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Abstract

This thesis studies the framework arising in the algebraic and categorical description of
general {or “point-set”) topology. Classically, a topological space is a set with structure,
the structure being its collection of “open” sets, which taken together determine an abstract
notion of proximity. The collection of all such open sets forms a special kind of complete
lattice, and it is a class of complete lattices (“frames™) motivated by these examples that is
the focus of algebraic study—in short, one dispenses with the points and studies the algebra
of open sets. This method has had successes not only in general topology, but has also found
application in such diverse areas as logic, topos theory, and even computer science.

It is not these specific areas of application, however, with which the thesis is primarily
concerned; rather, it is that part of the theory which they all share: the category of frames.
This category has as a subcategory the category of complete Boolean algebras, and these
two catgories stand in much the same relation as do the categories of topological spaces and
sets. As with sets and spaces, complete Boolean algebras are in some ways better behaved
categorically than frames, and so the former provides a potential source of information
about tLc later. For the purpose of obtaining this information, a construction for frames,
called the “assembly tower” and present already at the beginnings of the subject, is studied
sytematically and in this way found to be a key tool for uncovering both structural and
algebraic properties of frames.

In addition to the above categorical approach to studying frames, the thesis also develops
an algebraic approach using the new notion of extensional operator and the further notion
of regular operator. The theory of these operators is again studied systematically and is
shown to be closely related to, and indeed to provide a framework for better understanding,
the well-known theory of “nuclei,” which has been a fundamental part of frame theory for
some time. A link is also established between regular operators and the assembly tower,
thus connecting both of the approaches considered in the thesis.

As applications of these two theories, several open problems in the frame theory liter-
ature (most of a technical nature) are settled and several natural questions concerning the
structure of the category of frames are answered.
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Preface

This thess studies the framework ansing in the algebraic and categorical desctip-
tion of general (or “point-set”) topology In this framework—varicusly called frame
theory, locale theory, point-free topology, or even pointless topology-—the focus is on
the algebraic (lattice-theoretic) properties of the open sets of spaces rather than the
pornts; thus “spaces” ate defined by certain lattices of “open sets”, and points become
a2 derived notion. This shift in viewpoint often produces & uniformity not present with
classical topological spaces, and moreover enables. through the use of topos theory, an
enlargement of the scope of application of the general theory.

My interest in this subject, when the thesis was begun, was more algebraic and
categonical and less topological, hence the topic and organization of this work. Thus.
although I have gained through this work an appreciation for the topological aspects of
frame theory, the reader coming to this work for insights into topology and topological
methods will, ’'m afraid, be disappointed. On the other hand. I hope that the work
makes for interesting {universal) algebra and category theory.

As indicated in the title, the thesis 1s organized around the assembly tower construc-
tion It should be said, however, that this organization was more an act of hindsight
than a conscious guiding principle present from the beginning of the work. The re-
sults presented here were developed in a mostly haphazard manner, sometimes forming
connections that were more systematically explored. In fact, the very first result dis-
covered was the equation for the fixedpoint set of a prenucleus (see 9.22.1, which is &
bit more general), and the reader may enjoy contemplating how the rest of the thesis
may have atisen from this single point.

As tor physical organization, the thesis is divided into nine chapters, each with an
inteoduciion aescribing its contents, and 30 sections, each containing several subsec-
tions. The sections are numbered consecutively from the beginning of the thesis, and
chapters contain varying numbers of sections For each subsection, there is at most
ore recult, and references to such results ace in the form 98.6, for the result of the 6th

bsection uf section 98. Occasionally, an additional level of bering is used to label
certain results or other objects, for exarnple 98.6.1. Equations (displays) are numbered
mdividually within each subsection and are referred to as in the notation 98.8(2).

Aseach chapter begins with an introduction, I won’t gointo any detailed deseription
of individual chapters here. However, the reader will like to know that in Chapter 1,
after an introductory section (Section 1) describing frame theory in broad context and
introducing the sseembly tower, the reader can find, in Section 2, a summary of the
results of the thesis, including all of the main results (often with the ideas of the proofs),
and with pointers to the subeections containing them. Thus Section 2 is much like a
very detailed table of contents. The bibliography at the end of the thesis only contains
those wotks actually cited in the text. For more comprehensive bibliographies, see
those of [25) and (22}

The reader wli also find “Exercises” scattered throughout the text. I do not believe
that exercises, as they appear for example in a textbook, are appropriate mutenal for
a PhD thesis, and so I should explain that these are here merely to give me a way of
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Preface n

tncluding interesting but tangential material into the thesis, without having to devote
to them the space necessary for a full development Thus, none of the results of the
exercises are used in the main text. though they may be used in other exercises. (If,
having heard this, however, the reader would Like to try some of the “exercises™ for
himself or herself. ] would certainly not discourage 1t')

Finally, I would ke to thank several people who have contributed to this thesis in
one way or another First of all, there is my advisor, Dana Scott. Although I ventured
out into the wide wotld of frame theory largely on my own and sometimes against his
advice he nevertheless showed remarkable patience and support; even from a distance,
I was able to learn many things, not the least of which was a deep sense of what research
and teaching are all about He also made it possible for me to jomn him on leave to
the Research Institute for Symbolic Computation (RISC) in Linz, Austria, whick, in
addition to being my first stay outside of North America, provided me with numerous
opportunties to make valuable contacts in Europe. Also at Carnegie Mellon, ] would
like to thank my committee—Steve Brookes, Frank Pfenning, and Rick Statman—for
their confidence in me, and several members of the Computer Science Department staff,
especially Lydia Defiippo (now retired) and Becky Clatk.

It 15 also my great honor to have Ale§ Pultr, of Charles Umversity in Prague, as
my co-advisor It was he who awakened my interest in the topological aspects of frame
theory and, through several long discussions, made the work meaningful for me. He
also gave me several valuable suggestions and criticisms, which help.d me to write a
better thesis. In connection with this, I would also like thank JiiiAdimek for making
possible, through the TEMPUS project, several very productive visits 1o Prague.

At RISC, [ would especially hike to thank Jochen Pfalzgraf, who, on the one hand,
organized a weekly category/topos theory seminar that encouraged work such as mine,
and, on the other band, made numerous arrangements, through the generous support of
the MEDLAR project, for me to travel to conferences and meet with other researchers.
1 would hike to thank RISC itsell and its director, Bruno Buchberger, for (at times,
hard-earned) financial support and Karoly Erdei for his help and understanding. Also
at RISC, I would like to thank my officermates, Kim Wagner (another student of Dana)
and Karel Stokkermans—especially Kim, who lived through many of the ups and downs
of this work with me.

Of my external contacts, I would hke to thank Pino Resolini, who. through much
correspondence and many discussions, was able to help me through to the end, and
Harold Simmons, whose own work in frame theory provided a lasting motivation for me.
Most of all, I would like to acknowledge my substantial debt to Peter Johnstone, whose
generosity, from his initial encouragement to his long letters to me on my research, has
meant a great deal to me as & student and researcher. The breadth and quahity of s
work has been a constant inspiration, and T can only hope that, in this thesis, I am
able to demonstrate some of that influence.

On the production side, I would hike to thank the Cornell Computer Science De-
partment for the computing facilities with which the final stages of this thesis were
completed, and [ would hke to thank Richard Zippel and Robert Constable for their
patience while I was fimshing up. This document was typeset with UWTEX, using the
same style of organization as found in the book Lecture Notes on Topor and Quasitopoi,
by Oswald Wyler, and I would hihe to thank Prof Wyler for interesting discussions on
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Preface i

this style of layout. The diagrams were typset with the macro package Xy=pic, developed
by Kristoffer Rose. and [ would like to thank Kris for his quick responses to several
urgent questions that I, as a first-time user, had while prepaning the final version of
the manuscript

On a more personal note, I would like to thank Dr. Herderson Yeung, who wae
responsible, through amazingly tireless encouragement over the course of 12 years, for
motivating me to pursue higher education at all and, once I was committed to getting
a PhD, making sure | made 1t there

And lastly, and most mportantly. I would like to thank my wife, Mary, wmithout
whose constant support, understanding, and at times greater devotion to the comple-
tion of my research and wnting than I myself could muster, this thesis would never
have been completed i1 hereby dedicate this thesis to her, with love,
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Chapter 1
INTRODUCTION AND SUMMARY OF RESULTS

This introductory chapter begins, in Section 1.1, with 2 look at the background
and motivations of frame theory. Then, 1 Sections 1.2-1.5, we discuss the connections
between frame theory and universal algebra, topos theory, logic, and the semantics
of computation. Since our approach to the subject 18 somewhat untraditional, we
take some space, starting from Section 1.6, to discuss other approaches. Then, in Sec-
tion 1.11, we introduce the focus of our research, the assembly tower, and in Section 1.12
give some justification for this choice.

The second section of the chapter is a detailed summary of the results we obtain.
All of the major results are included, with pointers to the rest of the thesis. In many
cases, the ideas of proofs are outlined. Thus, the reader Jooking for & convenient entry
point into the thesis, or wanting merely to scan the results, should go to Section 2

1. Introduction

1.1. Point-free topology. Frame theory arose from the observation that many
properties and constructions of topological spaces can be described entirely in terms of
the lattice of open sets of the space, without reference to the points. The open covering
formulation of compactness 1 & good xample. Other examples include connectedness,
normality, regularity, compactifications, and (Vietons) hyperspaces. Ia many of these
examples, the classical formulations mention points (and closed sets), but equivalent,
“point-free” formulations in terms of open sets are possible. Morphisms of topological
spaces—the continuous functions—also have a point-free aspect, since the inverse image
1=% of a continuous function f: X — ¥ by definition takes open sets of Y to open
sets of X These observations lead naturally to the replacement of the category of
topological spaces by the category of Jocales, which I now describe,

A frame A is a complete lattice satisfying a strong distributive law,

aAVS=V{ers:s€85}, (1)

for every element a and subset S of A, and a frame morphism f: A — B isa
function that preserves fizite meets and atbitrary joins. These constatute the category
Frm of frames. This is, of course, what we have with topological spaces: if X 15
a space, then the collection S2(X) of open sets of X forms s frame, and for every
continuous function f* X — Y between spaces, the inverse image restncted to open
sets, f~1 : Q(Y) — (X), is & frame morphism. Notice, however, that the continuous
function and the ted frame morphism go in opposite directions. For this reason,
it is the opposite or dual categoty Loc = Frm°®? of Jocales that serves as a substitute
for the category of spaces. The step from frames to locales is formally tnvial, as it

1
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1.3 1 Introduction and summatey of results 2

«nounts to just “tutning the arrows around”, but, as Johnstone has emphasised {25},
1t is conceptually very important

1.2. Universal algebra. Frames may be described as algebraic objects, i.e.,
as sets with operations that satisfy equations However, they are infinitary algebras
1n the strongest sense: one needs proper classes of operations and equations for such
a description. Nevertheless, frames share with finitary universal algebras a character-
1stic feature: the existence of free objects on any set of generators. The above facts,
summarized by saying that Frm is monadic over Set, already imply a considerable
amount about Frm (and thus, by dualty, Loc). For ple, Frm 1s plet
and co-complete, and it inherits both limits and pullback-stable (regular epi, mono)-
factonzations from Set

One source of mterest in frames from an algebraic point of view is that they are a
“borderhine” case although Frm is monadic over Set, certain small modifications of
frames no longer possess free objects. For example, if we substitute countable meets for
finite meets 1n the basic operations of a frame, but still keep the same distributivity law,
then free objects over countably infinite sets no longer exist (see the paper of Garcia
and Nelson {10) for this and other examples). Pethaps the most basic example of this
nature, and the first to be discovered (independently by Gaifman (9] and Hales [14]; see
Solovay [47) for a simplified proof), is the case of complete Boolean algebras (cBa's)
The category cBa, hke the examples in {10), is a hmit-closed full subcategory that,
because of the non-existence of free algebras, is not refective  An obvious problem
here, called the reflection problem, is to characterize the fi haviug refl into
cBa. This problem was considered by Simmons in a series of papers (42, 43, 44, 45, 40}
but, despite several advances. has remasned unsolved 10 general,

1.3. Topos theory. Toposes are categories that were introduced by Grothendieck
(and others) as a generalization of the category of sheaves on & topological space
to support powerful cchomology theories for use in algebraic geometry. The same
categoties were models of an elementary axiomatization of sheaf categories given by
Lawvere and Tierney, who were interested instead in their “set-like” bebavior. The first
line of development culminated in Deligne’s proof of the hardest of the Weil conjectures
(specifically, an analog for fimte fields of the Riemann Hypothesis), and the second,
producing a topos-theoretic proof of the independence of the Continuum Hypothesis
by Lawvere and Tierney, models of various intuitionistic theories, and other notable
results 1n logic since then, continues to unfold (See the introduction to Jobnstone (20)
for more historical information, and the epilog in Mac Lane and Moerdijk {30) for an
overview of the literature of topos theory and its many connections to other areas of
mathematics.)

Since sheaves on a topological space are defined 1n terms of the open sets of the
space, it 13 a simple matter to generalize the sheaf construction to locales, where it
however still appears as a special case of Grothendiek's construction of sheaves on a

* This paperis an exceuent nun!y of Jocale (and frame) theery and ohwld be considered mandatory

reading by anyone about the sub I will make reference to it often. In
particular, the reader should comult it for an account of sho relation Imween locale Iheory ud
topology and why the category of localesshould be dered s good substitutefor (and

of) the category of spaces.
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1.6 1. Introduction and summary of resuits 3

site. Such localic toposes, apart from their motivational importance, are basic to the
structure theory of top For ple, & th of Di and & th of
Barr state that, respectively, every (Grothendieck) topos is an open quotient of & localic
topos and an ordinary quotient of a Boolean locali¢ topcs (i.e., the sheaves over a cBa);
a theorem of Joyal and Tierney states that every topos is the topos of G-equivariant
sheaves for some groupoid G in the category of locales.

1.4. Logic. In addition to their more elaborate uses in the form of localic toposes
as models of intuitionistic set theories, frames are themselves, at & more basic level,
the appropriate models of fizst-order intuitionistic logic. Every frame has, along with
the constants 0 (false) and 1 (true) and the binary operations A (and) and V (er), &
binary operation — (1mplies) that makes it into a Heyting algebra—where we have
the familiar adjointness relationshin,

aAb<e f agb—e, @

for all elements a,d,¢ of the frame—and thus a model of propositional intu.tionistic
logic. The basic infinitary operation \/ and “derived” operstion A give the structure
necessary to interpret existential and universal quantification. In this respect. frames
can again be compared to ¢Ba's, which are the natural models of first-order classical
logic.

1.5,  Sewaantics of computation, The use of topology in the semariies of
computation 18 one of the cornerstones of the subject, where it embodies the concept
of informational approximation snd where continuity provides a useful substitute for
computability. Smyth [46] has linked this to the notion of a semidecidable property,
and Abramsky {1) has explained it in terms of a logic of finitely observable properties, a
view that is expanded in the book of Vickers [50], where it is called a logic of affirmable
assertions. The idea is that to observe (or affitm) a conjunction of properties (or asser-
f10n8) it is necessary to observe them all, whereas to observe a disjunction of properties
it is only necessary to observe one of them; thus, with finite resources, one can observe
finite conjunctions and arbitrary disjunctions. And, like infinite conjunctions, implica-
t1ons are not finitely afirmable, because they always have the chance of being refuted
by an observation beyond the finite number of obiervations made. An example of
the fruitfulness of this view is the paper of Abramsky and Vickers {2], where process
semantics is treated in this framework—or, actually, 1n the more genzral but quite sim-
ilar framework of quantales [38], where conjunction is replaced by a non-commutative
operation more appropriate for modelling observations that introduce side-effects.

1.6. The topological approach. As losales are intended to be generalized
spaces, the most common approach to their study is in terms of their relationship to
the category of spaces, Top. For this, the notion of a pont of an arbitrary locale is
fundamental. If = is the one-point space, then a point of aspace X is the same thing as
a continuous mep p : » ~ X, which gives & frame morphism p=! : Q(X) — Q(x). We
thezefore define a point of a frame A to be a frame morphism A — 2, where 2 = Q(»)
is the two-element ¢Ba. This 15 analogous to the situation in the spectral theory of
distrnibutive lattices, except that frames in general don’t have enough points, in the
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18 1: Introduction and summary of results 4

sense that two different elements of a frame (thought of as open sets) may contan the
same ponts If we 1dentify such paurs of elements. however, we get a quotient frame
that is a topology, and this process gives the object part of a functor pt * Loc ~ Top
that 1s right adoint to the functor Q : Top — Loc. The frames for which this quotient
morphism (the count of the adjunction) is an 1somorphism ate called spatial, and
the spaces for which the unit 15 a homeomorphism are called sober—~a “separation
axiom” between Tp and T; and independent of T3. The sober spaces are thus a
reflective full subcategory of all spaces, and locales are, strictly speaking, therefore
only a generalization of sober spaces {though this isn’t much of a restriction, see [25])

1.7. ‘The categorical approach. As mentionedin 1.1, many topological notions
are available, via suitable reformulation in terms of open sets, for locales. Another
method of importing topological notions into locale theory is via category theory; the
definition of “point™ above is an example of this. Another example 15 localic products.
since Loc is complete, 1t has arbitrary products. corresponding to coproducts in Frm.
Localic products don't agree in general with space products, even on sober spaces® —
but, notably, it 1s the locale products that are usually better behaved As one example
of many, used here to emphasize also the constructive nature of locale theory, consider
Tychonofi’s theorem that the product of compact spaces i1s compact. For spaces, this
theotem requires some form of choice (in general, it is equivalent to the Axiom of
Choice (AC), for Hausdorff spaces it is equivalent to the Prime Ideal Theorem (PIT));
for Jocales, it not only is choice-free but, as Johnstone says, “viewed from the right
perspective it becomes a triviality” [25, p 87). It is only if one wants to show, n
the Hausdorfl case, that the resulting locale product has enough points (and hence
recover the classical Tychonoff Theorem for Hausdorff spaces) that one needs PIT.
Such constructiveness 15 not just an mthetlcally pleasing feature of locale theory; it
can be crucial in applications of the theory to “non-classical” settings—inciuding, by a
change-of-base result. classical fiberwise topology (see [25) and especially [23) for more
discussion on this point)

1.8. The universal algebra approach. Although studying frames as general-
1zed spaces may seem the most natural approach, studying them as universal algebras
can also be profitable—and, in many cases, conceptually more simple. As Madden (32,
p-109) points out, this is reminiscent of commutative algebra: “Even though [it] kas
been developed in large measure to support algebraic geometry, most expositions make
scant reference to the geometric picture. This s simply a matter of efficiency " I will
look here at just one example. the fundamental construction for universal algebras
of the complete lattice of congtuences. For frames the situation with respect to this
construction is especially nice, because the congruences on a frame A, besides forming
a frame themselves, have three useful descriptions other than the usual one as equiva-
lence relations on A that are simultaneously subframes of A x A. For the first two, the
main observation is that since a congruence 8 respects joins, every equivalence class
of 6 has a lazgest member. and 8 is recoverable both from the operation taking an
element to the largest member of its class and from the set of such largest members

2Note, however, that the product space 13 always the spatial (co)reflection of the localic prod
thus they agree precisely when the localic product is ;pum—-nh.\:.h is the case. for example, wnh
products of compact Hausdorff spaces or finite products of locally compact spaces
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1.9 1. Introduction and summaty of resuits 5

ftself. In the first case, the operations j associated o congruences are exactly those
satisfying

a<ja=j(je) and jlaAb)=jaAjb (abe€A); 3)

such an operation is called a aucleus. In the second case, the sets S associated to
congruences are exactly those satisfying the closure conditions

TCcS mplhes ATES and a€As€S mply a—s€S, (4)

which I call maxsets Furthermore it is clear {from its description as the set of the
largest representatives of each 8-class) that S with the order mnberited from A is
isormophic to the quotient A/# and that j provides the quotient morphism In this
way, the frame of congruences on A 18 isomorphic to the set of nuclei on A, ordered
pointwise and denoted NA, as well as to the set of maxsets on A, when ordered by
reverse inclusion. The frame NA 15 called the assembly of A.

The third description of the frame of congruences of A, or equivalently now of NA,
18 as the universal solution in Frm to the problem of complementing the elements of A.
To explain this, consider for any a € A the nucleus c(a) defined by c{a)z = a Vv z; this
nucleus 15 associated with the maxset {z : a < z} and with the smallest congruence
identifying ¢ and 0 The asgnment a — ¢(a) is a frame motphism ¢4 : A — NA,
which is both mono and epi in Frm, but is an isomorphism iff A is a ¢Ba. For every
a € A, ¢(a) is & complemented, or Boolean element of NA (meaning, of course, that
there exists a necessanly unique 7 € NA with ¢(a)Vj =1 and e(e) Ay = 0; in fact, j
1s the nucleus u(a) defined by u(a)z = ¢ = ). With these preliminacies, the precise
universal property of NA can now be stated: if f: 4 — B is a frame morphism such
that f(a) is Boolean for every a € A, then there exists a unique frame morphism
7 :NA — B extending f (1.e., such that f = Toey).

Finally, let me point out that the assignment A — NA can be extended (uniquely,
by the universal property) to an endofunctot on Frm o that the morphisms c4 =
A =+ NA become components of & natural transformation ¢ : 7 — N from the identity
functor. In terms of congruences, the morphism Nf : NA ~+ NB takes a congruence
on A to the congruence generated by its image under f. Every frame morphism
h: A= B, since it preserves atbitrary joius, has a right (order-)adjoint, b, : B = A;
for Nf this right adjoint, ss is the case for universal algebras in general, 15 the function
(Nf)e : NB — NA that takes a congruence on B to its mverse image under f. The
same function, in terms of maxsets, takes 8 maxset of B to its image under f,.

1.9,  The categorical structure of Frm. Category theory, in addition to
being useful in the formulation of topological notions for locales, can also be applied
directly to the study of the category Frm itself. For thus, the “lopological” adjunc-
tion Loc = Top and the “algebraic” adjunction Set = Frm already provide a great
deal of information F urther information can be gotten by (utormg the latter sdjunc.
tion through various i diste categonies, as explained in [25) Thus, by factoring
through the category CSlat of complete Jom-umx]amca (which arises by “forgemng
the finite meets), one can deduce the following property of Frm. given a (small) di-
rected diagram, all of whose morphisms are mono, the morphisms of the colimiting
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111 1- Introduction and summary of results 6

cone of the diagram are then also mono. Another property deducible using this factor-
ization is that coproducts (and more generally pushouts) distribute over products, in
the sense that the canonical morphism

Be JIc. —T]BesC:
€l el

15 an isomorphism. where I have written @, for the coproduct under A (1e., the
pushout—a kind of tensor product), and where [ have supressed mention of the mor-
phisms. See the monograph of Joyal and Tierney [27] for these and other facts relatmg
CSlat and Frm, especially the analogies developed there between frames and rings,
between complete semilattices and Abehan groups, and bet frame morphisms and
modules, and an explanation of my use of the tensor ©4 above And, it is by factor-
ing the same adjunction this time through the category of preframes (which arises by
forgetting the finite joins, Just keeping the directed ones) that the localic Tychonoft
Theorem becomes a “triviality” (see the Pre® paper of Johnstone and Vickers [26]).

Yet, despite these sources of information about the categorical structure of Frm,
many questions remain u d. For ple. although pushouts preserve prod-
ucts, they do not preserve all limits; 1n particular, they do not preserve monomor-
phisms, corresponding to the fact that pullbacks in Loe do not preserve surjections.
This can be seen as a defect of the category of locales—compared to the situation
in spaces, where surjections are pullback-stable—and it thus becomes important to
understand this discrepency. Although several classes of pushout-stable monos (here
called umversal) in Frma are known, one cannot even say, for example, whether reg-
ular monos, or more generally equationally closed monos (see the paper of Pultr and
Tozzi [37]-~these represent well, under some additional separation conditions, topo-
logical quotients) ate universal. Universal monos are also closely connected to the
reflection problem, since a frame is reflective iff it has a universal embedding into a
¢Ba Understanding the class of universal monos has been one of the main motivations
of this work.

1.10. The topos-theoretic connection. [ would like to mention one other
possible approach to studying frames, besides those of topology, universal algebra, and
category theory, suggested by the connections between frame theory and topos theory
outlined in 1.3. Every locale A has associated to it its category of sheaves, Sh(A4),
which is & topos. Now it turns out that certain properties of the locale are reflected
as categorical (or logical) properties of the topos and can be studied as such. As
an algebraic example. a frame A is a cBa (assuming AC) iff every epimorphism of
Sh(A) splits—a condition that. for the category of sets, 15 itself equivalent to AC. As
a topological example, if a space A is completely regular, first-countable, sad has no
1solated points, then, 1n the (intuitionistic) set theory determined by Sh(A), every
function £+ R ~+ R on the reals s continuous (see [48] for this and some references to
similar results going back to the paper of Scott [39])

1.11. The assembly tower. [ can now explain the assembly tower, a construc-
tion already sppesring at the beginning of locale theory, a 1972 paper of Isbell {15],
and around which my work is centered. Since N is an endofunctor on Frm natu-
rally extending the identity, it can be iterated transfinitely (using pointwise colimits
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112 1. Introduction and summaty of results 7

at hot ordinals) to produce an ordinal-indexed family of functors {N®} and natural
transformations {c>* : N — N®}s¢. Thus. for every frame A thete is a diagram

A-SNA SN Sl o NfA SN L S (5)

where for each o I have wnitten ¢ for one = ¢5°*! N®A — No*+' 4 and where, for
each himit ordinal A, N*4 is the colimut of the diagram consisting of the morphisms
&% :NPA — N°A, forall # < o < X. This diagram is called the assembly tower of A.
I will write ¢* for the morphism c:'" and, in general, leave off subscripts whenvever
possible. As each of the morphusms ¢ 1n (5) 18 mono, it follows (from the general fact
about colimits of monos mentioned before) that the morphisms ¢ are also mono. And
as the morphisms ¢ are also epy, 1t follows easily by induction that the ¢* ate ep: as
well.

The first thing to note sbout the assembly tower 13 that 1t gives 2 “solution” to
the reflection problem, 1n the following sense. Since every element of a ¢Ba 1s comple-
mented, given a frame morphism f. A — B to a cBs, there is by induction and the
umversal property of N a unique morphism f* - N®A — B extending f for every a.
If any of these N®A 13 Boolean, then it cleatly 1s the reflection of 4 in ¢Ba. On the
other hand, it can be shown that if A has a reflection in cBa, then 1t must be N°4
for some & Thus. the reflection problem 1s reduced to finding conditions on A that
cotrespond to the exustence of such an a. One interesting aspect of this problem is
that for all known examples of reflective frames A, N3A is already Boolean and that,
moreover, for ceztan classes of frames (for example the class of coherent frames), this
holds in general—i.e , for any frame A in the class, A is reflective iff N?A 15 Bool

The construction A —— NA also has a topological aspect For example, in [25]
the locale extensionally the same as the frame NA 13 called the dissolution of A and
denoted Ay; it is hikened (except for the fact that it is not idempotent) to the discrete
modification of A. Despite this, the assembly tower construction as a whole is reajly
orthogonal to the spatial aspects of a locale, in a sense made clear by the previous
paragraph. Namely, since 2 is Boolean, it follows that the fr. A and N°A have
the same points As one consequence of this, it turns out that the spatial reflection of
NeA, for any o > 2, is always the same discrete space (which suggests, perhaps, that
Aga 18 closer to being the discrete modification of 4 than Ag, whose spatial reflection
can fal to be discrete). Ob the other hand, the assembly tower can provide examples
of “large” frames with “few” pomnts

1.12. Some philosophy. Although the main reason for focusing on the assembly
tower 1n this thesis 18 that it underhies most of the results obtained, I can say something
here about why the construction 15 likely to be of some use. In any algebraic category
the calculation of limits 18 trivial. in the sense that it simply involves putting the
natural structure on the limit of the underlying sets; it is really in the colimits that
the algebraicity of the category makes itself known. For example, free algebras (given
the fact that the “forgetful” functor is representable) and quotients by congruences are

3But by no means the best examples: for any sober space X, there exist arbitranly large frames
A with X as spatial reflection: Isbell et al. [17) construct examples of pointiess Jocalic groups, in the
sense that they have no points other than the idennity, Since such & locale G has exactly one point.
st follows that for any index set I, X x G, where the product and power are the localic ones, has X
as ite spatial part.
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easily deseribed as colinmits, conversely, all colimits can be described naturally in terms
of generators and relations  Also. in Frm, the two results about colimits of monos
and pushouts of products and the questions about umversal monos, directly concern
cohmits To put it mto a slogan—an apparently common aspiration among category
theorists “Colimits are the Essence of Algebra”

Where the assembly tower fits in 15 this Suppose, for a moment, that we extend
the category of frames to include a colimit for the assembly tower of each frame. Since
each of these diagrams 1s small-directed, in the sense that every set of arrows has an
upper bound, this colimit could be constructed as the union of all the frames in the
diagram; 1t would have a proper class of elements in general and would have finite
meets and joins of all subsets of the underlying class (but would not have joins of all
subelasses). Moreover, being the union of the tower, 1t would be Boolean. since every
element appearng at level a of the tower becomes complemented at Jevel o+ 1 In
this extended world, the Boolean objects thus obtained woula provide reflections for
all frames

Categores similar to the one suggested by the above have been considered before,
under the name x-frames, by Madden [32] A x-frame, for a regular cardinal ,is a
partially-ordered set that has joins for all sets of cardinality < x and has fimte meets
that distnibute, as in (1) over all such joins The main difference between «-frames
and ordinary frames 1s that x-frames are described by only a set of operations and
equations, it follows from this that the category of x-cBa's (the Boolean x-frames) is
a reflective subcategory of the category of «-{rames. because the analog of the assembly
tower for x-frames terminates at the «th level. Considerstion of the categores of «-
cBa’s goes back to at least the 1960's. and much is known about them In particular,
they have nicely behaved colimits For example, they have the strong amalgamation
property and the congruence extension property (in particular, pushouts of all monos
are mono) snd. consequently, all epis are surjective, a property that fails badly for
Frm (just look at the assembly tower).

The hypothetical extension of Frm with which I started can now be seen as part
of the category of x-frames for x equel to the cardinality of the universe V', 1n some
extension of Set where V becomes a set, as 15 the case with Grothendieck universes,
Or, we can assume the existence of an inaccessible cardinal x and redefine Frm to be
the category of all small frames—those of cardinality < «, which are then 1dentical
to x-frames Or, finally. we can adopt an approach similar to the “monster model”
approach of mode! theorists working in Classification Theory: in whatever your par-
ticular apphication of frames, let x be a regular cardinal laeger than the cardimality of
any frame you use Then all of your frames are actually x-frames, and you might as
well be working in this category This last is related to reflection principles pioposed
for use 1n category theory by Feferman [8) (following a suggestion of Kreisel).

The point 18, since the Boolean subcategory is reflective and the reflection functor,
being a left adjoint. preserves colimits, information about the cohimits in the latger
category can be gotten from the better-behaved colimits in the subcategory through
the use of the reflection. 1¢, the assembly tower. This 1s essentially the technique
Madden and Mohtor use 1n {33] to characterize frame epimorphisms. Further use of
this idea will described in 2 6.
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2.2 1 Introduction and summary of resuits 9
2. Summary of results

Although the results obtained are all related in some way to the assembly tower,
they divide naturally into several topics, each of which is treated seperately below, in
the order that they appear in the thesis. To avoid interruption 1n these discussions,
We will gather together here most of the prerequisite material we need. Throught this
section, decimsl numbers in parentheses refer to where the actual results may be found
in thesis.

2.1. Some preliminaries. Recall first that every frame A has an operation
— defined so as to satify the adjointness relation (2) with A, and this ~ makes A
1nto a complete Heyting algebra (cHa for the rest of this paragraph). Conversely every
cHa satisfies the distributive law (1), and s0 is a frame. The cHa morphisms are by
definition required to preserve all meets, all joins, and arrow; thus, every cHa morphism
15 & frame morphism but (it surns out) not conversely. For a € A, the element a—0 is
often written —a and called the negation of a, since it corresponds to logical negation
in a Heyting algebra. where neither @V —a = 1 nor =~g =a holds in general.

For any nucleus j € NA, we wnte A4; for the quotient of A by the congruence
associated to 7. Meets 1n the frame NA are computed pomtwise, that is, for any
JCNAand a€ A,

(Aa= Alja:je€J).

However, neither joins nor acrow 1n NA 1s computed pointwise
In addition to the previously mentioned nuclei ¢(a) and u(a), called, respectively,
closed and open because the quotients by these nuclei correspond to the closed and
open subspaces of a topological space, there is for every a € A the quasi-closed nucleus
g(a) defined by
gle)z=(z—a8)—~a. (z€A)

The quotient Ays) is a cBa, and, conversely, every cBa quotient of 4 bas this form.
The maxset corresponding to g(a) is the set {z —a:z € A}. Thus, by the second
closure condition of (4), this maxset is the smaliest one containing the element a; it
follows easily from this that every nucleus § can be written

1= Alela) : ja=a}.

Since frame morphisms preserve complements, every frame quotient of a cBa 15 a cBa.
And since, just as with universal algebras in general, the congruence lattice of a quotient
A, of A is isomorphic to the nterval

fhil)={teNA j<k<l)

of the congruence lattice NA of A, 1t follows that @ = {4(a) . @ € A} 15 an up-closed
subset of NA  An important quasi-closed nucleus is the double negation, ¢(0), so
called becsuse 9(0)z = ~—z. An element 6 € A is called regular if it is a fixedpoint of
4(0), i.e., if ~~a = a. In the frame Q(X), these are exactly the regular open subsets
of X.
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2.2 1" Introduction and summarv of results 10

2.2,  Extensional operators. By an operator on a Heyung algebra 4 we
will mean any function | A — A Vanous kinds operators on frames. and their
associated fixedpoint sets have been studied before Nucles, ansing as a special case
of (Joyal-Trerney) topologies on a topos, are the most important and widely studied
Other examples ate the prenucle: of Banaschewski {3] and the derivatives of Golan and
Simmons [12].

Prenuclei are hke nuclei, except that they may not be 1dempotent (a prenucleus
1s idempotent Just in case 1t’s a nucleus), but for every prenucleus there 15 a unique
nucleus with the same fixedpoints It is for this reason prenuclei often anse natura!
constructions wvolving nuclei frequently result in operators that are prenucle: but are
not 1dempotent; one then only needs to find the associated nucleus, which is often ac-
complished by transfinitely iterating the prenucleus until 1t “converges” (13 8). As an
illustration. the join of two nucle: 7 and k can be computed by iterating their compos-
ite j ok, which 1s only a prenucleus Or, again, 1t was Johnstone’s criginal choice-free
proof [21] of the localic Tychonofl theorem—essentially involving the transfinite 1ter-
ation of a particular prenucleus—that eventually led to Banaschewski’s paper {3) and
the 1solation of the notions of prenucleus and preframe.

We introduce a general class of operators on Heyting algebras, called extensional,
which have nuclei and prenucle) as examples. By definition, an operator ! is extensional
if it satisfies

a—b<la—b (a.be A),

and, from the point of view of frames as models of first-order intuitionistic logic these
are perhaps the most natural class of operators to consider, since, logically, the defini-
tion can be interpreted to mean that { “preserves (degree of) equality” the results of
applying [ are ss equal as the arguments to which it is applied The extensional oper-
ators on A are also exactly the operators that are compatible with all Heyting-algebra
congruences on A, i the sense that for any such congruence 6, a 8 b implies la 6 Ib.
and they can be charactenized 1n several other ways, as well (94) Extensional opera-
tors may also be seen to arise (at least when A is complete) from the topos-theoretrc
connection, where the extensional operators on A ate in 1-1 correspondence with the
morphisms @ — Q in Sh(A), and this helps to explain why many properties of ex-
tensional operators ate equivalent to stronger, “uniform” (or “internalized”) versions
of these properties (as mentioned in 9 24)

B of the relation to congr \ ional operators provide a convenient
means of doing calculations in Heyting algebras (9.6) We introduce and study several
classes of extensional operators (see 9 12 for a graphical summary). For example. we
find that the prenuciei of Banaschewski are precisely the inflationary and monotone
extensional operators (9 10), and therefore that nucler are precisely the extensional
closure operators (9.11) We find, for every class of extensional operators defined,
what we call the upper and lower classifiers for the class (9.13-18), and indicate how
these lead to structure theorems for operators (9.21)

Finally, we find a simple formula for the set of fixedpoints of an inflationary exten-
sional operator { (9 22.1)

fix{ = {{la ~a) —a-a € A} (6)

This formula has potentially useful applications to prenuclel, since it allows us to get at
the fixedponts of the prenucleus without having o go through a transfinite iteration,
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which may be valuable 1n situations where issues of constructiveness preciude the use
of ordinal iterations (whose length may not be bounded in advance)

2.3. Frame morphism adjoints and x-frames. Recall that Loc was defined
as the formal dual of Frm, that 1s. locale morphisme« are just “turned around” versions
of frame morphisms. Despite the abstractness of this definition, Loc 1s isomorphic to
a concrete category in the following way. Every frame morphism f: A — B has a
right adjoint f, : B - 4, and, moreover, these right adjoints satisfy the laws id, = 1d
and (g0 f). = fo 0 g.. Thus, Loe 1s womorphic to the category with objects those of
Frm and with morphisms the functions f. for frame morphisms f and composition
ordinary function composition.

In 1975, Dowker and Strauss [7] gave a characterization of the functions g : B ~ 4
that appear as night adjoints of frame morphisms A — B This characterization
{essentially the one in 10 7) explicitly involved the left adjoint, however, and, as pointed
out by Johnstone [22, p 40], there still wasn't & description in terms of ¢ alone We
give such a description here (10.6): nght adjoints to frame morphisms A — B can be
characterized independently as thoee fu g B — A satisfying

e 9(AS)=A{gls).5€ S} forevery SCB,
o g(b)=1 implies b =1 for every b& B, and

o forevery b€ B and a;,03 € 4 with a; A az < g(b), there exist by, b, € B such
that a; < g(b1), a2 < 9(62), and H Abz £ 8.

This is a special case of a more general result (10.5).

A x-frame is defined as with a frame, except that acrbitracy joins are replaced by
joins of cardinality strictly less than x, which is assumed to be a regular cardinal.
(Let us use the terms x-set, x-family, x-product, etc., to refer to objects similacly
bounded in cardinality by x.) These were introduced and studied in the paper of
Madden [32}. Among the results proved there are a construction of the free functor F}
from A-frames to x-frames, where A < « We prove, additionaily, that F2 preserves
all A-products of A-frames (11.6) and, when X > w, equalisers of \-frame morphisms
as well (11.8). Thus F? preserves all limits involving fewer than A many morphisms.
We also give examples to show that these results ate the best possible (11 7 and 11.9).
We furthermore show that all congruences on a x-product of x-frames are products
of congruences on the factors (11.10) and conclude that all congruences on products of
frames ate products of congruences (11.11).

By lookmg at the construction of colimits in frames and x-frames, we observe that
every colimit of frames becomes a colimit of x-frames when x is chosen large enough
(12.4). This forms the bass of one of the main results of Chapter 8 (28.5-6) Finally,
we formulate the basic result about directed colimits of frames (12.7) and use this to
sketch a proof in the exercises that, in Frm, directed colimits commute with atbitrary
products (in fact with a larger class of limits, called «-compatible; see 12.9.1).

2.4. Regular operators. We define a logical operator to be an extensional
operator ! that is inflavionary: ¢ < la for all 6 € A. Regular operators are, by
definition, the logical operators r satisfying ——r = r. They can be seen to arise
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from logical operators by considerations involving fixedpoint sets Thus, one feature
of double negation of logical operators is that its associated congruence 15 the same
as the equivalence determined by equality of fixedpoint sets. That 1s, for all logical
operators | and m, fix! = fixm iff =~I = ~~m (9.22). Thus, regular operators are
completely determined by their fixedpont sets, and every logical operator has the same
fixedpoint set as a unique regular operator, moreover, regular operators are idempotent
(see below), so their ranges and fixedpoint sets coincide. and this is the origin of the
formula (6) for fixedpoints of logical operators.

Just fike any ——-quotient of a frame, the collection of all regular operators on A,
denoted RA, is a cBa Meets and arrow in RA are computed pointwise Joins in a
cBa are definable from meets and negation (by the de Morgan laws), and this leads to
a simple formula for the join in R4, which 1s also pointwise in a sense explained below
(along with other properties of regular operators) once all of the necessary notions have
been introduced

In order to discuss some of the properties of regular operators (including the point-
wise description of joins 1n RA just mentioned) and give a characterization of their
fixcdpoint sets. we need to introduce the regulanty order and the notion of stability
Given elements a,b € A, we say that b 1s regular over a, and write > a ora g b,
if b is a regular element in the interval {a,1]. This is easily seen to be equivalent to
the equation (b —a)— a = b, snd to the mequality ¢(a) < ¢(b) of quasi-closed nuclei
(20.1). The latter imples that < 15 a partial order; other elementary properties of <
are, for every a,b,c€ A (202,20 8)

e gbiff b=z —a forsomez€ A,

o agbimplesa<b,

e adcanda<b<cimply bde;

o adaVbimplies aAbd Ib (but not conversely);
e adcand bdemplyaAbde

We call a subset S C A stable if it has a lower bound 1n the regularity ordering. It
then has a greatest lower bound. namely 1ts meet (20.5). As an example {a,}} is
stable iff (a — b) —~ b= (b—~a) —a (20 6). Since the partial order (4, Q) is essentially
the up-closed subset @ = {q(a) .2 € 4} of NA with the induced order, 1t follows that
the regulanity ordering also has joins for all nonempty sets S, which we denote by ¥ S.
Foreach a € A, the set {b:a 9 b}, being exactly fixg(a), is & ¢cBa ander the ordering
g, and the join ¥/, when restricted to fixg(a), comncides with the ¢Ba join (20.13)
Regular operators r are “regular” in another way, namely, in view of (ra—g)—a =
ra, they are exactly those extensional operators that ate infiationary ic the regulanty
ordering. They can also be very usefully charactenzed as those operators r satisfying
r(a—b) = a—rb for all a,b € A (21.1) We can prove the following properties of
aribtrary regular operators r,s € RA forall a,b€ A and §C A (21 2.1-5, 21.3):

o r(re) == ra (they are idempotent),

o aQrbiff ra < rb (in parucular they are 9-monotone: ¢ < 4 implies ra 9 rb),
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e r{sa) = (rvs)a = s(ra) (any two regular operators commute, and binary joiu is
composition);

o if 5 isstable, then r AS = A{rs s € S} (they preserve stable meets);
o raArb < r(anb),
o if S 15 nonempty, then rV$ = V{ra:a & 5} (they preserve regular joins);

o f R C RA 15 nonempty, then (\ R)a = Y{ra : » € R} (nonempty joins in R4
are pointwise with respect to V)

Fixedpont sets of regular operators, which as you recall are the same as the fixedpoint
sets of logical operators in genersl, can now be characterized (22.6) as the sets SC A
satisfying.

TCS, Tstable mplies ATE€S and a€4,35€S imply a=—seS

Thus, they differ from maxsets (¢f. (4)) only in that they are closed under stable meets,
as opposed to all meets Equivalently, they are characterized in terms of the partial
order (A, Q) as the subsets both up-closed and closed under all existing meets; in short,
they are the complete filters n (A, Q)

Now, finite meets and atbitrary joint of both maxsets and complete filters (in
their reverse orderings) sre computed the same way, and so the obvious inclusion of
maxsets into complete filters induces a frame embedding NA — RA (231). In terms
of operators. this embedding takes a nucleus j to the regular operator ==-j, which I
have been writing j in this context. Thus the composite embedding A — NA — RA
is given by @+ ¢(a), which, if we rewrite it : A — RA and simplify slightly. is

Ha)r=(a—z)=z (r€A).
The right adjoint to the inclusion NA — RA, in terms of fixedpoint sets, closes a
complete filter up under all meets to obtain 2 maxset. In terms of operators, the nght
adjoint, denoted r— r*, is readily seen (23.2) to be given by
Pa= A{rb:b > a}. U]

As an application, we get a formula for the join of an arbitrary set J of nuclei (23.4(1)),

(Vie= AV jh)—b—b

f1-14 2a et

= A(A jb=b)=d
¥ jel

(a € A). (8)

This formula is derived n a way reminiscent of that described at the end of 1.12
for Frm, by lifting J from NA to RA by the embedding (which preserves joins),
computing the join in RA by the pointwise-Y formula, and returning to NA by (7).
Moreover, it solves a problem that, even for binary joins of nuclei, seemed “quite
difficult” [41, p.242] An apphcation of (8) 15 given below in 2.5. Finally, it should be
mentioned thai the formula for the arrow operation of NA appearing in the proof of
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11.2.5 in Johnstone (22] can also be seen to anse in the same way from the pointwise
arrow operation of RA (23.4(2))

Now, to complete the picture, we shift from the regular operators themselves to
the categonical properties of RA as a frame, 1n particular its celation to the assembly
tower. By the universal property of N, the embedding NA — R4 can be extended
to a morphism N?A — RA. This morphism, it turns out, is exactly the ~=-quotient
(23 6) Thus, the elements of RA can also be seen as the regular nucle: on NA (making
that a third way in which they are “regular”!). As @ = {g(c) : a € A} is an up-closed
subset of NA, every nucleus J € N?A, being inflationary, takes Q into 1tself and thus
defines an operator J* on A by the equation

Jgla) =g¢(J*a)  (a€ 4)

This operator 18 regular and the assignment J — J* gives, in terms of operators. the
—=-quotient N?A — R4 (238) It also implies that for any two nuclei J,K € N24,
nJ = ==K 1ff J and A are equal when restricted to Q. A third ymphication 1s
that == on N34 preserves all mests, because meets are computed pointwise in both
RA (applied to an clement a € A) and N2A (applied the corresponding element
q(a) € Q) And. since ~~ preserves arrow in any Heyting algebra, 1t follows that ——
is a complete Heyting algebra morphism (23 9), also called an open frame morphism
since these correspond topologically to open continuous maps
The frame RA is also the hmit of the Boolean quotients of A (24 1).

2.5. Free meets. Frame morphisms are required by definition to preserve only
finite meets, but there are non-trivial situations in which meets of infinite sets are
preserved as well As an example of this, consider meets of open sets of a space, easily
seen to be given by the intetior of their intersection These meets arzen't normally
preseved by the inverse images of continuous maps, but if the intersection 1s itself
open, then it s preserved (since inverse image always preserves intersections). As an
algebraic example, if every element a € S of a subset of frame has a complement —g
and, furthermore, the join \/{-a: a € S} isitself complemented, then AS = =\/{=a "
a € S} and so this meet is preserved by every frame homomorphism

Let us say that asubset S of a frame A has a free meetaf f(AS) = A{f(s):s € S)
for every frame morphism f A — B, and that A has free meets if every subsst of A
has a free meet, 1 ¢, every frame morphism out of A preserves all meets.

The equality AS = =V{~a * a € S} in the algebraic example above suggests a
way of looking for subsets of A with fres meets: Since the embedding A ~ N4 freely
complements the elements of A, and the embedding NA — N2A freely complements
all the joins of those complements, we might expect to find free meets for subsets of A
by looking at their images in N?A. This is the starting point of the first result of this
section (25 3, 25 4): For any subset § of a frame A, the following four statements are
equivalent:

1§ has a frec meet in A

2. 4(AS)= A ¢(s), whete ¢® . A — N4 1s the canomical injection.
€5

3. Forsome 6 € A, V u(s) = u(a) in NA (in fact, necessarily a = A 5)
€5
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4 Every a € A greater than A § can be wntten as the meet of a stable subset of
the up-closure of S (see 2.4 for the definition of stability)

Notice that conditions 2-4 are conditions on, repsectively. N4, NA, and A itself.
The proof of the equivalence of condition 4 with the others relies heavily on formula
(8) of 2 4 (applied to the join of open nucler in Condition 3).

This result also gives a solution to & problem first considered by Macnab in his
thesis [31) and more recently by Niefield and Rosenthal [36] (see also Section 4.5 of [38)),
namely to characterize those sets S C A such that § = j~1(1) for some nucleus j € NA
or, equivalently, such that S = f=}(1) for some frame morphusm f: 4 — B. It is
an easy consequence of the above that these sets are precisely the “free filters™ (filters
closed under free meets, see 25 5)

Finally, the results of this section can be combined with a result of Beazer and
Macnab [5] to obtain the following (26.1): A frame A has free meets iff both of the
following (independent—see 26.2) conditions hold’

e A is a biframe, 1.¢., 1ts opposite is also a frame.
o NAisacBa

2.6. Universal monos. A universal mono is a morphism u : A ~ B such that
for any morphusm f . A — D, the pushout of u along f is mono. Clearly such a u
18 itself mono, since u is the pushout of u along the identity. Here are some other
basic properties of universal monos (27.2), valid in any category with pushouts (where
f:A— Band g B— C are morphisms):

1. If f and g are universal monos, then sois go f

2, If g o f is a umversal mono, then so is f.

3. The pushout of a umversal monc along aiy morphism is univeisa
4. If go f is a universal mono and f 15 epi, then g is & universal mono.

These tell us how to get new universal monos from old ones; we also need some
examples to start with. A first class of examples are the open munos; recall that a
frame morphism is open when 1t 15 a complete Heyting slgebra morphism. i.e., when
it also preserves arrow and all meets—see {27] for more on open morphisms. A sec-
ond class, recently investigated by Vermeulen (49] are the (localic) proper surjections;
without the surjectivity restriction. such locale morphisme p : A — B correspond, by
the change-of-base ‘esult mentioned in conjunction with the constructivity of locale
theory in 1.7, to compact locales in Sh(B). A third class. also universal in any cates
gory with pushouts, are the components of natural monomorphisms from the identity
functor (27 3(iv)). For Frm, this class includes all of the morphisms ¢ : 4 — N°A.
Combining this with condition 2 above, we see that first factors of the components of
natural monomorphisms from the identity are also uni i Interestingly, this last
class includes all universal monos in Frm: given any such « . A — B, a natural
monomorphism from the identity can be constructed that has u as a first factor of its
component at A (Exercise 27.4 2)
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To explain the main resuit of this section, we need a couple of definitions Let o
be an ordinal We call a morphism f: A — B a-monoif N°f is mono and a-epi if
the image of N®f contains the image of ¢ B — N®B  Thus, for example, 0-mono
means mono and 0-ep: means onto It 15 easy to see (28 2) that if f is a-mono then
1t is S-mono for all 3 < & and thatif f 1s a-epi then 1t is y-ep: for all 4 > . Note
also that both of the notions of a-mono and a-epi are different for different a. if £ 15
the composite «=oct 4 — (N®A)., for a non-reflective frame A (such as the free
frame on w), then f is 3-mono for all 8 < a but 1t 15 not a-mono; and f 1s a-epr
but not A-ep: for any 3 < a {28 4)

Now Madden and Mohitor [33) have shown that f is an epimorphism iff it is a-
ep1 for some o Therr proof can be simply explained using the idea, put forward at
the end of 112, of an extension of Frm where the assembly tower of every frame A
has a cohimit, call it N®A, which is the union of the frames in the tower and gives
a reflection of A into the subcategory of Boolean objects. Since N is a faithful left
adjoint it both preserves and reflects epis, i.e., f is epriff N® £ 15, But in the category
of Boolean objects epis are surjections. and therefore, since N®B 15 the union of the
frames in the tower, there must be a stage o at which all of the elements of B have
appeated in the range of N° f, completing the proof

The main results of this section are (28 5, 28 8)

o f is a universal mono1ff it 15 an a-mono for every ordinal a
o Conversely, f 1s an (a + 1)-mono iff the pushout of f along every a-epi is mono.

That a universal mono 15 a-mono for every a follows easily from basic properties of
the assembly tower and universal monos. That a morphism f which is a-mono for
every o is universal again 1:ses \he idea abave. In detail, since N f is the union of the
N f, which are all mono. N® f is mono as well. And if ¢ s a pushout of f, then since
N™ preserves colimits, N*g 15 a pushout of N®f. But in the category of Boolean
objects, all monos are universal, so N*g is mona and thus sois ¢ The second part of
the result uses similar 1deas, along with a positive answer to the (somewhat technical)
question asked at the end of {33) (Lemma 28.6)

2.7. Combinatorial morphisms. Because of the way coproducts are computed
n Frm, it turns out that the free extension A[X) of & frame A by a set X is the
subframe of the catesian power AP+X consisting of all the monotone functions, where
PeX is the set of finite subsets of X, ordered by reverse inclusion (29.1) And since
every X -generated extension of A 1s a quotient of A[X], the 1des 18 that we can study
frame morphisms out of A by studying congruences on A[X]. This generalizes the
description of singly-g d frame extensions given by Banashewsk: {4}, and many
results of this section are generalizations of the resuits obtained there

The easiest congruences to work with are the restrictions to A[X) of congenences on
APX which by a result mentioned in 2.3 must be products of (PrX)-indexed famihies
of congruences on A We call such congruences standard, and a frame morphism
isomorphic to one of the form A — A[{X]/[], 8 combmatorial.

It is easy to see that every congruence on A[X] has & least standard congruence
greater than it, and this congruence is given by a simple formula (29 4). The process
of standarization of congruences is preserved by pushout along an atbitrary morphism
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(29.7) A combinatonal morplusm f + A — A[X]/T]; 6, 1s monoff A;6, = 0. and so if
this famuly of congruences has a free meet {equal to 0) 1n Con A, then f is a universal
mono (29.9), establishing a connection between free meets and universal monos It
also shows that every finitely generated combinatorial extension is umversal (Corollary
29.9), since every finite set of congruences has a free meet,

In the case that X is finite. the theory becomes quite manageable. every congruence
on A[X] is standard (30.3). To prove this, we use a lemma about finite subsets of
distributive lattices (30.2) that generalizes the familiar result that aAz = a Ay and
aVz=aVy imply £ = y for any three elements ¢,z,y. As another example of
the manageability of the theory, because every congruence is standard, the process
of standardization is trivial. and so pushouts of combinatonial morphisms have an
especially simple description (30.4). This allows us to characterize finitely generated
epis and finitely generated regular monos in terms of the family of congruences (30.5):
a fimtely generated combinatoral morphism £ : A — A[X]/[];6; isepiiff 6, v, =1
whenever i # 7, and is a regular monoiff it satisfies a “patching” condition reminiscent
of the definition of a sheaf.
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Chapter 2
PRELIMINARIES

The reader of this thess 1s assumed to be famihar with the basic notions and results
of set theory (sets. ordinals. cardinals). lattice theory, umversal algebra, and category
theory. Of these four subjects. much of what we will need from lattice theory and
category theory can already be found in Chapter I of Johnstone [22), another book of
Johnstone ([24]) contains much of what we will need from set theory (and logic). Inany
case, to establish our notations, terminology, and background results. we review these
four subjects 1n separate (and rather dense) sections below. General references are (19]
for set theory, [13) for lattice theory (6] and {35) for universal algebra, and {29) and (18]
for category theory (The reader may also wish to consult (34}, which covers universal
algebra from the point of view of category theory and, 1n the first chapter. discusses
infinitary umiversal algebra a subject very important to us here but not mentioned in
the other references on universal algebra )

3. Sets

3.1, Axioms and notations. Althoughit won't be y to speaify p ly
with which theory of sets we will work, the reader desiring such a commitment may
take Zermelo-Fraenkel set theory with the Axiom of Choice (2FC) for this purpose In
addition to sets, we will also make use of classes (such as the class V of all sets, as well
as more specific classes), but we will consider 3 class to be a hinguistic objectification
of a formula (with one free variable} rather than a fundamental entity. Thus, 1f C 1s
a class represented by the formula ¢(z), then y € C simply means #(y) For some
considerations it will be convenient—though, as we will see, not at all necessary—to

the exi of ble cardinals, or to likewise adopt other devices that
allow us to distinguish between “small” and “large” sets. This is explained in more
detai) in Section 6.6 below

As for specific notation, outs is basically standard Examples: set membership
(a € A), subset (A C B, note that this includes the possibility that A = B. we will
not need a notation for proper subsets), sets formed by comprehension or separation
({a € A: ¢(a)}), the empty set (8), finice sets ({1,2,3)), union (AUB. (J{A, " i€},
User A1) intersection (AN B, N{A, i€}, (g A ), sot difference (A— 8), power
set (PA = {X : X C A}), ordered n-tuples ({z,,.... £,}), binaty cartesian products
(A x B), disjoint unmion (s A =,¢{s} x A, ), relations detween sets (# C A x B.
a§biff (a,8) € 6) and refations on a set (p C A x A), the domain and range of a
relation (domR = {a 3b a R b}, mgR = {b-3a a Rb}), the converse or unverse
of a relation (R™! = {(b,a) * {a,8) € R}), functions (f : 4 — B, 4 <~ B, f(a),
(90 f)(a) = g(f(a)}), srbitrary cartesian products ( [Ties Avs elements of this set are
functions & * I = |},¢; A¢ tuch that o(i} € 4, for all i € I), and cartesian powers
(A?, elements are functions ¢ [ — 4)
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3.2. Notations for functions. A function f - A — B (also called a map) is
injective (or one-to-one, or 1-1) if f(a) = f(b) imphes a =b forall 6, € A4; f is
surjective (ot onto) if mg f = B; f 1s bijective if f is both 1-1 and onto. Note that if
gofis 11, thensois f, and if go f is onto, then so is g. If S C A, the restriction
of f to S is fN (S x B); ths function S — B is denoted fs. Functions A7 — A
are called [-ary operations on A, when 7 has 0, 1, or 2 elements, these operations
ate called nullary. unary. or binary, respectively. We identify nullary operations on 4
with elements of A (i ¢.. constants), unary operations with functions A ~ A, binary
operations with functions A x 4 — A, and s0 on Unary functions are slso called
operators, and the action of an operator / : A — A on an element a € A 13 written
using juxtaposition: la

Functions defined “syntactically” need not always be given a name. we adopt the
usefu] convention that if p(z) tepresents an expression involving a varisble z, and if
for every a € A the result, p(e), of “evaluating” the expression with z replaced by ¢
yields an element of B, then the resulting function A — B is denoted by z — p(z) or
Just p(~). Example the (unary) squating function on the integers might be denoted
n e n? or (=)?

A partial function f+ A — B 15 a singie-valued relation f C Ax B, i.e., such that
afb and a f by imply by = b, for all a € A and b,,b; € B. We say that f(a) is
defined if a € dom f. Finally, a relation-class is a class R such that z € R implies
that z is an ordered pair, and a function-class is a relation-class that is single-valued,
in the sense defined above Much of the notation and terminology for relations and
(partial) functions also applies to relation- and function-classes.

3.3. Posets. A partial order on 8 set (or class) A is a binary relation € on A
that is reflexive (a < a for all a € A), transitive (a < b and b < ¢ imply a < ¢), and
antisymmetric (a < b and b < a imply a = b). A linear order additionally has, for
every a,b € A, either 6 € b or b < a. A set A equipped with a partial order is called
a poset (partially-ordered set); a lineatly-ordered set 15 often called a chain. When the
order is understood, & poset will often be denoted simply by naming its underlying set
We also use the notation 6 > a for a < 5. We write a < b for the conjunction of a < b
and a # b (and similatly with a > ), and a < b < ¢ for the conjunction of a < b and
3 <e. Asimple but useful result about posets 1 the following:

Proposition (YONEDA LEMMA FOR POSETS). If (A, <} is a poset, then for every
abe 4,

(a) e<bifandonlyifforevery z€ A, z Saimphesz<b

(b) e=bifandonlyifforevery € A. z < a and z < b are equivalent.

PRoOF. (a) If ¢ < b and z < ¢, then z < b by tranativity. Conversely, if z < a
imphes z < b for every z € A, then since ¢ < a by reflexivity, putting z = a we have
a < b, proving (a). Paet (b) follows from (a) and antisymmetry.

3.4.  Associated constructions. If (A,<) is a poset, then (4, <°P), where
a <P b iff b < a, is aleo » poset, called the dual of A and denoted A°P. As a
consequence, we have a duality for posets: every statement about posets has a dual
statement, formed by replacing the order with the dual order, and a statement about a
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poset is true iff the dual statement 1s true about the dual poset Hence, if a statement
is true of all posets then its dual 1s also true of all posets

A map f A — B between posets (4.<) and {B,<’) is monotone (or order-
preserving) if f(a) <’ f(b) whenever a < b, and antimonotone (or order-reversing)
if fla) > f(b) whenever a < b. Note that f + A — B is antimonotone iff f .
A = B°P,or equvalently f A% - B, 1smonotone Amapf A — B isan
(order-)isomorphisrn if 1t 1s a monotone byection

Starting with given posets we can construct new ones by restricting to a subposet
or taking a product If (4 <) 15 a poset and S C A then the order on 5 nduced by
A1s <N(Sx S) Examples of posets with the induced order are interval subposets
if a,b € A, then [a,8) = {r € A - a £ 2 < b}, with the induced order If I is a set
and, for each i € 1. {4,,<,) 15 a poset, then the cartesian product n-e 1A becomes
a poset with order < defined pointwise, e, for 0,7 € [,¢; A, 0 < 7 1ff 0(i) &, (i)
forall iel

Given a poset (A, <). we can associate to each subset S C A four other subsets

(1) the up-closure of S. upclS={a€ A a>s for some s € S};

(i) the down-closure of S downclS={a€A:a < s forsomeseS}),

(1ir) the upper bounds of S ubS={a€A:a> s forall s€S5),and

(1v) the lower boundsof S 1bS={a€A a<sforal seS}
S 15 up-closed or down-closed if upet 5 = S or downet S = S. As a special case, we
define la = upci{a} = ub{a) and Ja = downcl{a} = Ib{a}, called respectively the
primicipal filter and principal ideal generated by a. An element a € A 15 the jomn (or
least upper bound. ot supremum) of S if a is the Jeast element of ubS,ie, a€ubS
and, for all & € ubS, a < & Dually, o 1s the meet (or greatest lower bound, or
infimum) of S if a s the greatest element of IbS Note that ub@=1b9 = A, so that
the join and meet of the emptyset, if they exist, are respectively the least element of
A. denoted 0, and the largest element of A, denoted 1. We view join (\/) and meet
(A) as partial functions \/, A" PA— A

3.5. Ordinals. Informally, the class of ordinals is the (linear) otder freely gener-
ated by the constant 0. the unary successor operation s, and the join operation, subject
only to the condition that r < s(z). This description takes transfinite recursion (and
mnduction) as basic Formally, ordinals can be 1dentified with sets that are transitive
and well-ordered by € A set a 1s transitive sf 2 € o and y € 7 :mply y € o, o1,
mote sucanctly, Ja C o (or a C Pa) A poset (A4,<) is a well-ordening if every
non-empty subset of A has a least element The informal description is then realized
by taking 0 =0, s(z) = zU {z} and V = |J. The class of all ordinals 1s depoted O
As we have defined them, ordinals satisfy a = {§€C:f<a} and f<a iff F€ a.
The finite ordinals are denoted 0, 1,2, 3, .., as usual The first finite ordinal (=
the set of all fimite ordinals) 1s denoted w'.

An ordinal sequence (a3 § < a) is afunction with domaie & for which 8+ a5 for
all # < a. Transfinite induction says that if X 18 a class of ordinals such that 0 € X,
s(x) € X whenever z € X, and |JS € X whenever S C X, then X = ©. Transfinite
recursion says that if G 1s a function-class defined at least on all ordinal sequences,
then there 1s & unique function-class F such that F(a) = G({F(8) .58 < a))

Every well-ordenng 1s 1somotphic to a unique ordinal If a and 8 are ordinals, then
the ordinal a+f is defined to be the umque ordinal isomorphic to the well-ordering that
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puts 2 “at the end of” a, 1 e.. to the poset {4.<), where 4 = ({0} x a) U ({1} x 8),
and where (3,7;) € {5,72) iff either 1 < j or both ¢ = j and 11 € ¥2. Note that
addition of ordinals 15 assocrative (but not commutative) and that whenever a < 4
there exists a unique 9 such that a+y=23

An ordinal « is either 0, a successor ordinal (@ = s(f) = #+1 for some ordinal 3),
or a initordmal (a = {Ja) Transfinite induction and recursion can be restated using
this classification of ordinals. As an exsmple. we construct the cumulative hierarchy,
{Vo:a € O} Wedefine Vo = 8, Voyy = PVo, and, if A is & hmut ordinal, V) =
Upea Vs One can prove, using transfinite induction, that each V; is transitive, that
the hierarchy is indeed cumulative (3 < o 1mplies Vs C V), and that for every ordinal
@, a C V, (and hence a € V,41). As a consequence of the Axiom of Regulanty
(every set has an €-minimal element), every set belongs to some set in the cumulative
hierarchy; we define the rank of a set z, rank z, to be the least ordinal o such that
2 € Vyyuy. Note that ranka = a and V, = {z: rankz < a}.

3.6, Cardinals. Just as ordinals provide representatives of isomorphism types
of well-ordenings, cardinals represent 1somorphism types of sets (where “isomorphism”
means “bijection” 1z this case). We can achieve this by defining a cardinal to be an
ordinal that 15 not 1somorphic to any smaller ordinal. By the Axiom of Choice, evety set
X can be well-ordered and thereft dmits a bijection to a umque cardinal, called 1ts
cardinality and denoted |X| Addition. multiplication, and exponentiation of cardinals
are defined by

k+r=e+d, x-A=lexA, =8,

where the cardinalities are, respectively, of the ordinal sum, cartesian product, and
cartesian power of « and A. We note that |PX| = 21X > |X|. The least cardinal
larger than « is depoted ¥,

A cardinal is regular if it is not the union of a smaller set of smaller cardinals; more
precisely, & 15 regular if, whenever X C x and x = )X, then |X| = x. Using the
Axiom of Choice, one can show that «* is regular for every cardinal x.

4. Lattices

4.1, Semilattices and latti A t-semilattice 1s a poset in which every
finite set has a meet. Equivalently, 2 meet-sermlattice (A, <) has a greatest element
1 (the empty meet) and a meet a A b for every two elements 6,5 € A. This binary
operation 15 associative (a A (b Ac) = (a Ad) Ac), commutative (aAd=bAa), and
idempotent (¢ A g = a), and 1 is & unit for the operation (a A1 = a). The order
relation 1s recovered from the meet operation by the equival e<bifantb=a,
and the descriptions by order (<) and by operations (1,A) are equivalent

A function f . A — B between meet-semilattices that preserves finite meets (i.e,
FIAS) = N{f(s) = s € S} for evety fimte set § C A) is called a meet-semlatisce
(homo)morphism, Evety meet-semilattice morphism is monotone, and injective meet-
semmlattice morphisms reflect order: f(a) < f(b) implies a < b (proof. f(a) € f(b)
iff fla) = fla)AS(b) = flaAd) 1l a=aAbiff a<bd). Forevery a € A, the unary
operation a A — on A is mobnotone but is not a meet-semilattice morphism (unless
a = 1), since it doesn’t preserve 1.
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Dually, a join-semilattice is a poset 1n which every finite set has a join; equivalently,
a join-semilattice has a least clement 0 and 2 jon o V b for every two of its elements
Algebraically join-semilattices ate the same as meet-senulattices (and may as well
just be called semilattices)—they consist of one constant and one binary operation
satisfying the same equations The difference 1s in the relation between the order and
the binary operation a < b iff avb =14 Join-semilattice morphisms preserve finite
joms, and the operations a V — are monotone but are not join-semilattice motphisms
(unless a = 0)

A lattice 15 a poset that is both a meet- and join-semilattice Equivalently it has a
greatest element 1, a least element 0, and a meet aAb and join aVvb for every two of its
elements. In addition to the semilattice equations satisfied by the pair 1 and A and by
the pair 0 and V the operations A and V ate related to each other by the absorption
laws: a A(aVb)=a=aV(aAb) Lattice morphisms preserve finite meets and finite
joins Note that the dual of a meet-semilattice is a join-semilattice and vice-versa, and
that the dual of a lattice 15 a lattice To form the dual of a statement about lattices
one mterchanges 0 and 1 and interchanges A and v

4.2. Distributive and Boolean lattices. A lattice 4 1s distnbutive if it
satisfies aA(bVe) = (aAb)v(ahc) for all a,8,c € A. One can then show that 1t also
satisfies the dual law, aV(bA¢) = (aVb)A(aVe) Given elements a,b,¢ of a lattice
A with a<b<¢c, d€ Aiscalled a relative complement of b 1n [a,¢) if bAd = a and
bvd = ¢ (d is therefore necessarily alson the interval [a,¢]). In general an element may
have many relative complements in a given interval, but in a distributive lattice relative
complements are unique when they exist (in fact, distributive latuces are characterized
among lattices by this property) Relative complements in the interval (0, 1] are called
(absolute) complements It 1s clear from the definition that complements are preserved
by lattice morphisms

A Boolean lattice 1s a distributive Jattice 1n which every element has a complement.
The operation taking an element to 1ts complement is denoted —; thus a A =a = 0
and aV —ac = 1 for every element a of 8 Boolean lattice Boolean lattices additionally
satisfy =—a = a for every a, as well as the De Morgan Laws' ~(a A ) = (=a) V (-b)
and ~(a V) = (—a) A (-8).

4.3. Complete lattices. closure operators, and adjunctions. Complete
meet-semilattices, complete jomn-semilattices and complete lattices, and the morphisms
between them, are defined as are theiwr non-complete counterparts, except that joins
and meets are required to exist for ail subsets (not just finite subsets), and morphisms
are required to preserve them Although the resulting three types of morphisms are
different, the three types of posets are the same. any poset having all meets also has
all joins, and vice-versa, since VS = AubS and AS =V IbS. The basic example of
a complete lattice is the collection of all subsets of a set X, the order being C, meets
and joins are given by intersection and umon

A closute operator on a complete lattice A 18 an operator (function) C . A ~ A
that is mflationary (a < Ca), idempotent (CCa = Ca), and monotone (a < b imphes
Ca < Cb) Dually, a co-closure operator 1s deflationasy (Ca < a), idempotent, and
montone An elemeny a € A is a fixedpoint of an operator C if Ca = a. the set of
fixedpoints of C 15 denoted fixC. Note that, for a closure or co-closute operator C,
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the set fixC is the same as the range of C. A meet-closed subset of A 15 simply a
subset 5 C A such thatif T C S, then AT € S; » jyoin-closed subset 15 defined dually.
A meet-closed subset of a complete lattice is itself a complete lattice 1n the induced
order, since is has all meets (and thus all joins); similarly with a join-closed subset.

Closure and co-closure operators and meet- and join-closed subsets can be partially
ordered. we order the operators pointwise (C; < Cy iff Cia € Cya for all a € A), and.
for reasons that will become clear shottly, we order the join-closed subsets by inclusion
(81 € $2 iff S; C S3) and the meet-closed subsets by reverse inclusion (§; < S
iff S2 C 51). Given two complete lattices A and B, a par of monotone functions
{*A = B and r* B — A are said to be adjoint, with ! the left adjont and r the
right adomt, when {a) < b ff a < r(b) for every a € A and b€ B. This sitvation 1s
called an adjunction and denoted ! 4 r.

The relations between the above notions are spelled out in the following proposition

Proposition. Suppose that A and B are complete lattices

(a) If C 1s a closure operator on A, then fixC 1s meet-closed (and thus a complete
lattice). If § C A 15 meet-closed, then tue operator C on A defined by Ca= A{b €
S :a < b} 15 a closure operator. If i - fixC — A 1 the inclusion, then C Hi.

(b} Dually, if C is a co-closure operator on A, then fixC 1s join-closed, and if
S C A is Join-closed, then Ca = \/{b € § : b £ a} defines a co-closure operator.
Moreover i < C, where i : ixC — A is the inclusion

(c) The correspondences in (a) and (b) between closure operators and meet-clased
subsets and between co-closure operators and join-closed subsets are isomorphisms of
posets, when the sets are ordered as in the previous paragraph.

(d) Ifl-A— B and r: B~ A satisly | 4 r, then r ol 1s & closure operator
on A, and lor is a co-closure operator on B. In fact lorel=1l androlor=r,
and llg, ., (fixrol) — (fix.or) is an isomorphism of posets, with inverse rlgy, . .
The operation | preserves all joins, and » preserves all meets. Conversely, any join-
preserving function between complete lattices has a right adjoint, and, dually, any
meet-preserving function has a left adjoint. Any pair of adjoints | 4 r satisfy

Ke)=Afb:r(})2e} and r(d)=Vi{a:l(a)<b},

s0 that each of r,l deterrmines the other. 1 is 1.1 1ff v 1sonto, and ! isonto i » s

1
[
J
[

4.4, Examples. A common source of adjunctions (in fact the only source of
adjunctions between powersets) is described by the following proposition:

Proposition.  Suppose X and Y are sets, PX and PY are the associated
complete lattices of subsets (ordered by nclusion), and R € X x Y is any relation.
Then ly : PX = PY, r3 : PY = PX, Iy : PX — (PY)*®, and rv : (PY)? — PX,
defined, for SCX,TCY,and Q=3V, by

Q(S)=1{yeY QseSsRy} and ro(T)={zeX:QteT zR1},

satisfy lg i rq . Moreover, every adjunction lg 4rq between PX and PY (if Q= 3)
or PX and (PY)°P (if Q =) arises in this way from 2 unique relation R defined by

zRy iff yelg({z)) iff =erq{y))
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ProOF (Sketch) For the first part, the reader may check that both 3(8) C T
and S C r3(T) are equiralent to ¥zVy(z € S and z Ry imply y € T), and that both
1v(S) D T and S € rv(T) are equivalent to YzVy(z € S and y € T amply z Ry)
For the second part. note that lg, as a left adjoint. preserves joins and therefore 15
completely determined by its values on the singleton subsets {z} of X (and these
values as sets, are themselves determined by the elements they contamn)

As an example of an “existenual” adjunction, if R = f . X = Y is a function,
then {3 and rg are just the direct and inverse image, and the adjunction I3 - r3 1s
the familiar relation f(S) CTiIF S Cf YT forall SCX and TCY Asan
example of a “universal” adjunction. consider a poset {(4,<) Then the adjunction on
PA induced by the binary relation < 15 given by Iv(S) = ub S snd rv(T) = 6T The
complete lattice of fixedpoints of ryoly 18 the so-called Dedekiad-MacNeille completion
of A, and the mapping a ~ la 15 an emedding of A into the completion that moreover
preserves whatever meets and joins happen to exist in A. We will see several other
examples of “universal’ adjunctions later

Finally, we observe that the identity function, 3. A — A4, is adjoint to stself (i - {)
and that adjunctions may be composed 1f, in addition to ! 4 r as above, I' B —~C
and v C— B have I' 2 ¢/, then ' oldror

5. Universal algebra

5.1. Basic notions. In order to encompass all of the examples with which we will
be dealing, 1t will be convenient to rse a quite general definition of algebra. A simuanity
type is a (possibly proper) class Q of operation symbols along with a function-class
¢ : Q2 — V that assigns to each operator symbol w € Q an index set «(w) called 1ts arity
An algebra of similanty type Q (¢ 1s often left implicit) is then a set A along with a
function-class assigning to each w € €} an operation w4 * A¥) — A.} As with partial
orders. algebras are often denoted simply by naming their underlying set. If A and B
are two algebras of type Q. a function f. A — B 1s called an Q-(homo)morphism if,
for every function symbol w € Q, f preserves w; i.e., for every element o € A'%),
we have f(wa(o)) = wp(foe) Every identity function 1s a homomorphism, and the
composite of two homomorphisms 1s 8 homomorphism A bijective homomorphism s
called an isomorphism

As an example, we can take the similanty type of lattices to be Q = {A,v,1,0},
with #(A) = ¢(V) = 2 and ¢(1) = +(0) = 0, and display a typical lattice as (A, A,V,1,0),
where we have used the operation symbols themselves (effectively leaving off the sub-
script A) to denote the operations A,V ' A x A —~ A and constants 1,0 € A Then
Q-morphisms correspond to lattice morphisms as we defined them in 4.1 As an ex-
ample of an infintary sumilanty type, we have x-complete semilattices, where x
an infinite cardinal  These are posets in which every set of cardinality strictly less

3 The reason for thus definution, as stated above. is its uniformity it enables us to treat as algebras
of a fixed sinularity type {such ss lete tattices) that are traditionally not able to be
treated as such. In all cases that we consider in thus thesis, however. the class of operations of an
algebra will be derived from a single set associated to the algebra (such as & partial order), and so
there will be no dufficulty speaking of sets, or even classes, of algebras,
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than « has a jorn, and a homomorphism of x-complete semulattices is required to pre-
serve these joins. For the similarity type, we can take as operation symbols all of the
cardinals A with A < x (and define ¢(A) = A), the operation A en a x-complete semi-
lattice would then be interpreted by A-indexed join (explicitly, it would take ¢ € 4*
to V¢, 0(i)) Finally. as an example where we need a proper class of operations. we
consider complete semilattices Here. we can take as the class of operation symbols all
of V (again with ¢(I) = I for every I € V') and associate with the operation symbol
I the operation giving /-indexed joins

5.2. Subalgebras, products, and quotients. If 4 15 a algebra of type @ and
S C A, then S is called a subuniverse of A if every operation w4 of A restnets to S,
1e., for every o € S, w4(0) € S. The restricted operations then make S intoan Q-
algebra, called a subalgebra of A, and the inclusion S — A becomes & homomorphism,
Arbitrary intersections of subuniverses are clearly subuniverses; thus. for every X C A
there 15 a least subuniverse of A containing X. The associated subalgebra is called the
subalgebra of A generated by X If I 15 aset and, for every 1 € I, A4, 15 an Q-algebra,
then the cartestan product A = [[;¢; Ay becomes an ()-slgebra when we define the
operations pomntwise: 1f ¢ € A4“), then w4(o) 15 the function i = wy,(c,), Whete,
for every j € «(w), ou(3) = 0(j)(i). For every 1 € I, the ith projection, =;: A — A,
given by m,(¢) = ¢(z), 13 an onto homomorphism

A binary relation 8 C A x A is an equivalence relation on A if it 1s reflexave,
symmetric, and transitive. For 0 € A, the set 0/0 = {b € A : a § b} is called the
equivalence class of § containing a (which it does by reflexivity). The set 4/8 =
{a/6 « a € A} of equivalence classes of 0 form a partition of A=—a set of disjoint
sets whose union is A. The (onto) function A —~ A/0 which maps a = a/6 15 called
the quotient, or natural, map and is denoted f4. An equivalence relation ¢ on an
Q-algebra A is called an Q-congruence if, further, it is a subuniverse of the product
algebra A x A. Explicitly, this means that 6 is compatible with every « € Q: for
every pair 0,7 € A““), if o(i) 0 (i) for all i € 1(w), then wa(0) O wa(7). The set
of equivalence classes then becomes an -algebra, where w4 /4(3 0 0) = te(wa(0)) for
every ¢ € A““), and the natural map becomes a homomorphism.

It is easy to verify that the intersection of any set of congruences on A is again
a congruence, As & consequence of Propomition 4.3, there is & closure operator ©
on A x A that takes X C A x A to the smallest congruence containing X (called
the congruence generated by X'), and the fixedpoints of this operator are exactly the
congruences on A, which form a complete lattice under inclusion that we denote by
ConA. A congruence generated by a single ordered pait, such as 8((a, b)), or written
more simply as ©(a,}), is called a principal congruence. It has the property that,
for any congruence 8, ©(a,b) < ¢ iff a 8 b. It is therefore easily seen that every
congruence is a jotn of pnncipal congruences: 8 = \/{O(a,b).a 8 b}.

5.3. Homomorphism theorems. If f : A — B 15 a homomorphism. then
the kernel of f is the relation ker f on A defined by a (ker f) o’ iff f(a) = f(a'),
which is easily seen to be a congruence. The function g . A/ker f — B given by
g(a/ ker f) = f(a) 15 well-defined and is a 1-1 homomorphism, and so f = 90bkqr s is
a factorization of f into an unto homomorphism followed by a 1-1 homomorphism If
f is already onto, then g 15 an isomorphism; thus, onto homomotphisms and quotients
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by congruences amount to the same thing. In the same way, if 4 < ker f, then f
can be factored umquely through A — A/6 via g A/6 — B defined by g(a/8) =
f(a) (though g will be neither 1-1 or onto in general) Conversely, note that for any
composable homomorphisms A AL B, wehave kerh < ker(goh)

The composite of two onto homomorphisms is onto. in terms of congruences, we
get the following: if 6 € v in ConA, and we write v/8 for the congruence on A4/6
consisting of the pairs {(a/8,5/6) * a ¢ b}, then the map A/v¥ — (A4/8)/(v/9) given
by afy — (a/6)/(¥/6) 15 an 1somorphism Also. if {6, 1] is the interval subposet of
Con A, then the map [6,1} — ConA/8 given by ¢ — /€ 15 an 1somorphism. If
f A — B isahomomorphism.and fx f:AxA— Bx B sthe function defined by
(£ x f){a,a")) = {f(a). f(a")}, then for every ¢ € Con B, (f x f)~'(¢) 15 a congruence
on A 1t follows from this that the adjunction © <1 between P(B x B) and Con B
arising from the closure operator © on P(B x B) (1 1s the inclusion) can be composed
with the adjunction f x £ 4(f x f)~! between P(4 x A) and P(B x B) to yeld (by
restriction) an adyunction Qo (f x f) 4 (f x f)~! between Con A and Con B

5.4. Lattice congruences. Before continuing with the genera! survey of Umver-
sal Algebra, we now look at some special properties of congruence relations on lattices
and, in particular, distributive fattices. These are collected in the following proposi-
tion, whose straightforward proof we omut (though the reader with less famihanity with
distributive lattices will find 1t a rewarding exercise)

Proposition. Suppose A is a distibutive Iattice (i.e., with operations A,V,0.1
that satisfy the lattice equations plus distnbutivity), 8 € Con A, and a b,c,d € A
Then the following statements hold*

(a) ebbif(and)b(avh)

(b) bdea/fandb<c<dimplyceald.

(¢) bdeafd mplybAdbvdeal/t

(d) anbtbbifadavd.

(¢) Ifc<d, then a©(c,d)b ffaAc=bAcandaVvd=bvd

(f) Ifa<band c<d, then 6(a,8)AB(c,d) =O6(aVe,bAd).

(g) If My, Mz are 8-congruence classes, thea My, < Ma (1o A/6) iff there exists
a€ M, and b€ My witha < b.

Notes In fact, only parts (e) and (f) require distnibutavity. Part {a) implies that the
congruence 8 15 determined by the paus {e,b) € 6 with a < b. Parts (b) and (c) say
that congtuence classes ate convex and closed under meets and joins (1n fact. they are
closed under any non-empty meets and joins that are compatible with #) Given any
two a,6 € A, wesay that the interval {a, avb) projects down to the interval {aAb, ] and
that the latter interval projects up to the former Part (d) then says that the intervals
collapsed by a congruence are closed under projections Note also that, in a distributive
lattice, projective intervals are 1somorphic Part (e) is a characterization of pnncipal
congruences, and part (f) says that principal congruences are closed under finite meets
(note that the empty meet, or largest congruence on A, 1s principal: 8(0,1)).

5.5. Equational classes and free algebras. For the test of this Section. it will

be convenient to treat “algebras” on (possibly proper) classes along side algebras on
sets, as we have been doing with function-classes and functions. Since the operations on
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such an “algebra” are function-classes, however, we must insist that they be umform:
thus, given a similarity type Q, we define an algebra-clases of type §) to be a class A
and a formula §(z.y) with two free vanables such that, for every w € Q, the formula
@(w.y) (with one free vanable) represents a function-class whose domain includes the
class of all functions ¢ : ({(w) — A. and whose range is contained m A (Note that
every algebra is an algebra-ctass )

Now. fix a similarity type  and a class of variables X. We define the class Th(X)
of Q-terms over X (and we will leave off the subscript 2 where there can be no
confusion) Because Q (as well as X') can be a proper class, this requires some care.
(And note further that. for reasons of effective “coding”, each z € X must be <q-
mummal in the sense defined below.) We proceed by analogy with the construction of
ordinals We first define an order <q on V by putting z<py if y= (v, f). w e Q.
dom f = i(w), and z €rng f. A set y is <n-mumimalif there does not exist z such
that 2 <qy. Givenaset T, 2 €T is <g-maximalin T if there does not exist y € T
such that = <q y. Let Qo be the clase of conatants of Q (w € Qp iff ¢(w) = 8) We
call a set T Q-grounded in X if, for every <n-minimalelement z of T, either z € X
or z = (w,8) for some w € Q. We call T Q-transitive if y € T and = <g y imply
z € T. Finally, we define an §2-term in X to be a set T such that

(1) Tis Q-groundedn X,

(2) T is Q-transitive,

(3) <n is a well-ordering on T (every S C T has a <p-mummal element), and

(4) there is a unique <q-maximal element in T, called the head of T'.
Analogously to ordinals, we can prove a structural induction and a structural recursion
theorem. We define the support of a term T by sptT = T'N X, in view of the
transitivity of terms (and structural induction), this is the set of variables “occurring”
in the term T. As an example of structural recursion, we define evaluation of terms.
Let A be an Q-algebra-clase, T" be a term, and p : X' — A be a function, where
3ptT C X' € X. Then the value T[p) of T at p is defined by recursion as follows: if
T =z € X, then T[p) = p(z); otherwise, if (w, f) is the head of T and (by recursion)
o i(w) — A is the function defined by o(i) = f(i)[p] (or the empty function if
o(w) =9), then T{p) =wa(c). Operations on A of the form p — T(g] are called term
functions.

An equation in X is simply a puir {L, R} with L, R € T(X), which we write more
suggestively as L & R. An equation L = R is satisfied (or bolds, or is valid) in an
algebra-class A if, for every function p : sptL UsptR — A, we bave Lip) = Rfg).
If E 15 » class of equations, then the class of all Q-algebras satisfying each of the
equations 1n E 15 denoted Mod(f2, E');2 classes of algebras of the form Mod(Q, E)
are called equational classes. As an example. we give a class of equations for complete
join-semilattices, making it an equational class. Recall that the similarity type has an
operation symbol for each set I, denoted here in the form V¢, whose interpretation
in the algebra 15 given by J-indexed join. The class of equations conssts of the single
equation \/, z = z, along with for every set I, family of sets {J, - i € I}, and onto
function ¢ : K = |}, /i, the equation V,e;(V,¢s, #4y) % Viex(2n ju), Where for
every k € K, g(k) = (i, jx) and i € J;, (recaell the definition of disjoint union}).

2 Again, Ju* a reminder that, in all cases we consider, ©} and E will be such that each algebrain
Mod($, E) 1s encodable by a set
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The reader may enjoy venfying that these equations suffice to charactenze complete
Join-semilattices (hint the equations amount to a generalized associative law, and the
presence of the function g allows for change of index set, including permutations and
repetitions. so 1t is a generalized 1dempotent and commutative law as well). The same
1dea would work for x-complete semilattices, except that the sets 7, J,, and K would
have cardinality less than x note that. given any such I and J,, in otder to incure the
existence of an appropriate K, it 15 necessary that x be a reguler cardinal, for then
”J-el Q<

‘The class T(X) becomes an Q-algebra-class when, forw € Q and ¢ ow) — T(X),
weset wr(x)(0) = {{v o)} Urnge Assuch, it 1s free over X with repsect to the class
of all Q-algebras if A 1s any Q-algebra, and f. X — A 15 any function-class. then
there is a unique function-class f * T(X) — A such that f(z) = f(z) forall z € X
and such that T 1s an Q-homomorphism.

If E 15 2 class of equations in X, let E' be the class of those equations L = R that
hold in every algebra satisfying every equation in £ (we say that L = R is semantically
entaled by E). Then £', as a class of ordered pairs, is a congruence relation on T(X),
the class of equivalence classes T(X}/E’ inhents an Q-algebra structure from 1°(.X)
and, moreover, satisfies all the equations of £.3 If we write F for the equivalence class
z/E’, then the algebra-class T(X)/E' 1s free over {Z - z € X} with respect to the
class Mod(9, £)

For the last hind of freeness we will discuss, we need the notions of reduct and
diagram. Suppose that €)' is a subclass of the class of operation symbols Q (with
each operation 1n Q' having the same arity as it does in ). Then every Q-algebra
15 naturally also an 2'-algebra when we forget about the extra operations. we say
that the ('-algebra 15 a reduct of the Q-algebra For an Q'-algebra A, we define a
new set of variables X4 = {z,: a € A}, and let A, (called the diagram of A) be
the class of all pairs (L, R), where L,R € Tn:(X4) and L[p} = Rlp) for the function
p+ Xpo = A defined by p(z;) = a. Now. given any class E of 2-equations, we
have, using the previous construction of free algebra-classes, » free 02-algebra-class
F = To(X4)/(E U AAY (on generators X, and with equations those semantically
entailed by the equations in £ and the diagram of A), which has the following freeness
property: for any algebra B € Mod(£, £'), whose reduct to Q' we denote B', and
any {-homomotphism f . 4 — 5’ there 15 a unique function-class . F — B such
that T is an N-homomorphism with f = nzo0 f, where ng : A — F takes a € 4 to
the equivalence class containing z, (Note, incidentally, that in the special case that
1= and A € Mod({, E), we have that Tn(Xa)/(E U A4) 13 isomorphic to A:
hence every algebra s a quotient of a free algebra.)

When are these free algebra-classes free algebras? I Q and X are both sets, it
follows that T(X)/E is a set.* On the other hand, for some classes of equawions,
T(X) is a proper class while T(X}/E is a set Of course this is true 1if E contains
z = y, for example, but a more interesting example is that of complete semulattices.

3o construct the class T(X)/E', we use an idea of Dana Scott: we take as equivalence classes not
all the terms equivalent to a given one (whuch may be & proper class and thus not “collectable” into
& class), but only the se! of those with mimimal rank

$To prove this, recursively assign an ordinal rank 10 every term. as we did with sets, and then
show by ind {and some casdinal] arith ) that for a sufficiently large cardinkl x we have
[Ta{X)} < = for all ordinals o
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One can easily check that the free complete semulattice on a set X, with respect to
the similarity type and equations given before, 15 150morphic to the algebra (PX,{),0)
(bere |J represents the class of union operations. one for each index set). In other
cases. such as for complete lattices, one can show that T(X)/E is a proper class

6. Category theory

6.1,  Basic notions. The theory of categonies may be developed in several
different ways, depending on the foundation used. For our purposes it will be sufficient
to base 1t on the set theory introduced in Section 3. Thus, we define a category
A to consist of a class of objects A.B,C, ... and a class of morphisms (or arrows)
f,9,h,. .. such that (1) every morplusm f has a domain dom f and a codomain cod £
which are objects; we write f . A — B to assert that domf = A and codf = B,
and require that for any objects A and B the class homa(4, B) of all morphisms
f . A — B be a set; (2) for every object A € A (where we are using € to indicate
“ig an object of”), there 18 an identity morphism id4 : 4 — A (we often leave off the
subscript), and for every two morphisms f, ¢ with cod f = domg,say f. 4 — B and
g: B = C, there is a compoerte morphism go f : A — C'; and (3) identity morphisms
are identities under composition, and composition is associative (ido f = foid = f
and ho(gof) = (hog)o f, assuming sll the morphisms are composable) A functor
F : A — C between two categories is a function-class that assigns to every object A
of A an object FA of C and to every morphism f of A a morphism Ff of C in
such a way that domains, codomains, 1dentities, and composition are preserved; i.e., if
f:A~Bthen Ff . FA— FB, and we have Fidy = idrs and F(go f)=Fgo Ff
whenever go f is defined A natural transformation 7 : F — G between two functors
F,G A — C is » function-class assigning to every object A of A a morphism
A : FA ~ GA of C (called the component at A), such that GforA = rBo Ff
whenever f: A~ B is amorphismof A.

Almost of all the categories we will be working with are concrete, that 1s to say,
categories whose objects are sets with some additiona) structure and whose morphisms
are certain functions between these sets (usually preserving the structuze). Examples of
concrete categories are Set (objects: sets; arrows: functions), Top (objects: topolog-
ical spaces; arrows: continuous maps), Pos (objects: posets; arrows: monotone func-
tions), and Mod({), £) (objects: algebras; atrows: homomorphisms). For every poset
P, there is s category with an object for every element of P and an arrow from p to ¢
whenever p < ¢ (and no other arrows). Functors between such (non-concrete) poset-
categories are just monotone maps. For every category A, there is the identity functor
1da on A, and the composition of two functors is a functor. A simple but important
class of functors are the forgetful (or reduct functors) Mod(Q, E) — Mod(0', E'),
where € C Q2 and £’ C E, which take an Q-algebra to its reduct to ', A category
is amall if its class of objects (and hence also its class of morphisms) forms a set.

Having indicated how our theory of categories is to be based on set theory, and
given our main ples, we now p d to outline the rest of the category-theoretic
preliminaries quickly and ask the reader to consult the references for more information.

The dual of a category A is denoted A%; as with posets, statements about cat-
egories have duals. and if a statement is true of all categories, then 0 13 its dual.
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A subcategory C of A has as objects and morphisms subclasses of the objects and
morphisms of A. 1n such a way that the inclusion C — A is a functor

Given a functor G C — A and object A € A. apair {C,u) consisting of an object
C € C and amorphism 1 A — GC 1s called universal from A to G if for every other
such pawr {C'. ') there 1s a unique morphism h: C — €' with v = Ghou If G is
the inclusion of a subcategory, then a universal pair from A to G is called a reflection
of A into the subcategory Dually, we speak of umversal pairs from G to A, and a
coreflection when G is an inclusion.

Two functors F . A — C and G. C — A are adjoint, written F -t G, when there is
a family of byections homc(FA,C) = homa(A GC), naturalin A and ¢ We denote
the unit of the adjunction by 7:ida — Go F and the coumt by € : F oG —1d¢; the
components of these correspond under the bijection to appropriate identity morphisms
If F 4G, then the pair (FA, nA) is universal from A to G for every A € A, and,
conversely, if a umversal pair (FA.nA) from A to G 15 given foreach A € A, then F
can be (uniquely) made into a functor such that F <G For us, the main examples of
adjoint functors are F - G. where G 1s a forgetful functor between equational classes,
and F is the corresponding free functor atising from the universal property of free
algebras. In case C is a subcategory of A and G is the inclusion, then F is called a
reflection If, furthermore, G 1s a full inclusion (meaning that every motphism between
objects in the subcategory 15 also in the subcategory), then the counit is a natural
isomorphism (i.e., every component ¢C of the transformation 1s an isomorphism).
Dually, a functor right adjoint to an inclusion 13 called a coreflection In case both the
unit and countt are natural isomorphisms, the adjunction is called an equrvalence, and
A and C are said to be equivalent categories

If J is a small category, functors D : J — A are the objects of a category A’
whose rorphisms are natural transformations (composed coordinatewise) The drago-
oal functor A * A — A? takes an object A to the functor which 18 A on all objects
of J and ida on all morphisms The category A 15 said to have hmits of type J if
A has s night adjoint. hmy + A? — A, and, dually, colimats of type J if A has a left
adjoint, colimy : A’ — A Given a diagram D : J — A of type J, the value limD
18 called the imit of the diagram, and the court £D : AlimD — D is the limit cone
(dual: colimts and colimit cones) More generally, a (as opposed to “the”) limit of D
is & universal pair from A to D (called & limit cone), and a colimit is a universal pur
from D to A (a colinut cone) Given a morphism A4 — D in A7, the corresponding
morphism A —~ fim D (or, more generally, A — L for a given limit L) is called the
mediating morphism, and zimilarly with colimits

A functor F + A ~ C is suid to preserve hmits of type J if for every diagram
D13 — A, F takes hmit cones for D to limit cones for Fo D. F 15 said to create
limits of type J if every hunit on the 1mage of £ has & unique preimage in A" ie,if
whenever D J — A 1sadiagramin A and p: AL — FoD is a imit cone in C, then
there is a umque 4’ AL’ — D such that Fou' = u, and moreover 4 is a limit cone
Limits are preserved by right-adjoint functors {dually, colimits are preserved by left-
adjomnt functors). Limits and colimits in poset-categories are meets and joins, and the
preservation of (co)limits by adjoint functors generalizes the same fact for adjunctions
between posets (sce 4 3) A category is complete if it p limits of type J for every
small category J (dual cocomplete) It can be shown that a category 18 complete iff
it has equalizers and all products (dual cocomplete = coproducts + coequalizers).
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6.2. Particulars. We now look at special cases of limits (and colimuts) in &
category A. Limits of discrete diagrams D (when every morphism of J is an identity
motphism) are called products and are denoted, for a family {4, .i € I}, by [Jses 4s-
The projections (making up the limit cone) are denoted #, : [l;c; A: ~ A, . I, for every
i € I, there is a morphusm f, : B — A, (so that the famuly {f; : i € I} determines a
patural transformation AB — D), the mediating morphism to the product 15 denoted
{(fiver + B = [Ler 4. (Dual: coproducts, JlieyAiv with injections v, = Ay —
U,erAc.) The limit of a paic f,g: A — B of morphisms is essentially given by a
morphism ¢ : E ~ A such that f oe = goe and such that any other such morphism
factors uniquely through e (i.e.,if foe' = go¢', then ¢’ = e o & for some (unique)
k), it is called an equalizer of f and ¢ (dual: coequalizer). The limit of a diagram

A -1 B L C is essentially an object P and two morphisms 4 - P L €, called
a pullback of the disgram, such that fog' = go f' and such any other such object and
two morphisms factor through P in the obvious way. We say that /' is the pullback
of f along ¢ and that g’ is the pullback of g along /. (Dual: pushout.)

A morphism f A — B 18 » section if there exists g : B —~ A such that go f=idy
(dual: retraction). Thus an isomorphism [ is both a section and retraction (by the
same g, which is called the inverse of f and denoted g = f~!). f is » monomorphism
(or 158 mono) if, foh = fok implies h = k (dual: epimorphism, or epi). If ¢ is
mono, then go f is mono iff £ is mono. The equalizer of two morphisms is always
mono; such monos are called regular. Given a regular mono m, the two morphisms
resulting from pushing out m along iteelf have m 23 an equ-liser. f is an extremal
mono if, whenever f = hok snd k is epi, then k is an isomotphism (dual: extremal
epi). Sections are regular monos, and regular monos are extremal, but the implications
cannot be reversed in general

Finally, & word on “the” versus “a”. In most categories, limits, colimuts, and so
on, are unique only up to isomorphism. Thus, there is a difficulty speaking about
“the” product of A and B. H , in the algebraic categories that we deal with
here, there is & canoncical choice of limit (and colimit), and s0 we will be justified in
spealang about “the” limit or colimit, by which we will always mean the canonical one.

6.3. The category Set. What do all these concepts mean in the category Set?
Any one-el t set js a inal object. Products are given by cartesian products with
their projection functions: the mediating morphism for a family {f, : B —~ A, } takes
an element b € B to the function o) defined by o4(i) = £i(8). The equalizer of two
functions f,9 : 4 ~ B can be given by the inclusion of the set {a € A : f(a) = (o)}
into A. The pullbackof / : A — B and g:C — B istheeet {(a,c) €EAXC
f(a) = g(c)}; the functions ¢’ and /' ste, respectively, the projections onto the first
and second coordinates. More generally, limits in Set can be computed as follows:
given any diagram D : J — Set, the limit of D can be taken to be the set conssting
of thoee o € [1;¢y Dj such that (Df)(o(j)) = o(k) for all morphisms f : j — k
of J. The himit cone consists of the projections onto each coordinate, snd mediating
morphisms are just a3 with the product. As for colimits, coproducts are disjoint unions,
and the coequalizer of f,9: X = Y is the natural map by Y ~ Y/R, where R is
the equivalence relation genersted by the pairs {{f(z).9(2)) : z € X}. In general,
the colimit of & diagram D : J — Set 18 ({},¢; Di)/R, where (i,z) R {(7,9) (for
1,§ €3, 2 € Di, y € Dj) iff there exists morphisms ¢’ .3 — k and f'* ) — k such
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that (Dg')z = (Df')y In Set, sections, regular monos, exttemal monoe, and monos
all correspond to injective functions Also. epis. extremal epis, and regular epis all
correspond to surjective functions. the Axiom of Choice is equivalent to the statement
that all surjective functions are retractions

6.4. The Pushout Lemma. The following Lemma lists the properties of
pushouts that we will need 1n Chapter 8.

Lemma. Pushouts of epis (resp , regular epis, retractions) are ep: (resp , regular
ep1s, retractions) Consider the commutative diagram

o—fpetbe,

i

0—-,-—0—-;700
4

(8) Ifboth squares are pushouts, then the outer rectangle is u pushout (1.e., h'og’
15 a pushout of ko g along f)

(b) If the outer rectangle is a pushout, and the pair (f'.¢'} is jointly-epi (1e,
kyof =kyof and kyog’ = kyog' together umply ky = kz; note that this is the case
if the left square 1s a pushout), then tie right square is a pushout

(¢) If f iseprand f' is an isomorphism, then the left square is a pushout.

PRooOF, See (18, p.183] for a proof of the first part of the Lemma. Parts (a) and
(b) are standard ([29, p 72). {18, p.180]). For (¢}, suppose &k, and k; are such that
kjof=kyog. Let m=kao(f')"'. Then mo f' = k; snd meg'of=mofog=
krog = kyof Since f isept, mog’ = ky. Thus m is the required mediating morphism
(which is obviously unique).

6.5. Categorical properties of algebraic categories. A category A equiva-
lent o a category of the form Mod(Q, E) will be called alzebraic; if 22 can be taken
to be a set, then A 1s called monadic.® An algebraic category is monadic iff it pos-
sesses free algebras over any set. This subsection is devoted to giving the categomcal
propetties of an algebraic (or monadic) category A = Mod(Q, E).

6.5.1. A is complete, and humits 1o A are computed as limits of the underlying
sets, with operations defined pointwise (the forgetful functor to Set creates limits)

6.5.2. In A, reguiar epi = extremal epi = surjective, and mono = injective.

6.5.3. A has coequalizers; if A 1s monadic, then it also has coproducts and thus
all cohmits The coequalizer of two morphisms f,9 . A — B is given by the natural
map k¢ B — B0, where 8 = 6({{f(a).g(a)) . ¢ € A}). Assuming that free algebras
over any set exist, the coproduct of a famuly {A; : i € I} of algebras (which we assume
for convenience are disjoint) is given by

tn((J%0) /(B0 0

5 The source of thus term 1s the theory of monads; although thus theory unlies much of what we
discuss, and the knowledgable reader will see that our presentation is guded by it, I've avoided

hnical b

introducing it explicitly, becunse much of the gEage is y for our results
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(X4 and A, and the operation (—)' on equations are defined in 5.5).

6.5.4. A has both (extremal-epi, mono)-factorizations and (epi, extremal-mono)-
factorizations. The first just refers (in view of 6.5.2) to the usual fact that every
morphism f can be factored as f = hog, where ¢ is extremal-epi (= onto) and h is
mono (= 1-1), and that any other such factorization f = &' o ¢’ 18 equivalent ir: the
sense that A’ = mo &' and k' = kom for a unique isomorphism m The morphism
g can be taken to be Yo .. The second says the same, except that ¢ 1s epi and A
is extremal-mono (but note that epis need not be onto and not all monoe need be
extremal).

8.5.5. Finally, we point out that if every w € Q has |s(w)] < x for some fixed
regular cardinal x (2nd, bence, A is monadic), then certuin colimit constructions on A
become simplified (technically, A is locally x-presentable). For example, we say that
J is & x-filtered categoty if every subcatecory J' of J with less than « morphisms has
a cone over it (i.e., there exists & natural transformation idys = Aj between functors
Y - J', for some j € J). Then, if J is u w-filtered category, the colimit of any
diagram of type J is calculated as in Set; i.e., the forgetful functor to Set creates
hrits of type J. In particular, if 3 is a (poset-category that 15 a) chain such that
every S C J with [S] < x (a “x-subset™) has an upper bound, and D:J —~ A isa
diagram such that for every j < k, D(j — k) is an inclusion, then colim D is just the
union of the algeras Dj, 7 € J. Similatly, if {6, : j € J} is a chain of congruences in
an algebra A with an upper bound for every x-subset, then V, ey 8; = U;¢; 65

6.6. Foundations. The properties of «-filtered colimits in a monadic category
with arities bounded by «, as in 8.5.5, turn out to be very useful.® We now describe
a few methods, some more “philosophical” than technical, for treating non-monadic
algebraic categories as if they were bounded.

An inaccesnible cardinal, which we will always write as oo, is an uncountable,
regular, strong-limit cardinal (uncountable, of course, means Joo| > w, and «x is a
strong-limit cardinal if A < « implies 2* < «). Let it be said immediately that the
existence of inaccessible cardinals cannot be proved (nor even proved consistent) in
ZFC, bowever, they have a plausibility similar in nature to the existence of infinite sets
(which are also “inaccessible” without the Axiom of Infinity). Given a fixed inaccessible
cardinal 0o, let us call a set X' smallif |X| < oo and Jarge otherwise. In addition to
being “inaccesible” by unions (regularity) and powersets () =~ 2*), one can show that
any set-theoretic copstruction involving small sets will result in & small set.

Assuming the exustence of an inaccessible cardinal oo, we may decide 1o restrict our
attention to sinall sets, and hence small algebras, etc , since all of the sets we deal with
in normal mathematical work are small. By accepting this restriction, we then make
all of our algebraic categories bounded by oc, and hence amenable to the use of the
resuits mentioned in 6.5.5. If this helps us to prove something about small algebras,
then 1t is worthwhile.

An extension of this approach posits an unlimited aumnber of inaccessible cardinals
(specifically, for every cardinal there 15 a larger inaccessible cardinal). This 15 equivalent
to Grothendieck’s method of universes: a universe is a set closed under all set-theoretic

€ And they are one good season why muc unlverul algebratexts on.ly treat the finitary cass, where
% = w (another, to be sure, is ). For the famous Birkhoff Subdirect
Rapresentation Theorem s true only in the finitary case.
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constructions, and one supposes that every set belongs to some universe The purpose
of this 1s to recover what was lost with a single inaccesible cardinal, namely, there
were some sels (the large ones) that couldn’t be talked about, and with unlimited
inaccessibles, every set becomes small at some point Unfortunately, to really exploit
this extra generality involves some technical difficulties, since one 15 constantly neediog
to shift between universes

A better approach, developed by Feferman (8], is to adjomn a predicate $ to the
language of set theory, with the 1dea that S(z) asserts that “z 15 small”, and then add
axioms which say that small sets satisfy the same formulas (1n the language without
§) as all sets. This solves the problem that universes were created for—to regain
the universality lost by a single mnaccessible—but without the associated technical
disadvantages Furthermote, and quite importantly, the extension of ZFC to mclude
S is conservative' no new theorems of ZFC can be proven. This differs from the other
approaches, which require extra assumptions. The 1dea is roughly that, as with the
Reflection Principle of set theory (see {19, p.89]), though an inaccessible cardinal offers
absolute inaccessibility, the approach with S offers innaccesibility for any finste number
of set-theoretic operations, which is all that can appear in a proof anyway.
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Chapter 3
HEYTING ALGEBRAS AND EXTENSIONAL OPERATORS

Every frame is a Heyting aigebra; thus, we begin our investigation of frames by
looking at the properties of Heyting algebras Afler some basic facts in Section 7, we
look in Section 8 at the relationship between Heyting algebra congruences and filters.
In this respect, Heyting algebras are less like lattices and distributive lattices, and more
like groups and nings: every congruence is determmed by one of its equivalence classes.
Although this material is well-known, we go into detail in order to bring out some
additional information (for example Proposition 8.8) and to prepare for the results of
the following section. In the last (and by far the largest) Section 9, we introd
and study the concept of extensional operator The first part of Section 9 introduces
the method of calculation we use in Heyting algebras (“zeplacement principles”), and
the rest of the section is devoted to several classes of extensonal operators and their
various properties.

7. Definitions and basic properties

7.1. Definitions. A Heyting algebra is an algebra A = (4, A, v, —, 0, 1) such
that

(a) (4, A, V,0,1) 182 lattice, and

{b) = 15 a binary operation that satisfies

aAb<e ff agbme (1)

for all a,b,c € A, whete < is the lattice order
A Heyting lattice is a lattice that is the reduct of » Heyting algebra.
In any Heyting algebra, it will be t to define two other “arrow” operations,

«~+ (“bi-arrow”) and ~~ (“double-atrow”), by

ambd=(a=b)A(b—a), and
a~sb=(a—b)—b

For notational convenience, we extend the Heyting operations, A, V, and —, to
sets, by stipulating that these operations “distribute over” sets producing sets, thus,
for example, if a,b€ A and SC A, then

aA(d~S)=an{b—s:5€5}={an(b—s)-s€S)}.
Simlatly,ff f: A ~ B 1s any function and S C A, then
f(S)={f(s) . s€S}CB.

Finally, recall that 1n any lattice, we consider (“arbitrary” or “infinite”) joins and
meets as partial functions A,V : PA -+ A, An expression involving such a meet or

3
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5! P

Join may therefore be undefined, given two such expressions E and E’, we use the
notation

ExE
to indicate directed equality; 1e ,if £ 15 defined then sois £ and £ = E’ If both
Ex E' and E' = E, then we wnite E < E'

7.2. Here are some facts about Heyting algebras and Heyting lattices that we will
regard as basic and use freely 1n calculations.

Proposition. Suppose that 4 is a Heyting algebra, a,b,c€ A, and SC A Then
the following statements hold

(a) a=a=1

(b) (a—8yAbdb=1b equivalently, b<a—~b

(¢) an(a—b)=aAb.

d) a—=(bAe)={a—b)A(a=—¢)

() a—(b—c)=(anb)—e

(f) 1—a=a.

(g) aAa(bve)=(anb)vieAc) (and thusaV(bAc)=(aVb)A(aVe))

(h) (@vby—c=(a=c)A(b=c).

(i) The operation a — — 15 monotone; the operation ~ — a is anti-monotone

(1) e<bifandonlyifa—b=1.

(k) aga—~b

(1) (6—wb)—b=a—b

(m}) aAYS=VaAS

(n) a=AS=Aa—S

© (VS)—a=AS—a
Moreover, a Jattice L is a Heyting Iattice iff a (necessarily vnique) binary operation
— on L can be defined so that (a)-(d) hold for all a,b,c € L

PRrooOF. For (a) and (b), use 7.1(1) on the mequalities JAa < g and bAa <b
Use it in the other direction on g = b < 6 — b to get

aA(a—b)<b M

and hence a A (a —b) < a A b; the reverse inequality follows from (b} and the mono-
toncity of 6 A ~ Continwing with 7.1(1), and using the Yoneds lemma for posets
(3.3), an arbitrary z € X 18 less than either side of (d) precusely when zAa < bAe,
either side of (¢) when £z Aa A% < c, and either side of (f) when z < a, proving (d),
(e), and (f). Statements (g) and (h) are special cases of (m) and (o), since binary joins
exist in A. Monotonicity, (1), follows from (d) and (h); see 9.3 for details () 1s trivial,
The inequality (k) follows from (1), and, therefore, so does half of (I} For the other
half, if 2 < a— &, then (@ =) — b < z — b by antimonotonicity of — ~ &, and so
z < (8~ b)— b by two applications of 7.1(1).
Next, suppose that \/ S exists. Then

Vs€SaAs<z ff Vs€Ss<a—z
i YS<a~2
if eAVS<e
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7

Thus a A/ § 1s the least upper bound of a A §. proving (m); the proofs of {n) and {o}
are analogous

Finally, a proof that (a)-(d) constitute (along with the lattice equations) an equa-
tional axiomatization of Heyting algebras can be found in [22. 1 1.10)

7.3. Regular and Boolean elements. If a 15 an element of a Heyting algebra
A, then the element a— 0 15 often denoted by ~a and called the negation (or pseudo-
complement) of @ Note that @ A -a = 0; in fact, = 15 the largest element z such
that ¢ Az =0. Wesay that a is

(a) regularif =-a=a, and

(b) Booleanif eV =—a=1

Trivially, an element 1s Boolean 1ff it has a complement (sometimes we call Boolean
elements complemented) Let b € A be Boolean. Since 7.2(i) implies that —~=b > b,
we have

—bVab>bV-b=1,

and so ~~bV-b=1 But -=bA-b=0, showing that —-b 15 also a complement, of
5. By the uniq of compl in a distributive lattice. ~=b=b Hence, every
Boolean element is regular

7.4.  Our mamn interest in Boolean elements is that they behave nicely with
respect to the Heyting algebra operations (and, as we shall see later, certain operators
on Heyting algebras).

Proposition. Suppose A is a Heyting algebra, b € A 15 Boolean, and S C A
Then the following statements hold for all 8,c€ A~

(a) aAbLefandonlyife<-bve

(b) bme==bVe.

(¢) a=b=-ave.

(d) bBVAS=AbVS

PROOF. (a) Suppose anbé < c. Then
“bve2=bV(aAd)=(=bva)A(=dvb)=-bVa>a
s0 that a < =bVv ¢ Conversely, suppose that a < =~bVe. Then
aAbL(bV e Ab=(~bAb)V(cAd)=cAbLe.
(b) For any z € A, 7.1(1) and (a) give
zSb=c iff zAOLe iff z<~bVe

(¢) Since a— b > a-+0 and a = b > b, one direction 1s clear. The other direction
1s equivalent by (a) to
(a—=b)A-b<a=0,

which 15 true iff @ A (6 — b) A-b < 0. But this 1s clear, since aA{a—8) < & and
bA=-b=0,
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(d) Ustng =~ = b, (b). and 7 2(n), we have
BVASe-b—=AS= A-b=Ss ABVS

7.5. Boolean Jattices. Recall that a Boolean lattice 1s a distributive lattice in
which every element has a complement (which is necessanly unique) The following
proposition gives an alternate description of Boolean lattices

Proposition. If 4 is a Heyting latuce in which every element 15 regular, ther A
s a Boolean lattice

Proor Suppose every element of 4 1s regular 2and let a € A. It is encugh (o
show that avV=a=1 Now,

aV-a=--(aV-a)
=-{~aA """),
==0=1

7.6. Here are some facts about Boolean lattices, generahizing the De Morgan laws
of 42

Proposition. Suppose A 1s a Boolean lattice and S C A. Then
(a) The map z — =7 1s an order isomoprhism A — AP

() ~VS=A-S

(©) ~ASxV-S

PROOF Since every element of A 1s regular, the map a ~+ —a 15 onto (a € 4 has
preimage —a ), moreover,

~ag~b \ff maAbSO iff bS-ma il b<a

for every a,6 € A, showing that 1t 15 also an order-reversing embedding, proving (a).
Parts (b) and (¢) follow immediately from (a), since =, by reversing the order, swaps
meets and jomns.

8. Filters and congruences

8.1. Filters. A filter in a meet-semilattice A4 is a subset F C A satisfying the
following three conditions

8.1.1. l€F.

812, ac€Fanda<a mplyd €F (a0 €4)

8.1.3. a€Fandbe FmplyandbeF (a,b€A4)

8.2. Filters from Congruences. Every meet-semilattice congruence gives an
example of a filter:

Proposition. Suppose 9 1s a congruence on a meet-semlattice 4. Then 1/6 122
filter in A
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Proor. We check 8 1 1-8.13for 1/6 Since 1€1/9, 8.1.11s clear. Next suppose
a€l/f anda<a Thenaflanda'fa',s0a=ara’@1Aa"=a' Thus, afa
and so o’ € 1/8. venfying 8 1 2. Finally, suppose a.b&€ 1/ Thensfland 481 so
that a Ab8 1. Thus. aAb € 1/6, verifying 8 1.3.

8.3. The equivalence of filters and congruences. In the rest of this section
we show that for Heyting algebras the filters ansing from congruences are typical’
associated to each filter F in a Heyting algebra A 15 a congruence ©(F) on A such
that the operations

are mutually ;nverse isomorphisms between the set of filters in A, ordered by inclusion,
and Cond.
We start with the following proposition.

Proposition. Let A be a Heyting algebra Then forevery o,z y € A the following
statements are equivalent’

(8) a=—r=a—y

(b) eAz=aAy

(c) agz—y

@) yelarz.a—a)

(d2) zefany, a—y.

ProoF Since aA(a—b)=aAband a=(aAbd)={a=~e)A(a=b)=a—b for
every a,b € A. the two operations a A ~ and a— — are related to each other by the
equations

aA-=aA(a—-),

Q)

By applying these two operations to the equations (a} and (b), respectively, it follows
that (a)<>(b) for every a,z.y € A Now consider the conjunction

g~ ==g—(aA~)

aAz<y and aAy<z. (2)
Clearly, (2) is equivalent to the conjuction
aAz<aAy and aAy<aens
and thus equivalent to (b) Alternatively, (2) 1s equivalent to
a<z=—y and aLy—z
aad thus to {c). Alternatively again, (2) 15 equivalent to
aAz<y and y<a—z
and thus to (d1); the case of (d2) is similar.
8.4. Notational convention. We will exploit the equivalence of the equations

g—z=a—y and aAz=aAy,
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and denote them both by
gaz=asry

More formally (and more generally) the symbols +, &', etc, appeaning n a formula
may denote either — or A but must denote the same operation i all of their oc-
curences This notation will only be used in a formula if all resulting instances of the
formula are equivalent Thus 1# @ = a denotes the two (valid) equations 1 —a = a
and 1 Ag = a. and the reader may venfy the truth (and hence equivalence) of all four
instances of the equation a#{a +'b) = a » & (to be used later 1 fact)

8.5. Proposition. If F is a filter 1n a Hexting algebra A, then for every pair of
elements r.y € A. the following two statements are equivalent

(a) asz=asyforsomea€ F

b) zeyeF
Moreover if we define the relation O(F) to hold between = and y just in case these
statements are true, then O(F) is a congruence

Proor. The equnalence of (a) and (b) follows directly from 8 3 if (a) holds, then
a< z+~y,and thus using 8 1.2 so does (b), conversely, sf (b), then 2y < 2~y
gives (a)with a =z —y

We now show that ©(F) 15 a congruence Since 1 € F (8 1.1),1t follows that ©(F)
15 reflexive, ©(F) 1s obviously symmetric; for transitivity, suppose z &(F) y &(F)
Choose a,b € F such that sAz=cAyand bAy=b6Az Then aAdEF by 813,
and

(@A Az =bA(erz)=bA(aAY)=an(bAYy) =an(bAZ)=(aAb)Az,

so that £ ©(F) z. We have thus shown that ©(F) 1s an equivalence relation
To complete the proof we need to show that ©(F) repects the basic operations of
A. Suppose z ©(F) 2’ and yO(F) ¢/, and choose a,b € F such that

aAz=ahz’ and  beyzbsy
As before, aAb€e F Now,
(aAD)A(zAy) = (@AD)ABAY = (@AZYARAYY = @A AT Ay
thus, s Ay©(F) 2' Ay Simlarly, using distributivity,

(and)A(zvy)=(aabAaz)V{aAdAy)
=(aAbAZ)V(aAbAY )= (aAb)A(2' VY).

and so zVyO(F)2' vy Finally,

(@Ad)—(z=y)=(aAz)~{b—y}
=(@A2)=(b=y) = (aAb)— ('~ ),

showing that z — y 6(F) 2’ —y This completes the proof
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8.6, Proposition. Suppose A 1s a Heyting algebra Then
(8) FC F'if and only if ©(F) C O(F'), for all filters F,F' 1n A, and
(b) O(1/8) =08, for all # € ConA.

Proor. To prove (a), assume F C F'. Then z ©(F) y unplies 2z~ y € F, s0
that 2y € F' and z ©(F') y, showing that O(F} C 6(F’). Conversely, assume
O(F) CO(F'). then, a= g« 1€ F implies a O(F) 1,50 that a @(F'}) 1 and a € F',
showing that F C F'.

To prove (b) suppose z ©(1/6) y. Then asz =a«y for some a € 1/6 Hence,

z=lszfasz=asylflay=y

Thus, z 6 y, and we have shown that ©(1/6) C 6. For the converse, suppose z 8 y.
Then 1 =2 —z8 2y, and. similarly, 1 6 y—~z Thus, 18z ~y.Soz—ye1/8
and z ©(1/9) y, which shows 8 < ©(1/6).

8.7. Thecrem. Let A be & Heyting algebra. Then O, as defined 1 8.5, is
an 1somorphism between the set of filters on A, ordered by nclusion, and Con A, 1ts
nverse is given by § — 1/6.

PRoOF  © maps filters to congruences by 8.5. It 1s order-preserving and 1-1
by 8.6(a). and it is onto by 8 6(b) Thus © is an isomorphism Finally, 8.6(b) shows
that ©=1 is given by § =~ 1/6

8.8. Proposition. Suppose A is a Heyting algebra Then the pnimcpal congru-
ences of A are exactly those associated with principal filters in A. If F' is the pnncipal
filter 1a, then the equivalence class of ©(F) containing z is the interval [aAz. a—12].

In symbols. z/©(1e) =[aAz, a—2].

PRoor It 1 clear from the preceding results that ©(c,d} = O(1a « &) and
O(1e) = O(c, 1), establishung the first part of the propoeition The second part follows
from 8.5 and 8.3:

zO(la)y ff asz=asy iff pelanz,a—2]

9. Extensional operators on Heyting Algebras

9.1. Operators. Recall that an operator on a poset A 15 simply a function
[+ A — A, that composition of operat 8 | and m is denoted, as usual. by mol
(so that (mol)a = mia), and that a closure operator 15 infiationary, monotone, and
idempotent

If A is 8 lattice or Heyting algebra, then the collection of all operators on 4 is
likewse a lattice or Heyting algebra, where the order on operators 1s pointwise

{<m ifandonlyif Va€Ale<ma.

The operations {Am. !V m, and [~ m and constants 0 and 1 are therefore also
pointwise (IAm)a = laAma, 0a = 0,etc (Of course, this1s just another presentation
of the product A )
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9.2. Here are two simple results illustrating the above notions

Proposition. Suppose that p and g are operators on a lattice A Then

(a) if p and ¢ are inflationary and monotone, then pV ¢ < (pog)A(gop).

(b) Ifp and p' are monotone and ¢ 1s :dempotent, then p < q and p’ < ¢ imply
pop'<q

PROOF Let p and ¢ be asin (2), and fix 2 € A Since ¢ 15 inflationary, we have
both a < ¢a and pa < gpa Using the monotonicity of p on the former, pa < pga, and
hence pa < pga A qpa Similary, using that p is inflationary and that ¢ 15 monotone.
we have ga < pga A gpa and hence paVga < pga Aqpa  Rewnting, (pVqla <
((pog) A{gop))a, and since a was arbitrary, (a) follows

Now suppose p, p’ and g are asin (b),andfixa€ 4 If p<g and p' <gq, then
applications of the assumptions yield

prlea < pea < gga = qa

and so (b) follows

9.3. Proposition. Suppose that p 1s an operator on a lattice A. Then the
following three statements are equivalent -

(a) p 1s monotone

(b) plaAd) < paipb forevery a.be A

(¢) pavpb<plavh) forevery a,be A

Proor By symmetry, (b) 1s equivalent to p(aAb) < pa over all a.b € A. But the
paus (z,y) with 2 < y and the pairs (aAb,b) with a and b arbitrary are coextensive,
since t <y iff r=zAy Thus (a)e(b) The proof of (a)e>(c) is dual.

9.4. Extensional operators. The main property of the operators we will be
studyng 15 extensionahity, which is introduced by the following proposition.

Proposition. Suppose | 1s an operator on the Heyting algebra A Then the
following statements are equivalent

(a) z6yimpliesiz 6ly forallz,y€ A and 6 € Con 4.

(b) eAlz<lfasz)<a—iz foralla.z€ A

(c) aslz=asl(as'z) foralla,z€A.

(d) esz=asympliesaslz=aslyforalla,z.ycA

(¢) zmy<lzelyforallzycA

An operator satisfying these conditions 1s called extensional

Proor By Proposition 8 8, (b} 1s equivalent to {{a»2) ©(Ta) {z, which is the case
if | satisfies (a), since, taking 8 = ©(1a), we have a 8 1 and therefore avz 8 13z = z.
Thus (a) implies (b)

Next, since as {a»’'z) = as z, applying the monotone operato* a» — to (b) yields

axizSarifas’z)<anlz,

Thus a*lz = axi(as' ), and (b) imphes {c)
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Assume (c) and that o’z =a+'y. Then
asiz=asl(as’ z)=asxl(a* y) = axly,

proving that (c) imphes (d).
Now (d) is equivalent by 8 3 to the statement

a<zey imphes a<lzely (0,z,y€4A), Q)

which 15 1n turn equivalent to (¢) by Yoneda (3 3)

Finally, assume (¢), let 8 € Con A, and suppose z 6 y. Then z ©(1/6) y by 8 6(b),
and so z+y € 1/6. But 1/6 15 up-closed and so Iz «ly € 1/6 1t follows that
iz 8 ly. Hence (e) implies (a}, and the proof is complete

9.5, Discussion. Condition (a) of the proposition says that { is compatible
with every congruence of A Clearly, therefore, every poly ] function on A 15
extensional (where a polynomial function is defined analogously to a term function,
except that “constants” from A may appear in the term). More generally, for any
extensional operators | and m, the operators IAm, IVm, [—m, and lom, and the
constant operators 0 and 1, are extensional In other words, the extensional operators
form a sub-Heyting 2lgebra of the algebra of all operators. Notice that the “free”
occurences of = and »' 1 (b) and (c) each give nse to two distinct conditions whose
equivalence does not follow from 8 3 but rather i3 established in the course of the
proof above. The word “extensional” used to describe these operators 1s denved from
condition (e), which can be interpreted to mean that ! “preserves (degree of) equality”
the results of applying ! are as equal as the arguments to which it 15 applied, in a logic
with A as the truth values.

9.6. Replacement principles. The approach {o calculation in Beyting algebras
we will be using is based on replacement principles, i e., rules that allow replacement
of subexpressions by other expressions These naturally involve Heyung algebra con-
gruences and, thus, extensional operators.

Proposition. Let [ be an extensional operator on a Heyting algebra A, and let
a,be A. Then,

(a) (a=sd)wia=(a=b)slb

(b) arla=asll.

(¢) (bma)wlb=(b—a)sl(and).

(d) (d—a)xlb=(b—a)sla,ifagh.

PROOF  Furst of all, (s) 18 just & restatement, using 8.3, of condition {e) of 9.4
Next, replacing b with 1 in (a) results in (b), since a — 1 = 1; likewise, replacing a
with a A b in (a) results in (c), since

bmfaAb)y=(b—=(aAb))A((aAd)=b)=(b—a)Al=b—a
Finally, (d) is just a special case of {c).

9.7. Some useful lities. As an ple of the use of 9.6, and for future
reference, we now prove some Heyting 2lgebra equations. Fusther use of these principles
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will be made throughout the rest of this section and 1n Chapter 6 on regular operators
The equations below are proved valid in any Heyting algebra A, and free vanables are
assumed to vary over A

9.7.1. a=—(b—ct=b—~(a—¢)
PROOF. We have
(am(b—mc)={b~c)=(bA(a~(b—=c)))—¢

={(bA(a—c))=c by 6 6(b)
=b—({a—c)=c)

9.7.2, a—(anbl={a—b)—a.
ProoF We have

(a—(anb)~{aAb)=(a—(aAb))—a by 9 6(d)
=(a—b)—a by 9 6(b)

9.73. Ifc>a then(b—~c)—a=(b—a)A{c—a)
PROOF Assume ¢ > a Since ——a is anti-monotone, (b~c¢) ~a < ¢~ a; thus,

(b—c)=a=({b—~c)—a}A(c~—a)
=((b=a)—a)A{c—a) by 9.6(d)

9.74. (bAc)—a=(b—a)A(c—a)
PrROOF We have

(brc)=a)—a=(b=(c—a)j—a
=(b—=a)A({c=a)=a) by 9 7.3.

9.7.5. (b—a)=b=(b=ea)A(a—¥b).
PROOF Since — — b 15 anti-monotone, (b —a) — b < a —b: thus,
(p~a)—~b=((b=a)—b)A(a~b)
={(b—a)—~a)A(a—1b) by 9 6(a).

(Note that the b we replaced with a was “within the scope” of both a~b and b—a.
Justifying the replacement by 9 6(a} )

9.8. Beyond extensional operators. In the rest of this section, we tahe a
look at some of the properties of extensional operators on a Heyting algebra A that
moreaver are inflationaty, monotone, and/or :dempotent. and some examples of such
We begin with the inflationary and the monotone extensional operators.
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Proposition.

(a) An extensional operator | 1s inflationary iff 11 = 1

(b) An arbirary operator i 1s extenstonal and monotone if and only if exther of the
toliowmng two equivalent conditions hold.

a—b<la=lb  (a,bEA), (1)
(a~b)elag(a—b)sld (s,bEA). @

ProoF. (a) If [ 1s mflationary, 1 < {1. Conversely, 1f 1 =1, then forany a€ 4,
9 6(b) gives aAla=aAll =aAl=qa,andso a<la.
(b) If 1 is extensional and monotone, then, by 9 6(c),

(a—b)Ala=(a—b)AllaAb) S HaAb)< b,

and so a — b < la — b. Conversely, if | satisfies (1), then for any 2,y € A. both
z—-y<lz—lyand y—z < ly— iz, and so, taking the meet of these inequalities,
2y & lze=ly. Hence, | 1s extensional by 9.4(e). Moreover, smce z < yiff z—y=1,
monotinicity of | follows directly from (1).

Thus it remains to show the equvalence of (1) and (2). Now (1) is equivalent to
(a—b)Ala < b, and thus to (a—b)Ala < (a —b) A b, which is one of the instances
of (2). Applying (8 — &) — — to this last nequality yields the other.

9.9. Logical operators and quasinuclei. It will be convenient to have names
for the classes of operatos described in the previous proposition. Thus, an inflationary
extensional operator will be called Jogical, and a monotone extensional operator will
be called a quasinucleus (A disgram showing the relations between the classes of
operators ntroduced in this section can be found in 9.12.)

In view of (1) sbove, quasinuclei might alt jvely be called “uniformly mono-
tone”. In fact, part (b) of the Proposition is actually a special case of a quite general
phenomenon occuring with extensional operators——namely, in a sense that can be made
precise (see the remarks at the end of this section), an extesional operator satisfies an
ordinaty property (such as monotovicity) off it satisfies the corresponding “uniform
version” of the property.

9.10. Prenuclei. Next, we look at the extensional operators that are both
inflationary and monotone-=1.¢., the monotone logical operators, or, if you prefer, the
inflationaty quasinucler. Fortunately, we don’t have to make up our minds what to call
them, since these operators have been studied before: In (3], Banaschewski introduces
the notion of a preaucleus, which 1s an inflationary, monotone operator p satisfying
the condition

anpb<pland) (a,be A). 1)

Proposition. Prenuclei are precisely the monotone logical operators (or 1nflation-
ary quasiaucler).

ProoF We show that (1) is equivalent to the extensionality of p assuming that p
15 inflationary and montone Furst, (1) 15 clearly equivalent to aApb < aAp(aAb) and,
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since the reverse mnequality holds by the monotonicity of p. thus to aApb = aAp(anb)
But this equation s equivalent of the extensionality of p by 9 4(c)

9.11. Nuclei. Finally, we identify the extensional closure operators Recall that
a nucleus 1s an opetator j satisfying

a<ja=jja and  HaeAab)=janzdk  (a.beA) (6}

Proposition. Nuclei are exactly the idempotent prenucler Thus, they are exactly
the extensional closure operators Moreover, a operator ) on A 1s a nucleus iff it
satisfies

a—jb=j3a—jb (a,b€A) 2)

Proor Both prenucler and nuclet are inflationary and monotone (the monotonicity
of nuclei following because they preserve binary meets: ¢f 9.3) If p 1s an :dempotent
prenucleus, then, by two applications of § 10(1),

paApb < plpaab) S pplahib)=plant)

for any a,6 € A The reverse inquality 1s again 9 3 Thus p 1s a nucleus Conversely,
if j 15 a nucleus, then
aAd<janjb=s(anb)

for every a,b € A, and 50 7 1s an idempotent prenucleus

For the second part of the Proposition, note first that any j satisfying (2) is in-
flationary (take & = a) and idempotent (take a = jb), and therefore since a — b <
a — jb = ja— jb, j 15 monotone and ext ! by 98(1) Thus j is a nucleus
Conversely, if § is a nucleus, then ja-— jb < a— b (since y is inflationary and — — jb
15 antimonotone) and, using 9.6(¢),

saA(a—gb) = 3(a Apb) A(a—38) S J(a A jB) S 14b =3,
so that @ — jb < ja — 3b, proving (2).

9.12. Summary of classes of operators. The definitions and refations be-
tween the operators we have introduced in this section are summanzed by the following
diagram.

inflationary EXTENSIONAL mouotone idempotent
~
logical quastucleus
prenucleus 1demp quasmucleus
~N 7
nucleus

The properties are on the top row. and the hnes are implications in the upward direc-
ton
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9.13.  Classifying extensional operators. We now look at examples of
the operators described above In fact, for each type of operator. we consider & pawr
of operators of that type (each defined by a Heyting polynormal) that “clasaify” the
action of all the operators of that type

Proposition. For any elements o and b of 2 Heyting algebra A, the cparators
et(a b) and ey(a,b) defined for every £ € X by

ei(e,b)z=(z~a)—b and e d)z=aA(b—2z) 1)

are extensional. Furthermore, the two familes of operators er(a,b) and e)(a,8), for
a,b € A, classify (the action of) extensional operators, in the sense that, for every
extenstonal operator {.
{<epla,b) o lagh, 2
efab)gl iff a<ih. 3)

Proor. Since e(a.b) and e;(a,b) are polynomial functions they are clearly ex-
tensional If I < e1(a,8). then la < eq(a,b)a=(aea)—b=1eeb=b Conversely,
if la < b, then. using 9 6(a) and the monotomcity of (2 «+a) — ~ forevery z € 4,

g (zma)=lz=(z=a)=lag(z~a)=b=e1{ad)z. %
Thus | € e1(a,8). Next, if ¢)(a,b) £ I, then ¢ = a A (b—b) = ¢(a, b < Ib.
Conversely, if @ < 1b, then, for simlar reasons as above,
ey(adyz=aAn(b—z)SA(b—z)=lzA(bmz)<Iz. (5)
Thus ¢y(a,4) <!

9.14. Proposition. The operator eq(a,b) ¢ logical :f 2 < b. Define li{a,4) =
¢1(a.b) when a < b and

La,b)z=2zVveifab)r (z€4) (1)

for every a.b € A. Than ij(a,b) is also logical, and \a,b) and iy(a,}) classify logical
operatots 1n the sense of Proposition 9 13.

PROOF Since ¢1(a,8)1 = (a 1) — 8 = a — b, the fitst part of the Proposition
follows from 9.8(a) For any logical uperator !, la < b imphes a < b (since ! 15
inflationary). Hence the ¢4(a,b), for a < b, are the appropriate “upper” classifiers for
logical operators The operatots {)(a,8) are clearly inflationary, hence logical, and if {
15 any logical operator. then ¢;(a,8)z < Iz = zVvir iff £Ve)(a,)z < Iz, and therefore
the Iy(a,}) are the appropriate “lower” classifiers.

9.15. Proposition. The operators gq(a.b) and ¢;(a.b) defined by

(e d)r=(s—a)=b and qlabd)z=cAll—z} 1

—

are quasinuclei and, furthermore, classify quasinucier 1n the sense of Proposstion 9 13
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Proor Since gi(a 4) and ¢,(a.b) are polynomal functions, they are extensional
Both the operations — — & and — — a are ant-monotone, so their composition 1s
monotone, thus ¢:(a b is a quasinucleus The operations a A ~ and b~ — ate both
monotone, and so g;(a b) 15 also a quasinucleus

If ! 1s a quasinucleus then ! satisfies (2 — y)«lr < (x ~y) sy by 8 8(2) Hence,
the same argument used for (3) and (6) 1n 913 with — instead of —, and with the
nontnvial equalty replaced by < can be used here to show that gy(a,b) and g)(a,b)
classify quasinuclel

9.16. Corresponding directly to 9 14 we have the following result for prenucler,
the proof of which we omut, since 1t 15 an obvious translation of the proof of 9 14

Proposition. The operator q1(a.b) 1s a prenuclevs iff a < b Define py(a,b) =
qp(a b) when a <b and

pabr=zveabds (r€4) v

forevery a b€ A Then p (a,b) 1s also a prenucleus, and py(a,b) and p(a,b) class:fy
prenucler in the sense of Proposition 9 13

9.17. Evalustion adjunctions. In all of the preceeding propositions, the “clas-
sifying” properties of the operators involved are adjointness relationships Consider
extensional operators, for example. for each a € A there is the evaluation mapping
¢ = ea from the poset of extensional operators on A to A, which 1s monotone by the
defiition of order on operators The classifying properties of ¢1(a.8) and ¢;(a,b) then
say that the mappings e;(a,~) and ¢;(a,~) are respectively left and right adjonts to
evaluation at @ The case of quasinucle: 15 similar. For logical operators and prenuclei
we get an adjunction nstead between the posets of operators on A and the interval
{a,1] A consequence of these adjunctions 1s that evaluation at a preserves whatever
meets and joins exist in the algebra of operators (remembenng, of course, that for
logical operatots and prenuclei, the codomain 15 the interval [a 1]) In other words
(with the noted restriction) meets and joins. when they exist, are pointwise

9.18. Classifying nuclei. Pointwise joins of idempotent operators ate rarely
idempotent. This is in particular the case with nuclei, and so, by the comments of the
previous paragraph, we can’t expect nucle: to have “upper” classifiers They do have
a restricted form of upper classifier, however (which, despite the restriction, are still
“coniplete” in the sense mentioned in 15 4), and the lower classifiers for prenucle: are
in {act already 1dempotent, and so are lower classifiers for nucler. This 1s spelled out
in the following proposition

Proposition. For every a,b € A, the operators qi{a a) and p(a,b) are nucle)
Hence, for every nucleus j, we have

1€ q1(a.a) 1F je=a. e
@D < i ag b @)

Proor gr{a.a) 15 a prenucleus by 9.16, and 15 1dempotent since (z —»a) —»q =
z—a by 72(1) The upper classifying property of gi(a.a) as a nucleus follows from
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that of the prenucleus smce ja < @ iff ja = a, as j 15 mflationary Sumiarly, 1t
will be enough for the lower classifying property of py(a,b) to show that p {a.b) is
dempotent By definition, py(a.b)z =z Vv gi(a b). Now

9:(a. O)pi(a, b)z = gy (a.b)(z V gy(a, b)z)
=zaA(b—(zV{aA(db—2))))
=eAb=(zV(IA(1=2)
=aA(b—z)=q(a,b)z,

and so

pi(abpy(e,) = py(0,8) v gi(e b)py(a.b) = py{a,b)V gi{a b) = py(a.b).

9,19. Di ion. The p ding proposition shows that meets of nuclel. when
they exist, are pointwise In Chapter 5, when we see that nuclei on complete Heyting
algebras correspond exactly to frame congruences (1.¢ , equivalence relations compatible
with finite meets and arbitrary Joins) we will see that—at least in the typical case that
a < b—the nuclei p(a,b) correspond to the principal congruences ©(a,b)

9.20. Extensional operators on complete Heyting algebras. We now show
that when A is complete, all of the operator algebras considered above are likewise
complete.

Proposition. If E s a class of operators on A of one of the types considered above
(i e., extensional, logical, quasinucleus, prenucieus, or nucleus), then the porntwise meet
of E is agamn of the same type.

PROOF. Ifeach operator in E 15 extensional, then for any a,z,y € A with a—ez =
a~ey forall ¢ € E, we have
a={AE)z=a~AEz=Aa—~Ez
=Ae—Ey=a—AEy=a—(AE)y
Thus A £ 13 extensional by 9.4(d). Clearly meets of inflationary operators ate again
wnfiationary and similarly with t p ors Thus, to plete the proof, we

only need ‘o show that pointwise meets of nuclei are :dempotent Suppose J is a ¢lass
of nuclei and a € A Then, by monotonicity and idempot of the elements of J,

(AIXATIa = AJ(A Ja) S,Q,j(ja)' =AJa

9.21.  Structure theorems for operators. So far, we have only used the
classifying operators of various types to show that the operations on the corresponding
operator algebras are pointwise, which can anyhow be established directly The more
important use of classifying operators is to prove structure theorems to the effect that
every operator of a given type 18 a join or meet of special operators
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Theorem. Suppose A is a complete Hevting algebra Then every operator of the
classes considered (extensional logical. quasinucleus. prenucleus, or nucleus) is both a
Jomn of lower classifiers and a meet of upper classifiers of the same type (except that
nucler only have lower classifiers)

ProoF We prove the theorem fo: joins of lower classifiers of extensional operators,
the other cases are similar So let ¢ be an extensional operator We show that, in the
complete lattice of extensional operators

e=V{ey(a,b). a < eb)

Now, forevery a b€ 4 with a < eb. we have ¢;{a,d) < e by 913(3) Thus e 15 bigger
than the Join Conversely, let z € A be arbitrary. Then e;(ez.2) 15 included in the
join. since ez < er But e {er,z)r = ez A(z ~— z) = ez, and so the value of the join
at z 15 at least ex ‘Thus e is less than the join completing the proof

9.22. (Pre)fixedpoints of extensional operators. Recall that a fixedpoint
of an operator { 4 — A 1san element ¢ € A such that la=a Weecall g a
prefixedpoint of 1 1f la € @, and write prefix! for the set of such elements Since the
identity 1s the smallest logical operator, and — on logcal operators is pointwise, 1t
follows that (==l)o = (la = a) ~ o for all a € 4 By abuse of notation, we also
write ==l for the same operation when ! is only an extensional operator (the least
extensional operator 1s the constant 0 and not the identity)

Proposition. Suppose | and m are extensional operatorson A Theg the follow-
ing hold.

(a) prefix! = fix o=l = mg~=l.

(b) prefix! = prefixm 1ff == = ~~m.
If{ and m are logical, then prefix may be replaced by fix

t=1

ProoF If I is a logical operator, then since ! 15 inflationary, 1t follows that
prefix] = fix!, explaming the last part of the Proposition Also note that for any
extensional operstor /. ==/ 1s always logical, and so

prefix o= = fix ==l (03]
Let us first prove that
g =l C prefixm ff m < -l 2)
This follows from the following calculation for an arbitrary a € A*

(~=)a € prefixm ff m{(lg —a)~a) < (la—a)—~a
it (la—a)Am((le—a)=~a)<a
ff (la—a)Ama<a by extensionahity
ff mag(la=—a)=a
Next, to prove (a), let fa < @ Then (la—a)~a=1—a=4a,so0 (~~l)a = q, proving

prefix{ C fix==! The mnclusion fix =~ C rag=~l 15 tnvial Finally, putting m =/ n
(2), we conclude rng == C prefix!, completing the proof of (a)
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&

For (b), replace m n (2) by ~-m, and use the equalities of {a) and (1) to ge
prefix! C prefixm Aff ~~m < =l

By symmetry. (b) follows
9.22.1. Let us just restate the first part of the Proposition in the form in which
we will most often use it

Corollary. If { is a logical operator, then
fixl = {la—wa:a€ A4).

9.23. Discussion. A logical operator. by definition, 1s regular (1n the Heyting
algebra of logical operators) if ~=I = l. The Proposition then says that every logical
operator { has the same fixedpoint set as a unique regular operator (namely —~-!)
Regular operators are the subject of Chapter 6, where, among many other things, a
characterization of the fixedp sets of regular operators (and thus, by the Proposi-
tion, the fixedpoint sets of logical operators, and the prefixedpoint sets of extensional
operators) s given (22 7)

Also, notice that for extensional operators ! and m, we have -~ = —-m iff
lo—a=ma-—a forall a € A. Since, by the Proposition, this s just in case [ and m
have the same prefixedpoints, the Proposition is another example of the umiformity of
extensional operators. wehave Ve € A la~a=ma—aiff Va€e A la<s® ma<a.

9.24, Final Remarks. The theory of extensional operators on a {complete)
Heyting algebra A, as developed 1n this section, is the beginming of a more comprehen-
sive theoty, which includes all of the results on regular operators in Chapter 6, as well
as possessing some “semantic” connections to topos theory by way of the sheaf topos
Sh(A). For example (sssumung that A is complete), the elememts of A correspond to
the global elements of 2 in Sh(A), i e, to the morphisms 1 — . Every morphism
£ 5 ~ 0 therefore induces by composition an operator on A. It can be shown that
these operators are all extensional and that every extensional operator on A anses in
this way from a unique morphism.

This connection suffices to explain the relation between properties of extensional
operators and their corresponding “umiform properties”, as mentioned in 9.9 and 9 23.
This relation can be seen to anise from an “Q-rule” for Sh(A). Namely, morphisms
with domaiz Q2 in Sh(A) are completely determined by their effect on global ele-
meats of , and hence for any formula ¢(Z) wvolving arbitrary extensional operators
(cepresented by their associated morphisms Q - 2), where 7 is a sequence of n vari-
ables of type 2, we have that if the associated morphism fy : Q® — Q is such that
foo@ = true for all : 1 — ", then fy = true—which, unwound, amounts to the
“uniform” vession of ¢

There are other, more topos-theoretic connections, but these are beyond the scope
of the present investigation Various additional properiies of the operators considered
1n this section are given in the exerciees
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9.25. Exercises. In the following exercises, all classifying operators are upper
classifiers, 1 ¢, ¢(a.b) means g;(a b), etc. It is an additional exercise to formulate and
prove corresponding properties for the lower classifiers

9.25.1. Show that

() e(ay, b)) =e(ar, b2) il @, —az < by =

(b) g(e1.5y) = qaz b2) 1ff by = > and (writing 8= b) = b») (@) ~07) ~b=b.

9.25.2. Show that

(a) glar,b;) 0 glaz,82) = g{{ay — b1) —a2,(by ~ a2) — bs).

(b) g(a.8)® = g(a.b)* (exponents denote 1teration)

{c) q(a,b) 15 1dempotent 1ff (b—a) = b=b.

(d) g{a,b) 152 nucleus f (b —a) -=a=b and then g{a.b) = {4 b)
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Chapter 4
FRAMES AND x-FRAMES

Frames are the mawmn objects of study in this thests. However, as was pointed out
by Madden [32], the auxilhary notion of «-frame. since the category of such bas a full,
teflective subcategory of Boolean objects, 1s potentially useful for obtaining results
about frames. The paper of Madden and Molitor {33] has just such a result, and we
obtain another such result in Chapter 8 Thus, this chapter 1s concerned with both
frames and «-frames.

We introduce frames in Section 10, give the standard construction of free frames,
and prove a new charactenization of the night adjoints of frame morphisms Then, 1
Section 11 we introduce «-frames (the definitions and basic results are taken from (32)),
and follow this with a senes of new results characterizing the types of hmits preserved
by the free functor from the category of A-frames to the category of k-frames, where
A < . We also prove a result a result about congruences on products of «-frames,
and we deduce from this & similar result for frames Finally, in Section 12, we look
at explicit descriptions of various colimits of frames and «-frames and, in an Exercise,
sketch a proof that products and directed colimits commute in the category of frames

10. Frames

10.1. Frames and locales. A frame is, by definition, a complete lattice 4 that
satsfies the following infinite distnbutive law:

sAVS=VaAS (a€A SCA). (1)

We refer to this law as “frame distnbutivity”. If A and B are frames, then a function
f: A~ B ise frame (homo)morphismif f preserves finite meets and arbitrary joins
(including the empty mest and join' f{1) = 1 and f(0) = 0} Frames and frame
morphisms clearly form a category, which we denote Frm. The opposite category is
denoted Loe; thus Loc = Frm°®P. Objects of this category (which are of course just
the same as objects of Frm) ave called locales, and morphusms ate called contsnuous
maps, in keeping with the topological terminology.

10.2. Proposition. Suppose A is a complete lattice. Then A is a frame if and
only if A 15 a Heyting algebra. In this case, the frame and Heyting algebra structures
on A are related by the equation

a—b=\{z€A:arz <t} (a,b€A) 1)
Proof. In a complete Heyting algebra, joins of all subsets exist by definition, so

that frame distibutivity 15 just 7 2(m). Conversely, suppose A is a frame, and take (1)
as the definition of —~ Then,

anfa—b=oAV{zeAd.anz b} =V{eAz:anz<b} Kb

53
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On the other hand. 1if a Az < b, then z 15 one of the elements 1n the join on the night
of (1), and so t <a—b Thus zAa<biff z<a—"b, and so — makes 4 into a
Heyting algebta Since a lattice can have only one Heyting algebra structure, it must
be defined 1n A4 by (1), completing the proof

10.3. Open morphisms and cBa's. Although, by the Proposition, frames and
complete Heyting algebras deterrmne the same class of lattices, they are distinguished
as algebras by the operations we take as fundamenta! For frames, we take fimte meets
and arbitrary joins as 1s reflected in our definition of frame morphism For complete
Heyting algebras. we tahe all mests and joins as well as the arrow operation Thus, a
complete Heyting algebra morphisms simultaneously a Heyting algebra morphism and
a complete lattice morphism We denote the category of complete Heyting algebras
and morphisms by cHa, and note that it 1s 8 non-full subcategory of Frm. A frame
morphism that preserves arrow (as given by (1)) and all meets (and thus is a complete
Heyting algebra morphism between the associated complete Heyting algebras) is called
open, since these correspond (as continuous locale maps) to open continuous functions
between topological spaces

Similarly to {rames and complete Heyting algebras, Boolean frames, that 15, frames
in which every element is Boolean, are the same thing as complete Boolean algebras
(cBa’s), that 1s, Boolean lattices that are complete. Morphisms between ¢Ba's, by
defintion, preserve all meets and joins. as well as negation —~, and we denote the
category of ¢Ba's and ¢cBa-morphisms by cBa and treat it as a subcategory of Frm.
Because frame morphisms preserve complements, every frame morphism between cBa's
1s a ¢Ba morphism (since 1t then also preserves meets by the De Morgan laws 7 6), and
0, unlike cHa and Frm cBa 1s a full subcategory of Frm. Also note that cBa-
morphisms preserve arrow (definable from join and negation), and so ¢Ba can also be
thought of as a full subcategory of cHa

10.4. Frames are monadic. It is clear how the equational presentation of
complete join-semilattices given in Section 5 can be expanded to include the operations
of finite meets and the equations for frame disttibutivity and thus give an equational
ptesentation of frames. The following proposition gives a concrete description of the
free frame on a set of generators It follows that Frm 1s monadic and therefore has
the properties 6.5.1-4

Proposition. Let X be aset, and let Fo(X) denote the posat of all finite subsests
of X ordered by reverse inclusion {1e, s <t if and only sf t C s) Then the sor
Foo(X) of all down-tlosed subsets of Fy(X), ordered by inclusion, 1s (a presentation
of} the free frame on generators X. Joins and meets in Fee(X) are given by uaion
and intersection, the insertion of generators is z w |z, and the unique extension
JiFo(X)— A ofamapping f X — A is given by

19)= V. ASGs) (1
1€S

We remark that Fo(X}, with the operation of U and unit element §, 15 the free
semilattice on X' The reason for the terminology Fo(X) and Fuo(X) will become
clear in the next section
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ProoF See [22]. I1.1.2

10.5. Right adjoints of frame morphisms. Suppose that f: 4 — Bisa
frame morphism. Recall from Proposmtion 4.3 that, since f preserves arbitrary joins.
f bhas a night adjoint. f, - B — A. and f and f. are related to each other by the
equations

fo=V{ee A fa<bh) (beB); ¢y
fa=AbeB.agfb} (0€4) @

Moreover, these nght adjoints to frame motphisms satisfy the laws id, = id and
(9f)a = fags, showing that the operation f ~ f, is a functor (). : Loc — Set.
Also, f. 15 1-1iff f is onto, and f, is onto iff f 15 1-1, and (therefore) f 15 an
1somorphism iff f. 15 a bijection.

The remarks above imply that the functor (=). gives a faithful representation of
the category Loc in the category Set. When 15 a function g : B — A the right adjoint
of a frame morphism? Preserving .neets is a necessary condition, and this will insure
the existence of a left adjoint f, given by (2) above The question of what condit
on g insure that f preserves finite meets is answered more generally for any class of
meets by the following result.

Theorem. Suppose that A and B are frames and that g: B — A is a monotone
mapping with left adjoint f . A — B. Then, for any set I, the following are equiva-
lent

(s) f preserves all I-indexed meets

(b) Forevery b & B and I-indexed famuly {a;} of elements of A with A; a1 < 9(b),
there exists an I-indexed family {b,} of elements of B such that a; < g(b;) for all
i€l and A5 <0,

PRrOOF Suppose that f preserves [-indexed mests, b € B, and {a,} is a fam-
iy with A, € ¢(8). By adjointness, f(A; @) < &, and o, by assumption on f,
A, f(a.) < b. Thus, if we define

bo=fla) (i€l )]

we have g(b,) = g{f(a,)) 2 a, for all i € I by adjoininess, and so the family {b,} has
the required properties, showing that (a) imphes (b).

In the other direction, suppose that g : B — A is a monotone map for which (b)
holds, and let {a,} be an J-indexed family of el ts of A Since f (being a left
adjoint) 15 monotone, to show that f preserves the meet of {o;}, it will be enough to
show that A, f(a,) < f(A, 2i). Now, by equation (2) above,

/(/‘\ a)=A\seB /l\a. <90} )

and

/i\/(a')=/|\A“‘ €8B.q, 59(6')} (5)
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So suppose & € B is such that A, a, < g(b). asin the meet in (4) Then by assumption
there exists a famuly {5,} as n (b). But o, < g{4) for all + € I imphes that each b,
1s a member of the 1th set of the meet 1n (3), and so

Afa) < Ab <

By the choice of b, 1t therefore follows that A, f(a,} < f(A, &), and the proof 1s
complete.

10.6. Corollary. If A and B and frames, then a mapping g B — A is the
night adjoint of & frame morphism A — B if and only if the following three conditions
hold.

(@) 9(AS)=Ag(S) forevery SC B,

(b} g(b)=1 imphes b= 1 for every b€ B, and

(¢) forevery b € B and a;,02 € A with a; Aaz < g(b). there exist b,b, € B
such that a; < 9(b1), a2 < g(b2), and by Ab2 < b

Proor Since a function preserves finite meets iff it preserves the empty meet (1.e .
1) and binary meets, the only part that needs to be checked 1s that condition (b) of
the theorem reduces to condition (b) of the Corollary when I is empty. But this 1s
clear, since the hypothesis of the former then reduces to 1 < g(4), while the conclusion
reduces to 1< b

10.7. Remarks. Note that if J 1s fimite, then by replacing (3) m the proof of

the theorem with
b=bvfe, (i€l) 3

we can conclude by the finite dual distributive law that the inequality by Ab; < b in
patt (c) of the Corolllary can be replaced with an equality

1t 18 shown in (11, IV 1 26] that right adjoints of frame morphisms g can be chat-
actenized by (a) and the non-first-order condition that the extension of g to ideals
preserves primeness (1 ¢, if P 18 a prime 1deal of B, then the idesl of A generated by
the image g(P) 15 ptime) The proof uses the Prime Ideal Theorem

We also note the following:

Proposition. Suppose f A — B is a map between frames with right adsoint f..
Then [ preserves binary meets if and only if

fofa—bl=a—fib (a€A b€ B) (1)

Proor. Suppose f < f. and let a,b,c€ A be arbitrary, Then
e<fu(fa—=b) iff fe<fa—b iff faAfe<b 2)

and
c<a—fb W arc<fb iff flang)<h (3)

Now. by Yoneda (3.3), (1) holds just in case ¢ < fi(fa —~b) iff ¢ < a — £.b for all
a,be € A By (2) and (3), this 18 Just 1n case fa A fe < bff flaAe) < b for all
a,b,c€ A, ie,just in case f preserves binary meets
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11, x-frames

11.1. Definitions. Let x be a regular cardinal. By a x-set. we mean a set
whose cardinality s strictly less than k  Other x-notions ate defined in the obvious
way: & x-family is a famly indexed by & «-set, a x-product 15 a product of fewer than
x objects. and so on

A x-frame is & poset A such that

(a) every finite subset of A has a meet,

(b) every x-subset of A has a jon (“A has x-joins”), and

(¢) aAVS=VaASforall a € A and x-sets S C A {the “x-distributive law”)
A x-frame morphism preserves finite meets and x-joins. We denote the category of
x-frames and «x-morphisms by x-Frm.

As with frames, it 18 clear how expand the equational presentation for «-complete
semilattices, given 1 5§ 1, to an equational presentation of x-frames that moreover
uses only a set of operations, all of whose arities are bounded by x. Thus the category
x«Frra 18 locally «-presentable and enjoys all of the properties listed in 6.5.

Note that 0-Frm (00 joins at all) 1s essentially the category of meet-semilattices,
and w-Frm (finite joins) 15 essentially the category of distributive Iattices For any
regular cardinals A < «, there is an obvious forgetful functor U : x-Frm —~ A-Frm.
Similarly, for every regular «, there is a forgetful functor U : Frm — «-Frm.
Since all of these categories are monadic, these forgetful functors have left adjoints
F): A-Frm — x-Frm and FY : x-Frm — Frm. Explicit descriptions for these left
adjoints, generalizing 10.4, will be recalled below.

For umiformity 1n the treatment of frames and x-frames, we would Jike to have
Frm equal to «-Frm for some x. This can be pactially achieved by the devices
explained in 6.6., and this issue will be taken up again in 18.4, after we have explained
the relationship between x-Frm and the category x-cBa of x-complete Boolean
algebras (i.e., Boolean x-frames)

11.2.  Free functors. Yor the rest of this section A and « will be regular
cardinals with A < x.

The free functor F) » A-Frm — x-Frm left adjoint to the forgetful functor U2
has a description generalizing that of the functor Foo (10.4). Let A be a A-frame. A
subset of 4 is called 3 A-idealif it 18 down-closed and closed under A-joins If SC A,
then the A-ideal generated by S is

{aeA:a YT, TCS ITI< A} m

A A-ideal is x-generated sf it 15 generated by a x-set.

Proposition, Suppose that A is a A-frame Then F)A) can be taken to be the
«-frame of all x-generated A-ideals on A, ordered by inclusion. Finite meets are given
by intersection and the join of a x-set of A-ideals is the A-ideal generated by therr
union. The insertion of generators A — FMNA) isgivenbyawja. If f A—~Bisa
A-morphism to a x-frame B and J 15 the A-ideal generated by the x-set S C J, then
T FNA) — B has J(J) = \V f(S) In particolar, 1if g : A - A’ 15 & A-morphism
between A-frames, then F2(g)(J) = downel g(J).
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PROOF See [32, Prop 12] We just remark here that if [ and J are A-ideals
x-generated by G and H, then I J is generated by the x-set GA H, and that we
need the regulanty of « to show that x-joins of x-generated 1deals are x-generated
(as well as to show that (1) 15 a A-ideal).

11.3. Preservation properties of F}. Being a left adjoint, F} preserves all
colimts, What about limits? We first make the simple observation that F2 preserves
monomorphisms

Lemma. If f A~ B s a monomorphism of A-frames, then F} f 1s a monomor-
phism of x-frames

PRoOF Recall that monomorphisms in both categories are just the 1-1 morphisms.
Suppose that I,J € F)A are such that downc! f(I) = downel f(J). Then for every
1 € I, there exasts j € J such that f(2) < f(j), and for every j € J, there exists i € [
such that f(j) < f(x) But semilattice monomorphisms reflect order: f(i) < f(j)
implies 1 < ;7 and vice-versa Since [ and J are down-closed, it follows that I = J

11.4. Lemma. Let [ be a x-set, and for each 1 € I, let A, be a x-frame
Define, for i € I and a, € A,, the element §,(a,) €], A, by

. , if1=3,
b(a)i) = {3: ;t;)er:')se‘ M
Then the map A, — [1, A/ given by
a = 6,(a)) (2)

preserves all jouns and all non-empty meets existing 1n A, and every ¢ €[], A, 152
x-join of elements of the form é,(a,}) -

o=V &(o(i)). 3)
€]

PrROOF Easy

11.5. Lemma, Suppose that [ isa A-set and A, isa A-frameforalli¢l. If
J, 1s & x-generated A-tdeal on A, for all i € I, then [], J, is a x-generated A-ideal
on [], A; Conversely, every x-generated A-ideal on [], A, has this form

ProoF. That products of A-ideals are A-ideals is trivial, since the order and
operations in a product are pointwise If each of the J, 1s x-generated, say by S, C Jy,
then every a, € J, is smaller than a A-join of the S,, and so (using 11 4(3)), every
o €1, 7 15 less than ayoin of A A = A elements of the set |, {6(s:) . s: € S},
which has fewer than A .« = x elements. This proves the first part of the Lemma.

For the second part, let J be a x-generated A-ideal on [], A,, and for every 1€ [
let J, = {a, € 4, " 6,(a;) €J} Since J 15 down-closed, we have

o € J mplies §,(0(s)) € J for every i€ 1 (1)
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Fix an 1 € I Then for every a, € A,, 30 € J o(i) = a, is equivalent to &{a,) € J.
Thus J, 1s the direct 1mage of J under the projection =, : [], A; — 4,, and hence J,
1S a k-generated A-ideal on A,. Now,if 0 € J, then by (1) o(3) € J, forall i€ I.
Conversely, if o{) € J,, or equivalently 6,(c(i}) € J, for every 1 € I, then since J is
2 M-ideal, ¢ € J by 11 4(3) Thus J =[], J,, and the proof is complete.

11.6. Theorem. F} preserves A-products

ProoF Suppose that {4, € I} 152 A-family of A-frames. By Proposition 11.2,
FAT, As is the x-frame of all x-generated A-ideals on [, A,. But it follows easily
from Lemma 11.5 (and Proposition 11.2) that this x-frame 15 isomorphic to [T, F24,.
Furthermore. the map F,, being direct image under projection, is the sth projection
on [], F2Ai, as argued in the proof of 11 5, and so A-product diagrams are preserved
by F; 5, 25 required

11.7. Example. We give an example to show that products of A many factors
need not be preserved by F2 when A < x. For this, consider the product 2*, where 2
is the two-element frame (of course, 2* is isomorphic to the power-set PA under the
inclusion ordering). Since every ideal on 2 is principal, so 18 every A-indexed product
of ideals on 2 But the set J of all A-subsets of A is a A-ideal by the regularity of
A, is At-generated (by the set of all singleton subsets of 1), and is not principal. It
follows that the product 2* is not preserved by FJ..

11.8. Theorem. If A > w, then F) preserves equalizers.

Corollary. If A > w, then F} preserves all X-limits(1.e., limits where the indexing
category has a A-set of morphisms)

PRroOOF Suppose A > w, and let f,g: A = C be two A-frame morphisms with
equalizer £ = {a € A. f(a) = g(a)} and inclusion i - E — A. Since F2 is a functor,
we have F2f o F}1 = Flgo F)i; and by Lemma 11.3, F}i is injectave Therefore,
to establish the Theorem, it will suffice to show, by Proposition 11.2, that any x-
generated A-ideal J on A with downel f(J) = downcl g(J) has J = downcl J' for some
k-generated A-ideal J' on E.

So, suppose downel f{J) = downe! g(J). Then

WEJ ke f()Sg(k) and  VkeJ FjeV gk) < F() {1

Now, let j € J be arbitrary, and define & sequence {6, : n < w} of elements on J
by induction as follows Start by putting ap = j. Next,if n + 1 is odd and a, 18
defined, then choose k € J such that f(a,) < 9(k), which we can do by (1), and put
dn41 = 8n VE. Then an € angy € J and f(aa) < g(an41) (by monotonicity of g).
On the other hand, if n + 1 18 even and a, 18 defined, then choose ; € J such that
9(6n) € f(i), again possible by (1), and put any1 =6,V Then a, S ane; €J and
9(aa) € f(ens1) (by monotoniaity of f).

Now, as J is closed under countable joins and {an : n < w} is increasing, we have

Vam= V a1 = V amez=a€l 2
ncw n<w ndw
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But, since f and g preserve countable joins, we have, by (2},
f@) = f(Vaa2a) = Vo F(a20) £ Vo 9(@2n41) = 9(V,, 02041) = g(a)
and

g(a) = 9(V,, 02041) =V, 9(a2041) SV, f(a2042) = f(V,, 02042) = f(a).

Thus, f(a) = 9(a). and so a € £ Summarizing, we have found for every j € J an
element ¢ € ENJ with 3 < a Choosing one such a for each generator of J, and letting
J! be the A-ideal on E («-)generated by these elements. we have J = downelJ’, as
required Thus the proof of the Theorem is complete

The Corollary follows immediately from the present Theotem and Theorem 11 6,
by the construction of limits from products and equahzers (see [29, V 2. Theorem 1]
for details of this construction)

11.9. Example. We give an example to show that if A = w. then equalizets need
not be preserved by F} when A <a Let A and C both be the frame (w+1,<) (1 e,
with 0<1<2<  <w) let f A= C be the function with f(n) = 2n (r < w)
and f(w) =w,andlet ¢ 4 — C be the function with g{0) =0, g(n) = 2n -1
{0 < n < w)and g(w) =w Then f and g ate cleatly w-frame (in fact frame)
morphi and the equal E of f und g 15 the two-element frame {0,w}. Now,
J={a€ A a<w)isan w*-generated w-ideal on A that 15 not generated by any
w-ideal of E However, downel f!J) = J = downel g(J}, and s0 J 15 in the equalizer
of F¥, f and F2.g Thus, the equalizer 1s not preserved by F<,.

11,30, Products of congruences. We now prove a result about congtuences on
products of x-frames and frames. whose proof 1s quite similar to that of Lemma 11 §

Theorem. Suppose that I i1sa x-set and A, i1s & k-frameforallic ! If 6, is
a congruence on A, for all 1 € I, then [1, 6, i5 a congruence on [], A, Conversely,
every congruence on [], A, has this form

Proor The first part of the Theorem 15 trivial, since all operations o3 the product
are pointwise.

For the second part. let 6 be a congruence on [], 4., and fot every i € I, define
the relation 8, on A, by a, § b, 1ff 6,(a.) 8 6,(b,) (6 was defined in Lemma 11.4).
Clearly each relation 6, 1s a congruence on A,, since 1t is the inverse image of the
congruence ¢ under the non-empty-meet- and join-preserving mapping 11 4(2). But
now o 8 r implies

S(e()) =& (A 8 (1) AT =6,(r(i)),

and thus o(i} 4, 7(2) for all s & /

Conversely, if (1) 6; 7(1), or equivalently &(o(s)) 8 8,(r(1)), for all 1+ € I, then
since @ is a x-frame congruence, we use Lemma 114(3) to get ¢80 7 Thus 6 =[], 4,
and the proof is complete.

11.11.  Corollary. Al) congruences on arbitrary frame products ace produscts of
congruences on the factors
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Proor We can either prove this directly, by redoing the proof of Theorem 11 10
without the cardmality restrictions or (to anticipate 12 4 below), we can choose a
large enough regular cardinal & th-  frame congruences on the product are the same
as k-frame congruences on * ret, and then invoke 11 10 dizectly.

11.12. Example. The ¢xample 11.7, which shows that products of X many
factors need not be preserved by FJ,, can b- .10dified to produce a congruence on
a product of X many A-frames that is not a product of congruences Thus, let 6
be the relation on the frame 2* (or equivalently, (PA,C)) defined for 5,7 C A by
S 6 T ff [SAT| < A. where A 15 the symmetne difference operation SAT =
($=TYU(T ~S) One can check, for any two I-indexed families {S;} and {T.} of
subsets of A, that (|J, $) AW, ) CU,(S: AT,), and 5o «-joins are compatible with
¢ by the regulanty of « Simularly. one can check, for any subsets Sy, 5,, T}, T, that
($1NS) A (M NTH) C (S ATY)U(S, ATy), and therefore finite meets repect § as
well, making 6 4 «-frame congruence. But, 0/6 is just the 1deal J of Example 117
and 13 not a product of 1deals. Thus  cannot be a product of congruences.

12. Limits and colimits

12.1. Remarks. By 6 3.1, limits of frames and x-frames are computed as in
Set. Coequalizers are given as 1n 6 § 3, but for frames a more concrete description is
possible (see 13.7). As for coproducts, the infimte case isn't any harder than the binary
case, and so we start by looking at that (See Johnstone (22, 11.2.12) for a development
that includes the mfimite case.)

12.2. Coproducts of frames, Given frames A and B, we call a subset
S C Ax B a biadeal on A x B if it s down-closed (in the product order) and, for
every set 7, has (\/, a,,b) € § whenever {¢,,6) € S forall i€/, and has {a,V/,b;) € S
whenever (o,b,) € S forall 1€ 1

Proposition. Suppose A and B are frames. Then the coproduct of A and B can
be represented by the set A® B of all biideals on A x B, ordered by incluston The
ijections vy : A~ A9 B and vg B — AG B are given by vale) = |(a,1) and
ve(b) = |{1,8), 2ndf f : A~ C and g: B — C are frame morphisms. the mediating
morphism m A@® B — C is given by

m(S) = V{f(a) Ag(b) : {a,}) € S}.

12.3. Coproducts of x-frames, and infinitary coproducts. We record the
obvious modification for x-frames. A subset S C A x B is a x-bi-ideal on A x B
if 3t 15 down-closed. has same closure with respect to joins as above (when [ is a -
set), and is «-generated (mith respect to these closure conditions). The injections and
the mediating morphism are the same (except that we define m{S) 1n terms of 3 -
generating set, instead of S itself). And, as with free x-frames, the regulanty of « is
used here to conclude that the join of a -set of x-generated ideals 1sstill x-generated
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Also for the record we mention that 1 the :nfimte case, one requizes a (x-)bi-ideal
to be closed under {x-)joins in each coordinate while the others remain fixed and that
instead of taking subsets of the whole cartesian product, one takes subsets only of those
elements that have 1 1n all but finitely many coordinates

12.4. Colimits in x-Frm vs. Frm. The basic relation we will be exploiting
between x-frames and frames 1s that “locally” the categones Frm and x-Frm “look
the same ” First we have that if A 1s a poset with [A] < x. then 4 15 a frameiff
A 15 a x-frame  Also, for such an A, frame congruences and x-frame congruences
on A comcide Finally, in the case where {4, .1 € I} is a famuly of frames with
IT], Al < &, the notions of br-1deals and x-bi-ideals on (the appropriate subset of)
the product agree. and therefore the coproducts, as constructed above. agree as well
Putting together these observations. we get the following result:

Theorem. If D J - Frm s a diagram of frames, with colhmit cone v+ D —
AC, then there exists a regular cardinal x (in fact we can choose & = |[], ., Dal*
where the product 1s over all morphismsof 3 ) such that U ov . UL oD = U% 0 AC
1s a columit cone in x-Frm

PROOF Let « be chosen as above Then & 15 a regular cardinal larger than any
frame that appears 1n the construction of coim D from coproducts and coequahizers
By the previous observations, it follows that the colimit, whether calculated in Frm
orin ~-Frm, is the same poset, from which the Proposition follows

12.5. Operator description of frame coproducts. Given a bi-ideal / C Ax 8
and an element a € 4, there exists a largest element é(a) € B such that {a,0(a)) € [
(namely ¢(a) = V{b (a,b) € I}, which 151n [ by the join-closure property on the
second coordinate) Similarly, for every b € B, there is a largest y(b) € 4 with
(%(b),b) € I. Erther operation determines [, since

T={{a,b) b<o(a)}={(e,0} agu(d)}, )]

and, considered as operaticns ¢ + 4 — B°P and ¢ « B® — A, they are adjoint
(¢ A ¥). Moreover 1t is clear from (1) that every such adjoint pair determines a
unique bi-ideal, and so the frame coproduct of A and B can just as well be presented
1n terms of adjoint pairs

Wigner (31] gives such a description m terms of just the operations ¢, which we
reproduce here without proof

Theorem. Suppose that A and B are frames Let A® B be the set of all
operations ¢ » A — B sausfymng 8(\VS) = Ae(S) for all S C A Then A® B,
ordered pointwise. is a frame coproduct of A and B The wnjections vy 1 4 -~ A9 B
and vg . B~ A® B are given by

waa)= (g ase  wd weoe =P feZ)

otherwise a=0

Iff A= C andg B — C are frame morphisms, then the mediating morphism
m A®B —C and its nght adjomnt m, C — A® B are given by

m(¢) = ‘\GIA fle)Ag(éa))  and  mu(c)(a) = g.(f(a) —c).
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12.6. Pushouts of frames. All of the descriptions of bmary coproducts we
have given can be easily modified to give descriptions of the pushout of two morphisms
f C—Aand g:C —B Weematk on the necessary modifications and leave the
venfications to the reader

In Proposition 12 2, the coproduct of 4 and B was given as the set A& B of all bi-
1deals on A x B, ordered by inclusion For the pushout of f .C— A and g:C— B,
one takes tnstead the set A @¢ B of all bi-ideals S that additionally satisfy

{anfle)b)eS ifandonlyif {a,g(c)Ab}€S la€dbeB.ceC), ()

agawn ordered by inclusion The description of the injections has to be modified (for
v4(a), for example, one takes the smatlest bi-1deal satisfying (1) and containing {a, 1)),
but the description of the mediating morphism does not.

In Theorem 125 the coptoduct was given as the set 4 ® B of all operations
¢ ' A - B sausfying o(V S) = A¢(S) for all § C A, ordered pointwise For the
pushout, one takes the set A Q¢ B of those operations that additionally satify

olf(craj=g(c)~d(a) (a€A,cel), @)

again ordered pomtwise Unfortunately, there doesn’t appear to be any useful formula
for the injection mto the pushout, as there 1s for the coproduct, but agamn the formulas
for the mediating morphism and its adjoint remain vahd

12.7. Directed colimits of frames. Several authors ([51], {16], and, at least
implicitly, [27]) have observed that the directed colimit of diagram in Frm 15 computed
by taking the directed limit of the underlying sets and right adjoint maps, and have
used this to prove that if all of the morphisms in the diagram are mono, then the
canonical injections into the colimit are mono as well.

We state these results here and refer the reader to the papers above for proofs.

Theorein. The functor (-). . Loc -+ Set creates filtered himits.

More exphatly, suppose D . J — Frm is a diagram on an w-filtered category
(65 3). Then the colimut of D may be taken to be the set of all those o € [],¢; Dj
such that for every morphism f @+ — j of J. (Df).(0(j)) = o(2), ordered pointwise.
(Mests 1n this frame ate also pointwise,) For each 3 € J, the canonica: injection
vi . Dy — colim D is the left adjoint to the projection on the jth coordinate. Given
a cone T: D — AA, the mediating morphism colim D — A is the left adjoint to the
function that takes an element a € A to the function j — (7j)4(a).

12.8. Corollary. If in a filtered diagtam D J — Frm of frames, Df is mono
for every morphism [/ of J, then the canonical injections v ate all mono

12.9. Exercises.

12.9.1. Products commute with directed himits in Frm

(a) Suppose that G.H : J — Frm are two diagramsin Frm, and 7 G = H is
a natural transformation that satisfies Gf o (ri)s = (rj). ¢ Hf (as functions) for all
morphisms f i—j)mJ
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Let p.hmyG = G and v hmy H ~ H be hmit cones let imr . fimG — limH
be the unique frame morphism such that ryopy = vyohmr forall 3 € J and let
limz. tmH — limG be the unique function such that (7). ovj = gyolimn (as
functions) for all € J Show that (hmr). = hmr,.

(b) Call F IxJ— Frm s-compatibleif, whenever f .2 — 1t and g ; — j’ are
morphismsof I and J, we have F(f, ;)0 F(i,g)a = F(?.9) o F(f,7"} Use(a)to prove
that If F is a s-compatible diagram such that, for every i €I, F{3,=) J = Frm is
filtered. then the canonical morphism colim; limg F — limy colimy F 15 an 1somorphism
of frames.

(¢} Show that f F I xJ — Frm 1s such that. for every 1 € I, F(3,~) is a
discrete diagram, then £ 15 x-compatible Conclude that in Frm, directed colimts
commute with arbitrary products

12.9.2. Let x be a regular cardin.] Use the fact that the free functor FZ pre-
serves colmitsand «-products to dertve from Exercise 12 9 1 that x-products commute
with directed cohimits of »-frames
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Chapter 5
THE ASSEMBLY TOWER

Associated to every frame A 1s another frame NA, called its assembly, and this
process can be iterated transfimitely to produce the assembly tower of A. The assembly
tower 1s the main tool used for obtaining information about the “meet-structure” of
2 frame 1n Chapter 7 and about pushout-stable phisms in Chapter 8. The
assembly tower 18 also related to the extensional operators of Chapter 3, with the
regular operaters of Chapter 6 as intermediary Thus, the matenal of this chapter
forms the core of the thests

We begin 1n Section 13 with the equivalence of the complete lattices of congruences,
nucler, and maxsets on a frame establishing the defimtion of the assembly. Since
congruences are naturally sssociated to quotients, these quotients have descriptions
in terms of nucler and maxsets, as well, which are looked at next The section ends
with a look at Low elements of the assembly can be generated by incomplete data—
congruences generated by sets of pais, nucler generated by prenucle:, and maxsets
generated by certain subsets Section 14 is devoted to showing that the assembly NA 15
a frame, this is accomplished by establishing a formula for meets of maxsets Section 15
then looks at special elements of NA (and N(NA)) and their rules of calculation In
Section 16, the umversal property of the assembly functor N is estabhished, and the
action of N on morphisms is looked at from three different angles. Some preservation
properties of N are also proved Section 17 gives the construction of the assembly
tower and its basic properties, and finally Section 18 discusses the simuilar construction
for k-frames

18. The assembly: congruences, nuclei, maxsets, quotients

18.1. Frame congruences. Recall that » congtuence 8 on a frame A is an
equivalence relation on A that 15 compatible with finite meets and arbitrary joins. It
follows that every equivalence class of ¢ has a largest member (namely 1ts join). Thus,
there is associated to each congruence § on A both an operation js : A — A4, defined

by
na=\afb, (1)
and asubset My C A defined by
My=f{a€ A a2b whenever a5} (2)

Thus 3y takes an element to the largest element f-related to 1t, and My 15 the set of
all such largest elements

13.2, Nuclei and Maxsets. The properties of the operations j; and subsets
My in (1) and (2) above can be sumarized as follows.

65
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Proposition. Let A be a frame
(a) Anoperation ;3 A — A 1sequal to j; for some § € Con A +f and oniy if j 15
anuclsus te,

e<jza=jya and jlaAb)y=janjb {a.b€ A). 1)

and then 6 = {{e,b) : ja = jb}.
(b) A subset M C A 1s equal to M for some 6 € Con A if and only if

ScM mmphes ASeM and a€AmelrM imply a—meldf (I

and then 8 = {{a,8) YmeM agmeb<m}
(¢) Fora frame congruence 6 the associated jp and M, are related to each other
by

Mo=txp=3A and  ja=A{meM, a<m} (3)

Nuclei, as extensional closure operators. were studied :n Chapter 3. A subset M
satsifying (2) will be called a maxset We call a subset M C A satisfying the first part
of (2) meet-closed, and one satifying the second part an arrow-1deal

PROOF. The proof 15 standard see, for example. (22], 11 2 2-3 [27), 111 4, Prop 2,
or [50). Thm 6.2.9. In fact (cf. [27}). the proof can be split into two stages, corre-
sponding to the compatibility of § with joins and finite meets; the first stage 1s the
equivalence of the following (¢f. Proposition 4 3).

(i) there 15 a complete join-semilattice congtuence & on A such that for all a € A,
Ja=V{b adb}.

() j 15 a closure operator.

(i) a<biffja<ybforalladbed

(iv) there is M C A, closed under all meets, with ja = A{m € M : @ < m} for
allag A.

One ¢an moreover extract from these proofs the result that if R s the relation
defined between pairs {(a,b) € AxAand s€Aby (ab) Refla—s=b6—s andif
fy - ry is the associated “umversal” adjunction, then rvoly = © (the closure operator
taking a set of pairs to the smallest congruence contawning them) and ly o ry is the
closure operator that takes a subset of A to the smallest maxset containing 1t See
13 7 and 13 9 for explicit descriptions of these closure operators

13.3. Frame quotients. Associated to every congruence # on a frame A there
15 also, of course, the frame quotient A/8 and natural map A — A/#, a—a/f How
does this relate to j; and A, 7

Corollary. Suppose A 1saframeand 6 € Con A. Then M, . with the order induced
by A, 1s order isomorphic to the quotient A/ (by the correspondence m ~ m/6),
and, up to this isomorphism, o A — My 15 the quotient map The nght adjoint
(30)e . M — A to 33 is the inclusion () 1s 2 “reflection”)

Proor The order on frame congruence classes is easily seen to be the same, by
5.4(g) and (m) 1 the proof above, as the order on their maximal elements, and (1ii)
moreover states that ja 1s left adjoint to the inclusion, The rest 15 trivial
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13.4. Notational remark. It will be convement to have a notation for the
quotient of a frame A by the congruence associated to a nucleus j. Following John-
stone [22), we denote this A, and, for conc take the el ts of A, to be the
fixedpoints of j and the order on A, to be that induced by A as n the Corollary

13.5. Quotient operations. Fmite meets and arbitrary joins of equivalence
classes in the quotient are naturally given in terms of representatives; it is less clear
what the infinite meet and arrow operations are For quotients given by maxsets (or
fixedpoints of nuclei), the reverse 1s true:

Proposition. Let 4 be a frame and j a2 nucleus on A If we denote the meet,
Join, and arrow operations of A, by N\, and — then for every S C A, and
a,b € 4,, we have

(a) NS=AS.

(b) e~ b=a~—1b, and

() V8=3Vs

PROOF As A; 15 a meet-closed subset of A with  as reflection, (a) and (c) are
clear In particular, fimte meets in A, agree with those of 4 and since 4, is closed
under — by the second part of 13 2(2), (b) follows as well.

13.6. The assembly. We have seen that the complete lattice of congruences
on a frame A can be described 1n three equivalent ways by congruences, nucler, and
maxsels In the sequel we make frequent use of all three, and, 1 an (admittedly
weak) effort to rematn neutral as to representation, we will call this complete lattice
the assembly of A. (We will also make an effort when introducing a new concept
associated with the assembly to describe it in terms of all three representations.) When
the rep tation of the bly is important, w. w.ii write Con A, as usual, for the
lattice of congruences on A (ordered by inclusion), NA for the lattice of nuclei on A
(ordered pomntwise), and Max A for the lattice of maxsets on A (ordered by reverse
inclusion). In general. however, we will stick to the notation NA, since it has become
standard usage

13.7. Congruences generated by pairs. In this and the following paragraphs,
we look at how elements of the assembly can be generated by various dats The first
such result, generation of congruences by pairs, follows directly from the obeervation
made 1 the proof of 13 2

Proposition. Suppose that A is a frame, and Jet 0 be the congruence on A
generated by {{a,,5)+ 2 € I}. Then £ 8 y if and only if 2 — s = y — 5 whenever
a,~—s=b—sforalliel.

13.8. Nuclei generated from prenuclei. Recall that a prenucleus is an exten-
sional operator that is inflationary and monotone (9.9) and that nuclei are precisely
the idempotent prenucle: (9.10).

Proposition. Suppose » is a prenucleus on a frame A. and define by transfimite
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recursion the sequence {;° o € C a > 0} of operators on A by

FROEST
1% (a) = 5(j*(a}).and
Ma)= V %(e) ifrisalmt
aci

Then for some ordinal 7, 3" 1s a nucleus. and j7 1s the least nucleus pointwise greater
than j Furthermore, fix )" = fix ;.

PROOF Since ' = ; 15 a prenucleus, compositions of prenucle: are larger prenuclel
(by a ssmple argument from the defimition), and (nonernpty) pointwise joins of prenucle:
are prenucler (9 17). 1t follows by induction that each j® 1s a prenucleus and that
17 € j* whenever 3< a If k15 a nucleus with j < &, then agan by induction 1t 1s
easy to venfy (using 9 2(b)) that ;® < & for all a. Thus. j7. if 1t 15 :dempotent, 15 the
least nucleus greater than ; But, since there are only a set of prenuclei on A, and
the sequence {7°} 1s increasing, there must be & 7 such that joj" =;7, from which
1t follows (by induction up to 4 ) that 7 15 1dempotent

It remams to venfy that fix}” = fix; But forany ¢ € A ja < a umples
7%a € a agan by induction on o, and the converse implication is trvial. since {3°}
1s increasing This completes the proof

13.9. Proposition. Suppose A 1s a frame, T C A, § is an arrow-ideal of A,
and M 1s a meet-closed subset of A Then,

(a) The smallest maxset containing T is {A, a1 =1t 'a, € A, 1, €T}

(b) The smallest maxset contang 5 15 {AR RC S§}; and

(¢) The largest maxset containedin M 1s {me€M - a—meM forallag A}

We call the set in (¢) the core of Af, wntten core M

Proor. (a) Let 7V be the set hsted Clearly, any maxset containing T must
contatn T”, thus 1t 1s enough to show that T 1s a maxset It is closed under meets.
because we can write a meet of meets as a single meet  And 1t 15 an arrow-ideal because
of the laws

a=AX=Ac—~X ad a—(0=~z)=(ahAa)—z,

for XCAandz€A

(b) Let S’ be the set histed. which is meet-closed and contained 1n any maxset
containing $. Ifa€ A and ARE S, then a~AR=Aa—Re S, since for every
ré€R a—ré S, as Sis an arrowadeal,

(¢) Let M' = core M which 15 an arrow-ideal by defiition If R C M’ then
AR €M, since M s meet-closed, and forevery s €EA, a = AR=Aa—-Re M,
since @ — R C M by the defimtion of M’ Thus M’ 1s a maxset But any other
maxset contaned in M, since it 1s an arrow-1deal, must be contained in M’, showing
that M’ 1s the largest maxset contained 1n M
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14. The assembly as a frame

14.1. Lattice operations in the assembly. The assembly of a frame A4 is
a complete lattice that, by 13 2. we may take to consist of congruences, nucles or
maxsets We now look at the lattice operations in the assembly in terms of these three
perspectives.

Since arbitrary intersections of congruences are congruences, the meet operation in
Con A 15 just intersection The join of a set of congruences 1s, of course. the congruence
generated by their union but this won t have a simple description, 1n general The
meet operation in NA 1s given by pointwise meet. as was proved in Proposition 9.20
if JCNA, then

(AlJa=AJa  (aeA) (1)

A formula for Joins of nucle: will be given 1n 23 4 as an application of results developed
in Chapter 6 Finally, since intersections of maxsets are maxsets, the join operation of
Max A (zemember that the order 1s teversed) is given by intersection This 15 valuable
1n that we have at least one representation for which joins are easy to compute. see
Theorem 14.4 below for an application

14.2. Meets of maxsets. The meet operation of Max 4 is readily seen to be
giver by meet-closure of the union, since unions of arrow-ideals are arrow-ideals, and
s0 13.9(b) applies We give another approach to this result, which carnes with it some
additional formulas for meets of maxsets

Suppose M C Max M 15 a collection of maxsets on A, each M € M with its
associated nucleus jpr, as determined in 13.2(3). Then AM is associated to the
nucleus A, s, and since this association 1s by fixedpoints, we have, by 14 1(1),

/\M=(aeA.Qma=a}. (€3]
The following Lemma gives two other formulas for A M
Lemma, With the notation as above, we bave

AM:{QaM:aMEMforeach MeM} (2)

Alternatively, the meet of a set of maxsets is the meet-closure of their union'
AM={AT:Tc{JM}). @)

PROOF Let Sy, Sy, and Ss be the sets on the right sides of (1), (2), and (3). We
show that 3 € S, € S3 C 8y, and hence that all of these sets are equal.

The first two of these inclusions, Sy C Sz and S; C S, are trivial, so we only need
to argue for the last. S3 C 5. Suppose a € S3, and pick T'C UM with a = AT
For each M € M, define

Tuy=TNM and ty = ATy.
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Then T = Jyy Tar, and for every A7 € M we have a < 4y € M, since M 1s meet-
tlosed and T D Ty umplies

a= AT < ATy =ta
Therefore jara < garlar =ty for all M € M, and thus we have

ag {}JMG < A/\’!v =AMATy MeM}=AT=a

Therefore. a = Ay oma, and so a € S,
14.2.1. Corollary. If M\ N € Max A, then

MAN={mAn meM andn€ N} (4)
={a€A jaA)ya=a} (5)

PROOF If we put M = {M, N}, then (4) 15 just equation (2) of the Lemma, while
(5) 15 just (1)

14.3. Remark. Statement (4) of the Corollary above was apparently first noticed
by Dana Scott, who used this description of binary meet of maxsets to give a proof of
the following theorem Our proof s essentially the same, except that we have used (5)
instead of (4) (so that certain choices made n the proof are canonical)

14.4. Theorem. NA is a frame

PRoOF. We verify the frame distrbutive law for MaxA. Suppose A € Max A
and, forall i€ I N, € MaxA We only have to show that

MAVN SV MAN, (1)
€l Vel ’

since the reverse inequality holds 1n any complete tatuice Recall that < and V in (1)
are reverse inclusion rnd set intersection, and let z € N,¢; MAN, Then, by 14 2 1(5),
=gz ANz foral i €1 Now for any particular 1€ 7,

IeE =T =y T = (IMZ AINZ) = gz =0T € N,

since jy, € Ny and N, 15 an arrow-ideal Thus, jyyz — z € \/ N, But then, since
IMZ 2 z, we have T = jpz A(uz — z), which implies. by 14.2.1(4), that z 15 a
member of the left side of (1), and we are done
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15. Special elements and their properties

15.1, Principal congruences. We assume throughout thus section that A 1sa
ftame Every congruence § € Con A 15 a join of pnncipal congruences, and furthermore,
for each principal congruence ©(a b), we have

Ofa b) = ©(0,a) AO(b, 1) 63}
by 5 4(f) Thus Con 4 15 generated as a frame by
{00 e) ac AJU{O(L.1):be A). 2)

We therefore begin our investigation of special elements of the assembly by looking the
elements in (2).

Proposition.

(a) ©{0.¢) 1s assocrated to the nucleus ¢(a) = a v — and to the maxset 1a

(b) ©(b.1) 15 associated to the nucleus u(b) = b — —~, and fixu(b) 15 order-
1somorphic to b by the operations A — and b— —.

(¢) Forany ) € NAand a.b€ A with a < b, e(b) Au(e) < j iff yo = 30 iff
b < ja. In particular, c(b) <y iff 4 < jO, and u(e) < j iff ja=1.

(d) Foranya € A, ¢(a) and u(a) are complementary elements of NA. Moreover,
a and b are complementsn A iff ¢(a) = u(b) iff ¢(b) = u(a)

(¢) Themapc A — NA given by a ~ ¢(a) is a frame morphism It i1s both
mono and ep: and is an 1somorphism it A is Boolean.

(f) The map u ' A — NA 15 an “anti-frame morphism™: w(AF) = \/ «(F) for
every finite set F C A, and u(\V/ S) = Au(5) foreveryset SC A

Proor (a) That the operation ¢(a) is a nucleus follows from besic properties of 2
distributive lattice By 5.4(e), {¢,d) € ©(0,a) iff aVe = aVvd, and so ¢(a) 15 associated
to ©(0,a) by 13.2(a) Wehave c(a)z =z iff aVz =z 1ff a < z, and so fixe(e) = Ta.

(b) That u(b) 1s a nucleus follows from basic properties of a Heyting algebra
By 5 4(e). (c,d) € ©(8,1):ff bAc = bAd, and this is equivalent, by 8 3, t0 d=¢ = b—d,
so u(d) is associated to (8. 1) If z < b, then $A(b—z) =bAz =z, andif b=z =z,
then b~ (bA2)=b~z =2 Thus, since both bA — and b— ~ are monotone, they
constitute the required order-1somorphism

(¢) Suppose that @ < b Then by (a), (b), and (1), the nucleus ¢(b) A u(a) is
associated to the principal congruence ©(a,b), and so for any # € Con A, jea = jpb
iff (a,8) € 9 iff O(a,b) < 8 iff c(b) Au(a) < jo Since every 3 € N4 is jo for some
6 € Con A, this proves the first equivalence. Since a < b, the second equivalence follows
from 13.2(1i1). Finally, since c(b) and u(a) correspond to ©(0,a) and ©(b, 1), the last
past of (¢) follows from the first

We prove (d) and (e) together. Starting with (e), if $ C A, then the pomtwise join
of the nuclei ¢(5) 18 clearly given by ¢(\/ S), which. since it is a nucleus, must be the
join of ¢(S) m NA. Smiilary,if F C A is fimite, then the (pointwise) meet of ¢(F),
by the dual distributsve law, 15 ¢({A F). Thus ¢ is a frame morphism. It 15 obviously
mono since, for instance, ¢(a)0 = ¢(b)0 iff a = b.

Now back to (d), we have ©(0,a)A6(a.1) = ©(a,a) by 5.4(f), and so ¢{a)Au(a) =
0; and we have (0,1) € ©(0,a) ¢ ©(q,1) C ©(0,8) VO(a,1), 2nd 5o c(a) V u(a) = 1.
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Thus c(a) and u(a) are complementary. Since ¢ is a frame monomorphism ¢ and &
are complementary in A iff ¢(a) and c(b) are complementary n N4 But complements
are umque and so this 15 iff ¢(8) = u(a), or c(a) = u(b), completing the proof of (d)

To finish off (e), we observe that any two frame morphisms out of NA that agree
on c(A) must also agree on u(A), since by (d) these are the complements of the
elements c(A) Therefore, they must agree on all of NA. since this frame 15 generated
by c(A)Uu(4A) Thus ¢ A — NA sept If ¢ 15 an isomorphism in particular onto.
then for every a € A. u(a) = c(b) for some b € A, and so a is complemented by
(d) Hence A 1s Boolean Conversely, if every element of 4 15 complemented, then
u(A) = ¢(A) and so NA 15 generated by c(A) alone. But ¢(A) is already a subframe
of NA, and so ¢(A4) = NA and ¢ 1s an isomorphism

(f) By (¢), u(a) <jff =1 But j preserves finite meets, so for any finite set F,
VulF)SsjMivae F ula)<yffvae F ja= 1 J(AF)=1 18 o(AF) < j
Thus VVu(F) = u(A F) by Yoneda (33) For the other part, we simply recall that
meets of nucler ate pointwise and apply 7 2(0)

15.2. Discussion. The nucler ¢(a) ate called closed, and the u(a) are called
open, because they correspond. through the duahty Loe = Frm®®, to open and closed
sublocales of the locale 4 Note that, since

a—{z—y)=(aAz)—=y=(aA(a=z))=y=(a=z)—(a=y)

the nucleus u(a) preserves arcow, we already know (7.2(n)) that it preserves meets.
Thus, since arrow and meets are the same 1n Ay(g) and A (13.5), the quotient map
u(a) * A = Ayca) is open 1n the sense of 103 Conversely, it can be shown that if
7:A— A 15 open, then j = u(a) forsome a € A (infact, a= Afe € A jz=1})

By (2) and (b), the intervals {6, 1] and (0, ] are quotients of A, with quotient maps
z— bV zand r—aAz By (c), the fact that every congruence is a jomn of principal
congruences can be expressed with the formula

1= V{c{ja) Aufa) .a € A) M)

15.3. Quasiclosed auclei. By 15 2(1), every nucleus is generated from “below”
by open and closed nucles We now look at nuclei that generate from “above”. Recall
from Proposition 9 18 that the operator ¢y(c,a), whete g(c,a)(z) = z —a.is a
nucleus We denote this nucleus more simply by g(a). and, following Johnstone [23].
we call such nucler quasi-closed. The basic properties of quasi-closed nucler are given
in the following tesuit

Proposition. Let ) be anucleuson A and a € A

(a) fixgla)={z—a z€ A4}.

(b) 1<4g(a)1iffja=a

(¢} j=Algla) sa=2}.

(d) A, 1s Boolean iff j = g(;0).

ProOF. Every element z — ¢ 15 a fixedpomt of ¢(a) by 72(1) Conversely, if
a—b=>b,then b = 2 —a for 2 = a—b, proving (8) Part (b) 15 Just (1) of
Proposition 9 18 Since nuclei are determined by their fixedpownt sets (cf,, 13.2), a

ADA289360




155 5 The assembly tower 73

simple argument denives (¢} from (b) For (d), we recall that a frame 15 Boolean iff evety
one of its elements 1s regular (7 5) Thus, by 13.5, 4, 15 Boolean iff (ja— j0)—30 = ja
forallag A But je— ;0 =a~ 0 by 911, and so (c) follows

15.4. Discussion. It follows from part (3) of the Proposition that fixg(a) is
the smallest maxset containing A and therefore (b), read in terms of fixedpoints, says
something obvious. a € fixy ff fixg{a) C fix;. Similarly, (¢) becomes an obvious
statement about (umions of ) fixedpoit sets. Also. note that (¢) 1s the “completeness”
result for nuclel, analogous to the results of 9 21, that was alluded to n 9.18 Part
(d) says that the Boolzan quotients of A are precisely the quotients Ay, for a € A.
since q(a)0 = a  And since every frame quotient of a Boolean frame is Boolean (as
frame morphisms preserve complements), it therefore follows that the set

Q={¢(e) a€4} 8)]

1s an up-closed subset of NA

A special quasi-closed nucleus 1s double-negation, ¢(0), so-called because ¢(0)a =
~—a We often write 4. for Ayn) Note that, since Ac(q) = Ta, 1t follows from 13.5
that (Aega))am = Ag(a) (apparently explaining the term “quasi-closed”) A nucleus ;
15 called dense 1f jO = 0. It follows from part (b) that ; is dense iff y < ¢(0)

15.5. Calculation with special nuclei. We now collect together the rules we
will be using for calculations involving closed, open, and quasi-ciosed nucles

Proposition. Let ) €NA and s € A.

(a) jvele)=)oc(a)

(b) u(a)vji=u(a)oy.

(©) j—a(a)=qlja—a).

(d) jVg(a)=q(se—a).

Proor. For any nucle:r 3y, j2, and k,if j; S k and j» S k. then 072 < k by
9.2(b). Thus, if one can show that j; 0 32 1s & nucleus (in fact just idempotent), then
hoja=nVvi

Now, since aV j(eVz) < y(avz), we have 5{aV ) (aVz)) € j(aVz) by 13.2(iii), and
s0 joc(a) isidempotent. proving (a) And since, by extensionality of ;, a—j(a—jz) =
a = jjr = a— jz, u(a) o 7 18 :dempotent, proving (b).

To prove (c), Jet k € NA be arbitrary Then k < y — g{a) 1ff kA j < ¢(a) iff
(kA j)a € a, by 15 3(b) But

(kAp)e=tkanje=k(ja—a)Aja,

by extenstonality of k. and so, continuing the chain of equivalences, (kA j)u < a iff
k(ja—a) € ja—aff & < g(ya—a), agam by 15.3(b). Thus (¢) follows from Yoneda
(3.3).

For (d), we observe that, since jVq(a) 2 ¢(a) and Q is up-closed (15.4), jV(a) =
¢{z) for some z; we must only show that z = ja — a. First, since ya —a € fixj by
922.1, j € g(ya—a). And since (ja—wa)—ma = ja—wa, g(a) < ¢(ja—a) by 15.3(b),
and thus j Vv ¢(a) < g(sa ~»a) Conversely, we need to show that if ; v g{a) < g(z),
then ja~wa < z, this will suffice since 2 < y whenever ¢(r) < g(y) (which means
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y—z =y by 15 3(b)} So suppose r 15 such that jr =z and £ —a=z Then since
e <z and both j and ~ ~~a are monotone, we have

Ja=»a< jz—wag=z-~a=17,
as required

15.6. Some higher identities. Some of the nutleic 1dentities we will need Jater
involve the second assembly of A. namely N24 = N(NA). Elements of this frame
are nuclei on NA, and we denote them with capital letters J, K, - Furst we prove a
Lemma, which should be thought of as a continuation of 7.4

Lemma. Let ) be a nucleus on a frame A. and let b € A be Booleann Then
sb=bv ;0

ProoF We clearly have 8 < jb and 30 < 36, and so bV jO < jb Conversely
by 7 4(a), b bV O T (b—0)A b < ;0 But this follows from the extensionahity of
7, snce (b—0)A3b=(b—0)A;0< 50,

15.7. Propostion. Let a € A and J € N°A, Then the following hold
(a) (J0)a = (Je(a))0
(b} ¢(c(a)) = u(u(e))
(c) e(u(a)) = u{e(a))
{d) qlq(e)) = c(g(a))

PrROOF (&) Since c(a) 1s & Boolean element of NA by 15 1(d), we can use
Lemma 15 6 and 15 5(a) to get

(Je(a))0 = (JOV c(a))0 = {J0 0 ¢(a))0 = (JO)e(a)0) = (JO)a

(b,¢) Since ¢{a) and u(a) sre complements of one another by the first part of
15.1(d), both (b) and (c) follow directly from the sacond part of 15 1(d)
(d) For any 7 € J, we have, by 15 5(¢).

q(a(a))s = (7 = g(a)) — q{a) = g{ra — a) — g{a} = g((a — (ju — 8)) — o)

Now, by 9 7.1, (a = (ja ~a)) ~a = (jo ~{a—~a)) —~a = (ja—a)—a But,
by 15.5{d). ¢(ya ~a) = 3 V ¢{a) = ¢(¢(a))j, completing the proof

16. The functor N and its universal property

16.1.  Recall from 53 that for every frame morphism f A -+ B, there is
an adjunction 8o (f x f) 4 (f x f)™ between ConA4 and Con B, which we will
write here as Nf =t (Nf), . the left adjoint of which tahes a congruence on A to the
congruence generated by its image under f 10 B, sad the right adjomt of which takes
a corgruence on B toits inverse image under f We also write Nf - (Nf). for the
associated adjunction between NA and NB and between Max A and Max B
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Proposition. For every frame morphusm f A — 5, the map Nf - NA ~ NB 15
also a frame morphism. and 1n this way N becomes a functor Frm — Frm. For every
a € A we have

(Nf)(e(@)) = c(f(a))  and  (Nf)(u(a)) = u(f(a)). )

In particular, the morphisms ¢4 4 — NA are components of a natural transforination
from the 1dentity functor to N

PROOF Since (Nf)(O(a,b)) = ©(f(a), f(3)), and since f preserves 0 and 1, the
equations of (1) are clear by 15 1{a.b) Also. since f preserves binary meets and joins,
the formula 5 4(f) shows that Nf preserves binary meets of principal congruences
But every congruence 1s a join of principal congruences, and so the meet of any two
congruences can be reduced. via frame distrtbutivity, o a join of a set of binary meets
of principal congruences Now Nf preserves joins. since 1t is a left adjoint, and it
prescrves binary meets of principal congruences. as observed above thus it follo® s that
Nf preserves all finite meets, and hence 1s a frame morphism It 1s straightforward to
venfy that f— Nf 1s a functor.

The statement about ¢ being a natural transformation follows from the first equa-
tion of (1), which 18 exactly the naturality condition.

16.2,  The universal property. The frame NA and the embedding ¢, :
A — NA can be characienzed independently of representation by the (“umiversal™)
property that every element of A becomes freely complementedin NA. Since it doesn’t
involve any extra effort to prove a more general theorem, we construct the universal
complementation of an arbitrary subset S C A the stated result about NA then
follows by taking S = A.

Theorem. Suppose A (s a frame and § C A. Let NsA be the subframe of
NA generated by ¢(A) Uu(S), and note that c4 + A — NsA. Then, given a frame
morphism f A — B such that f(s) i1s complemented for every s € S, vhere exists a
unique frame morphism f NgA — B .uch that f=foc,.

PROOF  Since every element of Ng.4 1s generated by mages of elements of 4
and (some of) their complements, the morphism ¢4 + A = NsA is eps, as 1n 15.1(e).
Thus, the required morpt. sm f, 1f 1t exasts, 15 unique. "¢ show existence, consider the
morphism Nf - NA — NB By 16 1(1), we have (Nf)(c(a)} = ¢(f(a)) forall a € A;
and © nce every element f(s) 1s complementedn B, with complement —f(s), we have
(NF)(u(8)) = u(f(s)) = c(=f(s)) by 15.1(d). Thus, the image of the generators of N5 A
under Nf 15 contained m cp(B), which is & subftame of NB (and 15 isomorphic to B,
since cg is mono), Hence (Nf)(NsA) C ¢p(B), and we can take f = c3' o(NFjnga.

16.3. Although we have defzned Nf and (Nf). n terms of congruences, these
operations have nice descriptions in terms of nuclei and maxsets, as well Recall (13 9)
that core M, fur a meet-closed subset M € A, 18 the largest maxset contamed in M.

Proposition. Suppose | A = B 15 a frame morphism Then,
(a) (Nf)(s), for 3 € NA, 15 the smallest nucleus & on B for which f(ja) < kf(a)
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forallac A.
(b) (Nf).(k) =[] for evers k € NB, where (k) is the nucleus on A defined by

(Ma= f(kfa)) (c€A); (1)

(c) (NFYAL) = core(f.)"1(M) for every M € Max A" and
(d) (Nf)a(N)= fAN) for every N € Max B

Proor (a) Given 7 € NA, consider Nf on the congruence § € Con A associated
to ; Clearly, 8 = ©({{a.708) a € A}), and so (Nf)8) = O({(f(a). f(je)) - a € A}).
But this 15 easily seen to imply ()

(b) Given k € NB we again consider the associated congruence v € ConB The
nucleus (Nf). (k) takes @ € A to the largest b € A such that (a.b) € (Nf).(y) =
(f x £)~1{(¥), or equivalently (f(a) f(b)) € ¢ Butif a < b. then (f(a), f(b)) € ¢
exactly when f(b) < kf(a) o: by adjontness. b < f.(kf(a)) The largest such & 1s,
of course, fu(kf(a)}, proving (b) {Note that it follows from this hine of argument that
{k] actually s & nucleus on A )

We prove (d) before (¢} Note that (d) will follow from (b) if we can show that, for
every k € NB, f.(fixk) = fix[k] Suppose kb =04 Then, since f. and k are montone
and f(f.(b)) < b by adjointness

[k)fe(b) = LRSS (B))) < fulkd) = £ (8),

showing that f.(b) € fixk Conversely, suppose that [kja = a,ie, fu(kf(s)) = a
But kf(a) € ik, and so a € f,(fixk), as required (Agamn, 1t follows from this hne of
argument that f.(NV) 1s a maxset on A For a direct proof, use 107)

For (c), let M € Max A, and observe that (1if)(M) is the least N’ € Max B with
M < (NF).(N) e, using (d). M D (Nf)(N) = fo(N) Thisisequivaient to the con-
dition N € (f.)~*(M), and since M is meet-closed and f. preserves meets, 1t follows
that (£.)='(M) 1s meet-closed, and so the required N, by 13 9(c), 15 core (£.)7} (M)

16.4. We finish this section with a few preservation properties of the functor N.
Recall that a nucleus ; € N4 is dense if 30 = 0. We say that a frame morphism
h A — B is dense if h{0) = 0, or equivalently, h(a) = @ imphes ¢ = 0 Thus 4 is
dense just in case the nucleus associated to ker b 1s dense

Proposition. Suppose that f A ~ B 1s a frame morphism Then,

(a) If f 15 onto, then Nf is onto,

(b) If f is cp, then Nf 1s epr. and

(¢} f is monoif and only if Nf 1s dense
Also, the functor N Frm - Frm preserves products

Proor (a) If /15 onto, then by 16 1(1), (Nf)(e{A)) = ¢{B) and INfi{u{A)) =
u{B) Since NB 15 generated by ¢(B)Uu(B), this proves that Nf 15 onte

(b) The preservation of epis 15 elementary category theors. if f 15 eps, then since
cp 15 epi, we have that cg o f = Nfcca is epi, and so Nf 1s epi

(e} If A =0 1s the identity congruence on B, then cbiiously

(NFY(AY = (f x £)"H{A) =ker f.
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which 15 0 1ff £ 15 mono

Finally, by 11.11, congruences on frame products are products of congruences on the
factors In addition to this. we need only observe that the projection from a product
of congruences to one of the factors (§ — 6, 1 the proof of 11 10} is the same as the
direct 1mage of the congruence under the projection mapping (1¢, (Nx,)(8) = 6,)

17. The assembly tower of a frame

17.1. The construction. Let A be a frame We construct an ordinal sequence
{N"4 ' a € O} of frames and a doubly-ndexed ordinal sequence {c§ - NP4 — No4 |
8.0 € 0,3 < a} of frame morphisms. together called the assembly tower of A, by
simultaneous ordinal recursion For the {rames. we set

NOA = 4,
NeT-4 = N(N°4), and
N* = colimN®4, f A1s 8 limit,
oA

where more explcitly, the diagram D over which the colimit 15 taken 15 indexed by
the ordmal A and has Da=N*A for a < A and D(f - a) =¢j for §< a < A. For
the morphisms, we set
o = 1dNe s,
eg* =enenocd, f<a
¢} = the canonical injection N4 — colimy <2 N2 A4,
when A > 7 is & limit, and
¢f = the mediating motphism determined by {¢§ 5 < A},
when A < a 15 2 limit.

By induction. note that, for all ¥ < < a, ¥ = ¢§ o c?. When more than one
frame 1s bemng d d. it may be y to add an extra subseript, as in (c4)3
and {cg)j, to distingwish between the morphisms. On the other hand, we wnte ¢? for
cg and (as usual) ¢ for ¢} whenever possible

If f: 4 — Bsaframe morphism, then we define N°f : N4 ~ N®B by recursion
asfollows: N°F = £, N®+3 f = N(N®#), and if ) is 2 bmmit, then NAf is the mediating
motphism determined by {(ca)} o N®f a < A}. It 15 easy to see by induction (using

uhe universal property of the cohmit at Limit stages) that each N® becomes a functor
Frm — Frm. We can agamn show by induction that if 3 < a, then

Nfo(ca)g = ()5 o N°S, &)

and 50 ¢ becomes a natural transformation N¥ — N®. We also note that

(enea)3 = (ea)T3 and  NY((ca)3) = (ea)5Y 2
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17.2. Here arc a few more facts about the assembiy tower of a frame. also, of
course, established by induction

Proposition. Suppose A is a frame and the assembly tower of A 1s constructed
as above Then the following hold"

(a) Forall ordinals o, 8 with 8 < o, the morphism ¢§ 15 both mono and ept

(b) For every morplusm f A — B, where B 1s a Boolean frame, and every
ordinal a, there exists a unique frame morphism f N®*A — B such that f = foc®

PROOF (a) By the first equation of (2) above, we can assume that 3 =0 For
any A, c4 is monoand ep: by 15 1(e), and compositions of monos or epis are likewise
monoorepi  Thus (a) will follow by induction if we can show that lirmt-ordinal-indexed
cohmuts of monos and epis are mono and epr For monos this 15 yust Corollary 12 8
For epis, this follows from the universal property of the colimit in detail, if X is a himt
ordinal and D A — Frm 1s & diagram with colmit cone v D — A colimy D. and if
f.g colimy D — A are morphisms such that fov0 = gov0, then for every ordinal
a < A, we have

fovasD(0—a}= forl=gevl=govao D —a),

and thus, since D(0 — o) 1sep1, fova=gova Setting ra Da — A to be this
common value results 1n a cone 7 D — AA, and since both [ and g are mediating
morphisms with respect to , we have f = g by the umversal property of the colimit
(b) Each ¢® 15 ep1 by (a), 60 any such T will be umque Morphisms f, N°A —
B, o € O, can be constructed by recursion on o by setting fo = f, using the
universal propertv of N (16 2) for all successor ordinals {since every element of B
1s complemented), and using the mediating morphism from the colimit for all himit
ordinals Uniqueness 1s guaranteed by the universal properties of N and colimits.

17.3. The reflection problem. Since cBa 15 a subcategory of Frm, 17.2(b)
imphes that, for a frame A, if N®4 15 Boolean for some a, then N°4 (along with the
morphism ¢°) 18 & reflection of A 1nto ¢Ba In this case, we say simply that A “hasa
reflection”  Gaifman [9) and Hales [14) showed independently that (1n our terminology)
the free complete Boolean algebra-class (with unary negation and joins of every anty)
on a countably infinite set 1s a proper class. Thus, since the reflection of Foolw), 1f
1t existed. would be the free ¢Ba on w, the frame Fi.(«} has no reflection. and its
assembly tower grows arbitranly large The reflection probien is to characterize those
frames with reflections

17.4. Exercises.

17.4.1. Use 16 4 and Exercise 12 9.1 to show that, for every ordinal a . the functor
N preserves products
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18. The assembly tower for x-frames

18.1, The x-assembly. Throughout this section, we let x be a fixed regular
cardinal

The umiversal property of N on Frm can be easily generalized to x-Frm Thus,
for a x-frame A. welet d4 4 — BA be the result in x-Frm of freely complementing
the elements of A This can be constructed as a quotient of a free extension of A
by new elements {o' @ € A}, where we dwide by (the congruence letermined by)
equations saying that a' 1s the complement of @ A concrete description of this «-
frame 1s given by the following result, which moreover shows the close relation B has
to N.

Proposition. Suppose A is a x-frame. Then Con A is a frame and BA us the sub-
& -frame of Con A generated by the pnncipal congruences The morphismdy A — BA
15 given by da(a) = ©(0 a) and for any morphism f A= B, Bf is the restiction to
BA of the (join-preserving; function Con A — Con B taking a congruence on A to the
congruence generated by its image (under f x f)on B. The morphisms ds : A — BA
are mono and ep: and are the components of a natural transformation from the identity
functor to B

Proor See (32), 51 and 5.2. The statements not proved there may be proved
entirely analogously to the corresponding statements about N.

18.2. The «-assembly tower. Just as with the assembly tower for frames, we
can iterate the functor B to produce an ordinal sequence {B* - a € D} of functors and
» doubly-indexed sequence {d3 B% — B | 6,a € 0, 3 £ a} of natural transforma-
tions, and this sequence will have properties snalogous to those of 17.1(1,2) and 17.2,
However, when it comes to the reflection problem, there 1s an important difference:
since the ordinal x (by regularity) 15 x-filtered as a category and «-Frm 1s locally
k-presentable, the cohmit used to construct B*A is just the union of the B®A for
a < & (assumung that we 1dentify each «-frame in the tower with its image under d)
Thus the result 15 a Boolean s-frame, and it follows that the full subcategory «-cBa
of x-complete Boolean algebras 15 reflective, with reflection functor B*.

We mention one additional connection with the functor N.

Proposition. Let A be a frame. Then for every ordmal o there is unique
k-frame morphism ¢% : B°A ~ USNYA such that USeq =5 0d3.

We remark that $ 18 proved to be a monomorphism i 28.6.

PROOF. The morphism ¢§ is constructed by recursion, as follows We start with
¢% = idq. Next, if ¢§ B°A — ULN®A is defined, then every element in B®4
becomes complemented 1n UL N+ A via the morphism UZ c3%! 0 e3, and so we take
5" to be the unique morphism guaranteed by the universal property of B. Finally,
for imit ), we define e} to be the mediating morphism corresponding to the cone
{USchoeq "a< A}

18.3. The category x-cBa. We have just seen that x-cBa is a reflective
subcategory of x-Frm The advantage of this stems from the following result of
Lagrange {28].
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Theorem. In the category s-cBa.
(a) the pushout of a monomorphism along any morphism 15 mono, an
(b) every ep1s surjective

o,

18.4. Foundations: oc-Frm and co-cBa. We recall from 6 6 that we may
assume the existence of an inaccessible cardinal o {equivalently, we may assume the
existence of a single umverse {7, and let oc = [U|) and restrict our attention to small
frames, 1 ¢ , those of cardinality less that oc, thereby making Frm a full subcategory
of co-Frm In addition to making possible a uniform treatment of frames and «-
frames, we also have the fact that co-Frm contains oc-cBa as a reflective subcategory
(whereas eBa is not reflective 1n Frm), and this sllows us to bypass an excursion
through x-Frm, and the choice of a sufficiently large regular cardinal, to give a more
straightforward proof of Theorem 28 5 in Chapter 8

However, since the only properties of I/ (or oc) we use are of the kind axiomatizable
using the predicate S, the work of Feferman shows that anything we prove about frames
using these assumptions and restrictions has a proof without them Thus, the use of
00-Frm 1s really a matter of convenience, and, to ilustrate this point. we give in 28 6
an alternate proof of Theorem 28 3 without any extra assumptions or restrictions
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Chapter 6
REGULAR OPERATORS

Thus chapter builds on the matenalin Chapter 3 on extensional operators using the
information on frames and the assembly tower of a frame, as developed in Chapters 4
and 5. After the basic definitions and examples 1n Section 19, and the observation
that the set RA of regular operators on 2 frame A 1s a ¢cBa, Section 20 introduces the
regularity ordering and stable sets, which are the key to understanding the properties
of regular operators and developing thetr applications These notions are thoroughly
studied 1n this section and then, 1n Section 21, used to establish the many properties
of tegular operators In Section 22. fixpoints sets of regular operators are charactenized
ag being the complete filters in the regularity ordering. and this characterization, 1n
addition to being a culmination of work on fixedpoint sets of logical operators started
in Chapter 3. 15 also the base for establishing the relation between regular operators
and the assembly tower, which 15 the subject of Section 23. This section begins by
establishing a formula for joins of nuclei, and then proceeds to show that RA is iso-
morphic to the double-negation quotient of the second assembly N?A. In this way, a
canonical Booleamzation of A 18 given a concrete description by operators on A The
rest of the section is devoted to giving a formula for double negation on N?A in terms
of operators, and then using this formula to show that double negation 13 an open
quotient Finally, n Section 24, it is shown how RA s a hmit of a diagram consisting
of all of the Boolean quotients of A

19, Extensional, logical, and regular operators on frames

19.1. Definitions. Throughout this chapter, A will denote a fixed frame,

Recall that an extensiona) operator on A4 1 a functien 1. A — A satisfying the
equivalent conditions of Proposition 9.4, and that a logical operator 15 an inflationary
extensional operator As explained in 9.17, it follows from 9.13 and 9.20 that the class
of extentional operators on A. ordered pointwise, has pointwise meets, joins, and arrow,
and hence is a complete Heyting subalgebra of the cartesian power A4. By definition,
an extensional operator { is logical if 1d4 < {, and therefore the logical operators alse
form a frame, being the closed quotient [ida, 1} (cf., 15.2) of the frame of extensional
operators Meets and arrow in the frame of logical operators ate the same as those of
the frame of extensional opearators by 13.5, 1 ¢., pointwise. (Non-empty joins are also
pointwise, since it 1s a closed quotient )

We define a regufar operator on A to be a regular element of the frame of logical
operators, and let RA be the set of regular operators on A, ordered pointwise Thus,
a regular operator r satisfies (r—1dy) —1d4 =r, or

ra={ra—a)—ae (a€A) (1)
It follows immediately from 15.3(d) that RA 1s a ¢Ba, and (again from 13 5) the meet

and arrow operations on RA are pointwise.

81
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19.2. Examples of regular operators. Swnce (z —~a)—wa =1z —a for any
elements z and a of a frame A. the following is an easy consequence of the definitions

Proposition. Let | be an operator on A, and define operators I' and I by
Uz)=lz—~2 (z€4)

and i
)= l'(z)=lz—z (z€A)

If | 15 extensional, then I and I are regular operators

We note that the converse 1s also true, because evety regular operator r has the
forms !} and I for the extensional operators !y = ' and Iy =r. since (+') =F=r
by definition

19.3. Corollary. For any a € A, the following are regular operators

(a) uld)r=a~zx

) Ha)r=(aVz)~z=a—mz.

() q'(a)z=(x=~a)~z.

(d) fe)z=(z—a)~z _

Note that we have written (e}, ¢'(a), and §{a) instead of the more correct c(a).
¢(a)’, and g(a) Later, we will be treating &, ¢’, and § as functions A — RA, and so
this notation 1s more appropriate

20. The regularity ordering

20.1. Regularity. Recall that an element & of & frame A 1s cailed reguiar if
b-»0=>0 Our mamn notion 1s a generahzation of this

Proposition. If a and b are elements of a frame A, then the following statements
are equivalent

(2) bisregularm Acpoy = [0,1)

(o) bawa=1b

(©) 4(a) < g(8).

If these statements are true of @ and b, then we say that b is regular over ¢, and
wrte baoradb

PRoOF The frame A.(s) = [a 1] has o asits least element. and its arrow cperation
agrees with that of A by 135 It follows that (a) and (b) are equivalent

Next b-«a = b means that b 1s s fixedpoint of g(a), and this 1s equivalent to
q(a) < g{b) by 15.4(b), thus, (b) 15 equivalent to (c), and the proof is complete.

20.2. Here are a few simple facts concerning the relation €

Proposition. Suppose A 15 a frame and a,b,c € A. Then

(@) (A, Q) 5 8 parural order (which we deote A9) that is 1somorphic to the
subset Q = {g{a) ' a € A) of NA with the induced order

(b) aQbimpliesa<b
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(c) agbmphes(b—a)—b=1}
(d) aQcanda<b<cumplybde.

PRroOF. Since q(e)0 = a for all a € A, the map ¢. A — NA is 1-1. so (a) follows
from 20.1(c).

Suppose that ¢ 9 b Then b = b~wa > a. and so b > a, which proves {b)
Furthermore, since ¢ — b= 1, we have, by 9.7.5.

(b=a)=b=(b—a)A{a—=b)=bwa=),

which proves {c)
Frmally, suppose that @ 9 ¢ and ¢ < b < ¢. Then by the (anti-)monotonicity
properties of — it follows that

(cmb)=bS(cmb)mc<(cma)mc
But (¢ —a)—c=c by {c), so that ¢— b < ¢ and thus b Q c. proving (d).

20.3. Upper sets in AS. If o € A, the up-closure of 6 m A9, which we
denote fa, is defined as usual by

fta={b.b>a}.

By 15.3(a), 1t 1s clear from the defimtions that fta is none other than the maxset fix g(a)
of A, and thus, by 15.3(d) 15 a cBa. Being a maxset of A, it also follows that fia is
meet-closed:

sbaforalls€$ implies AS>a. (1)

20.4. Stable sets and el ts. We will call a subset S C A stable if it bas
a lower bound 1 A2, 1¢,f there exists a € A such that a 95 for all s € S. Notice
that by this defini all one-el t sub as weil as the empty subset, are stable.
Given two elemnents a,b € A, we indicate that {a,b} 15 stable with the notation a — b.
Finally, a subset S C A 1s parrwise stable if a — b for all a,b € S, and finutely stadle if
every finite subset of S is stable {these two notions will be shown equivalent in 20.10).

20.5. Propostion. Suppose S C A is stable. Then the meet of S in A% exists
and is equal to A S

PROOF. Let so be such that so 9 forall s€ S. Then
s0dAS (1)

by 20.3(1) Thus1t1s enough that A S 4 s for all s € S. But this follows from 20.1(d)
and the assumption Vs sy 9 s, because for any s € S we get

sa<AS<s

by applymng 20.2(b} to (1)
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20.6. We can charactenze pairwise stabihity as follows

Proposition. The following statements are equivalent for elements a and b of a
frame A

{a) a~-b

{b) (a—b)—~a=aand(b—a)—b=b

(¢) a—wb=b—a

ProoF By 205 (a) 1s equivalent to the conjunction of a> aAb and 8> anb,

1e,to
a-—=(aAb)=a and b—(aAb)="b 0]

But (1) is equivalent by 97 2. to (b)
The equivalence of (b) and (c) 15 shown by the following chain of equivalences
where we have used 9 7 § between the second and third lines
(c—b)—~a=a and (b—a)—b=1b
(6—b)=~a<a and (b—a)—b<b
(@—=b)A(b—a)<a snd (bma)A(a—b)<b
a—bgb-—wa and b—wa<La~=b

grebz=b—a

20.7.  The relation between < and A. We formulate a general relation
between A and g, from which we can denive several others hy instantiation

Proposition. Suppose A is a frame and a.b,c,d € A are such that
aDb and cBd (1)

Then
aAebAd il ((a~d)—a)Allc—b)—c)<ahc

Proor Assume (1), and note that a > bAd and ¢ > bAd Then the result
follows easily from this calculation

(ahc)~=(bAd)=(a—s (bAd))A(c—(bAd)) by 974
= ((a~=(bAd) =~ a) A ({c = (bAd)) ¢ by 9.6(d)
= (((a = b} Afa—d)) = a) A {((c = b) A(c = d)) —c)
=(a—d)~{{a—b)~a) A(c=b)~ ((c—d)—¢))
=((a=d)=a)A((c=b)~c) by 20 2(c)

20.8. Corollaries,

(a) Ufab b, thenarcbdAcf (c—b)—~cSa—c.
(b) Ifavboao, thenb>anb

(¢) Ifabbandabe, thenabAc
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PROOF (a) Suppose a & b. Since ¢ 2 ¢, we can use the Proposition to get
aAcbAce ff ((a—c)—e)A((c—b)—c)<Lanc
The latter 1s equivalent by adjointness to

(e=b=cg((a~c)=a)—~(anc)
=(a—~(aAc))—{aAc) by 9.7.2
za—~f{aAc)=a—¢

(b) We can use (a)on aVv b > a and b to obtamn b B a A b, if we san show that
(b—a)=b< (aVbd)—b=a—b But thisfollows trvially from the anti-monotomeaity
of ——b

{c) We can apply the lropostion to a & b and a D ¢, to obtain a > dAc. if we can
show that

{{a~c)=a)A((a—b)—~a)<a

But both expressions on the left ate equal to a by 20.2(¢}, so this is trivial.

20.9. Discussion. If we call an interval {g,8] regular if ¢ Q b, then 20.8(b)
says that the set of regular intervals is closed under downward transposition It is
not, however, closed under upward transposition. let 3 be the three-element chan
(0<1<2)and A =(3x3)~-{(0,2)} have the induced ordering. Then the interval
[{6,0), (0, 1)] 18 regular, but this projects up to [(1,0). (1,1)], which 1s not regular.

if, 1o analogy with 20 3, we define

da={c.abc}

then 20.8(c) and 20.2(d) say that Ya 1s a filter in [0, a}
(a) a€da,
(b) c€laand  <b<amply be §a; and
(¢) ¢, d€ e umply cAde la

20.10. The stability of a set 13 not 1n general determined by the stability of its
finite subsets. For example, consider the subframe of (Pw,C) consisting of B along
with all the cofinite subsets of w (1 ¢, those X such that w — X 15 finite). Then every
fimste subset of S = Pw ~ {B} 15 stable (over 1ts intersection, which is cofinite), but S
18 not itself stable (since no element of S 15 stable over §)

However, using 20.8(c), we can show that finite stability and pairwise stability are
the sane

Propostion. A subset of frame 1s purwise stable 1 it 1s finitely stable.

Proof. That finite stability imphes pairwise stability 18 trivial: we prove the
converse. Suppose A 15 a frame, § C A 1s pairwise stable, and 5;,. ., 5, € § By
pairwise stability and 20.5, 5, > s, A5, for every 1 <i,j < n It follows by repeated
applications of 20 8(c) that

siDSiA: As,  (1€1<n). (1)
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Thus {s1,...,3} 15 stable

20.11. Joins and arrow in A9, The set Q of 20.2(a) 15 up-closed, as observed
in 15 4. Thus, every non-empty subset of A hasajoin f e b€ Aand SCAis
nonempty, then we denote the join of @ and b and the join of S in A2 by. respectively,

avb and VS

Another consequence of Q being up-closed 1s that 1t 1s closed under the arrow
operation of NA This induces an operation on A2 which, for a,b€ 4, we denote

a-pb

Proposition, Suppose a,b€ A Then
aVb=(a—wb)ma=(b—a)mb=(amb)—z, 1
where z 15 any element of {a,b, a Ab, aVb}. and

apbd=(b—wa)=d 2)

PRooF The first two equations 1 (1) follow from 15 5(d)

g(a) v o(b) = g(q(a)b — b) = g((6 ~— a) — b),
9(6) Vv g(a) = g(g(b)a —a) = g((a —8) —~a)

We get the last equation 1 (1) by calculating

((@-=b)—a)—~a=({a—wb)—a)~(a—b) by 9.6(d)
= ((a—HA(@—b) =) —b
={(a—=d)A(b—a))—b by 9 6(b)
=(e—=b)—z. by 9 6(a)

We get (2) from 15 8(c).
g(a) = q(8) = a(g(a)b — b} = q{(b — a) — by).

20.12. Here are some basic facts about Vv and ~o.

Proposition. Suppose a b€ A. Then,

(3) adbiffa-0b=1

(b) fe2b orifa~b, thenavb=a—bandaVb=qg—wb
(¢) Ifa—b thenagbffa Qb

(d) lavb)va=(aVb)—~a=b-va.

(¢) @Ab)~c=(a—c)V(b—0).

Note: It will follow as a special case of 21 2.8 that both — and -5 distnibute over
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PRoOF Since 1=a—-b=(d—a)—~b 1l b—wa < b, (a)is clear.
Next, note that, by 20 11,
aVbh=(a~>bd)—b (1)
i a>b, then b—a=1,50 that b —a =a and thus
a-bb=(b—~a)—b=a—b,
if @ — b, then b—wa =a—=b by 20.6, so that
gobz=(b—wa)mb=(and)—b=a—b
In either case, @ =o b = a — b, thus, we also have, by (1},
aQb=(abd)=b=(a—b)=~b
Therefore (b) holds
Ifaw— b thenby(b) avb=a—b Sincea<biffa—b=1andadbiff
a-bb =1 by (a), this proves ()
The first equation of (d) follows from (b), the second follows from 20.11 since
(@vd)—a={{a~b)—~a)—~a=(a~wb)—a=b-ve
Finally, a = ¢ ~ b=+c, since both are regular over ¢; thus

(@=c)V(b—c)=(a—c)m(b~—c) by (b)
=b—((a-—oc)—~c) by 871
=b—(a~c)=({aAb)—ec

Therefore (¢} holds, and the proof is complete.

20.13. Infinite and relative joins in A9, We've seen that /.S exists only
when §S is nonempty A closely related operation, which 15 defined for all S C A, 18
the relative join: if 6 € A, we define the relative join of S over a. denoted (° S, by

VS=(YS5)=a=(, -a—a 1
Notice that, by 13 5(c), ° 15 Just the join operation in the frame Ay,) The telation
between  and * 1s spelled out in the following propestion.

Propostion. Suppose that A is a frame, a € A, and S C fta 13 nonempty. Then

g5=7s 2)

More gencrally, for any S C A, the operations ¥ and ° are related by the equations
V§=VavS, ifa€s, ®)

V8=V {a}u(§—~a) @
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Proor Observe that for any a and z 1n A, ¢(a)r = z — a is the least element
greater than z which is regular over a It follows that > 1s the least element
regular over @ and greater than each s € S. Thus, if § C fta is nonempty, then
since YSDsDaforeach s€S VS22 V'S But, since 4 and < comerde on fia
by 20 12(c), 1t follows that S 15 regular over every €S Thus YS=T*S

Now suppose S C A 1s arbitrary If a € S, then a V.S 1s nonempty, and so

V5=VavS=Yav$
by (2), smce a ¥ S C fla This proves (3) Finally, since
a€ {a}u(S—a)Cta,
we can use (2) again to obtain
V{e)U(S~a) =T {a} U(S—a) )

But the second equation of (1) shows that to compute 7°T, each ¢ € T can be
ignored and each s —a € T can be replaced by s. Thus the right-hand side of (5) 1s
equal to 7 S, and we have proved (4)

21. Properties of regular operators
21.1. A characterization of regular operators. As with the equation 9.11(2)
for nucler, we can give a single equation characterizing regular operators

Proposition. The following statements are equivalent for an arbitrary operstor r
on a frame A:

(a) r 1s a regular operator

(b) rla—b)=a—rblorallabeA

PROOF Suppose that r 1s a regular operator, and a,6 € A Then, since
bda—bgr(a—b), ()
we have

(@~ b) = r{g = b) = (g = b) by (1)
=g (ria—b) —h) by 9.71
=g—r{a-b by (1)
=qag-rb by extensionality

Thus (a) imphes (b)
Suppose r satisfies (b} lLet a.2,y € 4 and suppose that a — 2 = a~y Then

g=rz=tru—z)=rla—~y) =a—ry,
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thus, r 15 extensional by 9 4(d} It remains to show that re e < ra forali a € A
But,
(ra-=a)—ra=r{{ra-»a)—a)

=r{ra—a)

=rg—ra=1.

Thus, r 18 a regular operator. and (b) implies (a).

21,2. Basic properties. We now prove a series of results about regular opera-
tors. Looking over the examples in 19 3, we see that

, @—»—, a->—, and @V~ [0))

a— -~

are all regular operators, for every a € A. It will be nseful to keep these examples in
mind as we develop the properties of regular operators below (Some of these properties.
when applied to the operators in (1), are even somewhat surpnsing.)

In the following, A is a frame, ! is an extensional operator on A, and r is a regular
operator on A.

21.2.1. (r isidempotent) r(ra)=ra.
PRroOF. We have
r(ra) = r{(ra —a) —a)
=(ra=—~a)~ra
=(ra—a)—a by 9.6(d), since rc > a

=ra.

21.2.2. (fixr 18 upward-closed) If ra=a and a 6, then rb= 4.

PrROOF. We have
rb=r((t —a)~a)

=(b—a)—ra
=(bmag)—a=b

21.2.3. l(ra)—ra={(a)—ra.
This is another replacement principle we shall use frequently.

PROOF We have
(ra) — ra = l{re) — (ra = a)
= ((ra—a)Al(ra)) —a
= ((ra—a)Ala)) —a by 9.6(d)
=i{a) = (ra—a)
= {(a) = ra.
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21.2.4. (r1s 9-monotone)
(2) adrbiffragdrd
(b) o <Qbimpliesradrd.

PROOF (3) Since a 4 ra, the “if”" direction is yust transitivity of 4 For the “only
if” direct.on, assume a Qrb Then,

(rb—ra)—ra=(rb—a)—ra by2123
=r{(rb—~a)—a)
= r(rb) by assumption
=rb by2121

Thus ra Q rb.
(b) If @ 98, then a drb, and (b) follows from (a)

21.2.5. (Regular operators commute) Suppose ry and r; are any two ragular
operators Then
ri(rza) = r1a ¥ rza = ro(r1a)

Proor. We prove the first equation. the second following by symmetry

ria ¥ rae = ((r1a — raa) — rg) — 0
= ((a = rqa) — @) ~r1a by2l23
=(rze—a)—ra because a < rqa
= ri{(r20 ~ a) — a) = ry(rz0).

21.2.6. (r preserves stable meets) Suppose § C A is stable Then
rAS=ArS

PROOF Suppose that a g s for every s € 5 Then,

rAS=r(A(S~a)—a)
=r((VS—a)—a)
=(YS—a)—ra
= AS—a)—~ra=Ar((S~a)=a)j=ArS
21.2.7.

(8) rlaAd)=((a—b)—ra)A((b—~a)—rb)
(b) r(aAd)2ranrd

PROOF. Since. by 9.7 5,

(@a—b)-~az=a--(anb) and (b~a)=bz=b-(and), (1)
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1t follows that (6 —b) —a ~ (b—a)—b Also.
aAb=(anb)—(aAb)
={a—(aA)A(b—=(aAb) by 97.4
=({e~b8)—a)A((b—a)—1). by (1)
Thus. by 21.2.6, we have.
rand)=r{{(a—b)—a)A((b—a)— b))
=r{{a—=b)—a)Ar((b—a)—b)
=((a=b)—ra)A{(b—e)—rb)
This proves (a), (b) is a travial consequence of (a)
21.2.8. (r sub-preserves {)

(a) rVS=YrS (ScCA).
(b) aVrb=raVrb=ravb

Note that (a) and (b) can be combined into the following: If § = §; U Sy, and Lotk
Sy and S; are nonempty, then

rVS5=({5)v(VrS:).

ProoF. (a) Suppose S C A has 50 € S, andso reg €+S. Forany s€ S, VS s,
so by 21.2.4(b), r VS & rs. Thus
rySeVrs
Conversely, for evety s € S, s 4 rs QV»S. Thus,
Vs ayrs. m

Now, rso 153 fixedpont of r by 21.2.1,8nd rsg 9 rS Thus, 7rS 15 aleo 2 fixedpoint
of r by 21.2.2, and s0 we can use 21.2.4(s) on (1) to obtain

rY529rS.

(b) We prove the first equation, the second follows by symmetry. Since rb 18 a
fixedpoint of r, 80 is @ V rb by 21.2.2. Thus, using (s},

aVrb=r(aVrd)=raVr(rb)=ravrh

21.3. Joins in RA. Suppose R C RA Since RA is Boolean. the De Morgan
laws (7.6) hold. Thus, using the fact that meets and arrow 1n RA are pointwise, and
tbe formula 20.13(1), we get, for every a € A,

(VRja=(~A-Rja=(ARa—a)—a=V Ra
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Thus, we have the formula

(VRie=T’Ra (a€ 4) (1)
If R 15 nonempty, then (1) reduces by Proposition 20 13 to
(VR)a=VRa (a€A). 2

since then Ra 1s nonempty and each of its elements is regular over a. Thus, just as
with meets and arrow. joins 1n RA are calculated pointwise (provided we use ) We
also note the following

Proposition. Forevery r),r; € RA.

nVrp=ror

Proor This follows from (2), with R = {r,.rz}, and 21.2.5.

22. Fixedpoint sets of regular operators

22.1. Complete filters. We define a complete filter i a partial order (P, <)
to be a subset F C P that 1s up-closed and closed under whatever meets exist in P.
Note that if P has a largest element 1, then 1 € F for every complete filter £, since
it is the empty meet We denote the set of complete filters mn P by CompFilt P and
order 1t by reverse inclusion. In this way CompFilt P becomes a complete lattice (since
atbitrary intersections of complete filters are clearly complete filters)

We continue our assumption that A is a frame

22.2. Proposition. If r 15 & regular operator on A, then fixr is a complete
flter in AS Moreover If r' 1s another regular operator, then

s

r< o implies fixr D fixe

Proor That fix r s up-closed is just 21.2.2. Suppose S C fixr and A S exists in
A2, ie. S isstable Then, since r preserves stable meets by 21 26,

r(AS)= ArS=AS,

and so AS € fixr Thus fixr 15 a complete filter
For the second patt, we simply note that r'2 = a and r < r' mplies

a<ragra=a,
sothat ra=a

22.3. Regular operataors from complete filters. The previous proposition 1s
one direction in an equivalence between regular operators on A and complete filters 1n
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A2, analogous to the equivalence between nucle: and maxsets. For the other direciion,
suppose F 1s a complete filter in AS. For a€ 4. put
Fe=FNfa={(beF.agb}
Then we define the operator rr on A by
rra= AF,. (1)
Proposition. If F 1s a complete filter ;n AS, then rp, as defined above, 15 a
regular operator. Moreover, if F' is another complete filter in A2, then
FCF' imphes rp2rp.
PRCOF Assume 4,2,y € A are such that a+2 = a =y, we then show that
asrpz = asrpy, establishing that rp js extensional by 9.4(d). Suppose b € F; If we

put &’ =bVy, then b' > b & F umphes ' € F since F is up-closed, and so b’ € F,
But

asdbz=as»(bVz) since bz
=as(bVy) by replacement
=axb,

Thus, we have shown that for every b € F; there exists ¥/ € F, such that a»b = asd’.
It follows that a *rpz > a srpy. A similar argument shows that as rpz < aw rpy
Thus rp is extensions!

For regulanty, we simply note that, since each element of Fy 15 regular over g, 1t
follows from 20.3(1) that rpa 1s aiso regular over a.

For the second part of the Proposition, suppose F' € CompFiltAS and F C F'.
Then, forany a € A, F; C F}, and s0 rra 2> rra. Since a was arbitrary, rp > rp

22.4. Proposition. Suppose A is a frame. Then,
(a) fixrp = F, for all F € CompFilt A2, and
(b) gy, =r,forall r€RA.

PROOF If a € A is a fixedpoint of rp, then since F, is stable and F is closed
under stable meets, 1t follows that a = rpa = A F, € F. Thus fixrp C F. Conversely,
fa€F,then a€F,,and 80 rra=a and a € fixrp. Thus, F C fixrr, proving (a)

Next, suppose r 18 a regular operator on A, and choose a € A. Since r is idem-
potent (21.2 1), ra € fixr. Thus, since ra D a, ra € (fixr),. If also & € (fixr),, then
rb = b B a, so that & D ra by 22.2.4(a). Thus, ra is the least element of the set
(fixr)a; hence, vy, @ =ra. Since o was arbitrary, rg,, =, proving (b).

22.5. Theorem. The two operations
refixr and  Frerp

are nverse isomorphisms between RA and CompFilt AS
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PrROOF Put together 222 22.3, and 22 4.

22.6. Fnally, we state for the record the consequence of 22 5. as 1t was ponted
out in 9 22

Corollary. The sets that can anse as the fixedpomnt sets of logical operators,
or equivalently as the prefixedpoint sets of extensional operators. on a frame A are
precisely the complete filters in A2

22.7. Meets in CompFilt 4. We can easily adapt the results for meets in the
Jattice of maxsets (14 2) to meets in the lattice of complete filters

Proposition. Suppose that F C CompFilt AT Then
AF={a€d A rra=a}
FeF
={ A as ar € F foreach F € F, and {ap F € F) 15 stable}
Fer
={AT TCUF and T is stable}

Proor Analogous to 14 2, using the results of this section and the properties of

stable sets
22.7.1. Corollary. If S.T & CompFilt AS, then

SAT={sAt.s€SadteT}

PROOF Forall 5 €S and t € T we have (see the proof of 21 2 7)
sAt=((s=t)=s)A({t =8} 1) ESAT,

since (s —t) == 8 (t—s) =1t The Corollary follows

23. RA and the assembly tower

23.1. The embedding of NA into RA. Recall that a maxset of a frame A is
an arrow-ideal of A closed under all meets, while a complete filter 10 A9 is an artow-
1deal of A closed under zil stable meets. Thus, Max A C CompFilt A Moreover,
m both lattices, arbitrary joins are given by intersection, binary meets ate given by
“pairwise” meets (14.2 1(4) and 22.7.1), and the top elements are the same (namely,
the set {1}), hence, Max 4 is really a subframe of CompFilt A¢

Because of the 1somoprhisms

MaxA=xNA and  CompFiltAS = R4,

the subframe inclusion of the previous paragraph induces a frame embedding NA —
RA This embeading is given by j = 7, where (recall 19 2)

ja=(ja—a)~a (e € A), )
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since (1) gives a regular operator with fixj = fix. by 9.22(a)

23.2. The right adjoint. The operation 3+ 7, being a frame homomorphiem,
has a right adjoint. which we denote r— r°,

Proposition, Suppose r is a regular operator on A. Then.

(a) fixr* is the meet-closure of fixr.

b) re=A{rb b>a)

Proor. For (a), note that. by adjointness, fixr® must be the smallest maxset
of A that contains fixr But, since fixr is an arrow-ideal, this maxset is just the
meet-closure of fixr, by 13.9(b).

To prove (b), recall from 13 2(c) that every nucleus j satisfies

ja=s A{befxy:b>a} (1

To show that the meet in (1), with j replaced by r°, 15 equal to the meet in (b), we
therefore need to show that the two sets

{befxr® b>a} and {rb:b2a} (2)

are cofinal (i.e., have the same meet) Going right to left, since fixr C fixr®, we have
a < rb € fixr® whenever b2 a Conversely, suppose that b € fixr®, 0> a By (a), b
18 & meet of fixedpoints of 7, each of which (since r 18 :dempotent and inflationary) 13
of the form rc for some ¢ > a This completes the proof

23,3, Lemma. Suppose J C NA and ji,j2 € NA. Then,

(&) VJ=(VIr.

() i-s=FE~F) .

PROOF. Since 3 — J 15 i-1 we have (5)° = 3 for all j € NA; therefore, since j 3
is a frame morphism,

(VI =\iy=va.
Also, using Propesition 10.7,
GT~RA Y =h~@ =n—0

23.4. Joinsand arrow of nuclei. Using the Lemma, we can now take advantage
of the pointwise formula for joins of regular operators (21.3), and the pointwise arrow
operation, to get formulas for joins and arrow of nuclei:

Theorem. Under the hypotheses of the Lemma,

(Vija= A{ATb=b) —=b= A ((VIB)—b)—b ()
2a 2
and
(1 —nla= A hb— it @
20

ADA289360




23.7 6 Regular operators 96

PrROOF. By the Lemma and previous proposition (as well as 7 6 and 21 3),
VJa= (\/7)"0 = (~‘/\~7)°a = A (-ﬂ/\-\:l_)b = A(ATb—=8)—b.
Y 220

The second equation of (1) 1s clear
For (2) we have, again by the Lemma and previous proposition,

{(n—snle=Gr~5e= A nb—7b

2a

But
16~ 736 = FE(G76 — b) = Fo(1b ~ &) = jub— 736,

thus. to estabhish (2) 1t suffices to show that the sets
{nb=T7b b2a} and {ndb—pb.b2a}

are cofinal. Now, since 736 > jab for all b, each element on the left 15 greater than one
on the right. For the converse, we note that. since 320 € fix 72,

Jrb =136 2 j1(2b} = 12b = 31(72b) ~ T2(52b)
23.5, Lemma. Supposc 4 is a frame. Then, for any r € RA and ¢ € A, we
have
rVg(a) = q(ra).

PRroof. For any £ € A we have

(rv(a))z = r(g(a)z2) by Proposition 21.3
=r(avz)
=raVz by 2128
={(ra)z

23.6. Theorem. RA = (N24)...

ProOF Let f N2A — RA be the unique extenston (guaranteed to exist by 18 2
since every element of RA 15 Boolean) of the frame embedding NA — RA of 23.1
Since the latter 1s mono, f 1s dense by 16.4(¢) As doublc negation is the only nucleus
that is at the same time dense and quasi-closed, it will be enough to show that f 15
surjective—equivalently, that f, is 1-1 By 16 3(b) and NRA = RA, f,r = [r], where

frli=(rvj’.
So, suppose r; and r; are such that [r} = {rz] Then, for any a € A, evaluating at
the nucleus ¢(a) gives, by the Lemma,

Irilg(a) = (r vE(e))* = (7(ra))° = g(ma).
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and, similarly, [ra]g(a) = g(rza). But ¢ 15 1-1. 80 ria = r,a Since a was arbiteary,
) = ra, proving that f. 15 1-1. as desired
23.7. We now aim to get > description of the map =— . N°4 — RA 1n terms of
operators. We do this by going through RNA, with the following extra result.
Proposition. The map d ' RNA — RA defined for R € RNA by dR = r, where

ra=b iff Re(a)=gq(b) (s,b€A), 1)

15 8 cBa morphism.

ProoF First of all note that r, as given in (1), is well-defined, since the regular
operator R 15 inflationary and the set of nuclei of the form ¢(a) for a € A is up-closed
(154) Next. we check that r 15 a regular operator, using 21.1 and that ¢ 1s 1-1 for
every a. b€ A,

g(r(a — b)) = Re(a~b) by (1)
= R(c(a) — g(b)) by 15.5(c), since (e Vo) ~bdb=a—b
= c{a) — Rq(b)
= c(a) — q(rb) by (1)
= g{a ~ rb).

Next, we check that d preserves meets. Suppose Q is a subset of RN and put
Q=dQ. Then, since meets in RNA are pointwise, we have, for every a € .,

(A @)gla) = A Qq(a) = Ae(Qa).

Transposing to (NA)S by 20.2(a). we see that, since the set Qa is stable, we can
use 20 5 to conclude that Agq(Qa) = ¢(AQa). Thaus, since meets in RA are also

pointwise,
(A Q)a(a) = g(AQa) = ¢({A Q)a).

Hence d(A Q) = AdQ, proving that d preserves meets. We complete the proof by
checking that d preserves ~ Suppose R € RNA and a € A, and put. r = dR. Then,

(~Rjq(a) = Rq(a) — ¢(a) = g(ra) — g(a) = g(ra > a].
by 20 11 Now ra > a, so that ra -ba = ra — a by 20.12(b). "Thus,
(~R)q(a) = g(ra = a} = g((~r)a),
and so d(~R) = ~dR.
23.8. Proposition. The morphism f - N®A — RA given by the composite
NA - N?A 25 RNA -4 RA %)

satisfies fJ = r, where

ra=b f Je(a)=q(d) (¢,be A). )
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Moreover, =~ N*A — R4 1s given by the same formula: thus f = =
ProoF. By 23.1. the map N24 ~ RNA is given by J ~ 7. Thus, the first part
of the Proposition wiil follow if we can show that for every a € 4, Jg(a) = Jg(a)
Indeed, suppose that J € N24, and let r be defined as in (2) Notice that since
q(a) < Jg(a) = q(ra).
we have ra D a for all a € A. But now forany a € A,
Toa) = (Ja(o) — g(a)) — g(a)
= (¢(re) — q(a)) — q(a)
= q(ra—a) — g(a)
=g((ra—~a)~a) = g(ra) = Jo(a)
For the second part of the proposition. note that we now have two morphisms

NA — RA
na = N2aLira

The bottor composite 1s given by 7 = J (as we know from 23 1). But the calculation

q((fe(2)a) = ¢(2){(a)) by (2)
=JVle)
=4q(ja —~a) by 15.5(d)
= g{ja),
for all j € NA and a € A, shows that the top composite 1s given by the same formiula
Therefore, as ¢ - NA — N2A is epi by 15.1(¢), we have f = =~
23.9. Corollary. The morphism -— NNA — RA is open.
PROOF In any Heyung algebra double negation preserves = :
((a=8)~0)—0= ({((a~0)—0)A(b—0)) —0 by 9.73
=((a—=0)—0) = ((6~0)—0)

The proof that == N24 . R4 preserves meets 15 identical to the proof that the map
d: RNA — RA of 23 7 preserves meets

24. RA as a limit

24.1.  Given a frame A, we can construct a diagram of cBa's as follows. The
vertices of the diagram are the frames Ay,) for each a € A, and there 1s an arrow
Agoy = Agey M g(a) £ q(b), 1 which case the morphism 1s the natural quotient
morphism. Let us call this disgram D(A) In terms of maxsets, 1t's easy to see that
what we have are the maxsets fra for each ¢ € A, and a morphism fla — f}b whenever
a9 b, whichis given forall z € fta. by 2 b0z,
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We now desctibe a cone from RA to D(4). For evety a € A, we have the map
es i RA — fra, ‘evaluate at G”, given by eor = ra  Since a < ra for each r € R4,
this indeed maps RA 1o fia; 1t preserves all meets, since meets in RA are pointwise
and meets 1n fta are the same as in 4. and it preserves complements. since (r—0)a =
ra—a Thus, the evaluation maps are cBa morphisms. They determine a cone since,
for each a Qb and each r € RA. we have, by 21.2.8(b),

bVra=r(bVa)=rd
Theorem. With notation as above, the cone (¢q . RA — fta)se4 15 a It of the
diagram D(A).

ProoF Suppose {f, . C — f1a)se4 15 another cone to D(4). This meansin
particular that, forall ¢ € C,

adfec (a€A4) 1

and
bV fac=fic  (a,8€ A4, adb) 2)

The goal is to define a morphism f . C — RA by which this cone factors through the
cone (eq)aca - Such a morphism, were it to exist, would thus have to satisfy

(aofle=flea=fuic (c€C)

forevery a € A Taking the second equation as the definition of £, it remains to show
that

(a) f(c) 15 a regular operator for all c € C, and

(b) f 15 a frame morphism
For (a), it suffices by 21.1 to check that

fomic=a = fic
forall a.6 & A But. as 6 Ja--0b, we have

fempe=(a=b)V fic by (2)
za={bV fic) by 21.2.5
=a— fic. by (1)

For (b), recall (20.13) that jcins in the maxset fta of A ate given by °, then, for
every a€ A and SCC,

fVSa=£VS=V fuS = (Vf(S)e,
by 21.3(1), so that f preserves joins Similarly, given a € 4 and a fimte set T C C,
fAT)e = falAT) = AT = (A (T))a,

proving that f preserves finite meets. This completes the proof.
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Chapter 7
FREE MEETS

This short chapter answers the “local” question of which meets 1n a frame A are
preserved by every frame morphism out of A and the corresponding “global” question
of which frames A have the property that every frame morphism out of A preserves
all meets The answer to the first question 1s given n Section 25, and this is used
to give a charactenization of the dual kernels of frame morphisms. The answer to the
second question, which 1s simply that A4 15 a biframe () ¢., its dual is also a frame) and
NA 15 Boolean. 1s given 1n Section 26 Two examples follow, showing that these two
conditions on A are independent

25. The characterization

25.1. Definitions. A subset S of a frame A has a free meet if f(AS) = AfS
for every frame morphism f A — B The frame A itself has free meets if every
subset S C A has a free meet

Note that since frame morphisms preserve finite meets (and are monotone) a subset
S of A has a free meet Just n case the filter generated by S has a free meet We could
therefore restrict attention to filters without any loss of generality, although we won't
have any reason to do so (except, perhaps. in Corollary 25 4, where a restniction to
up-closed sets would make the statement of the result simpler)

25.2. Lemma. Suppose A is a frame and S C A. Then \/ u(S) = u(a) implies
a=AS and similarly Ac*(5) = ¢*(a) imphesa=AS.

Proor. Suppose \/ u(S) = u(a) Then negating both sides and using 15.1(d). we
get
Ae(S)=cla), )]

and evaluating both sides of this at 0, we get A S = a For the second part. we evaluate
both sides of Ac?(5) = c*(a) at 0 € NA to get (1), and then evaluate again at 0, as
before, to get A S =a.

25.3. Theorem. Suppose that S is a subset of a frame 4 Then the follewing
five statements are equivalent:

(3) S has afree meetin A

(b) AC(S)=c*(AS) i N?A

(¢) Vu(S)=u(AS) n NA

(d1) A(S—~a)~a={(AS)—~a)—awn A forevery € A

(d2) A(S—a)—a=aum A, forevery a2 AS

Note that condition (b) can be replaced by “Ac*(8) = ¢*(a) for some ¢ € A"
and that condition (c) can be replaced by *V/ u(S) = u(a) for some a € A", for then
a= A S n both cases by 25.2

100
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PROOF. We prove (a)=>(b)=>(c)=+(a) and (a)=>(d1)=>(d2)=>(c)

Fitst, (a) trivially imples (b), since ¢®> A — N24 is a frame morphism. Because
(VY u(5)) = Au*(S) by 15 1(f) and u? = ¢ by 15.7(b), (b) is the result of applying
u to both sides of (c); since u is 1-1, this shows that (b) imphes (¢) Now assume {c),
and let f: 4 — B be a frame morphism Then, again using 15.1(f), and the second

part of 16.1(1),
u(fAS) = (NFNu(AS)
= (NFIV u(S)) = VIN£)(u(S))
= Vu(f$),
andso fAS = ASS follows from 25.2. Thus (c) implies (a).

Next, considering for every a € A the frame morphism ¢(a) « A = Ay, and
the fact (13.5(a)) that meets in both frames are the same, (a) clearly implies (d1).
Condition (d2) is a special case of (d1), since (A S)=~+a)—a =a whenever a2 AS.
Finally, since V u($) < u(A S) always. (c) is equivalent to u(A S) < V u(S) and thus,
by 15 1{c), to (Vu(S)HAS) = 1. An application of the formula 23.4(1) for joins 1n
NA (and expansion of the definition of u) reduces this to

A NMS—a)=a]~a=1
a2AS

As the expression in square brackets is > a, the equivalence of (¢) and (d2) follows.
zompleting the proof

25.4. Recall the defimtion of stability from 20.4. The following coroilary gives
another way of expressing condition (d2) above.

Corollary. A subset S of a frame A has a free meet iff every element ¢ > A S
can be written as the meet of a stable subset of the upward closure of S.

PROOF. Smce (§ -~ a)~~a s stable subset of the upward closure of $, necessity
follows trivially from the imphcation (a)=(d2) of the Theorem. Conversely, if T is a
stable subset of the upward closure of § with meet a, then

as NE—=a)~as AT —0)=a=AT=g,
and 80 a = A(S — ¢) — a. verifying condition (d2) of the Theorem.

25.5.  As an spplication of Theorem 25.3, we can denve a characterization of
the “dual kernels” of frame morphisms, 1 e., the sets f=3(1) C A for frame morphisms
J:A~B.

Theorem. A subset F of aframe A is equal to f~1(1) for some frame morphism
f: A= BIiff Fisaftee filter, 1e,

(a) F 1s upward closed, and

(b) SCF and \(S~a)—a=a forevery a2 AS,then ASeF.

Note that, by the previous theorem, (b) is equivalent to saving that F is closed
under free meets,
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PROOF Considering the above note, sets of the form f~1(1) are clearly free filters
Conversely, supposing that F C A 15 a {ree filter, consider the nucleus 3 = \Vu(F) If
a€ F, then ja > ufe)a=1.andso ja=1 Andif jo= 1. then u(a) < Vu(F) by
13 1{c), and so u(a) = u(e) AVu(F)= \u(aV F), using 15 )(f) Thus aV F hasa
free meet and AaV F =a But aV F C F by (a), and therefore a € F by (b). We
have therefore shown that a € F iff ja = 1. and s0 F = 3~!1 for the frame morphism
JiA— A,

26. Frames with free meets

26.1,  We now turn to the question of which fraines have free meets. Using the
previous theorem and a result of Beazer and Macnab (5] this question can be answered
as follows-

Theorem. A frame A has free meets iff both of the following conditions hold
(a) A isabiframe
(b) NA is Boolean.

PROOF First of all observe that A4 15 a biframe iff ¢ A — NA preserves meets,
for ¢(AS) = Ae(S) 15 equivalent to a VAS = AaVv S for every a € A Suppose
now that A has free meets By the preceeding comment, A is a biframe Also, by the

previous theorem,
NS —~a)—a=((AS) ~a)~a,

and so for every @ € A, there 15 a smallest element d(a) with (d(a) ~a) —a =1
Therefore, according to the result of Beazer and Macnab, NA is Boolean

Conversely, suppose A 1s a biframe and NA is Boolean Then. as ¢ A4 ~ NA
preserves all meets,and ¢ NA — N?A, being an isomorphism by 15 1(e), also preserves
all meets, the composite ¢? . A — N?A preserves all meets Hence, A has free meets
by the previous theorem

26.3. Examples. The conditions (a) and (b} above are independent, as the
following two examples show:

(i) Let A=(w+1)°° (1e,thechainw<,. <2<1<0) Then A s complete
and therefore 2 biframe (in fact, even a completely distributive frame) But n isa
dense element of A for every n #w, in the sense that n—~w =w,and A n=w,
showing that n doesn’t have a Jeast dense cover d(n), and therefore that IﬁA 1s not
Boolean. Notice that o may be replaced here by any limit ordinal and that together
these complete chains form a class of canonical examples of frames whose assemblies
are not Boolean. in the sense that the failure of a frame to have a Boolean assembly
may be traced to the existence in the frame of such a complete chain with every element
dense over the meet

(ii) The same A, with N applied, yields an example of a non-biframe with a
Boolean assembly. In detail, using the 1somorphism of NA with the poset of maxsets
of A ordered by reverse inclusion. and the degeneracy of — and A in A, NA can be
identified with the set of all subsets of A (ordered by reverse inclusion) of the following
two types:
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(a) fimte sets contaiming 0, and

(b) infinite sets containg both 0 and w.
Joum is gven by ntersection. and meet 15 given by union, with w added 1f the result is
infinite NA 18 not a biframe, because a counterexample to

SVA{Tw .n<w}=A{SVTL :n<w} (1)

can be found by setting S = {0,w} and T, = {0,n}, for then w is an element of the
left side of (1) but not the right

On the other hand, 1t 15 easy to see that {0} and {0,w} are the least dense elements
over sets of type (a) and (b), respectively, and thue that N*A is Boolean.

26.3. Remark. The independence of conditions (a) and (b) above ¢an also
be used to show the independ of the stat ts “f preserves meets” and “Nf
preserves meets.” If N4 1s Boolean and A is not a biframe, then f=¢: A — NA
doesn’t preserve meets while Nf (being an isomorphism) does. Andif A4 is a biframe
with NA not Boolean, then the same f preserves meets, but Nf doesn’t (otherwise
NA would be a biframe and hence Boolean)

26.4. Exercises.

26.4.1. Modify the proof of Theorem 25 3 to obtain the equivalence of the fol-
lowing statements, for SC A and b€ 4.

(a) AFS < fb, for every frame morphism f: 4 — B

(b} A(S) g D).

(©) Vu(S) > u(b)

d1) A(S—o)=ag(b—a)~a,forevery a€A.

(42) A(S—a)—a=a,forevery a2 b.

26.4.2. Given a frame A, define MA to be the subframe of N2A generated by
all elements of the form A{c*(s) - s € S}, where § C A. Show the following:

(a) If f: A — B s aframe morphusm such that every subset of the image f(A)
of A has a free meet 1n B, then the morphism N?f restricted to MA factors through
¢h B — N?B, and thetefore f extends to s morphism f: MA — B in s canonical
way,

{b) M can be made into an endofunctot on Frm o that the embeddings ¢? : A —
MA are components of a natural transformation from the identity functor to M.

() A has free meets iff ¢ - A — MA is an isomorphism.

(d) Is &+ A— MA epi? (I don't know the answer.)
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Chapter 8
UNIVERSAL MONOS AND COMBINATORIAL MORPHISMS

In Chapter 7 we used the second-level assembly N?A of a frame A to characterize
the free meetsin A In the first half of this chapter. we make use of the whole assembly
tower to characterize those monos whose pushouts are always mono These results make
essential use of the theory developed in Chapters 4 and 5 and are a further example of
the use of x-frames to obtain results about frames. Section 27 introduces the class of
universal monos proves some closure properties of the class and gives several families
of examples In Section 28, the notions of a-mono and a-ep1 are introduced and their
basic properties investigated. Then the main results are proved f 15 a universal mono
iff it 15 a-mono for every a. and f 13 (a + 1)-mono i the pushout of / along every
a-epiis mono The first of these results 1s proved in two ways, once using the categories
oco-Frm and oc-cBa introduced in Section 18 (which rely on inaccessible cardinals
and entail a restriction of the frames considered}, and a second time using an excursion
through the category x-frames where « 1s chosen based on the size of the instance
of the result to be proven, this second proof depends on s Lemma about the relation
between the assembly tewer of a frame and its x-assembly tower when it is considered
tobe a x-frame The section closes with a proof that a-epis are stable under pushout.

The second half of the chapter is concerned with combinatonal morphisms. These
provide a means of treating categorical properties of a morphism f . A — B (like
being an ep: or regular mono) 1n terms of algebraic data on A (namely congruences).
Section 29 treats the general theory, while Section 30 treats the finitely generated case
Section 29 starts with a concrete description of the free extension A[X] of a frame
by a set X of “indetermmnates” 1ncluding the effect of the functor A — A(X] on
morphisms Then the notion of standardization of congruences 15 intzoduced and sev-
eral results relating congruences and their standardizations are proved Finally, both
pushouts and 1terated extensions of combinatorial morphisms are considered, and a
connection is estabhshed with free meets In Section 30, finitely generated combinato-
rial morphisms are d smce standardization no longer plays a role, the theory
becomes considerably simpler in this case The results lead up to a charactenisation,
1n terms of properties of congruences, of finitely generated epis and regular monos

27. Universal monos

27.1. Definition. A morphissm f: A — B in a category with pushouts is a
universal mono (ot just umiversal) if the pushout of f along every morphism h: A — D
is mono.

27.2.  Here are some basic properties of universal moncs in any category with
pushouts

Proposition. Every umversal mono is mono, and every pushout of a usiversal
mono s 1tself universal Suppose f 4 — B and ¢. B — C are morphismns Then

104
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(a) If f and g are umversal, thensois go f.

(b) If go f 1s umversal, thenso1s f.

(¢) Ifgof is universal and f 1s epi, then g 1s umversal
(d) If go f 1sepr and g is universal, then f 1s ep1

We summanize (2) and (b) by saying that composites and first faciors of universsl
Monos are mono

PROOF. Every morphism 1s a pushout of itself along the identuity, so universal
monos are mono  Part (a) of the Pushout Lemma (6 4) says that iterated pushouts
are pushouts along the componstte; it eamly follows from this that pushouts of universal
monos are universal Parts (a) and (b) also easily follow from the corresponding parts
of the Pushout Lemma. since composites and first factors of monos are mono, as does
part (¢), since if f 1s epi then g 18 a pushout of go f along f and hence universal.

For part (d), suppose that g o f is epi, g 18 universal. and ki, k; . B — D are
morphisms such that k; o f = kz 0 f. The idea will be to “push out” the pawr &y, %,
along g and then use the fact that g o f 15 epi. Thus, we construct the following

R
s

A

where k] and kj are the pushouts of k; and k; along g (with g{ and g as the
remaining morphisms of these pushout squares), and where g}/ and g4 are the pushouts
of g) and g; along each other, with | = g3 0 g} = ¢’ 0 g5 as the “diagonal” of this
pushout square Since g 15 umversal, both g} and g5 are universal, and so both gf
and g}’ are mono, thus { is mono

The rest of the proof is a diagram chase showing that lok, = (o £; follows from the
assumptions that ko f = kyo f and that go f is epi. In detail (where I am umitting
the symbol “o”, and where parentheses indicate the expression(s) to be replaced in the
next step), we have

(k19)f = (9791 )(k1f) = g1 (g2ka) f = 9739,
and therefore, since gf 1s epi, g7k} = gi'ky. Now, using this.
(Dky = g3(grks) = (93%))g = g1 (k39) = (9 gh)ka = Iks.
Finally, stnce ! is mono, we conclude that &, = kj.

27.3. Examples. (1) Every isomorphism and, more generally, every section (1 ¢,
a morphism f : A — B for which there 18 g+ B — A with go f =1d,) 1s universal,
as can be easly shewn (6.4).
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(u) Every open mono is universal (For a proof, see [27], V.4, Proposition 1 ) Recall
that a frame morphism is open 1ff it 1s a cHa morphism, 1 ¢, iff 1t preserves arrow and
arbitrary meets

(iii) The monos corresponding to localic proper surjections are universal. This fact
appears as Proposition 4 21n the paper by Vermeulen [49], see that paper for a detailed
account of proper maps We recall the lattice-theoretic charactenzation: f. A — B
is proper 1iff f. preserves directed joms and f,(f(a) V) =aV f,(b) forall a € A and
beB

(av) For any category C with pushouts. if 7. J — F 1s a natural monomorphism
from the identity functor I C — C to an arbitrary functor F . C — C, then every
component 74 of r is universal This is because. for every morphism & A — D,
the monomorphism 7D D — F D factors, by naturality of 7, through the pushout of
7A* A — FA along h. making the latter mono In parucular, all of the morpbisms
¢® A — N®A (as defined in 17 1) are universal

{v) Combining (1v) and 27 2(b}, we conclude that first factors of components of
natural monomorphisms from the 1dentity are universal As examples, we have the
morphisms ¢? © A — MA of Exercise 2642 Conversely, as 1s sketched in Exer-
cise 27.4 2 below, if directed colimits of monos are mono (as 1s the case with Frm-
see 12.8), then every universal monos the first factor of a component of an appropri-
ately constructed natural monomorphism 7 7 ~+ F Treating F as a kind of “free
extension” functor, this lends some credence to the intuitive idea that universal monos
represent free extensions

27.4. Exercises.

27.4.1. Show that the construction used in the proof of Proposition 27 2(d) of
pushing out a pair of morphisms along another morphism can be given a universal prop-
erty similar to that of an ordinaty pushout Observe that if & category has pushouts,
1t also has pushouts of paits and that pushouts of univeral monos along pairs are
umversal.

27.4.2. Let C be a cocomplete category. The phrase “directed colimits of mones
are mono” in part (c) below means that whenever {f, - A — B,} is a directed source
of monos—1.¢., a family of monos with common domain such that for any pair of in-
dices i, j, there is an index k such that fi factors through both f, and f; —then the
common map from A to the colimit of the family is mono

(a) Fix a morphism f 4 — B of C For every morphism g : A — D, let u,
be the pushout of f along g, and for every object D of C,let ;D . D — F;D be
the morphism from D to the cohmit Fy D of the source {u,:g € hom(4, D)} Show
that Fy 18 the object part of a functor Fy . C — C and that the morphisms 7, D are
the components of a natural transformation 7y / — Fy. Moreover. show that 7, A
factors through f

(b) The identity functor  is an object of the functor category {C,C] of all end-
ofunctors on C, and the comma category (7,{C, C]) has as objects all natural trans-
formations J — G. Show that for each object A of C, the assignment

(r:]=G)—(rA. A — GA4)

determunes a functor {/, {C.C]) — (4, C), and that this functor 15 right adjoint to the
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functor determined by the assignment
(f A=B)— (1 I-=F)

(¢) Show that if directed cohimuts of monos are monon C and f A~ B isa
universal mono, then 77 15 a natural monomorphism Conclude that every universal
mono is the first factor of a component of a natural monomorphism from the 1dentity

28. Relation to the assembly tower

28.1. Definitions. Let f 4 — B be a frame morphissn  We say that f s
a-monoif N° f 1s mono and that f is a-ep) if the image of ¢® B ~+ N°B 1s contained
1n the image of N°f N®A — N2B In symbols: im(c§) C 1m(Nef)

This last condition can be expressed diagramatically 1n two ways:

Neg —2d o nop N“A——N:I—*N"B
\A /? \
cx 0‘ le; 4 (i 1{:’,
i TN
A e B, A ——re— B,

In the lelt disgram, the morphism N° f has been factored through its image, and ¢
factors through this In in nght diagram, the pullback of N* £ along ¢§ 1 onto.

28.2. Here are a few simple facts concernmng these notions.

Proposition.

(a) Composites and first factors of a-monos are a-mono

(b) An a-monois 8-mono for all < a.

(¢) An a-mono composed with a 5-mono 1s a min(a, 8)-mono.
(d) Second factors of a-epis are o -epi.

(¢} An a-epiis 3-epiforall 8> a.

PROOF. Part (a) 15 trivial, since general monos satisfy these conditions snd N* 15
afunctor Forpart (b), suppose f1s a-monoand 8 <o Let ¥ be the unique ordinal
for whick a +v = §. Then, since N°f is mono, s0 is (N°f) o ¢l = Tyg o NS,
and thus N?f is mono as well. Part (c) 1s a simple corollary of pacts (a) and (b).
Part (d) follows from a simple property of images. namely, the image of a compomte is
contained 1n the image of the second factor. Finally, suppose f is a-epi (a5 in the left
diagram above) and 3 > o. Then, with v such that a + ¥ = 3, applying N” to the
image factorszation of N f and recalling that NY preserves surjections (by 16.4(a) and
mduction), we see that 8 also factors through the 1mage of N°f and thus is S-epi

28.3. Proposition. If f . A=~ Bisa-epiandg. B~ C 15 3-ep1, then go f
18 (o 3)-ep1
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PROOF Let v be such that 3+ v = o + 3, and consider the following diagram.

Netay Ne+e,
No+8 | ——% O+ B et NS

- 1] U
Noa —Ls Nog N4 s o g L NS
\ o & / :,‘,
B c

(Notice that I have simplified the subscripts on the arrows labelled ¢ ) Since g 15
3-ept, m(c%) C im(N’g) Thus. by composing with ¢, we have

m(e2™") C im(ch o N¥g) = m((N°*g) o c}). (1)

Now, since f 15 a-epr, im(c3) C 1im(N®f) Applying the functor N?, we get im(c}) C
im{N*+? £), so that composing with N®*%¢ yields

m((N°*%g) o C}) C 1m((N°”g) ° N'*”f) = ‘m(Nn‘ﬁ(g of) (2)
Putting together (1) and (2), we have im(c3™) C im(N**+#(g o f)), as required.

28.4. Other properties, and distinctness. [nformally, the notions of a-
mono and a-epi give a “ranking” to arbitrary morphisms if « < 3. then an S-mono
15 “more mono” than a a-mono, and an a-epi 18 “more epi” than & S-epi. (Formally,
we could define the mono-rank of a morphism f to be the (posmbly empty or total)
mitial segment of the ordinals conmsting of those o for which f is a-mono, and the
epi-rank of a morphism to be the smallest ordinal o for which f 1s a-epi (or o0 if
there aren’t any), but this technicality won’t be necessary.) At one extreme of the
ranking are the O-epis, which are just the surjections, and the monos that are a-monc
for all ordinals o, which we will prove shortly, are precisely the umversal monos. At
the other extreme, 0-mono is synonymous with mono, and Madden and Molitor [33]
show that (in our termmnology) a morpbism is epi 1ff it 18 a-ep: for somz, and therefore
for any sufficiently large, ordinal a.

We have already seen what happens to the ranks of monos and epis under com-
position and, respectively, first and second factors Although pullbacks of monos are
always mono, there doesn’t seem to be any connection between the rank of 2 mono and
the rank of its pullback On the other hand. we will show (Corollary 28.9) that ranks
of epis are presetved under pushout

Finally, we consider examples showing that the notions of a-mono and a-epi are
different for each ordinal a, stated her way, each possible mono- snd epi-rank
is achieved by some morphism Let A be any non-reflective frame (for example the
free frame on w), fix an ordnal a. and let B be the cBa (N°A)a.. Consider the
morphism fo = =mo¢% - A — B. Since B 15 a cBa, tt follows that for all 3 < a,
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NOf, = -~mocy,,, where 34+ = a. This s mono for all 3 < a but not mono
when 8 = o (for then it 1s just =~ which 15 mono only if A 1s reflective) Thus f,
18 3-mono for all 4 < a, but 1t 13 not a-mono. By similar reasoning, N?f, 1s onto 1ff
8 > a, and hence f, 15 a-ept but not 8-ep: for any f < a.

28.5. Characterization of universal monos. The next two theorems are
the man results of the section They charactenize umversal monos 1n terms of their
mono-rank and, conversely, the mono-rank of a morphism 1n terms of its degree of
“umversality”

Theorem. A morphism f 1s a universal mono if and only if it is a-mono for every
ordinal a

PROOF Suppose f 15 universal, let o be an ordinal, and consider the diagram

Neg —2L  Nop

INCLT
4
rd
A . 24
AN
j
A — B,
where the lower-left “square” 15 & pushout and the dotted morphist i the umque
morphism from the pushout Since f is universal, f' 1s mono The morphism d is
epi, since 1t is the pushout of an epi, and therefore, since c§ 15 universal, the dotted
morphism 15 also mono (in fact umversal) by 27.2(c). Thus the compoeite N°f 1s
mono, and hence f is a-mono
Conversely, suppose f 18 a-mono for all ordinels a, let k:.4 — D be an arbitrary
meorphism, snd der the two diag

D . P N©eD it A N® P
AY lA’ and N"AT 1.\":.' 1)
A-—7>B N®A =7 N>B,

where the first diagram 1s a pusbout in Frm and the second, living 10 the category
cc-cBa (and hence also in co-Fym), 1s the functor N® applied to the first, (See
Section 18.4 for information about co«cBa, oc-Frm, and the functor N® ) Since
N* is a left adjoint, it preserves colimits, and so the second disgram 1s a pushout in
oo-cBa (but, incidentally, not ily in co-Frm). Also. since N f 1s mono for
all a, N® f 1 monoin 50-Frm (since by 6.5.5 it is a union of monos). and hence also
in co-cBa. But all monos are universal in co-cBa by 18.3(a), and so N®f* is mono
in co-cBa Thus N® f' 1s mono in oc-Frm, and hence f' is mono in Frm

28.6. An alternate proof. The second part of the proof above uses the
categories ocecBa and >0-Frm, which depend (in a set-theoretical foundation for
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category theoty) on an inaccessible cardinal or a Grothendieck universe, as well as im-
plying a limitation on the “frames” considered. this1s d d 1n Section 6.6 (see also
184) As also mentioned there, these assumptions and himitations are not necessary,
but merely conventent. For illustration, we give an alternate proof of 28 5 using only
ZFC. The proof starts with the following lemma, which answers the question asked at
the end of [33] *“Is the morphism ¢ (in the diagram below) always mono?”.

Lemma. Let & be a regular cardinal Then the morphism €5 1n the diagram

A—————*N“A

N A

of k-frames, as constructed in 18.2, is (a universal) mono. (Note that wa have implicitly
applied the forgetful functor UL, to ¢ : A — N*4.)

Proor. The notation follows that of Section 18. We first extend the functor
N* .« Frm — Frm to a functor N* - x-Frm — «-Frm by precomposng with the
free functor F : x-Frm — Frm; that 1s, for every x-frame A, we define N°A =
NeFZ%(A). Then, the morphisms c5o !. A — F%(A) — N*A are mono and, moreover,
components of a natursl transformation I — N* from the identity functor on x-Frm
By Example (iv) of 27.3, these morphisms are therefore universal in x-Frm (just as,
when A 15 a frame. we already knew they were 11 Frm). Since d} is epi and x-Frm
has pushouts, we can therefore apply 27.2(c) to conclude that ¢ is universal.

Theorem (bis). A frame morphism [ is a umversal mono if and only if 1t 1s
a-mono for every ordinal o

Proof. The “only if” direction is just as before.

For the “if” direction, we start with the same pushout appearing as the first diagram
of (1) above Asis explnmed in 12.4, this pushout b a pushout in x-Frm when
« is large enough (for instance, x = |B 64 C|* suffices). Then, applying the Boolean
refiector B : k-Frm — x-cBa, we obtain a pushout in x-e¢Ba. Thus, if we can show
that B*f is mono, then the rest of the proof proceeds as before with oc replaced by
& But to show this, we can form (in the category x-Frm) the diagram

N“4 XL N*B
e %
& gra —2L s pip 4
d: ‘A
/ B,

m which the morphism ¢4 15 mono by the Lemma Thus, as N* £ 1s mono by assump-
tion, so 18 (N* f) o e = e} o B*f, implying that B*f 15 also mono, as required.
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28.7. The universality of a-monos. As the second main result of this section,
we obtain a kind of converse to Theorem 28.5. We start with a Lemma that is actually
the case a =0 of the theorem that follows it.

Lemma. Suppose that f is a frame morphism Then Nf 1s mono if and only if
pushouts of f along surjections are mono

ProoF The proof refers to the following diagram?

B—”¢.=.

N

.4—,—>P—h->Q

Suppose first that Nf 1s mono, g 15 onto, and the left square above is a pushout: we
show that f' is mono Factor f' as a surjection h followed by an injection f“, as
shown 1n the rght squate Since h 15 ep1, the nght square 15 a pushout by part (c)
of the Pushout Lemma (6 4). and hence the outer rectangle is a pushout by part (a)
Therefore. (Nf)(ker g) = (Nf)(ker(h2g)) and. using that Nf 18 mono, ker g = ker(hog)
"Thus h 18 an 1somorphism and f' 13 mono.

Conversely, suppose that pushouts of f along surjections are mono. Let 6; and 6;
be congruences on A such rhat

(N£)(61) = (Nf)(62) (1

Since (Nf)(8y) = (Nf)(62) f (Nf)(y A82) = (NF)6, V 62), we may assume in what
follows that 6y < ;. Put P = A/6, and Q = A/f; with natural maps as shown in
the bottom row of the diagram, and assume that both squares are pushouts; by (1),
the pushout of h along f is an 1omorphism. But now, by assumption on f, we have
that f’ i1s mono, and so, composing with the 1somorphism and taking the first factor,
h is mono as well. Thus @, = 83, showing that Nf is mono.

28.8. Theorem. A frame morphism f is (a+1)-mono if anc only if the pushout
of | along every a-ep: s mono

PROOF. Let f ' A — B be such that pushouts of f along a-epis are monc Then,
for any congruence § on N®A, we construct the following diagram:

P

Here, the nght square is a pushout, f' is the pushout of f along c§, and f* 15 the
pushout of f' along p (and thus also a pushout of f along poc§ by part (a) of the
Pushout Lemma) The dotted morphism u is the umique morphism such that

uoc'=ch and wof =N7f, (1)
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and v’ is the unique morphism such that (with the help of the first part of (1))
wopod=p'och =pouccd and wofi=g. 2)

Since ¢’ 15 the pushout of an epi. it 1s epi as well, and so we conclude from the first
part of (2) that v/ op' = p" o u. Asin first part of the proof of 28.5, u is umversal
Now, both the nght square and the lower-right “oblique” square (mith #/ and p as
base) are pushouts, and both of the adjorning triangles commute by the second parts of
(1) and (2) Thus, stnce the upper-tight obitque square is ¢ ive (as we pownted
out above), 1t 13 also a pushout by part (b) of the Pushout Lemma. Hence u’ is mone
But, aince poc§, being the composite of an a-epi and & G-¢p1, 15 a-epr by 28 3, f* is
therefore mono by the assumption on f, and 80 ¢ is mono Since § was arbitrary, we
conclude by the Lemma that N°*! f 1s mono, and hence that f is (@ + 1)-mono.

For the other direction. suppose ¢ 4 — C is an arbitrary a-epi, and constder the
following diagram

NeB - ~z Nep
| '\\"\“Q' v
3 , vd (3
Bi—]|—p
g IJ v ‘:’ Nes

NeA 5 NeC

This disgram is constructed as follows. starting with f and g, we form the pushout,
given by the inner square with vertex P. The outer square 1w N® applied to the inner
one, and we factor N°g as a surjection ¢ followed by an injection i Since g is a-epy,
¢& factors through Q by a morphism m, whuch is therefore mono, as shown. Next,
the middle vertical arrow, labelled v, 1s the pushout of N°f along ¢. By the universal
property of this pushout, we have the dotted morphism e such that

eogd =N%' sad eov=N*foi (3)
Finally, since
gocgof=go(N"floci =vogoch =vomoy,
the universal property of the inner pushout gives the dotted morphism d such that
dog'=g'o¢f and dof mvom. (4)

Now, having constructed this diagram, we can complete the proof of the theorem: If f
15 {(a+1)-mono, then, by the Lemma, pushouts of N®f along susjections aze mono; in
particular. v is mono But then vom, which squals dc f' {as 1n the second equation
of (4)), 1s mono, and thus so is f'
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28.9. Stability of epi-rank under pushout. In the second part of the proof
above, we didn't use all of the information contained in the diagram constructed there
In particular, we didn't use (3) or the first equation of (4) Extracting this information,
we get the following corollary

Corollary. The pushout of au a-¢p1 along any morphism 15 a-ep;

ProoF  The proof uses the diagram constructed above, starting with an a-eps
9:A = C and a morphism f A — B, which we assume this time is arbitrary. As
pointed out 1n 28 4, every a-ep11s epl: thus g 1s epi and therefore so1s ¢' Now, using
the first equations of (4) and (3},

eodog'=coqoch=(NgYoch =choy

Since ¢' 15 ep1, we conclude that eod = ¢ But then, since ¢’ 15 onto it factors
through the image of N°g', showing that ¢§ (via d) does as well. Hence. ¢’ 15 a-ep.
and the proof 1s complete

20. Combinatorial Morphisms

29.1. Free extensions of frames. The theorem below gives a concrete de-
seription of the free extension of a frame A by a set X of “indeterminates” Furst,
however. we look at how this description was derived. The free extension of A by
generators X is isomorphic to the coptoduct A ® F(X), where F(X) is the free frame
on X, can easily be seen from the universal property involved By 12.5, this frame is
isomorphic to the frame of all functions & : F(X) — A such that 8(V S) = A4(S)
for all § C F(X), ordered pointwise Since F(X) is the free \/-semilattice on the
A-semilattice PrX of finite subsets of X ordered by reverse inclusion, such operators
¢ are completely determined by their values on P¢X, which can be arbitranly chosen
subject only to the restriction that ¢ turn into meets any joins of F(X) ucder which
PeX is closed. But the only such joins are the trivislones' sNt=sfor s Ct,andso ¢
must be anti-monotone, but otherwise can be arbitrary. Finally, instead of considering
enti-monofone functions on the finite subsets of X ordered by reverse inclusion, we
prefer to turn things right side up.

Thus. with this motivation, we define A{X] to be the set of all monotone functions
PrX — A, ordered pomntwise, where PrX is ordered by inclusion. We denote elements
of PrX by &,t,..., and elements of A[X) by m.n .. . Just as with polynomials in X
over .. ting A, we may think of an element m € A[X)] as assigning a “coefficient”™ m(s)
to each “monomial” s € Pr.X (be careful. though: these polynomials have been “satu-
rated” to make them umique, and lattice anithmetic 1s different from nng anthmetic).
For each 6 € A and z € X, we define the following elements of A[X] by their action
on an arbitrary s € PrX ¢

me(s) = a;
1 ifres,
0 otherwise
The functions m, and m, are clearly monotone. Finally, we define A - 4 — ALX} by
Ala)=m, for every a € A We can now state the following result.

ms(s) =
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Theorem. For any frame 4 and set X, A{X) 1s aframeand A A=~ A[X]1sa
frame morphism mahing A[X) freely generated over A with the mapping 2 — m; as
the insertion of generators Meets and jomns in the frame AlX] are pointwise, and the
arrow operation is given by the formuia

(m—nj(s) = A m(t) —n(t) )

sCt

For any frame morphism f A — B and mapping 7 * X — B, the umique extension
[ A[X) = B 15 given by

Jmy= \/ fim(s) AAx(s) @

1EPX

Proof Arbitrary pointwise meets and joins of monotone functions are monotone,
and so A[X] is a subframe of the product APX (Elements of this product will be
written, as usual, as functions ¢ PrX = A ) The function A 1s just the diagonal
morphism, and hence 1s a frame morphism 1 claim that the night adjont i, to the
inclusion 1 * A[X] — APtX is given by the formula

LWe)e) = Ao )]

oGt

Indeed, for any s, we have m(s) = A, ., m(t) by monotonicity and so m = 1.(i{m))
for every m € A[X); conversely, for any s, we cleatly have o(s) 2 iu(0)(s), and
therefore o > 1(i.(¢)) for every ¢ € APX . Since meets are computed pointwise 1n
A[X], it follows that the arrow 1n A{X] is given by reflecting the pointwise arrow using
(3). But this is yust (1)

We now show the extension property. First, note that for any a € A, myAA,¢, m:
1s that monotone function which is a on all sets containing s, and 0 otherwise It
therefore follows easily by monotomcity that every m € A{X] can be wnitten

ms= V Mm(s) A A me (4)
P X £6

Thus, A[X) is generated (using finite meets and arbitrary joins) by {m,:a € AU
{m; : z € X} and moreovet, the formula (2) 15 defined 1n the only way possible, given
(4) Thus, it remains to show that f as defined in (2) 15 a frame morphism. The
preservation of joins 1s easy. since joins are pointwise in A{X], are preserved by f,
and commute with both binary meets and arbitrary Jouns 1n A. Since 7 is thetefote
monotone, the inequality f(mAn) < f(m)A f(n) 15 clear, and since A+(8) = 1 = f(1),
7(1) = F(m1) = 1 is likewise clear For the final inequality, we use the monotonicity
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of m, n, and f to get

FmyaFm =V sml Apa) A\ Snie) AAe)
1EPX 1Py X
=V fimis) An()) A Av(s U1)
FR{3:T.9
<V Smsud An(sUt)) AAY(sUL)
1€ X
=\ flimAn)(w)A A7)
uEP X
=F(man)

20.2. A[X] as a functor of A. Let X be aset. For each frame morphism
f+ A — B, there 1s by the universal property of A[X] a unique morphism f[X] :
A[X] = B{X} such that f[X](m;) = m; for all z € X and such thst the left square
of

A =2, AlX] s 4PiX

!1 ‘IIX] 1}"-" =fe-
B —5> BIX] — BF:X

commutes It is easily seen (e g, by using (4) above) that this morphism is given by
f[X)(m) = f om. Thus the nght squate also commutes By the isomorphism A[X] =
A® F(X) and the fact that colimits commute with themselves (or just argue from
the universal property), the left square above 15 a pushout. Since pushouts preserve
products (see Section 1.9), the outer rectangle is also pushout, so that, by the Pushout
Lemma (6 4), the right square 1s as well.

29.3. Congruences on A[X]. Just as any frame 15 a quotient of a free frame
F(X) forsome set X, 50 any frame A — B over A is & quotient of some free extension
A{X] of A. We ate thus led to consider congruences on A[X]. If {6,} is a family of
congruences on A indexed by PrX, then the relation [], 6, on A[X], defined by

m([],8)n 1ff Vs €PX m(s) 9, n(s) (1)

18 clearly a congruence on A{X) In general, a congruence on any subframe of a product
will be called standard if 1t is the restriction of a product of congruences, as in (1);
by 11.11, all congruences on “full” frame products are standard. On A[X], however,
there can be non-standard congruences: see Exercise 30.6.1.

29.4. Standardization. If i 1s the inclusion A[X) — AP1X then
N(ALXKY) 2 N(APX) e (NP

takes congruences on A[X] to the congruences they generate on the product. and (Ni),
restncts congruences on the product to the subframe. It follows that the mapping
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6 = (Ni).((Ni)8) gives the smallest standard congruence of A[X] greater than 4,1 ¢,
its “standardization” It also follows from this that the standard congruences on A[X]
form a maxset n N(A[X])

The following result gives an exphait descniption of standardization, to state it,
we ntroduce some notation I m PrX — A 15 a function, ¢ € Pr.X, and a € 4,
then we denote by m{a/s) that function which is 1dentical to m except (possibly) at
s. where its value 1s @ If m 1s monotone, then we say that the substitution (a/s)
is appropriate for m 1f m(a/s) 1s still monotone. Note that, because operations are
pointwise, m{a/s) An{b/s) = (mAn)a Ab/s), etc

For every a € A and s € PrX'. we mtroduce the monotone “test function” 6., .
PeX — A. defined for every ¢ € PeX by

0, ftCsandt#s,
6“(1)‘={c, ft=s.
1 otherwise

Clearly, every substitution (a/s) 1s appropnate for 6. ,, and we have

&.s(afs) = ba,. (1)
The reader may venfy the following important property of these test functions.
bnys=(mA Amav \/ m: (meAlX]sePX) ()
e TEX\s

The ymportance of this property 15 that the “coefficient” of 5 in m can be extracted
(with the test function as result) using fimte meets and arbibrary joins with elements
of A[X] not depending on m

Theorem. With notation as above, suppose that 0 is a congruence on A Then for
every s € PrX the following conditions on a pair of elements a,b € A are equivalent

(a) m(a/s) & m(b/s) for every (appropriate} m € A[X).

(b) 6,86, \

(c) ma/s) & m{b/s) for some m € A[X].
These conditions define a congruence 8, on A, and the mapping N(A|X]) — N(AP*X)
given by 8 — T[], 0, 15 the standardization morphism Ni, which moreover 1s onto

PRrooF We first show the ~quivalence of (a)~(¢) If (a) holds, then for any c € A
we can take m = 6., and use (1) to get (b). The imphication (b)=5(c) 1s trivial. For
{c)=(a), let m be a5 1n (c), and suppose that n € A[X] is approprate for both {a/s)
and (b/s). Then n is also appropniate for (aAb/s) and {aVb/s), and so by reflexitivity
of 6 we have

nfaAb/s)Bnlanbfs) and  n{aVb/s) @ nlav/s). (3)
Now, we can join m{a/s} # m{b/s) with the left side of (3) to obtain
(mVn){a/s) = m(a/s) v n(a Ab/s) § mib/s) Vn{a Ab/s) = (mVn)b/s),

and thus (mV n){a/s} 6 (m Vv n)(d/s) and we can can meet this with the nght side of
(3) to obtain

n{a/s) = ((mVvn)An)}aA(avb)/s)8 ((mVn)An)bA(aVb)/s) = n(d/s).
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and thus n{a/s) 8 n{b/s) Hence (c) implies (a).

Next. since by, = V bz, and bar.s = Abr,, for every T C A, it is clear from (b)
that 6, 15 2 congruence Optimistically denoting the mapping 8 ++ [], 6, by Ni, we
now prove that Ni <l (Ni),. For every s € PrX and a,) € A, using condition (b) we

get
a([l,6),6 ff b ([I,6) 60 ff ab,d
and =0 [1,([1, 6»)s = [1, 6., proving that (Ni) o (Ni), 15 the identity. Thus it remains

to show that 8 < (N1).{(Nt)(8)) for all congruences § on A[X]. So, let § be such and
suppose chat m @ n. Then, writing

S=Am: ad 8=\ m,
€ 26X\s

we can use (2) to get, for every s € PrX,
bmisra =(MAS)VE 0 (nASYYV S = bn(sya

and therefore m(s) 6, n(s), by (b) Hence, m(T], 6,)n
Finally, since (N1) o (Ni). is the identaty, Ni is onto, and the proof is complete

29,5, Extraction congruences. The notion of “extraction” of coefficients via
meet and join with fixed elements. as described above, is naturally associated with a
congruence.

Lemma. Let A be a distributive Jattice or a frame. Then,
(a) For every four elements a,b.2,y € A, we have

(zAg)vb=(yAa)ve ifandonlyif (zVb)Aa=(yVi)Aa. 1)

(b) Fixing a.b€ A, the relation §(a, b) betwenn 2 and y defined by the equations
1 (1) 15 a congruence on A If A i. a frame, 6(a, b) is the congruence associated to
the nucleus u(a) Vv c(b).

Proor. (a) Applying the operation — A a to the first equation and using the
distributivity Jaw twice yields the second equation. Similarly, applying — v b to the
second equation yields the first.

(b) Since the operation (— A a) Vv b preserves binary meet: and all existing non-
empty joins, its kernel 1s clestly 1s a congruence. When A is a frame, we have, by 15.5,
(u(a) v c(d))z = (u{a) o e(d))z = a — (b V z), and so the equality of the assocrated
congruence and #(a, ) follows from 8 3.

. 29.6. Test functions and extraction congruences. We extend the notation
(e, b) of the Lemmato sets ST C A by

#S T)=H(AS,VT).

The relation between test functions and extraction congruences is spelled out in the
following result.
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Proposition. Suppose / A — B isa frame motphism, v : X — B 15 a mapping,
and f A[X] — B is the unique extension of f with f{m:) = «(z) forallz € X. Let
s € PrX, and let 6, denote the congruence 8(x(s). 71X\ 5)}. Then

(8) F(bas) = F(&s ) 1f and only of f(a) b, f(b), for all a.b€ A and

(b} f(m(s)) 8, f(n(s)) if and oniy sf F(m) 6, F(n), for every m n € A[X]

PRroOF. Suppose m,n € A[X! We first show that

?(am(a).t) = ?(én(:) s) iff ?(m) é, 7(") U
By the basic property 29 4(2) of test functions,
7(6,"(.) l) = ?((m'\ A mz) v v mz) (2)
=& 2E6X\s

Since f preserves the meets and joins 1n (2) (s 15 finite). and since f{m,) = 2(z) by
assumption, (2) becomes

Flomna) = (Fm AAY() VV/7(X \9) 3)

We have a similar formula for f(6,,),), and so (1) holds by the defimtion of 4,

Now to prove (a), we let a,b € A and apply (1) to m = m, and n = m; Since
Fim,) = f(a) and F(ms) = f(b) by assumption, this proves (a) To prove (b), 1t
suffices by (1) to prove that §m(,1.,, = bm (, (s).s» and similarly for n. But this s clear,
since M6 = m(s).

29,7, Combinatorial morphisms. Let us call a motphism A — B combi-
natorial if 1t is isomorphic to one of the form A — A[X]/], 6, , for some family {4,}
of congruences on A indexed by PrX. Although we don't expect combinatorial mor-
phisms to behave nicely with respect to pushouts, so that for example the right-hand
square (and hence the whole rectangle) of the diagram

A —= AX] — AXI/TL 0,

8, = (Nf)(6,).
’1 l”"‘ l’ o(m/ 1, 806) = Sem@)/ ML, 80 P
B — B{X] — BIX)/TL, ..

15 always & pushout (for the same reason that we don’t expect ditect images of maxsets
to be maxsets), pushouts do respect the process of standanzation, as the following
commutative diagram (which is just N applied to the right-hand square of the diagram
in 29.2) shows

N(ALX]) = (NAYPX
N(/(X))! l(N/)"'"

N(B[X)) —= (NBPeX.
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Thus, even though the nght-hand square in (1) is not always a pushout, 1t does always
commute (which establishes the formula for g n (1), using 29 2), and could even be
called 2 pushout “up to standardization”.

29.8, Iterated extensions. Combinatorial morphisms can be composed 1n
some cases. Specifically, 1if A — A[X)/[], 8, 15 a combinatorial morphism, Y is a set
digioint from X, and for each ¢ € PrY, y; is a standard congruence on A[X}/], 4,,
then, up to isomorphism, each v, 15 a family {¢;,} of congruences on A such that
8, < ¥y, forall s € P:X and t € PY, and 80 the composite 18 A — A[XUY]/T],, 61,
The relations between the appropriate (equivalence classes of ) monotone functions can
be deduced from the following proposition, whose straightforward but tedious proof we
omit.

Proposition. Suppose that A — A[X]/]], 6, 1s 2 combinatonal morphism and
Y 1s a set digoint from X Then there 1s an 1somorphism

(AX)/TL, 8.V} = AIX UY)/[L,, b,

which takes, going left to right, a monotone fanction m . PeY — A[X]/T], 6, to the
equivalence class m/ [],, 0,, where 7 . P(X UY) — A 18 given by

m(sUt) = m(t)(s), (s €E€PX,tEPY)

and which takes an equivalence class n/[],, 6, of monotone functions P{XUY) — A
to the monotone function PtY — A{X]/ ], 8, gven by t — #(t)/ ], 6,, where

a(t)(s) = n(sUt) (s €PX,tEPY).

29.9, The connection with free meoets. Using this notion of combinatorial
morphism, we can now show a connection between free meets and universal monos, as
studied in Chapter 7 and the first part of this chapter.

Theorem. Let g: A — A[X])/]], 6, be a combinatorial morphism. Then,

(a) ¢ 1s mono if and only if A, 9, =0, and

(b) if the fanuly {6,} has a free meet 1n N(A[X]) that is equal to G, then g is a
universal mono

Corollary. Every finitely generated combinatorial extension 15 universal,

In Theorem 30.3 below, we show that every finitely generated extension is comb-
natorial, hence, by this resuit, universal

ProoF (a) This follows easily from the equivalences

9(a) = 9(6) ff m, ([1,6,)m
ff ¥s mg(s) 8, my(s)
iff Vs a8,d
W a(A,6)b
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(b) Assume {6,} has free meet 0,let f- A — B bea frame morphism, and let
# = (N(FIX)NT], 6,) By the remarks at the end of 29.7, the standardization of 8
1s [1,8,, where 8, = (N(f{X]))(6,) for each s But, since {f,} has a free meet, we

therefore have
A, 8 = (NFIXD)(A, 6:) = (N(FIXD))(B) =0

Thus. by patt (a), the morphism B — B[X]/T], ¢; s mono But since § < I1,6:. this
morphism factors through 8 ~ B(X]/6. proving that the latter 1s mono, as required

For the Coroilury, we simply note that if X s finite, then P:X is fimte, and every
fimte set has a free meet

30. Finitely generated combinatorial morphisms

30.1.  In chis last section, we look at finitely generated extensions A[X] (X
finite), for which as we prove below, all congruences are standard This clears up the
problem with pushouts (¢f 29 7) and makes it possible to characterize, for example,
when finitely generated (combinatonal) morphisms are epi and when they are regular

For definiteness, we fix a positive nteger n and take X =& ={0,1,: .,n~1)}.
Thus the vanables 5,2,  now range over subsets of 7, etc.

30.2. Finite extraction congruences. Recall (4 2) that for any elements
a,z,y of a distnbutive lattice,

aAzz=aAy and aVrz=aVy umply z=y (1)

The next result, which implies (38 1s proved in the Theotem that follows it) that any
finite polynomial may be recovered from its extracted coeflicients. 15 a generalization
of this

Lemwma. Let G be any finite subset of a distributive lattice A Then for any
2,y€A, fz8(s,G\s)y forevery sCG.thenz=y

Note that we recover (1) as the special case G = {a}

Proor. The proof s by induction on the size of G C A, using (1) for the induction
step First note that the case G = @ is invial, since the hypothesis reduces to z =y
1n this case

For the induction step, supposs the Lemma is true for all sets of cardipality n, let
G have n -+ 1 elements. and suppose that z and y are such that = 6(s, G\ 5) y for
every s C G. Choose an element g € G and write G = G'U {g}, so that G’ has n
elements Then, an inspection of the defimtion of (-, ~) as given by the left equation
of 20.5(1) reveals that for every &’ C G,

EAg yAg €8s G\ I (2 €8 V{g) G\ L{)) @
Simularly, the right equation of 29.5(1) shows that for every s' C G',

Eva.uva ef(s. G\ ) F (@) EH( G\ 3)
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But the nght sides of (2) and {3) are true by our assumption on z and y, and so the
left sides of (2) and (3) hold for every s' C G’ By the induction hypothesis, therefore,
zAg=yAgand zvg=yVg Butthen z =y by (1), and so the theorem follows
by mduction

30.3. Theorem. Suppose that f. A — B is a frame morphism, 7 -7 — B
1s a mapping, and f A[fi) — B 1s the unique extension of f with f(m,) = (1) for
alli=1,:.,n Forevery s € P(X, let 6, denote the congruence 8((s), ¥(X \ 5)).

Then _ A
ker f == l;]_f"(ﬁ,). (1)

Corollary. Every congruence on A[f) is standard.

Proor For any m n € A[7], we have

(may €], f~HE) W ¥s m(s) (F6,)) n(s)
it ¥s f(m(s)) 0, f(n(s))
W Vs fim) 6, f(n), )]

the last equivalence following from Proposition 29.6(b) But the statement in (2) is
equivalent by the Lemma to f{m) = f(n) and thus to (m,n) € ker f, completing the
proof of the Theoren:.

To prove the Corollary, let & be a congtuence on Aff], let gy * A[R) — A[7]/6 be
the natural map, and consider the morphism f = by o A : A — A[R]/6. Then, the
unique extension 7 of £ with f(m.) =m,/9 for all i € 7 1s just ! =}y, with kernel
#. Therefore, by the Theorem, @ is standard--and, incidentally,

=f4) (sc?) 3

30.4. Cokernel pairs. Since all congruences on finitely generated free exten-
sions ate standard, it follows that the outer rectangle of diagram 29.7(1) 1s a pushout
when X = @ We use this to give a description of the cokernel pair of a finitely
generated (combinatorial) morphism.

Lemma. Let f . A — A[A)/]],6, be a combunatonial morphism Then the
following diagram is a pushout

A L AW/ nn 0'
] 1,
A[ﬁ]/ H: 4, e Am/ nu(al Va')r

where
g(m/T1, 8,)(s Ut) = m(s)/(8, v 6,),

M/ T 60Ut = m)/(@, voy T TR
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PrRoOOF  Let 4 be a congtuence on A with natural map iy A — A4/0 Then
since pushouts of quotients of A correspond to joins of congruences, we have (up to
wsomorphism over A) (N3s)(¥) = 8V ¢ for all congruences v on A  We conclude
therefore from 29 7(1) that

A—L AR/, 6
, j 1 Kem/ T1, 8.)(s) = mis)/ TLL (6 ),
4/8 — AlR/TL,0V6,),

1s a pushout. Thus, (Nf)(6) = [1,(8 v 6,). It remains to estabhish the formulas for g
and & By 29 7(1), g 1s given by

g(m/I1, 6,)(s) = f(m(s))/ T], (6, v 6:)

But f(m(s)) is the equivalence class containing the constant function mmg,), and so,
using the isomorphisms of Proposition 29 8, the formula for ¢ follows The formula for
k is similar.

30.5. Dominions, epis. and regular monos. The domunion of 2 morphism
f: A — B is by defimtion the equalizer of its cokernel pair Thus, in our case, it may
be taken to be the subframe D of B consisting of precisely those elements b such that
9(b) = h(b) for every two morphisms g,A : B = C that agree on A Thus, f 15 epr 1ff
its dominion is all of B

Another way of defining the dominion of f is as the smallest subframe of D of B
contaimng A such that the inclusion D — B is a regular mono. Thus, f 15 a regular
mono iff its dominion 15 A

We are now 1n a position to state the following result, which uses the description of
cokernel pairs in Lemma. 30 4 to characterize finitely generated epis and regular monos
in terms of their associated famly of congruences

Theorem. If f A~ AM/[],06, is 2 combinatonal morphism, then we have the
following
(a) The dominion of f 15 equal to

{m/T1, 8, : m(s) (6, v 6;) m(t) for all 5,4 C %}

(b) 1 seprifandonlyif 6,v 6, =1 whenenver s #1

(¢) f isaregular mono if and only if 3¢ satisfies the following “sheaf-ltke” condition-
whenever m € A[X] is such that m(s) (6, V 6;) m(t) for all 5,1 C 7, then there exists
a unique a € A such that m(s) 6,0 forall sC R

Proof Part (a) 15 an obvious translation of the definition using Lemma 304
For (b), note that if 6, V6, = 1 whenever s # t, then every m € A[X] satisfies
the condition in part (a) for m/[], 6, to be in the dominion of f Hence, f is ep1.
Conversely, suppose that f 13 epi, and let s and ¢ be different subsets of ®; we may
assume that s €2 Then m = §;, has m(s) =1 and m(t) = 0, and sc since f 15 ept,
we conclude from part (a) that 1 = m(s} (6, V) m(t) = 0. Thus 6, vé; = 1 Ths
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proves (b) Finally, part (c) follows easily from part (a) using the equivalence of the
statements “f 15 regular™ and “the dommion of f is A”.

30.6. Exercises.

30.6.1.

(a) Show that if @ is a regular element of N(A[X]) (ie., =8 = §), then 8 is
standard (Hint: the 1dentity congruence is standard.)

(b) If BisacBaand X 15 aset, show conversely that every standard congurence
on A[X] is regular and thus that standardization on N{B[X]) is given by double
negation

(c) Use {b) to give examples of non-standard congruences on fres extensions,
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Chapter 8
CONCLUSION AND PROBLEMS

The goal of my research has been show how a single construction. the assembly
tower construction, can be used to illuminate a variety of aspects of frame theory and
lead to solutions of some interesting problems I don't want to claim that have achieved
this goal in 1ts entirety, but I do hope to have proven that such an investigation is both
viable and worthwhile and to have laid a foundation for further mvestigation along
these hnes,

In this rest of this chapter. [ want to discuss some possible continuations of the
work described 1n this thesis I start bv mentioming some general directions and then
proceed to discuss specific problems ansing from the research described in particular
chapters.

Constructiveness., In describing the set-theoretic foundations for the work described
i this thesis, | assumed & set theory contaiming the Axiom of Choice. This was
necessary in order to use the method of x-frames. For example, the result (12 4) that
every frame colimit becomes 2 x-frame colimit for large encugh « is an unavoidable
application of the Axiom of Choice, since we must be able to choose, for any frame A,
a (regular) cardinal & with « > |A], and this implies that A can be well-ordered

However, since the conclusions [ drew using this method—for example that f 15 a
universal mono iff £ 18 a-mono for all a (28 5)-—seem to have a constructive meaning,
1t becomes interesting to ash whether some other methods would yield the same results
constructively

Separation Conditions, One feature of the work described 1n this thesis is that it
concerns arbitrary {frames [ have not, as 1s typical in topology, assumed any extra
conditions on the “spaces” I have been studying. On the other hand, one would expect
that extra conditions (regularity. compactness, etc ) would lead to better theorems,
and I have only begun investigating this possibility

Foundations. This work touches on some interesting foundational questions It
clearly becomes more convensent when we can work inside an inaccessible cardinal, or
use algebras with proper classes of elements, and although all of these devices proved
In the end to be unnecessary, one would like to have a better understanding of just
when such extra assumptions ate harmless. For example, in collecting algebra-classes
Into classes, 1 needed to be sure that they were codable as sets (see footnotes 1 and 2
in Section 5), although this requirement didn't seem to have anything to do with the
matter at hand.

Extensional Operators. There 1s still much to be said here about the relationship
between extensional ojerators and topos theory (cf., 9 23) For example, what 13 the
best way to formulate the “uniformity” property of extensional operators® Can one use
extensional operators to construct toposes from Heyting algebras? Does our hard-won
formula for joins of nucler (23 4(1)) follow from a result about unions in toposes?

124
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The Reflection Problem. The oniginal motivation of the assembly tower eonstrue-
tion was to get at Boolean reflections of frames. when they exist. Although a solution
to the problem of characterizing the reflective frames would probably not be of much
use 1n itself, it seems nevertheless to require a new insight into the category of frames
One can hope therefore that further reseazch on this particular problem will lead to
results of a miore wide-spread interest.

Universal Monos. Although I characterized umiversal monos f < A — B in terms of
the assembly tower (28 5). the form of this characterization is quite similar to that of
the “solution” to the eflection problem afforded by the assembly tower mentioned in
1.11 One would like, in other words, a more intrinsic description—one given in terms
of A and B alone.

Another observation to be made here is that the main results for universal monos do
not require many of the properties of the category of frames, mainly just the existence
of a hmit-closed subcategory like cBa (reflectiveness is not necessary, of course) and
an assembly construction I already have some partial results in this direction, and it
would be interesting to see how far they ¢an be pushed
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