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Abstract

This thesis examines the discrimination of targets with Ultra High Range Resolution

(UHRR) radar data. Using these measured signals from frontal aspect angles of four aircraft

classes, the baseline performance of the Adaptive Gaussian Classifier (AGC) is tested with

respect to aligning exemplars to templates. Alignment plays a crucial role in the AGC's

classification performance which can degrade by 11% for a target class. The AGC is compared

to non-parametric classifiers, but no statistically significant degradation of performance is

found. Data separability is analyzed by bounding the Bayes error. The data is well separated

in a statistical sense. A feature selection algorithm, based on analysis of the decision boundary,

is applied to find a reduced feature set, which are linear combinations of the original features.

These features are optimized with respect to classification error rather than reconstruction

error. This technique is extended to deduce the relevant features in the original feature space.

Fewer than 5% of the features in the original feature space may be used to attain an improved

classification rate. This new method is a true reduction of features and shows improvement

up to 15%. Discrimination of UHRR radar signatures using a multiresolution analysis is

proposed. The decision boundary analysis chooses relevant wavelet scales with respect to

classification. Some improved performance against an entropy based measure is observed for

limited feature sets. The technique developed here successfully chooses the scale that causes

classification performance to peak within 5% of the performance in the full-dimensional or

reduced-dimensional UHRR radar signature space.
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Classification of Ultra High Range Resolution Radar Using Decision

Boundary Analysis

I. Introduction

1.1 Background

Non-Cooperative Target Identification (NCTI) is a top-priority area of research for the

Air Force. NCTI is an Automatic Target Recognition (ATR) approach that involves the ability

to identify targets without active transmitters or transponders on the target. ATR enables

a searcher to distinguish between friendly (blue) and other forces (red/gray). In the case of

identifying blue systems, active devices, such as Identification, Friend or Foe (IFF) transmitters

are used, but they cost money to develop and add a point of vulnerability on the battlefield. A

reliable NCTI capability holds the promise of less risk of intercept of tell-tale electromagnetic

(EM) signals on the battlefield. Also, the need for the design and procurement of such IFF

devices is eliminated. One common, non-cooperative source of information about a target

lies embedded in its radar signature. Reflected EM waves are a readily accessible source of

information unique to the geometry and composition of a target. The ongoing challenge is to

find ways to extract and use this information effectively.

Ultra High Range Resolution (UHRR radar) radar is a type of radar that can be used for

NCTI (34, 44, 1). As in all radar processing techniques, total energy returned from a target is

distributed into "range bins." Range bins contain the energy reflected from target structures at

incremental distances from the radar source. Using UHRR radar signatures for NCTI is based

on the premise that signatures contain unique information about a target class. This premise

is intuitively attractive for ATR because one may use this unique information for recognition

if one can discover where the discriminantly relevant information lies.



Statistical pattern recognition uses data extracted from targets, such as UHRR radar sig-

natures, to classify them. Tools include parametric (Gaussian classifiers) and non-parametric

(k-nearest neighbor and neural network) systems. A Gaussian classifier is currently being pur-

sued in the UHRR radar problem at WL/AARA. This approach makes important assumptions

about the statistics of the data. Fukunaga and Martin applied non-parametric density estima-

tions to computer generated UIHRR radar signatures, making predictions about the underlying

information content in a signature (20, 33). Earlier Air Force Institute of Technology students,

Dewitt and Kouba, used Hidden Markov Models and recurrent neural networks to classify

targets (26, 15). Hughes aircraft developed an Adaptive Gaussian Classifier (AGC) which is

currently being exercised at Wright Laboratories. In the general case, the AGC is adaptive

in the sense that mean and variance computations are adjusted to compensate for amplitude

changes within the incoming signals (34:12).

The critical problem in pattern recognition is how to extract data (or features) from

targets efficiently. "Efficiently" has a dual meaning. First, it means transforming or projecting

the raw data into a convenient set of parameters (i.e. features) representing that object. The

parameters must be energy normalized and properly aligned for comparison. "Efficiently"

also means using only those features that are relevant to distinguishing classes of targets

for the problem at hand. Every feature included in an analysis has a computational cost

associated with it. Also, it is possible to include too many features, saturating the capability

of the classifier for the amount of training data available (23:204). A priori knowledge of the

problem may be used to help choose effective, discriminating features.

1.2 Problem Statement

This thesis investigates raw UHRR radar signatures as feature vectors in the classifi-

cation of aircraft. The sensitivity of classification error to proper alignment, radar "flashes,"

and choice of classifier is studied. An important, related problem is identifying those features

which contain information relevant to successful classification. A technique for doing so is ap-
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plied and modified to choose an efficient set of features in the raw data and in a multiresolution

wavelet decomposition of the data.

1.3 Scope

This thesis analyzes the ability of the AGC to properly align and classify efficient

features in the context of UJHRR radar data. The situation analyzed is a four class problem with

approximately 1000 signatures of measured data available for each class. The current AGC will

be baselined by controlling which signatures the AGC will train on and classify. This test will

show some signatures contain radar "flashes" that cause the AGC to improperly align signatures

with the correct class template. The utility of a Gaussian classifier in this pattern recognition

problem is tested by comparing its performance to non-parametric classifiers with the same

data sets. The information content of the radar returns is explored by bounding the Bayes

error. Finally, discriminant analysis is applied to the problem using the decision boundary

generated by the quadratic Gaussian classifier. The goal is to determine the discriminantly

relevant portions of the signatures. In a two class situation, it is shown that specific frequency

bands, generated with a wavelet decomposition contain most of the pertinent information for

classification.

1.4 Approach

This thesis begins by baselining the Hughes' AGC as developed for the NCTI program at

Wright Laboratories. Classification rates are estimated by training and testing using the holdout

method and repeating over many independent trials (19:220-221). The impact of feature

vectors which are not properly aligned by the AGC is analyzed by withholding signatures

that are not properly aligned from the classification process and seeing whether classification

improves. The effects of alignment are analyzed by hand aligning the problem signatures and

then using the AGC. The classification rates for each case are compared to see which effects

have a significant impact on the classification rate. A k-Nearest Neighbors (k-NN) classifier

and a neural network are used to test whether the statistical nature of the UHRR radar data

3



may be better represented by a non-parametric classifier. Class separability is measured

by performing a Bayes Error Bounding test as described by Fukunaga and implemented by

Martin (20, 33).

After assessing these questions, feature discrimination is explored. First, the idea that

some features are more relevant to classification than others is examined. Then, the analysis

investigates the premise that information relevant to a target can be found in distinct bands

of the frequency domain. The tool used to explore this idea is the wavelet, because wavelet

decompositions systematically break out the frequency domain into orthogonal bases. The

basic idea originates from Coifman (10:714) and measures the information content of the

bands with an entropy measure. Chang applies the 11 norm as an entropy measure and uses

the results for class discrimination with respect to two dimensional textures. This thesis finds

discriminantly relevant bands with a modified version of a discrimination technique described

by Lee and Landgrebe (29).

1.5 Objectives

There are five objectives of this thesis:

1. Describe and document the implementation of the Hughes AGC as provided for this

research. (Chapter II, Section 2.5)

2. Examine the effect of proper alignment during training and testing on the AGC's

performance. Examine the effect of signatures with noise flashes (corrupt signatures)

even when properly aligned to class templates. (Chapter III, Section 3.3)

3. Determine whether a non-parametric classifier may be better suited to the UHRR radar

problem. (Chapter III, Section 3.4)

4. Quantify whether the UHRR radar data is separable by estimating the Bayes error.

(Chapter III, Section 3.5)

4



5. Extract discriminantly relevant features with the raw data and with a multiresolution

analysis to improve classification or reduce the number of features required for similar

performance. (Chapter III, Section 3.7 and Chapter V, Section 5.2)

1.6 Organization

Chapter II begins with a description of the statistical and mathematical theories which

support the methodology and results of this thesis. Also included is a description of how the

AGC works. Chapter III describes the evaluation of the AGC with respect to the alignment,

registration, and corrupted signature issues. Bayes error analysis is used to provide a measure

of classification capability and class separability. Feature analysis is used to quantify where

in the signatures the discriminantly relevant information lies. Chapter IV presents results for

the statistical and feature analyses described in Chapter III. Chapter V explores the use of

wavelet multiresolution analysis to find those frequency bands where discriminantly relevant

information lies.

5



H. Theory

2.1 Introduction

The underlying mathematics behind extracting features and discriminating in an N di-

mensional feature space are well understood within the context of statistical pattern recognition

(19). A key factor is to find the balance between computation time and classification accuracy.

Another key element is having enough sample data to establish a reasonable representation of

class boundaries for the data being analyzed.

Linear algebra is the tool used to frame the problem. Representations of signals

(features) may be imagined in an N dimensional Euclidean space, RN, where N is the

number of features. By extracting features from a signal, a feature vector is projected into

RN and is denoted as a column vector, x = [x1 x2 ... XN]T. Samples of a class of target

would be expected to share common features (and, thus, identical feature vectors), but noise

causes actual measurements to vary within RN. For the UHRR radar problem, noise comes

from uncertainties in relative positions of target and radar, atmospheric effects, and equipment

variations. Probability density functions (pdf's) are estimated and used to find where in

RfN a given class tends to cluster. In some cases, these pdf's may also be used to generate

class boundaries and indicate class separability. When an unknown signature (exemplar) is

presented to the classifier, the classifier "guesses" the proper class assignment based on the

estimated parameters of the underlying statistical distributions.

Theoretically, the limit to this success rate is known as the Bayes error rate (41:35).

The Bayes decision rule tells one where to draw the decision boundary lines in the feature

space. Boundaries between classes are formed and used to classify unknown observations. In

the case of parametric classifiers, the boundary may be estimated analytically. One recently

developed algorithm uses information derived from the estimated decision boundary itself to

determine a new set of relevant features. These topics are discussed in the first half of this

chapter. Also included is a brief introduction to wavelets, which will be used as a tool in

demonstrating frequency analysis in a two class case.
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With the Adaptive Gaussian Classifier (AGC) algorithm the assumption is, naturally,

the distributions of the data are Gaussian. For the purposes of this thesis, AGC refers to the

entire Hughes algorithm, including preprocessing and classification. UHRR radar signatures

are projected into a 192-dimensional feature space, R'92 , where the complex return in each

range bin represents a feature. This strategy is validated by Fukunaga, who has shown the

best you can ever do, classification wise, is with the raw data (19). Any processing or filtering

ultimately removes some information from the data. Several preprocessing steps are taken

to put the data into usable form. The AGC takes the data, aligns it to class template vectors,

and classifies signatures with a Gaussian classifier. The last portion of this chapter details the

steps in that process.

2.2 Bayes Decision Rule

2.2.1 Fundamentals. The foundation of statistical pattern recognition rests on

Bayes rule which is expressed mathematically as (19, 41)

p(wijX) = p( P(w) (1)p(x)(1

Bayes rule combines information about the a priori probability of a class, P(wi), with the total

probability, p(x), of a measurement value, x, and the conditional probability that x belongs to

wi: p(xlwi). The a posteriori pdf, p(wi x) expresses the probability that the unknown sample

belongs to class wi, given a measurement x.

The pdf for a continuous random variable x, when integrated between two limits, gives

the probability that x will takes on a value between those limits. The pdf for a discrete random

variable yields a similar value when the pdf is summed across the indices included by the

limits. The right hand side of Equation 1 includes three terms. P (wi) is the a priori probability

that class wi occurred. That is, for an infinite number of trials, it is the expected frequency

that wi has appeared. The term p(xlwi) is the conditional pdf yielding the probability that

x is observed, given that the ith class occurred (wi, i E {1, 2, ...K} and K is the number

7



of classes). p(x) is the overall pdf for a measurement x: in other words, a measure of the

expected value of x. Note that

L
p(x) = Ip(xIWi)• P(wO), (2)

i=l

which says that the overall pdf for x equals the sum of each class's conditional pdf multiplied by

the a priori probability for that class. One term of this summation (the ith class's contribution

to the sum) is used in Equation 1. The ratio of that portion of the summation to the overall pdf

of x gives the a posteriori probability of class wi.

Bayes decision rule assigns an unknown measurement, x, to the class with the highest

a posteriori value. This criterion insures that the probability of assigning an exemplar to the

wrong class is minimized and is easily extended to the multivariate case where x need not be

a one-dimensional vector, but could be any N-dimensional vector, _ E RN, containing the

features extracted by some measurement.

For a two-class problem, the probability of error is equal to the chance that the classifier

guesses the wrong class, given a value of x. Mathematically, one integrates the x dependence

out of the conditional probability:

P(error) = P(errorli_)p(I_)dx, (3)

to get the expected probability of error for a data set. To account for errors over both classes,

substitute expressions representing the probabilities of making an error for each class into

Equation 3 (19),

P(error) = j P(XJwi)P(wl)d_ + f p(Ijw2)P(w2)dL. (4)

where the S's represent the respective decision regions for each class. In words, it adds up the

probability of an exemplar occurring in the wrong decision region. Note that the dependence

on p(x) has divided out. As stated in Fukunaga (19), this is the minimum Bayes error rate

8



for any classifier. Equation 4 expresses mathematically the rule of calculating the area under

the tails of the pdf's for finding the expected probability of error. See Schalkoff (41:35) for

further details.

2.2.2 Functional Approximations of pdf's. The actual underlying pdf of a random

process (such as a UHRR radar signature) is rarely known. The conditional pdf, p(I wi), for

a class, wi, is estimated or parameterized, based on samples from that class. There ate two

approaches for constructing the conditional pdf: parametric and non-parametric.

2.2.2.1 Parametric. Parametric approximations assume a functional form

for the pdf and calculate the function's parameters based on a set of sample points, called the

training set. The most significant example is the Gaussian pdf. The Gaussian is important

because many natural processes tend to have Gaussian distributions. The central limit the-

orem states that the statistics of a system, no matter what the underlying random variables

contributing to the process, becomes Gaussian as the number of underlying variables goes to

infinity (19:17). The central limit theorem presumes that the process is a linear combination

of the underlying random variables. Note the Gaussian case assumes a unimodal pdf, which

may or may not be the true "shape" of the actual pdf. This assumption will cause problems if

it does not reflect the true distributions of the data.

The parameters that completely define a one-dimensional Gaussian pdf are the mean

(jt) and variance (o-2) of the associated random variable. Each is estimated using the training

set and the training procedure forms an estimate of the pdf of the actual random process.

These estimates should be "unbiased" so that the random process which generates the data is

properly characterized. An estimate is unbiased when A and & 2 converge in a mean square

sense to the expected values of [L and a 2 when J -- oc, where J is the number of samples

used in training. In other words, the estimates should converge to the actual values as one

uses more and more training samples.

To form these estimates, suppose the training data consists of measurements xj or i_,

where j is the jth sample from a set of J samples. For one dimension, unbiased estimates of

9



pt and cr2 are (19)

E Xj (5)

. = 1

- Z(xE - )2. (6)
1 j=1

Recalling that i is the ith class, the estimated Gaussian pdf is then

p(xlwi) = ji2exp X ( ) (7)

Similarly, an N-dimensional feature space (the multivariate case) is handled with vectors in

the following version of Equation 7:

p(xlwi) = (2wr)-4[Ei[-½ exp -• ( ) 1 (x-ft.)] (8)

where represents the determinant of the estimated covariance matrix of wi and

1 J

= lj (9)=1 "

" -- (1j _ &)T. (10)Ei J 1j=l

For future reference, note that this equation is an averaged sum of outer products. The

covariance matrix, ti, gives the statistical interrelationship between the feature elements

(37:427-455). Diagonal elements are variance estimates. If all off-diagonal elements are zero,

the features are statistically independent.

The exponent term on the end of Equation 8 is an important one and is known as

the Mahalanobis distance between the measured data x and the estimated mean of class wi.

Unlike a Euclidean distance, the Mahalanobis distance normalizes with respect to variance

10



that feature axis in RN. Thus, distances between features which have widely varying values

are normalized to distances between features with more "concentrated" pdf's.

2.2.2.2 Non-parametric. Non-parametric approximations assume no form

for the pdf function as a whole. Instead, the pdf is estimated directly from the data. One type

of non-parametric classifier is the k-NN, where the idea is that the pdf will be larger where

more samples tend to appear and smaller where fewer samples appear. Although specific

definitions may be argued, another type of non-parametric technique is the neural network.

Martin gives an excellent description of estimating pdf's with these techniques (32, 33).

The k-nearest neighboring technique is a common non-parametric density estimate.

As developed by Fukunaga (19:268), a random hyper-volume, V, is created around a given

training vector, x. This volume expands until the kth nearest neighbor matching i's class, wi,

is found. Thus, V is a random function of x and is smaller in regions where samples of wx

are most dense. This is an inverse relationship which may be expressed as

k-i
p(Xlwi) = NV (11)

where N is the total number of samples and k is the number of nearest neighbors used when

forming V. Any distance metric may be used to judge which neighbors are closest to x.

Artificial neural networks may also be used to estimate the a posteriori probabilities

of the classes in a pattern recognition problem. The term "neural network" originates from

the behavior of neurons in the brain, but the association is oblique, at best. A brief overview

of neural networks is included in this thesis. This overview is in the same form as found in

Martin (32), and further details may be found in Lippmann (30) and Rogers (39).

A neural network consists of a matrix of nodes which are interconnected by weighted

input and output paths. The weights are adjusted during training, when they are modified to

force the network to yield a desired output for a given set of training vectors. A basic neural

network architecture, known as a multi-layer perceptron, is shown in Figure 1. Using the
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standard terminology, this particular network has one hidden layer with five hidden nodes.

Only four of the weights (represented by the interconnecting lines) are labelled, but each

connection has a weight associated with it. There are three input nodes and two output nodes.

Also shown are bias nodes, represented as the l's enclosed in circles. These nodes are an

integral part of the system and have weights associated with their interconnections like all the

other nodes.

Hidden Nodes

Input Nodes Output Nodes

Feature 1 f(a)

Feature 2 f(a)

Feature 3 f(a)

w 2

W35

Figure 1. Example of a Multi-Layer Perceptron

To use a neural network as a classifier, one may require that z1 be "high" relative to z2

when a member of class w, is presented at the input nodes. One may have 192 input nodes

and four output nodes for the four-class UHRR radar problem. The number of hidden nodes is

fairly flexible, but depends on the complexity of the decision regions required to separate the

data. Usually, one must vary the number of hidden nodes as a parameter and simply see how

results are affected. This problem is similar to the problem of choosing the proper number
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of nearest neighbors to use in the k-NN algorithm. See Martin (33) and Fukunaga (20) for

discussions of this issue.

During learning, training vectors are presented to the neural network inputs. Each input

is weighted by wk and then presented as addends to the hidden nodes. k is the kth layer, i

is the ith input to that node, and j is the jth node at the kth layer. The weights are initially

randomized. Each hidden node implements a non-linear function known as a sigmoid. Other

functions may be used, but sigmoids have attractive characteristics which are mentioned in

the literature (39). Mathematically, for each node,

1
f(a) - + 1e-a' (12)

where a is a weighted sum of outputs from the previous layer. Weights are usually updated by

a process known as "backpropagation." This gradient descent technique seeks to minimize an

error measure for a given training exemplar and set of weights. A common error measure is the

square error between desired and actual outputs for a given output node. As updated values of

the weights are generated, the neural network is conditioned to provide the appropriate outputs

for a given class at the input nodes.

As shown by Ruck (40), a neural network trained in this way approximates the under-

lying a posteriori probability function. Rogers shows how the internal representations of the

weights may be combined and interpreted as decision boundaries for classification (39:58).

The bias nodes allow the decision boundaries to not necessarily pass through the origin. Steppe

provides a rigorous method for determining salient features from classification by a neural

network (42, 43).

2.2.3 Likelihood Ratios. Fukunaga discusses the use of pdf estimates to make

optimal decisions in a given pattern recognition problem (19:51). The following development

parallels his. Decisions in statistical pattern recognition depend upon the pdf estimate used,

the training data available, and the distance metric used to measure the similarities between

test samples and templates. These dependencies require the researcher to be careful in setting
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up experiments. The three dependencies mentioned here parallel the questions to be explored

in Chapter 3 of this thesis.

One chooses the class of maximum likelihood in a two class problem by assigning a

test vector to a class. Using Equation 1,

p(Xwi) " P(wi) i p(x9ýw2) . P(w 2) (13)
pWx J2 pWx

The above equation says "decide class 1 if the left hand side is greater than the right hand side

of the equation and decide class 2 if the left hand side is less than the right hand side of the

equation." Because it is a pdf, p(x) is by definition always positive and is common to both

sides of the equation, so it divides out, leaving

p(LwIl)• P(wl) p(xýLw 2)" P(w 2) (14)
W2

p(!LIW1) P(w 2) (15)
p(_w 2 ) w-2 P(wl)'

with

- p(xw2) (16)

1C is known as the "likelihood ratio". Assuming Gaussian distributions, versions of

Equation 8 (corresponding to the two classes under test) are inserted into Equation 15 and a

natural logarithm is taken to remove the exponential and yield

- (.5(j I2) T- 1 (x ') -- .5(j- T- __ (17)

-A2) 2 4x /2A2) (7

-.In wl)n (18)

(19)
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P(w 2)

-In C(x) I inP(,)" (20)

This equation represents a quadratic surface in RN which separates the two classes. Using this

equation as a classifier presumes unimodal Gaussian distributions, but is analytically tractable.

The decision rule or discriminant function, h(x) is defined to be (29):

h(x_) = -lnC(x). (21)

The minus sign introduced here cancels with the minus signs in the left hand portion of

Equation 18, and the inequalities change directions by exchanging numerator and denominator

on the right hand side of the equation. These steps proceed as follows:

h(_) `0 P(w 2)h <> in (22)
<2 P(wi)

w01 P(wil)
h(x) w< In (23)

Wý2 P(W 2)

h(_) ` t. (24)
42

The parameter t is known as the decision threshold. If a prioris are assumed equal, t

becomes zero. The discriminant function, h(x) has a nice intuitive appeal because it implies

that x "probably belongs" to the nearest class template using the Mahalanobis distance metric,

plus an additional term. This additional term contains the ratio of the determinants of the

covariances and biases the decision in favor of the class with the tighter distribution. Thus,

the determinant term will be referred to as the "bias" for the remainder of the thesis. Strang

shows how the determinant can be interpreted as a volume in N-dimensional space (45). If

a class is spread out or tends to "occupy" a significant volume in RN, that class is penalized.

For a K-class problem, one takes the minimum of the K interclass distances (scaled by the

bias) in making a decision. Note that in Fukunaga (19), the decision rule has a typographic

error throughout the book because the greater than/less than symbol is reversed from what it

should read (for example, see Page 125, Equation (4.1)).
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h(x_) may also be computed in the case of k-NN's. The following equations are taken

from Martin's thesis (32:14-15) and are implemented later in his code. Use Equation 11 and

insert the equation for V:

V = VdlZjl' 2md(_), (25)

In this equation, md is the square root of the Mahalanobis distance between the exemplar and

the class mean being tested against. Vd is a hyperellipsoid of N dimensions which is given by

7r n/2
Vd (/ 'n even, (26)2 ~(n/2)/2

Vd = , n odd. (27)n!

These equations yield

k-i

p(z.jwi)- =NVdIYjjII/ 2 md(X) (28)

and may be inserted into Equation 15.

Bayes decision rule, developed above, is the core of statistical pattern recognition. As

stated by Fukunaga, "the probability of error is the most effective measure of a decision rule's

usefulness (19:85)," and Equation 4 is the equation giving that value. Unfortunately, that

integral can be analytically intractable in high dimensional problems even with the Gaussian

assumption. To overcome this, Fukunaga suggests using a Monte Carlo analyses or bounding

the error probabilities (19:85). In this thesis, both techniques are utilized.

In any case, one is estimating the predicted error rate for the classifier. In effect, the

estimate itself is a random variable and has some variance associated with it. This uncertainty

may be quantified with the use of confidence intervals. When applying a confidence interval to

an error rate, one is estimating the variance of a proportion, where the proportion is a measure
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of the expectation of a correct classification. The proportion behaves as a Bernoulli random

variable with a binary output: correctly classified or not correctly classified (13:347).

Any statistics book will give the basics of this procedure, but Papoulis (37:241-256,270)

gives the complete story, if one is careful to follow his cross-references. The technique treats

the classification rate produced from one Monte Carlo trial as an estimate of the mean of a

Bernoulli process. As more estimates of the mean are taken, one becomes more confident that

the actual mean is "close to" this value.

To produce a confidence interval, one requires a test statistic, Za/2. The degree of

confidence is "1 - a ", in terms of a percentage. As shown in Figure 2, the goal is to find

-a

-z0 Z
_Za/2 0Za/2

Figure 2. Confidence Interval Schematic

the extent of the shaded region of the curve, which represents the density function of the

Bernoulli, or binomial, random variable. In this case, the region shown may represent where

97.5 % of the mean estimates are expected to fall, after normalizing the mean to zero. This

implies a/2 equals 0.0125. The value of Za/ 2 may be obtained from standard tables and for a
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97.5% confidence level, Za/ 2 = 1.96 (2:624). The variance is estimated with

6.2 _ P3(1)-3) (29)
n

where fi equals the average classification rate for n trials. The following equations are used to

find the lower and upper bounds on the estimate:

P (-z,/2 < -<Z 1-a

13(1-17) 1 3(- _i/

P ( Zi- za/ 2 •) < P <±Z+ za/2 1- 1-a (30)
n Fn

2.3 Bayes' Bounding

According to Fukunaga, the estimation of a bound on the Bayes' error rate is accom-

plished by using a Leave-One-Out (L) and Resubstitution (R) analysis (described in the test

below). The overriding concern in dividing up a finite set of data is maintaining independence

between training and test sets. L, where just one data point is withheld from training and

used for testing, is a special case of the more general holdout method where some fraction of

the data is used for training and the rest for testing. As long as testing and training sets are

independent, "the [holdout] and L methods are supposed to give very similar, if not identical,

estimates of the classification error (19:221)."

Devijver and Kittler give an excellent discussion of these issues (13:343). They em-

phasize the fact that if one withholds most of a limited data set for training, leaving few for

testing, one can have little confidence in the test. At the same time, if one reserves most of a

limited data set for testing, it is not a good classifier design with respect to the statistics of the

data. Also, Devijver and Kittler note that the hold out method tends to overestimate the actual

error rate and gives cross-validation as a reasonable compromise in allocating an limited data

set to training and testing subsets (13:355).
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The disadvantage of the holdout method is that a tradeoff exists between the bias and

variance of the estimated error rate. A full discussion of these effects is found in Fukunaga and

Lachenbruch (27:1-11). Geman also discusses the impact of bias and variance on results (21).

Bias reflects the accuracy of the classification results for a given experiment with respect to

the accuracy that would be attained in a "real world problem." Vapnik gives a measure of the

maximum deviation of estimated error rates from the true error applied to the real world (47).

Jain paraphrases "Uncle Bernie's Rule," referring to Bernhard Widrow's rule of thumb that

one needs about five to ten times as many samples per class as classifier free parameters in a

pattern recognition problem (23:204). Finite data sets in high dimensional situations tend to

be biased if the nature of the statistics is not captured by the data available. Over many runs,

the estimates are unbiased if the estimates converge to the expected value. Variance relates to

the consistency of the estimated classification rate over different sets of data.

A Bayes bounding analysis is implemented by Martin using k-Nearest Neighbors (k-

NN), Parzen window, and neural network pdf estimates (32). In essence, the idea is to find an

overly optimistic estimate of the Bayes error by training and testing on identical data sets (the

R case). Likewise, the L method gives a slightly pessimistic estimate of the Bayes error. With

respect to the Bayes error, the L value represents an upper bound. The premise behind the R

method is that a classifier's performance can never be better than when the classifier sees the

answers before answering the question. In the L method, if the data set contains M samples,

M trials are made, sequentially withholding one test vector. In each trial, the classifier trains

on M - 1 samples and tests on one sample. The total number of misclassifications across the

M trials is used to estimate the error rate.

Martin's work varied the parameters associated with the pdf estimators (window size

for Parzen, number of nearest neighbors for k-NN, and number of hidden nodes for neural

networks) and adjusted the decision threshold accordingly. It had been found that the decision

threshold plays a crucial role in the effectiveness of the Bayes error estimates (20). As

summarized by Martin, when the L method is employed, the threshold should be adjusted

to remove any influence the sample under test may have had in estimating the pdf. This
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method for selecting the threshold is called "Option 2" by Martin and is utilized for the results

generated in this thesis (33).

2.4 Feature Space Utilization

Efficient use of the feature space is an important element in engineering a pattern

recognition problem. The desire to limit the dimensionality of the problem is driven by several

concerns because high-dimensional data causes several problems in pattern recognition. Not

only does the bias of estimates become significant (19:316-317), but also high dimensional

situations require more sample points to adequately represent the statistics of the problem. The

latter circumstance was explored in Foley (18) who studied the impact of using the same data

set for both training and testing. Foley presents the ratio of samples per class to the number

of features utilized as the key parameter. For, say, a quadratic classifier in a 192-dimensional

problem, using a common training set and test set is not acceptable.

Another important issue is the "curse of dimensionality." It is possible to include too

many features in a problem because the information added may be redundant information or

noise (16:67). Jain points out that each added feature must increase the separation between

classes by ( 1) % (in terms of Mahalanobis distance) to avoid a roll-off in classification

accuracy. In this equation, n is the number of samples and d is the dimensionality of the

problem. Duda (16:77), citing Chandrasekaran (5), states that the inclusion of more and more

dimensions will not affect performance if the features are truly statistically independent.

Foley cites other authors whose results emphasize the negative effects of limited sample

size, including Cover (11), Estes (17), and Kanal (24). The underlying thrust of these articles

is that the more information one has on the underlying behavior of the statistics of a random

process, the better the performance will be. At the same time, one would like to find a minimal

representation of the statistics of the data. When data is limited, which it usually is, one must

develop techniques (such as the leave-one-out method) designed to estimate the performance

of the classifier.
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2.4.1 Projections and Transformations. When a researcher takes measurements,

one is projecting a continuous natural phenomenon into a discrete representation in a feature

space, RN, where each feature represents a value along an axis in that space. This process

can be visualized in the context of linear algebra, with the allowance that visualizing in 192

dimensions can be difficult. Together, the N axes form a basis set for RN, which may or may

not be linearly independent.

As an example, a continuous EM signal, such as a radar signature, may be projected

into a feature space whose axes correspond to complex returns in range bins. Several items

related to the physics of this problem bound it in a mathematical sense. Radar signatures are

discrete, finite duration representations of physical processes and are thus finite energy. RN

is assumed to be a Hilbert space, which has the the attractive property of being a complete,

inner product space. This property is important for several reasons. First, it means that RN

is a linear space and one may find linear manifolds (closed subspaces of RN) in it. Also, it

means that projections, via inner products, into those linear manifolds may be accomplished

and that consistent distance metrics can be defined. The fact that RN is a linear space implies

rotations do not change the relative positions of points in that space.

Once a signal is projected and thereby vectorized into RN, one can perform further linear

projections and/or rotations to find efficiencies inherent to the data and classifier (19). An

important strategy is to use the transformations to modify the coordinates of the feature space,

exploiting those features which yield the most information about class separation (38:182). As

long as the transformations are linear transformations, the underlying statistics are preserved.

Parsons focuses on two major methods for improving classification through transforma-

tions on RN: decorrelating features (causing the correlation matrix to become non-zero only

on the main diagonal) and maximizing separability. One method to decorrelate features is

via the Karhunen-Lo6ve transform (KLT). The KLT essentially removes dependencies among

linearly dependent features and forms a minimal representation of the data. Thus, RN is

transformed such that RN __, QN, and QN possesses an orthogonal basis set. The steps for

accomplishing the KLT are given in Parsons, mathematical details may be found in Fukunaga
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(19:405-409). This linear transformation forms a new set of features which may be viewed as

a minimal representation of the data in a mean square error sense. As pointed out later in this

thesis, however, the KLT is not always the most successful with respect to classification error.

The essence of the KLT technique is to use the eigenvectors of the covariance matrix

as an orthogonal basis of the new space. The technique yields an orthonormal basis in QN

because eigenvectors are orthogonal and energy normalized. The corresponding magnitudes

of the eigenvalues indicate the relative "importance" of each dimension. The beauty of the

KLT is that the error in reconstruction produced by eliminating an eigenvector is directly

related to the magnitude of the associated eigenvalue (19:410). Also, the KLT does not affect

the underlying statistics of the problem because it is a linear transformation. Fukunaga extends

this point by stating that the "class separability, for example the probability of error due to the

Bayes classifier, is invariant under any nonsingular transformations (19:417)." This fact leads

to the ability to use other rotations, as the one found in Lee's article, and projections, such as

a multiresolution analysis.

This is all well and good, but to improve classification accuracy for a classifier, the

real goal is to maximize the separability of the data. The KLT decorrelates features, but does

not necessarily indicate which features may yield more information about class separation

than others. The KLT does indicate in what directions the data as a whole tends to be

spread. As pointed out by Parsons (38:185), the KLT finds a set of axes along directions of

maximum variance which implies the directions of maximum separability. This strategy does

not necessarily work in all cases (29, 38) but the door swings open on discriminant analysis.

Other feature discrimination techniques include the Fisher discriminant and the Fuku-

naga and Koontz method. Like the KLT, both of these methods seek out the dimensions in

R N that have the most variance. These techniques and several others are cited and briefly

summarized in Lee (29:389). Lee points out that high dimensional data restricts the ability of

these algorithms to perform in a computationally cost-effective manner. Also, if class means

are close to one another, the results may not be meaningful.
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2.4.2 Discrimination Using Decision Boundaries. As mentioned earlier in this

chapter, a decision boundary h(_), separates two classes in the N-dimensional feature space.

For a quadratic Gaussian classifier, this equation is given analytically by combining Equa-

tions 18 and 24:

h(x) = .

.5(x T- 2- 1 2) +.51n (31)

The decision is class w, if h(x) < t, where t = 0 for equiprobable a prioris. This equation

represents an N-dimensional surface and is the foundation for all decisions in that pattern

recognition problem.

A recent pair of articles by Lee and his co-author Landgrebe (28, 29) exploit this

idea by transforming RN based on the orientation of the most relevant part of the decision

boundary. Their algorithm may be used to highlight more relevant features ("discriminantly

relevant features") and leave out redundant features ("discriminantly redundant features").

The authors characterize this transformation as an improvement over the KLT with respect to

classification. While the KLT minimizes mean square reconstruction error based on statistics

of the feature vectors, it is not necessarily optimum in the sense of class separability. Lee's

new approach is "based on the decision boundaries directly ...and [predicting] the minimum

number of features needed to achieve the same classification accuracy as in the original space

for a given problem and [finding] the needed feature vectors (29:389)." That technique centers

on extracting a basis set from the "effective decision boundary feature matrix" (EDBFM). The

algorithm and its implementation are discussed next.

Lee uses the same notation as in this paper but adds a number of definitions to support

the theorems and development of his argument. His key argument is to find a linear manifold

of RN called WM. RN is spanned by basis vectors 0j, i = 1... N, WM is spanned by basis
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vectors qpj, j = 1, 2,... M, and M < N. In WM, the following equation holds for all x:

(h(x) - t)(h(_) - t) > 0. (32)

where ý (M-dimensional) is the representation in WM of x (N-dimensional). Lee states the

physical meaning of this equation is that none of the decisions will change in the subspace

(29:390). If the vector is correctly classified in both spaces then the product is always positive.

If the vector is correctly classified in RN and incorrectly classified in WN, then the product

will be negative. The problem is to find the basis vectors in the original space that are irrelevant

to all decisions for all data points. In other words, one is seeking dimensions parallel to the

decision boundary at all points. The following theorem lays the foundation for Lee's approach:

Theorem 1 If a vector is parallel to the tangent hyperplane to the decision boundary at every

point on the decision boundary for a pattern classification problem, then the vector contains

no information useful in discriminating classes for the pattern classification problem, i.e., the

vector is discriminantly redundant (29:391).

He ends up concluding "the effectiveness of the basis vector is roughly proportional to the

area of the decision boundary that has the same normal vector (29:392)." This leads directly

to the mathematical equation:

fDBFM N(-)NT(x)p(_)dx. (33)
K iS

In this equation, N represents the normal vector at point x to the decision boundary; S

represents the decision boundary surface; and K = fs p(x)dx.

The advantage of the Lee technique becomes more clear when a new surface is formed:

S', defined as the "effective decision boundary." S' represents that portion of the decision

boundary which separates most of the exemplars in the problem. Often, a very complicated

decision surface can be simplified to a linear equation. Basically, one is removing outliers
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from the problem, betting that future outliers will occur infrequently. This truncated surface

is used in Equation 33 to create the EDBFM.

The EDBFM holds information about the orientation of the decision boundary in RN.

The connection is that normal vectors to the decision boundary indicate the discriminantly

relevant directions in RN. The outer product of a normal vector with itself yields contributions

to the EDBFM across the decision surface, S. An outer product, which forms an N by N

dimensional matrix, may be viewed as an operator (36). For the EDBFM analysis, one takes

the outer product of a column vector with itself:

T. TT (34)

If this operates on some other vector, one writes:

(I. - T) x(35)

but this can be reorganized as

r. (TT. _). (36)

The term in the parenthesis is a familiar inner product and is the projection of x on T. This

results is a scalar, leaving

(37)

where ý is the scalar. Thus, an outer product provides a way to project one vector (x) onto a

second vector (UT and then orient along the second vector in RN. Lee's algorithm says the

EDBFM is an average of outer products from vectors produced along the decision boundary.

Because they are normal to the decision boundary, these vectors form a correspondence with

discriminantly important directions in the feature space.
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The eigenvectors of the EDBFM give an orthonormal basis set for the space in which

classes are best separated, with respect to the decision boundary itself. The dominant eigen-

vectors of the EDBFM are associated with the directions in which one is most likely to cross

the decision boundary. The dominant eigenvalues may be used to indicate the most relevant

eigenvectors, as in the KLT method described earlier.

Note that the process of taking outer products to form the EDBFM parallels the KLT, in

which outer products are used to form the covariance matrix. Both matrices hold information

about the direction of maximum variance of their constituent vectors. The eigenvectors of each

provide the tool to transform the space into a reduced feature space. Thus, a transformation

using the matrix of eigenvectors of the EDBFM orients the space with respect to the decision

boundary.

See the appendices for sample problems and computer code. The steps used in imple-

menting this procedure are listed here and in the Lee article (29:394).

1. Classify the training samples using estimated mean and covariance matrices and retain

only those samples from each class that are correctly classified. This step insures that

the equations used below are solvable. Also, apply a chi-square threshold test to each

class to eliminate outliers within the class. Use the Mahalanobis distance metric. Note

that the Mahalanobis distance does not include the bias term. For W1, apply steps 2

through 6, below.

2. Apply the chi-square threshold test of w1 to W2, again using a Mahalanobis distance. In

other words, use only those samples in w2 which are relatively close to the mean of w1.

Retain a predefined, minimum number of the closest samples from w2 if too few pass

the threshold test. One may use a different threshold than in step one. Steps 1 and 2

limit the calculation to the effective DBFM.

3. For every sample of wi, x., find its nearest neighbor in w2, _2. Essentially, at this point,

one is drawing a line between the points. Because only correctly classified samples

have been retained, this line intersects h(W).
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4. Because all retained samples should straddle the decision boundary, find the point Pi

where the line connecting x, and x2 intersects the decision boundary, h(_). This step

forms an estimate of the complete decision boundary.

5. Find the unit normal vector, NX, to the decision boundary at the point Pi. Here, the

subscript i represents the ith iteration through this list.

6. Repeat steps three through five for all K 1 samples of w1 and form an estimate of the

effective decision boundary feature matrix, E'4 DBFM from wl, where

~EDBFM = (38)K,•

7. Repeat steps two through six for w2.

8. Calculate the final EDBFM with

E"3EDBFM = Z'EDBFM ± "EDBFM" (39)

The process is generalized to the multi-class case (with K classes) with

K K

E"EDBFM E E P(wi)P(wj)EkBFM" (40)
k j,jyIk

Lee stresses that the theorems he develops hold for multiclass problems, with the above

equation collating the class to class comparisons, weighted by their probabilities (29:395).

The implementation of these steps in this thesis follows his algorithm closely, but not

exactly. Estimated parameters of the discrimination function, h(x) were calculated from a

distinct training set to maintain independence between training and test sets. Equations which

find intersection points and normal vectors are provided by Lee (29:395). The computer code

in Appendix C implements the steps listed above along with the equations used to find the

intersection in Step 3 and the normal vector in Step 4. Essentially, the same results as found
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in Lee's sample problems were produced with this code. The code in Appendix C is set up to

reproduce Lee's sample problems (Examples 3, 4, and 5 (29:396-397)).

2.4.3 Wavelet Analysis. Wavelet decomposition in the context of a multiresolution

analysis (MRA) is a relatively new technique which has especially matured in the last ten

to fifteen years. The seminal article tying together the mathematics behind using wavelets

in an MRA is Stephane Mallat's, A Theory for Multiresolution Signal Decomposition: The

Wavelet Representation (31). The discrete wavelet transform projects a signal into a series

of nested subspaces and their orthogonal complements. The analogy with Fourier series

frequency representations, in particular windowed Fourier transforms, is tempting, but not

quite exact. The wavelet kernal is parameterized with shifts and scale while the windowed

Fourier analysis is parameterized with shifts and frequency. Instead of frequency as the key

parameter in forming the transformation kernal, scale is the key parameter. With respect to

the UHRR radar problem, wavelet analysis looks to pick out unique scale information (class

to class) from the time-based signature.

The nested subspaces are called approximation levels. Projections into them are anal-

ogous to successive low pass filtering operations. See Mallat on how the filter coefficients

are derived. In many cases, filter coefficients may be chosen tailored to the problem at hand.

The resultant approximation signals have frequency content roughly corresponding to octave

subbands. Referring to Figure 3, the approximations are labelled "A," "AA," and "AAA."

The associated detail spaces contain information "lost" when one projects into an approxima-

tion space. Each approximation is a subspace of the original space and of the space of the

approximation of the previous level.

Projections into the detail spaces result from high pass filtering of the approximation

signals. The filter generating detail signals is derived from the filter generating the approxi-

mations and may be viewed as quadrature mirror filters (31). Each detail space is orthogonal

to the approximation spaces and detail spaces at its level of scale and below.
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During an MRA, filtering is applied recursively to the approximation signal. A direct

sum of an approximation signal and detail signal is employed to reconstruct the approxima-

tion at the next higher level of scale. The intricacies of the mathematics may be found in

Mallat's article. Note that with each projection, the signal is downsampled by 2. Each set of

approximation and detail coefficients is a representation of the original signal in that subspace.

Length
of

Each
Signal

Original Signal Space 256

A D 128

AA DA64

AAA ýDAAJ32

Figure 3. Original Signal Space Projected with Conventional Multiresolution Analysis

For the purposes of this thesis, wavelets provide a tool to extract relevant scale informa-

tion about the targets. Wavelets will be used in the context of finding alternative orthonormal

bases for the space in which the original signal is represented. The wavelet representations of

the original signal are used as inputs to the Gaussian classifier.

Wavelet packets are a modified version of the conventional MRA in that detail signals

are recursively filtered, as well. As pointed out by Coifman (10:714), a wavelet packet library

"corresponds roughly to a covering of 'frequency' space." The term "covering" implies that

the set of signals that can be represented in the original space can also be represented by the

bases generated through the MRA. The wavelet packet bases are organized into nodes of a
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binary tree, as shown in Figure 4. In the context of Section 2.4.1, representations of the signal

are projected into subspaces at each level of decomposition in the tree. Instead of a standard

MRA, in which only approximation signals are recursively decomposed, all detail signals are

recursively decomposed at all leaves in the binary tree. The key in using wavelets instead of

a windowed Fourier transform is that many of the detail spaces are orthonormal. This implies

that the information contained in a detail signal is unique relative to other approximations and

details at the same scale or below.

Length
of

Each
Signal

Original Signal Space 256

A 128

AA DA AD DD 64

AAA ýDAA ADA DDA AAD DAD ADD DDD 32

Figure 4. Original Signal Space Projected into Wavelet Packet Subspaces

For feature discrimination, the idea is to find those scales which contain the relevant

information for classification. In the Coifman article, as implied by its title, "Entropy-Based

Algorithms for Best Basis Selection," the premise is that entropy is an appropriate criteria in

determining the best, minimal set of bases to represent a signal. This concept was applied

by Chang and Kuo (6) with respect to identifying textured images. Their goal is to find the

minimum number of features sufficient for classification (6:429). However, in the entropy

measure, they are using a tool designed to give a minimal representation of the original

signal, and is not specifically designed to minimize classification error. Recently, Coifman

has developed a technique which selects scales based on classification error (9).
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Chang's approach is to recognize that certain textures have little or no frequency infor-

mation in certain bands. They "detect the significant frequency channels" by employing an

averaged 11 norm (6),

e Xi, (41)
i=1

where x is the vector of features at a given approximation or detail level.

The criterion for retaining a given decomposition level, or subspace, is to compare

its energy to the largest energy value at that scale. Chang states if e < C . emax, then

stop decomposing at that level. In other words, this scale is relatively unimportant to the

representation of the original signal. Chang goes on to lay out a training and classification

scheme using the 11 norms as features.

The essence of Chang's procedure is to calculate the "energy map" of a given texture or

class during training. Complete tree-structured wavelet packet bases are computed for each

training sample and 11 norms are calculated for each set of approximations and details at each

scale. All of these values are retained, no matter what the relative magnitudes of the energies

may be. When a test vector is presented to the classifier, it is decomposed in the same way.

This time, only those levels with significant energies are retained as features. These features

are then compared to the corresponding features in each template and one's favorite measure

of similarity (such as Equation 24) is applied.

Wavelets have great potential as a frequency analyzer, but one disadvantage is their

shift variance. Because alignment and registration are critical with respect to the UHRR radar

data, a way to address this issue must be found. A solution utilized in this thesis was presented

by Suzuki in a report written as part of her PhD minor examination (46). In this technique,

instead of downsampling, all values from a given filtering operation are retained at each

level of decomposition. Thus, for a 256-bin radar signature, all approximations and details

would also contain 256 bins. The shift variance problem is solved, because the downsampling

does not remove every other range bin from consideration (46:9). Other solutions do exist,
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including an article by DelMarco and Weiss (12) which applies wavelet packets and a shift

invariant wavelet transform with damped sinusoids as test vectors.

One other important aspect of the multiresolution analysis must be addressed in the

application of wavelets: edge effects. These will have a drastic impact on the features collected,

especially as one progressively filters through each level of decomposition. Adaptive wavelets

have been developed by Cohen, Daubechies, and Vial to alleviate the problem (8). These

authors indicate more ad hoc techniques also exist which are easier to implement. Some

examples are: periodically extending the signal and reflecting the signal about its endpoint

to form a signal twice as long. Circular convolution during filtering may be employed to

invoke the periodic extension. Sometimes, if the signal trails off to zero at the endpoints, zero

padding is effective. Finding an effective strategy is often problem dependent.

Other researchers have used MRA's and wavelet packets for signal processing and, in

particular, UHRR radar returns. A review of recent advances with respect to wavelet pattern

recognizers is given by Benveniste and others (4). Chou and others use the multiscale analysis

approach, noting that branches in the dyadic trees correspond to scale representations of a

time signal (7). Baras and Wolk present a method for on-line automatic target recognition

systems (3). Their proposed algorithms include vector quantization via aspect graphs and

vector quantization techniques via the Linde-Buzo-Gray algorithm for clustering. Baras cites

Gersho and Gray with respect to the the vector quantization techniques (22).

The work most similar to this thesis is a July, 1994 article by Coifman and Saito (9)

which gives extensions to Coifman's 1992 article on entropy analysis of wavelet bases for

minimum reconstruction error. In the July, 1994 article, classification error is addressed. The

extension is they propose two techniques for feature selection from the wavelet packet bases.

One technique is to use a Fisher discriminant on the wavelet packet bases. The other technique

creates "an adaptive orthonormal basis [at each leaf in the tree] which minimizes a measure

of the prediction error (such as 12 error) for the regression problem (9:194)." The analysis in

that article is restricted to synthetic data.

32



2.5 The Adaptive Gaussian Classifier (AGC)

The AGC takes UHRR radar signatures, preprocesses them and applies a Gaussian

discriminant. The purpose of this section is to describe the algorithm outlined in Figure 5.

This research makes an explicit distinction between Gaussian discriminants and the AGC.

The term AGC always includes the entire preprocessing and alignment scheme as developed

by Hughes Aircraft Corporation. The overall methodology is to first create templates from

training data and then compare test signatures against them, as described earlier for the general

pattern recognition problem. Each return in a range bin is treated as a dimension in the feature

space. A template, as generated by the AGC, holds mean and variance information for each

of the range bins for a given target class. An incoming, unknown signature is compared and

aligned against class templates to find its "closest" match for classification.

2.5.1 The Data. UHRR radar waveforms are chirp radar returns from aircraft. Radar

energy received from a target is demodulated with a linear frequency ramp function. Energy

from scatterers at a given range is put into a given range bin. Each range bin contains energy

corresponding to an incremental distance from the radar receiver. Radar energy corresponding

to the nose of the aircraft is located in the lower-indexed range bins and energies from trailing

edges are found in higher-indexed range bins. An important problem in this radar technique is

a wrap around effect which occurs because of the range uncertainty imposed by the acquisition

and demodulation process of the underlying chirp radar system. Details of chirp radar and

radar stretching may be found in Stimson (44:217-223).

In this analysis, an unprocessed UHRR radar signature consists of 812 range bins. Each

range bin has an in-phase and quadrature component. During acquisition, the signals have

been oversampled by a factor of eight. Before classification or training, each radar signature

is preprocessed. The specifics of ARTI Phase III data collection may be found'in (1).

2.5.2 Preprocessing and Coarse Alignment. The preprocessing sequence is shown

in Figure 6. The overall purpose of preprocessing is to normalize the data, correct the wrap-

around problem, and align the data. Alignment occurs in a two-step process consisting of
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The Adatv Gaussian Classifier

Training Procedure Testing Procedure

Read in One Training Signature Read in One Test Signature

Preprocessing Preprocessing
(Section 2.5.2) (Section252

Coarse Alignment Coarse Alignment
(Section 2.5.2.2) (Section 2.5.2.2)

Compute Correspondence Compute Correspondence
to Current Template to Each Template

(Sections 2.5.3, 2.5.4) (Section 2.5.5)

Update Mean and Variance Templates Compute Probabilities for Each Class
(Section 2.5.4) (Section 2.5.5)

Figure 5. AGC Overview
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coarse alignment and fine alignment. Technically, coarse alignment occurs in the preprocessing

section of the AGC computer code. Fine alignment occurs as a separate step during template

construction or classification.

2.5.2.1 Magnitude and Downsample. Let the stored UHRR radar signal

be represented by the vector, v, with the complex value of the return in the ith range bin

represented by v [i]. Each range bin contains in-phase and quadrature phase components v1 [i]

and vQ [i]. The first step in preprocessing is to take a simple magnitude for all i:

Vmag[i] - v2 [i] + v2[i]. (42)

The resulting signature vector is downsampled by three, after deleting the first 22 bins

and final 22 bins, to produce a new signal vector, a. The assumption here is that the initial

range bins are instrument noise associated with the acquisition process. The new signal vector

a is of length 256.

2.5.2.2 Circular Centroid. A circular centroid (CC) performs the coarse

alignment on a and solves the wrap-around problem. The CC finds the power centroid of a

signal when the starting and ending points of the signal are assumed unknown. This coarse

alignment of a signature is designed to get a given signature within + 18 range bins of proper

alignment with its class template. The number 18 was chosen as the range of shifts in

experiments performed by DeWall (14). This limit on the window helps prevent confusion

during testing because exemplars are less likely to be matched against the wrong template.

Mathematically, the CC operates on the signal vector a as follows:

256

Ywgt = a[i] .sin iQ (43)
i=1

256

XwOgt = a[i] cos i4, (44)
3=1
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Magnitude (Section 2.5.2.1)

Truncate, Downsample by 3 (Section 2.5.2.1)

a Length 256

Circular Centroid I (Section 2.5.2.2)

i Length 256

Power Normalization (Section 2.5.2.3)

Q Length 256

Power Transformation (A .4) (Section)

0To Training or
~Classification

Figure 6. Preprocessing Steps of the AGC
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where Q = 22-. Ywgt and x 9gt represent the concentration of power along that axis in the

xy-plane. These coordinates correspond to a point, /, as shown in Figure 7. The terms given

in Equations 43 and 44 correspond to the real and imaginary components of the fundamental

frequency in Fourier analysis. Thus, in a sense, the CC is a measurement of the energy content

of the signature in a single frequency.

Projection onto Unit Circle

e1= actan (XYwgt, Y4)

XWgt

TecnebIn Findrex 7, is found by nle) convertoning bakfom radian toe bitnginde nuitcmber:

Ew = arta.. g (5

Thetrbnidx , is fon bycnetn akfo ainobin ine1 ubr

C (46)
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Once this central bin index is found, it is a simple matter to rearrange the signal vector into a

signal vector, b, whose power centroid is its center bin.

The coarse alignment sequence is diagrammed in Figure 8. CC takes the signal vector

and "wraps" it into a circle in 2-space with x and y components. Relative power strengths in

the directions of the x and y axes are found and the coordinates of this point give the direction

of the circular power centroid from the origin. The signal is then adjusted and "unwrapped"

to complete the sequence.

Incoming Signature Projection onto Unit Circle
3 Calculated Centroid - Bin 50

"E • Bin 1

01
0 100 200

Range Bin4

Adjusting Centroid to Center Bin Coarsely Aligned Signature
/ 3

/
/

Bin 128 ... 4 -a

10O0 200

Range Bin

Figure 8. Coarse Alignment Process

The disadvantage of the coarse alignment technique is that abnormal flashes in the

return of one exemplar of a given aircraft may cause improper alignment. These flashes can

wash out information and cause an exemplar to appear very different from its class template,
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especially in the sense of alignment. Such a flash problem is illustrated in Figure 9. This

figure shows two signatures from one class. The signal with the flash no longer as similar

with other members of its class. The noise flashes will affect the coarse alignment procedure

and judgments of similarity during classification.

Typ2"l UHR Retur will No[" Flash 2. Typical UHRR Rethn.

2 Noise Flash 2

I.S 1.5

0.5 0.5

S0 100 150 200 260 0 •
Range Bin 0 50 100 150 200 2W

R"a Bin

Figure 9. Left: Class f2, Signal "A," with Noise Flash; Right: Class f2,"B," Typical Signal

2.5.2.3 Power Normalization and Transformation. Each signal is energy

normalized, as would be expected in any algorithm using correlations to align signatures

against templates. Mathematically, compute the energy normalized version of the signals:

P = _______

•/i•1b~] (47)

256

c[i] = b[i] (48)
P

The power transformation shown in Figure 6 makes the data more "Gaussian-like".

The underlying distribution of the UHRR radar data is Rician (34), but the AGC inherently

assumes a Gaussian pdf. The intention is to make the underlying UHRR radar pdf more

closely appear Gaussian. This is a random variable transformation described in Fukunaga
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(19:76). The transformation is:

d[i] = (cli])° 4 . (49)

The radar signature ready for training or testing is designated by the vector d. This vector is

incorporated into a template during training or tested against class templates during testing.

2.5.3 Training. The user of the AGC may choose how many of the 256 remaining

range bins to use for training and testing. The algorithm leaves off bins symmetrically from

each end of the signature. The default value is set at 192 range bins. Exemplars, denoted by

d again, form 192-dimensional templates, where each range bin is a feature. The template

file holds mean and variance information for each range bin. Template calculations are

made sequentially, as each d is presented after preprocessing. Features are assumed to be

uncorrelated.

Here, Ik [i] and &k' [i] represent the mean and variance for the ith range bin after k sig-

natures have been presented for training. The equations implemented in the AGC's computer

code are straight forward and follow from the theory presented earlier. The initial values are

set from the first exemplar, d, [i]:

fA,[i] = di[iI (50)

&I[i] = 0. (51)

For the kth exemplar,

A01[iI (k - 1) . -k 1[i] + dk[i] (52)
k

&2] (k - 1). &k2_1 [i] + AKij_ (53)
k +k-l"

The latter equations, which recursively calculate mean and variance estimates are given by

Schalkoff (41:65).
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2.5.4 Adaptation. In the context of this thesis, the term "adaptive" only describes

the process of shifting the incoming signal to the developing templates, which is formed

iteratively as each exemplar is read during training. There exists code at WL/AARA which

incorporates "adaptation" in another sense. In that case, a compensation parameter is added

to the routine which accounts for changes in magnitude of the incoming signal (34). Thus,

data taken at different ranges may be compared even though data from nearer ranges may

have higher magnitudes than fainter returns. In the computer code itself, mean and variance

calculations are made after finely aligning the kth exemplar with the (kth - 1) mean template.

For training, alignment is found in the sense of a minimum Euclidean distance.

The exemplar is shifted until the minimum distance is found between the exemplar and

mean template. Shifts are made up to eighteen bins in either direction, relying on the premise

that the CC has already coarsely aligned the training signature to the class mean template.

When the CC fails to place the "true" centroid within 18 range bins of its class mean, this

fine alignment step fails. Shifts are made circularly: in other words, bins shifted off one end

reappear at the other.

The mathematics are as follows, with Dk [j] representing the squared Euclidean distance

for the kth exemplar offset by j:

256

Dk[j] = I (dk [(i + j) D 256] - f2k_1[i]) 2  (54)
i=1

j E [-18, 18], (j an integer). (55)

The G symbol represents the modulo operator and implements the circular shifting of the

exemplar, d. From the above equation, the `h shift is chosen that minimizes Dk. Then,

instead of Equation 52,

=k[i] (k - 1). ftk-1[i] + dk((i + Jbest) 0 (256)) (56)
k

is used. This equation uses the best matched version of dk in a Euclidean distance sense. The

calculation for Uk [i] remains the same.
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The above steps are repeated for as many exemplars as the researcher wishes to use to

form the class template. The process is executed separately for each target class, and presumes

the use of labelled data. Templates generated during training are placed in separate target files.

For testing, individual templates are concatenated into a single pattern file.

2.5.5 Testing. Noting Figure 5, for each unknown test signature presented to

the classifier, the preprocessing steps outlined in section 2.5.2 are performed to generate a

normalized and coarsely aligned feature vector.

The testing algorithm computes Mahalanobis distances between the unknown vector,

d, and each class template vector contained in the pattern file. As in training, the test vector

is circularly shifted against each class template for fine alignment and the best (minimum)

value is stored for each class. The AGC implements a portion of the discriminant equation,

Equation 31. Only half the terms are used, as shown here, for a comparison with the w1

template:

Mrd(Z__) = .- A (57)

where &2 is a row vector containing estimated variances for Class. The ".." operator indicates

element by element multiplication and the "./" operator indicates element by element division.

The equation has simplified because of the assumption of uncorrelated features and because

one is calculating the a posteriori probability for a specific class. The linear algebra works

out the same as with a full covariance matrix, but computation time is saved. It is at this point

that two important assumptions in this classifier become evident. Features are assumed to be

uncorrelated (34) and the decision boundaries are assumed to be quadratic. That is, covariance

matrices are estimated for each class and they are non-zero only on the main diagonal.

The testing process is the same as training, except that the Mahalanobis distance is

used plus the bias term, for example, B1 for class 1. The bias term for class 1, meaning the
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determinant of the covariance matrix simplifies to

256
2I (58)

i=1

256

B1 = ln&2 [i]. (59)
i=1

For a given test signature, p(wi _) = md + B 1 is calculated for each template and the values

are put in a matrix and saved to an output file. This file contains K columns with respective

classification distances to each class template. The user must use his own algorithm to translate

the results to a confusion matrix.

2.6 Summary

This chapter provides the tools used in the remainder of this thesis. The statistical theory

is given which allows for an evaluation of the AGC by estimating the AGC's classification

rate. Methods for understanding the data with respect to separability issues and feature

discrimination are provided. The effects of assuming that the underlying distributions are

Gaussian may now be evaluated. Feature discrimination using the technique given by Lee and

Landgrebe is applied and extended. Also, the groundwork for using a multiresolution analysis

and discriminating wavelet features is provided. The next chapter explains the methodology

used to meet the thesis' goals.
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III. Evaluation Methodology

3.1 Introduction

The purpose of these experiments is to evaluate the impact of alignment and radar

signatures with flashes on the AGC. These tests attempt to determine whether there is a

statistically significant problem with respect to alignment. The AGC is a simple Gaussian

classifier with a couple of twists. The first twist is the alignment procedure, which is divided

into two parts. The first part is the circular centroid technique described in Chapter 2 to

"coarsely align" data. The other part is the fine alignment procedure, which is an integral part

of the final decision making process. This is because each test signature is ideally aligned

against each class template independently and then the best "match" among the templates is

declared the winner. This process is known as establishing proper correspondence between

an exemplar and template. The second twist in the AGC is to calculate the mean and variance

of the features recursively during training. After being circularly centroided, each training

signature is finely aligned against the cumulative mean template and is then added to the mean

and variance templates proportionally. This twist may have an impact on results because

irregular signatures presented to the AGC early in the training process may adversely affect

performance. One way to combat this problem is to repeat trials many times and randomize

presentation order.

Three potential problems are evident with the implementation of the AGC. One is its

ability to perform the coarse alignment. The alignment problem has been suspected as the

source of most errors in UHRR classification (34). Noise flashes can cause the centroid of an

exemplar to be far from the average centroid of others in its class. The circular centroid must

adjust the signal to within ± 18 range bins to have a chance for correct registration with its

actual class template during the fine alignment stage in testing. During AGC evaluation, this

problem is addressed by removing problem signatures (signatures that are coarsely aligned

such that the centroid is not inside the ± 18 window as required by the fine alignment process)

and running the AGC with and without these signatures.
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Another problem relates to the assumption of Gaussian pdf's. Not only does the AGC

make an important assumption about the underlying statistics of the data, but as a quadratic

classifier, it places severe conditions on the classifier because of the effective number of

features which are used. During AGC evaluation, this problem is addressed by giving the

same data sets to a non-parametric classifiers (k-NN and neural network). In this case, the

alignment problem is not addressed, only the the ability of the AGC is compared to other

classifiers.

The third potential problem rests with the data itself. When a signature is aligned poorly

by the circular centroid, is there something inconsistent in that sample with respect to other

samples of its class? This question has to do with the underlying information content of the

signatures. During AGC evaluation, this problem is addressed by quantifying the underlying

information content of the data by using a Bayes bounding experiment implemented by

Martin (33).

The last portion of the chapter explores the feature discrimination technique developed

by Lee (29). This technique seeks to find the most discriminantly relevant features. This

research explores the AGC's performance with respect to these questions with computer

resources available at AFIT. In Appendix B, the results for two alternative training schemes

are given which yield moderately better results with respect to the alignment challenge.

3.2 Data Preparation

Data is parsed into three sets: "arbitrary data," "hand-aligned data," and "pristine data."

The total number of signatures retained in each case is shown in Table 1. The criteria for

separating the data are listed below.

arbitrary data This case includes all data from the original target set.

hand-aligned data This case includes all data from the original target set. Each signature is

visually checked after the circular-centroid for proper alignment. If a signature does not

fall within the ± 18 window after coarse alignment, then it is designated as an improperly
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Table 1. Number of Signatures in Data Sets
Class [Pristine I Hand Aligned I Arbitrary

9a 986 1008 1008
aa 1006 1008 1008
f2 591 1031 1031
fa 998 1008 1008

aligned signature. Improperly aligned signatures only, referred to as "bad" signatures,

are forced to fall within the ±18 window by adjusting the position of the signal by

hand. This was accomplished with an interactive algorithm developed for WL/AARA

by Veda, Inc. When this data is submitted to the AGC for training or classification, the

circular centroid subroutine is turned off to retain the human aligned positionings of the

bad signatures.

pristine data This case eliminates all signatures designated as bad from the database. The

pristine case retains only those signatures which the CC subroutine successfully placed

within the ±-18 window. Class f2 has the greatest number of problem signatures, while

class aa has only two problem signatures.

3.3 Impact of Alignment on Classification

3.3.1 Test Criteria. For each data set case (pristine, hand-aligned, arbitrary), the

AGC is used in a four class environment. The performance metric used is a confusion matrix

and the overall probability of correct classification P,, is computed by averaging individual

class classifications (19:66). Multiple trials bound P, with 97.5% confidence intervals. As

stated earlier, these tests attempt to determine whether there is a statistically significant problem

with respect to alignment.

3.3.2 Test Methodology. As summarized in Figure 10, three cases are tested:

Pristine This case simulates a situation where there are no mis-aligned signatures (that is, all

signatures fall within the ± 18 window after the circular centroid). There are no coarse
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PRISTINE CASE

Determine Baseline Performance

Add Bad Signatures, But HAND ALIGNED CASE
Assume Coarse AlignmentI Bad Data, Good Alignment

M

D - ~ Bad Data, Bad Alignment I

, Determine AGC's Ability to Handle Alignment

Figure 10. AGC Testing Methodology (See Section 3.3.2)
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alignment problems and no problem signatures. In a sense, this removes alignment

issues from the classification problem.

Hand-Aligned This case adds the bad signatures to the problem. Usually, bad signatures are

observed to have noise flashes which cause the coarse alignment to fail (recall Figure 9).

These bad signatures do not match the overall energy characteristics of the rest of their

class, but are forced into the ± 18 window by human alignment. Thus, coarse alignment

is performed by human perception and the CC within the AGC is turned off. In this

case, there are no coarse alignment problems, but there are bad signatures. This case

tests the ability of the classifier to handle outliers within classes.

Arbitrary This case allows the AGC system (circular centroid) to perform the coarse align-

ment on all available signatures. Both coarse alignment and bad signatures affect P,.

This case tests the performance under the harshest of the alignment conditions.

Pristine vs. Arbitrary This case trains on pristine data only, but includes bad signatures in

the test set. This case tests whether arbitrary data corrupts the template being generated

to some extent.

In all of the cases, the fine alignment process remains the same.

3.3.3 Implementation. Trials are made using the hold-out method. Half the data

set is used in training and half the data set is used in testing. Matlab code randomly splits the

data into the training and testing sets for independent trials. These trials are independent in

the sense that, for each trial, training and test sets are mutually exclusive. Trial to trial, there

will be common vectors in the testing group. This fact does bias the results, because the same

test vectors may be repetitively misclassified. For this thesis, the desire was to produce some

confidence intervals on the results and the data layout was well suited to the randomization

procedure devised. Also, the statistics of the classes seem to be well represented by the data

available. The use of many Monte Carlo repetitions is designed to bound the final error rates

and reduce the impact of presentation order to the training portion of the AGC. Leave one out

results are given in Appendix B.
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The randomly generated training and test sets are given to the AGC for computation,

and Matlab code is used to interpret the output for classification. The AGC produces a matrix

of distances where each row corresponds to a test vector and each column is its distance, or

test statistic, with respect to a given class. Matlab selects the minimum value from each row

as the "winning" class assignment. In all cases, a priori probabilities are assumed to be equal.

Trials continue until statistical significance between overall P,,'s for the pristine and arbitrary

cases are established. This takes on the order of 1750 trials per case. The hand-aligned trials

were repeated the order of 750 trials. Results from the trials are averaged together to produce

final confusion matrices. All runs are completed on Sun Workstations.

3.4 Impact of Classifier Type

LNKnet implemented the non-parametric classifier comparisons. Trials were executed

with respect to a k-NN and neural network. Because alignment was not being tested, the

classifier was given signatures finely aligned with the actual class only. This biases the result

in favor of correct classification, but still gives a relative measure of classification capability

for this high dimensional data set. For comparison, runs were also made against a Gaussian

classifier (implemented on LNKnet).

3.4.1 Data Preparation. Extracting features from the AGC was accomplished by

going into the C code and writing signatures directly to a binary file just before inclusion in the

class template during training. Thus, all alignment (both coarse and fine) and preprocessing

steps are accomplished before extracting the signature from the AGC. Matlab was used to

read the file and convert it to ASCII, the required format for LNKnet.

3.4.2 Test Criteria. For these tests, the same test criteria as Section 3.3 apply.

Confusion matrices and 97.5% confidence bounds are generated.

3.4.3 Test Methodology. Test methodology is the same as above, but includes only

the arbitrary and pristine cases.
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3.4.4 Implementation. Runs are repeated in the same way as Section 3.3, with the

exception that N-fold cross validation is utilized. This test procedure divides all data into equal

subsets and then iteratively tests on one subset at a time, while training on the rest. The concept

is the same as with leave one out evaluation, but with larger test sets. In this thesis, 50-fold

cross validation is used to form confusion matrices as a measure of classification capability as

described earlier. The number of trials available for execution was limited by LNKnet. This

is because LNKnet produces massive parameter files which are directly proportional to the

size and dimensionality of the data.

For the k-NN runs, 15 nearest neighbors are used. This number was selected because

in the Bayes experiments below, 15 was generally found to be a value that produced the

best results. For the Gaussian runs, LNKnet was set up as the AGC, with class dependent,

uncorrelated covariance matrices.

The neural network runs used 192 input nodes, 25 hidden nodes in one layer, and 4

output nodes. Most of the standard settings within LNKnet were retained for the neural

network runs. This included a step size of. 1, a momentum of .6, a standard sigmoid function

in the nodes, and the square-error cost function. Random presentation order was turned "on"

and 50 epochs were used during training.

For each classifier type, equal class a prioris are assumed.

3.5 Impact of Data

This experiment is conducted according to Martin (33) and bounds the best possible

classification rates one can hope for with the data at hand. In other words, it is a measure

of the separability of the data. Martin's algorithm is designed only for two class problems.

AGC runs were accomplished for all two class combinations in the same way as Section 3.3

for comparison.

3.5.1 Data Preparation. Data was prepared as in the previous section. Like

LNKnet, Martin's code expects ASCII formatted data.
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3.5.2 Test Criteria. Martin's code produces graphs showing the error rates generated

using the L and R methods described in Chapter 2. Classification results are expected to be

relatively high if the data is separable on a class to class basis.

3.5.3 Test Methodology. Methodology followed the procedure found in Martin's

thesis (32), using only k-NN evaluation because it provides the most consistent estimates of

the Bayes error. For the k-NN, the parameter k was varied to give a range of error rates as a

function of k. Results were generated by taking the best case from the range of k allowed by

Martin's code. As mentioned earlier, k = 15 was usually the best case.

3.5.4 Implementation. Martin's code performed 10-fold cross validation during

testing and produces error rates with respect to varying the k parameter. Option 2 was used

to determine the decision threshold in the L case. The results given in the next chapter were

generated by taking the midpoint between the R and L case as the estimate of the Bayes error.

For comparison, class to class runs with the AGC itself were made using the pristine and

arbitrary cases.

3.6 Summary of AGC Methodology

The first part of this chapter describes the methodology used to evaluate the performance

of the AGC. The overall thrust of the first section is to analyze preprocessing effectiveness.

The idea is to begin with pristine data and add in one of two potential problems at a time.

The first step includes problem data (bad signatures) to see whether it is something in the

data which causes the fine alignment and/or subsequent classification to fail. The next step

adds back coarse alignment as an issue. With the arbitrary case, the machine is allowed to

do the coarse alignment. This experiment tests the effect the CC is having on the AGC. The

overall thrust of the second section of this chapter is to analyze the modality of the data: Is

classification hurt by limitations of a Gaussian quadratic discriminant? Alignment is removed

as an issue. The third section addresses the separability of the data on a class to class basis.

Results are presented in Chapter IV.
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3.7 Discriminant Analysis of the UHRR Feature Space

This portion of the thesis explores the use of Lee's algorithm for feature discrimination

with the UHRR problem. After validating the performance of the algorithm with simple

example problems given by Lee, the algorithm was applied to a number of cases of the UHRR

problem. Two of the validation examples appear in Appendix A.

All preprocessing was accomplished with Matlab code emulating the AGC algorithm,

including alignment, template construction, and the generation of test statistics. Data was

converted to Matlab formatted binary files and then classified with Matlab code. The Matlab

code was verified by testing its classification accuracy against the AGC, and was found to

perform the same for given data sets.

The results presented in Chapter 4 use 256 range bins because of the eventual extension

to wavelet analysis, but similar results were observed for 192 range bins. The algorithm

was run in the four class case for pristine data. Several two class situations were also tested

involving selected targets.

The test sequence proceeds as follows:

1. During training, save template files for use as estimates of class means and variances.

2. Classify the test data.

3. Separate correctly classified signatures into a new data set for use with the Lee algorithm.

4. Provide the Lee algorithm with results from Steps 1 and 3.

5. Generate and save the EDBFM, its eigenvectors, and its eigenvalues.

6. Reclassify the data using a specified number of features.

Lee's article clearly implies that reclassification occurs in the new, transformed "EDBFM

space" (29:397). Thus, one selects the number of features used in the new space and forms

a transformation matrix composed of the eigenvectors corresponding to the eigenvalues of

greatest magnitude. This selection process is the same as the ordering that takes place in

a KLT. For this thesis, signature vectors are row vectors and the transformation matrix's
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columns are filled with eigenvectors. To generate sample vectors in the reduced feature space,

one post-multiplies a matrix of UJHRR signatures by the transformation matrix. This post-

multiplication conveniently executes the inner products required to perform the projections

onto the new basis set.

Transformed training and test sets are used during "re-'classification. Both correctly

classified sample points and incorrectly classified points are used during final testing. Dom-

inant eigenvectors are added to the transformation matrix over several runs to get a feel for

how many features are required to maintain the original classification rate.

At this point, an important caveat to the Lee algorithm becomes evident. When pro-

jecting into the EDBFM space, one is using linear combinations of all the original features.

Thus, it seems, there is no advantage to reducing the overall dimensionality of the problem.

One may infer from Lee's article that the dominant eigenvectors correspond to the dominant

features (29:396). Also, one may infer that one is reducing the original feature space, but the

technique is actually performing a projection into a space with fewer features (dimensions)

(29:389,391).

An attempt was made to interpret the EDBFM's dominant eigenvectors in order to infer

where the discriminantly relevant information lies in the original space. Referring to the 3-

dimensional problem in Appendix A, one sees that the primary eigenvector's most significant

components correspond to the discriminantly relevant features in the original space (i.e. the

first two dimensions). This interpretation has an intuitive appeal because in performing an

inner product, those components that are "most important" to the transformation will be those

components that are weighted heaviest in the inner product. For example, in the case of

projecting a two dimensional vector onto the x-axis, the y-component of the vector plays no

role in the projection. In more complicated situations, where there are non-zero elements of

the projection operator being ignored, one is throwing away some information about how the

transformation occurs.
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The most dominant eigenvectors and the least significant eigenvectors tend to "point

to" very different feature elements. Again, these eigenvectors are ordered with respect to the

magnitude of the corresponding eigenvalue. Figure 11 shows the disparity.

L..et Sipnficnt Elgenve- d Mo.s SIgnIfkcAnt Elgenvecor

0.3- 0.3-

0.25 0.25

0.15 015

0.1 0.1

0.05 0.00

0 50 100 150 200 250 0 50 100 150 200 250
EleMeI EIeent

Figure 11. Comparing Eigenvectors: 4 Class, Pristine Data

The key point in this analysis, however, is that the dominant eigenvectors may provide

information about the discrimination power of features in the original space. In Figure 11,

features 80-90, 105-115, and 150-160 would be interpreted as important to discrimination.

This idea is tested by using dominant eigenvectors to choose features in the original space

and then re-classifying. This technique is successfully applied in Kocur's work on breast

cancer detection (25). As above, the most significant eigenvectors direct one's attention to

specific features. Her choices for relevant features, based on anlysis of the EDBFM agree

with Steppe's analysis of feature saliency with respect to neural networks (43).

Features are selected by averaging the ten most significant eigenvectors and choosing the

elements with significant magnitudes as corresponding to relevant features. The selection of

ten eigenvectors had the best classification among the options of choosing the best eigenvector

only or averaging the five most significant features. Various numbers of features are used and

tabulated.
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3.8 Summary

After describing methodology for the underlying pattern recognition problem, this

portion of the thesis outlines a feature discrimination technique for the UHRR radar problem.

The advantage of Lee's approach is to base feature saliency on classification error instead of

reconstruction error. Lee finds a rotated space in which a reduced number of features are

required to attain about the same classification rate as the original space. The point addressed

in this thesis is that one may attain true feature reduction by interpreting the eigenvectors of

the EDBFM. Results comparing the performance of the feature discrimination approaches are

given in Chapter 4.
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IV Results

4.1 Introduction

This chapter presents and summarizes results from the previous chapter. Results are

presented in the form of confusion matrices for the full, four-class comparisons. 97.5%

confidence intervals are given for all estimates of the classification rates. For two-class

comparisons, results are summarized in aggregated tables.

4.2 Impact of Alignment

Table 2 shows overall classification performance and the next three tables show the

interclass details. Several observations and conclusions may be made from each of the tables.

Overall, Table 2 shows there is a statistically significant alignment problem in the four class

case. The average Pet's presented here were observed to be stable and more trials (on the

order of thousands) would show statistical separation even for the hand aligned case.

Table 2. AGC: Overall Poe
[PCase P 97.5 % Confidence

(%) Interval (%)

Pristine 90.16 ±1.31
Hand Aligned 88.66 ±2.76

Arbitrary 87.14 ±1.59
Pristine vs. 82.60 ±3.32
Arbitrary

The results presented in this section show that the "bad" data, represented by the hand-

aligned row, affects classification to some extent and the inability of the circular centroid to

coarsely align the bad data affects classification to an approximately equal extent. The two

factors combine to yield a three percent degradation in performance in the overall, 4-class

case. The impact of alignment and data problems, however, are class variant as shown by the

individual rows of the confusion matrices.
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Recalling Table 1, the AGC has the most difficulty with class f2 with respect to alignment

because it had the highest percentage of bad signatures. As shown in Tables 3 through 6,

the AGC's ability to classify members of f2 degrades by ten percent from the pristine case

to the arbitrary case. Similarly, class fa degrades by about four percent. The performance

of the other two classes remains relatively constant across the three cases, with 9a always

performing poorly and aa always performing rather well.

This result implies that the alignment problem can be extremely data dependent. The

fact that class 9a has poor performance across all three cases says that the class may have more

than one cluster center in the feature space. Here, the unimodal assumption of the Gaussian

classifier hurts performance. The fact that class aa performs well across all three cases is

because there are very few samples characterized as bad and that it is well separated from

the other classes. Measures like the Fisher discriminant would probably work well with this

class, and perhaps the f2 and fa since they give very good results. However, the issue that will

always play a role in any such analysis is how one has decided to make alignment decisions.

Classes f2 and fa have the most bad signatures the classification rates degrade sharply, as

would be expected.

In the case of training on pristine data and testing on arbitrary data, note that the AGC

appears capable of "learning" the misalignments induced by bad data. This is shown by

comparing Table 6 with the other tables.

Table 3. AGC: Pristine Data
Actual Assigned Class PCC 97.5 % Confidence
Class 9a aa f2 fa (%) Interval (%)

9a 374.03 49.58 1.55 67.84 75.87 ±1.89
aa .572 499.11 0.00 3.32 99.03 ±0.43
f2 .038 2.96 285.32 6.68 96.72 ±0.77
fa 8.92 30.49 3.27 456.32 91.44 ±1.67
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Table 4. AGC: Hand Aligned Data
Actual Assigned Class Pcc 97.5 % Confidence

Class 9a aa f2 fa (%) Interval (%)
9a 372.76 58.74 1.56 70.94 73.96 ±3.82
aa 2.25 495.8 0.01 5.94 98.72 ±0.01
f2 4.46 12.47 484.78 13.29 94.13 ±2.04
fa 14.97 43.46 3.56 442.01 87.70 ±2.86

Table 5. AGC: Arbitrary Data
Actual Assigned Class Pec 97.5 % Confidence
Class 9a aa f2 fa (%) Interval (%)

9a 384.54 54.01 1.35 64.10 76.30 ±2.02
aa 7.28 490.20 0.00 6.52 97.26 ±0.78
f2 10.70 27.82 440.14 36.34 85.46 ±1.68
fa 8.62 41.39 2.55 451.43 89.57 ±1.45

Table 6. AGC: Train Pristine/Test Arbitrary
Actual Assigned Class Pc, 97.5 % Confidence
Class 9a aa f2 fa (%) Interval (%)

9a 370.76 74.68 1.68 69.87 71.71 ±3.95
aa 1.75 498.74 0.40 5.51 98.57 ±1.04
f2 43.63 14.41 541.61 137.36 73.49 ±3.87
fa 8.73 34.04 3.41 464.83 90.96 ±2.51
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4.3 Impact of Classifier Type

The results in this section show that some advantage may be gained by using non-

parametric techniques, although the improvement is not particularly impressive. Results are

given in Table 7 for both the arbitrary and pristine cases. Note that once the alignment problem

is "solved," results for the neural network technique converges, while theGaussian classifier

and k-NN still show the influence of the bad data points. Because just fifty repetitions are

accomplished through the cross-validation process, the 97.5% confidence interval is on the

order of ±5 % and results shown do not have statistical separation. It seems that the Gaussian

classifier is adequately modelling the data. There is a difference in values, however.

Table 7. Comparison of Classifiers
Classifier Pristine Case (P,,(%)) Arbitrary Case (P,,(%))

k-NN 96.48 94.85
Neural Network 96.57 96.55

Gaussian 95.75 92.74

4.4 Impact of Data

In this section, results from the Bayes bounding experiments (Table 8) and 2-class AGC

runs (Table 9) are presented and compared. Dashes indicate that the k-NN "learned" the data.

In other words, it perfectly reclassified the data for all cross validation runs and all values of

k. The confidence intervals on Bayes estimates are given by Martin to be 2.26 % for a 97.5 %

level of confidence.

Table 8. Bayes Bound Estimates (Option 2): Class by Class
Pristine Case Hand Aligned Case Arbitrary Case

Classes PC,(%) PCC(%_) PC
9a-aa 99.55 99.10 98.50
9a-f2 - 99.72 99.65
9a-fa 95.25 94.20 94.50
aa-f2 - 99.80 99.99

aa-fa - 99.05 99.10
f2-fa 99.94 - -
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Table 9. AGC: Class by Class
Pristine Case Hand Aligned Case Arbitrary Case

Classes P.c(%) Conf(%) Peo(%) Conf(%) P,,(%) Conf(%)
9a-aa 94.01 ±2.06 93.23 ±2.11 92.93 ±2.25
9a-f2 98.32 ±1.13 97.42 ±1.38 94.31 ±2.03
9a-fa 90.85 ±2.22 88.81 ±2.76 91.30 ±2.47
aa-f2 97.96 ±1.16 98.12 ±1.18 95.56 ±1.81
aa--fa 96.44 ±1.62 94.74 ±1.96 94.78 ±1.95
f2--fa 97.98 ±1.23 97.09 ±1.46 94.10 ±2.06

Several observations may be made from these results. First, the data in a class to class

sense appears to be nicely separable. Only the error rates of the 9a - fa combination seems

to overlap in the two class feature space. Also note f2 seems to show adequate separation in

each two class situation. The high performance seen here is made in light of the fact that the

alignment problem is "solved," as described in the last chapter.

One may compare Table 9 with the tables from Section 4.2 to see how performance

jumps in this simpler, two-class problem. But even this result is affected by the alignment

issue, even though alignment plays its normal role in the results of Table 9. In the two class

situations, there is only one class to be improperly aligned against. Note how class f2 is not

confused with other classes to the same extent as in the four class case, although it is still the

second worst performer. Class fa still performs relatively poorly. Also note that alignment is

the issue that is intertwined in this specific case because it is the class that the circular centroid

seems to struggle with the most.

4.5 Feature Discrimination

Feature discrimination using the EDBFM was performed in the transformed, "EDBFM"

space, as well as the original space.

4.5.1 Discrimination in the Transformed Space. The results were generated by

utilizing subsets of eigenvectors sorted by magnitude of eigenvalue. These subsets form the
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columns of the transformation matrix and are applied to the data as described in the last

chapter.

Figure 12 shows results for a two class problem and four class problem. This diagram

shows excellent classification rates using just five to ten percent of the available features in the

transformed space. The peaking effect seen in the four class case is troubling because all that

has been done is a linear transformation. An explanation for the roll off may be that the the

transformation is inadequately represented because of the assumption of uncorrelated featres

to begin with. In other words, the data is inadequately represented by that assumption and

more data is required to properly calculate the full covariance matrix. In the end, it appears that

the new feature space is vulnerable to the curse of dimensionality issue discussed in Chapter

2.
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Figure 12. Reclassification Curves, Transformed Data

4.5.2 Discrimination in the Original Space. This section demonstrates the capa-

bility to reclassify in the original space by interpreting the most significant eigenvectors of

the EDBFM. The average of the ten most significant eigenvectors is shown in Figure 13. As

described in Chapter 3, the elements of the eigenvector selected first are those with the highest
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magnitude. These elements indicate the features to focus on during reclassification. In the two

class problem, it appears that different areas along the signature provide important information

for discrimination. One would have to know the specifics of the aircraft under test and the test

environment to make in-depth inferences. In both cases the eigenvectors represent an average

representation of the significant features with respect to each two class situation. Thus, it is

hard to interpret specific areas of interest. However, it seems clear that in the four class case,

leading edge information tends to dominate the decision. In the two class case, there are many

different areas that provide discriminantly relevant information. Note that the eigenvectors

emphasize very different sets of features in each problem. This is not surprising because the

calculation of the EDBFM is very data dependent.
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Figure 13. Average of Ten Most Significant Eigenvectors

Figure 14 shows the resulting reclassification rates. Once again, results are quite good.

In fact, when using less than half the features, reclassifying in the original space out performs

reclassifying in the transformed space. Reclassifying in the transformed space tends to peak

at a higher level than reclassifying in the original space, however. Once again, in the four

class environment there is a peaking and roll off of performance as more and more features are
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added. In this case, features are treated as uncorrelated (via the main-diagonal-only covariance

matrix), so the roll off is not as pronounced. Recall from Chapter 2 that this effect is predicted

by Chandrasekaran (5) and has to do with the curse of dimensionality.
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Figure 14. Reclassification Curve, 4-Class, Pristine Data: Original Space

4.6 Summary

This chapter shows all the results which accomplish the most of the goals of thesis: to

form an estimate of the AGC's performance with respect to alignment and to perform feature

saliency analyses. Results show that alignment is the critical issue in the UHRR radar problem.

Classification rates drop over 11% for the f2 class. In the overall classification rate, though,

degradation is on the order of 3%.

Comparison of parametric and non-parametric classifiers shows that there is some, but

not a major, price to be paid with the assumption of Gaussian distributions. Classification

rates hover around 95% and are not statistically significant at a 97.5% level of confidence.

Despite data that is well separated (as indicated by classification rates above 99% during

the Bayes bounding experiments), the ability to properly declare a starting point for the target
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within a radar signature is critical to the analysis. The approach used by the AGC intertwines

the alignment judgment with the final classification judgment when the issues may be more

properly handled separately. The starting point of a target in a noisy signal should be unrelated

to its actual class. Thus, the decision of where the signal begins and what the signal is should

also be distinct.

Furthermore, this chapter implements and applies Lee's analysis of the EDBFM to the

UHRR radar problem. His analysis is extended in this thesis by interpreting the eigenvectors

of the EDBFM to identify relevant features in the original feature space. True feature reduction

in the original feature space is attained with results meeting or exceeding performance with

the full set of features. This can be attained using as little as 5% of the original features (see

Figure 14).

In this problem, classification in the original space by interpreting the eigenvectors

of the EDBFM outperforms Lee's original method for small feature sets. As more features

are added, the Lee transformation method peaks above the method presented in this thesis.

However, because features become correlated, performance is hurt as the number of features

rises past 225. Both methods achieve peak performance which meet or exceed classification in

the original space with a full set of features. Classification of data in the original space shows

excellent results here and has been used successfully with other UHRR class combinations and

mammography data (25). Chapter 5 extends the use of Lee's algorithm to selecting appropriate

wavelet scales with respect to a two class UHRR radar problem.
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V Utilizing Feature Discrimination and Wavelet Transformations

5.1 Introduction

The purpose of this chapter is to use a multiresolution analysis (MRA) of UHRR data

and demonstrate that relevant scales may be determined from the EDBFM. Choosing wavelet

bands based on discrimination power is shown to have an advantage in classification over

choosing wavelet bands with respect to reconstruction error for this data.

5.2 Implementation

5.2.1 Data. The data demonstrating the results are identical to the 2 class problem

in Chapter 4, Section 4.5: pristine data, classes M2 and fa. 256-element, raw feature vectors

are used because the wavelet code used works best with signals which are powers of two.

5.2.2 Alignment Issues. As mentioned in Chapter 2, implementing a wavelet-

based extraction and classification scheme requires special attention to properly aligning data

before decomposing them. Classification of UHRR signatures failed when the following

process excluded the alignment steps. In this case, the circular centroid is applied only to the

original signal to solve the wrap-around problem. Coarse alignment is irrelevant because full

correlations are used to align the wavelet features. The overall scheme is shown in Figure 15.

To accomplish this, wavelet extraction was performed in a two step process.

First, Suzuki's algorithm is applied to form shift-invariant wavelet representations.

Daubechies 20-tap wavelets are used. The problem of edge effects is handled by extending

the signal on each end by the average of the nearest 50 bins. In other words, instead of zero

padding or periodizing, an average of the first 50 range bins is taken and concatenated to the

"front" of the signal. Likewise, an average of the last 50 bins is taken and concatenated to the

"tail" of the signal. The averaging was found necessary because the signatures are not nearly

equal at their ends and periodic extensions of the signal would introduce discontinuities into
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the analysis. Also, signal extension, as opposed to periodization, is more compatible with

Suzuki's code.

Equal numbers of points are added to the beginning and end of the signal to form a

signal of length 1024. Suzuki's code assumes zero padding beyond this range. Thus, there

will be more pronounced edge effects where the elongated signal goes to zero. The linear

convolution process causes edge effects to creep slowly toward the center of the elongated

signal with successive filtering. But these edge effects are removed by truncating the signal

back to length 256.

Each vector is fully decomposed into eight scales. These resulting vectors are all 256

elements long and contain redundant information about the signal. However, they also include

information that can be used to align exemplars. During the correlation process, each level of

decomposition is circularly correlated with the corresponding level of decomposition in the

class template. The best match is stored in a feature matrix which ends up being 16 by 256

elements holding 8 approximation levels and 8 detail levels.

5.2.3 Formation of Wavelet Feature Vectors. Each level of decomposition in this

wavelet feature matrix is then downsampled to remove terms containing redundant informa-

tion. The first level of decomposition is downsampled by 2, the second level by 4, etc. This is

done because Suzuki's code, essentially, has interleaved the wavelet decompositions together

(46). All of the downsampled detail coefficients and the eighth level approximation coefficient

are retained. The results from this downsampling process are stored in a final, 256 element

feature vector. This vector contains all of the downsampled detail signals and the single,

lowest level, approximation coefficient. Figure 16 shows the organization of a wavelet feature

vector.

These wavelet features are used for training and testing in a Gaussian classifier, as in the

rest of the thesis. During training, the wavelet exemplar is added to a recursively calculated

template. During testing, a 256-element wavelet exemplar is aligned against each class

template before declaring an assigned class. The Lee analysis is applied using the template
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Figure 16. Correspondence of Feature Vector to Wavelet Scales

(containing mean and variance information for each element of the wavelet feature vector)

as estimates for the Gaussian classifier. Correctly classified vectors are used to generate the

EDBFM and its eigenvectors.

5.2.4 Examination of the Energy Map. To extract the full energy map described by

Chang, the wavelet packet recursion is applied on wavelet feature vectors from the training

set. For this analysis, code by Myers (35) is used, again with Daubechies 20 tap filters. As

mentioned in Chapter 2, this is a recursive filtering process applied to all approximations

and all details. In this case, edge effects are handled by mirror-extending the signal being

decomposed and performing circular convolutions. The 11 norm of each leaf in the tree is

stored in the energy map and averaged to form the template.

5.3 Evaluation of Significant Wavelet Bands

Wavelet bands are rank ordered separately using the energy map information and the

EDBFM information. Classification results using coefficients prioritized by each method are

generated.
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According to Chang, significant wavelet bands at a given level of decomposition in

the energy map are those with highest calculated energy. If this energy surpasses a certain

threshold, as a percentage of the highest energy band at that level, then that detail is relevant to

the reconstruction of the signal. The idea is applied in this thesis by noting that at each scale,

the approximation coefficients had the most significant 11 norm. This is not surprising because

that is where the DC information is. Also, at each level, the detail coefficients associated with

the conventional wavelet decomposition (those details not derived as a part of the wavelet

packet recursion), had the second most significant bands. The energy of the ith approximation

or detail level is designated by Eai or Edi, respectively. Edi is compared to Eai and relative

percentages are recorded to rank order the significance of the wavelet coefficients.

Additionally, energy values are compared across scales by normalizing the 11 measure

by a factor of vx/ for each additional level of decomposition. This is done because Myers'

code does not include the inverse of that term in his filtering routine. As shown in Table 10,

the ranking methods agree. Note that the single approximation coefficient is actually ranked

more importantly than all the detail levels with an energy measure of .7433.

Table 10. Wavelet Selection: Entropy
Detail Edj/Eaz Rank Normalized T Rank
Level Order 11 Energy Order

1 .0782 7 .0828 7
2 .1100 3 .1165 3
3 .0964 5 .1022 5
4 .0999 4 .1057 4
5 .0798 6 .0843 6
6 .0693 8 .0719 8
7 .1700 2 .1498 2
8 .2500 1 .1857 1

Alternatively, discriminantly relevant features according to the EDBFM are predicted.

The EDBFM's eigenvectors will be interpreted to highlight those wavelet coefficients that are

discriminantly relevant. Since the interpretation of eigenvectors points to individual features,

instead of groups of features, some measure must be applied to select relevant scales. The
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criterion is to take the average energies of the portions of the eigenvectors that correspond

to each wavelet band. The most significant eigenvector is used for interpretation. The

correspondence of its elements to the wavelet bands is shown in Figure 17. The prioritization

results are shown in Table 11 and are compared with the results from the entropy-based

analysis. The methods choose different rankings for the scales.
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Figure 17. Correspondence of Eigenvector to Wavelet Bands

Table 11. Wavelet Selection: EDBFM Eigenvector Interpretation
Detail EDBFM Eigenvector EDBFM Entropy
Level Analysis Rank Order Rank Order

1 .0409 5 7
2 .0284 7 3
3 .0383 6 5
4 .0450 4 4
5 .1396 1 6
6 .1231 2 8
7 .0694 3 2
8 .0043 8 1
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5.4 Classification Using Specified Wavelet Scales

The test sets containing wavelet features are now submitted for reclassification as in the

case of reclassification in the original space of Chapter 4. Results are generated by utilizing

only those scales indicated by Table 11 and are shown in Tables 12 and 13. In the tables, "Dx"

means the detail level x and "Ax" means the approximation level x.

Table 12. Wavelet Classification Results: Entropy
Levels Number of Classification

Included Features J Accuracy (%)

A8,D8 2 70.91
A8,D8,D7 4 91.44

A8,D8,D7,D2 68 92.57
A8,D8,D7,D2,D4 84 92.82

A8,D8,D7,D2,D4,D3 116 93.07
A8,D8,D7,D2,D4,D3,D1 244 92.44

A8,D8,D7,D2,D4,D3,D1,D5 252 92.56
A8,D8,D7,D2,D4,D3,D 1,D5,D6 256 92.56

Table 13. Wavelet Classification Results: EDBFM Eigenvector Interpretation
Levels Number of Classification

Included Features Accuracy (%)

D5 8 94.33
D5,D6 12 94.08

D5,D6,D7 14 93.95
D5,D6,D7,D4 30 94.45

D5,D6,D7,D4,D1 158 93.20
D5,D6,D7,D4,D1,D3 190 92.56

D5,D6,D7,D4,D1,D3,D2 254 92.56
D5,D6,D7,D4,D1,D3,D2,D8,A8 256 92.56

The EDBFM shows maximum performance with four detail scales and 30 feature

elements. In fact, using just one scale, D5, one can out perform the classification using the

entire feature set. The results given in the tables show that definite advantage is gained by

transforming data specifically with respect to classification error.
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5.5 Summary

This chapter has shown that relevant wavelet scales with respect to classification may

be chosen using decision boundary analysis. These results are compared against Chang's

method which uses an entropy measure to determine relevant wavelet scales. The entropy

measure technique has recently been updated by Coifman to be geared towards classification

error instead of reconstruction error (9). Even though both ranking methods used here produce

classification rates that peak above 90%, these results show the disparity between feature dis-

crimination techniques. Also, the applicability of the interpretation of EDBFM eigenvectors

to feature reduction in the original (non-transformed) space is verified. Eigenvector inter-

pretation has selected one wavelet scale containing eight feature elements that produces 94%

accuracy. This accuracy is comparable to, but not as good as, the result obtained in Chapter IV,

where original data produced a classification rate near 97% with only eight features.
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VI. Conclusion

6.1 Introduction

For UJHRR radar, the underlying problem of aligning exemplars to templates for training

and classification is a formidable challenge. In the face of this challenge, this research had a

two-fold purpose. The initial portion of the thesis examined the AGC with respect to properly

aligning exemplars to class templates. A baseline of the AGC's performance was sought to

assess the impact of the alignment problem. The second line of exploration looked at feature

discrimination in the context of the UHRR radar problem. This included applying alternative

feature selection techniques and the use of an MRA to find discriminantly relevant features

and thus, scales.

The techniques used to accomplish these goals come from several broad theoretical

areas. The first goal relies on the fundamental theories from statistical pattern recognition.

The second goal relies on insights from linear algebra and uses wavelets in an MRA of the

data. The fundamentals and literature search associated are presented in Chapter II. Chapter II

provides theory for each of the methods applied in Chapter III and the MRA used in Chapter

V. Chapter IV presents the results for AGC baselining, including alignment analysis, classifier

analysis and data analysis. Also, feature selection with respect to the decision boundary is

developed. The selection algorithm is extended by suggesting a method for using features in

the original space that does not require linear combinations of the features. The new method

selects specific features in the original space that are discriminantly relevant. Chapter V

applies similar feature selection analysis to choosing relevant wavelet scales.

6.2 Summary of Key Results

6.2.1 AGC Baseline. An analysis of the AGC training and testing algorithms shows

how UHRR radar signatures are processed and classified. It is shown that final alignment

and classification occur at the same time in the AGC. Thus, essentially, the same information
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is being used to make both assessments about a data signature. This analysis appears in

Section 2.5.

The four class UHRR radar problem is rigorously analyzed. The results show that align-

ment has a statistically significant impact on the AGC's ability to classify data (Section 4.2).

Because alignment is directly associated with the statistical decision for class membership,

the alignment issue will play a role in any classifier applied in the same way. Independent

of alignment, excellent classification rates above 95% are produced with Gaussian and non-

parametric approaches (Section 4.3). The data itself is shown to be reasonably separable,

independent of the alignment issue, because the Bayes bounding analysis gives classification

rates in the 9 8 th percentile for all two class combinations (Section 4.4).

6.2.2 Feature Discrimination. The feature selection technique given by Lee

and Landgrebe is applied successfully to two UHRR radar situations and results achieve

classification rates on the order of 90% for substantially reduced feature combinations (Section

4.5.1). However, the roll-off in the the four class situation highlights that the new feature set

is a linear combination of the original features. This roll-off also demonstrates that redundant

features can detract from a classifier's performance. The linear dependence problem is solved

and a technique is demonstrated which truly reduces the number of features required for

classification with rates that meet or exceed classification with a full feature set (Section

4.5.2). It is shown that as fewer than 5% of the features in the original feature space may be

used to attain classification rates of over 95% in the two class case, and nearly 90% in the four

class case. This new technique interprets the orientation of the eigenvectors to deduce which

feature elements are most relevant to the classification problem (Section 3.7).

6.2.3 Selection of Relevant Scales in an MRA. The new feature selection technique

is applied to an MRA and successfully selects the discriminantly relevant scales to produce

classification rates on the order of those attained using the raw UHRR radar data. For limited

feature sets, it is shown that its performance exceeds that of an entropy based measure of

feature significance.
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6.3 Conclusions

The results of this thesis imply the following:

1. Alignment plays a critical role in the approach of the AGC towards the UHRR radar

problem. The AGC approach inextricably intertwines the alignment process and the

classification decision making process. Independent of alignment, UHRR radar data is

separable on the order of 95% classification rates, with or without the assumption of

Gaussian distributions. The starting point of a signal should be found independent of

its class to improve performance of the AGC.

2. For UHRR radar data, certain portions of an aircraft are more discriminantly relevant

than others. Decision boundary analysis reveals relevant features can vary from problem

to problem. The eigenvector interpretation technique can be used to highlight salient

airplane characteristics between classes. Further research applying the techniques in

this thesis to various combinations of classes and data sets is required.

3. Wavelet analysis shows promise for discriminating UHRR radar signatures based on

scale information. Classification rates above 90% are comparable to classification in

which the raw data is used. Also, scale analysis is directly related to the properties

of the target. Extension of the feature selection technique developed in this thesis to

full wavelet packet bases offers great potential. Shift invariant wavelet bases may be

especially suitable to the specific UHRR radar problem.

These conclusions show that this thesis meets the objectives laid out in Section 1.5.

Exciting implications for feature selection based on the orientation of the decision boundary

are applied and hold promise for a wide variety of pattern recognition problems. The problem

analyzed here is made more difficult by its high dimensionality and alignment issues. Appli-

cation to other, more refined problems will give more insights into the EDBFM techniques

presented and may yield a generalizable theory for reducing the dimensionality of feature

spaces.
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Appendix A. Demonstration of Discrimination with the EDBFM

This appendix provides two sample problems which show the implementation of Lee's

algorithm with respect to feature discrimination. Each of these cases is a two class problem.

The vectors given as bases for the transformed, EDBFM space, are off by 180 degrees from

Lee's results, but this is due only to the relative directional comparisons between classes. The

Matlab code producing the randomized data and results is given in Appendix C.

A.1 Sample Problem 1: 2 Dimensions

The data in this example have the following statistics, where the means are represented

by Mi and covariances are represented by Ei.

mi =

M2 =

I ="2 = 1.00 0.50 1
0.50 1.00 J

This data is distributed as two ellipses and are shown in Figure 18. The EDBFM is calculated

by taking the outer product of normal vectors at discrete points along the decision boundary.

Normal vectors are found by finding the intersection of the directed vector connecting

two data points and the equation for the decision boundary. One cycles through each data

point in each class, using only corrected classified samples. The first two iterations of this

process are shown in Figure 19. The number of circles in the diagram are reduced by the

chi-squared test. The dashed line represents the equation for the decision boundary. Again,

as indicated in the text of the thesis, the outer products of all the normal vectors are averaged

to produce the EDBFM. Eigenvalues and eigenvectors of the EDBFM are then taken to yield
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information for the transformation and feature reduction. In this case the results are:

E D B F M .25 - .25EDBFM = [ ~

-. 25 .25

-. 7071 -. 7071 J
.7071 -. 7071

[ .5000 .0000 1

.0000 -. 0000 j

where 4 holds the eigenvectors in its columns and A holds the associated eigenvalues along

its main diagonal. In Figure 20, one may see the directions of relevance by visualizing

the eigenvectors given in the (D matrix onto the graph. Figure 20 shows how the decision

boundary is ultimately estimated by connecting data points and finding the intersection with

the boundary equation.
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Figure 20. Estimated Decision Boundary
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A.2 Sample Problem 2: 3 Dimensions

This section shows the algorithm work in a three dimensional situation. Plots show the

xy-plane only, so data has been projected onto the paper. Note that this is a convenient analogy

with what happens during the EDBFM transformations. The third dimension is coming out of

the page, but is irrelevent to classification.

The statisitics for the data are as follows:

0

M11 0

0

0

M2  0

0

3.00 0.00 0.00

Ei 0.00 3.00 0.00

0.00 0.00 1.00

1.00 0.00 0.00
E2= 0.00 1.00 0.00

0.00 0.00 1.00

In two dimensions, the data looks as shown in Figure 21. The other two figures show

information in the same way as the previous sample problem.

The resulting computations yield:

.2272 -. 0323 .0000

EDBFM - -. 0323 .2728 .0000

.0000 .0000 .0000
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.7978 -?.6030 .0000

-.6030 -. 7978 .0000

.0000 .0000 1.0000

.2854 .0000 .0000

A = .0000 .2146 .0000

.0000 .0000 .0000

In this case it is easy to see that two of the dimensions are required for discrimination in the

original space or in the transformed space. This sample problem shows that higher amplitude

elements of the significant eigenvectors "point to" the key dimensions in the original space,

i.e. the first two elements are "high" relative to the third element.
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Appendix B. Alternative Training Methods for the AGC

This appendix provides two alternative training methods which show how classification

rates may be improved.

B.1 Recursive Coarse Alignment of Template

B.].1 Introduction. In the calculation of a class template during training, exemplars

are finely aligned to the cumulative template and then added into the template. This fine

alignment shifts the current exemplar away from its true power centroid, as calculated by the

coarse alignment routine. When this off-centroided signature is included in the template, the

resultant class template no longer has a power centroid located at the center bin. At the end of

the training process, usually involving five hundred or more training signatures, the resultant

power centroid of the mean template was found to be 8 to 18 bins away from its center bin.

It was conjectured that this offset is enough to prevent some in-class samples from being

properly aligned because the centroid of the mean was no longer centered. This "centroid

drift" problem was corrected by recursively circularly centroiding the mean template after

each current exemplar was added in. The C code of the AGC was modified to accomplish this

goal.

B.1.2 Results. Results are presented in the following tables for the three cases

indicated. Results were generated by using the same methodology given in Chapter 3.

Comparisons with the other AGC runs in Chapter 4 are made in the last section of this

appendix.

B.2 Full Correlations

B.2.1 Introduction. As was described in Chapter 2, correlations are restricted to

shifts of ±18 bins during training. (During testing, this limited shift range helped prevent
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Table 14. AGC: Pristine Data, Recursive Alignment
Actual Assigned Class P, 95 % Confidence
Class 9a aa f2 fa (%) Interval

9a 379.80 50.03 1.46 61.70 77.03 ±1.91
aa 1.55 -500.10 0.00 -2.34 99.22 -±0.39

f2 0.55 11.35 277.87 5.21 94.19 ±1.10
fa 8.11 30.91 3.72 456.24 91.43 +1.67

Table 15. AGC: Arbitrary Data, Recursive Alignment
Actual Assigned Class fa P, 95 % Confidence
Class 9a aa f2 fa (%) Interval

9a 383.47 55.93 1.15 63.43 76.08 ±2.15
aa 2.22 498.50 0.00 3.27 98.91 ±0.53
f2 1.31 21.16 471.62 20.90 91.57 ±1.40
fa 7.99 31.21 2.34 462.47 91.76 ±1.39

Table 16. AGC: Train Pristine, Test Arbitrary, Recursive Alignment
Actual Assigned Class P,, 95 % Confidence
Class 9a aa f2 fa (%) Interval

9a 379.90 74.01 1.44 61.64 73.48 ±2.05
aa 2.60 500.07 0.00 3.33 98.82 ±0.49
f2 9.41 19.87 641.49 66.22 87.04 ±1.56
fa 8.24 34.92 4.42 463.43 90.68 ±1.54
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interclass confusion). This experiment allows for full correlations during fine alignment in

the training process.

B.2.2 Results. Results are presented in the following tables for the three cases

indicated. Results were generated by using the same methodology given in Chapter 3.

Comparisons with the other AGC runs in Chapter 4 are made in the last section of this

appendix.

Table 17. AGC: Pristine Data, Fully Correlated Alignment
Actual Assigned Class P,, 95 % Confidence
Class 9a aa f2 fa (%) Interval

9a 380.52 50.21 0.87 61.40 77.19 ±1.92
aa 1.57 500.11 0.00 2.32 99.22 ±0.40
f2 .818 11.47 277.05 5.65 93.91 ±1.09
fa 8.29 31.27 2.62 456.81 91.55 ±1.37

Table 18. AGC: Arbitrary Data, Fully Correlated Alignment
Actual Assigned Class P, 95 % Confidence
Class 9a aa f2 fa (%) Interval

9a 386.70 53.658 0.55 63.58 76.73 ±2.11
aa 2.16 498.63 0.00 3.20 98.93 ±0.51
f2 1.49 21.41 466.89 25.20 90.66 ±1.45
fa 8.07 31.26 1.61 463.06 91.87 ±1.52

B.3 Leave One Out Results

Leave one out results were generated for a single ordering of the data. That is, the order

of presentation to the training algorithm remained the same throughout. These results are

consistent with the results attained in the overall runs. The original AGC technique (without

the recursive alignment or full correlation options) was used in the pristine and arbitrary cases.

The pristine case resulted in a 92.29% classification rate and the arbitrary case resulted in a

89.45% classification rate. As predicted by Devijver, the hold out runs done earlier in the

thesis provide pessimistic estimates of the error rates. They predict higher rates than would be
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expected. Part of this is due to the problem of using test sets with some common test vectors

over the trials.

B.4 Summary

This section compares results presented in this appendix with the original runs. The

"mixed" case in Table 19 refers to training on pristine data and testing on arbitrary data. See

Chapter 3 for full definitions and methodology.

Some observations are worth pointing out. First, there is a general improvement in

performance with respect to the arbitrary data. In the mixed case, there is a definite jump in

the classification rate, showing that the previous inability to learn the alignment problems is

corrected. Third, relative class performance generally remains the same except that the full

correlation runs associated with class M2 show marked improvement.

Table 19. Comparison of Results

Case P1. 97.5 % Confidence
(%) Interval (%)

Pristine (AGC) 90.16 T ±1.31
Arbitrary (AGC) 87.13 ±1.59

Pristine (Recursive) 90.12 ±1.35

Arbitrary (Recursive) 89.59 ±-1.54
Pristine (Full Correlation) 90.14 ±-1.37
Arbitrary (Full Correlation) 89.56 ±-1.53
Mixed (AGC) 82.60 ±3.32

Mixed (Recursive) 87.40 4-1.54
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Appendix C. Computer Code

This appendix provides Matlab code which may be used to implement Lee's EDBFM

technique in a 2 and 4 class problem.

C.1 Sample Problem Code

This section contains code to produce the sample problems found in Appendix A. It

should run without modification. All plot commands have been removed.
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%This program demaonstrates the Lee and tandgrebe aigorithmn,
% as presented in their article.
clear

% Set Environment parameters

%choose number of samples per class
numusigs - 100;

% Choose which sanpie problem to run
option - 3

Set Statistics fur each option
if option--i;
dimen-2;
rand(lseed' 0);
rat -rsndn(nunsigo,dimen);
rand('seed',2);
rc2 -rsndn(n unsigs,diaen);

m1 - [-i W);
m2 - [1 -11';
V1 - Rt .5;.5 1);
v2 - (1 .5;.5 11;
end

if option--2;
dinen-2;
rand('seed',0);
rat -randn(numaigs,dimnen);
rand('seed',2);
rc2 -randn(numsigs,dimen);

at -[.05 03';
m2 - [-.05 03';
vi - P3 0;0 31;
v2 - D3 0;0 11;
end

if option--3;
dimen-37
rend ('seed,0);
rci -randn~nuxnsigs,dimuen);
rend ) seed ',2);
rc2 -rendn(nwoeige,dimen);

MIl -[0 0 03';
m2 - [0 0 0]';

v1i (3 0 0;0 3 0;0 0 11;
v2 - [i 0 0;0 1 0;0 0 11;
end

if option--4;
dimoen-4
rend)' seed'SO);
rcc -randn~nornsigs,diaeo);
rand('seed',2);
rc2 -rendn~noxnsigs,diumen);

nMI.-ti1 -1 1]';
M2 - E-1 1 -1 1]';
V1 - (6 0 0 0;0 6 0 0;0 5 1 0;0 0 0 1]:
v2 - [i 0 0 0:0 1 0 0:0 0 1 0:0 0 5 11;
end

Calculate informiation fsr colorizing the anoise
[Vi~dil - eig(lv);
(V2,d21 - eig~v2);

tamnbdai - sqrt(dl);
lambda2 - sqrt~d2);

p1 - .5;
P2 - .5;
cov~rct);
cov~rc2);

*Coiorize the white anoise
if dicoen--2
relcoior - Vi-lambdei~rci' +
[all)*on0es~t,noomaigs);mlii2)ennes~i,numigs)];
rc2cotor - V2eiombda2*rc2' +
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elseif dimen--3
rcicolor - Viaiambdalatcl' +
fml(1) tones (1, nwoiga) ;mnl(i) ones(1, notnaigs) ;mi(3 ) ones(1, nomsigso]
rcicolor - V2*aiabda2arci' +..
(mi(i)sonea(1,numnigs);Ini(i)*ones(i,nwnsigs);m2(3)*ones(i,nUmfliga)];

elseif dimen--4
rclcolor - Vlalambdalarci' +
[ml(i)*onea(1,nums igs);Oll(i)*ones(l,numaigs);mi(3)*onea(i,numsiga);ml(4)sones(i,nulnigs)b;
rcicolor - Vi*ienbda2arci' + .
[m2(l)*ones(l,nwnsiga);m2(i)*onea(l,nurnaigs);m2(3)*ones(l,numsigs);mi(4)*ones(l,numaigs));

end

Compute means and novariacces
aigi - cov(rclcoior');
aig2 - cov(rcicoior');
aigi - vi;
sig2 - v2;

detaigi - det(sigl);
detaigi - det(sigi);

inosigi - inv(sigl);
invaig2 - inv(sig2);

Ml - mean(rcicolcr');
M2 - mean(rcicolor');
Ml - ml';
M2 - m2';

ci - rolcolor';
c2 - reicolor';

%Initialine mahalanohis distances
%and classification matrices

mdli - zercs(numsiga,l);
mdii - neros(n umaigs,l);
mdii - zeros (numsigs,l1);
mdii - oeros(numaigs,l);

dli - zeros(numsigs,l);
d12 - neroa(n umaigs,l);
dii - oeros(numaigs,i);
d22 - oeros(numsigs,i);

Classify the data using a simple gaussian classifier

for i - i:numsigs
mdll(i) -(cl(i, ; )-Mi)Sinvsigl*(cl(i, ;)K)

mdli(i) -(ci(i, )-Ml)*imvsigi
0
(c2(i,:)11'

mdil(i) -(ci(i, )-Mi)*invaigi
0
(cl(i,:-2;

md2i(i) -(ci(i,:)-Mi)*imvsigi
0
(c2(i,t)12'

dll(i) -. 5*mdll(i) + .5liog(detsigl);
dli(i) S .5mdli(i) + .S~log(detaigi);
dii(i) - .5*mdilci) + .Salog(detsigi);
dii(i) - .5*mdii(i) + .S~log(detaig3);
end

bi - .S~log(detsigl);
bi - .S-lng(detsig2);

correcti -g;
correcti - 0

%Ciassify the data and sort the data into
%goad sand had groups
%The good group is retained for later analysis

wohi - ( ;wchbadl (J];

wchi - [];wchbad2-f];

for J-i:numsigs

if dii(j) < dil(j)
correnti-correctl+l;
wchl - [wchl; J];
else
wchhadl - [wchbadl; J];
end

if dii))) < dli())
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correct2-correct2+l;
wch2 - [wch2; J];
else
wchbad2 - [wchbad2; J];
end

% Retain distance and classification information
% for correctly classified samples

mdllt - mdll(wchl,:);
mdl2t - mdl2(wch2,:);
md2lt - md2l(wchl,:);
md22t - md22(wch2,:);

dllt - dll(wchl,:);
dl2t - dl2(wch2,:);
d2lt - d2l(wchl,:);
d22t - d22(wch2,:);

truel-cl(wchl,:);
true2-c2(wch2,:);
badl-cl(wchbadl,:);
bad2-c2(wchbad2,:);
end

% Perform chi test to eliminate outliers

% The following is taken from
% Arnold 0. Allen ppl

3 7
-1

3 8
,

6 2 5

stat - 'performing xisquare test'
n - 2;

zalpha - 1.6449;
chialpha - 4.9915;

if dimen--3
chialpha - 7.815;
end

if dimen--4
chialpha - 9.4877;
end

% Apply in-class chi-test, retaining relevant data points
% Note here one could have just as easily used mdxxx and
% compared it directly to chialpha

stat-'in-class chl-square'

rell - truel(chitesttoy(dllt,chlalpha+bl),
rel2 - true2(chitesttoy(d22t,chlalpha+b2),:);

% Apply chi test to other classes
stat-'interclass chi-square'
Lmmn -5;
chialpha2 - chialpha;

rell2 - true2(Ltesttoy(dl2t,chialpha2+bl,Lmin),:);
rel2l - truel(Ltesttoy(d2lt,chialpha2+b2,Lmin),:);

I Calculate EDBFM
% Begin by reorganizing data
stat - 'calculate N and EDBFM'
ml-ml';
m2-mV';

% NOTE that here we use ACTUAL (non-estimated) values
% for the pdf parameters
P - (];
P1 - (];
P2 - ;

% Loop on each class
for i - 1:2

eval(['cofi - rel' int2str(i) '
eval(I'cmref - m' int2str(i) ';'])
eval(['cvref - v' int2str(i) ';')

numcofi - size(cofi, );

Compare to other class
for J-l:2
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if J--i
EDBFM - zerosa(dioien, dimen);

N - zerosa(1,oonucofi);
eval(('nthc - ret' iot2atr~i) iotiatr(j) ¼]
eval(['cw~ther - mn' intiatr(j)
eval(['cvother - v' int2atr(j)

for k - l:nuwcofi

closest - findneareatteat(cofi(h, :),othc,cvref);
[N~p) - conputeNPteat(cofi(h, :),cnref,cvref,cloaeat,coiother,cvother,.5,.511);

p - (p p);

if i--i
Pl - [P1 p];
elseif 1 --2
P2 - (P2 p);
end

EDNFN - NDNN'M + (l/ooinooh)*-)NnN')

end

eval(('E' nooi2atr(i) naoo2str(j) ' - 009;'])
end
end

end

Now, combine each into the final, averaged 909PM

EDNN'1 - zerosa(dimen, dizoen);

Pi - .5;
p2 - .5;

for 1-1:2
for J-1:2
if j--i
eval( ['EDBFM - ED0MM + plnp2ao' nwa2etr(i) num2str(j)
end
end
end

Calculate elgenvaloca and aigenvectora for future usac
(v,d) - eig(EDBF14)

raohdhfin - raojc(EDBFM)

%Chiteattoy aubrautine

function [goodanly] - chiteat(n,chialpha)

goodonly - H

far ± - l~aine(x,i)

if x(i) < chialpha
goodonly - [goadanly; ii;
end
end

titeattoy aubroutine
function [goodonly] - Lteat(x,chiaipha,Lml)

goodonly - H1;

for i - 1:aize~x,l)
aize(x, 1);
if x(i) < chialpha,
goodonly - (gandonly; ii;
end
end

chh - aize(goadanly,l);

if chh < Lmni

)dum wch) - aort(x);
goodonly - wch(l:tml);
end%if

%findneareatteat aubroatine
function (winner] -findneareatteat (reference, teata iga, var)

(numsiagafeata] - ine(teetaiga);
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hestiontob - 0;
dists - zeros (numsiqs, 1);
var-var' ;

for i - 1:numsigs

xtrisi testniqs(i, 1
[lxowxi sioe(otrisi);
[iref,wref) - size(referenne);

diets(i) - cxtriai-reference)e(inv(var))s(xtrisi-reference)';

end

(Y,mexindJ - nin(dists);

winner - teeteigs (nnoind, 1

% oonpteNPtest subroutine
%onplement equations found in Lee & Lsndgrebe article
%Note; orient is used to insure thst you are the venter
% onnoecting the two sanple pointsarse pointed the snme
%way when you ewitch from compering riases i to class 2
e nd vine-verse

functinn[N,PI - conputeNPteet (x, mi, vlo 2,m2, v2, probl,prob2, orient)

oi;o2;ml;vl;c2;v2;
x1 - xl' ;x2 - x2';
ml - ml' ;e2 - n2';

vS - XI;

v - x2-ol;

deti - det(vl);
det2 - det(v2);

invI - iev(vl);
inv2 - iev(v2);

c - .5 (m1'*invl-xi - n2'Cinv2en2) + S5~log( deti/det2
cprime -SevO' * (ievl-inv2) * vS - (mi'*invl-xe2'*iev2)*v0 + c;

b - vO'
0
(invl-inv2)*v - (ll'einvl.1e2'-inv2)*v;

a - .5 * v' * (invi-inv2) - v

t - ioq(prohl/preh2);

if a -- 0

o - (t-oprioie)/b;
else
ul - (-b + eqrt(h-2-4*e*(oprime-t)))/(2*s);
u2 - (-b - eqrt(h-2-4*se(cpriiee-t)))/(2*a);
if orient--i
u - ieinu[ul u2fl;
else
u - mee((ul u2]);
end
end

p - e*v+vO;

N - (invl-iev2)*p + (iev2*nl - invl~x2);
PP-;

N - N/sqrt(N'*N);
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C.2 4-Class Code

This section contains code used in the four class problems of Chapter 4. The first

section here finds the EDBFM and its eigenvectors and eigenvalues. The second section

gives code for reclassification in the transformed space. The third section gives code for

reclassification in the original space. Associated subroutine may be found in the final section

of this appendix. Note that the programs are especially designed for the UHRR radar problem

(due to alignment). It should not be difficult to generalize the concepts to other problems or

simplify it to a two class problem.
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C.2.1 EDBFM Analysis.

SET NUMBER OF CLASSES AND NUMBER OF FEATURES USED

Class id's correspond to 1 -- 9a
% 2 -- aa

N 3 -- f2

t 4 -- fa

feats - 256

classes-4
n - classes;

troubleshoot - 0;

load trialp256

load paramsprs256

% This section uses a subroutine to find the correctly
% classified sample from the UHRR training and test sets
% The files w/ tat prefixes contain test data
if 1--0

load tat9a256
load tataa256
load tatf2256
load tstfa256

sigs - [tstga256; tstaa256; tstf2256; tstfa256];

% Single out correctly classified samples only and store
% The following variables hold correctly classified samples (cxxg)
% and the respective test statistics (dxxg) as computed by the AGC

stat - 'finding correctly classified data'
lcgag caag cf2g cfag d9ag daag df2g dfag maxindices] -
findcorrect(sigs,cumrname,cumdis,4);

save paramsprs256 cgag caag cf2g cfag dgag daag df2g dfag maxindices
end

I FOR TROUBLESHOOTING, LIMIT THE NUMBER OF SIGNALS CONSIDERED

if troubleshoot -- 1
howmany - 100;
c9a - c9ag(l:howmany,:);
caa - caag(l:howmany,:);
cf2 - cf2g(l:howmany,:)'
cfa - cfag(l:howmany,:)

d9a - d9ag(l:howmany,:)'
daa - daag(l:howmany,:);
df2 - df2g(l:howmany,:);
dfa - dfag(l:howmany,:);
else
c's - c.ag;
cas - oag;
cf2 - cf2g;
cfa - cfag;

d9a - d9ag;
das - daag;
df2 - df2g;
dfa - dfag;

end
II%%I%III%%II%III%IIIII%%%%%%II%%1I%%%%%III%IIIIIIII%%III%%

1155111 %I1IIIIISI%II%%%%I%II%%IIIIIII%%%%%IS%%%IIIII%IIISII

% Eliminate Outliers of each class with Chi-Square Test

% Find biases and subtract out to get true Mahalanobis distance
stat - 'finding biases'
ll%%%l%%%%%%%%%%%%%%%%%%%%%%%%%%%lll5511111111%tll%11511115%

IMPORTANT; PRELIMINARY RESULTS INDICATE YOU MUST
RETAIN THE BIAS IN THE DISTANCE CALCULATION BECAUSE

I YOU MAY OTHERWISE ENCOUNTER TWO POINTS NOT SEPARATED
I BY THE h(X). RECALL THAT POINTS MUST STRADDLE THE
I THE DECISION BOUNDARY OR NO INTERSECTION CAN BE FOUNDI

(BIAS IS THE DETERMINANT OF THE CLASS COVARIANCE)
%5IHII1SI5BII1%IBBIHIIIBIIIIIIIHIBIIIIIHIIIIHIIIIIIIHIII93
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%pranatemp is a variable representing the respective
%class of pristine data

(h9s n9a v9a] - findhias( 'pra9atemp')
(baas naa van) - findhinas('prsastemp')
(hfl nfl vflJ - findbias ('prafltemp')
(bfa nfa vfa] - findbias ('profatemp')
d9at -ceros(sine(d9ag));
dant -neros(aize~daagfl;
dflt - neros(sine(dflgfl;
dfat - zeroa(aize(dfag));

M ERE, RETAIN ORIGINAL CLASSIFICATION DISTANCE:

d9at - d~a;
daat - das;
dflt - dfl;
dfnt - dfa;

stat - 'performing nisgusre teat'

%The foliowing info is taken Iron
%Arnold 0. Allen, Prob, Stats, and Queuing
%theory pp i37-13N;and p. 625, table 4

o - feats; 9, the *of degrees of freedom
zaipha -1.6449; 4 95% inclusion
%calpha -1.96; 9 97.5 inclusion
%osipha -2.3263 999.9 inclusion
Icaipha -1.6449; % 5% inclusion
%zslpha -- 1.96; % 2.5 inclusion

I The test statistic with n > 100:

chisipha - n*(1-2*(9*n)'(-l)+zalpha*sgrt(2a(9*n)^(-l) ) )(3);

%Apply in-class chi-test, retaining relevant data points
stat-' in-class chi-square'

cell - c9a(chitest(d9at,chislpha+b9a,l), 1
cell - caa(chiteat(daat,chialphs+haa,l), ;);
rel3 - cfl(chiteat(dflt,chialpha+bfl,3), ;);
rel4 - cfa(chitest(dfat,chialpha+hfa,4), ;);

%Apply "Chi-Square" test to other classes
atat-' intercisass chi-square'
Lmin - 50;
chiaiphal - chiaipha;

relil - caa(Lteat(daat~chialpha2+b9a,i,Lmin),
reill - cf2(Ltest(dflt,chialpha2+b9a,i,Lmin),:)
rell4 - cfa(Lteat(dfat,chialpha2+b9a,i,Lmin),:)

relll - c9a(Ltest(d9at,chislpha2+baa,2,imin),:)
cellO - cf2(Ltest(dflt,chialpha2+baa,2,imin),
rell4 - cfa(Ltest(dfst,chialphsl+baa,2,Lmin),

cel3l - c9a(Ltest(d9at,chialphsl+bfl,3,Lznin),;)
mill2 - caa(Ltest(daat,chialphal+bfl,3,lmia),;)
rei34 - cfa(Ltest(dfat,rhialphal+hfl,3,ILmin), ;);

rel4l - c9a(Ltest(dgst,chialphal+bla,4,Lmin), ;);
rel4l - caa(Ltest(daat,chialphal+bfs,4,Lznin),;);
ce143 - cfl(Ltest(dflt,chialphal+bls,4,Lmin), ;);

%The axoaxtemap files hold template information (mean
%and variances) for each class
stat -'loading mean and variance infoa'
%load prs~atemp
ml - m9a;
vl - v9a;
%lood prasaatemp
m2 - ems;
v2 - vaa;
%load prafltemp
m3 - mfl;

v3 - vf2;
%load pralatemp,
m4 - mfa;
v4 - vfa;
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OK, keep your fingers crossed

-a 'csiculate N sod EDBFM

for i1 1:4

eval( 'cofi - rel' int2str~i) '1
eval( cmref - m' int2str(i)
evslU 'cvref - v' intlstr~i)III

owocofi - sice~oofi,lI)

for J-1:4

if f--i
EDBFM - zeros (n, n);

evsl ( 'othc - relV int2str(i) intlstr~j) I;'))
evsl( ( cmother - m' iotlstr~j)')
evslU 'ovother - v' int2str~j)')

%The following scsling trick is required to prevent machine
%precision problems. The factor of 100 divides out to the
%cooputeNP subroutine

detref - det(disg(1OO-cvref))
detother - det(disg(lO0-cvother))

iovref - inv(disg~cvref));
invother - inv(disg~cvotber));

for k - l:numcofi
[k numncofi]

closest - findoesrest~cofi(k, :),otkc,cvref);

if i <j
orient-i:
elseif j > 0
orient-2;
end%ifi

Is~p] - conputesP~cofi~k, :),cmref,cvref,closest,cruother,
ovother,detref,detother, invref, invother,.5,.5Sorient);

testN - s9=(N);

%one should only get imasginsry numbers if so incorrectly classified
%ssmple slipped psst the gusrds:

if imng)N)--O
'Uk-oh, N is complex'
numnberoficrag - nucrberofimnsg+l;
else
E05PM - 505PM + )1/numcofi) -)N-N')
end
endS fork

evsl( [ISE numnlstr(i) numn2str~j) ' -505M;']

end%ifjf-i
endtforj
endtfori

stst - 'calculste 505PM

SCslculate 505PM

505PM - neros~o,rr):

IAssume sprioris are equsl
pI -l/clssses;
p2 -l/clssses;

for i -1:4
fur J-1:4
if Jf-i
evsl(['S0SPM - 505514 + pl~p2-S' numlstr(i) numlstr(j) ¼)
end%ifj -i
endtforj
endtfori

(V,d) - eig(EO5PM):

rsnkdbfm - rsnk(EOBFM)

gsve results2k5full 505PM rsnkdbfin d V numnberufirusg

95



C.2.2 Reclassification in Transformed Space.

I This program performs extraction and testing
I for a four class problem in the transformed feature space
clear

Load in training and testing data sets
train - 1;
transform - 1;
load trnfa256
load trnf2256
load trnga256
load trnaa256

load tst9a256
load tstaa256
load tstf2256
load tatfa256

% Load in EDBFM information

load results256full

results - zeros(32,4);
as - 1;

% kk is the looping parameter. For the results in the thesis,
% I generarated them using the following numbers of features:
% 1, 3 , 5, 7, 9,.. 19, 21, 50, 100, 200, 250, 256

for kk - [1:2:21 50:50:250 256];
correctl - 0;
correct2 - 0;
correct3 - 0;
correct4 - 0;

if train -- 1

trncl - trn9a256(:,:);
trnc2 - trnas256(:,:);
trnc3 - trnf2256(:,:);
trnc4 - trnfa256(:,:);

% TRN set has been previously aligned

% Select how many relevant eigenvectors
% you wish to use

relnom - kk;

Recall that V holds the eigenvectors of the EDBFM, ordered
I by magnitude of its eigenvalue. This step selects the
% the number to use.

Vt - V(:,256-relnum+l:256);

% During troubleshooting, one may elect not to transform
% at all
if transform -- 0
Vt - diag(ones(l,256));
end

& Perform transformation, based on the EDBFM
'transforming training data'
trncl - trncl * Vt;

trnc2 - trnc2 * Vt;
trnc3 - trnc3 * Vt;

trnc4 - trnc4 0 Vt;

% Implement the training portion of a Gaussian classifier,
% recursively computing computing mean and variances.

R Note that the data sets were previously aligned before
% extraction from the AGC algorithm

'training 9&'
mxga - trncl(l,:
vx9a - zeros(1,size(trncl,2));
for i - 2:size(trncl,l)
currx - trncl(i,:);

mx9a - ((i-l)*nx9a+currx)/i;

vx9a - (((i-l)avx9a)/i)+((mx9a-currx).-2)/(i-l);
end
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'training aa'
mxaa - trocl i,:)
voaa - zeros (1,size(trncl, 2)l
for i _ 2 :sine(trnc2,i)
currx - trncl(i,:)

nose - ((i-l)aoxoa+currx)/i;

vone - (((i-l)0vxaa)/i)r(noaa-corrx).'2)/(i-i);
end

'training f2'
nof2 - trnc3(l, 1;
vof2 - eroa(l,aize(trnc3,2));
for i - 2:size(trnc3,i)
corro: - trncl (i, : ;

nof2 - ((i-1)*nof2+ourrx)/i:

vof2 - (U(i-l)svxf2)/i)+((mof2-curro).2)/Ci-i);

end

'training fa'
nofa - trnc4 (1,
vofa - zeros (1,size(trnod, 2)l
for i - 2:aioe(trnc4,l)
corrx - trnc4(i,:)

nofa - ((i-l)Omxfa+currx)/i;

vofa - (((i-i)5vxfa)/i)+Uoofa-currx).'2)/(Pi-);
end

ICalculate bias terms:
b9a - sum(log(vo9a));
baa - sotn(log(voaa));
bf2 - swn(iog(vof2));
bfa - swo(iog(vofa));

endtif train

citeat - tat~a2SS;
oltest - tstsa256;
chtest - tatf 2256;
c4teat - tatfa25S;

% Transform teat data, as above

%perform transformation, based on tbe EDEPH
' transforming teot data'

chtest - citeat * Vt;
o2test - c2test - Vt;
ohtest - chtest * Vt;
ndtest - c4teat - Vt;

t In all of the following ''ldoy'' implies sne is comparing
%the oth class mean with an exemnplar from class y. Note that
%1-4 corresponds to 9a-fa as shown at the beginning of the EDBFI4
%analysis program

%'testing 9a'

for i - 1: size (clteat,l1)
fi sine(cltest,l)];

ml - cltest(i,:)

%Give this subroutine the nurrent ememplar
I the mean for the respective class, the
%variance far the respective class, the
Ibias for the respective class, and the
%number of features used.

dli - decisionwsbiftkk(ot,nnc9a,vx9a,b9a,kk);
d~l - deciaionwahiftkk(xt,noaa,vxms,baa,kk);
d3l - deciaionwshiftkk(xt,mxf2,vof2,bf2,kk);
d4l - decisionwahiftkk(mt,mofa,vofa,bfa,kk);

% Now classify the data, saving relevant information for later

[dun, idol - min~ldll d~l d~l d4l]);
if ido --lI
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correcti - norrenti + 1;
end
correcti;
end

I'testing as'

for i - 1: size (c2teet,l1)
[i sine(c2test,i));

at -cltest(i,:)

dli decisinnwshiftkk(at,na9a,vxae,b9a,kk);
d21 decisinnwshiftkk(at,mxaa,vaaa,bsa,kk);
d~l -decisionwshiftkk(at, af2,vaf2,bf2,kk);
d41 decisisnwshiftkk(nt, =af,vafa,bfe,kk);

Now classify the data, saving relevant intonmation for later

[dum, idx] - min( [dll d~l d~l d4lfl
if ida -- 2
correctl - correct2 + 1;
end
correnil;
end

%'testing f2'
for i - 1: size (c3test,l1)
(i aiae(cltest,l)];

at -clteet(i,:0;

dli decisionwshiftkk(xt,oia9a,va9a,b9a,kk);
d~l decieionwshiftkk(at,naaa,vxaa,bsa,kk);
d~l decisionwshiftkk(at,naf2,vxf2,bf2,kk);
d41 decisionwshiftlch(at,xnafa,vafa,bfa,kk);

%Now classify the date, saving relevant information for later

[darn, ida] - min( [dli d~l d31 d41];
if ida -- 3
correct3 - cerrecti + 1;
end
nerrent3;
end

%'testing fe'

for i - l:sine(c4teet,l)
(i sine(c4test,lfl;

at -cdtest(i, ;);

dli decisionwshiftkk(xt,nax9a,vx9a,b9a,kk);
d~l denisisnwshifthh(at,=aae,vnea,baa,hh];
d~l -decisionwshiftkk(at, af2,vxf2,bf2,kk];
d41 decisioneshiftkk(at,nafa,vxaf,bfe,kk);

%Now classify the date, saving relevant information for later

[dum, ida] - min( [dli d~l d~l d4l]l
if ida -- 4
correctd - csrrect4 + 1;
end
norrect4;
end

resalts(aa,l) - correcti;
resalte~aa,l) - correct2;
reealts(aa,3) - corrent3;
resalts~aa,4) - cnrrectd;

aa - ee+l;

if as -- 1
cesalis~l,:)
end

endiforkk

save tren4rateswshifts resalts
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C.2.3 Reclassification in Original Space.

% This program performs extraction and testing
% for a four class problem in the original feature space
clear

% Load in training and testing data sets
train - 1;
transform - 1;
load trnfa256
load trnf2256
load trn9a256
load trnaa256

load tst9a256
load tstaa256
load tstf2256
load tatfa256

% Load in EDBFM information

load results256full

results - zeros(32,4);
aa - 1;

% kk is the looping parameter. For the results in the thesis,
% I generarated using the following numbers of features:
% 1, 3 , 5, 7, 9,.. 19, 21, 50, 100, 200, 250, 256

for kk - [1:2:21 50:50:250 256];
correctl - 0;
correct2 - 0;
correct3 - 0;
correct4 - 0;

% Evaluate V to choose significant features
% Note, use an average of the ten most significant
% eigenvectors

useus - ahs(V(:,247:256)');

useus - mean(useus):

featselect - [];
for numfeats - I:kk

[wch,idx] - max(useus);
useus(idx) - -100;

featselect - [featselect idxo;

end

if train -- 1

trncl - trn9a256(:,featselect);
trnc2 - trnaa256(:,featselect);
trnc3 - trnf2256(:,featselect);
trnc4 - trnfa256(:,featselect);

% TEN set has been previously aligned

% Select how many relevant aigenvectors
% you wish to use

relnum - kk;

Implement the training portion of a Gaussian classifier,
recursively computing computing mean and variances.
Note that the data sets were previously aligned before

I extraction from the AGC algorithm

'training 9a'
mx9a - trncl(l,:3;
vx9a - zeros(l,size(trnol, 2);
for i - 2:size(trncl,l)
currx - trncl(i, :);

mx9a - ((i-l)*mx9a+currx)/i;

vx9a - (((i-l)3vx9a)/i)+((mx9a-currx).-2)/(i-l);
end
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'training aW
n=a& - trnc2 (1,:;
vxaa - zeros (1,asie(trnc2, 2)l
for i - 2:aine(troc2,l)
cornx - trnc2(i,:)

noaa - ((i-l)*nxaa+curnn)/i;

yuan - (((i-l)ovxaa)/i)+((mxaa-currx).'2)/(i-l);
end

'training f2'
nxf2 - trnc3 (1,
vnf2 - zerosa(1,asie(trnc3, 2)l
for I - 2:sine(trnc3,l)
cornx - troc3 (i, :) ;

nxf2 - ((i-l)-aaf2+carrx)/i;

vof2 - (((i-l)nvxf2)/i)+((nxf2-currx).-2)/(i-l);
end

'training fa'
n-fa - trocu (1,
vofa - zeroso(1, sie(trnc4,Zf2)
for i - 2:sioe(trnc4,l)
currx - trnc4(i,:)

nofa - ((i-l)*mxfs+currx)/i;

vxfa - (((P1)*Vxfa)/i)+( (mxfa-currx)72/i)
end

%Calculate bias termas
b9a - sum(log(vx~a));
baa - sum(log(vxasfl;
bf2 - sum(log (vxf2)) ;
bfa - sum(ing(vnfa));

endt iftrain

chteat - tst~a2SN;
o2test - tstaa25h;
c3test - tstfZZSN;
c4teat - tstfa25f;

% Perform feature selection an the teat seta

clteat - tat9a256(:, featselect) i
clteat - tataa256(:,feataelect);
c3teot - tatf225N(:,feataelect);
c4teat - tatfa256 (:featselect);

%In all of the following I''doy' ' implies one is nomparing
%the nib class mean with an exemplar from class y. Note that
%1-4 corresponds to Na-fa as shown at the beginning of the ED5FN
%analysis program

%'testing Na'

for i - 1: size (cltest,l1)
[i sine(cltest,l)J;

at - cltest(i,:)

%Give this subroutine the current exemplar
%the mean for the respective class, the
%variance for the respective class, the
%bias for the respective olasa, and the
%number of features used.

dll - deciaionwshiftkk(xt~mx~a,vx~a,b~s,hh);
d21 - deciaioowshifthh(xt,mxaa~vxaa,baa,hh);
d31 - decisionowhiftkk(xt,mxf2,vxf2,bf2,kk);
d41 - decisionwshifthh(xt,mxfa,vxfa,bfa,hh);

%Now classify the data, saving relevant information for later

(dun, idx] - min( dll d~l d31 d41D;
if idx --lI
correctl - correctl t 1;
end
correctl;
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end

%'testing as'

for i - I: size(o2test,i)
(i oioe(c2tnot,l)J;

at - 2test(i,:)

dll decisionwshiftkk(xt,nx9a,vx9s,b9a,kk);
d21 deoisionwshiftkk(ot,mosa,vosa,bsa,kk);
d31 decisionwshlftii(xt,nxf2,vxf2,bf2,kk);
d41 deoisionwshiftkk(ot,nxfs~vxfs~bfs,kk);

% Now classify the data, saving relevsnt information for later

[dmosido) - min( dll d21 d31 d413)
if ido -- 2
oorreot2 - correot2 + 1;
end
oorreot2;
end

%'testing f2'

for i - 1: size (c3test, 1)
[1 sine(o3test,1)l;

ot - 3test(i.

dii decisionwshiftkk(xt, =9s,vx~s,b~s,kk);
d2i decisionwshiftkk(ot,mxss,voss,bas,kk);
d31 decisionwshiftkk(nt,mof2,vxf2,bf2,kk);
d41 decisionwshiftjch(xt,nxfs,vofs,bfs,kk);

% Now clissaify the dais, saving relevant informatison for later

[dust, idol - min( [dli d21 d31 d4l]l
if idx -- 3
oorreot3 - oorreot3 + 1;
end
oorreot3;
end

%'testing fa'

for i - 1: size (c4test,l1)
[i sioe(o4teat,tl];

at - 4test(i,:)

dl - deoisionwshifthh(ot,nocg,vo~s,b95,hh);
dil -deoisionwahiftki(ot,noaa,voaa,baa,kk);
d31 decisionwshiftkk(xt,nocf2,vnf2,bf2,kk);
d4i decisisnwshifthh(nt,nncfa,vofs,bfs,hlC);

%Now olsassify the data, saving relevant information for iater

(dmo, idol - min~fdll d21 d3i d411);
if idx -- 4
oorreot4 - norrenid + 1;
end
oorreotd;
end

resolts(as,t) - correcti;
resuits(ss,2) - nsrreot2;
resuits(aa,3) - oorreot3;
reaolts(sa,4) - correot4;

as - aa+i;

if as -- 1
resolts(t,:
end

end%forhh

save orig4rateswshifta results



C.2.4 Subroutines.

B CHITEST SUBROUTINE
This subroutine performs the intraclass chitest
The "col" variable corresponds to the appropriate

I class being compared against

function(goodonly] - chitest(x,chialpha,col)
%x - d9a;
%chialpha - chialpha;
%con -1 ;

goodonly - [H;
%size(x)
for i - l:size(x,l)

if x(i,col) < chialpha

goodonly - [goodonly; i];
end
end

% LTEST SUBROUTINE
% Same as above, but Lmin insures at least a minimum
% number of exemplars are used from the other classes
NNNNNNNNNNN%NNNNNNNNNN%%%%%%NNNNNNNNNNNNNNNNNNNNNNNNNNNNN%%

function(goodonly] - Ltest(x,chialpha,col,Lml)

goodonly - [I;
wx -size(x,l);

for i - l:size(x,l)
[i,ans];
if x(i,col) < chialpha
goodonly - [goodonly; i];
end
end

chk - size(goodonly,1);

if chk < Lml
[dumwch] - sort(x);
goodonly - wch(l:Lml);
endif

size(wch);

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN%%%%%%%%%%%%%

I FINDNEAREST SUBROUTINE
% This subroutine finds the nearest in the sense of Mahalanobis distance,
I as prescribed by Lee and Landgrebe
N%NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

function(winner] - fmdnearest(reference,testsigs,var)

[numsigs,feats] - size(testsigs);
bestmatch - 0;
dists - zeros(numsigs,l);
var-var;

for i - l:numsigs
i;
xtrial - testsigs(i,
[lx,wx] - size(xtrial);
[lref,wref] - size(reference);

dists(i) - (var.-(-l)).-(xtrial-reference)*(xtrial-reference)';

end

[Y,maxind] - min(dists);

winner - testsigs(maxind,

%%%NNNNNNN%NNNNNNNNBNNNNNNNN%%%NNNNNN%NNNNNNNNN%NNN%%%N%%N%%

% COMPUTENP SUBROUTINE
% This subroutine implements Lee's equations
NNN%NNNNNNNNNNNNNNNNNNNNUNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN%%%

I The difference between this and the test function
N is that one assumes uncorrelated features (variances
% are in a vector)

xl;x2;ml;m2;vl;v2;
ml - ml';m2 - m2';
v1 - vl';v2 - v2';

xl - xI';x2 - x2';
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vO - xl;
v - x2-xl;

smi-size~ml);
sinvi-size) invi);
sm2-size(m2);
sinv2-size(iniv2);

c - .5 - (m1'-invlornl - m2'*inv2-m2) + .5*1cg) detl/det2
cprime - .5000' * (invl-inv2) - vO - (ml'*invi-m2'*inv2)-vO + c;

b - vO'*(invl-inv2)*v - (ml'*invl-m2'*inv2)*v;
a - 5 * v1 * (invl-inv2) * v

t - log(probl/prob2);

% ote: this step finds the appropriate root when one
%as two to choose from
if a -- 0
u - (t-cprime)/h;
else
ul - (-h + sqrt~b-2-4*a*(cprime-t)))/(2*a);
u2 - (-b - sqrt~b-2-4*a5)cprime-t)))/(2*a);
if orient--i
u - min([al 0121);
else
a - nax((ul u2));
end
end

p - u*V+vO;

N - (invl-inv2)-p + (inv2*ml - imvlox2);

P-p;

N - N/sqrt(N'*N);

% DECISION0WSNIFTSKK SUBROUTINE
%This suhroutine implements the classification

% scheme lihe that of the AGC. In other words,
%exemplars are shifted up to 19 hins in either
%direction and matched to esch template and then
%a winner is declsred in the rosin program.
IThis subroutine just does the correlation/shifting
%portion. hh represents how many features are

h eing used. In this particular version of the
%subroutine a single number is returned, hut the program
%may he easily modified to return the shifted signsture
Iif necessary

functionidist] - decisionwshift(x,template,vsr,h,hh)
%This routine performs a circular convolution

% on a set of signals vs a template

ihound -. -18;
ubound - 18;

if shs(lhound) > hh
lbound - -k2
uhound - kkh2;
end

if kk -- 2
lbound - 0;
ubound - 0;
end

if kk --l1
lhound - 0;
uhound - 0;
end

[wx, lxi - size(x);
xtrial - zeros)1,lx);

alignedsig -zeros(l,lx);

shiftstore z eros (wx,l1);

reference - template;
%reference - reference/sqrt(referenceoreferenceI)
%reference(1:5)

% Find offsets via circular shifting

xtemp - x
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% tesp - xtemp/sqrt(xtemp-xtemp')
txteip(i: 5)

edist - zeros (1, tryshift-ibound+1);
bestshift - 0;

for tryshift - ibound:ubound
as- tryshift-ibound+1;

if tryshift < 0
xtriel(aa, :)- Lxtemp(-tryshift+i:lx) xtemap(i: -tryehiftfl;
elseif tryshift -- 0
xtrial(aa,) - Xtemp;
elseif tryshift > 0
xtrisl(aa, ) [Xtemep(lx-tryshift+1:lx) xtemp(i:1x-tryshift)J;
end

mdist(ae)-
.3*(var.f(l)f.*(xtriai(aa,:)-reference)*(xtriai(aa,:)-reference),+.5 *b;
endi for

(dist,bestshift) - min(mdist);

alignedsig - xtrial(bestshift,

bestahift - bestshift-i;

shiftstore - bestahift;
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