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Abstract 

This study compared numerical collapse results of graphite/epoxy cylindrical 

panels with free vertical edges undergoing axial compression for three different shell 

theories. Symmetric quasi-isotropic laminates were investigated using solid panels and 

panels with five different centralized cutouts with three thicknesses. The theories 

compared in the study were the Simplified Large displacement moderate Rotation (SLR) 

theory, the Donnell Cylindrical Shell (Modified Donnell) theory, and the Classical Donnell 

theory. The purpose of the study was to determine when large rotations and through-the- 

thickness shear become important in the numerical collapse analysis of cylindrical 

composite shells. The SLR theory takes into account large rotations in its sophisticated 

higher order strain terms and coupling of the u, v, and w displacements into the rotational 

terms. Both the SLR and Modified Donnell theories incorporate a parabolic transverse 

shear strain distribution through the thickness. The Classical Donnell theory neglects both 

rotations and shear strain. By observing cases where the numerical collapse results 

differed noticeably (>3%), it could be determined when large rotations and through-the- 

thickness shear were important. The effects of large rotations were noticed in nearly all of 

the panels with large cutouts (>3% panel area). Large rotations were also found to be 

important for thicker panels with either no cutout or a small cutout. The effects of 

through-the-thickness shear were only noticed in the thickest panels with large cutouts. 

Also, a trend was noticed in some of the large cutouts in which the effects of through-the- 

thickness shear increases with increasing thickness while the effects of large rotations 

appeared to become less dominant. 

XI 



THE COLLAPSE OF COMPOSITE CYLINDRICAL 
PANELS WITH VARIOUS THICKNESS USING 

FINITE ELEMENT ANALYSIS 

I. Introduction 

1.1 Background 

Composite materials are being used increasingly more often in modern aircraft as 

designers attempt to improve the overall strength to weight ratio of airframes and enhance 

the stiffness of particular components. These lighter, stronger aircraft allow for higher 

performance with no increase in fuel consumption. Because of the aerodynamic shapes of 

aircraft fuselages and wings, shell structures or panels are frequently used. Often, aircraft 

require openings in these composite shell structures for windows, landing gear doors, or 

access panels. These holes or imperfections change the collapse characteristics of the 

structure. Depending on the dimensionality and area of the cutout, the load carrying 

ability of the structure may be greatly reduced [ 1 ]. 

Axial compression of monocoque cylindrical shells has long been a challenging 

problem because of the inherent nonlinearities involved due to the curved nature of these 

structures. This nonlinearity becomes even more predominant as the thickness of the shell 

panel and the area removed from the shell by a cutout increase [1,2]. Previous research 

concerning the collapse of composite shell structures with large centrally located cutouts 

has mostly been done by the Air Force Institute of Technology (AFIT) and the National 

Aeronautical and Space Administration (NASA) [1]. A great deal of research on 

geometric instability of composite shells without cutouts has been published [3-6] as has 

some material on isotropic shells with and without cutouts [7-11]. 



Initially, most work on composite panels with cutouts focused on shells with 

smaller sized cutouts (cutout < 3% of panel area). Janisse [12] studied the effects of a 

small cutout, comparing experimental to analytical results. He found that the collapse 

characteristics of composite cylindrical panels are dependent upon ply lay-up and size of 

the cutout. Several investigations made in the area of composite shell structures with 

large cutouts have been conducted at AFIT. Some of the earliest work utilized the non- 

linear capability of Lockheed's energy based finite element program Structural Analysis 

for General Shells (STAGSC-1). Tisler [13,14] compared STAGSC computer results to 

experimental results and found that STAGSC did not seem capable of handling the large 

rotations inherent to large cutouts. Schimmels [15,16] compared experimental results for 

composite shell panels with large cutouts using both STAGSC and the SHELL program 

developed by Scott Dennis [2] as part of his doctoral dissertation on a large displacement 

and rotational formulation for composite shells. Schimmels concluded that the SHELL 

program provided better results for panels with large cutouts with free edge rotations 

greater than 17 degrees compared to STAGSC results. In addition, Dennis and Palazotto 

found that experimental test results for panel surface rotations around a 101.6 mm x 101.6 

mm (4" X 4") cutout, obtained by Tisler, in comparison with STAGSC-1 results exceeded 

the intermediate nonlinear capability of the STAGSC-1 program [17]. 

In other research at AFIT, Captain James Hatfield investigated the effects of 

thickness, ply layup, and panel axial length on the collapse characteristics of a panel with 

and without a large cutout, and Captain John Del Barga investigated the effect of cutout 

dimensionality. Hatfield [18] performed collapse analysis using the SHELL program for a 

101.6 mm x 101.6 mm (4" X 4") cutout using a 304.8 mm x 304.8 mm (12" x 12") and 



304.8 mm x 508 mm (12" x 20") panel with free vertical edges where the first 

measurement is in the circumferential direction and the second measurement is in the axial 

direction. He analyzed both symmetric quasi-isotropic and symmetric cross-ply lay-ups 

and compared them to experimental results. He verified that quasi-isotropic lay-ups for 

similar panel configurations had higher collapse loads than the cross-ply lay-ups, and by 

increasing the axial length from 304.8 mm (12") to 508 mm (20"), it was found the 

collapse load was reduced for panels with the same number of plies. Hatfield also found 

that the greatest radial displacements and rotations for a panel with a cutout occurred 

along the free vertical edges of the panel and the corners of the cutout. The greatest 

values of radial displacement and rotations tended to occur along the horizontal centerline 

of the panel at the free vertical edges. 

Del Barga [1] examined the effects of cutout dimensionality by using the SHELL 

program to analyze five different centralized cutout configurations for 8, 16, and 24 ply 

quasi-isotropic [0/+45/-45/90] lay-ups for 304.8 mm x 304.8 mm (12" x 12") and 304.8 

mm x 508 mm (12" x 20") panels with free vertical edges and compared them to 

experimental results. His results indicated that the magnitudes of the radial displacements 

along the vertical edge at the horizontal centerline of the panels ranged from 4-12 times 

the panel thickness, which led him to conclude that a nonlinear theory which addresses 

large rotations, like SHELL, was required. He also determined that the numerical vaulues 

of maximum bending rotations (vj/s) were inclined to occur at the panel vertical edge at or 

near the panel horizontal centerline. In addition, the numerical values of local maximum 

radial displacements tended to occur at the vertical cutout edge along the panel horizontal 



centerline, while the local maximum bending rotations occurred at or near the cutout 

corners when transverse shear effects became significant. As for dimensionality, the 

collapse load and stiffness of a panel were numerically verified to decrease with an 

increase in cutout area, and the collapse of panels with equivalent cutout areas was 

characterized by the manner in which axial compressive energy was absorbed by the panel. 

Also, the collapse load and stiffness of a panel increased with increasing panel thickness 

when panels of equivalent axial lengths were compared. 

The program SHELL mentioned above is a geometric nonlinear finite element 

program developed by Scott Dennis at AFIT. This program takes into account large 

displacements and moderately large rotations and incorporates a parabolic distribution of 

shear through the panel thickness. Unlike isotropic panels, it is necessary to take into 

account the effects of transverse shear in an analytical model for thick composite shells 

due to the longitudinal modulus (Ei) being one to two orders of magnitude larger than the 

transverse shear moduli (Gi2 and Gu) [19]. In addition, the effect of transverse shear 

becomes more important as the thickness of the panel is increased [20]. 

In addition to Dennis' work, a great deal of research has been devoted to 

transverse shear in composite cylindrical shells [21-29]. Ren [30] compared results from 

classical shell theory and Donnell shell theory to exact solutions. He found that the 

classical shell theory leads to a very poor description of a laminated shell at low radius-to- 

depth ratios (where R/h < 20). Linneman [31,32] also compared Donnell solutions with 

classical solutions in order to examine the effects of transverse shear deformation in his 

presentation on the theoretical development of anisotropic cylindrical shell theory. Tighe 



[33,34] looked at higher order shear deformation theory and found that curvature plays an 

important role in the buckling load of cylindrical shells. In a very thorough analysis of 

higher-order transverse shear theory for composite shells, Smith [35] compared eight 

variations on the order of the thickness expansions used to approximate the shell shape 

factors, the order of the assumed linear displacement field, and the nonlinearity of 

transverse shear strain. He found that a thin, shallow (h = 0.25", R = 100"), isotropic 

cylindrical shell panel exhibited a more flexible response during collapse when nonlinear 

transverse shear was included. For deeper shells, the quasi-nonlinear higher-order 

transverse shear deformation theory produced a more flexible response during collapse 

when the order of the shell shape factor approximations was increased. 

1.2 Objectives 

The objective of this research was to study the effects of through-the-thickness 

shear and moderately large rotations on the instability of quasi-isotropic [0/+45/-45/90] 

graphite/epoxy cylindrical shell panels. A numerical collapse analysis was performed on 

panels with varying centrally located cutouts for axial compression. For each 

configuration, the thickness was varied by using panels of 8, 16, and 32 plies. This 

analysis was performed using three different shell theories. The most accurate of the three 

theories is known as the Simplified Large displacement moderate Rotation (SLR) theory 

[2,17]. This theory takes into account both through-the-thickness shear and moderately 

large rotations. The second theory used was the Donnell cylindrical shell theory with 

transverse shear flexibility. As the name implies, this theory takes into account through- 



the-thickness shear. However, it tends to produce inaccurate results when large rotations 

(> 10°) are introduced [17]. The third theory used was the classical Donnell cylindrical 

shell theory, which neglects both through-the-thickness shear and large rotations. The 

intent of this approach was to determine when large rotations and through-the-thickness 

shear become significant in the collapse analysis by noting where the three theories 

diverged for each of the cutout configurations for varying thickness. 

The cutout configurations used were the same as Del Barga's [1] except that solid 

shells with no cutouts were also examined. Del Barga used only SLR theory to analyze 8, 

16, and 24 ply panels, whereas this research used two other theories and examined 32 ply 

panels instead of 24 ply panels. The SHELL computer program was used for both SLR 

and Donnell analysis. A modified SHELL program called CLASSIC was used for the 

Classical Donnell analysis. Experimental results from both Hatfield and Del Barga were 

used to check the accuracy of the computer results for both 8 and 16 ply panels. 

The boundary conditions assumed for this analysis were free vertical edges with 

the horizontal bottom edge of the panel fixed. The top horizontal edge of the panel was 

assumed to only displace in the axial (u) direction. The panel's horizontal edges were 

assumed to be fixed circumferentially. 

Another objective of this research is to determine the limits of the Donnell and 

Classical Donnell theories in collapse analysis. The equations used in Donnell allow for a 

significant decrease in computational work over SLR, and the equations for Classical 

Donnell are even more simplified. However, these bonuses in computing time may be 



negated by inaccuracies caused by the introduction of large rotations and through-the- 

thickness shear for each respective theory. 

1.3 Scope 

Three panel configurations for six different size cutouts were analyzed. Both Del 

Barga and Hatfield agreed that the 304.8 mm x 508 mm (12" x 20") panel was more 

realistic for practical applications, so no analysis was performed on the 304.8 mm x 304.8 

mm (12" x 12") panel. Thus, the three configurations used are 8, 16, and 32 plies for the 

(12" x 20") panel. The cutout sizes used were: 

No cutout 
50.8 mm x 50.8 mm (2" x 2") 
101.6 mm x 101.6 mm (4" x 4") 
127 mm x 127 mm (5" x 5") 
50.8 mm x 203.2 mm (2" x 8") 
203.2 mm x 50.8 mm (8" x 2") 

where the first measurement is in the circumferential direction and the second 

measurement is in the axial direction. 

Using 3 different configurations for 6 different cutout sizes and three different 

theories resulted in 54 different sets of data, not including additional runs for isotropic 

comparisons. 



2. Theory 

2.1 SHELL Theory 

Both the SHELL and CLASSIC programs use a geometrically nonlinear static 

shell theory. The SHELL program has the ability to utilize both SLR and Donnell 

cylindrical shell theories, while CLASSIC incorporates the equations for Classical Donnell 

theory. All three of these theories share several assumptions. First, the shell is assumed to 

be thin so that a state of plane stress is said to exist (03 = 0). This allows the three 

dimensional shell problem to be handled as a two dimensional problem, or to be more 

precise, the entire shell is described by the datum surface. Another assumption shared by 

the three theories is that the shell consists of linear elastic laminated orthotropic material 

which implies a small strain assumption or no plasticity. Finally, both SLR and Donnell 

assume the transverse shear distribution is parabolic through the panel thickness with the 

transverse shear being equal to zero at the top and bottom surface of the panel. 

The application of these theories requires cylindrically shaped finite-elements. 

These elements capture the shell bending-membrane coupling by matching the curvature of 

the shell surface. This makes them superior to flat finite-elements used in numerical 

models where panel responses are predicted for shells with large cutouts. 

A brief explanation and description of the more significant equations used in the 

three theories is presented in the following sections. Palazotto and Dennis [17] provide a 

more detailed description and derivation of all three theories. 



2.1.1 Geometry and Contracted Notation 

Both programs use a curvilinear orthogonal coordinate system which is shown in 

Figure 1. The angle 0 depicted in this figure indicates the positive ply lay orientation. The 

datum surface is formed by the X and S axes and lies at the center of the thickness of the 

panel. The thickness coordinate on the outer surface is negative and the inner surface is 

positive. The displacements u, v, and w lie along the X, S, and Z axes respectively. The 

radius of curvature, which is measured to the outside surface of the panel, is 304.8 mm 

(12"). Subscripts denoting stress and strain orientation are summarized in Table 1. 

Table 1.   SHELL Contracted Notation [15] 

Stress Strain Cylindrical 

Explicit Contracted Explicit Contracted Coordinates 

an Oi Eu El X   =>    1 

C?22 o2 E22 E2 S    ^>     2 

033 C73 633 S3 Z    ^>    3 

CT23 o4 Y23 e4 S-Z   =>    4 

On 05 Yl3 e5 X-Z =>    5 

On o6 Yl2 e6 X-S =>    6 



RADIUS OF CURVATURE 
R = 304.8mm (12'") 

508 mm (20.0" 

t = THICKNESS 
(VARIES WITH LAYUP) 

ARC LENGTH = 304.8 mm (12") 

Figure 1. Shell Panel Geometry With Positve Ply Orientation Angle 
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2.1.2 Constitutive Equations 

The SHELL program used for this research assumes a modified plane stress 

relationship. This modified relationship allows o? = 0 but it assumes a4 and o5 are not 

equal to zero, which incorporates non-zero through-the-thickness shear stress into the 

finite-element code [2]. A complete derivation can be found in several recent sources 

[2,15,17]. The reduced stiffness constitutive relation becomes [15]: 

i Ö-6 f 

Qu 0,2     o oo 

0,2 022       0 0       0 

0 0 2Q66 0       0 

0 0        0 044      0 

. 0 0        0 0     Qi5 

e2 

4 

1*5 J 

(1) 

The reduced stiffness coefficients (Qij) related in terms of engineering constants are [1]: 

Qll=Ei/(l-Vi2V2l) 

Ql2 = Vl2E2 /(I-V12V21) = V2lEi/(l-Vi2V2l) 

Q22 = E2/(l-Vi2V2i) (2) 

Qö6 = Gl2 

Q44 = G23 

Q55 = G13 

where the Ei's are the moduli of elasticity, the Gjj's are the transverse shear moduli, and 

the Vjj's are the Poisson's ratios. 
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These equations (1 and 2) are used for an orthotropic material where stresses and 

strains are defined with respect to the principal material directions. The next equation is 

used for a laminate where the fiber directions do not coincide with the global coordinate 

directions. Therefore, the plies must be referenced to a global axis system and their effects 

summed [15]. The stress-strain relations with respect to the global X-S coordinate system 

is defined by: 

{oi}k=[T][Q8]k[T]T{e}k (3) 

where, 

[fl = 

and 

c2     s2        -2cs 

s1     c2 2cs 

cs   -cs   (c2 -s2) 

for 
0,1       012 0 

0,2       022 0 
0       0     20, 66- 

(4) 

[T] 
c   -s 

s    c 
for 

044 
L o    Q. 55- 

(5) 

with c = cosB and s = sinB where 0 is the rotation from the material to the global stiffness 

relation. Equation (3), which is the transformed constitutive relation, can be written: 

R=[e,lM <6) 

The k means each kth ply in the laminate is characterized by this equation. The kth ply is 

defined by its distance form the mid-plane of the laminate. The reduced stiffness can be 

transformed via equation (4) to Qu, Qu, QX6, Q26, and 066 which are defined in several 

composite materials texts [36]. Applying equation (5) yields the remaining transformed 

constitutive equations: 
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These equations (1 and 2) are used for an orthotropic material where stresses and 

strains are defined with respect to the principal material directions. The next equation is 

used for a laminate where the fiber directions do not coincide with the global coordinate 

directions. Therefore, the plies must be referenced to a global axis system and their effects 

summed [15]. The stress-strain relations with respect to the global X-S coordinate system 

is defined by: 

{oi}k=[T][Qs]k[T]T{8}k (3) 

where, 

[71 = 

and 

c2 s2 -2cs a. 012 0 

5" c2 Ics for 0.2 022 0 

CS -CS (c2-s2)\ . 0 0 2066 

(4) 

[71 
c   -s 

s    c 
for 

044 0 

0 055 J 
(5) 

with c = cos0 and s = sinB where 0 is the rotation from the material to the global stiffness 

relation. Equation (3), which is the transformed constitutive relation, can be written: 

M,=[e,]M <6> 
The k means each kth ply in the laminate is characterized by this equation. The kth ply is 

defined by its distance form the mid-plane of the laminate. The reduced stiffness can be 

transformed via equation (4) to Qu, Qn, 0I6, Q26, and 066 which are defined in several 

composite materials texts [36]. Applying equation (5) yields the remaining transformed 

constitutive equations: 
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ö« =£?« cos4 0 + C?5, sin4 <9 

Q4, = (Q4i -055)cosOsin0 

Ö„=Ö44sin4^+055cos4^ 

(7) 

The program CLASSIC assumes a plane stress relationship where o4 and 05 are 

equal to zero. Thus, the ply constitutive relations are developed similarly to those used 

above for SHELL except equation (5) is not used because the initial reduced stiffness 

relation is: 

<r, 6J 

Qu Qn 0 *> 

Qn Q22 0 *2 

0 0 2ßJ U J 
(8) 

and through-the-thickness shear stress is not incorporated into the finite element code. 

2.1.3 SLR Strain-Displacement Relations 

The main differences in the three theories used for this study can be found in the 

strain-displacement relations for each theory. The SLR theory includes through-the- 

thickness shear distribution and uses the exact Green's strain-displacement relations for in- 

plane strains ei, e2, and e6. The transverse shear strains, e4 and e5, include only the linear 

Green's strain-displacement terms. The physical strains (Sy) are defined by: 

«Hi = Yij / (hi hj) (9) 

where (Yij) are Green's strain-displacement relations presented in Saada [37] and hj are the 

shell shape factors. The Green's strain-displacement relations are only valid for small 

strain situations and are a function of the uJ? u2, and u? displacements and the shell shape 

factors (hi). They are defined in terms of the metric tensor of the transformed coordinate 
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system as a result of deformation (Gy) and the metric tensor of the transformed coordinate 

system prior to deformation (gij) through the following equation: 

2YS = Gd-8j (10) 

The metric tensor links the Cartesian to the curvilinear coordinate system through the 

invariant property of length. The shell shape factors are a function of the coordinate 

system scale factors (a,) and radii of curvature of the shell (Ri and R2). For the cylindrical 

shell, the coordinate system scale factors and radii of curvature are defined as ai - a2 = 1 

and Ri = oo and R2 = R. The general shell shape factor equations yield the values of the 

shell shape factors that are used in this research: 

hi = ai(l-z/Ri)=l 

h2 = a2(l - z/R2) = 1 - z/R (11) 

h3=l 

A more complete overview of the development of Green's strain displacement equations 

and their relations to shells can be found in Palazotto and Dennis [17]. The definitions of 

the coordinate system scale factors and radii of curvature and an in-depth derivation of 

Green's strain displacement equations is provided in Saada [37]. 

The kinematics permit the incorporation of the through-the-thickness shear with 

the thickness variable z in the following displacement equations: 

ui(x,s,z) = u° + zv|/x + z2<t>x + z3Yx + z46x 

u2(x,s,z) = v°(l - z/R) + zv|/s + z2<J>s + z3ys + z40s (12) 

u2(x,s,z) = w 
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where u°, v°, v|/;, fa, y;, and 6; are functions of the coordinates X and S. The displacements 

u° and v° are of the shell middle surface. The \\i\ terms are rotations of the surface normals 

in the X and S planes. The fa, y-„ and 9j terms are functions to be determined such that 

there is no shear stress (04 and a5) on the top and bottom surfaces of the shell, since 

transverse normal strain (e?) is assumed negligible. 

The shear effects are accounted for by keeping just the linear displacement terms 

for Green's strain displacement relations, y23 and yi3. Using equation 10, the transverse 

shear strains 64 and 65 can be calculated: 

64 = l/h2 (U3.2 + h2u2.3 -u2h2.3) (13) 

s5 = 1/hi (U3.1 + hiui.3 -uihi.3) 

By using the shape factors established previously and substituting the 

displacements in equation (12) into equation (13), the functions fa, y;, and 9i can be 

determined. Assuming zero transverse shear stress, and thus zero transverse shear strain 

on the top and bottom surface of the shell, fa, y;, and 0i become: 

(jh = (|>2 = 0 

Qi = TJ2Ri (14) 

Yi = -4/3h2(v|/i + w,i/aO 

where h is the thickness of the shell. Using these values and ignoring the 4th order term 

because it is only l/20th the third-order term [17], equation (12) can be rewritten as: 
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ui(x,s,z) = u° + z\j/x - (4/h?)z3(v|/x + w,x) 

u2(x,s,z) = v°( 1 - z/R) + z\|/s + (4/hV(i|/s + w,s) (15) 

u3(x,s,z) = w 

If equation (15) is substituted into equation (13) and neglecting the small order 

terms (z3), one obtains the transverse shear strains: 

e4 = [1/(1 - z/R)](i|/s + w,s)[l - (4z2/t2)] (16) 

e5 = (v|/x + w,x)[l-(4z2/t2)] 

The in-plane strain displacement relations are found by substituting equation (15) 

into equation (9): 

722 0   , 1    ,      2 ,^2    ,   .3 „i   ,   „4 ^.4 _,_ „6 ^6 

hi 
e-, = *M =9t = e? +ZK\ +Z

2
^ + ZV2

3
 + ZV

4
 +Z

6
K

6
2 (17) 

7 12 „0   ,   _„1    ,   _2„2   ,   _3.„3   ,   „4 „4   .   „6^6 

By expanding typical scale factor expressions into binomial series and substituting them 

into equation (17) after truncating past the first order z terms, the following equation 

results: 

1=1,2,6 (18) 

This equation can also be written in matrix format: 
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f         ~\ 

*l *.° 
■ — • 

£2 ' + 

ßt. 
n 

1*6 J 

^11        K\2        *"l3.      *"l4        K\$       K\6       *"l7 

^21        "*22        ^23       "*24       ^25 26       ^*27 

K6\       K62       K6i       KM       K6f       *66       K61J 

(19) 

The matrix equation for the transverse shear strains is: 

■ + 
AC, 

(20) 

For the cylindrical shells used in this study, equations (21-24) represent the specific strain- 

displacement equations, where c = 1/R and k = -4/2h2. The seven degrees of freedom u, 

v, w, wx, ws, v|/x, and \j/s are functions of the mid-surface coordinates X and S only. 

S{ =e? +ZPK, 

1 2.2 

K\i =v'.; 2 ~ ^"v'«c+2{¥xx + ¥sx) 

*13 = *(M;>.« + V*,*) + ".« *"(W,„ + ^.J + V,X *(W,„+^.X)'     (21) 

*14 = -V,, fc("\„ + ^„) + ¥xJiW^ + y/x,X) + VsJiW'sx + Vs,) 

*15=o 

A:2 

K,7=0 
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£, =£,° +ZPK- 2p 

e? - v,s-wc +—(v,] +M'2 +ii,2s +vV + w2c2) + \m>,s c - v5j wc 

K21 = if/ss - wc2 + u2 C + W,\ C + If V - c2 (v,s w - vw„ ) + 

Wfi1 + v„ y„ + «„ V,.s - c(r„w - V,*\, ) 

^22 = y„c + 2 (^« + vL + ¥]c2) + 2 iffXJu,s c + 

vy// - 2c2{if/ssw - y,w„ ) + y/SJv,s c 

y2c3+fcv,s (w,ss+ys.s) + vkc2(w,s+y/s)- (22) 

wkc(w,a+yrlr,) + w„ kc(w,s+y/s) 

K24 = kc(w,ss+tffss) + 2u,s kc(M',„+¥xs) + vkci(w,s+if/s) + 

2kc2(-ww,s-wy/ss + w2+w,s v,) + kytfS(w,a+i//sJ 

K25 = 2kc[ y/ss (w,„+yrStS) + y/xs (w,„+y/xs) + y/sc
2 (w„+y/s)] 

K26 = (k212)[w*a+2w,a ¥ss + y/2s +w,l,+2w,„ y/x.s + 

K21 =k2c[(w,ss+w)2 + (w,xs+iyxJ
2 +c2(w,s+y/s)

2] 
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eK =eZ+z"K, 6p 

Se = "„ +v,x +u,x ii,s+v,x v, + w,x w„+c{vw,x -v,x w) 

«ei = c(«„-v,.T) + y/„ + i//SJC +u,, y/x.s + VxJ'is + 

«62 = c( VXJ + "., VXJ + "vr V« - cw y/s.x - cw y/sx + cw,x y/s) + 

Vx.xYx.s + Ys.xYs, 

«63 = 2*w,„+*y„ + *y„ +*«„ 0^+y,,) + K. (w,„+^.,) + 

c(^,V,., + V^VsJ + tou (w>«+^,x) 

(23) 

«67 = *2C[(Wi„+^x.rX^„ + ^.J + (W^ + ^.xXW,„ + V„)] 

^4=(^, + ^) + -23«(M'„ + ^) 

^5 =(M;v,+^) + ^23A-(w,x + ^v) (24) 
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2.1.4 Modified Donnell Strain-Displacement Relations 

The Modified Donnell cylindrical shell strain displacement relations are much more 

simplified, as seen in the following: 

1    , 

e2=u2j-w/R + ^w,] (25) 

S6=t(hs+U2.x+M',XM\S 

where Ui and u2 are given by the kinematics of equation (15). When the kinematics are 

substituted into equation (25), the strain-displacement relations can be found to be similar 

to equations (21-24) except that there is a great reduction in the number of terms. 

e,=e?+zfKlp 

e^v,x+-w'x 2 

*ll = Vx,x (26) 

Kn=k(w^ + Vx,x) 

Klp(p = 2,4,5,6,7) = 0 

C j   — C 2     *   Z     /\2 

£•2° = v,s-w / R +—w, 
1.   2 
2 

K2X = VS,-VJR (2?) 

«23= k(W>ss-Ys.s) 

K2p(p = 2,4,5,6,7) = 0 
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E6 = e°+ZpKSp 

F     — 11    +V     +W      W ö6        "'s™ \x~rv->x n->s 

K6x = Vx* + V,.x-vJR (28) 

K6i=k(2M\xs+y/xs + y/sx) 

KepCp = 2,4,5,6,7) = 0 

where k = -4/3 h2 and, as in the SLR theory, the seven degrees of freedom u, v, w, wx, ws, 

v|/x, and \|/s are functions of the mid-surface coordinates X and S only. The transverse 

shear terms, e4 and e5, are the same as equation (24). 

2.1.5 Classical Donnell Strain-Displacement Relations 

In the Classical Donnell theory there are only five degrees of freedom, u, v, w, wx, 

and ws, which are dependent on X and S only. There are no \\f\ terms, which means the 

Classical Donnell theory assumes there are no shear rotations. The Classical Donnell 

theory uses kinematics similar to the Classical Von Karman flat plate kinematics with the 

exception of the U2 term. 

ui(x,s,z) = u + zw,x 

u2(x,s,z) = (l-z/R)v + zw,s (29) 

u3(x,s,z) = w 

The strain-displacement relations are the same as those used for the modified 

Donnell theory in the previous section. When the kinematics of equation (29) are 

substituted into the strain-displacement equation (25) the Classical Donnell strain- 

displacement relations result: 
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Ex=E*+ZpKXp 

e!=«„+\< (30) 

«11  =W'xx 

Klp(p = 2,3,4,5,6,7) = 0 

£ 2  — o 7    > Z   K-) f 

£0=Vs_w/R + lw2 (31) 

K2p(p = 2,3,4,5,6,7) = 0 

S6=sl+ZPK6p 

el=u„+v,x+w,xw„ (32) 

K61=2W,„+VJR 

"K,5p(p = 2,3,4,5,6,7) = 0 

Because through-the-thickness shear is neglected, e4 and e5 are assumed to be zero 

for the classical case. It is interesting to note that where the Modified Donnell theory uses 

rotations v|/j, the Classical Donnell theory makes use of the slope w,j. 
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2.1.6 Shell Potential Energy 

Potential energy is defined as the internal strain energy plus the work done by the 

external forces: 

up = U - W (33) 

where internal strain energy can be represented by the following equation [1]: 

.U = \l2\\{\Q]{e})T{e}dQdt (34) 

The Q term is a symmetric matrix composed of elements of transformed stiffnesses for the 

kth ply, and the shell middle surface is represented by Q [17]. The internal strain energy is 

composed of two parts. 

U = Ui + U2 (35) 

The first term, Ui, consists of the in-plane terms. The second part, U2, is composed of the 

transverse shear terms. By substituting equation (17) into equation (34), a general 

expression can be generated that applies for all three theories: 

.C/i = 1/2 

;MV<>i    ' *    "-\pf     ' Ü22V2    ' *    "-2pf 

hQn{e> +z?Klp)(e°2 +zrK2r) + Q66(e°6 + zpK6p)
2 + 

)2Q{6^+zpKlp)(e0
6+zrK6r) + 

2Q26(e°2] +zpK2p){el +zrK6r)]dzdQ 

(36) 

41 .   ._    .   fc44(^+^^42)2+Ö55(^+^2^)2 + -44' 
,      —   I /   1    I   I 

hQ45(s°4+z2K42)(e!! +z2K52)]dzdQ 

where p,r = 1, 2, ... 7. Integration over the thickness of the laminate provides the strain 

energy as a function of the shell datum surface. A symmetric lay-up also allows elasticity 

arrays which are multiplied by odd powers of z to be canceled. If the strain-displacement 
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relations for the three theories discussed in the previous sections are considered in the 

general expression: 

{6} = {6°} + [K]{z} (37) 

Then equation (36) can be manipulated into the following form [17]: 

Ui = 1/2 J  {6°}T [A] {6°} dfi 

+ 1/2 J 2 {6°}T( [B] + [D] + [E] + [F] + [G] + [H] + [I]) {K}dQ 

+ 1/2 j  {K} ([D] + [E] + [F] + [G] + [H] + [I] + [J] + [K] + [L] 

+ [P] + [R] + [S] + [T]) {K} dQ 

(38) 

U2 = 1/2 j ( (E°}
T
 [A] {6°} + 2 {6°} [D] {K} + {K}

T
 [F] {K})dQ 

where 

{ [A B, D, E, F, G, H, I ,J ,K, L, P, R, S, T] } = 

J [Q] {1, z, z\ z\ z\ z\ z\ z\ z\ z9, z10, z", z12, z13, z14} dz        (39) 

2.1.7 Finite Element Solution 

The equation of motion to be solved is that of static equilibrium where ZF = 0. 

The internal strain energy can be represented as: 

U=l/2qT[K + N1(q)/3+N2(q
2)/6]q (40) 

where q is defined as the column vector of nodal displacements, K is a constant stiffness 

matrix, Ni is a matrix of stiffness terms that are a function of linear displacements, and N2 

is an array of stiffness terms based on quadratic displacements. The external work is: 

W = qTR (41) 

where R is a column vector of nodal loads. If one substitutes equations (40) and (41) into 

equation (33) and takes the first variation, the result is: 
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5np = 6qT [(K + N, (q)/2 + N2 (q
2)/3) q - R] = 0 (42) 

= 5qTF(q) = 0 

The first variation of the potential energy , 8np= 0, yields the static equilibrium equation. 

This equation is at a minimum for static equilibrium [35]. For an arbitrary and 

independent 5q, it follows that: 

F(q) = 0 (43) 

This expression can be expanded using a Taylor series where higher order terms are 

neglected because Aq is assumed to be small. This results in the following: 

F(q + Aq ) = F(q) + (SF/dq) Aq + ... = 0 

(5F/5q) Aq = -F(q) (44) 

When matrix differentiation is applied to equation (42) for F the following results: 

[K + N1(q) + N2(q
2)]Aq = -F(q) (45) 

KTAq = -F(q) 

This equation defines the tangent stiffness matrix [KT]. The Modified Newton Raphson 

technique, incorporating a displacement control algorithm is used to solve: 

[KT] Aq = - [ K + Ni(q)/2 + N2(q
2)/3 ]q + R (46) 

The Modified Newton Raphson technique is presented in [2], [15], and [17]. 

2.2 Finite Element Modeling 

A principal part of finite element modeling is the mesh used in the analysis. 

Initially this research used six meshes to model the five cutouts and the solid shell. These 

meshes were the same used by Del Barga for the 304.8 mm x 508 mm (12" x 20") panels 
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except for the solid shell (see Appendix A). According to Del Barga, these meshes were 

all similar to the 304.8 mm x 508 mm (12" x 20") panels with 50.8 mm x 50.8 mm (2" x 

2") and 101.6 m x 101.6 mm (4" x 4") cutouts used by Hatfield. The solid shell mesh 

used in this research was the same used for the 50.8 mm x 50.8 mm (2" x 2") cutout 

except no elements were removed from the stiffness matrix and the degrees of freedom 

within the cutout were not specified (See Figures 2 and 3). These meshes used 12.7 mm 

(0.5") square elements around the cutout, and transitioned to larger elements at a 

minimum of two inches away from the cutout. Dennis conducted convergence studies 

which indicated that the 12.7 mm square element was the optimal size for capturing the 

panel response around areas of large displacement and rotation and minimizing CPU run 

times. The mesh used for the 304.8 mm x 508 mm (12" x 20") panels for the solid shell, 

the 50.8 mm x 50.8 mm (2" x 2"), and 101.6 m x 101.6 mm (4" x 4") cutouts had a total 

of 1777 nodes and 560 elements. The mesh used for the 203.2 mm x 50.8 mm cutout had 

1973 nodes and 624 elements. The mesh used for the 50.8 mm x 203.2 mm cutout had a 

total of 1829 nodes and 576 elements. Finally, the mesh used for the 127 x 127 mm (5" x 

5") cutout had 2085 nodes and 660 elements. 

Results obtained for the Classical Donnell theory when using the above models 

indicated that, in certain cases, the 12.7 mm (0.5") square elements were not entirely 

appropriate for representing the panel response around areas of large displacement and 

rotation. More specifically, the results obtained for each of the eight ply panels with 

cutouts indicated inappropriate modeling, as did every panel with a 127 x 127 mm (5" x 

5") cutout (see section 2.2.1). Therefore, the inappropriate meshes were refined using 

6.85 mm (0.25") square elements around the cutouts. The mesh used for the 304.8 mm x 
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25.4 mm (1") 

29 6 

Total nodes = 1777 
Total elements = 560 

12.7 mm (1/2") 

&9_ 

25.4 mm (1") 

t 

J2.7 mm (1/2") 

1749 

Figure 2. Finite-Element Mesh Used for 304.8 mm x 508 mm 
Solid (12" x 20") Panel 
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25.4 mm (1") 

Total nodes = 1777 
Total elements = 560 

12.7 mm (1/2") 

29 6 
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♦ 
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-Q 
1749 

Figure 3. Finite-Element Mesh Used for 304.8 mm x 508 mm 
(12" x 20") Panel With 50.8 mm x 50.8 mm 
(2" x 2") Cutout 
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508 mm (12" x 20") panels for the 50.8 mm x 50.8 mm (2" x 2") cutout was refined three 

times to insure convergence (see Figures 4-6). The first model used the 6.85 mm (0.25") 

square elements only 12.7 mm (0.5") from the cutout and the second model went out 26.4 

mm (1") from the cutout. The first model used 2773 nodes and 884 elements while the 

second required 3153 nodes and 1008 elements. The final model refined the elements 

along the free edge by adding a line of nodes 12.7 mm away from the free edge. This was 

done to reduce any possible distortion in the S direction caused by rectangular shaped 

elements. This model used 3301 nodes and 1080 elements. 

The larger square cutouts both used the 6.85 mm square elements 26.4 mm from 

the respective cutouts (see Figures 7-10). The refined model for the 101.6 m x 101.6 mm 

(4" x 4") cutout had a total of 3985 nodes and 1280 elements while the refined mesh used 

for the 127 x 127 mm (5" x 5") cutout had 4913 nodes and 1584 elements. The two 

rectangular cutouts used the 6.85 mm square elements 26.4 mm around the corners of the 

cutout. This is where Del Barga identified the maximum global transverse shear strains to 

occur [1] and refining the mesh along the entire length of the cutout would create an 

excessive number of nodes and elements. The refined mesh used for the 50.8 mm x 203.2 

mm cutout had a total of 3253 nodes and 1040 elements and the refined mesh used for the 

203.2 mm x 50.8 mm cutout had 3397 nodes and 1088 elements. 

The SHELL program uses a two dimensional 36 degree of freedom rectangular 

curved finite element, where the element shape functions are derived assuming a 

displacement field (see Figure 11). This element incorporates the through-the-thickness 

parabolic transverse shear distribution. The four corner nodes have seven degrees of 

freedom (u, v, w, \|/,x, \|/,s, w,x, and w,s). The mid-side nodes have two degrees of 

29 



25.4 mm (1") 

35 6 

Total nodes = 2773 
Total elements = 884 

6.35 mm (1/4")      12.7 mm (1/2") 

LÜÜ 

#71 
1803 

1379 

25.4 mm (1") 

J2.7 mm (1/2") 

1 
T 6.35 mm (1/4") 

2739 

Figure 4. Finite-Element Mesh Used for 304.8 mm x 508 mm 
(12" x 20") Panel With 50.8 mm x 50.8 mm (2" x 2") 
Cutout First Refinement 12.7 mm (1/2") Around Cutout 

30 



25.4 mm (1") 

37  6 

Total nodes = 3153 
Total elements = 1008 

6.35 mm (1/4") 12.7 mm (1/2") 

.1137 

O 
1585 

2017 
1569„ 

25.4 mm (1") 

J2.7 mm (1/2") 

1 
T 
3117 

6.35 mm (1/4") 

Figure 5. Finite-Element Mesh Used for 304.8 mm x 508 mm 
(12" x 20") Panel With 50.8 mm x 50.8 mm (2" x 2") 
Cutout Second Refinement 25.4 mm (1") Around Cutout 

31 



Total nodes = 3301 
Total elements = 1080 

25.4 mm (1") 

37 6 

6.35 mm (1/4") 12.7 mm (1/2") 

1695 
1247 

2127 
1679 

25.4 mm (1") 

1 

12.1 mm (1/2") 

6.35 mm (1/4") 

3227 

Figure 6. Finite-Element Mesh Used for 304.8 mm x 508 mm 
(12" x 20") Panel With 50.8 mm x 50.8 mm (2" x 2") 
Cutout Third Refinement 12.7 mm (1/2") From Free Edges 

32 



freedom (u and v). This element was previously used by Shimmels, Hatfield, and Del 

Barga in their collapse analysis of cylindrical panels with large cutouts [15,18, and 1]. 

The CLASSIC program uses a two dimensional 28 degrees of freedom rectangular 

curved finite element similar to the 36 degrees of freedom element used in SHELL, except 

the four corner nodes do not have the rotational degrees of freedom v)/,x, and \|/,s. This 

element does not incorporate the through-the-thickness parabolic transverse shear 

distribution either. 

Although it is not visible in Figures 3-10, there are elements inside the cutouts. 

This is due to the automatic mesh generation used by both the SHELL and CLASSIC 

programs. The programs model the cutout by leaving out the stiffness for the elements 

within the cutout area [20], which is allowed because all the nodes of these elements 

within the cutout region are also constrained (u = v = w = \|/x = v)/s = w,x = w,s = 0) in the 

input file. This algorithm was not originally available to CLASSIC, but was added for this 

research. 

The material properties used for the SHELL analysis are located in Table 2. The 

program CLASSIC used the same properties except for the shear properties, which it 

neglects. These material properties were deemed to be too stiff by Del Barga based on his 

experimental results [1]. He determined a knockdown factor of 0.9831 which was applied 

to all numerical loads obtained in this research. This factor was based on a linear variation 

in collapse load predicted by the numerical results caused by varying the material 

properties used by the SHELL program from those of the actual AS4/3501-6 graphite 

epoxy panels used for experimental data. 
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Figure 11: SHELL 36-Degree-of-Freedom Element 
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Table 2. Properties of AS4/3501-6 Used by SHELL [1] 

Elastic Modulus Along Fibers 135.8 GPa (19.7 Msi) 
in Compression (Ei) 

Elastic Moduli Transverse to Fibers 10.9 GPa (1.579 Msi) 
in Compression (E2 = E3) 

Major Poisson's Ratio (vi2) 0.276 

Elastic Moduli in Shear (Gi2 = Gu) 6.4 GPa (0.925 Msi) 

Transverse Elastic Modulus 3.2 Gpa (0.462 Msi) 
in Shear (G23) 

The average ply thicknesses of each panel/cutout configuration was the same used 

by Del Barga in his research [1]. The solid 8 and 16 ply shells used the same average 

thicknesses as their respective 50.8 mm x 50.8 mm (2" x 2") cutout counterparts. The 32 

ply shells had the same average ply thickness as their respective 16 ply counterparts. All 

panels were analyzed for a radius of curvature of 304.8 mm (12"). This dimension is the 

radius of curvature measured to the convex outside surface of the shell. Both the SHELL 

and CLASSIC programs interpret the radius of curvature input to be at the mid-ply or 

datum surface. 

All of the ply lay-ups analyzed used a symmetric quasi-isotropic lay-up of [0/45/- 

45/90]. All of the panel configurations and cutout combinations were analyzed using the 

same boundary conditions. The panel vertical edges were free, which left all seven 

degrees of freedom at each element's corner nodes and the two in plane degrees of 

freedom of each element's mid-side nodes unconstrained along the free vertical edges. 

The bottom horizontal edge of the panel was completely constrained, which left all seven 

39 



degrees of freedom at the element corner nodes and the two degrees of freedom at the 

element mid-side nodes constrained along this edge (u = v = w = v|/x = v|/s = w,x = w,s = 0). 

The panel top horizontal edge was allowed to displace axially a prescribed incremental 

amount in the u direction. However, the remaining degrees of freedom were all 

constrained. Thus, six degrees of freedom at the element corner nodes were constrained 

(v = w = \|/x = v|/s = w,x = w,s = 0) and one degree of freedom at the element mid-side 

nodes was constrained (v = 0) along the horizontal top edge of the panel. 

The two programs used in this research apply a prescribed uniform axial 

compressive displacement at each of the top edged nodes. The programs calculate the 

load at each top edge node required to displace the amount prescribed. Then, the total 

compressive load is calculated using all of the top edge nodal loads. The prescribed initial 

displacement increment used in the analyses was 0.0015" for the 8 ply panels and 0.003" 

for the 16 and 32 ply panels. 

All numerical analyses were run on SUN SPARC 20 computers. A sample input 

deck used for both programs is included in Appendix B. 

2.2.1 Convergence Study 

The finite-element models used by Del Barga were optimized for cpu run time 

using the SLR theory. The Classical Donnell theory had never been used on models as 

large as Del Barga's before this research. Therefore, a convergence study was initially 

performed by repeatedly refining the model used for the 8 ply 304.8 mm x 508 mm (12" x 

20") panel with the 50.8 mm x 50.8 mm (2" x 2") cutout. All three theories were run 
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using the refined models mentioned in the previous section. The collapse loads for each 

run are listed in Table 3. 

Table 3. Collapse Loads for 8 ply 304.8 mm x 508 mm (12" x 20") Panel 
With 50.8 mm x 50.8 mm (2" x 2") Cutout 

Theory SLR Modified Donnell Classical Donnell 

Original Mesh 6930 N 6956.67 N 6765.4 N 

1 st Refinement 6729.8 N 6765.4 N 6676.45 N 

2nd Refinement 6729 N 6738.7 N 6680.9 N 

3rd Refinement 6685.34 N 6725.7 N 6725.7 N 

These results indicate monotonic convergence for both the SLR and the Modified 

Donnell theories because their collapse loads continue to decrease with each refinement in 

which the last refinement is within 5% of the previous value. The Classical Donnell 

theory, however does not converge monotonically. The collapse load estimated by this 

theory first decreases then increases with no definite trend, although the variation of the 

results with each refinement is within 5% of the previous value. This oscillating motion 

indicates that the elements used in the Classical Donnell theory are incompatible for this 

model [38]. These elements have 28 degrees of freedom, but the shape function for w is 

Hermitian. By not taking into account the rotations \j/x and v|/s these elements lack the 

overall effect of making the third order shape function, which is incompatible for the w 

and w,j terms, more dominating. This characteristic was diluted in the 36 degree of 

freedom element with the addition of \|/x and v|/s. Figure 12 provides a graphical 
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representation of the convergence trends for the collapse loads of the three theories versus 

the number of elements in the mesh. 

-♦—SLR 

-H— Donnell 

-^—Classical 

Collapse Load 

400 600 800 

Number of Elements 

1200 

Figure 12: Collapse Load vs. Number of Elements for 8 ply 304.8 mm x 508 mm 
(12" x 20") Panel With 50.8 mm x 50.8 mm (2" x 2") Cutout 

An additional observation that can be made from Table 3 is that the collapse load 

predicted by the Classical Donnell theory was lower than those predicted by both the SLR 

and Modified Donnell theories except for the 3rd refinement. The results prior to the 3rd 

refinement are not realistic considering the fact that Classical Donnell neglects both 

through-the-thickness shear and large rotations. This should lead to higher predicted 

collapse loads than the two more complex theories. This behavior was also observed in 

the initial results obtained for each of the cutout configurations used for the 8 ply shells 

and both the 16 and 32 ply shells with 127 x 127 mm (5" x 5") cutouts. These results and 

the results of the refined meshes are listed in Tables 4-9. The trends displayed in these 

tables support the observation that the results for the Classical Donnell theory are not 

monotonically converging. The refined results show an increase in the predicted collapse 
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load for the Classical Donnell theory in each of the cases involving a 127 mm x 127 mm 

cutout. The remaining 8 ply cases showed a decrease in the collapse load. The SLR and 

Modified Donnell theories, on the other hand, show a trend of decreasing predicted 

collapse loads with refinement in every case. 

There does not appear to be a discernible trend in the convergence of any of the 

results for the Classical Donnell theory. However, it is interesting to note that the collapse 

loads in Table 3 first decrease then increase to a value closer to the two more advanced 

theories, and the other cases also approach values closer to the monotonically converging 

theories. Therefore, it is possible that instead of monotonically converging, the Classical 

Donnell theory is converging in an oscillating manner, where the oscillations decrease in 

amplitude until it is fully converged at values close to, but above, the collapse loads 

predicted by the other two theories. 

Table 4. Collapse Loads for 8 ply 304.8 mm x 508 mm (12" x 20") Panel 
With 101.6 mm x 101.6 mm (4" x 4") Cutout 

Theory SLR Modified Donnell Classical Donnell 

Original Mesh 5181.9N 5297.6 N 5190.8 N 

Refined Mesh 5052.9 N 5146.3 N 5146.3 N 

Table 5. Collapse Loads for 8 ply 304.8 mm x 508 mm (12" x 20") Panel 
With 127 mm x 127 mm (5" x 5") Cutout 

Theory SLR Modified Donnell Classical Donnell 

Original Mesh 3327.1 N 3402.7 N 3095.8 N 

Refined Mesh 3247 N 3322.7 N 3322.7 N 
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Table 6 Collapse Loads for 8 ply 304.8 mm x 508 mm (12" x 20") Panel 
With 203.2 mm x 50.8 mm (2" x 8") Cutout 

Theory SLR Modified Donnell Classical Donnell 

Original Mesh 5533.3 N 5608.9 N 5319.8 N 

Refined Mesh 5378.8 N 5453.2 N 5453.2 N 

Table 7. Collapse Loads for 8 ply 304.8 mm x 508 mm (12" x 20") Panel 
With 50.8 mm x 203.2 mm (8" x 2") Cutout 

Theory SLR Modified Donnell Classical Donnell 

Original Mesh 3042.4 N 3158.1 N 3060.2 N 

Refined Mesh • 2557.6 N 2655.5 N 2655.5 N 

Table 8. Collapse Loads for 16 ply 304.8 mm x 508 mm (12" x 20") Panel 
With 127 mm x 127 mm (5" x 5") Cutout 

Theory SLR Modified Donnell Classical Donnell 

Original Mesh 15,363.4 N 15,857.1 N 15,127.6 N 

Refined Mesh 15.137.4N 15,622.2 N 15,631.0 N 

Table 9. Collapse Loads for 8 ply 304.8 mm x 508 mm (12" x 20") Panel 
With 127 mm x 127 mm (5" x 5") Cutout 

Theory SLR Modified Donnell Classical Donnell 

Original Mesh 75,847.3 N 78,894.2 N 78,075.7 N 

Refined Mesh 75,073.3 N 78,058 N 78,058.9 N 
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3. Results and Discussion 

3.1 Introduction 

This chapter has three sections. In the first section the data obtained using the 

SLR theory in this research is used in conjunction with Del Barga's numerical results to 

expand on his study of cutout dimensionallity and panel thickness [1]. The second section 

concentrates primarily on the effects of through-the-thickness shear and large rotations 

observed in the numerical results obtained with the SLR, Modified Donnell, and Classical 

Donnell theories. The final section compares the numerical results of these three theories 

to experimental results obtained in previous research [1,18]. 

Throughout this section the same convention will be used to describe the panel 

configurations in each table. Since all of the panels are the same length, 304.8 mm x 508 

mm (12" x 20"), each panel configuration can be described by just three numbers. The 

first number indicates the number of plies in the layup followed by the word ply. The 

second two numbers in the designation describe the type of cutout. For example the 

designation 8ply0x0 would be used for the 8 ply panel without a cutout while the 32 ply 

panel with a 127 mm x 127 mm (5" x 5") cutout would be indicated by the designation 

32ply5x5. 

3.2 Cutout Dimensionality and Panel Thickness 

Del Barga performed a collapse study using the SLR theory in the SHELL 

program for each of the cutout sizes used in this study for 8 and 16 ply 304.8 mm x 508 
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mm (12" x 20") panels. For this research, solid panel configurations were included in 

addition to the 5 cutout sizes used by Del Barga for 8, 16, and 32 ply 304.8 mm x 508 mm 

(12" x 20") panels. All of the analyses used the following boundary conditions: the panels 

had free vertical edges, with the bottom horizontal edge completely constrained and the 

top horizontal edge allowed only to displace in the axial direction (u). The panels were 

loaded through a prescribed displacement and the applied total load along the panel top 

edge was output by the SHELL program for each increment. The SHELL program also 

included displacements and rotations for all element corner nodes for each increment. 

Table 10 displays the numerically derived global collapse load and top edge 

displacements (u). Global is defined as pertaining to the entire panel. The results in Table 

10 indicate the maximum load analytically applied to the panels just before the panels 

collapsed. Table 10 also shows the panel top edge displacement (u) that is associated with 

the global collapse load. These results coincide with Del Barga's finding that the collapse 

load decreases with increased cutout area and decreased panel thickness. 

Figures 13-18 illustrate the effects of panel thickness on the collapse loads by 

cutout size for the 304.8 mm x 508 mm (12" x 20") panels. These figures support Del 

Barga's findings that the stiffness of the panels is increased for increasing panel thickness. 

In addition, these figures illustrate that the collapse load increases with increasing panel 

thickness. 

Del Barga also investigated the effects of cutout dimensionality. Figures 19-21 

demonstrate the effects of cutout size on collapse load, panel stiffness, and non-linear 

response of the panel. They also show that for every case, except one, the collapse load 

decreases with decreasing extensional width and increasing cutout area. Extensional 
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Table 10. Numerical Global Collapse Load and Top Edge Displacement 

Panel Collapse Load u Displacement 

Designator Kn (lbs) mm (in) 

8plyOxO 10.555 2373 .4191 .0165 

8ply2x2 6.572 1478 .28575 .01125 

8ply4x4 4.967 1136 .381 .015 

8ply5x5 3.192 730 .28575 .01125 

8ply2x8 5.378 1210 .36195 .01425 

8ply8x2 2.558 575 .55245 .02175 

16ply0x0 38.316 8762 .74295 .02925 

16ply2x2 29.959 6851 .6477 .0255 

16ply4x4 23.216 5309 .762 .03 

16ply5x5 15.137 3403 .6477 .0255 

16ply2x8 27.926 6386 .8763 .0345 

16ply8x2 13.460 3078 .8001 .0315 

32ply0x0 193.149 44168 2.1717 .0855 

32ply2x2 160.075 36605 1.6383 .0645 

32ply4x4 99.386 22727 1.2573 .0495 

32ply5x5 75.073 16878 1.3716 .054 

32ply2x8 90.705 20742 .9906 .039 

32ply8x2 67.222 15372 1.6002 .063 
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width is defined as the distance from the free edge of the cutout to the free edge of the 

panel. For example, a panel with 127 mm x 127 mm cutout has an extensional width of 

88.9 mm (3.5"). This is fairly simple to calculate. The formula is simply to take the 

difference in the width of the panel and the width of the cutout and divide by two since the 

cutouts are symmetric. Thus, for this example half the difference in the width of the panel, 

304.8 mm (12"), and the width of the cutout, 127 mm (5"), is 88.9 mm (3.5"). A solid 

panel has an extensional width equal to half the width of the panel, 152.4 mm (6") and in 

every case has the stiffest response and the greatest collapse load. 

The effects of extensional width are more apparent when comparing collapse loads 

of panels with equivalent cutout area. The exception is for the 32 ply panel configuration 

with a 50.8 mm x 203.2 mm cutout, which collapsed at a lower load than the 101.6 mm x 

101.6 mm cutout (see Figure 21). This mirrors Del Barga's results, where his exception 

was noticed for 24 ply panels. He made the assertion that this can be attributed to the 

amount of transverse shear and bending motion each of these panels experienced [1]. This 

assertion is supported by the results pertaining to through-the-thickness shear discussed 

later in this section. 

Figures 19-21 also show that the load versus displacement curves become more 

non-linear as the cutout area increases and the extensional width decreases. This indicates 

a greater distribution of bending is occurring for the larger cutouts and cutouts with small 

extensional widths[l]. Also, the slopes of the load versus displacement curves decrease 

for increasing cutout area and decreasing extensional width. Thus, stiffness increases with 

decreasing cutout area and increasing extensional width. 
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Table 11 documents the magnitudes of the maximum radial displacements (w) 

observed in each panel configuration. This table helps to verify that a nonlinear theory is 

required for panels with large cutouts undergoing axial compression. The radial 

displacements range from 2-5 times the panel thickness in the 32 ply cases, 5-7 times the 

panel thickness in the 16 ply cases, and 8-11 times the panel thickness in the 8 ply cases. 

Each panel configuration experienced the maximum radial displacement along the 

free vertical edge of the panel. This maximum occurred on or near the horizontal 

centerline of the panel. The distribution of the radial displacements tended to increase in 

magnitude along the horizontal centerline as the vertical edge of the cutout was 

approached. All the panels exhibited exact symmetry of radial displacements along the 

horizontal and vertical centerlines of the panel. However, the remaining radial 

displacements displayed asymmetry about the horizontal and vertical centerlines of the 

panel. The values for radial displacements were equivalent in magnitude and direction at 

diagonals to each other. This asymmetry is caused by the presence of the +45 and -45 

degree oriented plies which affect the bending stiffness terms Di6 and D2e. These terms 

affect the in-plane twisting moment (M^) [1]. Three dimensional orthographic plots for 

each of the panels investigated in this research are located with their respective load 

displacement curve plots in the next section and Appendix C. The displacements have 

been scaled by a factor of five in these figures for plotting purposes. 

One advantage of the SHELL program is its ability to handle large rotations more 

completely with the coupling of u, v, and w into the rotation. Another attribute is that it 

incorporates a parabolic transverse shear strain distribution through the thickness of the 

panel. Table 12 documents the global maximum bending rotations (VJ/S) and the global 
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Table 11. Global Numerical Radial Displacements (w) 

Panel Maximum i w 1 w/h 

Designator mm (in) Ratio 

8ply0x0 9.7165 .38254 9.56 

8ply2x2 7.6057 .29944 7.486 

8ply4x4 10.419 .4102 10.255 

8ply5x5 8.4932 .33438 8.36 

8ply2x8 8.9819 .35362 8.84 

8ply8x2 11.186 .4404 11.01 

16ply0x0 11.1333 .43832 5.48 

16ply2x2 10.3099 .4059 5.07 

16ply4x4 11.5524 .45482 5.685 

16ply5x5 10.485 .4128 5.16 

16ply2x8 13.2674 .52234 6.53 

16ply8x2 10.6497 .41928 5.24 

32ply0x0 19.3375 .76132 4.76 

32ply2x2 14.077 .55422 3.46 

32ply4x4 9.6317 .3792 2.37 

32ply5x5 12.3063 .4845 3.03 

32ply2x8 9.06526 .3569 2.23 

32ply8x2 9.6215 .3788 2.3675 
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maximum shear strains. The transverse shear strains are defined as: 

s4 = l v|/s l-l w,sl (1) 

85 = I Y|/x l-l W,x I 

The maximum bending rotations occurred at or near the same location as the 

global maximum radial displacement for most of the panels, which was the horizontal 

centerline of the panel along the panel free vertical edge. In cases where the maximum 

global bending rotation did not coincide with the maximum global radial displacement, it 

instead coincided with the maximum local radial displacement [1]. Del Barga defined 

local as being along the cutout edges. 

Just as the radial displacements along the panels' free vertical edges for all the 

panels increased as the horizontal centerline of the panel was approached, so did the 

bending rotations. Also, the bending rotations were symmetric along the panels' 

horizontal and vertical centerlines. However, for the rest of the panel, equivalent 

magnitudes of bending rotations occurred at diagonals to each other. 

In general, the maximum global transverse shear strains occurred at the cutout 

corners for panels with cutouts and near the center of the panel (the intersection of 

horizontal and vertical centerlines) for solid panels. Equivalent magnitudes of transverse 

shear strains occurred at diagonals to each other. For more specifics on the exact 

locations of the maximum transverse shear strains, see Del Barga [1]. 

It is interesting to note that for the eight ply panels the transverse shear strain was 

greater for a rectangular cutout versus a square cutout with equivalent cutout area. The 

opposite appears true as the panel thickness is increased. One example is where the 32 ply 

panels had a larger transverse shear strain with a square cutout than a rectangular cutout 
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Table 12. Global Maximum Bending Rotations and Transverse Shear Strain 

Panel JDesipator Global \|/s (deg.) Global i 84! Global 1 e31 

8plyOxO 9.2 .001130 .000669 

8ply2x2 7.5 .001190 .001313 

8ply4x4 9.2 .000503 .001303 

8ply5x5 7.8 .001347 .000964 

8ply2x8 9.8 .000824 .000869 

8ply8x2 10.2 .002230 .001146 

16ply0x0 9.1 .000610 .000412 

16ply2x2 8.1 .001130 .002322 

16ply4x4 8.2 .002333 .001558 

16ply5x5 7.6 .002357 .001565 

16ply2x8 13.0 .001324 .003420 

16ply8x2 8.9 .001970 .001707 

32ply0x0 13.1 .000038 .000852 

32ply2x2 9.9 .000432 .002041 

32ply4x4 5.9 .007007 .006587 

32ply5x5 7.3 .006804 .004704 

32ply2x8 5.0 .002974 .001316 

32ply8x2 3.6 .004594 .001394 
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with the same cutout area. This helps to explain the exception mentioned earlier that was 

similar to Del Barga's 24 ply case where the collapse load of the panel with a 101.6 mm x 

101.6 mm cutout exceeded the collapse load of the equally thick panel with a 50.8 mm 

x203.2 mm cutout (see Figure 21). Del Barga explained this occurrence by considering 

the transverse shear strain (65) along the vertical edge of each cutout. He found that since 

the magnitudes of the transverse shear strain (65) were greater for the panel with a 101.6 

mm x 101.6 mm cutout than the panel with a 50.8 mm x 203.2 mm cutout (see Table 12), 

the panel with a 101.6 mm x 101.6 mm cutout is absorbing the majority of the axial 

compressive energy through the distribution taken up by transverse shear strain. This 

causes bending to decrease and the panel to increase in apparent flexural rigidity. Thus, it 

collapses at a higher load than the panel with a 50.8 x 203.2 mm cutout even though its 

extensional width is less. Note, this is more obvious if one observes the two load versus 

axial displacement curves shown in Figure 21. The two curves relating to the geometries 

concerned intersect at about 90 KN or 0.9 mm. The 101.6 x 101.6 mm cutout 

configuration reacts in a suffer axial fashion from that point until collapse. 

The area of significant (>0.001) shear strain is compared for the two panels in 

Figures 22 and 23. It is obvious that the areas of significant shear strains are much greater 

in the 32 ply panel with a 101.6 mm x 101.6 mm cutout than the 32 ply panel with a 50.8 

mm x 203.2 mm cutout for both e4 and 65. Del Barga's findings are affirmed by Figure 23. 

The entire area between the vertical free edge of the cutout and the vertical free edge of 

the panel experiences significant shear strain e5 for the panel with a 101.6 mm x 101.6 mm 

cutout whereas the panel with a 50.8 mm x 203.2 mm cutout experiences practically no 
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1       0.001 

Figure 22: Contours of Transverse Shear Strain e4 for 
101.6 mm x 101.6 mm (4" x 4") Cutout and 
50.8 mm x 203.2 mm (2" x 8") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel, 
[0/45/-45/90]4s 
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Figure 23: Contours of Transverse Shear Strain 65 for 
101.6 mm x 101.6 mm (4" x 4") Cutout and 
50.8 mm x 203.2 mm (2" x 8") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]4s 
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shear strain in this area. Therefore, the 32 ply panel with a 101.6 mm x 101.6 mm cutout 

is absorbing more axial compressive energy through transverse shear strain while the 32 

ply panel with a 50.8 mm by 203.2mm cutout is absorbing most of the axial compressive 

energy through bending which causes it to collapse at a lower load. 

3.3 Through-the-Thickness Shear and Large Rotations 

In this section, the effects of through-the-thickness shear and large rotations are 

examined by comparing the collapse analysis performed on each of the panel 

configurations used in this research by the SLR, Modified Donnell, and Classical Donnell 

theories. Since Classical Donnell is the most basic of the three theories, it is useful to 

normalize the collapse loads predicted by the three theories to the collapse load predicted 

by Classic, since it should always be the highest. This way it can be noticed where the 

three theories diverge. This has been done for each of the cutout configurations used in 

this study (six total), plotting the normalized collapse load for each theory versus the ratio 

of the radius of curvature to thickness of the panel (R/h). By noticing where Modified 

Donnell differs in its prediction of the collapse load from that predicted by Classical 

Donnell, it can be determined at what radius-to-thickness ratio through-the-thickness 

shear becomes important in cylindrical composite panels, and what effect cutouts have oh 

through-the-thickness shear. Also, by observing where SLR differs from Modified 

Donnell it can be determined when large rotations become a factor in the solution. 

Figures 24 and 25 represent the normalized collapse loads predicted by the three 

theories at various radius of curvature to thickness ratios for both solid panels and panels 
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Figure 24: Normalized Load versus R/h for Solid 
304.8 mm x 508 mm (12" x 20") Panel 
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Figure 25: Normalized Load versus R/h for a 
50.8 mm x 50.8 mm (2" x 2") Cutout in a 
304.8 mm x 508 mm (12" x 20") Panel 

with a 50.8 mm x 50.8 mm cutout respectively. Both figures show very little difference in 

the collapse loads predicted by the Modified Donnell and Classical Donnell theories even 

for the 32 ply shells. However, the SLR theory predicts a moderately lower collapse load 

(4%) than either of the Donnell theories in both figures for the 32 ply cases. This indicates 

that there are large rotations or displacements occurring at or near collapse which do not 

effect the collapse load as greatly when Modified Donnell and Classical Donnell theories 
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are used. The dotted lines have been added to show how the curves would tend to follow 

as thickness increases and the ratio R/h decreases. 

The actual predicted collapse loads are plotted in Figures 26 and 27 for the solid 

32 ply panel and 32 ply panel with a 50.8 mm x 50.8 mm cutout respectively. These 

figures also show the deformed panel at collapse and at 50% collapse load. Both panels 

appear to have undergone large radial displacements along their free edges at collapse, 

which would also imply large rotation. This is verified by Tables 11 and 12. Therefore, 

this situation requires a high order nonlinear theory like SLR which can account for large 

rotations and displacements. It is interesting to note that there is relatively little radial 

displacement occurring at the 50% collapse point, which makes sense because this occurs 

in the linear portion of the load versus displacement curve. 

As the cutout size increases, through-the-thickness shear and large rotations begin 

to play a greater role. Figures 28 and 29 document the slight, but detectable, divergence 

of predicted collapse loads using SLR theory from the results predicted by the Classical 

Donnell and Modified Donnell theories for 8, 16, and 32 ply shells with 101.6mmxl01.6 

mm (4" x 4") and 127 mm x 127 mm cutouts. They also indicate a difference in the 

results predicted by Modified Donnell and Classical Donnell for both the 16 and 32 ply 

shells. These differences are generally fairly small (< 3%), except for the predicted 

collapse loads for the 32 ply cases by the SLR theory. However, the effects of through- 

the-thickness shear and large rotations are definitely more observable than for the solid 

panels and panels with the smaller 50.8 mm x 50.8 mm cutouts. With the exception of the 

free edges, the rotations and shear strains along the cutout edge are generally larger than 
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Figure 26: Load vs. Top Edge Displacement, Comparing 
SLR, Modified Donnell, and Classical Donnell, 
for a Solid 304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]4s 
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Figure 27: Load vs. Top Edge Displacement, Comparing 
SLR, Modified Donnell, and Classical Donnell, 
50.8 mm x 50.8 mm (2" x 2") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]4s 
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Figure 28: Normalized Load versus R/h for a 
101.6 mm x 101.6 mm (4" x 4") Cutout in a 

. 304.8 mm x 508 mm (12" x 20") 
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Figure 29: Normalized Load versus R/h for a 
127 mm x 127 mm (5" x 5") Cutout in a 
304.8 mm x 508 mm (12" x 20") Panel 

what is measured throughout the rest of the panel, especially at the cutout corners. By 

increasing the size of the cutout, the region where these large shear strains and rotations 

occur inside the panel is increased. Thus, these effects are more noticeable for larger 

cutouts. The actual collapse loads predicted by each theory for the 32 ply panels with 
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101.6 mm x 101.6 mm and 127 x 127 mm cutout configurations are displayed in Figures 

30 and 31 respectively. These figures represent the cases for each cutout configuration 

with the most noticeable differences in the load vs. displacement curves predicted by the 

three theories. 

The rectangular cutout configurations provide interesting results concerning 

patterns of how the results obtained from the SLR and Modified Donnell theories diverge 

from the results acquired from the Classical Donnell theory with decreasing R/h ratio. The 

normalized collapse loads for both the 50.8 mm x 203.2 mm and 203.2 mm x 50.8 mm 

cutouts are presented in Figures 32 and 33. Both of these figures exhibit divergence in the 

results obtained from the Classical Donnell and SLR theories even for the thin 8 ply shells. 

This indicates that large rotations are taking place for these cutout configurations. The 

figures both indicate that the results for Classical Donnell and Modified Donnell differ only 

for the 32 ply cases. This shows that through-the-thickness shear becomes important 

for these cutout configurations as thickness increases. For these particular cases it 

becomes important at an R/h of 75. However, the curves plotted for the SLR and 

Modified Donnell theories show a tendency of converging as R/h decreases. This trend 

can be observed in both Figures 32 and 33, although it is most apparent in Figure 33. This 

is a result of through-the-thickness shear becoming increasingly important with increasing 

thickness. The effects of large rotations on the other hand are not as dependent on 

thickness, but rather seem to be more a function of cutout area. 
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Figure 30: Load vs. Top Edge Displacement, Comparing 
SLR, Modified Donnell, and Classical Donnell, 
101.6 mm x 101.6 mm (4" x 4") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
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Figure 31: Load vs. Top Edge Displacement, Comparing 
SLR, Modified Donnell, and Classical Donnell, 
127 mm x 127 mm (5" x 5") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]4s 
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Figure 32: Normalized Load versus R/h for a 
50.8 mm x 203.2 mm (2" x 8") Cutout in a 

304.8 mm x 508 mm (12" x 20") Panel 
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Figure 33: Normalized Load versus R/h for a 
203.2 mm x 50.8 mm (8" x 2") Cutout in a 
304.8 mm x 508 mm (12" x 20") Panel 

Figures 34 and 35 document the actual load vs. displacement curves predicted by 

each of the three theories for the 32 ply panels with a 50.8 mm x 203.2 mm cutout and 

203.2 mm x 50.8 mm cutout respectively. The three dimensional orthographic plot for the 

32 ply panel with a 203.2 mm x 50.8 mm cutout at collapse in Figure 34 is unique among 
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all of the three dimensional plots created for the collapsed shells in this research. It is 

unique because it is the only shell to collapse facing concave in instead of concave out. 

That is, the radial displacements along the free edges for this case are in the positive w 

direction instead of the negative w direction. This inverted shape for the shell is similar in 

shape to the shells that would snap through in Palazotto and Dennis [17]. However, in 

Palazotto and Dennis's case, the load was applied in the transverse direction and the load 

displacement curves in Figure 35 do not display any evidence of snapping through. Figure 

33 indicates that large rotations are important for the thinner panels with the 203.2 mm x 

50.8 mm cutout while through-the- thickness shear is not. However, both Figures 33 and 

35 indicate that through-the-thickness shear is important for the 32 ply panel while large 

rotations are not. This would mean that less bending is occurring because more of the 

axial compressive energy is going into through-the-thickness shear. The bending rotation 

(v|/s) recorded in table 12 for this case is only 3.6 degrees, which is much lower than for 

the thinner panels with a 203.2 mm x 50.8 mm cutout and lower than the other 32 ply 

panels with different cutouts. Thus, it is likely that the through-the-thickness shear caused 

variations in the radial displacements along the free edge which led to the shape of the 

collapsed shell displayed in Figure 35. 

It is important to note that the three dimensional orthographic plot for the 32 ply 

panel with al01.6mmxl01.6mm cutout at collapse in figure 30 displays asymmetry in 

the radial displacements about the horizontal and vertical center lines. The maximum 

radial displacements along the free edges appear to occur just below the horizontal 

centerline on the left side of the panel (near side) and just above the horizontal centerline 

on the right side (far side). This also happens to be close to where large concentrations of 
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Figure 34: Load vs. Top Edge Displacement, Comparing 
SLR, Modified Donnell, and Classical Donnell, 
50.8 mm x 203.2 mm (2" x 8") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]4s 
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Figure 35: Load vs. Top Edge Displacement, Comparing 
SLR, Modified Donnell, and Classical Donnell, 
203.2 mm x 50.8 mm (8" x 2") Cutout, 
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the shear strain 64 are occurring in figure 22 for the same panel. As was discussed in 

section 3.2, the 32 panel with a 50.8 mm x 203.2 mm cutout does not experience as much 

transverse shear strain and thus experiences more bending. The three dimensional 

orthographic plot in Figure 34 of the panel at collapse shows that the radial displacement 

along the free edges is symmetric about the horizontal centerline with a maximum radial 

displacement occurring at the horizontal centerline. These observations show the results 

of increased bending in the 32 ply panel with a 50.8 mm x 203.2 mm cutout and of large 

shear strains occurring in the 32 ply panel with a 101.6 mm x 101.6 mm cutout which 

supports the findings in section 3.2 for these two cases. 

Considering all of the cases presented in the two past sections of this chapter, 

some conclusions can be drawn concerning cutout size, and how it relates to large 

rotations and through-the-thickness shear. For panels with no cutouts or small cutouts, 

like a 50.8 mm x 50.8 mm cutout (< 3% total panel area), large rotations are not 

important to the solution for thin panels, but do become important for the 32 ply panels. 

Also, through-the-thickness was not found to be a factor for any of the panels used in this 

study with small or no cutouts. For large cutouts, large rotations are a factor for thin 

panels, but become less important for the 32 ply panels. The opposite is true for through- 

the-thickness shear. It was not important for thin panels with large cutouts, but had a 

noticeable effect for each of the 32 ply panels with large cutouts. 

The results compiled so far also have some implications on the relationships 

between extensional width and through-the-thickness shear. In this research it was found 

that through-the-thickness shear comes into play only for the 32 ply panels with large 
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cutouts. The observations made for each of the three 32 ply cases with equivalent cutout 

area all indicate that when through-the-thickness shear comes into play less, bending 

occurs for cutouts with less extensional width. This is because more axial compressive 

energy is absorbed into transverse shear. 

3.4 Evaluating the Different Shell Theories 

The objective of this section is to compare the accuracy of the three theories in 

predicting the responses of the panels undergoing axial compression. Experimental results 

obtained from Del Barga [1] and Hatfield [18] were used to compare the accuracy of the 

three theories for each of the cutout configurations used in this study for both 8 and 16 ply 

panels. No experimental results were available for the 32 ply panels. The experimental 

results for the solid 8 and 16 ply panels were compiled by Hatfield. The rest of the 

experimental results were from Del Barga's work.   Table 13 documents the experimental 

collapse loads and top edged displacements of all the panels compared in this section. 

This section is broken down into three main parts. First, observations are made 

about how the experimental results compared to the numerical results for specific cases. 

Then the percent differences are compared using the three theories' numerically predicted 

results to those of the experimental results for each of the cutout configurations for 8 and 

16 ply panels. These results are documented in Table 14. Finally, the rotations predicted 

by each theory are compared for the cases identified in the previous section where large 

rotations were determined to be important. This data has been presented in Table 15. 
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Table 13. Experimental Global Collapse Load and Top Edge Displacement 

Panel Collaps e Load U U■                           CMS;-;!. 

Designator Kn (lbs) mm (in) 

8ply0x0 6.490 1459 .5334 .021 

8ply2x2 5.525 1242 .94 .037 

8ply4x4 3.473 781 .66 .026 

8ply5x5 3.073 691 .64 .025 

8ply2x8 3.938 885 .36195 .01425 

8ply8x2 1.050 236 .24 .00945 

16ply0x0 37.199 8383 1.7526 .069 

16ply2x2 28.257 6353 1.2 .0472 

16ply4x4 21.979 4941 1.2 .0472 

16ply5x5 14.545 3270 .6477 .0255 

16ply2x8 27.028 6076 .9144 .036 

16ply8x2 7.846 1763 1.2 .0472 
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Several important observations can be made when comparing the experimental 

results to the numerical results for the solid 8 ply panel, the 8 ply panel with a 50.8 mm x 

50.8 mm cutout, and the 16 ply panel with a 50.8 mm x 50.8 mm cutout which are found 

in Figures 36, 37, and 38 respectively. The experimental collapse loads are more than 

38% lower than the numerical collapse load for the solid 8 ply panel (the exact percent 

error for each theory is listed in table 14). This is a relatively large amount of error, 

considering that the differences in the numerical collapse loads and the experimental 

results for the 8 ply panel with a 50.8 mm x 50.8 mm cutout and the solid 16 ply panel are 

only 16% and 4% respectively. The reason the numerical results more closely predict the 

collapse for the 8 ply panel with a cutout than the solid 8 ply panel is because the small 

cutout is similar to an imperfection in the panel. The solid panel has naturally occurring 

imperfections in the radius of curvature, geometry, and material, and caused by 

manufacture. These imperfections are not taken into account by the numerical analysis. 

Adding the cutout to the finite element model is similar to adding a large imperfection into 

the panel. Thus, the numerical results are much closer to the experimental results for the 

small cutout case than for the solid panel. 

Another type of imperfection caused by the manufacture of the panels was a 

tendency for the 8 ply panels to curl following curing. This decreased the radius of 

curvature of the panel in its relaxed state. Uncurling the 8 ply panels when clamping it to 

the 304.8 mm (12") curvature loading fixture caused the center of the panel to flatten out 

slightly [1]. This caused the radius of curvature of the panel to be greater at the center 

which led to a lower collapse load. This uncurling was not a problem for the 16 ply 
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Figure 36: Load vs. Top Edge Displacement, Comparing 
Experimental to SLR, Modified Donnell, and 
Classical Donnell, Solid 304.8 mm x 508 mm 
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Figure 37: Load vs. Top Edge Displacement, Comparing 
Experimental to SLR, Modified Donnell, and 
Classical Donnell, 50.8 mm x 50.8 mm (2" x 2") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
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panels due to an increase in thickness. Thus, the numerical results for the solid 16 ply 

panel were much closer to the experimental results than for the solid 8 ply panel. 

Table 14 documents two trends in the percent errors determined for the numerical 

results. The first trend is that for the 8 ply panels the percent error decreases for 

increasing cutout area. The panels with the 101.6 mm x 101.6 mm cutout and 50.8 mm x 

202.3 mm cutout both have percent errors ranging from 25-32% while the 8 ply panel 

with a larger 127 mm x 127 mm cutout only experiences about 3-6 % error. The reason 

for this is that, as the cutout area increases, the effects due to material imperfections 

decrease. The load versus displacement curves for these cases comparing the numerical 

results to the experimental" results are located in Appendix C. The only reason the percent 

error recorded for the numerical results obtained for the 8 ply panel with the smaller 50.8 

mm x 50.8 mm cutout is not greater than those recorded in the larger cutouts is because of 

the additional refinements performed on this particular case for the convergence study. 

The second trend that is noticeable in Table 14 is that the experimental results more 

closely predict the collapse loads for the 16 ply panels with large cutouts than they do for 

the 8 ply panel with the same cutout size. This is because the thickness reduces the effects 

of the curling following curing that lead to flattening at the center of the panels. The load 

versus displacement curves for the 16 ply panels with cutouts are located in Appendix C 

(except for the 203.2 mm x 50.8 mm cutout). 

The last observation that was noted between the numerical and experimental 

results occurs with the 8 and 16 ply panels with 203.2 mm x 50.8 mm cutouts. The load 

versus displacement curves predicted by each of the three shell theories are plotted along 

85 



Table 14. Percent Differences Between Experimental Collapse Loads and 
Numerical Collapse Loads for SLR, Modified Donnell and 
Classical Donnell 

Panel Percent Difference With Experimental Collapse Loads 

Designation ■5-t^^i^^i Modified Donnell Classical Donnell 

8ply0x0 38.52% 38.85% 38.85% 

8ply2x2 15.94% 16.44% 16.44% 

8ply4x4 30.01% 31.36% 31.36% 

8ply5x5 3.74% 5.93% 5.93% 

8ply2x8 24.7% 25.73% 25.73% 

8ply8x2 58.95% 59.78% 59.78% 

16ply0x0 2.92% 3.89% 3.89% 

16ply2x2 5.68% 6.69% 6.69% 

16ply4x4 5.33% 6.82% 7.90% 

16ply5x5 3.92% 6.90% 6.95% 

16ply2x8 3.22% 7.25% 7.25% 

16ply8x2 41.71% 43.67% 43.67% 
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with the experimental results for the 8 ply panel in Figure 39 and for the 16 ply panel in 

Figure 40. The numerical results for both of these cases differed from the experimental 

results by roughly 59% for the 8 ply case and about 43% for the 16 ply case. According 

to Del Barga [1], this large difference could be due to slight curvature imperfections of the 

panel. The long circumferential length of these cutouts combined with the small panel 

extensional widths make these cases more susceptible to curvature imperfections when 

compared to other cutout dimensions. Any variation in radius of curvature near the cutout 

in the area between the vertical cutout edge and the panel vertical edge could initiate the 

collapse of the panel earlier than predicted. It is important to note that the three 

dimensional orthographic plots of the collapsed panels all closely resemble the actual 

collapsed panels used for the experimental results. Comparisons between the orthographic 

plots and photographs of the experimental panels are found in Del Barga's thesis [1]. 

The second part of this section concentrates on determining when it is most 

appropriate to apply each of the three shell theories. Table 14 provides a useful tool to 

determine when the more advanced theories provide a significant advantage in predicting 

actual collapse loads for the cases where experimental results where available. For the 32 

ply cases it is still useful to consider the results presented in the previous section where the 

load versus displacement curves and collapse loads have been documented for each cutout 

configuration using all three shell theories.    There appears to very little to gain by using 

the computationally intensive SLR theory for the 8 ply cases. The most noticeable 

improvement in percent difference occurs for the 8 ply panel with a 127 mm x 127 mm 

cutout where the SLR theory has a 2.19% advantage over the Donnell theories. Since the 

Classical Donnell theory costs very little in CPU computing power compared to the other 
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Figure 39: Load vs. Top Edge Displacement, Comparing 
Experimental to SLR, Modified Donnell, and 
Classical Donnell, 203.2 mm x 50.8 mm (8" x 2") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]s 
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Figure 40: Load vs. Top Edge Displacement, Comparing 
Experimental to SLR, Modified Donnell, and 
Classical Donnell, 203.2 mm x 50.8 mm (8" x 2") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]2s 
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theories and still produces similar results, it would appear to be the logical choice for thin 

panels. However, because of its convergence characteristics, it requires a much more 

refined mesh than the Modified Donnell theory. Therefore, the Modified Donnell is the 

most efficient choice. The equations used in this theory are greatly simplified compared to 

those used in the SLR theory (See Section 2.1.4 and 2.1.5). 

The Modified Donnell theory is not the best choice for the 16 ply panels. The 

Modified Donnell theory has less than a 2% advantage over the Classical Donnell theory in 

each 16 ply case represented in Table 14. The Classical Donnell theory results for the 16 

ply panels were obtained without any mesh refinement, except for the 16 ply panel with a 

127 mm x 127 mm cutout. Therefore, the Classical Donnell theory is the most efficient 

theory to use for most of the 16 ply panels. The two exceptions to this rule are the 16 ply 

panels with a 127 mm x 127 mm cutout and a 50.8 mm x 203.2 mm cutout. The SLR 

theory predicts collapse loads that are 3.5% and 4.03% closer to the experimental 

collapse loads than the collapse loads predicted by the Modified Donnell theory for the 

two respective panel configurations. Thus, the SLR theory is the best for these two cases. 

Although no experimental data was available for the 32 ply panels to relate with, it 

is still possible to compare the results obtained for the three shell theories with these 

panels. As was discussed in the previous section, the large rotations which occur in the 

solid 32 ply panel and the 32 ply panel with a 50.8 mm x 50.8 mm cutout make SLR the 

most accurate theory for these two cases. The collapse loads predicted by the SLR theory 

were nearly 4% lower than the Donnell theories for both cases. For the rest of the 32 ply 

cases, through-the-thickness shear became important which made the Modified Donnell 
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theory more accurate than the Classical Donnell theory. However, the SLR theory 

predicted collapse loads that are 3% lower than those predicted by the Modified Donnell 

theory for the 32 ply panels with a 101.6 mm x 101.6 mm cutout, with a 127 mm x 127 

mm cutout, and with a 50.8 mm x 203.2 mm cutout. The only cutout configuration for a 

32 ply panel where the predicted collapse load for the SLR theory was not noticeably 

lower than the predicted collapse load of the Modified Donnell theory was the 203.2 mm x 

50.8 mm cutout. Because of the relatively small rotations occurring in this panel, the 

Modified Donnell theory is the most efficient choice. 

The last part of this section concerns the rotations predicted by the three theories 

in the cases noted where SLR predicted noticeably lower collapse loads. Table 15 lists the 

eight cases where this was the case. Table 15 also includes a comparison in the rotations 

measured in the 32 ply panel with a 203.2 mm x 50.8 mm cutout as a comparison case, 

because it experienced relatively small rotations and the SLR theory predicted a collapse 

load almost identical to that predicted by the Modified Donnell theory. The values listed 

in Table 15 were not always recorded at collapse. This is because the three theories did 

not always collapse at the same increment of u displacement, which made comparing 

maximum rotations difficult. Therefore, a point prior to collapse was picked where the 

load versus displacement curve generated using the SLR theory was diverged from the 

curves produced by the Donnell theories. Also, since the Classical Donnell theory does 

not measure the rotation v|/s, the slope w,s was used. This is the same value which the 

Classical Donnell theory uses in place of the rotational terms in the strain displacement 

relations listed in sections 2.1.5 and 2.1.6. 
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In seven out of the nine case documented in Table 15, the rotations measured by 

each theory decreased with decreasing complexity. That is, the rotations measured using 

the SLR theory were the greatest, followed by the Modified Donnell theory. The 

approximations using w,s for the Classical Donnell theory were usually between 5-10% 

lower than the rotations predicted by the SLR theory. This would correlate to the fact 

that these panels are experiencing large rotations for which the SLR theory is best 

equipped to deal with. Therefore, the larger values it predicts are closer to the actual 

values. The two cases where the SLR theory does not predict larger rotations are for the 

8 and 32 ply panels with a 203.2 mm x 50.8 mm cutout. The rotations recorded for 32 ply 

panel with a 203.2 mm x 50.8 mm cutout increase with decreasing complexity. Thus, the 

SLR theory predicts smaller rotations than the Donnell theories, which is correct. As was 

established in the previous section, this panel does not experience large rotations. 

However, the eight ply panel with a 202.3 mm x 50.8 mm cutout does experience 

moderately large rotations. The reason that SLR predicts a lower collapse load for this is 

because the displacements are greater in the U-V plane for this case according to SLR. 

Even though the rotations recorded using the SLR theory are not as large as they were for 

the Modified Donnell theory, the coupling of the u and v displacements which occurs in 

the strain-displacement relations in section 2.1.4 causes the SLR theory to predict a lower 

collapse load for this case. 
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Table 15. Comparison of Predicted Rotations for the SLR, Modified Donnell, 
and Classical Donnell Theories 

Panel u Bending Rotation \{/s {deg) w,s (deg) 

Designation Displacement SLR Modified Donnell Classical Donnell 

8ply8x2 .021 9.35 9.44 9.36 

16ply2x8 .036 11.84 11.50 10.93 

16ply8x2 .033 9.04 8.77 8.65 

32plyOxO .072 11.31 10.97 10.63 

32ply2x2 .06 9.15 8.86 8.61 

32ply4x4 .042 5.16 4.99 4.78 

32ply5x5 .054 7.31 7.19 7.04 

32ply2x8 .039 4.96 4.79 4.64 

32ply8x2 .063 3.60 3.73 3.98 
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4. Conclusions 

The following conclusions can be made relative to this research: 

1. The 28 degree of freedom element used in the Classical Donnell theory is 

incompatible because the corner nodes lack the rotational degrees of freedom \|/x and v|/s. 

This leads to softening in the panels for some cases, so that the predicted collapse loads 

are lower than for the SLR and Modified Donnell theories using the coarser meshes 

established by Del Barga. Refinements in the meshes indicated nonmonotonic 

convergence for the Classical Donnell theory. The predicted collapse loads for refined 

meshes using the Classical Donnell theory also more closely matched those obtained with 

the Modified Donnell theory. Therefore, at the penalty of refining the mesh, more 

confidence was obtained in the results using the Classical Donnell Theory. 

2. The numerical panel response indicated that the maximum radial displacements 

occurred along the free panel vertical edge at or near the horizontal centerline. The radial 

displacements were asymmetric about the horizontal and vertical centerlines. That is, 

equivalent magnitudes and directions of radial displacements occurred at diagonals to each 

other. This was due to the +45 and -45 degree plies which affect the bending stiffness 

terms Di6 and D26. These terms affect the in-plane twisting moment M^. The magnitudes 

of the radial displacements ranged from 2-11 times the panel thickness. These large 

displacements indicate a need for a nonlinear theory like SLR. 
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3. The collapse load and stiffness of a panel increased with increased panel thickness. 

The collapse load and stiffness decreased with increased cutout area for panels with the 

same thickness. Also, the load versus displacement curves became more non-linear as the 

cutout areas increased and the extensional widths decreased. 

4. In the case of panels with equivalent cutout areas, the collapse load and stiffness 

tended to decrease with a reduction in the panel extensional width. However, when 

through-the-thickness shear became important, the panels with a cutout configuration 

absorbing the majority of axial compressive energy through shear collapsed at a higher 

load than panels with equivalent cutout areas. This was confirmed by comparing the areas 

experiencing large transverse strains (>0.001 rad) in panels with equivalent cutouts. The 

panel with a greater area experiencing large transverse shear strains did not experience as 

much bending. Instead the panel displayed an uneven pattern of radial displacements near 

this region of large transverse shear. This increased the flexural rigidity and caused the 

panel to collapse at a higher load. The panel with a smaller region experiencing large 

transverse shear displayed an even pattern of radial displacements along the length of the 

panel and thus absorbed most of its energy through bending. This decreased the flexural 

rigidity and caused the panel to collapse at a lower load. 

5. Large rotations do not play an important role in solid panels or panels with small 

cutouts for thin panels. As the panel thickness increases and R/h decreases to 75, 

rotations begin to become important as noticed by the moderately lower collapse loads 
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predicted by the SLR theory for these cases compared to the collapse loads predicted by 

the Modified Donnell theory. The opposite is true for panels with large cutouts. 

Rotations generally dominated the responses for the 8 and 16 ply panels with large cutouts 

as was noticed in the differences in the responses predicted by the SLR and Modified 

Donnell theories. However, for the 32 ply panels the effects of transverse shear became 

more important and the differences between the responses predicted by the SLR and 

Modified Donnell theories became smaller. 

6. Through-the-thickness shear was not found to be a factor for any of the panels 

considered in this research with small or no cutouts. It also was not important for thin 

panels with large cutouts, but did have a noticeable effect for each of the 32 ply panels 

with large cutouts. The most noticeable effects of through-the-thickness shear were for 

the 32 ply panels with cutouts of equivalent areas. 

7. Increased thickness and the presence of a cutout both decreased the effects of 

material and geometric imperfections in the panels used to obtain experimental results. 

This was noticed in the decrease in the percent error recorded in the numerical results for 

thicker solid panels and panels with cutouts versus solid panels. 

8. As the cutout area became larger, the effects of material and geometric 

imperfections became less significant. This was noticed in the decreasing difference in 

experimental and numerical results with increasing cutout area. However, as the 
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circumferential length of the cutout increased, the more susceptible these panels became to 

slight imperfections in radius of curvature along the circumferential length of the cutout. 

Imperfections in the radius of curvature combined with the small extensional length of 

these panels may have resulted in the greater difference in the numerical and experimental 

results recorded for these panels. 

9.        In an evaluation of computational requirements versus accuracy, the Modified 

Donnell theory was determined to be the best choice of theories for predicting the 

responses of 8 ply panels. The Classical Donnell theory was determined to be more 

efficient for most of the 16 ply panels except a few cases where the SLR theory showed 

moderate improvements in accuracy. The SLR theory was the theory of choice for all of 

the 32 ply panels except one where the rotations were minimal. In that case, the Modified 

Donnell was the clear winner over Classical Donnell because of the importance of 

through-the-thickness shear in the 32 ply panels with large cutouts. 
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APPENDIX A 

ADDITIONAL FINITE ELEMENT MODELS 
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Figure 41. Finite-Element Mesh Used for 304.8 mm x 508 mm 
(12" x 20") Panel With 101.6 mm x 101.6 mm 
(4" x 4") Cutout 
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Figure 42. Finite-Element Mesh Used for 304.8 mm x 508 mm 
(12" x 20") Panel With 127 mm x 127 mm 
(5" x 5") Cutout 
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Figure 43. Finite-Element Mesh Used for 304.8 mm x 508 mm 
(12" x 20") Panel With 50.8 mm x 203.3 mm 
(2" x 8") Cutout 
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Figure 44. Finite-Element Mesh Used for 304.8 mm x 508 mm 
(12" x 20") Panel With 203.3 mm x 50.8 mm 
(8" x 2") Cutout 
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APPENDIX B 

SAMPLE SHELL AND CLASSIC INPUT DECKS 
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SHELL and CLASSIC* Input Deck Sequence 

* An astrix followed by an explanation indicates where the input Deck for CLASSIC 
differs from the one displayed for SHELL 

Line 1 

Line 2 

IEL 

NPE 

NANAL(l) 

NANAL(2) 

NANAL(3)* 

* (This is always 1 for Donnell) 

IMESH 

NPRNT 

NCUT (Cutout) 

Title 

Element type 

IEL = 2 cylindrical shell 

Nodes per element 

NPE = 8 

Nonlinear analysis 

NANAL(1) = 0 

Symmetric laminate 

NANAL(2) = 2 

Large rotation 

NANAL(3) = 0 

Automatic mesh generation 

IMESH =1 

Do not print elasticity matrices 

NPRNT = 0 

Number of elements to cutout 

108 



Line 3 

INTYP 

NINC 

IMAX 

IRES 

TOL 

Line 4-5 

TABLE(NINC) 

Line 6 

NX 

NY 

Displacement increment type 

INTYP = 1 

Number of increments 

Maximum number of iterations 

Do not update stiffness every 
iteration 

IRES = 0 

Percent convergence tolerance 

Real number multiplicative 
factors of prescribed displacements 

Number of elemental subdivisions 
in the x direction 

Number of elemental subdivisions 
in the y direction 

Lines 7-14 

DX(I) 

Lines 15-20 

DY(I) 

Lines 21-30 

(Cutout) 

Distance between nodes along 
the x direction 

Distance between nodes along 
the y direction 

Assigned element numbers 
of cutout to be deleted 
These elements are not calculated in 
the stiffness of the panel 
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Line 31 

LD 

PO 

Load type parameter 

LD = 0 

Distributed load intensity 

PO = 0.0 

Line 32 

NBDY 

Lines 33-77** 

Number of nodes with specified 
primary degrees of freedom 
(e.g. for this study the specified 
degrees of freedom at the top 
and bottom horizontal edge of 
panel and inside the cutout region) 

Specified degrees of freedom 
for top panel nodes 
(1 = prescribed and 0 = free) 

** (The last two D.O.F. in each line are not included 
for CLASSIC) 

Lines 78-122** 

Lines 123-383** 

Lines 384-404*** 

Lines 404-425*** 

***(There are less values listed in CLASSIC 
because there are only 5 D.O.F. for the 
corner nodes) 

Specified degrees of freedom 
for bottom panel nodes 

Specified degrees of freedom for 
nodes which fall within the cutout 
area (excludes those nodes that fall 
on the cutout boundary) 

Values for the top panel nodes 
degrees of freedom (either zero 
or the prescribed displacement 
increment in inches) 

Values for the bottom panel 
nodes degrees of freedom 
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Lines 425-517*** 

(Cutout) 

Line 518 

NBSF 

Line 519 

El 

E2 

G12 

NU12 

Line 520 **** 

G13 

G23 

****(This line is not included in CLASSIC) 

Line 521 

NP 

PT 

Lines 522-523 

Line 524 

Line 525 

Values for the cutout nodes 
degrees of freedom. Set to zero. 

Number of point loads (zero) 

NBSF = 0 

Young's modulus along fibers 

Young's modulus transverse to fibers 

Shear modulus 

Major Poisson's ratio 

1-3 Shear Modulus 

2-3 Shear Modulus 

Number of plies 

Ply thickness 

Ply orientation angle 

Radius of curvature 

Number of nodal forces to be 
calculated along the top edge 
of the panel 
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Lines 526-530 ***** Degree of Freedom number 
associated with loading 
direction (u), for each panel 
top edge node 

*****(These numbers are different for CLASSIC 
because there are less D.O.F.) 

Line 531 Number of elements stresses to 
to be calculated for this study zero 
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1 12X20 [0/45/-45/90]2s 5" Cutout 
2 2,8,0,2,0,1,0,0,100 
3 1,18,80,0,.001 
4 2.,4.,6.,8.,10.,12.,14.,16.,16.2,16. 
5 16.6,16.8,17,17.2,17.4,17.6,17.8,18 

6 30,22 
7 0.50,0.50,0.50,0.50,0.50,0.50,0.50,0 
8 0.50,0.50,0.25,0.25,0.25,0.25,0.25,0 
9 0.25,0.25,0.25,0.25,0.25,0.25,0.25,0 
10 0.25,0.25,0.25,0.25,0.25,0.25,0.25,0 
11 0.25,0.25,0.25,0.25,0.25,0.25,0.25,0 
12 0.25,0.25,0.25,0.25,0.25,0.25,0.25,0 
13 0.25,0.25,0.50,0.50,0.50,0.50,0.50,0 

14 0.50,0.50,0.50,0.50 
15 0.50,0.50,0.25,0.25,0.25,0.25,0.25,0 
16 0.25,0.25,0.25,0.25,0.25,0.25,0.25,0 
17 0.25,0.25,0.25,0.25,0.25,0.25,0.25,0 
18 0.25,0.25,0.25,0.25,0.25,0.25,0.25,0 
19 0.25,0.25,0.25,0.25,0.25,0.25,0.25,0 

20 0.25,0.25,0.50,0.50 
21 191,192,193,194,195,196,197,198,199, 

22 221,222,223,224,225,226,227,228,229, 
23 251,252,253,254,255,256,257,258,259, 
24 281,282,283,284,285,286,287,288,289, 
25 311,312,313,314,315,316,317,318,319, 
26 341,342,343,344,345,346,347,348,349, 
27 371,372,373,374,375,376,377,378,379, 
28 401,402,403,404,405,406,407,408,409, 
29 431,432,433,434,435,436,437,438,439, 
30 461,462,463,464,465,466,467,468,469, 

31 0,0.0 
32 351 
33 61,1,1,1,1,1,1,1 
34 92,1,1,0,0,0,0,0 

35 153,1,1,1,1,1,1,1 
36 184,1,1,0,0,0,0,0 

37 245,1,1,1,1,1,1,1 
38 276,1,1,0,0,0,0,0 

39 337,1,1,1,1,1,1,1 
40 368,1,1,0,0,0,0,0 

41 429,1,1,1,1,1,1,1 
42 460,1,1,0,0,0,0,0 

43 521,1,1,1,1,1,1,1 
44 552,1,1,0,0,0,0,0 

45 613,1,1,1,1,1,1,1 
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46 644,1,1,0,0,0,0,0 
47 705,1,1,1,1,1,1,1 
48 736,1,1,0,0,0,0,0 

49 797,1,1,1,1,1,1,1 

50 828,1,1,0,0,0,0,0 

51 889,1,1,1,1,1,1,1 

52 920,1,1,0,0,0,0,0 

53 981,1,1,1,1,1,1,1 
54 1012,1,1,0,0,0,0,0 

55 1073,1 1,1,1,1,1,1 
56 1104,1 1,0,0,0,0,0 

57 1165,1 1,1,1,1,1,1 
58 1196,1 1,0,0,0,0,0 

59 1257,1 1,1,1,1,1,1 
60 1288,1 1,0,0,0,0,0 

61 1349,1 1,1,1,1,1,1 
62 1380,1 1,0,0,0,0,0 

63 1441,1 1,1,1,1,1,1 
64 1472,1 1,0,0,0,0,0 

65 1533,1 1,1,1,1,1,1 
66 1564,1 1,0,0,0,0,0 

67 1625,1 1,1,1,1,1,1 
68 1656,1 1,0,0,0,0,0 

69 1717,1 1,1,1,1,1,1 
70 1748,1 1,0,0,0,0,0 

71 1809,1 1,1,1,1,1,1 
72 1840,1 1,0,0,0,0,0 

73 1901,1 1,1,1,1,1,1 
74 1932,1 1,0,0,0,0,0 

75 1993,1 1,1,1,1,1,1 
76 2024,1 1,0,0,0,0,0 

77 2085,1 1,1,1,1,1,1 
78 1,1,1,1 ,1,1,1,1 
79 62,1,1,0,0,0,0,0 

80 93,1,1,1,1,1,1,1 

81 154,1,1,0,0,0,0,0 

82 185,1,1,1,1,1,1,1 

83 246,1,1,0,0,0,0,0 

84 277,1,1,1,1,1,1,1 
85 338,1,1,0,0,0,0,0 

86 369,1,1,1,1,1,1,1 
87 430,1,1,0,0,0,0,0 

88 461,1,1,1,1,1,1,1 
89 522,1,1,0,0,0,0,0 

90 553,1,1 ,1,1,1,1,1 
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91 614,1,1,0,0,0,0,0 
92 645,1,1,1,1,1,1,1 
93 706,1,1,0,0,0,0,0 

94 737,1,1,1,1,1,1,1 

95 798,1,1,0,0,0,0,0 

96 829,1,1,1,1,1,1,1 
97 890,1,1,0,0,0,0,0 

98 921,1,1,1,1,1,1,1 
99 982,1,1,0,0,0,0,0 

100 1013,1,1,1,1,1,1,1 

101 1074,1,1,0,0,0,0,0 

102 1105,1,1,1,1,1,1,1 

103 1166,1,1,0,0,0,0,0 

104 1197,1,1,1,1,1,1,1 

105 1258,1,1,0,0,0,0,0 

106 1289,1,1,1,1,1,1,1 
107 1350,1,1,0,0,0,0,0 

108 1381,1,1,1,1,1,1,1 
109 1442,1,1,0,0,0,0,0 

110 1473,1,1,1,1,1,1,1 

111 1534,1,1,0,0,0,0,0 

112 1565,1,1,1,1,1,1,1 
113 1626,1,1,0,0,0,0,0 

114 1657,1,1,1,1,1,1,1 

115 1718,1,1,0,0,0,0,0 

116 1749,1,1,1,1,1,1,1 

117 1810,1,1,0,0,0,0,0 

118 1841,1,1,1,1,1,1,1 
119 1902,1,1,0,0,0,0,0 

120 1933,1,1,1,1,1,1,1 

121 1994,1,1,0,0,0,0,0 

122 2025,1,1,1,1,1,1,1 
123 625,1,1,0,0,0,0,0 

124 626,1,1,0,0,0,0,0 

125 627,1,1,0,0,0,0,0 

126 628,1,1,0,0,0,0,0 

127 629,1,1,0,0,0,0,0 

128 630,1,1,0,0,0,0,0 

129 631,1,1,0,0,0,0,0 

130 632,1,1,0,0,0,0,0 

131 633,1,1,0,0,0,0,0 

132 666,1,1,0,0,0,0,0 

133 667,1,1,1,1,1,1,1 
134 668,1,1,0,0,0,0,0 

135 669,1,1,1,1,1,1,1 
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136 670,1 1,0,0,0,0,0 
137 671,1 1,1,1,1,1,1 
138 672,1 1,0,0,0,0,0 

139 673,1 1,1,1,1,1,1 
140 674,1 1,0,0,0,0,0 

141 675,1 1,1,1,1,1,1 
142 676,1 1,0,0,0,0,0 

143 677,1 1,1,1,1,1,1 
144 678,1 1,0,0,0,0,0 
145 679,1 1,1,1,1,1,1 
146 680,1 1,0,0,0,0,0 

147 681,1 1,1,1,1,1,1 
148 682,1 1,0,0,0,0,0 

149 683,1 1,1,1,1,1,1 
150 684,1 1,0,0,0,0,0 

151 717,1 1,0,0,0,0,0 

152 718,1 1,0,0,0,0,0 

153 719,1 1,0,0,0,0,0 

154 720,1 1,0,0,0,0,0 

155 721,1 1,0,0,0,0,0 

156 722,1 1,0,0,0,0,0 

157 723,1 1,0,0,0,0,0 
158 724,1 1,0,0,0,0,0 

159 725,1 1,0,0,0,0,0 

160 758,1 1,0,0,0,0,0 

161 759,1 1,1,1,1,1,1 
162 760,1 1,0,0,0,0,0 

163 761,1 1,1,1,1,1,1 
164 762,1 1,0,0,0,0,0 

165 763,1 1,1,1,1,1,1 
166 764,1 1,0,0,0,0,0 

167 765,1 1,1,1,1,1,1 
168 766,1 1,0,0,0,0,0 

169 767,1 1,1,1,1,1,1 
170 768,1 1,0,0,0,0,0 

171 769,1 1,1,1,1,1,1 
172 770,1 1,0,0,0,0,0 

173 771,1 1,1,1,1,1,1 
174 772,1 1,0,0,0,0,0 

175 773,1 1,1,1,1,1,1 
176 774,1 1,0,0,0,0,0 

177 775,1 1,1,1,1,1,1 
178 776,1 1,0,0,0,0,0 
179 809,1 1,0,0,0,0,0 

180 810,1 1,0,0,0,0,0 
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181 811,1,1,0,0,0,0,0 
182 812,1,1,0,0,0,0,0 

183 813,1,1,0,0,0,0,0 

184 814,1,1,0,0,0,0,0 

185 815,1,1,0,0,0,0,0 

186 816,1,1,0,0,0,0,0 

187 817,1,1,0,0,0,0,0 

188 850,1,1,0,0,0,0,0 

189 851,1,1,1,1,1,1,1 

190 852,1,1,0,0,0,0,0 

191 853,1,1,1,1,1,1,1 
192 854,1,1,0,0,0,0,0 

193 855,1,1,1,1,1,1,1 

194 856,1,1,0,0,0,0,0 

195 857,1,1,1,1,1,1,1 

196 858,1,1,0,0,0,0,0 

197 859,1,1,1,1,1,1,1 
198 860,1,1,0,0,0,0,0 

199 861,1,1,1,1,1,1,1 
200 862,1,1,0,0,0,0,0 

201 863,1,1,1,1,1,1,1 

202 864,1,1,0,0,0,0,0 

203 865,1,1,1,1,1,1,1 

204 866,1,1,0,0,0,0,0 

205 867,1,1,1,1,1,1,1 
206 868,1,1,0,0,0,0,0 

207 901,1,1,0,0,0,0,0 

208 902,1,1,0,0,0,0,0 

209 903,1,1,0,0,0,0,0 

210 904,1,1,0,0,0,0,0 

211 905,1,1,0,0,0,0,0 

212 906,1,1,0,0,0,0,0 

213 907,1,1,0,0,0,0,0 

214 908,1,1,0,0,0,0,0 

215 909,1,1,0,0,0,0,0 

216 942,1,1,0,0,0,0,0 

217 943,1,1,1,1,1,1,1 

218 944,1,1,0,0,0,0,0 

219 945,1,1,1,1,1,1,1 
220 946,1,1,0,0,0,0,0 

221 947,1,1,1,1,1,1,1 

222 948,1,1,0,0,0,0,0 

223 949,1,1,1,1,1,1,1 
224 950,1,1,0,0,0,0,0 

225 951,1,1,1,1,1,1,1 
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226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

270 

952,1 

953,1 

954,1 

955,1 

956,1 

957,1 

958,1 

959,1 

960,1 

993,1 

994,1 

995,1 

996,1 

997,1 

998,1 

999,1 

1000,1 

1001,1 

1034,1 

1035,1 

1036,1 

1037,1 

1038,1 

1039,1 

1040,1 

1041,1 

1042,1 

1043,1 

1-044,1 

1045,1 

1046,1 

1047,1 

1048,1 

1049,1 

1050,1 

1051,1 

1052,1 

1085,1 

1086,1 

1087,1 

1088,1 

1089,1 

1090,1 

1091,1 

1092,1 

,0,0,0,0,0 

,1,1,1,1,1 
,0,0,0,0,0 

,1,1,1,1,1 
,0,0,0,0,0 

,1,1,1,1,1 
,0,0,0,0,0 

,1,1,1,1,1 
,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,1,1,1,1,1 
,0,0,0,0,0 

,1,1,1,1,1 
,0,0,0,0,0 

,1,1,1,1,1 
,0,0,0,0,0 

,1,1,1,1,1 
,0,0,0,0,0 

,1,1,1,1,1 
,0,0,0,0,0 

,1,1,1,1,1 
,0,0,0,0,0 

,1,1,1,1,1 
,0,0,0,0,0 

,1,1,1,1,1 
,0,0,0,0,0 

,1,1,1,1,1 
,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 

,0,0,0,0,0 
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271 1093,1, 1,0,0,0,0,0 
272 1126,1, 1,0,0,0,0,0 

273 1127,1, 1,1,1,1,1,1 
274 1128,1, 1,0,0,0,0,0 

275 1129,1, 1,1,1,1,1,1 
276 1130,1, 1,0,0,0,0,0 

277 1131,1, 1,1,1,1,1,1 
278 1132,1, 1,0,0,0,0,0 

279 1133,1, 1,1,1,1,1,1 
280 1134,1, 1,0,0,0,0,0 

281 1135,1, 1,1,1,1,1,1 
282 1136,1, 1,0,0,0,0,0 

283 1137,1, 1,1,1,1,1,1 
284 1138,1, 1,0,0,0,0,0 

285 1139,1, 1,1,1,1,1,1 
286 1140,1, 1,0,0,0,0,0 

287 1141,1, 1,1,1,1,1,1 
288 1142,1, 1,0,0,0,0,0 

289 1143,1, 1,1,1,1,1,1 
290 1144,1, 1,0,0,0,0,0 

291 1177,1, 1,0,0,0,0,0 

292 1178,1 1,0,0,0,0,0 

293 1179,1 1,0,0,0,0,0 

294 1180,1 1,0,0,0,0,0 

295 1181,1 1,0,0,0,0,0 

296 1182,1 1,0,0,0,0,0 

297 1183,1 1,0,0,0,0,0 

298 1184,1 1,0,0,0,0,0 

299 1185,1 1,0,0,0,0,0 

300 1218,1 1,0,0,0,0,0 

301 1219,1 1,1,1,1,1,1 
302 1220,1 1,0,0,0,0,0 

303 1221,1 1,1,1,1,1,1 
304 1222,1 1,0,0,0,0,0 

305 1223,1 1,1,1,1,1,1 
306 1224,1 1,0,0,0,0,0 

307 1225,1 1,1,1,1,1,1 
308 1226,1 1,0,0,0,0,0 

309 1227,1 1,1,1,1,1,1 
310 1228,1 1,0,0,0,0,0 

311 1229,1 1,1,1,1,1,1 
312 1230,1 ,1,0,0,0,0,0 

313 1231,1 ,1,1,1,1,1,1 
314 1232,1 ,1,0,0,0,0,0 

315 1233,1 ,1,1,1,1,1,1 
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316 1234,1 1,0,0,0,0,0 

317 1235,1 1,1,1,1,1,1 
318 1236,1 1,0,0,0,0,0 

319 1269,1 1,0,0,0,0,0 

320 1270,1 1,0,0,0,0,0 

321 1271,1 1,0,0,0,0,0 

322 1272,1 1,0,0,0,0,0 

323 1273,1 1,0,0,0,0,0 

324 1274,1 1,0,0,0,0,0 

325 1275,1 1,0,0,0,0,0 

326 1276,1 1,0,0,0,0,0 

327 1277,1 1,0,0,0,0,0 

328 1310,1 1,0,0,0,0,0 

329 1311,1 1,1,1,1,1,1 
330 1312,1 1,0,0,0,0,0 

331 1313,1 1,1,1,1,1,1 

332 1314,1 1,0,0,0,0,0 

333 1315,1 1,1,1,1,1,1 
334 1316,1 1,0,0,0,0,0 

335 1317,1 1,1,1,1,1,1 
336 1318,1 1,0,0,0,0,0 

337 1319,1 1,1,1,1,1,1 
338 1320,1 1,0,0,0,0,0 

339 1321,1 1,1,1,1,1,1 
340 1322,1 1,0,0,0,0,0 

341 1323,1 1,1,1,1,1,1 
342 1324,1 1,0,0,0,0,0 

343 1325,1 1,1,1,1,1,1 
344 1326,1 1,0,0,0,0,0 

345 1327,1 1,1,1,1,1,1 
346 1328,1 1,0,0,0,0,0 

347 1361,1 1,0,0,0,0,0 

348 1362,1 1,0,0,0,0,0 

349 1363,1 1,0,0,0,0,0 

350 1364,1 1,0,0,0,0,0 

351 1365,1 1,0,0,0,0,0 

352 1366,1 1,0,0,0,0,0 

353 1367,1 1,0,0,0,0,0 

354 1368,1 1,0,0,0,0,0 

355 1369,1 1,0,0,0,0,0 

356 1402,1 1,0,0,0,0,0 

357 1403,1 1,1,1,1,1,1 

358 1404,1 1,0,0,0,0,0 

359 1405,1 ,1,1,1,1,1,1 
360 1406,1 ,1,0,0,0,0,0 
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361 1407,1,1,1,1,1,1,1 
362 1408,1,1,0,0,0,0,0 
363 1409,1,1,1,1,1,1,1 
364 1410,1,1,0,0,0,0,0 

365 1411,1,1,1,1,1,1,1 
366 1412,1,1,0,0,0,0,0 
367 1413,1,1,1,1,1,1,1 
368 1414,1,1,0,0,0,0,0 

369 1415,1,1,1,1,1,1,1 
370 1416,1,1,0,0,0,0,0 

371 1417,1,1,1,1,1,1,1 
372 1418,1,1,0,0,0,0,0 

373 1419,1,1,1,1,1,1,1 

374 1420,1,1,0,0,0,0,0 

375 1453,1,1,0,0,0,0,0 

376 1454,1,1,0,0,0,0,0 

377 1455,1,1,0,0,0,0,0 

378 1456,1,1,0,0,0,0,0 

379 1457,1,1,0,0,0,0,0 

380 1458,1,1,0,0,0,0,0 

381 1459,1,1,0,0,0,0,0 

382 1460,1,1,0,0,0,0,0 

383 1461,1,1,0,0,0,0,0 

384 -.0015,0.,0.,0.,0.,0.,0.,-.0015,0.,- 

385 O.,0.,0.,0.,0.,0.,-.0015,0.,-.0015,0 

386 0.,0.,0.,0.,0.,-.0015,0.,-.0015,0.,0 

387 0.,0.,0.,0.,-.0015,0.,-.0015,0.,0.,0 

388 0.,0.,0.,-.0015,0.,-.0015,0.,0.,0.,0 

389 0.,0.,-.0015,0.,-.0015,0.,0.,0.,0.,0 

390 O.,-.0015,O.,-.0015,O.,0.,0.,0.,0.,O 

391 -.0015,0.,-.0015,0.,0.,0.,0.,0.,0„- 

392 0.,-.0015,0.,0.,0.,0.,0.,0.,-.0015,0 

393 -.0015,0.,0.,0.,0.,0.,0.,-.0015,0„- 

394 0.,0.,0.,0.,0.,0.,-.0015,0.,-.0015,0 

395 0.,0.,0.,0.,0.,-.0015,0.,-.0015,0.,0 

396 0.,0.,0.,0.,-.0015,0.,-.0015,0.,0.,0 

397 0.,0.,0.,-.0015,0.,-.0015,0.,0.,0.,0 

398 0.,0.,-.0015,0.,-.0015,0.,0.,0.,0.,0 

399 0.,-.0015,0.,-.0015,0.,0.,0.,0.,0.,0 

400 -.0015,0.,-.0015,0.,0.,0.,0.,0.,0.,- 

401 0.,-.0015,0.,0.,0.,0.,0.,0.,-.0015,0 

402 -.0015,0.,0.,0.,0.,0.,0.,-.0015,0.,- 

403 0.,0.,0.,0.,0.,0.,-.0015,0.,-.0015,0 

404 o.,o.,o.,o.,o.,o.,o.,o.,o.,o., 
405 o.,o.,o.,o.,o.,o.,o.,o.,o.,o., 
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406 
407 
408 
409 
410 

411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 

438 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 

0.,0.,0.,0.,0.,0.,0.,0.,0.,0 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o o.,o.,o.,o.,o.,o.,o.,o.,o.,o 

o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
o.,o.,o.,o.,o.,o.,o.,o.,o.,o 
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APPENDIX C 

ADDITIONAL NUMERICAL/EXPERIMENTAL 
AXIAL LOAD VERSUS DISPLACEMENT CURVES 
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Figure 45: Load vs. Top Edge Displacement, Comparing 
Experimental to SLR, Modified Donnell, and 
Classical Donnell, 101.6 mm x 101.6 mm (4" x 4") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]s 
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Figure 46: Load vs. Top Edge Displacement, Comparing 
Experimental to SLR, Modified Donnell, and 
Classical Donnell, 127 mm x 127 mm (5" x 5") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]s 
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Figure 47: Load vs. Top Edge Displacement, Comparing 
Experimental to SLR, Modified Donnell, and 
Classical Donnell, 50.8 mm x 203.2 mm (2" x 8") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]s 
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Figure 48: Load vs. Top Edge Displacement, Comparing 
Experimental to SLR, Modified Donnell, and 
Classical Donnell, 50.8 mm x 50.8 mm (2" x 2") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]2s 
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Figure 49: Load vs. Top Edge Displacement, Comparing 
Experimental to SLR, Modified Donnell, and 
Classical Donnell, 101.6 mm x 101.6 mm (4" x 4") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]2s 
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Figure 50: Load vs. Top Edge Displacement, Comparing 
Experimental to SLR, Modified Donnell, and 
Classical Donnell, 127 mm x 127 mm (5" x 5") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]2s 
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Figure 51: Load vs. Top Edge Displacement, Comparing 
Experimental to SLR, Modified Donnell, and 
Classical Donnell, 50.8 mm x 202.3 mm (2" x 8") Cutout, 
304.8 mm x 508 mm (12" x 20") Panel 
[0/45/-45/90]2s 
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