
t^ELEC'iiEi
%JAH 0 4 1994 f

User-Centric Development

SPC-94061-CMC

Version 01.00.04
December 1994

fe public :ehc^-r^?' P^0^ I , . .
—"^^tß^iit1^^. ■ I Christine Haapala

^ James Kirby, Jr.

ri:-:-r

Producedby the
SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION

under contract to the
VIRGINIA CENTER OF EXCELLENCE

FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock Hill Road

Herndon, Virginia 22070

Copyright © 1994, Software Productivity Consortium Services Corporation, Herndon, Virginia. Permission to use, copy,
modify, and distribute this material for any purpose and without fee is hereby granted consistent with 48 CFR 227 and 252,
and provided that the above copyright notice appears in all copies and that both this copyright notice and this permission
notice appear in supporting documentation. This material is based in part upon work sponsored by the Advanced Research
Projects Agency under Grant #MDA972-92-I-1018. The content does not necessarily reflect the position or the policy of
the U. S. Government, and no official endorsement should be inferred. The name Software Productivity Consortium shall
not be used in advertising or publicity pertaining to this material or otherwise without the prior written permission of
Software Productivity Consortium, Inc. SOFTWARE PRODUCTIVITY CONSORTIUM, INC. AND SOFTWARE
PRODUCTIVITY CONSORTIUM SERVICES CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES
ABOUT THE SUITABILrrY OF THIS MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER, AND THIS
MATERIAL IS PROVIDED WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

User-Centric Development

i ', r-; •;.-'. -. ■■.-.;: \ i

■■T'tZ. 7

{(]-
SPC-94061-CMC
Version 01.00.04

December 1994 19941229 053

Product names, company names, or names of platforms referenced herein may be trademarks or registered
trademarks of their respective companies, and they are used for identification purposes only.

CONTENTS

ACKNOWLEDGMENTS vii

EXECUTIVE SUMMARY ix

1. INTRODUCTION 1

1.1 Purpose 1

1.2 Audience 1

1.3 Organization 1

1.4 Typographic Conventions 2

2. USER-CENTRIC DEVELOPMENT 3

2.1 Characteristics of User-Centric Development 3

2.1.1 The Orchestrated Project Team 3

2.1.2 The Iterative Enhancement Process 4

2.1.3 The Significant Challenge 4

2.2 A User-Centric Development Example 4

2.2.1 The Team 5

2.2.2 The Process 5

2.2.3 The Product 7

2.2.4 The Success 8

2.3 Software Development Trends 9

2.3.1 Business Environment Trend 10

2.3.2 Client-Server Trend 11

Contents

2.4 Other User-Focused Methodologies 12

3. USER-CENTRIC DEVELOPMENT PROJECTS 15

4. CONDUCT OF THE CASE STUDY 17

5. USER-CENTRIC DEVELOPMENT PROPOSITIONS 19

6. RESULTS OF THE CASE STUDY 21

6.1 Support for Management and Process Propositions 21

6.2 Support for Product: Customer Focus Propositions 22

6.3 Support for Product: Developer Focus Propositions 22

6.4 Support for Team Propositions 23

6.5 Support for Technology Transfer Propositions 25

7. CONCLUSIONS AND FUTURE WORK 27

7.1 Conclusions 27

7.2 Future Work 27

7.2.1 The Current Environment 27

7.2.2 Looking to the Future 28

7.2.3 Supporting Multiple Users 28

7.2.4 Teams 29

7.2.5 Verification and Validation 29

7.2.6 Speeding of the Cycle 29

APPENDIX: QUESTIONNAIRE 31

LIST OF ABBREVIATIONS AND ACRONYMS 37

REFERENCES 39

BIBLIOGRAPHY 43

FIGURES

Figure 1. JNIDS Process Activities 6

Figure 2. Parallel Development Activities 6

Figure 3. JNIDS Iterative Process 7

Figure 4. JNIDS Iteration Cycle 7

Figure 5. The Waterfall Process 9

Figure 6. User's Information Processed by Systems 10

Figure 7. User Access to System Directly 11

Figure 8. User Involvement in Four Processes 12

Figure 9. Mutual Collaboration Fostered by the Team Maturity Level 13

TABLES

Table 1. User-Centric Development Roles Played on Projects 15

Table 2. Case Study Questions 17

Table 3. Case Study Questions Adoption of User-Centric Development 17

Table 4. Case Study Question 17

Table 5. Management and Process Propositions 19

Table 6. Product 19

Table 7. Product 20

Table 8. Team Propositions 20

Table 9. Technology Transfer Propositions 20

Table 10. Support for Management and Process Propositions 21

Table 11. Support for Product 22

Table 12. Support for Product 23

Table 13. Support for Team Propositions 24

Table 14. Support for Technology Transfer Propositions : 26

ACKNOWLEDGMENTS

Thanks go to Steve Cross and Craig Wier of Advanced Research Projects Agency who sponsored and
guided this study; to Neil Burkhard, Jim Marple, and Steve Wartik whose thoughtful reviews
improved this report; to Bobbie Troy who edited the report; to Debbie Morgan and Deborah Tipeni
who word processed it.

Special thanks go to the 17 participants who contributed their time to this study.

Acknowledgments

This page intentionally left blank.

EXECUTIVE SUMMARY

This technical report describes a case study of at least three software development projects that have
employed user-centric software development (UCD). Characteristics of UCD are:

• The software development team includes some of those who will use the software. The user
is an equal participant with the developers in making development decisions.

• The software development team develops the software using an iterative enhancement
approach. A series of versions of the software is developed and delivered with feedback from
users of earlier versions of the software driving development of later versions.

Results of the case study were obtained by posing a set of questions to those participating in UCD as
developers, users, or managers. The questions, captured as a set of assertions, were used to test a
theory of UCD. The results describe how a particular software development paradigm was practiced,
the advantages and disadvantages of using the paradigm, technology transfer issues, and
opportunities for research and technology advancements.

The intended audience for this technical report consists of:

• Technologists interested in evaluating, comparing, improving, and supporting software
development methods and processes

• Practitioners responsible for selecting the software development methods and processes that
software development projects will employ

Executive Summary

This page intentionally left blank.

1. INTRODUCTION

1.1 PURPOSE

User-centric development (UCD) is a software development process characterized by a well-balanced
team, consisting of users, customers, and developers, developing a system using iterative
enhancement. This paper reports on a broad case study of a number of projects that have successfully
practiced UCD. The case study is broad in the sense that it touches on a number of issues relevant to
UCD, for example, software development methods and tools, management, the role of teams, building
teams, and technology transfer.

This report will help readers understand how UCD is practiced, some of the advantages and
disadvantages of using it, issues in transferring it into an organization, and opportunities for research
and technology advancements.

1.2 AUDIENCE

The audience for this report consists of those who are:

• Interested in evaluating, comparing, improving, and supporting software development
methods and processes

• Responsible for selecting the software development methods and processes that software
development projects will employ

1.3 ORGANIZATION

This report is organized in the following way:

• Section 2 discusses UCD and the literature related to it.

• Section 3 characterizes the projects practicing UCD that the Software Productivity Consortium
(Consortium) interviewed for the study.

• Section 4 describes how this case study was conducted.

• Section 5 describes the propositions about UCD that drove the interviews.

• Section 6 compares notes from the interviews to the propositions described in Section 5.

1. Introduction

• Section 7 discusses conclusions of the study and proposes future work based on what was
learned in this study.

• Appendix A presents the questions that drove the interviews the Consortium conducted.

1.4 TYPOGRAPHIC CONVENTIONS

This report uses the following typographic conventions:

Serif font General presentation of information.

Italicized serif'font Publication titles.

2. USER-CENTRIC DEVELOPMENT

2.1 CHARACTERISTICS OF USER-CENTRIC DEVELOPMENT

UCD is a software development process characterized by a well-balanced team, which focuses on
developing a system with a user addressing a significant challenge. Most importantly, the user is
intimately involved throughout the full life cycle of UCD. UCD can best be described by
characteristics in the areas of team, process, and challenge.

2.1.1 THE ORCHESTRATED PROJECT TEAM

According to Constantine and Lockwood (1993), a project team:

• Includes the users of the software, as well as developers and customers (i.e., a program office
that finances the project for the user)

• Is empowered (has authority and responsibility) to respond quickly, in particular, to the
user's requests and feedback

• Is distinguished by the presence or the emergence of a leader

• Is composed of members with well-differentiated and specific team roles

Having users on the software development team shortens the time that software developers need to
discover user requirements, to learn the application domain, and to produce products that satisfy
users. In turn, the users must learn about technology from the system experts in order to understand
what computer technology can do for them. The users cannot describe what they really do because
they have internalized their efforts. Not until they are questioned in the context of their work, are
they able to reflect and converse about the specifics of their work. Furthermore, being in the user's
environment provides a real-life experience of the activities a system must support (Clement and Van
den Besselaar 1993). By putting systems designers in the workspace of the users, then design
decisions can be made that accurately address the user's current needs.

Because "increased competition in international markets is pushing companies to adopt new
structures that reduce middle management and move decision making to lower levels of the
hierarchy," (Clement 1994) the UCD's empowered team is positioned to meet this economic reality
and, thus, respond quickly to the user. The empowered team functions "with less supervision and
assumes wider task responsibility" (Clement 1994).

The presence of a leader on the UCD team, most notably in the role of player-coach, gives the team
more than the typical management guidance (Haapala, Hess, and Shore 1988). A UCD leader must
"challenge the process, inspire a shared vision, enable others to act, model the way, and encourage
the heart" (Funk 1992).

2. User-Centric Development

Each of the UCD's team members has a specific contribution and is an active participant. The UCD
team acts cooperatively and collaboratively to achieve a common purpose (Funk 1992).

2.1.2 THE ITERATIVE ENHANCEMENT PROCESS

According to Basili and Turner (1975), the iterative enhancement process:

• Is an incremental, evolutionary growth in project maturity by responding to the feedback
from the users of the software

• Drives the development of a series of versions of the software in a short, repetitive cycle of
preplanned functionality

It is a well-known fact that the user often does not know what he wants or, at a minimum, is unable to
articulate it (DeBellis and Haapala 1994). Additionally, "for every application beyond the trivial,
users' needs are constantly evolving ... aiming at a moving target" (Davis, Bersoff, and Comer 1988).
Using the technique of incremental development, "the process of constructing a partial
implementation and slowly adding increased functionality" (Davis, Bersoff, and Comer 1988)
increases the chance that through these frequent insertions, the product will hit the moving target.

As early as the mid 70s, the iterative approach was identified as a "practical approach ... a simple
initial implementation of a subset of the problem ... iteratively enhance existing versions until the full
system is implemented" (Basili and Turner 1975). While these steps might appear to advance slowly
through incremental improvements, in actuality, quantum leaps in system development and cognitive
leaps in requirements understanding, both from the user and the system developer, often occur.
Delivering a series of versions that are responsive to the users ensures their continuing interest and
commitment.

2.1.3 THE SIGNIFICANT CHALLENGE

• In the long term, UCD centers around a significant and compelling vision of the user's future
needs.

• In the short term, UCD focuses on delivering a limited version very early and subsequently
building, through the requirements enhancement process, a continually maturing system.

Vision through a compelling picture of the future is a significant factor in UCD. UCD demands a
long-term future orientation that is "looking beyond the horizon of the present" (Funk 1992).

Short-term goals mapped to the vision are "sharp milestones." The short-term goals
characteristically are achieved through iterations or interim system builds occurring on a frequency
of less than 8 to 10 weeks. While the frequent deliveries may be considered a burden or distraction by
traditional software developers, these goals or milestones "are, in fact, a service to the team... a fuzzy
milestone is the harder burden to live with ... a millstone that grinds down morale" (Brooks 1972).

Section 2.2 describes an application of UCD in developing an advanced analytical intelligence
system.

2.2 A USER-CENTRIC DEVELOPMENT EXAMPLE

Over the last decade, the Joint National Intelligence Development Staff (JNIDS) has successfully
applied a user-centric, iterative development process to develop advanced analytic intelligence

2. User-Centric Development

systems (Haapala, Hess, and Shore 1988; Haapala 1992). The process includes the dimensions of an
empowered, energetic project team; continuous user involvement; and a rapid, systematic
implementation of user requirements through iterative enhancement.

2.2.1 THE TEAM

Each JNIDS project has a core project team that is a diverse partnership involving three separate
organizational groups: JNIDS, user(s), and the system developer(s). JNIDS, as the government
program office, provides the implementation budget and management direction; the user, as the
ultimate recipient of the final system, provides the functional vision and requirements direction; and
the development contractor, as the implementation arm of the team, transforms the functional vision
into an operating system. According to one JNIDS development partner (National Information
Display Lab 1992), "the key to the JNIDS' approach is the continual involvement of Government
users in a rapid, iterative design process which provides users with the operational system."

Since JNIDS does not assume that the domain knowledge of the user could be captured on paper or
purchased through surrogate users in the form of contractors, the user was embraced as an integral,
crucial part of the core team. Drucker recognized the nonexistence of a "universally gifted" man
(Drucker 1966). Similarly, JNIDS recognized the nonexistence of a "universally gifted"
organization and executed their projects through a virtual organization of teams and partnerships
(Haapala 1993; JNIDS 1993). This virtual organization was always user focused and "replaces the
functional hierarchies and matrix structures with flexible, empowered, inspired, integrated business
teams that have few levels of management and function more like a community" (Luftman, Lewis,
and Oldach 1993).

2.2.2 THE PROCESS

The key development activities in the waterfall software development process, in large part, inspired
the JNIDS iterative development process. The activities of requirements, design, code, integration, and
system implementation are preserved and remain necessary, distinct activities in the JNIDS process in
Figure 1. Additionally, because the core project team was such an important aspect, another
dimension of the software development process was explicitly identified: team orchestration. Team
orchestration represents the effort and time involved to move the team through the team-building,
formative stages of "forming, storming, norming and performing."

Rather than performing these development activities in series, only once, with the output from one
being input to the other as in Figure 5, they occur in parallel multiple times, as in Figure 2. Viable
results, in the form of operational prototypes, occur every 8 weeks rather than in years or decades.

The JNIDS iterative development process as presented in Figure 3 is a phased, parallel process that
instantiates a user-focused vision from the initial requirements gathering stage through simultaneous
implementation of a partial solution to the final delivery of the operational system.

The goal of Phase 0 is to identify requirements through a functional analysis of the user's high-level
needs, develop a high-level Statement of Work, issue a competitive Request for Proposals, and award a
contract. Following award of contract, the goal of Phase 1 is to field a first-cut operational prototype
in the user's environment, within 6 months. Phases 2, 3, and 4 are each year long. The goals for
Phase 2 and 3 are to deliver, every 8 weeks, enhanced versions of the operational prototype based on
the user's feedback during operational use of the system. The primary difference between Phase 2
and Phase 3 is that Phase 2 concentrates on the breadth of the system functionality, while Phase 3

2. User-Centric Development

Hardware/Software Integration i
Component Test
Software Integration
Software Test

Code and Debug
Unit Test

Preliminary Design
Detailed Design

]
1
I

Systems Requirements
Software Requirements

Figure 1. JNIDS Process Activities

Hardware/Software
Integration

Component Test
Software
Integration
Software Test

Code and Debug
Unit Test

Preliminary
Design
Detailed Design

Team
Orchestration

Systems
Requirements
Software
Requirements

Hardware/Software
Integration

Component Test
Software
Integration
Software Test

Code and Debug
Unit Test

Preliminary
Design
Detailed Design

Team
Orchestration

Systems
Requirements
Software
Requirements

Hardware/Software
Integration

Component Test
Software
Integration
Software Test

Code and Debug
Unit Test

Preliminary
Design
Detailed Design

Team
Orchestration

Systems
Requirements
Software
Requirements

Hardware/Software
Integration

Component Test
Software
Integration
Software Test

Code and Debug
Unit Test

Preliminary
Design
Detailed Design

Team
Orchestration

Systems
Requirements
Software
Requirements

8 Weeks 8 Weeks 8 Weeks 8 Weeks

Figure 2. Parallel Development Activities

concentrates on maturing and further refining the functionality introduced in Phase 2. The goal of
Phase 4 is a transition phase where the overall maintenance of the system and long-term viability are
transitioned from JNIDS to the user.

The level of effort, as depicted by the shading in Figure 3 for each of the software development
activities varies for each phase, with increasing concentration on system implementation as the effort
moves through the phases to Phase 4.

2. User-Centric Development

Phase Phase Phase Phase Phase

System
Implementation

Team
Orchestration

Requirements

Effort 0-10% 10-40% >40%

Figure 3. JNIDS Iterative Process

2.2.3 THE PRODUCT

JNIDS emphasizes the early delivery (within 6 months of project contract award) of an operational
prototype in the user's environment. This delivery occurs at the end of Phase 1. Beginning with
Phase 2, a step-wise strategy is established that determines intermediate requirements goals by
delivering products incrementally at 8-week intervals. These intermediate goals are always aligned
with and along a path toward the user's ultimate vision. The essence of product delivery centers
around a process that repeats 2 significant meetings every 8 weeks: an iteration and an in-progress
review (IPR). This repeating iteration cycle of meetings lasts 2 years and is depicted in Figure 4.

Iteration Iteration

User works with the System

Figure 4. JNIDS Iteration Cycle

2. User-Centric Development

2.2.3.1 Iteration

An iteration is a technical and system-delivery meeting of representatives from the core team. The
meeting typically lasts 3 to 5 days at the user's site. Holding this meeting at the user's site immerses
the system developers in the user's work environment. Discussions during the course of the meeting
focus on the functional and technical capabilities delivered. During the iteration, as the user learns,
uses, and reviews the system, other needs and requirements are identified. By merging these new
requirements with the previously identified requirements and factoring in cost and time schedules, the
core team (JNIDS, users, and system developers) jointly agree upon a revised prioritized list of
requirements by the end of the meeting. Every effort is made to include other participants and
potential users through special demonstrations. This fosters organizational buy-in, gathers other
potential support by expanding the user community, and publicizes the progress of the program
beyond the core team.

2.2.3.2 In-Progress Review

An IPR is a management-oriented meeting that generally occurs at the development contractor's site.
At the IPR, the core team discusses current progress, stressing budget/schedule management and
program vision attainment. Future plans, developing problems or risks, and other management issues
are also considered. An IPR typically occurs about 3 weeks prior to the next iteration/meeting. The
IPR gives the user an important opportunity to meet and interact with the entire development
contractor team, especially those who do npt have an opportunity to attend an iteration/meeting.

With the system deliveries and management meetings as road markers on the path to the ultimate
system delivery, the system developer continues, throughout the contractual period, to develop the
system, and the user simultaneously works with and continually evaluates the system.

The notion of frequent meetings, iterative software development, and the opportunity for constant
and continuous communication is not unique to JNIDS (Basili and Turner 1975). The Borland
Quattro Pro for Windows (QPW) development group used a process that was "inherently iterative
with a series of increasingly stable prototypes until the product was complete" (Gabriel 1994). They
recognized that change management was crucial to successful design and implementation so they
adopted "almost-daily meetings." While the JNIDS meetings were less frequent, the QPW and JNIDS
reported similar benefits for holding these frequent meetings:

• Exchange of information to understand the other team member's contributions

• Appreciation for and sharing of information about your personal contribution to the "big
picture"

• Collaborative, cooperative, and supportive environment achieved through shared dialogue

• Opportunity to reach mutual understanding and growth

2.2.4 THE SUCCESS

The JNIDS user-centric, iterative development process has proven successful on more than 11
projects, involving more than 25 development partners (from industry, academia, and national
laboratories) and more than 20 user organizations worldwide. While some smaller project efforts were
undertaken, the typical JNIDS project spanned 3 to 4 years, cost about $8M, and had a core team of
approximately 25. In the words of one satisfied user, "from a pragmatic point of view, it is probably
the best way for an . . . organization to obtain training, equipment, and expertise on newly emerging

2. User-Centric Development

System
feasibility

Validation

Software plans and,
requirements.

Revalidation

Figure 5. The Waterfall Process

technologies which in the long run will result in products and services which provide the very best...
support possible" (JNIDS 1993).

2.3 SOFTWARE DEVELOPMENT TRENDS

Software development started as a waterfall. The traditional "waterfall" software development
process (see Figure 5) has an initial requirements-acquisition phase during which the requirements
are gathered, analyzed, negotiated, and rigidly defined. A user, although in many cases not the
ultimate user, produces a paper-based requirements document. This requirements document initiates
a chain reaction of documents that creates a paper trail through all of the remaining phases of
software development. Except for the initial phase, the potential users of the system are essentially
absent from the software development process. For large systems, there may be a multiyear gap
between the time the user defines the requirements and the time the system is delivered to the users.
The time delay and the user's changing environment renders the system obsolete upon delivery
(DeBellis and Haapala 1994).

Most notably, the waterfall process fails in the following areas (Moad 1994):

2. User-Centric Development

Failure to capture or keep up with real business requirements

• Little control over the waterfall process by business managers

• Lengthy development cycles

However, systems developers are no longer "slavishly following the (static) statement of requirements
from users" (Moad 1994), but, more appropriately, working with users to develop a "sequence of
transformations" (Wood and Sommerville 1988) that best solve the users' needs. The need to move
in a more iterative direction occurred most recently when two trends converged.

Two contributing trends that prepared the way for UCD are:

• The failure of the waterfall methodology to satisfy customers by keeping up with changing
business requirements

• The emergence of the client-server technology

2.3.1 BUSINESS ENVIRONMENT TREND

The business environment is the ultimate user. The last three decades have seen a movement in the
types of systems that users are requesting. This relationship is depicted in Figure 6 as a move away
from the financial-like, transaction-based systems of the early 70s to the more knowledge-based
systems of the 90s—systems that process, synthesize, and facilitate the use of knowledge.

User's
Information
Processed by
Systems

Knowledge-
Based

Transaction-
Based

70s (Mainframes/Minis) 80s (PC, MACs) 90s (Client-Server)

Figure 6. User's Information Processed by Systems

The "information society" user is clambering for instantaneous access to and use of knowledge. The
"knowledge worker of the information based organizational" (Drucker 1988) needs systems
designed for his specific requirements that will support collaboration, visualization, dissemination,
integration, and cooperation. Not only do these systems have to fit today's business needs, but they
must also "anticipate them" (Moad 1994).

10

2. User-Centric Development

2.3.2 CLIENT-SERVER TREND

The latest and largest trend in information technology is the "migration to client/server architecture"
(Martin 1994). This trend is depicted in Figure 7. For example, in the 70s, a financial analyst would
request a report though a systems shop and it would take a month or more to show up on his desk in
reams of computer printouts. This process was slow, nonresponsive, and inflexible. The user's access
to the information was through a system developer. In the 80s, with the advent of the PC and MAC,
and their associated "user-friendly" software, this same report could be generated by the user in a
matter of hours or minutes. However, access to the data was still an issue and resulted in numerous
point-solutions with downloaded information, which quickly became outdated and out of sync with
the rest of the organization. Integration was nearly impossible. Now, client-server technology brings
the integration of the mainframe with access to large data sources and a streamlined front end with
sophisticated and user-friendly software.

User

Access

to

System

Directly

70s (Mainframes/Minis) 80s (PC, MAC) 90s (Client-Server)

Figure 7. User Access to System Directly

The user needs to be involved in the system design of today's applications. Also, the "complexity of
client-server applications is causing a shift in development methodologies from the waterfall method
and toward rapid application development" (Adhikari 1994).

With the failure of the waterfall development process to satisfy the user and the advent of the
powerful client-server technologies, UCD emerges. Only a "methodology with a high degree of user
involvement would lead to better systems" for the users (Carmel, Whitaker, and George 1993).
Because of client-server technology, we are being asked to become more business oriented and
develop more new-technology expertise (Moad 1994). This fact, coupled with the "growing
recognition that conventional, rationalistic systems development approaches are inadequate for
dealing with the interpersonal aspects ..." (Clement 1994) has forced numerous solutions to
alternative processes and methods to emerge over the last decade. Section 2.4 describes some of the
user-focused methodologies that preceded UCD.

li

2. Usei^Centric Development

2.4 OTHER USER-FOCUSED METHODOLOGIES

There are two other significant user-focused development methodologies: Joint Application
Development (JAD) (Wood and Silver 1989) and Participatory Development (PD) (Clement and Van
den Besselaar 1993) that emerged during the same time that UCD emerged.

JAD and PD are well-known methodologies that demand user involvement and user participation.
The goal of JAD is to "accelerate the design of information systems and promote comprehensive,
high quality results" (Carmel, Whitaker, and George 1993). JAD is the fundamental methodological
basis for Martin's Rapid Application Development (RAD) (Foss 1993; Carmel, Whitaker, and George
1993; Martin 1991) and "considers human factors and corporate culture as well as technology"
(Adhikari 1994).

PD is the "Scandinavian approach" to systems development. It "advocates a much stronger form of
user involvement than that of JAD" (Carmel, Whitaker, and George 1993). Additionally, PD strongly
promotes a "mutual learning process between members of the group" and the "empowerment of
workers so they can codetermine the development of the information system and their workplace"
(Clement and Van den Besselaar 1993).

While UCD has much in common with JAD and PD, the most significant difference is that, in UCD,
the user is central. In UCD, all development revolves around the user, the user's environment, and his
ultimate needs. Figures 8 and 9 depict the distinctions among the four processes: UCD, JAD, PD, and
the waterfall.

Life-Cycle Stage

Implementation

Integration

Code

Design

Requirements

Very Limited or No
User Participation

Users
Frequently Consulted

Users
Continually Involved

User Involvement

Figure 8. User Involvement in Four Processes

12

2. User-Centric Development

Some other user-focused methodologies include Codevelopment (Anderson and Crocca 1993),
Contextual Design (Whiteside, Bennett, and Holtzblatt 1988), User-Centered Requirement Analysis
(Martin 1988), User-Centered Design (Norman and Draper 1986), and IBM's Rapid Delivery.

Types of Teams

Orchestrated Team

Self-Managed Team

Matrixed
Group

Hierarchy

Chaos

Static Exchange of
Requirements Information

Mutual, Encouraged
Learning

Systemic
Thinking

Learning Environment Between User and System Developer

Figure 9. Mutual Collaboration Fostered by the Team Maturity Level

13

2. User-Centric Development

This page intentionally left blank.

14

3. USER-CENTRIC DEVELOPMENT PROJECTS

The plan for this case study called for a small number of software development projects that had
successfully practiced UCD. The Consortium hoped to have some variety in the projects to provide
evidence of how widely applicable UCD might be. The Consortium found four organizations that had
practiced and institutionalized UCD across a number of projects for 5 to more than 10 years. These
organizations included the research arm of a commercial developer, a federal agency, and two
organizations within the Department of Defense (DoD). One thing all these organizations had in
common is that individuals took personal, career risks to pioneer UCD in their organizations. The
practice of UCD was not officially sanctioned or supported by the organizations and was sometimes
opposed by some of the organizations.

The Consortium also found several DoD contractors that had institutionalized UCD to some extent.
The developers on projects practicing UCD were separated from the contractors'other projects.

The projects the Consortium interviewed for the case study represented a range of applications and a
number of different types of organizations in the roles of user, customer, and developer. Table 1
illustrates the combination of roles that organizations played in the projects in this case study. Many
of the projects developed analytical support workstations. These were typically knowledge- and data-
intensive and required a real-time response. Several of the projects developed information systems to
be used by occasional, sometimes one-time, untrained users. A big part of the challenge of building
such systems was accommodating people who had never used a personal computer and were
unfamiliar with typical user-interface conventions (e.g., using a mouse to point and click). A number
of the projects built parts of hospital information systems. Some of the applications involved
collecting, verifying, and reporting lab results and scheduling appointments. A series of projects
involved building systems to support planning the transportation of supplies during war.

Table 1. User-Centric Development Roles Played on Projects

User Customer Developer

DoD DoD Commercial firm

Federal agency Federal agency Federal agency

Individuals Commercial firm Commercial firm

Individuals Individuals Commercial firm

Commercial firm Commercial firm Commercial firm

DoD Federal research and
development

Commercial firm

IS

3. User-Centric Development Projects

This page intentionally left blank.

16

4. CONDUCT OF THE CASE STUDY

The case study is modeled on that described in (Yin 1989). In Yin's model, researchers pose
questions they want to answer. Based on observation and the scientific literature, the researchers
develop hypotheses, called "propositions," which propose answers to the research questions. They
test the propositions by conducting interviews, reviewing documents, etc. From the results of the
tests, the researchers draw conclusions about whether the evidence supports, denies, or neither
supports nor denies the hypotheses. These conclusions provide some answers to the research
questions they originally posed.

The Consortium's interest in understanding UCD, how better to transfer it, and what other
technologies might leverage it drove the development of the research questions listed in Tables 2, 3,
and 4. The tables organize the questions into those that compare UCD with other software
development processes, factors that affect adoption of UCD, and factors that support UCD.

Table 2. Case Study Questions: Comparison of User-Centric Development With Other Processes

1. How does the UCD process differ from other software development processes?

2. What are the distinguishing characteristics of the UCD process?

3. What are the advantages and disadvantages of UCD over other software development processes?

4. How do the products delivered by the UCD process differ from the products delivered by other
software development processes?

5. What are the distinguishing characteristics of the teams that practice the UCD process?

6. How are the products of the UCD process delivered to users?

Table 3. Case Study Questions Adoption of User-Centric Development

1. What conditions would inhibit adoption of UCD?

2. What will facilitate widespread use of UCD?

3. What technological advances will encourage UCD?

Table 4. Case Study Question: Support for User-Centric Development

1. What technological advances will leverage UCD?

17

4. Conduct of the Case Study

The Consortium developed propositions that propose answers to the research questions. Section 5
presents and discusses the propositions. For each of the propositions, the Consortium developed one
or more interview questions (Appendix A presents the interview quesitons) about UCD projects that
would confirm or refute the proposition. For example, to test the first proposition in Section 5:

User-centric software development is a process. It can be successfully practiced with different
methods and tools.

The Consortium posed the following questions about UCD projects in its interviews:

• What software development methods did you use (e.g., structured design, structured
analysis, object-oriented design)?

• What tools did you use with each method?

How did the tools support your development process?

Sixty-nine such questions drove interviews the Consortium conducted with participants in UCD
projects. Seventeen individuals answered the interview questions. Four of the individuals provided
written answers to the written interview questions. The other 13 individuals provided oral answers in
interviews conducted by the Consortium. One interview was conducted solely by one author. The rest
of the interviews were conducted by both authors. One interview was of three individuals, three
interviews were of two individuals each, and four interviews were of one individual each. The
Consortium used notes from the interviews and the written answers from the four individuals to
evaluate the propositions.

Section 6 discusses conclusions the Consortium drew from the interviews and written responses to
the interview questions.

18

5. USER-CENTRIC DEVELOPMENT PROPOSITIONS

Section 3 discusses the research questions about UCD that the Consortium wanted to answer. The
questions related to how UCD compared with other software development processes, factors that
would encourage or inhibit organizations to adopt it, and technologies that would leverage it. The
approach the Consortium took to answering these questions was, first, to develop hypothesized
answers to the questions in the form of a set of propositions. Then, the Consortium interviewed a
number of individuals who participated in UCD projects as users, customers, or developers.
Comparing notes from the interviews to the propositions provided evidence the Consortium used to
answer the research questions.

Table 5 lists propositions that characterize the management of projects practicing UCD and the
software process that the projects follow. The propositions hypothesize that UCD projects are less
risky, need less management, and can use a variety of software development methods and tools.

Table 5. Management and Process Propositions

1. UCD is a process. It can be successfully practiced with many different methods and tools.

2. UCD gives management confidence that a project is progressing (as opposed to simply moving).

3. Several low-cost iterations reduce the need for executive involvement.

4. UCD projects encourage risk identification and facilitate resolution.

The propositions in Table 6 hypothesize that UCD projects deliver products that are more useful,
usable, and better reflect the users' current needs.

Table 6. Product: Customer Focus Propositions

1. UCD leads to the delivery of a more useful and usable product.

2. UCD projects tend to address current requirements.

Table 7 lists propositions that characterize the nature of UCD work products (e.g., requirements,
design). The propositions hypothesize that user-centric projects detect problems earlier; deliver more
current technology; produce more complex designs; and support rapid change and construction of
software work products, facilitating the practice of UCD.

19

5. User-Centric Development Propositions

Table 7. Product: Developer Focus Propositions

1. UCD leads to earlier detection of problems in requirements and design.

2. UCD can lead to more complex designs.

3. UCD projects tend to deliver current technology.

4. Methods that support rapid change and construction of software work products will facilitate
the practice of UCD.

Table 8 lists propositions that hypothesize that teams are critical to the practice of UCD and that
practicing UCD leads to the formation of teams.

Table 8. Team Propositions

1. UCD leads to the formation of a team.

2. UCD is effective because a team forms.

3. Many short-term deliverables lead to team formation.

4. Participants in UCD tend to be more motivated.

5. Teams use peer pressure to keep members "in line.'

6. There is a low personnel turnover rate in UCD projects.

7. To be effective, UCD requires a balanced team.

8. UCD fosters personal and technical development in team members.

9. The rewards for members of a UCD project include being part of a successful team and
delivering a useful product.

The propositions in Table 9 hypothesize that UCD is an effective means of transferring technology
both into and out of the project.

Table 9. Technology Transfer Propositions

1. UCD leads to user buy-in of the product.

2. UCD projects, by nature, tend to attract resources (magnet effect).

3. Groups participating in UCD tend to "market" to their peers.

20

6. RESULTS OF THE CASE STUDY

This section presents the results of comparing the UCD propositions discussed in Section 5 to notes
taken of interviews with individuals from organizations that practice UCD. Annotations on the tables
of propositions in Section 5 summarize the results. A plus sign (+) in the column preceding a
proposition indicates that the interviews tended to support the proposition. A minus sign (-) in the
column preceding a proposition indicates that the interviews did not tend to support the proposition;
that is, the individuals interviewed made comments contradicting the proposition, made no comments
relevant to the proposition, or the individuals making comments relevant to the proposition tended to
contradict one another.

6.1 SUPPORT FOR MANAGEMENT AND PROCESS PROPOSITIONS

Table 10 lists the propositions from Table 5. The interviews tended to support all of these
propositions. In support of the first proposition, the organizations reported using a wide range of
software development methods and tools. Methods used included none, ad hoc and in-house-
developed methods, Structured Analysis/Structured Design, a standard set of abstractions that
separated policy concerns (e.g., all orders over $5,000 must be approved by a Vice President) from
mechanism concerns (a manager approves an order by sending an e-mail message to a particular
address), object-oriented design, and RAD. Tools used included none, in-house tools (including code
generators), and commercial Structured Analysis/Structured Design tools.

Table 10. Support for Management and Process Propositions

1. UCD is a process. It can be successfully practiced with many different methods
and tools.

2. UCD gives management confidence that a project is progressing (as opposed to
simply moving).

3. Several low-cost iterations reduce the need for executive involvement.

4. UCD projects encourage risk identification and facilitate resolution.

While the second and third propositions in Table 10 were supported by the interviews, the reader
should note that the UCD projects in the interviewed organizations did not appear to be treated any
differently than other projects in those organizations. One interviewee noted that "[one customer
organization represented in these interviews] picked smaller contractors, or parts of larger
contractors that acted like their own company."

21

6. Results of the Case Study

Most of those interviewed stated that they could not have written the requirements for the systems
built using UCD before actually building versions of the systems. This statement supports the fourth
proposition. Risks that UCD appears to address particularly well are eliciting, understanding, and
confirming users' needs with them. One interview provided a particularly clear example of this:

[Company] wrote the proposal. The users loved the proposal. [Company] built the product. The users
hated the product. So [Company] went off and rebuilt the product. The users love the rebuilt product.

The reader should note that not all risks a system might encounter are equally likely to be identified.
Those risks that are most likely to be identified and addressed are those that surface during daily use
of a system for routine tasks.

6.2 SUPPORT FOR PRODUCT: CUSTOMER FOCUS PROPOSITIONS

Table 11 lists the propositions from Table 6 The interviews tended to support both of these
propositions. The report by most interviewees that they could not have written the requirements
before building the system supports both of the propositions. Many interviews reported examples of
requirements that the developers discovered by having the users use the product. One user gave
particularly clear support for the first proposition by contrasting two products with which he was
familiar: [Product 1] was developed following a traditional waterfall process; [Product 2] was
developed by a team practicing UCD.

[Product 1] was driven by requirements only; it's hard to use. [Product 2] users don't have to open
lots of windows to enter one name.

He went on to note:

The convenience of data entry [in Product 2] is a reflection of the users selected: experienced analysts.

This latter comment brings up a corresponding risk that several interviewees mentioned. The system
that the UCD team produces reflects the concerns, abilities, and interests of the users participating in
development. Misguided users can lead the project astray.

Table 11. Support for Product: Customer Focus Propositions

1. UCD leads to the delivery of a more useful and usable product.

2. UCD projects tend to address current requirements.

In support of the second proposition that UCD addresses current requirements, one developer stated:

The target [of the product] was constantly changing. There is no way you could have written
requirements ahead of time [would have had to be very flexible to do so].

6.3 SUPPORT FOR PRODUCT: DEVELOPER FOCUS PROPOSITIONS

Table 12 lists the propositions from Table 7. The interviews tended to support all of these
propositions. The interview comments, discussed in Section 6.2, that the teams could not have written
the requirements for the systems before building them, support the first proposition. Several
interviews gave examples of users finding delivered products to be unusable or inadequate and of

22

6. Results of the Case Study

developers responding by producing new versions that better addressed users' needs. One developer,
describing a particular project, reported:

People who were too junior were trying to use a tool that was too sophisticated. About one and a half
people were able to use it. Near the end of the project, we went to a self-propagating knowledge base
because the junior people could not provide the information that the tool needed.

Table 12. Support for Product: Developer Focus Propositions

+ 1. UCD leads to earlier detection of problems in requirements and design.

+ 2. UCD can lead to more complex designs.

+ 3. UCD projects tend to deliver current technology.

+ 4. Methods that support rapid change and construction of software work products
will facilitate the practice of UCD.

The evidence in support of the second proposition was that those who did not find UCD leading to
more complex designs described techniques they used to keep constant changes to the design from
making it increasingly complex. Several interviews reported using very senior people, who had years
of experience in the application area, to develop the designs. One interview reported that they refined
the design and code over time. Another stated:

We took a modular approach, kept things open. We over-designed the first few iterations because we
didn't know which way we were going to go.

Reports by a number of interviews that technology was added during the course of the project,
sometimes quite late, support the third proposition. The inclusion of the self-propagating knowledge
base is one example of a technology being added late in a project.

The nature of UCD, that is, developers need to produce and change versions of the product, supports
the fourth proposition. The discussion of how developers kept their designs from becoming complex
due to changing requirements also supports the fourth proposition.

6.4 SUPPORT FOR TEAM PROPOSITIONS

Table 13 lists the propositions from Table 8. The interviews tended to support seven of the nine
propositions. The reports by all the interviews that teams were important to the practice of UCD, and
that teams had formed support the first proposition. From the evidence available, it is hard to know to
what extent UCD led to team formation and to what extent it was in the nature of the participating
organizations that teams would form. Certainly, for many of these organizations, teams appeared to
be a natural way to organize.

[One customer organization represented in these interviews] picked smaller contractors or parts of
larger contractors that acted like their own company.

Several interviews noted difficulties forming teams of teams. One developer on a multiple contractor
project noted:

23

6. Results of the Case Study

[Project] was not a team... There was a lack of a strong leader.... In many cases, [Company] was not
treated as an equal member of the team.

Another developer stated:

On the small teams, people do take responsibility for the project and form a team. I don't understand
the mechanisms for coordinating teams of teams. I haven't seen a lot of teams of teams' success.

Table 13. Support for Team Propositions

+ 1. UCD leads to the formation of a team.

+ 2. UCD is effective because a team forms.

+ 3. Many short-term deliverables lead to team formation.

+ 4. Participants in UCD tend to be more motivated.

- 5. Teams use peer pressure to keep members "in line."

- 6. There is a low personnel turnover rate in UCD projects.

+ 7. To be effective, UCD requires a balanced team.

+ 8. UCD fosters personal and technical development in team members.

+ 9. The rewards for members of a UCD project include being part of a successful
team and delivering a useful product.

The fact that all of the interviews reported having teams supports the second proposition. The two
instances where interviews reported problems with teams of teams and project problems support the
second proposition.

Comments made in a number of interviews support the third proposition. One developer stated:

Iterations travel is a good team-building thing. Delivering something that the user likes gets you out
of the storming phase.

This statement supports the proposition for building a team of developers. The following statement by
a user supports the proposition for a team of teams:

[Developers and users] live and breathe together. Developers did their work in the middle of the
analysts' area. Developers built up credibility in the first 6 months; developers delivered what was
promised.

Some of the evidence that supports the fourth proposition is not communicated by written transcripts
of the interviews. The motivation of the interviewees was obvious in the enthusiasm they showed for
the products they were building and using and for the UCD process they were following. Their
motivation was also evident in their descriptions of the most rewarding part of participating in a UCD
project. Some typical comments were:

Interesting work kept people on projects.... People were motivated by what they were doing.

24

6. Results of the Case Study

[Most rewarding part of participating on this project is that] end users were able to do work because
of work that I did.

There was little evidence to support the fifth proposition. The only instance of the use of peer pressure
that the Consortium recorded was in a multiple-contractor environment. One contractor did the work
that the other contractor could not do. A developer from the first contractor spent a week and a half at
the other contractor's site to do the work.

There was mixed evidence in support of the sixth proposition. Several interviewees reported that they
kept teams of 5 to 8 developers together for 2 to 4 years. Some reported starting projects with very
senior developers to get things started and then bringing in junior people to replace the senior people
who were assigned to new projects. Some of the user organizations (particularly military ones) turn
over personnel more frequently. User turnover hurt at least one development project, when
experienced senior users were replaced by junior ones.

Several of the interviews with development organizations supported the seventh proposition. One
stated:

All team members must be very good tool developers. It's hard to carry a weak person on small
teams... Need software cycle generalists. On small teams need very flexible people. It's hard to
support people with specialties. They need to do everything that everyone else does.

User and customer interviews did not express such concerns.

While the interviews provided evidence to support the eighth proposition, it is not clear how much
UCD projects differ from other projects in fostering personal and technical development in team
members. One developer noted:

I've seen a lot of growth in new kids; expect it on any project.

Another developer commented:

[There are] lots of examples of people blossoming on a team. People are given lots of responsibility,
but there is also a safety net... [We] use participation in existing teams to teach mores and values of
teams: teach by example.

Many of the interviews supported the ninth proposition. Developers reported that the most rewarding
part of participating in a user-centric project were:

...to build things that people will use

...looking at beautiful things on a screen that people might use

...end users able to do work because of work that I did

6.5 SUPPORT FOR TECHNOLOGY TRANSFER PROPOSITIONS

Table 14 lists the propositions from Table 9. The interviews tended to support all of these
propositions. The following comment, quoted in Section 6.1, both supports the first proposition and
gives some insight into why the UCD process leads to user buy-in:

[Company] wrote the proposal. The users loved the proposal, [Company] built the product. The
users hated the product. So [Company] went off and rebuilt the product. The users love the
rebuilt product.

25

6. Results of the Case Study

For a particular project, another developer noted:

The customer didn't believe the system would work.

The company was able to convince the customer by producing a working system. The same developer
noted:

We do better interacting with line of business manager at a customer than with the customer's
manager of MIS....

One developer cautioned:

Getting users involved can be an issue. Users are overburdened. Some users are too naive to understand
what they should be doing.

Table 14. Support for Technology Transfer Propositions

1. UCD leads to user buy-in of the product.

2. UCD projects, by nature, tend to attract resources (magnet effect).

3. Groups participating in UCD tend to "market" to their peers.

The interviews provided some evidence to support the second and third propositions. A commercial
developer reported that their customer brought in a system the developer built for the customer's
internal use. The customer now sees the system as being a new business for them. Several
contractors reported technologies or systems they built on contract were turning into products for
other customers, sometimes commercial ones. One government user reported the following about a
product developed by a UCD project:

People who see it, want it. [One government organization] wants the technology. [Another
government organization] has asked for adaptations to the product

26

7. CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

Section 6 discusses the evidence the Consortium gathered to address the research questions posed in
Tables 2, 3, and 4 of Section 4. This section summarizes the evidence and draws some conclusions
from it. The first four questions in Table 2 concern how UCD compares to other software processes.
The evidence gathered indicates that UCD gives management confidence that the project is
progressing, reduces the need for executive involvement, and encourages risk identification and
resolution. The evidence also indicates that products of UCD projects are more usable, tend to
address more current requirements and technology, and tend to detect problems in requirements and
design earlier in the development cycle.

The major disadvantage of UCD to which the evidence points is that UCD projects tend to develop
more complex designs if the projects do not make efforts to address the issue. The Consortium
believes that this complexity is due to the frequent changes to the software, throughout its
development, that developers make in response to developing an understanding of user needs. UCD
could leverage work on design for change, maintainability, and reuse that has been going on for
several decades (e.g., [Parnas 1979]). Several projects reported that they were attempting to
anticipate how the software was likely to change over the course of the project and building the
software in ways that would make the anticipated changes easier to make. An organized effort on a
project to work with the users and customers to understand how the requirements for the software
are likely to change and then to design the software to make those changes easily could result in
software development that was more responsive to user needs. Changes could be made more quickly,
the design would be less likely to become more complex as the developers respond to changing
understanding of user needs, and the opportunities for obtaining leverage from reuse would increase.

7.2 FUTURE WORK

7.2.1 THE CURRENT ENVIRONMENT

The current business and technological environment is a sea of chaos with changing, evolving
requirements and lightning speed introduction of new technologies. While UCD is designed to handle
this influx of new, evolving requirements and take into account emerging technologies, there, however,
is a need to manage and measure this change. Specifically, there is an overall need to understand how
these requirements and technology affect the ultimate system implementation. To ensure a smooth
progression of the introduction of requirements and technology into a UCD effort, there is a need for
techniques, methods, and tools to:

• Assess the impact of the insertion of the new requirements or the technology's contribution in
satisfying the long-term vision.

27

7. Conclusions and Future Work

• Insert the new requirements or technology and maintain the integrity of the design and
implementation of the system.

• Recognize, at any state in time, the requirements that are satisfied by the current version of
the software. While this is a particular need to determine the state of work in progress, this is
a critical requirement for determining suitability to transfer this software to other users or
other domains.

• Define, divide, and measure the individual iteration's (system build) functionality so that work
in progress at each incremental delivery meets or exceeds expectations.

• Measure relevant UCD success indicators or factors simultaneously with the iterative cycle
but completely nonintrusively to the programming and development cycle.

• Decompose and measure individual functionality to fit into the iterative cycle framework.

7.2.2 LOOKING TO THE FUTURE

UCD requires a future visioning mindset. Because the requirements and needs are typically unknown
or difficult to articulate by the user, there needs to be a vision, or a long-term goal, for which the team
strives. Because the vision is the unifying glue that brings the team together, there is a need for
techniques, methods, and tools to:

• Define, articulate, and develop the team (and organizational) buy-in to the vision.

Perform the UCD effort in anticipation of the future. To think beyond today by acting with a
long-term focus in mind.

• Read trends, both business and technology. Ability to develop scenarios and predict outcomes
based on these trends.

7.2.3 SUPPORTING MULTIPLE USERS

The economic realities of limited budgets and the end of building one-of-a-kind systems require that
software serves more than one user. Because of the nature of UCD's ability to respond quickly to a
changing environment, and given that the changing environment requires adding users, there is a need
for techniques, methods, and tools to:

• Assess the cost, performance, effect on schedule, and benefits of taking a partial solution
within the iterative development and transferring that solution to another user or another
domain, now or sometime in the future

• Understand the implications of supporting multiple users and multiple domains at the same
time as developing the system for the primary users; that is, to simultaneously conduct an
UCD effort while expanding the user base to ensure long-term survivability and sustainability
of the project

• Market the project by finding efforts that can benefit from the technology built and going to be
built

• Find the group of users that will take a specific application and collaborate on a general
application with extensions to match each of the user's specific needs

28

7. Conclusions and Future Work

7.2.4 TEAMS

UCD is performed by orchestrated teams. UCD is dependent on, but fosters, the successful coalescing
of a team and the emergence of a leader. UCD is a perfect environment for a team and leader to
emerge; but it takes time, work, and attention. There is a need for techniques, methods, and tools to:

• Grow and nurture UCD teams

• Identify and grow UCD leaders

• Facilitate communication among users and developers

• Facilitate long-distance communication among users and developers

• Quickly form high-performing, self-directed teams; produce significant and lasting results;
dismantle teams; and reform teams

• Work in a cooperative, collaborative fashion across domains

• Work together within a significant degree of uncertainty

7.2.5 VERIFICATION AND VALIDATION

Current verification and validation (V&V) techniques are designed for the waterfall process under
conditions of certainty and static requirements. With the current techniques, in a constantly evolving
requirements scenario, V&V can be nothing more than a snapshot of the state of the system. There is
a need for techniques, methods, and tools to:

• Conduct V&V in an evolving environment

• Perform V&V on a "potential" system, one yet to be built

7.2.6 SPEEDING OF THE CYCLE

UCD typically iterates and builds interim systems in under 2 months. This is still not fast enough.
There is a need to increase the speed of UCD development through techniques, methods, and tools to:

• Satisfy user requirements in real time (not to be confused with real-time systems) as the
user's requirements are changing hourly and daily

29

7. Conclusions and Future Work

This page intentionally left blank.

30

APPENDIX: QUESTIONNAIRE

USER-CENTRIC SOFTWARE DEVELOPMENT QUESTIONNAIRE

JUNE 9, 1994

The following questions are intended to be answered about one particular software development
project that is practicing (or has practiced) UCD. The identifying characteristics of UCD are:

• The team that develops the software includes some of those who will use the software.

• The team uses iterative enhancement to develop the software: an early limited version is
delivered early; feedback from users is used to drive the development of a series of versions.

This survey is part of an ARPA-sponsored study of UCD by the Software Productivity Consortium.
Responses to this questionnaire and questions about this study should be directed to:

Software Productivity Consortium
2214 Rock Hill Road
Herndon, VA 22070
(703) 742-7217/7152
FAX (703) 742-7200

e-mail: ask-spc @software.org

QUESTIONS ABOUT YOU AND YOUR PROJECT

1. How can we contact you?

- Name and title

- Organization

- Address

- Telephone #

- FAX#

- E-mail address

31

Appendix: Questionnaire

2. What was your role on this project (e.g., developer, developer and user, user, project manager,
executive management, other)?

3. What is the name of your project?

4. What is your best estimate of the size of the software product on final delivery in lines of source
code?

5. For how many months has your project been underway?

6. Does (did) your project practice UCD?

If yes, answer the following:

a. How many iterations have been delivered to the customer to date?

b. How long was the typical time between delivery of iterations?

QUESTIONS ABOUT THE SOFTWARE PROCESS YOU FOLLOWED

7. What software development methods did you use (e.g., structured design, structured analysis,
object-oriented design)?

8. What tools did you use with each method?

9. Have you used these methods and tools before?

10. What criteria were used in deciding to use these methods and tools? Were the methods and
tools more a function of the product to be delivered or a function of the UCD process?

11. Would you use these tools/methods again?

12. How did they support your development process?

13. Are you aware of any tools/methods that are available now that would be more appropriate than
the methods and tools that you used?

14. If you had to do it again, would you? Would you with the methods and tools that you used?

15. How was your development team organized? Draw the formal management structure. Draw the
information management structure.

16. How often did you meet with your formal management structure?

17. What was the nature of the meetings?

18. How did the nature of these meetings change as the project progressed?

19. What were the monthly (or whatever) reports or status checks on the project? From within the
project? From without the project?

32

Appendix: Questionnaire

20. Were the same management oversights performed on this project as opposed to other or similar
projects within the corporation/organization?

21. Was the management oversight reasonable? Unreasonable?

22. Compare this management oversight with previous projects you have been involved in.

23. If you were to do this over, what would you do differently in regard to the management oversight
of the project?

24. Did your project stay on-time and on-budget?

If so, then how did you stay on-time and on-budget?

If not, when did you discover that the project was not going to stay on-time and on-budget?

25. Did your project deliver the functionality that it promised?

If so, then how did you do it?

If not, when did you discover that you weren't going to deliver what you promised?

26. Compared to other projects that you have participated on, was the risk handling the same or
different? How was it the same or different?

27. If you were to do this over, how would you handle risk identification and facilitation?

QUESTIONS ABOUT THE PRODUCT: CUSTOMER FOCUS

28. Can you identify a need that the product satisfies that you hadn't anticipated prior to the project?

29. Do you think that you could have written the requirements for this system before building it?

30. Are there requirements that you identified for this system that the system does/will not satisfy?
If so, what are they and why were they not satisfied?

31. Have the product and the user's business process evolved together?

32. What is the customer's evaluation of the product?

33. How is the customer using the product?

34. What can the customer do now, because of the product, that he couldn't do before?

35. Describe the project from the customer's point of view.

36. Describe the product from the customer's point of view.

37. Describe the work products that supported the customer.

33

Appendix: Questionnaire

QUESTIONS ABOUT THE PRODUCT: DEVELOPER FOCUS

38. Did the requirements for the product and its design evolve together?

39. If you'd known at beginning of development what product you wanted to build, could you have
produced a simpler design for the product than you did?

40. Did you find commercial off-the-shelf (COTS) tools useful in adapting requirements, design,
implementation?

41. Describe the project from the developer's point of view.

42. Describe the product from the developer's point of view.

43. Describe the work products that supported the developer.

44. For technology that was added over the course of the project (e.g., new hardware such as display
terminals or sensors, new software subsystems such as a database management system), who
originally identified it?

45. Was all the technology used in the product available at the start of the project?

46. What technology was delivered with the project?

47. When?

48. Did the technology change over the course of the project? If so, how? What factors were used to
warrant the change?

49. What has been your experience with adapting the product to changing requirements? Has there
been any change in the effort required to adapt the product? How would you characterize that
change? What do you think is the cause of the change?

50. Based on the original and current designs of the product, are there significant differences between
the two? What is the cause of those differences?

51. If there were requirements changes, how was the design affected? Characterize what you think
made the effects on design major or minor.

QUESTIONS ABOUT THE TEAM THAT BUILT THE PRODUCT

52. What is your definition of a team?

53. Has a team formed?

54. How do members of the team interact?

55. Describe the team: Who are the members? From what organization? What were the roles of each
of the members?

56. Were the team members ever on a UCD project?

34

Appendix: Questionnaire

57. Were any of the team members ever a member of the same team before? Explain.

58. Was the growth of the team smooth?

59. Were there problems with particular individuals or organizations?

60. How were these problems resolved?

61. Detail the growth of the team. Any significant turning points in the team formation (i.e., loss or
addition of team member, corporate restructuring, etc.)?

62. Were there any extraordinary team building exercises (i.e., Outward Bound to facilitate quick
forming of the team)?

63. Was the project able to deliver useful functionality in a timely manner to the user?

64. What was the schedule for delivering products to the user?

65. How hard was it to meet that schedule?

66. Do the team members seem motivated?

67. Do they want to talk about their work on the project?

68. Describe the makeup of the team. How long has each member been part of the team? part of the
company?

69. How has an individual's role in the team changed? What is he doing that he hasn't done
previously?

70. Have you seen any remarkable change in team members or in the team as a whole?

71. Have you participated in teams like this before? Under what conditions?

72. What is the most rewarding part of participating on this project?

73. What is the least rewarding part of participating on this project?

QUESTIONS ABOUT TECHNOLOGY TRANSFER OF YOUR PRODUCT

74. How has the user base for the project grown or changed?

75. Have there been requests for adaptations of the project's products from groups that were not
previously users of the products?

35

Appendix: Questionnaire

This page intentionally left blank.

36

LIST OF ABBREVIATIONS AND ACRONYMS

Ajjp. Advanced Research Projects Agency

COT<j commercial off-the-shelf

DoD Department of Defense

IPR in-progress review

JAD Joint Application Development

jj^jpg Joint National Intelligence Development Staff

PD Participatory Development

QPW Quattro Pro for Windows

J3KT) Rapid Application Development

UCD user-centric development

V&V verification and validation

37

List of Abbreviations and Acronyms

This page intentionally left blank.

38

REFERENCES

Adhikari, R.
1994

Anderson, W., and W. Crocca
1993

Basili, V., and A. Turner
1975

Brooks, F.
1972

Carmel, E., R. Whitaker, and
J. George
1993

Clement, A, and
Van den Besselaar
1993

Clement, A
1994

Constantine, L., and
L. Lockwood
1993

Davis, A, E. Bersoff, and
E. Comer
1988

DeBellis, M., and C. Haapala
1994

Drucker, P.
1966

1988

Planning, Testing, Teamwork a Recipe for Quality Applications.
Software Magazine.

Engineering Practice and Codevelopment of Product Prototypes.
CACM.

Iterative Enhancement: A Practical Technique for Software
Development. IEEE Transactions on Software Engineering, Vol.
SE-1, No. 4.

The Mythical Man-Month, Essays on Software Engineering.
Addison-Wesley Publishing Co.

PD and Joint Application Design, A Transatlantic Comparison.
CACM. June 1993.

A Retrospective Look at PD Projects. CACM. June 1993.

Computing at Work: Empowering Action By 'Low-Level' User.
CACM. January 1994.

Orchestrating Project Organization and Management. CACM.
October 1993.

A Strategy for Comparing Alternative Software Development
Life Cycle Models. IEEE Transactions on Software Engineering,
14:10.

User-Centric Software Engineering, to be published in IEEE
Expert. 4th Qtr, 1994.

The Effective Executive. New York, New York: Harper & Row.

The Coming of the New Organization. Harvard Business Review.
Jan-Feb., 1988.

39

References

Foss, W.
1993

Funk,J.
1992

Gabriel, R. P.
1994

Haapala, C.
1992

1993

Haapala, C, C. Hess, and
R. Shore
1988

JNIDS
1993

Luftman, S., S. Lewis,
and S. Oldach
1993

Martin, C.
1988

Martin, J.
1991

Martin, R.
1994

Moad, J.
1994

National Information
Display Lab
1992

Norman, D., and S. Draper
1986

Parnas, D.
1979

Fast, Faster, Fastest Development. Computer-world. May 31,
1993.

The Teamwork Advantage An Inside Look at Japanese
Productivity and Technology Development. Productivity Press,
CT.

Productivity: Is There a Silver Bullet? JOOP. March-April 1994.

"Rapid Application Through Iterative Development." in Software
Improvement Conference. November 1992, Washington, D.C.

Establishing Lasting Partnerships. MANAGE, The National
Management Association Magazine. April 1993.

"The JNIDS Development Cycle." in Proceedings, Second
International Software for Strategic Systems Conference.
October 1988, Huntsville, Alabama.

Partnerships. JNIDS Newsletter 3,1.

Transforming the Enterprise: the Alignment of Business and
Information Strategies. IBM Systems Journal. March 1993.

User-Centered Requirements Analysis. Englewood Cliffs, New
Jersey: Prentice Hall.

Rapid Application Development. MacMillian.

The Moving Wave of Technology. Journal of Systems
Management. February 1994.

Welcome to the Virtual IS Organization. Datamation.
February 1, 1994.

Softcopy the Newsletter of the National Information Display Lab,
David Sarnoff Research Center 2,2.

User-Centered System Design New Perspectives on Human
Computer Interaction. Hillsdale, New Jersey: Lawrence Erlbaum
Associates, Inc.

Designing Software for Ease of Extension and Contraction. IEEE
Transactions on Software Engineering SE-5,2.

40

References

Whiteside, J., J. Bennett, and
K. Holtzblatt
1988

Wood, M., and
I. Sommerville
1988

Wood, J., and D. Silver
1989

Yin
1989

"Usability Engineering: Our Experience and Evolution." In
Handbook of Human Computer Interaction. Edited by
M. Helander. North Holland, New York.

"A Knowledge-Based Software Components Catalogue." In
Software Engineering Environments. Edited by P. Brereton. John
Wiley & Sons.

Joint Application Design. New York, New York: Wiley and Sons.

Case Study Research, Design and Methods. Newbury Park,
California: SAGE Publications, Inc.

41

References

This page intentionally left blank.

42

BIBLIOGRAPHY

Campbell, D., and J. Stanley. Experimental and Quasi-Experimental Designs for Research. Chicago,
Illinois: Rand McNally, 1966.

Clifton, T., and T. Starr. "Application of Software Engineering Estimation and Measurement
Techniques to Rapid Prototyping/Iterative Development Projects." In Structure Development Forum
xni. 1993.

Comaford, C. "Timeboxing Let's You Whistle While You Work." PC Week. February 7, 1994.

Couger, D. L. "End User Computing" Harvard Business Review. September-October 1986.

Curtis, B., H. Krasner, and N. Iscoe. "A Field Study of the Software Design Process for Large
Systems." Communications of the ACM. November 1988.

Dickey, S. "Rolling ith the Punches: In Rightsizing, How Do Users Know What Systems Are Right
for Them?" Midrange Systems. November 9, 1993.

Ehn, P. "Scandinavian Design: On Participation and Skill" in Usability Turning Technologies Into
Tools. New York, New York: Oxford University Press, 1992.

Frankl, V. Man's Search for Meaning. New York, New York: Washington Square Press, 1959.

Gould, J., and C. Lewis. Designing for Usability: Key Principles and What Designers Think, 1985.

Hollander, N., and N. Mirlocca. "Working Out Problems in Workshops; Bring Users Into the Loop
Before You Install New Technology." Information Week. January 31,1994.

Hough, D. "An Evolutionary Approach for Application Development." IBM Systems Journal.
September 19, 1993.

Kouzes, J., and B. Posner. The Leadership Challenge How to Get Extraordinary Things Done in
Organizations. San Francisco, California: Jossey-Bass Publishers, 1987.

Kukla, C, E. Clemens, R. Morse, and D. Cash. "Designing Effective Systems: A Tool Approach." In
Usability Turning Technologies Into Tools. New York, New York: Oxford University Press, 1992.

Louderback, J. "Client/server: It's Neither a Dessert Wax Nor a Floor Topping." PC Week. April 25,
1994.

Madsen, K., and P. Aiken. "Experiences Using Cooperative Interactive Story board Prototyping."
Communications of the ACM. June 1993.

Martin, J. Design and Strategy for Distributed Data Processing. New Jersey: Prentice Hall, 1981.

43

Bibliography

Matsubara, T. "Bringing Up Software Designers." American Programmers. July/August 1990.

McComb, M. "CASE Tools Implementation at Amtrak—Lessons Almost Learned." Journal of
Systems Management. March 1994.

Musen, M. Automated Generation of Model-Based Knowledge-Acquisition Tools. San Mateo,
California: Morgan Kaufmann Publishers, Inc., 1989.

Oresky, D., and C. Haapala. "Iterative Software Development: Achieving Quality Through
Verification and Validation." In Proceedings of the 6th International Software Quality Week '93, May,
1993, San Francisco, California.

Rheinfrank, J., W. Hartman, and A. Wasserman. "Design for Usability: Crafting a Strategy for the
Design of a New Generation of Xerox Copiers." In Usability Turning Technologies Into Tools. New
York, New York: Oxford University Press, 1992.

VonHippel, E. The Sources of Innovation. Oxford University Press, 1988.

Williams, M., and V. Begg. "Translation Between Software Designers and Users." CACM. June
1993.

Winant, R. "The Measure of Success." The Computer Conference Analysis Newsletter. September 9,
1993.

44

