Optimized
Approach ai Max Min

al 0 0 0.4492 0
a2 0 0 8.7185 0
a3 0 0 0.4428 0
a4 0 0 -0.1684 0
a5 0 0 2.3099 0
a6 0 0 -0.285 0
a7 0 0 0.4628 0
a8 0 0 -0.4792 0
a9 0 1 0 0.55

alO 0 0 0 0.088
all 0 1 0 0.5575
a12 0 0 0 0.1326

ZU(a), % + 50 55.1 25.9 n/a

ZU (a), % - 50 45.5 n/a 23

Total Bound, % 100 100.6 48.9
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Table 16. Test Results For Case T3.C

ai, Naive Defimed Optimized Optimized

Approach ai Max Min

al 0 1 2.4452 0
a2 0 0 1 0
a3 0 2.5 0.2236 0
a4 0 0 -0.076 0
a5 0 0 2.4456 0
a6 0 0 2.5737 0
a7 0 0 2.5825 0
a8 0 0 -3.1688 0
a9 0 1 0 1.191

alO 0 0 0 0.4789
all 0 1 0 0.4296
a12 0 0 0 0.2164

ZU(a), % + 50 36.5 24 n/a

ZU(a), % - 50 34.5 n/a 17.7

Total Bound, % 100 71.0 41.7
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