CADBINS: A Framework of Knowledge
Acquisition and Iterative Revision for
Schedute Improsenment and Reactyive Repan

feaz v Mipvas it Al SV

CME R R 18

Carnegie Mellon University

O The Robotics Institute
»

ROBOTICS

wiwe - Technical Report

19941228 143

ADA289383

I

.
'

H LT

p K v o stk M
:

f .
L
; e
. .’ L ’
.-, - .
g [I}
Rt S L 2 TP

CABINS: A Framework of Knowledge
Acquisition and Iterative Revision for
Schedule Improvement and Reactive Repair

R ! J
Kuzuo Miyashita Katia Sycara ! ' o
CMU.RI-TR-04-34 P '
|
{
{
|
The Robotics Institute i A-I - ;
‘ Carnegie Mellon University L T -4
- Pittshurgh, Pennsylvania 15213

September, 1994 o
". -";’l' C o f‘.":;.'.:?f L*: PO
AN -

©1994 Carnegie Meflon University

tThis research was pariially supported by the Defense Advance Research Projecta
Agency under contract #§30602-91-C-0016.

' ﬂ' he flm Quthov'u current addross is Mltsuihl!t Electric Industrisl Co. I4d., 2-7
P Matsuba-cho, Kadoms, Oxaks 671, JAPAN.

o o S - 4:2;:5#::.-4
fug weiplio gin - f bf
i (:".' |"/'-"‘.9.“ !‘-
> pas PP 1 Lo EL - o . -
MR
ADA289383

Contents

1, Introduction

2. Job Shop Scheduling

21, Constraints
2.2. Objectives and Preferences

23 Constraint-Based Search Procedure . . ,

3. Case-based Schedule Optimization

4. CABINS Overview

4.1. Case Representation
4.2, Case Acquisition
43 Casc Retrieval
44. Repairby CABINS
45 AnExample.

8. Evaluation of the Approach

5.1. Preference Acqusition

5.2, Predictive and Reactive Scheduling . . .

6.2.1. Predictive Schedule Repair

53 How Many Cases Are “Enough”?

54 Discussion
6. Related Work
7. Conclusions and Future Work

8. Acknowledginents

List of Figures

1 Example of Conflicting Objectives

35

35

ADA289383

- S e s

o o

10
11
12
13
1
15

Utility-Functions . -, e e

CABINS Arclitecture e e e . Coa

Case Representation e e e e e

Repaic time horizon of focal.activity{(ACT!) e
Example of repair tactic application: left.shift

Original Schedule Results
Schedule Results after Repairon A}

Scheduling Results with Different Case Bases e e

Schedule Result before Machine Breakdown

Schedule Result after Machine Breakdown
Schedule Result after Reactive Repair
Repair Responsiveness of CABINS in Problem 1 PP,

RepmrRatio oo o ir e e e

Effect of case-base sizes in quality and efficiency e e

List of Tables

L 8

Repair by RBRand CABINS, i v

Repair by CABINS and SA based on Different Methods of Initial Schedule Generation
Repair by CABINS on Randomly Generated Initial Schedules

Repair by CABINS on 5 resources and 20 orders Problems

Repair on 5 X 20 Problems using Cuse-Basc collected from 5§ X 10 problems

Reactive repar v Re-scheduling, 00 oL

ADA289383

Abstract

Practical scheduling prob! [lly require allocation of in the presence of a large,
diverse and typically conflicting aet of constramis and optimization criteria. Theill-structuredness of both
the solution space and the desired objectives make scheduling problems difficult to formalize This paper
describes a case-based learning method for acquiting context-dependent user optimization preferences

and tradeoffs and using them to i tally imp hedule quality in predictive scheduling and
reactive schedule management in resp to pected events. The approach, implemented
in the CABINS system, uses acquired user pref to dynamically modify search control to guide

schedule improvement. During iterative repait, cases are exploited for: (1) repair action selection, (2)
evaluation of intermediate repair results and (3) recovery from revision failures The method allows the
system to dynamically switch between repair heuristic actions, each of which operates with respect to
& particular local view of the problem and offers selective repair advantages. Application of a repair
action tunes the search procedure to the ch istics of the local repair problem. This is achieved by
dynamic modification of the search conteol bias. There is no a priori characterization of the amount of
modification that may be required by repur actions. B , initial exp tal results show that the
approach is able to (a) capture and effectively utilize user scheduling preferences that were not present
in the scheduling model, (b) produce schedules with high quality, without unduly sacrificing efficiency in
predictive schedule generation and reactive response to unpredictable execution events along a variety
of criteria that have been recognized as important in real operating environments.

ADA289383

1. Introduction

The scheduling task can be described as assigning 2 limited number of resources to activities over time in a
consistent manner, i.e. 80 as to avoid violation of constraints associated with the problem, such as resource
capacity constraints, activity precedence constraints and release dates. The goal of a scheduling system is to
ptoduce schedules that respect these problem constraints and optimize a set of objectives, such as minimize
tardiness of jobs, minimize work in process inventory (WIP), maximize resource utilization, minimize cycle
time etc. The produced schedule should also respect user preferences. Scheduling is difficult to automate
for the following reasons:

1, Computational Complexity
Scheduling is a problem in the “hardest” subset of ¥P-complete problems [Fre82].

o~

. Tight Constraint Interactions
Due to the tight interactions among scheduling constraints and the non-linear nature of scheduling
objectives, there is no general way to predict the effect of a local optimization decision on global
optimality, even for the simplest objective.

[

. Ill-structured Objectives / Preferences

For practical scheduling problems, it is desirable that multiple optimization objectives (e g. minimize
weighted tardiness, minimize work in process inventory, maximize resource utilization) must be sat-
isfied. Moreover, optimization objectives often interact and conflict with one another. To optimize
along one objective alone could jeopardize optimality along other objectives. The relationships between
global objectives are extremely difficult to model

The definition/evaluation itself of what is & “high quality” schedule is fraughs with difficulties because
of the need to balance conflicting objectives and tradeoffs among them. Such tradeoffs typically
reflect the p of context-dependent user pref and domain constraints not captured in the
scheduling model. The value of incorporating such user preferences and constraints in operational
scheduling environments 15 becoming increasingly recognized (e.g [MBS88]) but good techniques are
currently lacking. .

-

. Dynamic Environment

Operational environments for scheduling systems (e.g. factories) are dynamic Unpredictable events,
such as machine breakdown or operator absence, often happen during schedule execution. Therefore,
a schedule that is only predictive (i it 16 created ing that the world is static and predictable}
will be brittle. It is clear that any effective scheduling system should be reactive, i.e. pesform achedule

revision in tesponse to unforeseen events during schedule execution.

The scheduling problem has been addressed by two general types of methods, constructive scheduling
and reviston-dased scheduling. In constructive approaches (e.g., [Fox83, Sad91}), a schedule is constructed
by incremental construction and merging of partial schedules. In revision-based approaches (e g, [MIPLOD,
ZDG90, BCY1, LAL92}) a complete but suboptimal initial schedule is incrementally repaired by several
techniques, such as a min-conflict heuristic [MIPL90] or simulated annealing. In {OST88}, while predictive
schedules are generated from scratch, incremental revision has been used to repair a pre-computed schedule
in respense Lo unanticipated events during schedule execution. The approach analyzes the implications of
specific schedule features and matches them to behavioral characteristics of appropriate reactive actions that
are selected according to a static, pre-determined control model These approaches assume the existence of an
explicit optimization function ‘This assumption is in general limiting since, in practice, optimization criteria
reflect context-dependent user preferences and cannot be expressed in terms of a single global objective
function,

In this paper, we describe a revision-based approach, implemented in the CABINS system, that provides
a unified framework for acquisition of user optimization preferences and tradeoffs, improvement of schedule

i

ADA289383

quality based on these preferences, and reactive schedule management in response to unforeseen events.
Unlike other systems that utilize iterative repair to find a feasible solution {e.g {ZDG90, MIPLI0}), whete
executability of the schedule was not guaranteed st the end of each repair iteration, CABINS produces an
executable schedule after each repair that has guaranteed monotonic increase in quality the more time it
is allowed for repair, thus exhibiting anylime execxtable behavior [DB8B]. This is a very desirable quality
especially in reactive contexts since there could only be a certain limited amount of time for the system to
react.

Our approach uses integration of Case-based Reasoning (CBR) [KSS85] and ﬁne granularity constraint-
directed scheduling mechanisms based on [SF90). Integrating CBR with conat based scheduling stems
from a variety of motivations. Although scheduling1s an nillstructured domain, we assume that it exhibits do-
main regularities that could be captured, albeit only approximately, in a case ln CABINS, a case represenu
application of a revision action to one activity in the schedule, thus expressing dencies among fe
of the schedule, the repair context and a suitable repair action (see sectxon 4.1 for a detailed description of
case representation). CBR allows capture and re-use of this dependency knowledge to dynamically adapt
the search procedure and differentially bias scheduling decisions in future similar eituations. On the other
hand, because of the tightly coupled nature of scheduling decisions, a revision in one part of the schedule
may cause constraint violations in other parts. Therefore, constraint propagation techniques are necessary
to determine the ripple effects that spread conflicts to other parts of the schedule as case-based repair actions
are applied and specific schedule revisions are made, The evaluation criteria for judging the acceptability of
the outcome of a repair action are often multiple, conflicting, context dependent and reflect user judgment of
tradeoffs Therefore, it is difficult to describe the evaluation criteria and the associated tradeoffs in a simple
manner. The case base incorporates s distribution of ples that collectively and implicitly capture a
user’s schedule evaluation preferences and tradeoffs under diverse problem solving circumstances and enable
CABINS to induce these tradeoffs from the case base. Hence, user preferences are reflected in the case base
in two ways: as preferences for selecting o repair action depending on the features of the repair context, and
as evalualion preferences for the repair outcome that resulted from selection and application of a specific
repair action.

A tevision-based approach is attractive for solving practical scheduling problems. There are no known
efficient search algorithms for schedule optimization except for a very limited set of simple objectives such
a3 make-span (e 3. [ABZ88]) and the amount of computation required for finding a solution is generally
unpredictable (I e82]. Therefote, the construction of a cheap but suboptimal schedule that is then incre-
mentally repaired to meet optimization objectives 18 preferable in practice, because one can interrupt the
repair process and use the interim result for execution when no more time is allowed for further repair, For
example, dispatch heuristics have very low computational cost, but due to their myopic nature, they must
be tailored to particular optimization objectives. Hence, in general they cannot address issues of balancing
tradeoffs with respect to a variety of optimization objectives. As a consequence, they result in suboptimal
schedules. However, because of their efficiency, they are widely used by practitioners Therefore, 2s has
alteady been pointed out by other researchers (e.g., [ZDBY92, MIPLO2)), combining a repair methodology,
such as a simple gradient search [KS90), neural networks [Joh90), or the one advocated in our work, with
a dispateh driven scheduler for creation of the initial schedule is promising for real world scheduling envi-
ronments. Experimental results reported in section § 2.1 indicate that CABINS can produce substantial
schedule improvements starting with schedules generated by several methods i.e. a number of dispatch
heuristic and a constraint based scheduler.

Our approach was evsluated through extensive controlled expenimeatation on job shop scheduling prob-
lems Experimental results, reported in section 5 show that (1) the approach is potentially effective in
capturing user preferences and optimization tradeoffs that are difficult to model, (2) tt improves schedule
quahty irrespective of method of initial schedule generation, (3) it produces high quality schedules at much
lower computational cost as compared to simulaied anncaling, a well-known iterative repair method, and
(4) it 15 suitable as a reactive scheduling method hecause it maintains high schedule quality and mininnzes
disruptions 1 the face of execution time failures

S

ADA289383

The rest of the paper is organized as follows: section 2 gives some background in job shop scheduling
and presents the constraint-based techniques used in CABINS. Section 3 introduces case-based schedule
optirnization. Section 4 presents case representation, indexing, retrieval! and application to the schedule of a
retrieved revision.It also presents an extensive example. Section § presents experimental results to validate
the approach. Section 6 discusses related wotk and section 7 conclusions and future wora.

2. Job Shop Scheduling

Job shop scheduling deals with allocation of a limited set of resources to a number of activities associated
with a set of jobs/orders. The dominant constraints in job shop scheduling are femporal activsty precedence
and resource capacsty constraints. The activity precedence coustrmnts along with & job's release date and
due date restrict the set of acceptable start times for each activity. The capacitly consiraints restrict the
number of activities that can use a resource at any particular point in time and create conflicts among
activities that are competing for the use of the same resource at overlapping time intervals. The goal of a
scheduling system is to produce schedules that respect temporal relations and resource capacity constraints,
and optimize a set of objectives. In our model we allow substitutable resources for each activity of a job,
thus being able to deal with parallel machine job shop acheduling, a more complicated version of the job
shop scheduling problem [MP93]. CABINS's revision based approach has two-phases: (1) create an initial
schedule by utilizing any method (e.g. dispatching rules), and (2) improve the {possibly) suboptimal schedule
that was gencrated in the first siep 20 as to incorporate user preferences and tradeofls.

In the test of this section, we present the job shop scheduling problem within the framework of constraint
satisfaction, and present the search strategy that is used to propagate the effects of repair actions in CABINS.

2.1, Consiraints

The job shop scheduling problem requires scheduling a set of jobs J = {J;, .~ Jn} on a set of physical
resources RES = {R1, .., Rm}. Each job J; consists of a set of operations/activitis A' = {4}, ., 4}, } to
be scheduled according to a process routing that specifies a partial ordering among these activities (e.g., Al
BEFORE 4}).

Each job J; bas a release date rd; that signifies the earliest time the job can be started and a job due
date dd, by which the job should be finished. Each activity A' has a fixed duration du! and a variable
start time 5! The domain of possible start times of each activity is w.itially constrained by the release
and due dates of the job to which the activity belongs. In order to be successfully executed, each activity
Al requires p! different resources (e.g., a mulling machine, a jig and a machinist) RL(1<j<Sp) for
each of which there may be a pool of physical resources from which to cnoose, }; = {r},;,. «..tf;s } with

2
thi € RES(1 S k £ q},) (e.g., several possible milling machines).

More formally, the problem can be defined as follows:
YARIADLES : A vector of variables 15 associated with cach adtivity, A3 €1 < n,1 ¢ < ny), which
includes:

1. the actrurty start time, st!, and
2. each resource requirement, R{ (1 < j < p!) for which the activity has several alternatives.

CONSTRAINTS : The non-unary constraints of the problem are of two types.

L. Precedence constraints defined by the pracess routings translate into linear inequalities of the
Wpe sii +dul <ot} (ic. Al BEFORE A}),

ADA289383

2. Capacity constratnis that restrict the use of each resource to only one activity at a time translate
into disjunctive constraints of the form: (Vp¥gR), # RL)V st} + duf < st} v st} + duf < stk
Constraints simply express that, unless they use different resources, two activities Af and A}
cannot overlap !.

Time is assumed discrete, 1.e., activity start times and end times can only take integer values Each
resource requirement R{, has to be selected from 2 set of resource alternatives, Q&, C RES These constraints
include non-relaxable release dates, and 1nitially, non-relaxable due dates between which all activities in a
job need to be performed.

2.2, Objectives and Preferences

In practice, scheduling objectives are numerous, complex, often conflicting and the mathematics of the prob-
lem can be extremely difficult with even the simplest of objectives (Fre82]. Below, we define the objectives,
that are among the moet common in the literature (e.g. [Fre82}), that we used to develop the performance
evaluation of CABINS. These objectives are mathematical simplifications of state-dependent objectives that
are difficult to model precisely. For ezample, an optimization criterion such as WEIGHTED TARDINESS®x
WIP? could be induced by CABINS if user gave consistent evaluation of schedules, but cannot be easily
represented in ways that can he explored by traditional schedule approaches.

Waiting time (13}) : is the time that clapses belween the completion of the preceding activity A}_, (or
rdy, if i == 1) and the start of processing A!.

Total waiting time (1)) : is the sum of wailing time of al} activities that beleng to J'. Clearly Wi =
T w

Completion time (C) ¢ is the time at which processing of Ji finishes We have the equality: &1 =
rdi 4 i (W] + dul)

Lateness (L;) : is simply the difference between the completion time and the due date of J; : L; = Cy~dd;.

Tardiness (1) : is delay in the completion of J; ageinst its due date ddj, Note that T} always takes non-zero
value. Thus T; = max(0, L;).

Flowtime (£) : is the amount of time that J; spends in the system. F} = Ci~rdj or Fy = T (1] +du)

Make-span (Cun.ac) ¢ is the latest completion time of the entire orders. Cmaz = maxC,

Work-in-Process Inventory(WIP) : is the summation of total waiting time. WIP = Y'1_, W,

Weighted Tardiness (T,;) : is the weighted average of tardiness. Weight is considered as a penalty cost
of being tardy. To¢ = Yoo, w, T,

The quality of a schedule is a function of the extent to which it achieves user’s preferences. We illustrate
the necessity of having user’s preferences in the scheduling system by using a very simple example. We
assume the simplest factory with a single machine and two jobs. Each job consists of a single activity to be
processed on the factory machine Let us further assume that the two jobs are released to the factory floor
at the same time.

. Figure I shows two schedule results for this problem. Suppose schedule-1 is generated In this schedule,
job B finishes before its due date but job A is tardy. The WIP of job A is indicated in figure 1 (the WIP
of job B 15 zero) Suppose one wishes to revise the schiedule to reduce the tardiness of job A. In this simple

These constraints have to be generaliced when dealing with resources of capacity larger than one.

4

ADA229387

Rededss Dave (A ond B} Due Dats () Due Date (D)

WiPolleh D

Time Horison

Figure 1: Example of Conflicting Objectives

schedule, the only possible repair is to switch the positions of job A and job B. The schedule resulting from
this switch is schedule-2. In schedule-2, neither job is tardy but the WIP in schedules2 (the WIP of job B)
15 larger than in schedule-1 Even in this extremely simple example, it is difficul¢ to decide which schedule
is of higher quality without taking into consideration the preferences of the user Simply adding WIP plus
weighted tardiness and minimizing the sum may not be realistic since the relative importance of each of
these objectives in the overall sum reflects the tradeoffs the user is willing to make. These tradeofls may
depend upon many factors, such as the importance of the client of each job, past shipping records, load of
a factory/warehouse and wo on. The combination of those factors produces enormous number of contexts
n which user preferences are considered, thus making user’s preferences difficult to capture and represent a
priori in the problem model. That is the reason that the authors think acquiring preferences adaptively 18
important.

2.3. Constraint-Based Search Procedure

The constraint-based seatch procedure used in CABINS for applying a selected repair action (see section 4.4)
is based on [SF90, Sad91}. Search is interleaved with the application of consistency enforcing mechanisms and
variable/value ordering heuristics that attempt to avoid dead-end states. A search state is associated with
each partial solution Each search state defines a new constraint satisfaction problem whose variables are the
variables that have not yet been instantiated and whose constraints are the initial problem constraints along
with constraints reflecting current assignments. A schedule 1s built by opportunistically selecting an activity
to be scheduled and assigning (o 1t a reservation, i.e. a resoutce and a start time. Each time a new activity
is scheduled, new constraints are added to the initial scheduling constraints that reflect the new activity
reservation. These new constraints are then propagated {ronsistency checking). If an inconsistency (i.e.,
constraint violation) is detected during propagation, the system backtracks. Otherwise the scheduler selects
a new activity to schedule and a reservation for that activity. The process terminates when all activities
have been scheduled successfully.

More specifically, search proceeds according to the following steps:

1. [f all operations have been scheduled then stop, else go on to step 2;
2. Apply the consistency enforcing procedure;

3. If » deal-end is detected then backtrack (1.¢. select an alternative reservation if one is left and go back
to step 1, otherwice stop)

=

BLEA JHL 44 2

4. Select the next operation to be scheduled (variable ordering heuristic);
6. Select a promising reservation for that operation (velve ordertng heunstic),

6. Create a new search state by adding the new reservation assignment to the current partial schedule

and go back to step 1;

The details of each step are as follows:

Consistency Enfor t : The consistency enforcing procedure is a hybrid procedure that differentiates
between precedence constraints and capacity constrants It guarantecs that dead-end states only occur
as the result of capacity constraint violati Essentially, istency with respect to precedence

constraints is enforced by updating in each search state a pair of earliest/Iatest possible start times for
each un-scheduled operation.

Consistency enforcement with respect to capacity constraints tends to be significantly more expensive
due to the disjunctive nature of these constraints. For capacity constraints, a forward checking type
of consistency checking is generally carried out by the system. Whenever a resource is allocated to
an operation over some time interval, the forward checking procedure checks the set of remaining
possible start times of other operations requiring that resource, and removes those statt times that
would conflict with the new assignment.

Variable Ordering : Because scheduling is NP-hard, it is important to focus search in ways that avoid

dead-end states. This is accomplished by utilizing good varisble (1.e., activity) and value (i.c., reserva-
tlon) ordering heuristics. A varigble ordering determines which activity is going to be scheduled next
and value ordersng determines which reservation should be assigned to the selected activity. The vari-
able ordering heuristic utilized in the system is called Activity Resource Reliance (ARR) [SF90) and
selects the most critscal actinty first, i.e., the activity with the highest probability of being involved
in a capacity constraint violation over particular time intervals. For more details on the approach, see
[SF90).

Value Ordering : Once the activity to be scheduled next has heen selected. the value ordering heuristic

determines which reservation to assign to the activity. The two value otdening heuristics relevant to
this paper are:

Least Constraining Value Ordering (LCV) : This heuristic selects the reservation that is the
least likely to prevent other activities from being scheduled. LCV uses an unbiased utility-function
(see figure 2) for each nctivity, i.e. there is no preference for a particular start time out of the
activity's available start times.

Greedy Value Ordering (GV) : This heuristic selects a reservation based on local preferences that
arc expressed via stalic piece-wise linear biased uislity-function associated with each activity (see
figure 2). Thiz biases value ordeting to prefer activity start times with high utility values. For
scheduling problems with substitutable resources, static utilities that express differentis! resource
preferences are used in the selection of an activity’s reservation

Expeniments in [SF90) 2 on some rather smail job shop problems (each with 20 activities) indicate that the

ARR variable ordering with LCV value ordering produces suboptimal schedules with minimal bachtracking;

ARR variable ordering with GV value ordering with statically predeterrmned utility functions, henceforth

referred to as constraint-bused scheduling (CBS), was shown to produce high quality schedules as compated
to the SMU heuristic ([KY89}).

In CABINS, schedule revision proceeds iteratively, one activity at a time. The set of activities that get

involved in constraint violations as aresult of repairing one activity is the conflict setof the repair The repair

doml d seheduli b,

2The expenments were run on 20 y g P

ANA2829323

biased-utility-value

unbiased-utility-value

zessescesescnsenvenny

release-date allowable latest start date

Figure 2: Utility-Functions

process unschedules the activities in the conflict set and modifies the bias of the utility functions associated
with them. This bias reflects the effects of learning context-dependent user prefe and evaluations of
repair outcomes that have been stored in the case base. The search procedure with the modified uithty
functions, ARR variable ordering and GV value ordering is used to s:hedule the conflict set activities that
got unscheduled during repair. Tn other words, each time an activity s repaired, CBS is used to reschedule
a subset of the activities (i.e. the members of the conflict set) of the overall schedule with utslity functions
{hat have been adaptively modified based on information in the case base. Section 4.4 describes the repair
process in detail

3. Case-bascd Schedule Optimization

In order to optimze schedules to user’s satisfaction, we need to know context-dependent user preferences and
represent them in the scheduling system to be exploited in the reasoning protess. Rule-based approaches,
while having the potential to capture context-dependent tradeofls in rules, require considerable knowledge
acquisition effort [Pre90). Our apptoach uses case-based ressoning (CBR) which has the potential for deal-
ing with noisy data [RK92, AKA91), acquiring user knowledge in complex domains [Cha83, MBS88), and
expending less effort in knowledge acquisition compared with knowledge acquisition for rule-based systems
[SMo1, LMBS1].

Becanse of the characteristics of the s¢heduling domain described in the pre ious section and our interest
in capturing context dependent user preferences, CBR seems & natural method for knowledge acquisition.
However, applying CBR to achedule improvement a numerical optimization problem, is very challenging. In
general, CBR has been used for ill-structured symbolic problems, such as planning [Ham89, KH92, Vel92), le-
gal reasoning [Ash87, RA88), argumentation [Syc89), conceptual design [SGK*91), medical diagnosis (Kot88)
where the primary concern has been plausibility or correctness of the resulting artifact (plan, argument, de-
sign) and computational efficiency of the process rather than artifact quality.

The challenges we faced were to decide what constitutes a case in the doman of schedule optimization
and what the case indices should be. The intuitive answer would be to consider a whole schedule as a case.
This solution is attractive since, if the right information could be tcansferred from one scheduling scenatio
to another, or with little adaptation, the new problem would be solved with relative ease. However, because
of the high degree of nonlinearity of scheduling constraints and objectives, a very smell difference between
an input probleis specification and the problems in the case base can in general result in large variations in
the results both in terms of amount of modification needed and the quality »f resulting schedule. A second
difficulty with respect to having a whole schedule as a case ¢came in the form of what indices to choose.

ADARQQQ0DD

Indexing 2 case in terms of the goals that must be achieved and problems that must be avoided [Ham89) is
a good guideline and has served many CBR systems well, However, in our domain, the goals to be achieved
(the optimization criteria) cannot be explicitly stated since they reflect context-dependent user pref

and tradeoffs. Even if the optimization objectives wete explicit, b of the nonlinearities of the problem,
retrieving a schedule in which the achieved objectives were the same as the desired ones in the current
problem would give little or no help in adapting the retrieved schedule to the current problem specifications.
Moreover, because of unpredictable ripple effects of constraint propagation and tight constraint interactions,
the problems to be avoided are not at all obvious, neither can they be discovered since a causal model for
scheduling cannot be assumed.

Since it 1s impoesible to judge a priori the effects of a scheduling decision on the optimization objectives,
a scheduling decision must be applied to a schedule and its outcome must be evaluated in terms of the
resulting effects on scheduling objectives. Therefore, having a single scheduling decision as a case seemed to
provide advantages in terms of focus and traceability of the problem solving process. Focus and traceability
mean that we could capture a user'’s evaluation of the results of a single scheduling decision in a case, and,
if the result was unacceptable, we could apply another scheduling decision to the same scheduling entity
until either all available scheduling decisions had been exhausted or an acceptable result had been obtained
Therefore, it became clear that it was better to have a single activity/operation of a scheduling job as the
"acheduling entity” on which a scheduling decision was applied. Since the result of a scheduling decision
needed to be evaluated with regard to the optimization preferences for a schedule as a whole, it is clear that
constructive methods which incrementally augment a partial schedule at every scheduling decision point
would be unsuitable for our purposes. Moreover, contextua! information, ~hich can only be provided by
having a complete schedule, is very useful in applying CBR. Therefore, revision-based scheduling was chosen
as the underlying scheduling methodology.

Hence in CABINS, a case describes the appiication of a schedul decision on a single actinly of a
Job Operationalization of a schedule revision decision is done by means of a schedsle repair actton. We have
identified two classes of schedule repair actions (i.e. strategy and tactic), described in detail in section 4. We
use constraint propagation to propagate the effects of a schedule repair action to the rest of the schedule.
Each application of a repair results in & new schedule. The search space of CABINS is the space of complete
sche dules that incorporate acceplable user optimization tradeoffs. Hence the predictive case features that
are suitable for case indexing should be ones that capture good tradeofls. Althiough schedule optimization is
ill-structured, we make the hypothesis that there are regulatities of the domain that can be captured, albeit
in an approximate manner, in these features. In CABINS, indices are divided into three categories. The
first category consists of the global features. Since the results of schedule revision assaciated with a single
activity pertain to the whole schedule, global features that express characteristics of a whole schedule are
relevant and operate as contextual information for selection of a particular repair action. The local features
comprise the second category. Since it is not possible to predict in general the bounds of repair necessitated
by application of a repair action (due to constraint ripple effects), and since reasoning about the effecta of
8 repair action on the whole schedule a priori would amount to unhmited lookahead analysis which is in
general intractable, we confine the range of lookahead analysis to a limited repatr fime horizon (see section
4.1). Associated with this time horizon, there are local features that allow CABINS to estimate the effects
of each repair action.

The schedule resulting from application of a repair action must be evaluated 1 terms of user-defined
tradeoffs. The user cannot predict the effects of modification actions on schedule correctness or quality since
a modification could result in worsening schedule quality or introducing constraint violations. Nevertheless,
the user can perform consistent evaluation of the results of schedule revisions. This evaluation is recorded
in the case as part of the case’s repair history. The repmir Aistory constitutes the third category of case
features Therefore, the case basc incorporates a distribution of examples that collectively capture repair
performance tradeoffs under diverse scheduling circumstances.

CABINS searches ihe space of complete schedules Control for this search is provided by CBR in two
ways' First, search control 1s provided through case-based selection of the next repair action to he apphied
and second through case-based evaluation of the outcome for the schedule that resulted from application

of a selected repair action. The global and local features are the indices that are used to retrieve a case
that suggests the next repair action to be applied The features associated with the repair history are
used to retrieve cases that suggest evaluations of a repair outcome. For a more detailed description of case
representation and indexing, see section 4 1

4. CABINS Overview

In CABINS, there are two general types of repairs: repair siralegies and repatr tactecs. A repair strategy is
asgociated with a particular high level description of classes of schedule defects. Each repair strategy has a
variety of repair tactics associated with it. The repair tactics aze appropniate for particular specializations
of the defect classes. We have identified two general types of repaic strategies: local patching and model
modification Local patching is the selection of repair actions that result in changing the sequence of activities
allocated to different resources, or rearranging resource assignments. Local patching is in general less costly
and disruptive to factory operations. For example, it the repar goal is to reduce job tardiness, specific
local patching strategies include “reduce the slack between activities in the tardy job”, and “reduce the
idlestime of resources needed by activities in the tardy job”. Model modification reformulates the problem
by changing model parameters, such as the number of jobs to be scheduled, or global constraints such as
changing release or due dates, inceeasing resource capacity or increasing number of shifts. Model modification
strategies facilitate the solution of the problem, since they amount to global constraint relaxations. However,
in practice, model modification strategies are costly to implement (¢ g., buy new equipment, pay for extra
shifts in a factory, subcontract jobs to outside contractors). The default CABINS strategy is local patching,
a computationally more challenging task since the system must improve the schedule without relaxing the
already imposed constraints (except due date constraints). If local patching is unsuccessful in fulfilling the
repair goal, the repair episode is considered a failure. Our experiments were run within these more stringent
assumptions

Figure 3 depicts the overall architecture of CABINS. CABINS is composed of three modules: (1) an
initial schedule builder, (2) an tteractive schedule repair (case acquisition) module and (3) an automated
schedule tepair (case re-use) module.

CABINS can operate in the following modes that exhibit different levels of autonomy:

» Xnowledge acquisition interactive mode to acquire user preferences and gencrate the ease hase.

¢ Decision-support interactive model where the previously acquired case base that incorporates user
preferences suggests revision actions and evaluation outcomes to the user who can accept a suggestion
or override it with a new suggestion.

o Automatic mode where previously acquired user preferences are re-used to guide scheduling decisions
without any interaction with the user.

In the experiments teported in section §, CABINS operated autonomously. The tepair process in au-
tonomous operating mode has the following basic steps’

1. A)ob i the mitial suboptimalschedule is randomly identifies to be repaired. The random job selection
is necessary since CABINS does not have explicit optimization criteria that it could use to select jobs
to be repaired in a mote informed fashion.

2 The job under current repair consideration 1s called the focal.job and the activity under current repair
consideration is called the focal.activity. Repair is performed one activity at a time. Activities in
 focal job are repaired in a forward fashion starting with the earhest activity of that job that has
“encugh” upstream slack This mechanism focuses attention on activities that have enough slack so

they can be moved, thus (a) avoiding y computations, and (b) limiting the amount of ripple

9

ADA289383

Scheduling Problem

!

Scheduler -

Incomplete
Domain Knowledge

/\

Test Data Suboptimal Schedule Training Data
cage
Case-Base acquisition
Repalr by CABINS Contextual Domain Knowledge Repair by
Human-expert
Select
Retrleve*slmllar case Feature Values - ;. ;: u-_“ ‘on

Apply repair tactic Evaluate

PRYTIP Repair Tactic result

Evaluate result Explain
Evaluation Criteria tailures

improved Schedule

Figure 3. CABINS Architecture

10

ADA289383

effects (schedule disruption) that could be caused by moving activities that are too tightly scheduled
and whose move would cause many constraint violations 3

L]

A repair strategy/tactic is selected for the current problem using CBR and is apphed. Application of a
repair tactic (described in section 4.4) consists of three parts' (a) identifying the activities, resources
and time intervals that wili be involved in the repair, i.e. the cutrent conflict set, (b) change the utility
functions associated with activities in the conflict set, and (c) using the constraint-directed scheduler
with utilities assigned in step (b) to make the resource reservations for the activities identified in step

(»).
4. After a repair has been executed, CBR is used to predict and evaluate the repair outcome in the
context of the current case-base.

5. If repair is deemed a success, find next activity to repair, else (if repair outcome is a failure), CBR is
invoked to select the next repair tactic to repair the current focal activity,

4.1, Case Representation

The repair process should exploit knowledge relating both to the continuing validity of various scheduling
decisions, the flexibility of current time and capacity constraints, the trade-offs that are implied by a partic-
ular repair, and whether the tepair was successful or unsuccessful according to the user’s judgment. Figure
4 shows the information content of a case. Appendix A shows an example of a case instance that is in
CABINS's case base.

A case describes the application of a particular repair action to an activity. Because of the ill-structuredness
of the domain, case features are heuristic approximations that reflect regularities of revision-based schedul-
ing. For example, one of the regularities that would be useful to represent would be repair flexibility, i.e
the notion of how much freedom there 13 in the current schedule for moving an activity to a new position.
Global case features (figure 4) reflect potential repair flexibility for the schedule as a whole. High resource
utilization, for example, often indicates & tight schedule without much repair flexibility. High starndard
deviation of resource utilization indicates the presence of highly contended-for resources which in turn in-
dicates low repair flexibility. Local features reflect flexibility for schedule revision within limited temporal
bounds. In particula, the temporal bound that CABINS uses is a time interval called repatr time horizon
The repair time horizon of a focal.activity is the time interval between the end of the activity preceding the
focalactivity in the same focal,job and the end of the focal.activity (see figure 5). The local features that we
have identified are in the same spirit as those utilized in [OST88). For example, predictive-shift-gain predicts
how much overall gain will be achieved by moving the current focal activity earlier in ita time horizon. In
particular, it predicts the likely reduction of the focal activity's waiting time wlien moved to the left within
the repair time horizon,

The repair history records the sequence of applications of successive repair actions, the repair effects
and the repair outcome. Repair effects describe the impact of the application of a repair action on sched-
ule optimization objectives (e g., weighted tardiness, WIP). Typically these eflects reflect tradeoffs among
different objectives. A repair outcome is the evaluation assigned to the set of effects of a repair action
and takes values in the set [‘acceptable’, ‘unacceptable’] This judgment is made in the training phase and
gets tecorded in the case base. An outcome is ‘acceptable’ if the tradeoffs involved in the set of effects for
the current application of » repair action is judged acceptable If, during case acquisition, the outcome is
judged as “unacceptable”, the application of the repait tactic is considered a failure and an explanation that
expresses tradeoffs with respect to balancing favorable and unfavorable outcomes on optimization objectives
15 provided. If during CBR tepair thie repair outcome 1s deemed unacceptable, another tactic is selected from
success cases to repair the same activity, using as indices global and local case features, the failed tactic,
and the indication of the failed outcome. This CBR invocation retrieves similar past failures of the tactic
that were successfully repaired and the tactic that was eventually successfu! in fixing the past failure. The

31n the curvent implementation, “enongh” upstream slack is heuristically detennined as twice the tardiness of the focal.job

1

ADA289383

CASE

Global Feature
Weighted Tardiness
Value Salience
Resource Utilization Average
Value Salience
Resource Utilization Deviation
Value Salience
Local Feature
Waiting Time
Value Salience
Predictive Shift Gain
Value Salience
Predictive Alt Shift Galn
Value Sallence
Predictive Swap Gain
Value Salience
Predictive Alt Swap Gain
Value Sallence
Repair History
Tactic

Value Salience
Outcome Value Salience

Effetet
Type Value Sallence

1

Figure 4: Case Representation

ACT
n-1
waiting time 1
ACT
n
repair time horlzon
Figure 5 Repair time horizon of focal activity (ACT, ,{)

12

ADA289383

assumption here is that a similar outcome for the same tactic implies similarity of causal structure between
the past and current case. Therefore, the eventually successful tactic of a similar failure can potentially be
successful in the current problem

4.2, Case Acquisition

In CABINS, the session starts with an empty case-base. A set of training problems are presented to the
user who interacts with CABINS to repair schedules by hand. At first, the user selects the repair tactic that
is deemed to be appropriate and uses CABINS’s tactic application procedure (see section 4.4) to apply the
chosen tactic to the current schedule.

The effects of the repair are calculated An effect describes the result of the repair with respect to
one or more repair objectives. Effects pertain to either the schedule as a whole or to a job Possible effects
pertaining to a schedule as a whole are: weighted tardiness, average resource utilization, deviation of resource
utilization, total schedule WIP. Effects that pertain to a job are changes in the tardiness of the job, changes
in work-in-process inventory, or changes in resoutce assignment. So, for example, the tradeoff between
utilizing a less preferred machine to reduce a job’s tardiness can be reflected in these effects. Due to tight
constraint interactions, these effects are ubiquitous in job shop scheduling and make schedule optimization
extremely hard. When application of & repair tactic produces a feasible result, the user must decide whether
the resulting schedule is acceptable or not based upon those caleulated effects. An example of these effects
is shown in Appendix A.

An outcome 1s judged as unacceptable, if the schedule tesulting from the application of the revision
heuristic does not muke any improvement with respect to the user’s criteria. This could happen because
harmful effects outweighed, in the user’s judgment, the effected improvement. For example, if reduction of
job tardiness enforces increased utilization of low-quality machine, although the total cost of this repair may
be low, 1t may be unacceptable to a user who worries that the quality of resulting products might be low.
Therefore such a repair might be judged as unacceptable. The user’s judgment as to balancing favorable and
unfsvorable effects related to a particular optimization objective constitute the explanations of the repait
outcome. The user supplies an explanation in terms of rating the importance of each effect (denoted by
"salience” in figure 4). At the end of each repair iteration, the applied repair tactic, the effects of the repair
and user judgment / explanation as to the repair outcome are recorded in a case along with the current
problem features. If the effects are acceptable to the user, the repair outcome is recorded as "acceptable”
and the user tries to repair another activity If the user does not like the tradeoffs that are incorporated in
the repair eflects, then the outcome of the cuerent repair tactic ("unacceptable®), the effects calculated by
CABINS and the salience assigned by the uscr ate recorded in the repair history of the case. Subsequently,
the user tries to utilize another repair tactic to repair the same activity,

The process continues untif an acceptable outcome 18 reached, or faifure 1s declared. Failure is declared
when all available tactics have been used to repair an activity, but the user finds each repair outcome
unacceptable. The seq of application of ive repair actions, the eflects, user’s judgment and
explanation in case of failed application are recorded in the repair history of the case. Two remarks are
in order here with respect to case acquisition. First, a new case is acquired only when a new activity is
under repair. When an activity is repeatedly repaired due to unacceptable repair tactic application results,
no new case is acquired, but the repair lustory of the same case is augmented by each successive repair
tactic application, its effects and outcome. In this way, & number of cases are accumulated in the case-base.
In section b, we describe how the cases used in our experiments were ired M , in section 5.3
we report current experimental results to investigate the tradeofls mcurred when CABINS operates with
dufferent size case bases.

ADA289383

4.3, Case Retrieval

Once CABINS has constructed a case-base from traiming data 1t can perform schedule repair without any
interaction with its user. Retrieved cases are for three purposes. selection of a repair tactic to be apphed,
evaluation of the resulting schedule after application of the selected repair tactic, and, in case of failure,
retrieval of a tactic that had fixed a previous similar failure In each of these three situations, CABINS
utilizes a different set of indices for case retrieval. In order to retrieve cases to select a repair tactic, global
and local features of the current case (the current focal.activity) are used. The process of applying a repait
tactic is described in section 4 4.

After a repair has been apphed and, if the result is a feasible schedule, repair evaluation is performed
through CBR. Using the effect features (type, value, and salience} as new indices, CBR is invoked and
returns an outcome in the set (acceptable, unacceptable)

If the outcome of cucrent revision is decided as unacceptable, CABINS performs another CBR invocation
using as indices the conjunction of the current outcome (unacceptable), the failed heunstic and the case global
and local features to find another possibly applicable revision heuristic. Invoking CBR with these andices
retrieves cases that have failed in the past in a similar manner as the current revision This use of CBR
in the space of failures is a domain-independent method of failure recovery [Syc88, Sim83], and allows the
problem solver to access past solutions to the failure. If the result is acceptable, then CABINS proceeds to
zepair another activity.

For each of the three case retrieval situations described above, CABINS uses & k- Nearest Neighbor method
(k-NN) [Das90] for case retrieval. The space over which the k-Nesrest Neighbor calculation is done is the
set of features corresponding to each of the three retrieval situations. For example, for case retrieval to
select a repair tactic, k-NN is used over the space defined by the values of global and local features. A k-NN
calculation finds the k-nearest neighbors, where k is some constant of the current problem from the training
data based on pre-determined similarity measures and, in ite simplest form, a single nearest neighbor is
found and chosen as a classification result.

We selected k-NN instead of I-NN for the following reasons. 4 In domains, such as scheduling that do
not have clear predictive features due to lack of causal structure, there can be many matches other than the
nearest match that can potentially contribute to accurate classification If & large number of near neighbor
cases aze of the same category (e.g. suggesting swap as the tactic to be appled), a higher confidence can
be given to the classification result than if the near neighbors are of many different categories (e.g. some
suggesting left_shift and some suggesting swap). For example, in deciding the repair tactic to be applied to
the current problem, suppose that we have five nearest neighbors. Three of them are left.shift cases, whose
sumilarity to the current problem is 0.9, 0.2 and 0.1 and the other two are swap cases, whose similarity is
0.8 and 0.75. If we use 1-NN, lefe.shift is selected as a repair Lactic because the ncarest retrieved case (with
similarity 0.9) uses left_shift as a successful revision tactic. In this method, the occurrence of multiple cases
suggesting a different classification result with relatively high similarity could potentially be ignored. We
use the sum of the similarity in k-nearest neighbors as a selection criterion, instead of using the frequency of
appearance of a class among k-nearest neighbors, in order to avoid the situation where dissimilar cases may
have an undue influence on the classification result *. In the previous example, swap is selected as a repair
tactic by CABINS (since its total similarity is 1.55 va.1 2 of left.shift).

The sinularity between a case and the current problem is computed in CABINS as follows:

4In the current implementation of CABINS, k is set to §.

5This method has been fully applied in domains without clear causal structure, such as English word pronunciation
and text classification in [SW86, CMSW92).

ADA289383

CascFeature] ~ ProblemFeature, 2

N
; - i
Distance, = E(Salzencc) x F ey

=
Similarity; = exp(—Distance;)

where Salience} is the salience of j-th feature of i-th case in the case-base, CaseFeature; is the value
of j-th feature of i-th case, ProblemFeature, is the value of j-th featurc in the current problem, E_Dev; is
the standard deviation of j-th feature value of all cases in the case-base, and Distance; is the dissimilarity
between i-th case and the current problem. And Similarity, is the similarity between i-th case and the
current problem.

We utilize the normahized Euclidean distance to measure the dissimilarity between a case and a problem.
This prevents certain features from dominating distance calculation merely because they have large numerical
values.

44. Repair by CABINS

Repar of a schedule is performed by applying the repair tactics selected in each repair iteration by CBR.
The repair tactics currently available in CABINS aze:

left.slide 1 try to move focalactivity on the same resource as much to the left on the timeline as possible
within the repair time horizon, while preserving the sequence of all the activities.

left_shift : try to move focal.activity on a seme resource as much to the left on the timeline as possible
within the repair time horizon while minimizing the disruptions.

left shift.into.alt : try to move focal.activity on a substilutable resource as much to the left on the
timeline as possible within the repair time horizon while minimizing the disruptions.

swap : swap the focal.activity with the activity on its left on the same resource within the repair time
hotizon which causes the least disruptions

swap.nto_alt : swap the focal.activity with activity on its left within the repair time horizon which
causes the least distuptions by changing the resource assignment of the focal activity to a subststutable
resource,

give_up : give up a further vcpair of the current focal.artivity

In recent work we have expanded the set of tactics to 11 and are currently performing additional cxpar-
iments with them. The process of applying a repair tactic has the following sieps:

1. Determiue the predictive start time of the focal.activity being repaired The predictive start time of
an activity is a temporary start time that is calculated by each repair tactic as a desirable start time
for a focal.activity. The ripple effects of a repair, the conflict set, consists of all the activities that
may need to be re-scheduled due to constraint violations ansing from moving the focal.uctivity to the
predictive start time. Note that this predictive start time may not be exactly the same as the start
time that will result from execution of the repair (step 3 below).

o For leftshift or left shift_into.alt, the “predictive” start time is the start time that minimizes
capacity over-allocation as a result of moving the focal.activity on the same (or substitutable)
resource within the focal.activity's repair time horizon.

16

ADA289383

o For swap or swapnto.alt, the “predictive” start time is the start time that causes the least
amount of precedence constraint violations on the same (or substitutable) resource within the
focal.activity’s repair time hotizon.

Project the effects of moving the focal.activity to the predictive start time and designated resource
This is done by performing constraint propagation to identify capacity constraint violations.

~

. Adjust the resecvations of all the activities in the conflict set by simple right-shifting or left-shifting
so that all conflicts are resolved.

(2]

4 Change the bias of the start time utility function (see Fig. 2) of the activities in the conflict set in
favor of start times calculated in step 3. If the tactic being applied involves a substitutable resource,
also change the resource utility-function so that the substitutable resource has utility higher than
the resource on which the focal.activity is currently scheduled. Changing the utility functions biases
selection of start times by the value ordering heurstic (section 2 3) in favor of those with higher utility
values, thus reflecting the preferences encoded in the case base.

. Unschedule the focal.activity and all members of its conflict set and re-schedule them using the oppor-
tunistic constraint-directed scheduler with ARR variable ordering, GV value ordering and the utility
functions defined in step 4

o

8 Restore the start time utility-function of the affected activities to reflect no bias for the next repair
iteration,

The above process results in a conflict free revised schedule. The effects of the revision are calculated,
and CBR is invoked with the eflects as the relevant indices to evaluate the repair outcome. Note that an
activity A] can be moved under two different situations. First, A] can be moved when it is the current
focal.activity. Second, it can be moved when it is in the conflict set of another focalactivity.

Figure 8 gives a detsiled example that graphically shows how the local repair action left_shift can be
applied In this simplified example, we have three jobs and each of them has three activities. Suppose the
current focal.activity is A3 and lefi.shift has been chosen as the repair tactic. The first step of revision is
to find an appropriate start time for activity A3, Leftshift dictates that activity A3 should be starting as
soon as pessible within the given repair time horizon. Therefore, the utility function associated with A3 that
used to reflect the preference for starting A3 as late as possible (indicated in the figure by “Utility function
of A} before repair”) is adjusted accordingly. In the Rgure, the new utility function is indicated as “Utihity
funetion of A3 after adjustment®. The next step is to find the conflict set which consists of all affected
activities by moving A3 to the left The members of the conflict set are shown in the figute. The utility
function of each activity in the conflict set 18 also adjusted to reflect these changes. In the figure, we show
as an example the adjustment of the utility for activity A7. After these utility functions have been adjusted,
the focalactivity and the activities in the conflict set are unscheduled and the constraint-based scheduler is
called to re-schedule them. The resulting repaired schedule is shown at the bottom of the figure 6.

4.5, An Example

We briefly illustrate the repair process with a very simple example schedule to be repaired shown in figure
7. In the gantt chart, each row shows assignments of activities on each resource, along the timeline, and
each white box corresponds to an assignment of an activity, The number inside a white box identifies the
job which the activity belongs to. For example, the first activity on resource? is the first activity of Job?2,
identified in our text as A]. We wnte R, to indicate the ith resource, J, to 1dentify the jth job and A to
identify the kth activity of job n The example has ten jobs (J, .-,J10) and each job has five activities
with the linear precedence constraint, (e g., A} BEFORE A3, ... , A7 BEFORE A2) Resources R and Rz,
Ry and Ry are substitutable; resource Ry 15 & bottleneck Suppose that the current focal.job is Js and the
curfrelxln focal.activity 15 A§. The indices used to retrieve the sinnlar cases from the case-buse sre calculated
as follows.

16

ADA2R9383

|

Propogaiion

Focal activity: G,U
contictmat: () () D) (D (D

:.x:uyon for ‘A Buiors st

@ r_‘\ Attor adjustment

Wtility

function for IZ& Butoe ropal
IA : Aher sdjustment

After left-shift

" EERE T @

pee|] ith |

Machine -
3

L]] i i

Time Horlzon
Figure 6 Example of repair tactic application: left stuft

N TOTIES

Figure 7: Original Schedule Results

1. Global features:

Weighted Tardiness: In this particuiar case, the weighted tardiness of the whole schedule is 460.

Resource Utilization Average: Tlus feature can be calculated as the ratio of overall utilization
of resources to overall availability of resources. The value of this feature is 0.544.

Resource Utilization Deviation: The deviation of resource utilizations across the different re-
sources is equal to 0 032.

2. Local features:

Waiting Time: This feature is defined as the time elapsing between the completion of the preceding
netivity (A3) and the start of the present focal activity (A$). In our case, it is equal to 1180620 =
§60.
The predictive_shift.gain is computed in CABINS as follows:

prediciive_start ime —~ current_start {ime

ity dime x repairability

where predictive_start 2ime is defined in section 4.4, current starttime and waiting time are
the parameters associated with focal activity We heuristically estimate the repairability within
the given repair time horizon by a hyperbolic tangent function.

For our example, the value of predictive.shift.gain for A} is 0 705.

Predictive Alt Shift Gain: The calculation of this feature is very similar to that of predictive_shift_gam.

In this case, since the required rasource of activity Af is » bottleneck resouree, Ry, that does not
have any substitutable resources, the value of predictive.ali_shifi_gain is 0.

Predictive Swap Gain: To calculate predictive.swap.gatn, CABINS uses the same formulas as for
predictive.shiff.gain, but the predictive_stari.time is calculated differently. (See Section 4.4) For
this example, predictive.swap_gan 1s 0.96

Predictive Alt Swap Gain: The value of this feature 13 0 since A§ requires the bottieneck resource
Ry which does not have substitutable resources.

Case based retrieval is performed with the global and local indices It turns out that case-based retrieval
found the case shown in Appendix A as the most similar and thus selected swap as the repair tactic for the
focal activity A§.

To apply swap, CABINS calculates the activity with which A will be swapped To do this, CABINS
selects the activity which. if swapped with A§, will result in least amount of precedence constraint violations

18

Figure 8: Schedule Resvl. .iter Repair on A}

From the figure 7 we can see that utually there are 5 activities swappable with A§ within the repair horizon.
These activities are: A}°, A, AL, A} and A}. At first glance, it may appear that 1t would be better if A} was
swapped with A4° because by domg so A} WI" be finished as early as possible. However, it is not the best
choice since if A} is swapped with A}%, it wnll cause a lot of downstream ripple effects contrary to the primary
intention of keepmg repair effects as localized as possible. After calculation of the estimated possible effects,
CABINS decides to swap A} with A%. Job J4 has weight 3 and weighted tardiness 3 x (1370 - 1320) = 150,
The effect of applying the swap tactic is that A} and A} are unscheduled on Ry and A} is re-scheduled to
start at time 1090 (the start time of activity A} prior to the swap) Due to the larger duration of activity
A%, now there is the ripple effect of a precedence constraint violation between activity A} and its successor
activity A% on resource Ry. (In general, many activities could be affected and must be rescheduled as
described 1n section 4.4). Constraint propagation discovers this constraint conflict and shifts activity Af
further to the right on tesource Ry resulting in the tepaired schedule shown 1n figure 8.

Then, the eflects of tepairing A} are calculated, CABINS estimates the local effects on the focal_job
Js and calculates global effects on the whole schedule. Machine utilization did not change but Js had an
estimated decrease in weighted tardiness of 180 time units and an estimated decrease in WIP of 200 units %;
J¢ had an increase in weighted tardiness of 150 units and an increase in WIP of 750 units. Global weighted
tardineas decrease is 180 — 150 = 30 and global WIP increase 1 750. CBR is invoked using the these eflects
and applied repair tactic as indices to determine whether this repair outcome 13 acceptable. If there are more
success cases than failure cases in the retrieved k-nearest neighbors, it 15 considered that the effects reflect
tradeoffs in the user's preferences (in this example, li'tle werght on WIP) and the outcome is considered
acceptable. If, on the other hand, a failure case is retrieved, then the outcome is considered unacceptable,
reflecting the user peeferences for minimization of weighted tardiness withcut the expense of increasing WIP.

In this example, CBR invocation with effects as indices retrieves as the closest matching case, the case
shown i1 Appendix B, where the effects match the effects associated with the swap repair tactic. Therefore,
the outcome is deemed "acceptable”,

5. Evaluation of the Approach

We conducted a set of experiments to tes! the following hypotheses:

1. Our approach is potentially effective in capturing user preferences and optimization tradeoffs that are
difficult to model.

2. Our approach improves schedule quality irrespective of method of initial schedule generation.

®These decreases cannot be precisely determined unt:l the lust actwity of Jg, 4%, i« repawed

19

3. Our approach produces high quality schedules at much lower computational cost as compared to
simulated anneahing, a well-known iterative repair method

4. Our approach is suitable as a reactive scheduling method because 1t maintains high schedule quality
and minimizes distuptions in the face of execution time failures.

These hypotheses are difficult to test since, due to the subjective and ill-defined nature of user preferences,
it is not obvious how to correlate scheduling results with the captured preferences or how to define quality
of a schedule whose evaluation is subjective.

To address these issues, we had to devise a method to test the hypotheses in a consistent manner. To
do that, it is necessary to know the optimization criterion that would be implicit in the case base, so that
the experimental results can be evaluated. In the experiments reported here, we used two different explicit
criteria (weighted tardiness; WIP+weighted tardiness) to reflect the user’s optimigation critetia and built a
rule-based reasoner (RBR) that goes through a trisl-and-error sepair process to optimize 8 schedule. Since
the RBR was constructed not to select the same repair action after application of a selected repair tactic
was evaluated as unacceptable, it could go through all the repair actions before giving up further zepaur.
Each of these applications of a repair action would be gathered in the repair history of the case for the
particular activity under repair. For each repair, the repair effects were calculated and, on this basis, since
the RBR had a predefined evaluation objective, it could evaluate the repait outcome consistently. Thus, we
used the RBR with different rules each time to generate different case bases, each for a different explicit
optimization objective. Naturally, an objective, though known to the RBR, is not known to CABINS and
ia only implicitly and indirectly reflected in an extensional way in each case base. By designing an objective
into the RBR so it could be reflected in the corresponding case base, we got an experimental baseline against
which to evaluate the schedules generated by CABINS.

We cvaluated the approach on a benchmark suite of job shop scheduling problems where parameters,
such as number of bottlenecks, range of due dates and activity durations were varied to cover a broad range
of parallel machine job shop scheduling problem instances. In particular, the benchmark problems have the
following structure: each problem has 10 orders of 5 activities each. Each order has a linear process routing
specifying a scquence where each order must visit bottleneck resources after a fixed number of activities,
50 83 to increase resource contention and make the problem tighter. Two parameters were used to cover
different scheduling conditions: a range parameter, RG, controlled the distribution of order due dates and
release dates, and a bottleneck parameter, BK, controlled the number of bottleneck resources. To ensure
that we had not unintentionally hardwired knowledge of the problem into the solution strategies, we used &
problem generator function that embodied the overall problein structure described above Lo generate paraliel
job shop scheduling instances where the problem parameters were vanied in controlled ways. In particular,
six groups of 10 problems each were randomly generated by considering three different values of the range
parameter (static, moderate, dynamic), and two values of the bottleneck configuration (1 and 2 bottleneck
problems). The slack was adjusted as a function of the range and bottleneck parameters to keep demand
for bottleneck resources close to 100% over the majot part of each problem. Durations for activities in each
order were also randomly generated.

Generating problem instances "in the neighborhood” of a problem by controlled variation of problem
parameters is a well-accepted method in Operations Research and kuowledge-based scheduling communities
for evaluating the performance of scheduling methods (e.g., {Sad91, SC93]) The problem instances, although
randomly generated, shared features of problem structure {e.g , each problem has 5 machines, of which 1
and 2 machines ate bottlenecks, and substitutable machines exist for the non bottlensck machines etc), and
CBR can exploit the captured regularities in the structure of the problems for trausfer to later problem
uoll:;ng.) It is interesting to note that this transfer carries over even if the number of orders is varied (see
Table 5).

The benchmark problems are variations of the problems originally repotted 1 [Sad91] and used as a
benchmark by a number of researchers (e.g. {Mus93. LS93)). Our problem sets are, hiowever, different in two
respects (a) we allow substitutable resoutces for non-bottleneck resources, thus solving the parallel machine
rather than the simple job shop scheduling problem, and (b) the due dates of orders in our problems are

20

tighter by 20 percent than in the original problems.

A cross-validation method was used to evaluate the capabilities of CABINS. Each problem set in each
class was divided in half The overall traini isting of 30 problems, each of which has 50
activities, was repuud by RBR to gather cases As has been explamed in the section on case acquisition
(section 4.2), a case is acquired for each activily that is the current focal_activity (irrespective of the number
of tactics available or number of tactics used in the activity's repair). Of course, an activity (and consequently
a job) may be repaired more than once during an overall repair cycle, since it is repaired as a focal.activity
but also as an activity in the conflict set of another focal.activity, and thus must be moved. Allowing each
activity to be a focal.activity once for each problem would give a maximum of 30X50 = 1,500 cascs for each
training sample (for each different experimental optimization objective} In practice, some of the activities
did not become focalactivities to be repaired because they did not have enough upstream slack (see section
4), so that for each training sample, CABINS was trained with approximately 1,100 cases. These cases were
then used for case-based repair of the validation problems (the other 30 problems). We repeated the above
process by interchanging the training and the test sets Reported results are for the validation problem
sets. Since it is not possible to theoretically predict the bounds of repair or the global optimum, in the
experiments, CABINS was allowed to tun for three overall repair cycles.

5.1, Preference Acquisition

To test the hypothesis that CABINS could acquire user preferences, we constructed through RBR, two case
bases, the first to reflect the user’s preference for repairs that minimize weighted tardiness and the second
to reflect the more complex criterion of minimizing the combination of weighted tardiness and WIP. The
cases constituted the only source of knowledge for CABINS. In other wotds, there was no objective given to
CABINS explicitly. The case-bases were used both as a source of suitable repairs, and aleo as a source of
advice regarding repair evaluation.

Graphs in Fig. 9 show the comparison of the performance by CABINS using “weighted tardiness” case
base (labeled in the graphs as CABINS(WT)) and the performance by CABINS using the “weighted tar-
diness and WIP” case base (Iabeled in the graphs as CABINS(WT+WIP)). From the results, we observe
that CABINS(WT) generated higher quahty schedules with respect to minimizing weighted tardiness than
CABINS(WT<4WIP) in all six problem classes. Conversely, CABINS(WT+WIP) generated higher quality
schedules with respect to WIP, and weighted tardiness plus WIP than CABINS(WT) in the all problem
classes. In a nutshell, CABINS(WT) tries to optimize & schedule only in terms of weighted tardiness and
neglects WIP, but CABINS(WT+WIP) takes into account the tradeoffs between weighted tardiness and
WIP in schedule repair. These results indicate that CABINS can acquire different and subjective user
preferences on the tradeofls of diverse objectives in scheduling from the cases. Thus in our approach, un-
like traditional heuristic scheduling approaches [Fre82, MP93), it is not necessary to devise a pasticular
heuristic to suit the optimization criterion. Only the base must be changed for different optimization
objectives. In addition, unlike traditional search-based scheduling approaches such as branch-and-bound,
dynamic programming, tabu search, simulated annealing and 8o on, our approach doesn't require an explic-
itly represented objective function. CABINS has the potential for inducing more complicated form of user’s
objectives (e.g. allowing handling of exceptional situations) from the cases. It is true that user’s objectives
could be elicited by intensely intetviewing domain experts and represented in the form of rules as we have
done in constructing RBR modules to gather cases in the experiments. But, (1) rule-based knowledge ac-
quisition is extremely laborious [Pre90) and (2} & scheduling problem is so ill-structured that even a domain
expert cannot have a sufficient knowledge for making a good schedule efficiently [KLSF91). Nevertheless,
the CBR-based methodology of CABINS can induce efficient control model from the cases obtained through
the apphications of insufficient rules.

In another set of experiments with objective WIP+WT, we used RBR itself to repair the set of test
problems. Table 1 shows that repair by CABINS is about 40% more efficient than repair by RBR and it
improves the quahity of schedules by about 12% mote than repair by RBR. A potential explanation for these
results is that, as described in section 4.3, CABINS can effectively utilize failure information stored in the

21

{2 CABINSWT)

B CABINS(WT+«WIP)

PG 7« A o?

Weighted Tardiness plus WP
g B
TN T A e

o

32-r Forean

e,
IR

W CABINS(WT-WIP}
[CABINSIWY

B CABINS(WT+WIP)
] CABINS(WT)

Problem

set

Figure 9: Scheduling Results with Different Case Bases

Table 1. Repair by RBR and CABINS

WT — WIP | WI4+WIP || CPU Sec.
| Repair by RBR 3162 14466 | 18218 498.6
Repair by CABINS {1 4053 11950 | 1600.3 2965

22

cases (Refer to {MS94] for more details and some experimental results)

5.2, Predictive and Reactive Scheduling

We evaluated CABINS against other scheduling methods using standard criteria (e g [OST88, ZDGS0})
for evaluati hedule revision quality. These criteria are also appropriate for plannlng These criteria
were: (a) Attendance to scheduling objectives: what it the quality of the revision with respect to the
desired optimization criteria? (b) Amount of disruption: how many changes to the original schedule are
made? (c) Efficiency of revision: how quick is the revision process? In particular, can the revision process
be responsive to schedule execution in the sense of allowing exccution to proceed as rapidly as possible?
Although we subscribe to the view that both schedule generation and schedule repair can be viewed as an
iterative repair process, for ease of readability, we have described our experiments in two separate subsections

6.2.1 and 5.2.2.

Schedule quality and efficiency is important in both predictive schedule generation and reactive schedule
management. Responsiveness of the schedule revision process is crucial during handling of schedule execution
failures (and opportunities) to patch up the schedule quickly and allow execution to proceed. Minimizing
schedule disruption is most important during reactive management of a schedule. Once a schedule starts
executing, it is important to preserve continuity of domain activity, since there could be substantial cost in
having to attend to discontinuities introduced by reactive schedule revision (e.g. set-up costs when resource
assignments have been changed). These ctitena must be balanced and traded off against each other.

The results show that in predictive schedule generation, the methodology improves the quality of sched-
ules generated by a variety of scheduling methods and also generates schedules of higher quality along a
variety of optimization objectives with lower processing cost as compared to simulated annealing, a well-
known iterative optimization method [JAMSB9, ZDG90, LAL92). In recovering from execution time failures,
she approach (1) attends to schedule quality both in terms of optimization objectives, and disruption, and
(2) is responsive in that it allows continuation of execution without delays in response to execution failures.

5.2.1. Predictive Schedule Repair

In predictive schedule repair, the primaty objective in our experiments was to optimize schedule quality at a
low computational cost. To investigate our experimental hypotheses, we compared CABINS with Simulated
Annealing. Simulated Anncaling (SA) is & well known iterative improvement approach to combinatorial
optimization problemr, which is reported to be able to yield sclutions of better quality at the cost of larger
computational efforts in a number of combinatorial optimization domains, such as computer-aided design
of integrated circuit, image processing and neural network theory ([JAMSO1, LAL92]). SA has also been
applied to job-shop scheduling domain for the makespan objective zud is reported ((LAL92]) to have a
potential of finding shorter makespans than the state-of-the-art tailored heuristic, e.g. shifting bottleneck
procedure ([ABZ8S)).

The details of the our SA implementation are given as follows:

1. Generate an initial schedule

2. Select an activity randomly

3. Unless all the available repair actions have been tned, dci the following:
(a) Sclect a repair action among the remaining un-tried repair tactics,

(b) Apply the chosen repair tactic to the activity under repair;
(¢) Evaluate the resuluing repaired schedule with respect to the explicit objective (WIP+WT})

2

ADA289383

WT. WIP | WT+WIP || CPU Sec. |
— _——— ——— ——
Schedule by EDD 956.0 128461 22406 01
Repair by CABINS || 3495 13112 | 1660.7 1.5
Repair by SA 3405 133341 1673.9 388 2
[Schedule by WSPT | 584.0 1241.0] 18%.0 0.1
Repair by CABINS || 321.0 125649 15759 72.1
Repair by SA 328.6 1322;4___ 1648.9 398.3
Schedule by REM || 5566.0 12420 1798.0 0.1
Repair by CABINS | 3053 1284.9 1570.2 84.9
Repair by SA 330.1 12008 | 1620.9 450 5
Schedule by CBS 1173.0 148101 2654.0 17.4
Repair by CABINS || 4053 1195.0 | 1600.3 296.5
Repair by SA 396.5 1220.0 | 1615.5 1380.0

(d) If the resulting schedule is better than the schedule before repair in terms of the objective, then
the revision procedure goes on to repair next randomly-chosen activity;
Otherwise the revision procedure goes on to repair next randomly-chosen activity with probability
czp(-A/Temp), in which A is defined as the difference of schedule evaluations after repair and
before repair.

The temperature Temp is updated (decreased by a fixed percentage every time) when 2 fixed number
(currently 2560) of repair actions have been applied and the revision procedure will be terminated if a pre-
set maximum computational effort has been reached. We ran each expeniments 5 times and reported the
best results amony, chese 5 separate runs (since SA incorporates a probabilistic factor, the results are not
necessartly the same across the different experimental runs).

In order to test the generality of the approach, we repeated the same set of experiments 4 times, where
each time the initial (seed) schedule was generated using a set of well regarded dispatch heuristics and a
constraint-based scheduler (CBS) The dispatch rules selected to generate the initial schedule are widely used
1n practical job shop acheduling problems, namely the Earliest Due Date (EDD) rule, the Weighted Shortest
Processing Time (WSPT) rule and the WSPT with order time urgency factor (R&M) rule. These heuristics
have been reported to be particularly good at reducing tardiness under different scheduling conditions
[MP23]. We also used the constrained-based scheduler (CBS), which uses ARR variable ordering heuristic
and GV value ordering heuristic with pre-determined biased start time utility-functions (see section 2.3).

In our experiments, the user’s objective function was assumed to be minimizing weighted linear combi-
nation of work-in-process inventory (WIP) plus weighted tardiness. This is & multi-objective function that
is difficult to optimize heuriatically. WIP and weighted tardiness are not always compatible with each other.
There are situations where WIP is reduced, but weighted tardiness increases.

Tuble 2 presents the average results of all 60 problems in the benchmark Based on the results, we make a
variety of observations. Fist, CABINS improved the initial schedule across all scheduling methods according
to the objectives. It should be noted that these dispatch heuristics have been extensively used in Operations
Research experimentation with very good results [Bak74, MRV84). The initial schedules generated by the
dispatch heuristics can be considered as local minima, in the sense that they cannot be easily improved.
For example, these initial schedules are very fight, in that there 1s no on-purpose machine idleness. We
conjecture that it would be more dificult to improve an initial schedule with bigher quality For example,
it would he more difficult to imp an "REM”-g ted schedule than an "EDD”-generated one. The
experimental results support this conjecture (EDD-generated schedule has been improved by 25 9 percent
and R&M-generated schedule has been improved by a 12 6 percent) Second, we observe that the better

24

ADA289383

the quality of the initial schedule, the better the quality of the repaired result Third, CABINS generated
schedules of comparable quality but was on the average 4-5 times more efficient than simulated annealing.
It seems that the contextval information captured in the CABINS case base and the system’s use of failure
information in the repair history is effectively used to guide the search and prune unpromising paths thus
making CABINS much more efficient than the random search of simulated annealing.

WI WIP | WE+WIP || CPU Sec. |
Tnitial Schedule 3875.0 14705] 63455 0.1
Repair by CABINS | 1740.0 14325 | 81726 81.2
Repair by SA 1723.8 14186 31424 323.3

Table 3: Repair by CABINS on Randomly Gencrated Initial Schedules

To further investigate CABINS’s behavior vis a vis initial schedule generation method. we again used
training and test sets of 5 resources and 10 problems. The initial schedule for each problem is randomly
generated from scratch. To do this, we took into account the precedence constraints and resource constraints
(disregarding due date constraints) so generation of an executable schedule was guaranteed. As expected, the
qualities of these initial schedules are very low (compared to the ones generated by the dispatch heuristics
and CBS) From the table 3 we can see that CABINS also performs well on these randomly generated
initial schedules. The behavior of CABINS with regard to the method of initial schedule generation confirms
intuitions in the Operations Research community (e.g. [MP93]) that the higher the quality of the imtial
solution, the better the repaired solution. This is also consistent with the behavior of sther repair-based
methods, for example the behavior of simulated annealing in our experiments, and also the min-conflict
heuristic’s behavior for constraint satisfaction problems [MIPL92].

Other interesting experimental results we got so far are’

o Evaluation of revision control model learning

We conducted another set of experiments to ascertain the effectiveness of case-based learning of the
control model for selecting the repair actions. The results without learning were obtained by random,
not case-based, selection and application of the same repair tactics for activity repair. The results
showed that repair did not improve schedule quality of approximately 80% of the example problems

Evaluation of scalability

To test the scalability of our approach we generated an additional set of 60 problems each with 20
Jobs, each of which uses § resources. Usually, in real operating environments, the factory configuration
(e g number and type of machines) is likely to remain relatively the same for reasonably long periods.
The number of orders, however, is very likely to fluctuate due to varied customer demands and other
economic factors. Based on these assumptions, 1n our experimentation, we focused on varying number
of jobs rather than number of resources. The 20-job problems were generated from the same problem
generator function by varying the same parameters (as for the eet of 10-job problems) in controlled
ways. The knowledge acquisition method was the same as for the 10-job problems, i.e. RBR was used
to acquite a training case base with 30 problems each of which has 20 jobs and 8 resources. We also
used cross validation approach. The pattern of results was the same as for the first set of 60 problems.
The results are shown in Table 4.

Evaluation of knowledge transferability

In order to test generalization issues in case-based learning and transferability of acquired knowledge,
(1) we collected the cases through solving the 5 resources and 10 jobs benchmatk problems (using
RBR). and (2) we used the case-base collected in Step 1 to solve the 5 resources and 20 jobs problems.
The results are shown in Table 5. We see that although the results we got based on § resource and 20
J0bs case-base are better (reported in table 4), CABINS still performs very well on the bigger problems

25

ADA289383

WT _ WIP | WT+WIP || CPU Sec.

Schedule by EDD || 2106.8 54403 | 7547.1 0.3
|_Repaie by CABINS |[6485 55384 | 6186.9 1710
Schedule by WSPT || 7184 5310.2 | 6028.7 0.5
Repait by CABINS [l 561.2 5332.1] 5893.3 190.0
Schedule by R&M || 708.5 52183 | 5927.8 0.6

Repair by CABINS | 548.6 52378 | 57804 164.5

e —
Schedule by CBS 23965 6260.7{ 8657.2 203.0
Repair by CABINS || 692.2 6246.0 { 6938.2 880.0

WTI. WIP | WT-+WIP || CPU Sec.

[Schedule by EDD || 2106.8 54403 7547.1 0.8
| Repair by CABINS |824.5 54294 62539 234.2
Schedule by WSPT || 7184 5310.2 | 6028.7 0.5
Repair by CABINS |[633.7 _ 5342.1 | 50758 722.0
e
Schedule by R&M]| 700.5 5218.3 | 5027.8 06

Repair by CABINS || 5082 5220.0 | 5828.1 1945

["Schedule by CBS 2396.5 6260.7 | 8657.2 2030 |
Repair by CABINS {[924.2 62621 | 71763 973.8

Tuble &: Repair on 5 X 20 Problems using Case-Base collected from 5 X 10 problems

using the original 5 resource and 10 jobs case-base. We also see that the pattern of CABINS behavior,
i.e. improving schedule qualiy independent of initial schedule generation still holds.

From the knowledge acquisition and practical paint of view, the resulis are quite encouraging. They
show that CABINS has potential for application in operational factory environments, mnce knowledge
ransferability will alleviate the knowledge acquisition burden without much affecting overall system
performance and quahty of scheduling results.

5.2.2. Repair in Response to Unpredictable Exscution Events

Reactive schedule repair mvolves (1) recognition of the conflicts that are introduced in the schedule as
a result of an pected and uncontrollable change in the execution environment, (2) propagation of the

conflicts, and (3) selection and application of a repair action. Before we present and discuss the experimental
hypotheses, evaluation criteria and results, we present the reactive repair steps taken by CABINS.

The first step in reactive repair is the recognition of conflicts introduced in the schedule as a result of
unexpected events in the execution environment. In general, there are two types of conflicts that can be
recognized:

Temporal conflicts: These are conflicts reflecting inconsistencies between the scheduled and actual start
and end tumes of activities

Resource conflicts: These are conflicts reflecting inconsistencies in the resource capacity currently avail-
able and the capacity required for processing activities

%6

ADA289383

In the second step, the effects of the introduced conflicts are propagated downstream (forward in time)
from the point in time where the unexpected event happencd (nght-shifting) This involves undoing the
reservations that become inconsistent as a result of the unexpesied event and propagating their effects to
determune the consequences (ripple effects) of the unexpected event for the rest of the schedule. The result
of this step is a feamble schedule but typically of much worse quality than the predictive schedule before the
occurrence of the deleterious unexpected event.

In the third step, CABINS is used to repair the suboptimal schedule that resulted in the second step.
The mechanisms that CABINS uses in reactive repair are exactly the same used for predictive optimization
{except, of course, that no attempt is made to repair activities that have being already executed before the
unexpected event happened). If the pected event is loss of capacity (e.g. 8 machine breakdown), the
activity that was being processed on the resource at the time of breakdown must also be re-scheduled.

We illustrate the repair process by an example. Figure 10 shows a predictive schedule for one of the
problems that were used for experimentation with predictive schedule optimization (see section 5.2.1). In
particular, it 1s one of the two-bottleneck problems with static start time for all jobs In this schedule, the
weighted tardipess is 240 units.

After computing the predictive schedule, 8 machine breakdown is created in the middle of the schedule.
The broken machine, M, is the busiest non-bottleneck machine. The breakdown was timed to occur at the
first 20% of total execution time s0 as to increase its deleterious effects on the rest of the schedule The
estimated duration of the breakdown was 10 times the average duration of the activities in the problem M
is assumed available for processing at the end time of the breakdown.

The effects of the breakdown are propagated downstream (forward in time) In particular, the activities
that were scheduled on the broken machine M and whose scheduled reservations overlapped with the time
interval of the breakdown, are unscheduled and re-scheduled in the same sequence on M after the end time
of the breakdown (this has been called right-shifting in [OST88]). Right-shifung of these activities on M
typically results in constraint conflicts of related activities that are fixed by the constraint propagation
mechanisms in CABINS so that a feasible but worse schedule results. Figure 11 shows the schedule resulting
from the machine breakdown and its propagated effects The weighted tardiness of this schedule is 4500,
a more than ten-fold worsening of quality. Delaying schedule execution til) M is fixed, which is equivalent
to right-shifting, is cleatly not an option in practice. It is of the utmost importance that the schedule be
repaired to enable execution continuity.

CABINS is applied to repair the schedule of ﬁgure 11. Because of (he big delays that arise as a consequence
of capacity loss, we assume ," ization of weighted tardi as the repmr objective. Figure 12 shows the
schedule resuiting after repair by CABINS. Welghbed tardiness has been decreased ten-fold (from 4500 to
450).

In general, there are three responses (repair strategtes) that a planming/scheduling system can have to the
occurrence of unexpected events during execution. First, do not attempt sny repair. This strategy results
in not taking advantage of any opportunities {e.g., activities finishing earlier than their scheduled end time,
additional resources becoming available) or incurring execution delays entailed by deleterious events (e.g.,
partial or total loss of resource capacity, activities finishing later than their scheduled times). This strategy
is obviously suboptimal. A gecond repair strategy could be to throw away the rest of the plan/schedule
and ce-plan/re-schedule from the point of the occurrence of the unexpected event It has been speculated
in the literature (e.g , [OST88, ZDGYO0)) that such strategy may efficiently produce high quality schedu)
but may increase schedule disruption (though no measure of disruption was given in previous work) A
third repair strategy could be incremental revision of the existing schedule. It has been argued in the
literature that an incremental repaic process that achieves efficient generation of high quality schedules and
also allows continuation of execution while minimizing schedule disruption would be the most desirable. To
date no experimental evidence has been provided (a) in favor of incremental schedule repair as opposed to
re-scheduling, or (b) exhibiting an incrementa) repar approach that performs well on all the above repair
objective simultaneously

27

ADA289383

resouret)

s 0

resouree3

resoureed iy B

resuaree)

Rt
fnd

HEIEHH

K
g e v

Iac
— o

] EE

el B R L8 L PR S R
P e TR 514*13' e
reure? B 10 kbl | Rt e i
riogrirguron oo d nafing e g ool gnit viunliudw Jongas s o NIII.‘ i
o i e g D& o =\ [wo{s udguidimp T

resre3 fis ARl el Pt 4

i |
oo | m w
2 b g Inwh oo oo o

reoure Bgdpal B EEREEaERtn PP 11

nsowe]
rered)
sesnee3 B
et

resourve {4

FH
k=

Figure 12: Schedule Result after Reactive Repair

28

ADA289383

CABINS CBS(GV)
reactive-repair | re-schedule
Start Time Disruption 6380 8980
Routing Disruption 9 11
Sequencing Distuption 21 27
Repaired Wei. Tar. (%) 98 8 91.6
CPU time (second) 1729 6.7

Table 6: Reactive repait vs Re-scheduling

We demonstrate CABINS’s reactive capability with respect to execution time failuses, since they are the
ones that typically happen and against which » scheduling system must guard In the set of experiments we
performed, CABINS was used to repair a predictive schedule in response to unexpected capacity loss. CBS
was used for re-scheduling Our experimental results demonstrate that the incremental repair methodology
of CABINS is superiot to re-scheduling in performing reactive schedule repairs in response to execution
failuces along all the desirable evaluation criteria,

We measured disruption with respect to three cntena:

1. Difference of start times between the repaired schedule and the original predictive schedule (before
occurrence of the unexpected capacity loss)

2. Difference 1n resource assignment of activities in the repaired versus the original schedule

3. Difference 1n sequencing of activities on a resource in the repaited versus the original schedul

Theae changes between the repaired and the original schedule qualify as measures of schedule disruption since
they could cause changes (with attendant costs) in resource set-up activities, process routing, and expected
job finish times. For example, in a manufacturing environment, changes in start times may cause changes
in plans for product warehousing, material preparation and product shipment plans; change of resource
assignments may change product routings in the factory floor resulting in the need to change programs
of material handling equipment (such as automated guided vehicles); changes in activity sequencing on
a machine may cause changes in machine set-ups and worker assignments. Such changes cause serious
difficulties in the smooth continuation of schedule execution on a factory fioor. Obviously, the degree of
severity of such changes depends on the nature of the manufacturing process and the factory floor layout.
Therefore, a unified measure of distuption of a schedule is hard to formulate,

We compare the performance of reactive repair against CBS re-scheduling in the two different machine
breakdown scenarios, each of which has ten sets of problems. In the first experiment, a machine breakdown,
whose duration is 10 times the average activity duration, is simulated on the two-bottleneck resource prob-
lems, and in the second experiment, a similar machine breakdown is simulated on the set of one-bottleneck
problems.

Table 8 shows the average results across all experiments.

The results show that mn terms of distuption and quality CABINS outperformed re-scheduling by CBS.
However, CABINS's efficiency 18 much worse than CBS. In some problems, such as problem 1 for example,
CABINS spends as much as 40 times more time as CBS.

However, upon further examination, this result 18 misleading. The reason is the rapid and monotonic
repair behavior of CABINS. As shown in figure 13, for example, CABINS achieved better result quality
than CBS at the time point when CBS finished re-scheduling. From figure 13 we see that after 9.3 seconds,
CABINS has achieved & weighted tardiness of 1430 units compared to 1560 units achieved by re-scheduling
in the same time period (9 3 secs). Since, in contrast to the re.scheduling method which does not pro-
vide incremental schedule feasibility, CABINS' incremental reactive repair results in a feasible {executable)

29

ADA22930873

g

Weghied Tardiness

g

L s Rosctve Ropak|
* Rescheduing

5000

€000

3000

200

00 1000 10000 100000

1006000
CPU time Imasc]

Figure 13 Repair Responsiveness of CABINS in Problem 1

schedule after every repair iterarion, if the repair process is stopped after 9.3 secs, the schedule produced by
CABINS can be executed and is of higher quahity than the one produced by CBS re-scheduling during the
same time period. This behavior was consistency exhibited in all experiments.

System responsiveness in reactive contexts 1s of great concern. To see whether the results of 13 are robust
across different breakdown scenatios, we repeated the experiments with four different variations of duration
of machine breakdown. In each experiment, the breakdown duration was 4, 6, 8, and 10 times the average
activity duration Figure 14 shows those tesults. The graph shows that reactive repair is very efficient at
first and then saturates until no further improvemnent is possible. This characteristic of CABINS' repair
process is very suitable for reactive repair since it allows continuation of execution with minimal delay {most
of the schedule quality loss is repaired very rapidly).

5.3. How Many Cases Are “Enough”?

30

ARAZCQO20 Y

120
110
oy e
©
[}
10,
©
L
40
r
o =0 Machine Sraakdown (¢ Iverape durations)
femetr Maching Breakdown (6 sverae durations)
=g Machics Desaksown (8 5verspe durstions)
2 anee Mathing fieahdown (30 aversge durations}|
0
Yoo 1000 10000 100000

1000000
CPU wme [aic)

Figure 14: Repair Ratio

31

ADA289383

«—~e CABINS(WT+WIP): 500 cases
1000 ~ » CABINS(WT+WIP) 1000 cases] 400
=~ CABINS(WT+WIP): 1500 cases|
« » CABINS(WT+WIP), 2000 cases|

1 2 3 4 5 8 0 500 1000 1500 2000
Problem Set Number of Cases in Case-Base

Figure 15+ Effect of case-base sizes in quality and efficiency

The graphs in figure 15 compare the performance of CABINS with different sized case-bases. The results
were obtained based on CABINS with WT+WIP type of case-bases. A case of approximately 4,500 cases
was generated by RBR This was done by allowing 3 overall repair cycles for a training set of 30 problems
cach of which has 50 activities To get the case bases of different sizes, an appropriate number of cases
for each situation was randomly selected and deleted from the approximately 4,500 size case base. This
method of generating a new case base by random deletion of cases from a bigger case base is similar to the
ablation study performed in {Bar89). The initial schedule generation method was CBS. From the viewpoint
of knowledge acquisition. an interesting question is when knowledge acquisition can be terminated because
sufficient knowledge has been acquired to enable hlgh quality performance of a knowledge based system. For
case-based knowledge acquisition, this questi how many cases would be enough for knowledge
capture and reuse and for guarantecmg overal) satisfactory pesformance Unfortunately, it is very difficult to
answer this question in general due to the ill-structuredness of the scheduling problem and the approximate
nature of CBR (since no causal model is available). We believe, however, that there exists some appropriate
size of the case-base which will give us relatively satisfactory results in terms of schedule quality without
excessive overhead for case acquisition or case retrieval from the case base.

Our expenimental results (figure 15) support this hypothesis as follows:

1. The Jarger the number of cascs, the better the schedule quality. However, the marginal payoff from the
increase in case base size decreases. This can be explained partially by the fact that some nuinber of
cases (say, 1000 cases) capture well characteristics of the problem space, and additional 1000 new cases
may give much redundant information, When the size of case-base is relatively small, every time new
cases are acquired, we may get information about a different part of the problem space which results
in higher quality improvement.

2. In terms of efficiency of the system, we observe from the graphs that the case-base with 1000 cases
mught be the optimal choice Actually, both in terms of CPU time and quality improvement, the
case-base with 1000 cases obviously outperforing the case-base with 500 cases. Moreover, in terms of

hedule quality impsc t, case bases with more than 1000 cases do not seem to provide payoff
proportional to the case base size increase

32

ADA289383

5.4. Discussion

The experimental results show that the CBR-based repaur method not only has the potential to capture
different user optimization preferences but also performs well in terms of producing schedules of high quality
as compared with other constructive scheduling methods. As compared with simulated annealing, another
repair-based method, CBR-based repair produces schedules of comparable quality with substantial compu-
tational savings. In addition, CBR-based repair exhibits desirable anytime characteristics and outperforms
re-scheduling by a constructive constraint-based method in terms of minimizing disruption and maintaining
high schedule quality.

In this section, we will attempt to answer the question ”what makes the approach powetful”? Ve believe
the power of the approach stems from the following four reasons. Fitst, as has been pointed out by others (e.g.
[MJIPL92)), revision-based approaches by making available a complete assignment (a complete schedule for
out domain) provide mote information that can guide search as compared with constructive methods where
only a partial assignment is available. Our CBR-based revision method captures such relevant information
in global case features and exploits it as contextual information during case retrieval. Second, although job
shop schedule optimization belongs to the category of "hard” NP-complete problems, the case features were
able to capture some important domain regularities, such as repair flexibihty. This was complemented by
keeping information about failed applications of revisions in the repair case history and also keeping failed
cases in the case y. These fai) were exploited by CBR to prune unpromising paths in the search
space in future similar situations Third, experimental results and discussion presented in section 5.3 support
the hypothesis that the cases CABINS acquired and used in the reported experiments seem to cover the
solution space in a faitly evenly distributed fashion, thus allowing CBR-based repair to take advantage of this
coverage. Since, however, we cannot conjecture whether good quality solutions are evenly distributed in the
search space as a whole, backtrack search, for example, could be potentially disadvantaged if good solutions
are "bunched up” in particular parts of the search space [MIPL92, Lan02), whereas dispatch heuristics are
too myopic to take advantage of promising search paths.

Finally, we believe that some of the regularities in the structure of the experiments] problems were
captured in cases during the training phase and this information was transferable to solve the test problems.
Moreover, this information seems 1o transfer also across problem size as the the results in Table 5 indicate.
The table shows that the cases acquired during training with a set of 10-job problems were effective in solving
test problems with 20 jobs The question then arises to what extent the information captured in cases from
one set of problems can transfer to job shop optimization problems with different problem structure. This
question, albeit of great theoretical and practical importance, is very difficult to answer in a theoretical
way. In contrast to other NP-complete problems (e.g. graph-coloring, satisfiability, traveling salesman) for
which insightful analysis has been performed (e.g. [MR92, CKT91}) as to their structure and properties that
characterize "easy” or "hard® problem instances, sumilar characterization of job shop schedule optimization
problems 18 currently an open research problem (e.g.[CKT91, Bak74]). Due to the tight constraint inter-
dependencies in job shop optimization, it is not known what constitutes "problem structure”, j.e. what
features of a problem make it difficult or easy 1o solve, or make one problem substantially similar or different
from another. It is for this reason that, except for some simple optimization objectives, such as minimize
flowtime for one-machine problems where it has been proven that the WSPT heutistic finds the optimal
solution, 1t is currently impossible to theoretically prove schedule optimality for a particular technique It
is only after some proposed problem has defied solution by extensive experimentation by many researchers
that it is understood ipao facto to be difficult (ABZ88, Bak74]. Most importantly, even if there were good
approaches to characterize problem structure in job shop optimization, with explicit optimization criteria,
this would not help with our analysis since CABINS does not have an explicit objective function, but instead
sims at capturing implicitly context-dependent user preferences.

33

ADA289383

6. Related Work

Our work shares the same motivations and goals with the work in [MBS88] where the motivations for
interactive user manipulation of schedules is presented. In that work, the system monitors the user’s manip-
ulation of a schedule, requesting the reasons for each revision that is made. This information is then used
to augment /refine the system’s knowledge. The approach seems promising but has not been expetimentally
tested.

Our approach 1s rooted on concepts and mechanisms of a long line of research in constraint-directed
scheduling [Fox83, SOL*86, 5ad91). In that work, schedules are generated by incrementally constructing
and merging partial schedules. That work has extensively investigated vatious properties and aspects of this
scheduling methodology and has proposed sophisticated proced and techniques for constraint-directed
scheduling. Although this research vradition has come to view scheduling as an opportunistic repair process,
it has operated under static design assumptions (e g. deterministic application of variable and value ordering
heuristics in [Sad91], or statically determined control level model for application of repair actions [0ST88]).
Our approach advances the state of the art by learning to dynamically adapt the focusing mechanism of the
search procedure and by adapting the repair model according to current problem solving circumstances and
user preferences and tradeofls.

Our approach, generates schedules oy repair based scheduling in the space of complete schedules. In this
respect it is similar to [ZDG90, ZDDD93, MIPL90, BC91). In {ZDG90, ZDDDY3) simulated annealing has
been used to perform iterative repair. Knowledge in the form of constraint types and evaluation criteria has
been added to the basic simulated annealing framework and has been shown to imptove convergence speed
{ZDDDS$3). [ZDDDY2] has studied the tradeofl of minimizing perturbations vs. apeed of convergence to a
conflict free schedule and va. schedule quality measured in terms of number of violated resource constraints
In [MIPLS0, MIPL92} the min-conflict heuristic, » repair heuristic that chooses the repair that minimizes
the number of conflicts that resuit from a one-step lookahead has been investigated and its performance
analyzed. Though the heuristic has been shown to be powerful for solving the N-queens problem, it has been
shown inadequate for some types of job shop scheduling constraint satisfaction problems [Mus83] when the
initial assignment is random 'This 1s because min-conflicts relies on a good initial assignment [MJPL92].
The CBR-based repair of CABINS, on the other hand has been shown experimentally to improve schedule
quality irrespective of initial schedule generation method, although the percent improvement and the quality
of the final repaired schedule vanes 1In [BCO1) schedule modifications are procedurally encoded. Small
snapshots of the scheduling process, called chronologies, are used to focus the search by using information
gnined incrementally during the scheduling process to locate, classify and resolve bottlenecks. In (ZDB+92]
plausible explanation based learning (PEBL) has been applicd to learn search control rules Lo increase search
efficiency in scheduling taske for NASA Space Shuttle psyload and ground processing, PEBL enables a system
to generalize a given target concept (¢ g. chronic resource contention) over a distribution of examples. The
cost function is to minimize the number of remaining conflicts 1n the schedule. Unlike all the above systems,
CABINS doesn’t have any explicit objectives to optimize, but applies case-based learning techniques to
acquire user oplimization preferences from the records of user’s repair decisions and optimizes schedules
based on the acquired objectives.

The repaic-based scheduling methods considered here are related to the repair-based methods that have
been previously used in case-based planning systems (e g. [Vel92, KH02, Ham80]). Previous case-based sys-
tems for incremental solution revision have been motivated primarily by concerns of computational efficiency,
preserving plan correctness rather than improving plan quality, and have assumed the existence of & strong
domain model 1o get information as to plan correctness. For exumple, CHEF [Ham89] assumes the existence
of a model-based simulator to evaluate a derived plan and detect a plan failure and uses well-studied domsin
rules for selecting repairs. Research by [KH92, Vel92) arc based on the hypothesis that the plan built by
their planner is causally and teleologically correct, and use CBR to find the satisfying plan efficiently.

CABINS as a knowledge acquisition system s also related to previous case-based hnowledge acquisition
systems (e g Protos [Bar89]) These approaches usually require causal explanations from an expert teacher
to acquire domain knowledge. In CBR-based schedule repair emhodied in CABINS, neither the user nor the

34

ADA289383

program are assumed to possess causal domain knowledge. ‘The user cannot give a solid explanation as to
her/his selection of repair action, because s/he cannot predict the eflects of the selected action on the plan
caused by tight interactions. The user’s expertise lies in the ability to perform consistent evaluation of the
results of problem solving and impart to the program cases of problem solving experiences and histories of
evaluation tradeofls

7. Conclusions and Future Work

In this paper, we 2dvocate a framework for knowledge acquisition and iterative repair for schedule opti-
migation. The approach utilizes CBR-based mechanisms for recording user preferences, repair tactics and
explanations, and constraint-based scheduling for application of the selected repair tactics. The approach
is predicated on () the existence of a set of schedule repair tactics, each of which operates with respect to
a particular Jocal view of the problem and offers selective advantages for improving schedule quality, and
(b) on capturing and re-using user acheduling preferences and judgments. The capauility of acquiring user
optimization preferences is important in domains without strong domain models because ususlly explicitly
expressed objectives are unavailable Even if they were available, new optimization heuristics would need to
be developed, evaluated and implemented complicating the design and maintenance of the system. CABINS
provides a framework for alleviating thess problems. Our experimental results show the potential of the
approach to capture and effectively utilize user scheduling preferences that were not present in the schedul-
ing model. The results indicate that different scheduling objectives implicitly reflected in the case base
differentially bias the schedule repair proced Further experimental results show that for well defined
objectives reflected in the case base, CABINS produces schedules with higher quality as compared with
other repair-based scheduling methods, such as simulated annealing In addition, CABINS is robust in the
sense that it always improved the quality of a scheuule regardless of which method was used for generating
the seed schedule. It seems that the effort expended to capture a large number of cases can be amortized
by future repeated use of the case base to get high quality schedules efficiently. More impottantly, CABINS
can acquite the cases through uses interaction during the process of solution improvement without imposing
undue overhead on the user. We believe that CABINS has the potential for accommodating acquisition
of user preferences that chenge over time. Future work will investigate this issue and issues of automating
hierarchical abstraction of the repair process, and dealing with more complex objectives and larger problems.

8. Acknowledgments

This work was performed when the first author was & visiting scientist at the Robotics Institute of Carnegie
Mellon University under the support of Matsushita Electric Industrial Co. We would like to thank Mr.
Dajun Zeng for help with the experimentation and insightful discussions.

APPENDIX A: Case Instance

T_case {
name » “exp 0.0 8:order5-1:1:activitys_2";
slots = (
Slot {

ADA289383

feature = veighted_tardiness;
value = 470.000000;
salience = 1.000000;
}
Slot {
feature = resource utilization_average;
value = 0,780000;
salience = 1.000000;

.
Slot {
feature = resource._utilization_deviation;
value = 0,0403749;
salience = 1,000000;

'

%
SI_slots = (
Slot {
feature = waiting_tine;
value = 580,000000;
salience = 0,333;
H
Slot {
feature = predictive_shift_gain;
value = 0,808000;
salience = 0,667;
h
Slot {
feature = predictive_alt_shift wip_gain;
value = 0.106000;
salience = 0.333;
H
Slet {

feature = predictive_swap_gain;
value = 0,903000;
salience = 0.667;

H

Stot {
feature = predictive_alt_svap_gain;
value = 0;
salience = 0,333;

I H

)i

solutions = (
Solution {
tactics_type = SWAP;
effects s (
Effect {
stfect _type = WEIGHTED_TARDINESS;
salience = 0.867;
domain = “vhole_schedule;
previous_value * 470,000000;
current_value = 380.000000;
gain = 90.000000;
h

3

ADA289383

Effect {
effect_type = RESOURCE_UTILIZATION_AVERAGE;
salience = 0.667;
domain = “ghole_schedule”;
previous_value = 0.789000;
current_values = 0,789000;
gain 2 0;
b

Effect {
effect type = RESOURCE_UTILIZATION_DEVIATION;
salience = 0.667;
domain = "whole_schedule”;
previous_value = 0.0403749;
current_value = 0,0403748;
gain = 0;
};

Effect {
otfect type = INPRCCESS_INVENTORY;
salience = 0.667;
domain = "whole_schedule";
previcus_value = 2240,000000
current.value = 2250.000000;
gain = ~10.000000;

}

Btfect {
eftect_type = INPROCESS_INVENTORY;
salience = (,333;
domain » *job7";
previous_value = 200.000000;
current.value = 310,000000;
gain = =20,000000;

3

g T

result » ACCEPTABLE;

I8
IR

}

APPENDIX B: Case Uscd for Evaluation

T.case {
; 5

ADA289383

name = “exp_2_0_4:order7-1:1:activity7_2";
slots = (
Slot {
teature = weighted_tardiness;
value = 670.000000;
salience = 1,000000;

h
Slot {
feature = resource_utilization_average;
value = 0,682000;
salience = 1,000000;
s
Slot {
feature = resource utilization_deviation;
value = 0.074000;
salience = 1,000000;
I H
)i
SI_slots = (
Slot {

feature = waiting_time;
value = 280,000000;
salience = 0.333;
b 4
Slot {
feature = predictave_shift_gain;
value = 0,406000;
salience = 0,807;
H
Slot {
feature = predictive_alt_shift_wip _gain;
value = 0.306000;
salience = 0.333;

Slot {
feature = predictave_swap_gain;
value = 0,103000;
salience = 0.667;

i

Slot {
feature = predactive_alt_swap_gain;
value = 0,304000;
salaence = 0.333;

)i

solutions = (
Solution {
tactics_type = LEFT_SHIFT,
ettacts = (
Effect {
effect _typy = WEIGHTED_TARDIRESS;
salience 3 0.647;
domain = "whole_schedule";
previous._value = 670.000000;

38

ADA289383

current_value = 930.000000;
gein = ~260.000000;
}

Effect {
effect_type = RESOURCE_UTILIZATION_AVERAGE;
salience = 0.667;
domain s "whole_schedule";
previous._value = 0.682000;
current_value = 0.682000;
gain = 0;
tH

Effect {
effect_type = RESOURCE_UTILIZATION_DEVIATION;
salience = 0.667;
domain < "whole_schedule®;
previous_value = 0.074000;
current_value = 0.074000;
gain = 0;
e

Effect {
effect_type = INPROCESS_INVENTORY;
salience = 0.667;
domain = “whole_schedule";
previous_value = 1940.000000
current_value = 1990.000000;
gain = - §0.000000;

)i
result = UNACCEPTABLE;

Solutjion {
tactics_type & SUAP;
ettects = (
Etfect {
efzect_type = WEIGETED TARDIKESS;
salience = 0.867;
domain = "whole_schedule”;
previous_value = 870.000000;
current_value = 600,000000;
gain = 70.000000;
};

Effect {
effect_type = RESOURCE_UTILIZATION_AVERAGE;
salience = 0.667;
donain = “"whole_schedule";
previous._value = 0,682000;
current_value = 0.682000;
gain = 0;

39

ADA289383

Etfect {
offect_type = RESOURCE_UTILIZATION_DEVIATION;
salience = 0.667;
domain = “whole_schedule”;
previous_value = 0.074000;
current_value = 0.074000;
gain = 0}
}

Effect {
effect_type = IKPROCESS_INVENTORY;
salience = 0.667;
domain = "whole_schedule";
previous_value = 2480.000000;
current_value = 3180.000000;
gain = -700.000000;

i

Eftect {
effect_type = WEIGHTED_TARDINESS;
salience = 0.333;
domain = "job7";
prevaous_value = 760;
cutrent.value = 210;
gain = 580;

3

Etfect {
effect_type = INPROCESS.INVENTORY;
salience = 0.333;
domain = "job9";
prevaous_value = 290;
current_value = 410;
gain = -120;
}.’;

)
result = ACCEPTABLE;

)i:

}

References

[ABZ88]] " lams, E. Balss, and D Zawack. The shifting bottleneck procedure for job shop scheduling.
Yanagement Science, 34(3).391-401, 1988.

[AKA91] David W. Aha, Dennis Kibler, and Marc K. Albert Instance-based learmng algonthms. Machine
Learning, 6.37-66, 1991

[Ash87) K.D. Ashley Modeling Legal Argument: Reasoning uath Cases and Hypotheticals PhD thests,
University of Massachusetts, Amberst. 1987

[Bak74) K R Baker. Introductron lo Sequencrng and Scheduling. Wiley, 1974, Course Textbook

40

ADA289383

[Bar89]

[BCHY]

[Chat3)

[CKT91)

Ray Bareiss. Ezemplar-Based Knowledge A tion . A Umified Approach 1o Concept Repre-
senlation, Classification, and Learning. Academxc Press. New York, NY, 1989.

E Biefeld and L. Cooper. Bottleneck identification using process chronologies. In Proceedings
of the 12th International Joint Conference on Artificral Intelligence (IJCAIL-91), pages 218-224,
Sydney, Australia, 1991.

Alok R. Chaturvedi. Acquiring imphicit knowledge in 2 complex domain. Erpert Sustems With
Applications, 6(1):23-35, 1993.

P. Cheeseman, B. Kanefsky, and W, Taylor. Where the really hard problems are. In Proceedings
of the Twelfih International Jomnt Conference on Artificial Intelligence (IJCAL§1), Sydney,
Australia, 1991,

[CMSW92] Robert H. Creecy, Brij M. Masand, Stephen J. Smith, and David L. Waltz. A traiding MIPS

[Das90}
[DBBS]
[Fox83]
[Fre82)
[Ham89)

[JAMSS9)

[JAMSS1]

{3oh90]

[KH92)
(KLSF91)
[Kot88]
(KS00]

[KS583)

and memory for knowledge engineening. Communtcafions of ACM, 35(8):48-64, 1992.

Belur V. Dasarathy, editor. Nearest Nesghbor (NN} Norms+ NN Paitern Classification Tech-
niques. IEEE Computer Society Press, Los Alamos, CA, 1990

T. Dean and M. Boddy. An analysis of time dependent planning. In Proceedings of the Seventh
National Conference on Artificsal Intelligence, pages 49-54, Saint Paul, Minnesota, 1988. AAAL

Mark Fox. Constraint-Direcled Search: A Case Study sn Jop Shop Scheduling. PhD thesis,
Department of Computer Science, Carnegie Mellon University, 1983.

Sumon French. Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop.
Ellis Horwood, London, 1982.

Knistian J. Hammond. Case-Based Planning : Viewing Planning as ¢ Memory Task Academic
Press, New York, NY, 1989,

D S Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by simulated an-
nealing: An experimental evaluation, part 1 (graph partioning). Operations Research, 37(6):865-
892, 1989.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C Schevon Optimization by simulated
annealing: An experimental evaluation, part Ii (graph coloting and number partitioning). Op-
erations Research, 39(3):378-406, 1991.

Mark D. Johnston SPIKE: Al sheduling for NASA’s Hubble Space Telescope. In Proceedings of
the Sixth Conference on Artifictal Intelligence for Appheattons, pages 184-190, Santa Barbara,
CA, 1990. IEEE CS

Subbarao Kambhampati and James A. Hendler. A validation-structure-based theory of plan
modification and reuse. Arisficial Intelligence, 55(2-3)'193-258, 1992.

K Kempf, C LePape, S. F. Smith, and B R. Fox Jssues in the design of Al-based schedulers:
workshop report. Al Magazine, 11(5)-37-46, 1991.

P. Koton. Reasoning about evidence in causal explanations. In Proceedings of the 1988 Case-
Based Reasoning Workshop, pages 260~270, Clearwater, Fla , 1988

Jobn 3 Kanet and V. Sridharan The electronic leitstand: a mew tool for shop scheduling.
Manufacturing Review, 3(3) 161-169, 1990.

J. Kolodner, R Simpson, and K. Sycara. A process of case-based reasoning i problem solving
In Proceedings of the Ninth International Joint Conference on Antifical Intelligence, pages
284-290, Los Angeles, CA, 1985 13CAl

41

ADA289383

{KY89]

[LAL9)
{Lang?)

[LMBO1]

1LS93)

[MBS8S)

[MIPL90]

[MIPL9Y]

[MP93)

[MR92)

[MRV84]

[MS594)

[Mus93]
{0ST38]
(Pre90]

[RA8S]

[RK92]

Naiping Keng and David Y. Y. Yun. A plaaning/scheduling methodology for the constrained
resource problem. In Proceedings of the Eleventh International Joint Conference on Anitsficial
Intelligence, pages 998-1003, Detroit, M1, 1989. IJCAL

Peter J. M. Van Laarhoven, Emile H. L. Aarts, and Jan Karel Lenstra Job shop scheduling by
simulated annealing. Operafions Research, 40(1).113-125. 1992

P. Langley. Systematic and non-systematic seatch strategies. In Proceedings of AAAL98, San
Jose, CA, 1992. AAAL

L.M. Lewis, D V. Mimior, and §.J. Brown. A case-based reasoning solution to the problem of
redundant engineering in large scale facturing International Journal of Ezpert Systems,
4(2).189-201, 1991.

J. Liv and K. Sycara. Distributed constraint satisfaction through constraint partition and co-
ordinated reaction. In Proceedings of the 12th International Workshop on Distributed Artsficial
Intelligence, Hidden Valley, PA., 1993

K Mckay, J. Buzacott, and F. Safayeni. The scheduler’s knowledge of uncertainty: The mxssmg
link In Proceedings of IFIP Working Conference on Knowledge Based Production Manag
Systems, Galway, Ireland, 1988.

S Minton, M. D. Johnston, A. B Philips, and P. Laird. Solving large-scale constraint satisfac-
tion and scheduling problems using a heuristic repair method In Proceedings, Eighth National
Conference on Ariifictal Intelligence, pages 17-24, Boston, MA., 1990 AAAL

S. Minton, M Johnston, A. Philips, and P. Laird Minimizing conflicts: a heuristic repair
method for constraint satisfaction and scheduling problems. Artificial Intelligence, 58(1-3):161-
205, 1992,

Thomas E. Morton and David W. Pentico. Heuristic Scheduling Systems: With Application
to Production Systems and Produci Management. John Wiley and Sons Inc., New York, N.Y.,
1993

Ron Musick and Stuart Russell. How long will it take? In Proceedings of AAAL92, pages
466-471, San Jose, CA, 1692, AAAL

T E Morton, R. M Rachamadugu, and A. Vepsaleinen. Accurate myopic heurisrics for tardiness
scheduling Technical Report 36083-84, Graduate School of Industrial Administration, Catnegie
Mellon University, 1984,

Kazuo Miyashita and Katia Sycara. Learning control knowledge through cases in schedule
optimization problems In Procecdings of the Tenth IEEE Conference on Antificsal Intelligence
for Application, pages 33-39, San Antonio, TX, 1994. IEEE.

N Muscettola Scheduling by iterative partition of bottleneck conflicts. In Proceedings of the
Ninth Conference on Al Applications, pages 49-55, Orlando, Fla., March 1993. IEEE.

P. S. Ow, S. F. Smith, and A. Thiriez. Reactive plan revision. In Proceedings of the Seventh
National Conference on Artsfictal Intelligence, pages 77-82, St-Paul, Minnesota, 1988. AAAL
D.S. Prerau Developing and Managing Ezpert Systems: Proven Techniques for Business and
Industry Addison-Wesley, Reading, MA, 1990.

E.L. Rissland and K D. Ashley. Credit assignment and the problem of competing factors in
case-based reasoning. In Proceedings of the Case-Based Reasoning Workshop, pages 327-344,
Clearwater, Fla., 1988.

David Ruby and Dennis Kibler. Leaming episodes for optimization. In Machine Learning =
proceedings of the Nunth Internafional Workshop (ML92), pages 370-384, 1992,

42

ADA289383

[Sad91]

{5C93]

(SF90]

[SGK+91]

[S:m85]

[SMs1]

[SOL+86]

[Sw86)
[Syc88]
(Sy<89)
{vel92]
[2DB*92]

(ZDDD92]

[ZDDDY3]

(ZDGo0)

Norman Sadeh. Look-Ahead Technigues for Micro-Opportumsstic Job Shop Scheduling. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1991.

Smith S.F. and Cheng C.C. Slack-based heuristics for constraint satisfaction scheduling In
Proceedings of The Eleventh National Conference of Artificial Intelligence, Washington, D C.,
1993. AAAL

Norman Sadeh and Mark § Fox Variable and value ordering heuristics for activity-based job-
shop scheduling. In Proceedings of the Fourth International Conference on Ezpert Systems in
Production and Operal Monag 1, pages 134-144, Hilton Head Island, SC, 1990.

K. Sycara, R. Guttal, J. Koning, S. Narasimhan, and D. Navinchandra. Cadet: A case-based
synthesis tool for engineering design. International Journal of Ezpert Systems, 4(2), 1991,

R L. Simpson. A Computer Model of Case-Based Reasoning in Problem Solving: An Invest:-
gaton n the Domain of Dispute Mediation. PhD thesis, School of Information and Computer
Science Georgia Institute of Technology, Atlanta, GA, 1985.

E. Simoudis and 1.S. Miller. The application of CBR to help desk applications. In Proceedings:
Case-Based Reasoning Workshop, pages 25-36, 1991

5. F. Smith, P.S. Ow, C. LePape, B McLaren, and N. Muscettola. Integrating multiple schedul-
Ing perspectives to generate detailed production plans. In Proceedings SME Conference on Al
1 Manufacturing, Long Beach, CA, September 1986

Craig Stanfill and David Waltz. Toward memory-based reasoning. Communications of ACM,
29(12)-1213-1228, 1986.

K. Sycara. Patching up old plans. In Proceedings of the Tenth Annual Conference of the
Cognttive Science Sociely, Montreal, Canada, 1988.

K. Sycara. Argumentation: Planning other agents' plans. In Proceedings of the Eleventh Inter-
natronal Jotnt Conference on Artificial Intelligence (1JCAI-89), Detroit, Mich, 1989,

Manuela M, Veloso. Learning by Analogical Reasoning tn General Problem Sofving. PhD thesis,
School of Computer Science, Carnegie Mellon University, 1992.

M. Zweben, E. Davis, D. Brian, E. Drascher, M. Deale, and M. Eskey. Learmng to improve
constraint-based scheduling. Artifical Intelligence, 58(1-3):271-206, 1992.

M. Zweben, E. Davis, B. Daun, and M. Deale. Rescheduling with iterative repair. In Proceedings
of AAAL-92 workshop on Production Planning, Scheduling and control, San Jose, CA , 1992,
AAAL

M Zweben, E. Davis, B. Daun, and M. Deale Iterative repair for scheduling and rescheduling
IEEE Transactions on System, Man and Cybernetics, 23(6).1588-1696, 1993.

M Zweben, M. Deale, and M. Gargan. Anytime reschedubing. In Proceedings of the DARPA
Workshop on Innovetive Approaches to Planmng, Scheduling and Control, pages 251-259, San
Diego, CA., 1990. DARPA.

43

ADA289383

