The D* Algorithm tor Real-Time Planning of
Optimal Traverses

inthonv Stentz

CMU-RI-TR-94-37

The D* Algorithm for Real-Time Planning of
Optimal Traverses

Anthony Stentz

CMU-RI-TR-94-37

The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
September 1994

© 1994 Carnegie Mellon

This research was sponsored by ARPA, under contracts “Perception for Outdoor Navigation” (contract number
DACA76-89-C-0014, monitored by the US Army TEC) and “Unmanned Ground Vehicle System” (contract number
DAAE07-90-C-R059, monitored by TACOM). Views and conclusions contained in this document are those of the
author and should not be interpreted as representing official policies, either expressed or implied, of ARPA or the
United States Government.

Table of Contents

1.0
2.0

3.0

4.0

5.0
6.0

Introduction 5

The Basic D* Algorithm 7

2.1 Intuition 7

2.2 Definitions 10

2.3 Algorithm Description 10

The Focussed D* Algorithm 14
3.1 Intuition 14

3.2 Definitions 16

3.3 Algorithm Extension 18

Examples 20
4.1 D* Comparisons 20
4.2 A Priori Map Information 23

Experimental Results 25

Conclusions 28

A
P formt

A]

List of Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

O 01N bW

10
11
12
13

Invalidated States in the Graph 7

Propagation of RAISE and LOWER states 8
Repair of Graph out to Robot is Complete 9
Focussed RraISE State Propagation 14

Focussed Lowkir States Reach Robot’s State 15
Computing a Lower Bound on #°) for Robot Motion 16
Computing Bias Values for o) 17

Cluttered Environment 20

Basic D* Algorithm 21

Focussed D* Algorithm 22

Omniscient Optimal Traverse 23

Optimistic Optimal Traverse 24

Typical Environment for Comparison 25

Abstract

Finding the lowest-cost path through a graph of states is central to many problems, including route planning for a
mobile robot. If arc costs change during the traverse, then the remainder of the path may need to be replanned. Such
is the case for a sensor-equipped mobile robot with incomplete or inaccurate information about its environment. As
the robot acquires additional information via its sensors, it has the opportunity to revise its plan to reduce the total
cost of the traverse. If the prior information is grossly incomplete or inaccurate, the robot may discover useful
information in nearly every piece of sensor data. During the replanning process, the robot must either stop and wait
for the new path to be computed or continue to move in the wrong direction; therefore, rapid replanning is essential.
This paper describes a new algorithm, D*, capable of planning optimal traverses in real-time through focussed state
expansion. D* repairs plans quickly by taking advantage of the fact that most arc cost corrections occur in the vicinity
of the robot and the path needs only to be replanned out to the robot’s current state. D* can be used not only for route
planning but for any graph-based cost optimization problem for which arc costs change during the traverse of the
solution path.

1.0 Introduction

The problem of path planning can be stated as finding a sequence of state transitions through a graph from some
initial state to a goal state, or determining that no such sequence exists. The path is optimal if the sum of the transition
costs, also called arc costs, is minimal across all possible sequences through the graph. If during the “traverse” of the
path, one or more arc costs in the graph are discovered to be incorrect, the remaining portion of the path may need to
be replanned to preserve optimality. A traverse is optimal if every transition in the traverse is part of an optimal path
to the goal, assuming at the time of each transition, all known information about the arc costs is correct.

An important application for this problem, and the one that will serve as the central example throughout the paper, is
the task of path planning for a mobile robot equipped with a sensor, operating in a changing, unknown or partially-
known environment. The states in the graph are robot locations, and the arc values are the costs of moving between
locations, based on some metric such as distance, time, energy expended, risk, etc. The robot begins with an initial
estimate of arc costs comprising its “map”, but since the environment is only partially-known or changing, some of
the arc costs are likely to be incorrect. As the robot acquires sensor data, it can update its map and replan the optimal
path from its current state to the goal. It is important that the replanning is fast, since during this time the robot must
either stop or continue to move along a suboptimal path.

The field of path planning has received considerable attention in the research literature (see Latombe [5] for a good
survey), but only recently has the problem of planning in unknown, partially-known, or dynamic environments been
addressed. The algorithms can be divided into two classes. The first class consists of algorithms which are
computationally fast and memory efficient, but which yield suboptimal traverses. Goto and Stentz [2] generate a
“global” path using the known information and then attempt to “locally” circumvent obstacles on the route detected
by the sensors. If the route is completely obstructed, a new global path can be produced. Lumelsky [7] initially
assumes the environment to be devoid of obstacles and then moves the robot directly toward the goal. If an obstacle
obstructs the path, the robot moves around the perimeter until the point on the obstacle nearest the goal is found. The
robot then proceeds to move directly toward the goal again. Pirzadeh [9] adopts a strategy whereby the robot wanders
about the environment until it discovers the goal. The robot repeatedly moves to the adjacent location with lowest
cost and increments the cost of a location each time it visits it to penalize later traverses of the same space. Korf [4]
uses initial map information to estimate the cost to the goal for each state and efficiently updates it with backtracking
costs as the robot moves through the environment. These algorithms are computationally fast because the
“replanning” operations are mostly local decisions about which way to move next. Little if any state information is
retained during the traverse, so the algorithms are memory efficient. Because of the local scope of this replanning,
however, completeness can be guaranteed but optimality cannot. This suboptimality can be extreme in some cases.

The second class of algorithms guarantees an optimal traverse but at greater computational and memory cost. One
algorithm plans an initial path with A* [8] or the distance transform [3] using the prior map information, moves the
robot along the path until either it reaches the goal or its sensors discover a discrepancy between the map and the
environment, updates the map, and then replans a new path from the robot’s current state to the goal. Although this
brute-force replanner is optimal, it can be grossly inefficient, particularly in expansive environments where the goal is
far away and little map information exists. Zelinsky [15] increases efficiency by using a quad-tree [11] to represent
the free and obstacle space, thus reducing the number of states to search in the planning space. This approach is
suboptimal or inefficient, however, if the state-to-state costs for moving through the environment range over a
continuum.

Boult [1] maintains an optimal cost map from the goal to all states in the environment, assuming the environment is
bounded (finite). When discrepancies are discovered between the map and the environment, the algorithm updates
only the affected portion of the cost map. The map representation is limited to polygonal obstacles and free space.
Trovato [14] and Ramalingam and Reps [10] extend this approach to handle graphs with arc costs ranging over a
continuum. The limitation of this class of algorithms is that the entire affected portion of the map must be repaired
before the robot can resume moving and subsequently make additional corrections to the map. Thus, the algorithms
are inefficient when the robot is near the goal and the affected portions of the map have long “shadows”.

6

This paper presents a new algorithm, D*, for generating optimal traverses in real-time through a graph with changing
or updated arc costs. D* takes advantage of the fact that most arc cost corrections occur in the vicinity of the robot,
and only the portion of the path from these corrections out to the robot’s current location needs to be replanned. D*
maintains a partial, optimal cost map limited to those locations likely to be of use to the robot. Likewise, repair of the
cost map is generally partial, re-entrant, and limited only to those states likely to yield a new, optimal path to the
robot. D* establishes conditions for determining when the repair can be halted, either because a new path is found or
the old one is still optimal. Thus, D* is very computationally and memory efficient, and it works in unbounded

environments as well.

The algorithm is formulated in terms of a repeated, optimal find-path problem within a directed graph, where the arcs
are labelled with transition cost values that can range over a continuum. Arc cost corrections (e.g., from a sensor) can
be made at any time, and the known, measured, and estimated arc values comprise the map of the environment. The
algorithm can be used for any planning representation, including visibility graphs [6] and grid cell structures. The
paper begins with the basic form of the algorithm introduced by Stentz [13] and then describes new extensions to it
that improve its computational and memory efficiency. Examples follow that illustrate the algorithm in operation.
Experimental results are presented that compare several variations of D* to the brute-force replanner. Finally,
conclusions are drawn.

2.0 The Basic D* Algorithm

The algorithm is named D* because it resembles A* [8], except that it is dynamic in the sense that arc costs can
change during the traverse of the solution path. Provided that the traverse is properly coupled to the replanning
process, it is guaranteed to be optimal. This section begins with the intuition behind the algorithm, defines the
notation used, and presents D* as it was described in Stentz [13].

Figure 1: Invalidated States in the Graph

R N A A A L T T OO OOl
3 N NN M NN NN M NN WS R R WK I K I B I KN KWK KK KW I WK
0% N N M MW NN NN WY KKKKIK#KKKKKKKK({KK(KKK(KKKKKKK{KK(KKKKKKKK{K LA
N M NN N Y MW RN NN UMY H KKK KK KR WKWK W KKKKKKK(KK(KKK&
MM NN MM N NN e wzuewzwzwrezzzrzzwwwzezezzwzrrzzzzrzzzzzrwr O
R R R I I T (144 KK
B R R R R R L R LA K
505000 N W KW I KNI I K KKEl{(?{(f{f{({(({{{{{f(fi
20 N N M NN N NN Y N KKKKKKKKKKKKK{KKKKKKKKKKKKK((

5050 3 5% N N M N N K{{KKK(KKK({K WA KWK KKKK
363050 3 9 N M A N MMM N NN Y KKK KIKKKKKK KKKKKK{KK
NN M R N MR KKKKKK KKK KKK
007 M N N AL A AT AL LT LA 4
WY 5% Y N KWW WKW AW KWWK
MUY WA AN NN AWK W KKK IR W KKK I K W
M MMM U NN AN KRR KKK KW LA A AL AL AL LA
EEEEE MU MW E NN WYY MW KKK I I I KK W
X 5% KW K
N KKK
EE] KKK
4
['4
'4
'L
e
i
i
'
[
'
[
4
4

®
WKW R W K KWW KRR R R KKK KKK WK KK

41010,

Closed Gate }i:

2.1 Intuition

In order to understand D*, consider how A* solves the following robot path planning problem. Figure 1 shows an
eight-connected graph representing a Cartesian space of robot locations. The states in the graph, depicted by arrows,
are robot locations, and the arcs encode the cost of moving between states. The white regions are locations known to
be in free space. The arc cost for moving between free states is a small value denoted by EMPTY . The grey regions
are known obstacle locations, and arcs connected to these states are assigned a prohibitively high value of
OBSTACLE . The small black square is a closed gate believed to be open (i.e., EMPTY value). The robot is point-
sized and occupies only one location at a time. It should be noted that planning with non-zero size and shape can be
reduced to a point planning problem [6]. Unfocussed A* can be used to compute optimal path costs from the goal, G,
to all states in the space given the initial set of arc costs, as shown in the figure. The arrows indicate the optimal state
transitions; therefore, the optimal path for any state can be recovered by following the arrows to the goal. Because the
closed gate is assumed to be open, A* plans a path through it.

8

The robot starts at some initial location and begins following the optimal path to the goal. At location R, the robot’s
sensor discovers the gate between the two large obstacles is closed. This corresponds to an incorrect arc value in the
graph: rather than EMPTY , it has a much higher value of GATE, representing the cost of first opening the gate and
then moving through it. All paths through this arc are (possibly) no longer optimal, as indicated by the labelled
region. A* could be used to recompute the cost map, but this is inefficient if the environment is large and/or the goal
is far away. Another approach is to mark the affected states as invalid, place the neighboring, valid states on the
OPEN list, and grow new optimal paths into the invalidated area through state expanston [1][10][14]. This approach
is generally better than recomputing the cost map, but we are only interested in repairing the optimal paths out to the
robot’s current location, and then continuing to move the robot. The rest of the invalidated states need only be
processed if the robot is forced to venture into that area; therefore, the repair should be incremental and re-entrant.

Figure 2: Propagation of RAISE and LOWER states

N Y R P R N N] LR LN R]
" " "5 50 %5 00 0 07 505005000 05 0 0% % 0 e e e e K K Y
a0 "5l " %5000 % 0 0 S N e e N e £e R Y
a0 S S e M S 1 R KKK R]
9 S = e T
a0 000 0 50 5 e e e e (14 R
2 50505050000 00 000 0 5 e e (LA KKK‘KK’K({((KK(KK‘{KKKKKK&
S0 S M e NN K R R I R KR RS K
S 000 S B et e M " LK L)
e S e KK o
NY\(&\l\l"d\l‘uN'NM'N'N'NN‘:NNN'&\IN)‘\IN\I&\‘\‘\‘N‘M‘MNN\! " R KRR K R KK Y
T) S o N N I
o e e D B E e A S e KRR R
G N N S U N KKK KRR KK
a2 S e N N e W N
oy W% NN % 5 2 5 0 0 e e e % (14 4 KK R R
TR S S N R R KR
S S S S S S R NN W R]
3 e WA MWW UUAN M N MM B R R B W R
S RN NN N NN Ll NN R R K K]
3 3 0 e %0 N N W R WY 0 (AL AL
N R R N Y T
i 7 2 0 e N 35 2 1 N A
S A T SR WK R KKK N K Y
e e el NNy AWM W W
"l 0 0 Y S 0 NN NN MW WYY KKK Y
e R AN N N NN Ny RAI E 2NN NN KR KRR K
R R R T T R R M %% W N M KKK KKK KR KKK WK
A S NN TR R W e SR e
" 0 0 M M N N MM M R LA Pl W
" 0"l 00 0 0 e a es R RE [LAL
S 5 A S S SR K R Y K R R e K N K
505 5505050 7l T e T T T T T T W e B e R W R K R K
"5 5 0 M N N N Y M M M RN R e e e &N R B B W
PR NN NNN\!\(NNN\!\\\I'&%Y’&&N&N (ALl ALy
L i S e e W A KR
TR NNN\"\‘NNY\S‘K'}:N& NN (AL LA I LLT
050"l "l 0 0 e e e e e 3“&3\‘&\!\(&)&&'&&‘:&'& W R W B B B R R
S A S S e F Y e aa e | 3 R R K]
a0 0 5 M N N N N N NN NG M e W MU NN NN NN 4 N KN KRR KKK N KR
e a0 000 S N e e MMM M MU E WU KWW KKK [ELALIA41S Ko
A 2 N MMM N W N WY X NNNN‘:NNMNN&Y 'S (AL LI LTLLLse
5055 5 N M R A N NN e e Xy €W e
" 20000l 0 e Y 1t 7 50 2 S N&N e WA R Y
0 M U M NN M N M M R % N N N N e (#KKLL’LL’\(\(&'L’I{KL’L’I{L’L’KKL’K\
a7 N N M R R RN MW WU R NN Y MW WYY oW K R Y
7507 0 5 W S e M 0 N M M N M M Y Ky
0 S S e S e R KRR
o 505 00 0 0 2 T e 3 e N e e e X3) KWW
0505055000 " 2 T T M M e KK K
PR R RN ‘J %075 5 595 50 e e | (LAY
N A M NN N USSR A W NN 5% 2 S W N S N N Xk (LA L iL
[‘J\N\(\l\nlNSl&'M'N\l&YYM&N‘JNN\I&&NNN\NNN\INN\IN\(e (LA ALy
WU MU N KRN R WS B UR R W W WYY X KEKEK Y
0 N e e R R NN R N e NNY&N&NYN\“‘\‘ K’{K{K{KK.
4 0 0 e 0 e e e e LOWEH [% M % MWW W Ky
24 00 50 0 0 5 5 e MMM MM N WYY !
58" " NNN%E\N&N B §§§ R Yy 'y
3] States

D* provides both features. Like A*, it maintains an OPEN list of states for expansion; however, these states consist
of two types: RAISE and LOWER (see Figure 2). RAISE states transmit path cost increases due to an increased arc
value, and LOWER states reduce costs and re-direct arrows to compute new optimal paths. The RAISE states
propagate the arc cost increase through the invalidated states, adding the value of GATE to all paths passing through
it. The RAISE states activate neighboring LOWER states which sweep in behind to reduce costs and re-direct
pointers. LOWER states compute new, optimal paths to the states that were previously raised.

LOWER states are placed on the OPEN list by current path cost value (i.e., cost from the state to the goal), and the
RAISE states are placed on the list by previous, unraised path cost value. States on the list are processed in the order

9

of increasing value. The intuition is that the previous optimal path costs of the RAISE states define a lower bound on
the path costs of LOWER states they can discover. Thus, if the path costs of the LOWER states currently on the
OPEN list exceed the previous path costs of the RAISE states, then it is worthwhile processing RAISE states to
discover (possibly) a better LOWER state. Note in the figure that the arrow from the goal to the RAISE state wave
front is equal in length to the arrow to the LOWER state wave front.

Figure 3: Repair of Graph out to Robot is Complete

) <
e S N N KRELK LKL
500 " 7 5 0 0 S KWW KK WM
U N NN N A N e Y a e Ay i « UKL
%050 55 WY 0% N MM N NN N T A A LA LA AL
A S N e N e W N KR K K
e e e N e e AN N N R R R
505 N P e R R E Lt T T L4, KR KWW
i 4 0 e N M R N N KRR K K K
5 S M e 505 3 5 5 S N NN R KKK KKK
o R e N W e R KKK
T M N S N N N M N N N A N Y T L R N S T P e Ty
S 0 M e N R S A e R i s ey R Y
a0 0 S e R e e e e § RAI E VKL L
A o S N S R R A AN R RN
e S N AN NN KULCEERE K
50 0 S 15 S N Yy K| R K WKW KWK
09 o0t o S N S NN N R e by alesS [eevedvderecy
S S M N N N R R A R ey KRR
R AU N W Y M AR S e K KK
P NN AU NUY 00500 00 0 M e KRR K KKK
o 0 N M M NN N NN W N WY KRR R KKK R
e U M N N N NN NN K KR
\l&\l\l\l\l\l\l\l’:l\l\l}l&\l\l\l\l\l'}I\l\l')l&}l'}tNNVNNNNN\INNMN\I\I\IN&\INN\(\I KRN KK KKK
o N M N S N N U NN N U W AU R R R K K
S e 29 IR R R R K R K
0 S N NN N N PR LR ER KR KKK L
T R N U KR R KKK R
150" 15 55 M W W M NN N R WA KM R KKK KKK
150" N 15505 N M NN NN N KK KKK K 4
R) e ta es G UK KK ER KL s
NN NN T L] Ny KRR KR KR KK M i
1’ KR N’ Rk KKK KN KR KRR U4
KRN NS 3N Y S
KRR KKK X3 K
KKK KK 5 Xk KK KL
KM G ey eeder
% i EE] KEEERRE LRKE
1) v N KEEKKKE CEKRE K
) ¥ AN UK E KR
X Xk 338 3 N W NN RENY KKK WY
Sl A b AN 00 e W N M9 B RN b R K
X N W0 W0 N N 5% UM NN R SRR
N] 45 b 8 SN N N N WNEWHNNR PR K
N X 303 4 T 5 e NN KN KK Y
TR s R K] K400 N s WWNHEE KNS
e R X3 K N . N 2] KRN EN KR
il " 0 2 WUWBUAUY K %l X KRR KK
e SR i KR KR Y
ot "l "l 0 0 0 (L W R W
S 0 KWL R)
50 2 N % U414 4 KR KKK R Y
AN Y NN NN G YRR K
% W N R NN MW KRy KRR K
0% 0 0 W Key KRR
S N M N M KRR K
il 7 MU LY Wy KK W KK
4l "l WU NY (4L KKK KKK
505 AN S KK KKK WK
N M M U A NN RN W KKK KKK
id "l W R W W KRR KKK Y
N NN WM E NN (4] KRR K
T] e EECERE K KR Y
% U M WA rRd LA Ed CERERE RN R Y
R AW NN Y KK KRR KRR Y
o N M N Kwd KKK
) AN (L KR KRR KKK Y
el NN N Y ({5 L) KRR NN KK
M N N NN KRR R
" 0 N A R R ¥ KKK RN
N N MY MM o) RN K
R ¥ KKK KK Y
AN U NN NN WY ¥ MK KRR R Y
S N M U NN NN NN o MM
N NN N N W RN NN < KRR
N N MWW N NN NN KK W
2 % N WM W N NN Y KRR KKK
o 5050 N N KRR
% S Y NN EEE R KKK
50500 N N N KEECERN KKK
507500 N KKK R KK
S N N ey EEEE LR R Y
0 N N N KRR KRR KK
U KX LR K KK
NN N M W U KRR KKK
N W N N N KRR KK
4% 5 15 e KRR W W
7 M M N N KRR K
"l 0l W KKK KN
"l 50 N N N KKK KWK
e EEEEEE KRR K]
U N KRR EE KR KK
N e YLLK R KK
M M NN S N W NN MY KR KK
o S N N W N KRR KK
20 5000 0 N KRR K KN
5 N W N NN KRR
N R R KN
a0 o0 0 RN WK
MR PP PR S EELETYNKEEETEERKE

The process can terminate when the lowest value on the OPEN list equals or exceeds the robot’s path cost, since
additional expansions cannot possibly find a better path to the goal. In Figure 3, the LOWER state propagation has
reached the robot’s location and a new optimal path has been computed to the goal. If the value of GATE had been
smaller, the optimal path from the robot to the goal could have passed through the gate, rather than around the
obstacles. In this case, the lowest value on the OPEN list would have equalled or exceeded the robot’s raised path
cost before the LOWER states reached the robot. Thus, the process would have terminated with the original path to
the goal intact.

Once a new optimal path is computed or the old one is determined to be valid, the robot can continue to move toward
the goal. Note in the figure that only part of the cost map has been repaired. It is possible that at a later point in the
traverse, the robot will discover obstacles that force it back into the unrepaired, invalidated region. The RAISE and
LOWER states placed on the OPEN list from these new obstacles will “mix” with the OPEN states from the
previous, but not fully propagated, arc cost updates.

10

D* supports multiple, partially-propagated cost updates by sorting the states on the OPEN list by the minimum of all
path cost values assumed by the state immediately before insertion on the OPEN list and while resident on the list.
Thus, RAISE and LOWER states propagate cost increases and reductions, respectively, from the lowest to highest
path cost value in the map, regardless of the order in which arc cost corrections are made and the extent to which they
are propagated. It is even possible for LOWER states to become RAISE states and vice versa in the process. If the
robot ventures into a previously invalidated region, the algorithm propagates all cost updates logged to that point into
this region to compute a new optimal path to the goal.

2.2 Definitions

To formalize this intuition, we introduce the following notation and definitions. The problem space can be formulated
as a set of states denoting robot locations connected by directional arcs, each of which has an associated cost. The
robot starts at a particular state and moves across arcs (incurring the cost of traversal) to other states until it reaches
the goal state, denoted by G . Every state X except G has a backpointer to a next state ¥ denoted by 5(X) = Y. D*
uses backpointers to represent paths to the goal. The cost of traversing an arc from state Y to state X is a positive
number given by the arc cost function (X, ¥). If ¥ does not have an arc to X, then ¢(X, ¥) is undefined. Two states X
and Y are neighbors in the space if c(X, Y) or c(¥, X) is defined.

Like A*, D* maintains an OPEN list of states. The OPEN list is used to propagate information about changes to the
arc cost function and to calculate path costs to states in the space. Every state X has an associated tag #(X), such that
«X) = NEW if X has never been on the OPEN list, (X) = OPEN if X is currently on the OPEN list, and

#X) = CLOSED if X is no longer on the OPEN list. For each state X, D* maintains an estimate of the sum of the arc
costs from X to G given by the path cost function A(G, X) . Given the proper conditions, this estimate is equivalent to
the optimal (minimal) cost from state X to G. For each state X on the OPEN list (i.e., (X) = OPEN), the key
function, (G, X), is defined to be equal to the minimum of 4(G, X) before modification and all values assumed by
(G, X) since X was placed on the OPEN list. The key function classifies a state X on the OPEN list into one of two
types: a RAISE state if (G, X) < (G, X), and a LOWER state if k(G, X) = h(G, X). D* uses RAISE states on the OPEN
list to propagate information about path cost increases and LOWER states to propagate information about path cost
reductions. The propagation takes place through the repeated removal of states from the OPEN list. Each time a state
is removed from the list, it is expanded to pass cost changes to its neighbors. These neighbors are in turn placed on
the OPEN list to continue the process.

States on the OPEN list are sorted by their key function value. The parameter &, ., is defined to be min(k(X)) for all X
such that (X) = OPEN. The parameter k,, represents an important threshold in D*: path costs less than or equal to
k., are optimal, and those greater than &, may not be optimal. The parameter &, is defined to be equal to &,
prior to most recent removal of a state from the OPEN list. If no states have been removed, & _,, is undefined.

An ordering of states denoted by {X,X,} is defined to be a sequence if b(X,,) = X, forall i such that 1 <i<N and
X,#X; for all (iy) such that 1 <i<j<N.Thus, a sequence defines a path of backpointers from X,, to X, . A sequence
(X, X is defined to be monotonic if (#X) = CLOSED and WG, X)<hG,X,;,) or (#(X) = OPEN and
kG, X) <G, X, ")) for all i such that 1<i<N. D¥* constructs and maintains a monotonic sequence {GX} ,
representing decreasing current or lower-bounded path costs, for each state X that is or was on the OPEN list. Given
a sequence of states {X,X,} , state X, is an ancestor of state X if 1 €i<j< N and a descendant of X; H1<j<i<N.

For two-state functions involving the goal state, the following shorthand notation is used: 4#(X) =k(G, X) and
k(X) = k(G, X) . Likewise, for sequences the notation {X} ={GX} is used. The notation f{°) is used to refer to a
function independent of its domain.

2.3 Algorithm Description

The Basic D* algorithm consists primarily of two functions: PROCESS - STATE and MODIFY ~ COST.

PROCESS -~ STATE is used to compute optimal path costs to the goal, and MODIFY — COST is used to change the arc
cost function ¢(°) and enter affected states on the OPEN list. The algorithms for PROCESS — STATE and

MODIFY — COST are presented below. The embedded routines are MIN(a, b) , which returns the minimum of the two
scalar values a and b; LESS(a, b) , which returns TRUE if a is less than b and FALSE otherwise; COST(X), which
returns A(X) for state X; MIN - STATE , which returns the state on the OPEN list with minimum (%) value (NULL if

11

the list is empty); MIN - VAL, which returns k, , for the OPEN list (NO - VAL if the list is empty); DELETE(X),
which deletes state X from the OPEN list and sets #(X) = CLOSED; and INSERT(X, h,,,.)» which computes

kKX = b, i 100 = NEW, k(X) = MINK(X), h,,) if (X) = OPEN,and k(X) = MIN(h(X),) if (X) = CLOSED,
sets #(X) = h,,, and «X) = OPEN, and places or re-positions state X on the OPEN list sorted by k(°).

The function names LESS and COST are used rather than < and h(°), respectively, since their semantics are
redefined in Section 3.3 to operate on vectors rather than scalars.

In function PROCESS — STATE at lines L1 through L3, the state X with the lowest k(°) value is removed from the
OPEN list. If X is a LOWER state (i.e., k(X) = h(X)), its path cost is optimal since A(X) is equal to the old Kypin - AL
lines L8 through L.13, each neighbor ¥ of X is examined to see if its path cost can be lowered. Additionally, neighbor
states that are NEW receive an initial path cost value, and cost changes are propagated to each neighbor Y that has a
backpointer to X, regardless of whether the new cost is greater than or less than the old. Since these states are
descendants of X, any change to the path cost of X affects their path costs as well. The backpointer of Y is redirected,
if needed, so that the monotonic sequence {Y} is constructed. All neighbors that receive a new path cost are placed
on the OPEN list, so that they will propagate the cost changes to their neighbors.

Function: PROCESS-STATE ()

L1 X = MIN-STATE ()

1.2 if X = NULL thenreturn NO - VAL
L3 k,,, = kX); DELETE(X)

L4 if k,,<h(X) then

L5 for each neighbor Y of X:

L6 if (Y) # NEW and h(Y) <k, and h(X) > h(Y) + c(¥, X) then
L7 bX) = Y; i(X) = W(Y)+c(Y,X)

L8 ifk,, = h(X) then

L9 for each neighbor Y of X:

L10 if {¥) = NEW or

L11 (b(Y) = X and A(Y) # h(X) + c(X, Y)) or

L12 (b(V) =X and A(Y) > i(X) + c(X, Y)) then

L13 b(Y) = X; INSERT(Y, h(X) + c(X, ¥))

L14 else

15 for each neighbor Y of X:

L16 if (Y) = NEW or

L17 (b(Y) = X and A(Y) # h(X) + c(X, Y)) then

L18 b(Y) = X; INSERT(Y, h(X) + c(X, 1))

L19 else

L20 if b(Y) #X and H(Y) > h(X) + (X, Y) and #X) = CLOSED then
121 INSERT(X, h(X))

L22 else

L23 if b(Y) =X and h(X) > K(Y) + (Y, X) and

.24 1Y) = CLOSED and i(Y) >k, then
125 INSERT(Y, (1))

126 return MIN — VAL()

If X is a RAISE state, its path cost may not be optimal. Before X propagates cost changes to its neighbors, its optimal
neighbors are examined at lines L4 through L7 to see if 4(X) can be reduced. At lines L15 through L18, cost changes

12

are propagated to NEW states and immediate descendants in the same way as for LOWER states. If X is able to lower
the path cost of a state that is not an immediate descendant (lines L20 and L.21), X is placed back on the OPEN list
for future expansion. This action is required to avoid creating a closed loop in the backpointers [12]. If the path cost
of X is able to be reduced by a suboptimal neighbor (lines L23 through L25), the neighbor is placed back on the
OPEN list. Thus, the update is “postponed” until the neighbor has an optimal path cost. To assist the reader in
understanding this cost propagation process, a simplified but less computationally efficient version of
PROCESS - STATE is included in the Appendix.

In function MODIFY - COST, the arc cost function is updated with the changed value. Since the path cost for state ¥
will change, X is placed on the OPEN list. When X is expanded via PROCESS - STATE, it computes a new
h(Y) = K(X)+c(X, Y) and places Y on the OPEN list. Additional state expansions propagate the cost to the
descendants of Y.

Function: MODIFY-COST (X, Y, cval)

LI cX, V) = cval

L2 if (X) = CLOSED then INSERT(X, h(X))
L3 return MIN - VAL()

The function MOVE - ROBOT illustrates how to use PROCESS — STATE and MODIFY - COST to move the robot
from state S through the environment to G along an optimal traverse. At lines L1 through L3 of MOVE - ROBOT,
1(°) is set to NEW for all states, #(G) is set to zero, and G is placed on the OPEN list. PROCESS - STATE is called
repeatedly at lines L5 and L6 until either an initial path is computed to the robot’s state (i.e., #S) = CLOSED)oritis
determined that no path exists (i.e., val = NO- VAL and «S) = NEW). The robot then proceeds to follow the back-
pointers in the sequence {R} until it either reaches the goal or discovers a discrepancy (lines L10 and L11) between
the sensor measurement of an arc cost s(°) and the stored arc cost c(°) (e.g., due to a detected obstacle). Note that
these discrepancies may occur anywhere, not just in the sequence {R} . MODIFY - COST is called to correct ¢(°)
and place affected states on the OPEN list. PROCESS — STATE is then called repeatedly at line L13 until val > A(R)
to propagate costs and compute a possibly new sequence {R} to the goal. The robot continues to follow the back-
pointers in the sequence toward the goal. The function returns GOAL - REACHED if the goal is found and

NO - PATH if it is unreachable.

Function: MOVE-ROBOT (5, G)
L1 for each state X in the graph:

L2 iX) = NEW
L3 INSERT(G, 0)

14 val = 0

L5 while #S) # CLOSED and val# NO - VAL

L6 val = PROCESS — STATE()

L7 if «S) = NEW then return NO - PATH

L8 R=3S

L9 while R#G:

L10 for each (X,Y) such that s(X, V) zc(X, Y) :
L11 val = MODIFY—-COST(X, Y, s(X, V)
L12 while LESS(val, COST(R)) and val# NO - VAL
L13 val = PROCESS — STATE()

Li4 R = b(R)

L15 return GOAL-REACHED

13

It should be noted that line L7 in MOVE — ROBOT only detects the condition that no sequence of arcs exists from the
robot’s state to the goal, if for example, the graph is disconnected. It does not detect the condition that all paths to the
goal are obstructed by obstacles. In order to provide for this capability, obstructed arcs can be assigned a large
positive value of OBSTACLE and unobstructed arcs can be assigned a small positive value of EMPTY. OBSTACLE
should be chosen such that it exceeds the longest possible sequence of EMPTY arcs in the graph. No unobstructed
path exists to the goal from S if h(S) > OBSTACLE after exiting the loop at line L5. Likewise, no unobstructed path
exists to the goal from a state R during the traverse if #(R) 2 OBSTACLE after exiting the loop at line L12.

14

3.0 The Focussed D* Algorithm

3.1 Intuition

The Basic D* algorithm in the previous section propagates cost changes through the invalidated states without con-
sidering which expansions will benefit the robot at its current location. Like A*, D* can use heuristics to focus the
search in the direction of the robot and reduce the total number of state expansions. Let the focussing heuristic g(X, R)
be the estimated path cost from the robot’s location R to X. Define a new function, the estimated robot path cost, to
be fiX,R) = G, X) +g(X, R), and sort all LOWER states on the OPEN list by increasing £°) value. The function
fX, R) is the estimated path cost from the state R through X to G . Provided that g(°) satisfies the monotone restric-
tion (i.e., g(G, G) = 0 and g(G, X) —g(G, Y) <c(Y, X) for all (X,Y) such thatis (¥, X) defined), then since A(G, X) is
optimal when LOWER state X is removed from the OPEN list, an optimal path will be computed to R [8].

Figure 4: Focussed RAISE State Propagation

[A A A AN A A I M I N A A A I U S AT I AA AR AT DA A A A oA A L O A L CCCCOCCC L
5" %4 """ "l 0 A N S M N N LA 'KK{{K A A A AL AT E |
Y M e N e Y 5% 0 KKKKKKK((KKKKKL (LA A AAL S AL LY
1 5 0 50 0) NN Lt KRR WK KN KRR
a0 050 505 0 S N M N e e e e KKKKKl(((((lKKKKKKKKKKKKKKKKKKKKKKE
50 5050 050 500 " 0 000 0 50l e WK W R R KRR R
oA 5 3 5 N e MMM N WU KRN E IR IR
PR R R N Y e e | R W B BB KRR I W I
™ 0 005 Tl T 2 e N N M KK W W R R I B I KRR W W
50 0 " T 5 0 2 N N e P A A A A A A A T A A AL AN,
NN N e N S e e e KK KRR RO W K K K K R
N M A A N S M N N N M U M N N N Y (LA A LA (LA
50 0 50 50 00N N KWW R I W WK KR KRR R W W W
" 000505 5 N e e e e I BB R A K R R K I K
"l 0 507500 N M KWWK I IR I KW W R T (L4 KL
5 5050 7" 05 0 0 KRR KKK KRR K K
2 0l 3500 5 KW KK KRN K K K KR R KW W
0 50 50t S S e REEd KWW W KR KK KRR K K K K
a0 05200 000 N S e (AL AL AT
20 00 0 0 N N e W KW WY
047 0 a0 5 T T S N e M M e e (T AL LA A KRR K Y
00 75 A N N e e e e e R KKK W K R R R R
3030 00 T M M S N R N N N N M M N N N K KRR R K I W R R
i 0 N N S SRkl o RN RN K
TR NMNNN&NNNNNNNMNMNYV& R EEEd KK AW W W W W B
NN N&N&N\N&&NNMMYMNNNN KK W MWW IR BB B K K
aNNNNNNNNN&&N&NY N&Y&N&VN&NMYYNMN KKK ({ UL (LA A LA A LA AL,
% N MM NN NN N N 0 LA R 8 IR W W K W I K
TR T T A B] KKKKKKKKYKKKKK B R W R K
% M W A N R N M N M N M M N M NN U4 I B KK I I IR BB R W
S 50 S T T N I I BRI W I R B R K K I
50 5055t 0 N S 4 AN WA KKKKKKK{KKKKKKKKKKKm
2 9 5 3 T N MW KKK K
"t 0l 0 0 S AISE I(It.’i(KKK’I{I{I{I{K’I{I{K’{I{I{I{L’KL’I{KKL’K&
"l T T 0 S N S e N e (4 W R W K KKK K
0004700075 0 0 50 M e KKf({(“l({{({f{{{{{{{fk{{m
" M M N M M M M NN RN N BB WA R R I K
e M M NN Y k] a eS KKK KK K I(K‘K’i{i!i{lfl{l{l{lﬂ(i
it o000 00 07 S 0 0 KKKK#KKKKK((E({E{{KK ©y
30 2 8 2 "l 2 KENKR KKK (((KK{{{{’ KK
554 5070500 " 730 0 50 00 KK(K{EE{E{KKK{LKKKLHHH({K KKK
0 A A NN MR N MM R N NN NN N N Y rE W1 W KW AR AN WK KR R 1 MR
a5 0 0 S S T M N Y e B W KRR N WM WA R A ¥y
5 U U NN M NN N NN S W R 0 I8 AR A W RN e K R KN
5 0 "0 o g M N 0 W]
" EREE ey MMM NN MY (LA AL AL VR KK K %
o S M M M N N Y A "0 750 (LA LA A (A AL,
A NNN&N\NNNVNN %00 050 0 0 0 0 ® ST AL LA (LAt A
4 e 50750 0 FERELER) KKlKK((liKKK{{KKKKKKVKKKKKKKKKKKKKKKKKKKKKEEKKKK
CRRd N &N&NNN ey 7 B K KKKKKLKKK AR & BB W0 A IR B W I
A% Xy % ' ' k] KKKKKKKK#LKKKK({KEK(KKKKKKKEKKﬂ
o My g& KKK

M&NVMNENNNNNN&N&N¥NY

1wﬂu.mw‘ﬂ----mwu‘nnﬂn:--11-111-“ﬂ“n«a“uq--um---‘a LR

In the case of RAISE states, the previous A(°) value defines a lower bound on the A(°) values of LOWER states they
can discover (see Section 2.1); therefore, if the same focussing heuristic g(°) is used for both types of states, the
previous f(°) values for the RAISE states define lower bounds on the f(°) values for the LOWER states they can
discover. Thus, if the £°) values of the LOWER states on the OPEN list exceed the previous f{°) values of the RAISE
states, then it is worthwhile processing RAISE states to discover (possibly) better LOWER states. Based on this
reasoning, the RAISE states should be sorted on the OPEN list by fAX,R) = k(G, X) + g(X, R). But since

15

kG, X) = h(G,X) for LOWER states, the RAISE state definition for £°) suffices for both kinds of states. To avoid
cycles in the backpointers, it should be noted that ties in f{°) are sorted by increasing k(°) on the OPEN list [12].

The process can terminate when the lowest value on the OPEN list equals or exceeds the robot’s path cost, since the
subsequent expansions cannot possibly find a LOWER state that 1) has a low enough path cost, and 2) is “close”
enough to the robot to be able to reduce the robot’s path cost when it reaches it through subsequent expansions. Note
that this is a more efficient cut-off than the one outlined in Section 2.1, which considers only the first criterion.

Figure 5: Focussed LOWER States Reach Robot's State

ARREREFERELFERERRERKK

REFFEEEK

RAlSE
States

KGKKKKL i{{{
Kftflﬁs WA

LU LS

KE{K
K(KKKKKKK“KKKKK

f K

KWL KR K

LOWER kesitssseeezooieyy
KA KK W KA S

4y
KKKKKKUUKKK{K({S

R
K
LY
LY
L3
LSS

(144
KKK{KKK K!KKKKKKKKKKKKKKK
CLALLLAd

LK

"+
v 3
M

R,
3
L3
L33
L3
L3

K o

R ¢}+¥¥¥

RERERRERARRR

LLLLLLL LN
K. L3 L33
LY
K
LY
®

')-KN’\I“
&

L3
R
L

LY
Ly

KKKRKKKKKKKKK?KQKKKKKKKKKKK
L33
LY
LY
Ly

w

ERRRRERLKEFR

KRRE
L0
E.
L
L

KKKKK{({(KKKKKKKKKl

Figure 4 shows the same example as Figure 2, except that a focussed search is used. All states in the RAISE state
wave front have roughly the same f°) value. Note that for the two RAISE states selected, the arrows from the goal to
the RAISE states and back to the robot are the same length. The wave front in Figure 4 is more “narrow” than that in
Figure 2 since the inclusion of the cost to return to the robot penalizes the wide flanks in Figure 2.

In Figure 5, the LOWER states activated by the RAISE state wave front have swept in from the outer sides of the
obstacles to compute a new, optimal path to the robot. Note that the two wave fronts are narrow and focussed on the
robot’s location. Again, the lengths of the arrows to the two wave fronts and back to the robot are equal.

Compare Figure 5 to Figure 3. Note that both the RAISE and LOWER state wave fronts have covered less ground for
the focussed search than the unfocussed search in order to compute a new, optimal path to R . Therein is the efficiency
of the Focussed D* algorithm.

16

The problem with focussing the search is that once a new optimal path is computed to the robot’s location, it then
moves to a new location. If the robot’s sensor discovers another arc cost discrepancy, the search should be focussed
on the robot’s new location. But states already on the OPEN list are focussed on the old location and have incorrect
8(°) and f(°) values. One solution is to recompute g(°) and f°) for all states on the OPEN list every time the robot
moves and new states are to be added via MODIFY - COST. This approach is inefficient since it re-sorts the OPEN
list, requiring at worst O(NlogN) operations, where N is the number of states on the OPEN list. Based on empirical
evidence, this additional computation more than offsets the savings gained by a focussed search.

The approach in this paper is to take advantage of the fact that the robot generally moves only a few states between
calls to MODIFY -~ COST, so the g(°) and f°) values have only a small amount of error. Assume that state X is
placed on the OPEN list when the robot is at location R, (see Figure 6). Its f{°) value at that point is f(X, Ry . If the
robot moves to location R, we could calculate fiX, R;) and adjust its position on the OPEN list. To avoid this
computational cost, we compute a lower bound on fiX, R) given by fiX,R) = X, Ry) —g(Ry, Ry). fiX.R)) isa
lower bound on /X, R,) since it assumes the robot moved in the “direction” of state X, thus subtracting the motion
from g(X, Ry). If X is adjusted on the OPEN list by fi(X, R)), then since f;(X, R|) is a lower bound on f(X, R, X will
be selected for expansion before or when it is needed. At the time of expansion, the true f(X, R,) value is computed,
and X is placed back on the OPEN list by fiX, R)).

Figure 6: Computing a Lower Bound on f(°) for Robot Motion

Robot Motion

(X,R0) = k(G,X) + g(X,R0)
f(X,R1) = k(G,X) + g(X,R1)

fL(X,R1) = f(X,R0) - g(R1,R0)

At first this appears worse, since the OPEN list is first re-sorted by f;(°) and then partially adjusted to replace the f,(°)
values with the correct f(°) values. But since g(R,, R;) is subtracted from all states on the OPEN list, the ordering is
preserved, and the list need not be re-sorted. Furthermore, the first step can be avoided altogether by adding g(R,, Ry)
to the states to be inserted on the OPEN list rather than subtracting it from those already on the list, thus preserving
the relative ordering between states already on the list and states about to be added. Therefore, the only remaining
computation is the adjustment step. But this step is needed only for those states that show promise for reaching the
robot’s location. For typical problems, this amounts to fewer than 2% of the states on the OPEN list (see Section 5.0).

3.2 Definitions

To formalize this notion, states are sorted on the OPEN list by a biased f(°) value, given by f5(X, R, where X is the
state on the OPEN list and R, is the robot’s state at the time X was inserted on the OPEN list. Let {Ry, R, ..., Ry} be

17

the sequence of states occupied by the robot when states are added to the OPEN list via MODIFY - COST . The value
of £5(°) is given by fz(X, R) = X, R) +d(R, Ry), where d(°) is the accrued bias function given by

dR, Ry = g(R|,Ry) +8(Ry), R)+ ... +g(R, R, _|) if i>0 and d(Ry, Ry) = 0 if i = 0. The OPEN list states are sorted
by increasing f,(°) value, with ties in fp(°) ordered by increasing f{°), and ties in f(°) ordered by increasing k(°). Ties
in k(°) are ordered arbitrarily. Thus, a vector of values (f,4(°), A°), k(°)) is stored with each state on the list.

Figure 7: Computing Bias Values for £°)

X2,R2)=3.0 X2
R2 g(X2,R)
X1,R2)=3.6
g(R2,R1)=2.0 gx.R2) k(G,X2)=3.6
Rt G
g{R1,R0)=2.0
g(X0,R2)=5.0 k(G,X0)=3.6
RO ¢
g(X0,R0)=3.0 X0
Proper ordering:

f(X1,R2) =k(G,X1) + g(X1,R2) = 6.6

f(X2,R2) = k(G,X2) + g(X2,R2) = 6.6

f(X0,R2) = k(G,X0) + g(X0,R2) = 8.6

[nitial bias ordering:

fB(X0,R0) = k{G,X0) + g(X0,R0) = 6.6

fB(X1,R1) = k(G,X1) + g(X1,R1) + g(R1,R0} = 8.0

fB(X2,R2) = k(G,X2) + g(X2,R2) + g(R2,R1) + g(R1,R0) = 10.6
Adjusted bias ordering:

fB(X1,R2) = k(G,X1) + g(X1,R2) + g(R2,R1) + g(R1,R0) = 10.6
fB(X2,R2) = k(G,X2) + g(X2,R2) + g(R2,R1) + g(R1,R0) = 10.6
fB(X0,R2) = k{G,X0) + g(X0,R2) + g(R2,R1) + g(R1,R0) = 12.6

Consider the example shown in Figure 7. The robot starts at location R, and places state X, on the OPEN list. It then
moves to R, and places X, on the list. Finally, it moves to R, and inserts X, . At location R,, it expands the three
states on the OPEN list. If the {°) values of the three states were recomputed with the robot at location R, , the proper
ordering on the OPEN list would be {X,, X,, X} . Note that the tie in f{°) values for X, and X, is broken in favor of
lower k(°). Since the states were placed on the OPEN list at different locations, the ordering by f,(°) value is
{X; X, X,} . The first state removed from the list is X, . It’s f(°) value is changed from fi(X;, Ry) to f5(X,, R,) (i.e.,
6.6 to 12.6), and it is put back on the list according to the adjusted value. The next state removed is X, . It’s f5(°) value
is changed from fj(X,, R)) to f,(X,, R,) (i.e., 8.0 to 10.6) and is placed back on the list. The next state removed is X
once again, since it has the same f,(°) and f°) values as X, but has a lower k(°) value. Since it has the proper fz(°)
value (i.e., computed at the robot’s current location, R,), the state is expanded. Note that this is the first state that
should be expanded. The next state removed is X, . Since it already has the proper f;(°) value, it is expanded. Finally,
X, is removed. Since its f(°) value was properly adjusted for the new robot location, it is expanded. Thus, the three
states are expanded in the proper order.

18

For a graph representing an eight-connected Cartesian array of locations, a good focussing heuristic that satisfies the
monotone restriction is the minimum arc distance heuristic. If the Cartesian array is indexed by (4, /), let (x, x) be
the (i,j) coordinates of state X. Let C,,;, be the minimum ¢(°) cost in the array, after all arc costs are normalized to
the length of a non-diagonal arc. Let d; be ’xi—yil and d}. be lxj—yj] .Then g(X, V) = C (ﬁd}. + di—dj) if d;2 dj
and g(X, 7) = C,,,,(¥2d,+d;d,) it d;<d,.

min

min

. LetR_,,, be the most recent robot state at which discrepancies were discovered between the sensor data and map, and
let Rprev be the previous such state. Both are initialized to the robot’s start state. Define the robot state function X,
which returns the robot’s state when X was last inserted or adjusted on the OPEN list. The parameter d, . is the
accrued bias from the robot’s start state to its current state; it is shorthand for d(R,,,.» Ry and is initialized to
d,,, = dRyRy =0.Letf . betheminimum f°) value on the OPEN list and k., beits corresponding k(°) value.
The following shorthand notation is used for f5()s f), and g(°): f(X) =fp(X, (X)), AX) =fX, 7(X)), and

8(X) = g(X, (X)) .

3.3 Algorithm Extension

Most of the extensions are confined to the functions for cost comparisons and management of the OPEN list; there-
fore, the functions COST, LESS, INSERT, MIN — STATE , and MIN — VAL are affected. Instead of returning A(R) for a
robot state R, COST(R) returns the vector of values {f(R, R, h(R)) . Instead of comparing two scalars, the function
LESS(a, b) takes a vector of values {a;, ay) for a and a vector (b, by) for b. LESS returns TRUE if a;<b, or

(a;, = b, and a, <b,); otherwise, it returns FALSE.

Before redefining INSERT, MIN-STATE, and MIN- VAL, two new embedded functions are introduced.
PUT - STATE(X) sets X) = OPEN and inserts X on the OPEN list according to the vector), fX), k(X)) , and
GET -~ STATE returns the state on the OPEN list with minimum vector value (NULL if the list is empty).

The redefined INSERT function is given below. At line L1, the robot’s state R, which is manipulated in
MOVE - ROBOT, is saved as the new focal point for the search. At lines L2 through L4, the current state of the robot
is examined to see if the robot has moved since the last time insertions were made to the OPEN list. If so, the bias
term, d(°), is updated by adding a lower bound on the cost from the robot’s previous state to the current
(d(R, Ry = d(le,v, Ry +gR,,,, R,). The values for A(X) and k(X) are determined at lines L5 through L11.
The remaining two values in the vector are computed at line L12, and the state is inserted at line I13.

Function: INSERT (X, hnew)

Ll Rcurr = R

L2 ifR,, # Rprev then

L3 Qurr = Ay 8R oo R,)
L4 Ry ey = Reypy

L5 if«X) = NEW thenk(X) = &,

L6 else

L7 if X) = OPEN then

L8 k(X) = MINK(X), h,,,)
L9 DELETE(X)

L10 else k(X) = MIN(h(X), h,,,)

L1l WX = Bpows TX) = R,
L1200 = kX) + 50 /(%) = A0 +d,,,,
L13 PUT-STATE(XX)

19

The function MIN - STATE, given below, returns the state on the OPEN list with minimum f°) value. In order to do
this, the function retrieves the state on the OPEN list with lowest f(°) value. If the state was placed on the OPEN list
when the robot was at a previous location (line L2), then it is re-inserted on the OPEN list at line L3. This operation
has the effect of correcting the state’s bias term using the robot’s current state while leaving the state’s h(°) and k(°)
values unchanged. MIN - STATE continues to retrieve states from the OPEN list until it finds one that has an updated
bias term (i.e., it was placed on the OPEN list with the robot at its current state).

Function: MIN-STATE ()
L1 while X = GET-STATE(Y#NULL

L2 if (X)#R,_, . then
L3 Ry = WX); h(X) = K(X); DELETE(X); INSERT(X, .,)
14 else return X

L5 return NULL

The redefined MIN - VAL function, given below, returns the A°) and k(°) values of the state on the OPEN list with
minimum f°) value.

Function: MIN-VAL ()

Ll X = MIN-STATE()

L2 if X = NULL thenreturn NO - VAL
L3 else return (AX), k(X))

The functions PROCESS - STATE and MODIFY - COST are syntactically unchanged from their descriptions given
in Section 2.3. But since both functions conclude by returning the result of a call to MIN - VAL, they also return the
vector of values (f, ..k,) instead of just k. . This vector is assigned to val in the routine MOVE — ROBOT and is
used by the redefined LESS function to determine if PROCESS - STATE has been called enough times to guarantee
optimality. Since R = R_,,, for arobot state R undergoing path recalculations, then g(R, R) = 0 and f(R, R) = h(R).

Therefore, optimality is guaranteed for a state R, if . > h(R) or (f.. = h(R) and k.., ZhR)).

min min

20

4.0 Examples

This section presents two examples that illustrate the operation of the D* algorithm. The first compares the Basic D*
algorithm to Focussed D*, and the second compares planning with complete information to optimistic information.

4.1 D* Comparisons

Figure 8 shows a cluttered 100 x 100 state environment. The robot starts at state S and moves to state G . All of the
obstacles, shown in black, are unknown before the robot starts its traverse, and the map contains only EMPTY arcs.
The robot is point-sized and is equipped with a 10-state radial field-of-view sensor.

Figure 8: Cluttered Environment

21

Figure 9: Basic D* Algorithm

T

£

ot b

5" 0
0
X3 3

Figure 9 shows the robot’s traverse from S to G using the Basic D* algorithm. The traverse is shown as a black curve
with white arrows. As the robot moves, its sensor detects the unknown obstacles. Detected obstacles are shown in
grey with black arrows. Obstacles that remain unknown after the traverse are shown in solid black or black with white
arrows. The arrows show the final cost field for all states examined during the traverse. Note that most of the states
are examined at least once by the algorithm.

22

Figure 10: Focussed D* Algorithm

R
UUNYS
5755 N M e
5 bbb
=+

M
DD
fivivs

S5)
a0 M 2 M
0
AAAAAAAAAAAAAN
AAAAAAAAAAAAAAN
AARAAAAAAAARAARAA
AAAAAANAARAAAAAA
AAAAAAAAAAAAAAAN
AAA AARARAAAAAAAAAAAAAAANAN
JAAA AAARAAARAAAAAAAAAAAAANNE]
ANALTE AARAAAAAAAAANAAARAAAAN
AARAA AARARFAAAAARAAAAAAAAAAN
ARRA AARRAAAAAAAARAARAAAAAR -
AAARA AAAAIAAAARAAAARAAAAAAAAN ¢
ARAAAA AARARAAAAAAAAAAAAAAAAE ¢
AAARN AAAAAAAAARAAAAAAAAN T + ¢
AAZAN AAAAAAAAARAARAAAAAAL T+ ¢
AARAAAAARA AAAAATAAAAAAAAAAAL T 1+ ¢
AARAAN AARARAAAAARAAAAR L + £ 7,
AAA AAAXRAAAAAANARNN T + F,
AR AARARAAAAAARAAAL R

Figure 10 shows the robot’s traverse using the Focussed D* algorithm. The number of NEW states examined is fewer
than Basic D*, since the Focussed D* algorithm focuses the initial path calculation and subsequent cost updates on
the robot’s location. Note that even for those states examined by the algorithm, fewer of them end up with optimal
paths to the goal. Finally, note that the two trajectories are not fully equivalent. This occurs because the lowest-cost
traverse is not unique, and the two algorithms break ties in the path costs arbitrarily.

23

Figure 11: Omniscient Optimal Traverse

4.2 A Priori Map Information

Figure 11 shows a 450 x 450 state environment cluttered with grey obstacles. The backpointers were omitted for
clarity. The black curve shows the optimal traverse to the goal, given the case where the robot knows about the
obstacles before it begins its traverse. This traverse is known as omniscient optimal, since it is equivalent to the
optimal path to the goal, given complete and accurate arc cost information. Figure 12 shows planning in the same
environment where none of the obstacles are stored in the map a priori. The portions of the obstacles detected by the
robot’s 15-state radial sensor are shown. This traverse is known as optimistic optimal, since the robot assumes no
obstacles exist unless they are detected by its sensor. This traverse is nearly two times longer than omniscient
optimal; however, it is still optimal given the initial map and the sensor information as it is acquired.

24

Figure 12: Optimistic Optimal Traverse

25

5.0 Experimental Results

Four algorithms were tested to verify optimality and to compare run-time and memory usage results. The first
algorithm, the Brute-Force Replanner (BFR), initially plans a single path from the goal to the start state. The robot
proceeds to follow the path until its sensor detects an error in the map. The robot updates the map, plans a new path
from the goal to its current location using a focussed A* search [8], and repeats until the goal is reached. The
focussing heuristic used is the minimum arc distance described in Section 3.2.

The second and third algorithms, Basic D* (BD*) and Focussed D* with Minimal Initialization (FD*M), are
described in Sections 2.0 and 3.0, respectively. The fourth algorithm, Focussed D* with Full Initialization (FD*F), is
the same as FD*M except that the path costs are propagated to all states in the planning space, which is assumed to be
finite, during the initial path calculation, rather than terminating when the path reaches the robot’s start state.

The four algorithms were compared on planning problems of varying size. Each environment was square, consisting
of a start state in the center of the left wall and a goal state in center of the right wall. Each environment consisted of
a mix of map obstacles known to the robot before the traverse and unknown obstacles measurable by the robot’s
sensor. The sensor used was omnidirectional with a 10-state radial field of view. Figure 13 shows an environment
model with approximately 100,000 states. The known obstacles are shown in grey and the unknown obstacles in
black.

Figure 13: Typical Environment for Comparison

T

The results for environments of 10,000, 100,000, and 1,000,000 states are shown in Tables 1, 2, and 3, respectively.
The reported times are CPU time for a Sun Microsystems SPARC-10 processor. For each environment size, the four
algorithms were compared on five randomly-generated environments, and the results were averaged. The algorithms
were coupled so that ties in paths costs would be broken in the same way, and the traverses would be identical. The

26

off-line time is the CPU time required to compute the initial path from the goal to the robot, or in the case of FD*F,
from the goal to all states in the environment. This operation is “off-line” since it could be performed in advance of
robot motion if the initial map were available. The on-line time is the total CPU time for all replanning operations
needed to move the robot from the start to the goal. It constitutes the CPU time needed to keep the robot moving
toward the goal, and hence is “on-line”. The memory % is the percentage of map states examined across all planning
and replanning operations. In the case of BFR, it is the Jargest percentage of map states examined during any single
planning or replanning operation, since path costs are not retained from one replanning operation to the next. This
parameter corresponds to memory usage if states are dynamically allocated. The on-line % is the percentage of
OPEN list states that are re-sorted due to robot motion averaged across all replanning operations and is applicable
only to the Focussed D* algorithm in both forms. It is a metric for how good the lower bound approximation f,(°) is

to /%) .

The results for each algorithm are highly dependent on the complexity of the environment, including the number,
size, and placement of the obstacles, and the ratio of known to unknown obstacles. For the test cases examined, all
variations of D* outperformed BFR in on-line time, reaching a speedup factor of nearly 300 for large environments.
Generally, the performance gap increased as the size of the environment increased. The FD*M algorithm resulted in
lower off-line times and higher on-line times than BD*. Focussing the search enables a rapid start due to fewer state
expansions, but many of the unexplored states must be examined anyway during the replanning process resulting in a
longer execution time. Thus, FD*M is the best algorithm if the user wants the robot to begin moving as soon as
possible and can afford to pay with more processing during this motion. If the user wants to minimize on-line time at
the expense of off-line time, then FD*F is the best algorithm. In this algorithm, path costs to all states are computed
initially and only the cost propagations are focussed. Note that FD*F resulted in lower on-line times and higher off-
line times than BD*.

Thus, the Focussed D* algorithm can be configured to outperform Basic D* in either the off-line or on-line portion of
the operation, depending on the requirements of the task. Note also that the total runtime, given by off-line plus on-
line time, is less for FD*M than BD*, even for environments as small as 10,000 states. The disparity widens for
larger environments. As a general strategy, focussing the search is a good idea; the only issue is how the
computational load should be distributed.

As an aside, the off-line times for all three variations of D* can be reduced by using A*, either focussed or
unfocussed, whichever matches the D* algorithm, during the initial planning process, since there are no cost updates
to propagate. The A* algorithm has less overhead than D* and is faster per state expansion.

FD*M offers the additional advantage of lower memory usage than BD* if memory is allocated only as needed. Its
memory usage is roughly equivalent to that of the BFR, which de-allocates visited states after each replanning
operation. FD*F allocates all possible states and is therefore memory intensive.

Table 1: Results for 10,000-State Environments

Focussed D* Focussed D* . Brute-Force
. Basic D*
with Full Init with Min Init Replanner
Off-line Time 1.70 sec 0.15 sec 1.02 sec 0.09 sec
On-line Time 0.90 sec 1.43 sec 1.31 sec 13.07 sec
Memory % 100% 38.7% 87.7% 31.6%
On-line % 1.66% 1.69% N/A N/A

Table 2: Results for 100,000-State Environments

27

Focussed D*

Focussed D*

Brute-Force

with Full Tnit | with Min Tnit | oS¢ D* Replanner
Off-line Time | 20.58 sec 0.70 sec 12.55 sec 0.41 sec
On-line Time | 9.22 sec 17.62 sec 16.94 sec 11.86 min
Memory % 100% 50.4% 83.6% 43.5%
On-line % 0.55% 0.85% N/A N/A

Table 3: Results for 1,000,000-State Environment

Focussed D* Focussed D* . Brute-Force

with Full Init | with Min Init Basic D* Replanner
Off-line Time | 221.72 sec 8.68 sec 129.08 sec 4.82 sec
On-line Time 10.26 sec 37.34 sec 21.47 sec 50.63 min
Memory % 100% 15.6% 76.2% 25.3%
On-line % 0.54% 1.29% N/A N/A

28

6.0 Conclusions

This paper presents the D* algorithm for real-time path replanning. The algorithm computes an initial path from the
goal state to the start state and then efficiently modifies this path during the traverse as arc costs change. The
algorithm is guaranteed to produce an optimal traverse, meaning that an optimal path to the goal is followed at every
state in the traverse, assuming all known information at each step is correct. D* is far more efficient than the brute-
force path planner. The focussed version of D* outperforms the basic version, and it offers the user the option of
distributing the computational load amongst the on- and off-line portions of the operation, depending on the task
requirements. Furthermore, the focussed version can be configured to be less memory intensive and is therefore better
for large environments.

D* is a very general algorithm and can be applied to problems in artificial intelligence other than robot motion
planning. In its most general form, D* can handle any path cost optimization problem where the cost parameters
change during the traverse of the solution. D* is most efficient when these changes are detected near the current
starting point in the search space, which is the case with a robot equipped with an on-board sensor.

Acknowledgments

The author thanks Barry Brumitt and Jay Gowdy for feedback on the use of the algorithm and the entire Unmanned
Ground Vehicle (UGV) project at CMU for providing a vehicle testbed.

29

References

{1] Boult, T., “Updating Distance Maps when Objects Move”, Proc. of the SPIE Conference on Mobile Robots, 1987.
[2] Goto, Y., Stentz, A., “Mobile Robot Navigation: The CMU System”, IEEE Expert, Vol. 2, No. 4, Winter, 1987.
[3] Jarvis, R. A., “Collision-Free Trajectory Planning Using the Distance Transforms”, Mechanical Engineering
Trans. of the Institution of Engineers, Australia, Vol. ME10, No. 3, September, 1985.

[4] Korf, R. E., “Real-Time Heuristic Search: First Results”, Proc. Sixth National Conference on Artificial Intelli-
gence, July, 1987.

[5] Latombe, J.-C., “Robot Motion Planning”, Kluwer Academic Publishers, 1991.

(6] Lozano-Perez, T., ““Spatial Planning: A Configuration Space Approach”, IEEE Transactions on Computers, Vol.
C-32, No. 2, February, 1983.

[7] Lumelsky, V.., Stepanov, A. A, “Dynamic Path Planning for a Mobile Automaton with Limited Information on
the Environment”, IEEE Transactions on Automatic Control, Vol. AC-31, No. 11, November, 1986.

(8] Nilsson, N. J., “Principles of Artificial Intelligence”, Tioga Publishing Company, 1980.

[9] Pirzadeh, A., Snyder, W., “A Unified Solution to Coverage and Search in Explored and Unexplored Terrains
Using Indirect Control”, Proc. of the IEEE International Conference on Robotics and Automation, May, 1990.

[10] Ramalingam, G., Reps, T., “An Incremental Algorithm for a Generalization of the Shortest-Path Problem”, Uni-
versity of Wisconsin Technical Report #1087, May, 1992.

[11] Samet, H., “An Overview of Quadtrees, Octrees and Related Hierarchical Data Structures”, in NATO ASI
Series, Vol. F40, Theoretical Foundations of Computer Graphics, Berlin: Springer-Verlag, 1988.

[12] Stentz, A., “Optimal and Efficient Path Planning for Unknown and Dynamic Environments”, Carnegie Mellon
Robotics Institute Technical Report CMU-RI-TR-93-20, August, 1993.

[13] Stentz, A., “Optimal and Efficient Path Planning for Partially-Known Environments”, Proc. of the IEEE Interna-
tional Conference on Robotics and Automation, May, 1994.

[14] Trovato, K. 1, “Differential A*: An Adaptive Search Method Illustrated with Robot Path Planning for Moving
Obstacles and Goals, and an Uncertain Environment”, Journal of Pattern Recognition and Artificial Intelligence, Vol.
4, No. 2, 1990.

[15] Zelinsky, A., “A Mobile Robot Exploration Algorithm”, IEEE Transactions on Robotics and Automation, Vol. 8,
No. 6, December, 1992.

30

Appendix

The function PROCESS - STATE’, given below, is more elegant and lucid than PROCESS - STATE given in Section
2.3. After X is removed from the OPEN list at lines L.1 through L3, a single pass is made over its neighbors. The
state X, regardless of its type, spreads its cost update to its NEW neighbors and immediate descendants at lines L5
and L6. At lines L8 through L12, X is able to reduce the path cost of neighbor Y. If X is a RAISE state (i.c.,
h(X)>k,,), then its path cost may not be optimal; therefore, X is placed back on the OPEN list to “postpone” the
reduction until it has an optimal path cost. If X is a LOWER state (i.e., i(X) = k_,,), its path cost is optimal;
therefore, the path cost of ¥ is reduced, its backpointer is redirected, and it is placed on the OPEN list to propagate
the change. Lines L14 through L18 handle the symmetric case where Y is able to reduce the path cost of neighbor X .
Again, the parameter &, is the dividing line between optimal and suboptimal path costs.

Thus, both RAISE and LOWER states spread path cost changes to their descendants and NEW states, but only
optimal states are permitted to reduce the path costs of other states and redirect their backpointers. Optimal states are
either LOWER states or CLOSED states with path cost values less than or equal to k,,,. Suboptimal states are put
back on the OPEN list until they become optimal.

Function: PROCESS-STATE’ ()

L1 X = MIN-STATE()

L2 if X = NULL then return NO - VAL
L3 k,,, = kX); DELETE(X)

L4 for each neighbor ¥ of X:

L5 if () = NEW or (b(Y) = X and 1Y) £ h(X) + c(X, 1)) then

L6 b(Y) = X; INSERT(Y, (X) + c(X, 1))

L7 else

L8 if b(Y) # X and A(Y) > i{(X) + c(X, Y) then

Lo if (X)>k,,, then

L10 if {X) = CLOSED then INSERT(X, h(X))
Li1 else

L12 b(Y) = X; INSERT(Y, (X) + ¢(X, 1))

L13 else

L14 if b(Y) #X and A(X) > h(Y) + c(Y, X) then

L15 if /(¥)>k,,, then

Li6 if (Y) = CLOSED then INSERT(Y, h(Y))
L17 else

L18 b(X) = Y; INSERT(X, k(Y) + c(Y, X))

L19 return MIN - VAL()

Although PROCESS - STATE’ examines the neighbors of X only once rather than twice, it is less computationally
efficient than PROCESS — STATE , because the expanded state X can spread its path cost change before it is reduced
by optimal neighbors. This condition is detected, and X is placed back on the OPEN list to propagate the correct
values. These additional OPEN list insertions are expensive compared to the cost of examining a state’s neighbors
more than once.

