
Carnegie Mellon University

The Rob~lics institute

T)ech nk al Repr

BEST
_AVAILABLE COPY

Technical Report

SAUSAGES: Between Planning and Action
Jay Gowdy

CMU-RI-TR-94-32

Robotics Institute
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh. PA 15213

September, 1994

© 1994 Carnegie Mellon University

This research was partly sponsored by DARPA, under contracts "Perception for Outdoor Navigation" (con-
tract number DACA76-89-C-0014, monitored by the US Army Topographic Engineering Center) and "Un-
manned Ground Vehicle System" (contract number DAAE07-90-C-R059, monitored by TACOM), and
partly sponsored by NSF under NSF Contract BCS-9120655, titled "Annotated Maps for Autonomous Un-
derwater Vehicles."

C ar egiMe 711 m 606 .neidea~s
Mel I nCarneie Mellon Universty

Pittsburgh. Penniwlhanion 15213,3890

15 December 1994

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

RE: Report No. CMU-RI-TR-94-32

Permission is granted to the Defense Technical Information Center and the National
Technical Information Service to reproduce and sell the following report, which contains
information general in nature:

Jay Gowdy
SAUSAGES: Benveen Planning and Action

Yours truly,

Marcella L. Zaragoza
Graduate Program Coordinator

enc.: 12 copies of report

Table of Contents

1. Alternatives to SAUSAGES .. 1

2. Description of SAUSAGES 4

3. Implementation of SAUSAGES
3. SAUSAGES and Annotated Maps 7
4. SAUSAGES and planners 8
5. Conclusions10

DTIA TA3 0

Mi

List of Figures

Figure 1: A sample annotated map 2

Figure 2: Navigating an intersection with an Annotated Map 2

Figure 3: Using a road follower to update position on a map 3
Figure 4: A link of SAUSAGES 4

Figure 5: A plan as a graph of links 5
Figure 6: Concurrent links ... 5

Figure 7: The UGV link class hierarchy 6
Figure 8: Using Annotated Maps as SAUSAGES links 8
Figure 9: Mixing geometric and cognitive links 8
Figure 10: Separation of planning and execution 9

Figure 11: SAUSAGES interacting with external planners and monitors 9
Figure 12: A SAUSAGES system that completely interleaves planning and execution 10

Figure 13: The ultimate SAUSAGES intelligent agent 10

Abstract

SAUSAGES stands for System for AUtonomous Specification, Acquisition, Generation, and Execution of
Schemata. SAUSAGES provides a framework for specifying, running, monitoring, and altering plans for
mobile robots, and is ideal for building complex real-time systems that need to operate outdoors. SAUSAG-
ES bridges the gap between planning and action, between the world of symbols and propositions and the
world of pixels and actuators. On the one hand, system designers whose primary interest is perception can
easily build a SAUSAGES system capable of carrying out complex missions that showcases their percep-
tion modalities and actuation modules without a lot of resources devoted to higher level task management
and control. On the other hand, system designers who are primarily interested in planning can use SAU-
SAGES to provide a layer of abstraction for high level planners so that they do not have to worry about the
implementation details of each plan step. This allows for the natural development of a robot that can act as
an intelligent agent in the unstructured outdoor environment rather than just in simulation or in a highly
structured laboratory environment.

1 Alternatives to SAUSAGES

Several years ago, it became apparent that some form of mission execution and monitoring was needed to
integrate the capabilities of the perception systems developed at Carnegie Mellon for the Navlab, a comput-
er controlled Chevrolet van[1O]. We had road followers that robustly followed roads[6], object detectors
that avoided obstacles[9], landmark recognizers that localized the vehicle position in a map[3], but we had
no consistent architectural glue to join them together. A robust road follower is impressive on its own, but
a road follower alone has no way to know which way to turn at an intersection, no way to know when to
speed up or slow down for important events, etc. A system that can execute a complex mission cannot sim-
ply be the sum of its perceptual modalities, there needs to be a "plan" which uses high level knowledge
about goals and intentions to direct the behaviors of the low level perception and actuation modules.

An intuitive way to represent a plan and execute it is through events, e.g.. "Follow this road until the second
intersection, turn left, and stop at a mail box." This plan representation works well for simulated and indoor
mobile robots, which operate in a highly structured and controlled environment where every event neces-
sary to the plan execution is easily perceived. Unfortunately, once a robot system leaves the laboratory it
is in a much less structured, less controlled, and less predictable environment. The events that an outdoor
mobile robot system needs to detect to execute a plan are very difficult to discriminate from the background
environment. Reliable and accurate acquisition of perceptual cues, such as intersections or signs, is an al-
most impossible task. A system that relies solely on these perceptual events to direct its plan is not feasible.

To get around this problem and still have a system that could execute interesting missions we developed
Annotated Maps[II]. An Annotated Map system reduces the problem of monitoring for arbitrary events,
such as intersections or signs, to the problem of monitoring the vehicle position on an a priori map. The plan
in an Annotated Map is essentially a positional production system, with productions like "at position x, per-
form action y" instead of productions like "if event x then perform action y." This alternate representation
of plans vastly reduces the computational resources necessary to perform a mission, while still allowing
complex scenarios.

We have extensively tested this system. For example, we used it to drive the Carnegie Mellon Navlab from
one house in a suburb north of Pittsburgh to another approximately one kilometer away. The system used
neural networks to drive the vehicle along the roads and used a laser range finder to detect obstacles and
landmarks. The system successfully performed the mission, speeding up and slowing down at the appropri-
ate places, navigating through several intersections, and coming to a stop at the proper mailbox.

Figure 1: shows the annotated map we used in this system. We built this map by driving the vehicle over
the course, storing the road position received from the controller and the landmarks detected by the laser
range finder. A human expert then went through and added "annotations," or trigger lines. When the vehicle
crosses these lines various actions are taken, such as setting speed, or turning modalities on or off. Thus,
these trigger lines implicitly specify the plan.

2 Tech Report CMU-RI-TR.94.32

Figure 1: A sample annotated map

i

The process of navigating through an intersection shows how this simple geometric implicit plan specifica-
tion works. We had no perception system that allowed us to navigate an intersection, so it had to be done
using only the map, and thus the vehicle's position had to be accurate. Figure 2: gives an example of this
process. As the vehicle's position is tracked going down the road, the first trigger line that it crosses will
turn on landmark based position updating to pinpoint the vehicle's position on the map for precise naviga-
tion. Then the vehicle will cross a series of lines that will slow it down in stages. Once the vehicle actually
enters an intersection, it crosses a line which turns off road following and turns on dead reckoning from the
map to actually make a left turn. Once the vehicle leaves the intersection it crosses lines that turn road fol-
lowing back on, turn landmark based position updating off, and sets the vehicle speed back to maximum
again. Each step in this "plan" is sequenced implicitly by the positioning of the trigger lines and assumptions
about the motion of the vehicle.

Figure 2: Navigating an intersection with an Annotated Map
Resume road following

Tum right using dead Speed up to 4.0 m/s
reckoning t

0
M MSlow to 1.0 m/s

Slow to 2.0 rn/i. f
,-. Start landmark recognition

SAUSAGES: Between Planning and Action 3

There are several possible objections to using a global coordinate system with an absolute map, What if the
map is wrong? What if the positioning system drifts? We have found that these are not valid objections if
there are landmark recognition systems that can guarantee that the map is locally correct during the execu-
tion of the mission. It does not matter if the map is wrong globally as long as the region currently around
the vehicle is roughly correct. What is important is that the control information encoded by the trigger lines
is tied geometrically to actual features in the map, such as roads or intersections. If the position of the vehi-
cle relative to a local landmark is accurate, then the position of the vehicle relative to the control information
will be accurate, and therefore the plan will be accurately executed.

Having these landmark recognition systems is not much of an additional expenditure of resources since the
perception systems needed to navigate the vehicle can double as sources of information about landmarks.
For example, obstacle avoiders can double as discrete landmark detectors. Even road followers can be used
to pinpoint the vehicle's position in a map with surprising ease and precision. As Figure 3: shows, a road
follower can reduce the uncertainty in the vehicle's position perpendicular to the axis of the road. Tf the ve-
hicle rounds a comer the cumulative updates in th(; vehicle's position on the map will reduce the uncertainty
of the vehicle's position dramatically[12].

Figure 3: Using a road follower to update position on a map.

d. After second road update

Bc. Before second road update

b. After first road update

a. Before first road update

Our philosophy in building outdoor mobile robot systems is that perception is the primary task, i.e., the task
that the most computational and developmental resources will be expended on. Planning has been consid-
ered secondary, since it is a much "easier" problem. Annotated maps are an example of this philosophy tak-
en to an extreme. Annotated Maps allow us to showcase our perception and actuation modules in complex
scenarios with a minimum of resource investment in the event detection and planning issues.

This approach is in direct contrast to much of the previous work in the field in that many researchers con-
sider the interesting part of their system to be the planning, monitoring, and error recovery capabilities. The
perception systems are an afterthought to showcase the abilities of the planning system. This can be seen in
the plethora of indoor mobile robots and simulations found in the literature in which the environment can
be structured and controlled to the advantage of the plan generation, execution, and monitoring systems.

Either extreme has obvious limitations. A system that reasons very robustly and intelligently about events
that it can't robustly detect in the real world will be an interesting system with no real application. At the
other extreme, a system that only uses Annotated Maps for mission planning will rigidly perform one pre-
planned mission, but won't react well to unexpected changes in the plan, goals, or environment.

4 Tech Report CMU-RI-TR-94.32

For example, while an Annotated Maps system can handle repeated, well established scenarios, such as mail
delivery or a daily commute, it cannot begin to execute a simple, non-geometric plan for the first time, such
as, "go to the first comer and turn left." For every mission there has to be an a priori, detailed map and a
priori expert knowledge of how to navigate around in that map. Another major limitation of an Annotated
Maps "plan" is that it is only implirit, i.e., the sequencing of the "steps" of the plan are implicit to the geo-
metric placement of the annotations. The Annotated Map manager itself has no concept of "plan", just of
the map and the vehicle position. This makes it difficult to execute missions with loops in the plan without
bending, if not breaking, the paradigm. It also makes it hard to monitor for failures of the plan. How is the
map manager supposed to detect a failure in the plan when it doesn't even explicitly know what the plan is?

Our experience building real outdoor systems shows that we need a high level plan executor/monitor to in-
tegrate our various perception and actuation modules into coherent systems. We also found that any such
high level knowledge system needs to reflects the realities of building an outdoor mobile navigation system:
What the system can do is driven primarily by what it can perceive, not what it can plan. At the same time
any plan executor/monitor has to be much more flexible and reactive than Annotated Maps. To satisfy these
needs we built SAUSAGES.

2 Description of SAUSAGES
SAUSAGES stands for System for AUtonomous Specification, Acquisition, Generation, and Execution of
Schemata. SAUSAGES is designed to be a bridge between the worlds of planning and perception. It can be
used to integrate perception modules together into useful systems with a minimum of planning work, and it
is easy to use with external planners that can generate, monitor, and adjust SAUSAGES plans to create in-
telligent and reactive behavior in the face of changing environments and goals.

A SAUSAGES plan is made of discrete semantic units that we call "links." While in an Annotated Map the
sequencing of the plan is implicit, in a SAUSAGES plan the sequencing is explicit. Where an annotated map
plan is a geometric map with annotations, a SAUSAGES plan is a directed graph of links.

Figure 4: A link of SAUSAGES
Entrance Actions Next Link

Production Rules
Exit Actions

A link can be thought of as a single step in a plan. A link has entrance actions that get invoked whe.n the link
starts up, and exit actions to clean up when the link exits. The link has a set of production rules associated
with it that are added to a global production rule system. These production rules have actions that specify
when the link is finished, when it has failed, side affects of the link, or whatever the system designer wants
them to specify. These production rules are only in effect while the link is active.

SAUSAGES uses a Link Manager process that manages the execution of links. It is the Link Manager that
maintains the production rule system and starts and stops links. Most interaction with a SAUSAGES plan
is done through the Link Manager by setting state variables that fire various production rules. The Link
Manager also lets external modules remotely add links, run them, delete them, and even change them.

A SAUSAGES I.nk also has a function that returns the next link to execute when it is finished. This is how
a planner hooks together a series of links into a plan. This function can be as simple as returning another
link, which might be part of a serial chain of links, or it could be conditional, where if one condition holds
activate one link and if another holds activate another. This allows a plan writer to construct plans that arm
directed graphs of links rather than just a serial chain. Thus a planner can create a plan that has some intel-
ligence and decision making built into it to handle common contingencies that might he foreseen.

SAUSAGES: Between Planning and Action 5

Figure 5: A plan as a graph of links

Links can be composed of sub-links, to form hierarchical plans. This is a common abstraction in plan de-
scriptions. A link which implements "go to airport", will decompose into several sub-links such as, "get in
car," "drive to airport," and "park at airport." Each of these links could have their own production rules with
completion and failure conditions attached. The plan designer can specify that any failure be handled en-
tirely at the level of the link that failed, or that failures get propagated up the link hierarchy.

SAUSAGES plans do not have to be "plans" in the traditional sense. They can simply be algorithms. An
external planner can produce an algorithim for a situation, complete with looping or recursion, download it
to SAUSAGES, and run it. We get this flexibility because the "next link" function is arbitrary, and instead
of producing a predetermined link it could be a function that generates a new link based on the current link
or any condition that is relevant. Thus SAUSAGES "algorithms" can be recursive and dynamic rather than
simply iterative and static.

The plan graph can have more than one link active at a time. This way the Link Manager can simulate mul-
tiple threads of control. One common example for mobile robots is to have two threads of control, an action
thread and a context thread. The action thread will control the robot motion and perception, while the con-
text thread will monitor for global errors or major changes in the plan. The context thread can affect how
the action thread transitions. The context thread can start and stop links in the action thread, or replace links
in the action thread entirely.

Figure 6: Concurrent links

Context links

~ Setting state variables
Interrupting, suspending
and restarting action links

Actifon lik
So. SAUSAGES provides a planning language that is well suited for specifying and executing mobile robot
plans. These plans can range in complexity from a simple linear linking together of different steps in a plan
to actual algorithms including looping and recursion. A great advantage of the SAUSAGES approach is that
plans are specified in semantically meaningful units which can be easily manipulated by external planners
and monitors in useful ways.

6 Tech Report CMU-RI-TR-94-32

3 Implementation of SAUSAGES

Although SAUSAGES is written in C++, SAUSAGES plans, links, and interface functions are specified
using a C++ lisp interpreter called JayLisp. The most notable variation in JayLisp is that it has a simple class
system which can be especially useful in specifying types of "links" for the Link Manager. For example,
there can be a "trajectory" link class that follows a trajectory and contains much of the administrative work
for following trajectories. Then subclasses of the trajectory class can be specified that follow roads or So
cross country. At present, JayLisp only allows for inheritance of data and methods from a single parent
class, but Figure 7: shows how even single inheritance can create a useful class hierarchy.

Figure 7: The UGV link class hierarchy

(Motion Link NS)it Link

Teleoperate Tra'ecto User Wait RSTA Link

ollow Road 'Country

Another key feature of JayLisp is that it is trivial to write new C++ functions and to invoke them from Jay-
Lisp. This extensibility supports our philosophy of using JayLisp as an interface and doing any computa-
tionally expensive work in C++. This plays to the run-time strengths of both languages: JayLisp's flexibility
and C++'s efficiency.

Using a Lisp language as the interface to SAUSAGES allows great flexibility in specifying a plan or algo-
rithm. Link entrance and exit actions are naturally specified by JayLisp expressions. Arbitrarily complex
Lisp expression's can be used in specifying "rule" criteria. Classes can be used as link templates, so a "fol-
low-road" link is just an instance of the follow road link class with the appropriate data slots filled in and
the remaining data slots filled with default values.

The most important module in SAUSAGES is the Link Manager, which actually manages the execution and
monitoring of links. Link networks, i.e. plans, that the Link Manager will run can be read in from files or
transmitted from other modules via a TCP/IP connection.

In order to run links and affect their behavior the Link Manager maintains a simplified production rule sys-
tem. Each rule in the system has a list of tags, a criteria expression (the "left hand side" of the rule), and an
action expression to evaluate when the criteria expression evaluates to non-nil. A rule's criteria expression
is only evaluated when one of its tags is marked as changed. This is not a complete forward propagating rule
system, but it has proven sufficient for the purposes of mobile robot planning. If a complete production sys-
tem is needed it will be easy to add and integrate. The Link Manager also maintains a global timer table
which maintains a list of expressions to be evaluated at regular intervals

These global systems for productions and timers arc the means by which a SAUSAGES plan can seem to
be multi-threaded. When a link is run, the. Link Manager adds the link's rules and timers to the global sys-

SAUSAGES: Between Planning andAction 7

tems and when the link finishes they are removed. If two links are active "concurrently" both links' rules
and timers are active in the global systems.

External modules can easily send the Link Manager expressions to be evaluated, and thus can easily affect
the firing of rules in the global production system. The remote expression evaluatinn provides one method
for an external module to create and run links remotely. The Link Manager also provides methods for ex-
porting references to the links themselves so that external modules can modify them as needed. The Link
Manager can also send messages to external modules just as easily as it gets them. These are just some of
the ways a SAUSAGES system can interact with external perception modules and plan monitors.

The only kind of events monitored in an Annotated Maps systems were based on the position of a vehicle
on a map. We could write these map monitoring capabilities directly into the Link Manager using JayLisp,
but we find it more convenient to delegate this processing to a separate module called the Navigator. The
Navigator has two jobs:

I. Maintaining a transform between the position that the vehicle controller reports and the posi-
tion on a map.

2. Handling client queries about the vehicle's position relative to objects in the world. Clients can
register a geometric query and the Navigator will inform the client when the vehicle has moved
to a position that triggers that query. This query mechanism can be used for such purposes as
monitoring the crossing of trigger lines and checking to make sure the vehicle stays within a
tolerance distance of a trajectory.

3 SAUSAGES and Annotated Maps

It is obvious in SAUSAGES how to represent event based plans: Each link terminates on the occurrence of
some event, such as "intersection detected," or "Fred's mailbox found." Unfortunately, this brings up the
original problem with this type of plan representation for outdoor mobile robots: Detecting the arbitrary
events necessary to proceed from plan step to plan step. We can easily solve this problem by using segments
of Annotated Maps as individual links.

In the simplest possible annotated map link, the only production rule would be, "If vehicle X crosses the
line (xl, yl), (x2. y2), end the link and go to the next one." The next link would just be the next segment of
the Annotated Map. Stringing links of this type together exactly simulates the capabilities of our current An-
notated Map system, with the plan made more explicit.

Figure 8: Using Annotated Maps as SAUSAGES links

Start landmark
recognition 0

0
Set speed

8 Tech Report CMU-RI-TR.94.32

Using SAUSAGES to make an Annotated Maps plan explicit frees a system from many of the limitations
of Annotated Maps while retaining the central advantage of Annotated Maps: the reduction of the event de-
tection problem to a position monitoring problem. For example, retrotraversing a trajectory was difficult
with Annotated Maps since the system had to discriminate between the annotations relevant to the journey
out and the annotations relevant to the journey back. SAUSAGES easily solves this problem by allowing
two annotated map links with the same geometric information about the world, but with different annotation
data for each leg of the traversal. So each link has the same road and landmark data but with different control
information.

Since each step of the plan is an explicit link, the user can attach explicit and different failure conditions to
each step. Thus we can easily and flexibly specify the conditions under which a plan fails and what to do
when the plan fails. For example, in a road following annotated map link we would want a failure condition
to be "if the vehicle position is too different from the road position, fail." For a cross country annotated map
link we would want the same condition, but with a higher tolerance. This flexibility in specifying the failure
conditions is trivial to implement in a SAUSAGES plan because each class of link can have a different set
of production rules that indicate errors. With Annotated Maps alone implementing even this simple error
monitoring requires adding code that does not fit the design well.

All links are equivalent to SAUSAGES, so it is trivial to mix "geometric" or map based links with "cogni-
tive" or event based links. A SAUSAGES plan is not locked into either paradigm and provides extensive
support for both. This allows planners to easily generate plans that can both retraverse known territory using
map based links and explore new territory using event based links, assuming that event detectors can be
built.

Figure 9: Mixing geometric and cognitive links

Drive to intersection Drive to end

4 SAUSAGES and planners

SAUSAGES is not a planning system. It is a plan executor and monitor that stands between a planner and
the real world, between the world of symbols and propositions and the world of pixels and actuators. It de-
pends on external sources for its plans, whether that be a human hand coding a mission plan for a specific
demo or a sophisticated Al planner generating plans as it responds to changes in environment and goals.

One of the historical models of planning involves a separation of planning and execution[5. A planner
comes up with a complete plan, sends it to an executor which does its best to perform the plan, and reports
success or failure to the planner. In this paradigm there is a conceptual wall between planning and execution.
and many researchers have shown the limitations of this approach. Is SAUSAGES a step backwards to this
paradigm?

SAUSAGES: Between Planning and Actlon 9

Figure 10: Separation of planning and execution

GenerateExctPlan Plan

It is easy to construct SAUSAGES systems using this paradigm, but SAUSAGES is not limited to it. SAU-
SAGES was designed for heavy interaction with any number of external planners, not just one omniscient
planner. External modules can create, edit, and run links. Links can be designed to report status back to ex-
ternal modules and can have data associated with them that is not necessary for plan execution, but which
do encode information necessary to manipulate the plan.

Figure 11: SAUSAGES interacting with external planners and monitors

Route Planner

As we have seen, a SAUSAGES plan does not have to be a passive, static graph, since the "next link" func-
tion can create new finks at run time. The relevant case for planning is a next link function that generates a
call to an external planner asking what to do now. The most extreme form of this approach would be to make
every link's next function report status back to an external planner and request that the planner generate the
next link.

Figure 12: A SAUSAGES system that completely interleaves planning and execution

Next Link

This approach, which totally interleaves planning and execution, can be used to interface a SAUSAGES
system with incremental planners such as the Procedural Reasoning System (PRS)[2] or the universal plan-
ner approach[7]. At each step in a plan a incremental planner examines everything it knows about the situ-
ation before applying the next action. This planning paradigm lets the system easily respond to errors,
system failures, goal changes, and other unexpected changes in the world. Tt also lets the "plan" be mostly

10 Tech Report CMU-RI-TR-94-32

incomplete and underspecified. Using this planning/execution paradigm in a SAUSAGES system essential-
ly reduces the role of SAUSAGES to a "mode manager," i.e., the planner spits out a high level command
such as "follow the road using system X" which SAUSAGES translates into actual commands to perception
and actuation modules. SAUSAGES is also used in such a system to translate failures of perception and ac-
tuation modules into symbology that the incremental planner can process.

While this approach is robust and has been extensively tested, we do not feel that it is the proper approach
to use in a SAUSAGES system. It throws away many of the abilities of SAUSAGES in order to have ev-
erything controlled by a single monolithic planner. We find in building systems that putting too much of an
emphasis on general purpose modules results in degraded real time performance. It is much better to have
multiple specialized systems, with each system doing its job efficiently and robustly. SAUSAGES is not a
general purpose module: its specialization is as a plan executor and monitor, and any computationally ex-
pensive job should be delegated to an external module. The "incremental plan" scenario just does not take
advantage of the things that SAUSAGES does well.

A better approach for the ultimate SAUSAGES system is to still use something very much like PRS, but
instead of generating single plan steps the system would generate algorithms and plan sequences that are
appropriate for achieving the goals of the mission. This plan graph sent to SAUSAGES would incorporate
the necessary information to monitor and to detect failure. Any failures would be handled by reporting to
the Planner the new state of the world so that it could generate a new algorithm or plan sequence to achieve
the goals of the system with the new knowledge of the failure.

Figure 13: The ultimate SAUSAGES intelligent agent

Goals and status
R'feactive _(SAUSAG ES
Planner ""s

Plan networks

This approach takes advantage of the "reactive" abilities of an incremental planner like PRS while stilt ex-
ploiting the efficiency and flexibility of SAUSAGES. The question of which system is dominant, the incre-
mental planner or the SAUSAGES plan executor, is irrelevant. It doesn't really matter whether there is a
SAUSAGES plan network that invokes the incremental planner which in turn generates SAUSAGES pro-
grams or if there is an incremental planner which generates a SAUSAGES program which calls out to the
planner which in turn generates more SAUSAGES programs.

A human problem solver executing a task does not typically think about each step. A human will see a goal
to achieve and will try and find a schema or algorithm that achieves that goal. Typically, a human problem
solver will only realize that an algorithm is not appropriate when it fails, and only then will the slow,
thoughtful step by step "planning" to achieve the goal or work around it be tried. This behavior, known as
Einstellung effect[4], corresponds well to a system that uses an incremental planner to choose SAUSAGES
plan networks. The incremental planner has a goal, and to achieve that goal it generates a SAUSAGES net-
work. The SAUSAGES network runs until it finishes or fails. If the network successfully finishes, the plan-
ner can go on to working on the next goal. If the network fails, the planner can then go into a more intensive
step by step incremental planning node, or it can take whatever other course of action it deems necessary.

5 Conclusions

SAUSAGES allows incremental development of real outdoor mobile robot systems. Groups working pri-
marily in perception and actuation can use powerful constructs such as annotated maps to quickly generate

SAUSAGES: Between Planning and Action 11

systems that perform interesting missions with a minimum of work in high level planners. Groups working
primarily in planning and artificial intelligence can use SAUSAGES to interact with a real robot on the sym-
bolic level rather than the pixel and motor level.

It is easy to see how SAUSAGES allows the development of a complete outdoor mobile robotic system that
is driven by what the robot can perceive rather than what the planners want to perceive. As the perception
and actuation modules improve, the developers create SAUSAGES links and algorithms to perform various
tasks. When a planning system matures to the point of being integrated with a real robot it can use these
various SAUSAGES links and algorithms that have been heavily tested in the field as building blocks for
plans.

Another advantage of SAUSAGES is that it does not lock the system designer into any single planning or
architectural paradigm. It is simply a bridge between planning and action, and does not specify how either
is to be accomplished, or if either is to happen at all. SAUSAGES lets the system designer vary the level
and extent of involvement of a general planner in the execution of a plan.

For example, suppose that one leg of a mission has a pair of vehicles performing a "bounding overwatch."
A bounding overwatch is a maneuver in which two vehicles mutually support each other as they travel under
the possible observation of an "enemy." A bounding overwatch cannot be completely specified as a set of
trajectories and mode transition points, since the exact execution depends on a large number of env ironment
variables and constraints that can not be determined a priori. A SAUSAGES system could implement a
bounding overwatch by having a general purpose reactive planner keep track of the current goals and states
of the vehicles and enemy. This planner would generate new links one by one as the bounding overwatch
progresses. Alternatively, if a system designer can design a bounding overwatch algorithm it would be more
efficient to have a specialized bounding overwatch module implement this algorithm. In this case, the higher
level planner just generates a link, "do a bounding overwatch," which SAUSAGES interprets as "ask the
bounding overwatch planner to do a bounding overwatch." If the algorithm for doing a bounding overwatch
is simple enough, the bounding overwatch module could be completely dispensed with, and the bounding
overwatch could be done through an algorithm implemented as a SAUSAGES network. With SAUSAGES,
any of these could easily be implemented, and it is up to the system designer to decide which is best.

Our philosophy in building SAUSAGES systems is to avoid generalization. Instead of having one mono-
lithic general planner that handles all situations completely, it is better to set up a planning system that has
a general purpose planner that generates links that call domain specific planners that are much more efficient
at planning in their domain. There is still a place for a general high level planner, but it should not be in-
volved at all levels of decisions. It is a much better approach to use the most efficient representation and
solution methods to achieve a goal, and then have a well defined way of combining the results of these meth-
ods. SAUSAGES is that well defined way.

This philosophy comes from a desire to avoid bottlenecks in knowledge and communications. Simmons
claims that having an omniscient central module that controls everything and that all data must flow through
makes monitoring and control easier[g], but it reflects unrealistic assumptions about bandwidth and real
time response to environmental changes. SAUSAGES appears to reside in the center of a system, between
planners and perception modules, but it does not suffer from the bottleneck problem. In a properly designed
SAUSAGES system, the modules that keep the mobile robot alive and that depend on real time responses
are only being given advice by SAUSAGES and are not depending on SAUSAGES for real time commands.

For example, SAUSAGES will be giving commands like, "start road following," and "try to follow this tra-
jectory." The primary job of the road followers and cross country navigators is to keep the robot safe, the
secondary is to follow the advice. It is up to SAUSAGES to monitor the progress of the modules and to give
them better advice if the advice turns out to be bad. The last things these modules should depend on for real
time response is the SAUSAGES planner and its ancillary high level planners. This approach is similar to
Agre and Chapman's idea of plans as communication rather than programs(I]

12 Tech Report CMU-RI-TR-94-32

Systems can be designed in which SAUSAGES is a bottleneck, but that never has to happen. For example.
if there is a route planner that needs feedback from the terrain, and thus needs high resolution terrain maps
from a perception system, this information should not be transmitted through SAUSAGES. The route plan-
ner could use SAUSAGES to set up a direct connection between the planner and the perception module, and
then use that connection to communicate this high-bandwidth information. SAUSAGES is designed to act
as a system traffic cop, and not the information highway itself.

SAUSAGES provides a module that can be the middle ground between the extremes of the robotics world.
It allows a researcher working on a high level planner to avoid the awful implementation details of a mobile
robot system by abstracting the operation of the lower level perception and actuation modules. It allows a
perception researcher to easily build a system that showcases the perception work in a complex scenario
without worrying too much about issues of planning and error recovery that are irrelevant to the task at hand.
Finally, SAUSAGES facilitates the joining of these two extremes into a complete, intelligent, and robust
outdoor mobile robot system.

SAUSAGES: Between Planning and Action 13

References

[1] P. E. Agre and D. Chapman. What are plans for?. IEEE Transactions" nn Rhnbo!cs and A,,tnn.

tion. 617-34, 1990.

(2] M. P. Georgeff and A. L. Lansky. Procedural knowledge. Proc. lEE Special Issue on Knowledge
Representation, pages 1383-1398. 1986.

[31 M. Hebert. Building and navigation maps of road scenes using an active sensor. Proc. Of Intern.

Conf. on Robotics and Automation, pages 1136-1142. IEEE Computer Society, 1989.

[4] A. S. Luchins. Mechanization in problem solving. Psychological Monographs. 54(248), 1942.

[51 N. Nilsson. Shakey the Robot. Technical Report Tech. Note 323, SRI, Menlo Park, CA, 1984.

[6] D. Pomerleau. ALVINN: An Autonomous Land Vehicle In a Neural Network. Advances in Neu-
ral Information Processing Systems L In D. Touretzky, Morgan Kaufmann, 1989.

171 M. J. Schoppers. Universal plans for reactive robots in unpredictable environments. Proc. int'l
Joint Conf. on Artificial Intelligence, pages 1039-1046. 1987.

(81 R. Simmons. Structured control for autonomous robots. IEEE Transactions on Robotics and
Automation. 10(1):34-43, 1994.

[9] T. Stentz. The NA VLAB System for Mobile Robot Navigation. Ph.D. thesis. Carnegie-Mellon Uni-
versity, 1989.

[101 C. Thorpe. Ksion andNavigation: ,,,r 7lst, ,,A .,,&I ^,ifm,,, t,8,ick,

ers, 1990.

[11] C. Thorpe and J. Gowdy. Annotated Maps for Autonomous Land Vehicles. Proceedings of
DARPA Image Understanding Workshop. Pittsburgh PA, September, 1990.

[121 C. Thorpe, 0. Amidi, J. Gowdy, M. Hebert, D. Pomerleau. Integrating position measurement and
image understanding for autonomous vehicle navigation. Second International Workshop on
High Precision Navigation. 199 1.

14 Tech Report CMU-RJ-TR-94-32

