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Abstract

Practical scheduling problems generally require allocation of resources in the presence of a large,
diverse and typically conflicting set of constraints and optimization criteria. The Ul-structuredness of both
the solution space and the desired objectives make scheduling problems difficult to formalize This paper
describes a ease-based learning method for acquiring context-dependent user optimization preferences
and tradeoffs and using them to incrementally improve schedule quality in predictive scheduling and
reactive schedule management in response to unexpected execution events. The approach, implemented
in the CABINS system, uses acquired user preferences to dynamically modify search control to guide
schedule improvement. During iterative repair, cases are exploited for: (1) repair action selection, (2)
evaluation of intermediate repair results and (3) recovery from revision failures The method allows the
system to dynamically switch between repair heuristic actions, each of which operates with respect to
a puatcular local view of the problem and offers selective repair advantages. Application of a repair
action tunes the search procedure to the characteristics of the local repair problem. This is achieved by
dynamic modification of the search control bias. There is no a priori characterization of the amount of
modification that may be required by repair actions. However, initial experimental results show that the
approach is able to (a) capture and effectively utilize user scheduling preferences that were not present
in the scheduling model, (b) produce schedules with high quality, without unduly sacrificng efficiency in
predictive schedule generation and reactive response to unpredictable execution events along a variety
of criteria that have been recognized as important in real operating environments.

Di
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1. Introduction

The scheduling task can be described as assigning a limited number of resources to activities over time in a
consistent manner, i.e. so as to avoid violation of constraints associated with the problem, such as resource
capacity constraints, activity precedence constraints and release dates. The goal of a scheduling system is to
produce schedules that respect these problem constraints and optimize a set of objectives, such as minimize
tardiness of jobs, minimize work in process inventory (WIP), maximize resource utilization, minimize cycle
time etc. The produced schedule should also respect user preferences. Scheduling is difficult to automate
for the following reasons:

1. Computational Complexity
Scheduling is a problem in the "hardest" subset of NP-complete problems [Fre82].

2. Tight Constraint Interactions
Due to the tight interactions among scheduling constraints and the non-linear nature of scheduling
objectives, there is no general way to predict the effect of a local optimization decision on global
optimality, even for the simplest objective.

3. Ill-structured Objectives / Preferences
For practical scheduling problems, it is desirable that multiple optimization objectives (e g. minimize
weighted tardiness, minimize work in process inventory, maximize resource utilization) must be sat-
isfied. Moreover, optimization objectives often interact and conflict with one another. To optimize
along one objective alone could jeopardize optimality along other objectives. The relationships between
global objectives are extremely difficult to model
The definition/evaluation itself of what is a "high quality" schedule is fraught with difficulties because
of the need to balance conflicting objectives and tradeoffis among them. Such tradeoffs typically
reflect the presence of context-dependent user preferences and domain constraints not captured in the
scheduling model. The value of incorporating such user preferences and constraints in operational
scheduling environments is becoming increasingly recognized (e.g [MBS881) but good techniques are
currentl. lacking.

4. Dynamic Environment
Operational environments for scheduling systems (e.g. factories) are dynamic Unpredictable events,
such as machine breakdown or operator absence, often happen during schedule execution. Therefore,
a schedule that is only predictive (i.e it is created assuming that the world is static and predictable)
will be brittle. It is clear that any effective scheduling system should be reactive, i.e. perform schedule
reision in response to unforeseen events during schedule execution.

The scheduling problem has been addressed by two general types of methods, construcive scheduling
and reeiston.lased scheduling. In constructive approaches (e.g., [Fox83, Sad01]), a schedule is constructed
by incremental construction and merging of partial schedules. In revision-based approaches (e g , [MIPL90,
ZDG90, BC91, LAL92]) a complete but suboptimal initial schedule is incrementally repaired by several
techniques, such as a min-conflict heuristic [MJPL9g] or simulated annealing. In rOST88], whle predictive
schedules are generated from scratch, incremental revision has been used to repair a pre.computed schedule
in re'ponim to unanticipated events during schedule execution. The approach analyzes the implications of
specific schedule features and matches them to behavioral characteristics of appropriate reactive actions that
are selected according to a static, pre-determined control model These approaches assume the existence of an
explicit optimization function This assumption is iii general limiting since, in practice, optimization criteria
reflect context-dependent user preferences and cannot be expressed in terms of a single global objective
function.

In this paper, we describe a revision-based approach, implemented in the CABINS system, that provides
a unified framework for acquisition of user optimization preferences and tradeoffs, improvement of schedule
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quality based on these preferences, and reactive schedule management in response to unforeseen events.
Unlike other systems that utilize iterative repair to find a feasible solution (e.g [ZDG90, MJPL90]), where
executability of the schedule was not guaranteed at the end of each repair iteration, CABINS produces an
executable schedule after each repair that has guaranteed monotonic increase in quality the more time it
is allowed for repair, thus exhibiting anytime ezectable behavior [DD88. This is a very desirable quality
especially in reactive contexts since there could only be a certain limited amount of time for the system to
react.

Our approach uses integration of Case-based Reasoning (CBR) [KSS85J and fine granularity constraint-
directed scheduling mechanisms based on [SF90]. Integrating CBR with constraint-based scheduling stems
from a variety of motivations. Although scheduling is an ill-structured domain, we assume that it exhibits do-
main regularities that could be captured, albeit only approximately, in a ase In CABINS, a case represents
application of a revision action to one activity in the schedule, thus expressing dependencies among features
of the schedule, the repair context and a suitable repair action (see section 4.1 for a detailed description of
case representation). CBR allows capture and re-use of this dependency knowledge to dynamically adapt
the search procedure and differentially bias scheduling decisions in future similar situations. On the other
band, because of the tightly coupled nature of scheduling decisions, a revision in one part of the schedule
may cause constraint violations in other parts. Therefore, constraint propagation techniques are necessary
to determine the ripple effects that spread conflicts to other parts of the schedule as case-based repair actions
are applied and specific schedule revisions are made. The evaluation criteria for judging the acceptability of
the outcome of a repair action are often multiple, conflicting, context dependent and reflect user judgment of
tradeoffs Therefore, it is difficult to describe the evaluation criteria and the associated tradeoffs in a simple
manner. The case base incorporates a distribution of examples that collectively and implicitly capture a
user's schedule evaluation preferences and tradeoffs under diverse problem solving circumstances and enable
CABINS to induce these tradeoffs from the case base. Hence, user preferences are reflected in the case base
in two ways: as preferences for selecting a repair action depending on the features of the repair context, and
as etaluatin preferences for the repair outcome that resulted from selection and application of a specific
repair action.

A revision-based approach is attractive for solving practical scheduling problems. There are no known
efficient search algorithms for schedule optimization except for a very limited set of simple objectives such
as make-span (e g. [ABZ88)) and the amount of computation required for finding a solution is generally
unpredictable (F e821. Therefore, the construction of a cheap but suboptimal schedule that is then incre-
mentally repaired to meet optimisation objectives is preferable in practice, because one can interrupt the
repair process and use the interim result for execution when no more time is allowed for further repair. For
example, dispatch heuristics have very low computational cost, but due to their myopic nature, they must
be tailored to particular optimization objectives. Hence, in general they cannot address issues of balancing
tradeoffs with respect to a variety of optimization objectives. As a consequence, they result in suboptimal
schedules, However, because of their efficiency, they are widely used by practitioners Therefore, as has
already been pointed out by other researchers (e.g., IZDB+92, MJPL92]), combining a repair methodology,
such as a simple gradient search [KS90], neural networks [JohgO], or the one advocated in our work, with
a dispatch driven scheduler for creation of the initial schedule is promising for real world scheduling envi-
ronments. Experimental results reported in section 5 2.1 indicate that CABINS can produce substantial
schedule improvements starting with schedules generated by several methods i.e. a number of dispatch
heuristic and a constraint based scheduler.

Our approach was evaluated through extensive controlled experimentation on job shop scheduling prob-
lems Experimental results, reported in section 5 show that (1) the approach is potentially effective in
capturing user preferences and optimization tradeoffs that are difficult to model, (2) it improves schedule
quality irrespective of method of initial schedule generation, (3) it produces high quality schedules at much
lower computational cost as compared to simulated annealing, a well-known iterative repair method, and
(4) it is suitable as a reactive scheduling method because it maintains high schedule quality and mninimnes
disruptions i the face of execution time failures
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The rest of the paper is organized as follows: section 2 gives some background in job shop scheduling
and presents the constraint-based techniques used in CABINS. Section 3 introduces case-based schedule
optimization. Section 4 presents case representation, indexing, retrieval and application to the schedule of a
retrieved revision.It also presents an extensive example. Section 5 presents experimental results to validate
the approach. Section 6 discusses related work and section 7 conclusions a'

t
4 future wor.

2. Job Shop Scheduling

Job shop scheduling deals with allocation of a limited set of resources to a number of activities associated
with a set ofjobs/orders. The dominant constraints in job shop scheduling are temporal activtp precedence
and resosre capacity constraints. The activity precedence coLstrAint, along with a job's release date and
due date restrict the set of acceptable start times for each activity. The capacity constraints restrict the
number of activities that can use a resource at any particular point in time aLd create conflicts among
activities that are competing for the use of the same resource at overlapping time intervals. The goal of a
scheduling system is to produce schedules that respect temporal relations and resource capacity constraints,
and optimize a set of objectives. In our model we allow substitutable resources for each activity of a job,
thus being able to deal with parallel machine job shop schedusng, a more complicated version of the job
shop scheduling problem [MP93]. CABINS's revision based approach has two-phases: (1) create an initial
schedule by utilizing any method (e.g. dispatching rules), and (2) improve the (possibly) suboptimal schedule
that was generated in the first step so as to incorporate user preferences and tradeoffs.

In the rest of this section, we present the job shop scheduling problem within the framework of contraint
satisfaction, and present the search strategy that is used to propagate the effects of repair actions in CABINS.

2.1. Constraints

The job shop scheduling problem requires scheduling a set of jobs J = {J,.. Js) on a set of physical
resources RES = {Rt,.:..., Rm). Each job 4, consists of a set of operations/activit.,% A' - {A', .-.:.,At,) to
be scheduled according to a process routing that specifies a partial ordering among these activities (e.g., Al
BEFORE Al).

Each job J1 has a release date rdl that signifies the earliest time the job can be started and a job due
date dd,, by which the job should be finished. Each activity A! has a fixed duration dul and a variable
start time st! The domain of possible start times of each activity is i:.:tially constrained by the release
and due dates of the job to which the activity belongs. In order to be succcssfully executed, each activity
A( requires p! different resources (e.g., a milling machine, a jig and a machinist) Rt, (1 < j < p!), for
each of which there may be a pool of physical resources from which to csoose, P! = {r: ,, , r ), with

r RES(l !5 k : q,,) (e.g., several possible milling machines).

More formally, the problem can be defined as follows:

•AB 'LES A vector of variables is associated with each adtiv;ty, A4(i < n, I < i nt), m4ic-11

includes:

I. the actity start time, st', and

2. each resource requircment, R!,(l < j < p) for which the activity has several alternatives.

CONSTRAINTS The uon-unary constraints of the problem are of two types.

I. Precedence constraints defined by the process routings translate into linear inequalities of the
type A,' + du, !< stl (i.e. A! BEFORE A, ),

3



2. Capacity coanstrsiats that restrict the use of each resource to only one activity at a time translate
into disjunctive constraints of the form: (VpVqRV, 0 l,) V st' + du , <_ sf, V st + du < st,.
Constraints simply express that, unless they use different resources, two activities Ak and AI
cannot overlap 1.

Time is assumed discrete, i.e., activity start times and end times can only take integer values Each
resource requirement /4 has to be selected from a set of resource alternatives, 0t, g RES These constraints
include non-relaxable release dates, and initially, non-relaxable due dates between which all activities in a

job need to be performed.

2.2. Objectives and Preferences

In practice, scheduling objectives are numerous, complex, often conflicting and the mathematics of the prob-
lem can be extremely difficult with even the simplest of objectives (Fte82]. Below, we define the objectives,
that are among the most common in the literature (e.g. [Frel2l), that we used to develop the performance
evaluation of CABINS. These objectives are mathematical simplifications ofstate-dependent objectives that
are difficult to model precisely. For ecample, an optimization criterion such as WEIGHTED TARDINESS 2 

x
WIPs could be induced by CABINS if user gave consistent evaluation of schedules, but cannot be easily
represented in ways that can he explored by traditional schedule approaches.

Waiting time (WI3 ) ; is the time that elapses between the completion of the preceding activity Al- 1 (or
rdl, if i = 1 ) and the start of processing Al.

Total waiting time (WI) : is the sum of waiting time of all activities that bVlong t '. Clearly W, =

El, w.
Completion time (CI) : is the time at which processing of JI finishes We have the equality: Ci =

rd + E-'l 1(4,1 + dul)

Lateness (Li) "is simply the difference between the completion time and the due date of J, : Li = C1 - ddl.

Tardiness (TI) is delay in the completion of J1 against its due date ddit, Note that 7 always takes non-zero
value. Thus T, = max(0, Li).

Flowtlme (Fi) : is the amount of time that .,i spends in the system. F = C1- rdl or Fj - + dI=

Make-span (C,, ) : is the latest completion time of the entire orders. Cmso = maxC,

Work-in.Process Inventory(WIP) ; is the 6umm'aion of total waiting time. WIP = Z", IV,

Weighted Tardiness (Tvi) . is the weighted average of tardiness. Weight is considered as a penalty cost
of being tardy. %T = 1., wT,

The quality of a schedule is a function of the extent to which it achieves seer's preferences. We illustrate
the necessity of having user's preferences in the scheduling system by using a very simple example. We
assume the simplest factory with a single machine and two jobs. Each job conaists of a single activity to be
processed on the factory machine Let us further assume that the two jobs are released to the factory floor
at the same time.

Figure I shows two schedule results for this problem, Suppose schedule-I is generated In this schedule,
job 3 finishes before its due date but job A is tardy. The WIP of job A is indicated in figure 1 (the WlP
of job B is zero) Suppose one wishes to revise the schedule to reduce the tardiness of job A. In this simple

1
These wastraints have to be generabed ahen de..n with resources of capacit larger than one.
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Figure 1: Example of Conflicting Objectives

schedule, the only possible repair is to switch the positions of job A and job B. The schedule resulting from
this switch is schedule-2. In schedule-2, neither job is tardy but the WIP in schedule-2 (the WIP of job B)
is larger than in schedule-I Even in this extremely simple example, it is difficult to decide which schedule
is of higher quality without taking into consideration the preferences of the user Simply adding WIP plus
weighted tardiness and minimizing the sum may not be realistic since the relative importance of each of
these objectives in the overall sum reflects the tradeoffe the user is willing to make. These tradeoffs may
depend upon many factors, such as the importance of the client of each job, past shipping records, load of
a factory/warehouse and so on. The combination of those factors produces enormous number of contexts
in which user preferences are considered, thus making user's preferences difficult to capture and represent a
priori in the problem model. That is the reason that the authors think acquiring preferences adaptively is
important.

2.3. Constraint-Based Search Procedure

The constraint-based search procedure used in CABINS for applying a selected repair action (see section 4.4)
is based on [SF90, Sad9l]. Search is interleaved with the application of consistency enforcing mechanisms and
variable/value ordering heuristics that attempt to avoid dead-end states. A search state is associated with
each partial solution Each search state defines a new constraint satisfaction problem whose variables are the
viariables that have not yet been instantiated and whose constraints are the initial problem constraints along
with constraints reflecting current assignments. A schedule in built by opportunistically selecting an activity
to be scheduled and assigning to it a reservation, i.e. a resource and a start time. Each time a new activity
is scheduled, new constraints are added to the initial scheduling constraints that reflect the new activity
reservation. These new constraints are then propagated r'onsistency checking). If an inconsistency (i.e.,
constraint violation) is detected during propagation, the system backtracks. Otherwise the scheduler selects
a new activity to schedule and a reservation for that activity. The process terminates when all activities
have been scheduled successfully.

More specifically, search proceeds according to the following steps:

I. If all operations have been scheduled then stop, else go on to step 2;

2. Apply the consistency enforcing procedure;

3. If a deadl-erd is detected then backtrack (i.e. select an alternative reservation if one is left and go back
to step 1, oterw1e stop)
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4. Select the next operation to be scheduled (variable ordering heuristic);

6. Select a promising reservation for that operation (value ordering heuristic),

6. Create a new search state by adding the new reservation assignment to the current partial schedule
and go back to step 1;

The details of each step are as follows:

Consistency Enforcement : The consistency enforcing procedure is a hybrid procedure that differentiates
between precedence constraints and capacity constraints It guarantees that dead-end states only occur
as the result of capacity constraint violations. Essentially, consistency with respect to precedence
constraints is enforced by updating in each search state a pair of earliest/latest possible start times for
each un-scheduled operation.

Consistency enforcement with respect to capacity constraints tends to be significantly more expensive
due to the disjunctive nature of these constraints. For capacity constraints, a forward checking type
of consistency checking is generally carried out by the system. Whenever a resource is allocated to
an operation over some time interval, the forward checking procedure checks the set of remaining
possible start times of other operations requiring that resource, and removes those start times that
would conflict with the new assignment.

Variable Ordering : Because scheduling is NP-hard, it is important to focus search in ways that avoid
dead-end states. This is accomplished by utilizing good artiable (i.e., activity) and valse (i.e., reserva-
tion) ordering heuristics. A variable ordering determines which activity is going to be scheduled next
and value orderng determines which reservation should be assigned to the selected activity. The vari-
able ordering heuristic utilized in the system is called Activity Resource Reliance (ARR) [SF90 and
selects the most critical activl first, i.e., the activity with the highest probability of being involved
in a capacity constraint violation over particular time intervals. For more details on the approach, see
[SF90.

Valse Ordering : Once the activity to be scheduled next has been selected, the value ordering heuristic
determines which reservation to assign to the activity. The two value ordering heuristics relevant to
this paper are:

Least Constraining Value Ordering (LCV) : This heuristic selects the reservation that is the
least likely to prevent other activities from being scheduled. LCV uses an unbiased utility-function
(see figure 2) for each activity, i.e. there is no preference for a particular start time out of the
activity's available start times.

Greedy Value Ordering (GV) : This heuristic selects a reservation based on local preferences that
arc expressed via static piece-wise linear biased stility-function associated with each activity (see
figure 2). Thin biases value ordering to prefer activity start times with high utility values. For
scheduling problems with substitutable resources, static utilities that express differential resource
preferences are used in the selection of an activity's reservation

Experiments in [SF90] 2 on some rather small job shop problems (each with 20 activities) indicate that the
ARR variable ordering with LCV value ordering produces suboptimal schedules with minimal backtracking;
ARR variable ordering with GV value ordering with statically predetermined utility functions, henceforth
referred to as constraint-based scheduling (CBS), was shown to produce high quality schedules as compared
to the SMU heuristic ([KY89]).

In CABINS, schedule revision proceeds iteratively, one activity at a time. The set of activities that get
involved in constraint violations as a result of repairing one activity is the conflict set of the repair The repair

2The expcrusn nu wcr run on 20 randomly generated scheduling probtem.
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process unschedules the activities in the conflict set and modifier !he bias of the utility functions associated
with them. This bias reflects the effects of learning context-dependent user preferences and evaluations of
repair outcomes that have been stored in the case base. The search procedure with the modified tilihty
functins, ARR variable ordering and GV value ordering is used to s:hedule the conflict set activities that
got unscheduled during repair. In other words, each time an activity a repaired, CBS is used to reschedule
a subset of the activities (i.e. the members of the conflict set) of the )verall schedule with utity unctieones
tht have been adaptlively modified based on information in the case 'jase. Section 4.4 describes the repair
process in detail

3. Case-based Schedule Optimization

In order to optimize schedules to user's satisfaction, we need to know context-dependent user preferences and
represent them in the scheduling system to be exploited in the reasoning process. Rule-based approaches,
while having the potential to capture context-dependent tradeofli in rules, require considerable knowledge
acquisition effort [Pre0]. Our approach uses case-based reasoning (CBR) which has the potential for deal-
ing with noisy data [RK92, AKA91], acquiring user knowledge in complex domains [Cha93, MBS88], and
expending less effort in knowledge acquisition compared with knowledge acquisition for rule-based systems
[SM91, LMB91].

Because of the characteristics of the scheduling domain described in the pre 'ious section and our interest
in capturing context dependent user preferences, CBR seems a natural method for knowledge acquisition.
However, applying CDR to schedule improvement a numerical optimization problem, is very challenging. In
general, CBR has been used for ill-structured symbolic problems, such as planning [Ham89, KH92, Ve92], le-
gal reasoning [Ash87, RA88], argumentation [Syc89], conceptual design [SGK " 9l], medical diagnosis [Kot88]
where the primary concern has been plausibility or correctness of the resulting artifact (plan, argument, de-
sign) and computational efficiency of the process rather than artifact quality.

The challenges we faced were to decide what constitutes a case in the domain of schedule optimization
and what the case indices should be. The intuitive answer would he to consider a whole schedule as a case.
This solution is attractive since, if the right information could be teansferred from one scheduling scenario
to another, or with little adaptation, the new problem would be solved with relative ease. However, because
of the high degree of nonlinearity of scheduling constraints and objectives, a very small difference between
an input problem specification and the problems in the case base can in general result in large variations in
the results both in terms of amount of modification needed and the quality of resulting schedule. A second
difficulty with respect to having a whole schedule as a case came in the form of what indices to choose.
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Indexing a case in terms of the goals that must be achieved and problems that must be avoided [Ham89 is
a good guideline and has served many CBR systems well. However, in our domain, the goals to be achieved
(the optimization criteria) cannot be explicitly stated since they reflect context-dependent user preferences
and tradeoffs. Even if the optimization objectives were explicit, because of the nonlinearities of the problem,
retrieving a schedule in which the achieved objectives were the same as the desired ones in the current
problem would give little or no help in adapting the retrieved schedule to the current problem specifications.
Moreover, because of unpredictable ripple effects of constraint propagation and tight constraint interactions,
the problems to be avoided are not at all obvious, neither can they be discovered since a causal model for
scheduling cannot be assumed.

Since it is impossible to judge a priori the effects of a scheduling decision on the optimization objectives,
a scheduling decision must be applied to a schedule and its outcome must be evaluated in terms of the
resulting effects on scheduling objectives. Therefore, having a single scheduling decision as a case seemed to
provide advantages in terms of focus sad traceability of the problem solving process. Focus and traceability
mean that we could capture a user's evaluation of the results of a single scheduling decision in a case, and,
if the result was unacceptable, we could apply another scheduling decision to the same scheduling entity
until either all available scheduling decisions had been exhausted or an acceptable result had been obtained
Therefore, it became clear that it was better to have a single activity/operation of a scheduling job as the
"scheduling entity" on which a scheduling decision was applied. Since the result of a scheduling decision
needed to be evaluated with regard to the optimization preferences for a schedule as a whole, it is clear that
constructive methods which incrementally augment a partial schedule at every scheduling decision point
would be unsuitable for our purposes. Moreover, contextual information, -"hich can only be provided by
having a complete schedule, is very useful in applying CBR. Therefore, revision-based scheduling was chosen
as the underlying scheduling methodology.

Hence in CABINS, a case describes the application of a schedule resisio decsison n a single activity of a
jab Operationalization of a schedule revision decision is done by means of a sckedule repair action. We have
identified two classes of schedule repair actions (i.e. strategy and tactic), described in detail in section 4. We
use constraint propagation to propagate the effects of a schedule repair action to the rest of the schedule.
Each application of a repair results in a new schedule. The search space of CABINS is the space of complete
scht dules that incorporate acceptable user optimization tradeoffs. Hence the predictive case features that
are suitable for case indexing should be ones that capture good tradeoffs. Although schedule optimization is
ill-structured, we make the hypothesis that there are regularities of the domain that can be captured, albeit
in an approximate manner, in these features. In CABINS, indices are divided into three categories. The
first category consists of the global festures. Since the results of schedule revision associated with a single
activity pertain to the whole schedule, global features that express characteristics of a whole schedule are
relevant and operate as contextual information for selection of a particular repair action. The local features
comprise the second category. Since it is not possible to predict in general the bounds of repair necessitated
by application of a repair action (due to constraint ripple effects), and since reasoning about the effects of
a repair action on the whole schedule a priori would amount to unlimited lookahead analysis which is in
general intractable, we confine the range of lookahead analysis to a limited repair time horizon (see section
4.1). Associated with this time horizon, there are local features that allow CABINS to estimate the effects
of each repair action.

The schedule resulting from application of a repair action must be evaluated in terms of user-defined
tradeoffs. The user cannot predict the effects of modification actions on schedule correctness or quality since
a modification could result in worsening schedule quality or introducing constraint violations. Nevertheless,
the user can perform consirtent evaluation of the results of schedule revisions. This evaluation is recorded
in the case as part of the cae's repair history. The repair aistory constitutes the third category of case
features Therefore, the case base incorporates a distribution of examples that collectively capture repair
perforiance tradeoffs under diverse scheduling circumstances.

CABINS searches khe apace of complete schedules Control for this search is provided by CBR in two
ways- First, search control is provided through case-based selection of the next repair action to be applied
and second through ease-based evaluation of the outcome for the schedule that resulted from application
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of a selected repair action. The global and local features are the indices that are used to retrieve a case
that suggests the next repair action to be applied The features associated with the repair history are
used to retrieve cases that suggest evaluations of a repair outcome. For a more detailed description of case
representation and indexing, see section 4 1

4. CABINS Overview

In CABINS, there are two general types of repairs: repair strategts and rrpair tactics. A repair strategy is
associated with a particular high level description of classes of schedule defects. Each repair strategy has a
variety of repair tactics associated with it. The repair tactics are appropriate for particular specializations
of the defect classes. We have identified two general types of repair strategies: local patchcng and model
modification Local patching is the selection of repair actions that result in changing the sequence of activities
allocated to different resources, or rearranging resource assignments. Local patching is i general less costly
and disruptive to factory operations. For example, it the repair goal is to reduce job tardiness, specific
local patching strategies include "reduce the slack between activities in the tardy job", and "reduce the
idle-time of resources needed by activities in the tardy job". Model modification reformulates the problem
by changing model parameters, such as the number of jobs to be scheduled, or global constraints such as
changing release or due dates, increasing resource capacity or increasing number of shifts. Model modification
strategies facilitate the solution of the problem, since they amount to global constraint relaxations. However,
in practice, model modification strategies are costly to implement (e g., buy new equipment, pay for extra
shifts in a factory, subcontract jobs to outside contractors). The default CABINS strategy is local patching,
a computationally more challenging task since the system must improve the schedule without relaxing the
already imposed constraints (except due date constraints). If local patching is unsuccessful in fulfilling the
repair goal, the repair episode is considered a failure. Our experiments were run within these more stringent
assumptions

Figure 3 depicts the overall architecture of CABINS. CABINS is composed of three modules: (1) an
initial schedule builder, (2) an interactive schedule repair (case acquisition) module and (3) an automated
schedule repair (case re-use) module.

CABINS can operate in the following modes that exhibit different leels of autonomy:

" Knowledge acquisition interactive mode to acquire urtr preferences Rnd gencrate the rnse hase.

* Decision-support interactive model where the previously acquired case base that incorporates user
preferences suggests revision actions and evaluation outcomes to the user who can accept a suggestion
or override it with a new suggestion.

" Automatic mode where previously acquired user preferences are re-used to guide scheduling decisions
without any interaction with the user.

In the experiments reported in section 5, CABINS operated autonomously. The repair process in au-
tonomous operating mode has the following basic steps-

1. A job in the initial suboptimal schedule is randomly identifies to be repaired. The random job selection
is necessary since CABINS does not have explicit optimization criteria that it could use to select jobs
to be repaired in a more informed fashion.

2 The job under current repair consideration is called the focaLjob and the activity under current repair
consideration is called the focLsctivity. Repair is performed one activity at a time. Activities in
a focal.job are repaired in a forward fashlio starting with the earliest activity of that job that has
"enough" upstreani slack This mechanism focuses attention on activities that have enough slack so
they can be moved, thus (a) avoiding unnecessary computations, and (b) limiting the amount of ripple
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effects (schedule disruption) that could be caused by moving activities that are too tightly scheduled
and whose move would cause many constraint violations 3

3 A repair strategy/tactic is selected for the current problem using CBR and is applied. Application of a
repair tactic (described in section 4.4 ) consists of three parts- (a) identifying the activities, resources
and time intervals that will be involved in the repair, i.e. the current conflict set, (b) change the utility
functions associated with activities in the conflict set, and (c) using the constraint-directed scheduler
with utilities assigned in step (b) to make the resource reservations for the activities identified in step
(a).

4. After a repair has been executed, CBR is used to predict and evaluate the repair outcome in the
context of the current case-base.

5. If repair is deemed a success, find next activity to repair, else (if repair outcome is a failure), CBR is
invoked to select the next repair tactic to repair the current focalactivity.

4.1. Case Representation

The repair process should exploit knowledge relating both to the continuing validity of various scheduling
decisions, the flexibility of current time and capacity constraints, the trade-offs that are implied by a partic-
ular repair, and whether the repair was successful or unsuccessful according to the user's judgment. Figure
4 shows the information content of a case. Appendix A shows an example of a case instance that is in
CABINS's case base.

A case describes the application ofa particular repair action to an activity. Because of the ill-structuredness
of the domain, case features are heuristic approximations that reflect regularities of revision-based schedul-
ing. For example, one of the regularities that would be useful to represent would be repair flexibility, i.e
the notion of how much freedom there is in the current schedule for moving an activity to a new position.
Global case features (figure 4) reflect potential repair flexibility for the schedule as a whole. High resource
utilization, for example, often indicates a tight schedule without much repair flexibility. High standard
deviation of resource utilization indicates the presence of highly contended-for resources which in turn in-
dicates low repair flexibility. Local features reflect flexibility for schedule revision within limited temporal
bounds. In particular, the temporal bound that CABINS uses is a time interval called repair time horizon
The repair time horizon of a focaactivity is the time interval between the end of the activity preceding the
focal.activity in the same focaljob and the end of the focalactivity (see figure 5). The local features that we
have identified are in the same spirit as those utilized in lOST881. For example, predictive-shift-gain predicts
how much overall gain will be achieved by moving the current focal-activity earlier in its time horizon. In
particular, it predicts the likely reduction of the focalactivity's waiting time when moved to the left within
the repair time horizon.

The repair history records the sequence of applications of successive repair actions, the repair effects
and the repair outcome. Repair effects describe the impact of the application of a repair action on sched-
ule optimization objectives (e g., weighted tardiness, WIP). Typically these effects reflect tradeoffs among
different objectives. A repair outcome is the evaluation assigned to the set of effects of a repair action
and takes values in the set ('acceptable', 'unacceptable'l This judgment is made in the training phase and
gets recorded in the case base. An outcome is 'acceptable' if the tradeoffs involved in the set of effects for
the current application of a repair action is judged acceptable If, during case acquisition, the outcome is
judged as "unacceptable", the application of the repair tactic is considered a failure and an explanation that
expresses tradeoffs with respect to balancing favorable and unfavorable outcomes on optimization objectives
is provided. If during CBR repair the repair outcome is deemed unacceptable, another tactic is selected from
success cases to repair the same activity, using as indices global and local case features, the failed tactic,
and the indication of the failed outcome. This CBR invocation retrieves similar past failures of the tactic
that mere successfully repaired and the tactic that was eventually successful in fixing the past failure. The

3
1in the cw'enct implementation, "enosgh" upstream siwin i heuristically deternied s taee the tardness of the focaLiob
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assumption here is that a similar outcome for the same tactic implies similarity of causal structure between
the past and current case. Therefore, the eventually successful tactic of a similar failure can potentially be
successful in the current problem

4.2. Case Acquisition

In CABINS, the session starts with an empty case-base. A set of training problems are presented to the
user who interacts with CABINS to repair schedules by hand. At first, the user selects the repair tactic that
is deemed to be appropriate and uses CABINS's tactic application procedure (see section 4.4) to apply the
chosen tactic to the current schedule.

The effects of the repair are calculated An effect describes the result of the repair with respect to
one or more repair objectives. Effects pertain to either the schedule as a whole or to ajob Possible effects
pertaining to a schedule as a whole are- weighted tardiness, average resource utilization, deviation of resource
utilization, total schedule WIP. Effects that pertain to a job are changes in the tardiness of the job, changes
in work-in-process inventory, or changes in resource assignment. So, for example, the tradeoff between
utilizing a less preferred machine to reduce a job's tardiness can be reflected in these effects. Due to tight
constraint interactions, these effects are ubiquitous in job shop scheduling and make schedule optimization
extremely hard. When application of a repair tactic produces a feasible result, the user must decide whether
the resulting schedule is acceptable or not based upon those calculated effects. An example of these effects
is shown in Appendix A.

An outcome is judged as unacceptable, if the schedule resulting from the application of the revision
heuristic does not make any improvement with respect to the user's criteria. This could happen because
harmful effects outweighed, in the user's judgment, the effected improvement. For example, if reduction of
job tardiness enforces increased utilization of low-quality machine, although the total cost of this repair may
be low, it may be unacceptable to a user who worries that the quality of resulting products might be low.
Therefore such a repair might be judged as unacceptable. The user's judgment as to balancing favorable and
unfavorable effects related to a particular optimization objective constitute the explanations of the repair
outcome. The user supplies an explanation in terms of rating the importance of each effect (denoted by
"salience" in figure 4). At the end of each repair iteration, the applied repair tactic, the effects of the repair
and user judgment / explanation as to the repair outcome are recorded in a case along with the current
problem features. If the effects are acceptable to the user, the repair outcome is recorded as "acceptable"
and the user tries to repair another activity If the user does not like the tradeoffs that are incorporated in
the repair effects, then the outcome of the current repair tactic ("unacceptable"), the effects calculated by
CABINS and the salience assigned by the user are recorded in the repair history of the case, Subsequently,
the user tries to utilize another repair tactic to repair the same activity.

The process continues until an acceptable outcome is reached, or failure is declared. Failure is declared
when all available tactics have been used to repair an activity, but the user finds each repair outcome
unacceptable. The sequence of application of succesive repair actions, the effects, user's judgment and
explanation in case of failed application are recorded in the repair history of the case. Two remarks are
in order here with respect to case acquisition. First, a new case is acquired only when a new activity is
under repair. When an activity is repeatedly repaired due to unacceptable repair tactic application results,
no new case Is acquired, but the repair history of the same case is augmented by each successive repair
tactic application, its effects and outcome. In this way, a number of cases are accumulated in the case-base.
In section 5, we describe how the cases used in our experiments were acquired Moreover, in section 5.3
%e report current experimental results to investigate the tradeoffs incurred when CABINS operates with
different size case bases.
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4.3. Case Retrieval

Once CABINS has constructed a case-base from training data it can perform schedule repair without any
interaction with its user. Retrieved cases are for three purposes. selection of a repair tactic to be applied,
evaluation of the resulting schedule after application of the selected repair tactic, and, in case of failure,
retrieval of a tactic that had fixed a previous similar failure In each of these three situations, CABINS
utilizes a different set of indices for case retrieval. In order to retrieve cases to select a repair tactic, global
and local features of the current case (the current focal.activity) are used. The process of applying a repair
tactic is described in section 4 4.

After a repair has been applied and, if the result is a feasible schedule, repair evaluation is performed
through CBR. Using the effect features (type, value, and salience) as new indices, CDR is invoked and
returns an outcome in the set (acceptable, unacceptable)

If the outcome of current revision is decided as unacceptable, CABINS performs another CBR invocation
using as indices the conjunction of the current outcome (unacceptable), the failed heuristic and the case global
and local features to find another possibly applicable revision heuristic. Invoking CBR with these indices
retrieves cases that have failed in the past in a similar manner as the current revision This use of CBR
in the space of failures is a domain-independent method of failure recovery [Syc88, Sim85], and allows the
problem solver to access past solutions to the failure. If the result is acceptable, then CABINS proceeds to
repair another activity.

For each of the three case retrieval situations described above, CABINS uses a k-Nearest Neighbor method
(k-NN) [Dasg09 for case retrieval. The space over which the k-Nearest Neighbor calculation is done is the
set of features corresponding to each of the three retrieval situations. For example, for case retrieval to
select a repair tactic, k-NN is used over the space defined by the values of global and local features. A k-NN
calculation finds the k-nearest neighbors, where k is some constant of the current problem from the training
data based on pre-determined similarity measures and, in its simplest form, a single nearest neighbor is
found and chosen as a classification result.

We selected k-NN instead of I-NN for the following reasons. 4 In domains, such as scheduling that do
not have clear predictive features due to lack of causal structure, there can be many matches other than the
nearest match that can potentially contribute to accurate classification Ifa large number of near neighbor
cases are of the same category (e.g. suggesting swap as the tactic to be applied), a higher confidence can
be given to the classification result than if the near neighbors are of many different categories (e.g. some
suggesting left-shift and some suggesting swap). For example, in deciding the repair tactic to be applied to
the current problem, suppose that we have five nearest neighbors. Three of them are left.shift cases, whose
similarity to the current problem is 0.9, 0.2 and 0.1 and the other two are swap cases, whose similarity is
0.8 and 0.75. If we use 1-NN, leftshift is selected as a repair tactic because the nearest retrieved case (with
similarity 0.9) uses leftjhift as a successful revision tactic. In this method, the occurrence of multiple cases
suggesting a different classification result with relatively high similarity could potentially be ignored. We
as- the sum of the similarity in k-nearest neighbors as a selection criterion, instead of using the frequency of
appearance of a class among k-nearest neighbors, in order to avoid the situation where dissimilar caseb may
have an undue influence on the classification result s. In the previous example, swap is selected as a repair
tactic by CABINS (since its total similarity is 1.55 vs.1 2 of left.shift).

The similarity between a case and the current problem is computed in CABINS as follows-

In the current implementation of CABINS, k is set to s.

"This method has been successfilly applied in domains %ithout clear causal structure, such a Engliqh word pronunciation
and text classificatin in [SW86, CMSW921.
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D a = CaseFeaturec - ProblemFeature,Distance. - (~a*enCC) X EDev)

SimilaritX = exp(-Distancei)

where Salience) is the salience ofi-th feature of i-th case in the case-base, CaseFeature, is the value
ofj-th feature of i-th case, ProblemFeature, is the value of j-th feature in the current problem, E.Desj is
the standard deviation ofj-th feature value of all cases in the case-base, and Distance, is the dissimilarity
between i-th case and the current problem. And Similarity, is the similarity between i-th case and the
current problem.

We utilize the normalized Euclidean distance to measure the dissimilarity between a case and a problem.
This prevents certain features from dominating distance calculation merely because they have large numerical
values.

4,4. Repair by CABINS

Repair of a schedule is performed by applying the repair tactics selected in each repair iteration by CBR.
The repair tactics currently available in CABINS are:

left-slide i try to move focal-activity on the same resource as much to the left on the timeline as possible
within the repair time horizon, while preserving the sequence of all the activities.

left.shift - try to move focala.ctivity on a same resource as much to the left on the timeline as possible
within the repair time horizon while minimizing the disruptions.

left.shift.into.alt : try to move focalactivity on a substitutsble resource as much to the left on the
timeline as possible within the repair time horizon while minimizing the disruptions.

swap : swap the focal.activity with the activity on its left on the same resource within the repair time
horizon which causes the least disruptions

swapzito-alt : swap the focal.activity with activity on its left within the repair time horizon which
causes the least disruptions by changing the resource assignment of the focal-activity to a substtutable
frserce.

give-up : give up a further repair of the current focolArtivity

In recent work we have expanded the set of tactics to 11 and are currently performing additional cxper-
iments with them. The process of applying a repair tactic has the following steps:

1. Determinte the predictive start time of the focal.activity being repaired The predictive start time of
an activity is a temporary start time that is calculated by each repair tactic as a desirable start time
for a focal.activity. The ripple effects of a repair, the conflict set, consists of alL the activities that
may need to be re.scheduled due to constraint violations arising from moving the focal.activity to the
predictive start time. Note that this predictive start time may not be exactly the same as the start
time that will result from execution of the repair (step 5 below).

a For left shift or leftshift-intoalt, the "predictite" start time is the start time that minimizes
capacity over-allocation as a result of moving the focal.activity on the same (or substitutable)
resource within the focaLactivity's repair time horizon.
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* For swap or swap-into.alt, the "predictive" start time is the start time that causes the least
amount of precedence constraint violations on the same (or substitutable) resource within the
focal.activity's repair time horizon.

2. Project the effects of moving the focalactivity to the predictive start time and designated resource
This is done by performing constraint propagation to identify capacity constraint violations.

3. Adjust the reservations of all the activities in the conflict set by simple right-shifting or left-shifting
so that all conflicts are resolved.

4 Change the bias of the start time utility function (see Fig. 2) of the activities in the conflict set in
favor of start times calculated in step 3. If the tactic being applied involves a substitutable resource,
also change the resource utility-function so that the substitutable resource has utility higher than
the resource on which the focal.activity is currently scheduled. Changing the utility functions biases
selection of start times by the value ordering heuristic (section 2 3) in favor of those with higher utility
values, thus reflecting the preferences encoded in the case base.

5. Unschedule the focal.activity and all members of its conflict set and re-schedule them using the oppor-
tunistic constraint-directed scheduler with ARR variable ordering, GV value ordering and the utility
functions defined in step 4

6 Restore the start time utility-function of the affected activities to reflect no bias for the next repair
iteration.

The above process results in a conflict free revised schedule. The effects of the revision are calculated,
and CBR is invoked with the effects as the relevant indices to evaluate the repair outcome. Note that an
activity A can be moved under two different situations. First, Al can be moved when it is the current
focal-activity. Second, it can be moved when it is in the conflict set of another focal-activity.

Figure 6 gives a detailed example that graphically shows how the local repair action IefLshift can be
applied In this simplified example, we have three jobs and each of them has three activities. Suppose the
current focalactivity is A3 and Ief.shift has been chosen as the repair tactic. The first step of revision is
to find an appropriate start time for activit) A

s , Leftshift dictates that activity A' should be starting as
soon as possible within the given repair time horizon. Therefore, the utility function associated with Al that
used to reflect the preference for starting Al as late as possible (indicated in the figure by "Utility function
of A31 before repair") is adjusted accordingly. In the figure, the new utility function is indicated as "Utility
function of A' after adjustment". The next step is to find the conflict set which consists of all affected
activities by moving As to the left The members of the conflict set are shown in the figure. The utility
function of each activity in the conflict set is also adjusted to refect these changes. In the figure, we show
as an example the adjustment of the utility for activity Al. After these utility functions have been adjusted,
the focal-activity and the activities in the conflict set are unscheduled and the constraint-based scheduler is
called to re-schedule them. The resulting repaired schedule is shown at the bottom of the figure 6.

4.5. An Example

We briefly illustrate the repair process with a very simple example schedule to be repaired shown in figure
7 . In the gantt chart, each row shows assignments of activities on each resource, along the timeline, and
each white box corresponds to an assignment of an activity. The number inside a white box identifies the
job which the activity belongs to. For example, the first activity on resource2 is the first activity of Job2,
identified in our text as Al. We write R, to indicate the ith resource, J, to identify the jth job and Al to
identify the kth activity of job n The example has ten jobs (J1 , .. , J10) and each job has five activities
with the linear precedence conbtraint. (e g., A" BEFORE A2 ..... A" BEFORE As) Resources RI and R2 ,
R3 and Ri are substitutable; resource R4 is a bottleneck Suppose that the current focaljob is Js and the
current focakactivity is A,. The indices used to retrieve the similar cases from the case-base are calculated
as follows.
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Figure 7: Original Schedule Results;

1. Global features:

Weighted Tardiness: In this particuiar case, the weighted tardiness of the whole schedule is 460.
Resour~e Utilization Average: This feature can be calculated as the ratio of overall utilization

of resources to overall availability of resources. The value of this feature is 0.544.
Resource Utilization Deviation: The deviation of resource utilizations across the different re-

sources is equal to 0 032.

2. Local features:

Waiting Time: This feature is defined as the time elapsing between the completion of the preceding
activity (A3) and the start ofthe present focal acti% ity (A14). In ourceit is equal to 1180-620=
560.
The predictive -shift-gain is computed in CABINS as follows:

precdici"zc.stari..ime - current.8tart-limexreaablt
waiting lmexrcirilu

where y.'cdicive.stariiimc is defined in section 4.4, current .startJime arnd wailingiime are
the parameters associated with focal activity WVe heuristically estimate the repairability within
the given repair time horizon by a hyperbolic tangent function.
For our example, the value of predwlsrr..shift-gain for A14 is 0 705.

Predictive Alt Shift Gaint The calculation of this feature is very similar to that of predictishiftjlgain.
In this case, since the required c-source of activity A34 is a bottleneck resource, R41, that does not
have any substitutable resources, the value of predictive.allsijt-gain is 0.

Predictive Swap Gains, To calculate predircime.swap.jgsin, CABINS uses the same formulas as for
predictive-shift-gca, but the predictivauiort-uimte is calculated differently. (See Section 4.4) For
this example, predictire..swap-gain is 0.96

Predictive Alt Swap Gain: The value of this feature is 0 since A48 requires the bottleneck resource
R4 which does not have substitutable resources.

Case based retrieval is performed with the global and local indices It turni, out that case-based retrieval
found the case shown in Appendix A as the most similar and thus -~lected #uep as the repair tactic for the
focal-activity Al.

To apply swap, CABINS calculates the activity with which A14 will he snapped To do this, CABINS
selects the activity which, if swapped %%ith A4, will result in least amount of precedence constraint violations
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Figure 8: Schedule Resul, .ter Repair on As

From the figure 7 we can see that actually there are 5 activities swappable with A4 within the repair horizon.
These activities are: A4

0 , A4, A4, A3 and A4. At first glance, it may appear that it would be better if A was
swapped with A40 because by doing so A4 will be finished as early as possible. However, it is not the best
choice since if A4 is swapped with A41, it will cause a lot of downstream ripple effects contrary to the primary
intention of keeping repair effects as localized as possible. After calculation of the estimated possible effects,
CABINS decides to swap Al with A4. Job J4 has weight 3 and weighted tardiness 3 x (1370- 1320) = 150.
The effect of applying the swap tactic is that A4 and As are unscheduled on P4 and As is re-scheduled to
start at time 1090 (the start time of activity Al prior to the swap) Due to the larger duration of activity
A1, now there is the ripple effect of a precedence constraint violation between activity Al and its successor
activity A on resource R2. (In general, many activities could be affected and must be rescheduled as
described in section 4.4). Constraint propagation discovers this constraint conflict and shifts activity AS
further to the right on resource R2 resulting in the repaired schedule shown in figure 8.

Then, the effects of repairing Al are calculated, CABINS estimates the local effects on the focal-job
Js and calculates global effects on the whole schedule. Machine utilization did not change but J& had an
estimated decrease in weighted tardiness of 180 time units and an estimated decrease in WIP of 200 units s;
J4 had an increase in weighted tardiness of 150 units and an increase in WIP of 750 units. Global weighted
tardiness decrease is 180 - 150 = 30 and global WIP increase is 750. CBR is invoked using the these effects
and applied repair tactic as indices to determine whether this repair outcome is acceptable. If there are more
success cases than failure cases in the retrieved k-nearest neighbors, it is considered that the effects reflect
tradeoffs in the user's preferences (in this example, l'tle weight on WIP) and the outcome is considered
acceptable. If, on the other hand, a failure case is retrieved, then the outcome is considered unacceptable,
reflecting the user preferences for minimization of %eighted tardiness without the expense of increasing WIP.

In th:s example, CBR invocation with effects as indices retrieves as the closest matching case, the case
shown ii, Appendix B, where the effects match the effects associated with the swap repair tactic. Therefore,
the outiome is deemed "acceptable".

5. Evaluation of the Approach

Wte conducted a set of experiments to test the foll"-oing h-poth-es

1. Our approach is potentially effective in capturing user preferPces and optimiation tradeoffs that are
difficult to model.

2. Our approach improves schedule quality irrespe liv of method of initial schedule pera-t...

OTh... d.r .ces ceaot be precisely determined uni.:l i the !wt ecvty 4 J, 4 , k rm"ed
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3. Our approach produces high quality schedules at much lower computational cost as compared to
simulated annealing, a well-known iterative repair method

4. Our approach is suitable as a reactive scheduling method because it maintains high schedule quality
and minimizes disruptions in the face of execution time failures.

These hypotheses are difficult to test since, due to the subjective and ill-defined nature of user preferences,
it is not obvious how to correlate scheduling results with the captured preferences or how to define quality
of a schedule whose evaluation is subjective.

To address these issues, we had to devise a method to test the hypotheses in a consistent manner. To
do that, it is necessary to know the optimization criterion that would be implicit in the case base, so that
the experimental results can be evaluated. In the experiments reported here, we used two different explicit
criteria (weighted tardiness; WIP+weighted tardiness) to reflect the user's optimization criteria and built a
rule-based reasoner (RBR) that goes through a tris!-and-error repair process to optimize a schedule. Since
the RBR was constructed not to select the same repair action after application of a selected repair tactic
was evaluated as unacceptable, it could go through all the repair actions before giving up further repair.
Each of these applications of a repair action would be gathered in the repair history of the case for the
particular activity under repair. For each repair, the repair effects were calculated and, on this basis, since
the RBR had a predefined evaluation objective, it could evaluate the repair outcome consistently. Thus, we
used the RBR with different rules each time to generate different case bases, each for a different explicit
optimization objective. Naturally, an objective, though known to the RBR, is not known to CABINS and
is only implicitly and indirectly reflected in an extensional way in each case base. By designing an objective
into the RBR so it could be reflected in the corresponding case base, we got an experimental baseline against
which to evaluate the schedules generated by CABINS.

We evaluated the approach on a benchmark suite of job shop scheduling problems where parameters,
such as number of bottlenecks, range of due dates and activity durations were varied to cover a broad range
of parallel machine job shop scheduling problem instances. In particular, the benchmark problems have the
following structure: each problem has 10 orders of 5 activities each. Each order has a linear process routing
specifying a sequence where each order must visit bottleneck resources after a fixed number of activities,
so as to increase resource contention and make the problem tighter. Two parameters were used to cover
different scheduling conditions: a range parameter, RG, controlled the distribution of order due dates and
release dates, and a bottleneck parameter, BK, controlled the number of bottleneck resources. To ensure
that we had not unintentionally hardwired knowledge of the problem into the solution strategies, we used a
problem generator function that embodied the overall problem structure described above to generate parallel

job shop scheduling instances where the problem parameters were varied in controlled ways. In particular,
six groups of 10 problems each Aere randomly generated by considering three different values of the range
parameter (static, moderate, dynamic), and two values of the bottleneck configuration (I and 2 bottleneck
problems). The slack was adjusted as a function of the range and bottleneck parameters to keep demand
for bottleneck resources close to 100% over the major part of each problem. Durations for activities in each
order were also randomly generated,

Generating problem instances "in the neighborhood" of a problem by controlled variation of problem
parameters is a well-accepted method in Operations Research and knowledge-based scheduling communities
for evaluating the performance ofocheduling methods (e.g., [Sad9l, SC93]) The problem instances, although
randomly generated, shared features of problem structure (e.g , each problem has 5 machines, of which I
and 2 machines are bottlenecks, and substitutable machines exist for the non bottleneck machines ete), and
CBR can exploit the captured regularities in the structure of the problems for transfer to later problem
solving. It is interesting to note that this transfer carries over even if the number of orders is varied (see
Table 5).

The benchmark problems are variations of the problems originally reported in [Sad9l] and used as a
benchmark by a number of researchers (e.g. (Mus93. LS93]). Our problem sets are, however, different in two
respects (a) we allow substitutable resources for non-bottleneck resources, thus solving the parallel machine
rather than the simple job shop scheduling problem, and (b) the due dates of orders in our problems are
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tighter by 20 percent than in the original problems.

A cross-validation method was used to evaluate the capabilities of CABINS. Each problem set in each
class was divided in half The overall training sample, consisting of 30 problems, each of which has 50
activities, was repaired by RBR to gather cases As has been explained in the section on case acquisition
(section 4.2), a case is acquired for each activity that is the current focal.activity (irrespective of the number
of tactics available or number of tactics used in the activity's repair). Of course, an activity (and consequently
a job) may be repaired more than once during an overall repair cycle, since it is repaired as a focal-activity
but also as an activity in the conflict set of another focal.activity, and thus must be moved. Allowing each
activity to be a foca-activity once for each problem would give a maximum of 30X50 = 1,500 cases for each
training sample (for each different experimental optimization objective) In practice, some of the activities
did not become focal-activities to be repaired because they did not have enough upstream slack (see section
4), so that for each training sample, CABINS was trained with approximately 1,100 cases. These cases were
then used for case-based repair of the validation problems (the other 30 problems). We repeated the above
process by interchanging the training and the test sets Reported results are for the validation problem
sets. Since it is not possible to theoretically predict the bounds of repair or the global optimum, In the
experiments, CABINS was allowed to run for three overall repair cycles.

5.1. Preference Acquisition

To test the hypothesis that CABINS could acquire user preferences, we constructed through RBR two case
bases, the first to reflect the user's preference for repairs that minimize weighted tardiness and the second
to reflect the more complex criterion of minimizing the combination of weighted tardiness and WIP. The
cases constituted the only source of knowledge for CABINS. In other words, there was no objective given to
CABINS explicitly. The case-bases were used both as a source of suitable repairs, and also as a source of
advice regarding repair evaluation.

Graphs in Fig. 9 show the comparison of the performance by CABINS using "weighted tardiness" case
base (labeled in the graphs as CABINS(WT)) and the performance by CABINS using the "weighted tar.
diness and WIP" case base (labeled in the graphs as CABINS(WT+WIP)). From the results, we observe
that CABINS(WT) generated higher quality schedules with respect to minimizing weighted tardiness than
CABINS(WT+WIP) in all six problem classes. Conversely, CABINS(WT+WIP) generated higher quality
schedules with respect to WIP, and weighted tardiness plus WIP than CABINS(WT) in the all problem
classes. In a nutshell, CABINS(WT) tries to optimize a schedule only in terms of weighted tardiness and
neglects WIP, but CABINS(WT+WIP) takes into account the tradeoffs between weighted tardiness and
WIP in schedule repair. These results indicate that CABINS can acquire different and subjective user
preferences on the tradeoffs of diverse objectives in scheduling from the cases. Thus in our approach, un-
like traditional heuristic scheduling approaches [Fe82, MP93J, it is not necessary to devise a particular
heuristic to suit the optimization criterion. Only the case-base must be changed for different optimization
objectives. In addition, unlike traditional search-based scheduling approaches such as branch-and-bound,
dynamic programming, tabu search, simulated annealing and so on, our approach doesn't require an explic-
itly represented objective function. CABINS has the potential for inducing more complicated form of user's
objeztives (e.g. allowing handling of exceptional situations) from the cases. It is true that user's objectives
could be elicited by intensely interviewing domain experts and represented in the form of rules as we have
done in constructing RBR modules to gather cases in the experiments. But, (1) rule-based knowledge ac-
quisition is extremely laborious (Pre901 and (2) a scheduling problem is so ill-structured that even a domain
expert cannot have a sufficient knowledge foe making a good schedule efficiently [KLSF91J. Nevertheless,
the CBRbased methodology of CABINS can induce efficient control model from the cases obtained through
the applications of insufficient rules.

In another set of experiments with objective WIP+WT, wve used RBR itself to repair the set of test
problems. Table 1 shows that repair by CABINS is about 40% more efficient than repair by RBR and it
improves the quality of schedules by about 12% more than repair by RBR. A potential explanation for these
results is that, as described in section 4.3, CABINS can effectively utilize failure information stored in the
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Figure 9: Scheduling Results with Different Case Bases

Table 1. Repair by RBR and CAB3INS

WT WIP WT+WIP CPU Se.
Reai byRB 375 2 1446.8 818 9.

1Repair by CABINS 1405 3 1195 0 1600.3 29 5 _
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cases (Refer to [MS94] for more details and some experimental results)

5.2. Predictive and Reactive Scheduling

We evaluated CABINS against other scheduling methods using standard criteria (e g [0ST88, ZDG90])
for evaluating schedule revision quality. These criteria are also appropriate for planning. These criteria
were: (a) Attendance to scheduling objectives- what it the quality of the revision with respect to the
desired optimization criteria? (b) Amount of disruption: how many changes to the original schedule are
made? (c) Efficiency of revision: how quick is the revision process? In particular, can the revision process
be responsive to schedule execution in the sense of allowing execution to proceed as rapidly as possible?
Although we subscribe to the view that both schedule generation and schedule repair can be viewed as an
iterative repair process, for ease of readability, we have described our experiments in two separate subsections
5.2.1 and 5.22.

Schedule quality and efficiency is important in both predictive schedule generation and reactive schedule
management. Responsiveness ofthe schedule revision process is crucial during handling of schedule execution
failures (and opportunities) to patch up the schedule quickly and allow execution to proceed. Minimizing
schedule disruption is most important during reactive management of a schedule. Once a schedule starts
executing, it is important to preserve continuity of domain activity, since there could be substantial cost in
having to attend to discontinuities introduced by reactive schedule revision (e.g. set-up costs when resource
assignments have been changed). These criteria must be balanced and traded off against each other.

The results show that in predictive schedule generation, the methodology improves the quality of sched-
ules generated by a variety of scheduling methods and also generates schedules of higher quality along a
variety of optimization objectives with lower processing cost as compared to simulated annealing, a well-
known iterative optimization method (JANMS89, ZDG90, LAL92]. In recovering from execution time failures,
'he approach (1) attends to schedule quality both in terms of optimization objectives, and disruption, and
(2) is responsive in that it allows continuation of execution without delays in response to execution failures.

5.2.1. Predictive Schedule Repair

In predictive schedule repair, the primary objective in our experiments was to optimize schedule quality at a
low computational cost. To investigate our experimental hypotheses, we compared CABINS with Simulated
Annealing. Simulated Annealing (SA) is a well known iterative improvement approach to combinatorial
optimization problem,, which is reported to be able to yield solutions of better quality at the cost of larger
computational efforts in a number of combinatorial optimization domains, such as computer-aided design
of integrated circuit, image processing and neural network theory ([JAMS91, LAL92]). SA has also been
applied to job-shop scheduling domain for the makespan objecti iid is reported ([LAL92]) to have a
potential of finding shorter makespans than the state-of-the-art tailored heuristic, e.g. shifting bottleneck
procedure ([ABZ$8]).

The details of the our SA implementation are given as follows:

1. Generate an initial schedule

2. Select an activity randomly

3. Unless all the available repair actions have been tried, do the following-

(a) Select a repair action among the remaining sn-tried repair tactics,

(b) Apply the chosen rcpair tactic to the activity under repair;,

(c) Evaluate the resulting repaired schedule with respect to the explicit objective (WIP-WT)
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Table 2: Repair by CABINS and SA based on Different Methods of Initia! Schedule Generation

____________ WT. WIP 3 WT+WIP 31 CPU Sec.
ISchedule by EDD ] 956.0 1284.6] 22406 31 01
[Repair by CABINS 349.5 1311.2 1660.7 73.5
Repair by SA 340.5 1333.4 1673.9 3882

1 Schedule by %VSPT ]j584.0 1241.0 3 1825.0 11 0.1
Repair by CABINS 321.0 1254.9 15759 72.1
Repair by SA J 328.5 1320.4 16489 398.3
Schedule by RAcM 3 556.0 12420 1 1798.0 II 0.1

[Repair by CABINS 305 3 1254.9 1570.2 84.9
[Repair by SA 330.1 1290.8 1620.9 450 5!Schedule by CBS 111173.0 1481.0 2654.0 1 17.4

Repair by CABINS 4053 1195.0 1600.3 296.5
Repair by SA 395.5 1220.0 1615.5 1380.0

(d) If the resulting schedule is better than the schedule before repair in terms of the objective, then
the revision procedure goes on to repair next randomly-chosen activity;,
Otherwise the revision procedure goes on to repair next randomly-chosen activity with probability
czp(-A/Temp), in which A is defined as the difference of schedule evaluations after repair and
before repair.

The temperature Temp is updated (decreased by a fixed percentage every time) when a fixed number
(currently 250) of repair actions have been applied and the revision procedure will be terminated if a pre-
set maximum computational effort has been reached. We ran each experiments 5 times and reported the
best results amon, hese 5 separate runs (since SA incorporates a probabilistic factor, the results are not
necessarily the same across the different experimental runs).

In order to test the generality of the approach, we repeated the same set of experiments 4 times, where
each time the initial (seed) schedule was generated using a set of well regarded dispatch heuristics and a
constraint-based scheduler (CBS) The dispatch rules selected to generate the initial schedule are widely used
in practical job shop scheduling problems, namely the Earliest Due Date (EDD) rule, the Weighted Shortest
Processing Time (WSPT) rule and the \WSPT with order time urgency factor (R&M) rule. These heuristics
have been reported to be particularly good at reducing tardiness under different scheduling conditions
[MP93]. We also used the constrained-based scheduler (CBS), which uses ARR variable ordering heuristic
and GV value ordering heuristic with pre-determined biased start time utility-functions (see section 2.3).

In our experiments, the user's objective function was assumed to be minimizing weighted linear combi-
nation of vork-in-process inventory (WIP) plus weighted tardiness. This is a multi-objective function that
is difficult to optimize heuristically. WIP and weighted tardiness are not always compatible with each other.
There are situations where WIP is reduced, but weighted tardiness increases.

Table 2 presents the average results of all 60 problems in the benchmark Based on the results, we make a
variety of observations. Fi-st, CABINS improved the initial schedule across all scheduling methods according
to the objectives. It should be noted that these dispatch heuristics have been extensively used in Operations
Research experimentation with very good results [Bak74, MRV84]. The initial schedules generated by the
dispatch heuristics can be considered as local minima, in the sense that they cannot be easily improved.
For example, these initial schedules are very tight, in that there is no on-purpose machine idleness. We
conjecture that it would be more difficult to improve an initial schedule with higher quality For example,
it would be more difficult to improve an "R Af"-generated schedule than an "EDD".generated one. The
experimental results support this conjecture (EDD-generated schedule has been improved by 25 9 percent
and R&M-generated schedule has been improved by a 12 6 percent) Second, %e observe that the better
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the quality of the initial schedule, the better the quality of the repaired result Third, CABINS generated
schedules of comparable quality but was on the average 4-5 times more efficient than simulated annealing.
It seems that the contextual information captured in the CABINS case base and the system's use of failure
information in the repair history is effectively used to guide the search and prune unpromising paths thus
making CABINS much more efficient than the random search of simulated annealing.

I IWT wIP WT+WIP CPU Sec.
Initial Schedule 13875.0 1470.5 5345.5 II 0.1 I
Repair by CABINS 1740.0 1432.5 3172.5 81.2
Repair by SA 1723.8 1418.6 3142.4 323.3

Table 3: Repair by CABINS on Randomly Generated Initial Schedules

To further investigate CABINS's behavior vis a vis initial schedule generation method. %e again used
training and test sets of 5 resources and 10 problems. The initial schedule for each problem is randomly
generated from scratch. To do this, we took into account the precedence constraints and resource constraints
(disregarding due date constraints) so generation of an executable schedule was guaranteed. As expected, the
qualities of these initial schedules are very low (compared to the ones generated by the dispatch heuristics
and CBS) From the table 3 we can see that CABINS also performs well on these randomly generated
initial schedules. The behavior of CABINS with regard to the method of initial schedule generation confirms
intuitions in the Operations Research community (e.g. [MP93]) that the higher the quality of the initial
solution, the better the repaired solution. This is also consistent with the behavior of other repair-based
methods, for example the behavior of simulated annealing in our experiments, and also the min-conflict
heuristic's behavior for constraint satisfaction problems [MJPL92.

Other interesting experimental results we got so far are-

* Evaluation of revision control model learning

We conducted another set of experiments to ascertain the effectiveness of case-based learning of the
control model for selecting the repair actions. The results without learning were obtained by random,
not case-based, selection and application of the same repair tactics for activity repair. The results
showed that repair did not improve schedule quality of approximately 90% of the example problems

o Evaluation of scalability

To test the scalability of our approach we generated an additional set of 60 problems each with 20
jobs, each of which uses 5 resources. Usually, in real operating environments, the factory configuration
(e g. number and type of machines) is likely to remain relatively the same for reasonably long periods.
The number of orders, however, is very likely to fluctuate due to varied customer demands and other
economic factors. Based on these assumptions, in our experimentation, we focused on varying number
of jobs rather than number of resources. The 20-job problems were generated from the same problem
generator function by varying the same parameters (as for the set of 10-job problems) in controlled
ways. The knowledge acquisition method wu the same as for the 10-job problems, i.e. RBR was used
to acquire a training case base with 30 problems each of which has 20 jobs and 5 resources. We also
used cross validation approach. The pattern of results was the same as for the first set of 60 problems.
The results are shown in Table 4.

a Evaluation of knowledge transferability

In order to test generalization issues in case-based learning and transferability of acquired knowledge,
(1) we collected the cases through solving the 5 resources and 10 jobs benchmark problems (using
IUBR). and (2) we used the case-base collected in Step 1 to solve the 5 resources and 20 jobs problems.
The results are shown in Table 5. We see that although the results we got based on 5 resource and 1O
jobs case-base are better (reported in table 4), CABINS still performs very well on the bigger problems
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Table 4. Repair by CABINS on 5 resources and 20 ord Problewn.

[ _ _ WT WIP I WT+WIP 11 CPU Sec.
Schedule by EDD jA 2108.8 5440.3 7547.1 0.3
Repair by CABINS 1j 6485 5538.4 6186.9 171.0
Schedule by WSPT L 718.4 5310.2 1 6028.7 0.5
Repair by CABINS 561.2 5332.1J 5893.3 190.0

[Schedule byR&M 709.5 5218.31 5927.81 0.6
Repair byCABINSJ1 54.6 5237.81 5786.41 164.5[Schedule by CBS 1 3965 6260.7 1 865. 0.
Repair by CABINS 692.2 6246.0 6938.2 880.0

[ [__ JWT. WIP J WT+WIP ] CPU See.
[ Schedule by EDD 2106.8 5440.3 7547.1 0.3

Repair by CABINS 11 824.5 5429.4 6253.9 234.2
Schedule by WSPT 718.4 5310.2 6028.7 0.5
Repair by CABINS 633.7 5342.1 597.8 222.0
Schedule by R&M 1709.55218.3 5927.8 j 0 6 [
Repair by CABINS 11 5982 5229.9 5828.1 11 194.5
Schedule by CBS S 2396.6 6260.7 1 8657.2 11 203.0 I
Repair by CABINS 924.2 6252.1 7176.3 973.8

Table 5: Repair on 5 X 20 Problems uing Cane-Base collected from .5 X 10 problems

using the original 5 resource and 10 jobs cs.e-base. We also see that the pattern of CABINS behavior,
i.e. improving schedule quality independent of initial schedule generation still holds.
from the knowledge acquisition and practical point of view, the results are quite encouraging. They
show that CABINS has potential for application in operational factory environments, since knowledge
transferability will alleviate the knowledge acquisition burden without much affecting overall system
performance and quality of scheduling results.

5.2.2. Repair in Response to Unpredictable Execution Events

Reactive schedule repair involves (1) recognition of the conflicts that are introduced in the schedule as
a result of an unexpected and uncontrollable change in the execution environment, (2) propagation of the
conflicts, and (3) selection and application of a repair action. Before we present and discuss the experimental
hypotheses, evaluation criteria and results, we present the reactive repair steps taken by CABINS.

The first step in reactive repair is the recognition of conflicts introduced in the schedule as a result of
unexpected events in the execution environment. In general, there are two types of conflicts that can be
recognized:

Temporal conflicts: These are conflicts reflecting inconsistencies betaeen the scheduled and actual start
and end times of activities

Resource conflicts: These are conflicts reflecting inconsistencies in the resource capacity currently avail-
able and the capacity required for processing activities
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In the second step, the effects of the introduced conflicts are propagated downstream (forward in time)
from the point in time where the unexpected event happencd (right-shifting) This involves undoing the
reservations that become inconsistent as a result of the unexpected event and propagating their effects to
determine the consequences (ripple effects) of the unexpected event for the rest of the schedule. The result
of this step is a feasible schedule but typically of much worse quality than the predictive schedule before the
occurrence of the deleterious unexpected event.

In the third step, CABINS is used to repair the suboptimal schedule that resulted in the second step.
The mechanisms that CABINS uses in reactive repair are exactly the same used for predictive optimization
(except, of course, that no attempt is made to repair activities that have being already executed before the
unexpected event happened). If the unexpected event is loss of capacity (e.g. a machine breakdown), the
activity that was being processed on the resource at the time of breakdown must also be re-scheduled.

We i lustrate the repair process by an example. Figure 10 shows a predictive schedule for one of the
problems that were used for experimentation with predictive schedule optimization (see section 5.2.1). In
particular, it is one of the two-bottleneck problems with static start time for all jobs In this schedule, the
weighted tardiness is 240 units.

After computing the predictive schedule, a machine breakdown is created in the m'iddle of the schedule.
The broken machine, M, is the busiest non-bottleneck machine. The breakdown was timed to occur at the
first 20% of total execution time so as to increase its deleterious effects on the rest of the schedule The
estimated duration of the breakdown was 10 times the average duration of the activities in the problem M
is asumed available for processing at the end time of the breakdown.

The effects of the breakdown are propagated downstream (forward in time) In particular, the activities
that were scheduled on the broken machine M and whose scheduled reservations overlapped with the time
interval of the breakdown, are unscheduled and re-scheduled in the same sequence on M after the end time
of the breakdown (this has been called right-shifting in (OST88]). Right.shifting of these activities on M
typically results in constraint conflicts of related activities that are fixed by the constraint propagation
mechanisms in CABINS so that a feasible but worse schedule results. Figure 11 shows the schedule resulting
from the machine breakdown and its propagated effects The weighted tardiness of this schedule is 4500,
a more than ten-fold worsening of quality. Delaying schedule execution till M is fixed, which is equivalent
to right-shifting, is clearly not an option in practice. It is of the utmost importance that the schedule be
repaired to enable execution continuity.

CABINS is applied to repair the schedule of figure 11. Because of (he big delays that arise as a consequence
of capacity loss, we assume optimisation of weighted tardiness as the repair objective. Figure 12 shows the
schedule resulting after repair by CABINS. Weighted tardiness has been decreased ten-fold (from 4500 to
450).

In general, there are three responses (repair strategies) that a planning/scheduling system can have to the
occurrence of unexpected events during execution. First, do not attempt any repair. This strategy results
in not taking advantage of any opportunities (e.g., activities finishing earlier than their scheduled end time,
additional resources becoming available) or incurring execution delays entailed by deleterious events (e.g.,
partial or total loss of resource capacity, activities finishing later than their scheduled times). This strategy
is obviously suboptimal. A second repair strategy could be to throw away the rest of the plan/schedule
and re-plan/re-schedule from the point of the occurrence of the unexpected event It has been speculated
in the literature (e.g, IOST88, ZDGDO0) that such strategy may efficiently produce high quality schedules
but may increase schedule disruption (though no measure of disruption was given in preious work) A
third repair strategy could be incremental revision of thie existing schedule. It has been argued in the
literature that an incremental repair process that achieves efficient generation of high quality schedules and
also allows continuation of execution while minimizing schedule disruption would be the most desirable. To
date no experimental evidence has been provided (a) in favor of incremental schedule repair as opposed to
re-scheduling, or (b) exhibiting an incremental repair approach that performs well on all the above repair
objective simultaneously
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Figure 10: Schedule Result before Machine Breakdown

Figure 12 Schedule Result after Rachine Breakdown

Figure 12: Schedule Result after Reactive Repair
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CABINS I CBS(GV)
reactive-repair re-schedule

Start Time Disrupton j 6380 8980
Routing Disruption 9 11

L e u n m ~ ption 21 27
,iReaiedWe . (S i) 98 8 91.6

I[ CPU time (second) 172.9 ] 6.7

Table 6: Reactive repair vs Re-scheduling

We demonstrate CABINS's reactive capability with respect to execution time failures, since they are the
ones that typically happen and against which a scheduling system must guard In the set of experiments we
performed, CABINS was used to repair a predictive schedule in response to unexpected capacity loss. CBS
was used for re-scheduling Our experimental results demonstrate that the incremental repair methodology
of CABINS is superior to re-scheduling in performing reactive schedule repairs in response to execution
failures along all the desirable evaluation criteria.

We measured disruption with respect to three criteria:

1. Difference of start times between the repaired schedule and the original predictive schedule (before

occurrence of the unexpected capacity loss)

2. Difference in resource assignment of activities in the repaired versus the original schedule

3. Difference in sequencing of activities on a resource in the cpaired versus the original schedule

These changes between the repaired and the original schedule qualify as measures of schedule disruption since
they could cause changes (with attendant costs) in resource set-up activities, process routing, and expected
job finish times. For example, in a manufacturing environment, changes in start times may cause changes
in plans for product warehousing, material preparation and product shipment plans; change of resource
assignments may change product routings in the factory floor resulting in the need to change programs
of material handling equipment (such as automated guided vehicles); changes in activity sequencing on
a machine may cause changes in machine set-ups and worker assignments. Such changes cause serious
difficulties in the smooth continuation of schedule execution on a factory floor. Obviously, the degree of
severity of such changes depends on the nature of the manufacturing process and the factory floor layout.
Therefore, a unified measure of disruption of a schedule is hard to formulate.

We compare the performance of reactive repair against CBS re-scheduling in the two different machine
breakdown scenarios, each of which has ten sets of problems. In the first experiment, a machine breakdown,
whose duration is 10 times the average activity duration, is simulated on the two-bottleneck resource prob-
lems, and in the second experiment, a similar machine breakdown is simulated on the set of one-bottleneck
problems.

Table 6 shows the average results across all experiments.

The results show that in terms of disruption and quality CABINS outperformed re-scheduling by CBS.
However, CABINS's efficiency is much worse than CBS. In some problems, such as problem I for example,
CABINS spends as nmich as 40 times more time as CBS.

However, upon further examination, this result is misleading. The reason is the rapid and monotonic
repair behavior of CABINS. As shown in figure 13, for example, CABINS achieved better result quality
than CBS at the time point when CBS finished re-scheduling. From figure 13 we see that after 9.3 seconds,
CABINS has achieved a weighted tardiness of 1430 units compared to 1560 units achieved by re-scheduling
in the same time period (9 3 sees). Since, in contrast to the re-scheduling method which does not pro-
vide incremental schedule feasibility, CABINS' incremental reactive repair results in a feasible (executable)
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Figure 13 Repair Responsiveness of CABINS in Problem I

schedule after every repair irayinn, if the repair process is stopped after 9.3 sees, the schedule produced by
CABINS can be executed and is of higher quality than the one produced by CBS re-scheduling during the
same time period. This behavior was consistency exhibited in all experiments,

System responsiveness in reactive contexts is of great concern. To see whether the results of 13 are robust
across different breakdown scenarios, we repeated the experiments with four different variations of duration
of machine breakdown. In each experiment, the breakdown duration was 4, 6, 8, and 10 times the average
activity duration Figure 14 shows those results. The graph shows that reactive repair is very efficient at
first and then saturates until no further improvement is possible. This characteristic of CABINS' repair
process is very suitable for reactive repair since it allows continuation of execution with minimal delay (most
of the schedule quality loss is repaired very rapidly),

5.3. How Many Cases Are "Enough"?
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Figure 15, Effect of case-base sizes in quality and efficiency

The graphs in figure 15 compare the performance of CABINS with different sized case-bases. The results
were obtained based on CABINS with WT+WIP type of case-bases. A cue of approximately 4,500 cases
was generated by RBR This was done by allowing 3 overall repair cycles for a training set of 30 problems
each of which has 50 activities Tb get the case bases of different sizes, an appropriate number of caes
for each situation was randomly selected and deleted from the approximately 4,500 size case base. This
method of generating a new case base by random deletion of cases from a bigger case base is similar to the
ablation study performed in [Bar89]. The initial schedule generation method was CBS. From the viewpoint
of knowledge acquisition. an interesting question is when knowledge acquisition can be terminated because
sufficient knowledge has been acquired to enable high quality performance of a knowledge based system. For
case-based knowledge acquisition, this question becomes how many cases would be enough for knowledge
capture and reuse and for guaranteeing overall satisfactory performance Unfortunately, it is very difficult to
answer this question in general due to the ill-structuredness of the scheduling problem and the approximate
nature of CBR1 (since no causal model is available). We believe, however, that there exists some appropriate
size of the case-base which will give us relatively satisfactory results in terms of schedule quality without
excessive overhead for case acquisition or case retrieval from the case base.

Our experimental results (figure 15) support this hypothesis as follows:

1. The larger the number of cases, the better the schedule quality. However, the marginal payoff from the
increase in case base size decreases. This can be explained partially by the fact that some number of
cues (say, 1000 cases) capture well characteristics of the problem space, and additional 1000 new cases
may give much redundant information. When the size of case-base is relatively small, every time new
cases are acquired, we may get information about a different part of the problem space which results
in higher quality improvement.

2. In terms of efficiency of the system, we obserne from the graphs that the case-base with 1000 cases
might be the optimal choice Actually, both in terms of CPU time and quality improvement, the
case-base with 1000 cases obviously outperforms the case-base with 500 cases. Moreover, in terms of
schedule quality improvement, case bases with more than 1000 cases do not seem to provide payoff
proportional to the case base size increase
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5.4. Discussion

The experimental results show that the CBR-based repair method not only has the potential to capture
different user optimization preferences but also performs well in terms of producing schedules of high quality
as compared with other constructive scheduling methods. As compared with simulated annealing, another
repair-based method, CBR-based repair produces schedules of comparable quality with substantial compu-
tational savings. In addition, CBR-based repair exhibits desirable anytime characteristics and outperforms
re-scheduling by a constructive constraint-based method in terms of minimizing disruption and maintaining
high schedule quality.

In this section, we will attempt to answer the question 'what makes the approach powerful"? We believe
the power of the approach sterns from the following four reasons. First, as has been pointed out by others (e.g.
[MJPL92]), revision-based approaches by making available a complete assignment (a complete schedule for
our domain) provide more information that can guide search as compared with constructive methods where
only a partial assignment is available. Our CBR-based revision method captures such relevant information
in global case features and exploits it as contextual information during case retrieval. Second, although job
shop schedule optimization belongs to the category of "hard" NP-complete problems, the case features were
able to capture some important domain regularities, such as repair flexibility. This was complemented by
keeping information about failed applications of revisions in the repair case history and also keeping failed
cas in the case memory. The failures were exploited by CBR to prune unpromising paths in the search
space in future similar situations Third, experimental results and discussion presented in section 5.3 support
the hypothesis that the cases CABINS acquired and used in the reported experiments seem to cover the
solution space in a fairly evenly distributed fashion, thus allowing CBR-based repair to take advantage of this
coverage. Since, however, we cannot conjecture whether good quality solutions are evenly distributed in the
search space as a whole, backtrack search, for example, could be potentially disadvantaged if good solutions
are "bunched up" in particular parts of the search space [MJPL92, Lan92j, whereas dispatch heuristics are
too myopic to take advantage of promising search paths.

Finally, we believe that some of the regularities in the structure of the experimental problems were
captured in cases during the training phase and this information was transferable to solve the test problems.
Moreover, this information seems to transfer also acros problem size as the the results in Table 5 indicate.
The table shows that the cases acquired during training with a set of 10-job problems were effective in solving
test problems with 20 jobs The question then arises to what extent the information captured in cases from
one set of problems can transfer to job shop optimization problems with different problem structure. This
question, albeit of great theoretical and practical importance, is very difficult to answer in a theoretical
way. In contrast to other NP-complete problems (e.g, graph-coloring, satisfiability, traveling salesman) for
which insightful analysis has been performed (e.g. [MR92, CKT9I]) as to their structure and properties that
characterize "easy" or "hard' problem instances, similar characterization of job shop schedule optimization
problems is currently an open research problem (e.g,[CKT9I, Bak74]). Due to the tight constraint inter-
dependencies in job shop optimization, it is not known what constitutes "problem structure", i.e. what
features of a problem make it difficult or easy to solve, or make one problem substantially similar or different
from another. It is for this reason that, except for some simple optimization objectives, such as minimize
flowtime for one-niarhsn problems where it has been proven that the WSPT heuristic finds the optimal
solution, it is currently impossible to theoretically prove schedule optimality for a particular technique It
is only after some proposed problem has defied solution by extensive experimentation by many researchers
that it is understood ipso facto to be difficult (ABZ88, Bak74]. Most importantly, even if there were good
approaches to characterize problem structure in job shop optimization, with explicit optimization criteria,
this would not help with our analysis since CABINS does not have an explicit objective function, but instead
aims at capturing implicitly context-dependent user preferences.
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6. Related Work

Our work shares the same motivations and goals with the work in (MBSS8] where the motivations for
interactive user manipulation of schedules is presented. In that work, the system monitors the user's manip-
ulation of a schedule, requesting the reasons for each revision that is made. This information is then used
to augment/refine the system's knowledge. The approach seems promising but has not been experimentally
tested.

Our approach is rooted on concepts and mechanisms of a long line of research in constraint-directed
scheduling [Fox83, SOL+86, Sadgl]. In that work, schedules ae generated by incrementally constructing
and merging partial schedules. That work has extensively investigated various properties and aspects of this
scheduling methodology and has proposed sophisticated procedures and techniques for constraint-directed
scheduling. Although this research tradition has come to view scheduling as an opportunistic repair process,
it has operated under static design assumptions (e g. deterministic application of variable and value ordering
heuristics in [Sad9l], or statically determined control level model for application of repair actions (OST88]).
Our approach advances the state of the art by learning to dynamically adapt the focusing mechanism of the
search procedure and by adapting the repair model according to current problem solving circumstances and
user preferences and tradeoffs.

Our approach, generates schedules oy repair based scheduling in the space of complete schedules. In this
respect it is similar to [ZDGI0, ZDDD93, MJPL90, BC91). In [ZDG90, ZDDD93) simulated annealing has
been used to perform iterative repair. Knowledge in the form of constraint types and evaluation criteria has
been added to the basic simulated annealing framework and has been shown to improve convergence speed
[ZDDD93]. [ZDDD92] has studied the tradeoff of minimizing perturbations vs. speed of convergence to a
conflict free schedule and vs. schedule quality measured in terms of number of violated resource constraints
In [MJPLg0, MJPL92) the min-conflict heuristic, a repair heuristic that chooses the repair that minimizes
the number of conflicts that result from a one-step lookahead has been investigated and its performance
analyzed. Though the heuristic has been shown to be powerful for solving the N-queens problem, it has been
shown inadequate for some types of job shop scheduling constraint satisfaction problems [Mus93 when the
initial assignment is random This is because min-conflicts relies on a good initial assignment [MJPL92].
The CBR-based repair of CABINS, on the other hand has been shown experimentally to improve schedule
quality irrespective of initial schedule generation method, although the percent improvement and the quality
of the final repaired schedule varies In [BC91] schedule modifications are procedurally encoded. Small
snapshots of the scheduling process, called chronologies, ae used to focus the search by using information
gained incrementally during the scheduling process to locate, classify and resolve bottlenecks. In [ZDD+92]
plausible explanation based learning (PEBL) has been applied to learn search control rules to increase search
efficiency in scheduling tasks for NASA Space Shuttle payload and ground processing. PEBL enables a system
to generalize a given target concept (e g. chronic resource contention) over a distribution of examples. The
cost function is to minimize the number of remaining conflicts in the schedule. Unlike all the above systems,
CABINS doesn't have any explicit objectives to optimize, but applies case-based learning techniques to
acquire user optimization preferences from the records of user's repair decisions and optimizes schedules
based on the acquired objectives.

The repair-based scheduling methods considered here are related to the repair-based methods that have
been previously used in case-based planning systems (e g. [Vel92, K1192, Ham8g]). Previous case-based sys-
tems for incremental solution revision have been motivated primarily by concerns of computational efficiency,
preserving plan correctness rather than improving plan quality, and have assumed the existence of a strong
domain model to got information as to plan correctness. For example, CHEF [Ham8gg assumes the existence
of a model-based simulator to evaluate a derived plan and detect a plan failure and uses well-studied domain
rules for selecting repairs. Research by 1KH92, Ve92] are based on the hypothesis that the plan built by
their planner ii causally and teleologically correct, and use CBR to find the satisfying plan efficiently.

CABINS as a knowledge acquisition system is also related to previous case-based knowledge acquisition
systems (e g Protos [Bar&9]) Thcse approaches usually require causal explanations from an expert teacher
to acquire domain knowledge. In CDR-based schedule repair embodied in CABINS, neither the user nor the
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program are assumed to possess causal domain knowledge. The user cannot give a solid explanation as to
her/his selection of repair action, because s/he cannot predict the effects of the selected action on the plan
caused by tight interactions. The user's expertise lies in the ability to perform consistent evaluation of the
results of problem solving and impart to the program cases of problem solving experiences and histories of
evaluation tradeoffs

7. Conclusions and Future Work

In this paper, we advocate a framework for knowledge acquisition and iterative repair for schedule opti-
mization. The approach utilizes CBR-bhsed mechanisms for recording user preferences, repair tactics and
explanations, and constraint-based scheduling for application of the selected repair tactics. The approach
is predicated on (a) the existence of a set of schedule repair tactics, each of which operates with respect to
a particular local view of the problem and offers selective advantages for improving schedule quality, and
(b) on capturing and re-using user scheduling preferences and judgments. The capability of acquiring user
optimization preferences is important in domains without strong domain models because usually explicitly
expressed objectives are unavailable Even if they were available, new optimization heuristics would need to
be developed, evaluated and implemented complicating the design and maintenance of the system. CABINS
provides a framework for alleviating these problems. Our experimental results show the potential of the
approach to capture and effectively utilize user scheduling preferences that were not present in the schedul-
ing model. The results indicate that different scheduling objectives implicitly reflected in the case base
differentially bias the schedule repair procedure. Further experimental results show that for well defined
objectives reflected in the case base, CABINS produces schedules with higher quality as compared with
other repair-based scheduling methods, such as simulated annealing In addition, CABINS is robust in the
sense that it always improved the quality of a sche,.ule regardless of which method was used for generating
the seed schedule. It seems that the effort expended to capture a large number of cases can be amortied
by future repeated use of the case base to get high quality schedules efficiently. More importantly, CABINS
can acquire the cases through user interaction during the process of solution improvement without imposing
undue overhead on the user. We believe that CABINS has the potential for accommodating acquisition
of user preferences that change over time. Future work will investigate this issue and issues of automating
hierarchical abstraction of the repair process, and dealing with more complex objectives and larger problems.
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APPENDIX Ai Case Instance

T-cass C
nam, "esp.O..O..8:order6-:1:activity.2";
slots (

Slot C
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feature l weighte tardiness;i
value - 470.000000;
salience = 1.000000;

3;

slot {
feature - resourceutilizationo&verage;
value z 0.789000;
salience a 1.000000;

3;

Slot C
feature = resourceutilizationdeviatiou;
value = 0.0403749;
salience - 1.000000;

2';

SLuJlots (
Slot (

feature w aiting.time;
value - 580.000000;1
salience a 0.333;:

Slot C
feature - predictiveshilt.gain'
value - 0.806000;
salience - 0.667;

1;
Slot C
feature - prodictive.alt.ehift.vp.gajn;
value - 0.106000;

salience - 0.333;

Slot C
feature - predictive.svap.gain;
value - 0.903000;

salience a 0.667;

Slot C
feature - predictive-alt-evap.gain;

value - 0;
salience - 0,333;

solution s

Solution (
tactics.type a SWAP;

effects a

Effect {
eslect.type x VEIGHTEDTARDIIESS;

salience - 0.667.

domain - "whole.schedul*";

prevlous.value x 470.000000;,
current-value a 380.000000;

gain x 90.000000;
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Effect {
effect-.type RESOURCEUTILIZATIOn.AvERAGE;
salience = 0.667;
domain - "whole-schedule";
previous.value - 0.789000;
current-value - 0.789000;
gain D 0;

1};

Effect {
effect.type c RESOURCEUTILIZATIONDEVIATION;
salience - 0.667;
domain = "whole.achdule";
previous.value - 0.0403749;
current.value - 0.0403749;
gain 0;

Effect {
effect.type - INPROCESS.INVETORY;
salience - 0.667;.
domain a 'wholeschedule";
previous-value - 2240.000000
current.value - 2260.000000;,
gain -10.000000;,

Effect {
effect.type = ZNPROCESS.NVENTORY;
salience - 0.333;
domain - "Job?";
previous.value - 290.000000;
current.value = 310.000000;,
gain = -20.000000;

);
resul.t - ACCEPTABLE;

APPENDIX D? Case Used for Evaluation

T-case{
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name - exp..2.0.4:order7-1:1:activity7..2'1;
slots

slot{
feature = eighted-tardiniess;
value - 670.000000;
Salience - 1.000000;

slot
feature = resource..utilization.average;
value - 0.682000;
salien~ce - 1.000000;

slot{
feature -resource.utilization.Aeviat ion;-
value - 0.074000;
salience - 1.000000;

slota (

feature waiting-.time;
value =280.000000;
salience - 0.333;

slot(
feature a predictive..shift.gain:,
value = 0.406000;,
salience - 0,667;,

slot
feature =predictive..alt.shit.vip.gain;
value . 0.306000;
salience - 0.333;.

slot(
feature = predictiv..avap.gain;,
value = 0.103000;
salience =0,667;"

Slot(
feature - predictive-.alt~svap_&ain;1
value -0.304000;,
salience *0.333;

solutions
Solution{

tactics-.type aLEFT-SIFT.,
effects
Effect
effect-.typoi - WEIGHTED-TITRDISESS;,
salience - 0.667:
domain w "hole-.schedule";
previous-.value - 670.000000;
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current.value - 930.000000;

gain -260.000000;,

Effect C
effect-type - WEOURCErTILIZATIOKAVERAGE;
salience = 0.667;
domain a "whole-schedule';
previous.value - 0.682000;

current.value = 0.682000;

gain * 0;

Effect (
effect-type - RESOURCEUTILIZATION.DEVIATION;

salience - 0.667;

domain - "whole-schedule";

previousvalue - 0.074000;

current.value = 0.074000;

gain 0;

Effect (
offect-type - INPROCESSINVENTORY;

salience = 0.667;

domain - "whole.schedule";
previous-value - 1940.000000

current-value - 1990.000000;

gain 0 - 0.000000;
1;

result UNACCEPTABLE;,

Solution {
tactics-type a SWAP-,

effects
Effect{

affect.type - RIBGHTED.TAIDIESS;

salience - 0.667;

domain - "lholeschedule";

previous.value a 670.000000;
current-value - 600.000000;

gain * 70.000000;
1;

Effect
effect.type - RESOURCEUTILIZATION.AVERAGE;
salience = 0.667;

domain = "hole.schedule";

previous.value : 0.082000;,

current-value = 0.682000;

gain = 0;*
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Effect{
effect-.type =RESOUECLUTILIZATUONDEVIATION;
salience z0.667;
domain a "shol..scheduls";
prtvious..valu. - 0.074000;
current-.value -0.074000;
gain 0;

Effect
stffct..type - NPROCESS-NVENTORY;
salience a 0.667;
domain = 11ihole-.schdule";
previous-.value c 2480.000000;
current-.value =3180.000000:,
gain *-700.000000;

Effect{
effect-.type - WEIGHTED..TARItDZESS;
salience - 0.333;
domain - "JOb7;
prevzous..value 790;
current-.valuie z210;
gain *580;,

EffectC
effect-.type xZMPROCESS..INVENTORY-,
salience -0.333;
domain - "Jolig";
previous-.value - 290;
current..vaeine 410:
gain - -120;

result - ACCEPTABLE;
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