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Abstract

This thesis studies the framework arising in the algebraic and categorical description of
general (or "point-set") topology. Classically, a topological space is a set with structure,
the structure being its collection of "open" sets, which taken together determine an abstract
notion of proxmity. The collection of all such open sets forms a special kind of complete
lattice, and it is a class of complete lattices ("frames") motivated by these examples that is
the focus of algebraic study-in short, one dispenses with the points and studies the algebra
of open sets. This method has had successes not only in general topology, but has also found
application in such diverse areas as logic, topos theory, and even computer science.

It is not these specific areas of application, however, with which the thesis is primarily
concerned; rather, it is that part of the theory which they all share: the category of frames.
This category has as a subcategory the category of complete Boolean algebras, and these
two catgories stand in much the same relation as do the categories of topological spaces and
sets. As with sets and spaces, complete Boolean algebras are in some ways better behaved
categoricalJv than frames, and so the former provides a potential source of information
about tL. iat,er. For the purpose of obtaining this information, a construction for frames,
called the "assembly tower" and present already at the beginnings of the subject, is studied
sytematically and in this way found to be a key too] for uncovering both structural and
algebraic properties of frames.

In addition to the above categorical approach to studying frames, the thesis also develops
an algebraic approach using the new notion of extensional operator and the further notion
of regular operator. The theory of these operators is again studied systematically and is
shown to be closely related to, and indeed to provide a framework for better understanding,
the well-known theory of "nuclei," which has been a fundamental part of frame theory for
some time. A link is also established between regular operators and the assembly tower,
thus connecting both of the approaches considered in the thesis.

As applications of these two theories, several open problems in the frame theory liter-
ature (most of a technical nature) are settled and several natural questions concerning the
structure of the category of frames are answered.
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Preface

This thesis studies the framework arising in the algebraic and categorical descrip-
tion of general (or "point-set") topology In this framework-vaiously called frame
theory, locale theory, point-free topology, or even pointless topology-the focus is on
the algebraic (lattice-theoretic) properties of the open sets of spaces rather than the
points; thus "spaces" are defined by certain lattices of "open sets", and points become
a derived notion. This shift in viewpoint often produces a uniformity not present with
classical topological spaces, and moreover enables, through the use of topos theory, an
enlargement of the scope of application of the general theory.

My interest in this subject, when the thesis was begun, was more algebraic and
categorical and less topological, hence the topic and organization of this work. Thus.
although I have gained through this work an appreciation for the topological aspects of
frame theory, the reader coming to this work for insights into topology and topological
methods will, I'm afraid, be disappointed. On the other hand. I hope that the work
makes for interesting (universal) algebra and category theory.

As indicated in the title, the thesis is organized around the assembly tower construc-
tion It should be said, however, that this organization was more an act of hindsight
than a conscious guiding principle present from the beginning of the work. The re-
sults presented here were developed in a mostly haphazard manner, sometimes forming
connections that were more systematically explored. In fact, the very first result dis-
covered was the equation for the fixedpoint set of a prenucleus (see 9.22.1, which is a
bit more general), and the reader may enjoy contemplating how the rest of the thesis
may have arisen from this single point.

As tet physical organization, the thesis is divided into nine chapters, each with an
introd'i :ri aescribing its contents, and 30 sections, each containing several subsec-
tions. The sections are numbered consecutively from the beginning of the thesis, and
chapters contain varying numbers of sections For each subsection, there is at moat
ore r-nult, and references to such results are in the form 98.8, for the result of the 6th
subsection of section 98. Occasionally, an additional level of numbering is used to label
certain results or other objects, for example 98.6.1. Equations (displays) are numbered
individually within each subsection and are referred to as in the notation 98.6(2).

As each chapter begins with an introduction, I won't go into any detailed description
of individual chapters here. However, the reader will like to know that in Chapter 1,
after an introductory section (Section 1) describing frame theory in broad context and
introducing the assembly tower, the reader can find, in Section 2, a summary of the
results of the thesis, including all of the main results (often with the ideas of the proofs),
and with pointers to the subsections containing them. Thus Section 2 is much like a
very detailed table of contents. The bibliography at the end of the thesis only contains
those works actually cited in the text. For more comprehensive bibliographies, see
those of [25] and (22]

The reader will also find "Erercises" scattered throughout the text. I do not believe
that exercises, as they appear for example in a textbook, are appropriate mterial for
a PhD thesis, and so I should explain that these are here merely to give me a way of
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Preface

including interesting but tangential material into the thesis, without having to devote
to them the space necessary for a full development Thus, none of the results of the
exercises are used in the main text. though they may be used in other exercises. (If,
having heard this. however, the reader would like to try some of the "exercises" for
himself or herself. I would certainly not discourage itl)

Finally, I would like to thank several people who have contributed to this thesis in
one way or another First of all, there is my advisor, Dana Scott. Although I ventured
out into the wide world of frame theory largely on my own and sometimes against his
advice he nevertheless showed remarkable patience and support; even from a distance,
I was able to learn many things, not the least of which was a deep sense of what research
and teaching are all about He also made it possible for me to join him on leave to
the Research Institute for Symbolic Computation (RISC) in Linz, Austria, which, in
addition to being my first stay outside of North America, provided me with numerous
opportunties to make valuable contacts in Europe. Also at Carnegie Mellon, I would
like to thank my committee-Steve Brookes, Frank Pfenning, and Rick Statman-for
their confidence in me, and several members of the Computer Science Department staff,
especially Lydia Defilippo (now retired) and Becky Clark.

It is also my great honor to have Aled Pultr, of Charles University in Prague, as
my co-advisor It was he who awakened my interest in the topological aspects of frame
theory and, through several long discussions, made the work meaningful for me. He
also gave me several valuable suggestions and criticisms, which helpcd me to wsite a
better thesis, In connection with this, I would also like thank JiflAdimek for making
possible, through the TEMPUS project, several very productive visits to Prague.

At RISC, I would especially like to thank Jochen Pfalzgraf, who, on the one hand,
organized a weekly category/topos theory seminar that encouraged work such as mine,
and, on the other hand, made numerous arrangements, through the generous support of
the MEDLAR project, fo- me to travel to conferences and meet with other researchers.
I would like to thank RISC itself and its director, Bruno Buchberger, for (at times,
hard-earned) financial support and Karoly Erdei for his help and understanding. Also
at RISC, I would like to thank my officemates, Kim Wagner (another student of Dana)
and Karel Stokkermans-especially Kim, who lived through many of the ups and downs
of this work with me.

Of my external contacts. I would like to thank Pino Rosolini, who. through much
correspondence and many discussions, was able to help me through to the end, and
Harold Simmons, whose own work in frame theory provided a lasting motivation for me.
Most of all, I would like to acknowledge my substantial debt to Peter Johnstone, whose
generosity, from his initial encouragement to his long letters to me on my research, has
meant a great deal to me as a student and researcher. The breadth and quality of his
work has been a constant inspiration, and I can only hope that, in this thesis, I am
able to demonstrate some of that influence.

On the production side, I would like to thank the Cornell Computer Science De-
partment for the computing facilities %ith which the final stages of this thesis were
completed, and I would like to thank Richard Zippel and Robert Constable for their
patience while I was fnishing up. This document was typeset with WltEX, using the
same style of organization &s found in the book Lecture Notes on Topoi and Quasiropoi,
by Oswald Wyler, and I would like to thank Prof Wyler for interesting discussions on
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Preface Iii

this style of layout. The diagrams were typset with the macro package XWpic, developed
by Kristoffer Rose. and I would like to thank Kris for his quick responses to several
urgent quebtions that I, as a first-time user, had while preparing the final version of
the manuscript

On a more personal note, I would like to thank Dr. Henderson Yeung, who was
responsible, through amazingly tireless encouragement over the course of 12 years, for
motivatilr. me to pursue higher education at all and, once I was committed to getting
a PhD, making sure I made it there

And lastly, and most importantly. I would like to thank my wife, Mary, without
whose constant support, understanding, and at times greater devotion to the comple-
tion of my research and writing than I myself could muster, this thesis would never
have been completed ; hereby dedicate this thesis to her, with love.
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Chapter 1

INTRODUCTION AND SUMMARY OF RESULTS

This introductory chapter begins, in Section 1.1, with a look at the background
and motivations of frame theory. Then, in Sections 1.2-1.5, we discus the connections
between frame theory and universal algebra, topos theory, logic, and the semantics
of computation. Since our approach to the subject is somewhat untraditional, we
take some space, starting from Section 1.6, to discuss other approaches. Then, in See-
tion 1.11. we introduce the focus of our research, the assembly tower, and in Section 1.12
give some justification for this choice.

The second section of the chapter is a detailed summary of the results we obtain.
All of the major results are included, with pointers to the rest of the thesis. In many
cases, the ideas of proofs are outlined. Thus, the reader looking for a convenient entry
point into the thesis, or wanting merely to scan the results, should go to Section 2

1. Introduction

1.1. Point-free topology. Frame theory arose from the observation that many
properties and constructions of topological spaces can be described entirely in terms of
the lattice of open sets of the spac, without eference to the points. The open covering
formulation of compactness is a good .xample. Other examples include connectedness,
normality, regularity, compactifications, and (Vietors) hypeespaces. In many of these
examples, the classical formulations mention points (and closed sets), but equivalent,
"point-free" formulations in terms of open arts are possible. Morphisms of topological
spaces-the continuous functions-also have a point-free aspect, since the inverse image
f-I of a continuous function / : X - Y by defnition takes open met of Y to open
sets of X These observations lead naturally to the replacement of the category of
topological spaces by the category of locales, which I now describe.

A frame A is a complete lattice satisfying a strong distributive law,

a^VS= V(a A s sES), (1)

for every element a and subset S of A, and a frame morphism f . A - B is a
function that preserves fitite meets and arbitrary joins. These constitute the category
Frin of frames. This is, of course, what we have with topological spaces: if X is
a space, then the collection Q(X) of open sets of X forms a frame, and for every
continuous function f -X - Y between spaces, the inverse image restricted to open
sets, f-I : fl(Y) - f?(X), is a frame morphism. Notice, however, that the continuous
function and the associated frame morphism go in opposite directions. For this reason,
it is the opposite or dual category Loc = Fi ' of locales that serves as a substitute
for the category of spaces. The step from frames to locales is formally trivial, as it
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1.3 1 Introduction and summary ofresults 2

4,nounts to just "turning the arrows around", but, as Johnstone has emphasised [2511,
it is conceptually very important

1.2. Universal algebra. Frames may be described as algebraic objects, i.e.,
as sets with operations that satisfy equations However, they are infinitary algebras
in the strongest sense- one needs proper classes of operations and equations for such
a description. Nevertheless, frames share with finitary universal algebras a character-
istic feature: the existence of free objects on any set of generators. The above facts,
summarized by saying that Frm is monadic over Set, already imply a considerable
amount about Fain (and thus, bh. dual ty, Loc). For example, Bas is complete
and co-complete, and it inherits both limits and pullback-stable (regular epi, mono)-
factorizations from Set

One source of interest in frames from an algebraic point of view is that they are a
"borderline" case although Fin is monadic over Set, certain small modifications of
frames no longer possess free objects. For example, if we substitute countable meets for
finite meets in the basic operations of a frame, but still keep the same distributivity law,
then free objects over countably infinite sets no longer exist (see the paper of Garcia
and Nelson [10] for this and other examples). Perhaps the most basic example of this
nature, and the first to be discovered (independently by Gafao [9] and Hales [14]; see
Solovay [47] for a simplified proof), is the case of complete Boolean algebras (cBa's)
The category cBa, like the examples in 10], is a limit-closed full subcategory that,
because of the non-existence of free algebras, is not reF€ecivt An obvious problem
here, called the reflection probJem, is to characterie th' frames having reflections into
cBa. This problem was considered by Simmons in a series of papers [42, 43, 44, 45, 40]
but, despite several advances, has remained unsolved in general.

1.3. Topos theory. Toposes are categories that were introduced by Grothendieck
(and others) as a generalization of the category of sheaves on a topological space
to support powerful cahomology theories for use in algebraic geometry. The same
categories were models of an elementary axiomatization of sheaf categories given by
Lawvere and Tierney, who were interested instead in their "set-like" behavior. The first
line of development culminated in Delipe's proof of the hardest of the Weil conjectures
(specifically, an analog for finite fields of the Riemann Hypothesis), and the second,
producing a topos-theoretic proof of the independence of the Continuum Hypothesis
by Lawvere and Tierney, models of various intuitionistic theories, and other notable
results in logic since then, continues to unfold (See the introduction to Johnstone (20]
for more historical information, and the epilog in Mac Lane and Moerdijk [30] for an
overview of the literature of topos theory and its many connections to other areas of
mathematics,)

Since sheaves on a topological space are defined in terms of the open sets of the
space, it a a simple matter to generalize the sheaf construction to locales, where it
however still appears as a special case of Grothendiek's construction of sheaves on a

This paper is an exceUent survey of locale (and fra) theery and should be considered mandatory
reading by anyone interested in lening about the subject; I will rssae reference to it often. In
particular, the reader should consult is for an account of the relation between locale theory and
topology and why the category of locales should be considered & good substitute for (and seneralistieon
of) the category of spaces.
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i.E 1. Introduction and summary of results 3

site. Such localic toposes, apart from their motivational importance, are basic to the
structure theory of toposes. For example, a theorem of Diaconescu and a theorem of

Barr state that, respectively, every (Grothendieck) topos is an open quotient of a locali:
topos and an ordinary quotient of a Boolean localic topes (i.e., the sheaves over a cBa);
a theorem of Joyal and Tierney states that every topos is the topos of G-equivariant
sheaves for some groupoid G in the category of locales.

1.4. Logic. In addition to their more elaborate uses in the form of localic toposes
as models of intuitionistic set theories, frames are themselves, at a more basic level,
the appropriate models of first-order intuitionistic logic. Every frame has, along with
the constants 0 (false) and 1 (true) and the binary operations A (and) and V (or), a
binary operation - (imphes) that makes it into a Heyting algebra-where we have
the familiar adjointness relationshin,

aAb<c if a:b-c, (2)

fol all elements a, b, c of the frame--and thus a model of propositional intu.tionistic
logic. The basic infinitary operation V and "derived" operation A give the structure
necessary to interpret existential and universal quantification. In this respect. furmes
can again be compared to cBa's, which are the natural models of first-order classical
logic.

I5. Seumuntics of computation, The use of topology in the aemar.ca of
computation is one of the cornerstones of the subject, where it embodies the concept
of informational approximation and where continuity provides a useful substitute for
computability. Smyth [46] has linked this to the notion of a semidecidable property,
and Abramaky [1] has explained it in terms of a logic of finitely observable properties, a
view that is expanded in the hook of Vickers [50], where it is called a logic of afirmable
ssertions. The idea is that to observe (or affirm) a conjunction of properties (or aser-

tions) it is necessary to observe them all, whereas to observe a disjunction of properties
it is only necessary to observe one of them; thus, with finite resources, one can observe
finite conjunctions and arbitrary disjunctios. And, like infinite conjunctions, implc&-
tions are not finitely affirmable, because they always have the chance of being refuted
by an observation beyond the finite number of observations made. An example of
the fruitfulness of this view is the paper of Abramsky and Vickets [2], where process
semantics is treated in this framework-or, actually, in the more geural but quite sim-
ilar framework 4f quantaes [38], where conjunction is replaced by a non-commutative
operation more appropriate for modelling observations that introduce side-effects.

1.6. The topological approach. As locales are intended to be generalized
spaces, the most common approach to their study is in terms of their relationship to
the category of spaces, Top. For this, the notion of a point of an arbitrary locale is
fundamental, If a Is the one-point space, then a point of a space X is the same thing as
a continuous map p : * - X, which gives a frame morphism p- :(X) - n(*). We
therefore define a point of a frame A to he a frame morphism A -. 2, where 2 = f0(a)
is the two-element cB&. This is analogous to the situation in the spectral theory of
distnbutive lattices, except that frames in general don't have enough points, in the
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1.8 1: Introduction and summary of results 4

sense that two different elements of a frame (thought of as open sets) ma) contain the
same points If we identify such pairs of elements, however, we get a quotient frame
that is a topology, and this process gives the object part of a functor pt • Loc - Top
that is right adoint to the functor 0 : Top - Loc. The frames for which this quotient
morphism (the counit of the adjunction) is an isomorphism are called spatial, and
the spaces for which the unit is a homeomorphism are called sober-a "separation
axiom" between To and T2 and independent of Ti. The sober spaces are thus a
reflective full subcategory of all spaces, and locales are, strictly speaking, therefore
only a generalization of sober spaces (though this isn't much of a restriction, see [25])

1.7. The categorical approach. As mentioned in 1.1, many topological notions
are available, via suitable reformulation in terms of open sets, for locales. Another
method of importing topological notions into locale theory is via catefory theory; the
definition of "point" above is an example of this. Another example is localic products.
since Loc is complete, it has arbitrary products, corresponding to coproducts in Fri.
Localic products don't agree in general with space products, even on sober spaces 2-
but, notably, it is the locale products that are usually better behaved As one example
of many, used here to emphasize also the constructive nature of locale theory, consider
Tychonoff's theorem that the product of compact spaces is compact. For spaces, this
theorem requires some form of choice (in general, it is equivalent to the Axiom of
Choice (AC), for Hausdorif spaces it is equivalent to the Prime Ideal Theorem (PIT));
for locales, it not only is choice-free but, as Johnstone says, "viewed from the right
perspective it becomes a triviality" [25, p 87). It is only if one wants to show, in
the Hausdorf" case, that the resulting locale product has enough points (and hence
recover the classical Tychonoff Theorem for Hausdorff spaces) that one needs PIT.
Such constructiveness is not just an aesthetically pleasing feature of locale theory; it
can be crucial in applications of the theory to "non-classical" settings-including, by a
change-of.base result, classical fiberwise topology (see [25) and especially [23) for more
discussion on this point)

I.S. The universal algebra approach. Although studying frames as general-
ized spaces may seem the most natural approach, studying them as universal algebras
can also be profitable-and, in many cases, conceptually more simple. As Mfadden [32,
p.109] points out, this is reminiscent of commutative algebra: "Even though [it] has
been developed in large measure to support algebraic geometry, most expositions make
scant reference to the geometric picture. This is simply a matter of efficiency" I will
look here at just one example. the fundamental construction for universal algebras
of the complete lattice of congruences. For frames the situation with respect to this
construction is especially nice, because the congruences on a frame A, besides forming
a frame themselves, have three useful descriptions other than the usual one as equiva-
lence relations on A that are simultaneously subframes of A x A. For the first two, the
main observation is that since a congruence 8 respects joins, every equivalence class
of 0 has a largest member, and 0 is recoverable both from the operation taking an
element to the largest member of its class and from the set of such largest members

2 Note, however, that the product space is always the spatial (co)reflection of the locshc product;
thus they asee precisely when the loca€c product is spatlal-%hich is the case. for example, with
products of compact Hsusdorff spaces or finite products of locally compact spaces
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1.9 1. Introduction and summary of results 5

Itself. In the first case, the operations j associated to congruences are exactly those
satisfying

a5ja=j(ja) and j(a Ab)=jaAjb (a,bEA); (3)

such an operation is called a nucleus. In the second case, the sets S associated to
congruences are exactly those satisfying the closure conditions

TcS implies ATES and aEA,sES imply a-sES, (4)

which I call maxsets Furthermore it is clear (from its description as the set of the
largest representatives of each B-class) that S with the order inherited from A is
isormophic to the quotient A/ and that j provides the quotient morphism In this
way, the frame of congruences on A is isomorphic to the set of nuclei on A, ordered
pointwise and denoted NA, as well as to the set of maxsets on A, when ordered by
reverse inclusion. The frame NA is called the assembly of A.

The third description of the frame of congruences of A, or equivalently now of NA,
is as the universal solution in Firm to the problem of complementing the elements of A.
To explain this, consider for any a E A the nucleus c(a) defined by c(a)z = a V z; this
nucleus is associated with the masxst {x : a < z) and with the smallest congruence
identifying a and 0 The assignment a - c(s) is a frame morphism CA : A - NA,
which is both mono and epi in Prm, but is an isomorphism iff A is a cea. For every
a C A, c(a) is a complemented, or Boolean element of NA (meaning, of course, that
there exists a necessarily unique ) P NA with c(a) Vj = 1 and C(a) A) = 0; in fact, j
is the nucleus u(a) defined by u(a)z = a - v). With these preliminaries, the precise
universal property of NA can now be stated: if f : A - B is a frame morphism such
that f(u) is Boolean for every a E A, then there exists a unique frame morphism
7: NA - B extending ! (i.e., such that f = 7 o CA).

Finally, let me point out that the assignment A ,-. NA can be extended (uniquely,
by the universal property) to an endofunctor on Fim so that the morphisms CA :-
A - NA become components of a natural transformation c: I - N from the identity
functor. In terms of congruences, the morphism Nf : NA - ND takes a congruence
on A to the congruence generated by its image under f. Every frame morphism
h : A - B, since it preserves arbitrary joins, has a tright (order-)adjoint, h. : B - A;,
for Nf this right adjoint, as is the case for universal algebras in general, is the function
(Nf). : NB - NA that takes a congruence on B to its inverse image under f. The
same function, in terms of maxsets, takes a maxset of B to its image under f..

1.9. The categorical structure of Frm. Category theory, in addition to
being useful in the formulation of topological notions for locales, can also be applied
directly to the study of the category Frm itself. For this, the "topological" adjunc-
tion Loc = Top and the "algebraic' adjunction Set = Prin already provide a great
deal of information Further information can be gotten by factoring the latter adjunc.
tion through various intermediate categories, as explained in [25] Thus, by factoring
through the category CSlat of complete join-semilattces (which arises by "forgetting"
the finite meets), one can deduce the following property of Frm. given a (small) di.
rected diagram, all oi whose morphisms are mono, the morphisms of toe colimiting
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1II 1 Introduction and summary of results 6

cone of the diagram are then also mono. Another property deducible using this factor-
ization is that coproducts (and more generally pushouts) distribute over products, in
the sense that the canonical morphism

B AflC-I B AC,
W C1

is an asomorphism. where I haie written 9A for the coproduct under A (i e., the
pushout-a kind of tensor product), and where I have supressed mention of the mor-
phisms. See the monograph of Joyal and Tierney (27j for these and other facts relating
CSIat and Firm, especially the analogies developed there between frames and rings,
between complete semilattices and Abelian groups, and between frame morphisms and
modules, and an explanation of my use of the tensor OA above And, it is by factor-
ing the same adjunction this time through the category of preframes (which arises by
forgetting the finite joins, just keeping the directed ones) that the localic Tychonoff
Theorem becomes a 'triviality" (see the Pre' paper of Johnstone and Vickers [26]).

Yet, despite these sources of information about the categorical structure of Frn,
many questions remain unanswered. For example. although pushouts preserve prod-
ucts, they do not preserve all limits; in particular, they do not preserve monomor-
phisms, corresponding to the fact that pullbacks in Loc do not preserve surjections.
This can be seen as a defect of the category of locales--compared to the situation
in spaces, where surjections are pullback-stable-and it thus becomes important to
understand this discrepency. Although several classes of pshout-stable monos (here
called universal) in frm are known, one cannot even say, for example, whether reg-
ular monos, or more generally equationally closed monos (see the paper of Pultr and
Totzl [37-these represent well, under some additional separation conditions, topo-
logical quotients) are universal. Universal monos are also closely connected to the
reflection problem, since a frame is reflective iff it has a universal embedding into a
eBas Understanding the class of universal monos has been one of the main motivations
of this work.

1.10. The topos-theoretic connection. I would like to mention one other
possible approach to studying frames, besides those of topology, universal algebra, and
category theory, suggested by the connections between frame theory and topos theory
outlined in 1.3. Every locale A has associated to it its category of sheaves, Sh(A),
which is a topos. Now it turns out that certain properties of the locale are reflected
as categorical (or logical) properties of the topo and can be studied as such. As
an algebraic example. a frame A is a cBa (assuming AC) iff every epimorphism of
Sh(A) splits-a condition that. for the category of sets, is itself equivalent to AC. As
a topological example, if a space A is completely regular, first-countable, and has no
isolated points, then, in the (intuitionistic) set theory determined by Sb(A), every
function f • R - 2 on the reals is continuous (see [48] for this and some references to
similar results going back to the paper of Scott [39])

1.11. The assembly tower. I can now explain the assembly tower, a construc-
tlion already appearing at the beginning of locale theory, a .972 paper of lsbell [15],
and around which my work is centered. Since N is an ndofunctor on Frm natu-
rally extending the identity, it can be iterated transfintely (using pointwise colimits
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at limit ordinals) to produce an ordinal-indexed family of functors {N
5

) and natural
transformations {fc : Nd - N0105o. Thus. for every frame A there is a diagram

A -' NA -' N
2
A -..- NA - N'+1 A -- ... , (5)

where for each a I have written c for cN. = CA
'
*
+
' NOA - Nn+iA and where, for

each limit ordinal A, N'A is the colinut of the diagram consisting of the morphisms
' : NPA - NIA, for all 05< a < A. This diagram is called the assembly tower of A.

I will write c
0 for the morphism cA and, in general, leave off subscripts whenvever

possible. As each of the morphisms c in (5) is mono, it follows (from the general fact
about columts of montos mentioned before) that the morphisms c* are also mono. And
as the morphsms c are also epi, it follows easily by induction that the c

0 
are epl as

well.
The first thing to note about the assembly tower in that it gives a "solution" to

the reflection problem, in the following sense. Since every element of a cBa is comple-
mented, given a frame morphism f . A - B to a cBa, there is by induction and the
universal property of N a unique morphism f ' NOA - B extending f for every a.
If any of these N" A is Boolean, then it clearly is the reflection of A in cBa. On the
other hand, it can be shown that if A has a reflection in cBa, then it must be NOA
for some a Thus. the reflection problem is reduced to finding conditions on A that
correspond to the existence of such an a. One interesting aspect of this problem is
that for all known examples of reflective frames A, N2A is already Boolean and that,
moreover, for certain clasees of frames (for example the dass of coherent frames), this
holds in general-i.e, for any frame A in the clas, A is reflective iff N2A is Boolean.

The construction A A NA also has a topological aspect For example, in [25)
the locale extensionally the same as the frame NA to called the dissolution of A and
denoted Ad; it is likened (except for the fact that it is not idempotent) to the discrete
modification of A. Despite this, the asembly tower construction as a whole is really
orthogonal to the spatial aspects of a locale, in a sense made clear by the previous
paragraph. Namely, since 2 is Boolean, it follows that the frames A and NOA have
the same points As one consequence of this, it turns out that the spatial reflection of
NMA, for any a > 2, is always the same discrete space (which suggests, perhaps, that
Add is closer to being the discrete modification of A than Ad, whose spatial reflection
can fail to be discrete). On the other hand, the assembly tower can provide examples
of "large" frames with "few" points 3

1.12. Some philosophy. Although the main reason for focusing on the assembly
tower in this thesis is that it underlies most of the results obtained, I can say something
here about why the construction is likely to be of some use. In any algebraic category
the calculation of limits is trivial, in the sense that it simply involves putting the
natural structure on the limit of the underlying sets; it is really in the colimits that
the algebracity of the category makes itself known. For example, free algebras (given
the fact that the "forgetful" functor is representable) and quotients by congruences are

3 But by Ao means the best en amples: for any sober spice X, there exist arbitrarily lam frame.
A with X as spatial refection: Isbell et aI. [17 construct examples of pointless loalic grous, in the
sense that they have no points other than the idensity. Since uih a locale G has exactly one point.
1t follows that for any index set 1, X x G

1
. wher the product and power are the loc,,lic ones, has X

its spatial put.
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1.12 1. Introduction and summars of results 8

easily described as colhmits. conversely, all colimts can be described naturally in terms
of generators and relations Also. in Frn, the two results about colimits of monos
and pushouts of products and the questions about universal monos, directly concern
colmits To put it into a slogan-an apparently common aspiration among category
theorists "Colinits are the Essence of Algebra"

Where the assembly tower fits in is this Suppose, for a moment, that we extend
the category of frames to include a colhmit for the assembly tower of each frame. Since
each of these diagrams is small-directed, in the sense that every set of arrows has an
upper bound, this cohmit could be constructed as the union of all the frames in the
diagram; it would have a proper class of elements in general and would have finite
meets and joins of all subsets of the underlying class (but would not have joins of all
subclasses). Moreover, being the union of the to%er, it would be Boolean. since every
element appearing at le.el o of the tower becomes complemented at level o + 1 In
this extended world, the Boolean objects thus obtained woula provide reflections for
all frames

Categories similar to the one suggested by the above have been considered before,
under the name K-frames. b Madden [32] A -frame, for a regular cardinal i, is a
partially-ordered set that has joins for all sets of cardinality < g and has finite meets
that distribute, as in (1) over all such joins The main difference between K-frames
and ordinary frames is that K-frames are described by only a set of operations and
equations, it follows from this that the category of i-cfa's (the Boolean ic-frames) is
a reflective subcategory of the category of K-frames, because the analog of the assembly
tower for -frames terminates at the Kth level. Considerttion of the categories of 1C.
cBa's goes back to at least the 1960's. and much is known about them In particular,
they have nicely behaved colimits For example, they have the strong amtagamation
property and the congruence extension property (in particular, pushouts of all monos
are mono) and. consequently, all epis are surjective, a property that fails badly for
Frm Oust look at the assembly tower).

The hypothetical extension of Firm with which I started can now be seen as part
of the category of .-frames for K equal to the cardinality of the universe V, in some
extension of Set where V becomes a set, as is the case with Grothendieck universes.
Or, we can assume the existence of an inaccessible cardinal K and redefine Ft-w to be
the category of all small frames-those of cardinality < X, which are then identical
to K-frames Or, finally, we can adopt an approach simslar to the "monster model"
approach of model theorists working in Classification Theory- in whatever your par-
ticular application of frames, let K be a regular cardinal larger than the cardinality of
any frame you use Then all of your frames are actually x-frames, and you might as
well be working in this category This last is related to reflection principles ptaposed
for use in category theory by Feferman (8) (following a suggestion of Kreisel).

The point is, since the Boolean subcategory is reflective and the reflection functor,
being a left adjont. preserves colimits, information about the colhmits in the larger
category can be gotten from the better-behaved colimits in the subcategory through
the use of the reflection. i e, the assembly tower. This is essentially the technique
Madden and Molitor use in [331 to characterize frame epimorphisms. Further use of
this idea will described in 2 6.
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2.2 1 Introduction and suamary of results 9

2. Summary of results

Although the results obtained are all related in some way to the assembly tower,
they divide naturally into several topics, each of which is treated seperately below, in
the order that they appear in the thesis. To avoid interruption in these discussions,
We will gather together here most of the prerequisite material we need. Throught this
section, decimal numbers in parentheses refer to where the actual results may be found
in thesis.

2.1, Some preliminaries. Recall first that every frame A has an operation
- defined so as to satify the adjointness relation (2) with A, and this - makes A
into a complete Heyting algebra (cHa for the rest of this paragraph). Conversely every
cHa satisfies the distributive law (1), and so is a frame. The cHa morphisms are by
definition required to preserve all meets, all joins, and arrow; thus, every cHa morphism
is a frame morphism but (it turns out) not conversely. For a E A, the element a-0 is
often written -a and called the negation of a, since it corresponds to logical negation
in a Heyting algebra. where neither a V "a = 1 nor -- a = a holds in general.

For any nucleus j C NA, we write Aj for the quotient of A by the congruence
associated to .. Meets in the frame NA are computed pointwise, that is, for any
JC NA and aEA,

(A J)a = Aia : i e ).
However, neither joins nor arrow in NA is computed pointwise

In addition to the previously mentioned nuclei c(a) and u(a), called, respectively,
closed and open because the quotients by these nuclei correspond to the closed sad
open subspaces of a topological space, there is for every a E A the quasi-closed nucleus
q(a) defined by

q(a)z = (z - a)- a. (z E A).

The quotient A,(,) is a cBa, and, conversely, every cBa quotient of A has this form.
The marset corresponding to g(a) is the set {z - a : z E A). Thus, by the second
closure condition of (4), this maxset is the smallest one containing the element a; it
follows easily from this that every nucleus j can be written

= A{q( ) : ja = a).

Since frame morphisms preserve complements, every frame quotient of a cBa is a eBa.
And since, just as with universal algebras in general, the congruence lattice of a quotient
A, of A is isomorphic to the interval

U,1]={keNA j_<k<l)

of the congruence lattice NA of A, it follows that Q = {q(a). a E A) is an up-closed
subset of NA An important quasi-closed nucleus is the double negation, q(O), so
called because g(O)z = -x,. An element a E A is called regular if it is a fixedpoint of
q(O), i.e., if -- a = a. In the frame Q(X), these are exactly the regular open subsets
of X.
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2.2 1" Introduction and summarv ofresults 10

2.2. Extensional operators. By an operator on a Heyting algebra A we
will mean any function I A - A Various kinds operators on frames, and their
associated fixedpoint sets have been studied before Nuclei, arising as a special case
of (Joyal-Tierney) topologies on a topos, are the most important and widely atudied
Other examples are the prenuclej of Banaschewski [3] and the derivatives of Golan and
Simmons [12].

Prenuclei are like nuclei, except that they may not be idempotent (a prenucleus
is idempotent just in case it's a nucleus), but for every prenucleus there is a unique
nucleus with the same fixedpoints It is for this reason prenuclei often arise natural
constructions involving nuclei frequently result in operators that are prenuclei but are
not idempotent; one then only needs to find the associated nucleus, which is often ac-
complished by transfinitely iterating the prenucleus until it "converges" (13 8). As an
illustration, the join of tao nuclei j and k can be computed by iterating their compos-
ite jok, which is only a prenucleus Or, again, it was Johnstone's original choice-free
proof [211 of the localic Ty chonofl theorem--essentially involving the transfinite iter-
ation of a particular prenucleus-that eventually led to Banaschewski's paper [3] and
the isolation of the notions of prenucleus and preframe.

We introduce a general class of operators on Heyting algebras, called extensional,
which have nuclei and prenuclei as examples. By definition, an operator I is extensional
if it satisfies

a- b<_la- lb (a. bE A),
and, from the point of view of frames as models of first-order intuitionistic logic these
are perhaps the most natural class of operators to consider, since, logically, the defini-
tion can be interpreted to mean that I "preserves (degree of) equality" the results of
applying I are as equal as the arguments to which it is applied The extensional oper-
ators on A are also exactly the operators that are compatible with all Heyting-algebra
congruences on A, in the sense that for any such congruence 0, o 0 b implies la 0 lb.
and they can be characterized in several other ways, as well (9 4) Extensional opera-
tors may also be seen to arise (at least when A is complete) from the topos-theoretic
connection, where the extensional operators on A are in 1-1 correspondence with the
morphisms 1 - 0 in Sh(A), and this helps to explain why many properties of ex-
tensional operators are equivalent to stronger, "uniform" (or "internalized") versions
of these properties (as mentioned in 9 24)

Because of the relation to congruences, extensional operators provide a convenient
means of doing calculations in Heyting algebras (9.6) We introduce and study several
classes of extensional operators (see 9 12 for a graphical summary). For example, we
find that the prenuclei of Banaschewski are precisely the inflationary and monotone
extensional operators (9 10), and therefore that nuclei are precisely the extensional
closure operators (9.11) We find, for every class of extensional operators defined,
what we call the upper and lower clasifiers for the class (9.13-18), and indicate how
these lead to structure theorems for operators (9.21)

Finally, we find a simple formula for the set of fixedpoints of an inflationary exten-
sional operator 1 (9 22.1)

fixl = {(lo-a) -a a E A) (6)
This formula has potentially useful applications to prenuclei, since it allows us to get at
the fixedpoints of the prenucleus without having to go through a transfinite iteration,
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which may be valuable in situations where issues of constructiveness preclude the use
of ordinal iterations (whose length may not be hounded in advance)

2.3. Frame morphism adjoints and oc-frames. Recall that Loc was defined
as the formal dual of Frm, that is. locale morphism- are just "turned around" versions
of frame rmorphisms. Despite the abstractness of this definition, Loc is isomorphic to
a concrete category in the following way. Every frame morphism f : A - B has a
right adjoint f. : B - A, and, moreover, these right adjoints satisfy the laws id. = Id
and (gof). =f. o g.. Thus, Loc is isomorphic to the category with objects those of
Frm and with morphisms the functions f. for frame morphisms f and composition
ordinary function composition.

In 1975, Dowker and Strauss 7] gave a characterization of the functions g : B - A
that appear as right adjoints of frame morphisms A - B This characterization
(essentially the one in 10 7) explicitly involved the left adjoint, however, and, as pointed
out by Johnstone [22, p 40], there still wasn't a description in terms of g alone We
give such a description here (10.6): right adjoints to frame morphisms A - B can be
characterized independently as those functions g • B - A satisfying

* g(A S) = A{g(s) • s E S) for every S C B,

* g(b)-- I implies b= I for every bEB, and

" for every b E B and a,, a2 E A with a, A a2  M(b), there exist bi, b2 C B such
that a, < g(bi), a2 9(b2), and b, A b2 < b.

This is a special case of a more general result (10.5).
A oe-frame is defined as with a frame, except that arbitrary joins are replaced by

joins of cardinality strictly less than Pc, which is assumed to be a regular cardinal.
(Let us use the terms K-set, it-family, K-product, etc., to refer to objects similarly
bounded in cardinality by oc.) These were introduced and studied in the paper of
Madden [32]. Among the results proved there are a construction of the free functor F.
from A-frames to ic-frames, where A < K We prove, additionally, that F. preserves
all A-products of A-frames (11.6) and, when A > w, equalizers of A-frame morphism.
as well (11.8). Thus F.1 preserves all limits involving fewer than A many morphisms.
We also give examples to show that these results are the beat possible (11 7 and 11.9).
We furthermore show that all congruences on a i-product of i-frames are products
of congruences on the factors (11.10) and conclude that all congruences on products of
frames are products of congruences (11.11).

By looking at the construction of colimits in frames and K-frames, we observe that
every colimit of frames becomes a colimit of i-frames when PC is chosen large enough
(12.4). This forms the basis of one of the main results of Chapter 8 (28.5-6) Finally,
we formulate the basic result about directed colimits of frames (12.7) and use this to
sketch a proof in the exercises that, in Frm, directed colimits commute with arbitrary
products (in fact with a larger class of limits, called *-compatible; see 12.9.1).

2.4. Regular operators. We define a logical operator to be an extensional
operator I that is inflationary, a !5 la for all a C A. Regular operators are, by
definition, the logical operators r satisfying -- r- = r. They can be seen to arise
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from logical operators b. considerations involving fixedpomt sets Thus, one feature
of double negation of logical operators is that its associated congruence is the same
as the equivalence determined by equality of fixedpoint sets. That is, for all logical
operators I and m, fix I = fix m iff -1 = -m (9.22). Thus, regular operators are
completely determined by their fixedpoint sets. and every logical operator has the same
fixedpoint set as a unique regular operator, moreover, regular operators are idempotent
(see below), so their ranges and fixedpoint sets coincide. and this is the origin of the
formula (6) for fixedpoints of logical operators.

Just like any --- quotient of a frame, the collection of all regular operators on A,
denoted RA, is a cBa \leets and arrow in RA are computed pointwise Joins in a
cBa are definable from meets and negation (by the de Morgan laws), and this leads to
a simple formula for the join in R 4, which is also pointwise in a sense explained below
(along %ith other properties of regular operators) once all of the necessary notions have
been introduced

In order to discus some of the properties of regular operators (including the point.
wise description of joins in RA just mentioned) and give a charatterization of their
fixxidpoint sets. we need to introduce the regularity order and the notion of stability
Given elements a,b E A, we say that b is regular over a, and write b L a or o ! b,
if b is a regular element in the inter%al (a, 1]. This is easily seen to be equivalent to
the equation (b - a) - a = 6, and to the inequality q(a) !5 q(b) of quasi-closed nuclei
(20.1). The latter implies that _ is a partial order; other elementary properties of _5
are, for every a, , c E A (20 2.20 8)

a a<b iffb= r-a forsomez6A.

* ag6implesa6,

* agcanda cimplyb~c;,

• a !q a V & implies a A 6 _ b (but not conversely);

* aSc and 65c imply aAb<lc

We call a subset S C A stable if it has a lower bound in the regularity ordering. It
then has a greatest lower bound, namely its meet (20.5). As an example {o,6} is
stable iff (a - b) - b = (b - a) - a (20 6). Since the partial order (A, _) is essentially
the up-closed subset Q = (q(a) . a E 4) of NA with the induced order, it follows that
the regularity ordering also has joins for all nonemptysets S, which we denote by Vs.
For each a E A, the set (b: a . b), being exactly fix q(a), is a cBa ander the ordering
5, and the Join V, when restricted to fixq(a), coincides with the .Ba join (20.13)

Regular operators r are "regular" in another way, namely, in view of (ra-a)--a =
ra, they are exactly those extensional operators that are inflationary in the regularity
ordering. They can also be very usefully characterized as those operators r satisfying
i(a - b) = a - vb for all ah 6 A (21.1) We can prove the following properties of
aribtrary regular operators r, E RA for all s,b C A and S C A (21 2.1-8, 21.3):

• r(ra) = ra (they are idempotent),

" a 4 rb iff ra < rb (in particular they are 5-monotone a < 6 implies ra < rb),
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" r(sa) = (r V s)o = s(ra) (any two regular operators commute, and binary join is
composition);

" if S is stable, then r A S = M~rs -a r S) (they preserve stable meets);

" ra Arb <r(a Ab),

" if S is nonempty, then r VS =V~ra :a E S} (they preserve regular joins);

" if JR C RA is nonempty, then (VR)s = Vim a r E R) (nonempty joins in RA
are pointwise with respect to V)

Fixedpoint sets of regular operators, which as you recall are the same as the fixedpoint
sets of logical operators in general, can now be characterized (22.5) as the sets S C A
satisfying.

T CS, T stable implies ATE S and aeA,sES imply a-SE S

Thus, they differ from maxsets (cf (4)) only in that they are closed under stable meets,
as opposed to all meets Equivalently, they are clharacterized in terms of the partial
order (A, <) as the subsets both up-closed and closed under all existing meets; in short,
they are the complete fiters in (A. a)

Now,, finite meets and arbitrary joini, of both maxsets and complete fiters (in
their reverse orderings) are computed the same way, and so the obvious inclusion of
maxsets into complete filters induces a frame embedding NA - RA (23 1). In terms
of operators. this embedding takes a nucleus j to the regular operator -j, which I
have been writink! in this context. Thus the composite embedding A - NA - R
is given by a - c(a), which, if we rewrite it ?: A - RA and simplify slightly. is

a(afr (a - ) -z (zEC-A).

The right adjoint to the inclusion NA - RA, in terms of fixedpoint sets, closes a
complete filter up under all meets to obtain A maxset. In terms of operators, the right
adjoint, denoted r - r', is readily seen (23.2) to be given by

r' = A(&: b 2! 4 (7)

As an application, we get a formulafor thejoinofan arbitrary set I of nuclei (23.4(l)),

(V )a= A (( Vib)- b) - b

1A( .ibb)J (a eA). (8)

This formula is derived in a way reminiscent of that described at the end of 1.12
for Frm, by lifting J from NA to RA by the embedding (which preserves joins),
computing the join in RA by the pointwiweV formula, and returning to NA by (7).
Moreover, it solves a problem that, even for binary joins of nuclei, seemed "quite
difficult" [41, p.242] An application of (8) is given below in 2.5. Finally, it should be
mentioned that the formula for the arrow operation of NA appearing in the proof of
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11.2.5 in Johnstone (22] can also be seen to arise in the same way from the pointwise
arrow operation of RA (23.4(2))

Now,, to complete the picture, we shift from the regular operators themselves to
the categorical properties of RA as a frame, in particular its relation to the assembly
tower. By the universal property of N, the embedding NA - RA can be extended
to a morphism N2

A - RA. This morphism, it turns out, is exactly the --- quotient
(23 6) Thus, the elements of RA can also be seen as the regular nuclei on NA (making
that a third way in which they are "regular"l). As Q = {q(a) : a E A) is an up-closed
subset of NA, every nucleus J E NIA, being infiationar), takes Q into itself and thus
defines an operator J on A by the equation

Jq(a) = q(Jra) (a : A)

This operator is regular and the assignment J - J goies, ia terms of operators, the
-- quotient N2A - RA (23 8) It also implies that for any two nuclei J,K e N

2
A,

'-'J = -- K iff J and K are equal when restricted to Q. A third implication is
that -' on N2A preserves all meets, because meets are computed pointwse in both
RA (applied to an clement a E A) and N2A (applied the corresponding element
q(o) E Q) And, since -- preserves arrow in any Heyting algebra, it follows that --
is a complete Heyting algebra morphism (23 9), also called an open frame morphism
since these correspond topologically to open continuous maps

The frame RA is also the limit of the Boolean quotients of A (24 1).

2.5. Free meets. Frame morphism, are required by definition to preserve only
finite meets, but there are non-trivial situations in which meets of infinite sets are
preserved a well As an example of this, consider meets of open sets of a space, easily
seen to be given by the interior of their intersection These meets aren't normally
preseved by the inverse images of continuous maps, but if the intersection is itself
open, then it io preserved (since inverse image always preserves intersections). As an
algebraic example, if esery element a C S of a subset of frame has a complement -a
and, furthermore, the join V{'a : ES) iu itself complemented, then A S Vf
a E S) and so this meet is preserved by every frame homomorphism

Let us say that a subset S of a frame A has a free meet if f(A S) 
= A{f(s) :s C S)

for every frame morphism f A - B, and that A hba free meets if every subset of A
has a free meet, i e , every frame morphism out of A preserves all meets.

The equality AS = 
"Vf-a ' a 6 S) in the algebraic example above suggests a

way of looking for subsets of A with free meets' Since the embedding A - NA freely
complements the elements of A, and the embedding NA - N2A freely complements
all the joins of those complements, we might expect to find free meets for subsets of A
by looking at their images in N

2
A. This is the starting point of the first result of this

section (25 3, 25 4): For any subset S of a frame A, the following four statements are
equivalent:

1 S has a free meet in A

2. c
2
(AS) = A c

2
(s), where c

2 . A - N2A is the canonical injection.
'es

3. For some s E A,, V u(s) = u(a) in NA (in fact, necessarily a = AS)
,eS
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4 Every a e A greater than AS can be written as the meet of a stable subset of
the up-closure of S (see 2.4 for the definition of stability)

Notice that conditions 2-4 are conditions on, repsectively. N2A, NA, and A itself.
The proof of the equivalence of condition 4 with the others relies heavily on formula
(8) of 2 4 (applied to the join of open nuclei in Condition 3).

This result also gives a solution to a problem first considered by Macnab in his
thesis [31] and more recently by Niefield and Rosenthal [36] (see also Section 4.5 of [38]),
namely to characterize those sets S C A such that S = j-1 (1) for some nucleus j E NA
or, equivalently, such that S = f"(I) for some frame morphsm f : A - B. It is
an easy consequence of the above that these sets are precisely the 'Tree filters" (filters
closed under free meets, see 25 5)

Finally, the results of this section can be combined with a result of Beazer and
Macnab [5] to obtain the following (26.1)- A frame A has free meets if" both of the
following (independent-see 26.2) conditions hold'

* A is a biframe, i.e., its opposite is also a frame.

* NA is cBa

2.6. Universal monos. A universal mono is a morphism i : A - B such that
for any morphism I . A - D, the pushout of u along f is mono. Clearly such a u
is itself mono, since u is the pushout of u along the identity. Here are some other
basic properties of universal mono. (27.2), valid in any category with pushouts (where
f: A - B and g ' B - C are morphisms):

1. If f and g are universal monos, then so is g o f

2. If g o f is a universal mono, then so is f.

3. The pushout of a universal mono along any morphi'm is universa

4. If g o f is a universal mono and f is epi, then g is a universal mono.

These tell us how to get new universal monos from old ones; we also need some
examples to start with. A first class of examples are the open munos; recall that a
frame morphism is open when it is a complete Heyting algebra morphism. i.e., when
it also preserves arrow and all meets--see [27 for more on open morphisms. A sec-
ond class, recently investigated by Vermeulen (493 are the (Iocahlc) proper surjections;
without the surjectivity restriction. such locale morphisms p: A - B correspond, by
the change-of-base esult mentioned in conjunction with the constructivity of locale
theory in 1.7, to compact locales in Sh(B). A third clam. also universal in any cate-
gory with pushouts, are the components of natural monomorphim from the identity
functor (27 3(iv)). For Frm, this class includes all of the morphisms c : A - N*A.
Combining this with condition 2 above, we see that first factors of the components of
natural monomorphisms from the identity are also universal Interestingly, this last
clam includes all universal monos in Erm: given any such u . A - B, a natural
monomorphism from the identity can be constructed that has u as a first factor of its
component at A (Exercise 27.4 2)
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To explain the main result of this section. we need a couple of definitions Let o
be an ordinal We call a morphism f : A - B a-mono if Naf is mono and a-epi if
the image of N

°
f contains the image of c0  

B - N*B Thus, for example, 0-mono
means mono and 0-epi means onto It is eas) to see (28 2) that if f is *-mono then
it is O-mono for all , < a and that if f is a-epi then it is 7-epi for all Y a. Note
also that both of the notions of a-mono and a-epi are different for different 0. if f is
the composite a-o c4 

A - (N*A).., for a non-reflective frame A (such as the free
frame on w), then f is 0-mono for all 0 < a but it is not a-mono; and f is a.epi
but not O-epi for any 3 < a (28 4)

Now Madden and Molitor [33] have shown that f is an epimorphism iff it is o-
epi for some o Their proof can be simply explained using the idea, put forward at
the end of 1 12, of an extension of arm where the assembly tower of every frame A
has a colimit, call it N IA, %hich is the union of the frames in the tower and gives
a reflection of A into the subcategory of Boolean objects. Since N' is a faithful left
adjoint it both preserves and reflects epis, i.e., f is epi iff Nf if. But in the category
of Boolean objects epis are surjections. and therefore, since NIB as the union of the
frames in the tower, there must be a stage a at which all of the elements of B have
appeared in the range or Naf, completing the proof

The main results of this section are (28 5, 28 8)

" f is a universal mono iff it is an a-mono for every ordinal a

" Conversely, f is an (o + 1)-mono iffthe pushout of f along every a-epi is mono.

That a universal mono is a-mono for every a follows easily from basic properties of
the assembly tower and universal m'nn-. That a morphism f which is a-mono for
every a is universal again 'nes he idea above. In detail, since NO f is the union of the
N'f, which are all mono. N'f is mono as will. And ifg is a pushout of f, teen since
NI preserves colimits, NOg is a pushout of N°f. But in the category of Boolean
objects, all monos are universal, so Nw9 is mowa and thus so is g The second part of
the result uses similar ideas, along with a positive answer to the (somewhat technical)
question asked at the end of (33] (Lemma 28.6)

2.7. Combinatorial morplisms. Because of the way coproducts are computed
in Firm, it turns out that the free extension AIX] of a frame A by a set X is the
subframe of the catesian power A

P
IX consisting of all the monotone functions, where

PtX is the set of finite subsets of X, ordered by reverse inclusion (29.1) And since
every X-generated extension of A is a quotient of A[X], the idea is that we can study
frame morphisms out of A by studying congruences on AIX]. This generalizes the
description of singly-generated frame extensions given by Banashewski [4], and man)
results of this section are generalizations of the results obtained there

The easiest congruences to work with are the restrictions to AIX] of congruences on
APIX, which by a result mentioned in 2.3 must be products of (PrX)-indexed families
of congruences on A We call such congruences standard, and a frame morphism
isomorphic to one of the form A - A(XI/ II, ei combinatorial.

It is easy to see that every congruence on AIX] has a least standard congruence
greater than it. and this congruence is given by a simple formula (29 4). The process
of standarization of congruences is preserved by pushout along an arbitrary morphism
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(29.7) A combinatorial morphism f -A -. A[X]/1 l,9, is mono if A e, = 0. and so if
this family of congruences has a free meet (equal to 0) in Con A, then f is a universal
mono (29.9), establishing a connection between free meets and universal monos It
also shows that every finitely generated combinatorial extension is universal (Corollary
29.9), since every finite set of congruences has a free meet.

In the case that X is finite, the theory becomes quite manageable. every congruence
on A[X) is standard (30.3). To prove this, we use a lemma about finite subsets of
distributive lattices (30.2) that generalizes the familiar result that a A X = a A V and
aVa = aVV imply x = y for any three elements a, xV. As another example of
the manageability of the theory, because every congruence is standard, the process
of standardization is trivial, and so pushouts of combinatorial morphisms have an
especially simple description (30.4). This allows us to characterize finitely generated
epis and finitely generated regular mono in terms of the family of congruences (30.5):
a finitely generated combinatorial morphism f : A - A [X fl , Oj is epi iff 0, V Oj = I
whenever i ; 6 , and is a regular mono iff it satisfies a "patching" condition reminiscent
of the definition of a sheaf.
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Chapter 2

PRELIMINARIES

The reader of this thesis is assumed to be familiar with the basic notions and results
of set theory (sets. ordinals. cardinals), lattice theor.,, universal algebra, and category
theory. Of these four subjects. much of what we will need from lattice theory and
category theory can already be found in Chapter I of Johnstone (22,, another book of
Johnstone ([24]) contains much of what we will need from set theory (and logic). In any
case, to establish our notations, terminology, and background results, we review these
four subjects in separate (and rather dense) sections below. General references are (19]
for set theory, [13', for lattice theory (6] and (35] for universal algebra, and [29] and (181
for category theor) (The reader may also wish to consult (34[, which covers universal
algebra from the point of view of category theory and, in the first chapter. discusses
infinitary universal algebra a subject very important to us here but not mentioned in
the other references on universal algebra )

3. Sets

3.1. Axioms and notations. Although it won't be necessary to specify precisely
with which theory of sets we will work, the reader desiring such a commitment may
take Zermelo-F'raenkel set theory with the Axiom of Choice (ZFC) for this purpose In
addition to sets, we will also make use of classes (such as the clas V of all sets, as well
as more specific classes), but we will consider a class to be a linguistic objectification
of a formula (with one free variable) rather than a fundamental entity. Thus, if C is
a class represented b) the formula 0(z), then y e C simply means 4(y) For some
considerations it will be convenient-though, as we will see, not at all necessary-to
assume the existence of inaccessible cardinals, or to likewise adopt other devices that
allow us to distinguish between "small" and "large" sets. This is explained in more
detail in Section 6.6 below

As for specific notation, ours is basically standard Examples: set membership
(a E A), subset (A C B, note that this includes the possibility that A = B.- we will
not need a notation for proper subsets), sets formed by comprehension or separation
(fa E A :0(a)}), the empt) set (0), finite sets ({1, 2,3)), union (AUB. U{A., E I),
U 61 A, ),intersection (A nD, n(A,. i G 1), ( ., A. ), set difference (A- B), power
set (PA = JX : X C A)), ordered n-tuples (( i.. .,)), binary cartesian products
(A x B), disjoint union (U,5i A, = Usl{') x A,), relations between sets (0 C A x B.
a 0 b iff (,b) 6E 0) and relations on a set (p C A x A), the domain and range of a
relation (dornR = {a 3b a R b), rngR = (6 ' 3a a R 6), the converse or inverse
of a relation (R-I = {(b,a) • (a,6) E R)), functions (I : A - B, .4 - B, f(a),
(g o f)(a) = g(f(a))), arbitraq cartesian products (11,,, A,'; elements of this set are
functions o - I - U,fl A, such that o,(i) 6 A, for all i E 1), and cartesian powers
(Al, elements are functions a I - A)

18
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3.2. Notations for functions. A function f ' A - B (also called a map) is
injective (or one-to-one, or 1-1) if f(a) = f(b) implies a = & for all 4,b E A; f is
surjective (or onto) if rngf = B; f is bijective if f is both 1-1 and onto. Note that if
g o f is 1-1, then so is f, and if g o f is onto, then so is g. If S C A, the restriction
of f to S is ffn (S x B); this function S - B is denoted fis. Functions Al - A
are called I-ary operations on A, when I has 0, 1, or 2 elements, these operations
are called nullary. unary. or binary, respectively. We identify nullary operations on A
with elements of A (i e.. constants), unary operations with functions A - A, binary
operations with functions A x A - A, and so on Unary functions are also called
operators, and the action of an operator I : A - A on an element a E A is written
using juxtaposition: Ia

Functions defined "syntactically" need not always be given a name. we adopt the
useful convention that if p(s) represents an expression involving a variable z, and if
for everv a 6 A the result, p(a), of "evaluating" the expression with r replaced by a
yields an element of B, then the resulting function A - B is denoted by z - p(z) or
just p(-). Example the (unary) squaring function on the integers might be denoted
n - n

2 
or (-)2

A partial function f- A - B is a single-valued relation f C A x B, i.e., such that
a f bi and a f b2 imply b, b2 for all a E A and bi,

6
2 E B. We say that f(a) is

defined if a E darer. Finally, a relation-class is a class R such that z E R implies
that x is an ordered pair, and a function.cla is a relation-class that is single-valued,
in the sense defined above Much of the notation and terminology for relations and
(partial) functions also applies to relation- and function-claes,

3.3. Posets. A partial order on a set (or clas) A is a binary relation S on A
that is reflexive (a 5 a for all a ( A), transitive (a < & and b < c imply a 5 ), and
an isymmetric (a 5 b and 6 < a imply a = 6). A linear order additionally has, for
every a, 6E A, either a _5 6 or b< a. A set A equipped with a partial order is called
a poses (partially-ordered set); a linearly-ordered set is often called a chain. When the
order is understood, a poser will often be denoted simply by naming its underlying set
We also use the notation 6 a for a 5 b. We write a < b for the conjunction of a <_ b
and a $ b (and similarly with a > b), and a 5 6 5 c for the conjunction of a ! b and
I< c. A simple but useful result about posets is the following:

Proposition (YONEDA LEMMA FOR POSETS). !f (A, 5) is a poset, then for every
a, beA,

(a) a < if and only iffor every r E A, z < a implies x < 6
(b) a= b ifand only iffor every z E A. z:5 a and z b are equivalent.

PROOF. (a) If a < b and z 5 a, then r 5 6 by transitivity. Conversely, if z < a
implies z < b for every z E A, then since a :5 a by reflexivity, putting z = a we have
a < 6, proving (a). Parr (b) follows from (a) and antisymmetry.

3.4. Associated constructions. If (A,_5) is a poset, then (A, _.P), where
a <OP b iff b < a, is also a poset, called the dual of A and denoted A P . As a
consequence, we have a duality for posets: every statement about posets has a dual
statement, formed by replacing the order with the dual order, and a statement about a

ADA289360



3 5 2 Prebmuies 20

poset is true iff the dual statement is true about the dual poset Hence. if a statement
is true of all posets then its dual is also true of all posets

A map f A - B between posets (A. <) and (B, 5') is monotone (or order-
preserving) if f(a) 5' fib) whenever a < b, and antimonotone (or order-reversing)
if f(a) ' f(b) whenever a < b. Note that f - A - B is antimonotone iff f .
A- BOP, or equivalently f AO

P 
- B, is monotone A map f A - B is an

(order-)isomorphism if it is a monotone bijection
Starting with given posets we can construct new ones b restricting to a subposet

or taking a product If (A <) is a poset and S C A then the order on S induced by
A is 5 n" (S x S) Examples of posets with the induced order are interval subposets
if a,b EA. then [a,b' = I xeA a <: < b), with the induced order If I is aset
and, for each i E 1. (A,, <,) is a poset, then the cartesian product Il,, 1 A, becomes
a poset with order < defined pointwise, i e, for a, C flje A,, i < r iff o'(i) <, r(i)
for all i C 1

Given a poset '(A, _), we can associate to each subset S C A four other subsets
(i) the up-closure of S. upclS = fa G A a _ s for some s C S);,
(ii) the down-closure of S downcl S = fa C A : a :5 s for some sE ),
(iii) the upper bounds of S ubS =(a CA: a s for alls CS), and
(iv) the lower bounds of " lb S = (a E A a _< s for all s E S)

S is up-closed or down-closed if upelS = S or downclS = S. As a special case, we
define Ta = updfal = ub=a) and Ia downcl(a) = Ib(a), called respectively the
principal filter and principal ideal generated by a. An element a C A is the join (or
least upper bound. or supremum) of S if a is the least element of ub S, i.e , a C ub S
and, for all b E ubS, a < b Duall), a is the meet (or greatest lower bound, or
infimum) of S if a is the grewest element of lb S Note that ub 0 = lb 0 = A, so that
the join and meet of the emptyset, if they exist, are respectively the least element of
A. denoted 0, and the largest element of A, denoted I. We view join (V) and meet

(A) as partial functions VA -PA - A

3.5. Ordinals. Informally, the class of ordinals is the (linear) order freely gener-
ated by the constant 0. the unary successor operation a, and the join operation, subject
only to the condition that r < s(z). This description takes transfinite recursion (and
induction) as basic Formally, ordinals can be identified with sets that are transitive
and well-ordered by C A set a is transitive if z C a and y C z imply C a, or,
more succinctly, Uo C a (or a C Pal A poset (A, 5) is a well-ordering if every
non-empty subset of A has a least element The informal description is then realised
by taking 0 = 0, s(z) = z U (z) and V = U. The clas of all ordinals is denoted 0
As we have defined them, ordinals satisfy a = f. CO : 0 < ac) and 0 < a iff E a.
The finite ordinals are denoted 0, 1, 2, 3, ,., as usual The first infinite ordinal (=
the set of all finite ordinals) is denoted w:.

An ordinalsequence (a5 0 < a) is a function with domain a for wich 0 -. ap for
all e < a. Transfinite induction says that if X is a class of ordinals such that 0 c X,
s(z) G X whenever z C X, and US C X whenever S C X, then X = 0. Transfinite
recursion says that if G is a function-clas defined at least on all ordinal sequences,
then there is a unique function-class F such that F(la) = G((F( ). . < o))

Every well-ordering is isomorphic to a unique ordinal If a and 1 are ordinals, then
the ordinal a+O is defined to be the unique ordinal isomorphic to the well-ordering that

ADA289360



4.1 2 Preliinaries 21

puts # "at the end or aie.to the poset (A, <), where A = (O) xa)U (fl} x 8),
and where (g, -1) :5 (j, 72) iff either i< j or both i = j and ji !5 -a. Note that
addition of ordinals is associative (but not commutative) and that whenever a < 6i
there exists a unique I such that a + 'y = 3

An ordinal a is either 0, a successor ordinal (a = a(#) = 9+ 1 for some ordinal P),
or ahiuordinal (a =Ua) Transfinite induction and recursion can be restated using
this classification of ordinats. As an example. we construct the cumulative hierarchy,,
IV : a E 0) We define Vo = 0,, V.+% = PVa, ad, if A is ahlmitordinl, VA =
UAc Vs One can prove, using transfinite induction, that each V' is transitive, that
the hierarchy is indeed cumulative (3 < a implies 11D C V), and that for every ordinal
a, a C V. (and hence a E V0 l ). As a consequence of the Axiom of Regularity
(every set has an E -minimal element), every set belongs to some set in the cumulative
hierarchy;, we define the rank of a set r, rank z, to be the least ordinal a such that
z E V+i. Note that ranka =a and 17. = {z: rank z< af).

3.6. Cardinals. Just as ordinals provide representatives of isomorphism types
of well-orderings, cardinals represent isomorphism types of sets (where "isomorphism"'
means "bijection" in this case). We can achieve this by defining a cardinal to be an
ordinal that is not isomorphic to any smaller ordinal. By the Axiom of Choice, every set
X can be well-ordered and therefore admits a bijection to a unique cardinal, called its
caidinality and denoted IX I Addition, multiplication, and exponentiation of cardinals
are defned by I+=+I cAxI r 1 CI

where the cardinalities are, respectively, of the ordinal sum, cartesian product, and
cartesian power Of Kc and A. We note that IPXI = 21XI > 1XI. The least cardinal
larger than Pc is denoted 0t.

A cardinal is regular if it is not the union of asmaller set of smaller cardinals; more
precisely, oc is regular if, whenever X C xs and x UX, then IXI = is. Using the
Axiom of Choice, one can show that #c' is regular for every cardinal ic.

4. Lattices

4.1. Semailattices and lattices. A meet-sensilattice is a poset in which every
finite set has a meet. Equivalently, a oseet-semilattice (A,:5) has a greatest element
I (the empty meet) and a meet a A b for every two elements a, b e A. This binary
operation is associative (a A(6A C) = (a A ) Ac), commutatve (a A = 6 Aa), and
idempotest (a A a = a), and 1 is a unit for the operation (a A I a ). The order
relation is recovered from the meet operation by the equivalence a !5 6 ill a A b = a,

* and the descriptions b order (5) and by operations (1, A) are equivalent
A function f . A - B between meet-semilattices that preserves finite meets (i.e ,

f (AS) = AOs s E S} for every finite set S C A) is called a meer-semilaltice
* (bomo)niorpliism. Every meet-semulattice morphismn is monotone, and injective meet-

semrilattice morphisins reflect order: 1(a) :5 1(b) imiplie a :5 b (proof. 1(a) :5 f(b)
iff f(a) =f(a) A (b) =f(a A6) tffa =a A biff a 5 ).For every a GA,the unay
operation 4 A - on A is monotone but is not a meet-semilattice morphismn (unless
a = 1), since it doesn't preserve 1.
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Dually, ajoin-semilattice is a poset in which eiery finite set ha a join; equivalently,
a join-semilattice has a least element 0 and a join a V 6 for every two of its elements
Algebraically join-semilattices are the same as meet-semilattices (and may as well
just be called semilattices)-they consist of one constant and one binary operation
satisfying the same equations The difference is in the relation between the order and
the binary operation a < b iff a V b = b Join-semilattice morphisms preserve finite
joins, and the operations a V - are monotone but are not join-semilattice morphisms
(unless a = 0)

A lattice is a poset that is both a meet- and join-semilattice Equivalently it has a
greatest element 1, a least element 0, and a meet aAb and join avb for every two of its
elements. In addition to the semilattice equations satisfied by the pair I and A and by
the pair 0 and V the operations A and V are related to each other by the absorption
laws: a A (a V b) = a = a V (a A b) Lattice morphisms preserve finite meets and finite
joins Note that the dual ofa meet-semilattice is ajoin-semilattice and vice-versa, and
that the dual of a lattice is a lattice To form the dual of a statement about lattices
one interchanges 0 and I and interchanges A and V

4.2. Distributive and Boolean lattices. A lattice A is distributive if it
satisfies a A (b V c) = (a A 6) V (a A c) for all a, b, c E A. One can then show that it also
satisfies the dual law, a V (b A c) = (a V b) A (a V c) Given elements a, b, r of a lattice

A with a < b < c, d E A is called a relative complement of b in (a,c) if bAd = a and
bVd = c (d is therefore necessarily also in the interval [a, c]). In general an element may
have many relative complements in a given interval, but in a distributive lattice relative
complements are unique when they exist (in fact, distributive lattices are characterized
among lattices by this property) Relative complements in the interval [0, 1] are called
(absolute) complements It is clear from the definition that complements are preserved
by lattice morphisms

A Boolean lattice is a distributive lattice in which every element has a complement.
The operation taking an element to its complement is denoted -; thus a A -a = 0
and a V -a = I for every element a of a Boolean lattice Boolean lattices additionally
satisfy -'a = a for every a, as well as the De Morgan Laws- -(a A 6) = (- a) V (-,b)
and -(a V6) =(-a) A (4).

4.3. Complete lattices, closure operators, and adjunctions. Complete

meet-semilattices, complete join-semilattices and complete lattices, and the morpbisms
between them, are defined as are their non-complete counterparts, except that joins
and meets are required to exist for all subsets (not just finite subsets), and morphisms
are required to preserve them Although the resulting three types of morphiams are
different, the three types of posers are the same. any poset having all meets also has
all joins, and vice-versa, since V S = A ub S and A S = 

V lb S. The basic example of
a complete lattice is the collection of all subsets of a set X, the order being C, meets
and joins are given by intersection and union

A closure operator on a complete lattice A is an operator (function) C . A - A
that is inflationary (a <_ Ca), idemporent (CCa = Ca), and monotone (a < b implies

Ca :5 Cb) Dually, a co-closure operator is deflationary (Ca 5 a), idempotent, and
montone An element a e A is a fixedpoint of an operator C if Co = a. the set of
fixedpoints of C is denoted fixC, Note that, for a closure or co-closure operator C,
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the set fixC is the same as the range of C. A meet-dosed subset of A is simply a
subset S c A such that if T C S, then AT E S; a join-closed subset is defined dually.
A meet-closed subset of a complete lattice is itself a complete lattice in the induced
order, since is has all meets (and thus all joins); similarly with a join-closed subset.

Closure and co-closure operators and meet- and join-closed subsets can be partially
ordered, we order the operators pointwise (CI :5 C2 iff Cla :5 C2a for all a E A), and.
for reasons that will become clear shortly, we order the join-closed subsets by inclusion
(SI :5 S2 iff S, C S2) and the meet-closed subsets by reverse inclusion (SI -5 S2
iff S2 C SI). Given two complete lattices A and B, a pair of monotone functions
I - A - B and r • B - A are said to be adjoint, with I the left adjoint and r the
right adoint, when l(a) 5 b iff a <- r(b) for every a 6 A and b E B. This situation is
called an adjunction and denoted l - r.

The relations between the above notions are spelled out in the following proposition

Proposition. Suppose that A and B are complete lattices
(a) If C is a closure operator on A, then fix C is meet-closed (and thus a complete

lattice). If S C A is meet-closed, then tae operator C on A defined by Ca = A{b E
S : a i b is a closure operator. If i fix C - A is the inclusion, then C -I i.

(b) Dually, i C is a co-closure operator on A, then fix C is join-closed, and if
S C A is join-closed, then Ca = V{b e S : 6 < a) defines a co-closure operator.
Mforeover i -1 C, where i : fix C - A is the inclusion

(c) The correspondences in (a) and (b) between closure operators and meet-closed
subsets and between co-closure operators and join-closed subsets are isomorphisms of
poset, when the sets are ordered as in the previous paragraph.

(d) I - A - B and r : B -A satisfy I -I r, then r o I is a closure operator
on A, and Ior is a co-clsure operatoron B. In fact loroI= I and rolor = r,,
and 

11fixol, (fix r o l) - (fiy' o r) is an isomorphism of posets, with inverse rfix I,.
The operation I preserves all joins, and r preserves all meets. Conversely, any join-
preserving function between complete lattices has a right adjoint, and, dually, any
meet-pmeerving function has a left adjoint. Any pair of adjoints I -H r satisfy

I(G) = A{b : r(b) > a) and r(b) = V{la : 1(a) < ),

so that each of r, I determines the other. I k 1.1 "f r is onto, --nd ! iS ont iff r -s l.

4.4. Examples. A common source of adjunctions (in fact the only source of
adjunctions between powersets) is described by the following proposition:

Proposition. Suppose X and Y are sets, PX and PY are the associated
complete lattices of subsets (ordered by inclusion), and R c X x Y is any relation.
Then is : PX - PY, r3 : PY - PX, : PX - ( )OP, and rv : (PY )OP - PX,
defined, for SC X, TC Y,, and Q= V, by

lQ(S)={yeY QsES sRy) and rq(T)={zrX:QtET zRt),,

satisfy Iq -I rq. Moreover, every adjunction I -4 rq between PX and PY (if Q = 3)
or PX and (PY)o0 

(if Q = V) arises in this way from a unique relation R defined by

zR y iff y elq({z)) iff zrrQ(f{)).
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PROOF (Sketch) For the first part, the reader may check that both is(S) C T
and S C rs(T) are equivalent to VzVy(z E S and z R y imply y E T), and that both
i4(S) D T and S C rv(T) are equivalent to VzVy(z e S and y E T imply z R y)
For the second part. note that Iq, as a left adjoint. preserves joins and therefore is
completely determined by its values on the singleton subsets {z) of X (and these
values as sets, are themselves determined ky the elements they contain)

As an example of an -existential" adjunction, if R = f .X - Y is a function,
then la and r3 are just the direct and inverse image, and the adjunction 13 -4 ra is
the familiar relation f(S) C T if" S C fi(T) for all S C X and T C Y As an
example of a "universal" adjunction. consider a poset (A, <) Then the adjunction on
PA induced by the binary relation < is given by Ic(S) = ub S and rv(T) = lbT The
complete lattice of fixedpoits of rvoly is the so-called Dedekind-MacNeille completion
of A, and the mapping a - lo is an emedding of A into the completion that moreover
preserves whatever meets and joins happen to exist in A. We will see several other
examples of "universal' ad)unctions later

Finall., we observe that the identity function, a. A - A, is adjoint to itself(i -i)
and that adjunctions may be composed if, in addition to i4 r as above, F B - C
and r' C- B have I' - r', then V si-l-or'

5. Universal algebra

5.1. Basic notions, In order to encompass all of the examples with %hich we will
be dealing, it will be convenient to i-se a quite general definition of algebra. A similarity
type is a (possibly proper) class ft of operation symbols along with a function-class
& : - V that assigns to each operator symbol w E S1 an index set &(w) called its arity
An algebra of similarity type 0 (i is often left implicit) is then a set A along with a
function-class assigning to each W G 0 an operation WA -A'(' ) 

- A. I As With partial
orders. algebras are often denoted simply by naming their underlying set. If A and B
are two algebras of type 0, a function f . A - B is called an n-(homo)morpbism if,
for every function symbol w 6 0, f preserves w i.e., for every element c E A'(w),c
we have f(WA (0)) = W(f o a) Every identity function is a homomorphism, and the
composite of two homomorphisms is a homomorphism A bijective homomorphtsm is
called an isomorphism

As an example, we can take the similarity type of lattices to be 0 = {A,V, 1,0),
with i(A) = t(V) = 2 and &(I) = &(0) = 0, and display atypical lattice as (A, A, V, 1,0),
where we have used the operation symbols themselves (effectively leaving off the sub-
script A) to denote the operations A,V ' A x A - A and constants 1,0 6 A Then
n-morphisms correspond to lattice morphisms as we defined them in 4.1 As an ex-
ample oi an infinitary similarity type, we have e-complete semtiattices, where Pc w
an infinite cardinal These are posets in which every set of cardinality strictly less

The reason for this defation, as stated above, is its sniformiti it enables us to treat as algebras
of a fi ed similarity type structures (such as complete lattices) that are traditionally not able to be
treated as such. In all eases that we consider i thOs thesis, however. the class of operations of an
algebra will be deried from a single set associated to the algebra (such as a partial order), and so
there will be no difficulty speaking of sets, or even classes, of algebras.
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than ic has a join, and a homomorphism of ic-complete semlattices is required to pre-
serve these joins. For the similarity type, we can take as operation symbols all of the
cardinals A with A < it (and define L(A) = A), the operation A on a c-complete semi-
lattice would then be interpreted by A-indexed join (explicitly, it would take o 6 A
to V,<A a(i)) Finally. as an example where we need a proper class of operations. we
consider complete semilattices Here. we can take as the class of operation symbols all
of V (again with i(l) = I for every I e V) and associate with the operation symbol
I the operation giving 1-indexed joins

5.2. Subalgebras, products, and quotients. If A is a algebra of type 0 and
S c A, then S is called a subuniverse of A if every operation wA of A restricts to 5,
i.e., for every c E $

'( ) 
- WA() E S. The restricted operations then make S into an 12-

algebra, called a subalgebra of A, and the inclusion S - A becomes a homomorphism.
Arbitrary intersections of subuniverses are clearly subuniverses; thus. for every X C A
there is a least subuniverse of A containing X. The associated subalgebra is called the
subalgebra of A generated by X If I is a set and, for every 6 ! 1, A, is an fl-algebra,
then the cartesian product A = Iflu, A, becomes an f-algebra when we define the
operations pointwise' if a E A'M), then WA(V) IS the function i -W A,(S), where,
for every i E (w), cr,() = (j)(i). For every s6 1, the ith projection, i : A - A,
given by 7,(a) = a(i), is an onto homomorphism

A binary relation 6 C A x A is an equivalence relation on A if it is refexve,
symmetric, and transitive. For a E A, the set 0/0 = {b 6 A : a 9 b) is called the
equivalence class of 0 containing a (which it does by reflexivity). The set Ale =
{a/O :. a 6 A) of equivalence classes of 0 form a partition of A-a set of disjoint
sets whose union is A. The (onto) function A - A/O which maps a - a/$ is called
the quotient, or natural, map and is denoted 40. An equivalence relation 0 on an
()-algebra A is called an fl-coagrue nce if, further, it is a subuniverse of the product
algebra A x A. Explicitly, this means that 0 is compatible with every t. E Q: for
every pair vr E A'('), if cr(i) 0 r(i) for all i E &(w), then WA(o) 0 WA(N. The set
of equivalence classes then becomes an fl-algebra, where wA1O(R 0 0) = Wg(wA()) for
every a E A'('), and the natural map becomes a homomorphism.

It is easy to verify that the intersection of any set of congruences on A is again
a congruence. As a consequence of Proposition 4.3, there is a closure operator 0
on A x A that takes X C A x A to the smallest congruence containing X (called
the congruence generated by X), and the fixedpoints of this operator are exactly the
congruences on A, which form a complete lattice under inclusion that we denote by
ConA. A congruence generated by a single ordered pair, such as 8((a,b)), or written
more simply as e(o,b), is called a principal congruence. It has the property that,
for any congruence 9, e(a,b) < 0 iff a 0 4. It is therefore easily seen that every
congruence is a join of pnncipal congruences: 0 = V{(a, b) . a 0 b).

5.3. Homomorphism theorems. If f A - B is a homomorphism, then
the kernel of f is the relation ker f on A defined by a (ker f) a' iff f(a) = f(a'),
which is easily seen to be a congruence. The function g . A/ kel f - B given by
g(a/ker f) = f(a) is well-defined and is a 1-1 homomorphism, and so f = go Iker is
a factorization of f into an unto homomorphism followed by a 1-1 homomorphism If
f is already onto, then 9 is an isomorphism; thus, onto homomorphisms and quotients
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by congruences amount to the same thing. In the same way, if 0 < kef, then f
can be factored uniquely through A - A10 via y A16 - B defined by &18f) =
f(a) (though g will be neither 1-1 or onto in general) Conversely, note that for any
composable homomorphisms A -L- C -- B, we have ker h < ker(g a h)

The composite of two onto homomorphistm is onto, in terms of congruences, we
get the following: if 0 < v- in Con A, and we write v/8 for the congruence on Ale
consisting of the pairs J(a/0, b/B) -a V, 6}, then the map A/O5 - (A/B)/(,b/B) given
by a/0i - (a/O)/(O/O) is an isomorphism Also. if [B, 1] is the interval subpoeet of
Coni A , then the map [8. 1) - Con A/0 given by 0' - 0/6 is an isomorphism. If
f A - B is a homomorphism. and f x f: A x A - B x B is the function defined by
(f xf)((a. a')) = (f(a). f(a%), then for every 0 G Con B, (f x f)-(0&) is acoigruence
on A It follows from this that the adjunction e -t between P(B x B) and Con B
arising from the closure operator E) on P(E x B) (i is the inclusion) can be composed
with the adjunction f x f -q(f x f)-I between P(A x A) and P(B x B) to yield (by
restriction) an adjunction 0 o (f x f) -1 (f x f)- I between Con A and Con B

5.4. Lattice congruences. Before continuing with the general survey of tlniver-
sal Algebra, we now look at some special properties of congruence relations on lattices
and, in particular, distributive lattices. These are collected in the following proposi-
tion, whose etraightforward proof we omit (though the reader with less familiarity with
distributive lattices will find it a rewarding exercise)

Proposition. Suppose A is a distributive lattice (i.e., with operations A, V, 0, 1
that satisfy the lattice equations plus distribstivi ty), B C- Con A, and a b, c,d E A
Then the following statements hold'

(a) a0b iff (a A6) 0(a Vb)
(b) 6,d C-a/B and b < c<d implyc C-aB.
(c) IdE a/9 inmply bAd,bvdE a/$
(d) asA b 0biff a 0aVb.
(e) lfc!5d, then aO(r,d)b iffaAc=6Ac and avd= bVd
(f) Itfa< 6andc< d, then(a, 6) A6(C, d) = esVC, 6A d).
(g) It M1, M2 are B-congruence classe, then M,1 5 M2 (in A10) iff there exists

asEMi and bEM 2 witha <b.
Notes In fact, only parts (e) and (f) require distnbutivity. Part (a) implies that the

congruence B is determined by the pairs (alb) E B with a !5 b. Parts (b) and (c) say
that congruence classes are convex and closed under meets and joins (in fact, they are
closed under any non-empty meets #-)d joins that ate compatible with B) Given any
two a,6 E A, we say that the interval (a, aVtiJ projects down to the interval [nAb, b] and
that the latter interval projects up to the former Part (d) then says that the intervals
collapsed by a congruence are closed under projections Note also that, in a distributive
lattice, projective intervals are isomorphic Part (e) is a characterization of principal
congruences, and part (f) says that principal congruences are closed under finite meets
(note that the empty meet, or largest congruence on A, is principal: 19(0, 1)),

5.5. Equational classes and free algebras. For the test of this Section. it will
be convenient to treat "algebras?' on (possibly proper) elase along side algebras on
sets, as we have been doing with function-classes and functions. Since the operations on
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such an "algebra" are function-clas, however, we must insist that they be uniform:
thus, given a similarity type 0, we define an algebra-claw of type SI to be a class A
and a formula O(z.y) with two free variables such that, for every w E 0, the formula
4(w, y) (with one free variable) represents a function-class whose domain includes the
class of all functions a : i(w) - A. and whose range is contained in A (Note that
every algebra is an algebra-class)

Now, fix a similarity type IQ and a cla of variables X. We define the class Tn(X)
of fl-terms over X (and we will leave off the subscript fn where there can be no
confusion) Because n (as well as X) can be a proper cla, this requires some care.
(And note further that, for reasons of effective "coding', each z e X must be <n-
minimal in the sense defined below.) We proceed by analogy with the construction of
ordinals We first define an order <n on V by putting z <n Y if t c: (P, f), w G Q.
dorf = s(w), and z e rng f. A set Yt is <n-minimal if there does not exist z such
that x <n y. Given a set T, z E T is <n-maximal in T if there does not exist y 6 T
such that r <n y. Let fno be the clas of constants of fl (wC no itf t(w) = 0) We
call aset T f-grounded in X if, for every <n-minimal element z of T, either x 6 X
or z = (w,0) for some w E no . We call T fl-transitive if y E T and x <n V imp])
x E T. Finally, we define an fn-term in X to be a set T such that

(1) T is fl-grounded in X,
(2) T is fl-transitive,
(3) <n is a well-ordering on T (every S C T has a <n-munmal element), and
(4) there is a unique <n-maximal element in T, called the head of T.

Analogously to ordmals, we can prove a structural induction and a structural recursion
theorem. We define the support of a term T by sptT = T n X, in view of the
transitivity of terms (and structural induction), this is the set of variables "occurring"
in the term T. As an example of structural recursion, we define evaluation of terms.
Let A be an fl-algebra-clum, T be a term, and p : XI - A be a function, where
sptT C X' C X. Then the value T[p] of T at p is defined by recursion as follows. if
T = E 6 X, then T[p] = p(r); otherwise, if (w, f) is the head of T and (by recursion)
a :(w) -. A is the function defined by ir(i) = f(i)[p] (or the empty function if
&(w) = 0), then T[p]= iA(o), Operations on A of the form p - T] are called term
functions.

An equation in X is simply a pair (L, R) with L, R E T(X), which we write more
suggestively as L od R. An equation L m R is astialled (or holds, or is valid) in an
algebra-class A if, for every function p : spt L u apt R - Ae we have LIP

) = REP].
If E is a cla of equations, then the elas of all fl-algebras satisfying each of the
equations in E is denoted Mod(f),E);' classes of algebras of the form Mod(fl,E)
are called equational classes. As an example, we give a class of equations for complete
join-semilattices, making it an equational class. Recall that the similarity type has an
operation symbol for each set 1, denoted here in the form V., whoe interpretation
in the algebra is given by I-indexed join. The clss of equations consists of the single
equation V, z f z, along with for every set I, family of sets f, • i G 1), and onto
function g : K J- .e,, the equation V,el(V 1 z,, ) Vke(x,, JI), where for
every k E K, g(k) = (ik,jk) and is t Ji, (recall the definition of disjoint union).

2 Aain,jw rarnead tier that, in all cse we consider, 0 and E will be such thit vacialebra, in
Mod( 11, E) is encodable by a set
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The reader may enjoy verifying that these equations suffice to characterize complete
join-semilattices (hint the equations amount to a generalized associative law, and the
presence of the function g allows for change of index set, including permutations and
repetitions. so it is a generalized idempotent and commutative law as well). The same
idea would work for K-complete semilattices, except that the sets I, J,, and K would
have cardinality less than x note that, given any such I and J,, in order to ircure the
existence of an appropriate K, it is necessary that or be a regular cardinal, for then
IIU, etj < c

The class T(X) becomes an fl-algebra-class when, for W E I? and o t(iw) - T(X),
we set w.r(x)(o') = ((w- a)) Urgcr As such, it is free over X with repsect to the class
of all f-algebras if .4 is an. fl-algebra, and f". X - A is any function-class, then
there is a unique function-class 7 T(X) - A such that 7(z) = f(z) for all r E X
and such that 7 is an f-homomorphism.

If E is aclass ofequations in X, let E' be the class of those equations L R that
hold in every algebra satisfying every equation in E (we say that L -_ R is semantically
entailed by E). Then E', as a class of ordered pairs. isiacongruence relation on T(X),
the class of equivalence classes T(X)/E' inherits an fl-algebra structure from .T(X)
and, moreover, satisfies all the equations of E.

3 If we write I for the equivalence class
zIE', then the algebra-class T(X)/E' is free over (7 • z E X) with respect to the
class Mod(fl, E)

For the last kind of freeness we will discuss, we need the notions of reduct and
diagram. Suppose that 12' is a subclasS of the class of operation symbols Q (with
each operation in 1' having the same arity as it does in 12). Then every fl-algebra
is naturally also an 12'-algebra when we forget about the extra operations, we say
that the f'-algebra is a reduct of the fl-algebra For an f'-algebra A, we define a
new set of variables XA = {z. : a E A), and let AA (called the diagram of A) be
the class of all pairs (L,R), where L,R E Tn.(XA) and L[P] = Rfp] for the function
p • XA - A defined by p(z.) = a. Now, given any claw E of f-equations, we
have, using the previous construction of free algebra-classes, a free 0-algebra-class
F = Tn(XA)/(E U AA)' (on generators XA and with equations those semantically
entailed by the equations in E and the diagram of A), which has the following freeness
property: for any algebra B E Mod(fl, E), whose reduct to 12' we denote B', and
any fe-homomorphism f. A - B', there is a unique function-clas 7 . F - B such
that 7 is an D-homomorphism with / = PA * ., where 1A : A - F takes a C A to
the equivalence class containing z. (Note, incidentally, that in the special case that
n2 = ' and A E Mod(f,E), we have that Tn(XA)/(EUAA)' is isomorphic to A;
hence every algebra is a quotient of a free algebra.)

When are these free algebra-classes free algebras? If 1 and X are both sets, it
follows that T(X)/E is a set.

4 
On the other hand, for some classes of equations,

T(X) is a proper class while T(X)/E is a set Of course this is true if E contains
x ft V, for example, but a more interesting example is that of complete semilattices.

3To coustiuct the class T(X)/E', we use an idea ofDa Sceott: we take as eqvJenceclasesr not
all the terms equivalent to a gnen one (which may be a proper clau and thus not 'collectable" ito
& class), but only the met of those with rmmmal rank

4To prove this, recursively assign an ordinal rank to every term. as we did with sets, and then
show by induceon (and some cardinal arithmetic) that for a sulicently large cardinal g we have
IT.(X)l < . .eo all ordia .
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One can easily check that the free complete semlattice on a set X, with respect to
the similarity type and equations given before, is isomorphic to the algebra (PX, U, 0)
(here U represents the class of union operations, one for each index set). In other
cases, such as for complete lattices, one can show that T(X)/E is a proper class

6. Category theory

6.1. Basic notions. The theory of categories may be developed in several
different ways, depesding on the foundation used. For our purposes it will be sufficient
to base it on the set theory introduced in Section 3. Thus, we define a category
A to consist of a class of objects A. B, C, .. and a clam of morphisms (or arrows)
f, p, h,... such that (1) every morphism f has a domain dom f and a codomain cod f,
which are objects; we write f, A - B to assert that domf = A and codf = B,
and require that for any objects A and B the class homA(A, B) of all morphisms
f . A - B be a set; (2) for every object A E A (where we are using E to indicate
"is an object of"), there is an identity morphism idA : A - A (we often leave off the
subscript), and for every two morphisms f, 9 with cod f = dom g, say f . A -- B and
y : B - C, there is a composite morphism glo f: A - C; and (3) identity morphisms
are identities under composition, and composition is associative (id o" = f oid = f
and h o (9 o f) = (h o p) o f, assuming all the morphisms are composable) A functor
F : A - C between two categories is a function-clas that assigns to every object A
of A an object FA of C and to every morphism f of A a morphism Ff of C in
such a way that domains, codomains, identities, and composition are preserved; i.e., if
f' A - B then Ff. FA - FB, and we have FidA - idFA and F(g o f) = F9 e Ff
whenever g o f is defined A natural transformation r: F - G between two functors
F,G A - C is a function-class assigning to every object A of A a morphism
rA : FA - GA of C (called the component at A), such that G1 o rA = i-B o Ff
whenever f: A - B is a morphism of A.

Almost of all the categories we will be working with are concrete, that is to say,
categories whose objects are sets with some additional structure and whose morphisms
are certain functions between these sets (usually preserving the structure). Examples of
concrete categories axe Set (objects: sets; arrows: functions), Top (objects: topolog-
ical spaces; arrows: continuous maps), Pot (objects: posets; arrows: monotone func-
tions), and Mod(fl, E) (objects: algebras; arrows: homomorphisms). For every poset
P, there is a category with an object for every element of P and an arrow from p to q
whenever p !5 q (and no other arrows). Functors between such (non-concrete) poset-
categories are just monotone maps. For every category A, there is the identity functor
IdA on A, and the composition of two functors is a functor. A simple but important
class of functors are the forgetful (or reduce functors) Mod(fl, E) - Mod(11', E' ),
where f' C f? and ' C E, which take an fl-algebra to its reduct to fW. A category
is small if its class of objects (and hence also its clas of morphisms) forms a set.

Having indicated how our theory of categories is to be based on set theory, and
given our main examples, we now proceed to outline the rest of the category-theoretic
preliminaries quickly and ask the reader to consult the references for more information.

The dual of a category A is denoted A0P ; as with posets, statements about cat-
egories have duals, and if a statement is true of all categories, then so is its dual.
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A subcategory C of A has as objects and morphisms subclasses of the objects and
morphisms of A. in such a way that the inclusion C - A is a functor

Given a functor G C - A and object A e A, a pair (C, u) consisting of an object
C e C and a morphism u A - GC is called universal from A to G if for every other
such pair (C. u') there is a unique morphism h : C - C' with u' = Gh o u If G is
the inclusion of a subcategory, then a universal pair from A to G is called a reflection
of A into the subcategory Dually, we speak of universal pairs from G to A, and a
coreflection when G is an inclusion.

Two functors F. A - C and G. C - A are adjoint, written F -i G, when there is
a familyof bjections homc(FA,C) = hoMA(A GC), natural in A and C We denote
the unit of the adjunction by n: idA - G o F and the counit by c : F o G - idc; the
components of these correspond under the bijection to appropriate identity morphisms
If F -i G, then the pair (FA, qA) is universal from A to G for every A E A, and,
conversely, if a universal pair (FA. qA) from A to G is given for each A E A, then F
can be (uniquely) made into a functor such that F -i G For us. the main examples of
adjoint functors are F -i G. where G is a forgetful functor between equational classes,
and F is the corresponding free functor arising from the universal property of free
algebras. In case C is a subcategory of A and G is the inclusion, then F is called a
reflection If, furthermore, C is a full inclusion (meaning that every morphism between
objects in the subcategory is also in the subcategory), then the counit is a natural
isomorphism (i.e., every component cC of the transformation is an isomorphism).
Dually, a functor right adjoist to an inclusion is called a coreffection In case both the
unit and counit are natural isomorphisms, the adjunction is called an equivalence, and
A and C are said to be equivalent categories

If J is a small category, functors D : 3 - A are the objects of a category A,
whose morphisms are natural transformations (composed coordinatewise) The diago-
nal functor A • A - AJ takes an object A to the funcror which is A on all objects
of J and idA on all morphisms The category A is said to have hmits of type J if
A has a right adjoint. lirj • A' - A, and, dually, cohmits of type J if A has a left
adjoint, colims .: AJ - A Given a diagram D : J - A of type J, the value limD
is called the limit of the diagram, and the counit D : A lim D - D is the limt cone
(dual: colinits and colimit cones) More generally, a (as opposed to "the") limit of D
is a universal pair from A to D (called a limit cone), and a colimit is a universal pair
from D to A (a colimit cone) Given a morphism AA - D in A, the corresponding
morphism A - limD (or, more generally, A - L for a given limit L) is called the
mediating morphism, and similarly with colimits

A functor F • A - C is said to preserve limits of type 1 if for every diagram
D : 3 - A, F takes limit cones for D to limit cones for FoD. F is said to create
limits of type J if every limit on the image of F has a unique preimage in A' i e, if
whenever D 3 - A is a diagram in A and p : AL -. FoD is a limit cone in C, then
there is a unique p' AL' - D such that F op' = p. and moreover u' is a limit cone
Limits are preserved by rightadjoint functors (dually, colimits are preserved by left-
adjoint functors). Limits and colimits in poset-categories are meets and joins, and the
preservation of (co)limits by adjoin; functors generalizes the same fact for adjunctions
between posets (ee 4 3) A category is complete if it posseses limits of type J for every
small category J (dual rocomplete) It can be shown that a category is complete iff
it has equalizers and all products (dual cocomplete = coproducts + coequalizers).
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6.2. Particulars. We now look at special cases of limits (and colimics) in a
category A. Limits of discrete diagrams D (when every morphism of 3 is an identity
morphism) are called products and are denoted, for a family f{A. .s i G), by list A,.
The projections (making up the limit come) are denoted s., flij, A, - A, If, for every
iE 1, there is a morphism f B B- A, (so that the family {fj :i E 1) determines a

natural transformation AB -D), the mediating morphism. to the product is denoted
(fi).Ei B: - Ile, At (Dual: coproducts, JJ.1A with injections Y, At -

11,C1 At.) The limit of a pai; f,g# A - B of morphisms is essentially given by a
morphism e :E -A such that f oe = g oe and such that any other such morphism
factors uniquely through e (i.e., if f oe' = g o e', then e' = en o for some (unique)
h), it is called an equalizer of f and 9 (dual: coequalzer). The limit of a diagram

A-L B JC isessntially anobjectP and two morphiss A PP -LC, called
a pullback of the diagram, such that f og' =g of' and such any other such object and
two roorphisms factor through P in the obvious way. We say that f' is the pullback
of f along 9 and that g' is the pullback of g along f. (Dual: pusbout.)

A morphism!f A -B is asection if there exist g: 8- A such that gof =idA
(dual: retraction). Thus an isomorphism f is both a section and retraction (by the
same g, which is called the inverse of f and denoted g = f -). f is a monomorphisin
(or is mono) if, f o h = f o k implies h = (dual: epimorphisin, or epi). If g is
niona, then g o f is mono iff f is mono. The equalizer of two morphisins is always
mono; such monos are called regular. Given a regular mono mn, the two morphisms
resulting from pushing out m along itself have in as an equ-liser. f is an extrernal
mono if, whenever f = h o k and k is epi, then k is an isomnorphism (dual: extremal
epi). Sections are regular mono,, and regular monos are extremal, but the implications
cannot be reversed in general

Finally, a word on "the" versus "ae. In moat categories, limits, coliinits, and so
on, are unique only up to isomnorphim. Thus, there is a difficulty speaking about
"the product of A and B. However, in the algebraic categories that we deal with
here, there is a conecccsl choice of limit (and colinut), and so we will be justified in
speaking about 'the" limit or colimit, by which we will always mean the canonical one.

6.8. The category Set. What do all these concepts man in the category Set?
Any one-element set is a terminal object. Products are given by cartesian products with
their projection functions: the mediating morphism for a famlly if, : B - A.,) takes
an element 6 GB to the function ab defned by al(i) = fi(b). The equalizer of two
functions f, p : A - B can be given by the inclusion of the set fa E A : f(a) = &~)}
into A, The pullback of f A A- B and g : C - B is the set ((ac) 4E A x C :
f(s) = 0(0); the functions g'and F are, respectively, the projections onto the first
and second coordinates. More generally, limits in Set can be computed as follows:
given any diagram D :3J - Set, the limit of D can be taken to he the set consisting
of these or E flj~ Di such that (Df)(o,(j)) = o,(k) for all morphiama f : j - kr
of 3. The limit cone consists of the projections onto each coordinate, and mediating
morphisins are just as with the product. As for colimits, coproducts; are disjoint unions,
and the coequaliser of f,g : X -1Y is the natural map ke Y - Y/R, where R is
the equivalence relation generated by the pairs {(~)s ): x C- X), In general,
the colitnit of a diagriam D : 3 - Set is (U I IsDi)/R, where (i, z) R (j, V) (for

, z3:E Di, Yi E Dj) iff there exists morp~is' .i - k and k- such

ADA289360



6.5 2 Preliminariis 32

that (Dg')x = (Df')t In Set, sections, regular monos, extremal monos, and monoys
all correspond to injecti'.e functions Also. epi3. extremal epts, and regular epis all
correspond to surjective functions. the Axiom of Choice is equivalent to the statement
that all surjective functions are retractions

6.4. The Pushout Lemma. The following Lemma lists the properties of
pushouts that we will need ins Chapter 8.

Lemma. Pushosts of epis (resp, regular epis, retractions) are epi (resp, regular
epis, retractions) Consider the commutative diagram

(a) If both squares are psshosts, then the outer rectangle is,14 pushout (i.e.,h'g
is apushout of h og along f)

(b) If the outer rectangle is a puahout, and the pair (F.'9g) is joisitlyv-epi (i.e
kido' = k2 of' and k, o ' - k. oy' together imply k, s k2; note that this is the case
ill the left square is a pushout), then the right square is a pushout

(c) f f is epi and f' is an isomnorphism, then the left square is a pushout.

PRtOOF, See (18, p.183] for a proof of the first part of the Lemma. Parts (a) and
(b) are standard ([29, p 72]. 118, p.180]). For (c), suppose k, and k2 are such that
ksOf~k2 o9. Let miu= kso(f')-l. Then MOT! = k2 and nso'of= mof'og=
kr209g= klOf Since f is epi, mop' =k1. Thus en is the required mediating morphsr
(which is obviously uinique).

6.5. Categorical properties of algebraic categories. A category A equiva-
lent to a category of the form Mod(f), E) will be called P!gebraic; if n~ can be taken
to be a set, then A is called monadic.6 An algebraic category is monadic iff it pos-
sesses free algebras over any set. This subsection is devoted to giving the categorical
properties of an algebraic (or monadic) category A = Mod(f0, Z).

8.5.1. A is complete, and limits in A are computed asr limits of the underlying
sets, with operations defined pointwise (the forgetful functor to Set creates limits)

6.5.2. Ini A, regular epi = extremal epi = surjective, and mono =injective.
6.5.3. A has coequalisers; if A is monadic, then it also has coproducts and thus

all colimits The coequalizer of two morphisms f, 9 . A - B is given by the natural
map e B - R/a1, where e ar e({(f(a), g(a)) . a EA)). Assuming that free algebras
over any set exist, the coproduct of a family (A, i C- ) of algebras (which we assume
for convenience are disjoint) is given by

T(U XA,)/(E UU aA.)'
'El .

5 
The source of this terns othe theory st esonadsi althsough tis theory unties much ot what we

discuss, nd ihe knouledipAble reader will see that out presentaion Is guided by i, I've aoided
iiroducsog it esplicitly, becass much at the technica baggage is unnecessary for our results
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(XA and AA and the operation (-)' on equations are defined in 5.5).
6.5.4. A has both (extremal-epi, mono)-!actorixations and (epi, extremal-mono)-

factorizations. The first just refers (in view of 6.5.2) to the usual fact that every
morphism f can be factored as f = h o g, where g is extremal-epi (= onto) and h is
mono (= 1-1), and that any other such factorization f = h' o1 is equivalent in the
sense that h' = m o h' and ' = k o m for a unique isomorphism m The morphism
g can be taken to be 4ker I. The second says the same, except that g is epi and h
is extremal-mono (but note that epis need not be onto and not all monce need be
extremal).

6.5.5. Finally, we point out that if every w e 0 has lt(w)l < it for some fixed
regular cardinal a (and, hence, A is monadic), then cert..io colunit constructions on A
become simplified (technically, A is locally a-presentable). For example, we say that
J is a ic-filtered category if every subcatewry X' of J with less than i morphisms has
a cone over it (i.e., there exists a natural transformation idj, -. AJ between functors
3' - X', for some j e J). Then, if J is a x-filtered category, the colimit of any
diagram of type . is calculated as in Set; i.e., the forgetful functor to Set creates
limits of type 3. In particular, if 3 is a (poset-category that is a) chain such that
every S C J with ISI < a (a "a-subset") has an upper bound, and D : 3 -. A is a
diagram such that for every j < k, D(j - k) is an inclusion, then colimD is just the
union of the algeras Dj, ; E 3. Similarly, if {O, : j e J) is a chain of congruence in
an algebra A with an upper bound for every x-subset, then /iv = UJf Oi.

6.6. Foundations. The properties of x-filtered colimits in a monadic category
with aritis bounded by a, as in 6.5.5, turn out to be very useful., We now describe
a few methods, some more "philosophical" than technical, for treating non-monadic
algebraic categories as if they were bounded.

An inacessible cardinal, which we will always write as oo, is an uncountable,
regular, strong-limit cardinal (uncountable, of course, means Joel > w, and x is a
strong-limit cardinal if A < r implies 21 < a). Let it be said immediately that the
existence of inaccessible cardinals cannot be proved (nor even proved consistent) in
ZFC, however, they have a plausibility similar in nature to the existence of infinite sets
(which are also "inaccessible" without the Axiom ofInfinity). Given A fixed inaccessible
cardinal oo, let us call a set X small if IXI < oo and large otherwise. In addition to
being "inatcesible" by unions (regularity) and powersets (A -. 21), one can show that
any set-theoretic construction involving small sets will result in a small set.

Assuming the existence of an inaccessible cardinal oo, we may decide to restrict our
attention to small sets, and hence small algebras, etc , since all of the sets we deal with
in normal mathematical work are small. By accepting this restriction, we then make
all of our algebraic categories bounded by oo, and hence amenable to the use of the
results mentioned in 6.5.5. If this helps us to prove something about small algebras,
then it is worthwhile.

An extension of this approach posits an unlimited number of inaccessible cardinals
(specifically, for every cardinal there is a larger inaccessible cardinal). This is equivalent
to Grothendieck's method of universes: a universe is a set closed under all set-theoretic

6And they are one good resn why most uonvesal algebra texts only treat the Snlstry cue, where
g = (another, to be sus, is notational simpliciy). For example, the famous BDikhof Subdirect
Reprmentaoo Theorem a n u only in the finitary case.
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constructions, and one supposes that ever) set belongs to some universe The purpose
of this is to recover what was lost with a single inaccesible cardinal, namely, there
were some sets (the large ones) that couldn't be talked about, and with unlimited
inaccessibles, every set becomes small at some point Unfortunately, to really exploit
this extra generality involves some technical difficulties, since one is constantly needing
to shift between universes

A better approach, developed by Feferman (8], is to adjoin a predicate S to the
language of set theory, with the idea that S(z) asserts that "z is small", and then add
amooms which say that small sets satisfy the same formulas (in the language without
S) as all sets. This solves the problem that universes were created for-to regain
the universality lost by a single maccessible-but without the associated technical
disadvantages Furthermore, and quite importantly, the extension of ZFC to include
S is coniervatve' no new theorems of ZFC can be proven. This differs from the other
approaches, which require extra assumptions. The idea is roughly that, as with the
Reflection Principle of set theory (see [19, p.89]), though an inaccessible cardinal offers
absolute inaccessibility, the approakch with S offers innaccesibility for any finste number
of set-theoretic operations, which is all that can appear in a proof anyway.
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Chapter 3

HEYTING ALGEBRAS AND EXTENSIONAL OPERATORS

Every frame is a Heyting algebra; thus, we begin our investigation of frames by
looking at the properties of Heyting algebras After some basic facts in Section 7, we
look in Section 8 at the relationship between Heyting algebra congruences and filters.
In this respect, Heyting algebras are less like lattices and distributive lattices, and more
like groups and rings: every congruence is determined by one of its equivalence classes.
Although this material is well-known, we go into detail in order to bring out some
additional information (for example Proposition 8.8) and to prepare for the results of
the followingsection. In the last (and by far the largest) section. Section 9, we introduce
and study the concept of extensional operator The first part of Section 9 introduces
the method of calculation we use in Heyting algebras ("replacement principles"), and
the rest of the section is devoted to several classes of extensional operators and their
various properties.

7. Definitions and basic properties

7.1. Definitions. A Heyting algebra is an algebra A = (A, A, V, -, 0, 1) such
that

(a) (A, A, V, 0, 1) is a lattice, and
(b) - is a binary operation that satisfies

aAb<c iff a5b-c (1)

for all a, b, c G A, where < is the lattice order
A Heyting lattice is a lattice that is the reduct of a Heyting algebra.
In any Heyting algebra, it will be convenient to define two other "arrow" operations,

-. ("bi-arrow") and - ("double-arrow"), by

a.b=(a-b)A(6-), and

a--b = (a-b)-b.

For notational convenience, we extend the Heyting operations, A, V, and -, to
sets, by stipulating that these operations "distribute over" sets producing sets, thus,
for example, if a, b E A and S C A, then

a A (b -5) =a A (b -s:s ES) (a A (6-) ES}.

Similarly, if f : A - B is any function and S C A, then

f(S) = f(s) -8 S} C E.

Finally, recall that in any lattice, we consider ("arbitrary" or "infinite") joins and
meets as partial functions AV : PA - A. An expression involving such a meet or

35
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join may therefore be undefined, given two such expressions E and E', we use the
notation

E- E'

to indicate directed equahty; i e , if E is defined then so is E' and E = E' If both
E = E' and E' = E, then we write E = E'

7.2. Here ar some facts about Heyting algebras and Heyting lattices that we will
regard as basic and use freely in calculations.

Proposition. Suppose that A is a Heyting algebra, a, b, c E A, and S C A Then
the following statements hold-

(a) a-a=1
(b) (a - 6) Ab = b equivalently, b < a - b
(c) aA(a-b)aAb.
(d) a-(bAc) (a-b)A(a -c)
(e) a -(b- c)=(aAb)-c
(f) 1-a= a.
(g) aA(bVc)=(aAb)V(aAc) (and thus aV(bAc)=(oVb)A(aVc))
(h) (aVb)-c=(a-C)A(b-C).
(i) The operation a - - is monotone; the operation - - a is anti-monotone
(j) a!_b ifandonlyif a-b .
(k) a<a-b

(m) aAVS=VaAS
(n) a-AS-Aa-S
(o) (V$)-at-AS-a

Moreover, a lattice L is a eyting lattice if a (necessarily unique) binary operation

on L can be defined so that (a)-(d) hold for all a. b, c E L

PaooF. For (a) and (b), use 7.1(1) on the inequalities I A a 5 a and b Aa < b
Use it in the other direction on a - b < a -b to get

and hence a A (a - b) : a A b; the reverse inequality follows from (b) and the mono-
tonicity of a A - Continuing with 7,1(1), and using the Yoneda lemma for posets
(3.3), an arbitrary r E X is less than either side of (d) precisely when z A a < b A c,
either side of (e) when z A a At < c, and either side of (f) when z < a, proving (d),
(e), and (f). Statements (g) and (h) are special casee of(m) and (o), since binary joins
exist in A. ,lonotonicity, (a), follows from (d) and (h); see 9.3 for details 0) is trivial.
The inequality (k) follows from (1), and, therefore, so does half of ()) For the other
half, if z 5 a - b, then (a - b) - b < z - b by antimonotonicity of - - b, and so
z 5 (a-- b)- 6 by two applications of 7.1(1).

Next, suppose that VS exists. Then

VsESaAs5z iff VsESs<a -z

"ff VS5a-z
if" a^VS<z
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Thus a A V S is the least upper bound of a A S. proving (m); the proofs of (n) and (o)
are analogous

Finally, a proof that (a)-(d) constitute (along with the lattice equations) an equa-
tional axiomnatization of Heyting algebras can be found in (22. 11.10]

7.3. Regular and Boolean elements. If a is an element of a Heyting algebra
A, then the element a- 0 is often denoted by -'a and called the negation (or pseudo-
complement) of a Note that a A -'a = 0; in fact, -a is the largest element z such
that a A z = 0. We say thai a is

(a) regular if -a = a, and
(b) Boolean if a V -a = 1
Trivially, an element is Boolean iff it has a complement (sometimes we call Boolean

elements complemented) Let b E A be Boolean. Since 7.2(i) implies that -b > b,
we have

--bV-b> b V "b -- 1,

and so --b V b = I But -'b A -b = 0, showing that -b is also a complement of
b. By the uniqueness of complements in a distributive lattice. --b = b Hence, every
Boolean element is regular

7.4. Our main interest in Boolean elements is that they behave nicely with
respect to the Heytang algebra operations (and, as we shall see later, certain operators
on Heytcig algebras).

Proposition. Suppose A is a Heyting algebra, 6 E A is Boolean, and S C A
Then the foiowing statements hold for all ac E A:,

(a) aAb<c ifandolyifa<-bVc
(b) b-c=-bvc.
(c) a-b=-avb.
(d) bvAS-A vS
Paoor. (a) Suppose a A 6 < c. Then

,bVc -b V(aAb) = (-bVa)A(-bVb) = "bVa > a

so that a < b' " c Conversely, suppose that a < -b V c. Then

a A b < (,b Vc)b A 6 = (,b A b) V (cAb)= c A b< c.

(b) For any z E A, 7.1(1) and (a) give

z<b-c iff zAb<c iff z<-bVc

(c) Since a - b > a - 0 and a - b > b, one direction is clear. The other direction
is equivalent by (a) to

(a -6) A-"b < a -0,

which is true iff a A (a - b) A -b < 0. But this is clear, since a A (a - 6) b and
bA--6=0.
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(d) Using -b = 6. (bY. and 7 2(n), we hae

IvAS -b-AS=A -b-S= AbvS

7.5. Boolean lattices. Recall that a Boolean lattice is a distributive lattice in
which every element has a complement (which is necessarily unique) The following
proposition gives an alternate description of Boolean lattices

Proposition. If 4 is a Heyting lattice in which every element Is regular. then A
is a Boolean lattice

PROOF Suppose e~er) element of A is regular and let a E A. It is enough to
show that a V -a = 1 Nov,

a V- = --,(a V -a)
=-(-a A -ao),
= - = 1

7.6. Here are some facts about Boolean lattices, generalizing the De Morgan laws
of 4 2

Proposition. Suppose A is a Boolean lattice and S C A. Then
(a) The map x - -r is an order isomoprhism A - A*

P

(b) -VSxA-S
(c) -ASxV-S

PROOF Since every element of A is regular, the map a - -a is onto (a e A has
preimage -'a), moreover.,

-a<-b iff -aAb0 iff b<--a iff b<_a

for every a, 6 e A, shoing that it is also an order-resersing embedding, proving (a).
Parts (b) and (c) follow immediately from (a), since -, by reversing the order, swaps
meet and joins.

8. Filters and congruences

8.1, Filters. A fiter in a meet-semilattice A is a subset F C A satsfy-ng the
following three conditions

8.1.1. I E F.
8.1.2. aEF and a<a' imply a' F (a,a' EA)
8.1.3. aEF and bE F Imply aAbEF (abEA)

8.2. Filters from Congruences. Every meet-semilattice congruence gives an
example of a filter

Proposition. Suppose 0 is a congruence on 8 meet-semdlattct .4. Then 1/0 s
filter in A
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PROOF. We check 8 11-8.1 3 for 1/8 Since 1 E 1/0, 8.1.1 is clear. Next suppose
a6 1/6 and a <a' Then a0l and a'6a',eo o=aAa'O 1Aa'=a' Thus, aa'
and so a' e 1/0. verif)ing 8 12. Finally, suppose a. b E 1/0 Then a 1 1 and b 0 1 so
that aAbB 1. Thus, aAb E 1/8, verifying 8 1.3.

8.3. The equivalence of filters and congruences. In the rest of this section
we show that for Heyting algebras the filters arising from congruences are typical-
associated to each filter F in a Heyting algebra A is a congruence 6(F) on A such
that the operations

F - e(F) and 0-1/8

are mutually inverse isomorphisms between the Wt of flters n A, ordered by lfCIsin
and ConA.

We start with the following proposition.

Proposition. Let A be a Heyting algebra Then for every a, z y E A the following
statements are equivalent*

(a) a-z=a-y
(b) aAz~aAy
(c) a5x-Y
(dl) yC-[aAz,a-zl
(d2) zG(aAy, a-y].

PRooF Since aA(a-b)=aAb and a-*(aAb) =(a-a)A(5-b)=a-b for
every a,b E A. the two operations a A - and a" - are related to each other by the
equations

a-- =a-(aA-)

By applying these two operations to the equations (a) and (b), respectively, it follows
that (a) * (b) for every a, x. y E A Now consider the conjunction

aA <y and aAy _z. (2)

Clearly, (2) is equivalent to the conjuction

aAzaAy and aAy:5aAr

and th,,s equivalent to (b) Alternatively, (2) is equivalent to

az.-y and a<_y-

nd thus to (c). Alternatively again, (2) is equivalent to

az<y and y5a-z

and thus to (dl); the case of (d2) is similar.

8.4. Notational convention. We will exploit .hc .i... o the equa.n

a-xz=a-y and aAz aA y,
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and denote them both b
aa5 any

More formally (and more generall.) the symbols e, ' etc, appearing in a formula
may denote either - or A but must denote the same operation in all of their oc-
curences This notation will only be used in a formula if all resulting instances of the
formula are equivalent Thus I * a = a denotes the two (%alid) equations 1 - a = a
and 1 Aa = a. and the reader mam verify the truth (and hence equivalence) of all four
instances of the equation a * (a *' b) = a a b (to be used later in fact)

8.5. Proposition. If F is a filter in a Heyting algebra A, then for every pair of
elements z, y E A. the following two statements are equivalent

(a) a*z=a*y forsomeaEF
(b) z-yeF

Moreover if we define the relation O(F) to hold between z and y just in case these
statements are true, then e(F) is a congruence

PROOF. The equimalence of (a) and (b) follows directly from 8 3 if (a) holds, then
a < z - y, and thus using 8 1.2 so does (b), conversely, if (b), then z - y ! z -
gives (a) with a = z - y

We now show that O(F) is a congruence Since 1 E F (8 1.1), it follows that O(F)
is reflexive, O(F) is obviouslh symmetric; for transitivity, suppose z e(F) y e(F) z
Choose a, b6 F such that aAz=aAy and bA y=bAz Then aAbEF byS13.
and

(a A 6) A r= 6 A (a A Z) = bA (a A y) = a A (bAy) = a A (6Az) = (a A 6) Az,

so that r 6(F) z. We have thus shown that 0(F) is an equivalence relation
To complete the proof we need to show that O(F) repects the basic operations of

A. Suppose z e(F) z' and y e(F) y', and choose a, b E F such that

aAr=aAaz and b*y=b*y

As before, a A b E F Now,
(a Ab) A (X A = (a Az) A (b A y) =-(aA z'), A (b A/ (C I,) A (.-' ),

thus, z A 1A1(F) z'A yV Similarly, using distributivity,

(a A b) A (z V y) = (a A b A z) V (a A 6 A y)
=(a A6Ar') V(aAbAy')= (aA )A(z'Vy'),

and so z V y( (F) z' V y' Finally,

(a A ) - (a' - y) = (a Az z-(6- y)

= (a A a')-(6- ti) =(a A )- (a'-)

showing that z - y O(F) z' - V This completes the proof
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8.6. Proposition. Suppose A is a Heyting algebra Then
(a) F C F' if and only if e(F) C e(F'), for all filters F,F' in A, and
(b) o(l/)=0, foral] OEConA.

PRooF. To prove (a), assume F C F'. Then z O(F) y implies r - ye F, so
that z - y e F' and x 8(F') y, showing that e(F) C e(F'). Conversely, assume
G(F) C G(F'). then, a = a - I E F implies a O(F) 1, so that a O(F') I and a E F',,
showing that F C F'.

To proe (b) suppose z 0(1/0) y. Then a * z = a * p for some a E 1/0 Hence,

z=l*za*z=o*yOl*y=y

Thus, z 0 y, and we have shown that E(1/9) C 0. For the converse, suppose r 9 p.
Then 1 =z-z O -- y, and.similarly, 10- Thus, 10 -p. So z- 9 E 1/ 0
and z 8(1/0) y, which shows 0 ' 0(1/0).

8.7. Theorem. let A be & Heyting algebra. Tien E, as defined in 8.5, is
an isomorphism between the set of filters on A, ordered by inclusion, and ConA, its
inverse is given by 0 - 1/0.

PROOF 8 maps filters to congruences by 8.5. It is order-preserving and 1-1
by 8.6(a). and it is onto by 8 6(b) Thus 0 is an isomorphism Finally, 8.6(b) shows
that e -1 is given by 0- 1/0

8.8. Proposition. Suppose A is a Heyting algebra Then the prinicpal congru-
ences of A are exactly those associated with principal filters in A. If F is the principal
filter To, then the equivalence class of 8(F) containing z is the interval [aAr. a-:].

Tn symbols. r/(Ta) = [a A X, a- ].

PROOF It is clear from the preceding results that 8(a,b) = O( a - 6) and
O(Tc) = e(c, 1), establishing the first part of the proposition The second part follows
from 8.5 and 8.3:

ze(Ta)y iff a*z=a*, iff yE[aAz, a-]

9. Extensional operators on Heyting Algebras

9.1. Operators. Recall that an operator on a poset A is simply a function
A • A - A, that composition of operat ts I and m is denoted, as usual, by n o I

(so that (mo I)a = mla), and that a clos'jre operator is inflationary, monotone, and
idempotent

If A is a lattice or Heyting algebra, then the collection of all operators on A is
likewise a lattice or Heyting algebra, where the order on operators is pointwise

l<iM if and only if Va E A a < ma.

The operations IA in. I V n, and I - m and constants 0 and 1 are therefore also
pointwie (1Am)a = aAma, 0a = 0, etc (Of course, this isjust another presentation
of the product AIAI
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9.2. Here are two simple results illustrating the above notions

Proposition. Suppose that p and q are operators on a lattice A Then
(a) if p and q are inflationary and monotone, then p V q :5 (p 0 q) A (q o p).
(b) If p and p' are monotone and q is idempotent, then p 5 q and p' 5 q imply

pop' 5 q

PROOF Let p and q be as in (a), and fix a e A Since 9 is inflationary, we have
both a < qa and pa <5 qpa Using the monotonicity of p on the former, pa 5 pqa, and
hence pa :5 pqa A qpa Similary, using that p is inflationary and that q is monotone.
we have qa <5 pqa A qpa and hence pa V a :5 pqa A qpa Rewriting, (p V q)a 5
((p 0 q) A (q 0 p))a, and since a %as arbitrary, (a) follows

Now suppose p, p' and 9 are as in (b), and fix a E A If p <9 and p'< q, then
applications of the assumptions )ield

pp'a S pqa :5 qqa = qa

and so (b) follows

9.3. Proposition. Suppose that p is an operator on a lattice A. Then the
following three statements are equivalent,

(a) p is monotone
(b) p(a A b) :5 pa A pb for every a. b E A
(c) paVpb 5 p(a V6) forevery a, bE A

PROOF By symmetry, (b) is equivalent to p(a A 6) 5 pa over all a. b E A. But the
pairs (r, y) with r < y and the pairs (aAb,6) with a and b arbitrary are coextensive,
since z 5 y iff X = z A y Thus (a)em(b) The proof of (n)4*(c) is dual.

9.4. Extensional operators. The main property of the operators we will be
studying is extensionality, which is introduced by the following proposition.

Proposition. Suppose I is an operator on the Heyting algebra A Then the
following statements are equivalent

(a) z 6 y implies It fly for all z, y E A and 0 E Con A.
(b) aAlz <l(aZ) 5a-It for all a.eA.
(c) a, lz= a*l(a*'r) for all a,z CA.
(d) a*z=asy imphesalz= a*ly for all a,z,yEA
(e) z y<_5It- lyl for allz, yE A

An operator satisfying these conditions is called extensional

PROOF By Proposition 8 8, (b) is equivalent to I(a.z) e(ta) It, which is the case
if I satisfies (a), since, taking 9 = (la), we have a 0 1 and therefore a z 0 1 * r = z.
Thus (a) implies (b)

Next, since a * (a *'z) = a * r, applying the monotone operato. a * - to (b) yields

a - It < a * l(a *' z) < a * 1.

Thus a * It = a * l(a* zY. and (b) implies (c)
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Assume (c) and that a ,S = a *' y. Then

a * lz = a l(a *'z) = * l(a *'y) = a *ly,

proving that (c) implies (d).
Now (d) is equivalent by 8 3 to the statement

a:5- implies a<lx-ly (a,z,yEA), (1)

which is in turn equivalent to (e) by Yoneda (3 3)
Finally, assume (e), let 0 E Con A. and suppose z 0 y. Then z e(1/0) y by 8 6(b),

and so z - y E 1/0. But 1/0 is up-closed and so lx - yI, E 1/0 It follows that
lx 0 ly. Hence (e) implies (a), and the proof is complete

9.5. Discussion. Condition (a) of the proposition says that I is compatible
with every congruence of A Clearly, therefore, every polynomial function on A is
extensional (where a polynomial function is defined analogously to a term function,
except that "constants" from A may appear in the term). More generally, for any
extensional operators I and m, the operators l A m, I V r, I- m, and I o m, and the
constant operators 0 and 1, are extensional In other words, the extensional operators
form a sub-Heyting algebra of the algebra of all operators. Notice that the "free"
occurences of * and *' in (b) and (c) each give rise to two distinct conditions whose
equivalence does not follow from 8 3 but rather is established in the course of the
proof above. The word "extensional" used to describe these operators is derived from
condition (e), which can be interpreted to mean that I "preserves (degree of) equality"
the results of applying I are as equal as the arguments to which it is applied, in a logic
with A as the truth values.

9.6. Replacement principles. The approach to calculation in Heytmg algebras
we will be using is based on replacement principleb, i e., rules that allow replacement
of subexpressions by other expressions These naturally involve Heyting algebra con-
gruences and, thus, extensional operators.

Proposition. Let I be an extensional operator on a Heyting algebra A, and let
a, b EA. Then,

(a) (a-b)*la=(a-b)*lb.

(b) asla=a*ll.
(c) (b-)slb (b-a)*l(n^b).
(d) (b-a)*lb=(b-a)*la, da <b.

Pitoor First of all, (a) is just a restatement, using 8.3, of condition (e) of 9.4
Next, replacing b with I in (a) results in (b), since a '- I = 1; likewise, replacing a
with a A in (a) results in (c), since

6 -. (a Ab) = (b - (a A b)) A ((a Ab) - b) = (b - a)A = b-a

Finally, (d) is just a special case of(c).

9.7. Some useful equalities. As an example of the use of 9.6, and for future
reference, we now prove some Heyting algebra equations. Further use of these principles
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will be made throughout the rest of this section and in Chapter 6 on regular operators
The equations beloi& are proved valid in any Heyting algebra A, and free variables are
assumed to vary over A

9.7.1. a-(b-c)=b-(a-c)

PROOF. We hate

(a - (b - c ) -(b-c) = (b (a - (b- c))) - c
= (b^(0-c)) - by 9 6(b)

= b - ((a - C) - C)

9.7.2. a -(a Ab) = (a-6) -a.

PROOF We have

(a-(aAb))-(aAb)=(a-(aAb))-a by 96(d)

= (a - b) - a by 9 6(b)

9.7.3. Ife > a, then (6-c)-a = (b-a)A(c-a)

PROOF Assume c > a Since - - a is anti-monotone. (b-c) - a ! c a; thus.

( -) - a = ((6 - c) - a) A (c - a)
=((b-a)-a)A(c- a) by 9.6(d)

9.7.4. (bAc)-a=(b-a)A(c-a)

PROOF We hate

,( A c) - a) - a (6- (c - a)) - a
= (b- a) A ((c- a) - a) by 9 7.3.

9.7.5. (6-a)-b= (6-a)A(a-6).

PROOF Since - - b is anti-monotone, (b - a) -6 < a -b: thus,

(b - a) - b ((b -a) - 6) A (a - b)
=((6- a) - a) A (a - b) by 9 6(a).

(Note that the b we replaced with a was "within the scope" of both a -b and b-a,
justifying the replacement by 9 6(a) )

9.8. Beyond extensional operators. In the rest of this section, we take a
look at some of the properties of extensional operators on a Heyting algebra A that
moreover are inflationary, monotone, and/or idempotent. and some examples of such
We begin with the inflationary and the monotone extensional operators.

ADA289360



9 11 3. Heytisg algebras and extensional operators 45

Proposition.
(a) An extensional operator I is inflationary iff 11 = 1
(b) An arbirary operator I is extensional and monotone if and only ifeither of the

zohowing two equivalent conditions hold.

a-6<la- lb (a,bEA), (1)
(a- b)*la<(a-b)*lb (a, bEA). (2)

PROOF. (a) If I is inflationary, I < 11. Conversely, if 11 = 1, then for any a e A,:
96(b) gives aAla= aAtl =aA 1 =a, andso a< la.

(b) If I is extensional and monotone, then, by 9 6(c),

(o - b) A la = (a - b) A l(a A b) < l(a A b) < lb.

and so a - b < la - lb. Conversely, if I satisfies (1), then for any X,y/ E A. both
z - y < Ix - T and t - z 5 ly - lz, and so, taking the meet of these inequalities,
zx-v < I,-.lly. Hence, I is extensional by 9.4(e). Moreover, since z 5 y iff s-- -1z,.
monotinicity of I follows directly from (1).

Thus it remains to show the equivalence of (1) and (2). Now (1) is equivalent to
(a - b) A Ia < 16, and thus to (a - b) A Ia < (a - b) A lb, which is one of the instances
of (2). Applying (a - ) -. - to this last inequality yields the other.

9.9. Logical operators and quasinuclei. It will be convenient to have names
for the classes of operators described in the previous proposition. Thus, an inflationary
extensional operator will be called logical, and a monotone extensional operator will
be called a quauinucleus (A diagram showing the relations between the clasaes of
operators introduced in this section can be found in 9.12.)

In view of (1) above, qusinuclei might alternatively be called "uniformly mono-
tone". In fact, part (b) of the Proposition is actually a special case of a quite general
phenomenon occuring with extensional operators--namely, in a sense that can be made
precise (see the remarks at the end of this section), an extesional operator satisfies an
ordinary property (such as monotonicity) if it satisfies the corresponding "uniform
version" of the property.

9.10. Prenuclei. Next, we look at the extensional operators that are both
inflationary and monotone-i.e., the monotone logical operators, or, if you prefer, the
inflationary quasinuclei. Fortunately, we don't have to make up our minds what to call
them, since these operators have been studied before' [In (31, Banaschewski introduces
the notion of a prenucleus, which is an inflationary, monotone operator p satisfying
the condition

aApb5p(aAb) (a, bEA). (1)

Proposition. Prenuclei are precisely the monotone logical operators (or inflation.
ary quasmucle).

PROOF We show that (1) is equivalent to the extensionality of p assuming that p
is inflationary and montone First, (1) is clearly equivalent to aApb < aAp(aAb) and,
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since the reverse inequality holds by the monotonicity of p. thus to a Apb = oAp(a A b)
But this equation is equivalent of the extensionality of p b.y 9 4(c)

9.11. Nuclei. Finall), we identif. the extensional closure operators Recall that
a nucleus is an operator j satisf ing

a<ja= ;ja and j(aA6)=)aAjb (a.bEA) ()

Proposition. Nuclei are exactLs the idempotent prenuclei Thus, they are exactly
the extensional closure operators Moreoer. a operator j on A is a nucleus if" it
satisfies

a -ib = ja-jb (a,b EA) (2)

PooF Both prenuclei and nuclei are inflationary and monotone (the monotonicity
of nuclei following because they preserve binary meets: cf 9.3) If p is an idempotent
prenucleus, then, by tmo applications of 9 10(1),

pa A pb < p(pa A 6) < pp(a A b) = p(a A 6)

for any a,b E A The reverse inqualit. is again 9 3 Thus p is a nucleus Conversely,
if j is a nucleus, then

a A J6 < a A jb = 1(a A 6)

for every a,b E A, and so j is an idempotent prenucleus
For the second part of the Proposition, note first that any I satisfying (2) is in-

flationary (take 6 = a) and idempotent (take a = jb), and therefore since a -6 <
a - jb = ja - jb, j is monotone and extensional by 9 8(1) Thus j is a nucleus
Conversely, if j is a nucleus, then ja-jb _ a-jb (since ) is inflationary and - -jb
is antimonotone) and, using 9.6(c),

ja A (s - b) = j(a A jb) A (a - 6) .j(a A jb) 5 jjh = sj,

so that a - jb :_ ja - jb, proving (2).

9.12. Summary of classes of operators. The definitions and relations be-
tween the operators we have introduced in this section are summarized by the following
diagram.

inflationary EXTENSIONAL monotone idempotent

logical quasinucleus

prenucleus idemp quasinucleus

nucleus

The properties are on the top ro%. and the lines are implications in the upwL'd d~re,-
tion
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9.13. Classifying extensional operators. We now look at examples of
the operators described above In fact, for each type of operator. we consider a pair
of operators of that type (each defined by a Heyting polynomial) that "classify" the
action of all the operators of that type

Proposition. For any elements a and & of a Heyting algebra A, the operators
et(a b) and el(a, b), defined for every z E X by

e(a, b)z = (z - al b and c(a,b)z = a A (b x) (-)

are extensional. Furthermore, the two families of operators eT(ab) and e1(a,b), for
a,b G A, classify (the action of) extensional operators, in the sense that, for every
extensional operator 1.

f<et(a,b) Iff la<b, (2)
e;'(a.b)<_l iff a<lb. (3)

PnooF. Since et(a.b) and ej(a,b) are polynomial functions they are clearly ex-
tensional If I< ej(a,b). then Is <e1 (a,b)a= (a-a)-b= 1-b= b Conversely,
if I < b, then. using 9 6(a) and the monotonicity of (z "a) - - for e~ery x E A,

It < (c -a)-it = (z - a) -la <(z a) b el(a, b)x. (A)

Thus 1 < eT(a,b). Next, if e1(a,b) :5 1, then a = A (b - b) = el(a,b)b < lb.
Conversely, if a :5 lb, then, for similar reasons as above,

e&(, b)z = a A (b - r) 5 16, A (b -X) = It A (6 .- z) _< It. (5)

Thus el(a,b) <l

9.14. Proposition. The operator eT(a, 6) is logical :ff a < b . tte ,t(a )
et(o b) when a < b and

11(a, 6)z = z V el(a, 6)z (z E A) (I)

for every a. b E A. Th.n 11(a,b) is also logical, and a,b) and 11(a,b) classify logical
operators in the sense of Proposition 9 13.

Paoop Since eT(a, b)l = (a - 1) - b = a - b, the first part of the Proposition
follows from 9.8(a) For any logical operator 1, la < b implies a 5 b (since I is
inflationary). Hence the e,(a,b), for a 5 6, are the appropriate "upper" classiflers for
logical operators The operators I(a,6) are clearly inflationary, hence logical, and if I
is any logical operator. then e(4,6)X 5: I = ZVJZ iff zVei(a,b)z< l, and therefore
the I (a,b) are the appropriate "lower" classifiers.

9.15. Proposition. The operators qt(a, b) and qj(a. b) defined by

qT(a,,)r = (z- a)- and q(ab)x=A(a A ) (-X

are quasmuclei and, furthermore, classify quasinuclei in the sense of Proposition 9 13
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PRooF Since qr(a 6) and qj(a. 6) are polynomial functions, the) are extensional
Both the operations - - 6 and - - a are ann-monotone, so their composition is
monotone, thus g..(a b) is a quasinucleus The operations a A - and b - - are both
monotone, and so q4(a b) is also a quasinucleus

If I is a quasinurleus then I satisfies (z - y) - tr < (z - y) * ly by 9 8(2) Hence,
the same argument used for (5) and (6) in 9 13 with - instead of -, and with the
nontrivial equality replaced bN < can be used here to show that q1(ab) and qJ(a,b)
classi(y quasinuclei

9.16. Corresponding directly to 9 14 we hate the following result for prenuclet,
the proof of which we omit, since it is an obvious translation of the proofof 9 14

Proposition. The operator qT(o,b) is a prenuckeus if a < b Define pT(a,b)
qt(a b) when a < b and

p(a.h)z =zVq(a,b)z (zEA) (I)

for every a 6 E A Then p.(, b) is also a prenucleus, and pl(a, 6) and pj(a,b) classify
prenuclei in the sense of Proposition 9 13

9.17. Evaluation adjunctions. In all of the preceeding propositions, the "cla-
sifying" properties of the operators involved are adjointnes relationships Consider
extensional operators, for example. for each a E A there is the evaluation mapping
e - ea from the poset of extensional operators on A to A, which is monotone by the
definition oforder on operators The classifying properties of el(a.6) and e4(a,b) then
say that the mappings eT(a, -) and el(a, -) are respectively left and right adjoints to
evaluation at a The case of quasinuclei is similar. For logical operators and prenuclei
we get an adjunetion instead between the posets of operators on A and the interval
(a, 1] A consequence of these adjunctions is that evaluation at a preserves whatever
meets and joins exist in the algebra of operators (remembering, of course, that for
logical operators and prenuclei, the codomain is the interval [a 1)) In other words
(with the noted restriction) meets and joins, when they exist, are pointwLse

9.18. Classifying nuclei. Pomntwise 3 oins of idempotent operators are rarely
idempotent. This is in particular the case with nuclei, and so, by the comments of the
previous paragraph, we can't expect nuclei to have "upper" classifiers They do have
a rc.stncted form of upper classifier, however (which, despite the restriction, are still
"coniplete" in the sense mentioned in 15 4), and the lower classifiers for prenucle are
in l t already idempotent, and so are lower classifiers for nuclei. This is spelled out
in the following proposition

Proposition. For every a, b E A, the operators q1(a a) and pi (a. 6) are nuclei
Hence, for every nucleus 3, we have

<5qt (a,a) iff ja=a, (
p,(a.b)<j iff a<jb (2)

PROOF gr(a, a) is a prenucleus by 9.16, and is idempotent since (z - a)- - =
z - a by 7 2(l) The upper classifying property of q1(a. a) as a nucleus follows from
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that of the prenucleus since ja :5 a iff in = a, as jis inflationary Similarly, it
will be enough for the lower classifying property of pl(a, b) to show that p,(a. b) is
idempotent By definition, pi (a, 6)z = z V q..(a 6). Now

q.(a. &)p5(a, 6)z qI(a, b)(-- v q1(a, 6):)

a A (b - (zxV (a A (b6- ))

=a A (6 - (z V (I A (1-
a aA(b6-x) = q,(a, 6)z,

and so

p4 (a, b)pl (a, 6) =p 4 (a,6) V 91(a 6)pi (a. b) = p4(a, b) Vq.,(a 6) = p, (4,6).

9.19. Discussion. The preceeding proposition shows that meets of nuclei. when
they exist, are pointwise In Chapter 5, when we see that nuclei on complete Ileyting
algebras correspond exactly to frame congruences (i.e ,equivalence relation. compatible
with finite meets and arbitrary joins) we will see that-at least in the typical case that
a < b-the nuclei pl(a, b) correspond to the principal congruences 0(a, b)

9.20. Extensional operators on complete Heyting algebras. We now show
that when A is complete, all of the operator algebras considered above are likewise
complete.

Proposition. If E is a class of operators on A ofone of the tkvpes considered above
(isa., extensional, logical, quasinucleus, prenucleus, or nucleus), then the pointwise meet
of E is again of the same type.

PROOF. If each operator in E is extensional, then for any a, E A with a-cc
a - ey for all e E E, we have

a -(AE)z =ia -A Ez=Aa-Ex

= Aa- Ey =a -A EY=a-(A E)y

Thus ALE is extensional by 9.4(d). Clearly meets of inflationary operators are again
iiflationary and similarly with monotone operators Thus, to complete the proof, we
only need In show that pointwise meets of nuclei are idenipotent Suppose J is a class
of nuclei and a 6 A Then, by monotonicity and idempoteuce of the elements of J,

(A J)a = AJAJa) 5 A j(ja) = A a

9.21. Struicture theorems for operators. So far, we have only used the
classifying operators of various types to show that the operations on the corresponding
operator algebras are pointwise, which can anyhow be established directly The more
important use of claasifying operators is to prove structure theorems to the effect that
every operator of a given type .s a join or meet of special operators
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Theorem. Suppose A is a complete HeYting algebra Then every operator of the
classes considered (extensional logical. quasmucleus, prenucleus, or nucleus) is both a

join of lower classifiers and a meet of upper classifiers of the same type (except that
nuclei only have lower classifiers)

Paoor We prove the theorem fo: joins of lower classifiers of extensional operators,
the other cases are similar So let e be an extensional operator We show that, in the
complete lattice of extensional operators

e = V{fe(a,b). a < eb)

Now, for ever a b E 4 with a < eb, we have el(a, b) 5 e by 9 13(3) Thus e is bigger
than the join Conversely, let z E A be arbitrary. Then el(et.) is included in the
join. since cx < ex But e (ex, z)z = ez A (z - z) = ex, and so the value of the join
at z is at least ex Thus e is less than the join completing the proof

9.22. (Pre)fixedpoints of extensional operators. Recall that a fixedpoint
of an operator 1 .4 - A is an element a 6 A such that Ia = a We call a a
prefixedpoint of I if la < a, and write prefix I for the set of such elements Since the
identity is the smallest logical operator, and - on logical operators is pointwise, it
follows that (--l)a = (la - a) - a for all a E .4 By abuse of notation, we also
write -- l for the same operation %hen I is only an extensional operator (the least
extensional operator is the constant 0 and not the identity)

Proposition. Suppose I and m are extensional operators on A Then the follow-
ing hold.

(a) prefix I = fix --I = rng -l.
(b) prefix I = prefix m if" -'I = --m.

If I and m are logical, then prefix may be replaced by fix

PROOF If I is a logical operator, then since I is inflationary, it follows that
prefix[ = fixl, explaining the last part of the Proposition Also note that for any
extensional operator I. -- I is always logical, and so

prefix -I = fix -1 (1)

Let us first prove that

rng--iCprefixm iff 7n <-l (2)

This follows from the following calculation for an arbitrary a E A'

(-!)a e prefix m if" m((la-a)-a) < (la-a) -a

iff (la - a) A m((la - a)- a) < a

if" (la - a) A ma < a by extensionality

iff ma<(a-a)-a

liext, so prove (a), let la <a Then (la-a)-a= 1-a = a, so (--i)a = a, proving
prefixI C fix -I The inclusion fix -I C rng -I is trivial Finally, putting m = in
(2), we conclude rng -I C prefix 1, completing the proof of (a)
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For (b), replace m in (2) by -- m, and use the equahtes of (a)' and (1) to get

prefix I C prefix m if - m < "I

By symmetry. (b) follows
9.22.1. Let us just restate the first part of the Proposition in the form in which

we will most often use it-

Corollary. If I is a logical operator, then

fkI = {fa-a:aEA).

9.23. Discussion. A logical operator. by definition, is regular (in the Heyting
algebra of logical operators) if -'-I = I. The Proposition then says that every logical
operator I has the same fixedpoint set as a unique regular operator (namely -- 1)
Regular operators are the subject of Chapter 8, where, among many other things, a
characterization of the fixedpoint sets of regular operators (and thus, by the Proposi-
tion, the fixedpoint sets of logical operators, and the prefixedpoint sets of extensional
operators) is given (22 7)

Also, notice that for extensional operators I and m, we have -I = -- 'm iff
Ia- a = ma-a for all a E A. Since, by the Proposition, this is just in case I and m
have the same prefixedpoints, the Proposition is another example of the uniformity of
extensional operators. we have Ya E A I- a = ma - a lff Va E A Ia < a 4, ma :5 a.

9.24. Final Remarks. The theory of extensional operators on a (complete)
Heytmg algebra A, as developed in this section, is the beginning of a more comprehen-
sive theory, which includes all of the results on regular operators in Chapter 6, as well
as possessing some "semantic" connections to topos theory by way of the sheaf topos
Sh(A). For example (assuming that A is complete), the elememis of A correspond to
the global elements of C1 in Sh(A), i e, to the morphismsa I- -. Every morpbism
f : 0 - a therefore induces by composition an operator on A. It can be shown that
these operators are all extensional and that every extensional operator on A arises in
this way from a unique morphism.

This connection suffices to explain the relation between properties of extensional
operators and their corresponding "uniform properties", as mentioned in 9.9 and 9 23.
This relation can be seen to arise from an "fl-rule" for Sh(A). Namely, morphisms
with domain D in Sh(A) are completely determined by their effect on global ele-
ments of Q, and hence for any formula 6(7) involving arbitrary extensional operators
(represented by their associated morphism. il - 0), where F is a sequence of n vari-
ables of type A, we have that if the associated morphism f# : f1 - n is such that
4o o F = true for all 6 : 1 - W", then 4o = true-which, unwound, amounts to the
"uniform" version of ,

There are other, more topos-theoretic connections, but these are beyond the scope
of the present investigation Various additional properties of the operators considered
in this section are given in the exercises
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9.25. Exercises. In the following exercises, all classifying operators are upper
classifiers, i e, q(a. b) means qT(a b), etc. It is an additional exercise to formulate and
prose corresponding properties for the lower classifiers

9.25.1. Show that
(a) e(al,bi) = e(a2.,b2) iff a. -2 < b1 -62
(b) q(al -b ) = q(G2 62) if bi 62 and (writing 6 = b = b.,) (a, -a 2 ) -b 6.
9.25.2. Show that
(a) q(a, b) o q(a, b') = q((a! - b) - a2, (b - a2) - 2)
(b) q(ab)3 = q(a.6)

2 
(exponents denote iteration)

(c) q(a,b) is idempotent iff (b - a) - b = 6.
(d) q(a,b) is a nucleus iff (b- a: a = b and then q(a, = qkb 6)
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Chapter 4

FRAMES AND K-FRAMES

Frames are the main objects of study in this thesis. However, as was pointed out
by Madden [32], the auxilliary notion of K-frame. since the category of such has a full,
reflective subcategory of Boolean objects, is potentially useful for obtaining results
about frames. The paper of Madden and Molitor [33] has just such a result, and we
obtain another such result in Chapter 8 Thus, this chapter is concerned with both
frames and c-frames.

We introduce frames in Section 10, give the standard construction of free frames,
and prove a new characterization of the right adjoints of frame morphisme Then, in
Section 11 we introduce c-frames (the definitions and basic results are taken from (32]),
and follow this with a series of new results characterizing the types of limits preserved
by the free functor from the category of A-frames to the category of c-frames, where
A < K. We also prove a result a result about congruences on products of c-frames,
and we deduce from this a similar result for frames Finally, in Section 12, we look
at explicit descriptions of various colimits of frames and c -frames and, in an Exercise,
sketch a proof that products and directed colimits commute in the category of frames

10. Frames

10.1. Ft-ames and locales. A frame is, by definition, a complete lattice A that
satisfies the following infinite distributive law:

aAVS=VaAS (aEA, SC A). (1)

We refer to this law as 'frame distributivity". If A and B are frames, then a function
f : A - B is a frame (homo)morphism if f preserves finite meets and arbitrary joins
(including the empty meet and join- .fl) = 1 and f(0) = 0) Frames and frame
morphisma clearly form a category, which we denote FTm. The opposite category is
denoted Lao; thus Laoc = Ee P. Objects of this category (which are of course just
the same as objects of Frm) are called locales, and morphisms are called continuous
maps, in keeping with the topological terminology.

10.2. Proposition. Suppose A is a complete lattice. Then A is a frame if and
only if A is a Heyting algebra. In this case, the frame and Heyting algebra structures
on A are related by the equation

a-b-VizEA:aAz<b) (a, 66A). (1)

Pitoor. In a complete Heyting algebra, joins of all subsets exist by definition, so
that frame distibutivity is just 7 2(m). Conversely, suppose A is a frame, and take (1)
as the definition of - Then,

a A (a -) = AV(z E A A. AZ x5 6) = Va A AAz <b) b

53
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On the other hand. if a A r < b, then r is one of the elements in the join on the right
of(l), andso z<a-b TiuszAa<biffz<a-b, andso-- makesA intoa
Heyting algebra Since a lattice can hae only one Heytiog algebra structure, it must
be defined in A by (1), completing the proof

10.3. Open morphisms and eBa's. Although. by the Proposition, frames and
complete Heyting algebras determine the same class of lattices, they are distinguished
as algebras by the operations we take as fundamental For frames, we take finite meets
and arbitrary joins as is reflected in our definition of frame morphism For complete
Heyting algebras. we take all me is and joins as well as the arrow operation Thus, a
complete Heyting algebra morphism is simultaneously a Heyting algebra morphism and
a complete lattice morphism We denote the category of complete Heyting algebras
and morphisms by cHa, and note that it is a non.ull subcategory of Fasm. A frame
morphism that preserves arrow (as given b (1)) and all meets (and thus is a complete
Hey ting algebra morphism between the associated complete Heyting algebras) is called
open, since these correspond (as continuous locale maps) to open continuous functions
between topological spaces

Similarly to frames and complete Heyting algebras, Boolean frames, that is, frames
in which every element is Boolean, are the same thing as complete Boolean algebras
(cBa's), that is, Boolean lattices that are complete. Morphisms between cBas, by
definition, preserve all meets and joins. as well as negation -, and we denote the
category of cBa's and cBa-morphisms by cBa and treat it as a subcategory of Firm.
Because frame morphisms preserve complements, every frame morphism between cBa's
is a cBa morphism (since it then also preserves meets by the De Morgan laws 7 6), and
so, unlike cHa and Frm cBa is a full subcategory of Frm. Also note that clda-
morphisms preserve arrow (definable from join and negation), and so cBa can also be
thought of as a full subcategory of cHa

10.4. Frames are monadic. It is clear how the equational presentation of
complete join-semilattices given is Section 5 can be expanded to include the operations
of finite meets and the equations for frame distributivity and thus give an equational
presentation of frames. The following proposition gives a concrete description of the
free frame on a set of generators It follows that Fai is monadic and therefore has
the properties 6.5.1-4

Proposition. Let X be a set, and Jet Fs(X) denote the poset of all finite subsests
of X ordered by reverse inclusion (i e, s < ff ad only if t C a) Then the set
Fo(X) of all down-closed subsets of Fo(X), ordered by inclusion, is (a presentation
of) the free frame on generators X. Joins and meets in F.(X) are given by union
and intersection, the insertion of generators is z - it, and the unique e'ctensbon
7: F(X) - A oft mapping f X - A is given by

7(S) = V Al(s) (I)'s$

We remark that Fo(X), with the operation of U and unit element 0, is the free
semilattice on X The reason for the terminology Fo(X) and F(X) will become
clear in the next section
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PROOF See (22]. 11.1.2

10.5. Right adjoints of frame morpliisms. Suppose that f A - B is a
frame morphism. Recall from Proposition 4.3 that, since f preserves arbitrary joins.
f has a. right adjoint. f.B - A. and f and f. are related to each other by the
equations

f.b = Vf E A fa 5) (b rE );()

fA= AfbE B a <f.b) (a EA) (2)

Moreover, these right adjoints to frame morphisms satisfy the laws id. = id and
(Sf). = f.9., showing that the operation f - f. is a funetor (-). :Loc - Set.
Also, f. is 1-1 iff f is onto, and f. is onto iff f is 1-1, and (therefore) f is an
isomorphism iff f. is a bijection.

The remarks above imply that the functor (-). gives a faithful representation of
the category Loc in the category Set. When is a function g B - A the right adoint
of a frame morphism9 Preserving .neets is a necessary condition, and this will insure
the existence of a left adjoint, f, given by (2) above The question of what conditions
on g insure that f preserves finite meets is answered more generally for any class of
meets by the following result.

Theorem. Suppose that A and B are frames and that g: B - A is a monotone
mapping with left adjoint f . A - B. Then, for any set 1, the following are equiva-
lent

(a) f preserves all I-indexed meets
(b) Forevery b e B and 1.rndexed famuily {at} ofelements ofA wnth Ai 1 5 9M~b,

there exists an f-indexed family (b.) of elements of B such that ai < 9(6j) for all
i (EIand A, l.S5b.

PROOF Suppose that f preserves 1-indexed meets, ii E B, and (a.) is a faim-
ily with A, oi :5 06). By adjointness, fA& a0, 5 6, and so, by assumption on ,
A, f(.s.) < 6. Thus, if we define

b. =If(at) ( E 1), (3)

we have g(b.) = g(f(a.)) 2! a, for all iE I by adjointriess, and so the family {b,} has
the required properties, showing that (a) implies (b).

In the other direction, suppose that g :B - A is a monotone map for which (b)
holds, and let (a,) be an ]-indexed family of elements of A Since f (being a left
adjoint) is monotone, to show that j preserves the meet of fai), it will be enough to
show that A, f(a,) :5 AA, as). Now, by equation (2) above,

IAa,) =AM6 6B A a. :(9M) (4)

and
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So suppose 6 E B is such that A, a, < g(6). as in the meet in (4) Then by assumption
there exists a family 16,) as is (b). But a, < g(b,) for all t E I implies that each b,
is a member of the i th set of the meet in (5) and so

Af(a,)_ :Ab, <b

By the choice of 6, it therefore follows that A, f(a,) : f(A, a,), and the proof is
complete.

10.6. Corollary. If A and B and frames, then a mapping g B - A is the
right adjoint ofa frame morphism A - B if and only if the following three conditions
hold.

(a) g(AS)=Ag(S) for everySCB,
(b) g(b) = 1 implies b = I for every b E B, and
(c) for every b E B and a,a2 E A with a, Aa2 < g(b), there exist b, b2 E B

such that ai < 9(b), a2 < g(bO2 ), and b, A 62 5 6
PRooF Since a function preserves finite meets iff it preserves the empty meet (L.e.

1) and binary meets, the only part that needs to be checked is that condition (b) of
the theorem reduces to condition (b) of the Corollary when I is empty. But this is
clear, since the hypothesis of the former then reduces to 1 _ g(b), while the conclusion
reduces to I < 6

10.7. Remarks. Note that if I is finite, then by replacing (3) in the proof of
the theorem with

b, = 6 V fa, (i:!) (3')

we can conclude by the finite dual distributive law that the inequality bl A b2 < b in
part (c) of the Corolllary can be replaced with an equality

It is shown in [11. IV 1 261 that right adjoints of frame morphisms g can be char-
acterized by (a) and the non-first-order condition that the extension of g to ideals
preserves primeness (i e., if P is a prime ideal of B, then the ideal of A generated by
the image g(P) is prime) The proof uses the Prime Ideal Theorem

We also note the following:

Proposltion. Suppose f A - B is a map hetween frames with right adjoint f..
Then f preserves binary meets if and only if

f.(fa-6) = a-f.6 (aEAb EB). (I)

PROOF. Suppose f -1 f. and let a, b, C E A be arbitrary. Then

c<f.(fa-l) iff fc<fa-b iff faAfc~b (2)

and
c<a-f.b if oAre~f.b iff f(aAc) <6 (3)

Now, by Yoneda (3.3), (1) holds just in case c < f.(fa -b) iff e< a -f.6 for all
a,b,c e A By (2) and (3), this is just in case faAc < b iff (a Ar)< bfor all
a,b, E A, i.e ,just in case f preserves binary meets
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11. ic-frames

11.1. Definitions. Let r. be a regular cardinal. By a x-set, we mean a set
whose cardinality is strictly less than tc Other ic-notions are defined in the obvious
way: a ic-family is a family indexed by a ic-set, a ic-product is a product of fewer than
X objects. and so on

A xc-frame is a poset A such that
(a) every finite subset of A has a meet,
(b) every i-subset of A has a join ("A has i-joins"), and
(c) a A V S = V aAS for all a e A and ic-sets S C A (the ",c-distributive law")

A ic-frame morphism preserves finite meets and i-joins. We denote the category of
ic-frames and ic-morphisms by ic-Frm.

As with frames, it is dear how expand the equational presentation for K-complete
semilattices, given in 5 1, to an equational presentation of r-frames that moreover
uses only a set of operations, all of whose arities are bounded by K. Thus the category
c-Frm is locally ic-presentable and enjoys all of the properties listed in 6.5.

Note that 0-Frm (no joins at all) is essentially the category of meet-semilattices,
and -Ftrn (finite joins) is essentially the category of distributive lattices For any
regular cardinak A < i, there is an obvious forgetful functor U. : i-Frm - A-EFrm.
Similarly, for every regular K, there is a forgetful functor U.1 : Frm ic-Frm.
Since all of these categories are monadic, these forgetful functor have left adjoints
F. : A-Frn s - oc-Fm and Fx : c-Frin - Fnan. Explicit descriptions for these left
adjoints, generalizing 10.4, will be recalled below.

For uniformity in the treatment of frames and ic-frames, we would like to have
Finm equal to ic-Fm for some ic. This can be partially achieved by the devices
explained in 6.6., and this issue will be taken up again in 18.4, after we have explained
the relationship between ic-Frn and the category ic-cBa of i-complete Boolean
algebras (i.e., Boolean ic-frames)

11.2. Free functors. For the rest of this section A and ic will be regular
cardinals with A < oc.

The free functor F. ' A-Frm - s-F-m left adjoint to the forgetful functor U
has a description generalizing that of the functor F. (10.4). Let A be a A-frame. A
subset of A is called a A-ideal if it is down-closed and closed under A-joins If S C A,
then the A-ideal generated by S is

{(a A:a<VT, TCS, ITI<A} ()

A A-ideal is ic-generated if it is generated by a r-set.

Proposition. Suppose that A is a A-frame Then F.(A) can be taken to be the
oc-frame of all ic-generated A-ideals on A, ordered by inclusion. Finite meets are given
by intersection and the join of a c-set of A-ideals is the A-ideal generated kv their
union. The insertion of generators A - F (A) is given by a - a. If f A - B is a
A-morphism to a i-frame B and J is the A-ideal generated by the ic-set S C J, then
7 ' F.(A) - B has 7(J) = Vf(S) In particular, iffg : A -- A' is a A-morphism
between A-frames, then F,(g)(J) = downcl g(J).
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PROOF See [32. Prop 12) We just remark here that if I and J are A-ideals
i-generated by G and H, then I n J is generated by the ic-set G A H, and that we
need the regularity of is to show that i-joins of ic-generated ideals are c-generated
(as well as to show that (1) is a A-ideal).

11.3. Preservation properties of F.A. Being a left adjoint, F, preserves all
colimis. What about limits9 We first make the simple observation that F. preserves
monomorphisms

Lemma. If f A - B is a monomorphism of A-frames, then F,.f is a monomor.
phism of PC-frames

PROOF Recall that monomorphisms in both categories are just the 1-1 morphisms.
Suppose that 1,J e F.AA are such that downclif(I) = downclf(J). Then for every
t 6 r, there exists i E J such that f(:) !5 f(j), and for every j E J, there exists i E I
such that f(j) < f(s) But semilattice monomorphisms reflect order: f(i) < f(j)
implies i < j and vice-%ersa Since I and J are down-closed, it follows that I = J

IM. Lemma. Let I be a c-set, and for each E 1, let A, be a ic-frame
Define, for i E I and 0, E A,, the element 6,(a,) E fl, A, by

a,, if= (,6,(n,)(j)s 0, otherwise. (1)

Then the map A, - f, A, given by

a,- ,(a.) (2)

preserves all joins and all non-empty meets existing in A,, and every e e ], A, is a
ic-join of elements of the form 6,(o,) ,

V 6,(17(i)). (3)

PRooF Easy

11.5. Lemma, Suppose that I is a A-set and A, is a A-frame for all i e 1. If
J, is a c-Sgenerated A-ideal on A, for all i e 1, then 11, J, is a c-generated A-ideal
on IT, A. Conversely, every c-generated A-ideal on Il, A, has this form

PROOF. That products of A-ideals are A-ideals is trivial, since the order and
operations in a product are pointwise If each of the J, is ic-generated, say by S, C J,
then every a, E J, is smaller than a A-join of the S., and so (using 11 4(3)), every

SE f , J. is less than a join of A A = A elements of the set U,e,{6,(si). s, F S,),
which has fewer than A s = ic elements. This proves the first part of the Lemma.

For the second part, let J be a ic-generated A-ideal on H", A,, and for every i e I
let J, = {a, 6 A, 6,(0,) E J) Since J is down-closed, we have

a E J implies 6,(a(s)) E J for every i E 1 (I)
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Fix an : E I Then for every a, E A,, 3a E J (i) = a, is equivalent to &(,) E J.
Thus J, is the direct image of J under the projection r, : 11, Ai - A,, and hence J,
is a c-generated A-ideal on A,. Now, if e E J, then by (1) ir(i) E J, for all i e 1.
Conversely, if i(i) E J,, or equivalently 6,(0(i)) e J, for every i E 1, then since J is
a A-ideal, a, E J by 11 4(3) Thus J = II J,, and the proof is complete.

11.6. Theorem. FA preserves A-products

PRooF Suppose that (A, i E 1) is a A-family of A-frames. By Proposition 11.2,
F.A fl, A, is the ic-frame of all K-generated A-ideals on fl, A,. But it follows easily
from Lemma 11.5 (and Proposition 11.2) that this i-frame is isomorphic to l, F .,.
Furthermore. the map Fir,, being direct image under projection, is the ith projection
on 1l- F A&, as argued in the proof of 115, and so A-product diagrams are preserved
by FV,, as required

11.7. Example. We give an example to show that products of A many factors
need not be preserved by FA when A < it. For this, consider the product 2 1, where 2
is the two-element frame (of course, 2 1 is isomorphic to the power-set PA under the
inclusion ordering). Since every ideal on 2 is principal, so is every A-indexed product
of ideals on 2 But the set J of all A-subsets of A is a A-ideal by the regularity of
A, is Ak+-generated (by the set of all singleton subsets of A), and is not principal. It
follows that the product 21 is not preserved by FA+.

11.8. Theorem. If A > w, then F. preserves equalizers.

Corollary. I" A > w, then F.A preserves all A-,Imits(.e., limits where the indexing
category has a A -set of morphisms)

Pitoor Suppose A > w, and let f,g A - C be two A-frame morphisms with
equalizer E = {a E A. f(a) = g(a)) and inclusion i' E - A. Since F.A is a functor,
we have F,,f o F.Ai = F g o Fi; and by Lemma 11.3, F,i is injective Therefore,
to establish the Theorem, it will suffice to show, by Proposition 11.2, that any t-
generated A-ideal J on A with downe f(J) = downcl g(J) has J = downcl J for some
K-generated A-ideal J on E.

So, suppose downcl '(J) = downcl 9(J). Then

'j E J 3k E J f(j) :5g(k) and Vk C-J 3i EJ 9(k) :9i(i) (1)

Now, let j E J be arbitrary, and define a sequence , : n < w) of elements on J
by induction as follows Start by putting a0 = j. Next, if n + 1 is odd and a is
defined, then choose k 6 J such that f(an) < g(k), which we can do by (1), and put
a,,+1 = a,, vk. Then a, < a,+ E J and f(a) < g(a,+I) (by monotonicity of g).
On the other hand, if n + I is even and a. is defined, then choose j E J such that
g(a.) <_ f(j), agaln posble by (1), and put a.+, = a,, Vj Then a, < i+i G J and
9(a.) :5 f(a.+,) (by monotonicity of f).

Now, as J is closed under countable joins and {an : n < w) is increasing, we have

V a2. = V 0
2.+1 = V a2.+ 2 = a E J, (2)
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But, since f and g preserve countable joins. we have, by (2),

f(4) = jr(V~o2.) =Vc!(a2.):5 VWg(as...i =9(V.a21+0)= 9(a)

and

g(a) =g(V, a2.+,) =V. g(a2.,',) :5 V f(012 +) = jF(V. a2.,42) = An).

Thus, f(a) 9 (a). and so a E E Summarizing, we haite found for every j 6 J an
element a e EnJ a ith j,: a Choosing one such a for each generator of 1, and letting
J' be the A-ideal on E (sc.)generated by these elements. we have J = downel X', as
required Thus the proof of the Theorem is complete

The Corollary follows immediately from the present Theorem and Theorem 11 6,
by the construction of limits from products and equalizers (see [29, V 2. Theorem 11
for details of thin construction)

11.9. Example. We give an example to show that if A = w. then equalizers need
not be preserved b F.,' when A < t Let A and C both be the frame (w-s+ 1, <) (i e,
with 0 <1I< 2< < a), let f A - Cbethe function with fin) =2rinC.< W)
and f(i.) = we, and lei g .4 - C be the function with g(0) =0, 9(n) = 2n - 1
(0 < n < w), and 9( .) = a~ Then f and # are clearly .e-fraine (in fact frame)
rnorpbisins. and the equalizer E of f z4id 9 as the two-element frame {0,W). Now,
J = (a E A a < w) is an w+.generated w-ideal on A that is not generated by any
.e-ideal of E However, downel f.J) = J = downcl g(J), and so J is in the equalizer
of FI~ and F.I.9 Thus, the equalizer is not preserved by F ',.

11,10. Products of congruencee. We now prove a result about congruences on
products of K-framnes and frames, whose proof is quite similar to that of Lemma 11 5

Theorem. Suppose that I is a Kc-set and -4 IS & K-framne for all) 6 1 If 9, is
a congruence on A, for All i 6 1, then 11, 0. is a congruence on fl, A, Conversely,
every congruence on fl, A, has this form

Pstoo? The first part of the Theorem is trivial, since all operat ions onte pro4'-'
are poiotwise.

For the second part. let 9 be a congruence on 1i, A, , and for every i 6 1, define
the relation 9, on A. by a, Oj b, iff 6,(a.) 9 6,(b,) (b, was defined in Lemma 11.4).
Clearly each relation 9, is a congruence on A,, since it is the inverse image of the
congruence 9 under the non-empty-meet- and jomn-preserving mapping 11 4(2). But
now a0r implies

6,=,) 6, (1) A a9 6,(1) A r = 6 ri)

and thus s'(i) 9, i-(i) for all i I
Conversely, if a(:) 9, r(i), or equivalently 0,o() ,si) for all i 1, then

since 9 is a Kc-frame congruence, we use L-mma 11 4(3) to get 09 0 Thus 9 =f, 9
and the proof is complete.

11.11. Corollar-y. ADl congruences, on arbitrary frame products a:,- prod-c-u -f
congruences on the fac tors
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PRtOOF We can either prove this directly, by redoing the proof of Theorem 1110
without the cardinality restrictions or (to anticipate 12 4 below), we can choose a
large enough regular cardinal K tlY !ramne congruences on the product are the same
as oc-frame congruences or ' 'et. and then invoke 1110 directlyv.

11.12. Example. The 'xamsple 11.7, which shows that products of A many
factors need not be preserved by F,', can b-, a:odified to produce a congruence on
a product of A many A-frames that is not a product of congruences Thus, let 6
be the relation on the frame 2A (or equivalently, (P A, C)) defined for ST 2c A by
S 9 T' if JSATI < A. where A is the symmetric difference operation S A T =
(S -2T) U (T - S) One can check, for any two 1-indexed families (S,) and IT',) of
subsets of A, that (U, SO) 6(Q, Z') C U,(S, AT.), and so ic-joins are compatible with
6 by the regularity of ic Similarly. one can check, for any subsets Si, 52, T1 , T2 , that
($I n S2 )AL(Ti I T2) C (51r ATI) u(S2.6T2), and therefore finite meets repect 0 as
well, making 0 u g-frame congruence. But, Ole is just the ideal J of Example 11 7
and is not a product of ideals. Thus 6 cannot be a product of congruences,

12. Limits and colirnits

12.1. Remarks. By 6 5.1, limits of framea and r-frame, are computed as in
Set. Coequalirers are giv.en as in 6 5 3, but for frames a more concrete description is
possible (wee 13.7). As for coproducts, the infinite cane isn't any harder than the binary
case,' and so westart by looking at that (See Johnstone [22, 11.2.12) for a development
that include, the infinite case.)

12.2. Coprodu~cts of frames. Given frames A and B, we call a subset
S C A x B a bi-ideal on A x B if it is down-closed (in the product order) and, for
every set 1, has (V, Q,, b) E S whenever (a., 6) 6 S for all E 1, and has (a, V, bi) E S
whenever (a, b,,) E 5 for all i16 1

Proposition. Suppose A and B are frames. Then fhe coproduct of A and B can
be represented by the set A 9 B of al) hi-ideals on A xt B, ordered by inclusion The
injections iYA ;A -A s B and i'a B - A 0B are given by iYA(a) = I (a,1) and
i'8(b) = J (1, 6), ard -f f :A -C and g :B -C are framemYorphisnss the mediating
mrorphism m A sB - C is given by

-n(S) =V{I(a) A #(b) :(a, ) iES).

12.3. Coproducts of c-frames, and irifsitary coprodsicts. We record the
obvious modification for sc-framnes. A subset S C A xt B is a ic-bi-ideaj on A xt B
if it is down-closed, has same closure with respect to joins as above (when I1 is a X-
set), and is oc-generated (with respect to these closure conditions). The injections and
the mediating morphism are the same (except that we define in(S) in terms of a sc-
generating set, instead of S itself), And, as with free c-frame,, the regularity of oc is
used here to conclude that the join of a oc-set of se-generatiid ideals is still tc-generated
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Also for the record we mention that in the infinite case, one requires a (a-)bi-ideal
to be closed under (ta.)joins in each coordinate shile the others remain fixed and that
instead of taking subsets of the whole cartesian product, one takes subsets only of those
elements that have 1 in all but finitel) many coordinates

12.4. Colirnits in ic-Firr vs. Frm. The basic relation we will be exploiting
between a-frames end frames is thatr 'locally" the categories Erm and a-Fern "look
the same'" First we have that if A in a postr with JAI < ac. then A is a frame iff
A is a K-frame Also, for such an A, frame congruences and ic-frame congruences
on A coincide Finally, in the case where (A, ,. E 11 is a family of frames with
IfII, A, I < K, the notions of bi-ideals and ac-bi-ideals on (the appropriate subset of)
the product agree, and therefore the coproducts, as constructed above, agree as well
Putting together these observations, we get the following result-

Theorem, if D J - Fern is a diagram of frames, with colimit cone V D -
AC, then there exists a regular cardinal K (in fact we cant choose a = I l1 , DiI+,
where the producr is over all morphismsof 3) such that U.1 o v'. tf oD - s. oAC
is a colimit cone in K-Frn

PRors Let K be chosen as aboic Then a is a regular cardinal larger than any
frame that appears in the construction of cotimD. from coproducts and coeqsializers
By the previous observations, it follows that the colisnit, whether calculated in Frn
or is .- Firm, is the sanme poset, from which the Proposition follows

12.5. Operator description of frame coproducts. Given a hi-ideal I C A x B
and an element a e A, there exists a largest element 0(c) E B such that (a, gpla)) E I
(namely 0(a) =V~b (a, b) C- 1) , which is in I by the join-closure propert on the
second coordinate) Similarly, for every 6 E B, there is a largest T'(b) E A with
(O(b), b) e I. Either operation determines 1, since

and, considered as operaticris 6 ., A - BIP and v - BIP - A, they are adjoint
(0 -1 0), Moreover it is clear from (1) that every such adjoins pair determines a
unique hi-ideal, and so the frame coproduct of A and B can just as well be presented
in terms of adjoint pairs

Wigsser (51] gives such a description in terms of just the operations 0, which we
reproduce here without proof

Theorem. Suppose that A and B are frames Let A ®9 B be the set of all
operations 0 .. A - B satisfying &$(VS) = A O(S) for all S c A Then A 0 B,
ordered poinittwise, is a frame coproduct of A and B The injections VA :.A - A 0 B
and vii B - A 0B are given by

I faf ho, ita 0O
IVA(a0)(G) 0 : hte~ and vs (6o) (a) = 1, iaO

ff A -Cand g B - C are frame morphisms, then the mediating morphism
mi A 0B - C and its right adjoint m. C - A DB are givens by

m(O) V f(s) A 9(6(d)) and m.(c)(0) = g.(ffa) - c).
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12.6. Pushouts of frames. All of the descriptions of binary coproducts we
have given can be easily modified to give descriptions of the pushout of two morphisms
f C - A and 9 : C - B We remark on the necessary modifications ad leave the
verifications to the reader

In Proposition 12 2, the coproduct of A and B was given as the set A, B of all bi-
ideals on A x B, ordered by inclusion For the pushout of f. C - A and g: C - B,
one takes instead the set A Tc B of all bi-ideals S that additionally satisfy

(aAf(e),b)ES ifandonlyif (a,g(c)Ab)eS rEA bEBcEC), (1),

again ordered by inclusion The description of the injections has to be modified (for
t'A(a), for example, one takes the smallest bi-ideal satisfying (1) and containing (a, 1)),
but the description of the mediating morphism does not.

In Theorem 12 5 the coproduct was given as the set A 0 B of all operations
0 ' A - B satisfying (R(VS) = AO(S) for all S C A, ordered pointwise For the
pushout, one takes the set A Sc B of those operations that additionally satify

o(f(c) Ao = g(c) - 0(a) (a E A,c E C), (2)

again ordered pointwise Unfortunately, there doesn't appear to be any useful formula
for the injection into the pushout, as there is for the coproduct, but again the formulas
for the mediating morphism and its adjoint remain valid

12.7. Directed colimits of frames. Several authors ([51], [16], and, at least
implicitly, [27]) have observed that the directed colimit of diagram in Frm is computed
by taking the directed limit of the underlying sets and right adjoint maps, and have
used this to proe that if all of the morphisms in the diagram are mono, then the
canonical injections into the colimit are mono as well.

We state these results here and refer the reader to the papers above for proofs.

Theorem. The functor (-). . Loc - Set creates filtered limits.

More explicitly, suppose D . 3 - Frm is a diagram on an .- filtered category
(6 5 5). Then the colmit of D may be taken to be the set of all those a E fl, E Dj
such that for every morphism f i - j of J. (Df).(a(j)) = a(i), ordered pointwise.
(Meets in this frame are also pointwise.) For each ) e J, the canonica, injection
v. . D3 - coim D is the left adjoint to the projection on the 3th coordinate. Given
a cone r : D - AA, the mediating morphism colim D - A is the left adjoint to the
function that takes an element a E A to the function j - (rj).(o).

12.8. Corollary. If in a filtered diagram D J -- Frm of frames, Df is mono
for every morphism f of 3, then the canonical injections i'1 are all mono

12.9. Exercises.

12.9.1. Products commute with directed limits in Frm
(a) Suppose that G. H : 3 - Frm are two diagrams in 'rm, and r G - H is

a natural transformation that satisfies Gf o ("i). = (rj). o Hf (as functions) for all
morphisms f i - in 3
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Let p . IimO- G and v - hmj H - H be limit cones let Jim r. limG- IinH
be the unique frame morphism such that rj o0y = ej Jiiir for all j E 3 and let
Jim r. lrn H - Jim G be the unique function such that (75). o vj = 0j liir.. (s
functions) for all jE 3 ShoNN that (Iim r). = lim r..

(b) Call F I xJ - Rran *-compatible if, whenever f. i - ' and g I~ - j' are
mrphismsof Iland 3, %e have F(f, )oF(i, g). = F(i'. g). oF(f,j') U~se (a)to prove
that if F is a *-compatible diagram such that, for every i E 1, F(i, -) J - Firm is
filtered, then the canonical morphism colimj Jiml F - lint coiij F is an isomorphism
of frames.

(c) Show that if F I x J - Fran is such that, for every a E I, F(i, -) is a
discrete diagram, then F is *-compatible Conclude that in Firm, directed colamits
commute %ith arbitrary products

12.9.2. Let K be a regular crdirr, Use thc fact that the free fuco ~pe-
serves colimits and K-products to derive from Exercise 12 91 that c-products commute
with directed colamits of h -frames
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Chapter 5

THE ASSEMBLY TOWER

Associated to every frame A is another frame NA, called its assembly, and this
process can be iterated transfinitely to produce the assembly tower of A. The assembly
tower is the main tool used for obtaining information about the "meet-structure" of
a frame in Chapter 7 and about pushout-etable monomorphisms in Chapter 8. The
assembly tower is also related to the extensional operators of Chapter 3, with the
regular operatrrs of Chapter 6 as intermediary Thus, the material of this chapter
forms the core of the thesis

We begin in Section 13 with the equivalence of the complete lattices of congruences,
nuclei, and maxsets on a frame establishing the definition of the assembly. Since
congruences are naturally associated to quotients, these quotients have descriptions
in terms of nuclei and maxsets, as well, which are looked at next The section ends
with a look at Low elements of the assembly can be generated by incomplete data-
congruences generated by sets of pairs, nuclei generated by prenutlei, and maxsets
generated by certain subsets Section 14 is devoted to showing that the assembly NA is
a frame, this is accomplished by establishing a formula for meets of maxsets Section 15
then looks at special elements of NA (and N(NA)) and their rules of calculation In
Section 16, the universal property of the assembly functor N is established, and the
action of N on morphisms is looked at from three different angles. Some preservation
properties of N are also proved Section 17 gives the construction of the assembly
tower and its basic properties, and finally Section 18 discusses the similar construction
for K-frames

13. The assembly: congruences, nuclei, maxsets, quotients

13.1. Frame congruences. Recall that h congruence 8 on a frame A is an
equivalence relation on A that is compatible with finite meets and arbitrary joins. It
follows that every equivalence class of t has a largest member (namely its join). Thus,
there is associated to each congruence e on A both an operation js : A - A, defined
by

lea = Va/0,()

and a subset Me C A defined by

Me = {aEA' a>b whenever a bl (2)

Thus .# takes an element to the largest element P-related to it, and Mlt is the set of
all such largest elements

13.2. Nuclei and Maxsets. The properties of the operations je and subsets
Mo in (1) and (2) above can be sumaried as follows.

65
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Proposition. Let A be a frame
(a) An operation j A - A is equal to ja for some 0 C Con A if and only if j is

a nucleus te.

a jo= jj and j(aAb)=;aAjb '(abE A). (I)

and then 6 = [(a,b) : j = jb).
(b) A subset M C A is equal to Mo for some 9 E ConA if and only if

ScM implies A SEM and aEA, mEM imply a-mc.-f (2)

and then 0 = 1(a,b) Vm E Al a < m * b < m)
(c) For a frame congruence 0 the associated j# and Me are related to each other

by
Me = fix, = jeA and Jea = A{m E Me a _< m} (3)

Nuclei, as extensional closure operators, were studied in Chapter 3. A subset M
satsifysg (2) will be called a maxset We call a subset M C A satisfying the first part
of (2) meet-closed, and one satifying the second part an arrow-ideal

Paoor. The proof is standard see, for example. [22], 112 2-3 [27], 1114, Prop 2,
or [50). Thin 6.2.9. In fact (cf. [27]). the proof can be split into two stages, corre-
sponding to the compatibility of 6 with joins and finite meets; the first stage is the
equivalence of the following (cf. Proposition 4 3).

(i) there is a complete join.semilattice congruence 0 on A such that for all a E A,
ia = V{b a 0 b).

(ii) j is a closure operator.
(Wi) a 5 jb iffja !5 jb for all a b 6E A
(iv) there is M C A, closed under all meets, with la = A{m E : a < m) for

all a e A.
One can moreover extract from these proofs the result that if R is the relation

defined between pairs (a, b) E A x A and s E A by (a. b) R e iff a - s = b - s and if
lv -irv is the associated "universal" adjunction, then ryov = e (the closure operator
taking a set of pairs to the smallest congruence containing them) and tv or is the
closure operator that takes a subset of A to the smallest maxset containing it See
13 7 and 13 9 for explicit descriptions of these closure operators

13.3. Frame quotients. Associated to every congruence 6 on a frame A there
is also, of course, the frame quotient A/ and natural map A - A/6, a - a/0 How
does this relate to jo and te?

Corollary. Suppose A is a frame and 6 E Con A. Then Me. with the order induced
by A, is order isomorphic to the quotient A/ (by the correspondence m - m/0),
and, up to this isomorphism, je A - Mo is the quotient map The right adjoint
(j.).. .M - A to j* is the inclusion (i s a 'refiection")

Pitoor The order on frame congruence classes is easily seen to be the same, by
5.4(g) and (m) in the proof above, as the order on their naximal elements, and (ii)
moreover states that le is left adjoint to the inclusion. The rest is trival
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13.4. Notational remark. It Aill be conenient to have a notation for the
quotient of a frame A by the congruence associated to a nucleus j. Following John.
stone [22]. we denote this A: and, for concreteness, take the elements of A, to be the
fixedpoints of j and the order on A, to be that induced by A as in the Corollary

13.5. Quotient operations. finite meets and arbitrary joins of equivalence
classes in the quotient are naturally given in terms of representatives; it is less clear
what the infinite meet and arrow operations are For quotients given by maxisets (or
fixedpoints of nuclei), the reverse is true'

Proposition. Let 4 be a frame and I a nucleus on A If we denote the meet,
join, and arrow operations of A, by A', V, and -- I then for every S C A, and
a, b E A,, we have

(a) A'S=As.
(b) a-'b= a-b, and
(c) V'S=IVS

PRooF As Aj is a meet-closed subset of A with j as reflection, (a) and (c are
clear In particular, finite meets in A, agree with those of A And since A, is closed
under - by the second part of 13 2(2)1 (b) follows as well.

13.6. The assembly. We have seen that the complete lattice of congruences
on a frame A can be described in three equivalent ways by congruences, nuclei, and
maxsets In the sequel we make frequent use of all three, and, in an (admittedly
weak) effort to remain neutral as to representation, we will call this complete lattice
the assembly of A. (We will also make an effort when introducing a new concept
associated with the assembly to describe it in terms of all three representations.) When
the representation of the assembly is important, w. wl write Con A, as usual, for thc
lattice of congruences on A (ordered by inclusion), NA for the lattice of nuclei on A
(ordered pointwise), and MaxA for the lattice of maxasts on A (ordered by reverse
inclusion). In general. however, we will stick to the notation NA, since it has become
standard usage

13.7., Congruences generated by pairs. In this and the following paragraphs,
we look at how elements of the assembly can bo" generated by various data The first
such result, generation of congruences by pairs, follows directly from the observation
made in the proof of 13 2

Proposition. Suppose that A is a frame, and let 0 be the congruence on A
generated by J(a,,b,) - : E). Then r 0 y it and only if x - s = y - s whenever
a, - s = b, - s for all i E I.

13.8. Nuclei generated from prenuclei. Recall that a prenucleus is an exten-
sional operator that is inflationary and monotone (9.9) and that nuclei are precisely
the idempotent prenuclei (9.10).

Proposition. Suppose I is a prenucleus on a frame A. and define by transfinite
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recursion the sequence {fj a E C a > 0) ofoperators on A by

j'(a) = 35
;+(a) = j(i*(a)). and

j'(
a ) = 

V 1(a) ifA is a limit

Then for some ordinal 1, j' is a nucleus, and3
" is the least nucleus pointwise greater

than j Furthermore, fix)" = fixj.

PRooF Since J is a prenucleus, compositionsofprenucle are larger prenuclel
(by a simple argument from the definition), and (nonempty) pointwise joins of prenuclel
are prenuclei (9 17). it folloss by induction that each j' is a prenucleus and that
)0 < ja whenever 8 5 a If k is a nucleus with 1 k I, then again by induction it is
easy to verify (using 9 2(b)) that 1" < k for all a. Thus, ji , if it is idempotent, is the
least nucleus greater than j But, since there are onl) a set of prenuclei on A, and
the sequence b01} is increasing, there must be a 7 such that j sj = ,from which
it follows (by induction up to I ) that 3p is idempotent

It remains to verify that fix3f = fix/ But for any a E A ja : a implies
j3a 5 a again by induction on a, and the conerse implication is trivial, since (ju}
is increasing This completes the proof

13.9. Proposition. Suppose A is a frame, T C A, S is an arrow-ideal of A.,
and M is a meet-closed subset of A Then,

(a) The smallest maxset containing T is {/ at - f, -a, E A, t, E T),,,
(b) The smallest maxset containing S is (A R R C S); and
(c) The largest maxset containedin A is Im 6 M ' a -m mE Al for all a E A)

We call the set in (c) the core of 3f, written coreA

PRooF. (a) Let 7V be the set listed Clearl, any maxuset containing T must
contain T', thus it is enough to show that T is a maxset It is closed under meets.
because we can write a meet of meets as a single meet And it is an arrow-ideal because
of the laws

a-AX=Aa-X and 4- (a'-X-z) = (a Aa') - ,

for X C A and z E A
(b) Let S' be the set listed, which is meet-closed and contained in any maxset

containing q. If a E A and AR E S', then a- AR = Aa- R E S', since for every
r E R a - r ( S, as S is an arrow-ideal,

(c) Let M' = coreM, which is an arrow-ideal by definition If R C M,, then

A RE M , since )i is meet-closed, and for every a E A, a - A R = A a - R e M ,
since a - R C M by the definition of A' Thus M' is a maxset But any other
maxset contained in M, since it is an arrow-ideal, must be contained in Al', showing
that M' is the largest maxset conta:ned in Al
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14. The assembly as a frame

14.1. Lattice operations in the assembly. The assembl) of a frame A is
a complete lattice that, by 13 2. we may take to consist of congruences, nuclei or
maxsets We now look at the lattice operations in the assembly in terms of these three
perspectives.

Since arbitrary intersections of congruences are congruences, the meet operation in
Con A is just intersection The join of a set of congruences is, of course, the congruence
generated by their union but this won t have a simple description, in general The
meet operation in NA is given b. pointwise meet. as was proved in Proposition 9.20'
if J C NA, then

(AJ)a=AJa (a EA) ()
A formula for joins of nuclei will be given in 23 4 as an application of results developed
in Chapter 6 Finally, since intersections of maxsets are maxsets, the join operation of
Max A (remember that the order is reversed) is given by intersection This is valuable
in that we have at least one representation for which joins are easy to compute. see
Theorem 14.4 below for an application

14.2. Meets of maxsets. The meet operation of Max A is readily seen to be
given by meet-closure of the union, since unions of arrow-ideals are arrow-ideals, and
so 13.9(b) applies We give another approach to this result, which carries with it some
additional formulas for meets of maxsets

Suppose M C MaxM is a collection of maxsets on A, each M E M with its
associated nucleus jm, as determined in 13.2(3). Then Am is associated to the
nucleus AM M , and since this association is by fixedpoints, we have, by 14 1(1),

AM ={a e A an}. (1)

The following Lemma gives two other formulas for A M

Lemma. With the notation as above, we have

A = {A am : aM E M for each M E.AA) (2)

Alternatively, the meet of a set of maxsets is the meet-closure of their union

AM={AT:TcUM}. (3)

PROoF Let S, S2, and $3 be the sets on the right sides of (1), (2), and (3). We
show that S, C S2 C S3 C Si, and hence that all of these sets are equal.

The first two of these inclusions, 6i C S2 and S2 C S3 , are trivial, so we only need
to argue for the last. S3 C SI. Suppose a E S3, and pick T C UM" with a = AT.
For each M E M, define

TMf = T r) M and t.M = A TM.
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Then T = Um TMf, and for every Vi E Wl we haie a < 1.4 E Af, since Mf is meet-
closed and T D T5,f implies

a = AT 5 A T7j t

Therefore jIg a 5 jifiti, = t % for all 11 C- JW, and thus we hal'e

a<5Ajjija<Ae=AATe *fEM)=AT=n

Therefore, a =A~mo-, and so a E S1

14.2.1. Corollary, It Mf, X E Max A. then

AMANV={mAn mnEAfandnEN} (4)

={aEA jseaAjxa=a) (5)

PROOF if we put Ml = (M, X), then (4) isjust eq~uation (2) of the Lemma, while
(6) is just (1)

14.3. Remark. Statement (4) of the Corollary above was apparently finst noticed
by Dana Scott, who used this description of binary meet of maxsets to give a proof of
the following theorem Our proof is essentially the same, except that we have used (5)
initead of (4) (so that certain choices made in the proof are canonical)

14.4. Theorem. NA. is a frame

PROOF. We verify the frame distributive law for MaxA. Suppose H! E Max A
and, for all i cr I N, E Max A We only have to show that

Af A VN, 5Vf A,, l

since the reverse inequality holds in any complete lattice Recall that < and V in (I)
are reverse inclusion Pind set intersection, and let z E R, 1 AIAN, Then, by1421(5),
z= jsez A ;NX for ali i ElI No% for any particular I E I,

since IN, 6 A', and N. is an arrow-ideal Thus, is:-ZtE VN, But then, since
jmz ? z, we have z = IMz A (jmz - r), which imiplies. by 14.2.1(4), that z is a
member of the left side of (1), and we are done
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15. Special elements and their properties

15.1. Principal congrhuences. We assume throughout thin section that A is a
frame Every congruence 0 E Con A is ajoin of principal congruences, and furthermore,
for each principal congruence O(a 6), we have

49fa 6) = ()(0, a) A E(b,l I1

by 5 4(f) Thus Con A4 is generated a a frame by

(0(0 ol-a (2A)U{1(b, 1): b GA). (2)

We therefore begin our investigation of special elements of the assembly by looking the
elements in (2).

Proposition.
(a) 0(0. a) is associated to the nucleus c(ai) = a V - and to the maxset Ta
(b) 19(b. 1) is associated to the nucleus u(b) b -- and fix u(b) is order-

isomorphic to Jb by the operations 6 A - and b- -.
(c) For aky i E NA. anid a.' b A with a < b, c(b) Au(a) <5 j iff ja =jb iff

b 5ja. In particular, c(b) !5 iff b < jO, and u~s) 5 i if ja =1.
(d) For any a E A, c(a) and si(a) are complementary elements of NA. Moreover,

a and b are complements in A iff c(a) =u(b) iff c(b) = ti(o)
(e) The map c A - NA given by a - c(a) is a frame morphism It is both

mono and api and is an isomorphism iff A is Boolean.
(f) Th* map u -A - NA is an "anti-frame morphism": *(AF) = V u(F) for

every finite set F C A, and u(VS) = A u(S) for every set S C A
PitooF (a) That the operation c(a) is a nucleus follows from basic properties of a

distributive lattice By5.4(e), (c,d)yO (O,a) if avr= avd,andso c(a) issasociated
to e(o,a) by 13.2(a) We have c(a)z = z iff a Vz = x iff a 5 r, and so fix c(a) = To.

(b) That u(b) is a nucleus follows from basic properties of a Heyting algebra
By 5 4(e), (c, d) E e(6, 1) iff 6AC = bAd, and this is equivalent, by 8 3, to 6-c = 6-d,
no u(b) is associated to e(6, 1) lfz <6, then 6A(-zj=bAx =z,andifb-V=z,
then b -(b A ) = b z= x Thus, since both b A- and 6 -- are monotone, they
constitute the required order-isomorphism

(c) Suppose that a !5 b Then by (a), (b), and (1), the nucleus c(b) A u(a) in
associated to the principal congruence 0(a, 6), and so for any 8 e Con A, jea = job
iff (a, b) E 6 if 19(a, 6) :5 6 iff c(b) A u(o) :5 jo Since every *i E NA in j# for some
6 e Con A, this proves the first equivalence. Since a < b, the second equivalence follows
from 13.2(iii). Finally, since c(b) and u(a) correspond to e(O, a) and 0(b, 1), the last
part of (c) follows from the first

We prove (d) and (e) together. Starting with (e), if S C A, then the pointwise join
of the nuclei c(S) is clearly gi~en by c(V S), which, since it is a nucleus, must be the
join of c(S) in NA. Sinillary, if F C A is finite, then the (pointwise) meet of c(F),
by the dual distributive law, is O(A F). Thus e is a frame morphism. It is obviously
mono since, for instance, r(a)O = e(b)O iff a = b.

Now back to (d), we have E)(0,a)Ae(a. 1) = 0(a, a) by 5.4(f), and so c(a)Au(a)
0; and we have (0, 1) EE6(0, a)oo, 1) C 8(0, a) V (a,1), and so c(a) Vu(a) = 1.
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Thus c(a) and u(o) are complementary. Since c is a frame monomorphism a and b
are complementary in A iff c(o) and c(b) are complementary in NA But complements
are unique and so this is iff c(b) = u(o), or c(c) = u(b), completing the proof of (d)

To finish off (e), we observe that an. two frame morphisms out of NA that agree
on c(A) must also agree on u(A), since by (d) these are the complements of the
elements c(A) Therefore. they must agree on all of NA. since this frame is generated
by c(A) U u(A) Thus c A - NA is epi If c is an isomorphism in particular onto.
then for every a E A. s(a) = c(b) for some b E A, and so a is complemented by
(d) Hence A is Boolean Conversel), if every element of A is complemented, then
u(A) = c(A) and so NA is generated by c(A) alone. But c(A) is already a subframe
of NA, and so c(A) = NA and c is an isomorphism

(f) By (c), u(a) _<j iff j = I But j preserves finite meets, so for any finite set F,
Vu(F) 5 jiff Va E F u(a) 5 3 IffVaE F ja= I IffJ(AF)= I Affu(AF) 5i
Thus Vu(F) = u(AF) by Yoneda (3 3) For the other part, we simpl) recall that
meets of nuclei are pointwise and appl) 7 2(o)

15.2. Discussion. The nuclei c(a) are called closed, and the u(s) are called
open, because they correspond. through the duality Loc = Frm p , to open and closed
sublocales of the locale 4 Note that. since

a- (z - y) = (a A)-y = (a A(a - r)) -y =(a -z) - (a -y),

the nucleus u(u) preserves arrow, we already know (7.2(n)) that it preserves meets.
Thus, since arrow and meets are the same in A,(.) and A (13.5), the quotient map
u(a) - A - Au(.) is open in the sense of 10 3 Conversely, it can be shown that if

A - A, is open, then j = u(a) for some a G A (in fact, = A{ZEA jz = 1))
By (a) and (b), the intervals [b, 1] and (0, a] are quotients of A, with quotient maps

z - b V z and z -. a A x By (c), the fact that every congruence is a join of principal
congruences can be expressed with the formula

= Vc(a) A u(4). a } (1)

15.3. Quasiclosed nuclei. By 15 2(1), every nucleus is generated from "below"
by open and closed nuclei We now look at nuclei that generate from "above". Recall
from Proposition 9 18 that the operator q1(a,a), where qr(a,a)(z) = z - a. is a
nucleus We denote this nucleus more simply by q(a), and, following Johnstone [25].
we call such nuclei quasi.closed. The basic properties of quasi-closed nuclei are given
in the following result

Proposition. Let j be a nucleus on A and a E A
(a) fixq(a)= (-s zEA).
(b) :<q(a) iff joa
(c) j=Av(a) jas=).
(d) A, is Boolean zffj = ()O).

PROOF. Every element z - a is a fixedpoint of q(a) b 7 2(1) Contersely, if
a - --- b, then b = 5- a for T = a -b, proving (a) Part (b) is just (1) of
Proposition 9 18 Since nuclei are determined by their fixedpoint sets (cf., 13.2), a
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simple argument derises (c) from (b) For (d), we recall that a frame is Boolean iffevery
one of its elements is regular (7 5) Thus, by 13.5, A, is Boolean iff (ja-.jO)-JO = Ja
for all a G A But ja -jO = a - j0 by 9 11, and so (c) follows

15.4. Discussion. It follows from part (a) of the Proposition that fixq(a) is
the smallest maxset containing A and therefore (b), read in terms offixedpoints, says
something obvious. a E fix3 if" fixq(a) C fix.. Similarly, (c) becomes an obvious
statement about (unions of) fixedpoint sets. Also. note that (c) is the "completeness"
result for nuclei, analogous to the results of 9 21, that was alluded to in 9.18 Part
(d) says that the Boolhsn quotients of A are precisely the quotients A,(,), for a E A.
since q(a)O = a And since every frame quotient of a Boolean frame is Boolean (as
frame morphisms preserve complements), it therefore follows that the set

Q={q(a) aEA) (1)

is an up-closed subset of NA
A special quasi-closed nucleus is double-negation, q(O), so-called because q(O)a =

-a We often write A-_- for As~5 ) Note that, since A(a) a. it follows from 13.5
that (A,(.))_ = A,(.) (apparently explaining the term "quasi-cloned") A nucleus I
is called dense if jO = 0. It follows from part (b) that I is dense iff j ! q(0)

1.5.5. Calculation with special nuclei. We now collect together the rules we
will be using for calculations involving closed, open, and quasi-closed nuclei

Proposition. Let I e NA and a e A.
(a) J v c(a) = j o c(a)
(b) u(a)Vj=u(a)oe.
(c) j -*(a) =q(ja -a).

(d) jVq()=q(.a-a).

PRooF. For any nuclei J1, j2, and k, if ji _5 k and j2 -< k. then . 032 . k by
9.2(b). Thus, if one can sho% that il 0 12 is a nucleus (in fact just idempotent), then
it oh2 = 1v Vj2

Now, since aVj(aV r) 5 j(aVz), we have 1(aVj(aVz)) 5 j(avz) by 13.2(iii), and
so joc(a) is idempotent. proving (a) And since, by extensionality of l, a-j(a.jz) =
a - j&z = - r, u(s) o. is idempotent, proving (b).

To prove (c), let k e NA be arbitrary Then k <_ - q(a) iff k A j :5 q(a) iff
(k A j)a 5 a, by 15 3(b) But

(k AI)a = ka A Ja = .(ja - a) A ja,

by extensionality of k, and so, continuing the chain of equivalences, (k A ))a < a iff
k(ja - a) 5 ja -. a iff k < q(ja - a), again by 15.3(b). Thus (c) follows from Yoneda
(3.3).

For (d), we observe that, since j Vq(a) a q(a) and Q is up-closed (15.4), jVq(a =
q(z) for some z; we must only show that z = ja - a. First, since ja - a C fixj by
9 22.1, j:< q(ja-a). And since (ja-a)-..a = ja-a, g(a) q t(ja-a) by 15.3(b),
and thus j V q(a) 5 q(oa - a) Conversely, we need to show that if ; V 9(a) <_ 9(z),.
then ja - a !5 z this will suffice since z < y whenever q(:) < q(y) (which means
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y = y by 15 3(b)) So suppose 2- is such that ): = z and r -a = z Then since
a < z and both 3 and - - a are monotone, we have

ja- a !5 jZ - as = z- a = z,

as required

1i6.6. Some higher identities. Some of the nucleic identities we wvill need later
involve the second assembly of A. namely N2A - N(NA). Elements of this frame
are nuclei on NA, and we denote them with capital letters J, K, -First we prove a
Lemma, which should be thought of as a continuation of 7.4

Lemma. Let jbe a nucleus on a frame A. and let b1 G A be Booiear, Then
3 = 6v JO

PROOF We clearly hase 6 5 it. and 30 !5 jb, and sio b V jO < jb Conversely
by 74(a), b< bVjO iff(b-0)A36 <jO But this follows from the extensionality of
j, since (b - )A lb =(b -0) AjO < jO.

15.7. Propostion. Let a E A and J 6 NWA. Then the followcing hold
(a) (JO)a (Jc(a))O
(b) c(c(a)) = u(si(a))
(c) c(ii(a)) = u(c(a))
(d) q(q(a)) = c(q(a))

PatooF (a) Since c(a) is a Boolean element of NA by 15 1(d), we can use
Lemma 15 6 and 15 5(a) to get

(Jc(a))O = (JO V c(a))O = (JOeo c(a))O (JO)(c(a)O) = (JO)a

(bc) Since c(a) and ti(s) are complements of one another by the first part of
15.1(d), both (b) and (c) follow directly from the second part of 15 I(d)

(d) For any j E J, we have, by 15 5(c).

qqa)=(j- I(u)) - q(o) = q(;a - a) - q(a) = q((o (ja - a)) - z

Now, by 9 7.1, (a -(Os - a)) -s = (js - (a -a))-s (js -a) -a But,
by 15.5(d). q(ja - a) =jV q(s) = c(q(a))j, completing the proof

16. The functor N and its universal property

16.1. Recall from 5 3 that for e~ery frame morphism f A - B, there is
an aditinction e o (f x f) I~ (f xi f)- between Con A and Con B, which -ve will
%rite here as NJ -t (NJ'). . the left adjoint of which takes a congruence on A to the
congruence generated by its image snder f is B, aod the right adjoist of which takes
a con~gruence on B to its inverse image under f We also write NJ -4 (Nf). for the
associated adjunction between NA and NB and between Max A and Max R
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Proposition. For eier frame iorphirni f 1,- 8, the map Nf -NA - NB is
also a frame morphism. and in this way N becomo~ a f'.mctor Frin - Frm. For every
a E A we have

(NI)(c(a)) =c(jf(a)) and (Nf)(u(a)) = uvffl )).()

in particular, the morphisms CA A4 - NA are components of anatuw- t.ansOrna"won
from the identity functor to N

PROOF Since (Nf' )(E)(a,b)) = E~ffla),ffb)), and since f preserves 0 and 1, the
equations of (1) are clear by 15 l~ab) Also. since f preserves binary meets and joins,
the formula 5 4(f) shows that Nf preserves binary meets of principal congruences
But every congruence is a join of principal congruences, and so the meet of any two
congruences can be reduced, via frame distributivity, to ajoin of aset of binary meets
of principal congrutnces Now Nf preserves joins, since it is a left adjoint, and it
preserves binary meets of principal congruences. as observed above thus it folio. that
Nf preserves all finite meets, and hence is a frame morphism It is straightforward to
verify that fr - Nf is a functor.

The statement about c being a natural transformation follows from the first equa-
tion of (1), which is exactly the naturality condition.

16.2. The universal property. The frame NA anid the embedding CA
A - NA can be characterised independently of representation by the ("universal")
property that every element of A becomes freely complemented in NA. Since it doesn't
involve any extra effort to prove a more general theorem, we construct the universal
complementation of an arbitrary subset S C A;. the stated result about NA then
follows by taking S =A.

Theorem. Suppose A is a frame and S C A.- Let NSA be the sub frame of
NA generated by c(A) U u(S), and nowe that CA -A - NSA. Then, given a frame
morphism f A - D such that f(s) is complemented for every 8 E S, Acere exists a
unique framemorphism 7 NSA - B uch that .f=f7 CeA.

PROOF Since every element of NSA4 is generated by images of elements of .4
and (some of) their complements, the morphism CA -A - NsA is epi, as in 15.1(e).
Thus, the required morrl sm 7, if it exists, is unique. I't show existence, consider the
morphism. Nf NA - NB By 16 1(1), we have (Nf)(c(a)) =c(f(a)) for all a 9_ A;
and - ice every element f(s) is complemented in B, with complement -f(s), we have
(Nf)(u(s)) =u(fr(s)) = c(-f(s)) by 15.1(d). Thus, the image of the generators of NSA
under Nf is contained in cit(E), which is a subframe of NB (and is isomorphic to B,
since ca is mrono). Hence (NI)(NsA) C cB(B), and we can take 7 = cj' o (N Q;NsA .

16.3. Although we have deflned NjF and (Nf). in terms of congruences, these
operations have nice descriptions in terms of nuclei and maxsets, as well Recall (13 9)
that core M, f.~r a meet-closed subset M C A, is the lairgest maxset contained in M.

Proposition. Suppose f A - B is a frame morphism Then,
(a) (Nf)(U), for .t E NA, is the smalest nucleus k on B for which f(ja) 5 kf(a),
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for al) a E A.
(b) (Nf). (k) = !k] for eseri k- E NB,, tshrre ilt1 ;s the nudfeus3 on A dr-fiud by

(kLa f.(kf(a)) (a E A); l

(c) (Nf)(.4f) = coref)iM for esers' ilE Max A -and
(d) (Nf). (N) = f. (N) for every N E Max B

PROOF (a) Givens . E NA, consider NJ on the congruence 0 E Con A associated
to j Clearly, 9 = e(((a. jo) a E A)). and so (Nf)(0) =e9Q(f(a). f(ja)) , a E A)),
But this is easily seen to imply (a)

(b) Given k- E NB we again consider the associated congruence V, E ConB The
nucleus (Nf). (k) takes a E A to the largest b E A such that (ab) E (Nf). ( )=
(f x f) -I(,P), or equivalently (f(a) f(b)) E ;' But if a < b. then (f(a), f(b)) E 0'
exactly when f(b) !5 Lf(a) o, by adjointness. b < f.kf(o)) The largest such b is,
of course, f.(kf(a)), proving (b) (Note that it follosfromn this line of argument that
[k-] actually is a nucleus on A)

We prove (d) before (c) Note that (d) will follow from (b) if we can shoss that, for
every k E NB, f.(fix k) = fix [k] Suppose kib b Then, since f. and k- are mostone
and f(f.(6)) :5 b b.N adjointies

[k)f.(b) = f.(kf(f. (bs))) f.(kb), = f()

showing that f.(6r) E fix k Conversely, suppose that [k]a = a, ise, f.(kf(a)) = a
But kf(a) E fix k, and so a E f.(fix k), as required (Again, it follows from this line of
argument that f.(A) is a maxset on A For a direct proof, use 10 7 )

For (c), let M E Max A, and observe that liif)(M) is the least NVE MaxcB with
M < (Nf). (N), i.e., ssing (d), Mf D(Nf).(NV) = f.(N) This is equivalent to the con-
dition N c (f.)-I (.kf), and since %~f in meet-closed and f. preserves meets, it follows
that (f.)-1 (M) is mneet-closed, and so the required V, by 13 9(c), is core (f.) 1

'(M)

16.4. We finish this section with a few preservation properties of ethe functor N1.
Recall that a nucleus jE NA is dense if 10 = 0. We say that a frame morphism,
h -A - B is dense if h.(0) = 0, or equivalestly, hi(a) = 0 implies a = 0 Thus h is
dense just in case the nucleus associated to ker hi is dense

Proposition. Suppose that f A - B is a franie morphismn Then,
(a) If f is or'so, then NJ is onto,
(b) If f is ,. then NJ is epi. and
(c) f is mono if and only if NJ is dense

Also, the functor N Frm - Fain preserves products

PROOF (a) If f is onto, then by 161l(1), (NI)(c(Al) = r(B) and (Nf)a ~
u(B) Since NB is generated b) c(E) U u(B), this proteg that NJ' it onto

(b) The preservation of epis is elementary category tlieor , if 1 is epsl, ther, since
cB is ep:, we have that cB o f = Nf CcA is epi, ind so Nf is epi

(C) If A = 0 is the identity congrutnce on B, then ob-iously

(NJ ).(Ab) = (f x f)-'() = kr f.

ADA289360



17.2 5 The assembly tower 77

which is 0 it f Is mono
Finally, by 11.11, congruences on frame products are products of congruences on the

factors In addition to this. we need only observe that the projection from a product
of congruences to one of tie factors (0 - 0, in the proof of 110) is the same as the
direct image of the congruence under the projection mapping (i e, (Nx,)(0) = 6,)

17. The assembly tower of a frame

17.1. The construction. Let A be a frame We construct an ordinal sequence
{NOA ' a E 3) of frames and a doubly-indexed ordinal sequence {co -NOA - NOA I
3.o E 0, d < a) of frame morphisms. together called the assembly tower of A, by
simultaneous ordinal recursion For the frames. we set

N5A = A,

N . = N(N*A), and

N' = coim NA, if A is a limit,

where more explicitl), the diagram D over which the colimit is taken is indexed b
the ordinal A and has Do = N*A for a < A and D(O - a) = c for t S< a < A. For
the morphisms, we set

c*= idN A,

c = the canonical injection NI.4 - Iim,< NaA,

when A > 0 is a limit, and

eA" the mediating morphism determined by {fc 0 < A),
when A <a is a limit.

By induction, note that, for all -y < o < a, q* = c* oc . When more than one
frame is being discussed, it may be necessary to add an extra subscript, as in (CA)O
and (cB) , to distinguish between the morphisms. On the other hand, we write C* for
cO and (as usual) c for col whenever possible

If /: A - B is a frame morphism, then we define Nf : N*A - NOB by recursion
as follows: N°/ = f, NQ.+f - N(N0 !), and if A is a limit, then NAf is the mediating
morphism determined by {(cB) o Na! a < A}. It is easy to see by induction (using
,he universal property of the colimit at Lmit stages) that each NO becomes a fuictor
Frm - F-m. We can again show by induction that if 3 < a, then

N f 0 (cA), = (ca)*s0ff, P1)

and so c* becomes a natural transformation N' .- NO. We also note that

(rNIA)P = (CA)Y,+, and N'((CA)*) = (cA)0+, (2)
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17.2. Here are a few more facts about the assembl. tower of a frame, also, of
course, established by induction

Proposition. Suppose A is a frame and the assembly tower of A is constructed
as above Then the following hold-

(a) For all ordinals *,.8 with 8 5 o, the morphism c,' is both mono and epi
(b) For every morphism f A - B, where B is a Boolean frame, and ever~y

ordinal o, there exists a unique frame morphism 7 N*
A - B such that f = 7 o c*

PROOF (a) By the first equation of (2) above, we can assume that 8 = 0 For
any A, CA is mono and epi by 15 1(e), and compositions of monos or epis are likewise
monoor epi Thus (a) will follow by induction ifwe can show that limit-ordinal-indexed
colimits of monos and epis are mono and epi For monos this is just Corollary 12 8
For epis, this follows from the universal property of the colimit in detail, if A is a limit
ordinal and D A - Frn is a diagram with cohmlit cone v D - A eolimA D. and if
f,g colimA D - A are morphisms such that f v0 = g o vO, then for every ordinal
a < A, we have

f o vo o D(O - a) = foO o = go o'0 o D(O - a),

and thus, since D(0 - a) is epi, f o ia = g o va Setting ra Do - A to be this
common value results i a cone r D - AA, and since both f and g are mediating
morphisms with respect to r, we have f = g by the universal property of the colimit

(b) Each c* is epi by (a), so any such 7 will be unique Morphisms fo N*A -
B, o E 0, can be constructed by recursion on a by setting f0 = f, using the
universal property of N (16 2) for all successor ordinals (since every element of B
is complemented), and using the mediating morphism from the cohmit for all limit
ordinals Uniqueness is guaranteed by the universal properties of N and colimits.

17.3. The reflection problem. Since oBa is a subcategory of Prm, 17.2(b)
implies that, for a frame A, if N*A is Boolean for some o, then NA.4 (along with the
morphism c

o
) is a reflection of A into eBa In this case, ee say simply that A "has a

reflection" Gaifman [9) and Hales [14) showed independently that (in our terminology)
the free complete Boolean algebra-class (with unary negation and joins of every arity)
on a countably mnite set is a pioper class, Thus, since the reflection of F(w), if
it existed, would be the free cBs on w, the frame F.( ) has no reflection, and its
assembly tower gross arbitrarily large The reflection problam is to characterize those
frames with reflections

17.4. Exercises.
17.4.1. Use 16 4 and Exercise 12 9.1 to show that, for every ordinal a, the functor

Na preserves products
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18. The assembly tower for n-frames

18.1. The a-assembly. Throughout this section, we let t be a fixed regular
cardinal

The universal property of N on Prm can be easily generalized to -c-Frm Thus,
for a i-frame A. we let d4 A - BA be the result in o-Frm of freely complementing
the elements of A This can be constructed as a quotient of a free extension of A
by new elements {' a E A) , where we divide by (the congruence letermined by)
equations saying that a' is the complement of a A concrete description of this K-
frame is given by the following result, which moreover shows the close relation B has
to N.

Proposition. Suppose A is a te-frame. Then Con A is a frame and BA is the sub-
ic-frame of Con A generated by the principal congruences The morphism d A - BA
isgiven by dA(a) = O{0 a) and for anymorphism f A- B, Bf s therestiction to
BA of the Oom-preserving) function Con A - Con B taking a congruence on A to the
congruence generated by its image (under f x 1) on B. The morphisms dA : A - BA
are mono and epi and are the components ofa natural transformation from the identity
functor to B

PROOF See [32), 5 1 and 5.2. The statements not proved there may be proved
entirely analogously to the corresponding statements about N.

18.2. The i-assembly tower. Just as with the assembly tower for frames, we
can iterate the functor 8 to produce an ordinal sequence {BO • a 0) of functors and
a doubly-indexed sequence {d# 80 - B0 18, a E 0, 9 _5 a} of natural transforma-
tlions, and this sequence will have properties analogous to those of 17.1(1,2) and 17.2.
However, when it comes to the reflection problem, there is an important difference:
since the ordinal i (by regularity) is i-filtered as a category and ,-Frm is locally
ic-presentable, the colimit used to construct BIA is just the union of the BOA for
01 < I (assuming that we identif) each ic-frame in the tower with its image under d)
Thus the result is a Boolean A-frame, and it follows that the full subcategory le-cBa
of i-complete Boolean algebras is reflective, with reflection functor Ba.

We mention one additional connection with the functor N.,

Proposition. Let A be a frame. Then for every ordinal a there is a unique
ic-frame morphism e* : BOA - U.IN*A such that UIc = eA o dO.

We remark that eA is proved to be a monomorphism in 28.6.

PROOF. The morphism eA is constructed by recursion, as follows We start with
0 = id4 . Next, if et BOA - U.NOA is defined, then every element in BOA

becomes complemented in U.'N0
4

IA via the morphism U.4c+' o eA, and so we take
eA*" to be the unique morphism guaranteed by the universal property of B. Finally,
for limit A, we define el to be the mediating morphism corresponding to the cone

{VC, o '<

18.3. The category n-cBs. We have just seen that t-cBa is a reflective
subcategory of ic-Frm The advantage of this stems from the following result of
Lagrange (28].
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Theorem. In the category h-cBa.
(a) the pushout ofa monomorpbzsm along any morphiS$rm:smono, and
(b) every epi is surJective

18.4. Foundations: oc-Frm and oo-cBa. We recall from 6 6 that we may
assume the existence of an inaccessible cardinal x (equihalently, we ma. assume the
existence of a single universe U. and let x = UI) and restrict our attention to small
frames, e , those of cardinality less that oc, thereby making Firm a full subcategory
of oo-Frm In addition to making possible a uniform treatment of frames and c.
frames, we also have the fact that oc-"rm contains oc-cBa as a reflective subcategory
(whereas cBa is not reflective in Frin), and this allows us to bypass an excursion
through x-Ft-m, and the choice of a sufficientlN large regular cardinal, to give a more
straightforward proof of Theorem 28 5 in Chapter 8

However, since the only properties of U (or oc) we use are of the kind axiomatizable
using the predicate S, the work of Feferman shows that anything we prove about frames
using these assumptions and restrictions has a proof without them Thus, the use of
oo-Frm is really a matter of convenience, and, to illustrate this point, we give in 28 6
an alternate proof of Theorem 28 5 without any extra assumptions or restrictions
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Chapter 6

REGULAR OPERATORS

This chapter builds on the material in Chapter 3 on extensional operators using the
information on frames and the assembly tower of a frame, as developed in Chapters 4
and 5. After the basic definitions and examples in Section 19, and the observation
that the set RA of regular operators on a frame A is a cBa, Section 20 introduces the
regularity ordering and stable sets, which are the key to understanding the properties
of regular operators and developing their applications These notions are thoroughly
studied in this section and then, in Section 21, used to establish the many properties
of regular operators In Section 22. fixpomts sets of regular operators are characterized
as being the complete filters in the regularity ordering, and this characterization, in
addition to being a culmination of work on fixedpoint sets of logical operators started
in Chapter 3. is also the base for establishing the relation between regular operators
and the assembly tower, which is the subject of Section 23. This section begins by
establishing a formula for joins of nuclei, and then proceeds to show that RA is iso-
morphic to the double-negation quotient of the second assembly N

2
A. In this way, a

canonical Booleanization of A is given a concrete description by operators on A The
rest of the section is devoted to giving a formula for double negation on N2A in terms
of operators, and then using this formula to show that double negation is an open
quotient Finally, in Section 24, it is shown how RA is a limit of a diagram consisting
of all of the Boolean quotients of A

19. Extensional, logical, and regular operators on frames

19.1. Definitions. Throughout this chapter, A will denote a fixed frame.
Recall that an extensional operator on A is a function I , A - A satisfying the

equivalent conditions of Proposition 9.4. and that a logical operator is an inflationary
extensional operator As explained in 9.17, it follows from 9.13 and 9.20 that the class
of extentional operators on A. ordered pointwise, has pointwise meets, joins, and arrow,
and hence is a complete Heyting subalgebra of the cartesian power AA. By definition,
an extensional operator I is logical if IdA :5 I, and therefore the logical operators also
form a frame, being the closed quotient [idA, 1) (cf., 15.2) of the frame of extensional
operators Meets and arrow in the frame of logical operators are the same as those of
the frame of extensional opearators by 13.5, i e., pointwise. (Non-empty joins are also
pototwise, since it is a closed quotient )

We define a regular operator on A to be a regular element of the frame of logical
operators, and let RA be the set of regular operators on A, ordered posotwise Thus,
a regular operator r satisfies (r - IdA) - idWA = r, or

ra=(ra-a) -a (aEA) (1)

It follows immediately from 15.3(d) that RA is a cBa, and (again from 13 5) the meet
and arrow operations on RA are poiotwise.

81
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19.2. Examples of regular operators. Since (z - a)- a = x - a for any
elements z and a of a frame A. the following is an eas) consequence of the definitions

Proposition. Let I be an operator on A. and define operators ' and 7 by

l'(z) = Ix - z (z E A)

and
(z) = "(r) = Iz - z (z e A)

If I is extensional, then I' and 1 are regular operators

We note that the con'erse is also true, because every regular operator r has the
forms I' and 12 for the extensional operators 11 = r' and 12 = r, since (r')' =
by definition

19.3. Corollary. For an.s a E A, the following are regular operators
(a) u(a)x a -x
(b) Z(a)r (a V x) - x = a - x.
(c) '(a)z= (-- a) -r.
(d) T(a)r (: (-a)--x

Note that we have written Z(a , q'(a), and ?(a) instead of the more correct (a),
q(a)', and q(a) Later, we will be treating a, q', and V as functions A - RA, and so
this notation is more appropriate

20. The regularity ordering

20.1. Regularity. Recall that an element 6 of a frame A is called regular if
b - 0 = b Our main notion is a generaliration of this

Proposition. If a and 6 are elements of a frame A, then the following statements
are equivalent

(a) b is regular in A,(,) [a, 1]
(b) b--a = b
(c) q(a) 5 q(6).

If these statements are true of a and b, then we say that b is regular over a, and
write b _ a or a < b

PaoOF The frame A,(,) = [a 1i has a as its least element, and its arrow operation
agrees with that of A by 13 5 It follows that (a) and (h) are equivalent

Next b - a = 6 means that b is a fixedpoint of q(a), and this is equivalent to
q(a) < q(b) by 15.4(b), thus, (b) is equivalent to (c), and the proof is complete.

20.2. Here are a few simple facts concerning the relation <

Proposition. Suppose A is a frame and a, 6, c E A. Then
(a) (A, -_) is a pavtal order (which ise denote A!) that is isomorphic to the

subset Q = (q(a) -a C A) of NA with the induced order
(b) a 6 implies a < b
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(c) a:b impies (6-a)- = 6
(d) a4_ and a<b<c implyb<c.

PRooF. Since q(a)D = a for all a E A, the map q . A - NA is 1-1, so (a) follows
from 20.1(c).

Suppose that a 9 b Then b = 6-- a >- a. and so 6 > a, which pro;es (b
Furthermore, since a - 6 = 1, we hae. by 9.7.5.

(b - a) -b = (b- a) A (a -6) = b- a = b,

which proves (c)
Finally, suppose that a _ c and a < b < c. Then by the (anti-)monotonicity

properties of - it follows that

(c -6)-b < (c-6)-c ! (c- a)- c

But (c - a) - c = c by (c), so that c - b < c and thus b c. proving (d).

20.3. Upper sets in A5. If a E A, the up-closure of a in A9. which we
denote a, is defined as usual by

a = {b. 6 C_ a}.

By 15.3(a), it is clear from the definitions that fta is none other than the maxset fix q(a)
of A, and thus, by 15.3(d) is a cBa. Being a msaxset of A, it also follows that ta is
meet-closed'

saforallsES implies AS a. (1)

20.4. Stable sets and elements. We will call a subset S C A stable if it has
a lower bound in A

5 , i e, i there exists a E A such that a - s for all a E S. Notice
that by this definition all one-element subsets, as well as the empty subset, are stable.
Given two elements a,6 E A, we indicate that {a, b) is stable with the notation a - b.
Finally, a subset S C A is pairmwse stable if a - 6 for all a, b E S, and fintely stable if
every finite subset of S is stable (these two notions will be shown equivalent in 20.10).

20.5. Propostion. Suppose S C A is stable. Then the meet of S in A
- 

exists
and is equal t AS

PROOF. Let so be such that so 4 s for all a E S. Then

so_AS (1)

by 20.3(l) Thus it is enough that AS < 
s for all s E S. But this follows from 20.1(d)

and the sssumption Vs so < s, because for any s E S we get

so <AS_<s

by applying 20.2(b) to (1)
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20.6. We can characterize pairwise stability as toliocs

Proposition. The following statements are equivalent for elements a and b of a
frame A

(a) a-h
(b) (a-b)-a =a and (b-a),-b=b
(c) a-b= b-a

PRooF By 205 (a) is equivalent to the conjunction of a C a AbI and b C a Ab
i.e ,to

a-(aAb)=a and b-(aAb)= 6.()

But (1) is equivalent b 9 7 2. to (b)
The equivalence of (b) and (c) is shown by the following chain of equivalence$

where we have used 9 7 5 between the second and third lines

(a-b)-a=a and (6-a)-b~b

(a-6)-a (a and (6-a)-b<6

(a-bA~b-)~a and (b-a)A(a-b) 5b

ci-b<b-s and h-a<a-6

a-b~b-o

20.7. The relation between 4 and A. We formulate a general relation
between A and :9 from which we can dlerive several others b~y nstantiation

Proposition. Suppose A is a frame and a. b. c, d E A are such that

a~b and c~'d.()

Then

aAcI>6Ad iff ((a-.d)-a)A((c-6)-c) <sAc

Pacor Assume (l), and note that a >bAd and c abAd Then the restf
follows easily from this calculation

(aA c) -(6 Ad) = (a -(b Ad)) A(v -(b Ad)) by 97 4

= ((a-(hAd))-.a)A((c-(bAd))-) by 9.6(d)

=(((a -6)A (a -d)) -a) A(((c -) A (c -d)) -c)

((a d)- a A (c -b) c)by 20 2(c)

20.8. Corollaries.
(a) lfa 6~, then oArO bAc iff(r-6)-c<o-c.
(b) faVb> a, then 6>aAb
(c) If a>b and at~r, then a~bAc
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PROOF (a) Suppose a _ 6. Since c > c, we can use the Proposition to get

aACC>bAc iff ((a-c)-a)A((c-b)-c)<aAc

The latter is equivalent by adjointness to

(c - b) - c < ((a - c) - a)-. (a A c)
=(a - (a A c)) -. (a A c) by 9.7.2
=a - (a Ac) = a - c

(b) We can use (a) on a V b > a and 6 to obtain b > aAb, ifwe -an show that
(b- a) - b <(a V 6)-b = a -6 But this follows trivially from the anti-monotonicity
of---b

(c) We can apply the "ropostion to a > b and a 2> c, to obtain a : bAc. if we can
show that

((a - c) - a) A ((a - b) - a) 5 a

But both expressions on the left are equal to a by 20.2(c , so this is trivial.

20.9. Discussion. If we call an interval (a, b] regular if a < b, then 20.8(b)
says that the set of regular intervals is closed under downward transposition It is
not, however, closed under upward transposition, let 3 be the three-element chain
(0 < 1 < 2) and A = (3 x 3) - ((0,2)) have the induced ordering. Then the interval
[(0, 0), (0,1)] is regular, but this projects up to ((1,0). (1,1)], which is not regular.

If, in analogy with 20 3, we define

#a = {c. a c,

then 20.8(c) and 20.2(d) say that ,4a is a filter in [0, -]
(a) a e 4a,
(b) cEI:a and <b< a imply bE4La;and
(c) c,dE4a imply cAdE4la

20.10. The stability of a set is not )n general determined by the stability of its
finite subsets. For example, consider the subframe of (Pi, C) consisting of 0 along
with all the cofinite subsets of w (i e , those X such that w - X is finite). Then every
finite subset of S = Pw - JO) is stable (over its intersection, which is cofinite), but S
is not itself stable (since no element of S is stable over 0)

However, using 20.8(c), we can show that finite stability and pairwise stability are
the saine

Propostion. A subset of frame is pairwise stable if it is finitely stable.

PROOF. That finite stability implies pairwise stability is trivial: we prove the
converse. Suppose A is a frame, S C A is pairwise stable, and S,. ., s E S By
pairwise stability and 20.5, 5, L s, As, for every I _< i,j :5 n It follows b) repeated
applications of 20 8(c) that

$i sl^ A ^A ,, (I <30< nj.
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Thus {sl ., s,) is stable

20.11. Joins and arrow in A., The set Q of 20.2(a) is up-closed, as observed
in 15 4. Thus, every non-empty subset of AS has a join If a,b E A and S C A is
nonempty, then we denote the join of a and b and the join of S in A9 b . respectively,

ovb and VS

Another consequence of Q being up-closed is that it is closed under the arrow
operation of NA This induces an operation on A! which, for a, b e A, we denote

a -ob

Proposition. Suppose a,b E A Then

a 7 6 = (ao-6),-a =. (b- a)-b a- -z, ,(I)

where x is any element of {a, b, a A b, a V b. and

a -, 6 = (b - a) - 6 (2)

Pitoor The first to equations in (1) follow from 15 5(d)

q(a) V q(b) = q(q(a)b - b) q((b- a) -b),
q(b) V (a) =(q(b)a - a)= 9((a -b) -a)

We get the last equation in (1) by calculating

((a -- ) a) -a =((a -b) -a)-(a -) b) 9.6(d)

= ((a -6) A ((a - 6) -- a)) -- b
((a- b) A (b -a)) - 6 by 9 6(b)

=(a - )-- V. by 9 6(a)

We get (2) from 15 5(c).

q(a) - q(b) = q(q(a)b - b) = q((- a) - ).

20.12. Here are some basic facts about V and -o.

Proposition, Suppose a b E A. Then,
(a) a 9b iff a-*b= I
(b) If a2 borit a-6, then a-o6=a - and aVb= a-b
(c) Ifa -b, then a b iffa:9b
(d) (aVb)-ea (aVb) a=b..- a.(e) au A b)- c (a - c) (6- c).

Note: It will follow as a special case of 21 2.8 that both - and -o disrr;bute over
V
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PRooF Since I = a -. b = (b - a) -b Ib a < b, (a) is clea.
Next, note that, b. 20 11,

a Vb =(a-eb)-.b (1)

Ifa > b, then b-a= I,so that b-a=a and thus

a -0b = (b- a) - = a -b;

ifa -6b, then b-a=a-6 by 20.6,sothat

a -o6= (6-- a) - (a-. 6)-b = a -b

In either case, a -. b = a - 6, thus, we also have, by (1),

a V b= (a-)-b = (a -b)-b

Therefore (b) holds
Ifa -b. thenby(b) a-*ba-- Since a< biffa-b= l and a<6 iff

a --0 b = 1 by (a), this proves (c)
The first equation of (d), follows from (b), the second follows from 20.11 since

(a V 6)- a = ((a - b) - a) - a = (a -6)- a = 6 - a

Finally, a - c - b -c, since both are regul& over c; thus

(a - c) v 7 c) = (a - c) .-,(b -c) by (b)

= ((a ,c) .c) by 9 7.1

= b-(a - c) = (a A 6)- c

Therefore (e) holds, and the proof is complete.

20.13. Infinite and relative joins in A! . We've seen that VS exists only
when $ is nonempty A closely related operation, which is defined for all S C A, is
the relative join: if a E A, we define the relativejoin of S over a. denoted V' S, by

S = (V S) -au=(, ,,  -a) -a (11

Notice that, by 13 5(c), 7 is just the join operation in the frame A,(o) The relation

between V and V' is spelled out in the following propostion.

Propostion. Suppose that A is a frame, a E A, ad S C fla is nonempty. Then

VS=V-S (2)

More generally, for any S C A, the operations 7 and 7' are related by the equationq

VS=V aVS, ifaES, (3)

S=V {a} U(S-a). (4)
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PROOF Observe that for any a and z in A, q(a)Z = z - a is the least element
greater than z which is regular over a It follows that V S is the least element
regular over a and greater than each s E S. Thus, if S C *~a is nonempty, then
since V SL sa for each sE S V S V2  

But, since 9 and < coincideon 1la
by 20 12(c), it follows that V* S is regular oser every a E S Thus VS = V* S

Now suppose S C A is arbitrary If a E S, then a 7 is nonempty, and so

VS = Va S = V a 7S

by (2), since a 7 S C a This proves (3) Finally, since

a C {a) U (S - a) C fa,

we can use (2) again to obtain

V{o} u (S - a) = V' {a U (S- a) (5)

But the second equation of (1) shows that to compute V' T, each a E T can be
ignored and each s - a E T can be replaced by s. Thus the right-hand side of (5) is
equal to V* S, and we have proved (4)

21. Properties of regular operators

21.1. A characterization of regular operators. As with the equation 9.11(2)
for nuclei, we can give a single equation characterizing regular operators

Proposition. The following statements are equivalent for an arbitrary operator r
on a frame A.

(a) r is a regular operator
(b) r(a-b)=a-rb for all a bEA

PRooF Suppose that r is a regular operator, and a, E A Then, since

b a--b _ < r(o - 6), (1)

we have

r(o- 6)=r(a- b)-(a--6) by(1)

= a - (ra -. ) -b) by 9.71
= a - r(a by ()

= a - rb by extensionajity

Thus (a) implies (b)
Suppose r satisfies (bh Let a, x, y E A and suppose that a - r = a - y Ther,

a - r = r(a - x) = r(a - y) = a - ry,
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thus, r is extensional by 9 4(d) It remains to show that ra - a <- ra for all a E A
But,

(ra - a) - ra = r((ra-- a) -a)

= r(ra - a)

=ra-ra= 1.

Thus, r is a regular operator. and (b) implies (a).

21.2. Basic properties. We now prove a series of results about regular opera-
tors. Looking over the examples in 19 3, we see that

a-.-, a--, asd av- (1)

are all regular operators, for every a E A. It will be iseful to keep these examples in
mind as we develop the properties of regular operators below (Some ofthese properties.
when applied to the operators in (1), are even somewhat surprising.)

In the following, A is a frame, I is an extensional operator on A, and r is a regular
operator on A.

21.2.1. (r is idempotent) r(ra) = ra.

PROOF. We have

r(ra) = r((ra - a) - a)

= (ra - a) - ra

= (ta -- a) - a by 9.(d), since rc > a

- ra.

21.2.2. (fixr is upward-closed) I ra = a and a 4 6, then rb = 6.

PROOF. We have rb =r((&-a)-- o)

= (b a) -- ra

21.2.3. l(ra) - ra = l(a) - ra.
This is another replacement principle we shall use frequently.

PROOF We have

l(ra) - ra = (ra) - (ra - a)

= ((ra -a) A I(ra)) - a

f ((ra- a) A (a)) - a by 9.6(d)

=I(a) -(ra- a)

(a) -ra.
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21.2.4. (r is <-monotone)
(a) a - rb iff ra c rb
(b) a <1 b implies ra - rb.

PROOF (a) Since a :9 ra, the "if" direction is just transitivity of < For the "only
if" direct.on, assume a - rb Then,

(rb - re) - ra = (rb- a) - ra by 212 3

= r((rb - a) -- a)

= r(rb) by assumption

= rb by 212 1

Thus ra - rb.
(b) If a - 6, then a 4 rb, and (b) follows from (a)

21.2.5. (Regular operators commute) Suppose r: and r, are any two regular
operators Then

rl(r2a) = rla 7 r2a = r2(ra)

PROOF. We prove the first equation. the second following by symmetry

ria V r2a = ((ria - r2a) - rza) - Pld

= ((a - r2a) - a) - rja by 212 3
= (r2 a - a) - ra because a < r2a
= rl((r2a - a) - a) = rx(r2a).

21.2.6. (r preserves stable meets) Suppose S C A is stable Then

rAS = ArS

PRooF Suppose that a - a for every a E S Then,

r AS = r(A(S- )- a)
= r((VS-a)-a)

= (VS- a)- ra
= A(S- a) - ra = A r((S- a) - a) = A rS

21.2.7.
(a) r(a A ,) = ((a - b) - ra) A (( - a) - rb)
(b) r(a A b) > rn A rb

PROOF. Since, by 9.T 5,

(a-b)-a=a-(aAbl and (b-a)-b b-(aAb), (1)
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it follows that (a - b)-a - (b - a)-. b Also.

aAb=(aAb).6-(aAb)

=(a-.(aAb))A(b-,(aAb)) by 97.4
=((a -b) -a) A((b -a) - b). by (1)

Thus. by 21.2.6, we have.

r(a A b) = r(((a- 6)- a) A ((b- a)-. b))
= r((a - b) - a) A r((b - a) - b)

= ((a - 6) - ra) A ((6 - a) - rb)

This proves (a), (b) is a trivial consequence of (s)

21,2.8. (r sub-preserves V)
(a) rVS-VrS (S C A).
(b) aVrb=raVr=raVb

Note that (a) and (b) can be combined into the following: If S = S1 U 52, and both
S and S2 are nonemptv, then

rVS = (VSI) V (VrS2).

PRoOF. (a) Suppose S CA ha so6E S,andso rsoErS. For any sE S, VS Ls,
so by 21.2.4(b), rVS > rs. Thus

rVS : VrS

Conversely, for every s E S, s :9 rs -VrS. Thus,

VSVs s. (1)

Now, rSo is afixedpoint of r by 21.2.1, and rso : VsrS Thus, Vrs is also a fixedpoint
of r by 21.2.2, and so we can use 21.2.4(a) on (1) to obtain

rVS 9 VrS.
(b) We prove the first equation, the second follows by symmetry. Since rb is a

fixedpoint of r, so is a V rb by 21.2.2. Thus, using (a),

a V rb = r(a V b) = ra V r(rb) = ra V r&.

21.3. Joins in RA. Suppose R C RA Since RA is Boolean. the De Morgan
laws (7.6) hold. Thus, using the fact that meets and arrow in RA are pointwise, and
the formula 20.13(1), we get, for every a E A,

(V R)a= (-R)a = (Ra - a) - a = V Ra
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Thus, we have the formula

(VR)a = Ra (a EA) (I)

If R is nonempty, then (1) reduces b3 Proposition 20 13 to

(V R)a = VRa (o E A), (2)

since then Ra is nonempty and each of its elements is regular over a. Thus, just as
with meets and arrow, joins in RA are calculated pointwise (provided we use V) We
also note the following

Proposition. For evei, ri, r2 E RA.

ri V r 2 =- o r2

PRooF This follows from (2), 1ith R = {r(.,r), and 21.2.5.

22., Fixedpoint sets of regular operators

22.1. Complete filters. We define a complete filter in a partial order (P, <)
to be a subset F C P that is up-closed and closed under whatever meets exist in P.
Note that if P has a largest element 1, then I E F for every complete filter F, since
it is the empty meet We denote the set of complete filters in P by CompFilt P and
order it by reverse inclusion. In this way CompFilt P becomes a complete lattice (since
arbitrary intersections of complete filters are clearly complete filters)

We continue our assumption that A is a frame

22.2. Proposition. If r is a regular operator on A,: then fixr is a complece
filter in A9 Moreover if r' is another regular operator, then

rr' implies fixr fixr'

PROOF That fix r is up-c!osed is just 21.2.2. Suppose S C fix r and A S exists in

A -5, i.e. S is stable Then, since r preserves stable meets by 21 2 6,

r(AS) = ArS = AS,

and so AS E fixr Thus fix r is a complete filter
For the second part, Ce simply note that r'a = a and r _5 r' implies

a < ra 5 r'o = a,

so that ra = a

22.3. Itegular operators from complete filters, The previous proposition is
one direction in an equivalence between regular operators on A and complete filters in
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A, analogous to the equivalence between nuclei and maxsets. For the other direction,
suppose F is a complete filter in AS. For a E A. put

F, = F r) fta = {b6 eF . a < 6)

Then we define the operator rF on A by

ra = ,. (1)
Proposition. If F is a complete filter in A

9
, then rp, as defined above, is a

regular operator. Moreover, if F' is another complete flter in A9, then

F C F' implies rF > rF,.

PROor Assume a, z, y E A are such that a * r = a - y, we then show that
a * rpz = a* rFY, establishing that rr is extensional by 9.4(d). Suppose b E F, If we
put 6' = bV y, then 6' > b E F implies ' 6 F since F is up-closed, and so V' E Fs
But

a *b=a*(bVz) since b > z
= a * (b V Y) by replacement

= a. *'.

Thus, %e have shown that for every b E F. there exists b1 E F. such that a*b = a*b'.
It follows that a * rpr > a * rpy. A similar argument shows that a * rpz _< a * rF
Thus rp is extensional

For iregularity, we simply note that, since each element of F is regular over a, it
follows from 20.3(1) that rFa is also regular over a.

For the second part of the Proposition, suppose F' 6 CompPitAg and F C F'.
Then, for any a 6 A, F. C F., and so rFa 2: rr, a. Since a was arbitrary, rr rr,

22.4. Proposition. Suppose A is a frame. Then,
(a) fixrp. = F,for aJl F 6 CompFiltA9,and
(b) rfix, = r, for all r E RA.

PRooF If a 6- A is a fixedpoint of rp, then since F, is stable and F is closed
under stable meets, it follows that a = rpa = A F, r F. Thus fix rp C F. Conversely,
if a E F, then a r F,, and so rpa = a and a E fix r,. Thus, F C fix rp, proving (a)

Next, suppose r is a regular operator on A, and choose a G A. Since r is idem-
potent (21.2 1), ra E fix r. Thus, since ra >, a, ra 6 (lix r).. If also b E (fix r)., then
rb = b L a, so that 6 ra by 22.2.4(a). Thus, ra is the least element of the set
(fix r).; hence, rfix,a = ta. Since a was arbitrary, rfix, = r, proving (b).

22.5. Theorem. The two operations
r fixr and F -s r

are inverse isomorphisms betmeen RA and CompFilt A9
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PROOF Put together 22 2 22.3, and 22 4.

22.6. Finally, we state for the record the consequence of 22 5 as it was pointed
out in 9 22

Corollary. The sets that can arise as the fixedpoint sets of logical operators,
or equivalently as the prefixedpoint sets of extensional operators. on a frame A are
precisely the complete filters in A9.

22.7. Meets in CompFiltA., We can easily adapt the results for meets in the
lattice of maxsets (14 2) to meets in the lattice of complete filters

Proposition. Suppose that T C CompFiltAf Then

AF=(.EA A ro=a)Fey
r

f{ A as 'r E Y for each F E 7, and tap F E E ) is stable)
FEY

=(AT TCUFandTisstable)
PROOF Analogous to 14 2, usng the results of this section, and t p i........s of

stable sets

22.7.1. Corollary. If S. T E CompFiltAS, then

SAT {s At. a ES and t E T)

PROOF For all s E S and t E T we have (see the proof of 212 7)

$At = ((a -t)-S) A ((t-s)-I) E SAT,

since (s - t) -- s - (t - st - t The Corollary follows

23. RA and the assembly tower

23.1. The embedding of NA into RA. Recall that a masrset of a frame A is
an arrow-ideal of A closed under all meets, while a complete filter in A9 is an arrow-
ideal of A closed under all stable meets. Thus, Max A C CompFiltA9 Moreover,
in both lattices, arbittary joins are given by intersection, binary meets are given by
"pairwise" meets (14.2 1(4) and 22.7.1), and the top elements are the same (namely,
the set (1)), hence, MaxA is really a subframe of CompFiltAS

Because of the isomoprhisms

Max A = NA and CompFitA! - RA.

the subframe inclusion of the previous paragraph induces a frame embedding NA -
RA This embeading is given b) j - j, where (recall 19 2)

ja = (ja-a- a (a E A), (I)
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since (1) gives a regular operator with fixI = fixj. by 9.22(a)

23.2. The right adjoint. The operation j - J, being a frame homornorphsm,
has a right adjoint. which we denote r - r".

Proposition. Suppose r is a regular operator on A. Then.
(a) fix r' is the meet-closure of fix r.
(b) ra=A{rb b>a)

PRoor. For (a), note that, by sdjointness, fixr* must be the smallest maxset
of A that contains fix r But, since fix r is an arrow-ideal, this maxset is just the
meet-closure of ix r, by 13.9(b).

To prove (b), recall from 13 2(c) that eveLy nucleus j satisfies

ia = {b E fix : b } >(_a

To show that the meet in (1), Aith j replaced by r', is equal to the meet in (b), we
therefore need to show that the two sets

b (E fix r' b > a) and {rb: b > a) (2)

are cofinal (i.e., have the same meet) Going right to left, since flxr C fixr", we have
a < rb E fix r whenever 6>_ a Conversely, suppose that b E fixr,b _ a By (a), 6
is a meet of fixedpoints of r, each of which (since r is idempotent and inflationary) is
of the form rc for some c ? a This completes the proof

23.3. Lemma. Suppose J C NA and JI,J2 E NA. Then,
(a) VJ (V7) ° .

(b) Jt-- j2 = i- T)V
PRoor. Since I - j is -1 we have (1)0 = for all j E NA; therefore, since

is a frame morphism,
V) = (J)' : V J.

Also, using Proposition 10.7,

Mi32) = ii - (2)* = h31 J2

23.4. Joins and arrow of nuclei. Using the Lemma, we can now take advantage
of the pomotwise formula for joins of regular operators (21.3), ard the pointwise arrow
operation, to get formulas for joins and arrow of nuclei-

Theorem. Under the hypotheses of the Lemma,

(VJ)a= A(AJb-b)-6= A((VJ)-6)-6 ("I

and
(it -)a = A ik-i2b (2)
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PROOF. By the Lemma and previous proposition (as well as 7 6 and 21 3),

(VJ)a = (V)* (-A-7)°a = A (- A-7)b= A (AJb -)-b ,
5, 5>,

The second equation of (I) is clear
For (2) we have, again by the Lemma and previous proposition,

(j - j2)a = (jT- )*a A T6- b

But

71b - Tb = T2(;b - b) = (b -b) = jib - T6,

thus. to establish (2) it suffices to show that the sets

{jb-2.b b>a) and {jb-) 2b.b>a}

are colinal. Now, since Tb > j2b for all b, each element on the left is greater than one
on the right. For the converse, we note that, since 12b E fixY,

i16 -,2b js(j2b) -J 2b = J (J2b) - T(j2b)

23.5. Lemma. Suppose A is a frame. Then, for any r E RA and a e A, we
have

r .V (a) = f(r).

PRooF. For any z E A we have

(r v (a))z = r(?(a)z) by Proposition 21.3

= r(a V z)

= roaz by 2128
= ?(ra)z

23.6. Theorem. RA - (N2A)...

PROOF Let f N
2A - RA be the unique extension (guaranteed to exist by 16 2

since every element of RA is Boolean) of the frame embedding NA - RA of 23.1
Since the latter is mono, f is dense by 16.4(c) As double negation is the only nucleus
that is at the same time dense and quasi-closed, it will be enough to show that f is
surjective--equivalently, that f. is 1-1 By 16 3(b) and NRA = RA, f.r = [r), where

fdJi = (r v V° .

So, suppose r, and r2 are such that [ri) = 1"2] Then, for any a E A, evaluating at
the nucleus q(a) gives, by the Lemma,

frn]q(a) = (i VI()) ° = (9(ri)) ° q(ra),
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and, similarly, [r2]q(a) = q(r2a). But q is 1-1. so r1a = r2a Since a was arbitra-y,
r, = r2, proving that f. is 1-1. as desired

23.7, We now aim to get : description of the map -. N2A - RA in terms of

operators. We do this by going through RNA, with the following extra result.

Proposition. The map d RNA - RA defined for R E RNA by dR = r, where

ra = b iff Rq(a) = q(b) (a, bE A), (1)

is a cBa morphism.

PROOF First of all note that r, as given in (1), is well-defined, since the regular
operator R is inflationary and the set of nuclei of the form q(a) for a E A is up-closed
(15 4) Next. ue check that r is a regular operator, using 21.1 and that q is 1-1. for
every a. E A,

q(r(a-b)) = Rq(a- 6) by (1)
= R(c(a) - q(b)) by 15.5(c), since (a V b) - b = a - b
= c(a)- Rq(b)
= c(a) - q(rb) by (1)

= (a - rb).

Next, we check that d preserves meets. Suppose Q is a subset of Rh.-I and put
Q = dQ. Then, since meets in RNA are pointwise, we have, for every a E A,

(A Q)q(a) = A Qq(a) = Aq(Qa).

Transposing to (NA)!! by 20.2(a). we see that, since the set Qa is stable, we can
use 20 5 to conclude that Aq(Qa) = q(AQa). Thus, since meets in RA ate also
pointwise,

(A1Q)q(a) = q(A Qa) = ((Q)a).
Hence d(A Q) = AdQ, proving that d preserves meets. We complete the proof by
checking that d preservfs - Suppose R E RNA and a E A, and put r = dR. Then,

(-R)q(a) Rq(a) - q(a) = 9(ra) - q(a) = q(ra -0 a).
by 20 11 Now ra "2 a, so that ra - a = ra - a by 20.12(b). Thus,

(-R)q(a) = q(ra - a) = q((-r)a),

and so d(-R) = ".dR.

23.8. Proposition. The morpbism f ' NA - RA given by the cnipoinie

N2A -. NA -7 RNA - RA (1)
satisfies fJ = r, where

ra=b ,f Jq(a)fq(A ) (a296 A). (2)
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Moreover, -.- ' N2A - RA is giveln by the same formula: thus / = -

PROOF. By 23.1. the map N2A - RNA is given by J - 7. Thus, the first part
of the Proposition will follow if we can show that for e%ery a E A,, Jq(a) = Jq(a)
Indeed, suppose that j E N

2A, and let r be defined as in (2) Notice that since

q(a) :5 Jq(a) = q(ra).

we have ra L, a for all a E A. But now for any a c A,

Yq(a) = (Jq(o) - q(a)) -- q(a)

= (q(ra) - q(a)) - q(a)

q(ro - a) - q(a)

= q((ra- a)- a) = q(ra) = Jq(a)

For the second part of the proposition, note that we now have two morphisms
NA - RA NA -i- N2AJf.RA

The bottom composite is given by 3 -3 (as we know from 23 1). But the calculation

q((fc(;))) = c(j)(q(a)) by (2)

= j V q(a)

=qa - a) by 15.5(d)
Sq(3a),

for all j C NA and a E A, shows that the top composite is given by the same formula
Therefore, as c NA - N

2A is epi by 15.1(e), we have f = -

23.9. Corollary. The morphism -- NNA - RA is open.

PRooF In any Heyting algebra double negation preserves -:,

((a- 6)- 0)-.0 = (((a- 0)-0) A (6- 0))-0 by 9.73

*(( - 0)- 0) - ((b -0) - o)

The proof that -- N2A - RA preserves meets is identical to the proof that the map
d: RNA - RA of 23 7 preserves meets

24. RA as a limit

21.1. Given a frame A, we can construct a diagram of cBa's as follows. The
vertices of the diagram are the frames A,(,) for each a E A, and there is an arrow
A&) - Af(o) iff q(a) 5 q(b), in which case the morphism is the natural quotient
morphism. Let us call this diagram D(A) In terms of maxsets, it's easy to see that
what we have are the maxsets fr for each a G A, and a morphism a - b v henever
a L3 b, which is given for all z e pa, by z - bV z.
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We now describe a cone from RA to D(A). For every a E A, we have the map
ca : RA - ja, 'evaluate at a", given by e4r = ra Since a < ra for each r eRA,
this indeed maps RA to #a; it preserves all meets, since meets in RA are pointwise
and meets in 1a are the same as in A. and it preserves complements. since (r-,O)a =
ra - a Thus, the evaluation maps are cBa morphiims. They determine a cone since,
for each a : b and each r E RA. we have, by 212.8(b),

6 V ro = r(b V a) = rb

Theorem. With notation as above, the cone (ca .RA - O)IEA is a limit of the
diagram D(A).

PRooF Suppose (h .C - O)otA is another cone to D(A). This means in
particular that, for all c E C,

af.c (a EA) (1)

and
bVfjc=fie (a,EA, a:b) (2)

The goal is to define a morphism f . C - RA by which this cone factors through the
cone (e,)IEA. Such a morphism, were it to exist, would thus have to satisfy

(e o f) = f(c)o = f.c (c E C)

for every a E A Taling the second equation as the definition of f, it remains to show
that

(a) f(c) is a regular operator for all c C C, and
(b) f is a frame morphism

For (a), it suffices by 21.1 to check that
J.-ic = a - Ac

for all a. 6EA But. as 6 -6, wehave

f.-C = (a - b) V fc by (2)
=a-(bV fc) by 21.2.5

=a - fe. by (1)

For (b), recall (20.13) that joins in the maxset a of A are given by , then, for
every aEA and SCC,

f(V S)a = f. V S = V' f.S = (V (S))a,

by 21.3(1), so that f preserves joins Similarly, given a C A and a finite set T c C,

(AT)a = MA T) = A f.T = (Af(T))a,

proving that f preserves finite meets. This completes the proof.
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Chapter 7

FREE MEETS

This short chapter answers the "local" question of which meets in a frame A are
preserved by every frame morphism out of A and the corresponding "global" question
of which frames A have the property that every frame morphism out of A preserves
all meets The answer to the first question is given in Section 25, and this is used
to give a characterization of the dual kernels of frame morphisms. The answer to the
second question, which is simply that A is a biframe (i e., its dual is also a frame) and
NA is Boolean. is given is Section 26 Two examples follow, showing that these two
conditions on A are independent

25. The characterization

25.1. Definitions. A subset S of a frame A has a free meet if (AS) = A 'S
for every frame morphism / A - B The frame A itself has free meets if ever.
subset S C A has a free meet

Note that since frame morphisms preserve finite meets (and are monotone) a subset
S of A has a free meet just in case the filter generated by S has a free meet We could
therefore restrict attention to filters without any loss of generality, although we %on't
have any reason to do so (except, perhaps. in Corollary 25 4, where a restriction to
up-closed sets would make the statement of the result simpler)

25.2. Lemma. Suppose A is a frame and S C A. Then V u(S) = u(a) implies
a = A S and similarly A C2

(S) = C2(a) implies a = A S.

PRooF. Suppose Vt(S) = s(a) Then negating both sides snd using 15.1(d). we
get

Ac(S) = c(u), (1)
and evaluating both sides of this at 0, we get A S = a For the second part. we evaluate
both sides of Ac 2(S) = c2(a) at 0 E NA to get (1), and then evaluate again at 0, as
before, to get A S = a.

25.3. Theorem. Suppose that S is a subset of a frame A Then the following
live statements -e equvalent,

(a) S has a free meet in A
(b) A O(S) = c'(A S) in N2A
(c) Vu(S) = u(AS) il NA
(di) A(S -a)- o = ((A S) -a)-a in A. for every a 6 A
(d2) A(S-a)-a =a in A, fo: every a ? AS
Note that condition (b) can be replaced by "Ac"(S) = c"(a) for some a E A"

and that condition (c) can be replaced k% 'Vu(S) = u(a) for some a E A", for then
a = AS in both cases by 25.2

100
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PROOF. We prove (a)*(b)=,(c)*(a) and (a)*(dl)*(d2)*(c)
First., (a) trivially implies (b), since c2 A - N2A is a frame morphism. Because

u(Vu(S)) = A U2(S) by 15 I(f) and u2 
= c2 by 15.7(b), (b) is the result of applying

u to both sides of (c); since u is 1-1, this shows that (b) implies (c) Now assume (c),
and let f : A - B be a frame morphism Then, again using 15.1(f), and the second
part of 16.1(1),

u(IAS) = (NI)(u(A S))
= (Nf)(V u(S)) = V(N!)(u(S))

= VU(fS),
and so fAS = AIS follows from 25.2. Thus (c) implies (a).

Next, considering for every a E A the frame morphism q(a) ; A - A5(.), and
the fact (13.5(a)) that meets is both frames are the same, (a) clearly implies (dl).
Condition (d2) is a special case of (dl), since ((AS)-.a)-a = a whenever a > AS.
Finally, since V U(S) 5 u(AS) always. (c) is equivalent to u(AS) < V u(S) and thus,
by 15 1(c), to (V u(S))(A S) = 1. An application of the for"iula 23.4(1) for joins in
NA (and expansion of the definition of u) reduces this to

A [A(S--)-aJ-aiI.
AS

As the expression in square brackets is ? a, the equivalence of (c) and (d2) follows.
completing the proof

25.4. Recall the definition of stability from 20.4. The following corollary gives
another way of expressing condition (d2) above.

Corollary. A subset S of a frame A has a free meet if every element a 'd AS
can be written as the meet of a stable subset of the upward closure of S.

PROOF, Since (S - a) - a is a stable subset of the upward closure of S, necessity
follows trivially from the implication (a):*(d2) of the Theorem. Conversely, if T is a
stable subset of the upward closure of S with meet a, then

a < A(S - a) -a < A(T- a) -a = AT = a,

and so a = A(S - a) - a. verifying condition (d2) of the Theorem.

25.5. As an application of Theorem 25.3, we can derive a characterization of
the "dual kernels" of frame morphisms, i e., the sets f -( 1) C A for frame morphism.
f:A-B.

Theorem. A subset F of a frame A is equal to f 1 (1) for some frame morphsm
f : A - B if F is a free filter, i.e,

(a) F is upward closed, and
(b) ifSCF and A(S-a)-a=a forevery a? As, then AS EF.

Note that, by the previous theorem, (b) is equivalent to saying that F is closed
under free meets.
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PROOF Considering the above note, sets of the form f1-(1) are clearly free filters
Conversely, supposing that F C A is a free filter, consider the nucleus j V u(F) If
aE F, then ja > u(a)a-= l.and so ja = 1 And if ja= 1. then u(a)<Vu(F) by
15 1(c), and so u(a) = u(a) A V u(F) = Vu(a V F), using 15 1(f) Thus a V F has a
free meet and Aa V F = a But a V F C F by (a), and therefore a e F by (b). We
have therefore shown that a E F iff )a = 1. and so F- .I for the frame morphism

A -A,

26. Frames with free meets

26.1. We now turn to the question of which frames have free meets. Using the
previous theorem and a result of Beazer and Macnab (5] this question can be answered
as follows-

Theorem. A frame A has free meets iff both of the following conditions hold
(a) A is a birame
(b) NA is Boolean.

PROOF First of all observe that A is a bifrasne iff c A - NA preerves meets,
for (AS) = Ac(S) is equivalent to a V AS Ao VS for every a E A Suppose
now that A has free meets By the preceeding comment, A is a biframe Also, by the
previous theorem,

A(s-a)- = ((AS) -o)-a,
and so for every a E A, there is a smallest element d(a) with (d(a) - a) - =
Therefore, according to the result of Beazer and Macnab. NA is Boolean

Conversely, suppose A is a biframe and NA is Boolean Then. as c A - NA
preserves all meets, and c NA - N

2
A, being an isomorphism by 15 1(e), also preserves

all meets, the composite el . A - NIA preserves all meets Hence, A has free meets
by the previous theorem

26.2. Examples. The conditions (a) and (b) above are independent, as the
following two examples show,

(i) Let A=(w +1)
5P 

(ie,thechainw<.. <2<1<0) Then A iscomplete
and therefore a biframe (in fact, even a completely distributive frame) But n is a
dense element of A for every n # w, in the sense that n - = w, and An n =- w,
showing that n doesn't have a least dense cover d(n), and therefore that NA is not
Boolean. Notice that , may be replaced here by any limit ordinal and that together
these complete chains form a class of canonical examples of frames whose assemblies
are not Boolean, is the sense that the failure of a frame to have a Boolean assembly
may be traced to the existence in the frame of such a complete chain with every element
dense over the meet

(ii) The same A, with N applied, yields an example of a non-biframe with a
Boolean assembly. In detail, using the isomorphism of NA with the poset of maxsets
of A ordered by reverse inclusion, and the degeneracy of - and A in A, NA can be
identified with the set of all subsets of A (ordered by reverse inclusion) of the following
two types:
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(a) finite sets contairng 0, and
(b) infinite sets containg both 0 and w.

Join is given by intersection, and meet is given by union, with w added if the result i

infinite NA is not a biframe, because a counterexample to

S V A{T. n < w) = AS V T. : n < w}(

can be found by setting $ = {0,w) and Ti = {0, n}, for then w is an element of the
left side of (1) but not the right

On the other hand, it is easy to see that {0) and {0,w) are the least dense elements
over sets of type (a) and (b), respectively, and thur that N2A is Boolean.

26.3. Remark. The independence of conditions (a) and (b) above can also
be used to show the independence of the statements "f preserves meets" and "Nf
preserves meets." If N 4 is Boolean and A is not a biframe, then f = c : A - NA
doesn't preserve meets while Nf (being an isomorphism) does. And if A is a biframe
with NA not Boolean, then the same f preserves meets, but Nf doesn't (otherwise
NA would be a biframe and hence Boolean)

26.4. Exercises.
26.4.1. Modify the proof of Theorem 25 3 to obtain the equivalence of the fol-

lowing statements, for S C A and 6 E A.
(a) AfS -fb, for every frame morphism f: A - B(b) Ac'(s e" c(6).
() Vu(S) > u(b)
(dl) A(S-n)-a .(b-a)-a, forevery aEA.
(d2) A( ) - a = a, for every a 2: b.
26.4.2, Given a frame A, define MA to be the subframe of N2A generated by

all elements of the form A(c 2(s) • s E S), where S C A. Show the following:
(a) If f : A - B is a frame morphism such that every subset of the image f(A)

of A has a free meet in B, then the morphism N2/ restricted to MA factors through
B - N2B, and therefore f extends to a morphism 7 : MA - B in a canonical

way.
(b) M can be made into an endofunctor on lam so that the embeddings c2 :A -

MA are components of a natural transformation from the identity functor to M.
(c) A has free meets iff c2 ' A - MA is an isomorphism.
(d) Is c2 A - MA epi? (I don't know the answer.)
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Chapter 8

UNIVERSAL MONOS AND COMBINATORIAL MORPHISMS

In Chapter 7 we used the second-level assembly NIA of a frame A to characterize
the free meets in A In the first half of this chapter. we make use of the whole assembly
tower to characterize those monos whose pushouts are always mono These results make
essential use of the theory developed in Chapters 4 and 5 and are a further example of
the use of -frames to obtain results about frames. Section 27 introduces the class of
universal monos proves some closure properties of the class and gives several families
of examples In Section 28, the notions of a-mono and o-epi are introduced and their
basic properties investigated. Then the main results are proved f is a universal mono
if" it is *-mono for every a. and f is (s + )-mono if the pushout of f along every
a,-epi is mono The first of these results is proved in two ways, once using the categories
co-Frnin and oo-cBa introduced in Section 18 (which rely on inaccessible cardinals
and entail a restriction of the frames considered), and a second time using an excursion
through the category -frames where K is chosen based on the size of the instance
of the result to be proven, this second proof depends on a Lemma about the relation
between the assembly tower of a frame and its i-assembly tower when it is considered
to be a c-frame The section closes with a proof that a-epis are stable under pushout.

The second half of the chapter is concerned with combinatonal morphisms. These
provide a means of treating categorical properties of a morphism f .A - B (like
being an epi or regular mono) in terms of algebraic data on A (namely congruences).
Section 29 treats the general theory, while Section 30 treats the finitely generated case
Section 29 starts with a concrete description of the free extension A[XI of a frame
by a set X of "indetermiiates" including the effect of the functor A - A[X] on
morphisms Then the notion of standardization of congruences is introduced asd sev-
eral results relating congruences and their standardizations are proved Finally, both
pushouts and iterated extenitons of combinatorial morphisms are considered, and a
connection is established with free meets In Section 30, finitely generated combinato-
rial morphisms are examined since standardization no longer plays a role, the theory
becomes considerably simpler in this case The results lead up to a characterisation,
in terms of properties of congruences, of finitely generated epis and regular monos

27. Universal monos

27.1. Definition. A morph,sm f : A - B in a category with pushouts is a
universal mono (or just universal) if the pushout of f along e~ery morphism h : A - D
is mono.

27.2. Here are some basic properties of univernal monos in any c.tegory ivih
pushouts

Proposition. Every uesversal mono is mono, and everi, pushout of a universal
mono is itself universal Suppose f A - B and g . B - C are morphisms Then

104
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(a) If f and g are universal, then so is g 0.
(b) lf gof is universal, then so is f.
(c) If g o f is universal and f is epi, then g is universal
(d) If g o f is ep and g is universal, then f is epi

We summarize (a) and (b) by saying that composites and frst factors of urisietial
monos are mono

PROOF. Every morphism is a pushout of itself along the identity, so universal
moncs are mono Part (a) of the Pushout Lemma (6 4) says that iterated pushouts
are pushouts along the composite; it easily follows from this that pushouts of universal
monos are universal Parts (a) and (b) also easily follow from the corresponding parts
of the Pushout Lemma. since composites and first factors of monos are mono, as does
part (c), since if f is epi then g is a pushout of g o f along f and hence universal.

For part (d), suppose that g o f is epi, g is universal. and k1 ,k 2 , B - D are
morphisms such that k, o f = k2 o f, The idea will be to "push out" the pair ks k2
along g and then use the fact that g o f is epi. Thus, we construct the following
diagram

A go] C

where k, and k2 are the pushouts of k, snd k2 along g (with g9 and g2 as the
remaining morphisms of these pushout squares), and where g' and #' are the pushouts
of g, and g2 along each other, with I = g'o g'1  g"' o g'2 as the "diagonal" of this
pushout square Since g is universal, both 91 and 9'2 are universal, and so both g121
and g9' are mono, thus I is mono

The rest of the proof is a diagram chase showing that Ink, = Wnk2 follows from the
assumptions that k, o f - k2 * / and that g o is epi. In detail (where I am omitting
the symbol "o", and where parentheses indicate the expression(s) to be replaced in the
next step), we have

n'(ko)f = (s''g )(kf) = '1
%
'( 2k2)f = 9' 1 29f,

and therefore, since gf is epi, g'2 ' = Cg2k, Now, using this,

(lMki = g'2'(g'k0 = (9'2 k')g = 9' (k2,) = (g'1 '2')k2 =k 2.

Finally, since I is mono, we conclude that k, = k ,

27.3. Examples. (i) Every isomorphism and, more generally, every cetson (I e,
a morphism f : A - B for which there is g • B - A with g o f = idA ) Iuniveral,
as can be easily shrn (6.4).
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(u,) Ever, open mono is umiersal (For a proof, see (271, V.4, Proposition I ) Recall
that a frame morphism is open if" it is a cHa morphism, i e, if it preserves arrow and
arbitrary meets

(iii) The monos corresponding to localic proper surjections are universal. This fact
appears as Proposition 4 2 is the paper by Vermeulen [49], see that paper for a detailed
account of proper maps We recall the lattice-theoretic characterization: f . A - B
is proper iff f. preserves directed joins and f. (f(a) V b) = a V f.(b) for all a E A and
bEB

(iv) For any category C with pushouts. if r. I - F is a natural monomorphism
from the identity functor I C - C to an arbitrary functor F . C - C, then every
component rA of - is universal This is because, for every morphism h A - D,
the monomorphism 7-D D - FD factors, by naturality of r, through the pushout of
rA • A - FA along h. making the latter mono In particular, all of the morphasms
c A - N*A (as defined in 17 1) are universal

(v) Combining (iv) and 27 2(b), we conclude that first factors of components of
natural monomorphisms from the identity are universal As examples, we have the
morphisms c

2 
• A - MA of Exercise 26 4 2 Conversely, as is sketched in Exer-

cise 27.4 2 below, if directed colimits of monos are mono (as is the case with Frm'
see 12.8), then every universal mono is the first factor of a component of ai appropri-
ately constructed natural monomorphism r I - F Treating F as a kind of "free
extension" functor, this lends some credence to the intuitive idea that universal monos
represent free extensions

27.4. Exercises.
27.4.1. Show that the construction used in the proof of Proposition 27 2(d) of

pushing out a pair of morphisns along another morphism can be given a universal prop-
erty similar to that of an ordinary pushout Observe that if a category has pushouts,
it also has pushouts of pairs and that pushouts of univeral monos along pairs are
universal.

27.4.2. Let C be a cocomplete category. The phrase "directed colimits of monos
are mono" in part (c) below means that whenever {f, • A - B,) is a directed source
of monos-i,., a family of monos with common domain such that for any pair of in-
dices i,j, there is an index k such that fk factors through both fi and f) -then the
common map from A to the colimit of the family is mono

(a) Fix a morphism f A - B of C For every morphism g :A - D, let u,
be the pushout of f along 9, and for every object D of C, let r;D . D - FID be
the morphism from D to the colimit F1 D of the source Ju, : g E hom(A, D)) Show
that F1 is the object part of a functor F . C - C and that the morphasms ri D are
the components of a natural transformation r! I - Fj, Moreover, show that 7yA

factors through f
(b) The identity functor I is an object of the functor category (C, C) of all end.

ofunctors on C, and the comma category (I, [C, CJ) has as objects all natural trans-
formations I - G. Show that for each object A of C, the assignment

(r : I - G) - (rA. A - GA)

determines a functor (I, [C, CJ) - (A, C), and that this functor is right adjoint to the
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functor determined by the assignment

(f A-B)-(Tj.-r-Ff)

(c) Show that if directed colimits of monos are mono in C and f • A - B is a
universal mono, then irj is a natural monomorphism Conclude that every universal
mono is the first factor of a component of a natural monomorphism from the identity

28, Relation to the assembly tower

28.1., Definitions. Let f A - B be a frame morphism We say that f is
*-mono if Nnf is mono and that f is n-epi ifthe imageof c* B- NOB iscontained
in the image of Nlf NIA - N*B In symbols: im(ca) C im(N

5
1)

This last condition can be expressed diagramatically in two ways:

N*A N-f N'B N*A N Ij NOB

A B--B. A B.

In the lea diagram, the morphism NO] ha been factored through its image, and co
factors through this In in right diagram, the pullback of N.f along cZ is onto.

28.2. Here are a few simple facts concerning these notions.

Proposition.
(a) Composites and first factors of o-monos are --mono
(b) An a-mono is 0-mono for all 0 < 0.

(c) An a-mono composed with a 03-mono is a min(a,3)-mono.
(d) Second factors of a-epis are a .epi.
(e) An a-.epi is $-epi for alls > a.

PRoor. Part (a) is trivial, since general monoa satisfy these conditions and NO is
a functor For part (b), suppose f is a-mono and 0 a Let y be the unique ordinal
for which a -" = q. Then, since NO/ is mono, so is (N'f) n ¢VA 

= 
eN*s o NOf,

and thus NW/ is mono as well. Part (c) ts a simple corollary of parts (a) and (b).
Part (d) follows from a simple property of images. namely, the image of a composite is
contained in the image of the second factor. Finally, suppose f is o-api (as in the left
diagram above) and 0 > a. Then, with -f such that a + -y = 8, applying N1 to the
image factorization of Naf and recalling that NV preserves surjectonn (by 16.4(a) and
induction), we see that B also factors through the image of N

O
f and thus is O-api

28.3. Proposition. If . A - B is a-epi and g. B - C is O-epi, then go
is (o 0 0)-epi
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PROOF Let -v be such that , 3 + 7 = a + 8, and consider the following diagram.

N"O A N+B N" N -IOC

N eA X NA - N'9 N

C CA'------ B 9 'C

(Notice that I have simplified the subscripts on the arrows labelled c" ) Since g is
3-epi, im(c) C im(Nagl Thus, by composing with c, we have

Im(¢C- 3 ) C ,m(c'. oNOg) = im((N*+Ig) o ci). (1)

No%, since f is a-epi, im(cB) C im(N*f) Applying the functor NO, we get im(c~l) C
im(N*+Sf), so that composing with NII'g yields

im((N*' 6g) o )' C im((N"'Og) o NV+Of) = im(N*+O(g o f)) (2)

Putting together (1) and (2), %e have im(c 
+

o) C im(N*+P(g of)), as required.

28.4. Other properties, and distinctness. Informally, the notions of a-
mono and ,k-epi give a "ranking" to arbitrary morphisms if a < ,. then an #-mono
is "more mono" than a &-mono, and an o-epi is "more epi" than a i.epi. (Formally,
we could define the mono-rank of a morphism f to be the (possibly empty or total)
initial segment of the ordinals consisting of those a for which f is a-mono, and the
epi-tank of a morphism to be the smallest ordinal a for which f is a-eps (or oo if
there aren't any), but this technicality won't be necessary.) At one extreme of the
ranking are the O-epis, which are just the surjection, and the monos that are *-mono
for all ordinals o, which we will prove shortly, are precisely the universal mona. At
the other extreme, 0-mono is synonymous with mono, and Madden and Molitor [33]
show that (in our terminology) a morphism is epi if it is a-eps for bom-, and therefore
for any sufficiently large, ordinal a.

We have already seen what happens to the ranks of monos and epis under com-
position and, respectivel., first and second factors Although pullbacks of monos are
always mono, there doesn't seem to be any connection between the rank of a mono and
the rank of its pullback On the other hand, we will show (Corollary 28.9) that ranks
of epis are preserved under pushout

Finally, we consider examples showing that the notions of a-mono and o-epi are
different for each ordinal a, stated another way, each possible mono- and epi-rank
is achieved by some morphism Let A he any non-reflective frame (for example the
free 'rame on w ), fix an ordinal a, and let B be the cB& (NOA).., Consider the
morphism fI = - - , c A - B. Since B is a cBa, it follows that for all $ < a,
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N C'NSA' where $ + a. This is mono for all 3 < a but not mono
when ;9 = a (for then it is just -- which is mono only if A in reflective) Thus f.
is $-mono for all 03 < a, but it is not a-mono. By sinilar reasoning, N'If 0 is onto iff
3 > ar, and hence f., is ci-ept but not 8-epi for any j6 < at.

28.5. Characterization of universal mono,. The next two theorems are
the main results of the section They characterize universal monos in terms of their
mono-rank and, conversely, the mono-rank of a morphism, in terms of its degree of
"universality"

Theorem. A morphism f is a uni versal mono if and only if it is a-mono for every
ordinal a

PROOF Suppose f is universal, let a be an ordinal, and consider the diagram

N*JA N-1 N*B

where tbe lower-left "square" ib a pushout and the dotted morphstn is the unique
morphism from the pushout Since f is universal, f is mono The morphism d is
epi, since it is the pushout of asn epi, and therefore, since * is universal, the dotted
morphism is also mono (in fact universal) by 27.2(c). Thus the composite N'f is
mono, and hence f is a-mono

Conversely, suppose f is &-mono for all ordinals a, let h : A - D be an arbitrary
morphism, and consider the two diagrams

D P N-D N-P

h and NA1(1

where the first diagram is a pusliout in Fran and the second, living in the category
oo-c~a (and hence also in co-Fern), is the functor N- applied to the first. (See
Section 18.4 for information about oo-cBa, oo-Fins, and the functor NI ) Since
N"" is a left adjoint, it preser'es colimits, and so the second diagram is a pushout in
oo-cBa (but, incidentally, not necessarily in oo.Frm). Also, since N~f is mono for
all a, N"If ismono in on-Fr-s (since by 6.. it is aunion of monos). and hence also
in oocfla. But all nionos are universal in oo-cfla by 18.3(a), and so N~*f' is mono
sno o-cBa Thus N""f' is mono in oc-Frn, and hence f' is mono in Frn

28.6. Ans alternate proof. The second part of the proof above uses the
categories on-cBa and on-Ftrn, which depend (in a set-theoretical foundation for
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category theory) on an inaccessible cardinal or a Grothendieck universe, as tel as im-
plying a limitation on the "firames" considered. this is discussed in Section 6.6 (see also
18 4) As also mentioned there, these assumptions and limitations are not necessary,
but merely convenient. For illustrvaon, we give an alternate proof of 28 5 using only
ZFC. The proof starts with the following lemma, which answers the question asked at
the end of [33] "Is the morphism ql (in the diagram below) alway6s mono?".

Lemma. Let xt be a regular cardinal Then the morphism e1A in the diagram

A W"A

BKA

of xt -frames, as constructed in 18.2, is (a universal) mono. (Note that we have implicitly
applied the forgetful funrtor U. to cI A - N'A.)

Paoos'. The notation follows that of Section 18. We first extend the functor
N' .. Fim - Fs-m to a functor NI - c-Fim - sc-h'i-i by precomposing with the
free funceor F'~ :i-Fim - Firm; that is, for every ic-frame A, we define NOA :
N'F.I(A). Then, the morphisms clo .. A - F.1 (A) - W'A are mono and, moreover,
components of a natural transformation I - NI from the identity functor on ,c-Frm
By Example (!h) of 27.3, these morphisms are therefore universal in ic-Frn Ojust as,
when A is a frame, we already knew they were in Frn). Since dil is epi and ic-Firn,
has pushoute, we can therefore apply 27.2(c) to conclude that eA' is universal.

Theorem (his). A frame morphism f is a universal mono it and only if it iM
a -mono for every ordinal a

PROOF. The 'only if" direction is just as before.
For the "if" direction, we start with the same pusbout appearing as the first diagram

of (1) above As is explained in 12.4, this pushout becomes a pushout in #s-Frn when
ir is large enough (for instance, iC = 1B eA C1+ suffices). Then, applying the Boolean
reflector B' : ic-Fern - ic-cBs, we obtain a pushout in ic-cB&. Thus, if we can show
that B'f is mono, then the rest of the proof proceeds as before with co replaced by
ic But to show this, we can form (in the category ac-Fern) the diagram

N"A N-f NIB*" ID W
8 8A BIB

A B,

in which the morphism el is mono by the Lemma Thus, as N') is mono by assump-
tion, so as (N')) o e = e o B'f, implying that 84f is also mono, as required.
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28.7. The universality of o-monos. As the second main result of this section,
we obtain a kind of converse to Theorem 28.5. We start with a Lemma that is actually
the case a = 0 of the theorem that follows it.

Lemma. Suppose that f is a frame morphism Then Nf is mono if aUd only lf
pushouts off atlong surjections are mono

PhoOF The proof refers to the following dxagram.

B -- e. 0 -

1t If, If"
A --- > P --. Q

Suppose first that Nf is mono, g is onto, and the left square above is a pushout: we
show that f' is mono Factor f' as a surjection h followed by an injection ", as
shown in the right square Since h is epi, the right square is a pushout by part (c)
of the Pushout Lemma (6 4). apd hence the outer rectangle is a pushout by part (a)
Therefore. (Nf)(ker g) = (Nf)(ker(hog)) and. using that Nf is mono, ker g = ker(hog)
Thus h is an ,somorphism and f' is mono.

Conversely, suppose that pushouts of f along surjectlons are mono. Let 6, and 6-
be congruences on A such ihat

(Nf)(0 1) = (Nf)(0 2) (1)

Since (NJ)(0i) = (Nf)(02) iff (Nf)(01 A 02) = (Nf)(, V 62), we may assume in what
follows that 01 5 02. Put P = A/1 and Q = A/ 2 with natural maps as shown in
the bottom row of the diagram, and assume that both squares are pushouts; by (1),
the pushout of h along f' is an womorplhsm. But now, by assumption on f, we have
that f' is mono, and so, composing with the isomorphism and taking the first factor,
h is mono as well. Thus 01 = 02, showing that Nt is mono.

28.8. Theorem. A trame morphlism f is (a+ 1)-mono if and only if tbe pudout
off along every a-epi is mono

PaooF. Let f ' A - B be such that pushouts of f along a-epis are mono Then,
for any congruence 0 on NnA, we construct the following diagram:

B - N-B - .

A - •-- N i-. (NA)9

Here, the right square is a pushout, f is the pushout of f along cO, and f" is the
pushout of f along p (and thus also a pushout of I along p o c* by part (a) of the
Pushout Lemina) The dotted morphism u is the unique morphism such that

Uoc'=c and uo f' = Nsf, (1)
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and u' is the unique morphism such that (with the help of the first part of (1))

u' o p'c' = p"o cB = p"o u o c' and 'of" = g. (2)

Since c' is the pushout of an epi, it is epi as well, and so we conclude from the first
part of (2) that u' o p = p" o u. As in first part of the proof of 28.5, u is universal
Now, both the right square and the lower-right "oblique" square (with f' and p as
base) are pushouts, and both of the adjoining triangles commute by the second puts of
(1) and (2) Thus, since the upper-right obitque square is commutative (as we pointed
out above), it is also a pushout by part (b) of the Pushout Lemma. Hence u' is mono
But, since poc*, being the composite of an a-epi and a O-epi, is n-epi by 28 3, f" is
therefore mono by the ssumption on f, and so g is mono Since 0 was arbitrary, we
conclude by the Lemma that N"'f is mono, and hence that / is (a + 1)-mono.

For the other direction, suppose g 4 - C is an arbitrary a-epi, and consider the
following diagram

N*B N # NOP

' A
1 c

This diagram is constructed as follows. starting with f and g, we form the pushout,
given by the inner square with vertex P. The outer square is NO applied to the inner
one, and we factor Ng as a surjection q followed by an injection i Since g is 0-epi,
e . factors through Q by a morphism m, which is therefore mono, as shown. Next,
the middle %ertical arrow, labelled v, is the pushout of Nf along q. By the universal
property of this pushout, we have the dotted morphism e such that

e q' = NP' and e o V N o i. (3)

Finally, since

'o of = q'(Naf)oc, = vcqoee* = v orng,

the universal property of the inner pushout gives the dotted morphism d such that

dog' = q'oc* and def=vom. (4)

Now, having constructed this diagram, we can complete the proofof the theorem: If I
is (a + )-mono, then, by the Lemma, pushouts of N*/ along surjections are mono; in
particular. v is mono But then v o rn, which equals do f (as in the second equation
of (4)), is mono, and thus so is f'
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28.9. Stability ofepi-rank under pushout. In the second part of the proof
above, we didn't use all of the information contained in the diagram constructed there
In particular, we didn't use (3) or the first equation of(4) Extracting this information,
we get the following corollary

Corollary. The pushout of an o-epi along any morphism is a-epi

PROOF The proof uses the diagram constructed above, starting with an a-epi
9A - C and a morphism f A - B, which we assume this time is arbitrary. As
pointed out in 28 4, every o-epi is epi: thus 9 is epi and therefore so is g' Now, using
the first equations of (4) and (3),

e o o#'= c o q'o c = (N'g') o c1 = cog'

Since g' is epi, Ae conclude that e o d = c; But then, since q' is onto it factors
through the image of N* 9

' , showing that c p (via d) does as well. Hence. g' is o-epi.
and the proof is complete

29. Combinatorial Morphisms

29.1. Fee extensions of frames. The theorem below gives a concrete de-
scription of the free extension of a frame A by a set X of "indeterminates" First,
however. we look at how this description was derived. The free extension of A by
generators X is isomorphic to the coproduct A 0 F(X), where F(X) is the free frame
on X, can easily be seen from the universal property involved By 12.5, this frame is
isomorphic to the frame of all functions 6 : F(X) - A such that O(V S) = A 4(S)
for all S C F(X), ordered pointwise Since F(X) is the free V-semilattice on the
A-semilattice PfX of finite subsets of X ordered by reverse inclusion, such operators
0 are completely determined by their values on PrX, which can be arbitrarily chosen
subject only to the restriction that 0 turn into meets any joins of F(X) under which
PrX is closed. But the only such joins are the trivial ones- ant = s for a C t, and so q
must be anti-monotone, but otherwise can be arbitrary. Finally, instead of considering
anli.monotone functions on the finite subsets of X ordered by reverse inclusion, we
prefer to turn things right side up.

Thus. with this motivation, we define AIX] to be the set of all monotone functions
PfX - A, ordered pointwise, where PrX is ordered by inclusion. We denote elements
of PaX by a, t,..., and elements of AIX) by m. n .- . Just as with polynomials in X
over f, ring A, we may think of an element m C A[X) as assigning a 'coefficient" e(s)
to esch "monomial" s E PfX (be careful, though: these polynomials have been "satu-
rated" to make them unique, and lattice arithmetic is different from ring arithmetic),
For each a E A and z E X, we define the following elements of A[X] by their action
on an arbitrary s 4 PrX:,

m.(a) = a;

' 0 otherwise

The functions m, and en, are clearly monotone. Finally, we define A A - AI"X by
A(a) = mo for every a e A We can nov% state the following result.
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Theorem. For any frame A and set X, A[X1 is a frame and A A - A[X] is a
frame morphism making A[X] freely generated over A with the mapping z - M. as
the insertion of generators Meets and joins in the frame ArXj are pointiwise, and the
arrow operation is given by the formula

For any frame morphism f A - B and mapping 7X - B. the unique eytension
7. A[X1 - B is given by

7(m) V f(m(s)) A A i(s) (2)
'CP'X

PaooF Arbitrary pointwvise meets and joins of monotone functions are monotone,
and so A[X] is a subfrarne of the product APIX (Elements of this product will be
written, as usual, as functions a PfX - A ) The function A is just the diagonal
morphismn, and hence is a frame morphism I claim that the right adjoint i. to the
inclusion t A[XI - APex is given by the formula

i.o()=A o(t) (3)
Ace

Indeed, for any s, we havet m($) = A,ci m(f) by monotonicity arid so mn = i.(i(m))
for every m e A(X]; conversely, for any s,, we clearly have v(s) 'e i.(e)(s). and
therefore a s((i ()) for every a' E APeX. Since meets aye computed pointwise in
A[X], it follows that the arrow ins A[X] is given by reflecting the pointwise arrow using
(3). But this is just (1)

We now show the extension property. First, note that for any a E A, in, A A0c, mr
is that monotone function which is a on all sets containing s, and 0 otherwise It
therefore follows easil) by roosotonicity that every n E AEX) can be written

M=o V M.i,) At A mxi (4)
Se~x r,

Thus, A[X] is generated (using finite meets and arbitrary joins) by (171, 4 46 A) u
fm, : x6 X) and moreover, the formula (2) is defined in the only way possible, given
(4) Thus, it remains to show that 7 as defined in (2) in a frame morphism. The
preservation of joins is eas). since joins are pointwise in AIXI, are presrved by f,
and commute with both binary meets and arbitrary joins in A. Since I is therefore
monotone. the inequality f(enAn) :5 7(M)A7(es) is clear, and since A 70B) = 1=fl)
7M1 = 7(mi) = I is likewise clear For the final inequality, we use the monotonicity
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of m, n, and f to get

7(m) A7(n) =(V f(m(s)) A A 7(,)) A V (tQ)) A AY(0)
,ePfX tepiX

= V !(m(s)An(9))AAY(sut)

- V f(m(sUt)An(sUt))AA'(sUt)

= V !((mAn)(u))AA7(u)
.(PJX

=7(vMAn)

29.2. AIX] as a functor of A. Let X be a set. For each frame morphism
f A - B, there is by the universal property of A[X) a unique morphism /[X] :
A[X] - B[X] such that f[X](m,) = m, for all z E X and such that the left square
of

A - A[X] ' APiX
/I 1AI] 1J1X=1'"

B -,, BIX] -- BPIX

commutes It is easily seen (e g, by using (4) above) that this morphism is given by
f[X](m) = fo m. Thus the right square also commutes By the isomorphism A[X) =
A E) F(X) and the fact that colmiits commute with themselves (or just argue from
the universal property), the left square above is a pushout. Since pushouts preserve
products (see Section 1.9), the outer rectangle is also pushout, so that, by the Pushout
Lemma (6 4), the right square is as well.

29.3. Congruences on AIX]. Just as any frame is a quotient of a free frame
F(X) for some set X, so any frame A - B over A is a quotient of some free extension
AIX] of A. We are thus led to consider congruences on AIX]. If {0s) is a family of
congruences on A indexed by PrX, then the relation rl 0. on A[X], defined by

m ([],0) n iff VsiE PX m(s) 0,.n) (1)

is clearly a congruence on AIX] In general. a congruence on any subframe of a product
will be called standard if it is the restriction of a product of congruences, as in (1);
by 11.11, all congruences on "full" frame products are standard. On A[X], however,
there can be non-standard congruences: see Exercise 30.6.1.

29.4. Standardization. If i is the inclusion A[X) - APIx, then

N(A(X]) L- N(A 
' ' x ) 

-:- (NA)
P X

takes congruences on A[X] to the congruences they generate on the product. and (N).
restricts congruences on the product to the subframe. It follows that the mapping
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0 - (Ni).((Ni)6) gi~es the smallest standard congruence of A[XJ greater than 0, 1 e,
its "standardization" It also follows from this that the standard congruences on A[X]
form a maxset in N(A[X)

The following result gives an explicit description of standardization, to state it,
we introduce some notation If m PrX - A is a function, S E PrX, and a E A,
then we denote by m(a/s) that function which is identical to m except (possibl,) at
s. where its value is a If m is monotone, then we say that the substitution (a/4)
is appropriate for n if m(a/s) is still monotone. Note that, because operations are
pointwise, m(a/s) A n(b/s) = (m A n)(a A b/s, etc

For every a E A and s E PrX. we introduce the monotone "test function" 6
,,

PrX - A. defined for ever, t E PrX by
(0, iftcsandt#s,

6r-(Q = C, ift = S.
I otherwise

Clearly, every substitution (ai) is appropriate for 6€,,, and we have

'(..(as) = b.. (1)
The reader may verif.N the following important property of these test functions.

6,(,), =(mA A m,)v V m, (mEA[X],sEPfX) (2)
re, TEX\$

The importance of this property is that the "coefficient" of s in m can be extracted
(with the test function as result) using finite meets and arbibrary joins with elements
of AIX] not depending on m

Theorem. With notation as above, suppose that 0 is a congruence on A Then for
every s E P1X the following conditions on a pair of elements a,b E A are equivalent

(a) m(a/s) 0 m(b/s) for every (appropriate) m E A[X].
(b) 6., b ,
(c) en(a/s) 0 me(b/s) for some m E AIX].

These conditions define a congruence 0, on A, and the mapping N(A[X]) - N(APix)
given by 0 -1, 0, is the standardization morphism Ni, which moreover is onto

PaooF We first show the .quivalence of (a)-(c) If (a) holds, then for any 0 S A
we can take en = 6, and use (1) to get (b). The implication (b):*(c) is trivial. For
(c)e'(a),let m be as in (c), and suppose that n E AIX] is appropriate for both (a/$)
and (b/s). Then n is also appropriate for (a A6/a) and (aVb/s), and so by reflexitivity
of 6 we have

n(a A bls) 6 n(z A b/s) and n(a V b/s) 9 n(a V b/s). (3)

Now, we can join e(n/s) 9 m(b/s) with the left side of (3) to obtain

(m V n)(a/s) = m(s/s) V n(a A b/) 0 ren(b/ Vn(a A 6/s) = (m v n)(b/s),

and thus (en V n)(a/s) 0 (m V n)(b/s) and we can can meet this with the right side of
(3) to obtain

n(als) = ((m V n) A n)(a A (a V b)is) e ((m V n) A n)(b A (a V b)/s) = n(b/s),
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and thus n(a/s) 9 n(b/a) Hence (c) implies (a).
Next. since 6

vT,, = VbT a and AT,, - A br for every T C A it is clear from (b)
that 0, is a congruence Optimistically denoting the mapping 0 -. fI, , by Ni, we
now prove that Ni -1 (Ni).. For every s E PeX and a, b E A, using condition (b) we
get

a ( 9,), " if 6,, ([1, 9,) 6b, if a , b.

and so Il,(fl 9,), = $_ 9,, proving that (Ni) o (Ni), is the identity. Thus it remains
to show that 6 < (Ni).((Ni)(0)) for all congruences 0 on A[X]. So, let 0 be such and
suppose chat m n. Then, writing

S= Am, and S' V m.,

we can use (2) to get, for every s G PfX,

S.(.), = (m A S) v S'9 (n AS)vS' = dS(e),a

and therefore m(s) 9, n(s), by (b) Hence, m(I1, O.)n
Finally, since (N) o (Ni). is the identity, Ni is onto, and the proof is complete

29.5. Extraction congruences. The notion of "extraction" of coefficients via
meet and join with fixed elements. as described above, is naturally associated with a
congruence.

Lemma. Let A be a distibutzve lattice or a frame. Then,
(a) For every four element a, 6. z, e A, we have

(zAa)Vb=(yAa)Vt ifandonlyif (tVb)Aa=(yVb)Aa. (1)

(b) Fiug a. b e A, the relation 9(a, 6) bet,'oen z and y defined by the equations
in (1) i a congruence on A If A i.; a frame, 0(a, b) is the congruence associated to
the nucleus u(o) V c(6).

PaooF. (a) Applying the operation - A a to the first equation and using the
distributivity law twice yields the second equation. Similarly, applying - V b to the
second equation yields the first.

(b) Since the operation (- A a) V b preserves binary meet- and all existing non-
empty joins, its kernel is clearly is a congruence. When A is a frame, we have, by 15.5,
(u(a) V c(b))z = (u(o) o c(b))z = a - (b V z), and so the equality of the associated
congruence and f(a, b) follows from 8 3.

29.6. Test functions and extraction congruences. We extend the notation

i(a, b) of the Lemma to sets S, T C A by

i(S T)=(AS, VT).

The relation between test functions and extraction congruences is spelled out in the
following result.
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Proposition. Suppose f A - B is a frame morphism, - : X - B is a mapping,
and 7 A[X] - B is the unique extension of f with 7(m,) = 7(z) for all z E X. Let
s E PfX, and let 0. denote the congruence 9(y(s). 7 (X \ a)). Then

(a) 7(b...) = 7(6,) if and only if f(a) , f(b), for all a. b - A and

(b) f(in(s)) i, f(n(s)) if and onl" it 7(m) , 7(n), for every m n C A[XJ

PROOF. Suppose m, n E A[X. We first show that

= 7(4(,),) iff 7(m) d, 7() (1)

By the basic propert 29 4(2) of test functions,

7(. .J)=7((m^ A m)V V in:) (2)

Since 7 preserves the meets and joins in (2) (s is finite). and since f(m) = ,(z) by
assumption, (2) becomes

7(6 (,,),) = (7m AA7(s)) V V(x \ s) (3)

We have a similar formula for 7(6(,),J, and so (1) holds by the definition of i.
Now to prove (a), we let a.b G A and apply (1) to m mns. and n = m Since

7(m.) = f(a) and 7(mb) = f(b) by assumption, this proves (a) To prove (b), it
suffices by (1) to prove that 6,,(,), - and similarly for n. But this is clear,,
since m(,)(r" = rM(s).

29.7. Combinatorial morphisms. Let us call a morphism A - B combi-
natorial if it is isomorphic to one of the form A - A[X]/' 1, 0,for some family { )
of congruences on A indexed by PrX. Although we don't expect combinatorial mor.
phisms to behave nicely with respect to pushouts, so that for example the right.hand
square (and hence the whole rectangle) of the diagram

A - AXJ - AfXJ/,O.4 I lXl !i g = m/fl,) (1)
/ / O(M/ I 0 )(s) f f(M(S))W r.

B -. B(X] l BX]fl, 8',,,

is always a punhout (for the same reason that we don't expect direct images of maxsets
to be maxsets), pushouts do respect the process of standarization, as the following
commutative diagram (which is just N applied to the right-hand square of the diagram
in 29.2) shows-

N(,X) -n- (2A)PX

N(B[X)) -, (NB) eI".
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Thus, even though the right-hand square in (1) is not always a pushout, it does always
commute (which establishes the formula for y in (1), using 29 2), and could even be
called a pushout "up to standardization".

29.8. Iterated extensions. Combinatorial morphisms can be composed in
some cases. Specificall3, if A - A[X!/fl, 8, isa combinatorial morphism, Y is a set
disjoint from X, and for each t E Pt Y, i is a standard congruence on A[X]/rL 0,,
then, up to isomorphism, each Ot is a family {i,) of congruences on A such that
0, < 0,, for all 8 - PrX and t e PrY, and so the composite is A - A[XUY]/f,, $I.
The relations between the appropriate (equivalence classes of) monotone functions can
be deduced from the following proposition, whose straightforward but tedious proof we
omit.

Proposition. Suppose that A - AIX]/fJ1 [,9 is a combinatonal morphism and
Y is a set disjoint from X Then there is an isomorphism

( A[X]/ Ir. 0. )[Y] = AIX U Y]l l, 0..

which takes, going left to right, a monotone function m. PrY - A[X)/ 1l, 6, to the
equivalence class n/ [t, 0,, where ni . Pt(X U Y) - A is given by

nh(s U t) = m(t)(s), (s E PrX, t E PrY)

and which takes an equivalence class n/ ,, 9, of monotone functions Pr(X U Y) - A
to the monotone function PtY - A[X]/ f, 0, given by t - A(t)/rl, 9,, where

n(t)(s) = n(sUt) (s 1 P(X, t E PrY).

29.9. The connection with free meets. Using this notion of combinatorial
morphism, we can now show a connection between free meets and universal monos, as
studied in Chapter 7 and the first part of this chapter.

Theorem. Let 9 : A - A[X]/ , 0. be a combinatorial morphism. Then,
(a) # is mono if and only if A, O, = 0, and
(b) ifthe family {9,) has a free meet in N(A[XJ) that is equal to 0, then 9 is a

universal mono

Corollary. Every finitely generated combinatorial extension is uaiversal.

In Theorem 30.3 below, we show that every finitely generated extension is combi-
natorial, hence, by this result, universal

PRoor (a) This follows easily from the equivalences

9(a) = 9(b) iff m., H .) mb
iff Vs ma(s) 9, m(s)

iff Vs 0, b

Iff a (A, 0,) b
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(b) Assume {8,} has free meet 0, let f • A - B be a frame morphism, and let
U = (N(f[X]))(jj, 8,) By the remarks at the end of 29.7, the standardization of a

is frl,8, where 6v = (N(f[X]))(8,) for each s But, since {.) has a free meet, we
therefore have

A, , = (N(f[X]))(A. G-) = (N(f[X]))(O) = 0

Thus, by part (a), the morphism B - B[X]/ fl, 0 is mono But since 8 < rl, 0. this

morphism factors through B - B[X]l/. proving that the latter is mono, as required
For the Corollary, we simply note that if X is finite, then P:X is finite, and every

finite set has a free meet

30. Finitely generated combinatorial morphisms

30.1. In this last section, we look at finitely generated extensions A[XI (X

finite), for which as we prove below, all congruences are standard This clears up the

problem with pushouts (cf 29 7) and makes it possible to characterize, for example.
when finitely generated (combinatorial) morphisms are epi and when they are regular

For definiteness, we fix a positive integer n and take X = i = 0, 1, . n - 1).
Thus the variables s, t, now range over subsets of it, etc.

30.2. Finite extraction congruences. Recall (4 2) that for any elements

a, z, y of a distributive lattice,

az=aAI and aVz=aVy imply z=y (1)

The next result, which implies (as is proved in the Theorem that follows it) that any

finite polynomial may be recovered from its extracted coefficients. is a generalization
of this

Letmma. Let G be any finite subset a a distnbutuve lattice A Then for any

z,yE A, if z i(s, G s) y for every sc G. then x=y

Note that we recover (1) as the special case G = (a)

Pitoos. The proof is by induction on the size of G C A, using (1) for the induction
step First note that the case G = 0 is trivial, since the hypothesis reduces to z = t

in this case
For the induction step, suppose the Loemma is true for all sets of cardinality n, let

G have n 1 elements. and suppose that z and i are such that :r (s, G \ s) i for
every s C G. Choose an element g E G and write G = G'U {g), so that G' has n

elements Then, an inspection of the definition of 0(-, - as given by the left equation
of 29.5(1) reveals that for every s' c G',

(:Ag, yAg) Ei(s',G'\S') iOr zyE8aUpJ \sUg) 2

Similarly, the right equation ot 29.5(l) slows that for every s' C G',

(Vg, v ) E (,G'\A8') ,i6 (ry) e 0 (s', G\s') (3)
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But the right sides of (2) and (3) are true by our assumption on r and y, and so the
left sides of (2) and (3) hold for every s' c G' By the induction hypothesis, therefore,
x A g - y A g and z v 9 

= 
y V g But then z y by (1), and so the theorem follows

by induction

30.3. Theorem. Suppose that fI A - B is a frame morphism, "' w - B
is a mapping, and f A[ij - B is the unique extension of f with I(m,)=(i) for
al i l,.: .,n Forevery s e PfX, Jet 8, denote the congruence i('Y(s), jY(X \s)).
Th en

ker7= fl f-'(0). (1)

Corollary. Every congruence on A( j is standard.

PRooF For an% rn n E A!n], we have

(m n) E rl f'I (6,) if Vs r(s)(f-(O,)) n(s)

if Vs f(m(s)) i, (,(s))

iF Vs 7(m) i, 7(n), (2)

the last equivalence followinl.from Proposition 29.6(b) But the statement in (2) is
equivalent by the Lemma to f(m) = 7(n) and thus to (in, n) E ker 7, completing the
proof of the Theoreni.

To prove the Corollary, let 0 be a congruence on A(F], let q# • A[Hn - A[f]/O be
the natural map, and consider the morphism f = Il o A : A - A([I]/G. Then, the
unique extension 7 of f with 7(m,) = m,/9 for all i I is just 7= ,, with kernel
0. Therefore, by the Theorem, 0 is standard--and, incidentally,

e, = f'10.) (a C n) (3)

30.4. Cokernel pairs. Since all congruences on finitely generated free exten-
sions are standard, it follows that the outer rectangle of diagram 29.7(1) is a pushout
when X = W We use this to give a description of the cokernel pair of a finitely
generated (combinatorial) morphism.

Lemma. Let f . A - A[W-)/ r, 9. be a combinatorial morphism Then the
following diagram is a pushout

A A (--~lI/ e

A (fi /rl,, AF- /l,,(8, V 6,),

where
(m/fl, 0,)(s Ut) = m(s)/(O VO), (s C1, t C \W)

h(m/fl, ,)(s U t) = m(t)/(O, V O1
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PROOF Let 0 be a congruence on A with natural map bi A - A10 Then
since pushouts of quotients of A correspond to joins of congruences, we have (up to
isomorphism over A) (N49)(V") = 0 V r, for all congruences V on A We conclude
therefore from 29 7(1) that

A I fJ1r,0

is a pushout. Thus, (NI)(0) = fl, (6 V 0,). It remains to establish the formulas for g
and h By 29 7(1), 9 is given by

gMrnfl. 00 (s) = fAm(S)) fi, '(a. V at)

But f(mn(s)) is the equivalence class containing the constant function rn., and so
using the isomorphisms of Proposition 29 8, the formula for g follows The formula foe
ht is similar.

30.5. Dominions, epis. and regulatir monos. The dominion of a morphismn
f: A - B is by definition the equalizer of its cokemel pair Thus, in out case, it may
be taken to be the subfrarne D of B consisting of precisely those elements b such that
g(b) = li(b) for every two morphisms S, h B - C that agree on A Thus, f is epi iff
its dominion is all of B

Another way of defining the dominion of f is as the smallest subframe of D of B
containing A such that the inclusion D - B is a regular mono. Thus, f is a regular
mono iff its dominion is A

We are now in a position to state the following result, which uses the description of
cokernel pairs in Lemma 30 4 to characterize finitely generated epis and regular mono$
in terms of their associated family of congruences

Theorem. If f A - A(flI/ 17, 8, is a combinatorial mnorphism, then we have the
following

(a) The dominion of f is equal to

(M/ffl, 9, rnM(S) (0, V at) rn(t) for all 0, t C IT)

(b) f is epi if and only if 0, V $i = I whenens'er s a
(c) f is a regular mono if and only ifit satisfies the following "sheaf-ike" condition'

whenever mne A[X) is such that rn(s) (0, V Ot) mQf) for all s, 9 C Ht, then there exists
a unique a E A such that rn(s) B, a for all s C 5t

PROOF Part (a) is an obvious translation of the definition using Lemma 30.4
For (b), note that if 0, V B, = I whenever s 0 f, then every rn E A[X1 satisfies
the condition in part (a) for in/ l, 81 to be in the dominion of f Hence, f is epi.
Conversely, suppose that f is epi, and let s and t be different subsets of 11; we may
assume th~at s it IThen m = i, has mn(s) = I and ms(t) =0, and so since f is epi,
we conclude from part (a) that I = rn(s) (0, V Ot) rn(t) = 0. Thus 0, V 0, = I This
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proves (b) Finally, part (c) follows easily from part (a) using the eqaivalenee &f the
statements "f is regular" and "the dominion of f is A".

30.6. Exercises.

30.6.1.
(a) Show that if 0 is a regular element of N(A(X]) (i e., -- P = 8), then 0 is

standard (Hint: the identity congruence is standard.)
(b) If B is a cBa and X is a set, show conversely that every standard congurence

on A[X; is regular and thus that standardization on N(B[X]) is given by double
negation

(c) Vse (b) to give examples of non-standard congruences on... etensi-m.
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Chapter 9

CONCLUSION AND PROBLEMS

The goal of my research has been show how a single construction, the assembly
tower construction, can be used to illuminate a variety of aspects of frame theory and
lead to solutions of some interesting problems I don't want to claim that have achieved
this goal in its entirety, but I do hope to have proven that such an investigation is both
viable and worthuhile and to have laid a foundation for further investigation along
these lines.

In this rest of this chapter. I want to discuss some possible continuations of the
work described in this thesis I start by mentioning some general directions and then
proceed to discuss specific problems arising from the research described in particular
chapters.

Constructiveness. In describing the set-theoretic foundations for the work described
in this thesis, I assumed a set theory containing the Axiom of Choice. This was
necessary in order to use the method of i-frames. For example, the result (12 4) that
every frame colimit becomes a ic-frame colimit for large enough X is an unavoidable
application of the Axiom of Choice, since we must be able to choose, for any frame A,.
a (regular) cardinal x with K > JAI, and this implies that A can be well-ordered

However, since the conclusions I drew using this method-for example that f is a
universal mono iff is a -mono for all a (28 5)--seem to have a constructive meaning,
it becomes interesting to ask whether some other methods would yield the same results
constructively

Separation Conditions. One feature of the work described in this thesis is that it
concerns arbitrary frames I have not, as is typical in topology, assumed any extra
conditions on the "spaces" I have been studying. On the other hand, one would expect
that extra conditions (regularity, compactness, etc ) would lead to better theorems,
and I have only begun investigating this possibility

Foundations. This work touches on some interesting foundational questions It
clearly becomes more convenient when we can work inside an inaccessible cardinal, or
use algebras with proper classes of elements, and although all of these devices proved
in the end to be unnecessary, one would like to have a better understanding of just
when such extra assumptions are harmless. For example, in collecting algebra-classes
into classes, I needed to be sure that they were codable as sets (see footnotes I and 2
in Section 5), although this requirement didn't seem to have anything to do with the
matter at hand.

Extensional Operators. There is still much to be said here about the relationship
between extensional o*ierators and topos theory (cf., 9 23) For example, what is the
best way to formulate the "uniformity" property of extensional operators" Can one use
extensional operators to construct toposes from Heyting algebra&7 Does our hard-won
formula for joins of nuclei (23 4(1)) follow from a result about unions in toposes?

124

ADA289360



30 6 9 Conclusion and problems 125

The Reflection Problem. The original motivation of the assembly tower construc-
tion was to get at Boolean reflections of frames, when they exist. Although a solution
to the problem of characterizing the reflecthe frames would probably not be of much
use in itself, it seems nevertheless to require a new insight into the category of frames
One can hope therefore that further research on this particular problem will lead to
results of a niore wide-spread interest.

Universal Monos. Although I characterized universal monos f A A - B in terms of
the assembly tower (28 5). the form of thus characterization is quite similar to that of
the "solution" to the reflection problem afforded by the assembly tower mentioned in
1.11 One would like, in other words, a more intrinsic description-one given in terms
of A and B alone.

Another observation to be made here is that the main results for universal monos do
not require many of the properties of the category of frames, mainly just the existence
of a lImit-closed subcategory like cBa (reflectiveness is not necessary, of course) and
an assembly construction I already have some partial results in this direction, and it
would be interesting to see how far they can be pushed
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