e o s

h S

CITIRUIZY L3N0

Scalability in Production System Programs

Anurag Acharva

November, 1994
CMU-CS-94-211

1994122 19

Carnegie
Mellon

ADA289345

KReywords: production system programs. scalubility, scalable parallelism. scalable match
algorithms, collection-oriented match

ADA289345

Scalability in Production System Programs

Anurag Acharya

November, 1994
CMU-CS-94-211

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements for the Degree of Doctor of Phi

b 23
Focian Foi |
Thesis Committee :'\H [r {
Lo [P 1
Peter Lee, Chair L. ol ~ |
Guy Blelloch -
Jim Larus . i
Paul Rosenbloom ' L_ . - -
Milind Tambe . '

ADA289345

Keywords: production system programs, scalability, scalable parallelism, scalable match
algorithms, collection-oriented match

ADA289345

School of Computer Science

DOCTORAL THESIS
in the field of
Computer Science

SCALABILITY IN PRODUCTION SYSTEM PROGRAMS
ANURAG ACHARYA

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:
;%/6/&’4 T / 2/5¢
THESIS COMMITTEE CHAIR 7 DATE
% /)\ém 194
4 DEPARTMENT HEAD DATE
APPROVED:
b A)) n ['541/'74
\ Q'/ DEAN DATE

ADA289345

Abstract

Production system programs have been notorious for their inability to handle large data sets. The
primary cause of their poor scalability is the combinatorial explosion in the number of possible
matches which arises from the need to match conjunctive conditions where each conjunct can
match the whole data set. This dissertation investigates two approaches for handling large data
sets in production system programs - scalable parallelism and scalable match algorithms.

The primary limitation on parallelism in production system programs is the data-dependent
nature of the computation combined with a lack of information about the run-time contents
of the tuple-space. This dissertation argues that effective parallelization of production system
programs requires information about the run-time contents of the tuple-space. Resuits from
a simulation study show that simple extensions to existing production system languages can
provide sufficient information to parallelize a wide variety of programs. These results also show
that, in general, there is no program-independent bound on the speedup that can be achieved by
parallel production system programs and that speedups in such programs can scale with data
set size.

This dissertation describes a new approach to matching, referred to as collection-oriented match,
whic attempts to mitigate the combinatorial explosion in the number of possible matches by
grouping tuples that cannot be distinguished by the conditions in the program. The rate of
grovith in number of possible matches in a collection-oriented match algorithm depends on
the extent to which the tuples matching individual conditions can be grouped together From
a darabase point of view, collection-oriented match uses lazy instead of eager joins. Since
collection-oriented match imposes no restriction on the expressiveness of the productions or
the contents of the tuple-space, it does not reduce the worst-case space and time complexity of
the production match problem. But, as the empirical results presented in this dissertation show,
1t can dramatically increase the scalability of a wide variety of production system programs.

ADA289345

Acknowledgements

Most of the summer of 1971, I spent in a room that went tip-tap all day. That was a magic
summer. By the time the monsoons came splashing down, my uncle had put together enough
sheets of paper to eamn the elite two-letter prefix. And by diligent monitoring of the waste
paper basket, I had a hefty volume of my own. Complete with color figures. Enthusiastically,
I 'showed it to all visitors. And took all the ribbing seriously. It is the end of another summer
and I have another volume. It has weight, it has figures, it spelichecks, it will get me my own
little prefix. Some time soon, I will put on a clean shirt and walk into the concrete cavern of
4623. But my heart will be in that little room twenty-three years and ten thousand miles away.
Peering over the shoulder of its occupant who started me on this joumey. Dr. Harnarayan
Acharya, thank you very much.

When I came to CMU, it was to “do hardware”, whatever that meant. But then I met this
tall, stooping, mostly bald man who glared at me through large glasses. I guess I must have
liked being glared at because within a few days, he was my advisor and I was off into the land
of artificial intelligence trying to figure out how people were able to use hand calculators. I
never did figure that out. But for the next five years, I rode a roller-coaster of research. And
he rode with me. Through all the ups and downs. As he said in his book, Unified Theories
of Cognition, for him, theories and graduate students were alike — once admitted he tried hard
to help them succeed, it being, much better for them and for the world if they could become
long-term contributors to society, For those who know what I mean, I could do with an Allen
Newell handshake today.

Fora short while in the Spring of 1993, the good old CMU computer science department decided
to stop mollycoddling its graduate students for once and exposed them to the murky games
that academics play. Finding funding, keeping it going, walking the line between academic
soberness and mercantile advertisement. For a few lectures, prospects seemed rather bleak. It
seemed like a Faustian bargain was inevitable in these days of big science. Not that this was
entirely a surprise but it was rather disappointing to be told so in a matter-of-fact sort of a way.
But I despaired too soon. Next week brought better tidings. That it was possible, even these
days, to save one's soul and yet have an scientific impact. It was vitally important, the speaker
told us, that we remember who we were, Scientists first and other things later. It washed away
the bad taste in my mouth. I am proud that the speaker was my advisor and friend, Peter Lee.
A lazy summer afternoon, the coo) shady wall of Central Park, coin weighing problems. How
many weighings do you need for thirteen coins? How many for nineteen? What if you could
lie a finite number of times? Do knights and knaves enter in this somewhere? And if knights
and knaves are arcund, can ladies and tigers be far away? It has been a wonderful year and
half You know who you are, pal.

I have spent seven years, two months and a handful days in grad school. For six of those, 1
shared my apartment with the same person. They tell me it is impossible to share a house with

ADA289349

iii

anyone that long. I guess, they don’t know Puneet. We have grown together (though each in
our own way). If you do happen to meet him somewhere, remember he is the best Indian cook
you will meet in your life.

When 1 was applying to grad schools, CMU has a special attraction. Its brochure talked about
“being reasonable”, being flexible and being supportive and being exciting. Ithas been all four.
Even though everything else around has changed so much. I have now spent about one-fourth
of my life here. T have d-ink deep at the spring. I am glad. It is a wonderful place.

There are so many people that I met here. If I talk about all of them, this acknowledgement
will probably end up being longer than the thesis itself (long as it is). But, it is they who helped
me keep my sanity through all these years. Thank you!

ADANQ0o AL

Contents

1 Introduction

2.1 ProductionSystemst i i e
22 OPSS . . . e

23 Match Algorithms e e e
24 Rete e e e e e e e e e .

2.5 Paraliel Rete

3 Design and Implementation of PPL

3.1 Need for Parallel Production Languages C e
3.1.1 Need forbarrier synchronization
3.1.2 Frequency of barrier synchronization
3.1.3 Desiderata for a parallel language

3.2 Design Space of Parallel Production Languages
3.2.1 Specification of ordering relations oL
3.2.2 Whichinstantiations are compareble

33 PPL

..................................

332 EXPIEessivemess . . . v v v v n e
3.3.3 Comparison with other parallel construets,.....

1y

20
20
21
23
29
29

k73
34
3
36

CONTENTS

34 Implementationof PPL.,

34.1
¥ 342
343
* 344
345

Overallorganization
Thepplccompiler, c.....
Thepplcruntimelibraryo oL ;.
Parallel state-maintenance algorithms . .,
Minimizing resource contention

4 Parallelism Experiments
4.1 Benchmark suite . . .

4.1.1
4.1.2
4.1.3
4.14
4.15

Circuit simulator (Circuit) o v vn v v v v e v NN
GameofLife(1ife) in e
Waltz labeling (waltz)

Simulation of a hotel (hotel) e e e
Interpretation of acrial images(spam) - . . . -

4.2 Designoftheexperiments e i s
43 SImulator. os . s e e e e e e e
4.3.1 Structure and operation of the simulator

432
433

Limitations of the simulator Cae
Validityof thesimulator,

5 Parallelism fixperiments: Results, Analysis and Observations
51 Speedups s o e T

511

Analysis e e e e

5.2 Growth of speedups with datasetsize e

521
522
. 523
524
. 525

Growth of speedups forcirecuit oL .
Growthof speedupsforlife
Growth of speedups forwaltz
Growth of speedups forhotel S .
Growth of speedups forspam e o

53 Conclusionsandobservations -

531

Validationof hypotheses

39
39
40
45
46
47

50
50
51
52
54
55
56
59
62
63
69
2

CONTENTS vi

5.3.2 Aggregate updates faster with parallel construets 102
5.3.3 Recency unsuitable for parallef languages 102
5.3.4 Multiple copies of parallel productions are desjrable 106

$.3.5 Guidelines for programming parallel production system languages . . 108
5.3.6 Collection-oriented semantics essential for scalable parallelism 113

5.3.7 Performance on real machines e e e 116

6 Collection-oriented Match 121
6.1 Thekeyidea e e e e S e e 122
6L1 Analysis e 124

6.2 Collection-oriented matchalgorithms 125
6.21 Rightmemorynodes e e 126

622 Leftmemorynodes s - 127

623 Pnodes......... e e e e e e e e 129

6.3 CollectionRete e e e e 129

7 Collection-oriented Production Language 139
7.1 Design of the Collection-oriented Production Language co... 139
701 Desiderata v 0 e e e e . 139

712 Tuplespace wavv e ue e g e 14]

7.1.3 Conditions and Instantiations 141

7.2 Implementationof COPL e e 145
721 Datastructures 0. e s 146

722 Procedures e e e 147

8 Collection-oriented Match Experiments 149
8.1 Benchmarks e e e e e e e e e 149
8.1.1 Creating teams with constraints (make-teams) 150

8.1.2 Clustering image regions (clusters) «c.. ... 153

8.1.3 Airline routing (airline~route). e 156

82 Designoftheexperiments o 158

CONTENTS vii

8.3 Comparison between PPLandCOPL e e, 158
831 Analysiso us e e |58
832 Critique e 164

8.4 Scalability of collection-orientedmatch, 165
84.1 Scalabilityof CollectionRete 167

85 Observations . . - i e e e e 171
8.5.1 Relational match tests are inefficient 171
852 Negation neededinfrequently 173
8.5.3 Condition ordering less important forefficiency S ¥
854 Cardinality of variable values depend on condition ordering 175
855 Interaction with parallelism 176
856 Lessrestrictiveisbetter e 1T
857 Programmingguidelines e 177
858 Itispossibletobeevenmorelazy e e . 179

9 Related Work 181

9.1 Paralleimatch e e s 182
9.1.1 Tree-structuredarchitectures 182
9.12 Data-flowarchitectures, 183
9.1.3 Shared memory architectures, 185
9.14 SIMDarchitectures 185
9.1.5 Message-passing multicomputers 186
916 Conclusions . . v o v v v i v e e e 186

9.2 Parallelfirings v v e e e e 187

9.3 Parallel Production Languages« Leoe. 191

94 ReducingCombinatorics v v . v vt vt i e 196
94.1 Relaxing the completeness constraint 196
94.2 Reducethepowerofeachcondition 197
94.3 Relax thecorrectnessconstraint 203

CONTENTS

10 Conclusions

10.1 Primaryconclusions
10.2 Some general conclusions "

10.3 Directions for futureresearch Ve

A Trace formats used in the parallelism experiments

Al Statictrace e e
ALl Information about individual production-sets . . .
A.1.2 Information about individual furctions

A.1.3 Information about individual nodes

A2 Dynamictrace o0 ot e sy c

B Cost model used in parallelism experiments
C Configuration file for the simulator
D Detailed parallelism results

E Code for benchmarks used in parallelism experiments

E.1 Sequential version of the game of life

E.2 Parallel version of the game of life . . .

E.3 Sequential version of the circuit simulator
E4 Parallel version of the circuit simelator.,
E.5 Sequential versionofwaltz.
E.6 Parallel versionofwaltz
E.7 Sequential versionofhotel
E8 Parallel versionofhotel

F Code for benchmarks used in COM experiments

F.1 Tuple-oriented version of make-teams

F2 Collection-oriented version of make-teams

F3 Tuple-oriented version of clusters

............

............

............

............

............

PAPN)

CONTENTS

F4 Collection-oriented verston of clusters
E5 Tuple-oriented version of airline-route

FE6 Collection-oriented version of airline-toute c..

ADA289345

List of Figures

21
22
23
24
25
26
27

31
32
33
34
35
36
37
38
39
3.10
3.1
3.12
3.13
3.4
315

High-level view of a production system program . . . -. 8
Sample OPSStuple. e 9
Sample OPSSproduction. 9
An instantiation for the sample productiono 10
Productions to implement a simulator for 2-input xor-gates 14
Rete network for the XOR gate productions e 15
Instantiation generated for the xor-gate simulator e e 17
Simple production that interferes withitself 22
Execution of three match-select-act cyclesinparallel 25
Dependency-graph for xor-gate simulator 2
OPSS5 example of indirectdependency . . . -o ... 28
Partially ordered conflictset, s, 31
Effect of modifying an unstructured partial order. 33
PPL version of the xor-gate simulator e e 35
Stripped down code for pipeline parailelism 37
Fibonacci usiug a task-poolapproach 38
xor-gatesimulator inNESL, ..., 39
Example of the canonical conditions transformation 42
Example of constraint propagation e 42
Example of a production with inconsistent conditions 43
Example of typeinference, 44
Exampleof hashedametwork 45

ADA289345

LIST OF FIGURES xi

3.16 Example of a two-level heap-based conflictset 47
4.1 Linear feedback shift register of sizethree 52
42 Thebasic patternforthe 1ifedataset.,, L. 34
4.3 Thebasicblock forthewaltzdataset. o. 55
44 Sample production from first phase of SPAM 58
45 Sample production fromsecond phaseof SPAM , 59
46 Cstructdeclaration foratracerecord 64
4.7 Effect of processing order on tokencost S e e e 66
4.8 Disassembled multiprocessor code for ppl-add.to.tuple.space(} ... 68
49 Disassembled uniprozessor code for ppl._add.to.tuplespace() 69
4.10 Ccodeforppl.add.-to-tuplesspace() c. 70
4.11 Abbreviated simulator output for one of the experiments 71
5.1 Speedups for the comparativesuite. v 76
5.2 Real and nominal speedups for the comparativesuite 78
5.3 Non-parallelizable doubly nested print loop from 1ife 79
54 Non-parallelizable loop from third phase of spam 8t
5.5 Productions with guard conditions for sequencing 83
5.6 Rete network for the productions with guard conditions &4
5.7 Constrant application production fromwaltz. 84
5.8 Processor utilization for the comparative instance of waltz., 85
5.9 Conversion of a linear Rete network (o a constrained bilinear network 86
5.10 Speedupcurvesforcireuit e e e 88
5.11 Saturationspeedups forcircuit L. 88
5.12 Parallelization overheads forcixecuit 89
5.13 Nominal speedups foreirecuit., 90
5.14 Estimated maximum nominal speedups forcircuic, . 90
S.15 Speedupcurvesforlife 92
5.16 Saturationspeedupsforlife 92
5.17 Speedupcurvesforwaltz., ... L 93

ADA289345

LIST OF FIGURES xii

5.18 Saturation speedups forwaltz 94
5.19 Speedupcurvesforhotel 95
520 Saturationspeedupsforhotel 9
5.21 Number of instantiations fired percycle forhotel | ., . | - .. 9%
522 Example of an accumulationloop e 97
5.23 Growth of average tasks/cycleinhotel. PR 98
5.24 Growthof average task sizeinhotel. 99
525 Speedupcurvesforgpam oL, 100
5.26 Atomic update of an unbounded aggregate (sequential). 103
5.27 Atomic update of an unbounded aggregate (parallel). 103
5.28 Productions illustrating race conditions due torecency. 105
5.29 Productions illustrating use of additional conditions to ensure responsiveness. . 105
5.30 Productionto simulateanand-gate., 106
5.31 Productions to simulate an and-gate. e 107
5.32 Elimination of flag fields in parallelizableloops 108
5.33 Use of total order to choose one item fromaset., 109
5.34 Use of numerical identifiers to eliminate interfering instantiations. 109
5.35 Sequential example using a single tuple for the entire data structure. 110
5.36 Parallel example using partitionedtuples. LI
5.37 Production system and C code tosumasequence. 112
5.38 Instantiations for tuple-oriented and collection-oriented semantics 114
5.39 Summung a sequence in a collection-onented production language. 115
6.1 Example production and tuple-space. 122
6.2 SQL version of the example production. R 1
6.3 Example production with anegated condition. 128
7.1 Example to illustrate variablebinding e 140
7.2 Example of binding collectionsto variables 142
7.3 Example of instantiation orderinginCOPL 142
74 Production that generates a cross-product in the tuple-space 143

ADA289345

LIST OF FIGURES Xtit

7.5 Production that does not generate a cross-product in the tuple-space 144
7.6 Cross-product and non-cross-product makesinCOPL 144
7.7 ExampleofmodifyinCOPL 145
8.1 PPL productions for make-teams e 151
82 COPL productionsformake-teams ., .,« ue 152
83 PPLproductionsforclusters 154
8.4 COPL productionsforclusters o..........5.... . 155
8.5 PPL productions for airline-route.o . 157
8.6 COPL productions for airline-route S 157
8.7 Executiontimeformaketeams 159
88 Matchspaceformake-teams . .« oo 159
89 Executiontimeforclusters . . «. 160
8.10 Matchspaceforclusterso 0w v e 160
8.11 Executiontimeforairline-route 161
8.12 Matchspace forairline-route oo e 161
8.13 Example production and tuple-space e .. 166
8.14 Tuple processingrate formake-teamso oo 168
8.15 Tuple processingrateforclusters. L 169
8.16 Addition of new flights to existing flight database e 170
8.17 Tuple processing rate for aitline-route . . - 171
8.18 Finding the minimum element using relationaltests ;11
8.19 Finding the minimumelementusingaprocedure. 172
8.20 Programming idioms usingnegation 173
8.21 Programmingidioms rewritteninCOPL 174
8.22 Example illustrating the reordering optimization , 175
8.23 Example illustrating difference in cardinality of variable valves 176
8.24 Decreasing restrictiveness reduces number of instantiations 178
8.25 Production that finds leaves two hops away fromtheroot 180
826 Examplenetwork. e 180

ADA289345

LISt OF FIGURES Xiv

9.1 ThePesa-larchitecture 184
9.2 Dependency-graph for xor-gate simulator 188
9.3 OPS5 example of indirectdependency S e 190
9.4 Example of nondeterminism in asynchronous firings. 192
9.5 Example to illustrate differences between synchronous languages 193
9.6 Simple production that interferes withitself 195
9.7 PPL productions formake-teams S)
9.8 Example production and tuple-space for multi-attribute representation 199
9.9 Tuple-space and one of the productions for the unique-attribute representation 200
9.10 Before the application of copy-and-constrain. 201
9.11 After the application of copy-and-constrain 201
9.12 Datapattitioningexample L, 202
9.13 Case whether data partitioningdoesnothelp 203
9.14 Constraint graph for the example production e e 204
10.1 Production that finds leaves two hops away fromtheroot co. 212
102 Examplenetwork. L. ..., e e 213

ADA289345

List of Tables

4.1 Comparison of uniprocessor PPL and CParaOPSS5 for fixed data sct benchmarks 61
42 Comparisonof uniprocessor PPL and CParaOPS5 for variable data set benchmarks 61
4.3 Comparison of predicted and actual runningtimes 73
5.1 Data sets for the comparative suite e e S 75
5.2 Highestspeedupsachieved. 75
53 Parallelizationoverhead ., L, 77
5.4 Distribution and average size of tasks in the comparative snite 77
55 Averagesizeofmsacycles 0L e 80
5.6 Mean and standard deviation for number of condmons per production 82
5.7 Instantiations generated per cycle for the comparative suite 82
5.8 Sizeofthe spamdatasets D (1
59 Saturationspeedupsforspam e 100
5.10 Number of iterationsof spamloops . . «. 101
5.11 Results for lifeonanOmron e 117
5.12 Results forcircuitonanOmron M 117
5.13 Results forhotelonanOmron, . ..o o0 117
5.14 Results for hotel for a modified PPL implementation. i1

5.15 Results for coarse-grain decomposition of cireuit 118
5.16 Comparison of estimated and actual execution times on auniprocessor . . . 119
8.1 Largestexperiments P
10.1 Comparison of ratio of msacyclesandspeedups 21

xv

ADA289345

LIST OF TABLES

10.2 Comparison average cycle size of sequential and parallel versions .

D.1 Language level resultsforspam v r v e
D.2 Languagelevelresultsforfife
D.3 Languagelevelresultsforcircuit.,
D4 Languagelevel resultsforwaltz,
D.5 Language level resultsforhotel e e “ e
D.6 Task breakdownforspam e e e e
D.7 Taskbreakdownforiife e e e
D8 Task breakdownforeircuit
DS Taskbreakdownforwaltz 0o
D.10 Task breakdown forhotel e e e e e e
D.11 Execution time breakdownforspam
D.12 Execution time breakdown forlife e e
D.13 Execution time breakdown forcircuit
D.14 Execution time breakdownforwaltz
D.15 Execution time breakdown forhote! cen

ADA289345

xvi

.21

232
232
233

. 233

234
235
236
237
238

Chapter 1

Introduction

The chief characteristic of the production system (rule-based) computational model is the data-
dependent nature of its control-flow. A production system program checks its data every so
often to determine what to do next This feature makes the production system computational
mode] attractive for programs in which the sequence of operations is not known a priori and
needs to be determined dynamically depending on the contents of the data. It is then not
surprising that, for a long time, production system programs were almost exclusively used
for artificial intelligence programs including cognitive modelling [3, 89, 87, 88, 99, problem-
solving systems (57, 98, 125] and expert systems (12, 59, 62, 72, 123]. This flexibility comes
with a price tag - production system programs have always heen considered slow. For a
long time, this limited the applicability of production systems. Over the last two decades,
considerable research has been devoted to efficient implementations of production system
languages (23, 27, 29, 38, 49, 74, 78, 79, 96, 114]. The combination of better algorithms,
efficient compilation techniques and faster hardware platforms has yielded several orders of
magnitude speedup. Today, implementations of production system languages are available
from several vendors and are used for a variety of expert system programs.

The speedup has also increased the attractiveness of production system programs for other
pattern-directed programs. Production systems have been proposed as a single uniform mecha-
nism for diverse tasks in relationa) database systems — enforcing integrity constrairts, monitor-
ing data access and evolution, maintaining derived data, enforcing security schemes, maintain
version histories, implement alerters and triggers that initiate actions in the presence of specific
data patterns [46). Integrating production systems and relational database systems is currently
a focus of research among database researchers. Several prototypes are under development,
¢.g., Starburst [127], POSTGRES [108), Ariel [45), RPL [21] Several commercial relational
databases, e.g., Sybase [110), Oracle, Rdb and INGRES [54] provide some, albeit limited, sup-
port for rules. Another application area is image-interpretation where production systems are
used to coordinate and control image segmentation, segmentation analysis and the construction

1

ADA2B9345

of a scene model. An example is the System for Photo-interpretation of Airports using MAPS
(SPAM) system [75] developed at Carnegie Mellon. Production systems are also being used
in simulation [70, 95, 97] and monitoring large processes [67). The common characteristic
of these applications is that they process orders of magnitude more data than the traditional
applications — typical databases contain millions of tuples, large databases even more. Produc-
tion system impiementations, however, have been notorious for their inability to handle large
amounts of data. Production system programming texts like Programming Expert Systems with
OPS5 [11] devote several pages to tricks to avoid excruciating slow-downs as the size of the
data increases. Production system programs that need to process large amounts of data usually
have to be modified to partition the data and process it piccemeal, for example SPAM {47] and
Alexsys [107].

This dissertation investigates two approaches to tackle the growth in execution time due to
growing data sets - scalable parallelism and scalable match algorithms.

Several research efforts have investigated paratlelism in production system programs (2, 14,
38, 42, 48, 51, 56, 61, 84, 86, 90, 105, 128]. These investigations indicated that the amount
of parallelism available in production system programs is small. Based on a detailed analysis
of a set of six programs of various sizes and organizations, Anoop Gupta [38) concluded that
there is an empirical program-independent bound of between 20 and 30 fold on the parallelism
available in production system programs. He further concluded that fine-grain decomposition is
required to achicve significant speedup and that the communication and scheduling overheads
of such decompositions limit the achievable speedup to under 20 fold, Results of the other
investigations have borne out this conclusion. The primary cause for this program-independent
bound is the uniformly high frequency of barrier synchronizations in parallel execution of
production system programs. Investigations studying parallel implementations of OPSS5 and
Soar report that a large fraction of the barrier synchronizations occur after less than 125,000
instructions [42, 113).} Since little work is done between successive barrier synchronizations,
the number of processors that can be effectively utilized is bounded. Barrier synchronizations
are necessary in production system programs to ensure that all changes to the data are completed
before trying to determine what to do next. Barrier synchronizations are, thus, the price paid for
dynamic determination of control-fiow. Contemporary production system languages are geared
towards highly dynamic control-flow. They limit the amount of work that can be done between
successive branch points. It is this limit that leads to the high rate of barrier synchronizations.
Eliminating the limit on the amount of work between successive barrier synchronizations is
necessary for scalable parallelism but not sufficient. It is also necessary to ensure that available
parallelism between barrier synchronizations keeps pace with the growth in the amount of
work.

This dissertation addresses the problem of scalable paralielism in production system programs

1250 tasks of between 100 and 500 instructions

ADA289345

1.1. PREVIEW OF RESULTS 3

at three levels: design of an explicitly parallel language, a fully parallelized implementation
and parallel programming idioms.

The primary cause of poor scalability of the match algorithms used in production system
implementations is the combinatorial explosion in the number of partial and complete matches
{38, 80, 116] which arises from the need to match conjunctive rule conditions. Since every
conjunct can potentially match the entire data set, the number of tests and matches, in the worst
case, is O(|D|") where |D| is the size of the data set and # is the maximum number of conjuncts
in the rules.

Research efforts aimed at developing match algorithms with better scaling characteristics have
either imposed semantic restrictions on the possible matches and leveraged the restrictions to
himat the number of possible matches [79, 116] or they have focused on efficiently managing
the large number of matches generated {92, 47, 104, 107, 118]. This dissertation attempts
to answer the question whether it is possible to improve the scalability of match algorithms
without imposing any semantic restrictions.

1.1 Preview of Results

The primary conclusions of this dissertation are:

1. In general, there is no program-independent bound on the speedup that can be achieved
by parallel production system programs. Detailed ssmulation results presented in this
dissertation indicate that speedups up to 115 fold with 200 processors can be achieved
and that this is not an upper bound on speedups. Analysis of the results identifies
small task size, non-parallelizable loops and large cross-products arising due to the
use of sequencing tuples as the primary limitations on speedups. These limitations
can be alleviated, if not eliminated, by using collection-oriented match algorithms and
collection-oriented languages.

2. Speedups in paralle! production systems can scale with data set size. That s, parallelismis
afeasible solution for the problemof dealing with large tuple-spaces. Results presented in
this dissertation show that in many cases, the speedup achieved with a given configuration
grows with the data set size, the rate of growth depending on program characteristics,
in particular, the fraction of time spent in non-parallelizable loops, the rate of growth of
task size with a growth in data set size and the structure of the dependencies between
maich tasks.

3. Effective parallelization of production system programs requires information about the
run-time contents of the tuple-space. The limited success of automatic parallelization

ADA289345

1.1. PREVIEW OF RESULTS 4

can be attributed to the data-dependent nature of the computation in production system
programs combined with a lack of information about the contents of the tuple-space. In
the absence of user specification, there is no way for a production system implementation
to obtawn this information. Compile-time analyses have access to only the productions
and are forced to be overly conservative. Run-time analyses operate within the context
of a particular tuple-space but have access only to the instantiations that are present in
the conflict set at any given time. To ensure correctness, an implementation based on
a run-time analysis would, in general, need to lookahead, possibly to the end of the
execution. This could be prohibitively expensive even for modest-sized programs.

4. A fixed ordering procedure combined with program annotations that specify which in-
stantiations are comparable 1s susficient for the expression of parallelism in production
system programs. Since the annotations are specified at compile-time, they cannot dis-
criminate between different instantiations of a single production. Either all instantiations
of a production are incomparable or none of them are. Program-specific ordering pro-
cedures that are executed at run-time have access to the instantiations and can be more
discriminating. Results presented in this dissertation show that, for a wide variety of
programs, the additional power provided by program-specific ordering procedures is not
necessary for the expression of parallelism present in the programs.

5. It 1s sometimes possible to tame the combinatorial explosion in the number of instan-
tiations and partial matches as the data set size grows without restricting either the
expressiveness of the productions or the contents of the tuple-space. That is, collection-
oriented match is a feasible solution for the problem of dealing with large tuple-spaces.
In the best case, the number of instantiations and partial matches can be independent of
the data set size; in the worst case, there is no reduction in the number of instantiations
and partial matches. Rzsults presented in this dissertation show that for one of the bench-
mark programs, it is possible to process over 10 million tuples under four minutes on a
Decstation 5000/260.

6. The rate of growth in number of instantiations and partial matches in a collection-oriented
match algorithm depends on the extent to which the tuples matching individual conditions
can be grouped together. If all the tuples matching every condition form single group,
only one instantiation is generated for every production. On the other hand, if every
tuple forms its own group, a collection-oriented algorithm reduces to its tuple-oriented
analogue. In other words, the number of instantiations for a production depends on how
the collections of tuples corresponding to each condition are partitioned, or fragmented.
Therefore, the rate at which the number of instantiations and tokens grows is governed
by the rate at which new partitions are generated.

ADA289345

Ln

1.2. MAP OF THE DISSERTATION

1.2 Map of the dissertation

Chapter 2 provides the background necessary for the rest of the dissertation. The first section
provides a brief introduction to the production system paradigm. The second section describes
the syntax and semantics of OPSS. Both the languages designed as a part of this investigation
are extensions of OPS5. Furthermore, all the test programs used in this investigation were
onginally written in OPS5. The third section briefly describes efficient match algorithms
and goes into more detail for one of them, Rete. Several schemes have been suggested for
parallelizing Rete. The fourth section describes the most successful scheme.

Chapters 3,4 and 5 describe the scalable paralielism investigation. The goal of this investigation
was to test three hypotheses. First, that there is no general program-independent bound on the
parallelism available in production system programs. Like in other paradigms, the parallelism
available in production system programs depends on the parallelism inherent in the program
and the way the program has been encoded. Second, that the parallelism available in a
production system program can scale with data. That is, parallelism is a possible solution for
the problem of dealing with large data sets. Third, that simple extensions to existing production
system languages are sufficient for the expression of parallelism in production system programs.
Chapter 3 establishes the need for parale! production system languages and describes the design
and implementation of one such language. Chapter 4 describes the experiments conducted to
evaluate this language and Chapter § presents the results, analysis and some observations.

Section 3.1 describes the limitations of automatic parallelization for production system pro-
grams and establishes the need for parallel production system languages. Section 3.2 lays out
the design space for these languages and evaluates the alternatives, Section 3.3 describes the
design of a particular language, Parallel Production Language (PPL). Section 3.4 describes the
PPL implementation. Section 4.1 describes the benchmark suite. It describes the programs,
the parallelization strategy and the data sets used in the experiments. Section 4.2 describes the
structure of the experiments. Section 4.3 describes the simulator used in these experiments to
simulate the execution of PPL programs on a multiprocessor. Section 5.1 presents speedups
for the full benchmark suite. Section 5.1.1 analyzes the results to identify parallelization over-
heads, non-parallelizable loops and dependencies between tasks as the major limitations on
speedups in parallel production system programs. Section 5.2 shows how the speedup varies
with data set size for individual benchmarks. Section 5.3 presents some observations from
the experiments, including programming idioms for parallel production system languages and
practical advice for parallelizing sequential production system programs. It also argues that
collection-oriented match algorithms can be expected to alleviate the fimitations on speedups
discussed in Section 5.1.1.

Chapters 6,7 and 8 describe the investigation into scalable match algorithms. Chapter 6
identifies the tuple-oriented nature of contemporary match algorithms as the primary cause of
the combinatorial explosion in the number of instantiations and partial matches. It presents a

ADADRGQQD AL

1.2. MAP OF THE DISSERTATION 6

new approach to matching, referred to as collection-oriented masch, which attempts to mitigate
the combinatorial explosion by not generating a separate combination of tuples for every way
m a conjunction of conditions can be matched. First, it presents and discusses the key idea
behind the approach. It then presents a new match algorithm based on this approach.

The tuple-oriented nature of the existing match algorithms is closely tied to the tuple-oriented
semantics of the languages they are used to implement. Chapter 7 discusses language semantics
and programming styles supported by the new class of match algorithms chapter. It presents
the design and implementation of a collection-oriented production language, COPL.

Chapter 8 describes the experiments conducted to evaluate the scalability of collection-oriented
match algorithms and to compare the performance of collection-oriented match aigorithms and
their tuple-oriented analogues for large tuple-spaces. In these experiments, Rete was selected
as the exemplar for tuple-oriented match algorithms and its collection-oriented analogue, Col-
lection Rete, was selected as the exemplar for collection-oriented match algorithms. The first
section describes the benchmark programs. The next section describes the structure of the
experiments. The third section compares the performance of PPL and COPL on the benchmark
programs. The fourth section discusses the scalability of collection-oriented match algorithms.
The chapter concludes with some observations from the experiments including programming
idioms for collection-oriented production languages.

Chapter 9 discusses related work. It covers a broad range of research into paralle! production
systems ranging from the early efforts to parallelize production match on a variety of architec-
tures (tree-structured architectures, dataflow machines, bus-based shared memory machines,
SIMD machines and low latency message passing architectures) to compile-time and run-time
analyses to determine which instantiations can be fired in parallel and parallel production
system languages. It also discusses several efforts to climinate or reduce the combinatorial
explosion in the number of instantiations and partial matches. This includes efforts such as
unique-attributes and instantiation-less match that are able to guarantee a polynomial bound on
the number of instantiations and partial matches as well as less comprehensive schemes, such
as copy-and-constrain and data partitioning, which are unable to provide such a guarantee but,
in some cases, are able to reduce the total number of comparisons performed.

Finally, Chapter 10 presents the primary conclusions of this dissertation and discusses some
avenues for future research,

Chapter 2

Background

This chapter provides the backgrouind necessary for the rest of the dissertation. The first section
provides a brief introduction to the production system paradigm. The second section describes
the syntax and semantics of OPS5. OPSS is the archetypical production system language. It
was the first production system language that saw wide use. Most later languages retained its
basic structure, All the test programs used in this investigation were originally written in OPSS.
The third section briefly describes efficient match algorithms and goes into more detail for one
of them, Rete. Rete is the most commonly used match algorithm and to the best of this author’s
knowledge, is used in all publicly available efficient implementations of production systems.
Several schemes have been suggested for parallelizing Rete, The fourth section describes the
most successful scheme.

2.1 Production Systems

A production system program consists of a set of i£-then rules (productions) and a tuple-
space. The productions are the code for the program and the tuple-space contains the data being
processed by the program. Each production consists of a pattern as the if-part, and a sequence
of actions as the then-part. The patterns match tuples from the tuple-space and the actions
modify the tuple-space. Execution of a production system program consists of a sequence
of match-select-act (msa) cycles. In the match phase of each cycle, the patterns for all the
productions are matched against the tuple-space. In the select phase, a subset of the matched
patterns are chosen (the particular selection algorithm depends on the language being used) and
the corresponding actions are executed. This usually results in modification of the tuple-space.
The cycle then repeats with the new tuple-space. If, at any stage, the tuple-space fails to match
even one of the patterns, execution js terminated. Figure 2.1 shows a high-level view of a

7

ADA289345

2.2. OPSS 8

Program
pattern_1 --> action_1
pattem_2 --> action_2
pattern_3 --> action_3

match

Tuple space

pattern_k --> actzon_k

updates

Figure 2.1: High-level view of a production system program

production system program. The key feature of the production system computational model is
the highly data-dependent nature of the control flow.

Productions can be considered as daemons that watch the tuple-space for particular patterns.
This view of productions is prevalent in the active database community [13, 24, 46, 108,
127]. They can also be viewed as guarded commands[22), though almost always without
the nondeterminism. Most production systemn applications are based on this view. Finally,
productions can be viewed as associative access mechanisms. Several prominent cognitive
models use productions to model the associative nature of human memory {3, 66]. For more
details on .he production system computational model. see [125]

22 OPSS

OPS5 was the first widely used production system language [28). It was designed as a part
of the Instructable Production System project at Carnegie Mellon University and a Franzlisp
implementation was developed by Charles Forgy. This implementation has been the basis for
most subsequent implementations of OPSS and its derivative languages. Most later production
system languages retained the basic structure of OPS5 and extended it in various ways. Almost
all recent research in implementation of production systems, sequential as well as parallel, has
been within the context of OPSS.

The tuple-space for an OPSS program is called the working memory and individual tuples are
referred to as working memory elements . A tuple consists of a type tag (its class), a unique
identifier (its nmetag) and a set of named fields. Field names are symbolic and are referred
to as attributes. Ficld values can only be of ground types (integer, symbol or floating point),

ADA289345

2.2. OPSS 9

Figure 2.2 shows an OPSS5 tuple of class st udent, with four fields - name, roll-number,
score and course. Field names are prefixed with *“~" to distinguish them from symbohc
values. The timetag associated with this tuple 15 4.

AN A 0% Ao PPy

4: (student “name Bovik “roll-number 142 *scote 93 *course prog-language)

Figure 2.2: Sample OPSS tuple

The if-part of an OPS5 production consists of a conjunction of conditions. Each condition is a
pattern which is syntactically similar to a tuple and tests for the presence of tuples matching the
pattern. A conditions can be negated, that is, prefixed with “~", in which case it tests for the
absence of tuples matching the pattern. If the tuple-space contains a matching tuple for every
non-negated condition in a production and no matching tuples for any of the negated conditions,
it is said to match, or be instantiated. An instantiation of a production consists of the list of
tuples which match all its non-negated conditions. The then-part of a production consists of a
sequence of actions which may modify the tuple-space, perform 10 or call functions in other
languages. Figure 2.3 shows an OPSS5 production with three conditions and two actions.

(p find-max-scoring-student-in-prog-language
(student Aroll-number <roilno> “name <name> Ascore <score> “course prog-language)
«(student ~score > <score> “coursc prog-language)
(advisor “name <name2> *advisee <rollno> Adept computer-science }
->
(wnte Top score <score> by <name>, advised by <name2>)
(make top-score Ascore <score> “course prog-language))

Figure 2.3: Sample OPSS5 production

The condition patterns look like tuples but they may have variables in place of a field value.
Variables are specified by symbols enclosed in angle brackets (<>), for example <rollno>.
Each pattern specifies a set of tests for a tuple. Tests can be equality or relational. A constant
field in a pattern can be matched only by tuples that have the same value for the same field.
Such tests are referred to as constant tests. In Figure 2.3, the constant tests are in boldface.
For example, the first condition has two constant tests, the first which checks if the tuple is of
type student and the second which tests if the value of the course field for the tuple is prog-
language. A variable field in a pattern can be matched by a tuple with any value for the field.
If a variable occurs multiple times in a production, it must match the same value everywhere.

ADA289345

2.2. OPSS 10

{(student “name Bovik “roll-number 17 “score 97 Acourse prog-language)

null
{advisor “name Shanu “advisee 17 “dept computer-science) ,

<rolino> =17, <name> = Bovik, <score> = 97, <name2> = Shanti

Figure 2.4: An instantiation for the sample production

In effect, variables are used to specify constraints or consistency checks between tuples that
match different conditions. These tests are referred to as variable tests. For example, the first
condition in Figure 2.3 has three variable tests which bind the variables <rollno>, <name>
and <score> to the corresponding values in the matching tuple. The variable <rollno> occurs
again in the third condition where it is used to specify that the value of the advisee field of
the tuples matching this condition must be the same as the value of the roll-number field
of the tuple matching the first condition. In practice, variables occurring in multiple conditions
are often used to match an aggregate data object implemented as several tuples. For example,
the production in Figure 2.3 uses the <rollno> variable common between the first and third
conditions to Jink the students in the programming languages course to their advisors in the
computer science department. To understand the matching process for a complete production,
consider, once again, Figure 2.3, The first condition is satisfied if there exists a student who
is taking the programming languages course. The second condition is satisfied if there exists
no student in the programming language course whose score is higher than the score of the
student matching the first condition. In other words, the student matching the first condition is
the top-scoring student in the programming languages course. The inter-condition constraint is
specified by the common variable, that is, <score>. The third condition is satisfied if there exists
an advisor in the computer science department for the student matching the first condition. The
variable <name> is bound to the name of the top-scoring student and the variable <name2>
is bound to the name of her advisor. An instantiation for this production consists of the tuples
matching the first and third conditions (in order). Figure 2.4 shows an example along with the
bindings for the variables occurring in the production.

The set of all instantiations is referred to as the conflict set. The select phase uses a deterministic
algorithm to choose at most one instantiation from the conflict set. It first tries to order the
conflict set using the age of the tuples contained in the instantiations (recency criterion). In-
stantiations containing younger tuples are preferred over instantiations containing older tuples.
If this does not yield a total order, 1t tries to break the ties using syntactic measures like the
number of conditions and tests (the specificity criterion). If this fails, it imposes an arbitrary
order on tnstantiations that are still tied. It then picks the dominant instantiation from the total

ADA289345

——
-

2.3. MATCH ALGORITHMS

order.

In the act phase, the selected instantiation is fired, that is the actions n the corresponding
production are executed after replacing the occurrences of variables by the values bound to
them. For example, the instantiation in Figure 2.4 is fired by executing the sequence:

(write Top score 97 by Bovik, advised by Shanti)
{make top-score “score 97 “course prog-language)

This results in “Top score 97 by Bovik, advised by Shanti" being written on the output stream
and the tuple (top-score ~score 97 “course prog-language) being added to
the tuple-space. Timetags for all tuples are automatically assigned by the implementation.

For further details on OPSS, see [11].

2.3 Match Algorithms

The match phase has traditionally been the most expensive segment of production system
execution and therefore has been the focus of much research {27, 29, 30, 39, 45, 78, 79, 90, 94}
Early measurements indicated that, on the average, the rate of change of tuple-space is low {27)
(this is referred to as temporal redundancy). As a result, all known efficient match algorithms
are incremental, that is, in each msa cycle, they match only the changes to the tuple-space
mnstead of matching the entire tuple-space. This is achieved by preserving the state of the
match algorithm across msa cycles. The amount of state preserved depends on the particular
match algorithm being used. It could be as little as keeping track of the sets of tuples matching
individual conditions and as much as keeping track of all possible matches for all possible
sequences of conditions. Besides efficiency, there is also a semantic reason for preserving
information about matches across msa cycles. Production system semantics dictate that an
instantiation can be fired at most once. The purpose of this restriction is to avoid infinite loops
due to the same instantiation being fired over and over again. Therefore, it 1s necessary to keep
track of the set of instantiations that have already been fired. Such instantiations are referred
to as refracted instantiations. Practically, this means the conflict set has to be preserved across
msa cycles.

The pnimary difference among the major match algorithms n the literature is the amount of
state they save. At one end of the spectrum is the Dynamic Join algorithm [90] which stores
information about matches for all possible combinations of conditions. For a production with
three conditions C1, C2 and C3, Dynamic Join stores information about the ind:vidual wples
that match C1, C2 and C3; the tuple-pairs that match {C1,C2}, {Cl, C3} and {C2, C3} and
the tuple-triples that match {Cl, C2, C3}. The state saved by this algorithm grows very

ADA289345

23. MATCH ALGORITHMS 12

rapidly with the increase in the size of the tuple-space. Furthermore, most of the state contains
redundant information. Therefore, it is not suitable as a base for a scalable implementation.

At the other end of the state-saving spectrum are Treat [78] and its derivative algorithms
[44, 79]. Treat stores information only about the matches for individual conditions and for
complete productions. For a production with three conditions, Treat would store information
about the tuples that match C1, C2 and C3 and the tuple-triples that match {C1,C2,C3} [78].
Variations of Treat store even less information: Lazy Match [79] stores only one instantiation
per production and A’-Treat [44] does not store the matches for individual conditions. These
algonthms recompute the rest of the state as and when needed. They are suitable for programs
whose tuple-spaces change fast enough to make state-saving not worthwhile. For most of the
applications being considered in this dissertation, the tuple-space changes very slowly (e.g.,
databases, images ezc.). Therefore, these algorithms would incur substantial recomputing costs
which could be avoided by additional state-saving.

Rete [29] and its derivative algorithms [38, 100, 114] lie between these extremes. In addition
to storing information about the tuples matching individual conditions, Rete stores information
about tuples that match a particular sequence of combinations which is fixed in advance. Fora
three condition production, Rete stores information about the tuples that match C1, C2 and C3;
the tuple-pairs that match {C1,C2} and the tuple-triples that match {C1,C2,C3}. The sequence
of conditions can be picked to minimize the size of state to be saved. Since it saves more state
than Treat and its derivatives, Rete is more suitable for slowly changing tuple-spaces. As noted
in the previous paragraph, in most applications under consideration, the tuple-space changes
slowly. Therefore, Rete appears to be the algorithm of choice.

However, in choosing the algorithm for a scalable implementation, the savings in the recom-
putation cost have to be traded off against the increase in the space requirement and against
the limitations each choice imposes on the semantics of the language. Since Rete, Treat and
A’-Treat store the conflict set, their worst case spacs complexity is O(w") where w is the size of
the tuple-space and n is the length of the longest pattern. Lazy Match reduces the worst-case
complexity by storing only one instantiation per production. This means it can be used only
for languages with sequential semantics. As discussed in Chapters 5 and 7, this is undesirable
for programs with large data sets. UniRete [114] restricts both the tests that can appear in con-
ditions and the values that can appear in the tuples to limit the number of tuples that can match
individual conditions to at most one. This reduces its space complexity to O(n) per production.
However, these semantic restrictions may necessitate a much larger number (sometimes expo-
nential number) of productions to achieve the same functionality [112). A’-Treat [44] tries to
reduce the average case complexity by not storing the tuples matching individual conditions
for conaitions which are expected to match a large number of tuples. This is effective if con-
sistency cnecks on these conditions are infrequent. However, the need for consistency checks
is data-dependent and cannot be predicted in the general case.

In addition to being suitable for the slowly-changing tuple-spaces of the application areas of

ADA289345

24. RETE 13

wnterest, Rete supports succinct programs in sequential as well as parallel computational models.
Therefore, Rete has been chosen as the base of this mvestigation. Note however, that if the
amount of match state does not fit in memory, it may be necessary to spill part of the state
to disk. This can be done either on a per-page basis (as in commonly used virtual memory
systems) or on a per-object basis, objects in this case being the match state for individual
conditions or condition sequences. Another possibility is the use of operating system support
for recomputable pages [109] which would not spill the state to disk but would recompute it as
and when necessary.

24 Rete

Rete was developed by Charles Forgy for the implementation of the OPS family of production
system languages. It has since become the most commonly used match algonthm for production
systems. As mentioned in the previous section, Rete is suitable for matching against slowly-
changing tuple-spaces. In addition to its position on the state-saving spectrum, it is also
characterized by the fixed order in which the tests are performed. In contrast, Treat and
Dynamic Join change the order in which conditions are tested at run-time.

Rete is based on a dataflow network generated from the conditions of the productions. For
example, consider the productions in Figure 2.5. The Rete network corresponding to these
productions can be found in Figure 2.6. The network can be divided into two parts, the
upper half which implements the intra-condition tests and the lower half which implements the
inter-condition tests.

The upper half of the Rete network is referred to as the o network and consists of adiscrimination
net based on individual conditions. For any tuple, the & network determines the set of conditions
1t matches. The discrimination net exploits similarity between conditions (within and across
productions) by sharing the tests for identical conditions. For example, in Figure 2.5, the first
condition in both productions checks if the type of the tuple is xor-gate and the rest of the
conditions in both productions check if the type is 1ine. There are no other intra-condition
tests. Accordingly, there are only two branches in the o network in Figure 2.6.

The lower half is referred to as the 3 network and performs the inter-condition consistency
checks. The 3 network consists of 8 nodes which perform consistency checks between tuples.
In Figure 2.6, 5 nodes are represented by circles. The tests performed by an individual node are
specified on its left. This network exploits similarity between productions by sharing network
segments for common condition prefixes. The consistency test between the first two conditions
for both productions in Figure 2.5 is identical, it checks if the value of the inl field of the
tuple matching the first condition is same as the value of the id field of the tuple matching the
second condition. In the network, this test is implemented by 8, and is shared between both
the productions. Since the next condition, the third, 1s different for the two productions, there

ADA289345

24. RETE 14

(p xor-gate-on
(xor-gate Ainl <inputl> Mn2 <input2> Aout <output>)
(line Md <nputl> Avalue <v>)
(line Aid <input2> Avalue <v>)
(line Md <output>)
->
(modafy 4 Avalue 0))

(p xor-gate-off
(xor-gate Ainl <mputl> Ain2 <input2> Aout <output>)
(line ~id <inputl> Avalue <v>)
(line Aid <input2> Avalue <> <v>)
(line Aid <output>)
->

(modify 4 Avalue 1))

Figure 2.5: Productions to implement a simulator for 2-input xor-gates

is a separate subnetwork for the rest of the conditions of each production. The subnetwork
for xor-gate-off contains B and S which correspond to its third and fourth conditions.
Similarly, the subnetwork for xoxr~gate-on consists of 3; and 3s. There are two kinds of
3 nodes — and nodes and not nodes. The former perform tests corresponding to non-negated
conditions whereas the latter perform tests corresponding to negated conditions. All the nodes
tn Figure 2.6 are and nodes.

The objects that flow down the Rete network are tuple combinations. They are referred to
as tokens. Tokens correspond to matches for condition prefixes and consist of an ordered
sequence of tuples, one tuple corresponding to each non-negated condition and a null tuple
for each negated condition. To preserve information about partial matches, memory nodes are
inserted in the Rete network. Memory nodes are needed at the bottom of the discrimination
net (to preserve information about matches for individual conditions) and after every 3 node
(to preserve information about matches for condition prefixes). In Figure 2.6, memory nodes
are depicted by rounded rectangles. With the insertion of the memory nodes, each input of a §
node comes from a memory node. The memory node on the left input of a 3 node is referred
to its left memcry and the memory node on the right input of a 3 node is referred to its righr
memory. Memory nodes at the bottom of the network are special as they contain complete

ADA289345

2.4, RETE 15

root

— “

type == xor-gate type =-1 line

Clinl == C2id Q

memory ,

Clin2 ==C3.id and
C2.value == C3.value

Clin2 = C3.id and
C2.value = C3.value

xor-gate-off xor-gate-on

Figure 2.6: Rete network for the XOR gate productions

ADA289345

24. RETE 16

and not partial matches. They are referred to as terminal nodes or pnodes and are depicted as
diamonds in Figure 2.6. The contents of all terminal nodes constitutes the conflict set.

To 1llustrate the operation of the algorithm, consider the network in Figure 2.6 and the following
sequence of additions to the tuple-space.

tl: (xor-gate “inl linel “in2 line2 “~out line3)
t2: (line ~id linel “value Q)
t3: (line #~id line2 “value 1)
t4: (line ~id line3 “value 1)

When the first tuple, t1, is inserted into the tuple-space, the token <t 1> is created and sent to
the root node of the network. The root node broadcasts it on all the branches emanating from
it. Since, its type is xoxr-gate, only the test on the left branch succeeds. The token flows into
memory; which stores 1t and passes a copy to its successot, 3;. 8, compares this token with the
tokens 1n its right memory. The right memory is currently empty, so there are no matches and
no further propagation takes place.

When the second tuple, t2, is inserted into the tuple-space, the token <t2> is crcated and
broadcasted from the root node. Since its type is 1ine, only the test on the right branch
succeeds. It gets stored in memory; and a copy is passed to the successor 3 nodes, which, in
this case, is all the beta nodes n the network. Each node checks the corresponding opposite (left)
memory for matches. Only 5, finds a matching token, <t1>, in its left memory (memory,),
since the id field of £2 has the same value as the in1 field of 1. This results in the generation
of the successor token <t 1, £2> which is stored in memory; and a copy passed to &, and Js.
Both these nodes check memory, for a tuple whose 1d field has the same value as the in2 field
of t1. Since no such tuple exists (yet), no further propagation takes place.

When the third tuple, t3, is inserted into the tuple-space, the token <t 3> is created and
broadcast from the root node. Again, only the test on the right branch succeeds causing the
token to be added to memory; and copies passed to all the 4 nodes. Only S, finds a matching
token, <tl, £2>,initsleft memory (memorys), since the id field of 3 contains the same value
as the in2 field of £1 and the value fields of £2 and t3 are different (0 and 1 respectively).
This leads to the generation of <t1, 2, £3> which is stored in memorys and a copy passed
10 fs. Since the right memory for S5 does not (yet) contain a tuple whose 14 field is the same
as the out field of t1, no further propagation takes place,

When the fourth tuple, t4, is inserted into the tuple-space, the token <t4> is created and
broadcast from the root node. Once again, only the test on the right branch succeeds causing
the token to be added to memory, and copies passed to all successor 3 nodes. Only Js finds a
maiching token, <t1, €2, 3>, inits left memory (memorys), since the id field of t4 contains
the same value as the out field of t1. This leads to the generation of the complete match

ADA289345

2.5. PARALLEL RETE 17

{(xor-gate Al linel *in2 line2 Aout line3)
(line ~id hinel Avalue 0)

(line Aid line 2 Avalue 1)

(line *d line3 Avalue 1))

<inputl> = linel, <input2> = line2, <outpur> = line3, <v>=0

Figure 2.7: Instantiation generated for the xor-gate simulator

<t1,t2,t3, t4> which flows nto the terminal node for the production xor-gate-on.
The instantiation generated is shown in Figure 2.7.

Rete handles the deletion of tuples similarly except that matching tokens are deleted from
memory nodes instead of being added. Rete adds a tag to every token indicating whether it
corresponds to an addition or a deletion. Modification of tuples is implemented by deletion of
the old tuple followed by addition of the updated tuple.

For further details on the Rete algorithm see [29].

2.5 Parallel Rete

The key feature of the Rete algorithm which makes it possible to parallefize it is its dataflow
nature. It provides a natural way of decomposing the task of matching of a szt of rules into small
subtasks which can be done in parallel. Several schemes have been suggested for parallelizing
Rete {2, 37, 38, 40, 51, 61]. This section describes the most successful scheme. This scheme
has been used 1n ParaOPS5 (42] and CParaOPSS$ (1], which are parallelizing implementations
of OPSS on shared memory machines. It is also used in the implementations developed for this
dissertation.

Individual tests in the o network are too small (between three and nine instructions) to be
scheduled as separate tasks. All the tests performed on a token as it flows through the o
network is a more suitable task unit. Processing of a token at a 3 rode is more substantial
(usually between one and seven hundred instructions) and can be considered as a potential task
unit on its own.

The intuitive scheme for parallelizing Rete arises from viewing it in an object-oriented manner
where the nodes of the Rete network are the objects and the tokens are the messages. In this
scheme, the nodes of the Rete network are partitioned and allocated to the available processors.
The primary problem for this scheme is the irregular and data-dependent nature of computation

ADA289345

2.5. PARALLEL RETE 18

which makes it difficult to determine good partitioning strategies. This leads to poor load
balancing and processor utilization. Dynamic migration of nodes between partitions is not
feasible since the activity in the Rete network is highly irregular and knowledge of past activity
does not help in predicting loci of future activity [2). Furthermore, the number of tokens
flowing into individual nodes can often be quite large Since each node is typically allocated to
a single processor, this leads to serialization of the processing of all tokens flowing into a single
node. Replicating 5 nodes is not a feasible solution for this problem since a token flowing into
a 3 node has to be compared with all tokens in the opposite memory. All tokens flowing into 2
node would have to be broadcasted to and stored by all replicas. Furthermore, the unpredictable
nature of the token flow in the network makes it difficult to determine an appropriate degree of
replication.

To avoid these problems, Anoop Gupta [38) suggested that all processors should be permitted
to process tokens destined for all nodes. For scheduling and load balancing, he suggested the
use of shared task pools. To avoid serializing on access to a memory node on an input of a 3
node, he suggested that contents of the memory nodes be partitioned. Since his measurements
indicated that a large number of memory nodes are empty, he recommended that two global
hashtables be used to store the contents of all memory nodes — one for al} left memories and the
other for all right memories. The hash function takes the identifier of the destination 3 node
of the token and the value(s) being tested at the node as parameters. Using the value(s) being
tested as parameters implies that the tokens that flow into the same node but have different
values for the tested fields get hashed to different buckets which can be accessed in parallel. As
long as the value(s) being tested are different, this scheme avoids serializing on tokens destined
for the same node. Similarly, using the identifier of the destination 5 node as a parameter results
1n distribution of tokens flowing into different 2 nodes to different hash buckets, allowing them
to be processed in parallel. Furthermore, hashing the contents of the memory nodes, instead
of storing ther in linear lists reduces the average number of comparisons performed per token
{38). Since Rete spends most of its time in the 3 network, using hashtable based memory nodes
also improves uniprocessor performance.

The use of a hashtable, however, implies that most memory nodes cannot be shared. This is
because the hash function uses the value(s) being tested at the destination 3 node and different
successor nodes test different fields (or else they would have been shared). However, it is still
possible to share 3 nodes in which case the associated memory nodes get automatically shared.

While processing changes to the tuple-space, it is possible that the same token is first added
to and then deleted from a memory node. Such token-pairs are referred to as conjugate
tokens [27). Since conjugate tokens can be processed by different processors, the deletion
request may precede the corresponding addition request at the memory node. For correctness,
the deletion request has to held at the memory node until the addition request arrives. This
implies that some sort of an extra-deletes-list {38) has to be associated with every memory
node (including the termunal nodes). For a hashtable based implementation of memory nodes,

ADA289345

2.5. PARALLEL RETE 19

processing of comjugate tokens can be integrated with that of normal tokens by providing
conjugate hashtables which mirror the normal hashtables. The operation of adding a token
to a hash bucket is modified to include a check of the corresponding bucket in the conjugate
hashtable.

For further information on parallel implementations of Rete, see [38],

ADA289345

Chapter 3

Design and Implementation of PPL

In the most attractive paralle]l programming scenario, the programmer writes a sequential
prog:am which is correct and efficient and the compiler takes care of parallelizing it. There has
been considerable research on automatic parallelization of production systems. However, all of
the efforts have had limited success. The primary reason for this is the data-dependent nature of
control flow in preduction system programs. Since compilers do not have information about the
run-time contents of the tuple-space, they are forced to be overly conservative in their efforts
to determine which operations can be safely performed in paralle!. This chapter discusses and
evaluates the ways in which information about the run-time contents of the tuple-space can be
made available to a parallel implementation and how this information can be utilized.

The first section describes the limitatiors of automatic parallelization for production system
programs and establishes the need for parallel production system languages. The second section
lays out the design space for these langueges and evaluates the alternatives. The third section
describes the design of a particular language, Parallel Production Language (PPL). The fourth
section describes the PPL implementation.

3.1 Need for Parallel Production Languages

This section argues that automatic parallelization of sequential production system languages is
subject to a program-independent bound on the average number of tasks that can be performed
in paralle! (the available paralielism) and that paralle] production system languages are needer
for scalable parallelism. The primary cause of this program-independent bound is the uniformiy
high frequency of barrer synchronizations in parallel execution of production system programs.
Since there is little work to be done between successive barrier synchronizations, only a smail
number of processors can be gainfully employed. Section 3.1.1 shows that the semantics of
production system languages require a barrier synchronization in every msa cycle. Section3.1.2

20

ADA289345

L]
(%]
——

3 1. NEED FOR PARALLEL PRODUCTION LANGUAGE!

4

discusses why barrier synchronizations can be expected to be frequent. Eliminating the limit
on the amount of work between successive barrier synchronizations is necessary for scalable
parallelism but not sufficient. It is also necessary to ensure that the available parallelism keeps
pace with the growth in the amount of work. Section 3.1.3 discusses the desiderata for a parallel
production system language.

3.1.1 Need for barrier synchronization

The production system computational model is synchronous. In each match-select-act cycle,
the match phase must be completed before the instantiations to be fired can be selected. Parallel
implementations of production system programs need a barrier synchronization to ensure this.
There are three reasons for this requirement:

Negation as non-existence: Recii from Section 2.2 that the if-part of a production can contain
negated conditions. A production containing negated conditions is considered to have a match
if and only if the follcwing assertions hold simultaneously:

1. For each non-negated condition, the tuple-space contains a tuple that satisfies its con-
straints

2. For each negated condition, the tuple-space does not contain a tuple that satisfies its
constraints

The first assertion can be shown to hold as soon as a matching tuple has been found for every
non-negated condition but the truth of the second assertion can be established only after the
entire tuple-space has been processed. For incremental match algorithms this means matching
negated conditions is completed only when all changes to the tuple-space have been processed.

Global selection policies: Non-trivial selection algorithms, that is, algorithms that pick a
proper subset of the conflict set, usually pick the “best” subset for some measure of quality
(the idea being to execute the most appropriate rule applicable). To be able to do this, it must
have access to all instantiations which implies that the final selection can take place only after
the match phase has been completed. It is possible to integrate the algorithm that selects the
instantiations with the algorithm that generates the instantiations such that only the desired
subset of the instantiations is generated. Or that the instantiations are generated in decreasing
order of desirability. For example, the Lazy Maich algorithm([80) integrates the LEX selection
algorithm {11] with the Treat match algorithm to avoid generating instantiations that will not
be zelected. In the absence of negated conditions, such a strategy would aliow instantiations
to be fired as soon as they are generated. However, this is possible only for simple selection
algorithms that depend on structural features Jike timestamps on tuples and size of instantiations.
Selection strategies that depend on the contents of the instantiations, like meta-xulesin [18)

ADA289345

3.1. NEED FOR PARALLEL PRODUCTION LANGUAGES 22

and redact rules .n PARULEL programs [107] must, in general, await the generation of all
instantiations before making decisions.

Non-monotonic tuple-space: Previous paragraphs seem to ndicate that production system
programs with no negated conditions and structural selection algorithms can run without syn-
chronization points. This is true if and only if there is no interference between instantiations.
Two instantiations interfere if firing one of them deletes tuples contained in the other or iof
both try to modify the same tuple.! As long as deletion or modification of tuples is permitted,
non-interference of all possible instantiations can be guaranteed only for very simple programs.
For example, consider the production in Figure 3.1. This production interferes with itself
since the two instantiations generated for the given tuples try to paint the same red ball. For
non-monotonic tuple-spaces, asynchronous firings would lead to non-deterministic behavior
and race conditions. Monotonicity of the tuple-space is a severe restriction since either the data
must not evolve or multiple copies of the data must be maintained. Monotonic tuple-spaces oc-
cur in “pure” Prolog programs [17]. Subsequent logic programming languages have introduced
non-monotonic tuple-spaces (9, 69, 85].

(p paint-red-ball
(balt Acolor blue)
(ball Acolor red)
S
(modify 2 Acolor blue))

T1: (ball Acolor blue)
T2: (ball Acolor blue)
T3: (bal] Acolor red)

Instantianons; <T1,T3>, <T2,T3>

Figure 3.1: Simple production that interferes with itself

!This definition assumes that there are no negated conditions in the program It can be eastly extended for
programs with negated conditions.

ADA289345

3.1. NEED FOR PARALLEL PRODUCTION LANGUAGES 23

3.1.2 Frequency of barrier synchronization

There are two levels at which a sequential production system program can be paralielized -
parallel execution of operations within individual msa cycles and parallel/overlapped execution
of multiple msa cycles. The following subsections argue that, 1n both cases, the frequency of
barrier synchronizations can be expected to be high.

3.1.2.1 Intra-cycle paralielization

For parallel execution, the match-select-act cycle is converted to the match-barrier-select-act
cycle. In other words, paralle] execution of production system programs consists of a sequence
of select-act-match cycles separated by barrier synchronizations. The total cost of operations
between successive synchronizations is 2 sum of:

1. Selection cost: depends on the number of changes to the conflict set (i.e., the number
of instantiations generated or deleted) during a cycle and on the number of instantiations
selected

2. Firing cost: depends on the number of instantiations selected and the costs of firing
individual instantiations.

3. Match cost: depends on the number of modifications to the tuple-space and the number
of productions that can potentially match each modified tuple. (Recall from Chapter 2 that
efficient match algorithms are incremental and match only the changes to the tuple-space
in each cycle.)

The average numoer of changes to the conflict set in a cycle is usually small. For the pro-
grams studied in Anoop Gupta's thesis[38), the average number of conflict set modifications
ranges between 2.5 and 7.86, the weighted average being 4.57. A previous study by Gupta
and Forgy[39], on a different set of programs, measured the average number of conflict set
modifications to be between 3.2 and 12.6 and sequential production system languages allow
only one instantiation to be fired every msa cycle. As a result, the selection cost is small.
Since each production has a small number of actions (= 3 [38]) and since individual actions
are cheap (~ 200 instructions), the firing cost is usually small. Furthermore, since the number
of tuple-space modifications per msa cycle are small (&~ 2.51 [38]) and since the number of
productions that can match individual modifications is usvally small (~ 32 [38)), the amount
of time spent in the match phase of each cycle is usually smalt?

*This does not hold for some cases For example, the addition of a single sequencing tuple can cause & targe
number of tnstantiations to be generated However, such cases are relatively rare.

ADA289345

3.1. NEED FOR PARALLEL PRODUCTION IANGUAGES 24

Since the work being done 1n each phase is usually small, the total work being done between
successive barrier synchromizations is small and the frequency of the barner synchronizations
can be expected to be high. Gupta et al.[42] report that a large fraction of the msa cycles
in a suite of OPS5 programs had fewer than 250 tasks (each task being between 100 and 500
instructions). They referred to these cycles as short cycles and concluded that the preponderance
of these cycles was responsible for the low speedup achieved. Tambe et al. [113] report similar
results for a paralle! implementation of Soar [66).

The exceptions to this are production system programs that call expensive foreign functions.
For example, the SPAM image-interpretation system [75] calls geometric functions to compute
relationships between 1mage regions; these functions are expensive to compute and dominate
the computation in SPAM. Even though the frequency of barrier synchronizations is not high
in such programs, the parallelism available in individual msa cycles remains low since the
foreign functions used are usually written in a sequential language and are not available to the
production system compiler.

3.1.2.2 Inter-cycle parallelization

Since a barrier synchronization occurs in every msa cycle, the only way to go beyond the
limitations imposed by sequential language semantics is to combine multiple msa cycles and
share a single barrier synchronization between them. Figure 3.2 shows an example for three
cycles. Insuch composite cycles, the match phase determines the instantiations, the select phase
picks multiple instantiations to fire and the act phase executes the actions corresponding to all
of them. To preserve sequential semantics, a set of cycles can be combined if and only if the
implementation is able to prove that there are no dependencies between the instantiations being
fired in these cycles. There can be two kinds of dependencies between a pair of instantiations,
read-write and write-write. An instantiation is said to read a tuple if it contains the tuple.?
An instantiation is said to write a tuple if firing it causes the tuple to be deleted or modified.
A read-write dependency occurs between two instantiations if one of them writes a tuple read
by the other and a write-wnite dependency occurs between two instantiations if both of them
write the same tuple. For example, consider the productions in the xor-gate simulator shown in
Figure 3.3. Since instantiations of xor -gate-on write tuples of type 1ine and instantiations
of xoxr-gate-of £ read tuples of type 1ine and vice-versa, there is a bidirectional read-write
dependency between the two productions. That is, finng of an instantiation of xor-gate-~-on
can potentially modify a tuple that is currently matching an instantiation of xor-gate-off
and vice-versa. Furthermore, since both productions modify tuples of type Line, there is a
write-write dependency between them.

3Strictly speaking, this defintion holds only for instantiations of productions with no negated condstions It
has been simplified for itlustration and can easily be extended to full generahty.

ADA289345

3.4, NEED FOR PARALLEL PRODUCTION LANGUAGES 25

find matched instantiations
bamer synchronization
select an ms‘xannanon
. find matched instantiations
fire an instantiation
l barrier synchronization
find matched mstantiations ::j
) Vo select three instantiations
barrier synchronization |
select an mslantiau'on fire three instantiations

fire an instantiation

find matched instantiations
barnier synchronization

select an instantiation

fire an instantiation

Figure 3.2: Execution of three match-select-act cycles in paraliel

Ishida and Stolfo [S6) proposed a compile-time analysis, based on a dependency-graph, to
determine which cycles could be safely combincd. The nodes in their dependency-graph corre-
spond to individual productions and the links represent the dependency information available
at compile-time. There is a link between two nodes, A and B, if there is a dependency between
any pair of instantiations of the corresponding productions. If the actions of production A
modify a tuple of the same type as one of the tuples matched by production B, the graph has
a directed read-write link between A and B. If the actions of two productions modify a tuple
of the same type, the graph has a bidirectional write-write link between the two. Figure 3.3
shows the dependency-graph for the xor-gate simulator. In addition to the direct dependencies
represent~d by the links, two productions can have an indirect dependency between them if one
of them lies in the transitive closure (over the dependency links) of the other. Two productions

ADA289345

3.1. NEED FOR PARALLEL PRODUCTION LANGUAGES 26

are indepenaent 1f neither lies in the transitive closure of the other. This analysis uses only the
type of the tuples. Subsequent efforts by Tenorio and Moldovan(119), Miranker e al. (81} and
Schmolze and Goel[101] have refined the analysis by taking advantage of the constant literals
that occur in both the if-part and the then-part of the productions.

X (p xor-gate-on

! (xor-gate An} <inputl> Ain2 <input2> “out <output>)
(line A4id <inputl> Avalue <v>)

(line Md <input2> Avalue <v>)

(line “1d <output>)

->

(modify 4 Avalue 0)}

(p xor-gate-off
(xor-gate A1 <input1> Ain2 <input2> Aout <output>)
(line *id <inputl> Avalue <v>)
(line Ad <input2> Avalue < <v>)
(Line *1d <output>)
->
(modify 4 *value 1))

xor-gate-on xor-gate-off

Dashed hines represent read-write dependencies and solid fines represent wnte-write dependencies
Figure 3.3: Dependency-graph for xor-gate simulator
Compile-time dependency analysis of production system programs is seriously limited by the
data-dependent nature of the computation. Since the compiler has no information about the

run-time contents of the tuple-space, 1t is forced to be overly conservative and often fails to
prove the independence of productions that are obviously independent. For example, consider

ADA289345

[
-

3.1. NEED FOR PARALLEL PRODUCTION LANGUAGES

the productions of the xor-gate simulator shown in Figure 3.3. Simulation of every xor-gate
can be done in parallel. So, we would expect that all nstantiations of xor-gate-on and
xor-gate-off can be executed in parallel. However, a conservative analysis is unable to
detect this as:

o both productions modify tuples of type 1ine, therefore there is a write-write dependency
between them and

e since both productions also match tuples of type 1ine, there is a bidirectional read-write
dependency between them.

This is not a limitation of this particular technique for compile-time analysis, rather of compile-
ume analysis itself. To be able to determine that xor-gate-on and xor-gate-off are
independent, the compiler needs to prove that each line occurs on the output of one and only
one xor-gate. In the absence of information about the run-time contents of the tuple-space,
there is no way for a compiler to prove this.

Therefore it is not surprising that compile-time dependency analysis has had limited success.
Several publications have claimed small constant factor reductious in the number of msa cycles
[56,81, 101, 119]. The stated assumption of these publications is that given enough processors,
the time taken for each cycle would be the same. The unstated assumption is that all tasks that
are generated from the firing of different instantiations can be performed independently. These
assumptions are unsound as shown by the results presented in [2, 38, 42, 113). These results
indicate thai inter-task dependencies are a major mitation on speedups in production system
programs. Therefore, a measure based on the number of cycles is inherently flawed.

To work around the limitations of compile-time analysis, Oshisanwo and Dasiewicz suggested
a run-time analysis of instantiations[91]. Their scheme inserts a dependency analysis phase
between the match and select phases. This analysis uses the selection procedure of the sequential
language to impose a total order on the instantiations currently in the conflict set. It then checks
every instantiation for interference with instantiations that are above it in the ordering. If an
instantiation does not interfere with any of the preceding instantiations, it is fired. A similar
scheme has been proposed by Ishidaf55].

Since the only information available to such schemes is the set of instantiations that are present
in the conflict set during one cycle, they are able to detect only direct dependencies. This
means they are able to identify the instantiations which modify tuples used to generate other
instantiations in the conflict set. In the absence of information about future instantiations, they
are unable to detect indirect dependencies. For example, suppose the conflict set in the first
cycle has two non-interfering instantiations, A and B. A parallelizing implementation based on
run-time analyses like thase mentioned above would fire both A and B. Now suppose the firing
of A leads to the generation of C which interferes with B, say, by deleting a tuple contained

ADA289345

N
o9

3.1. NEED FOR PARALLEL PRODUCTION LANGUAGES

in B. Under sequential semantics, 1t is possible that A is selected for firing 1n the first cycle
and C in the second. In that case, B is deleted from the conflict set without being fired. It is
possible to construct such examples for any non-trivial selection procedure (Figure 3.4 shows
an example for the OPSS selection procedure). Therefore, without some sort of lookahead,
it is not possible to guarantee that the sequential and the parallelized versions of the program
generate the same resuit. Adding lookahead to such schemes would, in general, require the
analysis procedure to explore the space of possible execution paths. Since there is no hmit on
the depth of the lookahead that might needed, such analyses could be prohibitively expensive
even for the small conflict sets seen in {38].

! PA (@B ®C

J (class1) (class2) (class3)

| - -> (class2)

| (make class3)) (make class4)) ->

; (delete 2))
L

Figure 3.4: OPSS5 example of indirect dependency

Compile-time as well run-time dependency analysis was used by Kuo et. al in the CREL im-
plementation on a 15 processor Sequent Symmetry {64). In addition to performing dependency
analysis to determine which instantiations can be fired in parallel, they modified the semantics
of the OPSS language to eliminate the recency feature from the selection procedure. They
report speedups between two and six fold using up to 15 processors. They conclude that the
primary reason for the low speedup was the programming style used which limited the ability
of the implementation to prove independence between productions.

A commonly used idiom tn production system programs is the use of a confext tuple to direct
the control-flow. Productions in programs that make use of this idiom test the context element;
only the productions that test for the context currently in the tuple-space can possibly match.
Kuo er. al[65] proposed a variation of the Ishida-Stolfo analysis where the entities being
scheduled were contexts and not individual productions. The contexts that were proved to be
independent by this analysis were executed in parallel. The primary limitation of this scheme
1s the fact that the programs it analyzes are written in a sequential language. The context-tuple
idiom is used most often to enforce a particular execution path. This often results in spunious
nter-context dependencies.

ADA289345

3.2. DESIGN SPACE OF PARALLEL PRODUCTION LANGUAGES 29

3.1.3 Desiderata for a parallel language

From the preceding discussion it is clear that the primary limitation on parailelism in production
system programs is the program-independent bound on the amount of work to be done between
successive barner synchronizations. To support scalable parallelism, a production system
language must eliminate this bound; it must allow the programmer to control the amount
of work between barrier synchronizations. Eliminating this bound is necessary for scalable
parallelism but not sufficient. It is also necessary to ensure that parallelism available between
barrier synchronizations keeps pace with the growth in the amount of work.

As discussed in Section 3.1.2.2, the only way to increase the work between barrier synchroniza-
tions is to combine multiple msa cycles. To support scalable parallelism, it should be possible
to combine an unbounded number of cycles in this manner. Section 3.1.2.2 shows that the lack
of information about run-time contents of the tuple-space forces parallelizing implementations
to be overly conservative. It is not necessary to completely specify the contents of the tuple-
space, only certain characteristics of it. In the xor-gate simulator in Figure 3.3, it is the fact that
every line appears on the output of only one xor-gate, that is, tuples corresponding to individual
different lines can be modified independently. The language must allow the programmer to
specify as much information about the contents of tuple-space as necessary.

The next section describes the design space of languages that satisfy this requirement and
discusses the pros and cons of individual choices.

3.2 Design Space of Parallel Production Languages

The primary decision to be made in the design of a parallel production system language is the
manner in which information about the contents of the tuple-space isto be provided. An obvious
way to allow the programmer to specify this information would be to provide a data description
sublanguage. Such a language could specify, for example, axioms about sets embedded in the
flat tuple-space, their cardinality, their relationship with other sets and so forth. For the xor-gate
simulator, the specification could take the form:

Y (xor-gate ~output <outpur>), cardinality((line ~id <output>)) = 1 A
V (line ~id <line>), cardinality((xor-gate “output <line>)) <= 1

which states that for each xor-gate, there is exactly one line on its output and that every line
is on the output of at most one xor-gate (input lincs are not on the output of any xor-gate).
This would allow a compiler to infer that every tuple corresponding to a line can be updated
independently.

The main advantage of this approach is its explicit nature. It makes explicit the assumptions
with which the program is paralielized. At the cost of greatly slowing down the execution, it is

ADA289345

(73]
(=3

3.2. DESIGN SPACE OF PARALLEL PRODUCTION LANGUAGES

possible to check if these assumptions hold through out the execution. Such a checker would
be a useful debugging tool.

However, this approach has two major disadvantages:

1. While it is easy to specify patterns in the data for small or regular tuple-spaces, deing so
for large irregular tuple-spaces is likely to be difficult. This is particularly so for long-
running programs whose data tends to evolve, like active databases, or where information
about data values rather than data structure is needed for successful parallelization

2. Alarge number of patterns or relationships can usually be specified for large and complex
data sets. To do a good job of specifying the necessary information, the programmer
would need to have a good grasp of the compiler algorithms that use this information.
This would hamper performance tuning.

The alternative approach is to specify which operations can be performed in parallel. In this
approach, the assumptions (or the information) about the data are implicit in the specification.
This is a lower-level specification as the programmer has to specify which operations can be done
in parallel. However, the existence of an explicit operational model facilitates performance
tuning. Since performance and ease of use are major concerns of this investigation, this
approach is preferable to data specification. In particular, since one of the primary goals of the
investigation is to demonstrate that there is no program-independent bound on the speedups
achievable in production system programs, it is preferable to take the appreach that makes it
easy to extract the highest possible speedup. However, data specification languages remain a
viable and interesting avenue for future work.

There is only one sequencing point in the execution of a production system program — the select
poase, which selects the operation(s) to be performed 1n each cycle. It consists of two parts.
The first part uses an ordering relation between instantiations to order the conflict set and the
second part determines and extracts its dominant subset* Instantiations in the dominant subset
are fired in the act phase.

Sequential languages use ordering relations that impose a total order on the conflict set, that is,
cardinality of the dominant subset in sequential Janguages is 1. To allow an arbitrary number
of instantiations to be executed per cycle, a parallel language must allow dominant subsets
of unbounded cardinality. In other words, it must allow the programmer to specify ordering
relations that define a partial order on the conflict set. For example, the partially ordered conflict
set in Figure 3.5 has a dominant subset of cardinality five. Therefore, the design decisions to
be made are (1) what kind of ordering relations should be permitted and (2) how they are to be
specified.

The following subsections discuss the design alternatives.

“The dominant subset of Ds of a set S ordered by the relation > is defined as D = {x{Vy € S,y #x Ay ¥ x}.

ADA289345

W
s

dominant subset

Figure 3.5: Partially ordered conflict set

3.2.1 Specification of ordering relations

There are two ways in which the ordering relation can be specified: declarative, that is, by
explicit enumeration and procedural, that is by a procedure which given two instantiations
either indicates the order between them or indicates that they are incomparabie.

Explicit enumeration: The set of all instantiations is infinite. Therefore, it is impossible
to explicitly enumerate the relationship between all pairs of instantiations. However, the set
of productions in a program is finite. It is possible to explicitly enumerate a partial order
relation from the set of productions in a program to itself and this order can be extended to the
instantiations of these productions. One way of doing this would be to use a priority ordering
which associates a priority with each production. The priority associated with a production
is propagated to all its instantiations. Other possibilities include grouping productions and
assigning priorities to groups, an explicit ordering sublanguage and so forth. An interesting
approach to explicit enumeration has been taken by de Maindreville ¢2. a: m the RDL/C
system[15). RDL/C provides a regular expression-like control language to specify ordering
between productions. Given their static nature, explicit enumeration schemes are only able to
specify the relationship between instantiations of different productions. It is unable to specify
an order on muluple instantiations of the same production and they must be assumed to be
incomparable. In other words, they must be assumed to not interfere with themselves (for

ADA28934%

3.2. DESIGN SPACE OF PARALLEL PRODUCTION LANGUAGES 32

example of a simple production that interferes with itself, see Figure 3.1). Since it is rarely the
case that all productions of a program are self-independent, this inflexibility renders explicit
enumeration undesirable

Procedural ordering: Procedural ordering delays ordering decisions until run-time when the
instantiations are available. It is more powerful than explicit enumeration since it is able to
order multiple instantiations of the same production. It can use a wide variety of properties of
instantiations, ranging from their size and the timetags of the constituent tuples to values in the
constituent tuples.

Procedural ordering can be supported in two ways — by providing a fixed ordering procedure
as a part of the language or by providing a sublanguage to specify program-specific ordering
procedures. Since a fixed ordering procedure has no knowledge about the productions, it can
depend only on structural properties, like the size of instantiations, and on universal attributes
like the timetags of the tuples. Therefore, it can be expected to order instantiations quickly,
for reasonable ordering relations. Program-specific ordering procedures can be more discrimi-
nating than a fixed procedure by taking advantage of program-specific information. However,
program-specific ordering procedures can be arbitrarily complex. This can significantly in-
crease the time needed to order the instantiations as well as make such programs much more
difficult to comprehend. In this author’s opinion, the flexibility provided by program-specific
procedures is not sufficient to offset its disadvantages. The PARULEL language [107] provides
a production system sublanguage to specify the ordering procedure. In this author’s opinion,
most programs that have been written using PARULEL can be easily and more concisely
written in a language based on a fixed ordering procedure. Hernandez and Stolfo present two
PARULEL programs in [50]. Appendix E contains versions of these programs written in a
language with a fixed ordering.

Specification of a partial ordering relation consists of two parts: specifying the ordering relation
and specifying the domain of the ordering relation, that is, specifying which instantiations are
comparable. The next subsection discusses the different ways of specifying the domain of the
ordering relation.

3.2.2 Which instantiations are comparable

Intuitively, one might expect the domain of the ordering relation to be the set of all instantiations
~ that is, all instantiations can be compared with all other instantiations. This, however, requires
the programmer to keep track of the partial order for the entire program. The data-dependent
nature of the production system programs already makes it difficult for programmers to develop
a good model of the flow of control in their programs. A real-life production system program
can be expected to contain a few hundred to a few thousand productions. Keeping track of such
large partial orders would greatly increase the complexity of programming and render such

ADA289345

L
W

3.2. DESIGN SPACE OF PARALLEL PRODUCTION LANGUAGES

languages unusable in practice. Furthermore, since ordering relations are transitive and since
there are no limitations on the topology of the partial order, it is not possible to locahize the effect
of changes in the partial order. For example, consider the partial order in Figure 3.6. Suppose
the programmer changes the program source so that instantiation A is no longer comparable
with instantiation F. By transitivity of the partial order, A is no longer comparable with F, J, H
and K, and can fire in parallel with them. This may or may not be intended. For unstructured
partial orders, the programmer might have to check the partial order for the entire program
before making a small change.

Figure 3.6: Effect of modifying an unstructured partial order

To keep the complexity of writing paralle! production system programs under control, 1t is
necessary to permit programmers to partition the partial order for the program into manageable
chunks and to localize the effects of changes. This can be achieved by providing constructs
that allow the programmer to partition the group of productions into independent subsets —
all instantations of productions from one set being incomparable with (or independent of)
instantiations of productions from other sets. In the xor-gate simulator, each production can
be encapsulated in its own partition indicating that xor-gates whose inputs are equal can be
handled independently of xor-gates whose inputs are unequal.

Partitioning the programs into disjoint sets specifies only the relationship between instantiations
of different productions. The relationship between instantiations of the same production can
be specified at compile-time by annotating the productions whose instantiations are mutually
independent; instantiations of unannotated productions are assumed to be mutually dependent.
In the xor-gate simulator, both productions would annotated since all xor-gates of either kind
(equal inputs or unequal 1nputs) can be processed independently.

ADA289345

3.3 PPL 34

Inconclusion, the desirable design choices for a parallel production system language are: proce-
dural ordering, fixed ordering procedure, partitioned partial orders and production annotation.
The next section describes the design of a language based on these design choices.

33 PPL

This section describes Parallel Production Language (PPL). The design of PPL instantiates the
design choices for parallel constructs that were discussed in the previous section in the context
of OPS5. OPSS was selected as the base language for three reasons:

o It is important to study complete implementations of programs and not just kernels.
OPSS5 provides all the essential features of production system languages without any of
the frills often associated with such languages. Itis possible to build and study complete
implementations of OPS5-like languages without worrying about the bells and whistles.

o Toisolate the effect of parallelization on performance, it is important to share as much of
the compiler and run-time system as possible between the szquential and parallel versions
of the programs. All available test programs are written in OPSS5. Since PPL is based on
OPSS, they are also PPL programs (or almost so) and can share the PPL compiler and
run-time system with the parallelized versions.

o Almost all research on efficient and parallel execution of production system programs
has been based on OPSS5 programs. Using OPSS facilitates comparison with previous
research.

Details on OPS5 can be found in Section 2.2.

The following subsection describes the PPL constructs and their use. The subsequent subsection
discusses the expressiveness of these constructs. The final subsection compares them with
parallel constructs in other languages.

3.3.1 Parallel constructs

PPL adds the following constructs to OPSS:

Parallel Productions: These productions are syntactically identical to OPS5 productions
except that the initial keyword is parp instead of p. The new keyword indicates that all
instantiations of these productions are independent and can be fired in paralie! Instantiations
of productions defined using the familiar p keyword are fired in sequence, as in OPSS5.

ADA289345

3.3. PPL 35

Production Sets: This 1s a sumple grouping mechanism to partitton the set of productions.
Syntax for a production set ts' { pset production.set.id productionist }. Instantiations of
productions in a production set are ordered using the usual OPSS ordering procedure (see {11]
or [29] for details of the OPS5 ordering procedure). Instantiations of productions in different
production sets are independent. In effect, the conflict set is partitioned along with the set of
productions.

Figure 3.7 contains a PPL version of the xor-gate simulator. In this version, both the productions
have been replaced by corresponding paralle! productions and have been encapsulated in their
own production sets. As a result, all instantiations of both productions can be fired in parallel
and all xor-gates can be processed simultancously.

{pset turn-xor-on
(parp xor-gate-on
(xor-gate Anl <inputl> A2 <input2> Aout <output>)
(line Ad <inputl> Avalue <v>)
(line Md <input2> Avalue <v>)
(line Aid <output>)
~>
(modify 4 Avalue 0))
}

{pset turn-xor-off
{parp xor-gate-off
(xor-gate ~inl <inputl> An2 <input2> Aout <output>)
(line ~id <inputl> Avalue <v>)
(lne Aid <input2> Avalue <> <v>)
(line Aid <output>)
->
(mndify 4 Avalue 1))

Figure 3.7: PPL version of the xor-gate simulator

ADA289345

33. PPL 36

3.3.2 Expressiveness

Partitioning the program into disjoint sets of productions localizes the effect of changes to the
partial order. However, since the instantiations within each production set are totally ordered,
certain partial orders cannot occur (for example, the partial order in Figure 3.6). Since every
partial order on the conflict set corresponds to a particular parallel execution, some parallel
executions are not possible. This raises the question whether these constructs can express
useful forms of parallelism. This subsection discusses some common forms of parallelism and
shows how they can be expressed in PPL.

o Data-parallelism: Data-parallelism can be directly expressed by paraliel productions.
Muitiple 1nstantiations of a production match multiple data items, have different variable
bindings but share a common set of actions. Firing them in parallel causes this common
set of actions to be performed on all the matched data items. For example, see the PPL
version of the xor-gate simulator in Figure 3.7. The data consists of the set of all xor-gates
with two subsets of variable size: the collection of xor-gates whose inputs are equal and
the collection of xor-gates whose inputs are unequal. The program in Figure 3.7 1s able
to process all the elements of this collection in parallel.

Pipeline-parallelism: Pipeline-parallelism can be expressed by multiple production
sets arranged such that productions in each production set match the tuples gener-
ated/processed by the productions in the previous production set. The program in
Figure 3.8 illustrates how this can be done for a three-stage pipeline. Since the produc-
tions for each of the production sets are independent, up to three instantiations can fire
per msa cycle, one for every stage. Each stage tags the objects processed by it and the
productions for the subsequent stage match this tag to ensure sequencing of the operations
in the pipeline.

Task-pile-parallelism: Task-pile-parallelism can be expressed by a set of production
sets — one production set for each task-type. A task is represented by a tuple that
contains the necessary information and the tuple-space serves as the task-pile. Each
task tuple matches a production in the production set that contains the code for the task
Finng the instantiation generated initiates the processing for the task. If the productions
i this production set are parallel productions, all similar tasks are processed in parallel.
Strictly speaking, this is different from the standard task-pile model since the number
of “workers” is not fixed and, conceptually, a new “worker™ is created for every task.
Figure 3.9 contains a PPL program that uses task- pile parallelism to compute Fibonacci
numbers. The first production set implements the division step; it generates tasks to
compute fib(n-1) and fib(n-2) given the task to compute fib(n). The second production

ADA239345

3.3. PPL 37

{pset stage-1
{p perform-stage-1
(object Astage-completed 0 “data <d>)
->
(modify 1 Astage-completed 1 Adata (function-1 <d>})))
}

{pset stage-2
(p perform-stage-2
{obyect Astage-completed 1 Adata <d>)
->
(modify 1 Astage-completed 2 Adata {function-2 <d>})}
}

{pset stage-3

; (p perform-stage-3

(object Astage-completed 2 Adata <d>)

->

(modify 1 Astage-completed 3 Adata (function-3 <d>))

Figure 3.8: Stripped down code for pipeline paralielism

set takes care of the base cases and third production set implements the combination step
for fib(n) given the values for fib(n-1) and sib(n-2).5

3.3.3 Comparison with other parallel constitucts

A parallel production scans the tuple-space for tuple combinations that satisfy the conjunction of
conditions in its if-part. It performs the same set of operations on each such tuple combination
it finds. In effect, a paralle! production is a comprehension of the tuple-space, in the style
of hst and array comprehensions in functional languages. In general, a comprehension is
an iterator which is characterized by a predicate and an operation. It scans aggregate data

50f course, this 1s not the recommended way to compute Fibonacci numbers in PPL!

ADA289345

3.3 PPL 38

{pset create-tasks
(parp duvision-step
(fibonacci-number *index {<1> > 2} Avalue -1 "prev-index -1}
—>
(modify 1 Aprev-index (<1> -1))
(make fibonacci-number Aindex (<1> -1) “value -1 Aprev-index (<1>-2)) ;
(make fibonaca-number Aindex (<1> -2) Avalue -1 Aprev-index -1))

{pset execute-task-1
(parp base-case
(fibonacci-number Aindex <= 2 Avalue -1)

(_x:odlfy 1 Avalue 1))

{pset execute-task-2
(parp combination-step
(fibonacci-number Mindex <i> Avalue -1 Aprev-index <prevl>)

(fibonacci-number Aindex <prevl> Avalue <v1> ~prev-index <prev2>)
(fibonacci-number Aindex <prev2> Avalue <v2>)

>
{modify 1 Avalue (<v1> + <v2>)))

Figure 3.9: Fibonacci using a task-pool approach

structures for items that satisfy the given predicate and performs the given operation for every
such item that it finds. Comprehension is a paralle] construct since each data item can be
processed independently. Examples include the list-comprehensions of Miranda [120), list
and array comprehensions of Haskell (52, set-formers of SETL [103} and the apply-to-each
construct of NESL[8). Figure 3.10 illustrates the analogy by presenting a NESL version of the
xor-gate stmulator. In this example, the two comprehensions in the function simulate.xor
correspond to the two parallel productions in the PPL version.

NESL provides xox as a boolean pnmitive It 1s not used here to allow illustration of the analogy.

ADA289345

w2
o

34. IMPLEMENTATION OF PPL

datatype xor_gate(int,int,int,int);
/% the fields are inputl, inpus2, identifier and output */

function simulate_xor(xor_gate_seq) =
{(x,x,id,0) « (x,y,id,_) 1n xor_gate_seq!x ==y} +
{(x,y,id,1) = (x.y,id,_) in xor_gate_seqix /=y]

/* ++ is the NESL operator for concatenation %/

Figure 3.10: xor-gate simulator in NESL

Productions belonging to all production sets match and modify the same tuple space. However,
each of them has its own conflict set, that is, its own locus of control. In effect, a production
set is a separate thread and is suitable for expressing task level parallelism. Together, parallel
productions and production sets support mixed (task and data) parallelism.

3.4 Implementation of PPL

This section describes pplc, an implementation of PPL. It is based on the paraliel Rete
algorithim described in Section 2.5. Section 3.4.1 describes the overall organization of the
implementation. The primary goal of pplc was to minimize the fraction of time spent in
sequential execution. The guiding principle in the design of the compiler and the run-time
system was “pay only for what you use”. One of the consequences of this is that for a single
processor, pplc reverts to an efficient uniprocessor implementation with no parallelization
overheads.

3.4.1 Overall organization

ppleisafull implementation of PPL. It compiles PPL to portable C code. The run-time system
is in portable C except for spin-lock routines which have to be rewritten for every processor. In
addition to the constructs mentioned in the previous section, ppl c also implements extensions
for distributed memory execution for which it uses PVM[35). It is Jargely independent of the
operating system, the only dependency being a call to allocate memory regions shared between
multiple processes. It runs on the Encore Multimax, multiprocessor Vaxen, Omron Lunas,
uniprocessor Unix workstations and workstation clusters running PVM. It has been used to

ADA289345

3.4. IMPLEMENTATION OF PPL 40

compile programs ranging up to 50.000 lmes in program Jength and several hours in (Alpha
AXP) execution time.

pplc provides automatic paraflelization of match and select phases. For sequential programs
that do not use the parallel constructs provided by PPL, it is able to match, and often do better
than, the speedup achieved by parallelizing implementations of sequential Janguages.

pplc overlaps all phases of a cycle between two barrier synchronizations. For matching, it
uses the parallel Rete algorithm described 1n Section 2.5. It uses hashtable-based memory nodes
and parallelizes match at the level of individual tokens. Most tokens are short, usually between
100-500 instructions. However, there is a significant variance. For conflict-set operations (i.e.,
the select phase), it uses a parallel algorithm based on two-level heaps (this is described in
the next subsection). Individual tasks in this algorithm are usually substantially larger than
match tasks (usuall; between 450 and 2500 instructions). The operations in the act phase are
parallelized at a coarse-grain. All operations for a single firing constitute one task. This is
required by the sequential semantics of the acuions. Breaking down the act phase tasks is not
desirable for languages based on OPSS as it leads to subtle race conditions. To be able to
efficiently schedule the fine-grain tasks that are expected to dominate the processing, pplc
does its own scheduling. It creates a process and a task-stack for every processor available to
it.

pplc does its own memory management. It obtains memory from the operating systems in
large chunks and maintains size-based free lists.

The following subsections describe the ppl ¢ compiler and run-time library.

34.2 The pplc compiler

The pplc compiler 1s modular and is organized as a sequence of walks over internal represen-
tations of the program. It uses two internal representations — an annotated parse tree and the
Rete network. It currently has seven phases: parsing, source-to-source transformation, type
inference, constraint propagation, gencration of Rete network, optimization of Rete network
and code generation. Additional phases (for analysis or optimization) can be easily inserted.
The compiler can also be easily modified to handle similar languages.

The rest of this subsection describes some interesting phases of the compiler.

34.2.1 Source to source transformations

pplc performs two major source-level transformations ~ converting conditions to their canon-
ical forms and constraint propagation.

ADA289345

3.4. IMPLEMENTATION OF PPL

e
—

Canonical conditions: Every field in a tuple, named or numeric, has a unique index. This
transformation sorts the tests in a condstion 1n increasing order of field indices and eliminates
repetitions 1n the sequence of values for disjunctive tests. 7 If there are multiple tests for a
single field, they are merged into a single restriction list. If the resulting list has more than one
disjunctive tests, they are merged. Figure 3.11 shows an example of this transformation. This
transformation improves the performance in the following ways:

¢ Itincreases sharing in both the o and the § parts of the Rete network. Sharing the tests for
common conditions (o tests) or condition prefixes (3 tests) is one of the major advantages
of Rete and 1ts derivatives. Converting conditions to a canonical form makes it possible
to find all conditions which are semantically identical, that 1s, perform the same set of
tests. Without this transformation, only those conditions that are syntactically identical,
that is, specify the same tests in the same order, can be shared.

o It increases temporal locality since all tests on a single field are performed together.

o Itincreases spatial locafity since the tests on multiple fields of a single tuple are performed
in increasing order of field index.

Constraint propagation: Every test in a production can be taken to specify a constraint on
a field, the scope of the constraint being the production in which the test occurs. If there are
multiple tests on the same field (specified in different conditions), it is possible to simplify the
tests by collecting and propagating the constraints. This can be achieved 1n the following ways:

o Replacing variable tests by constants. This can be done if one of the occurrences of the
variable is tested for equality with a constant or a group of constants. Figure 3.12 shows
an example for the variable <v1>, Variable tests are implemented by 8 nodes and are far
more expensive than constant tests which are implemented by a nodes. The difference
of cost between the two cases can often be as large as two orders of magnitude.

Increase selectivity of tests occurring early in the production. This can be done by if a later
occurrence of a variable has a more restrictive test than earlier ones. Figure 3.12 shows
an example for the variable <v2>. Increasing the selectivity of an early test reduces the
number of partial matches generated This reduces the stress on the state-maintenance
algorithms.

It 15 also possible to detect, at compile-time, if the conditions in a production are inconsistent.
Such productions can never be matched. Figure 3.13 shows an example. The test in the second

"Disjunctive tests are specified by a sequence of values bracketed by << and >5,

ADA289345

3.4. IMPLEMENTATION OF PPL

42

Feld indices: (tuple-type-1 field] = 1 field2 = 2 field3 = 3)
(tuple-type-2 ficld4 = 1 fieldS = 2)

(p non-canonical
(tuple-type-1 Aield3 <v> *ield2 > 26 Afield3 < 36)
(tuple-type-2 Mield4 <<x a b>> AfieldS <v> Mield4 <b c>>)
>
(some actions))

(p canonical
(tuple-type-1 ~ield2 > 26 Afield3 {<v> < 36})
(tuple-type-2 AMieldd <<x a b c>> Afield5 <v>)
->
(some actions))

Figure 3.11: Example of the canonical conditions transformation

(p before-propagation
(tuple-type-1 Aield] <v1> Aield2 <v2>)
(tuple-type-2 “fieldd {<vi> <<a b>>] AfieldS {<v2> < 36))
>
(some actions))

(p after-propagation
(tuple-type-1 Micld] <<a b>> Mield2 {<v2> < 36})
(tuple-type-2 Mieldd <<a b>> Afields <v2>)
>
(some actions))

Figure 3.12: Example of constraint propagation

ADA289345

3.4. IMPLEMENTATION OF PPL 43

condition specifies that the value bound to <v2> be less than the value bound to <v1>. The
test in the third condition specifies that the value bound to <v3> be less than the value bound
to <v2> and greater than the value bound to <v1>. Since any value less than <v2> is also
less than <v1>, the third condition can not be matched.

(p inconsistent
(tuple-type-1 ~ield] <v1>)
(tuple-type-2 Afieldd (<v2> < <vi>})
(tuple-type-3 Afield6 {<v3> < <v2> > <vi>))
->
(some actions))

Figure 3.13: Example of a production with inconsistent conditions

34.2.2 Type inierence

At the lowest implementation level, the match procedure consists of binary tests, equality or
relational, between fields of tuples. In the absence of information about the types of the fields
involved, every comparison has to be preceded by a type tag check which ensures that the
values being compared are of the same type. The goal of type inference is to eliminate these
checks by extracting type information from the program.

PPL tuples can contain only integer, symbolic or floating point values and can not be nested.
Therefore, the type lattice for PPL programs is simple. It contains these three types bracketed
by a top and bottom element. pplc infers the types for the fields of tuples, the variables
occurring in the program and the foreign functions called. pp1c uses the following axioms for
type inference:

* A field can contain values of only one type.

e A variable can be bound to values of only one type.

o A field tested against a constant literal must be of the same type as the literal.

¢ If arelational test is applied to a field, it cannot contain symbolic values.

o If afield is tested agamst more than one variable, all such variables must have the same

type.

ADA289345

3.4. IMPLEMENTATION OF PPL 44
o Functions called from PPL programs are first-order and monomorphic.

The sources of information for type inference include constant fiterals in both the if-parts and
the then-parts of the productions, calls to primitive functions (whose types are known) and
type declarations, if any. Type information is steratively propagated till no new inference can
be made. Type inference converges rapidly (within three terations) for all programs that it
has been tested on. Figure 3.14 shows an example of the type inference in pplc . Since the
variable <v> appears in field1 of tuple-type-1 (first condition), fieldS of tuple-type-2 (second
condition) and field4 of tuple-type-2 (the make action), these fields are of the same type. In
second condition, field4 is tested against a symbolic constant. Therefore, all these fields must
be symbolic. Since field2 and field3 of tuple-type-1 are tested against integer constants, they
must both be integral. Now the types for all fields are known.

(p type-inference-example
(tuple-type-1 Afield] <v> Afield2 72 Afield3 < 2)
(tuple-type-2 Afield4 abe AMield5 <v>)
->
(make tuple-type-2 AMield-4 <v>))

Resuit of type inference:
(tuple-type-1 field] : symbol field2 : integer field3 - integer)
(tuple-type-2 field4 symbol field5 : symbol)

Figure 3.14: Example of type inference

3.4.23 Code generation

pplc generates C code for all the tests specified by the Rete network and for all the actions
in the then-parts of the productions. Code for the Rete network is inlined; separate code is
generated for every a and 8 node. Code for the right hand side actions is not inlined and
consists mainly of calls to run-time library routines.

The code generation phase nnplements the following optimizations:

o Frequently accessed values are cached in focal variables. Examplies of this include the
value(s) being tested dwing the traversal of a hash bucket, the value being tested against a

ADA289345

£a
wnh

3.4. IMPLEMENTATION OF PFPL

set of constants (in a disjunctive test) and pointers to tuples which operated on by several
actions.

¢ For o networks with large branching factors, hashing is used to reduce the number of
conditions that are tested against each tuple. The hash function uses the constant literals
occurring in the conditions to partition the set of conditions. Figure 3.15 shows an
example. In this case, instead of being tested against all four conditions, each tuple is
tested agamnst only one condition.

tpletype=1 tupletype =1 uple.type = 2 tuple.type = 2

tuple.fieldl =3 tuplefieldl =2 tuplefieldl=2 tuple.fieldl =3

hash function = tuple.type XOR tuple-field}

hash value =0 --> tuple type = 2 AND tuple. fieldi = 2
hash value = 1 --> tuple.type = 2 AND tuple.fieldl =3
hash value = 2 --> tuple.type = 1 AND tuple.field! = 3
hash valuc = 3 --> tuple type = 1 AND tuple fieldl =2

Figure 3.15: Example of hashed o network

3.4.3 The pplc run-time library

As the size of the data set grows, the parts of the implementation that are stressed the most are
the algorithms to maintamn the match state, that is, algorithms for managing the memory nodes
and the conflict set. Section 3.4.4 describes the state-maintenance algorithms used in the pplc
run-time library .

ADA289345

3.4. IMPLEMENTATION OF PPL 46

In addition to using paralle] state-maintenance algorithms, a scalable parallel implementation
also has to minimize the time spent in resource contention. Section 3.4.5 describes how the
pplc run-time library attempts to minimize resource contention.

3.4.4 Parallel state-maintenance algorithms

pplc stores the match state in five parts: memory nodes to hold tokens, conjugate memory
nodes to hold out-of-order token deletion requests, conflict set to hold the active instantiations,?
refracted conflict set to hold the inactive instantiations and conjugate conflict set to hold the
out-of-order instantiation deletion requests.

Memory nodes: The pplc run-time library uses two global hashtables to store the contents
of the memory nodes. A unique identifier is assigned to every 8 node in the Rete network.
Identifier of the destination 3 node and the values of the fields being tested at the 5 node
are used as parameters to the hash function. Gupta et al. claim that storing the centents of
the memory nodes in hashtables can reduce the number of comparisons required to search a
memory node for a matchir:g token by up to ten fold {42). The pplcrun-time library uses large
hashtables (64K buckets) to reduce the probability of coilisions. Even with large hashtables,
good dastribution of tokens to hash buckets is critical for good performance. The hash function
used xors the arguments together with a large prime number to ensure a good distribution.

Conjugate memory nodes: The pplc run-time library uses two global hashtables to store the
contents of the conjugate memory nodes. Since the only operation that is performed on out-
of-order token deletion requests is to match them, hashtables perform fairly well. Conjugate
hashtables mirror the main hashtables and share the hash function which allows the cost of
computing the hash function to amortized over accesses to all four hashtables.

Conflict set: The pplc run-time library uses a separate conflict set for every production set.
For individual conflict sets, it uses a two-level heap. Corresponding to every production in the
production set, there is a heap for its instantiations. The conflict set jtself is a heap of such
heaps. Figure 3.16 shows a sample conflict set for a production set with five active productions.
In practice, the upper level heap consists of the top instantiations for each active production.
The worst-case performance of a two-level heap is identical to that of a conventional heap. The
actual performance depends on the distribution of the instantiations and the ordering relation
used. Locking is done separately for each production-heap and the top-level heap.

Refracted conflict set: The refracted conflict set contains the instantiations that have already
been fired, Instantiations are added to the refracted conflict set after they have been fired and
they are deleted from this set when an identical instantiation with a deletion tag arrives at
the conflict set (this happens when a tuple matching a non-negated condition is deleted or a

“Instantiations that have not yet been fired.

ADA289345

3.4. IMPLEMENTATION OF PPL 47

Production P1

Production P3

Production P2

Production P4 Production P5

Figure 3.16: Example of a two-level heap-based conflict set

wple matching a negated condition is added). The pplc run-time library uses one hashtable
per production to implement the refracted conflict set. The hash function xors the timetags
of the constituent tuples. A null timetag is used as a placeholder for negated conditions.
Hashtables are suitable for the refracted conflict set since the only operations on it are addition
and searching for the purpose of deletion.

Conjugate conflict set: Like the refracted conflict set, the only operations on conjugate conflict
sets (which store out-of-order deletion requests for instantiations) are addition and searching
for the purpose of deletion. Consequently, the pplc run-time library implements them in a
similar manner.

3.4.5 Minimizing reseurce contention

There are seven shared resources: the memory nodes (including the conjugate memory nodes),
conflict sets (including the active, refracted and conjugate conflict sets), the symbol table, free

ADA289345

3.4 IMPLEMENTATION OF PPL 48

memiory, the task stacks, the tuple-space and the counter for generating the unique timetags for
the tuples. This section describes the efforts that have been made to reduce contention for each
of these resources.

Memory nodes: Four global hashtables are used to implement memory nodes — two tohold the
contents of the left and right memory nodes and two to hold the contents of the corresponding
conjugate memory nodes. All four hashtables share a common hash function. Therefore,
processing a single token requires the contents of only one line of the hashtables ~ a line being
the set of buckets with the same index from al! the four hashtables. A single simple lock
protects each line. Even though it is possible to overlap multiple read accesses using multiple-
reader-single-writer locks, the pplc run-time library uses simple locks since the complex
locks have been shown to increase the execution time for OPSS programs which have high
available parallelism [42). Similar results have been shown for paralle] implementations of
Soar programs [113].

Conflict sets: Each heap in the conflict set is separately locked. This avoids both monolithic
locking, which senializes all updates to the conflict set, and instantiation-level locking which
would cause frequent locking and unlocking. Sinee locking requires exclusive access to the bus
(or other shared communication medium), frequent locking can greatly reduce the bandwidth
for the locking process as well as for other processes.

Symbol table: since almost all accesses to the symbol table are read-only, there is almost ne
coatention for the symbol table. The pplc run-time library uses a separate counter and a
unique prefix for every process to generate new uninterned symbols. Therefore, there is no
contention for gensyming new symbolic constants.

Free memory: The pplc run-time library manages its memory on a per-process basis. Each
process has its own chunk of memory and size-specific free lists. When any process runs out
of memory, it independently obtains another chunk from the operating system. Hence, there is
no contention for free memory.

Task-stacks: The pplc run-time library uses a separate stack for every process. Every
process adds tasks only to its own task-stack and as far as possible, removes tasks only from
its own task-stack. When its task-stack is emgtv, a process scans the rest of the task-stacks in
a round-robin fashion. For programs that have a large number of tasks, little contention can
be expected for task-stacks. Gupta and his colleagues present similar results for a paralielizing
implementation of OPSS in (42) and for a parallel implementation of Soar in [113).

Tuple-space: The tuple-space is accessed during the match and act phases. Accesses during
the match phase are exclusively read accesses; accesses during the act phase are mixed. Since
the production system semantics require that all instantiations being fired in a cycle see exactly
the same view of the tuple-space (in other words, all instantiations fire together), deleted tuples
are not freed till the next barrier synchromzation which occurs at the end of the subsequent
match phase. Since all read accesses are directly through a pointer to the tuple, there 1s no

ADA289345

PN
\Oo

3.4 IMPLEMENTATION OF PPL

need to lock the tuple-space for read accesses. Since multiple deletions of the same tuple in
a single msa cycle are legal, deletions too are permitted without locking. Additions to the
tuple-space, however, require locking. The tuple-space is implemented as a list of tuples and
adding a tuple mnvolves consing it onto this list. Since consing is cheap, and since read accesses
overwhelmingly dominate write accesses, the contention for the tuple-space lock 1s expected
to be low.

Timet:.Z oev- or: By its very nature, the assignment of timetags is serial. To assign a new
timetag,cssary to acquire a lock, read and increment a counter and release the lock.
Since, incre nenting the counter is a cheap operation, it is expected that the contention for the
counter will not affect the execution greatly. The effect of this serialization can be further
mitigated by the use of an ato, iic Fetch-and-Add instruction for architectures on which it is
available (e.g. the Ultracomputer [32]).

ADA289345

Chapter 4

Parallelism Experiments

The goal of these experiments was to test three hypotheses. First, that there is no program-
independent bound on the parallelism available in production system programs. Like in other
paradigms, the parallelism available in production system programs depends on the parallelism
inherent in the program and the way the program has been encoded. To help verify this
hypothesis, a diverse set of programs, including embarrassingly paralle]l programs as well as
programs with large non-parallelizable loops, was included in the benchmark suite.

Second, that the parallelism available in a production system program can scale with data That

15, parallehism 1s a possible solution for the problem of dealing with large data sets. To help
verify this hypothesis, programs that process scalable data sets were included in the benchmark
suite.

Third, that production sets and parallel productions are effective for the expression of parallelism
1n production system programs.

This chapter describes the benchmark suite and the structure of the experiments. The next
chapter presents and analyzes the results. Section 4.1 describes the benchmark suite. It
describes the programs, the parallelization strategy and the data sets used in the experiments.
Scction 4.2 describes the structure of the experiments. Section 4.3 describes the simulator used
in these experiments to simulate the execution of PPL programs on a multiprocessor.

4.1 Benchmark suite

The benchmark suite has two classes of programs: programs with scalable data sets, that is
data sets which can be charactenized by a numerical parameter and which can be scaled by
assigning increasing values to the parameter, and programs with data sets which cannot be thus
characterized but are large. The benchmark suite has four programs that process parameterized

50

ADA289345

ta
ey

4.1. BENCHMARK SUITE

data sets and one that processes non-parameterized data sets. To ensure an efficient baseline, the
sequential versions of all the programs included in the suite have been substantially optimized
before being used in the experiments. The following subsections describe the programs in the
benchmark suite in some detail. Code for the first four benchmarks can be found in Appendix E.

4.1.1 Circuit simulator (circuit)

This program simulates a gate-level circuit with a constant-delay model. Currently, it simulates
circuits with two-1nput gates but it can easily be extended to any desired logic device. It does not
support the implied-or logic provided by open-collector TTL devices. Execution of circuit
has two phases - the first in which the operation of all devices 1s simulated and the second in
which the values generated by the first phase are propagated down the lines. This program is
an optimized version; the original version was written by Dan Neimann of the University of
Massachusetts, Amherst. The primary optimizations are:

o Modify only those tuples that correspond to lines whose value has to be changed. The
original version modified tuples corresponding to all lines. This optimization reduced
the amount of parallelism available as fewer tuples are being modified.

¢ Replace variable tests by constant tests by creating several copies of productions, This
is possible for carcuit since there are only a small number of cases for each device
type. This moves testing for input cases from the 3 network to the o network. Since all
a tests are performed as a single task, this also reduces the number of schedulable tasks.

These optimizations improved the performance of the program (on a Decstation 5000/200) by
1.87 fold for the smallest data set and by 2.25 fold for the largest data set .

Parallelization: Since each device and each line can be simulated independently, the pro-
ductions for each device class and for the interconnection lines were encapsulated in separate
production sets and were converted to parallel productions. Simulation of the circuit in each
cycle has to be atomic. All the values in & given simulation cycle must be based only on the
values from the previous cycle. To ensure this, the sequential version of the program does not
delete the tuples corresponding to the old values while 1t is computing the new values. Instead,
1t creates copies of the tuples corresponding to the lines whose value has changed and modifies
these copies. The old values are deleted at the end of the first phase. Since the parallel version
is able to update collections of tuples in a single » “a cycle, it does not create these copies.
Therefore, each phase of a simulation cycle is performed in a single msa cycle. The information
that is nceded to successfully parallelize cixrcuit is the fact that all lines have only one driver
and therefore can be safely updated simultaneously.

Data set: For these experiments, the simulator was rur on 200 cycles of a linear feedback shift
register with random initial state. The data set parameter was the size of the linear feedback

ADA289345

4 1. BENCHMARK SUITE 52

shift register. Figure 4.1 shows the linear feedback register of size three. The linear feedback
shift register 1s a pseudo-random number generator. As a result, the values of the lines change
in an irregular manner. Since the number of modifications governs the amount of work done
and the parallelism available, this benchmark can be expected to show irregular parallelism.
The largest register simulated had 275 cells.

acimniac

Figure 4.1: Linear feedback shift register of size three

4.1.2 Game of Life (1ife)

This program implements Conway’s “Game of Life” which computes the state of a matrix of
simple cellular automata, Each matrix cell can either be dead or alive. The future state of a cell
depends on its own state and the state of its immediate rectilinear neighbors (neighbors along
the NEWS directions) and is given by the following rules:

1. If a hive cell has less than two hve neighbors in any cycle, it dies of loneliness.
2. If a live cell has two or three live neighbors 1n any cycle, 1t remains live.
3. If adead cell has three live neighbors, it becomes live.

4. If alive cell has four neighbors, it dies of cvercrowdedness,

Execution of 1ife consists of two phases, the operational phase followed by the print phase.
The operational phase consists of a sequence of operation cycles which compute the state of
cellular automata. In each operation cycle, the state of the entire matrix is atomically updated.
The print phase prints the state of the entire matnix. This program is a substantially rewritten and
optimized version; the original program is available from the Department of Computer Science,
Columbia University (ftp.cs.colunbia.edu;:pub/prosys/prosys.tar.Zz). The
primary optimizations are:

ADA289345

tn
t»

4.1. BENCHMARK SUITE

o The onginal program computed the number of live neighbors for each cell in each
operation cycle. This is unnecessary as there are only four neighbors for a cell and this
mformation can be encoded 1n the productions. This optimization reduced the amount
of parallelism available as parallel computation of neighbors is no longer being done.

o Modify only those tuples that correspond to cells whose status has changed. The original
version modsfied tuples corresponding to all cells This optimization also reduced the
amount of parailelism available as fewer tuples are being modified.

o Replace variable tests by constant tests by creating several copies of productions. This
is possible for 1ife since there are only two cases for the status of each cells. This
moves testing for input cases from the 3 network to the a network. Since all o tests are
performed as a single task, this also reduces the number of schedulabie tasks,

These optimizations improved the performance of 11 £e (on a Decstation 5000/200) by 17.23
fold for the smallest data set and 18.49 fold for the largest data set .

Parallelization: Since the next state of each cell can be computed independently and since
the rules for computing the next state handle disjoint cases, all productions can fire in parallel.
Therefore, all productions that implement the transition function are converted to parallel
productions and are encapsulated in separate production sets. State transition of the cellular
automata in each operation cycle has to be atomic. All the values in a given operation cycle
must be based only on the values from the previous cycle. To ensure this, the sequential version
of the program does not delete the tuples corresponding to the old values while it is computing
the new values. Instead, it creates copies of the tuples corresponding to the lines whose value
has changed and modifies these copies. The old values are deleted at the end of the first phase.
Since the parallel version is able to update collections of tuples in a single msa cycle, it does
not create these copies. Therefore, each operation cycle is performed in a single msa cycle.
The information that is needed to successfully parallelize 1ife is the fact that all cells have
only one neighbor in each direction. This implies that at a time only one rule 15 applicable to
a cell. Only the operational phase of the program has been parallelized. It 1s not possible to
parallefize the printing phase.

Data set: For these experiments, 11 fe was run un 200 operational cycles on fixed size matrices
with an initia) state that leads to oscillations and a border of dead cells. The basic data set was
the simple oscillating pattern in Figure 4.2 where, a . stands for a dead cell and a “*” stands
for alive one. The data set parameter was the number of repetitions of this basic pattern. Since
the oscillating cells change state every operation cycle and since no other cells change state,
this benchmark can be expected to show regular parallelism. The largest matrix used had 70
repetitions of the basic pattern.

ADA289345

tn
BN

4.1 BENCHMARK SUITE

* o % *
* % ¥ * .

Figure 4.2: The basic pattern for the 11 fe data set,
4.1.3 Waltzlabeling (waltz)

This program implements the Waltz labeling algorithm for interpreting line drawings [124].
This algorithm uses constraint propagation 10 eliminate a large number of possibilities. The
input to waltz consists of junctions and lines between them, the output is a labeling for the
Junctions and lines which uniquely determines the orientation of the planes in the drawing.
Execution of waltz consists of a sequence of constraint propagation phases. In each phase,
it labels a set of junctions and propagates the constraints generated by this labeling to all lines
incident on the junctions. At the end of the computation, 1t prints out the labeling. The original
version of this program was written by Toru Ishida at Columbia University. It has since been
revised by Dan Neimann of the University of Massachusetts, Amherst. The program used as
a benchmark is an optimized version of the revision. The primary optimization was to reorder
the conditions for most of the productions. This reduced the number of tokens being generated,
1. the number of schedulable tasks. This optimizations improved the performance of waltz
(on a Decstation 5000/200) by 1.19 fold for the smaliest data set and 1.89 fold for the largest
data set .

Parallelization: Like the sequential version, the parallel version assigns a label to one of the
boundary junctions and propagates constraints from there. Unlike the sequential version, the
paralle! version propagates constraints simultaneously along all lines incident on a junction.
However, there is interference between the different constraints generated by a single junc-
tion labeling. Therefore, all constraints of a particular type can be propagated in paralle] but
constraints of different types have to applied 1n sequence to achieve the desired result. To
implement this, all productions that implement constraints are all converted to parallel produc-.
tions but they are not encapsulated in separate production sets. Therefore, all instances of a
single type of constraint can be propagated in parallel.

Data set: The line drawings used 1n these experiments were generated by repeating a basic
block which is shown in Figure 4.3. The data set parameter was the number of repetitions of
this basic block. The largest drawing used had 120 repetitions of the basic black.

ADA289345

I

41 BENCHMARK SUITE 55

Figure 4.3: The basic block for the waltz data set.

4.1.4 Simulation of a hotel (hotel)

This program simulates the operations of a large hatel for one day - reservations, checkin,
maid service, laundry, banquet etc. Execution of hotel consists of a sequence of phases
corresponding to the phases in the operation of the hotel. This program is an optimized version;
the original was written by Steve Kuo of the University of Southern Califorma. The primary
optimizations are:

¢ Source code for the original version had been blown up to over ten times its actual size by
repeated applications of the copy-and-constrain optimization {92]. Copy-and-constrain
is the production system analogue of inline expansion of function calls. In the optimized
version, the inline expansion has been eliminated.

e Most of the information being processed by hotel is stored in room tuples. Smnce
different sets of productions processed different parts of the tuple, modifying one part of

ADA289345

I

4.1. BENCHMARK SUITE 56

the tuple causes needless attempts to match the new tuple against productions that modify
other parts of the tuple. The optimized version splits the room tuples into smaller pieces,
each of which is separately processed.

o Processing for several operations was bemg performed piecemeal. This required needless
generation and matching of intermediate tuples. These operations were consolidated.

These optimzations improved the performance of hotel (on a Decstation 5000/200) by 1.22
fold for the smallest data set and 8.41 fold for the largest data set.

Parallelization: hotel issignificantly i ore complex than the programs previously discussed.
Its phases were individually parallelized based on the semantics of the simulation — what
operations can be performed in parallel in a hotel. There are several sequential loops ~ for
example, collecting and doing the laundry, setting the tables for the banquet, cleamng restrooms.
Some of these update counters, for example collecting and doing the laundry.

Data set: The data for hotel consists of several lists containing information about the rooms
of the hotel, guests checking in, guests checking out, guests staying over, banquets scheduled,
menus for the banquets etc. For these experiments, the ratios between the cardinalities of these
lists have been fixed (the hotel 1s assumed to have 66% occupancy, each floor has 100 rooms,
a fixed percentage of them will check out etc.). The data set parameter 1s the number of floors,
The largest value of the parameter used was 10 floors.

4.1.5 Interpretation of aerial images (spam)

This program interprets aerial images of airports. The input to spam is a list of image regions.
their positions and properties and the output is a model of the airport which can then be
compared with known models to identify the airport. It builds the ajrport model by bottom-up
pruning of possible interpretations for individual image regions. For pruning, it uses geometric
constraints. It uses productions to determine the applicable constraints.

spam has four phases. The first phase applies per-region constraints to generate possible
interpretations. There are up to 15 interpretations possible for every region. The second
phase applies pair-wise constraints to prune some of the interpretations. There are 33 such
constraints. The third phase clusters regions into functional areas, ike runways with their
associated taxiways and grassy areas, and merges overlapping functional areas. The final phase
combines the functional areas to generate a model for the airport. spam has been developed by
the MAPS group in the School of Computer Science, Carnegte Mellon University (75]. Due to
its computationally intensive nature, spam has been a focus of parallelism research for the last
six years. Harvey er al. [48] report on the parallelization of the first two phases of an OPSS
version on the Encore Multimax. This effort achieved up to 13 fold speedup on 14 processors.

ADA289345

4.1. BENCHMARK SUITE 57

Currently, an implementation of spam on the Midway distributed shared memory system [6)
is underway.

For this benchmark, the first three phases were used. The final phase is currently in a state of flux
[47]. Furthermore, it is mostly in C which hmits its utility as a production system benchmark.
The first three phases dominate the computation, taking usually up to 90% of the time. The
program used as the benchmark is an optimized version of the original program obtained from
the MAPS group. Most of the optimizations were enabled by the parallel semantics of PPL
which allow atomic update of aggregates in a single msa cycle. Other optimizations include
condition reordering, common subexpression removal, replacement of function calls whose
value is known at compile-time by their results, and optimizations to the foreign functions that
implement the geometric constraints. These optimizations improved the performance of spam
{on a Decstation 5000/200) by 1.55 fold for the smallest data set and 2.19 fold for the largest
data set. This speedup 1s in spite of the extremely large cross-products generated in the first
and second phase of the new version. Corresponding phases of the old version avoided these
cross-products by processing the data piecemeal.

Paralielization: The first phase is a triply nested loop. For every region and every possible
interpretation (fifteen of them), it checks if the values of twelve features are within a given range.
Feature checks for all the interpretations are implemented by individual productions that match
tuples corresponding to individual regions and call foreign functions to perform the checks for
the matched region. Ifall the twelve checks succeed, a hypothesis tuple is generated to represent
the particular interpretation of the region. Since no data for any region is modified, all levels
of this loop can be paralielized. This is achieved by converting every feature-check production
to a paralle] production and encapsulating each of them in its own production set. This allows
all feature-checks to be done in parallei. Figure 4.4 shows one such production that checks
the area of the region for a runway interpretation. Calls to spam.rtfmatch_feature()
check if the value of the feature is within the range [<1bound> , <ubound>] and accumulate
the result. For each region, this routine is called twelve times, once for every feature-check.
These calls are not functional - they update an accumulator. To allow these calls to proceed in
parallel, updates to the accumulator are protected by a lock. This is within the C code for the
spam.rtf.match.feature () procedure.

The second phase applies constraints between pairs of hypotheses. Only some combinations
of hypotheses are checked. For example, if a region has been hypothesized to be a runway,
then all regions that have been hypothesized to be taxiways and that lie within a given distance
from it should be perpendicular to it. There are thirty-three such constraints. Each of these
constraints are applicable only to particular pairs of hypothesis types. The constraint mentioned
above is applicable only to runways (the object type) and taxiways (the target type). This phase
is also a triply-nested loop. For every hypothesis, for every applicable constraint, for every
hypothesis of the target type, it applies the constraint on the object and the target hypotheses.
This is implemented by a patr of productions for every constraint, one to apply the constraint

ADA289345

4.1. BENCHMARK SUITE 58

{pset runway-test-area
(parp RTF**runway-match-area
(region “name <name> Aarea <area> Mdenufier <id>)
(rtf-rule-constants Aruleset runway-match-attnbutes

Aattnbute area Aconstants <lbound> <ubound>)
(rtf-stage “name match-features)
>

(call spam_rtf_match_feature <1d> <area> <lbound> <ubound> runway 0))

Figure 4.4: Sample production from first phase of SPAM

and one to check if constraint was satisfied. Since the data for the hypotheses is not changed in
this process, all constraint applications can be done in parallel. This is achicved by converting
each of the productions to parallel productions and encapsulating them in separate production
sets. Figure 4.5 shows one such production that checks if a region hypothesized to be a taxiway
1s perpendicular to another region hypothesized to be a runway and 1s with in 10000 units of
distance from it. Since all constraints in this phase are purely functional, parallel calls can be
safely made to the routine that applies the constraints, spam.lcc.do.geometric.test ().

The third phase attempts to build hypotheses for functional areas based on the hypotheses for
individual regions. Each functional area has a seed region ~ runway, road, terminal-building
and hangar-building. It has several loops: to select seed regions, to generate links between the
seeds and the surrounding regions, to merge multiple parallel links between regions, to create
funrtional areas and evaluate them, to determine overlapping areas and merge them. All of
these loops except the loops that merge the links and the functional areas can be parallelized.
The foreign function calls in this phase perform geometric operations like computing convex
hull of functional areas and determining the degree of overlap between two regions. All of
them are purely functional and multiple calls to them are safe.

Data set: Data from three images, corresponding to the Moffett airforce base (mof fet t1), the
Washington National airport (de3 6809) and the San Francisco International airport (sf4917),
were used in these experiments. The firsi two are about the same size, dc36809 being slightly
larger. The third, s£4917, is substantially larger. This data was obtained from the MAPS
group and had been hand-generated from the respective images.

ADA289345

LA
0

4.2. DESIGN OF THE EXPERIMENTS

{pset runways-orthogonal-taxaways
(parp LCC--runways-are-orthogonal-to-taxiways
(Icc-stage “name apply-constraint)
(loc-rule-constants Arulename runways-are-orthogonal-to-taxiways
Amin <min> Amax <max> Abound <bound>)

(fragment ~hypothesis runway Aidentifier <id0>)

(fragment ~hypothesis taxaway *identifier {<id1> <> <id0>})

->

(make lcc-match-score Arulename runways-are-orthogonal-to-taxiways
Aresult (spam_lcc_do_geometnic_test 12 <min> <max> <bound> 10000)
Afrom <1d0> Ato <ad1>))

Figure 4.5: Sample production from second phase of SPAM
4.2 Design of the experiments

These experiments measure and compare the speedups achieved by automatic parallelization
and explicit specification. To freely vary the number of processors, these experiments used
a trace-driven multiprocessor simulator for measuring the speedups. Simulation also allowed
measurement code to be freely added without worrying about the distortion introduced. The
only actual multiprocessor available for this investigation was an ancient 8-processor Vax which
was in a fairly unstable condition.

For each benchmark, four versions were used:

1. Sequential program running on a uniprocessor: this version is generated by com-
piling the sequential version of the program using the PPL compiler targeted towards
uniprocessors. It is used as the baseline for computing all speedups and 1s referred to as
the baseline version.

2. Sequential program running on a mulitiprocessor; this version is generated by com-
piling the sequential version cf the program using the PPL compiler targeted towards
multiprocessors. Itis used to compute the speedups achieved by automatic parallehization
and is referred to as the parallel-match version.

3. Parallel program running on a uniprocessor: ths version is generated by compiling the
parallel version of the program using the PPL compiler targeted towards uniprocessors, It

ADA289345

4.2, DESIGN OF THE EXPERIMENTS 60

1s used to measure the effect of the paralle! programming style on uniprocessor execution.
Itis referred to as the parallel-model version.

4. Parallel program running on a multiprocessor: this version is generated by compiling
the parallel version of the program using the PPL compiler targeted towards multiproces-
sors. It 1s used to measure the speedups achieved by explicit specification of parallelism
and is referred to as the parallel version.

All versions were compiled at the highest level of optimization of the PPL compiler. The C
code generated by the compiler as well as the code for the run-time library was compiled using
gce -0, These settings are same as the ones used for generating the cost model.

Comparative benchmarking is prone to pitfalls. The most common pitfall is an mefficient base-
line. To ensure meaningful results, the baseline version was used to compute all speedups.
To the best of my knowledge, the uniprocessor implementation of PPL is faster than any other
publicly available implementation of OPSS. Tables 4.1 and 4.2 compare the uniprocessor
implementation of PPL with CParaOPSS5, the C-based implementation of OPS5 available from
Carnegie Mellon University (dravido. soar.cs.cmu. edu: /usr/nemo/cparaops5).
Table 4.1 contains results for three programs that process fixed data sets.rubik, written by
James Allen solves the Rubik's cube problem for a particular configuration, tourney, written
by Bill Barabash, schedules a bridge tournament for 16 players and gen.tsp, written by Jose
Nelson Amaral, finds a travelling salesman tour of a collection of cities in the four southern
US states, These programs have been used as benchmarks by production system researchers.
Table 4.1 shows that for these benchmarks, the uniprocessor implementation of PPL is between
1.6 and 4 times faster than CParaOPS5 and uses between 2.25 and 4 times less space. Table 4.2
contains results for three programs that process variable sized data sets. These programs have
been used as benchmarks in a different part of this dissertation (see Chapter 8 for details).
The first program, make-teams, operates on a database of employees and creates teams
given some constraints on their composition. The numbers shown in the table correspond to
a database of eighty employees. The second program, clustexrs, operates on a collection
of image regions and groups them into clusters based on their distance from a group of seed
regions. The numbers shown in the table correspond to an image with 400 regions. The third
program, airline-route, operates on a airline flight database and determines the best
available flight for a single traveller. The numbers shown in the table correspond to a database
of 150 flights between 20 airports. All these programs were written by Milind Tambe. Table4.2
shows that for these benchmarks, the uniprocessor implementation of PPL is between 2 and 90
times faster than CParaOPS5 and uses between 2.2 and 4.2 times Jess space.

These experiments were run on a Decstation 5000/200 with 64 meg, running Mach 2.6. Both
compilers were run at the highest level of optimization and the intermediate C files generated
as well as the run-time libraries were compiled with all optimizations turned on. CParaOPSS5 is
comparable in speed with ParaOPS$5 (60) which, in turn, has been shown to be comparable 1n

ADA289345

4.2. DESIGN OF THE EXPERIMENTS

6!

Programs | CIOPSS time | PPL time | speedup | PPL space | CIOPSS space | space ratio |
rubik 14.15s 5.9s 2.38 2 meg 4.5 meg 225 !
tourney 6.53s 3.9s 1.67 2 meg 7 meg 35 i
gen-tsp 12.50s 3l 403 2 meg 8 meg 40 |

In the table, CHOPS5 stands for CParaGPS5

Table 4.1: Comparison of uniprocessor PPL and CParaOPSS for fixed data set benchmarks

Programs CIOPSS time | PPL time | speedup | PPL space | CHIOPSS space | space ratio

make~-teams 5536s 2714s 2.04 3Imeg 6.6 meg 22

clusters 12865 14.3s 89.93 3Imeg 12.5 meg 42

airline-route 7678s 401s 19.15 14 meg 30.5 meg 218 |
o the table, CIIOPSS stands for CPara0Pss.

Table 4.2: Comparison of uniprocessor PPL and CParaCPS$5 for variable data set

speed with ops5c [82]. Several unsuccessful attempts were made to obtain ops5c for a direct
comparison with PPL. These experiments are the first to use uniprocessor implementations of
optimized sequential programs as the baseline for measuring parallelism in production system
programs. Previous research efforts have either used multiprocessor implementations runmng
on a single processor as the baseline or have not used optimized sequential programs or both.
We have already seen that optimization of sequential programs can yield up to 18 fold speedup.
Results presented in the next chapter indicate that for tasks as fine-grained as those occurring
in production system programs, the parallelization overhead can be as large as a factor of 2.5.

Another common limitation of previous research efforts that studied parallelism in production
system programs is that they limited themselves to particular sections or kemels of the programs
and not the full implementation. In particular, most research efforts have focussed their research
on parallelizing the match phase [2, 14, 38, 42, 51, 61, 84, 90, 105} and have ignored the costs
of the select and act phases. To achieve scalable parallelism, all phases of the implementation
must be parallelized. An inefficiency in any one of the phases will place an Amdahl’s law
limitation on the overall speedup.

All the benchmarks used in these experiments run for long periods of time - the largest run
corresponds to over 50 billion instructions. This limits the variance due to operating-system-
specific initialization costs, ¢.g. creating processes.

The two PPL :mplementations, uniprocessor and multiprocessor, share most of the code, both
compiled code and run-time library code, and differ only in their support for parallelization.
This eliminates potential distortion due to differences in compilation strategies and/or run-time

© ADA289345

4.3. SIMULATOR 62

support.

These expeniments had two orthogonal parameters — the size of the data set and the number of
processors being used. Even though the PPL implementation allows the number of task stacks
to be varied between one and the number of processors, for these experiments, the number
of task-stacks was fixed at the number of processors. Multiple task-stacks have been shown
to significantly outperform a single task-stack for paralle]l execution of production system
programs {42].

Each experiment consists of running one of the versions of the program, and feeding the
trace generated into the simulator. Close to 3000 such experiments were run, Both PPL
implementations were modified to generate a trace of their execution which was used to
drive the simulation. Initially, the trace generated was stored on disk and reused for several
simulations. However, as the size of the data sets, and hence the length of the program runs,
grew it was not possible to store the traces on disk (the largest trace generated was about 650
Megabytes). Instead, the simulator was run concurrently with the benchmark program and
the trace was fed to it over a Unix socket. The simulations were run on a large number of
workstations including Decstation 5000/200s and the Alpha AXP based Decstation 3000/400s.
The next section describes the simulator.

4.3 Simulator

Previous studies exploring parallelism in production systems have been based on simulators
that were limited in various ways. Several of the simulators have been based on very simple
cost models [5, 50, 56, 65, 81, 90,92, 101, 104]. Others have been based on average case data
{51). These simulators did not take many overheads into account and often ignored variations
in the cost of msa cycles. Gupta [38] reported results from a simulator based on an accurate and
detailed cost mode]. However, his simulator simulates only the match phase, uses an average
case assumption to determine the cost of processing a token and does not include the costs
of memory management. Furthermore, the trace used to drive the simulator does not contain
enough information to create a complete dependency graph; for tasks with two parents, for
example tokens in the Rete network, it contains dependency information only for the parent that
occurred later. The simulator used in these experiments simulates the complete execution of a
production system program based on a fine-grain and accurate cost mode! and uses a detailed
trace that contains a1l the dependency information. Section 4.3.1 describes the structure and
the operation of the simulator. Section 4.3.2 discusses 1ts limitations and Section 4 3.3 argues
about the validity of the results.

ADA289345

4.3 SIMULATOR 63

4.3.1 Structure and operation of the simulator

The simulator assumes a shared memory mode] with uniform access time. It measures cost
in number of instructions executed. It is event-driven. Like Proteus [10], each processor
1s simulated for a complete task before yielding the simulator to another processor. This
allows fast simulation of long-running programs. It simulates all phases of production system
execution. The structure of the simulator mirrors that of the implementation and reuses most
of the code. The simulator is based on a detailed basic-block level cost model. It is driven
by a compact trace which contains information about the entire execution of the program.
Stmulation of the program is done in cycles. Each cycle simulates the operations between
successive varrier synchronizations. The input to the simulator consists of: (1) a trace of the
operations performed during the execution of the program (2) a description of the program in
terms of the productions, production sets and Rete network nodes (3) a detailed basic-block
leve] cost mode] (4) a description of the machine configuration to be simulated. The output of
the simulator consists of various program-level and processor-level statistics as well as some
information about individual cycles. Section 4.3.1.1 describes the trace and the mechanism
used to generate it. Section 4.3.1.2 describes the cost model and how it was generated.
Section 4.3.1.3 describes the operation of the simulator.

4.3.1.1 Trace

The trace used to dnve the simulator is complete in that it contans information about all
operations that take place during the execution of the program. However, the trace format is
compact and contains information only about selected events from which information about
the rest of the events can be generated. In particular, it traces only the information that is
needed to decide branch directions and iteration counts in the simulator. This 1s similar to the
Abstract Execution techhique [68] proposed by Jim Larus to reduce the length of traces. Since
the simulator is closely allied to the inplementation, it can regenerate the information itself,
there is no need for auxiliary programs like those gererated by AE. Figure 4.6 contains the C
struct declaration for a trace record.

Since the trace cannot contain pointers, links between tasks are indicated using activation.ids.
Every task that can generate successors has a unique activation.id. Trace records for successor
tasks refsr to their parents using these activation.ids.

Foreign function calls present special problems for tracing. Since the functions called can
perform arbitrary computation, it is not possible to trace their execution within this framework.
To determune the cost of a foreign function call, the tracing library makes vse of a Decstation-
specific timing board that contains a 32-bit bus cycle cotter. It uses external memory support
in Mach 3.0 to map this counter into memory. The cost of timing a function call is equal to two
trips to the mem<. y, which is about 20 processor cycles. Since most foreign functicn calls are

ADA289345

4.3. SIMULATOR

typedef struct PPL_TRACE_RECORD_RZC
int proc_nur_and_record_type, /* low 16 oits for rec_type */
union {
struct {
int tuple_time_tag, size, activation_id, num_of_tests,
int nur_of_successors_and_add_or_delete;
/* bat_0 = add/delete, bit_1-31 = ¥successors */
} alpha;
struct {
int lef:_parent_id, right_parent_id, activation_id, node_1d;
int attrabutes;
/* bit_0O=add/delete,bit_l=left/raght, bit2-3 for scheduler,
* bit_4-31 num_of_successors */
int test_values;
} beta;
struct {
int lef:s _parent_id, right_parent_id, prod_id;
ant pset_id_and_add_or_delete;
/* bit_0 = add/delete, bit_1-31 = pset_id */
int *tametags;
} pnode,
struct { /* header record for a select-match-act cycle */
int ¢ycle_num, record_id;
} select;
struct {
int activation_id, pset_id, prod_id:
} fire;
struct {
int parent_id; /* activation id of fire record */
int type;
union {
struct { int timetag; } make;
(int timetag_new, timetag_old;) modify;
struct { int tametag_new, timetag._old,) copy;
{ int tametag; } remove;
{ long cost; } call;
9} info;
} action;
struct {
int type;
unxon {
struct { int num_of_values; } substr_call;
struct { _ong cost; } functien_call;
} info;
) value_item;
struct { int parent_id, timetag,) external_make;
} info;
} ppl_trace_record_rec, *ppl_trace_record_ptr;

Figure 4.6: C struct declaration for a trace record

ADA289345

4.3. SIMULATOR 65

significantly longer (of the order of tens of thousands of instructions), this cost 15 negligible.
Since this is a free-running counter, there is no way to associate costs with processes Therefore,
to eliminate distortion due to extraneous processes being scheduled, the environment on the
workstation on which the traces were generated was severely curtailed. Running the simulator
concurrently, as done in other experiments, 15 not suitable for experiments require tracing
foreign function calls. A one gigabyte disk was attached to the workstation to store the traces.
Unix buffering was disabled. Trace records were logged in memory and were written out only
when the counter was not in use.

The trace 1s supplemented by a static trace data file generated by the compiler which contains
detailed information about individual productions, production sets, and Rete network nodes.
For details about this data file as well as further :nformation about the trace format, see
Appendix A.

Even though the trace format and the tracing library support traces from multiprocessor exe-
cution, the traces used in the experiments were taken from uniprocessor runs. For uniproces-
sor sumulations, traces were generated using the baseline versions of the programs. For
simulation of automatically parallelized sequential programs on multiprocessors, traces were
generated using the parallel ~-match versions of the programs running on a single proces-
sor. For simulation of parallel programs on multiprocessors, traces were generated using the
parallel versions of the programs running on a single processor.

Using a uniprocessor trace for multiprocessor simulations introduces a distortion. Consider the
Rete network and the pair of tuple-space modifications in Figure 4.7. If the deletion happens
before the addition, then T7 has to compared only with T1 and T3. Otherwise, it has to be
compared with T1, T2 and T3. Furthermore, different orders of processing the tuple-space
modifications can lead to different number of tokens being generated in the Rete network. For
example, in Figure 4.7, if T7 is added before T2 is deleted and T7 matches T2, a successor
token, (T2,T7), is generated. However, if deletion of T2 happens before T7 is added, no
successor task is generated when T7 is subsequently added. Therefore, the number of tasks and
the exact length of each task depends on the order in which tuple-space modifications and the
token they generate are processed. In a uniprocessor environment, all tasks are processed in a
depth-first manner but in a multiprocessor environment, the order depends on the number of
processors and their relative speeds. Even with this disadvantage, uniprocessor traces are still
the best possible option for the following reasons:

o This distortion will arise every time a trace from one configuration 1s used to simulate a
muitiprocessor of a different configuration. Therefore, unless we have paralle]l machines
for all the configurations we would like to simulate, this distortion is inevitable. In which
case, using the simplest possible configuration is the best option.

o Even if we had parailel machines for all the configurations we would like simulate,
the tracing process itsclf introduce distortion in the execution of the program and, thus,

ADA289345

4.3 SIMULATOR 66

would change the order in which the tokens are processed. A uniprocessor execution is
free of this distortion.

Previous research efforts that have experimented with changes 1n order of token processing
report that the difference in execution time has been under 10% [111]. The simulator supports
various token ordering policies. Experiments conducted as a part of this investigation have
indicated that the difference in execution time between a depth-first order and a breadth-first
order 1s under 5%.

updatel- delete T2 update2: add T7 to right memory

T4, T5, T6

(T1,T4), (T2,T6)

Figure 4.7: Effect of processing order on token cost

4.3.1.2 Cost model

The cost model consists of costs, in terms of the number of instructions needed, for all the
primitive operations in the execution of a PPL program. Examples of primitive operations
include individual « tests, hashing an integer value (for looking up a token in the hashtables),
caching the values being matched (before traversing a hash bucket), traversing each link in the
list of tokens in a hash bucket, extracting value from a token, performing a single 3 test betwe. n
two tokens, adding an instantiation to a hist, extracting the timetag from a tuple, initializing
a field, creating a task structure, freeing a task structure and so on. Each primitive operation
consists of straightline code - either a single basic block or a small number of basic blocks
linked by high probabulity branches. There are 287 such operations. A complete list can be
found in Appendix B.

The cost model was not hardwired into the simufator. Instead, costs for all the primitive
operations were Joaded along with the static trace data file and a description of the machine

ADA289345

4.3. SIMULATOR 67

configuration All simulations for the experiments reported in this dissertation used a cost model
based on the MIPS R3000 instruction set. The cost model was generated in the following way-

1. The Ccode for the run-time library and the productions was compiled to optimized object
code using gce -0. It was possible to do this for the productions because of the highly
styhized nature of the C code generated for them. Assertions and other debugging code
were conditionally compiled out.

2. The object code was disassembled and the code for individual routines was extracted
using the Ultrix disassembler.

3 The assembly code for individual routines was passed through a program that discovered
and marked the basic blocks in the code. Figure 4.8 shows the result for the routine
ppl-add_to_tuple_space() from the multiprocessor implementation.

4. The basic blocks were manually mapped back to the original C code and costs were
associated with individual primitive operations.

Since individual costs are extracted from optimized object code that would actually run, they
are accurate. There are separate cost models for untprocessor and multiprocessor smplemen-
tations. Figure 4.9 shows the code for ppl.add_to_tuple_space() taken from the uniprocessor
implementation.

To see how the cost of a primitive operation is calculated, consider the disassembled code in
Figures 4.8 and 4.9 and the corresponding C code in Figure 4.10. Both cases contain two
conditional branches, one at the end of the first basic block and the second at the end at the third
basic block. Both these branches test if the tuple-space is empty. Since the tuple-space is almost
never empty,’ the loop branches can be assumed to be always taken. With this assumption, the
cost of adding atuple to the tuple-space is 35 instructions for the multiprocessor implementation
and 20 instructions for the uriprocessor :mplementation.

43.1.3 Operation

As mentioned above, the input to the simulator consists of the trace, the static trace data file, the
cost mode] and a configuration file. The configuration file specifies the machine configuration
to be simulated (number of processors, number of task-stacks, the kind of hashtables used, the
output statistics to be computed etc). Appendix C describes the configuration file structure.

IThis 15 not surpristng since nothing happens 1 a preduction system program with an empty tuple-space’

ADA289345

43 SIMULATOR

MULTIPROCESSOR:
ppl_add_to_tuple_space:

0x0: 27bdffe8 addiu sp,sp,-24
0x4: afbC0C1C sw s0,16{sp)
0x8+ 008C8C21 move s0,ald

Oxc: 8£848020 lw a0,-32736(gp)
0%1C: afbf0014 sw xa,20(sp)

0x14: 0cC00000 jal ppl_acquire_lock_private

0x18: 00COC000 nop

Oxlc: 8£828010 1w v0,-32752(gp)
0x2C: 000CC000 nop

0x24: Bc43C0000 1w v1,0(v0)
0x28+ 00C0C000 nop

Ox2c: ae030010 sw v1,16(s0)
0x3C: ac500000 sw s0,0(v0}
0x34: 8f838018 lw v1,-32744(gp)
0x38: 0000£000 nop

Ox3c: 8c620000 1w v0,0(vl)

0x40 00000000 nop

Ox44: 14400002 bne v0,zero,0x50
0x48: 00000000 nop

Oxdc: ac700000 sw s0,0(vl)
0x50: 8020010 1w v0,16(s0)
0x54: 00000000 nop

0x58: 10400002 beq v0,zero,(x64
0xS5c. 00000000 nop

0x60: ac500014 sw s0,20(v0)
0x64: 8£848020 lw a0,-32736(gp)
0x68: 00000000 nop

Ox6c: 0c000000 jal ppl_release_lock_pravate

0x70: ae00C014 sw zero,20(s0)
0x74: 02002021 move al,s0

0x78: 0cO00000 jal ppl_match_tuple
O0x7¢: 00002821 move al,zero

0x80: 8fbf0O014 1w ra,20(sp)

0x84: 8fb00010 lw s0,16(sp)

0x88: 0300008 jr ra

Ox8c: 27bd0018 addiu sp,sp,24

Figure 4.8: Disassembled multiprocessor code for ppl.add.to.-tuple.space {}

[
[
|
|
!
!
I
;
!
f
|
|
|
|
[
!
I
f
I
l
{
[
!
!
f
I
{
|
|

I
f
|
|
f

68

began 1 (19 cycles)

end 1
begin 2 (1 cycles) end 2
begin 3 (4 cycles)

end 3
begin 4 (1 cycles) end &
begin 5 (11 cycles)

[
3
12
w

ADA289345

4 3. SIMULATOR 69

UNIPROCESSOR:

ppl_add_to_tuple_space:

0x0- 8£828010 1w v0,-32752(gp) | begin 1 (8 cycles)

0x4: 27bdffe8 addiu sp,sp,-24 |

0x8. 2fbf0010 sw ra,l6(sp) |

0xc: ac82000c sw v0,12{a0)

0x10: 8£828018 1w v0,-32744(gp) |

0Ox14- afB848010 sw al,-32752(gp) |

0x18: 14400002 bne v0,zero,0x24 |

Oxic: 00000000 nop | end 1

0x20: af848018 sw a0,-32744(gp) | began 2 (1 cycles) end 2

0x24: 8c82000c 1w v0,12Z(al) | begin 3 (4 cycles)

0x28: 00000000 nop |

0x2¢: 10400002 beq v0,zero,0x38 |

0x30: 00000000 nop |

0x34: ac440010 sw a0, 16(v0) | begin 4 (1 cycles) end 4

0x38- ac800010 sw zero,16(al) | begin 5 {7 cycles)

Ox3c: 0c000000 jal ppl_match_tuple |

0x40: 00002821 move al,zexo |

0x44: Bfbf0010 1w ra,l6(sp)

0x48+ 27bd0018 addiu sp,sp,24 |
|
I

end 3

Oxdc. 03e00008 jr xa

0x50: 00000000 nop end 5

Figure 4.9: Disassembled uniprocessor code tor ppl.add.to-tuple.space()

The simulator simulates each select-act-match cycle, that is the operations between successive
barner synchromzations, separately. The trace contains complete information about the de-
pendencies between tasks. In particular, it records information about both parents of tokens.
Traces used in previous studies recorded information about only the parent that occurs later.
As mentioned in Section 4.3.1.1, dependency informaticn 1s encoded using the activation.ids
of tasks. However dependencies that span barrier synchronizations are clipped since the tasks
involved are simulated in different cycles.

The simulator collects a wide variety of statistics. Figure 4.11 shows an abbreviated version of
the output file for one of the experiments.

4.3.2 Limitations of the simulator

The sources of inaccuracies in the ssmulator are’

¢ The simulator assumes a uniform access memory model - all instructions are assumed
to cost the same. Modern architectures do not support such a model and good memory

ADA289345

4.3. SIMULATOR 70

void ppl_add_to_tuple_space(:suple)
ppl_tuple_ptr tuple;

{

/* macro -- expands to whitespace for uniproc impl */
ppl_acquire_lock(tuple_space_lock);

/* cons tuple onto tuple-space list. ppl_ref_value() and ppl_update_ref()
* are macros which expand to indirect operations for multproc impl and
* darect operations for uniproc impl */

tuple->next = ppl_ref_value(tuple_space_heagd);

ppl_update_ref (tuple_space_head, tuple);

/* checks if the tail is NULL, nappens 1ff tuple-space 1s erpty */
if {ppl_ref value(tuple_space_tail} == NULL)
ppl_update ref(tuple_space_tail,tuple);

/* tuple-space is a doubly linked last. link back from next <tuple,
* 1:f there 1s a next tuple. */
1f (tuple->next 4= NULL)

tuple->next->prev = tuple;

/* thes 13 the first tuple */
tuple-»>prev = NULL;

/* macro -- expands to whitespace for the uniproc impl */
ppl_release_lock{tuple_space_lock};

/* anvoke rete match code */
ppl_match_tuple({tuple, PPL_DIRIN}; /* PPL_DIRIN =x 0 */

Figure 4.10: C code for ppl.add.to.tuple.space()

subsystem performance 1s important for achieving good speedups. However, as far as
scalable parallelism is concerned, memory subsystem performance 15 a second order
effect (an important second order effect but a second order effect nevertheless). Over-
coming the program-independent bound on available parallehism is the primary issue and
18 the focus of this dissertation. Once this issue has been addressed, the memory subsys-
tem performance will become the most important issue. As shown in Table 4.1, memory
usage of programs compiled with PPL is between 2 and 4 times less than those compiled
with previous compilers. This should improve their memory locality and reduce the
cffect of the memory subsystem.

ADA289345

4.3 SIMULATOR 7

Length of trace = 1.44017e+08 bytes

Total time = 4.92692e+08 processor cycles

Processor 1d 0- utilization = 99.83

Processor id 1: utalization = 98,68

Processor ad 2: utilization = 96.90

Average utilization = 99.14

Number of instantiatiocns fired = 19558, Number of cycles = 1560
Number of firings per firing cycle = 12.5533

Number of wm deletions = 19657

Number of wm additions = 21013

Number of wm changes = 40670

Number of wm changes per active cycle = 26.0872

Time breakdown:

Time in multiprocessor code:

Time in alpha actavations: 6.72317e+0§

Time in beta activations: 8.39495e+08

Time in pnode activations: 4 96327e+07

Time in rhs : 1.12228e+07

Time in function calls : ¢

Tame in schedulang: 5.22371e+08

Time in memory reclaiming: 3.3776e+07

Time an fare: 473900

Time in uniprocessor code

Time in select: 1.84899e+06

Time in overheads. 208795

Task information: total tasks = 4442754

Alpha tasks = 40670 (0.92 %)

Add beta tasks = 2074873 (46 70 %), delete beta tasks = 2036588 (45.84 %)
Conj add beta tasks = 97775 (2.20 %), conj delete beta tasks = 97775 (2.20 %)
Add pnode tasks = 32750 (0.74 %), delete pnode tasks = 13192 (0.30 %)
Refracted instantiations deleted = 19557 (0.44 %)

Efficiency of instantiation generation = 51.80 %

Conj add pnode tasks = 5008 (0.11 %), conj delete pnode tasks = 5008 (0.11 %)
rhs tasks = 19558 (0.44 &)

Figure 4.11: Abbreviated simulator output for one of the experiments

ADA289345

4.3 SIMULATOR 72

¢ Traces taken from uniprocessor runs are used for all simulations. As discussed in
Section4.3.1.1, this leads to naccuracies in the number of tasks and the costs of individual
tasks. There is no reasonable way of avoiding this inaccuracy. Previous research
efforts that have experimented with changes in order of token processing report that the
differences have been under 10% [111]. The simulator supports various token ordering
policies. Experiments conducted as a part of this investigation have indicated that the
difference in execution time between a depth-first order and a breadth-first order is under
5%.

o Contention for sharel resources is not taken into account. As described 1n Section 3.4.5,
considerable effort has been devoted to minimizing contention for shared resources. The
only resources for which there might be significant contention are the hashtables that
store the contents of the Rete memory nodes. If this becomes a problem, the hashtable
size can be easily increased.

As mentioned above, several approximations have been made in the construction of the simu-
lator. However, as discussed in an earlier part of this section, this is the most accurate simulator
that has been used for studying production system programs and is the only simulator that
simulates the all operations in a production system program. I believe that it accounts for most
of the important costs and variations.

4.3.3 Validity of the simulator

In any simulation based study, 1t is necessary to establish the validity of the simulator in
some way. The best way would be to run the programs on a paralle] machine of suitable
configuration and compare the results with the results frem the simulator. But 1t s the lack of
suitable machines that lead to the construction of the simulator in the first place In absence of
direct confirmation, the belief in the validity of the results is based on the following facts:

¢ The simulator can be used to predict the running time on a uniprocessor with reasonable
accuracy. Since the simulator does not model the memory subsystem, a constant (or
nearly constant) ratio between the wall clock time on an actual uniprocessor and the
mstruction count generated by the simulator is unlikely Especially for data sets of
widely varying sizes However, an analysis of the results shows that for each benchmark,
this ratio decreases linearly with the increase in the data set size. The rate of decrease
15 steady enough to be used to predict the running time for larger data sets. Table 4.3
shows the predicted time and the actual wall clock time for several benchmarks and data
sets. The wall clock time 1s from executtons on a Decstation 5000/200 running Mach
2.6, with 64 megabytes of memory.

ADA289345

4.3. SIMULATOR 73

Program | dataset | predicted time | actual time
circuit | 250 bits 46.8s 47.6s
circuit | 275 bits 51.7s 53.4s
life 60 reps 105.3 106.5s
life 70 1eps 132.1s 141.8s
hotel 6 floors 1519.4s 1536.6s
hotel 7 floors 2791.8s 2853.5s
spam s£4917 1509.55 1721.1s

Table 4.3: Comparison of predicted and actual running times

o The simulator detected inefficiencies in the implementation and accurately predicted
the magnitude of the improvements for alternative implementations. Based on results
from previous research, the occurrence of conjugate instantiations was assumed to be
low and accordingly the implementation used a single linked list per production to hold
them. Simulations indicated that the number of conjugate instantiations grew roughly
with the growth in the number of tuple-space changes per msa cycle and the number
of processors. In simulations of waltz, the cost of handling conjugate instantiations
grew to dominate the execution. Uniprocessor execution of the parallel version of
waltz backed up this discovery. The simulator also accurately predicted the speedup
achieved (for uniprocessor execution) by replacing the single per-production linked list
by a per-production hashtable, A similar inefficiency was found 1n the handling of
refracted insiantiations (instantiations that have already been fired)

The simulator is quite close to the implementation and shares most of the code. Along
with the detailed and accurate cost model, this indicates that the simulator should be
closely modeling the implementation

Speedups for the parallel-match versions of most programs are comparable with
those reported by efforts to automatically parallelize production system programs. One of
the programs, hotel, indicates large amounts for parallelismforthe parallel -match
version. The reason for this is discussed as a part of the analysis presented in the next
chapter.

ADA289345

Chapter §

Parallelism Experiments: Results,
Analysis and Observations

The goal of these experiments was to test three hypotheses. First, that, in general, there
is no program-independent bound on the speedup in parallel production system programs.
Second, that speedups in parallel production system programs can scale with data. Third,
that production sets and paralie]l productions are effective for the expression of parallehism in
production system programs. This chapter presents and analyzes the results of the experiments
with the aim of validating these hypotheses. To show that there is no program-independent
bound on the speedup in paralle! production system programs, it presents speedups for the full
benchmark suite. To show that the speedup can scale with data set size, it shows how the
speedup varies with data set size. To show that production sets and paraliel productions are
effective forthe expression of parallelism, it compares the speedups achieved by two versions of
the benchmark programs, one that uses these constructs and the other that does not. It analyzes
the results to identify the factors that limit specdups in paralle} production system programs.
The chapter concludes with some observations from the experiments, including programming
idroms for parallel production systemn languages and practical advice for parallelizing sequential
production system programs.

5.1 Speedups

This section presents speedups for the full benchmark suite, the goal being to validace the
hypothesis that there is no program-independent bound on speedups in parallel production
system programs. The parameter space for the experiments is two-dimensional, data set size
being one dimension and number of processors the other, Results presented in this section
assume a configuration with 100 processors. This configuration is large enough to demonstrate

74

ADA289345

5.1. SPEEDUPS 75

the variation between the specdups achieved by different benchmarks. Selection of coordinates
along data-set-s1ze dimension 1s more difficult since the size of the tuple-space can vary greatly
depending on the programming style. Instead, a reasonably large data set was independently
selected for each benchmark. Table 5.1 contains the selected values of the data set parameters
for all the benchmarks. For reference, it also contains the number of tuples in each data set.
Results presented in Section 5.2 show that for three of the benchmarks, circuit, 1ife and
waltz, the growth in the speedups with data set size is low beyond these parameter values
indicating that these values are suitable for the comparison. These instances of the benchmarks
will be referred to as the comparative instances and the whole set will be referred to as the
comparative suite.

Program circuit life waltz hotel spam
Data set 200 bits | 70 repetitions | 120 repetitions | 7 floors | dc36809
Number of tuples 400 1051 6996 10873 367
Uniproc time (10° instrs) | 262.1 589.1 426.7 12477.6 | 23862.5

Table 5.1: Data sets for the comparative suite

Figure 5.1 shows speedups achieved by the comparative suite. These speedups are computed
using the sequential versions of the benchmarks as baselines. As described in Section 4.2,
the sequential version of abenchmark program is an efficient uniprocessor implementation
of the program and is built by compiling the sequential version of the program with the PPL
compiler targeted towards uniprocessors.

To explore the growth of speedup beyond these data set sizes, additional experiments, with
larger data sets and machine configurations were selectively conducted (as justified by the
results). Table 5.2 shows the highest speedup achieved for each benchmark along with the
corresponding data set size and the machine configuration.

Program circuit | life ! waltz | hotel spam
Highest speedup 29.6 23.6 179 115.3 523
Number of processors 100 100 100 200 100
Data set size 275 bits | 80 reps | 120 teps | 10 floors | dc36800 |

Table 5.2: Highest speedups achieved.

These results indicate that there is no discernible limit on speedups in paralle] production
system programs. Furthermore, analysis presented in Section 5.2 concludes that for two of
the benchmarks, hotel and sparm, increasing the data set size further can lead to even larger

speedups.

ADA289345

Job 52

5.1. SPEEDUPS 76

70 T Y ™ T

clrouit e

Figure 5.1: Speedups for the comparative suite.

There 15 significant variance between the speedups achieved by the benchmarks. Of the
five benchmarks, hotel and spam achieve large speedups (> 50 fold for 100 processors)
whereas the other three achieve much smaller speedups. The following subsection analyzes
the benchmarks and identifies the factors that limit speedups in paraliel production system
programs.

5.1.1 Analysis

There are three major limitations on speedups in parallel production system programs: paral-
lelization overheads, non-parallelizable loops and dependencies between tasks.

5.1.1.1 Parallelization overheads

Effective load-balancing for parallel production system programs requires fine-grain decom-
position. Individual tasks can often be as small as a few hundred instructions. Table 5.3

shows the average task size and the parallelization overhead for the comparative suite. The
parallelization overhead is computed by taking the ratio of the nominal speedup and the reaf

Fiche | 02/17/95 02AB8RAI345

Operator ID: Machine 1D: COM.1 Job Name: 2ik0zjkf.q
Main Table. DTIC MPT

5.1. SPEEDUPS 77

speedup. Nominal speedup is speedup with respect to the parallel version of the program
running on one processor which includes the cost of running the program in parallel. The real
speedups, on the other hand, are computed with respect to the sequential version which
includes no parallelization costs. All the speedups shown in this chapter are real speedups. The
major component of the parallelization overheads shown in Table 5.3 is the cost of scheduling
tasks which includes creation/deletion of task records, addition/removal of task records from
task stacks. Other components include costs of locking and barrier synchronization. The datain
Table 5.3 indicates that the average task size is small for all the three low-speedup benchmarks.
Accordingly, they incur large parallelization overheads. On the other hand, the average task
size is large for both high-speedup benchmarks resulting in very low parallelization overheads.
Figure 5.2 compares the nominal speedups for the comparative suite. It shows that after taking
the parallelization overhead into account, the speedups for circuit and 1ife are comparable
to the speedups for hotel and spam. In fact, the speedup for circuit is higher than both
of them. However, the speedup for walt z remains relatively low.

Program circuit | life | waltz | hotel | spam
Task size (instrs) 92.2 1620 | 440.5 | 23858.3 | 47820.1
Parallelization overhead 2.6 19 1.5 10 1.0

Table 5.3: Parallelization overhead

Table 5.4 shows the number and average size of the various kinds of tasks in the benchmark
programs. It shows that in benchmarks with high parallelization overheads, tasks from the
match phase dominate the execution and that they are usually significantly smaller than the
tasks fromselect or act phases. Therefore, match tasks are the major cause of high paralielization
overheads in these benchmarks.

Program circuit | life |waltz | hotel spam
Match tasks (millions) 2.6028 | 3.3818 | 0.7697 | 0.3805 | 0.1935
Select tasks 62293 | 74172 | 156968 | 142193 | 304,174
Action tasks 20275 | 15258 | 59524 7991 | 98,116
Average match task size 83.2| 150.1 | 183.6]322212) 2219
Average select task size 3402} 6183 1539.6; 14143 365.9
Average action task size 387.2 | 480.8 [540.1] 1203.1] 241282

Task s1zes are 1n numbet of instructions.
Table 5.4: Distribution and average size of tasks in the comparative suite

The problem of high parallelization overheads can be alleviated by grouping match tasks. An
interesting way of grouping match tasks is described in Chapter 6 which introduces collection-

ADA289345

5.1. SPEEDUPS 78

Speedup -->

cireuit hie waltz hotel spam
Shaded bars correspond to rea! speedups, unshaded bars cortespond to nominal spesdups.

Figure 5.2: Real and nominal speedups for the comparative suite

oriented match algorithms. These algorithms group the tokens in each memory nede into
equivalence classes based on the values that are going to be tested subsequently.

5.1.1.2 Non-parallelizable loops

As mentioned in Section 4.1, it is not possible to parallelize some loops due to the inherently
sequential nature of the computation. For example, the loop that prints the matrix in 1ife or
the loop that finds and merges overlapping functional areas in spam. In such loops, only one
instantiation is fired per msa cycle. This limits the speedup in two ways ~ it limits the speedups
in the match phase and it forces sequential execution in the action phase.

Low match speedups
Figure 5.3 shows a non-parallelizable doubly nested loop from 1ife. This loop prints the

entire matrix of cells. Since the cells have to be pnnted in a fixed order, this loop cannot be
parallelized. Each firing modifies only one tuple, the print~-coordinates tuple which

ADA289345

5.1. SPEEDUPS 79

holds the coordinates of the next cell to be printed. The msa cycles that are a part of this loop
have few match tasks and hence low concurrency in the match phase. Since these cycles can
be sped up only by small factors, the time spent in such cycles limuts the overall speedup as an
Amdahl's law effect.

(p print-next-cellin-row ; inner loop
(pnint-coordinates Ax <x> Ay <y>)
(cell Ax <x> Ay <y> “status <status>)
->
(wnite <status>)
(modify 12X (<x>+1))) ; go to next cell n this row

(p switch-rows + outer Joop
(print-coordinates Ax <x> Ay <y>)
<(cell Ax <x>) ; no more cells in current row
>
(write "\n")

(modify 1 Ax 0 Ay (<y>+ 1))} ; go to first cell in next 1ow

(p finalize-print
f (print-coordunates Ay <y>)
; ~(cell Ay <y>) ; N0 more Tows
->
(remove 1)) ; terminate outer loop

Figure 5.3: Non-parallelizable doubly nested print loop from 1ife

Table 5.5 contains information about the average msa cycle size for the comparative suite.
Of these, 11ife has the smallest average cycle size. The primary reason for this is the non-
parallelizable loop shown in Figure 5.3. In the basic pattern used as building block for 1ife
data sets, only two out of the thirty cells change state. The status of the other twenty-eight cells
remains fixed throughout the run. However, all cells are printed. As a result, the number of
iterations of the non-parallclizable print loop grows much faster than the number of iterations
of the parallelizable simulation loop. For the comparative instance of 1i£fe (70 repetitions
of the basic pattern), the simulation loop takes 200 msa cycles and the print loop takes 1058
cycles.

ADA289345

J.1. SPEEDUPS 80

Program circuit | life waltz | hotel | spam
Average finngs/cycle 99.8 12.1 | 1920.1 247 28.7

Average tasks/cycle © 13064.3 |2743.6 1294545 | 16083 | 1458
Average cycle size (million instrs) © 1.2846 | 0.4675 [13.335 | 38.3926 | 6 9814

Table 5.5: Average size of msa cycles
Sequential actions

While firing only one instantiation per msa cycle limits the speedup in the match phase, it
totally eliminates parallelism in the action phase. Actions corresponding to each instantiation
are executed sequentially. This increases the fraction of time spent in sequential code which
limits the overall speedups as an Amdahi's law effect. This factor can be particularly important
if the actions being executed include calls to expensive foreign functions. Such a situation
occurs tn the third phase of spam. As mentioned in Section 4.1.5, this phase contains two
non-parallelizable loops that merge links between image regions and coalesce overlapping
functional areas (e.g. runways). Figure 5.4 shows stripped down versions of the productions
that implement the second loop. This loop cannot be parallelized since a functional area may
overlap with several other functional areas and the desired result depends on a particular order
being followed. Note that the actions include a call to OPS.overlap which attempts to
determine whether two functional areas overlap and if so to what degree. The average cost of
calls to this routine is about 61000 instructions and there are 2780 such calls, one per iteration,
for the dc36809 data set. This limits the speedup achicved by spam to little over 50 fold
even though the average msa cycle 1s large and there is virtually no parallelization overhead.
However, spam shows larger speedups than 1ife because its parallelizable loops are much
larger than its non-parallelizable loops. For dc3 6809, the fully parallelizable loops of first and
second phase have 17,100 and 35,611 iterations respectively whereas the non-paraliclizable
loops have only 621 and 2780 iterations respectively.

Since problem requirements force certain loops to be sequential, it 1s not possible to eliminate
non-parallelizable loops. However, sequential loops in production system languages pay an
additional price for using matching even though the control-flow is fixed. In a tight loop, like
the loop in 1ife, this cost could dominate the cost of the real computation in the loop. This
cost could be eliminated by coliecting the items to be operated on in the loop and passing
the collection to a routine written in a procedural language. This would reduce the fraction
of time spent in sequential code. Chapter 7 discusses a production system language which
supports automatic generation of collections of tuples as well as aggregate operations on these
collections.

ADA289345

5.1. SPEEDUPS 81

(p FA**attempt-generalization s select two areas of the same type
(functional-area Aconvex-hull {<hi> <> mil} Atype <t>)
(functional-area Aconvex-hult {<h2> <> <hl> < nil} Mype <t>)
->
(make fa-score fa-1 <hl1> *fa-2 <h2> Aoverlap OPS_overlap(<id1> <1d2>)))

(p FA**gencrahzation-successful , there 1s over 90% overlap
(fa-score “overlap >= 90 Ma-2 <hull2>)
(functional-area Aconvex-hull <bull2>)
->
(remove 1)
(modify 2 flag inactive)) ; merge the second area into the first

(p FA**generalize-failed , less than 90% overlap
(fa-score “overlap < 90)
->
(remove 1)) ; do not merge the areas

Figure 5.4: Non-parallelizable loop from third phase of gpam
5.1.1.3 Inter-task dependencies

Inter-task dependencies in paralle] production system programs arise from the structure of
the Rete network. The Rete network attempts to restrict the number of potential matches by
specifying a fixed order for the tests in a production. Therefore, all the tokens (match tasks) that
are involved in the generation of a single instantiation must be executed in a fixed sequence.
Even though a large number of tasks might be available in a msa cycle, it can happen that only
a small number can be executed at any given time. This limits the speedup in such cycles.
This is referred to as the chaining effect. This effect becomes a serious limitation in cycles
with a small number of tasks, for example, in cycles in a non-parallelizable loop. It can also
become important if some of the productions are substantially longer than others. In such cases,
chaining in these productions can Jead to a long period of low parallelism at the end of the
cycle. The chaning effect was identified in Anoop Gupta’s thesis [38] and has been shown to
be one of the major himitations on speedups for automatic parallelization of OPS5[42] as wel!
as for parallel implementation of the match phase in Soar[113]. Chaining effect is hkely to

ADA289345

5.]. SPEEDUPS 82

occur if the variation in the lengths of productions is high, since some of the instantiations being
generated are likely to be much longer than others. However, chaining effect sequentializes
only the tokens involved in the generation of the same 1nstantiation. If a large number of
instantiations are generated per cycle, presence of chaining is not a serious limitation. Table 5.6
shows the mean and standard deviation for the number of conditions per production for al! the
benchmarks. Given the large standard deviations for 11 fe and hotel, chaining effect can be
expected to occur in these benchmarks. Table 5.7 shows the number of instantiations generated
per cycle for comparative suite. It shows that relatively few instantiations are generated per
cycle in 1ife. Therefore, chaining is likely to be a major limitation on speedups in life.
Chaining is less of a limitation in hotel since a relatively large number of instantiations are
generated per cycle.

Program circuit [life |waltz | hotel | spam
Average conditions/production 549 53 3.08 332 256
Standard deviation 198] 2.76 0.86 270 089
Ratio 036] 052 0.28 0.88 | 0.35

Table 5.6: Mean and standard deviation for number of conditions per production

Program circuit | life {waltz | hotel | spam
Instantiations/cycle 2060 | 468 | 35402 | 4130| 605

Table 5.7: Instantiations generated per cycle for the comparative suite

Another kind of token ordering restriction, referred to as the cross-product effect, arises whena
token arriving at a 3 node matches a large number of tokens in the opposite memory. This leads
to the generation of a large number of successor tokens. Checking for matches in the opposite
memory involves traversing a list of tokens. Successors generated early in the traversal are
available for execution before those generated late sn the traversal. If this occurs at a 3 node high
1n the Rete network, it can severely limit the number of tasks that are available for execution.
In such cases, most of the processors spend most of their time looking for tasks. A common
situation in which this occurs is the use of sequencing tuples to direct the control-flow. Since
the production system computational mode! provides no control-flow constructs, a commonly
used technique to guide the execution of a section of code is to add a guard condition which is
matched by a sequencing tuple. Sequencing tuples are also referred to as control elements (11]
and are used by most production system programs. OPS5 and most derivatives provide explicit
support for it by treating the first condition specially (the MEA selection policy). Figure 5.5
shows an example of the use of sequencing tuples. In this figure, the first condition in both
productions is the guard condition and ensures that the productions will be fired in sequence. To

ADA289345

5.1 SPEEDUPS 83

understand why this might severely limit the number of tasks that can be executed in parallel,
censider the Kete network for the production prod- for-stage-1 in Figure 5.6 and assume
that there are a large number of tuples of type data. When the sequencing tuple, {stage
“name stage-1)},iscreated, it matches all the data tuples and generates a successor token
corresponding to each one. Since the generation of successors is sequential, and since task
sizes are often small, only a small number of processors can be utilized for processing these
tasks.

(p prod-for-stage-1
(stage “name stage-1)
(data Avalue <d>)
(result “value <r>)
->
(modify 3 ~value (do-stage-1-operation <d> <))}

(p prod-for-stage-2
(stage “name stage-2)
(data *value <d>)
(result Avalue <r>)
->
(modify 3 *value (do-stage-2-operation <d> <r>})))

Figure 5.5: Productions with guard conditions for sequencing

Productions that implement the constraint propagation steps in waltz use a sequencing tuple
to delay the application of constraints until all alternatives have been generated. Figure 5.7
shows one of these productions. This production implements the constraint that if one end of
a line is labeled in, the other end must be labeled out., In this case, the sequencing tuple is
(stage propagate-constraints). Forthe comparative instance of walt z, creation
of this tuple leads to the generation over 15840 successor tasks. Figure 5.8 plots processor
utilization against the number of processors for the comparative instance of waltz. It shows
that processor utilization falls off rapidly and indicates that the maximum number of processors
that can be kept busy is at most 26. Since the average number of tasks per cycle for the
comparative instance of waltz, from Table 5.5, is as high as 29454, this clearly indicates the
presence of dependencies. The productions in waltz are about the same size — Table 5.6 shows
that the average number of conditions per production is 3.08 and the standard deviation is 0.86.

ADA289345

3.1. SPEEDUPS 84

(stage “name stage-1) (data ~value <d>)

(result Avalue <r>)

prod-for-stage-1

Figure 5.6: Rete network for the productions with guard conditions

Furthermore, over 3500 instantiations are generated per cycle in the comparative instance of
waltz. Therefore, chaining dependencies are not a cause of the low number of tasks that can
be executed and this limitation can be attributed, almost entirely, to the cross-product effect.

(parp consistent-in-out
(stage propagate~constraints)
(possible-line-labe! Aline <1> Ajunction <y> *label in Acandidate <c>)
(labeling-candidate Aid <c> Adeleted no)
-(possible-hne-label Aline Ajunctien <> <j> Mabel out)
->
(remove 1)
(modify 2 Adeleted yes))

Figure 5.7: Constraint application production fromwaltz.
It is possible to avoid this situation by moving the guard condition to ater in the production. But

then, it will no longer be able to take advantage of the MEA selection policy which considers
the first condition special. Furthermore, this would bring the second and third conditions to

ADA289345

51 SPEEDUPS 85

100

NN |
80 \\
70 N

NG
60

<

50 \
40 q

LN
30 I~

Processor utilization (%)

) \1\

20 -
0 10 20 30 40 50 60 70 80 90 100
Number of processors

Figure 5.8: Processor utilization for the comparative instance of waltz.

the top of the production. There are a large number of changes made to tuples matching these
conditions before the propagate-constraint stage. The incremental nature of the match algorithm
will lead to matches being computed for all these changes even <hough no instantiations are
generated. For large runs of waltz, this slows down the execution by over a factor of two.

Alternative network structures that attempt to reduce the chaining ¢ fect without giving up the
benefits of the fixed ordering have been proposed in [113). These structures are referred to
as constrained bilinear networks. The basic idea is to chop up the sequence of conditions
into disjoint subsequences and to connect them up as parallel branches. Since the initial
conditions are often used by programmers to restrict the number of potential matches, the
initial subsequence is retained as it is. Figure 5.9 shows an example.

The loss of parallelism caused by the sequential generation of successors can be alleviated if
memory nodes are partitioned and a token arriving at a 3 node 15 matched in parallel with all
partitions in the opposite memory. A source level approach which attampts to do this has been
proposed in [93]. This approach, referred to as copy-and-constrain, is the production system
analogue of inlining. It creates copies of the productions in which cross-products occur, each
copy of a production matching a fraction of the tuples matched by the original production. To
achieve a good partition, copy-and-constrain needs information about the sets of values that
can be bound to the variables occurring in all the productions — at least the productions in
which cross-products occur. Since it is not possible for the compiler to determine tiis, the

ADA289345

5.2. GROWTH OF SPEEDUPS WITH DATA SET SiZE 86

condition 1 condition 2
condition 1 condition 2

condition 3

condition 4
condition §

condition 3

condition §
condition 6

condition 6

Figure 5.9: Conversion of a linear Rete network to a constrained bilinear network

copy-and-constrain optimization is usually applied manually. Another disadvantage is that
repeated applications can lead to a combinatorial explosion in code size. Chapter 6 describes
an alternative approach. This approach clusters the tokens in memory nodes based on the
values that will be tested at the corresponding 8 node. A token arriving at the 8 node from the
opposite directions traverses only the list of clusters and not the list of all tokens. This reduces
the time required to process the incoming token as well as the time required to generate the
successors. This approach is especially effective for cross-products occurring due to the use of
sequencing tuples since in such cases, there are no tests and the entire opposite memory reduces
to a single cluster. For example, there are no tests between the first and second conditions in
the productions in Figure 5.5 or in the production from waltz in Figure 5.7.

5.2 Growth of speedups with data set size

Since the parameter space for the experiments has two dimensions, data set size and number of
processors, there is a family of speedup vs number of processors curves for every benchmark,

A A oooad

5.2. GROWTH OF SPEEDUPS WITH DATA SET SIZE 87

one curve per data set size. To understand how the speedup for a given number of processors
varies with the data set size, the graphs presented in this section plot all the curves for a
benchmark for configurations between one and a hundred processors. Furthermore, to facilitate
comperison between the parallel and parallel-match versions, that is to illustrate the
extra speedup achieved with the parallel constructs, similar curves for the latter are also plotted
on the same graph.

To evaluate the scalability of the speedups with data set size, graphs plotting maximum achiev-
able speedup vs data set size are also presented. Many speedups curves presented in this
chapter do not level off up to 100 processors. Since most of the curves looked like plots of
negative exponential functions, the maximum achievable speedup for each curve was estimated
by fitting it, in a least mean square error sense, to the following negative exponential function:

speedup = saturation.speedup ~ Ke™>? (5.1)

where p 1s the number of processors and K and A are constants whose value depends on the
characteristics of the benchmark and the data set.

5.2.1 Growth of speedups for circuit

Figure 5.10 shows the families of speedup curves forcircuit. Thecurvesfortheparallel
version are well spaced and curves for larger data sets lie above those for smaller data sets. This
indicates that the speedups increase with the data set size. Furthermore, these curves do not level
off for 100 processors indicating that larger speedups are possible with bigger configurations.
However, the spacing between curves corresponding to successively larger data sets decreases
as the size of the data set increases. This suggests that the growth in speedup with data set
size is likely to level off for data sets significantly larger than those used in these experiments.
The graph in Figure 5.11 which plots the estimated maximum speedups obtained by fitting
the curves for the parallel version to Equation 5.1 supports this conclusion. It shows that
estimated maximum speedup increases rapidly with data set size for data sets smaller than 125
bits. For larger data sets, the growth in estimated maximum speedup slows down.

The curves for the parallel~match version level off early (under 5 fold speedup) and most
of them lie almost on top of each other. In this case, curves for larger data sets lie below those
for smaller data sets. Thai is, as the data set size increases, the speedup decreases; the single
dotted curve that appears significantly above the rest corresponds to the smallest data set size.

The biggest limitation on speedup in circuit is the high parallelization overhead. Figure5.12
shows how the parallelization overhead varies with data set size The primary cause of the
parallelization overhead is the small average task size. The average task size in circuit is
uniformly close to 95 instructions. Increasing the data set size by an order of magnitude (from

3.2. GROWTH OF SPEEDUPS WITH DATA SET SIZE

40

Speedup

35
+— pardliel language
30 aeneeend « parallel match

25

20

l/;r—""k'/

15

10]

5

0 ke

0O 10 20 30 40 5 60 70 80 90

100

Number of processors

Figure 5.10: Speedup curves for circuit

80 ™

70
/x

60
0 el

Saturziion Speedup

;
|
ol

30 :
o fod]
ol

/

00 50 100 150 200 250

300

Data set size

Figure 5.11: Saturation speedups for circuit

88

b

5.2. GROWTH OF SPEEDUPS WITH DATA SET SIZE 29

25 bits to 275 bits) does not cause much variation. Figure 5.13 plots the family of nominal
speedup curves for circuit. It shows that up to 76 fold nominal speedup can be achieved
with 100 processors. To estimate the maximum possible nominal speedup, these curves were
fitted to Equation 5.1. Figure 5.14 plots the estimated maximum nominal speedup plotted
against data set size.

3.00
290
2.80
270
2.60 ——
2.50
240
2.30
2.20
2.10
2.00

Parallelization overhead

0 50 100 150 200 250 3
Data set size

Figure 5.12: Parallelization overheads for cixcuit

Allthe loopsin circuit are parallefizable. Asshown in Table 5.6, there s significant variation
in the lengths of the production indicating the possibility of chaimng dependencies. However,
the effect of chaining, if any, is masked by the large number of instantiations generated. The
average number of instantiations generated per cycle grows linearly with the data set size and
can be expressed as 0.49 * number.of_bits + 1.54.

5.2.2 Growth of speedups for 1ife

Figure 5.15 shows the families of speedup curves for 1ife. The speedup curves for the
parallel version level off and are clustered close together. This indicates that parallelism
does not scale with data set size in this benchmark. An interesting point that is not apparent
from the figure is that there appears to be an inflection point in the growth of speedup with the
data set size. Speedups increase with data set size up to a point, after which they decrease as
the data set size increases. This inflection pont occurs at the data set with 60 repetitions of the

3.2. GROWTH OF SPEEDUPS WITH DATA SET SIZE

100 y ,
80
80
70
60
§0
40
30
20
10

Speedup

0O 10 20 30 40 50 60 70 80 G0 100
Number of processors

Figure 5.13: Nominal speedups for circuit

200 ,

180 : ' /%"‘

160 o

140 Poastl

120 E d
D

80 /'/ '

60 / |

40

20
0

Saturation Speedup

8

| |
0 50 100 150 200

250 300
Data set size

Figure 5.14: Estimated maximum nominal speedups for circuit

D

5.2 GROWTH OF SPEEDUPS WITH DATA SET SIZE

basic pattern.! In the figure, curves for all data sets lie below the curve corresponding to the 60
repetitions data set. These conclusions are supported by Figure 5.16 which shows the variation
of the estimated maximum speedup computed by fitting the curves to Equation 5.1. It peaks
around the data with 20 repetitions and dips thereafter. It indicates that the maximum possible
speedup in 1i fe 15 a little more than 30 fold and that the maximum possible speedup for larger
data sets 1s smaller. The discrepancy between the inflection points indicated by the two figures
can be explained by examining the slopes of the curves at the righ: edge of Figure 5.11. Even
though the curves for data sets between 20 and 60 repetitions lie progressively higher, their
slope at the right edge of the graph is negative. This causes the fitting procedure (based on least
mean squared error) to yield lower estimates for the maximum speedup.

The presence of the inflection point suggests that there are two competing factors, one which
seeks to increase the speedup with data set size and the other which seeks to decrease it as the
data set size grows. The first factor domirates for the left hand side of the graph and causes
the rapid increase 1n the speedup, but the latter takes over as the data set size grows beyond the
inflection point. Increase in the speedup as the data set size grows is caused by an increase in
the number of patterns, each of which can be processed in paraliel. Decrease in the speedup as
the data set size grows is caused by the non-parallelizable print loop which prints the matrix.
Since only two cells out of thirty in each pattern change status, the number of iterations of this
loop grows much faster than the growth in the number of cells being modified each simulation
cycle. Whiie in this loop, the speedup is low; the parallel versica can do no better than the
paral.el-match version. This implies that the inflection point in the growth of speedups
with data set size may not exist for 1i f£e data sets with different characteristics. If the fraction
of inutating cells is significantly larger and the number of generations computed are significantly
greater, the fraction of time spent in the sequential print loop will not be as important as it is in
this benchmark. In such cases, the speedup can be expected to scale with the data set size.

Speedups in Life are also limited by parallelization overheads and the chaining effect. The
parallelization overhead for 1ife is close to a factor of two. The presence of chaining is
indicated by the iarze variation in the production length (Table 5.6) and the small number of
Instantiations generated per cycie {Table 5.7).

5.2.3 Growth of speedups forwaltz

Figure 5.17 shows the families of speedup curvesforwaltz. Allthecurves fortheparallel~match
version lie almost on top of each other and level off around 1.75 fold speedup. The curves for
the parallel version too level off; however, they level off at significantly higher speedups
(between 6.9 and 17.5 fold). Speedups for waltz are the lowest in the benchmark suite. An
interesting point to note is that the curves for the parallel version are spread out. This

"The bastc pattern for the = ife dataset 1s shown 1n Figure 4 2,

ADA289345

“
N
8
3
=
(o]
o
&
S
3
=
X
s
8
(%]
g
14
&
N2
[

Speedup

Saturation speedup

40

35

—= parallel lanjguage
o----le_parallel matching

30
25

20
15

YT (i) L

10 20 30 40 50 60 70 80 90 100
Number of processors

Figure 5.15: Speedup curves for 1ife

35

30

25

20

15

[o=

10

I
{
i

! |

10 20 30 40 50 60 70 80 90
Data get size

Figure 5.16: Saturation speedups for 1ife

ADA289345

ND
(7]

5.2. GROWTH OF SPEEDUPS WITH DATA SET SIZE

ndicates that even though the growth in speedup with data set size is slow, 1t 1s not saturating
This is borne out by the graph in Figure 5.18 which plots the estimated maximum speedups
obtained by fitting the curves for the parallel version to Equation 5.1 This graph indicates
a slow but steady growth in the estimated maximum speedup. Another interesting point to note
is that for the smaller data sets, the speedup curves dip beyond 60-70 processors. This effect
disappears for larger data sets These results indicate that the speedups for waltz are limited
by dependencies between tasks.

40

35
s——t¢ DA liel guage
30 P * pa Ileﬂmq

25

Speedup

20

156

10 m:._s,

5 e ;

i

p— -} 4

0 AR S
0 10 20 30 40 50 60

|- —

70 80 90 100
Number of processors
Figure 5.17: Speedup curves for waltz

The primary limitation on speedups in waltz is the cross-product effect that occurs due to
the use of guard conditions to delay the application of constraints till all alternatives have been
generated. This condition appears in all productions that apply constraints. Figure 5.7 shows
one such production. The number of successors generated depends on the number of tuples
that satisfy the second conditions in the constraint application productions. For the production
in Figure 5.7, the number of tuples matching the second condition is 132 times the number of
repetitions of the basic pattern. Only a few processors can be kept busy while these tasks are
being executed; therefore speedups achieved in this period are low. Since the number of such
tasks grows with the data set size, a consistently large fraction of the total execution time is
spent in periods of low speedup. This limits the overall speedup as an Amdahl's law effect.

Another limitation on speedups in waltz is the parallelization overhead which is between 1.4
and 1.8 fold. The parallelization overhead reduces with the growth in data set size. This can

ADA289345

D
E

35.2. GROWTH OF SPEEDUPS WITH DATA SET SIZE

o

2 20

o 18]
)

c 16

] /

R =]

8 12 e

N
\

o N A O o

0 20 40 60 80 100 120
Data set size

Figure 5.18: Saturation speedups forwaltz

be attributed to the growth in average task size from 172 instractions to 440 instructions.

Execution of waltz consists of a sequence of constraint propagation steps. As mentioned in
Section 4.1.3, due to interference between the constraints, constraints of different types have
to be applied in sequence. However, all instances of the same constraint car: be applied in
parallel. In effect, the computation consists of & doubly-nested loop of which the outer loop,
which iterates over the set of constraints is not parallelizable but the inner loop which applies
the constraints is. Since, there are few constraints, each with a large number of applications,
the sequential nature of the outer loop does not limit the speedups.

524 Growth of speedups for hotel

Figure 5.19 shows the families of speedup curves for hotel. This benchmark is unique in that
the parallel-match version achieves large speedups. Unlike all the other benchmarks,
the two families of curves overlap all the way to 100 processors. For all other benchmarks, the
speedup curves for the parallel -match version lie much below those for the parallel
version. However, speedup curves for the two versions for the same data set are still widely
separated The parallel version achieves between 1.3 and 3.6 times more speedup than the
parallel-match version for the same data set. Both families of curves are widely spread
out indicating that the speedup grows rapidly with the growth in data set size. This is borne out

ADA289345

\O
Lh

5.2. GROWTH OF SPEEDUPS WITH DATA SET SIZE

by the graph 1n Figure 5.20 which plots the estimated maximum speedups obtained by fiting
the curves for the parallel version to Equation 5.1. This graph is close to linear and has a
steep slope which indicates a steady and rapid growth in the estimated maximum speedup.

70 ,

Speedup

60 | —
— pargllel lariguage |
50 oo paradlle] maich i .

i
3

40

30

20

10

0 10 20 30 4 50 60 70 80 90 100
Number of processors

Figure 5.19: Speedup curves for hotel

The rapid growth of speedup with data set size is achieved in spite of several limitations.
Figure 521 shows how the average number of instantiations fired per cycle varies with the
data set size. It shows that the growth quickly levels off around 27 instantiations per cycle and
gradually decreases thereafter. This is due to the presence of several non-parallelizable loops
- for example, collecting and doing the laundry, setting the tables for the banquet, cleaning
restrooms.

Another limitation on speedup in hotel is the presence of chaining. There is a large variance
in the size of productions in hote. ~ the average number of conditions per production is 3.08
with a standard deviation of 2.7 (Table 5.6).

The three major factors that allow hot el to achieve large speedups in spite of these limitations
are the large number of instantiations generated per cycle, the rapid growth in the average task
size and the near-linear growth in the number of tasks per cycle.

Even though the number of instantiations fired per cycle are small, large number of instantiations
are generated per cycle. The number of instantiations generated per cycle grows from 260 to
500 for the data sets used in the experiments. Most of these instantiations are delsted from

ADA289345

5.2. GROWTH OF SPEEDUPS WITH DATA SET SIZE 96

180
160
A
120 ‘ : /
; v
100 — : Ve
80 : | /
60 A
A
40 ‘

2 ~
0

Saturation speedup

o
-
n
W
E-S
(3,
m
~}--—t

8 9 10
Data set size

Figure 5.20: Saturation speedups for hotel

30 —

. /«\4, _

16

R

Number of firings/cycle

10

0 1 2 3 4 5 6 8 9 10
Data set size

Figure 5.21: Number of instantiations fired per cycle for hotel

ADA289345

-3
-3

5.2 GROWTH OF SPEEDUPS WITH DATA SET SIZE

the conflict set without being fired. This occurs because of loops that sum a sequence of
values There are several such loops in hotel, for example the loop to collect the dirty
linen, the loop to do the laundry and the loop to serve banquets. An example of such a loop
ts shown in Figure 5.22. This production sums a collection of numbers. In every cycle, an
instantiation is created for every data item that has not yet been added, one of these instantiation
is selected and fired. This modifies the tuple containing the accumulated value which leads to
the deletion of the other instantiations. In the next msa cycle, this process repeats with the new
accumulated-value tuple and the remaining data items. As a result, O(#%) instantiations
are created, of which only n instantiations are fired. The large number of instantiations generated
every cycle masks the effect of chaining - since chaining sequentializes the match tasks only
within a single instantiation.

(p accumulate-sum
(data-item *value <v>)
(accumulated-sum Acurrent-value <accum>)
>
(modify 2 “current-value (<accum> + <v>))
(remove 1))

Figure 5.22: Example of an accumulation loop

Figure 5.23 shows how the number of tasks per cycle varies with data set size. The near-linear
growth in the number of instantiations generated per cycle is the primary cause of the similar
growth in the number of tasks per cycle.

Figure 5.24 shows the growth of average task size with data set size. Fitting a quadratic
equation, in a least mean square error sense, yielded 0.77x> ~ 2.29x + 3.98. This equaticn has
been plotted as the dashed line in Figure 5.24. This growth in average task size is almost entirely
due to the growth in size of match tasks. For the data sets used in the experiments, average size
of action tasks remains close to 1200 instructions; average size of select tasks grows from 657
instructions to 1414 instructions; but average size of match tasks grows from 245 instructions to
32221 instructions. Since PPL uses global hashtables with overflow chaining to implement the
memory nodes of the Rete network, and since each match task primarily consists of a traversal
of a hashtable bucket, the quadratic growth in the task size implies a quadratic growth in the size
of hashtable buckets which in turn imphes a failure of the hash function to spread the tokens
evenly. The hash function used in PPL (and in all other hashtable based implementations)
xors the identifier of the 8 node to which the memory node is attached and the value(s) that
will tested at this node. This results in tokens destined for the same node and with the same

"ADA289345

5.2. GROWTH OF SPEEDUPS WITH DATA SET SIZE 98

1600
1500

1400

1300 /‘/
/ /

1200 /

1100 /

1000 /

900

800 /

700

Average tasks/cycle

2 3 4 5 [7
Data set size

Figure 5.23: Growth of average tasks/cycle in hotel.

values being tested to be hashed to the same bucket. The most common situation in which hash
function fails arises when a large number of tokens with the same tested value are destined for
same 3 node. This is referred to as the cross-product effect and it limits parallelism in several
ways, one of which is described in the previous subsection. This does not occur in hotel since
all 3 nodes that test more than one token in the course of the execution have highly restrictive
tests. For example, all conditions of productions that operate on rooms test the room number.
The other situation in which the hash function fails arises when the node identifiers (which are
integers) and value(s) being tested form sequences in the same numerical range., For example,
assume the node identifiers as well as the values being tested are in the range 0 to n. In thatcase,
O(n) tokens are hashed to the each bucket since there are n combinations of numbers that xor
to each value.? In hotel, the value most frequently tested is the room number which forms
an integer sequence. The node identifiers too are sequentially allocated. This results in a linear
growth in the number of tokens being hashed to the each bucket. Since the processing of each
token consists of a linear traversal of a hash bucket, the average task size grows juadratically
with data set s1ze.

These effects also explain the surprising speedups achieved by the parallel -match version.
Since a large numiber of instantiations are generated and deleted every cycle, there are a large

2There are two nput bit combinations for any value of a result bit. Since there are Jogn result bits, n
number-pairs xor to each number

ADA289345

")
>
]
X
%)
N
L]

5.2. GROWTH OF SPEEDUPS WITH DA

.
3
12
£
.
&
&
©

Af

AY

25000 7 -
|
1 /
20000
»- — - | Quadratic pquation ' /
—— | Task size y
15000 /
10000 /
e

5000

1 2 3 4 5

Average task size (instructions)

6 7
Data set size

Figure 5.24: Growth of average task size in hotel.

number of tasks available even though only one instantiation is fired. Furthermore, as the size
of the tasks grows (due to the failure of the hash function), the parallelization overhead becomes
insignificant. This resultis at variance from the conclusions of previous research which indicates
large speedups are not possible for automatically parallelized production system programs.

5.2.5 Growth of speedups for spam

Figure 5.25 shows the speedup curves for the paxallel version of spam. As mentioned
carlier, spam spends less than 2% of its time in the match phase and the speedup achieved
by the parallel-match version is expected to be less than 1.02 fold. Virtually all the
speedups in this benchmark can be attributed to explicit specification of parallelism. The data
set for spam 15 not parametric, that is, it can not be scaled by adjusting the value of a parameter.
Table 5.8 contains the sizes of the three data sets used in the experiments. It indicates that
dc36809 is larger than moffettl and accordingly, its speedup curve, in Figure 5.25 lies
above that of moffettl. However, s£4917 is significantly larger than the other two and yet
its speedup curve is significantly lower than both the other curves. The estimated maximum
speedups computed by fitting the curves to Equation 5.1 are shown in Table 5.9 and support
similar conclusions about the speedups 1n the three cases.

These results indicate that there are two competing factors, one which increases the parallelism

ADA289345

3.2. GROWTH OF SPEEDUPS WITH DATA SET SIZE

Speedup

D
(=]

[$1]
o

30

20

10

+~ —~ mofiett1]
~—t¢ dc3p809 : =
ento 5417 . P
= -
il R J—
Pd e
/ 4
/ <
I
0 10 20 30 40 50 60 70 80 90 100
Number of processors
Figure 5.25: Speedup curves for spam
Data set moffettl | dc36809 | s£4917
Number of tuples 340 367 439
Number of tuple changes 57988 8578) | 219066
Number of tasks 343268 498281 | 1153869
Uniproc time (billion 1nstrs) 1541 23.86 41.54

Table 5.8: Size of the spam data sets

Data set moffettl

dc37809

s£4917

Saturation speedup 66.93

71.25

39.19

Table 5.9: Saturation speedups for spam

ADA28934C

5.3. CONCLUSIONS AND OBSERVATIONS 104

Data set moffettl | c36809 sf4917
First phase 12240 17100, 30060
Second phase 24387 35611, 97835
Third phase (merge areas) 1020 2780 9424
Third phase (link condense) 451 621 611

Table 5.10: Number of iterations of spam loops

available (by increasing the time spent in highly parallel code) and the other which limits
the parallelism available (by increasing time spent in sequential code or code with limited
parallelism). Recall from Section 4.1.5 that spam has three phases. The first two phases
consist entirely of parallelizable loops whereas the third phase consists of two parallelizable
loops, which select seed regions and generate links between seeds and surrounding regions,
and two non-parallelizable loops, which merge multiple paralle} links between regions and
merge overlapping functional area candidates. The number of iterations and the time spent in
individual iterations depends on the characteristics of the images being analyzed. Table 5.10
shows the number of iterations of the different loops for all three data sets.

5.3 Conclusions and observations

5.3.1 Validation of hypotheses

The simulation results presented in this chapter indicate that there is no program-independent
bound on the speedups that can be achieved by paralle! production system programs. The
benchmarks used in this investigation achieve up to 76 fold speedup with 100 processors and
up to 115 fold speedup with 200 processors. As shown in the previous section, the actual
speedup achieved by each benchmark depends on its own characteristics.

The detailed results in Section 5.2 show that these numbers are not an upper bound on the
speedup that can be achieved by parallel production system programs. The analysis in Sec-
tion 5.1.1 identifies small task size, non-parallelizable loops and dependencies between match
tasks as the primary limitations on speedups in parallel production system programs.

With the exception of 1ife, the speedup achieved with a given configuration grew with the
duta set size, the rate of growth depending on program characteristics. For 11 fe too, speedup
can be expected to grow with data set size for data sets with larger fractions of mutating cells
and larger number of generations computed.

In all cases, the speedups achieved by the parallel versions of the benchmarks were
much larger than the speedups achieved by the parallel-match versions This was

ADA28g34C

3.3. CONCLUSIONS AND OBSERVATIONS 102

particularly so for spam which spends over 98% of its time in calls to C functions and
can expect less than 102 fold speedup from a parallel implementation of the match phase.
Quantitatively, the parallel versions achieved between 1.3 and 12.5 times more speedups
than parallel-match versions.’

5.3.2 Aggregate updates faster with parallel constructs

Only one instantiation can be fired at a time in sequential production system languages. Since
firing an instantiation can modify only the tuples contained in the instantiation, it is not possible
to atomically update large unbounded data structures, like the grid of cells for 11 fe or the set
of lines for circuit, inasingle cycle. Therefore, such updates have to be performed as loops
spread over multiple cycles. To keep track of the updating process and to ensure atomicity
of the updates, explicit flag fields have to be added to the tuples being updated. Figure 5.26
shows a production from the sequential version of circuit which simulates the action of
an and-gate when both its input lines are on. This production achieves atomic updates by not
modifying 1ine tuples generated in the previous hardware cycle. Instead, it copies the tuples
that need to be modified and updates these copies. At the end of each aggregate update, the old
copies are deleted and the new copies are installed in their place (by resetting the value of the
modified field to no).

This scheme modifies tuples twice for every update — one to update the value field and set
the flag and the second time to reset the flag. Parallel constructs make it possible to fire an
unbounded number of instantiations, and update an unbounded number of tuples in a single
cycle. Therefore, it is possible to atomically update unbounded aggregate data structures in a
single cycle. This eliminates the need for flag fields and tuple modifications caused by resetting
of these fields. This version modifies each tuple in the sggregate only once. Figure 5.27 shows
the parallel version of simulate-and-gate-turn-on.

This reduction in computation is made possible by taking advantage of the atomicity of the
action phase - all instantiations are generated from the same tuple-space and are fired (at Jeast
logically) in parallel. Since most programs that process large amounts of data can be expected to
update aggregates whose size is not known at compile time, this suggests that paralle} constructs
are desirable even for production system languages designed exclusively for implementation
on stock uniprocessor machines.

5.3.3 Recency unsuitable for parallel languages

The algorithms used in the select phase of many production system languages(11, 30, 26) use
the age of tuples, as indicated by their timetags, to order the instantiations. Instantiations

INot considering spam whose parallel version shows over 50 imes more speedup

ADASOQ- A

5.3. CONCLUSIONS AND OBSERVATIONS

—
w

(p s1mulate-and-gate-tum-on
(and-gate Ainput! <in1> Amput2 <in2> Aoutput <out>)
(line MdA<in]> Avalue 1 Amodified no)
(line Mid <in2> Avalue 1 Amodified no)
(line Aid <out> Avalue 0 “modified no)
-
(copy 4 Avalue 1 Amodified yes})

(p delete-old-line-copies
(stage merge-lines)
(line Aid <line> Amodified no)
(line *id <line> *modified yes)
>
(remove 1)
(modify 2 Amodified no))

Figure 5.26: Atomic update of an unbounded aggregate (sequential),

(parp simulate-and-gate-tum-on
(and-gate Mnput] <inl> Ainput2 <in2> “output <out>)
(line %id <inl> Avalue 1)
(line Md <in2> Avalue 1)
(tine Aid <out> Avalue 0)
->
(modify 4 *value 1))

Figure 5.27: Atomic update of an unbounded aggregate (paraliel).

3.3. CONCLUSIONS AND OBSERVATIONS 104

containing recently created tuples are placed above instantiations containing older tuples. This
results in tuples being processed in a last-in-first-out fashion. As long as only one instantiation
is fired per msa cycle and the actions in the firing are executed sequentially, the process of
timetag generation is determtnistic. In such cases, recency is a stable ordering criterion since the
assignment of timetags is deterministic. Parallel production system languages permit multiple
instantiations to be fired in parallel. The assignment of timetags to the tuples created by parallel
firings is non-deterministic and depends on the number of processors available and their relative
speeds.

The use of recency as an ordering criterion 1 the selection algorithm for a paralle} production
system language introduces three problems. First, 1t makes it impossible to compute the
control-flow graph (or even a usable approximation) at compile time since the order in which
instantiations are fired can depend on run-time data values as well as the relative speeds of the
processors. Second, it is likely to lead to contention for the timetag counter causing potential
serialization of tuple-space updates and thereby of the match process. Third, it makes program
execution sensitive to relative processor speeds which introduces subtle race conditions. For
example, consider the productions in Figure 5.28. In a sequential language, it is possible to
ensure that all request tuples are created after operation tuples. This ensures that in case
of aconflict between the two productions, the second production will be selected for execution.
That is, requests for authorization operations are given priority over requests for operations
that need authorization. To achieve the same effect in a paralle] language, it is necessary to use
additional conditions. Depending on recency alone can result in the first production firing and
performing an operation that needs authorization even though there exists a request to delete
the authorization.

The rationale for the recency criterion is historical. For a long time, production system
programs were used exclusively in programs modelling human cognition and reasoning. In
such programs, the recency criterion is necessary to ensure responsiveness to changes in the
environment]73). Itis possible to achieve responsiveness in the absence of recency. Figure 5.29
shows how an additional condition can be used to do this for the productions in Figure 5.28.
In general, responsiveness can be ensured by adding an explicit timetag field and testing for it
in the productions. This scheme has the advantage of allowing the programmer to create and
use timetags as and when she needs responsiveness and does not force her to pay the cost of
recency for programs or sections of programs that do not require responsiveness.
Contemporary programs that attempt to model human cognition do not use recency. For
example, Soar{66] performs no selection and fires all matched, unrefracted instantiations in
every msa cycle. It uses a separate decision procedure to resolve conflicts that might arise due
to such unconstrained firings.

Elimination of recency also speeds up the select phase since it will ehminate the need to sort
and compare timetags. In the presence of recency, determining the order between a pair of
instantiations is an expensive operation since it may be (and often is) necessary to compare the

5.3 CONCLUSIONS AND OBSERVATIONS 105

(p perform-authonzed-operation
(request “operation <op> Auser <uid>)
(authonzation Auser <vid>)
->
(remove 1)
(perform-op <op> <uid>))

(p delete-authorization
{request Aoperation delete-authorization Auser <uid>)
(authorization Auser <uid>)
-
(remove 1 2))

Figure 5.28: Productions illustrating race conditions due to recency.

(p perform-authonzed-operation
(request Aoperation <op> Auser <uid>)
(authonzation *user <uid>)
~(request “operanon delete-authorization)
-
(remove 1)
(perform-op <op> <wid>))

(p delete-authorization
(request “operation delete-authonzation Auser <uid>)
(authorization Auser <uid>)
->
(remove | 2))

Figure 5.29: Productions jllustrating use of additional conditions to ensure responsiveness,

ADA289345

5 3. CONCLUSIONS AND OBSERVATIONS 106

timetags for all the tuples in the instantiations. This would significantly speed up programs like
waltz that make no use of recency but spend up to 50% of their time in ordering instantiations.

5.3.4 Multiple copies of parallel productions are desirable

Parallel productions are used for implementing loops. For Joops with a large number of itera-
tions, that is loops that process large data sets, a large number of instantiations are generated.
This stresses the state-maintenance algorithms. For example, consider the production in Fig-
ure 5.30. This production simulates the operation of an and-gate. In a circuit with a large
number of and-gates, the memory nodes and pnode corresponding to this production will
be stressed by the generation of a large number of tokens and instantiations. In such cases,
1t is advantageous to make multiple copies of the parallel production in question, each copy
executing a fraction of the iterations. Figure 5.31 shows how this can be done for the production
simulate-and-gate. This is the production system analogue of loop unrolling and is an
instance of the general inlining technique called copy-and-constrain. This technique is not
specific to parallel productions and can be used for any production for which a large number
of instantiations are expected. It has been successfully used in both sequential and paraliel
versions of all the benchmarks.

(parp simulate-and-gate-on
(and-gate Mnput] <inl> Anput2 <in2> Aoutput <out>)
(line Aid <inl> Avalue <vi>)
(Line Aid <in2> Avalue <v2>)
(line Aid <out>)
>
(modify 4 ~valuc (boolean-and <v1> <v2>))

Figure 5.30: Production to simulate an and-gate.

As with other inlining schemes, this scheme should be used selectively. Aggressive copying
can blow up the source code to several times its original size. Anecdotal evidence is provided
by the original version of hotel in which aggressive copying had increased the code size by
over ten fold.

In an effort to provide a polynomial complexity bound for the match phase, Tambe(112] has
suggested 1mposing restrictions on the contents of the tuple-space such that each production can
have at most one instantiation at a time. This is an extreme form of the copying transformation
discussed above.

ADA289345

5.3 CONCLUSIONS AND OBSERVATIONS

o
(=]
~3

(parp simulate-and-gate-on
(and-gate “inputl <inl> Anput2 <in2> Aoutput <out>)
(line Aid <inl> Avalue 1)
(line id <an2> Avalue 1)
(line Aid <out> Avalue 0)
->
(modify 4 Avalue 1))

(parp simulate-and-gate-off-1
(and-gate “inputl <n1> Anput2 <in2> Acutput <out>)
(line Aid <inl> Avalue 0)
(line Ad <n2> Avalue 0)
(line ~1d <out> *value 1)
->
(modify 4 Avalue 0))

(parp simulate-and-gate-off-2
(and-gate Ainput] <inl1> Ainput2 <in2> Aoutput <out>)
(line %id <inl> “Avalue 0)
(line Md <in2> Avalue 1)
(line Aid <out> Avalue 0)
>
(modify 4 Avalue 0))

(parp simulate-and-gate-off-3
(and-gate Ainput! <inl> Ainput2 <in2> Aoutput <out>)
(line Aid <inl> Mvalue 1)
(bae 4id <in2> Avalue 0)
(line Aid <out> Avalue 0)
->
(modify 4 *value 0})

Figure 5.31: Productions to simulate an and-gate.

ADA289345

3.3. CONCLUSIONS AND OBSERVATIONS 108
5.3.5 Guidelines for programming parallel production system languages

The modifications to the benchmark programs were logged to help discover guidelines for
parallelizing existing production system programs and idioms for programming parallel pro-
duction system languages with the hope that these w.nld be of utility to future programmers
of such languages. Most of the transformations suggested 1n these guidelines also improve
performance on uniprocessors.

Eliminate dependence on recency: As mentioned 1n a previous subsection, recency makes
program execution dependent on the number and relative speeds of processors. Dependence
on recency for scheduling can be eliminated by using additional conditions (as shown in
Figure 5.29) or explicit timetag fields.

Eliminate the use of fiags for parallelizable loops: As mentioned in a previous subsection,
loops in sequential production system languages need flag fields to keep track of the iterations.
For loops that can be parallelized, the flag fields are redundant as all the iterations of the loop
are performed in a single msa cycle. Figure 5.32 shows how flag fields can be eliminated for
such loops. Elimination of flag fields usually improves uniprocessor performance as well since
it reduces the number of modifications to the tuple-space.

(p process-requests (parp process-requests
(request Aoperation <op> *processed no) (request Aoperation <op>)
———
> D>
(perform-op <op>) (perform-op <op>))
(modify 1 “processed yes))

Figure 5.32: Elimination of flag fields in parallelizable loops

Eliminate dependence on sequentfal semantics: Sequential production system programs
often depend on the total order imposed by the selection algorithm to choose one item from a
set. Figure 5.33 shows an example. Assume that at any given time, there can be at most two
requests for every operation. For every such pair, two instantiations will be generated — one
for each permutation of the pair. The selection algorithm chooses one of these instantiations.
Firing this instantiation modifies the tuples corresponding to the pair of requests which leads to
the deletron of the other instantiation. These instantiations can not be fired in parallel as they
would lead to multiple modifications of the request tuples as well as multiple invocation of the
operations. Such programs can be parallelized by adding additional constraints which allow
only one of the set of interfering instantiations to be generated. A common way is to assign
numerical identifiers to the tuples being processed and use the ordering between the identifiers
to restrict the generation of instantiations. Figure 5.34 shows how this can be done for the

ADA289345

5.3. CONCLUSIONS AND OBSERVATIONS 109

example. Instantiations of the parallel production in this figure can process ail request-parrs in
parallel.

(p process-request-pair
(request Aid <req1> “operation <op> Aresult nil)
(request Aid <> <reql> Aoperation <op> “result nil)
>
(modify 1 Aresult (perform-op <op>))
(modify 2 Aresult (perform-op <op>)))

Figure 5.33: Use of total order to choose one item from a set,

(parp process-request-pairs
(request Aid <req1> Aoperation <op> Aresult nil)
(request Aid < <reql> “operation <op> result nil)
->
(modify 1 Aresult (perform-op <op>))
(modify 2 Aresult (perform-op <op>)))

Figure 5.34: Use of numerical identifiers to eliminate interfering instantiations.

Partition tuples with independent substructures: The intuitive way of implementing a
record-like structure in the flat tuple-space is to use a single tuple for every record. However,
in many cases, different fields of this tuple are (or can be) modified by separate productions.
In such cases, using a single tuple for the entire record forces all its updates to be serialized.
Figure 5.35 shows an example. Inthisexample, boththe new position and the new magnification
of avisual-object areindependent. However, itis not possible tocompute them in paralle]
as the corresponding instantiation firings would attempt to modify the same tuple in parallel,
This limitation can be eliminated by partitioning the record into substructures that can be
independently modified and using one tuple for each such substructure. A link field is added to
all these tuples; tuples for a single record have the same value for this field. Figure 5.36 shows
how this can be done for the example program. In this figure, the visual-object field is
used to link the tuples belonging to the same record.

Partitioning tuples is the production system analogue of fine-grain locking schemes used to
enhance concurrency in conventional paralle] languages.

ADA289345

35.3. CONCLUSIONS AND OBSERVATIONS 110

(p compute-new-position
(visual-object #x <x> Ay <y>)
(translation Ax <x-delta> Ay <y-delta>)
->
(remove 2)
(modify 1 Ax (<x> + <x-delta>) Ay (<y> + <y-delta>)))

(p compute-new-magnification
{visual-object “magnification <mag>)
(zoom “magnitude <zoom-factor>)
->
(remove 2)
(modify 1 *magnification (<mag> * <zoom-factor>)))

Figure 5.35: Sequential example using a single tuple for the entire data structure

Partitioning tuples has traditionally been considered undesirable since the structure of the record
is now implicit in the values of the link fields and has to be recovered every time any of the data
fields have to be accessed or updated. However, partitioning can also improve the performance
of sequential production system programs since modification of partitioned tuples needs to
check fewer productions. For example, each tuple modification shown in Figure 5.36 needs
to be tested against only one production whereas each tuple modification in Figure 5.35 has
to be tested against both productions. Partitioning achieved over three fold speedup for the
sequential version of hotel.

Independent concerns about representational flexibility and learning have lead to an extreme
version of partitioning in Soar[66]. Soar tuples encode attribute-value pairs and have exactly
three ficlds, two fields to contain the attribute name and the value and one ficld for the fink
value. A record with » fields is implemented in Soar by n tuples, each tuples corresponding to
one field.

Move sequential loops to procedural languages: As mentioned in previous sections, sequen-
tial loops are inefficient in production system languages, in particular sequential loops that
apply some function to a sequence of values and accumulate the results. It is preferable to pass
the sequence to a procedural language which does not mcur the unnecessary cost of matching
in every iteration. Figure 5.22 shows a sequential Joop in PPL that sums a sequence of values.
This operation requires the generation of O(n?) instantiations of which only O(n) are actually

ADA289345

5.3 CONCLUSIONS AND OBSERVATIONS n

{pset compute-position
(parp compute-new-position
(position Avisual-object <oby> Ax <x> Ay <y>)
(translation Ax <x-delta> *y <y-delta>)
>
(remove 2)
(modify 1 Ax (<x> + <x-delta>) "y (<y> + <y-delta>)))

{pset compute-magnification
(parp compute-new-magnification
(magnification Avisual-object <obj> Avalue <mag>)
(zoom “magnitude <zoom-factor>)
-
(remove 2)
(modify 1 Avalue (<mag> * <zoom-factor>)))

Figure 5.36: Parallel example using partitioned tuples.

fired. Figure 5.37 shows how this loop can be moved to a procedural language (in this case, C).
In this case, only O(») instantiations are generated and all of them are fired. The first production
passes the sequence of values, one at a time, to C. These values are held in a data structure
(seq) till the second production invokes the actual summation routine,

Avoid explicit sequencing tuples: Since most production system languages provide no control-
flow constructs, it is tempting to use explicit sequencing tuples to schedule computation. OPSS
and most of its derivatives provide explicit support for sequencing tuples through the MEA
selection strategy which considers the first condition in a production as special. As a result,
sequencing tuples appear in most production system programs. Usually, such tuples contain
no data and there are no consistency checks (f tests) between conditions that test them and the
rest of the conditions in the production. If the second condition is matched by a large number
of tuples, a large cross-product is generated which severely limits the number of tasks that can
be executed in parallel at any given time.

There is no general way of eliminating the use of sequencing tuples. One technique that can be
used often is touse negated conditions to delay matching of a production till some tuple has been
generated. For example, the production that invokes the summing operation in Figure 5.37 uses
the condition that tests for the absence of data-1tem tuples to delay the summing operation

ADA289345

(0]

5.3. CONCLUSIONS AND OBSERVATIONS 1

(parp pass-sequence
(data-item Avalue <v>)
->
(remove 1)
(add_item_to_sequence <v>))

(p sum-sequence
other conditions
-(data-item)
-3
(make accumulated-sum Avalue (sum_c_sequence)))

sequence seq = NULL;

void add_item_to_sequence(item)
data item;

{ seq = cons(item,seq), }

int sum_c_sequence()
{ intsum=0,

for (; lempty(seq); seq = next(seq)) sum -+= value(seq);
return(sumy);

Figure 5.37: Production system and C code to sum a sequence.

till all items in the sequence have been passed to C. Another technique that can be used for
many programs, especially those that perform several operations on each data item is to add a
sequencing field to tuples corresponding to the data item. The productions that perform each of
the operations are modified to suitably update this fie}d. An example of this technique can be
found in Figure 3.8 which illustrates pipelining of operations in production svstem programs.

Copy parallel productions: As mentioned in a previous subsection, generation of a large
number of instantiations can stress the state-maintenance algorithms. Since parallet productions
implement loops, they are likely to have a large number of instantiations. Therefore, it is
desirable to make >~pies of parallel productions, each copy processing a part of the iterations in
the loop. For an example of this transformation, see Figure 5.31 or the code for the benchmarks

ADA289345

3.3. CONCLUSIONS AND OBSERVATIONS 13

10 Appendix E.

5.3.6 Collection-oriented semantics essential for scalable parallelism

Semantics of existing production system languages (including PPL) dictate that each instantia-
tion of a production must contain exactly one matching tuple for every non-negated condition
in the production and no matching tuples for every negated condition in the production. A
variable in a production is, therefore, bound to a single value and the actions mn the then part of
a production operate on individual tuples. This shall be referred to as tuple-oriented semantics.

The analysis in the previous sections identified three major Iimitations on the scalability of
parallelism in parallel production system programs: small average task size, non-parallelizable
loops and dependencies between match tasks. Each of these is closely related to, if not directly
caused by, tuple-oriented semantics. First, match algorithms are geared to generate tuple-
oriented instantiations, that is, instantiations with one tuple per non-negated condition. These
algorithms perform 3 tests (inter-condition consistency checks) on tuple-oriented tokens, that
is, tokens that contain one tuple per non-negated condition in the corresponding condition
prefix. In efficient programs, this operation takes between 200 and 800 instructions. Since
effective parallelization of the match phase requires decomposition at the level of individual
tokens, the average task size is small.

Second, tuple-oriented semantics dictates that each variable in a production is bound to a single
value and that each action in the then part of the production operates on a single tuple. This
makes it impossible to manipulate collections of tuples (or values from tuples) as aggregates.
Therefore, it is not possible to move non-parallelizable loops from production system languages,
where they incur the unnecessary overhead of matching, to procedural languages.

Third, the dependencies introduced by the cross-product effect, which leads to sequential
generation of the successor tokens, are caused by the desire to generate tuple-oriented tokens.
Since a separate tuple-oriented successor token is needed for every pair of tokens that match
at the 8 node involved in the cross-product, it is necessary to traverse the entire the opposite
memory for each arriving token.

These problems can be alleviated by adopting a collection-oriented semantics along with
corresponding match algorithms. An instantiation would, then, contain a collection of tuples
corresponding to every non-negated condition. Instead of containing one sequence of tuples
that jointly satisfy the conjunction of conditions in the i £ part, such instantiations would
contain all sequences of tuples that jointly satisfy the conditions. For example, consider the
production and the tuple-space in Figure 5.38. This production has been taken from the first
phase of spam and tests if the perimeter of the image region matching the first condition is
within the acceptable range for a runway. Tuple-oriented semantics leads to the generation of
a separate instantiation for every image region (as shown in the figure). On the other hand,

ADA289345

3.3. CONCLUSIONS AND OBSERVATIONS

—
S

collection-oriented semantics would lead to the generation of a single instantiation for all image
regions (as shown in the figure). In this case, the “rst condition is matched by the coliection of
the three region tuples.

(pset runway-test-perimeter
(parp RTF**runway-match-perimeter
(region *name <name> Aperimeter <value> *dentifier <id>)
(rtf-rule-constants *ruleset ranway-match-attributes
Aattribute perimeter Aconstants <lbound> <ubound>}
(rtf-stage name match-features)
->
(call spam_ref_match_feature <id> <value> <lbound> <ubound> runway 0)
}
Tuple space:
1: (region “name regiont Aperimeter 27 Adentificr 97)
2: (region “name region2 Aperimeter 32 identifier 99)
3: (region “name region3 Aperimeter 42 ~identifier 101)
4: (rtf-rule-constants “ruleset runway-match-attributes
Aattribute penmeter Aconstants 30 40)
S: (rtf-stage Aname match-features)

Instantiations (tuple-oriented semantics):
<14,5>, <2,4,5> and <3 4,5>

Instantiations (collection-oriented semantics):
<{1,23),{41.{5)>

Figure 5.38: Instantiations for tuple-criented and cellection-onented semantics

Since a collection-oriented token contains a collection of tuples for every condition, 8 tests
in match algorithms that support such tokens consist of comparing collections of unbounded
cardinality. This 1s likely to increase the average task size, thereby reducing the parallelizaton
overhead.

In coliection-oriented semantics, each variable is bound to a collection of values and actions
in the then part operate on collections of tuples (or values from tuples). For example, 1n
Figure 5.38, the variable <id> is bound to the collection {97,99,101}. The foreign function
called, spam.rtf. match.feature (), is now passed collection-valued arguments. This

ADA289345

-—

5.3. CONCLUSIONS AND OBSERVATIONS

allows the programmer to move sequential Joops from production system languages to pro-
cedural languages. Figure 5.39 shows how the sequential loop in Figure 5.22 that sums a
sequence would be implemented in a collection-oriented production system language. Similar
transformations are possible for the print loop in 1ife as well as for the merging loops in
spam.

(p sum-sequence
(data-item Avalue <v>)
>
(remove 1)
(make accumulated-sum “value (sum_sequence <v>)))

int sum_sequence(seq)
sequence seq;
{
for (; lempty(seq); seq = next(seq))
sum+= value(seq);
return(sum);

)

Figure 5.39: Sumnung a sequence in a coflection-oriented production 1anguage.

Match algorithms based on collection-oriented semantics would also eliminate the sequential
generation of successor tokens for cross-products, as it happens in waltz, by partitioning
memories into collections of tokens with the same value(s) for the fields that are tested at the
corresponding 3 node. It is, then, necessary to traverse just the list of such collections and
not the list of all tuples in the memory. While, it is possible to use partitioned memories
for tuple-oriented match algorithms, generation of tuple-oriented tokens 15 unable to avoid
creating a separate token for every tuple in the memory. For cross-products caused by the use
of sequencing tuples, a collection-oriented match algorithm would be especially effective since
there is no test between the guard condition and its successor. A collection-oriented match
algorithm would be able to add entire list of tokens in the memory node 1o the successor token
by a single pointer assignment.

The subsequent chapters of this dissertation, 6,7 and 8, investigate the design, implementation
and performance of collection-oriented production system languages.

ADA289345

5.3 CONCLUSIONS AND OBSERVATIONS 116

5.3.7 Performance on real machines

The simulation results presented in this chapter assume a uniform memory access model and
use instruction counts as a measure of the execution time. They provide a measure of the
amount of parallelism available that takes the scheduling costs into consideration but does not
take the details of the memory system into consideration. In effect, the speedups reported by
the simulator constitute approximate upper bounds on the speedups that can be achieved on a
real multiprocessor. These: results help establish that there is no general program-independent
limit on the speedups that can be achieved by parallel production system programs. It is also
important to understand what speedups can be expected on real machines.

To explore the effect of non-uniform memory access, a subset of the experiments were rerun
on an Omron Luna-83K multiprocessor. This machine has four Motorola 88000 processors, 16
megabytes of main memory and 16 kilobytes data and instruction caches. Given the small cache
size and the fast processors, the Omron machine is significantly distant from the model assumed
by the simulator. Tables 5.11, 5.12 and 5.13 present results for 1ife, cixcuit and hotel
respectively. These results are for three processors, the remaining processor is not used in this
experiments as it is used for operating system purposes. These tables report results from three
versions of each program~the basel ine version, that is the version with sequential constructs
compiled for uniprocessor execution, the parallel-model version, that is the version with
parallel constructs compiled for uniprocessor execution and the parallel version, that is
the version with paralle] constructs compiled for multiprocessor execution. The first column,
labelled par constructs, contains the ratio of the execution times for the parallel-model
and the baseline version. It is a measure of the cost of using parallel constructs (or the
fraction of the speedup that can be attributed to the use of parallel constructs). The second
column, labelled par overhead, contains the ratio of the execution time of the parallel
version running on one processor and the parallel-model version. It is a measure of
the cost of running the program in parallel. The parallelization costs include the costs of
creating and scheduling tasks, handling shared memory, locking and handling out-of-order
computation. The third column, labelled speedup contains the ratio of the execution time of
the parallel version running on three processors and the baseline version. This is the
end-to-end speedup achieved by the program on three processors. The numbers in parentheses
are simulator predictions for the corresponding values. These results also allow a breakdown
of overall speedup into two parts ~ the speedup achieved by the use of parallel constructs alone
(on a uniprocessor) and the speedup achieved by exploiting the parallelism on three processors.

The breakdown of the speedup shows that 11 fe and circui t achieve asignificant portion of
their speedup from parallelism whereas hotel achieves almost all of its speedup from the use
of parallel constructs and almost no speedup from parallelism. As discussed in Section 5.2.4,
sequential assignment of node identifiers by the PPL implementation leads to a failure of the
hash function for the token storing hashtables. This causes a large number of tokens to be

ADA289345

5.3. CONCLUSIONS AND OBSERVATIONS

Data set | par constructs | par overhead | speedup
20 1.17 (1.11) 2,94 (2.07) [0.62(1.47)
30 1.18 (1.11) 3.04 (2.07) | 0.61(1.49)
40 1.21(1.12) | 3.08(2.03) | 0.55 (1.51)
50 1.30(1.13) | 2.85(2.00) {0.52(1.53)

Table 5.11: Results for 11 fe on an Omron

Data set | par constructs | par overhead | speedup
125 0.85 (0.83) 2,61 (2.62) |0.77 (1.13)
175 0.84 (0.83) 2.56 (2.60) |0.83(1.14)
225 0.82 (0.82) 2.55 (2.59) | 0.84 (1.15)
275 0.81(0.82) | 2.52(2.58) | 0.85(1.15)

~1

Table 5.12: Results for circuit on an Omron

Set | par constructs | par overhead | speedup
2 | 036(091) | 1.19(1.15) | 3.01 (2.58)
3 | 031(0.88) [1.06(1.03) | 3.39(291)
4 | 030(0.88) | 1.03(1.00) |3.45{3.02)
5] 029¢0.88) | 1.02(0.99) |3.53(3.05)

Table 5.13: Results for hotel on an Omron

hashed to a small set of buckets which increases both the average task size and the contention
for the hash buckets. Since a large number of tasks compete for the same buckets and since
each of these tasks locks the bucket for a relatively long period, hotel is unable to achieve
significant speedup from parallelism. It is easy to modify the implementation to improve
the performance of the hash function (by using pseudo-random numbers as identifiers of the
nodes in the Rete network). Table 5.14 presents results for hotel using a version of the
PPL implementation that assigns random node identifiers. It shows that for a successful hash
function, hotel achieves between 1.16 and 1.36 fold speedup from parallelism.

For all the three benchmarks, the parallelization overhead is significant, causing between 1.68
and 3.08 times slowdown. Three processors are too few to achieve significant speedup for
such a fine-grained implementation. This is a familiar phenomenon for languages that exploit
fine-grain parallelism. Similar results have been shown for parallel versions of Lisp/Scheme
that use futures for specifying fine-grain parallelism (58, 63]. As shown in Table 5.3, the
average task size in production system programs is often small. This is consistent with the
findings of Gupta er. a/{41] and Tambe et. af (113].

ADA2803AE

5.3. CONCLUSIONS AND OBSERVATIONS 118

Data set | par constructs | par overhead | speedup
4 0.60 1.68 1.36
5 048 1.74 1.56
6 0.39 1.85 1.70
7 0.35 1.93 1.83
8 0.31 1.95 1.89
9 0.29 2.02 2.01

Table 5.14: Results for hotel for a modified PPL implementation

Data set | speedup (print) | speedup (no print)
125 1.75 1.75
175 1.79 1.85
225 1.85 1.98
275 1.87 2.01

Table 5.15: Results for coarse-grain decomposition of circuit

Even though, 1n general, effective parallelization of production system programs requires fine-
grain decomposition, it is possible to partition particular programs at a coarser grain which is
more suitable for small cardinality multiprocessors. For example, Harvey et. al decomposed
the first two phases of SPAM into large tasks that could be run independently of each other and
used a task queue to schedule them on an Encore Multimax{48). They reported speedups up
to 12,5 fold using 14 processors on a singls Multimax and up to 15 fold using 23 processors
on a pair of Multimaxes which shared virtual memory using a netmemory server [31). As
discussed in Section 4.1.5, the first two phases of SPAM consist of triply nested loops with no
dependencies between the iterations. Table 5.15 shows results for a coarse grain decomposition
of circuit. These experiments used an SPMD (single program, multiple data) model. The
input data, a linear feedback shift register, was divided into three pieces. The communication
between the segments is limited to the values of the boundary lines. The PPL implementation
was modified to use & blackboard to communicate these values. The results indicate that, unlike
the fine-grain decomposition, significant speedup can be achieved for this decomposition. The
first column contains the speedups for the benchmark version of circuit. Since printing
the results causes a sequentialization, another set of experiments were run with a modified
version of circuit that did not print the results. The results indicate that this yields a small
incremental speedup for larger data sets.

Not all programs are amenable to coarse-grain decomposition. Of the other benchmark pro-
grams, spam and 1ife can be easily partitioned in a coarse manner whereas hotel and

—
-—
(=]

3.3. CONCLUSIONS AND OBSERVATIONS

Program data set pixie time | actual time | ratio
life 50 repetitions 334s 76.55 | 2.29
circuit 200 bits 14.6s 36.2s | 248
hotel 4 floors 122.0s 2964s | 243

Table 5.16: Comparison of estimated and actual execution times on a uniprocessor

waltz less so. In particular, waltz is unsuitable for coarse-grain decomposition as the or-
der in which the constraints are applied determines the result and some orders can cause the
program to fail to find a consistent labelling.

The primary data-structure in production system programs is the tuple-space which provides
no structuring or clustering constcacts and can be accessed from anywhere in the program.
Therefore, in general, the locality of reference for production system programs can be expected
to be low. Table 5.16 orovides evidence for this by comparing the execution time estimated
by the pixie program* which assumes that each instruction takes one cycle with the actual
end-to-end execution time on a Decstation 5000/200 with a 64 megabyte main memory and 64
kilobyte instruction and data caches. The high ratio between the actual execution time and the
estimated execution time indicates that there are a lot of cache misses and that the locality of
reference is low.

Collection-oriented production languages and match algorithms are oric possible approach to
improving speedups on non-uniform memory access machines. As mentioned in the previous
section, tasks in collection-oriented match algorithms can be expected to be larger than tasks
in tuple-oriented match algorithms since they compare collections of unbounded cardinality
instead of individual entities. Similarly, collection-oriented actions can be expected to increase
the amount of work done for firing individual instantiations. Collection-oriented match algo-
rithms can also be expected to improve the locality of reference since they partition the set of
tuples that match individual conditions into equivalence classes based on the values that are
tested at the subsequent 3 nodes (see Section 6.2 for a description of equivalence classes in
collection-oniented match algorithms). Instead of testing every single tuple in a right memory,
they test only one tuple per equivalence class.

In the beginning of this section, it was mentioned that the speedups reported by the simulator
are approximate upper bounds on the speedups that can be achieved on a real multiprocessor.
They are approximate for two reasons. Fist, it is possible that the different order in which
tokens are processed by a multiprocessor might change the amount of work to be done for
processing a change to the tuple-space (sce Section 4.3.1.1 for an example and further details).
Second, the combined size of caches on a multiprocessor is usually much larger than the size of

*This program 15 available on Decstation 5000/200s

ADA289345

35.3. CONCLUSIONS AND OBSERVATIONS 120

a cache associated with a single processor. Since poor locality of reference is a major problem
for production system programs, it is possible that the larger cache size could offset some or all
of the effects of the contention for the communication medium.

ADA289345

Chapter 6

Collection-oriented Match

The primary cause of poor scalability of production system match algorithms is the combina-
torial explosion in the number of potential matches as the the size of the tuple-space grows
[38, 80, 116]. This combinatorial growth is caused by the need to match conjunctive rule
conditions. Since every conjunct can potentially match the entire tuple-space, the number of
potential matches, in the worst case, is O(|D[") where [D| 1s the cardinality of the tuple-space
and n is the length of the longest conjunction.

For example, consider the production and the tuple-space in Figure 6.1. This production
creates development teams for new projects such that each team has one hardware and one
compiler expert who have worked together previously. Each condition in the production
matches four tuples, the first condition matches the hardware experts, T1-4, and the second
condition matches compiler experts, T5-8. Without the requirement of common previous
experience, that is, without the common variable <p>, this production would have had 4 x4 = 16
instantiations, With the restriction, eight instantiations are generated - four with employees
previously with the warp project (<T1, T5>, <T1, T6>,<T2, T5>, <T2, T6>)and four with
employees previously with the psm project (<T3, T7>, <T3, T8>, <T4, T7>,<T4, T8>).

Current match algorithms are tuple-oriented, that is, they consider individual tuples as the
primary objects to be matched and generate a separate combination of tuples for every way in
which a conjunction of conditions can be matched. As the number of tuples matching individual
conditions grows, the number of ways in which their conjunction can be matched grows as a
combinatorial product. This chapter presents a new approach to matching which attempts to
mitigate the combinatorial explosion by not gencrating a separate combination of tuples for
every way in a condition-conjunction can be matched. First, it presents and discusses the key
idea behind the approach. It then presents a new match algorithm based on this approach.
The tuple-oriented nature of the existing match algorithms is closely tied to the tuple-oriented
semantics of the languages they are used to implement. The next chapter discusses language
semantics and programming styles supported by the new class of match algorithms introduced in

121

ADA289345

6.1. THE KEY IDEA 122

(p create-development-team
(employee Aname <n1> Aprevious-project <p> Aexpertise hardwars)
(employee Aname <n2> “previous-project <p> Aexpertise compilers)
->
(make team ~hardware-expert <nl> “compilers-expert <n2>))

T1: (employes “name Tom “previous-project warp Aexpertise hardware)
T2: (employee “name Dick Aprevious-project warp Aexpertise hardware)
T3. (employee “name Harry Aprevious-project psm Aexpertise hardware)
T4 (employee “name John Aprevious-project psm “expertise hardware)
T5. (employee Aname Ram previous-project warp ~expertise compilers)
T6' (employee “name Shyam “previous-project warp “expertise compilers)
T7: (employee “name Madhu Aprevious-project psm Aexpertise compilers)
T8' (employee “name Jadhu Aprevious-project psm “expertise comptlers)

Figure 6.1: Example production and tuple-space.

this chapter. The subsequent chapter presents experimental results comparing the performance
of a tuple-oriented match algorithm and its collection-oriented analogue. The work presented
in these three chapters has been done jointly with Prof. Milind Tambe of the Information
Sciences Institute, University of Southern California.

6.1 The key idea

In the above example, consider the four instantiations containing employees previously with the
warp project. The tests in the production discriminate only between employees with different
expertise — the hardware experts match the first condition and the compiler experts match
the second condition. They do not discrinunate between different employees with the same
expertise and the same previous project. However, tuple-oriented match algorithms provide
discrimination between even such employees by generating separate instantiations for them.
For example, generation of <T1, TS> and <T1, T6> discriminates between Ram and Shyam
both of whom are compiler experts previously with the warp project. Therefore, tuple-oriented
algorithms pay for discrimination between al} tuples even if the program does not require it.

The key idea underlying the altemnative approach proposed in this chapter is that match algo-

ADA289345

6.1. THE KEY IDEA 123

rithms should provide only as much discrimination as required by the productions In other

"

words, “if you do not discriminate, you do not pay for it”.

Tuples that satisfy exactly the same subset of tests, like the tuples corresponding to employees
with the same expertise and common previous project in the above example, are equivalent
in the context of the given program. A match approach that does not discriminate between
such tuples must hold all mutually equivalent tuples as a collection. Therefore, the primary
objects to be matched are collections of equivalent tuples instead of individual tuples. Such
an approach is collection-oriented since all operations, matching, deletion, modification etc,
are performed on collections of tuples. A match algorithm based on this approach matches
cach condition with a collection of tuples and generates collection-oriented instantiations
which have a collection of tuples corresponding to each condition in the production. Since
tuples in each collection are equivalent, all tuples in an instantiation are guaranteed to be
mutually consistent. For the example in Figure 6.1, a collection-oriented match algorithm
will generate two instantiations. The first instantiation, containing previous members of the
warp project, is <{T1, T2}, {T5, T6}> and the second instantiation, containing previous
members of the psm project, is <{T3, T4}, {T7, T8} >. Tuples in each of these instantiations
are mutually consistent, that is they all have the same value of the previous-project field.
Collection-oriented instantiations contain exactly the same information about consistency of
matching tuples as corresponding tuple-oriented instantiations, only in a terse form. The
tuple-orjented instantiations corresponding to a collection-oriented instantiation can be easily
generated by creating a cross product of its component collections. For example, the tuple-
oriented instantiations containing previous members of the warp project can be created as a
cross-product of the two collections in the corresponding collection-oriented instantiation, that
1s, {T1,T2} and {T5,T6}.

Another way of looking at this is to view the matching operation as a retrieval in a relational
database. The tuple types correspond to relations, the intra-condition tests (the a tests) to
selection operations and the inter-condition tests (the 3 tests) as join operations. The example
in Figure 6.1 corresponds to the self-join on the employee relation shown in Figure 6.2. From
this point of view, tuple-oriented match algorithms create explicit or eager joins - where the
join is completely computed at the earliest possible opportunity. On the other hand, collection-
oriented match algorithms would create implicit or lazy joins — where the join formation is
delayed as long as possible. Tuple-oriented match algorithms represent the result of a join as
a collection of pairs whereas collection-oriented match algorithms would represent it as a pair
of collections from which the join can be generated.

'And, farrly enough, if you do discriminate, you d

o

ADA289345

6.1. THE KEYIDEA 124

select empl.name, emp2.name

from employce emp1, employee emp2

where empl expertise = hardware

and emp2.expertise = compilers

and empl.previous_project = emp2.previous_project

Figure 6.2: SQL version of the example production

6.1.1 Analysis

At this point, two questions arise naturally. First, why should collection-oriented match
algorithms be expected to scale better than tuple-oriented ones and second, when should they
be expected to scale better. This subsection attempts to answer these guestions analytically.
Empirical results supporting the analysis in this subsection will be presented in Chapter 8.

Production system semantics require matching conjunctions of conditions, each condition
being capable of matching an arbitrary subset of the tuple-space. Therefore, the number of
instantiations (and tokens) will always be a combinatorial product. In tuple-oriented algorithms,
the factors in this product are the number of tuples that match individual conditions whereas in
collection-oriented match, combinatorial factors are the number of collections, or equivalence
classes, of tuples that match individual conditions. Since the number of collections matching
cach condition can be expected to be much smaller than the total number of tuples, the overall
combinatorial product can be expected to be significantly smaller for collection-oriented match
algorithms. A reduction in the number of instantiations and tokens causes a corresponding
reduction in execution time since fewer combinations have to be generated and updated.

As the number of tuples matching individual conditions grows, a combinatorial explosion in
the number of instantiations and tokens is very likely for tuple-oriented match algorithms. This
explosion can be avoided in collection-oriented match algorithms if the number of collections
does not grow, that is, if the additional tuples for larger data sets fall in the same equivalence
classes as the tuples for smaller data sets. In the best case, all the tuples matching each condition
are equivalent and only one collection-oriented instantiation is generated for every production.
For the production in Figure 6.1, this would occur if all employees had worked on the same
previous project. For a production with m conditions, each of which match n,,i € 0,.m - 1,
tuples, such an instantiation would take space proportional to 3 n;. The corresponding tuple-
oriented instantiations generate the complete cross-product of these tuples and would need
space proportional to [Tn,. In such a case, collection-oriented match can reduce the number
of instantiations and tokens from a high-order polynomial in the size of the tuple-space (with
a degree equal to the length of the longest production) to a linear function of the size of the

ADA289345

.—
[
n

6.2. COLLECTION-ORIENTED MATCH ALGORITHMS

tuple-space. Note that the best case for collection-oriented match 1s the same as the worst case
of tuple-oriented match. Tuple-oriented match s the degenerate case of collection-oriented
match. It corresponds to the case where every collection contains at most one tuple.

Since collection-oriented match requires no restriction on the expressiveness of the productions
or the contents of the tuple-space, it does not reduce the worst-case space and time complexity
of the production match problem. It is still possible to encode NP-complete problems such as
subgraph isomorphism within the match of a single production. For a description of how this
encoding can be done, see [76).

The primary factors that govern the performance improvement achieved by collection-oriented
match are the number and the average size of collections. Large improvements over tuple-
oriented match can be expected for programs which generate a large number of big collections.
Programs which can be expected to have such behavior are those that have tests with Jow
selectivity/discrimination relative to the contents of the tuple-space. Atone end of the selectivity
spectrum are programs with very large tuple-spaces, like active databases. No matter how
selective the tests are, continued growth in tuple-space size will eventually generate large
collections. On the other end of the spectrum are programs with small tuple-spaces and poor
selectivity. An example of this are the expensive chunks which occur in Soar{115]. These
productions are automatically generated as a part of the learning process and are, in effect, 2
generalized summary of the problem-solving. The generalization process reduces selectivity
by replacing constants by variables.

6.2 Collection-oriented match algorithms

The major difference between tuple-oriented and collection-oriented match algorithmsis the lat-
ter group equivalent tuples into equivalence classes whereas the former do not. A tuple-oriented
match algorithm can be converted to its collection-oriented analogue by adding mechanisms to
create and maintain equivalence classes of tuples. Primary data structures used in tuple-oriented
match algorithms are right memory nodes (containing tuples), left memory nodes (containing
tokens) and the pnodes (containing instantiations). The major operations on these data struc-
tures are addition, deletion and searching for matches. The rest of this section discusses and
evaluates the alternatives for modifying these data structures to deal with equivalence classes
of tuples. The next section presents Collection Rete, the collection-oriented analogue of the
Rete algorithm.

The following discussion assumes that every 3 node has its own memory nodes. This implies
that every memory node has a unique 8 node as its destination and therefore, has a unique test
associated with it. This assumption is made by a large class of match algorithms, particularly
by algorithms that use hashtables to store the contents of the memory nodes and by algorithms
that attempt to maximize concurrency (see Section 2.5 for details).

ADA289345

_—
o]
(=

6.2. COLLECTION-ORIENTED MATCH ALGORITHMS

6.2.1 Right memory nodes

Conceptually, a right memory node in tuple-oriented match algorithms consists of a list of
tuples that match the corresponding condition. This list can be easily partitioned into a hst
of equivalence classes based on the value of the field being tested. For equality tests, it is
sufficient to find the equivalence class with the appropnate value. Additional structure on this
list would be necessary for efficient implementation of relational tests. Possibilities include
ordering the list of equivalence classes and arranging them in a binary search tree. If the
number of equivalence classes grows large, it is possible to use a hashtable to speed up the
search operations.

The above discussion assumes that the destination 3 node tests only one field of the tuples
contained in the memory node. While, this is not always the case, it almost always is. The
average number of tests per 3 node for the benchmarks used in Gupta’s thess [38] was between
0.37 and 1.27. The corresponding range for benchmarks used in the parallelism experiments
described in previous chapters of this thesis is .23 to 0.74. Inthe relatively rare case of multiple
fields being tested, any one of the fields being tested can be used to partition the memory node.

Addition of a tuple: The memory node is searched for the equivalence class that this tuple
would belong to. If such an equivalence class is found, this tuple is added to it. Else, a new
equivalence class is created for it.

Deletion of a tuple: The memory node is searched for the equivalence class that this tuple
belongs to and the tuple is deleted from it. If this tuple is the last member of the equivalence
class, the equivalence class is deleted from the memory node.

Searching for a match: This depends on the test(s) being performed at the destination 8 node.
The common case is a single equality test. The match, in this case, consists of finding the
appropriate equivalence class. There exists a match if and only if such an equivalence class
exists. Inequality tests can be performed in a similar manner only with an inverted test - that
is, there is a match if and only there is no appropriate equivalence class. Searching for matches
for a relational test can take advantage of ordenng between equivalence classes to determine
the list of equivalence classes whose members satisfy the test. Checking if an equivalence class
satisfies a test can be optimized by caching the value to be tested.

For 8 nodes that test multiple ficlds of a tuple, the searching can be initially done with the just
one of the fields and the subsequent tests can be applied only to the tuples that satisfy the first
test.

Partitioning based on values being tested reduces the average number of comparisons that have
to be done for every instance of the search operation. In this, it is similar to hashing the contents
of the memory nodes as has been recommended by Gupta[38]. The relative performance of
these two schemes remains to be explored. Note that it 1s possible to build hybrid schemes that
use hashing to speed up the search for equivalence classes.

ADA289345

=
[8]
~d

6.2. COLLECTION-ORIENTED MATCH ALGORITHMS

6.2.2 Left memory nodes

Conceptually, a left memory node 1n tuple-oriented match algorithms consists of a list of
tokens. Each token corresponds to a sequence of tuples that matches a condition prefix. A
token consists of a sequence of slots, each of which contains a pointer to atuple. Tokens can be
easily modified to use equivalence classes of tuples. Instead of pointing to a single tuple, each
slot points to a collection of tuples. Such tokens are referred to as collection-oriented tokens.
In the rest of this dissertation, token should be taken to mean cotlection-oriented token unless
mentioned otherwise.

Operations on collection-oriented tokens: There are three operations possible on collection-
oriented tokens: extension, merging and breaching. Extension takes a token with »n slots and
a collection of tuples and creates a token with n + 1 slots with the given collection in the last
slot. A token can be extended by a collection if and only if all the tuples in the collection are
consistent with all the tuples already contained in the token.

Merging takes two tokens with equal number of slots and creates a new token which has the
same number of slots and which contains all the tuples contained in the original tokens. A pair
of tokens can be merged if and only if they differ in only one slot. The collections in all the
other slots remain unchanged; the collections in the differing slot are merged. For example,
<{T1},{T2,T73}> and <{T1}, (T5}> can be merged to form <{T1}, {T2,T3,TS}>.
The correctness of merging can be easily shown. Let the first token be T.D; and the second
token be T.D;, where D is the differing slot and T corresponds to the rest of the slots. Since, T
is consistent with both D, and D,, and since there are no tests between different tuples matching
the same condtion, it is safe to merge them and create T.(Dy + D;). On other hand, it is not
possible to merge tokens that differ in more than one slot. To show that, let the first token be
T.Dyy.Dy; and the second token be 7.Dy,.Dz;. In this case, tuples in Dy, may or may not be
consistent with tuples in Dy,. Similarly, tuples in D2y may or may not be consistent with tuples
in Dy2. Merging such tokens would violate the mutual consistency requirement.

Breaching takes a token, a tuple and a test that can be applied to the two. It splits the
token into two subtokens, one containing the tuples that satisfy the test for the given tuple (the
consistent subtoken) and the other contains the tuples that do not satisfy the test (the inconsistent
subtoken). Breaching is the inverse of merging. For example, suppose the original token is
<{T1}, {T2,T3,T4}> and the given test checks for consistency between the second slot in
the token and the given tuple. If the test succeeds for T2 and T3 and fails for T4, the breaching
operation generates <{T1}, {T2,T3}>and<{T1}, {(T4}>.

Observation about left memory nodes: If two tokens in a left memory node can be merged,
that is, differ in only one slot, they differ in the last slot. Tokens arriving at a memory node
are generated by appending a cullection of tuples (from a right memory node) to a token (from
a left memory node). Therefore, the collection in the last slot will always be different for al}
the tokens in the same left memory node. Now, if two tokens differ in at most one slot, they

ADA289345

6.2. COLLECTION-ORIENTED MATCH ALGORITHMS 128

must, necessarily, differ in the last slot. A corollary of this is that two mergeable tokens in a
left memory node have a common token as a parent (the common subtoken consisting of all
the slots except the last one).

Addition of a token: The memory node is searched for existing tokens that the incoming
token can be merged with. If such a token 1s found, the two tokens are merged. Else, the
new token is added to the memory node. For memory nodes associated with non-negated
conditions, there can be at most one existing token in the memory node that can be merged
with the incoming token. To show this, assume that there are two such tokens. Since they
differ in only one slot and both of them belong to the same memory node, they differ in
the last slot. Furthermore, both of them differ from the incoming token also in the last slot.
Therefore, they can be merged with each other. Since tokens are added one at a time, one of
them must have been added before the other at which time it would have been merged with
it. Memory nodes associated with negated conditions need to maintain a count of matches
in the opposite memory for every token. It 1s possible that two mergeable tokens match
different tuples from right memory. The need to keep track of the matches in the opposite
memory forces such tokens to be maintained as separate entities. For example, consider the
production and tuple-space in Figure 6.3. The left memory corresponding to the only 8 node n
the production contains the token <{7T1, T2}>. Since no tuples match the second condition,
the opposite memory is empty and an instantiation is generated. Now suppose the tuple
(request “operation book-ticket “priority 1) is added to the tuple-space.
It matches one of the two tuples in <{T1, T2}>. This forces a breach since the two tuples, T1
and T2, match different tuples in the right memory.

(p make-request
(operation-pending *name <op>)
-(request Aoperation <op>)
>
(make request Aoperation <op> ~priority 1)}

T1: (operation-pending “name book-ticket)
T2 (operation-pending Aname buy-guidebook)

Figure 6.3: Example production with a negated condition.
Deletion of a token: Deletion of a token occurs either when a tuple matching a positive condi-

tion is deleted or a tuple matching a negative condition 1s created. While it is possible to mirror
the addition operation for deletion, as is done 1n many production system implementations, it 1s

ADA289345

6.3. COLLECTION RETE 129

cheaper to scan the tokens for the tuple that 1nitiated the deletion and remove it. For example,
given aleft memory node containing the tokens < {T1}, {T2,T3}>and<{T4}, {T3,T5}>,
deletion of the tuple T3 modifies the memory node to {< {T1}, {T2}>, <{T1},{T5}>}.If
the tuple being eliminated is the last one in any of the collections it occurs in, the corresponding
token is deleted. For example, if after T3, T2 is deleted, the second slot in the first token
becomes empty. The memory node now contains just <{T1}, {T5}>.

Searching for a match: A left memory node 1s searched for a match for tuples from the
corresponding right memory node. Conceptually, searching for a match consists of breaching
every token in the memory node. Usually, only one of the two subtokens need be generated
- the consistent subtoken if the 3 node performing the search corresponds to a non-negated
condition and the inconsistent subtoken it corresponds to a negated condition.

6.2.3 Pnodes

Conceptually, apnode contains the list of instantiations of a particular production. It is similar
to a left memory node except that it uses the selection algorithm to impose an order on the
nstantiations. Ordering algorithms used for tuple-oriented instantiations can be easily extended
to collection-oriented instantiations since all tuples in a collection are equivalent and the first
tuple can be used as a proxy for all the tuples in the collection. The only complication arises if
the selection algorithm uses a recency-based criterion that assigns unique timetags to tuples and
favors higher values of the timetag over lower ones. Such selection schemes can be efficiently
supported if the tuple with the highest timetag is the first one in the collection.

6.3 Collection Rete

This section describes Collection Rete, the collection-oriented analogue of Rete. The algorithm
is presented in a pseudo-code form. Existence of the following mapping structures is assumed:

o right_memories maps a § nodeid to the contents of the corresponding right-memory node

o leftmemories maps a 3 nodeid to the contents of corresponding left_memory node

® pnodes maps a pnode nodetd to its contents

o successor Jists maps a 8 nodeid to the list of nodeids of the successor nodes

® node_type maps a 8 or pnode nodeid to its type which may be AND, NOT or PNODE

o beta.tests maps a 8 nodeid to the corresponding inter-condition consistency test

e right.memory_tests maps a 3 nodeid to the test used to partition the corresponding night
memory node into equivalence classes

ADA289345

6.3. COLLECTION RETE 130

procedure add_tuple(tuple)
begin
right_memories « find.matching-conditions(rete_net,tuple)
/* findmatching conditions() uses the upper half of the Rete network (the o network) to
find the set of conditions that match the given tuple. Every condition has an associated
memory node which contains the tuples matching it %/
foreach memory in right_memories
add.tuple.to_right.memory(tuple,memory)
end
end

procedure add_tuple_to.right.memory(tuple,index)
begin
classes « right.memoriesfindex})
test « right_-memory_tests(index]
/* See Section 6.2.1 for details on right_memory_tests */
foreach class in classes
result « apply.test(test,tuple,class)
/* apply test() assumes that the values in the field can be ordered. It returns one of
{BELONGS, LESS_.THAN, GREATER.THAN} ¥
if (result = BELONGS)
add.tuple.to_class(tuple,class)
return
else if (result = GREATER.THAN)
break
end
insert_class(create.class(tuple),nght_memories{index))
/* invoke the appropriate right activation routine */
if (node.typefindex] = AND)
and_node_right_add(tuple,index)
else if (node_typefindex) = NOT)
not_node_right.add(tuple,index)
else
add.tuple_pnode(tuple,index)
end

ADA289345

6.3. COLLECTION RETE 131

procedure and_nodeight.add(ruple,index)
begin
tokens « left_ memories[index]; test « beta_tests[index]
successors « successorlists[index]
foreach token in tokens
(token_con,token.incon) « breach(token,tuple,test)
if (token_con # NULL)
/* The consistent subtoken is extended and propagated down the network. In
practice, only the consistent subtoken needs to be generated %/
succ.token + extend(token.con,create.collection(tuple))

foreach succ in successors
add to.Jeft_memory(succ_token,succ)
end
end
end

procedure not.node.right_add(t.ple, index)
begin
tokens « left_meraoriesfindex]; test «— beta_tests[index]
foreach token in tokens
(token.con,token.incon) « breach(token,tuple,test)
if (token.incon # NULL)
/* The original token is replaced by the breached subtokens, each with its own
count of matches in the opposite memory. Breaching is required to maintain
Separate counts ¥/
delete_token(token,lefmemoriesindex])
add.token(token.incon,left. memories{index))
add_token(token_con,left.memoriesfindex])
token.incon.matches +~ token.matches
token.con.matches ~ token.matches+]
/* If the inconsistent subtoken has no matches, neither did the original. Deleting
all matching tuples from successor nodes is sufficient 1o replace successors of the
original token by corresponding successors of token_incon */
if (token_incon.matches =0)
delete_tuples.from_successors(matched tuples(token.con,test),index)
else
token.maiches «— token.matches+1
end
end

ADA2R934S

6.3. COLLECTION RETE 132

procedure and.node left_add(token,index)
begin
classes « right_memories{index]
test «- beta.tests[index]
successors «+ successordists[index]
succ.tokens «— NULL

/* This routine scans the associated right memory and generates a sequence of successor
tokens. In effect, it breaches the original token for every equivalence class and then
merges as many of them as possible. In practice, it is possible to avoid the merging step
by taking advantage of the fact that in an overwhelming fraction of cases, there is only
one test, usually an equality test */

foreach class in classes

(token.con,token_incon) — breach(token,class.first_tuple,test)

new._token « extend(token.con,class)

merged «~ FALSE

foreach succ.token in succ_tokens

if (mergeable(new_token,succ_token))

merge(new_token,succ_token)
merged « TRUE

end

7* If the new token cannot be merged, add it 1o the list of successors ¥/
if (merged = FALSE)
add_token(new.token,succ_tokens)
end
/* Propagate all the generated tokens to all the successor nodes */
foreach succ in successors
foreach succ.token in succ.tokens
add.to_left.memory(succ.token,succ)
end
end
end

ADASQQD AL

6.3. COLLECTION RETE 133

procedure not_node left_add(token,index)
begin
classes « right.memories[index)
test — beta_tests[index]
successors « successordistsfindex]
consistent_tokens «+- NULL
inconsistent.tokens ~— NULL

/* This routine scans the associated right memory and generates a sequence of successor
tokens. The sense of tests is reversed from andnode left.add(). It keeps track of the
subtokens generated and the number of their matches. The original token is replaced by
the subtokens in the left merzory for this node %

foreach class in classes
(token.con,token.incon) « breach(token,class.first-tuple,test)

if (find_token(token_con,consistent.tokens,!) = NOT.FOUND)
token.con.matches + 1
add.token(token.con,consistent.tokens)
if (find.token(token_incon,inconsistent_tokens,0) = NOT.FOUND)
token.incon.matches — 0
add.token(token.incon,inconsistent_tokens)
end

/* Propagate all the generated tokens to all the successor nodes */
foreach succ in successors
foreach incon_token in inconsistent.tokens
add.to_left_memory(extend(incon.token,NULL),succ)
end
end

/* Replace the original token by the lists of subtokens */

delete_token(token,left_m.inoriesfindex])

append.token Jist(consistent_tokens,left_memories{index])

append.token_list(inconsistent.tokens,left.memoriesfindex))
end

ADA289345

63. COLLECTION RETE 134

procedure add_to_left_memory(incoming token,index)
begin
tokens — left_memories[index]
merged +— FALSE
foreach token in tokens
if (mergeable(incoming_token,token))
/* mergeable() can be efficiently implemented if a canomical order can be imposed
on the tuples in each collection. The test for equality for collections can be
implemented as ptr equality on the first tuple %/
merge(incoming-token,token)
merged — TRUE

/* For and nodes, wkens have maximal collections, since there 1s no need to
maintain counters for subcollections. Therefore, there is only one mergeable
token. ¥
if (node.type[index] = AND)
break
end
7% If there is 1o mergeable token, add the token to the memory node %/
if (merged = FALSE)
add_token(token,left_memories[index])
/* Left activation of the successor node %/
It (node.type[index) = AND)
and_node_left.add(token,index)
else if (node.type[index] = NOT)
not_node left_add(token,index)
else
add.token to_pnode(token.index)
end

procedure find_token(incoming_token,token istincr)
begin
/* If a match is found, the existing token's match count is incremented by incr */
foreach token in token_list
if (1dentical.token(incoming.token,token))
token.matches «— token.matches+incr
return (FOUND)
end
return (NOT_FOUND)
end

ADA289345

6.3. COLLECTION RETE 135

procedure delete_tuples_from_successors(tuples,index)
begin
. successors «— successors.list[index]

foreach succ in successors
* foreach tuple in tuples
if (node_type[index] = AND eor node_type{index) = NOT)
delete_tuple_left. memory(tuple,succ)
else
delete.tuple_pnode(tuple,succ)
end
end
end

procedure add_tuple_pnode(ruple,index)

begin
/* This routine is invoked when the production has only one condition. Therefore,
all tuples that reach the right memory node corresponding to the condition, match the
production. In this case, all instantiations can be merged into a single collection-oriented
instantiation. This routine creates a unit collection for the given tuple and merges it into
the single collection-oriented instantiation ¥/
merge_inst(creat_inst(create.collection(tuple)),pnodes{index])

end

procedure add.token_to_pnode(foken,index)
begin
/* This routine is invoked for productions withmulnple condinons and therefore multiple
instantiations are possible. Similar 10 an and 3 node, the instantiations are maximal
and every incoming token can be merged with only one of them, %/
instantiations «— pnodes[index]
foreach inst in instantiations
if (mergeable_inst(token,inst))
merge-inst{token,inst)
return

. end
7% The token can be merged with none of the existing instantiations. Create a new
instantiation and add it to the conflict set. Note 1hat instantiations that have already
been fired are held separately and are not a part of the conflict set ¥/
add_inst(create_inst(token),pnodes{index])

end

ADA289345

6.3. COLLECTION RETE

procedure delete_tuple(tuple)
begin
right.memories « find_matching_conditions(rete_net,tuple)
foreach memory in right memories
delete.tuple_right.memory(tuple,memory)
end
end

procedure delete_tuple_right-memory(tuple,index)
begin
classes « right.memories{index)
/* assumption: that a tuple can occur in only one equivalence class ¥/
foreach class in classes
if (apply.test(test,tuple,class) = BELONGS)
delete_tuple_from.class(tuple,class)
if (empty(class))
delete_class(class,right_memorses{index})
break
end
/* Propagate the deletion %/
if (node_type[index] = AND)
and.node.right_delete(tuple,index)
else if (node_typelindex] = NOT)
not_node_right_delete(tuple,index)
else
delete_tuple_pnode(tuple,index)
end

procedure and_node._right delete(tuple,index)
begin
successors « successor.listsindex]
/* Iterator to delete the tuple from all successors %/
foreach succ in successors
if (node.type[index] = AND or nodetypefindex] = NOT)
delete_tuple_left. memory(tuple,succ)
else
delete.tuple_pnode(tuple,su-c)
end
end

ADA289345

136

6.3. COLLECTION RETE

procedure not.node.right.delete(tuple,index)
begin
tokens « left_memories{index); test — beta_tests[index)
successors « successor.listsfindex]
foreach token in tokens
/* match_token() checks if the entire token is consistent with tuple ¥/
if (match_token(token,tuple,test))
token.counter « token.counter-1
if (token.counter=0)
/* No matches left, need to generate successor token */
succ.token « extend({token,NULL)
foreach succ in successors
if (node_type[succ] = AND or node.type{succ] = NOT)
delete_tuple left_memory(tuple,succ)
else
delete_tuple_pnode(tuple,succ)
end
end
end

procedure delete_tuple left_memory(tuple,index)
begin
tokens « left_.memories(index]
successors + successor listsfindex]
foreach token in tokens
foreach slot in slots(token)
delete_tuple_from._siot(tuple,slot)
/¥ If any of the slots becomes empty, then there is no match left */
if (empty(slot))
delete_token(token,left_memories{index])
break
end
end
foreach succ in successors
if (node_typefindex) = AND or node.type = NOT)
delete.tuple_left- memory(tuple,succ)
else
delete.tuple_pnode(tuple,succ)
end
end

137

ADA289345

6.3. COLLECTION RETE 138

procedure delete_tuple.pnode(tuple,index)
begin
instantiations — pnodes[index]
foreach inst in 1nstantiations
foreach slot in slots(inst)
delete.tuple_from_slot(tuple,stot)
if (empty(slot))
delete.instantiation(inst,pnodes{index})
break
end
end
end

ADA289345

Chapter 7

Collection-oriented Production Language

Tuple-oriented production languages operate on scalars - each condition matches at most one
tuple, each variable is bound to a single value and each tuple-space operation creates or modifies
a single tuple. The semantics of these languages require that the instantiations generated at
the end of the match should be tuple-oriented. This implies that while it is possible to use
collection-oriented match algorithms for implementing these languages, the collection-oriented
instantiations generated must be converted to their tuple-oriented analogues before they can be
used, In many cases, however, there 1s no need to generate the cross-products. Therefore, these
languages cannot take full advantage of collection-oriented match algorithms.

Another limitation of tuple-oriented Janguages is their inability to express aggregate operations
on collections of data. Tuple-oriented languages that fire multiple instantiations per msa
cycle, like PPL and PARULEL, allow only element-wise operations. In addition to limiting
expressiveness, this restriction creates serious performance problems for tight sequential loops.
In such cases, it is possible that the matching overhead can swamp the computation.

This chapter presents the design and implementation of a collection-onented production lan-
guage, COPL.

7.1 Design of the Collection-oriented Production Language

7.1.1 Desiderata

From the discussion in the previous chapter, it is clear that the primary goal in the design of a
collection-oriented production language should be to allow the programmer (and the compiler)
to delay and, if possible, elimmate cross-products between collections of tuples matching
different conditions To delay cross-products, 1t is necessary to create and hold the component

139

ADA289345

AT Y SNYSYTS AN

7.1. DESIGN OF THE COLLECTION-ORIENTED PRODUCTION LANGUAGE 140

coliections. This imphes that such 2 language should allow conditions to be matched by
collections of tuples instead of individual tuples and correspondingly it should generalize the
notion of instantiation from a sequence of tuples to a sequence of collections of tuples.

Recall from Section 2.2, that variables are bound on their first occurrence. The condition in
which a variable first occurs 1s referred to as its binding condition and the field in which it
appears is referred to as its binding field. In scalar languages, like OPSS5, a variable is bound
to the value of the binding field in the tuple that matches the binding condition. For example,
in Figure 7.1, the variable <var> is bound to the value from the size field of the tuple(s)
that match(es) the first condition. In a scalar language, the tuple-space in Figure 7.1 results
mn the generation of three instantiations, each with a separate tuple corresponding to the first
condition and accordingly, <var> is separately boundto 11, 12 and 13. In acollection-oniented
language, a variable is bound to the value of the binding field for all the tuples that match the
binding condition. For example, in Figure 7.1, the binding condition for the variable <var>,
that is the first condition in the production, matches the collection <{T3,T4,T5}, {T1}>.
As a result, <var> is bound to the collection of size values from all the tuples that match

this condition, that is {11,12,13}.

(p yack-boots
(object Atype jack-boots Asize <var>)
(specification #object jack-boots Asize <= <var>)
->
(modify 1 Aacceptable yes))

T1. (specification “object jack-boots Asize 11)
T2: (object Atype jack-boots Asize 10)
T3: (object Aype jack-boots Asize 11)
T4: (object Atype jack-boots Asize 12)
TS: (object Atype jack-boots Asize 13)

Figure 7.1: Example to illustrate variable binding

To take the full advantage of collection-valued variables, a collection-oriented production
language must extend the actions in the then-part to operate on collections For example,
in Figure 7.1, the modify action should mark all the tuples matching the first condition as
acceptable.

The following subsections describe the design of the Collection-oriented Production Language
(COPL) This language has been based on OPS5. Details on OPSS5 can be found in Section 2.2.

ADA289345

7.1. DESIGN OF THE COLLECTION-CRIENTED PRODUTTION LANGUAGE 141
7.1.2 Tuple space

Given the emphasis on collections, allowing tuples to contain collection-valued fields is a
natural extension. And if fields are allowed to contain collections, there is no reason why
they should be restricted to flat collections. The main argument against allowing collection-
valued fields is that they would ntroduce structure in the tuple-space and, in the extreme case,
cause the tuple-space to collapse into a single monolithic tuple. Such a drastic change in the
data representation would make it difficult, »f not impossible, to compare the performance
of collection-oriented languages and the corresponding match algorithms with thetr tuple-
oriented analogues. Furthermore, such a language would be incompatible with at least one
of the motivating applications — active relational databases. As a result, COPL retains an
unstructured tuple-space.

7.1.3 Conditions and Instantiations

COPL makes no changes in the OPS5 syntax for conditions. Each condition 1s matched by a
collection of tuples. Instantiations consist of a list of collections, one collection corresponding
to each condition in the production. The collections corresponding to non-negated conditions
must have at least one tuple; the collections corresponding to negated conditions must be
empty. Instantiations are maximal, that is it is not possible to add a tuple to any of its
component collections without violating the mutual consistency requirement.

Each variable 15 bound to the collection of values from the binding field. Values matching
all occurrences of a variable must be mutually consistent. Figure 7.2 shows an example.
This production attempts to pair up requests for operations with servers that are capable
of performing the operation. The first instantiation corresponds to requests and servers for
the current-time operation and the second instantiation corresponds to the set-time
operation. Note that the instantiations are maximal,

Since individual COPL instantiations usually correspond to a large number of OPS5 instan-
tiations, the COPL conflict sets are much smaller. Therefore, the selection strategy used 15
much less important. To order the collection-oriented instantiations, COPL extends the OPS5
selection strategtes, Recency of an instantiation is computed by extracting the most recent tuple
in every collection and using it as a proxy for the entire collection. Figure 7.3 shows how the
instantiations in Figure 7.2 would be ordered.

7.1.3.1 Actions

Extending actions to deal with collection-valued variables 1s more involved. Consider, for
example, the production in Figure 7.4. Under tuple-oriented semantics, a separate instantiation

ADA289345

7.1. DESIGN OF THE COLLECTION-ORIENTED PRODUCTION LANGUAGE

142

(p handle-requests
(request “1d <id> ~operation <op>)
(server “name <server> “capable-of <op>)
->
(some actions))

T1. (request “1id 1 “operation current-time)

T2 (request “1d 2 “operation current-tume)

T3. (request Aid 3 Aoperation set-ume)

T4: (server Aname time-0 Acapable-of set-time)

T5: (server Aname time-1 Acapable-of current-ime)
T6: (server “name time-2 capable-of current-time)

Instantiations:
<{T1,T2},{T5,T6}> -- <op> = current-time, <id> = (1,2}, <server>= {tme-1,lime2}
<{T3},{T4}> -- <op> = set-time, <id> = {3}, <server> = {time-0}

Figure 7.2: Example of binding collections to variables

(ATLT2L{TST6)> <{T3},{T4}>)

Extract most recent tuple from each collection

<T12,T6> <T3,T4>)

Sort the imetags
<T6,T2> <T4,T3> }

Compare in order
(16> T4 => <T6,12> > <T4,T3>)

Figure 7.3* Example of instantiation ordering 1o COPL

ADA289345

—
£
(V5

7.1 DESIGN OF THE COLLECTION-ORIENTED PRODUCTION LANGUAGE

is generated for every way in which the production can be matched (there are nine such
instantiations). The make action for each instantiation has unique values for both <obj1> and
<obj2>. Under collection-oriented semantics, only one instantiation is generated and both
the variables are bound to the collection {T1,T2,T3}. To achieve the same functionality as the
tuple-onented version of the program, the make action has to generate a cross-product of the
two variables.

(p make-pairs
(object Md <objl> Atype <t>}
(object Aid <obj2> Atype <t>)
->
(make pair Afirst <objl> Asccond <obj2>))

T1: (object Aid 1 *type abacus)
T2: (object Aid 2 Aype abacus)
T3 (object 1d 3 Atype abacus)

Figure 7.4: Production that generates a cross-product in the tuple-space

However, generating a cross-product of variables is not appropriate for all instances of a
make action. Consider the case in Figure 7.5. Under tuple-oriented semantics, again nine
instantiations are generated. But only three of them are fired as each firing also deletes one of
the objects. The result of the three firings is three pair tuples, each with a different object
in the £irst field. To achieve the same functionality under collection-oriented semantics,
the make action should establish a 1-to-1 correspondence between the values of <obj 1> and
<obj2>.

To correctly handle the conflicting requirements of these two situations, COPL extends the
semantics of make and introduces two new functions - insert and update. The make
action creates a cross-product of all argument collections but it does not add them to the tuple-
space. Instead, it gathers them into a collection and returns the collection as the result of
the make action. Actual addition of the tuples to the tuple-space is done by insert. The
update function takes three arguments, a collection of tuples, a field index and a collection
of values. The cardinality of the two collections should be 1dentical. It assigns the n* vajue
in the second collection to the given field of the n** tuple in the first collection. It returns the
collection of tuples after the update. Figure 7.6 shows how these functions can be used to write
COPL versions of the productions shown in Figures 7.4 and 7.5,

The treatment of the modify action is simpler. This action only updates fields of tuples and

ADA289345

7.1. DESIGN OF THE COLLECTION-ORIENTED PRODUCTION LANGUA

K

(p make-pairs-umque
(object A1d <objl> Aype <t>)
(object Md <obj2> Atype <t>)
->
(make pair Airst <obj1> Asecond <ob)2>)
(remove 1))

T1' (object A1d 1 Atype abacus)
T2: (object Aid 2 Atype abacus)
T3: (object ~id 3 Aype abacus)

Figure 7.5: Production that does not generate a cross-product in the tuple-s

n
-Sp

nra
an

(p make-pairs
(object Aid <obj1> Atype <t>)
(object Aid <obj2> Atype <t>)
->
(insert (make pair “first <objl1> 4second <obj2>}))

(p make-pairs-umque
(object *id <obj1> Mype <t>)
(object %id <obj2> Atype <t>)

->

(nsert (update (make pair Mirst <obj1>)
Asecond <oby2>))

(remove 1))

Figure 7.6 Cross-product and non-cross-product makes in COPL

ADA289345

....
>
<n

7.2. IMPLEMENTATION OF COPL

never gererates additional tuples. COPL allows the arguments to modi fy be ether scalar
values or collections. However, the cardinality of any collection-valued argument must be the
same as the cardinality of the collection of tuples being modified. Figure 7.7 shows an example
of the modify action. This production computes the sum of all values and stores in the
sum tuple. Note that the call to the function sum takes a collection as an argument.

(p sum-values
{value ~data <d>)
(sum Aresult 0)
>
(modify 1 result (sum <d>)))

Figure 7.7: Example of modi £y in CCPL

The remove action can be easily extended to handle collections. Instead of deleting a single
wple, it deletes a collection of tuples.

The foreign functions called by COPL can take either scalar or collection-valued arguments.

The next section describes coplc , an implementation of COPL.

7.2 Implementation of COPL

coplc is an implementation of a subset of COPL. It compiles al} of COPL except negated
conditions to portable C code. The run-time system is entirely in portable C. It requires no
special operating system support and runs on any machine that has a C compiler. cople
generates uniprocessor code and makes no attempt to parallelize the program. For matching,
it uses the Collection Rete algorithm described in Section 6.3. coplc , is based on the
PPL implementation described in Section 3.4. The pplc compiler has been modified to
generate code for the Collection Rete algorithm. The run-time library has been modified to
handle collection-oriented tokens and instantiations and to support the extended versions of
the actions. The description of the Collection Rete algorithm in Section 6.3 Jeaves several
operations, like mergeable(), breach() and create_inst(), unspecified in the interest of clarity.
Following subsections describe how these operations have been implemented.

ADA289345

7.2. IMPLEMENTATION OF COPL 146

7.2.1 Data structures

Right memory: A right memory is implemented as an ordered list of equivalence classes.
Each equivalence class is implemented as an ordered list of tuples. The first field being tested
at the 3 node associated with the memory is used to partition the tuples into equivalence classes.
This field is referred to as the characteristic field of the memory. An equivalence class contains
all tuples with the same value for the characteristic field. Since most 3 nodes have a single test,
and since membership tests are expected to be frequent, equivalence classes cache the value of
the characteristic field. The order on the values in the characteristic field is used to order the
equivalence classes. The tuples within each equivalence class are ordered in the descending
order of their timetags,

Ordering the equivalence classes allows the search for an equivalence class to often be ter-
minated without traversing the entire list. This allows efficient implementations of addition
and deletion. It also allows efficient implementation of searching for matches. Searching for
an equality test consists of finding the equivalence class with a matching characteristic value;
searching for an inequality test consists of collecting the tuples in all the other equivalence
classes; searching for relational tests consists of collecting the wples in all the equivalence
classes before (for < tests) or after (for > tests) the matching equivalence class.

coplc does not hash right memories since partitioning the tuples into equivalence classes
already achieves most of the benefits of hashing. If the number of equivalence classes becomes
large, a hybrid scheme which uses hashing to quickly find desired equivalence classes might
become attractive.

Left memory: A left memory is implemented as a list of collection-oriented tokens. Each
token 15 an array of collections, one collection corresponding to each condition. Each collection
is an ordered list of pointers to tuples. Pointers to tuples are ordered by the timetags of the
tuples they point to. Ordering the tuples permits efficient equality tests on collections. Two
collections are equal if and only if the first tuple in both of them is the same. Therefore, the
test for equality of collections reduces to the test for the equality of a pair of pointers. Efficient
implementation of collection equality, in turn, allows efficient implementations of procedures
that manipulate tokens like, mexrgeable () and find.token().

Hashing left memories has been shown to achieve a significant speedup for Rete {42] since
1t quickly isolates the tokens that are likely to match. There are two reasons why hashing
is unlikely to achieve similar gains for Collection Rete. First, since each collection-oriented
token usually corresponds to 2 large number of tuple-oriented tokens, the size of left memories
is expected to be much smalier for Collection Rete. Second, since the tuples in a collection can
have different values for the field(s) being tested at the associated 3 node, a collection-oriented
token would have to be hashed to multiple buckets. Partitioning a collection-oriented token so
that each partition only has tuples with the same value(s) for field(s) to be tested would allow
each token to be hashed to a single bucket but would violate the maximality requirement for

ADA289349

7.2 IMPLEMENTATION OF COPL 147

wstantiations. Reordering the tuples based on the value(s) of the field(s) to be tested would
destroy the canonical order based on timetags Without a canonical order on the tuples in
a collection, testing two collections for equality would require complete traversals of both
collections

Contflict set: The conflict set consists of a heap of heaps. All the instantiations for individual
production are or anized 1n a production-specific heaps; the highest ranking instantiations for
all the pre.” » are organized into another heap. As mentioned earlier, COPL uses an
extended vc.> un of the OPSS instantiation selection strategy. Recency of an instantiation is
computed by extracting the most recent tuple in every collection and using it as a proxy for the
entire collection. Figure 7.3 sh* vs how the instantiations in Figure 7.2 would be ordered.

7.2.2 Procedures

mergeable (tokenl, token2) : Two tokens can be merged if and only if they differ in at
most one collection. As discussed above, equality of two collections can be tested by checking
1if the first pointer in the two lists are equal. Therefore, checking if two tokens can be merged
needs at most n pointer comparisons where n is the number of collections.

merge (tokenl, token2) : This procedure merges the first token into the second. It is
assumed that the two tokens differ in only one slot and the index of this slot has already
been computed (presumably during the call to mergeable () which precedes the call to this
procedurs). The first token is merged into the second by merging its collection in the differing
slot with corresponding collection for the second token. This requires merging of two sorted
lists of tuples. The cost of merging two sorted lists of length, /; and L is O(/; + by).

find_token (token, token.list, incr) : This procedure searches token.list for
token. Two tokens are equal if and only if all their collections are equal. Therefore, finding
a token takes O(n/) time where # is the number of collections in the tokens and ! is the length
of the list of tokens. If the token is found, its count of matches is incremented by incr.

extend (token, tuple) : This procedure is used to create successor tokens. The existing
token 1s copied and a singleton collection consisting of tuple is appended to it. Since only
the pointers to the collections have to be copied and not entire collections, the time taken 1s
O(n) where n is the number of collections. Creation of the singleton collection and appending
it to the token takes constant time since a token is implemented as an array of collections.

delete.tuple.lrom.slot {tuple, slot): This procedure first checks if the tuple to
be deleted and the tuples in the slot are of the same type. If not, it returns right away. Otherwise,
it takes advantage of the timetag order on the tuples 1n a collection to avoid scanning tuples
whose timetags are smaller than its own. [n th2 worst case, it may need to traverse the whole
collection.

ADA289345

s
4
<o

72. IMPLEMENTATION OF COPL

breach(token, tuple, test) : This procedure splits token into two parts, one that 1s
consistent with tuple and the other that is inconsistent with it. Consstency with a tuple 1s
defined in terms of test which tests one or more fields of the tuple and one or more slots of
the token. The consistent and inconsistent subtokens differ only 1n the slots that are tested by
test. Breaching is implemented by scanning the slots tested by the test and partitioning
their collections into consistent and inconsistent subcollections. The subtokens are created by
copying the pointers to slots that are not tested and copying the subcollections for the slots
that are. Copying a collection consists of copying the list of pointers to tuples. The tuples
themselves are not copied If & slots out of n are tested and the lengths of the subcollections in
the i* tested slot 1,, then the time taken is (n = k) + T 1.

create.inst (token): this procedure extracts the most recent timetag from each of the
collections in the instantiation and sorts them. Since, the collections are sorted in descending
order of timetags, extracting the most recent timetag for a collection is a constant time operation.
It uses heap sort to sort the timetags which takes time O(rlogn) where n is the length of the
instantiation.

The next chapter evaluates the scalability of collection-oriented match algorithms and compares
their performance with that of tuple-oriented algorithms for large tuple-spaces.

ADA289345

Chapter 8

Collection-oriented Match Experiments

The primary goal of these experiments was to evaluate the scalability of collection-oriented
match algorithms. A lesser goal was to compare the performance of collection-oriented match
algorithms and their tuple-oriented analogues for large tuple-spaces. To help achieve both
goals, programs that process scalable data sets were selected as benchmarks and each bench-
mark program was run with successively larger tuple-spaces. In these experiments, Rete was
selected as the exemplar for tuple-oriented match algorithms and its collection-oriented ana-
logue, Collection Rete, was selected as the exemplar for collection-oriented match algorithms.
The corresponding compilers, pplc and cople, differ only in the match algorithm used. The
run-time libraries for the two implementations differ only in COPL's support for aggregate
operations on collections. In comparison, PPL provides only element-wise operations on col-
lections through joint firing of all instantiations of a production. Therefore, the differences
in performance can be directly attributed to these two factors. This chapter describes the
experiments and their results. The first section describes the benchmark programs. The next
section describes the structure of the experiments. The third section compares the performance
of PPL and COPL on the benchmark programs. The fourth section discusses the scalability of
collection-oriented match algorithms. The chapter concludes with some observations from the
experiments including programming idioms for collection-oriented production languages.

8.1 Benchmarks

e

The benchmark suite consists of three programs, make- teams, clustersandairline-route.

Two of them, make-teams and airline-route operate on databases (of employees and
airline routes respectively) and the third, clusters, performs clustering on image regions.
All of them process scalable data sets, that is data sets that can be characterized by a numerical

149

ADA289345

8] BENCHMARKS 150

parameter and which can be scaled by assigmng increasing values to this parameter. All of
them were originally written in OPSS. Code for these programs can be found in Appendix F.

8.1.1 Creating teams with constraints (make-teams)

This program operates on a database of employees which contains information about their area
of expertise and previous expenience. It also contains an overall numerical evaluation of each
employee’s past performance. The task is to build teams with four employees each. The teams
are to be formed with the constraints that each mem?>r must have a different area of expertise
and that some of the members must have worked together previously. There are four areas
of expertise - hardware, compilers, networks and operating systems. This program builds all
such teams and determines the number of teams that are “good”. The “goodness” of a team is
defined as a sum of the ¢, aluations of its members. This program was written by Milind Tambe
at Carnegie Mellon University.

This program consists of three phases. The first phase creates all valid teams and computes
their “goodness” score. Each team can be independently created. The second phase identifies
all the “good” teams based on the “goodness” score computed by the previous phase. The final
phase counts the number of “good” teams.

Conversion to PPL: Since all teams can be created independently, the production that creates
the teams and computes their goodness score was converted to a paralle] production. Since
selection of a team as a “good” team depends only on its own score, it can be performed
in paralle} for all the teams. To achieve this, the production that selects “good” teams was
converted to a parallel production. The third phase consists of a non-parallelizable loop similar
to the counting loops in hotel (see Section 4.1.4). PPL versions of these three productions

are shown in Figure 8.1.

Conversion to COPL: Only three productions 1n this program have conditions that are matched
by more than one tuple — the production that creates the teams, the production that selects
“good” teams and the production that counts the selected teams. Consider the first production
(its PPL version is shown in Figure 8.1). Under tuple-oriented semantics, there are as many
instantiations as teams. Each instantiation creates the tuple corresponding to one team and
compates 1ts score. Under collection-oriented semantics, there are as many instantiations as
the number of previous projects. Each mstantiation creates the tuples for all the teams whose
hardware and compiler experts have previously worked together on a particular project (the
value bound to the variable <project>). The tuples for all such teams can be created by
generating the cross-product of the collections bound to <id1>, <id2>, <1d3> and <id4>
and creating a tuple for every element of the cross-produc.. This 15 exactly what the COPL make
action does. This production also computes the “goodness™ score for each team. To achieve
that, the COPL. version of this program uses a C procedure computed () which generates a

ADA289345

8.1. BENCHMARKS 151

(parp make-team
(goal ~name create-teams)
(person A1d <1d1> “expertise hardware Aprevicus-preject <project> Ascore <v1>)
(person *id <1d2> Aexpertise operating-system Ascore <v2>)
(person “1d <1d3> Aexpertise networks #score <v3>)
(person M1d <1d4> “expertise compilers “previous-project <project> Ascore <v4>)
->
{make team ~hardware <id1> “operating-systems <id2> *networks <id3>
Acompilers <id4> Ascore (compute <vi> + <v2> + <v3> + <v4))

(parp create-teams
(goal ~name select-team)
(team Ascore > 8§ Aselect-status ml)
>
{modify 2 Aselect-status selected))

(p count-teams
(goal Aname count-teams)
(team Aselect-status selected)
(count ~value <value>)
->
(modify 2 Aselect-status counted)
(modify 3 Avalue (compute <value> + 1)))

Figure 8.1: PPL productions for make-teams

corresponding cross-product of the individual scores (collections bound to <vl>, <v2>, <v3>
and <v4>) and sums each combination.

The production that selects “good” teams needs no conversion as all it does is match a set of
tuples and modify them. Under tuple-oriented semantics, a separate instantiation is generated
for every team whereas under collection-oriented semantics only one instantiation is generated
for all the teams.

As discussed in Section 5.2 4, loops that perform any sort of accumulation over a collection of
data items are a major source of inefficiency in tuple-oriented production system languages. The

ADA289345

8.1. BENCHMARKS 152

production that counts the selected teams 15 an instance of this. In every cycle, an instantiation
is created for every team that has not yet been counted. One of these instantiations s selected
and fired. This modifies the tuple containing the counter which leads to the deletion of the other
instantiations. In the next msa cycle, this process repeats with the new counter tuple and the
remaining teams. As a result, O(n?) instantiations are created, of which only 7 mstantiations are
fired. Under collection-oriented semantics, only one instantiation 1s generated and the teams
are counted by a C function (cardinality()).

COPL versions of these three productions are shown in Figure 8.2.

i (p make-team

(goal “name create-teams)

(person “1d <1d1> “expertise hardware Aprevious-project <project> “score <v1>)

(person ~1d <id2> Aexpertise operating-system #score <v2>)

(person 4id <id3> "expertise networks Ascore <v3>)

(person “id <id4> “expertise compilers Aprevious-project <project> Ascore <v4>)
->

(insert (update (make team “hardware <idI> “operating-systems <1d2>

Anetworks <id3> Acompilers <id4>)
Ascore (computed <v1> <v2> <v3> <v4>)))

(parp create-teams
(goal *name select-team)
(team Ascore > 8 Aselect-status ml)
->
(modify 2 Aselect-status selected))

(p count-teams
(goal “name count-teams)
(team “hardware <id> Aselect-status selected)
->
(insert (make count *value (cardinality <1d>))))

Figure 8.2: COPL productions for make-teams

Data set: The data set for make-teams is parameterized by the number of employees. The

ADA289345

&8 1. BENCHMARKS 153

number of previous projects 1s fixed at ten and the number of compiler experts is fixed at
five. The compiler and hardware experts are equally (and randomly) distributed over all the
projects. Other employees are randomly assigned projects with no restriction on distribution.
The restriction on the number of compiler experts was introduced to hmit the aumber of
tple-oriented instantiations generated. Without this restriction, the number of tuple-oriented
instantiations grew so fast that only very small data sets could be processed on a Decstation
5000/200 with 96 megabytes of main memory

8.1.2 Clustering image regions (clusters)

This program operates on image regions that are charactenized by position and type (e.g. road,
hangar, tarmac, etc.). The regions are divided into seed regions, tarmacs, parking-aprons or
hangars, and non-seed regions. Every seed region forms the center of a cluster which includes
all regions within a given distance from it. The task is to determine the average size of these
clusters. The computation performed is loosely similar to the computation in the second and
third phases of SPAM{75],! a knowledge-based image analysis program. This program was
written by Milind Tambe at Carnegie Melion Umiversity.

This program consists of three phases. The first phase computes the distance between each
seed region and all other regions. The second phase creates clusters around each seed region
The third phase computes the sizes of all clusters and computes their mean.

Conversion to PPL: The distance between all pairs of regions can be computed in parallel. To
achieve this, the production that computes the distance between a pair of regions was converted
to a parallel production. Since there is no restriction on overlapping of clusters, all clusters can
be created in paralle]l. To achieve this, the production that generates the links between the seed
and the other members of a chister was converted to a parallel production. The third phase
consists of two accumulation loops. The first loop is doubly nested and counts the number of
members in every cluster. The second loop adds up these counts. Since PPL does not support
aggregate operations like accumulation, productions in the third phase are left unchanged.
Figure 8.3 shows the PPL versions of the converted productions.

Conversion to COPL: There are four productions in this program with conditions that match
multiple tuples - the production that computes the distances, the production that creates the
clusters, the production that computes the size of individual clusters, and the production that
sums the sizes of the clusters. Consider the first production (its PPL version is shown in
Figure 8.3). Under wple-oriented semantics, a separatc instantiation is generated for every pair
of regions, th* first being a seed region. Each instantiation computes the distance between this
pair of regions and generates the corresponding distance tuple. Under collection-oriented

'Section 4 1.5 contains a brief description of SPAM.

ADA289345

8.1. BENCHMARKS 154

(parp compute-distance
(goal “name calculate-distance)
(object *number <nl1> Ax <x> Ay <y> *ype <<tarmac parking-apron hangar-building>>)
(object Anumber <n2> Ax <x1> Ay <yl>)
>
(make distance “seed <nl> “element <n2>
Avalue (compute (<X1>-<x>)*(<x1>-<x>) + (<y1>-<y>)*(<y1>-<y>)))

(parp create-clusters
(group “name create-groups)
(object “number <nl> *ocus yes)
(distance Aseed <n1> Aclement <n2> Avalue {>0 <800})
>
(make group Acenter <nl> *member <n2> Acounted no))

Figure 8.3: PPL productions for clusters

semantics, only one instantiation is generated, <nl1> being bound to the coliection of all seed
regions and <n2> being bound to the collection of all regions. To generate all the distance
tuples, it is necessary to create a cross-product of <n1> and <n2>. This can be directly done
using the COPL make action. The distance between different pairs of points is computed by
the C function compute.distances () which creates a corresponding cross-product of the
coordinates and returns a collection of distances (actually squares of distances).

The production that creates the clusters is simpler to convert. Under collection-oriented
semantics, one instantiation is generated per seed region, <n1> is bound to the seed region and
<n2> 15 bound to the collection of regions within v/800 distance units from it. One link is to
be created between a seed region and every member of its cluster. Creating a cross-product of
<nl> and <n2> using the make action achieves the desired effect

The remaining two productions accumulate values from collections. Their collection-oriented
versions move the accumulation loops from the production system paradigm where they are
inefficient to a procedural paradigm where they can be efficiently implemented. The COPL
versions of these productions use two C procedures, summation () and cardinality (),
for the computation.

Figure 8.4 shows the converted productions.

Data set: The data set for clusters is parameterized by the number of seed regions The

ADA289345

8 1. BENCHMARKS

155

(p compute-distance
(goal “name calculate-distance)
(object *number <nl> Ax <x> Ay <y> Mype <<tarmac parking-apron hangar-building>>)
(object “number <n2> *x <x1> "y <yl>)
>
(nsert (update (make distance "seed <nl> “element <n2>)
Mvalue (compute_distances <x1> <x> <y1> <y>))))

(p create-clusters
(goal “name make-groups)
(object “number <ni> Afocus yes)
(distance “seed <nl> “element <n2> Avalue {>0 <800))
->
(insert (make group “center <nl> *member <n2>)))

(p compute-cluster-size
(goal “name get-group-sizes)
(object “number <n1> ~focus yes)
(group Acenter <n1> *member <n2>)
->
(insert (make group-count Acenter <n}> *size (cardinality <i2>)}))

(p count-clusters-and-sum
(goal “name average-group-sizes)
(group-count Acenter <nl> Asize <sz>)
>
(msert (make average-s1ze Asum (summation <sz>) Acount {cardinality <n1>)))

Figure 8.4: COPL productions for clusters

ADA289345

8.1. BENCHMARKS 156

total numbes of regions 1n a data set is ten times the number of seed regions. Each region is
randomly assigned a unique position in a 100x100 grid.? The relation between the number of
sead and non-seed regions has been picked to keep the number of tuple-oriented instantiations
under control.

8.1.3 Airline routing (airline-route)

This program operates on an airline flight database with fields for source, destination and cost of
each flight. The task is to find a minimum cost route from a given source to a given destination
with a given number of hops. If no route with the given number of stops can be found, the
cheapest route overall is desired. This program was written by Milind Tambe at Camnegie
Mellon University.

This program has two phases. The first phase computes all the routes from the source to the
destination and the second phase picks the best available route.

Conversion to PPL: Finding a route 1n the database does not need to modify the database.
Therefore, it is possible to compute all routes independently. This can be achieved by converting
all productions that compute routes to parallel productions. Figure 8.5 shows the PPL version
of one of them, the production that finds all the routes from the source to the destination with
exactly one intermediate stop. The selection of the best available route is done using the match
process directly. The production implementing this :s also shown in Figure 8.5.

Conversion to COPL: The only productions whose conditions match multiple tuples are the
productions that compute the routes. As an exemplar, consider the production that computes
the routes with two hops (PPL version of this production is shown 1n Figure 8.5). Under tuple-
oriented semantics, a separate instantiation is generated for every pair of flights that connect the
source and destination. Under collection-oriented semantics, one instantiation is generated per
stop-over point; <id1> is bound to the collection of flights from the source to the stop-over
point and <1d2> is bound to the collection of flights from the stop-over point to the destination.
All th» corresponding route tuples can be generating by creating a cross-product of these
two variables. The COPL version of the production (shown in Figure 8.6) uses a C function,
compute.costs.2 (J, to compute the costs of all the flight combinations. It uses another C
function, vector.gensym () to generate a vector of unigue identifiers for the routes.

Data set: The data set for airline-route is parameterized by the number of flights from
each hub airport. The number of airlines 1s fixed at ten and the number of airports is fixed at
twenty. Each airline is randomly assigned an airport as a hub. The flight database is created
by generating paired flights from these hubs to random destinations. The cost for each flight is
randomly assigned and is same in both directions.

2A few of the very large data sets were generated 1n a 400x400 gnd

ADA289345

8.1. BENCHMARKS

157

(parp two-hops
(goal “name compute-routes)
(traveller “name <x> Asource <src> “destination <dest>)
(fhight Asource <src> Adestination <stop-over> Acost <c1> *id <id1>)
(flight Asource <stop-over> Adestination <dest> Acost <c2> Aid <id2>)
->
(make route Alength 2 M1d (gensym) Araveller <x> Aflight] <id1>

Ahight2 <1d2> Acost (compute <c1> + <¢2>)))

(p print-lowest-cost-route
(goal ~name pnint-route)
(travel-constraint ~traveller <x> *hop-number <hops>)
(route Alength <hops> Atraveller <x> Acost <c>)
-(route *length <hops> Atraveller <x> “cost < <c>)
->
(make min-cost Atraveller <x> Acost <c> Alength <hops> *recommended yes))

Figure 8.5: PPL productions for airline-route

(p two-hops

(goal “name compute-routes)

(traveller ~name <x> "source <sre> Mdestination <dest>)

(flight Asource <src> Adestination <stop-over> Acost <c1> Aid <id1>)

(flight Asource <stop-over> Adestmation <dest> Acost <c2> Mid <id2>)

->

(insert (update (make route Alength 2 Atraveller <x> AMflightl <id1> Alight2 <d2>)
Acost (compute_costs_2 <cl1> <¢2>)
Aid (vector_gensym (cardinality <id1>) *(cardinality <id2>))}))

Figure 8.6: COPL productions for airline-route

ADA289345

8.2. DESIGN OF THE EXPERIMENTS 158

8.2 Design of the experiments

These experiments measure and compare the performance of PPL and COPL versions of
the benchmark programs. Both versions were compiled at the highest level of optimization
available in the respective compilers. The C code generated by the compilers as well as the
code for the run-time libraries was compiled using the MIPS cc compiler version 1.31 with the
-0 option. For these experiments, the uniprocessor verston of pplc was used.

A sequence of experiments was conducted for both versions of each program. Data sets for these
experiments were generated by assigning larger and larger values to the data set parameters.
Each sequence was terminated when the execution time for either version increased beyond
half an hour. Execution time for each experiment was determined using the time facility 1n
csh. In all cases, it was the PPL version that was first to run out of time. These experiments
were conducted on a Decstation 5000/200 with 96 megabytes of main memory running the
Mach 2.6 operating system. To further probe the scalability of Collection Rete, additional
experiments were conducted for the COPL versions. Most of these experiments were conducted
on Decstation 5000/200s with 96 meg memory running Mach 2.6. A few experiments that
required a very large amount of memory were conducted on a Decstation 5000/260 with 480
megabytes of main memory running Ultrix 4.3.

8.3 Comparison between PPL and COPL

Figures 8.7, 8.9, and 8.11 compare the growth of end-to-end uniprocessor execution time for
PPL and COPL versions of the benchmark programs. For all three programs, both versions
take comparable time for small data sets. For larger data sets, the time taken by the PPL
version grows much faster than the time taken by the COPL version. Furthermore, ratio of the
execution times also increases with the data set size.

Figures 8.8, 8.10, and 8.12 compare how the space needed for match operations grows for the
two versions. For all three programs, the match space required by COPL is significantly less
than the match space required by PPL and the difference increases with an increase in the data
set size. This shows that the performance improvement achieved by COPL is not a time-space
tradeoff.

8.3.1 Analysis
For all the three benchmark programs, the COPL version outperforms the PPL version. How-

ever, there is a very large variation in the magnitude of the performance difference. On one
extreme, the COPL version of make- teams is up to 6500 times faster and uses up to 12 times

ADA289345

8.3 COMPARISON BETWEEN PPL AND COPL 130

Time taken {seconds)

Space for match algorithm (kbytes)

3000
2500 ' ' 7’
#-— 4 PPL : /
2000 e—— COPL Y
by
, /
1500 —
/
1000 /
, /
500 [
i _A
: -
0 + -
i
5005 10 20 30 40 50 60 70 80
Number of employees
Figure 8.7: Execution time for make-teams
1600
//
1400 — PBL / v
[P!
1200 COPL .
/
1000 Y.
/
800 4
7/
600 "
v
400 J ,//
Pl
200 e 4
0 "";& =4 t""——"-———-""-‘r‘/_‘
10 20 30 40 50 60 70 80
Number of employees

Figure 8.8: Match space for make-teams

ADA289345

8.3 COMPARISON BETWEEN PPL AND COPL

Time taken {seconds)

Space for match algonthm (kbytes)

8

2500
/l
2
000 ™7
1500 {/
/7
e == | PPL /
—s| COPL ;
1000 :
I g
//
500
0| = <l SIS SR WD W WO
0 200 400 600 800 1000 1200 1400 1600 1800
Number of image regions
Figure 8.9; Execution time for clusters
1400 :
! 3
i /
1200 : s
g = PPL . o,
N 7/
: ya
800 7
/
600 A<
-~
400 (,/ ;
200 ”A j
_ V’/] /-“/
0-4--‘$E:=—“j
¢ 50 100 150 200 250 300 350 400

Number of image regions

Figure 8.10: Match space for clusters

ADA2R3934C0

8.3. COMPARISON BETWEEN PPL AND COPL

Time taken (seconds)

Space for match algorithm (kbytes)

—
cn

1500

PPL |
COPL !

1000

/

500

A
x

0

A
e

0

10000

Py

50

100~ 150

200 250

300 350 400
Number of flights

Figure 8.11: Execution time for airline-route

9000

=== PP
s COPL

8000
7000

6000

5000

4000

/'/

yi
/'(’/

3000
2000

1000

.

Erd

50

100

150

200

250 300
Number of flighst

Figure 8.12: Match space for airline-route

T ADA289345

8.3. COMPARISON BETWEEN PPL AND COPL 162

less space than the PPL version, on the other extreme, the COPL versionof airline-~route
1§ no more than 7.5 times faster than the PPL version and uses only 1.6 times less space;
clusters falls tn between these extremes with up to 150 fold improvement in execution
time and up to 3 4 fold reduction in match space. This section analyzes individual benchmarks
to explain this large vanation. Since the implementations of PPL and COPL differ only n
the support for aggregate operations, the difference in performance can be attributed to the
productions that match and operate on aggregates.

make-teams: Only three productions in this program have conditions that match multiple
tuples — the production that creates the teams, the production that selects “good” teams and the
production that counts the selected teams. COPL versions of these productions are shown in
Figure 8.2.

Since the number of compiler experts is limited to five® and they are equally distributed, each
compiler expert has a different value of previous-project. All the other employees are
randomly, and approximately equally, distributed over all the ten projects. Therefore, five
collection-oriented instantiations are generated for the production that creates the teams. In
comparison, O(n*) tuple-oriented instantiations are generated for this production (n being the
number of employees).

The “goodness” scores for all the employees are randomly assigned from the range {0,4] and
the threshold for a “good” team is 8. There are 5* = 625 ways in which members of a team
can be assigned numeric evaluations. Only 54 of these add up to a “goodness” score over 8.
Since the numeric evaluations are randomly assigned, the expected value of the fraction of all
possible teams that are selected by the second production is 54/625 = 0.0864. Since a separate
tuple-oriented instantiation is penerated for every selected team, O(n®) such instantiations are
generated. In comparison, only one collection-oriented instantiation is generated.

The third production counts the number of “good” teams. Under tuple-oriented semantics, a
quadratic number of instantiations are generated for counting. Since there are O(»%) teams,
O(n®) tuple-oriented instantiations are generated. In comparison, only one collection-orie. ted
instantiation 1s generated.

clusters: There are four productions in this program with conditions that match multiple

tuples - the production that computes the distances, the production that creates the clusters, the

production that computes the size of individual clusters, and the production that sums the sizes
the clusters. COPL versions of these productions are shown 1n Figure 8.4.

Since the rato of the number of seed regions and the number of non-seed regions is fined
(ten), the number of tuple-onented instantiations of the production that computes the distances
18 O(n?), where n is the number of seed regions. In comparison, only one collection-oriented
instantiation is generated

3Compler expents being worth their weight in goid -

ADA289345

-
N
[rs}

8.3. COMPARISON BETWEEN PPL AND COPL

Since the seed regions are uniformly distributed over the 100x100 grid, their density 1s
n/10%, The expected number of seed regions within +/800 units of distance from any point is
/800n/ 10°. This is the expected number of clusters that each region occurs in. This is also the
expected number of tuple-oriented instantiations of the cluster-creation production generated
for every image regions. Since there are O(n) image regions, O(n?) such instantiations are
generated. In comparison, n collection-oriented instantiations are generated, one instantiation
per seed-region

The density of the non-seed image regions is 10n/10* = n/10°. Therefore, the expected value
of cluster size is +/800n/10%. Since, counting generates a quadratic number of tuple-onented
instantiations, O(r?) such instantiations of the third production are generated. In comparison,
n collection-oriented instantiations are generated, one per cluster.

Since there are n clusters, and since an accumulation loop generates quadratic number of tuple-
oriented instantiations, O(n?) such instantiations of the fourth production are gencrated. In
comparison, only one collection-oriented instantiation is generated.

airline-route: The only productions whose conditions match multiple tuples are the productions
that compute the routes. There are five such productions, for routes of length one through five.
There are twenty airports, ten of which are randomly chosen to be hubs. The data set is
parameterized by the number of flights from each hub. A separate tuple-oriented instantsation
of the k™ production is generated for every sequence of flights of length k which origmates at the
source and terminates at the destination. Consider the simplest case of direct flights. Since either
or both of the end-points can be hubs and since there is a 50% probabulity of any airport being
a hub and since the expected number of flights from any hub to any other airport 1s n/19, the
expected number of direct flights from the source to the destinationis 2 x 1/2 x n/19=n/19
Therefore, O(n) tuple-oriented instantiations are generated for the first production. Next,
consider the case of two-hop flights. Since the intermediate point must be different from
both the end-points, the expected number of Aight-sequences is 181/19 x n/19 = 18n%/19.
By generalization, O(n*) tuple-oriented instantiations are generated for the production that
computes the routes of length £.

For the production that computes the direct flights, only one collection-oriented instantiation is
generated. For the production that computes the two-hop flights, a separate collection-orniented
instantiation 15 generated for every intermediate point. There are 18 such points possible,
though not all of them might be linked to both source and destination. In general, C* collection-
oriented 1stantiations are generated for the production that computes k-hop flights, C being a
constant less than 20.

Summary: The difference in the number of instantiations is greatest for make- teams.
Accordingly, it demonstrates the largest difference in performance. The difference in the
number of instantiations is smaller for clusters and so is the difference in the performance.
The primary reason for the relatively small difference in the performance of the PPL and COPL

ADA289345

8.3. COMPARISON BETWEEN PPL AND COPL 164

versions of airline-route is the fact that the data sets used in the experiments correspond
to small values of the data set parameter. Since each increment in the data set parameter
corresponds to 20 flights, the Jargest data set shown 1n the figures corresponds to a parameter
value of 19. The larger data sets already show significant divergence n the performance. For
sufficiently large data sets, the difference should comparable to that achieved by make- teams.

While COPL uses less match space than PPL for all three benchmarks, the reduction in space
usage is much less than the reduction 1n the execution time. There are two reasons for this. First,
a large fraction of the space 1s consumed by right memory nodes. Collection-oriented match
does not reduce the cardmnality of right memory nodes. Second, collection-oriented match has
a space overhead ~ primarily for the maintenance of equivalence classes and collections. If
the average size of collections is large, these overheads are insignificant compared to the space
savings but if the average size of collections is small, this overhead can become significant.
Therefore, the ratio of the match space used is governed by the number of instantiations and
tokens a tuple appears in and by the average size of collections.

832 Critique

The magnitede of the results presented in the previous subsections raise questions about their
fairness and generality. This section discusses these questions.

Is the baseline efficient? The baseline used in these experiments, pplc 15 a highly optimized
implementation. Section 3.4 describes the suite of optimizations that have been incorporated
into pplc. Comparison of PPL with CParaOPSS, a compiler previously considered to be
state-of-the-art, shows PPL to be between 2 and 90 times faster and using between 2.2 and 4.2
times less space (see Section 4.2). On the other hand, the COPL implementation is a first-cut
implementation and is relatively under-optimized. A host of optimizations have been discussed
and proposed but are yet to be implemented.

o Shaning of collections between tokens: Currently, collections in a parent token are
copied whenever a successor 1s created. This is usually not necessary and it is possible
to statically determine when 1t and when it is not needed For large collections, avoiding
copyng collections could make a sigmificant difference.

Using equivalence classes as collections: For productions that contain no negated cond:-
tions, it 1s possible to use the equivalence classes directly as collections. This can reduce
the cost of matching a new tuple to the cost of finding the appropriate equivalence class
and adding the tuple toat. This optimization avoids performing 3 tests for tuples that join
pre-existing equivalence classes. Since 3 tests are by far the most expensive part of the
match process, this optimization has potential for large speedups for the programs it is
applicable to. With the availability of collection-oriented operations, negated conditions
are expected to be rare (see Section 8.5.2 for details).

ADA289345

2]
[
th

84. SCALABILITY OF COLLECTION-ORIENTED MATCH

o Hashing right memones: As the number of equivalence classes grows, 1t 1s beneficial to
orgamze a right memory into a hash table of equivalence classes.

For small tuple-spaces, the performance of PPL is comparable with that of COPL. In fact, for
small tuple-spaces of airline-route, the PPL version is up to 2.1 times faster than the
COPL version. Furthermore, as the results indicate, PPL has been able to deal with tuple-spaces
whose maximum size is over 139,000 tuples. No other production system implementation has
been reported to be able to process such large tuple-spaces.

How general are the results? These experiments study the performance of two match algo-
rithms, one tuple-oriented and the other collection-onented, 1n the presence of a combinatortal
explosion in the number of instantiations and tokens. They show that collection-oriented algo-
rithms are better able to deal with this combinatorial explosion, the magnitude of the difference
in performance depending on the selectivity of the tests 1n the productions and the patterns in
the data set. Programs processing large tuple-spaces have been used as benchmarks but the
occurrence of a combinatorial explosion is not limited to such programs. Programs processing
much smaller data sets can experience a combinatorial explosion in the number of instantiations
if the selectivity of the tests is low. For example, most Soar (66) programs process relatively
small tuple-spaces. However, the learning procedure sometimes creates productions of low
selectivity, called expensive chunks. These productions are so expensive to match that they
cause Soar to slowdown after leaming instead of speeding up.

Are the data sets unrealistic? The restrictions placed on two of the data sets, make-teams
and clusters may appear to be unrealistic but they have been imposed to reduce the
difference between the performance of PPL and COPL. For example, the restriction of five
compiler experts in make~teams hmits the number of instantiations for the production that
generates the teams to O(n®) and for the production that counts “good” teams to O(n%). In
the absence of this restriction, O(n*) tuple-oriented instantiations would be generated for the
former and O(n®) tuple-oriented instant.ations for the latter.

8.4 Scalability of collection-oriented match

Fora collection-oriented match algorithm, the number of instantiations for a production depends
on the extent to which the tuples matching tndividual conditions can be grouped together. If
all the tuples matching every condition can be grouped, only one instantiation 1s generated
for every production. On the other hand, if no grouping 15 possible, a collection-oriented
algorithm reduces to its tuple-oriented analogue. In other words, the number of instantiations
for a production depends on how the cotlections of tuples corresponding to each condition are
partitioned, or fragmented.

ADA289345

84 SCALABILITY OF COLLECTION-ORIENTED MATCH 166

Fragmentation: Cons:der the production and the tuple-space in Figure 8.13. This production
matches pairs of objects of the same type Stnce all the objects in the tuple-space are of the
same type, the tests 1 the production are unable to distinguish between them and only one
collection-oriented instantiation is generated — < {t1,¢t2,t3,t4}, {t1,t2,t3,t4)>.

(p pairs
(object Mid <object]> Atype <t>)
(object Aid <object2> Mype <t>)
->
(make pair Afirst <object]> Asecond <object2>))

tl. (object Md 1 Atype box 4size large)
t2 (object A1d 2 Atype box Asize large)
t3: (object A1d 3 Atype box Asize small)
t4: (object Aid 4 Atype box Asize small)

Figure 8.13: Example production and tuple-space

Now suppose the tests in the production are changed so that the size of the objects is also
tested. For example, if the test “size <size> isadded to both the conditions. The modified
production matches pairs of objects of the same type and the same size. Since the objects
are of different sizes, the modified tests are able to distinguish between them. The original
instantiation is fragmented into two - one with large objects, <{t1, t2},{t1, t2}>,and the
other with small objects, <{t3,t4}, {£3,td)}>.

On the hand, suppose the production remains as 1t is but the type of the second and fourth
objects is changed to circle. In this case, the tuple-space would be:

tl: (object ~id 1 “type box “size large)
t2. (object ~id 2 ~type circle “size large]
t3: (object ~id 3 ~“type box “size small)
td: (object *id 4 ~type circle “size small)

Since the objects are no longer of the same type, tests in the ongial production are able to
distinguish between them The original instantiation is fragmented into two - one with box
objects, <{tl, t3}, {tl, t3)>, and the other with circle objects, <{t2,t4}, {t2, t4d}>.
Now, if the additional test for the size of objects is included, each of these fragment undergo
fission resulting in the generation of four instantiations ~ <{t1},{t1l}>, <{t2}, {t2}>,
<{t3},{t3}>and <{td), {td}>.

ADA289345

e
By

84. SCALABILITY OF COLLECTION-ORIENTED MATCH

As the above examples show, fragmentation occurs when the tests in the production(s) are able
to distinguish between different tuples. As a program evolves, this can be due to an increase
in the specificity of the tests or a change in the distribution of values in the data. As the data
set for a given program increases, the number of mstantiations and tokens is likely to remain
the same if the additional tuples have the same value(s) for the fields being tested as existing
tuples For example, by adding

t5: (object “id 5 “type box “size large)
t6: (object *id 6 ~type box “size small)

to the tuple-space in Figure 8.13, no additional instantiations or tokens are generated. On the
other hand, if the tuples being added to a growing data set have different value(s) for the tested
fields as existing tuples. This leads to the generation of additional instantiations and tokens
For example, adding

t5: (object “id 5 “type circle “size large)
t6: (object *1d 6 “type circle “size small)

to the tuple-space 1n Figure 8.13, would lead to the generation of an additional instantiation ~
<{t5}, (t6}>.

As can be seen from the above examples, the degree of fragmentatioa depends on the specificity
of the tests in the productions relative to a given tuple-space.

If the performance of a collection-oniented match algorithm is to scale with tuple-space size,
the rate at which new partitions are generated should be much smaller than the rate at which
tuples are added to the tuple-space. In the ideal case, addition of tuples does not increase the
fragmentation. For example, if all the tuples being added to the tuple-space 1n Figure 8.13
correspond to large boxes. In the worst case, every new tuple added increases the fragmentation.
For example, if every pair of tuples added to the tuple-space in Figure 8.13 corresponded to
objects of a unique type.

The following section examimes the scalabifity of Collection Rete, as an exemplar collection-
oriented match algonthm. It provides an empirical demonstration of how the 1nteraction
between the specificity of the productions and the data distnbution governs the scalability of
collection-oriented match algorithms.

8.4.1 Scalability of Collection Rete

This section examunes the scalability of Collection Rete based programs in greater detail.
It uses the number of tuple-space modifications per second as the metric. This metric is
computed by dividing the total number of tuple-space modifications by the total execution time
and 1s referred to as the tuple processing rate. Since match algorithms are incremental and

“ADA289345

84. SCALABILITY OF COLLECTION-ORIENTED MATCH 163

process modifications to the tuple space rather than the tuple-space itself, the total number of
modifications 15 a fairer measure of the amount of work than the number of tuples in the init1al
tuple space. In the best scenario for scalability, the tuple processing rate remains constant
(or increases) as the data set size 1s increased. A constant tuple processing rate indicates
that the cost of processing a tuple does not grow with tuple space size and that there is no
combinatorial explosion in the number of instantiations and tokens. On the other hand, if there
is a combinatorial growth in the number of instantiations and tokens as the tuple space size
increases, the average time needed to process a single tuple goes up resulting in a lower tuple
processing rate.

make-teams: Increasing the data set size for make-teams does not lead to an increase
the fragmentation since all the new tuples are added to existing tuples As a result, the tuple
processing rate formake - teams remains within a relatively small range, 26,000 tuples/second
to 32,000 tuples/second, over a two orders of magnitude increase in the tuple-space size.
Figure 8.14 shows how the tuple processing rate varies with tuple-space size. Note that the
graph is plotted on a semi-log scale The rate drops for very large tuple-spaces. This drop
can be attributed to paging effects as the total memory required for these cases 1s close to the
physical memory available on the machine (96 megabytes).

32000

28000 \ /\ ™\ A
NAZhZ .

26000

Number of tuples/second

24000 e :

22000 ;

!
!

20000 ' -
0.02 003 004 006 010 0.16 025 040 063 1.00 1.58

Maximum tuple-space size (million tuples)

Figure 8.14: Tuple processing rate for make-teams

clusters: Increasing the data set size for clusters does not increase the number of instanti-
ations for the production that creates the teams and the production that accumulates the sizes of

ADA289345

8.4. SCALABILITY OF COLLECTION-QRIENTED MATCH 169

the clusters New instantiations are generated for the productions that create clusters and count
the number of their members. However, the rate at which new instantiations are generated is
much smaller than the rate at which tuples are added (the average size of clusters ranges from
29 to 395 and increases with an increase in data set size). Figure 8.15 shows that the tuple
processing rate for clusters increases with tuple-space size. Note that the graph is plotted
on a semi-log scale. Like make-teams, the tuple processing rate for clusters drops for
very large tuple-spaces due to paging effects.
40000
38000 ,
36000 {
34000
32000 /
30000 /
28000 /
26000 ;
24000 =
22000
i
20000 l '

010 016 025 040 063 1.00 158 251 398 6.31
Maximum tuple-space size {million tuples)

Number of tuples/second

Figure 8.15: Tuple processing rate for clusters

airline-route: The key productions for this benchmark are the productions that find routes of
different lengths from the source to the destination. One instantiation of these productions is
generated for every route found and corresponds to all the flight sequences over *hisroute. Since
increasing the data set size for airline-route consists of populating a random graph, the
number of routes does not increase smoothly with an increase in number of flights. On one hand,
addition of a single flight may not contribute towards any route and on the other, it may provide
the vital link between two hitherto independent subgraphs. Figure 8.16 illustrates this. Assume
the solid edges are the existing flights and the dashed edges are two flights that has just been
added. Flight A docs not lie on any route from the source to the dest.nation, whereas addition
of flight B creates 4 x 4 = 16 new routes. As a result, the number of instantiations increases
by spurts. Accordingly, the tuple processing rate for airline-route varies spasmodically
with tuple-space size. Figure 8.17 plot the tuple processing rate against tuple-space size. The

ADA289345

84 SCALABILITY OF COLLECTION-ORIENTED MATCH

-
(=]

low tuple processing rate is mainly due to the low density of the flight graph. As the density of
the flight graph increases, the likelihood of 2 new flight being along an existing route increases.
As a result, the rate at which new instantiations are generated will decrease as the data set size
grows,

source

Flight B

destination

Figure 8.16° Addition of new flights to existing flight database

Finally, Table 8.1 contains information about the largest data set processed by each of the
benchmark programs. It shows that the COPL version of clusters was able to process over
10 mullion tuples 1n less than four minutes on a Decstauon 50007260 with 480 megabytes of
main memory.

ADA289345

85. OBSERVATIONS 171

2 800
o]
Q
3 ;
> E 700 T
£ 600 A
3 <\
f'g’ 500 A
5 \ /N A
- \% VAN
300
200
100
316 1000 3162 10000 31623 100000 316228
Maximum tuple-space size
Figure 8.17: Tuple processing rate for ailine-route
Program Data set size | execution time | match space | number of tuples
make-teams 400 employees 53.5s 21113K 1393457
clusters 10000 regions 205.9s 91925K 10165576
airline-route 400 flights 574.5s 2733K 203881

Table 8.1: Largest experiments

8.5 Observations

A frequently used idiom in production system programming is the use of relational tests in the
conditions to extract the minimum (or maximum) element of a collection of values. Figure 8.18
shows an example. As each data-item tuple is added to the tuple-space, it is compared with
all data-item tuples already in the tuple-space. This results in O(n*) comparisons, where
n is the number of tuples. Depending on the order in which the tuples are inserted, this also
leads to the generation and deletion of O(») instantiations. If the tuple with the largest value is
mserted first, only one instantiation is generated whereas if the tuples are inserted in increasing

8.5.1 Relational match tests are inefficient

ADA289345

85 OBSERVATIONS 172

order of value, a new instantiation is generated for every tuple.

(p find-mun
{data-item *id <1d> Avalue <v>)
~(data-ttem A1d < <id> Avalue < <v>)
->
(write "The minimum value 15 " <v>))

Figure 8.18: Finding the minimum element using relational tests

A more efficient way of extracting the minimum element from a collection is illustrated 1n
Figure 8.19. This production extracts all the data~item tuples and calls a C routine,
findmin (), to extract the minimum element. This routine scans the collection of values to
find the mimimum element and needs only O(n) comparisons.

(p find-min-new
(data-item Avalue <v>)
>
(write “The minimum value s * (find_mun <v>)))

it find_min(seq)

sequence seq;

{ /* the sequence is guaranteed to have one element, else no mstantiation */
it min = value(seq);

for (seq = next(seq), ‘empty(seq); seq = next(seq))
if (value(seq) < mun) min = value(seq);

return(nuny);

}

Figure 8.19: Finding the minimum element using a procedure

ADA289345

RS

" T G e e 2| e s e, Wbimem e T s

85. OBSERVATIONS 173

8.5.2 Negation needed infrequently

Negated conditions are used in several commonly used production system programming idioms
including loop termination, aggregate updates, extraction of minimum (or maximum) element.
Negated conditions are used in these cases for their ability to search the entire tuple-space and
to make universally quantified assertions like there is no tuple whose data fleld has a value
greater than 50. Figure 8,20 shows examples of the first two idioms. Figure 8.18 shows an
example of finding the minimum element. Such idiomatic use accounts for most of the uses of
negated conditions, testing for the non-existence of a particular value is relatively rare.

(p loop
(goal Aname accmulate-values)
(accumulated-sum Avalue <sum>)
(data-item ~value <v>)
.
(remove 3)
(modify 2 Avalue (compute <sum> + <v>)))

(p loop-termination
(goal “name accumulate-values)
(accumulated-sum Avalue <sum>)
~-(data-item)
- >
(write "The sum is " <sum>))

(p aggregate-update
(region Mype seed Aid <seed> Ax <x1> Ay <y1>)
(region Atype non-seed Aid <member> Ax <x2> Ay <y2>)
-(distance Mrom <seed> Ao <member>)
>
(make distance Afrom <seed> o <member>
Avalue (distance <x1> <y1> <x2> <y2>)))

Figure 8.20: Programming idioms using negation

Collection-oriented production languages allow non-negated conditions to match the entire

Job 52

8.5. OBSERVATIONS 174

tuple-space. Therefore, it reduces the need for the use of negated conditions. Figure 8.21
shows how each of the three 1dioms mentioned above can be implemented 1n COPL COPL
versions of the benchmarks used 1n these experiments contained no negated conditions. In
comparison, the OPS5 versions needed quite a few negated conditions and the PPL versions
needed a small number of them.

Match algorithms, including Collection Rete, can be optimized to take advantage of the absence
of negated conditions. In a production that has no negated conditions, like the production that
creates the teams in make-teams, it is not necessary to create a list of pointers to represent
the collection corresponding to individual conditions. Instead, it is possible to use pointers to
equivalence classes directly. In such cases, processing a new tuple can often be reduced to
finding the appropriate equivalence class and adding the tuple to it.

((p loop-no-termunation-needed '
(goal “name accumulate-values)

(data-item Avalue <v>)

->

(make accumulated-sum Avalue (sum <v>)))

(p aggregate-update
(region Atype seed “1d <seed> Ax <xI> My <yl>)
(region “type non-seed 1d <member> Ax <x2> "y <y2>)
-3
(insert (update (make distance Afrom <seed> Ato <member>)
Avalue (all_distances <x1> <y1> <x2> <y2>))))

Figure 8.21: Programmng idioms rewritten in COPL

8.5.3 Condition ordering less important for efficiency

Reordering conditions is a widely used optimization in production system programs. The basic
idea 15 to limit the number of intermediate results by ordering the conditions of a production
1n decreasing order of selectivity. Consider the production and the tuple-space in Figure 8.22.
With the given order, there are six tuple pairs that match the first two conditions, <t1, t4>,
<tl,t5>,<t2,t4>,<t2, t5>,<t3, t4>and <t3, £5>. Since the last condition matches
a single tuple, there are six tuple triples that match the entire production. The total number of

_Fiche 2 §2/17/95 §2ANAPRY34G

8.5. OBSERVATIONS 175

tuple combinations generated is 12. Now, if the order of the conditions is reversed, only two
tuple pairs match the first two conditions, <t 6, t4> and <t6, £5>. Since, the third condition
matches three tuples, six tuple-oriented instantiations are generated. The total number of tuple
combinations, in this case is 8.

(p reordering-example
(spy “name <spy>)
(knave “name <knave>)
(knight ~name <knight>}
->
(make *first <spy> “second <knave> Athird <knight>))

tl. (spy “name Mata-Han)

t2' (spy *name Sergie)

t3: (spy *name Powell)

td: (knave ~name Guy-Fawkes)
t5: (knave “name Petain)

t6: (knight “name Lancelot)

Figure 8.22: Example illustrating the reordering optimization

Since collection-oriented match avoids creating explicit cross-products as far as possible, the
order of conditions is not as important. In the above example, a collection-oriented match
algorithm generates only one pair of collections matching the first two conditions and only one
collection-oriented instantiation for the production irrespective of the condition ordering. In
general, the importance of condition ordering in collection-oriented match algorithms depends
on the degree of fragmentation. Accordingly, condition ordering makes no difference in the
number of instantiations and tokens generated for make- teams and clusters, whereas for
airline-route, different orderings result in the generation of different numbers of tokens.

8.54 Cardinality of variable values depend on condition ordering

In a wple-oriented instantiation, each variable is bound to exactly one value, this value being
the same for all condition ordering. In a collection-oriented instantiation, each variable is
bound to a collection. If a variable occurs in muitiple conditions, the collection bound to the
variable is created by extracting values from the tuples matching the first condition it occurs

ADA289345

8.5. OBSERVATIONS 176

. For example, the collection bound to the vanable <num> in Figure 8.23 consists of the
values of the “num-of-classes field of student tuples matching the first condition. If
the condition matching juniors occurs first, cardinality of <v> is four, otherwise it is one. To
avoid potential errors relating to this phenomenon, the binding occurrence of a variable should
be syntactically difterentiated from rest of its occurrences.

(p cardinality-example
(student “year junior ~num-of-classes <num>)
(student “year sophomore Anum-of-classes <num>)
->
(write "Number of matched pairs of students: “ (cardinality <num>)))

tl: (student Aid 1 Ayear junior Anum-of-classes 4) i
t2 (student “1d 2 Ayear junior Anum-of-classes 4)

t3: (student 1d 3 Ayear junior Anum-of-classes 4)

t4: (student Aid 4 Ayear junior *num-of-classes 4)

t5. (student Aid 5 Ayear sophomore Anum-of-classes 4)

Figure 8.23: Example illustrating difference in cardinality of variable valiies

8.5.5 Interaction with parallelism

Chapter 5 identified three major limitations on parallelism in production system programs
written in tuple-oriented languages. First, the small average task size in efficient production
system programs results in a high parallelization overhead. Second, the cost of matching after
every instantiation firing increases the cost of sequential loops. This limits the achievable
speedup as an Amdahl’s law effect. Third, occurrence of cross-products high in the Rete
network limits the average number of tasks available and leads to low processor utilization.

Collection-oriented match is able to eliminate or alleviate all three limitations. Collection-
oriented tokens are essentially a grouping of a collection of tuple-oriented tokens. To process
a vollection-oriented token, it is necessary to compare a sequence of collections of tuples (the
token) with a collection of equivalence classes (the right memory). It comparison, processing
a tuple-oriented token consists of the comparison of a sequence of tuples (the token) with a
collection of tuples (the right memory). Depending on the degree of fragmentation, collection-
oriented match is able to group together arbitrarily large number of tuple-oriented tokens.

ADA289345

8.5. OBSERVATIONS 177

As illustrated in Figures 8.2, 8.4 and 8.21, collection-onented production languages make
it possible to move sequential loops from the production system paradigm, where they are
inefficient, to procedural languages, where they can be efficiently implemented. Furthermore,
many of thesc operations can be parallelized in a procedural paradigm. For example, the
accumulation loop in Figure 8.3 can replaced by a parallel tree-based addition algerithm which
takes O(logn) time.

Since collection-oriented match delays the generation of cross-products, 1t avoids the bottleneck
that arises due to the use of sequencing tuples in some tuple-oriented programs, for example,
waltz, one of the benchmarks used in the parallelism experiments (see Section 5.2.3). By
generating a single successor relatively quickly, collection-oriented match avoids the bottleneck.

8.5.6 Less restrictive is better

One of the primary optunizations used by production system programmers to tune their pro-
grams is to increase the restrictiveness of the conditions. Programming texts devote several
pages to various ways of limiting the number of tuples that match individual conditions. For
example, see [11][pages 243-59]. However, as the size of the tuple space grows, increasing
the restrictiveness of the tests usually increases number of instantiations and thereby leads to
a degradation in performance. Section 8.4 illustrates this with an example. Figure 8.24 shows
how a decrease in restrictiveness reduces the number of instantiations. This production pairs
each data-item with the collection of data-items whose value is less than its own. For the given
tuple-space, four collection-oriented instantiations are generated, one each for t1,t2,t3
and t4. The second production eliminates the test on the value of the data-items and uses a
procedure call to create the threshold partitions. Only one collection-oriented instantiation is
generated for this production.

8.57 Programming guidelines

This section presents some guidelines for programming collection-oriented production lan-
guages.

Move loops to procedural Janguages: As mentioned several times in this dissertation, the
production system paradigm is not suitable for implementing loops, in particular loops with
inter-iteration dependencies. COPL provides collection-oriented tuple-space operations to
implement loops that modify the tuple-space. Other loops should be implemented by using
match to extract the data items to be processed and by calling a procedural language routine to
actually perform the computation. Examples of such loops can be found in Figures 8.2, 8.4,
8.6,8.19,8.21 and 8.24.

ADA289345

8.5. OBSERVATIONS 178

(p threshold-1
(data-1tem *id <threshold> Avalug <v>)
(data-ttern M1d <items> Avalue < <v>)
>
(some action <items>))

(p threshold-2
(data-item /id <thresholds> Avalue <v1>)
(data-item *id <items> Avalue <v2>)
->
(some action (threshold <thresholds> <atems>)))

tl: (data-1tem ~id 1 Avalue 5)
t2: (data-item A1d 2 Avalue 4)
t3: (data-item A1d 3 Avalue 3)
t4: (data-item *id 4 Avalue 2)
tS: (data-item ~1d 5 Avalue 1)

Figure 8.24: Decreasing restrictiveness reduces number of instantiations

Avoid selection via the conflict set: A programming idiom used commonly in preduction
systems is selection from a set. A separate instantiation is generated for every element and the
instantiation selection algorithm is used to select one of the values. The other instantiations are
then eliminated from the conflict set. In a collection-oriented production language, this can be
implemented by extracting all the elements and using a selection predicate in the actions. This
allows a more efficient implementation of selection as well as flexibility in selection predicates.
An example is shown below.

(p selection
(data-item “value <v>)
-
(make selected-item ~value (selection_filter <v»>)})

Use match only for retrieval: Most production system languages allow relational tests in the

conditions, some even allow arbitrary user-written tests. The goal of including such tests in
the language 1s to allow programmers to use the match procedure for operations other than

ADA289345

8.5. OBSERVATIONS 179

retrieval. For example, arelational test between values in different tuples can be used to extract
the minimum (or maximum) element from a collection of values (see Figure 8.18). Figure 8.24
shows how relational tests can be used selecting values from a collection (“select all values less
than a threshold™). In many cases, the use of such tests forces the creation of a large number
of instantiations. This could be avoided if the match procedure is used only for retrieving
values from the tuple-space and other operations are performed by calls to procedural language
routines. Figure 8.24 shows an example. Even the operations that do not increase the number
of instantiations, like £ind-minimum in Figure 8.18, they are less efficient when embedded
1n the match procedure, See Section 8.5.1 for an example.

Reduce restrictions: As discussed in Section 8.5.6, reducing the restrictiveness of the condi-
tions often reduces the number of collection-oriented instantiations generated. In many cases,
it is possible to perform the selection achieved by the eliminated restrictions by calling a filter
procedure. For examples, see Figures 8.19 and 8.24.

8.5.8 Itis possible to be even more lazy

Consider the task of finding all nodes in a network that are three hops away from a given
node. Figure 8.25 shows a production that implements this. Under tuple-oriented semantics,
one instantiation is generated for every path of length three from the root node. For the
network in Figure 8.26, ten tuple-oriented instantiations are generated, one each for A and D
and three each for B and C. Since the production conditions discriminate between every such
path, collection-oriented match would generate the same set of instantiations. However, the
operations performed by the production need only the leaf nodes and not the paths to these
nodes. Since collection-oriented match guarantees the mutual consistency between all tuples
in a collection-oriented instantiation, it is unable to collapse all the paths to a node. A variation
of collection-oriented maich that relaxes the mutual consistency guarantee would be able to
deal with such situations by extending the laziness to generate the paths only if needed. This is
subject of future work.

ADA289345

8.5. OBSERVATIONS 180

(p find-three-deep-leaves
(root-node "id <root>)
(node “1d <intermediate1> Aparent <root>)
(node M1d <intermediate2> Aparent <intermediate1>)
(node Md <leaf> Aparent <intermediate2>)
->
(do-something <leaf>))

Figure 8.25: Production that finds Jeaves two hops away from the root

root

Figure 8.26: Example network

ADA289345

Chapter 9

Related Work

In early production system programs, match was by far the most expensive phase. As aresult,
initial research on parallelizing production system programs focussed on parallelizing the match
phase. Several approaches were investigated usually involving special-purpose hardwares.
Section 9.1 briefly describes these efforts. These efforts were limited partly by Amdahl’s law
(since only the match phase was parallelized) and partly by the high parallelization overheads.

The limited success of these projects prompted nvestigation of various ways to detect which
instantiations can be fired in parallel. Most of these efforts extended the analysis proposed by
Ishida and Stolfo in their seminal paper[56]. Section 9.2 describes these efforts. As mentioned
in Chapter 3, these efforts were limited by the the data-dependent nature of the production
system paradigm and the lack of knowledge of about the run-time contents of the tuple-space.

The earliest explicitly parallel production system language proposed was Herbal[122] which
allowed the programmer to specify which conditions could match multiple tuples and extended
the tuple-space operations to process collections of mples. Herbal was not implemented. It was
followed by several languages including CS5[36), Ariel[44), PARULEL[107) and OPRL[128].
Section 9.3 describes these languages briefly,

Combinatorial explosion in the number of instantiations and partial matches has long been
known to be a major efficiency problem for production systems programs. Production system
textbooks, for example {11}, devote several pages to programming idioms to avoid or reduce
cross-products. There are three constraints on the match prob'em that make it impossible to
guarantee the elimination of this combinatorial explosion:

o The if-part of a production consists of a conjunction of conditions,
» Each condition can potenttally match the entire tuple-space and

181

ADA289345

9.1. PARALLEL MATCH 182

¢ The match procedure must be sound and complete, that is, 1t must generate all matched
instantiations and must not generate any spurious instantjations.

Resecarchers seeking to improve the scalability of production system programs have proposed
relaxing one or more of these constraints. Section 9.4 describes these approaches. The
collection-oriented match approach described in this dissertation is an attempt to tame the
combinatorial explosion without relaxing any of the constramts. As such, it is unable to
guarantee the absence of a combinatorial explosion but, as shown in Chapter 8, it performs
quite well for a large class of programs.

9.1 Parallel match

9.1.1 Tree-structured architectures

Several research efforts in the early 1980s attempted to use binary-tree-structured architectures
for implementing production system programs. The first of these was the DADO machine[106).
A full-scale version of the DADO machine would comprise of thousands of 8-bit processing
clements with 20kbytes of local memory. Two major prototypes were built, the DADO-1 with
15 processing elements and the DADO-2 with 1023 processing elements.

DADO was 2 partitionable SIMD machine, that is, the full binary-tree could either be run as a
single SIMD machine or it could be partitioned into disjoint subtrees each of which ran as an
independent SIMD machine. Several algorithms were proposed for implementing production
system match on the DADO[3?, 77, 105), the most promising being a paralle! version of
Rete[37) and Treat[77). These algorithms divide the DADO tree into three levels — the Upper
tree, which is used for synchronization as well as for the select and the act phases, the PM level
which is used to perform the 3 tests and the WM-subtrees which are used to perform the o tests
and to implement the memory nodes.

The NON-VON machine[51} was similar to DADO 1n that it used a large number of smali
processors. The analysis presented in [51] assumes a configuration with 16K processors. Three
NON-VON prototypes were built, the largest having 8K processors. The full-scale version
of NON-VON was envisioned to have a million processors. Like DADO, NON-VON was
a partitionable SIMD machine but the maximum number of partitions were limited by the
number of processors in the upper-most layer. NON-VON used 8-bit processors with 64 bytes
of local memory. In addition to the binary-tree interconnection network, the processors were
also connected by a two-dimensional mesh network. However, this network was ot used for
production system programs. A parallel version of Rete was used to implement production
system programs on the NON-VON. The processors in the binary-tree were used to implement
the o tests and implement the memory nodes. The 3 tests were performed by a more powerful

ADA289345

9.1. PARALLEL MATCH 183

processor close to the root of the tree and the select and act phases were implemented on the
host processor. Due to the small size of the memory associated with individual processors, the
contents of individual memory nodes were distributed over several processors, each processor
containing at most one token.

The CUPID machine[61] appears to be a modified version of M'ON-VON with fewer and more
powerful processors. It was envisioned to bave between 64 to 512 32-bit RISC processors
rated at 5-6 MIPS. Like NON-VON, CUPID has two interconnection networks - a binary-tree
network for broadcasting data and collecting results and a two-dimensional mesh for local
inter-processor communication. A parallel version of Rete, similar to the one used for NON-
VON, was used to implement production system programs on CUPID. However, since CUPID
contains fewer and more powerful processors, multiple tokens were allocated to each processor.
At the end of every match phase, the mesh network was used to balance the load by migrating
tokens. Since CUPID had only one class of (powerful) processors, the « and 8 tests were
performed by the same processors that implemented the memory nodes. This is different from
NON-VON where the numerous simple processors are used to implement the memory nodes
and the o tests and the few powerful processors are used to perform the 3 tests.

The architecture proposed by Oflazer in his thesis[90] is similar to those above. It consists of
256-1024 processors, rated at 5-10 MIPS, connected by a binary-tree interconnection network
with no mesh network as in CUPID or NON-VON. However, the algorithm proposed by Oflazer
is significantly different. This algorithm, referred to as Dynamic Join, saves partial matches
for not just a particular sequence of conditions but all possible sequences. Each production is
assigned to a subset of the leaf processors and each processor s responsible for some subset
of the productions. Each processor computes and maintains the 11atch state for all productions
allotted to it and communicates the instantiations generated to th: controller at the root of the
binary-tree.

9.1.2 Data-flow architectures

The earliest data-flow architecture proposed for production system programs was the Pesa -
1[102). It was organized around a sequence of buses. Every nrocessor was connected to two
of these buses, it obtained its input from the first bus and piaced its output on the second.
Figure 9.1 shows an example configuration. Rete was usec as the match algorithm for Pesa - 1.
The processors in the upper-most layer perform the « tests and implement the right memory
nodes. Each subsequent layer of processors is assigned all the nodes at the corresponding depth
in the Rete network. They implement both the 8 tests and the memory nodes. The last two
layers implement the select and the act phases, the output of the act phase being placed on the
input bus of the topmost layer. The number of layers can be changed to suit the program being
implemented.

ADA289345

9.1. PARALLEL MATCH 184

)

pEle nEly e Fls e Fle

<@ E ke E

pERu Elp e El e EN e E
nE putinuEle sETS S ELy

-
o

yCianEiy
8k

nEunEly

Figure 9.1: The Pesa - | architecture

Gaudiot, Lee and Sohn{34] proposed a mapping of Rete onto the MIT tagged-token dataflow
architecture{4]. They proposed to use a variation of the Rete network as the dataflow graph.
To avoid bottlenecks due to large fanout nodes, which arise in the Rete network due to sharing
of common conditions and condition prefixes, they proposed to disable sharing and match each
production independently. Their mapping partitions n processors into \/i groups. The i group
is assigned the a tests and the right memory node for conditions with i tests. All the 3 memories
are assigned io processors in group 0. Their proposal considers only the match phase and does
not make any provision for the select and act phases.

Cheng and Wu[16] contend that the MIT tagged-token architecture is unsuitable for symbolic
computation in general and production system programs in particular and propose a dataflow
architecture customized for production system execution. This architecture, referred to as
DFLOPS, consists of a set of deeply pipelined custom processors, a set of interleaved memory
banks and a switching network connecting the two. The instruction set for the processors
includes instructions to implement the « and 3 tests, to create, copy and delete partial matches
and to firc instantiations. No prototypes have yet been built.

ADA2R9348

9.1. PARALLEL MATCH 185

9.1.3 Shared memory architectures

The earliest shared memory architecture used for implementing production system programs
was the Cmmp([71]. The C.mmp consisted of 16 PDP-11 processors connected to a shared
memory via a crossbar switch. This work was done prior to the discovery of the incremental
match algorithms and recomputed the set of instantiations for every cycle. Since the C.mmp
did not have caches, a fair amount of effort was spent in distributing code and data among the
different memory modules.

The Production System Machine (PSM) proposed by Anoop Gupta in his thesis[38] conssted
of a small number of powerful RISC processors (32-64), a similar number of memory banks
and a hardware scheduler connected by a single bus. A small private memory as well as a cache
was associated with each processor to reduce the traffic to the shared memory. Gupta argued
that the parallelism available in production system programs that had been studied was small
and that 32.44 processors should be enough. The hardware scheduler was necessitated by the
fine-grain of the individual match tasks (200-800 instructions). The shared bus interconnection
(as opposed to an omega network or a shuffle exchange network) was proposed to facilitate
solution of the cache-coherency problem. A paralle] version of Rete was used to implement
production system programs on PSM. Details of this algorithm can be found in Section 2.5.
No prototype of PSM was built. However, the design of PSM was used for an implementation
of OPSS5 on the Encore Multimax{41]. The Encore Multimax, with its 16 processors, large
shared memory, fast bus and snooping caches was a good approximation to PSM except that
the scheduler had to be implemented in software.

Another shared memory architecture proposed for production system execution was the MANJT
machine{83]. MANII consisted of tens of 32-bit processors contected to a shared memory
via a single bus. In addition to the bus, MANJI provided a multicast mechanism. MANIJI
processors had no cache. A parallel version of Rete was used to implement production system
programs on MANIJL. This version of Rete considers the nodes of the Rete network as a set
of interconnected objects passing partial and complete matches as messages. These nodes are
statically partitioned among the processors. The multicast mechanism is used to communicate
partial and complete matches between processors.

9.14 SIMD architectures

The carliest attempt to use SIMD architectures for production system execution was Forgy's
mapping of Rete onto the ILLIAC-IV{25]. In this mapping, the productions are divided into
64 paritions, the number of processors in ILLIAC-IV. Separate Rete networks are created for
the productions in each partition. All the processors execute the Rete algorithm in lock-step.
For example, all processors will perform the a tests before any of them performs a 4 test.

ADA2R9348

9.]. PARALLEL MATCH 186

The Concurrent Inference System (CIS)[7] implements preduction system programs on the
Thinking Machines CM-1, a massively parallel SIMD machine with 64K simple processors.
CIS takes tie production system and a description of all the values that can be bound to each
of 1ts variables and compiles them into an activity flow network, a static network of simple
thresholded computational devices CIS side-steps the issues of binding arbitrary values to
a variable and of creating an arbitrary number of instantiations of productions, the argument
being many practical production system programs do not need these features (for example,
Mycin[19}).

9.1.5 Maessage-nassing multicomputers

Gupta and Tambe[43) examined the suitability of low-latency fine-grain message-passing ma-
chines for production system execution. They proposed a fine-grain mapping of Rete onto a
group of message-passing processors. A small number of processors are assigned for a tests
and the select and act phases; majority of the processors are used to implement the memory
nodes and to perform the 3 tests. The memory nodes are implemented by a pair of distributed
hash tables — one for all the right memory nodes and the other for all the left memory nodes.
Each hash bucket is assigned to one of the processors. The number of processors is assumed to
be large enough to allow one processor to be assigned to each hash bucket.

Acharya ef al.[2) examined low-latency medium-grain message-passing machines. Their map-
ping is a variation of Gupta and Tambe’s. In this mapping, there are no dedicated processors
for a tests. Instead, all the match processors perform a tests prior to performing memory node
operations or 5 tests. Since this mapping assumes fewer processors (16-64) with larger private
memories, several hash buckets are assigned to each processor.

9.1.6 Conclusions

The difference in underlying hardware and the ack of a set of suitable benchmarks makes it
difficult to compare the results of the schemes described above. Furthermore, the metric most
commonly used by the early researchers was tuples per second which does not mean much
without the code.

Based on a detailed analysis of a set of six production system programs of various sizes,
Anoop Gupta[38] concluded that the potential parallelism in the match phase of production
system programs 1 bounded by a factor between 20 and 30. He further concluded that fine-
grain decomposition is required to achieve significant speedup and that the communication
and scheduling overheads of such a decomposition limit the achievable speedups to less than a
factor of about 20. Keeping in mmind the features of contemporary production system languages
and the nature of the tasks for which he expected them to be used, he concluded that this

ADA2R9348

9.2. PARALLEL FIRINGS 187

result is widely applicable and not just limited to the test programs used in the analysis. The
primary cause of this program-independent bound is the uniformly high frequency of barrier
synchronizations in paralel execution of the match phase. Since there is little work to be done
in each match phase, only a smatl number of processors can be gainfully employed.

9.2 Parallel firings

Several research efforts have attempted to devise techniques to determine the set of instantiations
that can be fired in paralle] without violating the semantics of the program. All of these are
variations on the analysis proposed by Ishida and Stolfo in their seminal paper[56). They
proposed a compile-time analysis, based on a dependency-graph, to determine which cycles
could be safely comiined. The nodes in their dependency-graph correspond to individual
productions and the links represent the dependency information available at compile-time.
There is a link between two nodes, A and B, if there is a dependency between any pair of
instantiations of the corresponding productions. If the actions of production A modify a tuple
which of the same type as one of the tuples matched by production B, the graph has a directed
read-write link between A and B. If the actions of two productions modify a tuple of the
same type, the graph has a bidirectional write-write link between the two. Figure 9.2 shows
the productions for a xor-gate simulator and the dependency-graph for it. In addition to the
direct dependencies represented by the links, two produc: ions can have an indirect dependency
between them if one of them lies in the transitive closu e (over the dependency links) of the
other, Two productions are independent if neither lies in the transitive closure of the other. This
analysis uses only the type of the tuples. Subsequent efforts by Tenorio and Moldovan(119),
Miranker ezal. [81] and Schmolze and Goel[101] have refined the analysis by taking advantage
of the constant literals that occur in both the if-part and the then-part of the productions.
Compile-time dependency analysis of production system programs is seriously limited by the
data-dependent nature of the computation. Since the compiler has no information about the
run-time contents of the tuple-space, it is forced to be overly conservative and often fails to
prove the independence of productions that are obviously independent. For example, consider
the productions of the xor-gate simulator shown in Figure 9.2. Simulation of every xor-gate
can be done in parallel, So, we would expect that all instantiations of xor-gate-on and
xor-gate-off can be exccuted in parallel. However, a conservative analysis is unable to
detect this as:

o both productions modify tuples of type 1ine, therefore there is a write-write dependency
between themn and

e since both productions also match tuples of type 1ine, there is a bidirectional read-write
dependency between them.

ADA2893 A

9.2. PARALLEL FIRINGS 188

(p xor-gate-on
(xor-gate Ainl <inputl> A2 <input2> Acut <output)
(line Aid <inputl> *value <v>)
(hine *id <input2> Avalue <v>)
(line Aid <output>)
-
(modify 4 Avalue 0))

(p xor-gate-off
(xor-gate Ain1 <inputi> Ain2 <mput2> Aout <output>)
(line Aid <input1> Avalue <vi>)
(hine Aid <input2> Avalue <> <v>)
(line Aid <output>)

->
(modify 4 Avatue 1))
’If"\‘ ----- ”""\\
. - ~ 'S
Xor-gate-on xor-gate-off
F . -

Dashed [ines represent read-write dependencies and solid lines represent write-write dependencies

Figure 9.2: Dependency-graph for xor-gate simulator

This is not a limitation of this particular technique for compile-time analysis, rather of compile-
time analysis itself. To be able to determine that xor-gate-on and xor-gate-off are
independent, the compiler needs to prove that is that each tuple of type 1ine occurs on the
output of one and only one xor-gate. In the absence of information about the run-time contents
of the tuple-space, there is no way for a compiler to prove this,

Therefore it is not surprising that compile-time dependency analysis has had limited success.
Several publications have claimed small reductions m the number of msa cycles [33, 56, 81,
101, 107, 119]. The stated assumption of these publications is that given enough processors,

9.2. PARALLEL FIRINGS 189

the time taken for each cycle would be the same. The unstated assumption is that all tasks that
are generated from the firing of different instantiations can be performed independently. These
assumptions are unsound as shown by the results presented in [2, 38, 42, 113]. These results
indicate that inter-task dependencies are a major limitation on speedups i production system
programs. As the results for waltz show (see Chapter 5), these assumptions do not hold even
for simple programs written with commonly used programming idioms. For the largest data
set used in this investigation, 59524 instantiations were fired in 32 cycles yielding a 1860 fold
reduction in the number of cycles. However, a detailed simulation indicates a speedup of only
17.9 fold using 100 processors. The results also indicate that the speedups will not increase
significantly for larger configurations. Therefore, a measure based on the number of cycles is
inherently flawed.

To work around the limitations of compile-time analysis, Oshisanwo and Dasiewicz suggested
a run-time analysis of instantiations[91]. Their scheme inserts a dependency analysis phase
between the match and select phases. This analysis uses the selection procedure of the sequential
language to impose a total order on the instantiations currently in the conflict set. It then checks
every instentiation for interference with instantiations that are above it in the ordering. If an
instantiation does not interfere with any of the preceding instantiations, it is fired. A similar
scheme has been proposed by Ishida{55).

Since the only inforraation available to such schemes is the set of instantiations that are present
in the conflict set during one cycle, they are able to detect only direct dependencies. This
means they are able to identify the instantiations which modify tuples used to generate other
instantiations in thc conflict set. In the absence of information about future instantiations, they
are unable to detect indirect dependencies. For example, suppose the conflict set in the first
cycle has two non-interfering instantiations, A and B. A parallelizing implementation based
on run-time analyses like those mentioned above would fire both A and B. Now suppose the
firing of A Jeads to the generation of C which interferes with B, say, it deletes a tuple contained
in B. Under sequential semantics, it is possible that A is selected for firing in the first cycle
and C in the second. In that case, B is deleted from the conflict set without being fired. It is
possible to construct such examples for any non-trivial selection procedure (Figure 9.3 shows
an example for the OPSS5 sefection procedure). Therefore, without some sort of lookahead,
it is not possible to guarantee that the sequential and the parallelized versions of the program
generate the same result. Adding lookahead to such schemes would, in general, require the
analysis procedure to explore the space of possible execution paths. Since there is no limit on
the depth of the lookahead that might needed, such analyses could be prohibitively expensive
even for the small conflict sets seen in [38).

Compile-time as well run-time dependency analysis was used by Kuo er. al in the CREL
implementation on a Sequent Symmetry [64). In addition to performing dependency analysis
to determine which instantiations can be fired in parallel, they modified the semantics of the
OPSS language to eliminate the sequentializing recency feature from the selection procedure.

ADA289345

9.2. PARALLEL FIRINGS 190

PA (B ¢C
(class1) (class2) (class3)
> > {class2)
(make class3)) (make class4)) ->

(delete 2))

Figure 9.3: OPSS example of indirect dependency

They report speedups between two and six fold using 15 processors. They conclude that the
primary reason for the low speedup was the programming style which limited the ability of
the implementation to prove independence between productions. The benchmarks used in
their study include 1ife and waltz whose optimized versions have been used in the PPL
experiments reported in Chapters 4 and 5. The results from these experiments indicate speedups
up to 19 fold for waltz and up to 30 fold for 11 fe over the optimized uniprocessor versions.
As mentioned in Sections 4.1.2 and 4.1.3, the optimized version of 11 £e was between 17 and
18 times faster than the original version and the optimized version of waltz wasup to 1.9
times faster than the original version.

A commonly used idiom in production system programs is the use of a context tuple to direct
the control-flow. Productions in programs that make use of this idiom test the context element;
only the productions that test for the context currently in the tuple-space can possibly match.
Kuo et. al[65) proposed a variation of the Ishida-Stolfo analysis where the entities being
scheduled were contexts and not individual productions. The contexts that were proved to be
independent by this analysis were executed in parallel. The primary limitation of this scheme
is the fact that the programs it analyzes are written in a sequential language. The context-tuple
idiom is used most often to enforce a particular execution path. This often results in spurious
inter-context dependencies.

Harvey et. al hand-parallelized the execution of the first two phases of SPAM(75], aknowledge-
based image recognition system. They decomposed the computation into farge tasks that could
be run independently of each other and used a task queue to schedule them on an Encore
Multimax{48]. They reported specdups up to 12.5 fold using 14 processors on asingle Multimax
and up to 15 fold using 23 processors on a pair of Multimaxes which shared virtual memory
using a netmemory server [31). From an analysis of the tasks and their dependencies, they
concluded that it was possible to achieve between 50 and 100 fold speedup if enough processors
were available. The spam benchmark used in the PPL experiments corresponds to the first
three phases of SPAM. As discussed in Section 4.1.5, the first two phases of SPAM consist
of fully parallel triply nested loops whereas the third phase contains two non-paralielizable

ADA289345

-
ra

9.3. PARALLEL PRODUCTION LANGUAGES

loops. In spite of this, spam achieves speedups up to 52 fold using 100 processors. This 1s
explained by the fact that the PPL version of spam parallelizes all the loops in the first two
phases whereas the decomposition used by Harvey et. al corresponds to parallelizing only the
outer two loops in both phases.

9.3 Parallel Production Languages

Parallel production Janguages can be classified into two groups - synchronous and asynchronous.
Synchronous languages enforce a strict match-select-act cycle, instantiations being fired only
dunng the act phase. Asynchronous languages allow instantiations to be fired at any time.

Given the absence of explicit control structures in the production system paradigm, it is much
easier to program synchronous languages than asynchronous languages. Asynchronous instan-
tiation finngs can lead to non-deterministic behavior and race conditions for non-monotonic
tuple-spaces. As a result, most production system languages are synchronous.

Dan Neiman proposed an asynchronous parallel production language[86]. To help achieve
deterministic behavior, his language provides muitiple-reader-single-writer locks on individual
tuples. When an instantiation is generated, it attempts to acquire read locks on all tuples
contained in it and write locks for tuples it intends to modify or delete. If it is unable to acquire
these locks, the instantiation waits on these locks. The locks are released after the instantiation
has been fired. This scheme does not guarantee deterministic behavior. For example, consider
the productions and the tuple-space in Figure 9.4. Two instantiations of get-new-order
are generated - one that selects the order to launch missiles on Timbuctoo and and the other
that cancels all pending missile launch orders. If the first instantiation is generated earlier and
fired, it causes an instantiation of take-action-1 to be fired. On the other hand, if the
second instantiation is generated earlier, it causes an instantiation of take-action-2tobe
fired. Therefore, the result of the computation, which determines whether Timbuctoo survives,
depends on the relative speeds of the processors.

Synchronous production system languages can be subclassified into two groups: collection-
oriented (or set-oriented) languages and tuple-oriented languages. Tuple-oriented languages
dictate that each instantiation of a production must contain exactly one matching tuple for every
non-negated condition in the production and no matching tuples for every negated condition in
the production. A variable in a production is, therefore, bound to a single value and the actions
in the then-part of a production operate on individual tuples. Collection-oriented languages
allow an instentiation to contain a collection of tuples corresponding to every non-negated
condition. Instead of containing ore sequence of tuples that jointly satisfy the conjunction of
conditions in the if-part, such instantiations would contain @/l sequences of tuples that jointly
satisfy the conditions. For example, consider the production and the tuple-space in Figure 9.5.
In this example, there are three data items whose value is below the threshold (16 and 40 and

ADA289345

9.3. PARALLEL PRODUCTION LANGUAGES 192

(p get-new-order
(order Aid <order> status pending)
(current-order A1d { <current> <> <order>})
(order Aid <current> Astatus completed)
->
(modify 2 4id <order>))

(p take-action-]
(current-order *id <order>)
(order *id <order> Aaction launch-mussiles Atarget <t> Astatus pending)
->
(modify 2 Astatus completed)
(call (launch_missiles <t>)))

(p take-action-2
(cumrent-order *id <order.+)
(order Md <order> Aaction avoid-launching-missiles Astatus pending)
(order 1d Aaction launch-missiles)
->
(remove 3))

tl: (order 1d 1 Astatus completed “action verify-readiness)

t2: (order *id 2 *status pending Aaction launch-mussiles “target Timbuctoo)
t3: (order *id 3 Astatus pending *action avoid-launching-missiles)

t4; (cumrent-order Aid 1)

Figure 9.4: Example of nondeterminism in asynchronous firings.

ADA289345

9.3. PARALLEL PRODUCTION LANGUAGES 193

(p apply-threshold
(threshold Avalue <v>)
(data-item Avalue {<data> < <v>})
->
(write "Accepted value " <data> “for threshold * <v>)}

t1- (threshold Avalue 80)
t2: (data-item ~value 16)
13: (data-item Avalue 40)
t4: (data-item Avalue 72)

Figure 9.5: Example to illustrate differences between synchronous languages

72). In a wple-oriented paralle] language, separate instantiations are generated for each data-
item below the threshold, all of which are fired in paralle}. In a collection-oriented language, all
the instantiations for a single threshold are grouped together. Therefore, only one instantiation
is generated for the tuple-space in Figure 9.5.

There is only one sequencing point in the execution of a synchronous production system
language - the select phase, which selects the operation(s) to be performed in each cycle. It
consists of two parts. The first part uses an ordering relation between instantiations to order the
conflict set and the second part determines and extracts its dominant subset.! Instantiations in
the dominant subset are fired in the act phase. The features that distinguish different paralle]
production languages are the kind of ordering relations permitted and the manner in which they
are to be specified.

Ordering relations can be trivial or non-trivial. A trivial ordering relation would either totally
order all the instantiations, that is, the number of levels in the order equals the number of
instantiations, or order none of the instantiations, that is, all instantiations are considered to
be at the same level. The former corresponds to sequential execution and is unsuitable for
a parallel Janguage. The latter would fire all instantiations generated and has been used in
Soar[66) which uses productions to model associative memory. One of the main reasons to
select a subset of the generated instantiations is to ensure that conflicting tuples are not added to
the tuple-space. To deal with this problem, Soar uses a separate decision procedure that is run
after all matching instantiations have been fired. Among other things, the decision procedure
identifies and deals with conflicting tuples.

"The dominant subset of Dy of a set S ordered by the relation > 1 definedas Dy = {rl¥y € S yd rA v ¥ 1}

ADA289345

9.3. PARALLEL PRODUCTION LANGUAGES %4

There are two ways in which a non-trivial ordering relation can be specified: declarative, that is,
by explicit enumeration and procedural, that 1s by a procedure which given two instantiations
either indicates the order between them or indicates that they are incomparable.

Explicit enumeration: The set of all instantiations is infinite. Thetefore, it is impossible
to explicitly enumerate the relationship between all pairs of instantiations. However, the set
of productions in a program is finite. It 1s possible to explicitly enumerate a partial order
relation from the set of productions in the program to itself and this order can be extended
to the instantiations of these productions. A priority is associated with each production and
gets propagated to all its instantiations. Other possibilities include grouping productions
and assigning priorities to groups, an explicit ordering sublanguage and so forth. Priority-
based schemes have been used in Ariel[44], and the Starburst rule language[126]. Given its
static nature, this scheme is able to specify the relationship between instantiations of different
productions. It is unable to specify an order on instantiations of the same production and
they must be assumed to be incomparable. In other words, they must be assumed to not
interfere with themselves (for example of a simple production that interferes with itself, see
Figure9.6). Since itis rarely the case that all productions of a program are self-independent, this
infiexibility renders explicit enumeration undesirable for specifying ordering relations between
instantiations. However, if the production system program is partitioned into production-sets,
explicit enumeration can be used to specify the dependencies between different production-
sets. Production-sets that have no mutual dependencies can be executed independently. This
has been used in the OPRL language[128]. An interesting approach to explicit enumeration
has been taken by de Maindreville er. al in the RDL/C system[15]. RDL/C provides a
regular expression-like control language to specify ordering between productions. As shown
by the programs written in PPL (see Chapters 4 and 5 and Appendix E), parallel execution of
subprograms can be achieved within the production system language itself without the baggage
of an additional control language.

Procedural ordering: Procedural ordering delays ordering decisions until sun-time when the
instantiations are available. It is more powerful than explicit enumeration since it is able to order
instantiations of the same productions. It can use a wide variety of properties of instantiations,
ranging from their size and the timetags of the constituent tuples to values in constituent tuples.

Procedural ordering can be supported 1n two ways — by providing a fixed orc'ering procedure
as a part of the language or by providing a sublanguage to specify p:ogram-specific ordering
procedures. Since a fixed ordering procedure has no knowledge about the productions, it can
depend only on structural properties, like the size of instantiations, and on universal attributes
Tike the timetags of the tuples. Therefore, it can be expected to order instantiations quickly,
for reasonable ordering relations. Program-specific ordering procedures can be more discrimi-
nating than a fixed procedure by taking advantage of program-specific information. However,
program-specific ordering procedures can be arbitrarily complex. This can significantly in-
crease the time needed to order the instantiations as well as make such programs much more

ADA289345

9.3. PARALLEL PRODUCTION LANGUAGES 125

(p paint-red-ball
(ball Acolor blue)
(ball Acolor red)
->
(modify 2 ~color blue))

T1: (ball ~color blue)
T2: (ball ~color blue)
T3: (ball Acolor red)

Instantiations: <T1,T3>, <T2,T3>

Figure 9.6: Simple production that interferes with itself

difficult to comprehend. In this author’s opinion, the flexibility provided by program-specific
procedures is not sufficient to offset its disadvantages. The PARULEL language [107] provides
a production system sublanguage to specify the ordering procedure. In this author’s opinion,
most programs that have been written using PARULEL can be easily and more concisely
written in a language based on a fixed ordering procedure. Hernandez and Stolfo present
two PARULEL programs in [50]. Both of these programs have been easily parallelized in
PPL which has a fixed ordering procedure. PPL code for these programs can be found in
Appendix E.

The discussion above applies to both tuple-oriented and collection-oriented languages. How-
ever, the extent to which individual languages support collections provides additional discrim-
ination between collection-oriented languages. The ideal collection-oriented language would
allow collections to be used wherever individual tuples or values can be used. However, many
collection-oriented production languages allow collections to be used only in certain contexts
which are explicitly flagged by use of special syntax.

Several collection-oriented production system languages allow only selected conditions to
match collections of tuples. Conditions that can match collections of tuples are flagged by use
of special keywords, for example the FORALL keyword used in Herbai[122), and bracketing
constructs, for example, the square brackets used in extended C5{36) and OPRL{128). On
the other hand, database rule languages, all of which have been derived from the SQL query
language[53), allow every condition to match a collection of tuples. Examplesinclude RPL[21},
the Starburst Rule Language[126], RDL/C[15). The same distinction exists on the action side.
Collection-oriented languages derived from OPS5-like languages allow only special system-

ADA289345

9.4. REDUCING COMBINATORICS 196

defined operations (like set-modi £y, set-~remove and foreach) to process collections,
while database rule languages allow collections to be processed by any available procedure.
COPL is the only collection-oriented production system language that allows collections to
used anywhere a scalar can. Other distinguishing features of COPL include easy interfacing to
routines in procedural languages and the update operation that zips together a collection of
tuples and a collection of values.

9.4 Reducing Combinatorics

94.1 Relaxing the completeness constraint

A match algorithm can relax the completeness constraint by generating only a subset of the
instantiations matched. From a programming point of view, it is reasonable to not generate
an instantiation if and only if it can be proved that it will not belong to the dominant set. In
other words, an instantiation need not be generated if and only if if it can be shown that there
exists at least one other instantiation that dominates it. Similarly, a partial match need not be
extended if and only if it can be shown that there exists another partial match such that all
instantiations generated by extending the former are dominated by all instantiations generated
by extending the latter. This requires that the ordering procedure be integrated into the match
algorithm. Tzvieli et. al{121] and Miranker er. al{79] independently proposed integrating the
OPSS5 selection strategy into the match algorithm. The latter proposal was later extended into
the LEAPS match algorithm and was incorporated into the ops5c compiler[80].

If only one instantiation is fired at a time, generating only the dominant instantiation(s) and
the partial matches that lead to them can limit the growth in the number of instantiations and
partial matches. This technique is likely to be particularly effective in programming idioms
that generate a host of instantiations and fire only small subset of them. Examples include using
the conflict set to select an item from a collection and accumutation loops (see Section 5.2.4
for a discussion on accumulation loops). As discussed in Section 8.5.7, these idioms are
poor programming practice and can be eliminated in collection-oriented languayes. Since this
approach does not relax the correctness constraint, it is possible that all matched tostantiations
are fired and will be generated. For example, consider the production in Figure 9.7. This
production has been taken from the make-teams program described in Section 8.1.1. Since,
all of the remaining constraints remain in effect, this approach does not improve the worst-case
complexity of the match procedure.

ADA289345

9.4 REDUCING COMBINATORICS 197

(parp make-team
(goal Aname create-teams)
(person /id <id1> Aexpertise hardware Aprevious-project <project> *score <v1>)
(person Aid «1d2> “expertise operating-system Ascore <v2>)
(persoa *id <id3> “expertise networks *score <v3>)
(person Aid <id4> “expertise compilers Aprevious-project <project> Ascore <v4>)
->
(make team *hardware <1d1> *operating-systems <id2> Anetworks <1d3>
Acompilers <id4> Ascore (compute <v1> + <v2> + <v3> + <v4))

{parp create-teams
(goal *name select-team)
(team Ascore > 8 *select-status nil)
-
(modify 2 Aselect-status selected))

(p count-teams
(goal name count-teams)
(team Aselect-status selected)
(count Avalue <value>)
->
{modify 2 Aselect-status counted)
(modify 3 Avalue (compute <vaiue> + 1))

Figure 9.7: PPL productions fcr make-teams

9.4.2 Reduce the power of each condition

If the number of tuples that match individual conditions can be bound by a small constant, the
number of instantiations and partial matches can no longer increase combinatonally with the
growth in the size of the tuple-space. The unigue-attributes scheme proposed by Milind Tambe
in hus thesis{112] limits the number of tuples that can match individual conditions to one. For
example, consider the production and the tuple-space in Figure 9.8. This production attempts
to find all points that are three links away from the current position. The graph represented by
the tuple-space is also shown in Figure 9.8. For this graph, the second and fourth conditions

ADA289345

9.4. REDUCING COMBINATORICS 198

are matched by two tuples each, (£2, t3) and (£7, t8) respectively. The number of tuples
matching each conditicn can be limited to one if the connected-to field s split in to
several fields such that each point has only one value for each field. Since the graph has only
rectilinear links, the connected field can be split into the up, down, left and right
fields. Figure 9.9 shows what the representation of the graph would be in this scheme. Since
each point has only one link in any of these directions, the number of tuples matching suitably
modified conditions is at most one. However, note that it is no longer possible to 2ncode the task
of finding all paths of length three from the current position in a single production; a separate
production is required for every path of length three. Figure 9.9 shows one such production.

The unique-attribute approach lmits the number of instantiations and partial matches for each
production to the number of conditions it has. Therefore, it is able to guarantee that the cost of
matching a production is linear in the number of conditions. However, the restriction of asingle
1nstantiation per production may require an exponential number of productions to perform the
same task, In the above example, if the task is to find all paths of length 3 from the current
position, four productions and their corresponding instantiations will be necessary.

The unique-attribute approach restricts both th tests that can appear in conditions and the values
that can appear in the tuples to limit the number of tuples that can match individual conditions.
By doing so, it is able to guarantee that no more than a linear number of instantiations and partial
matches are generated per production. Other, less comprehensive, schemes have attempted to
achieve the same end by restricting only one of the two, either the tests that appear in the
conditions or the values that appear in the tuples. As a result, these schemes do not reduce the
number of instantiations and partial matches generated. However, they are able to reduce the
total number of comparisons performed during the match procedure.

copy-and-constrain; Copy-and-constrain{92] attempts to limit the number of tuples matching
individual conditions by restricting the tests that can appear in the conditions. It places no
restrictions on the values that can appear in the tuples. Consider the production and the tuple-
space in Figure 9.10. In this case, each condition individually matches all five tuples. The total
number of comparisons needed is 4 x 4+4 x 3 = 28. 2 The number of instantiations generated
is four, two each for red and blue pieces. Copy-and-constrain takes advantage of knowledge
of the values that will appear in the tuples o replace the inter-condstion test that matches the
colors of the pieces (the shared variable <x>) by consistent intra-condition tests that check for
a specific color. The converted productions are shown in Figure 9.11. In this case, only two
tuples match each condition. The total number of comparisons is reduced to 4 +4 x 2 = 123 but
the number of instantiations is still four — two for the red pieces and two for the blue pieces. In
general, 1t is not necessary to know the set of values that appear in the tuples. It is possible to

2Each tuple 15 compared wath all four tuples for the test <id2> <> <idl> and with the other three tuples
for matching the color.

3Each tuple 1s tested for 11s color and each tuple 1s compared against itself and the other tuple of the same color

ADA289345

9.4. REDUCING COMBINATORICS 199

L=

(p length-3
(current-position Apoint <x>)
(point 1d <x> “connected-to <y>)
(point Aid <y> Aconnected-to A<z>)
(point Aid <z> Aconnected-to <w>)
->
(write "There 35 a path of length 3 from " <x> "to " <w>))

t1: (current-position Apoint A)

t2: (point M1d A Aconnected-to B) t3: (point Aid A ~connected-to C)
t4: (point *id B Aconnected-to D) t5: (point A1d C Aconnected-to D)
16: (point Aid D Aconnected-to E) t7: (point *id D Aconnected-to F)

(adapted from Figure 11n [117})

Figure 9.8: Example production and tupie-space for multi-attribute representation

ADA289345

9.4. REDUCING COMBINATORICS 200

(p length-up-nght-nght
(current-position *point <x>)
(point Aid <x> Aup <y>)
(pomnt Mid <y> Anght A<z>)
(point Aid <z> Aright <ws>)
>
(wnite "There is a path of length 3 from * <x> "to " <w>})

tl: (current-posttion “point A)

t2: (pomnt %id A “up B) t3: (pomnt Aid A “night C)
t4: (point Mid B *right D) t5: (point 4id C ~up D)
. 16: (pomt 41d D *up E) t7: (point Aid D Aright F)

Figure 9.9: Tuple-space and one of the preductions for the unique-attribute representation

hash the timetags of the tuples, which form a universal key for the tuples, into a small number
of buckets and generate a separate production corresponding to every bucket. Since multiple
versions of a production are generated for every such conversion, the number of productions
needed to perform a task is O(b°) where b is an upper bound on the number of buckets and
¢ is the number of times the copy-and-constrain conversion is applied. Note that in spite of
this blowup n the number of productions, copy-and-constrain is unable to guarantee that the
number of instantiations and partial matches is subexponential in the number of conditions.

Data partitioning: Data partitioning attempts to limit the number of tuples that match indi-
vidual conditions ar any given time by partitioning the tuple-space. It places no restrictions
on the tests that may appear in the conditions. Consider the production and the tuple-space in
Figure 9.12. The number of instantiations generated is 2 x 4! = 48, 4 However, it is possible
to partition the tuple-space into two partitions such that the first partition contains t1, t2 and
t3 and the second partidion contains the rest of the tuples. In this case, only two instantiations
are generated per partition for a total of four instantiations. In general, data partitioning can
reduce the number of instantiations from O(w") to O((w/p)") where w is the number of tuples,
n is the number of conditions and p is the number of partitions. Such a reduction happens
only for tasks in which tuples are grouped at most once. In the above example, firing each
instantiation deletss the pool tuples contained in it. However, if the task involves combining

“There are two tuples of type need which match the first condition; the other two conditions can be matched
by any permutation of the four pool tuples.

ADA289345

9.4. REDUCING COMBINATORICS

to

(p connect-pieces
(prece Mid <ad1> Acolor <x>)
(prece Aid {id2> © <id]>} Acolor <x>)
->
(make pair Afirst <id1> *second <id2>))

t1. (prece *id 1 Acolor red)
t2: (piece A1d 2 Acolor red)
t3: (piece A1d 3 *color blue)
t4: (piece Md 4 Acolor blue)

(adapted from Figure 1n (92])

Figure 9.10: Before the application of copy-and-constram

(p connect-red-pieces
(piece Mid <id1> color red)
(prece Aid {<1d2> < <id1>} Acolor red)
>
(make pair Mirst «1d1> Asecond <1d2>))

(p connect-blue-pieces
(piece *id <1d1> Acolor blue)
(piece Aid {<id2> < <idl>) Acolor biue)
>
(make pair Airst <id]> Asecond <id2>))

Figure 9.11: After the application of copy-and-constrain

ADA2RQ24C

9.4. REDUCING COMBINATORICS 202

or comparing each tuple with every other tuple in the data-set, there is no reduction in the
number of instantiations and partial matches generated. For example, consider the production
and the tuple-space in Figure 9.13. In this case, every taxiway tuple has to be compared with
every runway tuple. Therefore, partitioning the data set does not reduce the total number of
instantiations and partial matches. Even though there may be no reduction in the total number
of instantiations and partial matches gencrated, data partitioning tends to reduce the number of
instantiations and partial matches generated ar any given time. This reduces the stress on the
state-maintenance algorithms. Therefore, it mught be preferable to partition the data even if it
does not reduce the number of instantiations.

{p two-rule-combo
(need Acontract-id <cid> Motal <v>)
(pool Aid <pid1> Avalue <pl>)
(pool Aid {<pid2> <> <pid1>) Avalue <p2>)
->
(remove 2 3)
(modify 1 Motal (compute <t> - (<p1> + <p2>))))

tl: (need Acontract-id 1 Aotal 1000)
12: (pool Aid 101 Avalue 200)

t3: (pool *id 102 Avalue 300)

t4: (need “constract-id 2 Motal 1000)
t5: (pool A1d 201 Avalue 200)

t6: (pool A1d 202 Avalue 300)

(adapted from Figure 1 1n [107))

Figure 9.12: Data partitioning example

Anmportant problem with data partitioning is that in many cases, 1t may reduce the quality of
the solution. In the example shown in Figure 9.12, processing the data as a whole completes
allocates one of the contracts, that 1s, the total for one of the need tuples goes to zero.
Processing the data on a per-partition basis leaves both contracts partially allocated which may
not be desirable.

*
+*
L

94 REDUCING COMBINATORICS 203

(p LCC--runways-are-orthogonal-to-taxiways
(lcc-stage ~name apply-constraint)
(lec-rule-constants Arulename runways-are-orthogenal-to-taxiways
Amin <min> *max <max> *bound <bound>)
(fragment *hypothesis runway “identifier <id0>)
(fragment ~hypothesis taxiway “identifier {<id1> <> <1d0>})
{ ->
(make lcc-match-score *rulename runways-are-orthogonal-to-taxiways
Aresult (spam_lcc_do_geometric_test 12 <muin> <max>> <bound> 10000)
Afrom <id0> Ato <id1>))

(adapted from the LCC phase of SPAM({75])

Figure 9.13: Case whether data partitioning does not help

9.4.3 Relax the correctness constraint

Consider the production and the tuple-space in Figure 9.8. The problem solved by this produc-
tion is to find all points that are three hops away from the current position. The write action
prints out the current position and the set of the points found. In this case, the paths from the
current position are not relevant. All that matters js that there exists some path from the current
position. In terms of the production, the information required is the hindings of the variables
<x> and <w>. Therefore, an instantiation that binds <x> to A, <y> to the set {B,C}, <z>toD
and <w> to the set {E,F} is adequate for this problem. In general, this approach, referred to as
instantiation-less match [117), binds each variable to a set of values ignoring the relationship
between individual values in the sets. By viewing tuples as constraints between variables
instantiation-Jess match can be directly mapped to the problem of finding consistent bindings
for constraint-satisfaction problems{20). For example, the the production in Figure 9.8 can be
viewed as the constraint graph shown in Figure 9.14. Since instantiation-less match does not
restrict the organization of the inter-condition tests, it is equivalent 1o the problem of finding
consistent bindings for unrestricted constraint graphsf1!7]). Dechter and Pearl [20] show that
this problem is NP-hard. However, if suitable restrictions are placed on the organization of
the inter-condition tests, for example if the constraint-graph corresponding to the production
is a tree, a polynomial bound can be established on the number of instantiations and partial
matches{117]. In terms of production syntax, a tree organization corresponds to a production
where no condition tests two previously bound variables. The production in Figure 9.8 is
an example of a tree-structured organization. However. it will no longer be a tree-structured

ADA289345

94. REDUCING COMBINATORICS 204

production if the condition

(point ~id <x> “comnected-to <z>)

is appended to the conditions already present.

connected-to

current-position

<y>
connectety
<>
connectedjy

<w>

(taken from Figure 14 in {117})

Figure 9.14: Constraint graph for the example production

The coller fon-oriented match approach presented in this thesis is a derivative of instantiation-
less match. Depending on the tests occurring in the conditions and the values occurring in the
tuples, it is able to position itself anywhere in the spectrum between instantiation-less match
and classical tuple-oriented match. On one hand, if there is no need to discriminate between
different tuples that match individual conditions, it operates like instantiation-less match. On
the other hand, if the tests in the conditions nced to discriminate between all the tuples matching
individual condtions, it degenerates into tuple-oriented match.

ADA289345

Chapter 10

Conclusions

This chapter presents the conclusions of this dissertation and discusses some avenues for future
research.

10.1 Primary conclusions

L

In general, there is no program-independent bound on the speedup that can be achieved
by parallel production system programs.

. Speedups in paraliel production systems can scale with data set size. That is, parallelism

is a feasible solution for the problem of dealing with large tuple-spaces.

. Effective parallelization of production system programs requires information about the

run-time contents of the tuple-space.

. A fixed ordering procedure combined with program annotations that specify which

instantiations are comparable is sufficient for the expression of parallelism in productiosi
system programs.

. It is sometimes possible to tame the combinatorial explosion in the number of instan-

tiations and partial matches as the data set size grows without restricting either the
expressiveness of the productions or the contents of the tuple-space. That is, collection-
oriented match 1s a feasible solution for the problem of dealing with large tuple-spaces.

. The rate of growth in number of instantiations and partial matches depends on the

specificity of the tests in the production relative to the contents of the tuple-space
205

ADA289345

10.1. PRIMARY CONCLUSIONS 206

The following paragraphs discuss these conclusions at greater length.

No program-independent bound on speedups: Based on a detailed analysis of a large set of
production system programs, Anoop Gupta{38] concluded that there is an emprrical program-
independent bound of between 20 and 30 fold on the parallelism available in production system
programs. He further concluded that fine-grain decomposition is required to achieve significant
speedup and that the communication and scheduling overheads of such decompositions limit
the speedup to under 20 fold. Resuits of other investigations have been consistent with this
conclusion(2, 42, 64, 65, 113]. Based on the expectation that the nature of the tasks performed
by production system programs will be similar to those performed by hus benchmarks, Gupta
concluded that using explicitly paralle] languages would not substantially increase speedups.
This expectation has not been met. The applications that production systems are currently being
considered for process orders of magnitude more data than the programs included in Gupta’s
benchmark suite.

Results presented in this dissertation indicate that there is no program-independent bound on
the speedups that can be achieved by parallel production system programs. The benchmarks
used in this investigation achieve up to 76 fold speedup with 100 processors and up to 115 fold
speedup with 200 processors. The detailed results in Section 5.2 show that these numbers are
not an upper bound on the speedup that can be achieved by parallel production system programs
and that, for some programs, larger speedups can be expected if the data set size is increased
further. The analysis in Section 5.1.1 identifies small task size, non-parallelizable loops and
large cross-products arising due to the use of sequencing tuples as the primary limitations on
speedups in parallel production system programs. These limitations can be alleviated, if not
eliminated, by using collection-oriented match algorithms and collection-oriented languages
(for details, see Section 5.3.6).

Speedups can scale with data set size: For speedups to grow with data set size, the available
parallelism must be proportional to the data set size. Programs that process variable-sized data
sets can be expected to contain loops whose number of iterations depends on the size of the
data set. If these loops are parallelizable, then different iterations of these loops can be mapped
to independent instantiations which can be fired in parallel. As the data set size grows, so
does the number of instantiations that are fired in parallel. If the subsequent match phase does
not contain large cross-products arising due to the use of sequencing tuples an increase in the
average numiber of instantiations fired per cycle will lead to an increase in the speedup.'

Results presented in Section 5.2 show that in many cases, the speedup achieved witn a given
configuration grows with the data set size, the rate of growth depending on program character-
istics. The only benchmark for which this does not happen is 1ife. Inthis case, the scalability
of the speedups is limited by the nature of the data set which consists of repetitions of a basic

!See Section 5 1.1.3 for a discussion of sequencing bottienecks ansing due to large cross-products and Sec-
tion 5 3.5 for gudelines for ehminating such bottlenecks

ADA289345

10.1. PRIMARY CONCLUSIONS 207

pattern of thirty-two cells of which only two ever change status. The loops that process updates
to these ceils can be executed in parallel but the Joops that print the entire pattern cannot. If
the fraction of mutating cells 1s significantly Jarger and the number of generations computed
are significantly greater, the fraction of time spent in the sequential print loop will not be as
important as it is in this benchmark. In such cases, the speedup can be expected to scale with
the data set size.

Explicit specification of parallelism necessary: The production system computational model
is synchronous. In each match-select-act cycle, the match phase must be completed before
the instantiations to be fired can be selected. Paralle] implementations of production system
programs need a barrier synchronization to ensure this. There are three reasons for this:
implementation of negated conditions, global selection policics and the need for non-monotonic
tuple-spaces (see Section 3.1.1 for details). Since the average size of match-select-act cycles in
asequential production system language 1s small, independent of the data set size, it is necessary
to combine multiple match-select-act cycles and share a single barrier synchronization between
them. To preserve correctness, a set of cycles can be automatically combined if and only if
the implementation is able to prove that there are no dependencies between the instantiations
being fired in these cycles (see Section 3.1.2.2 for a discussion of dependencies between
instantiations). A compile-time analysis has access to only the productions. To prove that
two productions are independent, it has to show that all possible instantiations of the two
productions have no dependencies between them. Since this analysis has no information about
the run-time contents of the tuple-space, it is forced to be overly conservative and often fails to
prove the independence of productions that are obviously independent. Section 3.1.2.2 shows
examples of simple and obviously independent productions whose independence cannot be
proved at compile-time. A run-time analysis operates within the context of a particular tuple-
space. Since it does not have to consider all possible tuple-spaces that might be presented to
the program, it can be less conservative than compile-time analysis. To fire two instantiations
in parallet, a run-time analysis has to prove that this does not change the final result of the
program. In the worst case, this might require exploration of all possible execution paths. In
the absence of such lookahead, run-time analysis is limited to detection of direct dependencies.
Relying on direct dependencies alone can compromise correctness. Section 3.1.2.2 shows a
simple program in which firing instantiations that have no direct dependency yields an incorrect
result.

Failure of both classes of analyses can be attributed to the data-dependent nature of the compu-
tation in production system programs combined with a lack of information about the contents
of the tuple-space. In the absence of user specification, there is no way for a production system
implementation to gain this information. Section 3.2 discusses several ways in which this
information can be made available to the implementation,

Simple constructs are expressive enough: The primary decision to be made in the design of
a parallel production system language is the manner in which information about the contents

ADA289345

10.1. PRIMARY CONCLUSIONS 208

of the tuple-space is to be provided This dissertation proposes a fixed ordering procedure
for instantiations combined with program annotations to indicate which instantiations are
comparable. A fixed ordering procedure has no knowledge about the productions, it can
depend only on structural properties, like the size of nstantiations, and on universal attributes
like the timetags of the tuples. However, since the annotations are specified at compile-time,
they cannot discriminate between different instantiations of a single production. Either all
instantiations of a production are incomparable or none of them are. Program-specific ordering
procedures that are executed at run-time have access to the instantiations and can be more
discriminating. However, program-specific ordering procedures can be arbitrarily complex.
This can significantly increase the time nseded to order the instantiations as well as make such
programs much more difficult to comprehend. The results presented in Chapter 5 indicate that
the simple constructs proposed in this dissertation are sufficient to express to the parallelism
available in a variety of production system programs and the additional flexibility provided by
program-specific ordering procedures may not be necessary. Hernandez and Stolfo present two
programs, which use program-specific ordering procedures, in [S0]. Appendix E contains PPL
versions of both these programs.

Combinatorial explosion can be tamed without giving up expressiveness: Researchers
seeking to eliminate the combinatorial explosion in the number of instantiations and partial
matches that occurs with a growth in the tuple-space size, have proposed restricting both the
tests that can appear in productions and the values that can appear in the tuple-space {112, 117].
The unique-attribute approach limits the number of tuples that can match each condition to one.
By doing so, it is able to guarantee that at most one instantiation and at most » partial matches,
where n is the number of conditions, are generated per production. The instantiation-less match
proposal takes a similar approach but places weaker restrictions on the productions and the
tuples. The collection-oriented match approach proposed in this dissertation does not place any
a priori restrictions on ¢ither the productions or the tuples. Depending on the tests occurring
in the conditions and the values occurring in the tuples, it is able to position itself anywhere in
the spectrum between instantiation-less match and classical tuple-oriented match. If the tests
in the productions do not discriminate between tuples, it operates like instantiation-less match;
if the tests in the productions need full discrimination between tuples that match individual
conditions, it degenerates into tuple-oriented match. The results presented in Chapter 8 provide
an illustration.

Rate of growth in the number of instantiations: For a collection-oriented match algorithm,
the number of instantiations of a production depends on the extent to which the tuples marching
individual conditions can be grouped together. If all the tuples matching every condition form
a single group, only one instantiation is generated for every production. On the other hand, if
every tuple forms its own group, a collection-oriented algorithm reduces to its tuple-oriented
analogue. In other words, the number of instantiations for a production depends on how
the collections of tuples corresponding to each condition are partitioned, or fragmented (see

ADA289345

10.2. SOME GENERAL CONCLUSIONS 209

Section 8.4 for an example). Therefore, the rate at which the number of stantiations and
tokens grows 15 governed by the rate at which new partitions are generated. In the ideal case,
addition of tuples does not increase the fragmentation and the number of instantiations remains
constant. This happens, for example, in some productions in the benchmark programs used
1n this investigation. In the worst case, every new tuple added increases the fragmentation.
As shown in Section 8.4, the rate of growth in the number of instantiations is independent of
the size of tuple-space as well as the absolute specificity, absolute specificity being defined
as the number of partitions that would be generated for an infinite tuple-space with a uniform
distribution of values. Instead, the rate is dependent on the relative specificity, that is, the
number of partitions that wouid be generated for a given tuple-space.

10.2 Some general conclusions

Performance on real machines: The simulation results presented in this chapter assume
a uniform memory access model. They provide a measure of the amount of parallelism
available that takes the scheduling costs into consideration but does not take the details of the
memory system into consideration. In effect, the speedups reported by the simulator constitute
approximate upper bounds on the speedups that can be achieved on a real multiprocessor.
These results help establish that there is no general program-independent limit on the speedups
that can be achieved by parallel production system programs. They also help establish the
feasibility of parallelism as a potential solution for the problem of dealing with large tuple-
spaces. However, it is important to understand that speedups on real machines will depend on
the characteristics of the machine. It is expected that for machines with a significantly different
model, for example distributed memory machines, a different decomposition will be necessary
to achieve good performance. Similarly, for machines with limited resources, for example,
small cardinality multiprocessors, coarser decompositions will needed so that the processors
are not swamped by a large number of fine-grained tasks.

Production system languages should be collection-oriented: The results presented in this
dissertation suggest that production system languages, sequential as well as parallel, should
be collection-oriented. Only one instantiation can be fired at a time in sequential production
system languages. Since firing an instantiation can modify only the tuples contained in the
instantiation, it is not possible to atomically update large unbounded data structures, like the
grid of cells for 1ife or the set of lines for circuit, in a single cycle. Therefore, such
updates have to be performed as loops spread over multiple cycles. To ensure atomicity, it is
necessary to create, update and delete copies of the tuples that constitute the data structure.
Collection-oriented production systemn languages make it possible to update an unbounded
number of tuples in a single cycle. Therefore, it is possible to atomically update unbounded
aggregate data structures in a single cycle. This eliminates the need for flag fields and tuple

ADA289345

(354
—
[}

102. SOME GENERAL CONCLUSIONS

modifications caused by resetting of these fields

The analysis presented in Chapter 5 identified three major limitations on the scalability of
parallelism in parallel production system programs: small average task size, non-parallelizable
loops and large cross-products arising due to the use of sequencing tuples. Each of these
15 closely related to, if not directly caused by, tuple-oriented semantics of production system
languages (see Section 5.3.6 for details). Since a collection-oriented token contains a collection
of tuples for every condition, match tasks in collection-oriented match algorithms consist of
comparing collections of unbounded cardinality. This is likely to increase the average task
size. A collection-onented production system language allows the programmer to generate and
manipulate collections of tuples and values. In particular, it allows her to move aggregate oper-
ations which cannot be parallelized within the production system paradigm to other Janguages
where they can. Examples of such operations include sorting, accumulations and permutations.
Finally, collection-oriented match algorithms can eliminate the sequentialization caused by
large cross-products. Since there is no test between the condition that tests for the sequencing
tuple and its successor, collection-oriented match algorithms will create only a single successor
token containing the implicit cross-product.

Recency is unsuitable for parallel production system languages: The algorithms used in the
select phase of many production system languages[11, 30, 26] use the age of tuples, as indicated
by their timetags, to order the instantiations. Instantiations containing recently created tuples
are placed above instantiations containing older tuples. This results in tuples being processed in
alast-in-first-out fashion. Aslong asonly one instantiation is fired per msa cycle and the actions
in the firing are executed sequentially, the process of timetag generation is deterministic. Insuch
cases, recency is a stable ordering criterion since the assignment of timetags is deterministic.
Parallel production system languages permit multiple instantiations to be fired in parallel. The
assignment of timetags to the tuples created by parallel firings is non-deterministic and depends
on the number of processors available and their relative speeds.

The use of recency as an ordering criterion in the selection algorithm for a parallel production
system language introduces three problems. First, it makes it impossible to compute the
control-flow graph (or even a usable approximation) at compile time since the order in which
instantiations are fired can depend on run-time data values as well as the relative speeds of
the processors. Second, it is likely to lead to contention for the timetag counter causing
potential serialization of tuple-space updates and thereby of the match process. Third, it
makes program exccution sensitive to relative processor speeds which introduces subtle race
conditions Section 5.3.3 contains an example.

The rationale for the recency criterion is historical. For a long time, production system
programs were used exclusively in programs modelling human cognition and reasoning. In
such programs, the recency criterion 15 necessary to ensure responsiveness to changes in the
environment{73; In some cases, 1t is possible to achieve responsiveness in the absence of
recency by using additional conditions. In general, responsiveness can be ensured by adding

ADA289345

10.2. SOME GENERAL CONCLUSIONS 2il

an explicit timetag field and testing for it 1n the productions. This scheme has the advantage of
allowing the programmer to create and use timetags as and when she needs responsiveness and
does not force her to pay the cost of recency for programs or sections of programs that do not
require responsiveness.

Ratio of msa cycles # speedup: Several papers describing efforts to combine muitiple msa
cycles use the number of msa cycles as a measure of the execution time and the ratio of the
number of instantiations fired and the number of msa cycles as a measure of the speedup
[33, 56, 81, 101, 107, 119]. The stated assumption for this is that given enough processors,
the time taken for each cycle would be the same. The unstated assumption is that all tasks
that are generated from the firing of different instantiations can be performed independently.
These assumptions are unsound as shown by the results presented in [2, 38, 42, 113]. These
results indicate that inter-task dependencies are a major limitation on speedups in production
system programs. As the results for walrz show (see Chapter 5), these assumptions do not hold
even for simple programs written with commonly used programming idioms. For the largest
data set used in this investigation, 59524 instantiations were fired in 32 cycles yielding a 1860
fold reduction in the number of cycles. However, a detailed simulation indicates a speedup
of only 17.9 fold using 100 processors. The results also indicate that the speedups will not
increase significantly for larger configurations. Table 10.1 compares the ratio of msa cycles to
the speedup computed by detail simulations. It shows that the ratio of msa cycles is neither
an underestimate nor an overestimate of the speedup. Table 10.2 compares the average size of
cycles for sequential and parallel versions of the benchmarks.

Program circuit | life [waltz | hotedi | spam
Ratio of msa cycles 12.5 | 196.4 1860 242 243
Speedup 296 | 236 179 1153 353

Numbers presented in this table correspond (o the largest data sef for each benchmark,

Table 10.1: Comparison of ratio of msa cycles and speedups

Program circuit life waltz hotel spam

Average cycle size (sequential) 17482 10630 5653 | 3580534 [229870

Average cycle size (parallel) 508884 | 2589446 | 13335031 | 80608075 | 6736894

Ratio 29.1 243.6 2240 225 293

Cycle size 1s measured by instruction counts, Numbers presented in this table correspond to the largest data set
for each benchmark,

Table 10.2: Comparison average cycle size of sequential and parallel versions

ADA289345

[
L]

10.3. DIRECTIONS FOR FUTURE RESEARCH

10.3 Directions for future research

Lazier collection-oriented match: Consider the task of finding al) nodes in a network that
are three hops away from a given node. Figure 10.1 shows a production that implements
this Under tuple-oriented semantics, one instantiation is generated for every path of length
three from the root node. For the network in Figure 10.2, ten tuple-oriented instantiations are
generated, one each for A and D and three each for B and C. Since the production conditions
discriminate between every such path, collection-oriented match would generate the same set
of instantiations. However, the operations performed by the production need only the leaf
nodes and not the paths to these nodes. Since collection-oriented match guarantees the mutual
consistency between all tuples in a collection-oriented instantiation, it is unable to coliapse
all the paths to a node. A variation of collection-oriented match that relaxes the mutual
consistency guarantee would be able to deal with such situations by extending the laziness
to generate the paths only if needed. The key component of such an approach would be an
algorithm that analyzes the productions and determines the conditions for which the mutual
consistency guarantee could be relaxed.

———
'

(p find-three-deep-leaves
(root-node Aid <root>)
(node Aid <intermediate]> Aparent <root>)
(node Mid <intermediate2> #parent antermediatel>)
(node *id <leaf> Aparent <intermediate2>)
>
(do-somethung <leaf>))

Figure 10.1: Production that finds leaves two hops away from the root

Optimizations for collection-oriented languages: The current implementation of COPL is a
first-cut implementation and is relatively under-optimized. A host of cptimizations have been
discussed and proposed but are yet to be implemented. These include:

o Sharing of collections berween tokens: Currently, collections in a parent token are
copied whenever a successor is created. This is usually not necessary and it is possible
to statically determine when it and when it is not needed. For large collections, avoiding
copying collections could make a significant difference.

o Using equivalence classes as collections: For productions that contain no negated condi-
tions, it is possible to use the equivalence classes directly as collections. This can reduce

ADA289345

[24
——
wI

10.3 DIRECTIONS FOR FUTURE RESEARCH

root
Y * TS o
C
. - ®
B
* . ®
ol ® ® ®

Figure 10.2: Example network

the cost of matching a new tuple to the cost of finding the appropriate equivalence class
and adding the tuple to it. This optimization avoids performing 3 tests for tuples that join
pre-existing equivalence classes. Since 3 tests are by far the most expensive part of the
match process, this optimization has potential for large speedups for the programs it is
applicable to. With the availability of collection-oriented operations, negated conditions
are expected to be rare (see Section 8.5.2 for details).

o Hashing right memories: As the number of equivalence classes grows, it is beneficial to
organize a right memory into a hash table of equivalence classes. In combination with
the previous optimization, this could reduce the cost of adding a tuple, under appropriate
circumstances, to a few instructions.

Parallelization of collection-oriented languages: One of the conclusions presented in the
previous section was that collection-oriented production languages and match algorithms can
be expected to alleviate or eliminate the primary limitations on speedups in production system
programs. This is a qualitative conclusion. For a quantitative characterization of the effect
of collection-oriented match algorithms and languages, an empirical study of a parallel imple-
mentation of a collection-oriented language is required. Some of the issues that need to be
addressed are:

o Load balancing for collection-oriented tokens: collection-oriented tokens are essentially
a grouping of a collection of tuple-oriented tokens. To process a collection-oriented
token, it is necessary to compare a sequence of collections of tuples (the token) with a
collection of equivalence classes (the right memory). Since collection-oriented tokens
could vary greatly in size, a different task decomposition will probably be required for
adequate load-balancing.

ADA289345

10.3. DIRECTIONS FOR FUTURE RESEARCH 214

o Parallelism within actions: Collection-oriented production system languages allow the
programmer to generate and manipulate collections of tuples and values. In particular,
they allow her to move aggregate operations which cannot be parallelized within the
production system paradigm to other languages where they can. Examples of such
operations include sorting, accumulations and permutations,

Axiomatic specification of tuple-space contents: As mentioned in Section 3.2, the primary
decision to be made in the design of a parallel production system language is the manner in which
information about the contents of the tuple-space is to be provided. An obvious way to allow
the programmer to specify this information would be to provide a data description sublanguage.
Such alanguage could specify, for example, axioms about sets embedded in the flat tuple-space,
their cardinality, their relationship with other sets and so forth. The main advantage of this
approach is its explicit nature. It would make explicit the assumptions with which the program
is parallelized. At the cost of greatly slowing down the execution, it is possible to check if these
assumptions hold through out the execution. Such a checker would be a useful debugging and
maintenance tool. This approach was not adopted in this investigation because it was believed
that the existence of an explicit operational model facilitates performance tuning. Since one of
the primary goals of the investigation was to demonstrate that there is no program-independent
bound on the speedups achievable in production system programs, an approach that makes
it easy to extract the highest possible speedup was preferred. However, data specification
sublanguages remain a viable and interesting avenue for future work.

Evaluation of performance on non-uniform memory access machines: The parallelism
results presented in this dissertation were performed on a simulator which assumed a uniform
memory access model. The results presented in Section 5.3.7 show that the parallelization
overhead associated with the fine-grain decomposition can swamp a small cardinality multipro-
cessor. To achieve good speedups on multiprocessors containing 4-16 processors, coarse-grain
decompositions are necessary. Section 5.3.7 presents results for a coarse-grain decomposition
for one of the benchmarks. It would interesting to find out if such decompositions are possible
for other production system programs and if so, how much speedup can be achieved for them.

ADA289345

Appendix A

Trace formats used in the parallelism
experiments

There are two trace formats used. The static trace file contains compile-time information about
the program being traced. It is generated by the pplc compiler and is read in by the simulator
at startup time. The dynamic trace file contains information from program execution. The two
traces complement each other. The following sections describe the formats of both the trace
files.

Al Static trace
The high level organization of the static trace file is:
1. Version number
2. Number of production-sets in the program
3. Information about individual production-sets
4. Number of Rete network nodes in the program
5. Information about individual nodes
6. Number of external functions calied from the program

7. Information about individual functions

W b

The following subsection provide details about individual records used in the static trace.

215

ADA289345

A.l. STATICTRACE 216

A.1.1 Information about individual production-sets

The trace record for a production-set consists of a header record followed by records for
individual productions contained in the production-set. The trace record for a production
consists of information about the production followed by a sequence of records for the acvions
1n the production. The trace record for an action record consists of information about the type
and number of operations per action. The C structures corresponding to the individual records
are:

typedef struct TRACE_PSET_INFO_REC
{
char *name;
ant rum_productions:;
) trace_pset_info_rec, *trace_pset_info_ptr;

typedef struct TRACE_PRODUCTION_INFO_REC
{
char *name;
int size;
int positive_ce_count;
int test_count;
int num_of_actions;
int is_parallel;
} trace_production_info_rec, *trace_production_info_ptr:

typedef struct TRACE_ACTION_INFO_REC
{

int num_const_value_items;

int num_variable_value_itens;

int num_function_value_items;
} trace_action_info_rec, *trace_action_info_ptr;

A.1.2 Information about individual functions

typedef struct TRACE_FUNCTION_INFO_REC
{
char *name;
int num_of_args;
} trace_function_info_rec, *trace_function_info_ptr;

ADA2R2Q34C

A.2. DYNAMIC TRACE

A.1.3 Information about individua! nodes

typedef struct TRACE_NODE_INFO _REC
{
/* bit 0 contains node type -- AND/NOT, bits 1-31 contain depth
* of the node in the Rete network */
int level_and_type:;
int num_of. _successors:
int num_of_tests;
trace_test_info_ptr tests;
} trace_node_info_rec, *trace_node_info_ptr;

typedef struct TRACE_TEST_INFO_REC
{

int test; /* the test being applied */

int type; /* type of the values being tested */
} trace_test_ini>_rec, *trace_test_info_ptr;

/* tests used */

¥define TRACE_EQ 0
#define TRACE_GT 1
#define TRACE_GE 2
#define TRACE_LT 3
#define TRACE_LE 4
#define TRACE_NE 5
/* runtime type tags */

#define TRACE_TYPE_INT 0x0
#define TRACE_TYPE_SYM 0x1
#define TRACE_TYPE_REAL 0x2
#define TRACE_TYPE_MISC 0x3

A.2 Dynamic trace
The high-level organization of the dynamic trace is:
L. version number

2. first match-select-act cycle traced

3. algorithm used for deletion of tuples

ADA289345

A2

4.
5.
6.

10.

DYNAMIC TRACE 218

size of the hashtable used for implementing memory nodes
whether global or local hashtables were used
whether the hashtable can be grown dynamically

magic primary number used to randomize node identifiers

. whether the trace was generated from a uniprocessor

. fields specific to multiprocessor traces

(a) number of processors

(b) number of task pools

(c) whether tasks are to be grouped

(d) task pools management scheme — stacks or queues

(e) whether the tasks are initially distributed over task pools

(f) whether different actions in an instantiation can be done in paralle!

individual trace records

The trace records are organized in segments, each segment corresponding to one match-select-
act cycle. The first record in each segment is a resolve record. The final record in the trace
is a resolve record with a special cycle number. Each schedulable task that can lead to the
generation of other tasks is assigned an acrivation id which is used to indicate dependency
information, The trace does not contain pointers.

typedef struct PPL_TRACE_RECORD_REC

{

int proc_num_and_record_type; /* b_0-15 for type, rest for proc */
union

{

struct

{

}

/* recoxrd of operations for each alpha activation */

int tuple_time_tag;

int size;

int activation_id;

int num_of_tests; /* currently ignoring Qiffs between tests */
/* bit_0 = add_or_delete, bit_1-31 = num_of_successors */

int num_of_successors_and_add_or_delete;

alpha;

ADA289345

A.2. DYNAMIC TRACE 219

struct
{ /* record of operations for each beta activation */
int left_parent_id;
int right_parent_id:
int activation_id;
int node_id; /* used to find tests for node in static trace */
/* bit_O=add/delete,bit_l=left/right, bit2-3 for scheduler,
* bit_4-31 num_of_successors */
int attributes;
int *test_values; /* does not support fltpt values in trace */
} beta;
struct
{ /* record of operations for each pnode activation */
int left_parent_id;
int right_parent_id;
/* bit_0 = add_or_delete, bit_1-31 = thread_ id */
int thread_id_and_add_or _delete;
int prod_id;
int *timetags;
} pnode;
struct
{ /* this is the header record for a resolve-match-act cycle */
int cycle_num;
int record_id; /* other record ids are derived from this one */
} resolve;
struct
{
int activation_id;
int thread_id;
int prod_id;
) fire;
struct
{ /* info about most actions is obtained from the static trace.
* this trace contains information only about actions that
* do a variable number of operations */
int parent_id; /* id of fire record that caused this action */
int type:
union
{
struct { int timetag;) make;
struct { int timetag_new, timetag_old;) modify;
struct { int timetag_new, timetag_old;)} copy:

ADA289345

A.2. DYNAMIC TRACE 220

struct { int timetag; } remove;
struct { long cost;)} call;
} info;
} action;
struct
{ /* operations for computing individual values in an action */
int type;
union
{
struct { int num_of_values; } substr_call;
struct { long cost; } function_call;
} info;
} value_item;
struct
{ /* for makes done from external routines */
int parent_id; /=~ special id for first cycle and loads */
int timetag;
} external_make;
} info;
} ppl_trace _record_rec, *ppl_trace_record ptr;

ADA289345

Appendix B

Cost model used in parallelism

experiments

This section lists both the items 1n the cost mode! as well as the values used for the experiments
described in this dissertation. These costs are very closely associated with the simulator. To
fully understand the various costs covered, it would be helpful to be conversant with either the
PPL implementation or the simulator or both.

Total number of cost mode] items:
Match-select-act cycle costs :

Cost of straight line multiproc code in msa cycle:
Cost of straight line uniproc code in msa cycle:

Cost of finahizing msa cycle routine:
Left memory processing costs :
Fixed uniproc cost’

Fixed multiproc cost:

Cost of initializing search loop:
Cost of testing node id:

Cost of inttializing test loop

Cost of test loop body:

Cost of test loop update:

Cost of testing a word.

Cost of testing a tuple:

Cost of breaking out of test loop
Cost of testing a tuple pair:

Cost of search loop update:

Cost of Jdeleting intermediate token:
Cost of deleting first token:

Cost of freeing conjugate 3 cell:

m

25
25
12

21
34

-]

S AL AL LN L L

—

221

ADA289345

Cost of freeing non-conjugate 3 cell.
Fixed cost of freeing a § cell:

Cost of checking for an empty bucket’
Fixed cost of making a cell*

Cost of imuializing cell creation loop:
Cost of cell creation loop body:

Cost of checking node depth:

Cost of testing a tuple pointer in a token:
Cost of testing fornull in a token

Cost of setting conjugate bucket to null.
Cost of storing a tuple pointer in a token:

Cost of storing a tuple pointer in a conjugate token:

Cost of adding a token to main bucket:

Cost of adding a token to conjugate bucket’
Cost of adding token to a bucket (uniproc):
Cost of setting the retum value:

Right memory costs :

Fixed right memory cost for umproc

Fixed right memory cost for multiproc

Cost of initializing the search loop:

Cost of testing the node 1d:

Cost of testing a tuple pointer:

Cost of search loop update:

Cost of testing a word:

Cost of storing intermediate tokens:

Cost of storing first token:

Cost of freeing a conjugate cell:

Cost of freeing a non-conjugate celi:

Cost of freeing a cell for a uniproc:

Cost of adding a token to a conjugate bucket:
Cost of adding a token to a non-conjugate bucket:
‘Tuple processing costs :

Cost of adding a tuple (multiproc):

Cost of adding a tuple (uniproc):

Fixed cost of deleting a tuple (multiproc):
Fixed cost of deleting & tuple (umiproc):

Cost of actually deleting the tuple (multiproc):
Cost of actually deleting the tuple (uniproc):
Cost of setting tuple-space pointer (muitiproc):
Cost of setting tuple-space pointer (uniproc).
Cost of setting a value:

Cost of calling delete_tuple():

ADA289345

222

—
-0 WO B W DB WA B LWL

—
PN >

— -
Wl WwWA O AWK M

Fixed cost of creating a tuple (multiproc):

Fixed cost of creating a tuple (multiproc):

Cost of allocating tuple from free list:

Cost of calhing maltoc (multiproc):

Cost of calling malloc (uniproc)

Cost of calling finalize tuples():

Fixed cost of freeing a list of tuples (uniproc):
Fixed cost of freeing a list of tuples (multiproc):
Cost of loop body for freeing a tuple list (uniproc):
Cost of loop body for freeing a tuple list (multiproc):
Cost of finding the free list by free Jist map
Cost of directly finding the free list:

Fixed cost of calling remove_tuple():

Cost per tuple deleted by remove._tuple():

Fixed cost of calling make.tuple():

Fixed cost of calling modify_tuple() (multiproc).
Fixed cost of calling modify.tuple() (uniproc):
Fixed cost of calling copy.tuple:

Cost of loop header of updating tuple fields:
Cost of loading field index:

Cost of loading field value:

Cost of loop header for tuple copying:

Cost of loop body for tuple copying:

Cost of handling each index in a list of indices:
Cost of initiahzing a tuple:

Cost of catling match.wme():

Token processing costs :

Fixed cost of making a 8 cell:

Cost of allocating 8 cell from a free list:

Cost of calling ppl.malloc():

Fixed cost in deleting alist of 3 cell:

Cost of loop body in deleting a hist of 8 cell:
Cost of getting the free list from the map:

Cost of getting the free list from a cache:

Cost of imtializing loop for 3 activation with hashing:

Cost of initializing loop for 3 activation without hashing:

Cost of calling the memory node routine:

Cost of loop update in § activation routines:

Cost of testing the node 1d.

Cost of updating the reference count for left tokens.
Cost of testing reference count for a left token:
Cost of computing reference count for right token:

ADA289345

223

w

—
N hh b ROORAINDWERNDAEAO

Cost of reversing direction for nghtnot activations:
Cost of freemng lock if hashing can be constant-folded:

Cost of freeing Jock 1f hashing cannot be constant-folded.

Cost of testing a cached first value in bucket:

Cost of testing a uncached first value m bucket.
Cost of testing a cached non-first value in bucket
Cost of testing a uncached non-first value i bucket:
Fixed cost of making an a token:

Cost of allocating from a free hst:

Cost of calling ppl-malloc()

Fixed cost of freeing a list of & tokens:

Freeing cost per o token'

Fixed cost of o test:

Cost per a test per tuple:

Cost of callee-save per data-item for and:

Cost of callee-save per data-item for leftnot:

Cost of callee-save per data-1tem for nghtnot:

Cost of callee-save per data-ttem for and (muitiproc):
Cost of callee-save for final data-item:

Cost of caching a left value:

Cost of caching a right value:

Cost of calling the memory reclaiming routine for tokens:

Cost of caching the hash value:

Pnode processing costs :

Cost of calling a pnode routine:

Fixed cost of processing pnode (multiproc):

Fixed cost of processing pnode (uniproc):

Cost of deleting instantiation from list (multiproc)-
Cost of deleting instantiation from list (uniproc):

Cost of calling instantiation searching routine:

Cost of calling routine to remove instantiation:

Cost of calling routine to add instantiation:

Cost of consing an instantiation to list:

Conflict set costs :

Constant cost for select:

Cost per production set (loop header):

Cost of checking if a production set has an instantiation
Constant cost per parallel production (umiproc).
Constant cost per parallel production (multiproc):

Cost per instantiation:

Cost of checking if instantiation set 1s empty (uniproc):

Cost of checking if instantiation set is empty (multiproc).

ADA289345

224

—

——
OOV R WOV DAL N

»

—
[e Y I A PR I

Cost of checking if there 15 a new top instantiation.
Fixed cost of creating the second level heap:

Fixed cost per iteration of heap creation loop:

Cost of exchanging production sets:

Cost of updating indices to production sets’

Cost of companng siblings:

Fixed cost of inserting an production set into the heap.
Fixed cost per iteration of insertion loop-

Cost of exchanging production sets for insertion:
Instantiation list processing costs :

Cost of adding to an 1nstantiation List.

Constant cost of deleting from an instantiation list:
Cost of hashing for an instantiation list:

Cost of delete loop header for instantiation lists*
Cost of testing if previous instantiation exists:

Cost of loop updating for deletion routine:

Cost of deletion for last instantiation in list:

Cost of deletion for intermediate instantiation 1n list:
Instantiation set processing costs :

Cost of adding an instantiation set:

Constant cost for deleting an instantiation set from heap:
Cost of deleting last set:

Constant cost of deleting intermediate set:

Per set cost of deleting intermediate set:

Cost of exchanging instantiation sets for deletion:
Fixed cost of searching for an instantiation:

Fixed cost of instantiation searching loop:

Cost of retumning from the muddle of the search Joop:
Cost of search loop update:

Fixed cost of adding an instantiation (multiproc):
Fixed cost of adding an instantiation (multiproc):
Cost of loop test for adding an instantiation:

Cost of loop body for adding an instantiation’

Cost of determining sf the top element has changed
Cost of handling new top element (multiproc):

Cost of handling new top ¢lement (uniproc):

Task record processing costs :

Cost of creating a task record from free list'

Cost of calling ppl.malloc():

Cost of creating a match task:

Cost of creating a finng task.

Cost of scheduling a fining task:

ADA289345

225

Cost of scheduling a match task

Cost of completing scheduling for match task
Cost of completing scheduling for firing task »
Cost of waking up processes:

Cost of loop header in scheduler

Cost of unrolled iteration init in scheduler:

Cost of rolled iteratton nit in scheduler:

Cost of jumping to top of loop:

Cost of extracting a task record from a task pool:
Cost of setting the activity bitmap:

Common cost of running & task’

Extra cost for running a match task:

Extra cost of running a firing task

Cost of freeing a task:

Cost of scheduling the root node for uniproc.
Cost of scheduling the root node for multiproc:
Firing costs :

Cost of first block 1n multiproc case:

Cost of second block in uniproc:

Fixed cost (uniproc):

Cost of loop body (multiproc):

Cost of loop body (uniproc):

Cost of fire loop update.

Cost of final block for fining.

Fixed cost of dollar.assert():

Fixed cost of actions'

Cost per action for rhs:

Cost per variable argument:

Cost to get the class size:

Cost of accessing a symbol givents id'

Cost of substr with known bounds:

Cost of substr with unknown vars:

Instantiation processing costs :

Fixed cost of comparing instantiations of different productions:
Cost of loading value (diff prods) for comparison:
Cost of a single test (diff prods) for companson:
Cost of update for comparison loop (diff prods):
Fixed cost of comparing instantiations of the same production:
Cost of a single test (same prod) for comparison:
Cost of update for companson loop (same proc):
Fixed cost of deleting an instantiation (multiproc)’
Fixed cost of deleting an instantiation (umproc):

ADA289345

226

Cost of locking for deleting an 1nstantiatton
Cost of header for Joop arranging upper heap:
Cost of exchange for upper heap loop:

Cost of index increment for upper loop:

Cost of loop test for upper loop.

Cost of header for loop arranging lower heap:
Cost of exchange for lower heap:

Cost of placing an instantiation on tmp free list:
Cost of updating tmp free list:

Fixed cost of freeing tmp free list:

Cost of loop body for freeing tmp free list:

Cost of mapping size to free list:

Cost of dereferencing ptr to get free list:

Fixed cost of hashing full instantiation:

Cost of hashing each timetag in instantiation:
Fixed cost of hashing instantiation in parts:

Cost of getting first timetag for hashing by parts:
Cost of loop header for hashing by parts:

Cost of loop update for hashing by parts:

Cost of extracting a timetag for hashing by parts:

Cost of extracting a null value for hashing by parts:

Cost of extracting last timetag for hashing by parts:
Fixed cost of ordering timetags:

Cost of header for first timetag ordering loop:

Cost of header for second timetag ordering loop:
Fixed cost for creating timetag heap:

Cost of testing a ptr for heap creation:

Cost of updating a ptr for heap creation:

Cost of comparing two ptrs for heap creation:

Cost of update in heap creation loop:

Cost of main routine for instantiation deletion (uniproc):
Cost of main routine for instantiation deletion (multiproc):
Cost of main routine for instantiation addition (uniproc):
Cost of main routine for snstantiation addition (multiproc)’

Fixed cost of creating an instantiation:

Cost of allocating instantiation record from free list:
Cost of calling ppl-malloc() for record:

Cost of copying first tuple ptr:

Fixed cost of token creation loop:

Cost of getting anull tuple pir:

Cost of getting a non-null tuple ptr:

Cost of getting a null last wple:

227

ADA289345

Cost of getting a non-null last tuple
Cost of toup update.
Fixed cost of matching instantiations.

Cost of checking for single instantiation:

Cost of checking for null last tuple:
Cost of matching anull tuple:
Cost of matching a full tuple:

Cost of match loop header:

Fixed loop body for match loop:
Cost of update for match loop:

List consing costs :

Cost of straight line code:

Cost of allocation from free list.
Cost of calling malloc for allocation:
Cost of consing up a singleton list*
Free list processing costs :

Cost of non-loop code:

Cost of cach loop iteration.

Memory allocation costs :

Constant uniproc cost for memory allocation:
Constant multiproc cost for memory allocation:

Cost of adjusting size of request:
Cost of mapping to size range:

Cost of double word aligned allocation (uniproc):

Cost of double word aligned allocation (multiproc):

Costs for calling sequence of routines :

Fixed cost per call:

Additional cost per argument:
Locking routines :

Cost of acquiring a lock:

Cost of releasing a lock:

Cost of creating and nitializing a lock

ADA289345

228

—

W oo I N)WV O

—
h oo

Appendix C

Configuration file for the simulator

The configuration file controls the simulator and makes it easier to run a sequence of simulations
without human intervention. This appendix describes the parameters that can be specified in
a configuration file. The simulator has default values for all these parameters. It also accepts
command-line arguments to set all these parameters. The values specified 1n a configuration
file override default values and values specified on the command-'ine override the values in the
configuration file.

Program name : name of the program being simulated. This is used to create the trace file name (or
the socket name if the trace is being sent to a socket). It is also used to create defauh names for the static
and dynamic trace files as well as the output file.

Static trace file name : overrides the default name generated using the program name It is always a
file unlike dynamic trace file which can be a Unix or inet socket.

Cost model file name : the simulator is not tied into any particular processor. It reads in the cost model
which is specified as a sequence of (string,integer) pairs.

Dynamic trace file name : this can be a file or a socket. Must be readable by the user.

Output filename : overridesthe default generated from the program name. Allows multiple simulations
to run 1n parallel.

First cycle to be simulated : useful for partial simulations.

Last cycle to be simulated : again, useful for partial simulations

Compute flags : these flags specify what information should be computed by the simulator.
¢ Overall runttme
¢ Maximum parallelism duning the execution

o Maximum parallelism during each cycle

229

ADA289345

o Processor utthzation

o User level information (e.g., number of finngs etc.)

e Detailed breakdown of execution time
o Cost per cycle

o Number of tasks per cycle

o Number of tasks in the program

o Number of hashtable activations

« Number of conflict set activations

Verbose : controls printing of diagnostic detasls

Help : prints information about the options avalable
Number of processors : 1gnored for umprocessor simulations
Number of task pools : 1gnored for uniprocessor simulations

Uniprocessor simulations : this flag makes all the multiprocessor re:ated flag invahd

ADA289345

230

Appendix D

Detailed parallelism results

This appendix presents detailed results from the parallelism experiments. For every bench-
mark, 1t presents three groups of results ~ language level, task breakdown and execution time
breakdown. The language level results consist of information that is usually available to the
programmer, for example the number of instantiations fired. The other two are internal statistics
from the runtime system. The task breakdown results also include a measure of the program
efficiency, referred to as efficiency of instantiation generation. It is the fraction of the gener-
ated 1nstantiations that are actually fired. Efficient programs have a high EIG. Programs that
perform selection or accumulation within the production system model have a low EIG. The
execution time breakdowr: is for uniprocessor execution, that is for the parallel-model
versions of the programs. These versions do not include the cost for parallelization. It 1s
expected that, in the absence of the parallelization costs (which depend on the architecture of
the machine), these numbers reflect inherent characteristics of the programs. In the tables,
execution time breakdown is presented in terms of percentage of total time. In addition to the
seven explicit headngs, there is an other heading which includes the cost of book-keeping in
the match-select-act cycle and the cost of removing the selected instantiations from the conflict
set. In the execution time breakdown statistics, all the times shown are non-overlapping except
the time spent in actions and (external) functions. In this case, the time for actions includes the
time for functions. The latter have been shown separately to illustrate the point that, for some
programs, external function ca ~ can dominate the entire computation.

234

ADA289345

232

9§11 J0J s)nso1 [9A9] o8enSue] 7' 2MQBL

€191 | eript f it | gise fetze | ctev | €19z [evs | sppeadm

£SeS) | tozel § Lsotl | t068 | 1609 | toov | Love | zzs | sowiepaidm

oozt _jortr joge joig 1oww fois Jove |tz WL

86zsl | s0ici | 85601 | go88 | 8699) sosv { 8s¢e | €ev sSuuy PR

LOL1E | £1eLz | £98ZZ | Liv8Y | £96€Y | L156 | £90S | 2901 | sppeajdni

1120c | 1ipoe | nvze | viecr | viser | 1ize | 1v6p | 1301 | soppoidm

+190€ | v1€9Z | v1ozz | viest | vivel | vit6 | visy | vb6 sapkd

2190¢ | zieoz | ziozz | zisel [zivet | ziis | 2isy | 2v6 s3uny enuanbog
—D.—r:

oL 09 0s oy o€ oc o1 1 — 15 wp oIS

uieds J10j s1pnsas 19A3f 98enduey 1 dqeL

98¢€Z11 | LL8SY Zye0E sppe ddm

089901 | y0D66¢ 9v0LT 0)9p S|dn)

Z9001 SIvE /87T Sopoko

€1rpbbT | 91186 £S0L9 sduny Pijerg
ojut

L16%IS | 6089€7P | nweyour | ws ewp UOISIOp

ADA289345

233

Zi[em 10§ s3[nsal oao] o8enSue H'Q 2GRl

ADA289345

7089 | eiits | zzszs | Ziziv [z2oev | zzsic | 270t | ceong | TList | ezsot | z2es | sppe aidm

Zovse | zozse | zooze | zossz [209sz | zozel | 70091 | 20821 | 2096 | 2ovo | zoze | sppaidm

€ lze lze lee lze lee Jee Jee Jee lee e ko

v265 | v95PS | v096% | vOvy | ¥896¢ | voLeT | +08VT | ¥¥B61 | ¥88FY | vT66 | voev | suny Piiereg

z069 | zLies | zzszs | Zeziy | zzozy | zesie | 2izoz | zeonz | ziesh | zesot | zizs | spee sidn

zovsg | zozee | zooze | 2088z | 2095t | zozel | 20091 | zoszi | zoos | zovo | zoze | sorppaidm

czs6s | S9svs | c096w | Svopy | seoee | corez | somvz | vael | sasvl | sze6 | soay | somko

+7565 | $95vS | pO96Y | provy | ¥806¢ | $016Z | v0svz | biB6L | baRbI | b266 | bosy | sBuny ji ienwonbog

| YOL6T | YORYZ | YYREL | VARPL
ozt ot oot oo Jos Jos [os Jor Jee [oz Jor [_ J] worer
3N515 J0) S NsL [9A9] 9FenSue] g g8l

ve0sz | zzosz | ogeee | 8is0z | 8eeer | oorst | veezl | 0ssol | 2008 _| vovs | ossz | sppeoidm

ovsez | satsz | zeszz | veeor | vesin | oecsi | ovizt | oveol | svar | 0oes | cesz | somppaidn:

we |voz |vor_ |vor vz |vor {voz | voz |0z | soc [b0z | sioke

1bbLZ | 69057 | £8L77 | SL70z | S8LLi | L6zt | oz | L0l | evil | 192s | eesz | sAuup Iy

6537y | czeae | 0lose | 0o1ic | everz | veser | Lovel | 86151 | 89611 | coIn | £Rzy | sppesidm

ooty | 1708¢ | 96sve | 29406 | £6697 | OETE | €1261 | v6sst | vI8HY | tsos | 6zzy | Sowppaom

L05tv | £z6ce | 8Svre | ¥900¢ | $689Z | 216z | S1i6l | 96vst | o141l | eser | teiy | wopfo

o0siy | zz6Le | Lovve | £9905 | ve89z | 1616z | vitel | cevsl | S1.1i | 2s6L [0eiv | sAuuy § renusnbog
- T

sie fost |sw looz [su jost |sr Joor s Jos sz | o f wosma

234

13104 J0J S}NSas [9A9] a8enuey :¢'(J sjquy,

1006¢ | ca8le | 60982 | €1¥oT | Lizze | 1206t | ¢78S1 | 62921 | £Ev6 | £€29 | sppesydm

CINIZ | 22261 | Zeest [evvst | 2ecet | 29911 | 2ee6 | €882 | 2668 | zoipy | Seisiap ojdm

(4,014 siv 0Le $T¢ 087 €T 061 194} 011 ol SIPAD

90011 | 10001 | 9668 | ¥66L | 9869 | 1865 | 946p | 1265 | 996 | 1961 sBuuy plBred

BLTYE | ZOMIE | 9TOBT | 006YT | vLLiT | 8¥981 | 256t | 96€Z1 | 0426 | pv1o | sppeodm

T0v0T | 28SRI | 79LO1 | Tvovl | Zziet | ZOEll | z8v6 | Z99L | Zw8S | zzov | sowppoidm

SEO0E) 6996 16698 | szit | scr9 | o8I | sigy | svBE | <i8¢ | sosl S3[oAa

SE90L) €996 | €698 | €2LL) €529 | €81S | €18% | €¥BE | £48Z] 06) s3uuy tenuanbag
1] Togun

[¢1] 6 8 L 9 S 4 € [4 1 — 108 elep UOISIOA

ADA289345

235

ureds Joj umopYealxq Ysel :9°(IqElL

0U'S6, 89 56 €S ¥6 ()o@ |

6YSESET | 18786Y | R9ZEPE YSe 10l

Sv8el 816¢ £18€ syse opoud anjp

6LTLse | pEOEOL | €¥60L sxyszy opoud ppe

16LEY £SLYT 1¥9L1 SAS® (f WP

18cSel | 89628 16165 s¥se) g ppe

99061Z | 18468 | 886LS syse} o pierg
Tojug

L16Y)S GOS9LOP | 13Aow — ps ewp UOISIIA

ADA289345

236

SJI 10] uMOPYERIq YSE, £ AIqEL

| U835 [6L°1S | 6486 | 6L°1S | 82°1S | LL°YS | €L°1S J Ov'IS (%) o

Love [vo6T | 1evz | 8e6t | vt | 2660 | 66v0 | 9500 | (uoipnm) syse oy

00zZrl | 00ZZ1 | 00201 { 00Z8 | 0079 | 00zv | 0ozz | ooy sysezopoud 310j3p |

8SY6C | ROEST | RSITZ | ROOLY | 86871 | 80L8 | 8sov | €28 syse) opoud ppe

199°F [vep'l | L8101 [0S60 | €5£0 | 9Lv'0 | 6£2°0 | 9700 | (voryw) syser g ap9p

0691 | 6vP'1 | 80Z'1 | L9692 | 92L°0 | S8Y'O | ¥¥Z'0 | L20°D | (uonjiw) syse) g ppe

OLLIE] 0zELZ | 0L8ZZ | OZY8Y | OL6EL | 0ZS6 | oros | csor syse} 0 Rlered

SE66 | ST66 | 01°66 | 8886 | €586 | S8°26 | 1096 | 6v28 (%) D13

00Z 002 ooz jooz joor |ooz Yooz |ooz syyse) spoud 1pp

ci80¢ | zisoz | zicer | zieet | Tioel | 16 | Zros | gwil syse; opoud ppe

sov'i | €871 | QLo | 898°0 | S390 | 2ev0 | 61270 | 8200 | (voypus) sysus ¢f apopop

9zt | 60t'l | z601 | Si80 | 869°0 | 1pv'0 | 220 | 82000 | (uonypw) syses ¢f ppe

8LYT9 | BILES | BLovy | 8729t | 8LbLT | 8TL8Y | 8166 | €01T syse) © [ryuonbog

i oL o us 14 ot 14 ol 1 Topu UOISIOA
— s erp

ADA289345

237

ANDIID JOJ UMOPNEAIq YSEY, :8°(] [qeL

2596 | 6896) 1996 {0596 | $b'06 | Ov 96 | ¥196 | 6656 | S6'S6 | 2656 | 86'€6 (%) oK1

8I0¢ | 20t¢e | L66C | S99T | 9€€T | LOOT | 850X | OvE'l { 6001]| 0890 § 9vED {uorjnu) syse) ol

686 £88 66L SEL LS9 1LS 806 b-144 243 474 St syseyopoud anpep

OLVY8T | ¥S6ST | TSET | O101T | TypBl | 898SI | 6VIEl | 62901 | 9408 | 80SS | 806T 3523 apoud ppe

1eL1 1OBG Y 1 €Evl 16LT) | L1E] 19560 | €6L0 | 1990 § 2890 | S2€0 | S91°Q | (uoypiw) syses o S019p

LYy § SGS'E | Loyl) L8T'1 | 821 | 696'0 | 0080 | Lv9°0 | L8¥0 [8T€Q | 29910 | (uonyinu) sysui g ppe

YE9SY | 0P8OS | BIZUP | 25Ky | TZI9E | 9601E | PELST | 9680 | OS8SE | ¥Z801 | 8145 syse) o Riiesed

9L66 { $L65 | 1L66 | £966 | €966 | LS66 | 8v°66 | 966 | S1°66 | 986 | ¥9'L6 (%) Ola

66 66 66 66 66 66 66 66 66 66 66 syse1 apoud opp

9091P } TTOBE | LUSYE | €9L0€ | ¥669T | 1€2ET | PIT6T | S6561 | Si8il | 2e08 | 0gzy syse) apoud ppe

OvG'l | ¥LLV | L0 | OEv') | #ST'1 | BLO'T | 1680 | 12LQ | v¥60 | 8960 | 681'0 | (woujiw) sysel ¢ 9199p

61 | o841 | 0291l | v} | v92°1 1 9801 | 8680 | £2L0 | 8¥S0 | 1L€0 | 1610 (uoryn) syser ¢f ppe

POLER | 9bSIL | 99569 | 82619 | OvEYS | ¥9L9 | 0898E | T6EIE | T8LEZ | 90791 | 2ISB $ysey v . bog
Tojur

sLT 0sz ST 00T sLy 0s1 (¥4 001 <L 0§ sT 15 ewep :c.rjaJ

ADA289345

238

Z)[em 10§ umopYeq ¥SEL, 16 JI9EL

61°Z6 61'T6 | 6126 | 6126 | 61°26 | 6126 | 6126 | 6126 | 0226 | 0226 | OTL6 (%) D18
£¥60 $980 | 98L°0 ! LOLG | 8290 | ILv0 | €6€0 { +IE€Q | 9€T0 | LS1'Q | 6L00 | (uoiinu) sxse (g10}
oros 079y 00Ty | 08LE | (OEE | 0ZSZ | 00¥T | 0891 0921 _§ ov8 (V144 syse) poud PP
Y9S¥9 | VBI6S | VORES | vZv8Y | VPOEY | vBITE | Y0692 | ¥2SiC | pri91 { #9201 | bSES syse) apoud ppe
6820 S9CO0 | ¥¥TO_} LITO 1 €610 | v¥1'0 | 0TI'0 | 96070 | ZL00 § 80°0 | $Z0 0 | (uonjuu) sysey ¢ aapap
6LE0 8YE'0 | 9IC0 § S8Z°0 J €520 | 0610 | 8510 | £210 | $600 | €900 § ze00 | (uoipur) syse g ppe
YZYIO0L | vLOT6 | ISP | YLOOL | $TOLY | bTLOS | bLTehb | vE8eE | PLEST | Y2691 | vive syse 0 pierg
/8'26 BRT6 | RBT6 | 8R'T6 | 8R'Z6 | 88°C6 | RY'T6 | 68°T6 | 6876 | 6826 _| 6876 Yol
(11194 081y | 0OBE | OZVE | OVOE | 0822 } 0061 174} ovit 9L 08t sAse1 spoud apRp
YROVO | YPL8S | VOVES | v908% | vTLTY | YYOTE | vOLIT | +9EIT | b2o9l | $8I0I | pres syses Ipoud ppe
£IE0 £820 | 19270 | S€2°0 | 6020 | £510 | 110 | v010 | 8200 | 2600 | 9200 | (uvrjuw) syses of amqap
|_60v0 SLe0 1 1ve0 | coc0 J €420 | sozo | 1410 | 9610 | 2010 | 8900 | p£00 | (uoynu) syses ¢ ppe
bZh101 | bL6T6 | YISHR | $LOOL | TOLO | bTLOS | vLTTh | ¥T8EE | vLEST | #2691 | vivs sysel 0 lenusnbog
PV DV I Toguy
1741 otr (1114 06 08 [3.4] oS oy of 174 ot — 18 viep UDISIOA

ADA289345

239

{9101 10§ UMOPXe33q Y$BL. 301°Q 9IGCL

ye's 9Z01 |+OUL ¢ 16T o821 | L8¢€t | ¥8P1 | #S°CL | /ST | 89°€Y (%) D13

2680 86240 | 290 | €TSO0 [IZyQ | 1€€0 | IST0 | 2810 | $TVO | 9400 (uotjjuu) sysey pey0r

SBUPOL } BOYLE | BISTL | $TIOS | LEELY) OSILE | €9S8C | 9LSIT | 68191 | 8LECTE syse1 opoud spapep

160611 | 6616 | LOSI8 | ST1L9 | €ZevS § 1EIEY | 6€CEE | LYSST | SS16] | 6EEY! syse) apoud ppe

SLZ0 1€20 11610 | vv0 | 1210 | 2600 | 21900 | 9v00 | 8200 | #10°0 § (voypw) syses f aopop

61£0 1LT0 19220 {19810 | 6¥1°0 19110 § 9800 | 1900 | 6800 | I200 (uorpyiw) sysey o ppe

€£119¢ L2018 | 1v6Sh | SSBOP | 69LS€ | £890F | L6SSC | 11S0C | STHSH | 6££01 s%se) 0 Rierd

LT Pl St | 019l § Le81 | TEOZ | SLTT | LBST | 900t | bOOE | 6L SY (%) DIt

8S8E9 €10eS | BOUEY | ETEVE | BLYOT | €£€961 § 8BLET | €¥68 | 860S | €62C syse} poud Ip4ep

16l 9L929 | YORIS | 9VOZY | 1€2€€ | 91PST | 1098] § 98LC1 | VL6L | 9SIY sysw apoud ppe

1PEQ S8T0 | ¥¢Z0 | 8810 } Lb1°Q | 1310 | O8O0 | €500 } 2€00 | 9100 Jj1ue) sysel ¢f P

$8£ O $2€0 1 6920 | 6ITO | €LTO | £E1°0 | 8600 | 890°0 | €¢00 | TI00 (uon) syse) m ppe

089y PELOY | 88LYY | TYROE | 968¥E | 05662 | POOST | BSOOT } 211 | 99101 sjysel » bog
T Togr

o1 6 8 L 9 < L4 € < | — 138 ERp UOISIOA

ADA289345

240

wieds 10) uMopYEDIq W} BONNAXT <{ I'(] S[QRL

FA 4] Faxi) 10 SRAJI0

000 0090 000 ay

00 200 00 UITR]I91 WA

Y286 | 1066 9066 $SUOJIOUNJ

vt 86 1266 1266 SUOIE

60°1 144)) Sv'0 syse) apoud

800 | 800 600 s¥se1 f

st'o 10 11 mo || Peng
- T ojur

LI6YIS | 6089¢9P | 1nayows - s e UOISIaN

ADA289345

241

j1} 10§ UMODEIIQ SWIN UONNOAYY Z1°d IJqEL

920 1920 |60 €0 180 | €0 1 2P0 | 8P sJago
900 1900 1900 |90 |900 !900 {00 [800 ay
Evy Lecy V€OV 1 vly (o8P 1S6v |QIC | pTS 1231 waws
000 000 1000 1000 {000 {000 {000 {000 suopouny
STE | 8T1 ici SE1 _{ 6¢1 vl | $S71 £9¢ suonx
SLL 8L | vBL |88 | 28L {8LL JTLL | €06 sysey spoud
LyS8 1 TE'SB | BO'SB | LBPB | $L 98 | 6S¥8 | STYR | 1¥08 syw g
$LO 410] 6L0 [080 j€RO | S8O | 680 | i1l syse v Rliered
19 1209 {165 19LS |¢S¢ LU 1 ivy) 6pe S0
$00 {500 | s00 |s00 | S00 |so0 |900 | 600 uyY
oLy €8y 1160 L 10C L OIS 1 ITC | S€C | LLS O3 Wl
00¢ {000 _|000 [000 {000 | 000 |000]000 suoiouny
S6T jJ 00t 1S0¢ |2I'E |61'E }62¢ | RvE | 80°C suonse
29¢ 165y |6LY 16y |20 102¢ (¢SS |18 Sysey opoud
€1°08 | 1108 | I8°6L | 69°6L | SO'6L | 656L | 6V'6L | 6L sysm g
8€1 [Ovl |TVE Jort jevi | €St 191 122 sel v renuanbag
1 ojur
oL 09 (69 oy 0og 274 ot 1 — 05 wlep UOISIOA

ADA289345

242

NNDIID 10§ UMOPNERIQ SN UONNAXY ¢ |°d d[qeL

190 } 190 1790 1290 |¥90 ;990 |90 |690 |vL0 | 180 | 201 sPy0
810 {810 | 810 |810 1810 |810 |80 |81 |810 |810 | 810 a1y
6€C 1OVS | WS jeps JvpS |9vS {6vs 106S | ISS 126S | $6S | wmwpodu wow
600 000 {000 000 {000 |000 {000 {000 | 000 |000 | 000 suotpuny
96C | L62Z [667 {00t J110¢ Jeoe [coe !ioe Je60€ |vig |9TE suonoe
61'8 {o18 12I8 {608 1508 |008 je6r Pove liLe jost {ovi sysey dpoud
1L8L 1 IL8L | 698L) 698L) LOBL | ¥9'8L | €9°8L | SU'SL | OL'SL | OL'BL | 8¥'SL sish g
96 18¢ |66€ |00y |10y €Oy 160y |90V | L0 |60V | ZI'V SYs% O pierd
286 | 996 | S6 926 | 806 | 88 Zr8 €08 | 6pL 1IL9 }TrS sRyo
800 {800 | 800) R00 1800 |800]800 {800) 800]800 | 800 ay
LES 1 6EC JIVS {vvs jevs |1sS 195 109 [496 {1 |pgs | wepuanu
000 }000_ 1000 1000 000 000 [000 | 000 } 000 {000 |000 SuoTuny
STy $UTY J6TY |1ey | vEv LLev [Wvy | vy |8y QeSy | 99F suope
L9L 189¢ | 69L | 89L Jore tore |ite (oL §e9¢L |voL | 89L sysel spoud
0T89 | 62789 | BE'H9 { 9589 | €989 | 1889 | 9069 | L669 | €869 | R OL | Ly'1L e ¢
19v | €90 1S9y | £L90 [0ib |[€Lp [9LY 8Ly | I8V | vRF | SBY SY5e) » Ienuonbog
Tojur
lmhlm i 0sT (Y44 00z SLl 0st szl o1 SL 0s §T — 15 emp UOISIOA

ADA289345

243

Zi[em J0J UMOPEIq JW} Uonnooxy :pi-q dlqel

S1F 1€21 |20 |vE1 | b1 vl 1 €91 1 vL'l | 61 £IC | 6¥2 s

2e0 | £€0 JSE0 [9¢0 }8€0 J2v0 | tv0 |80 | 250 |50 | 990 Ky

22 Jezn Jeet jeel Jovl 1091 891 1i81 [961 | 617 €S | wepasunw

000 (600 |000 |000 1000 1000 | 00G 000 | 000 | 000 §000 suonduny

€C¢ 198, |oUR | L68 [S68 .86 16601] ITI1} pIEl] Zsel | 2961 Suonoe

€995 | SIvS | 16TS | 0805 1 oL'8y | Zosv | €zor | 06LE | St've | 89°1€ | 91'8Z | syswaspoud

08°1¢ [BIEE | 9SPE) €O09L | 6b°LE | TEIL | IBEY | 68%V | 069% | ¥SLY | OR'LY syse g

cEl 18¢T €V | UIST }LSY | €LY | T®E | L61 | EVT | L€T | vLT Syse1 o iprg

86T 199°¢C | TP ST | BE'ST | €L°ST | €192 | vBST | 6L°6T | €9°6T | v09Z | vLST S0

¥I'0 | ¥10 [#10 | #1O [S10 |[S¥O | S10 1910 ;910 }L10 | 810 ay

PLT I PLT I VLT [LLT | VBT 1 96T [86T } SOE [TUE }OEE | €57€ | Wl unw

000 {000 000 {000 [000 |000 000 {000 {000 |000 {000 suonoung

$66_ 1956 1966 tv96 |686 | €601 | 1901 | €O01 | 8808 | ¥S1T | LETI suonowe

SUEL L STEL 1 TIET 1 OTEY | 69T L 1T YL J 9Z ¥l | 6¥'vl | voyl | OCSE | €91 | syseropoud

169y [vOLY | 1ELY 1 STLY | €6SP § LEVY | OS v | B6EY | ESEY | 681V | €96E sy g

L1 LY [1LY Jely Jarh jsgl 198t |06 Jvel [90¢ | izt Sy B bog
Toju

[$14] (11§} 001 06 _ 08 09 oS oy ot 14 [195 vRp UOISIIA

ADA289345

244

{2104 10} UMOPEDIQ UL BOUNIXY :§1°d J[QBL

000 1000 }i00 [100 €00 Jsoo 110 {Zzo [2zvo 1iLt s1a430

000 1000 000 000 |000 §000 |000 | 200 |00 |zio e

200 |zo0 {00 |v00 <00 800 {410 70 | ELy | €81 192 WL

000 1000 {000)000 000 | 000 | 000 0 1000 §000 suonuny

€00 {1 $00 §$00 800 1210 |1Z0 | 140 §560 |592 {999 suonoe

P60 JOoL {I1€l 191 §60C {067 {2y | 168 | 60°1Z | 6p'es | suyserapoud

1066 | €886 | 6586 | pT'86 | 89'L6 | 12796 | €Lv6 | €868 | OE'pL | 9L0E oS ¢

100 {100 |100 {200 | €00 fs00 {600 |ozo 1950 |61 s o Plerd

200 |00 1900 {800 |vto 1ezo Viro 160 Jv2 '8 Yo

000 1000 {000 {000 000 J000 000 |ooo {200 |90 Ay

°00_J2ne | €00 tp00 | SO0 [800 J €0 | vZ0 | 090 |61 | wiepos umw

00 _{00o (oo [ooo 000 {000 | 000 '0_| 00¢_{ 000 suonouny

€00] €00 | s00 j00 {110 610 |90 1080 [sez |zZrs suonor

€60 | 190 |z,0 |880 {111 et | g1e |ise Jsie | wesy | symiopoud

6€ 66 | 82 €166 § 1686 | L5°86 | 0086 } 6896 | LEY6 '98 | 6£°6¢ sy ¢f

100_| 100 {100 {zo00 Jzvo {voo | oo |10] oo i Sysel [enusnbag
. Topn

(11} 6 8 : L 9 B S 14 £ z 1 — yot wwp UOISIA

ADA289345

Apnendx E

Code for benchmarks used in parallelism
experiments

This appendix contains the source code for four of the benchmarks used in the parallelism
experiments — 1ife, circuit, waltz and hotel. The code for spam is not available for
public distribution. Two versions are presented for every program ~ one that uses the parallel
constructs and the other that does not.

E.1 Sequential version of the game of life

Sequent:al version of the game of life in PPL

Each cell is represented as a tuple. It contains a field for its status
and four fields for links to neighbors.

The rules of life are:

1. af an organism has < 2 neighbors, it dies of loneliness

if it has 2 or 3 neighbors it lives

. a new organism is born in a cell with three neaghbors

if it has 4 neighbors, it dies of overxcrowdedness.

~

o W

; Version notes: this 1s an effaicient sequential version. Due to the

; single~instantiation-firing assumptaion, direct atomic update of all
modified cells not possible. Instead, atomicity is achieved by creating
copies of tuples corresponding to modified cells *without* destroying

the old ones. In OPSS, this can be done by (make {substr <tuple>) {mods)).
In PPL, it 18 done usang the copy primitive. At the end of the

; computation for each generation, the old copies are deleted and the new
copies are installed in their place. This requires an extra flagc on

the cell tuples which indicates whether the tuple contains the original

; cell or a modified copy. The tuple corresponding to a cell is modified

245

ADA289345

[]
=
(=

E.l. SEQUENTIAL VERSION OF THE GAME OF LIFE

1¥ an only 1f the state of the cell changes The original version always
rodified the cell tuples whether or rot the state of the cell changed.
**» gignifies an alive organism, "." signifies a dead organism

; This version by: Anurag Acharya, acha@cs.cmu edu

; original version: ftp.cs.columbia.edu:pub/prosys/prosys.tar.z

; coord:nates are needed for printing, id is needed for linking
(literalize cell x-coordinate y-coordinate 14 status left richt up down
modified)

; generation tuple is used for counters and limits -- the type field can
, be either “current" or “desired"
(literalize generation type value)

; flag tuple is used to control the sequencing -- values are prant,
, prant-cells, do-computation, set-medified-flags, completed-prirnt,
, compute-cells and complated

(literalize flag value)

, format tuple is used to store user format preferences -- values are
. no and yes. yes prints the map every generation, no prints

, the map only at the end of the simulation.

(literalize format value)

; this is used for traversing the grid for printing purposes
(literalize print-coordinates x-coordinate y-coordinate)

e ———————— S e mm——————— [—— e L

, Productions

{p start
(start]
-—>
(make generation current 0)
(write “Generations to run s:mulations for: “)
(make generation desired {accept))
(write "Prant after every generation ? ")
(make format {accept))
(make flag compute-cells))

{p swatch-to-next-generation

ADA289345

-
[%)

N
-3

E.1. SEQUENTIAL VERSION OF THE GAME OF LIFE

{{flag completed-print) <flag>}

{generat:on “type desired “value <x>)

{{generation “type current ~value {<y> < <x>}) <cur-gen>}
-—>

{modify <cur-gen> “value {compute <y> + 1))

(modify <flag> compute-cells))

(p finished-simulation
{(flag completed-print) <flag>)
{generation “type desired “value <x>}
{generation “type current “value <x>}
-3
(modify <flag> completed))

; of the next three productions, only one fires in a given cycle 1IZ the
; "per-generation” production matches, it will be selected due to
; specificity, else the vanilla "switch-to" production will fire.
{(p switch~to~print
((flag print-cells) <flag>]
{generat:on “type desired “value <x>)
{generation “type current “value < <x>)
-—>
{modify <flag> print))

(p switch-to-print-final
((flag print-caells) <flag>)
{generation “type desired “value <x>)
(generation “type current “value <x>}
-->
(modify <flag> print))

{p switch-to-print-per-generation
{{flag print-cells) <flag>}
(generation “type desired “value <x>}
{generation “type current “value < <x>)
{format “value no)
-2

{modrfy <flag> completed-print))

(p init-print
(flag print)
(generation “type current “value <x>}
-2
(make prant-coordinates “x-coordinate 0 “y-coordinate ¢)
(write generation <x> ":\n"))

(p print-next-cell-in-row
{ (prant-coordinates “x-coordinate <x> “y-coordinate <y>) <coords>}

ADA289345

E.l SEQUENTIAL VERSION OF THE GAME OF LIFE 248

(p

(p

{cell ~x-coord.nate <x> “y-coordinate <y> “status <status>)
-

{wraite <status>)

(rodify <coords> ~x-coordinate (compute <x> + 1)))

switch-rows

{{print-coordinates *x-coordinate <x> “y-coordinate <y>} <coords>)
~{cell "“x-coordinate <x>)

-——>

(modify <coords> “~x-coordinate 0 “y-coordinate (compute <y> + 1))}
(write (crlf)))

finalize-prant

{(flag print) <flag>}

{(print-coordinates “x-coordinate <x> “y-coordinate <y>) <coords>}
~(cell *y-coordinate <y>)

-—>

(modify <flag> completed-praint)

{remove <coords>)

(write “\n\n"))

implement-kill-rule-0

(flag do-computation)

(generation “type desired “value <x>)

(generation “type current “value < <x>}

{(cell ~status |*| ~left <left> “raght <right> “up <up>
*down <down> "“modified no) <cell>}

{cell ~id <left> “status |.| “modified no)
(cell ~id <right> “status |.| “modified no)
(cell “id <up> “status |.| “modified no)
(cell *~id <down> “status | | “modified no)
>

(copy <cell> “status |.} “modified yes))

implement-kill-rule-left

(flag do-cemputation)

(generation “type desired “value <x>}

(gcensration “type current “value < <x>)

{(cell ~status |*| “left <left> ~right <right> “~up <up>
“down <down> “modified no) <cell>)

(cell ~id <left> “status |*| “modified no)

(cell ~id <right» “status |.| “modified no)
(cell ~.d <up> “status |.| “modified no)
(cell ~:d <down> “status |.| “modified no)
-->

(copy <cell> “status |.| “rodified yes))

implement-kill-rule-rigat

ADA289345

E.l1. SEQUENTIAL VERSION OF THE GAME OF LIFE

(»

{flag do-computation)

{generatior “type desired ~value <x>)

(generation “type current “value < <x>}

{(ceil “status |*| *left <left> ~right <right> “up <up>
~down <down> “modified no) <cell>)

(cell ~id <left> “status |.| “modified no)
(cell ~1d <raght> “status |*| “modified no)
{cell ~1d <up> “status |.| “modified no)
(cell *id <down> “status | | “modified no)
-—>

(copy <cell> “status |.! “modified yes))

implement-kill-xule-up

(£lag do-computation)

(generation ~“type des:red “value <x>)

(generation “type current “value < <x>)

{{cell “status |*| ~left <left> “right <right> “up <up>
~down <down> “modified no) <cell>)

(cell *id <left> “status |.| “modified no)
(cell ~1d <right> ~status |.| “modified no)
(cell *1d <up> “status {*| “modified no)
(cell *1& <down> “status |.|*modified no)
-—>

(copy <cell> “status |.| “modified yes))

implement-kill-zule-down

(flag do-computation)

(generation “type desired ~value <x>)

(genexation “type current “value < <x>)

{(cell ~status |*| ~left <left> “right <right> “up <up>
~down <down> “medified no) <cell>)

(cell ~id <left> “status |.| “modified no)

(cell ~id <right> “status |.| “modified no)
(cell ~id <up> “status |.| “modified no)
(cell ~id <down> “status |{*| “modified no)
-

(copy <cell> “status |.| “modified yes))

implement-birth-rule-left-right-up

(flag do-computation)

{generation “type desired “value <x>)

(generation “type current “value < <x>)

{(cell ~status |.| ~left <left> “right <raght> *“up <up>
~down <down> “modified no) <cell>)

(cell ~1d <left> “status |*| “modified no)

(cell ~id <raght> “status |¥{ “modified no)

{cell ~id <up> ~status |*| “modified no)

{cell ~1d <down> “status |.| “modified no)

240

o~

ADA289345

E.1. SEQUENTIAL VERSION OF THE GAME OF LIFE 250

-—>
(copy <cell> “status |*| “modified yes))

implement-birth-rule-left-raght-dovwn

(flag do-computation

(generaticn “type desired “value <x>}

(generation “type current “value < <x>)

((cell ~status |.| ~left <left> ~right <right> “up <up>
“down <down> “modified no) <cell>}

(cell *1d <left> ~status |*| “modified no)

(cell ~id <right> ~status |[*| “modified no)

(cell ~id <up> “status | | “modified no)
(cell ~id <down> “status |*| *modified no)
>

(copy <cell> ~status |[*{ “modified yes))

implement-barth-rule-left-up-down
({flag do-computation)
(generation “type desired “value <x>)
(generation “type current “value < <x»>)
{(cell ~status |.| ~left <left> “right <right> "“up <up>
~down <down> “modified no) <cell>)
(cell ~1d8 <left> ~status |*| “modified no)
{cell ~id <right> “status |.| *modified no)
{cell *~id <up> “status |*| “modified no)
(cell *id <down> “status |*| “modified no)
>
(copy <cell> “status |*| “modified yes))

implement-birth-rule-right-up-down
(flag do-computation)
(generation “type desired “value <x>)
(generation “type current ~value < <x>)

{(cell ~status |.| ~left <left> “right <right> “up <up>
~down <down> “modified no) <cells)
(cell "id <left> “status |.| “modified noj

fcell "id <right> “status |*| “modified no)
(cell ~id <up> "status |*| “modified no)
(cell "~id <down> “gtatus |*| “modified no)
-2

{copy <cell> “status |[*| "modified yesj)

implement-kill-rule-all-neighbors
(flag do-computation)
(generation “type desired ~value <x>)
{generation “type current “value < <x>)
{{cell ~status |[*| ~left <left> ~right <right> *up <up>

ADA289345

E 2. PARALLEL VERSION OF THE GAME OF LIFE

2
2

~down <down> “modified no) <cell>}
{cell “1d <left> “status |*| “mod:=fied no)
{cell ~1d <right> “status |*| “mocd:fied no)
{cell ~1d <up> “status |*| “modified no)
{cell ~ad <down> “status |*| “modified no)
-—>
(copy <cell> “status |.| “modified yes))

(p set-modafied-flags-1
{flag set-modified-flags)
{{cell “modified nil) <cell>)
>
{modify <cell> ~modified no))

(p set-modified-flags-2
(flag set-modified-flags)
{{cell ~id <id> “modified yes) <celll>}
{(cell *id <1d> “modified no) <cell2>}
-
(modrfy <celll> “modified no)
(remove <celll>))

{p stage-computation-0
(flag compute-cells)
-->
(modify 1 set-modified-flags))

(p stage-computation-1
(flag set-modified-flags)
~->
(modify 1 do-computation))

(p stage-computation-2
(flag do-computation)
-

(modify 1 print-cells))

E.2 Parallel version of the game of life

; Parallel vers:ion of the game life in PPL

; Each cell 1s represented as a tuple It contains a field for ats status
; and four fields for links to neighbors.

, The rules of life are:

; 1. if an organism has < 2 neighbors, it dies of loneliness

, 2. if it has 2 or 3 neighbors it lives

4 3. a new organism is born in a cell with three neighbor

ADA289345

E.2. PARALLEL VERSION OF THE GAME OF LIFE 252

4 4. 1f 1t ras 4 neighbors, :t dies of overcrowdedness.

, Version Notes: this 1s the most efficient parallel version

, Only the tuples correspond.ng to cells whose value changes are modif:ed.
, The multiple-instantiation-firang semantics assumeé allows all

., updates to pe made atomically and there is no need to copy tuples for the
; purpose of atomicaty.

; Parallelized by: Anurag Acharya, achaScs.cmu.edu

+ coordinates are needed for printing, id is needed for linking
{literalize cell x-coordinate y-coordinate id status left right up down)

L2}

; generation tuple is for counters and limits -- type is either current o
; desired.
(literalize generation type value)

, flag tuple is used to control the sequencing -- values are print,
: completed-print, compute-cells, completed
(literalize flag value)

; foxrmat tuple is used to store user format preferences -- values are
; no and yes. yes prints the map every generation, no prints

, the map only at the end of the samulatzon

{literalize format value)

; this tuple class is used for traversing the grid for printing purposes
{literalize print-coordinates x-coordinate y-coordinate)

(p start
(start)
>
(make generation current 0)
(write “Generations to run samulations for. ")
(make generation desired {accept})
(write “Print after every generation ? *}
(make format (accept})
(make flag compute-cells))

(p switch-to-next-generation

ADA289345

E 2. PARALLEL VERSION OF THE GAME OF LIFE

(generation “type desired “value <x>)

{ {generation “type current “value {<y> < <x>}) <cur-gen>}
{ (flag completed-print) <£flag>)

-5

(modify <cur-gen> “value {compute <y> + 1))

(mod1fy <flag> compute-cells))

(p firished-simulation
(generation “type desired “value <x>)
(generation “type current “value <x>)
{{flag completed-print) <flag>}
~=>

(modrfy <flag> completed))

; of the next three productions, only one fires in a given cycle. If the

"per-generation” production matches, it will be selected due to
; specificaty, else the vanilla "switch-to* production will fire.
(p switch-to-print

(generation ~type desired “value <x>)

(genexation “type current “value < <x>)

((flag compute-cells) <flag>)

-

(modify <flag> print))

(p switch-to-print-final
(generation “type desired “value <x>)
(generation “type current “value <x>)
{ (flag compute-cells) <flag>}
.->
(modify <flag> prant})

(p switch-to-print-per-genera<ion
{generation “type desired “value <x>)
{generataicn “type current “value < <x>)
{{flag compute-cells] <flag>)

(format “value no)
-——>
(modify <flag> completed-print))

{p <nit-praint
{flag print)
(generation “type current “value <x>)
-
{make print-coordinates “x-coordinate 0 “y-coordinate 0)
{write generation <x> ":\n"}))

(p print-next-cell-in-row
{ {print-coordinates “x-coordinate <x> “y~coordinate <y>) <coords>}

v
w

ADA289345

E.2. PARALLEL VERSION OF THE GAME OF LIFE

(]
wh
3N

(cell *x-coordinate <x> “y-coordirate <y> “status <status>)
-->

(write <status>)

(modify <coords> "“x-coordinate (compute <x> + 1)))

switch-rows

{ {print-coordanates "“x-coordinate <x> “y-coordinate <y>) <coords>}
-{cell “x-coordinate <x>)

-->

{modify <coords> “x-coordinate 0 “y-coordinate {compute <y> + 1))
(write (crlf)))

finalize-print

{({flag print) <flag>}

{ {print-coordanates "“x-coordinate <x> “y-coordinate <y>} <coorde>}
-(cell “y-coordinate <y>)

-

(modify <flag> completed-prant)

{remove <coords>)

(write "\n\n"))

{pset kill-rule-0

{parp implement-kill-rule-0
(generation “type desired “value <x>)
(generation “type current “value < <x>)
{£lag compute-cells)
{{cell ~status |*| ~left <left> “right <right> “up <up>
~down <down>) <cells}
{cell ~id <left> “status |.f{)
{cell “id <raght> “status %.|)
(cell ~1d <up> “status |.})
{eall ~id <down> “status |.})
-->
(modyfy <cell> “status |.|})}

{pset kill~-rule-left

{parp implement-kill-rule-left
(goneration “type desired ~value <x>)
{generation “type current “value < <x>)
{flag compute-cells)

{(cell ~status |*| ~left <left> “right <right> “up <up>
~down <down>) <cells}

(cell *1d <left> ~status |*|)

{cell ~id <right> ~status |.})

(cell *id <up> “status |.|)

(cell *id <down> “~status | |,

-

(modafy <cell> “status |.|}}]

ADA289345

a
th

E.2. PARALLEL VERSION OF THE GAME OF LIFE

{pset k:ill-rule-right

(parp implement-kill-rule-raght

{generation “type desired “value <x>)
° {generation “type current “value < <x>)
{flag compute-cells)
{{cell ~status |*| “left <left> ~right <right> "up <up>
. ~down <down>) <cell>}
{cell ~id <left> “status |[.|[)
{cell ~ad <right> “status [*})
{cell ~1d <up> “status |.[)
{cell ~id <down> “status |.|)
-
(modify <cell> “status [|))}
{pset kill-rule-up

{parp implement-kill-rule-up
{generation “type desired “value <x>)
{generation “type current “value < <x>)
(flag compute-cells)
{{cell ~status |¥| “left <left> “right <right> “up <up>

“down <down>) <cell>)
(cell ~id <left> “status | })
(cell ~id <right> “status |.|)
{cell ~a1d <up> “status |*])
(cell ~id <down> “status |.|)
-—>
(mod1fy <cell> “status |.}))}

{pset kill-rule-down
{parp implement-kill-rule-down
(generation “type desired ~valua <x>)
(generation “type current “value < <x>)
(flag compute-cells)
{(cell “status [*{ ~left <left> ~right <right> “up <up>
~down <down>) <cell»>)
(cell “2d <left> “status |.})
{cell ~id <right> “status |.|)

(cell ~id <up> “status |.|)

{cell ~id <down> “status |*|)

-->

(modify <cell> “status {.[)}]}
. (pset birth-rule-left-right-up

(parp implement-birth-rule-left-right-up
{generation “type desired “value <x>}
. {generation “type current “value < <x>)
(flag compute-cells)
{(cell “status |.} ~left <left> ~right <right> "“up <up>
~down <down>) <cell>}

ADA289345

[
on
(=

E.2. PARALLEL VERSION OF THE GAME OF LIFE

(cell ~id <left> ~status |*|}
(cell ~id <right> “status |[*])
{cell ~id <up> “status |[*|)
{cell ~id <down> “status |.|)
-—>

(modify <cell> “status |*|)}}

{pset birth-rule-left-right-down
(parp implement-birth-rule-left-right-down
(generation “type desired “value <x>)
(generation “type current “value < <x>)
(flag compute-cells)
{{cell “status |.| ~left <left> “right <right> “up <up>
“down <down>) <cells>}
{cell ~id <left> “status |*|)
{cell ~id <right> “status |[*|)

{cell ~id <asp> “status |.|)
(cell ~id <down> “status [*|)
-

(modify <cell> “status |*|)})

{pset birth-rule-left-up-down
(parp implement-birth-rule~left-up-down
(generation “type desired “~value <x>)
{generation “type current “value < <x>)
(flag compute-cells)
{(cell “status |.| ~left <left> ~right <right> "~up <up>
~dowr. <down>) <cell>}
(cell ~id <left> “status |[*{)
(cell ~id <right> ~status |.|)
(cell ~id <up> “status |*|}
(cell ~id <down> “status |*|)
>
(modify <cell> “status [*{)}}}

{pset birth-rule-right-up-down
{parp implement-bixrth-rule-right-up-down
(generation “type desired “value <x>)
(generation “type current “~value < <x>)
(flag compute-cells)

{(cell ~status |.| *left <left> ~right <right> “up <up>
~down <down>) <cell>)
{cell ~1d <left> “status |.|)

(cell ~id <right> “status |*|}
(cell ~1d <up> “status |*|)
(cell ~ié <down> “status |*|)
-2

(modify <cell> “status [*]))}

ADA289345

]

E.3. SEQUENTIAL VERSION OF THE CIRCUIT SIMULATOR

{pset kill-rule-all-neighbors
{parp implement-kill-rule-all-neighbors
{generation “type desired “value <x>)
{generation “type current “value < <x>)
{fiag compute-cells)
{{cell “~status |*| ~left <left> ~right <right> “up <up>
~down <down>) <cell»}
{cell ~1d <left> “status |*])
{cell ~1d <right> ~status |*|)
{cell ~id <up> “status |*}|)
{ecell ~1d <down> “status |*|)
-3
{modify <cell> “status |.]})))

E.3 Sequential version of the circuit simulator

4 Sequential version of the gate level simulator.

It ancorporates a simplistic line delay model.

; Line delay is considered to be constant all over the ckt.
It can handle the following devices:

two input ands, two input nands, two input ors, two input nors,
7 tWo anput xors, nots

: It can be easily extended for all combinational devices.

; sequential ckts can be incorporated too but that would need
some work

It assumes that output of gates are not connected together
in an implicit or.

Version notes: To implement atomicity, it has to make copies of

the lines that are used as outputs of the devices. It creates

copies for only those lines whose value cnanges. At the end of the
computation for a simulation cycle, the copies are merged back into
the main circuit structure by removing all the old copies and modifying
the flag on the new copies. The assumption of one device per output
line an be easily removed but has not been removed for the following
reasons:

1. it is satisfied by most real circuxits, cixcuits that don't

; satisfy it can be modelled by adding an or gate at the line.

B Since this simulator does not simulate timing behavior, the

7 insertion of an extra OR gate does not make a difference.

4 2. Given the incremental nature of the match algorithms, the

. fewer tuples you modify, the better off you are. The output

i line is already being modified. Adding the modified/computed

H flag to the device would need more matching effort. This would

B increase parallelism but that would be fake parallelisr as the

~3

ADA289345

E.3. SEQUENTIAL VERSION OF THE CIRCUIT SIMULATOR

aéditional computation is not really needed.

; Arother optimization is to merge the new copies into the caircuit
; *before* simulating lines -- this avoids performing duplicate

. computation for outpu: lines.

Another optimization is to use a few more productions so that

; variable tests can be replaced by constant tests. This again
reduces the match activity and reduces the amount of parallelism
, available. But the computation avoided is not necessary and

, therefore the parallelism eliminated is fake parallelism

jxn)
wn
oo

. Converted to PPL by: Anurag Acharya, achadcs.cmu,edu
original version written by: Dan Neimann <dann@cs.umass.edu>

(literalize two-input-and-gate id inmputl input2 output}
{literalize two-input-or-gate 1d anputl input2 output}
(literalize two-input-xor-gate id anputl input2 output}
(literalize two-input-nor-gate id inputl input2 output)
{literalize two-input-nand-gate id inputl input2 outpat)
(literalize not-gate id input output)

{literalize line 1d source sink modified)

(literalize cycles~run value)

{literalize cycles~desired value)

(literalize flag value)

{literalize results-desired value)

; Productions

(p startup
(start)
>
(make cycles-run 0)
(wraite “cycles to run simulation for :)
(make cycles-desired (accept))
(write “results to be printed: *)
{make results-des:red (accept))
(make flag merge-lines-initial)
(remove 1})

(p switch-from-initial-merge-lines
(flag merge-lines-initial)

ADA289345

E.3. SEQUENTIAL VERSION OF THE CIRCUIT SIMULATOR

-=>
(modify 1 simulate-lines))

(p switch-from-line~-tc-devices
(flag simulate-lines)
-——>
(modify 1 s:mulate-devices))

(p switch-to-merge-new-lines
(£lag simulate-devices)
-->
(modify 1 merge-lines))

(p move-to-next-cycle
(flag merge-lines)

-(line "modified yes)
{cycles-desired <x»>)
{cycles-zun {<y» < <x>}}

-
(modify 3 (compute <y> + 1})
(modify 1 simulate-lines))

(p completed-simulation-print-results
(flag simulate-lines)
(cycles-desired <x>)
(cycles-run <x>)
(results-desired yes)
-—>
(write "Completed simulation of* <x> ‘cycles\n")
(write "The final state is:" (erlf))
(make flag print-results))

(p completed-saimulavion-without-results
(flag samulate-lines)
(cycles-desired <x>)
(cycles-run <x>)
-{results-~desired yes)
P
(write "Completed simulation of* <x> *cycles\n")
(ha'ty)

(p merge-lines-initial
(flag merge-lines-initial)
((lire ~id <id> “medified nmil) <oldline>)
-——>
{modify <oldline> “modified noj}

(p merge-.ines

[

D

ADA289345

LN

E.3. SEQUENTIAL VERSION OF THE CIRCUIT SIMULATOR 260

{flag merge-lires)

{({line ~1d <1d> "modified no) <oldline>)
{(line ~14 <id> “modifieé yes) <newline>)
-=>

{remove <oldline>)

(modify <newline> “modified no))

(p simu.ate-line-transmissionr-turn-on
(fiag simulate-lines)
(cycles~desired <x>)

(cycles-run < <x>)

{{line “source 1 “sink 0} <line>}
~=>

(modrfy <line> "sink 1))

(p simulate-line~transmission-turn-off
(flag simulate-lines)
(cycles-desired <x>)

{cycles-run < <x>)

{(line “source 0 “sink 1) <line>)
—-—>

(modify <line> “sink 0))

(p samulete-two-input-and-gate-turn-on
; output = 0, input = 11
{flag simulate-devices)
{cycles-desired <x>)
{cycles-run < <x>)
{two-input-and-gate “~nputl <inputl> “anput2 <input2> “output <outputs>]
(line ~id <inputl> "“saink 1 “modified no)
(line ~id <input2> “sank 1 “modified no)
{(lane *~id <output> “source 0 “modified no) <output-line>}
-2
(copy <output-line> “source 1 “modified ves))

(p samulate-two-input-and-gate-turn-off-1
; output = 1, inputl « 0
(flag simulate-devices)
(cycleg-desired <x>)
(cycles-run < <x>)
(two-input-and-gate “inputl <inputl> “input2 <input2>
“ouLtput <output>}
{line ~14 <inputl> “sink 0 “modified no)
{line *id <input2> “sink 0 “modified no)
((line *~id <output> “source 1 “modified no} <output-line>}
—-
(copy <outpat-line> “source 0 "“modif:.ed yes|)

ADA289345

E.3. SEQUENTIAL VERSION OF THE CIRCUIT SIMULATOR 261

(p simulate-two-input-and-gate-turn-off-2
(flag s:mulate-devices)
; output = 1, input2 = 0
{cycles-desired <x>)
(cycles-run < <x>)
(two~-input-and-gate “ainputl <ainputl> “input? <input2>
“output <output>)
(line ~id <inputl> “sink 0 “modified no)
(line “id& <input2> “sink 1 “modified no)
{(line ~id <output> “source 1 “modified no) <output-line>}
-->
(copy <output-line> “source 0 “modified yes))

(p simulate-two-input-and-gate-turn-off-3
(flag simulate-devices)
; output = 1, input2 = O
(cyclas-desired <x>)
(cycles-run < <x>)
(two-input-and-gate “~inputl <anputl> “input2 <ainput2>
~output <output>)
(line ~id <inputl> “sink 1 “nod:ified no)
(line ~ad <input2> “sank 0 “modified no)
{{line ~id <output> “source 1 "nodified no) <output-line>}
-5
{copy <output-line> “source ¢ “modified yes))

{p samulate-two-input-or-gate-turn-off
(flag simulate~devices)
(cycles-desired <x>)
{cycles-run < <x>)
{two-input-or-gate “inputl <inputl> “input2 <input2>
“output <output>)
(line ~id <inputl> “sink ¢ “modified no)
{line ~id <input2> “sink 0 *modified no)
{{line ~id <output> “source 1 “modified no) <output-line>)
-—
{copy <output-line> “source 0 “modified yes))

(p sirmulate-two-input-or-gate-turn-on-1
{flag simulate-devices)
{cycles~desired <x>)
{cycles-run < <x>)
(two-1nput-or-gate “inputl <inputl> “input2 <input2>
“output <output>)
(line "1d <anputl> “sink 9 “modified no)
(line ~1d <input2> “sink 1 “modified no)
{(lane ~id <output> “source 0 “modified no) <output-line>)

-

ADA289345

1)
<N
(8]

E.3. SEQUENTIAL VERSION OF THE CIRCUIT SIMULATOR

(copy <output-line> ~source 1 “modified yes)!

{p simulate-two-i1nput-or-gate-turn-on-2
(flag simulate-devices)
(cycles-desired <x>)
(cycles-run < <x>)}
(two-input-or-gate ~inputl <inputl> “anput2 <input2>
“output <output>)
(lane ~id <inputl> “sank = “modified no)
(line ~id <input2> “sank 0 “modified no)
{{lane ~id <output> ~source 0 “meodified no} <output-line>}
-->
(copy <output-line> “source I “modified yes))

{p simulate-two-input-or-gate-turn-on-3
{flag simulate-devices)
{cycles-desired <x>)
(cycles-run < <x>)
{two-input-or-gate “inputl <inputl> "input2 <input2>
“output <output>)
{line ~id <znputl> ~sink 1 “modified no)
{line ~id <input2> “sink 1 “modified no)
{{line "1d <output> “source 0 “modified ne) <output-lire»}
~->
{copy <ovtput-line> “source 1 ~modified ves)!)

(p simulate-two-input-xor-gate~turn-off-1
(flag simalate-devices)
(cycles-desired <x>}
(cycles-xyun < <x>)
(two-input-xor-gate “inputl <inputl> “input2 <anput2>
~putput <output>)
(1ine “1d <inputl> “sink 0 “modified no)
(line "1d <input2> “sink 0 “modified no)
{(line ~id <output> “source 1 “modified no} <output-line»}
~—>
(copy <output-line> “source 0 ~mod:ified yes))

(p samulate-two-input-xor-gate-turn-off-2
{flag simulate-devices)
(cycles-desired <x>)
(cycles-run < <x>)
(two-input-xor-gate “~inputl <inputl> ~input2 <input2>
~output <output>)
{line ~1d <inputl> “sink 1 “modified no)
(line ~id <input2> “sink 1 “modified no)
{(line ~id <output> “source 1 “modified no) <output-laine>}
-->

ADA289345

E.3. SEQUENTIAL VERSION OF THE CIRCUIT SIMULATOR

(copy <output-line> "“source 0 “mocified yes))

(p simulate-two-1input-xor-gate-turn-cn-1

{flag simulate-devices)

(eycles-desired <x>)

{cycles-run < <x>)

(two-input-xor-gate “inputl <inputl> “arput2 <input2>
“output <output>)

(line *~id <inputl> “sink 0 “modified no)

(line “id <input2> “sink 1 “modified no)

{{lxne ~id <cutput> “source 0 “modified no) <output-line>}

-—>

(copy <output-line> “source 1 “modified yes))

(p simulate-two-input-xor-gate-turn-on-2

(flag simulate-Gevaices)

{cycles-desired <x>)

{cycles-run < <x>)

{two-input-xor-gate “~inputl <inputl> “~input2 <input2>
“output <output>)

(line “~id <anputl> "sink 1 “modified no)

{line “~id <input2> “sink 0 “modified no)

{{line *id <output> “source 0 “modified no) <output-line>}

-=>

(copy <output~line> “source 1 “modified yes))

(p simulate-two-input-nor-gate-turn-on

(flag simulate-devices)

{cycles-desired <x>)

{cycles-run < <x>)

{two-input-nor-gate “inputl <inputl> “input2 <input2>
~output <output>}

(line ~id <inputl> “sink 0 “modified no)

(line *~id <input2> *sink 0 “modified no)

{{line “~id <output> “source 0 "modified no) <output-line>)

-—>

(copy <output-line> “souxrce 1 “modified yee))

(p simulate-two-input-nor-gate~turn-off-1

(flag simulate-devices)

(cycles-desired <x>)

(cycles-run < <x>)

(two-input-nor-gate ~inputil <inputl> ~input2 <input2>
“output <output>)

(lane “xd <inputl> “sink 1 “modified no)

{line ~1d <input2> “sink 0 “mod:rfied no)

{(line ~id <output> “source 1 “modified no) <output-line>}

-——

263
P4th,

ADA289345

N
a

sy 2

E.3. SEQUENTIAL VERSION OF THE CIRCUIT SIMULATOR

¥

(copy <outpuz-~-line> “source 0 “modified yes))

(p simulate-two-input-nor-gate-turn-off-2
(flag s:irulate-devices)
(cycles-desired <x>}
{cycles~run < <x>)
{two~ainput-nor-gate “inputl <inputl> “input2 <anput2>
“output <output>)
{line “id <inputl> “sink 0 "modified no)
(line "ad <input2> “sink 1 *“modified no)
{{line ~1d <output> “source 1 “mocifieé no) <output-line>}
-—>
{eopy <output-line> “source 0 “mocified yes))

{p simulate-two-input-nor-gate-turn~off-2
{flag sirulaze-devices)
{cycles-des.red <x>)
(cycles~run < <x>)
(two-input-nor-gate ~inputl <inputl> “input2 <input2>
~output <output>)
{line “ad <inputl> “sank 1 “modified no)
{line ~id <input2> “sank 1 “modified no)
{{line ~zd <output> “source 1 “modified no) <oatput-line>)
-=>
(copy <output-line> “gsource ¢ “modified yes))

{p simulate-two~anput-nand-gate-turn-off
(flag samulate-devices)
{cycles-desared <x>)
(cycles-run < <x>}
(two-input-nand-gate ~inputl <inputl> “~input2 <input2>
~output <output>}
{line ~id <inputl> “sink 1 “modified no)
(line ~:d <input2> “sink 1 “modified no)
{{line “*ad <output> “source 1 "“modified no) <output-line>}
-
{copy <output-line> “source (¢ “nodified ves))

(p simulate-two-input-nand-gate-turn-on-1
(£lag samulate-devices)
(cycles~desired <x>)
{cycles~run < <x>)
(two~1nput-nand-gate “anputl <inputl> “input2 <input2>
“putput <output>}
{line “1d <inputl> “sink 0 “mod-fied no)
(line ~ad <input2> “sink 0 ~“modified no)
{{lane "ad <output> “~source 0 “modified no) <output-line>}
-

ADA289345

[]
an
wh

E.3. SEQUENTIAL VERSION OF THE CIRCUIT SIMULATOR

(copy <output~line> “source 1 “modifieé yes})

(p simulate-tvo-input-nand-gate-turn-on-2
(£lag simulate-devices)
(cycles-desired <x>)
{cycles-run < <x>)
two-input-nand-gate “anputl <inpatl> ~input2 <inpat2>
“output <ocutput>}
(line ~id <ainputl> “sink 1 “modified no)
{line ~id <input2> “sink 0 “modif:ed no)
{{line ~id <output> "“source 0 “modified no) <output-line>}
——
(copy <output-line> “source 1 “modified yes))

(p simulate-two-input-nand-gate-turn-on=-3
(flag simulate-devices)
(cycles-desired <x>)
{cycles-run < <x>)
(two-input-nand-gate “inputl <inputl> “input2 <input2>
“output <output>)
(line *~id <inputl> “sink 0 “modified no)
(line "id <input2> “sink 1 “rodafied no)
{(line ~id <output> “source 0 “modified no) <outpit-line>)
e
(copy <output-line> “source 1 “modified yes))

(p simulate-not-gate-turn-off
(flag simulate-devices)
(cycles~desired <x>)
(cycles-run < <x>)
(not-gate ~input <input> “output <output>)
(line ~id <input> ~sink 1 “modified no)
{{line ~1d <output> ~source 0 “modified no) <output-line»)}
-——>
(copy <output-line> “source 0 “modified ves)!)

(p simulate-not-gate-turn-on
{flag simulate-devices)
{cycles-desired <x>)
{cycles~run < <x>)
{not-gate “input <input> “output <cutputs)
(line ~id <input> ~sink 0 “modified no)
{{line *1d <output> “source 0 “modified no) <output-lines)
-=>
(copy <output-line> “source 1 “modified yes))

(p initiate-print
(flag print-resulits)

ADA289345

E 3. SEQUENTIAL VERSION OF THE CIRCUi

-——

<

~
%)

q
.

s

vy s

LA

]
]

=
[
&

{modify 1 print-devices))

{p switch-to-print-lines

{flag prant-devices)

——

(modify 1 prant-lines))

(p finalize-print
{flag prant-lines)
>
{halt))

(p print-and-gate-info

(flag prant-devices)

{two-1nput-and-gate

~1d <gate> “inputl <inputl> “input2 <input2>
~output <output>)

{line ~1d <inputl> “*sink <valuels>)
{iine *~id <input2> “sink <valuel>)
{1ine "1d <output> “source <value3>)

——>

{write *and gate" <gate> ": inputl = " <valuel> "input2 = " <value2>
‘output = * <value3d> (crif}))

(p print-or-gate-info

(£lag print-devices)

{two-input-or-gate

(line ~id <ainputl>
{line ~id <input2>
{line *~id <output>
——

~id <gate> ~inputl <inputl> “input2 <anput2>
“output <ocutput>)

~sink <valuel>)

~sink <value2>)

~source <value3>)

(write “or gate" <gate> *- inputl = * <valuel> "input2 = " <value2>

*output = *

<valyed> {crlf)))

{(p print-nand-~gate-info
(£lag prant-devices)
{two-anput~-nand-gate ~:d <gate> “inputl <inputl> “input2 <inpat2>

{line “1d <anputl>

(line "1é <anput2>

(line “id <output>

-

(write "nand gate"
‘output =

(p print-xor-gate-info

~output <output>)
~sank <valuel>)
~gink <value2>)
“~gource <value3s)

<gate> ". inputl = " <valuel> "input2 = " <value2>
<valued> (crlf)))

(flag print-devices)

ADA289345

E4. PARALLEL VERSION OF THE CIRCUIT SIMULATOR 267

(two-input-xor-gate ~id <gate> “inputl <anputl> “input2 <input2>
“output <output>}

(lane “1d <inputl> “sink <valuel>)

(line ~id <input2> ~sink <value2>)

{line ~id <output> “source <valuel>}

-—>

(write “xor gate" <gate> *: inputi = " <valuel> “input2 = * <value2>
"output = " <value3> {crlif)})

(p prant-nor-gate-info
(flag print-devices)
(two-input-nor-gate ~1d <gate> ~inputl <inputl> “input2 <input2>
“output <output>)

(line *~id <inputl> “sink <valuel>)

(line ~id <input2> “gink <value2s)

{line ~id <output> “source <valuel>)

-2

(write "nor gate"” <gate> ": inputl = " <valuel> "input2 = " <value2>
“output = * <value3> (crlf)}}

(p print~-not-gate-info

(£lag print-devices)

(not-gate “id <gate> “input <input> “~output <output>}

(line “1d <input> “gink <valuels)

{line “~id <output> “source <value2>)

~->

{write "not gate" <gate> ": input = " <valuel>
"output = * <value2>» {crilf)))

(p print-line-info
(flag print-lines)
(line ~id <line> “source <source> ~sink <sink>)
-
(write *line” <line> *: source = ® <source>
"sink = * <sink> (crlf)})

E.4 Parallel version of the circuit simulator

Parallel version of the gate level simulator

It incorporates a simplistic line delay model

Line delay is considered to be constant all over the cxt.

It can handle the Zollowing devices:

twe input ands, two input nands, two input ors, two input ners,
two input xors, nots

It can be easily extended for all combinational devices.
sequential ckts can be ancorporated too but that would need

ADA289345

oy

E4. PARALLEL VERSION OF THE CIRCUIT SIMULATOR

[\
[=
00

; some work
; It assumes that output of gates are not connected together

. in an implicit ox.

4 Version notes. this is the efficient parallel version of the program

It mod:ifies tuples for only those lines whose values change due to

: device operation or lire tranmission.

The assumption of one device per output line an be eas:ly removed but has
., not been removed for the following reasons:

4 1. it 1s satisfied by most real circuits. circuits that don’t satisfy

it can be modell=d by adding an or gate at the line. Since thais
simulator does r.t simulate timing behavior, the insertion of the

4 extra OR gate does not make a difference.

Another optimization is to use a few more productions so that varaiable

; tests can be replaced by constant tests. This again reduces the match
actavity and reduces the amount of parallelism available. But the computation
avoided is not necessary and therefore the parallelism eliminated is fake

. parallelism.

(literalize two-ainput-and-gate id inputl input2 output)
{literalize two-input-or-gate 1d inputl input2 output)
(literalize two-input-xor-gate ad inputl input2 output)
{literalize two-input-nor-gate id inputl input2 output)
(literalize two~input-nand-gate id inputl anput2 output)
(literalize not-gate id input output)

(literalize line 1d source sink)

(literalize cycles-run value)

{literalize cycles-degired value)

(literalize flag value)

(literalize results-desired value)

jrememm - D T L T T T T Ry PR CemedniermueemcAnEra e

, Productions

frerm———— o e e e e T e e —————

{(p startup
(start)
-—>
(make cycles-run 0)
(write "cycles to run samulation for i

ADA289345

E 4. PARALLEL VERSION OF THE CIRCUIT SIMULATOR 269

(make cycles-desired (accept))
(write "results to be pranted : ")
{make results-desired {(accept))
(make flag simulate-lines)

{remove 1))

(p move-to-next-cycle
(cycles-desired <x>)
(cycles-run {<y> < <x>})
(flag simulate-devices)
>
(modify 2 (compute <y> + 1))
(modify 3 simulate-lines))

{(p completed-simulation-notice-1
(cycles-desired <x»>)
{cycles-run <x>)
(results-desired yes)
-—>
(write "Completed simulation of” <x> "cycles\n")
(write “The final state is:" (crlf))
(make flag print~results))

(p completed-simulation-notice-2
(cycles-desired <x>)
(cycles-run <x>)
~(results-desired yes)
-—>
(write "Compieted simulation of" <x> “cycles\n*)
(halt}))

{p switch-from-line-to-devices
(flag simulate-lines)
-——>
(modify 1 simulate-devices})

(pset prant-results
(parp prant-and-gate-info
(flag print-results)
{two-input-and-gate “id <gate> “inputl <inputl> “input2 <inputl>
“output <output>)

(line ~id <inputl> “sink <valuel»)

{line ~id <input2> “sink <valuel>)

{line ~1d <output> “source <valueld>)

>

(write "and gate” <gate> ”": inputl = * <valuel> "input? = * <valuel>
*output = " <value3> (crlf)))

ADA289345

E4. PARALLEL VERSION OF THE CIRCUIT SIMULATOR

[]
~3
(=3

(parp prant-or-gate-info
(flag print-results)

{two-input-or-gate

{lzne ~ad <inputl>
{lane ~id <input2>
{line “~ad <output>
-->

~id <gate> “inputl <inputl> ~input2 <ainput2>
“output <output>)

~sink <valuel>)

“gink <value2>)

“source <value3>}

(write "or gate" <gate> *: inputl = " <valuel> "input2 = ' <value2>

"output = *

{parp print-nand-gate-

<value3> (crlf)}))

info

(£iag print~results)
{two-1npuz-nand-gate “ad <gate> "inputl <inputl> ~input2 <input2>

(zne ~1d <inputl>

{zine ~1d <input2>

{iine *~1d <output>

-

{write "nand gate"
"output = "

“output <outputs>)
~sink <valuel>)
~sink <value2>)
~source <value3>)

<gate> ": inputl = " <valuel> "input2 = * <value2>
<valueld> (crlf)))

(parp prant-xor~gate-info
(flag print-results)
{two-input-xor-gate ~id <gate> “inputl <inputl> ~input2 <input2>

{line ~id <inputl>
{line ~id <input2>
(Zine ~id <output>
-->

“output <output>)
~gink <valuel>)
~sink <value2>)
~gource <value3>)

(write "xor gate" <gate> "+ inputl = ' <valuel> *input2 = * <value2>

“output = "

<valueld> (crlf)))

(parp prant-nor-gate-info
(flag print-results)
(two-input-nor-gate ~id <gate> ~anputl <inputl> “input2 <input2»

(line ~id <inputl>
(lire ~id <ainput2>
(lire ~id <output>
-->

(write "nor gate” <gate> ., inputl = * <valuyel> "inputl = " <va

‘output =

“output <outputs>)
~sink <valuel>)
*sink <valuel»)
~source <value3>)

-

@

~N
v

<valuel> {(crlf)))

(parp print-not-gate-info
(flag print-results)
(not-gate “id <gate> “anput <input> “outpit <output>)
{line “)d <input> “sink <valuel>)

ADA289345

EA4. PARALLEL VERSION OF THE CIRCUIT SIMULATOR

[
~1
-t

{line ~id <oatput> “source <value2>)

-

(write "not gate" <gate> ": input = " <valuel>
‘output = * <valuve2> (crlf)))

(parp print-lire-info

{p

(p

(p

(flag print-results)

(line "1d <line> “source <source> “sink <sink>)

-=>

(write "line" <line> ": source = " <source>
"sink = * <sink> (crlf))}

completed-simulation-notice-3
(flag print-results)
-—>

(halt))}

set two-input-and-gate-turn-on

arp simulate-two-input-and-gate-turn-on

(cycles-desired <x>)

(two~input-and-gate *inputl <inputl> “input2 <input2>
*output <output>)

(cycles-run < <x>)

(line ~id <inputl> “sink 1)

(line ~id <input2> “*sink 1)

{{line ~id <output> “source 0) <output-iine>}

(flag simulate-devices)

-

{modafy <output-line» “source 1))}

set two-input-and-gate-turn-off-1

{parp simulate-two-input-and-gate-turn-ofs-1

(p

{cycles~desired <x>)

{two-input-and-gate “inputl <inputl> “input2 <input2>
~output <output>)

{cycles-run < <x>)

{line ~id <inputl> “*sink 0)

{line ~id <input2> “sink 0}

{{line ~id <output> “source 1) <output-lines>}

{flag simulate-devices)

-5

(modify <output-line> “source 0}))

get two-input-and-gate-turn-off-2

(parp simulate-two-input-and-gate-turn-off-2

{cycles-degired <x>)

ADA289345

E4. PARALLEL VERSION OF THE CIRCUIT SIMULATOR

gob 5?

(%]
-
[%]

(two-input-and-gate ~inputl <inputl> ~input2 <input2>
“output <outpui.)

(cycles-xun < <x>)

(iine ~1d <inputl> “sink 0}

{line “~id <input2> “~sgink 1)

{{line ~id <output> “~source 1) <output-line>}

(flag sarulate-devices)

-—>

(modify <output-line> “source 0)}}

{pset two-input-and-gate-turn-off-3

{parp simulate-two-input-and-gate-turn-off-3
(cyc.es-desired <x>)
two-input-and-gate ~inputl <inputl> “anput2 <ainput2>

“output <output>)

(cycles-run < <x>)
{line ~id <ainputl> “sink 1)
{line ~1d <input2> “~sink 0)
{{line ~id <output> “source .) <output-line>}
(flag simulate-devices)
-—>
{modify <output-line> ~“source 0))})

{pset two-input-or-gate-turn-off

{parp samulate-two-input-or-gate-turn-of:
{cycles~desired <x>)
{two-input-or-gate ~inputl <inputl> “input2 <input2>

~output <output>)

eycles-run < <x3
{line ~1d <anputl> ~gink 0)
(line ~id <input2> “gink 0)
{{line “1d <output> “source 1} <output~lines)
{flag simulate-devices)
-3
(mod1fy <output-line> ~source 0)))

{pset two-input-or-gate-turn-on-1

(parp simulate-two-input-or-gate-turn-off-1
(cycles-desired <x>)
{two-i1nput-or-gate “inputl <inputi> ~input2 <input2>

“output <outiput>)

{cycles-run < <x>}
{line "“id <inputl> “sink 1)
(line *id <input2> “sink 0)
{{line *id <cutput> ~source 0} <output-line>}
{flag simulate-devices)
-
(modrfy <output-line» “source 1}}}

 Fiche 3 02/17/95 §2AB3RA9345

1y aTnn

E.4. PARALLEL VERSION OF THE CIRCUIT STMULAT

n)
(VX7

{pset two-inpit-or-gate-turn-on-2

(parp simulate-two-1nput-or-gate-turn-on-2
{cycles-desired <x>)
{two-input-or-gate “inputl <inputl> ~input2 <input2>

~output <output>)

{cycles-run < <x>)
{line ~ad <anputi> “sink 0)
(lane ~2d <input2> “sink 1)
{(line ~1d <output> “source 0) <output-line>}
(flag simulate-devices)
—-——>
(modify <output-_.ne> “source 1))}

{pset two-input-or-gate-turn-on-3

(parp simulate-two-input-or-gate-turn-on-3
{cycles-desired <x>)
(two-input-or-gats “~inputl <inputl> “input2 <input2>

~output <output>)

{cycles-run < <x>}
{line ~id <inputl> “sink 1)
{line “id <xnput2> “sink 1)
{(line ~id <output> “source 0) <output-line>}
(flag simulate-devices)
-
(modify <output-line> “source 1))}

{pset two-input-xor-gate-simulator-turn-off-1
(parp simulate-two-input-xor-gate-turn-off-1
{cycles-desired <x>)
(two-input-xor-gate “inputi <inputl> “input2 <input2>
‘output <output>)
{cycles~run < <x>)
(line ~id <inputl> “sink 0)
{line ~id <ainput2> “sink 0)
{(line ~id <output> “source 1) <output-line>}
{£lag gimulate-devices)
-=>
{modify <output-line> “source 0))}

{pset two-input-xor-gate-simulator-turn-off-2
{parp simulate-two-input-xor-gate-turn-off-2
{eyclaes-desired <x>)
{two~input-xor-gate ~inputl <inputl> “input2 <input2>
~output <output>)
(cycles-run < <x>)
{line ~id <znputl> “eink 1)
{line ~id <input2> “sink 1)

ADA289345

ry sy

E4. PARALLEL VERSION OF THE CIRCUIT SIMULAT

{{line “i1d <outpu:> “sourxce 1) <output-line>}
{£lag samu’late-devices)

-->

(mod1fy <output-line> “source 0))}

{pset two-input-xor-gate-simulator-turn-on-1i .
{parp sirulate-two-input-xor-gate~turn-on-1

{cycles-desired <x>)

(two-input-xor-gate “inputl <inputl> “input2 <input2>

~output <output>)

{cycies-run < <x>)

{line ~1d <inputl> “sink 0)

{line “~1d <input2> “sink 1)

{(line ~id <output> “source 0) <output-line>}

{flag sirulate-devices)

->

(modify <output-line» “source 1))}

{pset two-input-xor-gate-simulator-turn-on-2
(parp simulate-two-input-xor-gate-turn-on-2
(eycles-desired <x>)
(two-input-xor-gate “inputl <inputl> “~input2 <input2>
“output <output>)
(cycles-run < <x>)
(line ~id <inputl> “sink 1)
(line ~id <input2> “sink 0}
{(line ~id <output> “source 0) <output-line>)
(flag simulate-devices)
-
(modify <output-line» “source 1))}

{pset two-irput-nor-gate-simulator-turn-en
(parp simulate-two-input-nor-gate-turn-on
(cycles~desired <x»>)
(two-input-nor-gate ~inputl <inputl> “anput2 <inputl>
~output <outputs)
(cycles-run < <x>)
(line ~id <inputl> “sink 0)
(line “~id <input2> “sink 0)
{(line “~id <output> “source 0} <output-line>}
(flag simulate-devices)
——
(rodify <output-line> “scurce 1))}

{pset two-input-nor-gate-simulator-turn-off-1

{parp simulate-two-input-nor-gate-turn-off-1
{cycles-desired <x»>)
{two-inpat-nor-gate ~inputl <inputl> ~input2 <input2>

ADA289345

[32]

2a

EA4. PARALLEL VERSION OF THE CIRCUIT SIMULATOR

“output <output>)
(cycles-run < <x>)
(iine ~id <inputl> “sink 0}
{line ~id <input2> “~sink 1)
{(iine “~id <output> “source 1) <output-line>}
{flag simulate-devices)
-——>
(modify <output-line> “source 0))}}

{pset two-input-nor-gate-simulator-turn-off-2
{parp s:mulate-two-input-nor-gate-turn-off-2
{cycles-desired <x>)
(two-input-nor-gate ~inputl <inputl> “input2 <input2>
~oatput <output>)
{cycles-run < <x>)
{line ~id <inputl> ~sirk 1)
(line ~id <ipputi> “~sink 0)
{{line ~1d <output> “*source 1) <output-line>)
(flag samulate-devices)
-—=>
{modify <output-line> “source 0))}

{pset two-input-nor-gate-simulator-turn-off-3
(parp simulate-two-input-nor-gate-turn-off-3
{cycles-desired <x>)
(two-anput-nor-gate “inputl <inputl> ~input2 <input2>
~output <outputs>)
(cycles-run < <x>|
(line ~id <inputl> “sink 1)
(line ~id <input2> “sink 1)
{(line ~id <output> “source 1) <output-line>}
(flag gimulate-devices)
-=>
(modify <output-line> “source (j)}}

{pset two-input-nand-gate-simulator-turn-on-1
(parp simulate-two-input-nand-gate-turn-on-1
(cycles~desired <x>)
(two-input-nand-gate ~inputl <inputl> “input2 <input2s>
“output <output>)
(cycles~-zrun < <x>}
{line ~ié <«inputl» “sznk 0)
(line ~id <input2> “sink 0)
{(line *1d <output> “source 0) <output-line>}
(flag simulate-devices)
-
(modify <output-line» “source 1}))

ADA289345

*a
~J
Lh

~
(=

E.4. PARALLEL VERSION OF THE CIRCUIT SIMULATOR

{pset two-irput-nand-gate-simulazor-turn-on-2
(parp simulate-two-input-nand-gate~turn-on-2
(cycles-desized <x>)
(two-input-nand-gate “inputl <inputl> ~input2 <anput2>
“output <output>)
(cycles-run < <x>)
(line *id <inputl> “sink 0)
(line *id <input2> “sink 1)
{(line *ld <output> ~source 0) <output-lines>}
(flag simulate-devices)
-—>
(modify <output-line> “source 1})})}

{pset two-input-nand-gate-simulator-turn-on-3
(parp simulate-two~input-nand-gate~turn-on-3
(cycles-desired <x>)
(two-~input-nand-gate ~inputl <inputl> “input2 <input2>
~output <output>)
{eycles-run < <x>)
(lane ~id <inputl> “*sink 1)
(line *id <input2> “sink 1)
{{line *id <output> “source 0} <output-line>}
(flag simulate-devices)
——>
(modafy <output-line> “source 1))}

{pset two-input-nand-gate-simulator-turn-off
(parp simulate-two-input-nand-gate-turn-off
{cycles-desired <x>)
(two-input-nand-gate “inputl <inputl> “input2 <input2>
Aoutput <output>)
{cycleg-run < <x»)
(line ~id <anputl> “sink 1)
(lane 7id <input2> “*sink 1)
{(line *ié <output> “~source 1} <output-line>}
(£lag simulate-devices)
-->
{mod1fy <output-line> “source 0)})}

{pset not-gate-simulator-turn-on
(parp simulate-not-gate-turn-on
(cycles-desired <x>)
{not-gate ~input <input> “outpat <output>)
{cycles-run < <x>)
{line “~id <input> “gink 0)
{{line *id <output> “source 0) <ocutput-line>}
(flag simulate-devices)
-->

ADA289345

E.5. SEQUENTIAL VERSION OF WALTZ

(modify <ovtput-line> “source 1))}

{pset not-gate-samu_ator-turn~off
{parp simulate-not-gate-turn-off

(cycles-desired <x>)

{not-gate “input <input> “ocutput <output>)
{cycles-run < <x>)

(line ~id <input> “sink 1)

{{line ~id <output> “source 1) <output-line>}
(flag simulate-devices)

-—>

(mod1fy <output-line> “source 0))}

{pset line-simulator-turn-on
(parp simulate-line-transmission-turn-on

{cycles-desired <x>)

{cycles-xun < <x>)

{{lane “source 1 “sink 0) <line>}
{flag simulate-lines)

—_——>

(modify <line> ~sink 1))}

{paet line-simulator-turn-off
(parp simulate-line-transmission-turn-off

(cycles-desired <x>)

(cycles-zun < <x>)

{(line “source 0 “sink 1) <line>)
(flag simulate-lines)

-—>

(modify <line> “sink 0)))

E.5 Sequential version of waltz

‘
4
;

Program to interpret a line drawing. It takes the junction labelling

; as input and generates a congistent line labelling.

Original program written by: Toru Ish:ida

Mod:fied by Dar Neiman, COINS Dept., University of Massachusetts
11/16/90: Added possible-line-label element. One element is added for
each possible labelling of each énd of each line. This allows easy
testing for consistent line labelling without proliferation of rules.
There are now only five rules in the reduce phase which correspond
more closely to the actual kxnowledge being applied.

¥odified by: Anurag Acharya acha®cg.cmu.edu

ADA289345

E.5. SEQUENTIAL VERSION OF WALTZ 278

; 1. moved the data to the file to be loaded -- this allows me to scale the
; input

; 2: Reordered the condition elements for the enumerate-possible-candadates
and consistent-* productions. Lifted the staging condition to the

5 top -- this is needed for correctness. Else, loop termination detection
vi does not work and declares termination before any iterations Lave been
i executed.

; 3. added printing production -- in particular order. That is necessary
for some measure of realism. Everything can’t be parallel in real life
and any labelling program will have to read the labels in some way.

{literalize possible-junction-label junction-type label-id line-1 line-
line-3)

{literalize junction junction-type junction-ID line-ID-1 line-ID-2 line-ID-3)

{literalize labelling-candidate junction-ID line-1 line-2 line-3 l-¢~ID)

{literalize possible-line-label line candidate junction label)

{p start-Walte
(start)
-
{make stage enumerate-possible-candidates))

(p enumerate-possible-candidates
{stage enumerate-possible-candidates)
{possible-junction-label ~junction-type <)-type>
~line-1 <line~i> “line-2 <line-2> “line-3 <line-3>)
{jurction ~junction-type <j-type> ~junction-ID <3-ID>
~line-ID-} ~line-ID-2 <12> *line-ID-3 <l3>)
~(labelling-candidate “junction~ID <j-ID>
~“line-1 <line-1> “line-2 <line-2> “line-3 <line-3>)
-
{bind <i-c-ID> {genatom))
(make labelling-candidate ~junction~ID <j-ID> *l-c-ID <1-¢-ID>
~line-1 <line-1> “lirne-2 <line-2> ~line-3 <line-3>)
(make possible-line~-label ~line <11> “label <line-1> ~“candidate <l-c-ID>
“junction <3j-ID>)
{make possible-line-label “~line <12> “label <line-2> “candidate <l-¢-1D>
~junction <j-ID>)
(make possible-line~label ~line <13> ~label <line-3> “candidate <l-c-ID>
~janction <3-1D>})

(p go-to-reduce-candidates

ADA289345

E.5. SEQUENTIAL VERSION OF WALTZ

[8]
~J
O

{stage enumerate-possible-candidates)
-—>

{xemove 1)

(make stage reduce-candidates))

; the following productions apply the consistent labelling constraints
(p consistent-plus
(stage reduce-candidates)
{{possible-line-label “~line <line> “junction <junction>
~label + “candidate <c>) <line>)
{(labelling-candidate ~l-c-ID <c>) <l-e>)
- (possible-line-label *line <line> “junction <> <junction> “label +)
-—>
(remove <line>)
(remove <l-c>))

{p consistent-minus
(stage reduce-candidates)
{{possible-line-label ~lire <line> “junction <junction>
~label - “candidate <c>) <line>}
{{labelling-candidate *l-c-ID <¢>) <l-¢>)
- (possible-line-label “line <line> “junction <> <junction> “label ~}
-
{remove <line>)
{xemove <l-¢>))

{p consistent-in-out
{stage reduce-candidates)
{ (possibla-line-label ~line <line> “junction <junction>
“label in “candidate <c>) <line>}
{({labelling-candidate "~1l-c-ID <c>) <l-c>}
- {possible-line~label ~line <line> “junction <> <junction> “label out)
-—>
{remove <line>)
[remove <l-¢>))

(p consistent-out-in
(stage reduce-candidates)
{(possible-line-label ~line <lane> “junction <junction>
~label out “candidate <c>) <lines)
{{labelling-canéidate *l-c-ID <c>) <l-c>}
- (possible-line-label “line <line> ~junction <> <junction> “label an)
-—2
(remove <line>)
(remove <l-¢>})

/When a labelling-candidate is deleted, we want to also delete all possible
; line labels associated with that labelling-candidate

ADA289345

E.6. PARALLEL VERSION OF WALTZ 280

(p eliminate~-line-labels
(stage reduce-candidates}
((possible-line-label “candidate <¢>) <o0ld>}
- (labelling-candidate ~l-c~ID <¢>)
-—>
(remove <old>})

(p go-to-print-out
{stage reduce-candidates)
—-——>
(remove 1)
{make stage print-out})

{p print-out
{stage print-out)
{possible-line-label “junction <junction> ~line <iine> “label <label>)
-——>
(write "junction * <junction> <line> <label> {crlf}}}

; fires last by specafacity
(p halt

(stage print-out)

-—>

(halt))

E.6 Parallel version of waltz

Program to interpret a line drawing. It takes the junction labelling
; as 1nput and generates a consistent line labelling.

; Original program written by- Toru Ishida

Modified by Dar Neiman, COINS Dept., University of Massachusetts
11/16/90: Added possible-line-label element. One elemert is added for
; each possible labelling of each end of each line. This allows easy

4 testing for consistent line labelling without proliferation of rules.
; There are now only five rules in the reduce phase which correspond

; more closely to the actual knowledge being applied.

; Parallelized by: Anurag Acharya acha@cs.cmu.edu

, 1. moved the data to the file to be loaded -- this allows me to scale the
. input

; 2. Reordered the condition elements for the enumerate-possible-candidates
, and consistent-+* productions. Lifted the staging condition to the

top -- this is needed for correctness. Else, loop termination detection
does not work and declares termination before any iterations have been

ADA289345

E.6. PARALLEL VERSION OF WALTZ 281

; executed.

; 3. added printing production -- in particular order. That is necessary

H for some measure of realasr. Everything can't be parallel in real life
i and any labelling program w:l> have to read the labels in some way.

; Tuple declarations

{literalize possible-junction-label junction-type label-id lins-1 line-2
line-3)

{literalize junction junction-type junction-ID line-ID-1 line-ID-2 line-ID-3)

{literalize labelling-candidate junction-ID line-l line-2 line-3 l-¢-ID}

{literalize possible-line-label line candidate junction label)

(p start-Waltz
{start)
-
(make stage enunerate-possaible-candidates))

(p go-to-reduce-candidates
(stage enumerate-possible-candidates)
-—>
(remove 1)
(make stage reduce-candidates))

(parp consistent-plus
(stage reduce-candidates)
{ (possible-line-label ~line <line> "“junction ~junction>
~label + “candidate <¢>) <line>}
{labelling-candidate ~l-c-ID <c>) (<l-¢>}
-(possible-line-label ~line <line> ~junction <> <junction> “label +)
-——>
(remove <line>}
{remove <l-c>))

{parp consistent-minus
(stage reduce-candidates)
{ {possible-line-label ~line <line> “junctic. <junction>
“label - ~candidate <¢>) <line>)
{labelling-candidate ~l-¢-1ID <c>) {<l-¢»}
- (possable-line-label “line <line> “junction <> <junction> ~label -)
—-——D
izemove <line>)
{xemove <1l-c¢>))

(parp consistent-in-out
{stage reduce-candidates)

AodaG s

E.6. PARALLEL VERSION OF WALTZ 282

{ {(possible-line-label “line <line> “junction <junction>
~label in “candidate <c>) <line>}
{ (labelling-candidate *1-c-ID <c>) <l-c¢>}
-({possible-line-label “line <line> “junction <> <junction> “label out)
-2
{remove <line>}
(remove <l-c>))

(parp consistent-out-in
(stage reduce-candidates)
{ {possible-line-labal “line <line> “junction <junction>
~“label out ~candidate <c>) <line>}
{{labelling-candidate “l-c-ID <c>) <l-c>})
-{possible-line~label “line <line> “junction <> <junction> “label in)
-——>
{remove <line>)
{remove <l-¢>}))

(parp eliminate-line-labels
{stage reduce~-candidates)
{{possible-line-label “candidate <c») <old>}
-{labelling-candidate “l-c-ID <¢>)
-——>
(remove <old>))

(p go-to-print-out
(stage reduce-candidates)
-->
{remove 1)
{make stage print-out))

(parp print-out
{srage print-out)
{possible-line-label “junction <junction> “line <line> “label <label>)
-->
(write "junction * <junction> <line> <labsl> (crlf)))}

{p halt
{stage print-out)
-=>
(halt))

{pset enumerate
{parp enumerate-possible-candidates
{stage enumerate-possible-candidates)
{possible-junction-label “junction-type <j-type>
~line-1 <line-1> ~line-2 <line-2> “line-3 <line-3>)
(junction “junction-type <j-type> “junction-ID <j-ID>

[}
(==
W

E.7. SEQUENTIAL VERSION OF HOTEL

~line-ID~1 <11> “line-ID-2 <12> “line-ID-3 <13>)
-{labellang-cancidate “junction-iID <j-ID>
~line-1 <line-1> “line-2 <line-2> "line-3 <line-3>)
—-——>
(bind <l-e-ID> (genatom))
{make labelling-candidate “junction-ID <3-ID> ~l-¢-ID <l-c-ID>
~line-l <line-1> “line-2 <line-2> “iine-3 <line-3»)
(make possible-line-label “line <ll> “label <line-1> “candidate <l-¢-ID>
~junction <3j-1D>)
(make possible-line-label “line <12> “label <line-2> “candidate <l-c-ID>
~junction <j-1ID»)
(make possibie-line-label “~line <13> “label <line-3> ~candidate <l-c-ID>
~junction <3j-ID>))}

E.7 Sequential version of hotel

Program to model the operation of a hotel,
Original version by: Steve Kuo, University of Southern California

; Converted to PPL by: Anurag Acharya, acha@cs.cru.edu

1 The original version had a fixed number of floors and had applied
copy and constraint very extensively. So much so that C compilers
; refused to compile files that large. There are several other

; optimizations including splitting room-linen and room-furniture

; cuples so that the affect set size goes down.
!’

, Tuple declarations

e ememmen e esmmm—mmmem———————————————————— cmmmm———— [,

(lateralize customer name status reservation arrival-date
departure~date num-person room-num cash)

(literalize room room-num status phase departure-date room-type
floor name)

{literalize hallway floor restroom section)

{literalize rate room-type num-person rate)

{literalize reservation status name num-person

arrival-date departure-date)

{literalize room-towel room-num number)

(literalize room~sheet room-num number)

(literalize room-pillow-case room-num nurber)

(literalize room-trash-can room-num status)

(literalize room-blanket room-num status)

(literalize room-bedspread room-num status)

E.7. SEQUENTIAL VERSION OF HOTEL

{literalize
(literalize
(literalize
(literalize
(literalize
(literalize
(literalize
{literalize
(literalize
(literalize
(literalize
(literalize
(literalize
(literalize
(literalize
(literalize
(literalize
{literalize
(literalize
(litaralize
(literalize
(literalize
(litaralize
(literalize
(literalize
(literalize
(literalize
(literalize
(literalize
(literalize
{literalize
(literalize
(literalize
(literalize
(literalize
(literalize
{literalize
(literalize
(literalize
(literalize
(literalize
(literalize
{literalize
{literalize
(literalize
(literalize
(literalize
(literalize

room-bathroom room-num status)
room-dresser room-num status)
room~-table room-num status)

room-chairs room-num status)
room-vacuum room-num status)
divtv-zheer floor quantity)
washed-sheet floor quantity)
clean-sheet £loor quantity)

dirty-towel floor quantity)
washed-towel floor quantity)
clean-towel flioor quantity)
dirty-pillow-case floor quantity)
washed-pillow-case floor quantity)
clean-pillow-case floor quantity)

soup name gquantity)

dish name quantity)

veg name quantity)

order-chowder conference quantity)
order-chicken conference guantity)
order-hamdurger conference quantity)
order-steak conference quantity)
order-seafood conference quantity)
order-salad conference quantity)
order-fruit conference quantity)
conference-chowder conference gquantity)
conference-chicken conference guantity)
conference-hamburger conference quantity)
conference-gteak conference quantity)
conference-seafood conference quantity)
conference~-salad conference quantity)
conference-fruit conference guantity)
table conference number clean)
table-cloth table-number number)
table-plate table-number number)
table-knife table-number number)
table-fork table-number number)
table-napkin table-number number)
table~chairs table-number number)

chair number)

cloth number)

plate number)

fork number)

knafe number)

napkin rumber)

dish-counter-hamburger conference number quantity)
dish-count.er~steak conference number quantity)
dish-counter-seafocd conference number quantity)
salad-bar conference number quantity)

[

>

™
0
A

E.7. SEQUENTIAL VERSION OF HOTEL

(literalize fruit-bar conference number quantity)

(literalize soup-bar conference name status)

(literalize coffee-machine conference number power coffee
beans pot water-level)

(literalize context name)

(literalize date day)

{p 0.1nitial:ze
(start)
—-——2
(make context “name clean-hallway)
(make context “name conference)
(raxe zontext “name check-out))

(p 1.check-out
{context “name check-out)
(date ~day <d>)
{{customer ~status staying “arrival-date <ad>
~deparsure-date <d> ~room-num <r> “cash <c>) <customer>}
{{roor ~room-num <r> “room-type <rt> ~status occupied) <room>}
(rate “room-type <rt> “rate <rate>)
{ (room=-towe. “room-num <r>) <towel>}
{ (room-gheet ~room-num <r>) <sheet>}
{ (room-pillow-case “room-num <r>) <pilliw-case>}
{ (roor~trash-can “room-num <r>) <trash-van>}
{ {room-blanket “room-num <r>) <blanket>,
{ {(room-tedspread “room-num <r>) <bed-spread>}
{ {(room-bathroom ~room-num <x>)} <bathroom>}
{ (room-dresger “room-num <r>) <dressexr>}
{(roor-table “xoom-num <r>) <table>}
{ (room-chairs “room-num <r>) <chairs>)
{ (room-vacuum “room-num <r>) <vacuum>}
-
(modify <customer> “~status check-out
~cash (compute <c> « (<rate> * (<d> - <ad>»))})
(modify <room> ~status change “phase maid-laundry)
(modify <towel> “number 8)
(modity <sheet> “murmber 4)
(modify <pillow-case> “numbexr 4)
(moQify <trash-can> “status not-empty)
(modify <blanket> “status not-made)
(modify <bed-spread> “status not-made)
(modi{y <bathroom> “status dirty)
(modyrfy <dresser> “status dirty)
(mod1fy <table> “status dirty!
(modify <chairs> “~status dirty)
(modify <vacuum> “status dirty))

E.7. SEQUENTIAL VERSION OF HOTEL

(p 18.staying-over
{context “name check-out)
(date “day <@>)
{ (customer “status staying “room-num <r>
~Geparture-date {<dd> > <d>)) <customer>)
{(room ~room-aum <r> “status occupied) <room>)
{ (xroom-towel “room-num <r>) <towel>)
{ (room-sheet “room-num <r>) <sheet>)
{ (room-pillow-case “room-num <r>) <pillow-case>)
{ (xroom-trash-zan “room-num <r>} <trash-can>)
((room-blanket *room-num <r>) <blanket>}
{ (room-bedspread “room-num <r>} <bed-spread>)
{ (room-bathroom “room-num <r>} <bathroom>}
{ (room-dresser “room-num <r>) <dresser>)
{ (room-table “room-num <r>) <table>}
((room-chairs ~room-num <r>) <chairss>)
{ (room~-vacuum “room-num <r>) <vacuum>}
-——>
(modify <room> ~“status make-up “phase maid-cleaning)
(modify <towel> “number 0)
{modify <sheet> “number 0)
(modify <pillow-case> “number 0)
(modify <tresh-can> “status not-empty)
(modify <blarket> “status not-made)
{modify <bed-spread> ~status not-made)
(modi fy <bathroom> “status dirty)
{modafy <dresser> ~status dirty)
(modify <table> “status dirty)
I (modify <chairs» “status dirty)
(modify <vacuum> “status dirty))

{p 73.done-check-out
{(context “rame check-out) <context>}
- (room “status occupied)

-3
(modify <context> “rame maid-laundryj])

(p 74 strip~towel
(context “name maid-laundry)
(room “room-num <r> “phase maid-laundry “floor <floor>)
{ {room-towel “room-num <r> “number (<t> > 0}) <room-linen>)
{(dircy-towel ~floor <floor> “guantity <g>) <towel>)
-2
{modafy <roor-linen> “number 0)
{mod1fy <towel> ~quantity {compute <q> + <t>}))

(p 75.scrip-shee:t
{context “name maid-laundry)

E.7. SEQUENTIAL VERSION OF HOTEL

(room “room-num <r> ~phase maid-laundry “floor <flocr>)
{(room-sheet “room-num <r> “number (<s> » 0}) <room-linen>}
{(dirty-sheet “~floor <floor> “guantity <¢>) <sheet>}

-
(moGify <room-linen> ~number 0)
(modify <sheet> “quentity (compute <g> + <s>})]

(p 76.strip~pillow-case
(context “name maid-laundry)
(room “room-num <r> ‘phase maid-laundry “fleor <floor>)
{(room-pillow-case ~room-num <r> “number {<p> > 0}} <room-linen>}
{(drrty-pillow-case ~“floor <floor> “quantity <g») <case>}

-
(modify <room-linen> “number 0)
(modify <case> ~quantity {(compute <g@> + <p>)))

(p 77.finigh-laundry-room
(context “name maid-laundry)
{(room ~room-num <r> “phase maid-laundry} <room>)
(room-towel “room-num <r> “nuwber 0)
(room-sheet “room-num <r> “number 0)
(room-pillow-case “~room-num <r> “number 0)

>
(modify <xoom> ~phase maid-cleaning))

(p 146 done-maid-laundry
{ (context “name maid-laundry) <context>}
«{room “phase maid-laundry)
>
(make context “name laundry)
(modify <context> “name maid-cleaning))

(p 147.towel-needed

(context “name maid-cleaning)

{room “room-num <r> “phase maid-cleaning)

((room-towel “room-num <r> “number < 8) <room-linen>)
-

(modify <room-linen> “number 8))

(p 148.make-sheet

{context “name maid-cleaning)

{room “room-num <r> “phase maid-cleaning)

{ (room-sheet “room-num <r> “number < 4) <room=-linen>)
-->

(modrfy <room-linen> “number 4})

(p 149 make-pillow
(context “name maid-cleaning)

[
~J

ADA289345

E7. SEQUENTIAL VERSION OF HOTEL

(room “room-num <r> “phase maid-cleaning)

{(room-pillow-case “room-nim <r> “nunber < 4} <room-linen>}
-->

(modify <room-linen> “number 4))

(p 150.clean-trash-can

(context "name maid-cleaning)

{room “room-num <r> “phase maid-cleaning)

{ (room-trash-can “room-nur <r> “status not-empty) <room-liner>}
-->

(modify <room-linen> “status empty})

(p 151.make-blarket

(context “name maid-cleaning)

{room “room-num <r> “phase maid-cleaning)

{{room-blanket “room-num <r> ~status not-made)} <rcom-linen>}
-

(mod1fy <room-linen> “status made))

(p 152.make-bed-spread

(context “name maid~cleaning)

(room “room-num <r> “phase maid-cleaning)

{ {voon-bedspread “room-num <r> “~gtatus not-made) <room-linen>}
-

(modify <room-linen> “status made})

(p 153.clean-bathroom

(context “name maid-cleaning)

(room “room-num <r> “phase maid-cleaning)

({room-bathroom ~room-num <r> “status dirty) <room-furniture>)
-~

(modify <room-furniture> “status clean))

(p 154.c_ean-dresser
{context “name maid-cleaning)
(room “room-num <r> “phase ma:d-cleaning) :
{ {room-dresser “room-num <r> “status dirty) <room-furnitures}
-=>
{modity <room-furniture> “status clean))

(p 155.clean-table

(concext “name maid-cleaning)

{roor “room-num <xr> “phase maid-cleanang)

{(room-tzble “room-num <r> “status dirty) <room-furniture>)
-

{rodify <room-furniture> “gtatus clean))

{p 156.clean-chalrs

ADA289345

38

[

E.7. SEQUENTIAL VERSION OF HOTEL

(context “name maid-cleaning)

{room “room-num <r> “phase maid-c_eaning}

{(room-chairs “room-num <r> “status dirty) <room-furnitures)
-

(modify <room-furniture> ~status clean})

(p 157.vacuum-3

(context “name maid-cleaning)

{room “room-num <r> “phase maid-cleaning)

{ {room-vacuum “room-num <r> “status dirty) <room-furnitures)
-->

(modrfy <room-furniture> “status done))

(p 158.%finish~room-changing
{context “name maid-cleaning)
{{room “room-num <r> “status change

~phage maid-cleaning) <room>)

(room-towel “room-num <r> “number 8)
(room-sheet “room-num <r> “number 4)
(room-pillow-case “room-num <r> “number 4)
(room-trash-can “room-num <r> “status empty)
(room-blanket “room-num <r> “status made)
{room-bedspread “room-num <y> “status made)
{room-bathroom “room-num <r> “status clean)
(room-dresser “room-num <r> “status clean)
(room-table “room-num <r> “gtatus ¢lean)
{room-chairs “room-num <r> "“status clean)
(room-vacuum “room-num <r> “gtatus done)

-->
(modafy <room» “status vacant “phase clean))

(p 159.finish-room-make~up
(context “name maid-cleaning)
{{room “room-num <r> “~status make-up

“phase maid-cleaning) <room>)

{room-towel “room-num <r> “number 8)
(room-sheet “room-num <r> “number 4)
{room-pillow-case “room-num <r> “number 4)
(roon-trash-can “room-num <r> “status empty)
(room-blanket “room-num <r> ~status made)
{room-bedspread “room-num <r> “status made)
(room-bathroom “room-num <r> “status clean)
(room-dresscer ~room-num <r> ~status clean)
{room-table “room-num <r> ~status clean)
(room-chairs “room-num <x> “status clear)
{(room-vacuum “room-num <r> “status done)

-->
(modify <room> “status occupied “phase clean})

ADA28¢ 345

E.7. SEQUENTIAL VERSION OF HOTEL

(p 38%i.done-maid-cleaning
{(context “name raid-cleaning) <context>;
~{room “paase maid-cleanang)
-->
{rake context “name reservation)
(mod1fy <context> “name done-maid-cleaning}}

{(p 382.clean~restroom
{context “name clean-ha.lway)
{{hallway “restroom {<n> > 0}) <hallway>}
-—>
(modify <hallway> “restroom {compute <n> - 1)))

{p 400.done-clean-hallway
{ (context “name clean-hallway) <context>}
~-{hallway “restroocm {> 0} ~section {> 0}}
>
{remove <context>))

{p 401.wash-sheet
(context “name laundry)
{(dirty-sheet ~floor <floor> ~quantity {<ds> > 7}} <dirty-sheet>}
{ (washed-sheet ~floor <floor> ~quantity <ws>) <washed-sheet>}
-
(modafy <dirty-sheet> “¢uantity (compute <ds> - 8))
(mod1fy <washed-sheet> ~quantity (cowpute <ws> + 8) })

(p 401.wash-pillow~case

{context “name laundry)

{{dirty-pillow-case “floor <floor>

Aquantity {<dpc> > 7}) <dirty-pillow-case>}
{ (washed-pillow-case "“floor <floor>
~quantity <wpc>) <washed-pillow-case>)

-3

(modify <dirty-pillow-case> “quantity (compute <dpc> - 8})

(modify <washed-pillow-case> ~quantity {compute <wpc> = 8)))

(p 402.dry-sheet
(context “name laundry)
{ (washed-sheet ~floor <floor> “quantity {<ws> > 7}) <washed-sheet>}
{(clean-sheet “floor <floor> “quantity <cs>) <clean-sheet>}
——>
(med1fy <washed-sheet> ~guantity (compate <ws> - 8) }
(modafy <clean-sheet> “quantity (compute <cs> + 8))}

(p 402.dry-pillow-case
(context ~“name laundry)

ADA289345

(3%
\O
—

E.7. SEQUENTIAL VERSION OF HOTEL

{ (washed-pillow-case ~“floor <floor>
~quantity {<wpc> > 7}) <washed-pillow-case>)
{(clean-pz1llow-case “floor <floor> ~quantity <cpc>) <clean-pillow-case>}
-=>
{modify <washed-pillow-case> “quantity (compute <wpe> - 8))
{rodify <clean-pillow-case> “quantity {compute <cpc> + 8)))

{p 403.wash~towel
{context ~rame laundry)
{{darty-towel “floor <floor> “quantity {<dt> > 47}) <dirty-towel>}
{ (washed-towel “floor <floor> “quantity <wt>) <washed-towel>)
-
(modrfy <dirty-towel> “quantity {compute <dt> - 48))
(modify <washed-towel> “quantity (compute <wt> + 48)}})

(p 404.dry-towel
{context “name laundry)
{ (washed-towel ~floor <floor> “quantity {<wt> > 47}) <washed-towel>}
{{clean-towel “floor <floor> “quantity <ct> } <clean-towel>}
-
{modxfy <washed-towel> “quantity (compute <wt> - 48))
(modify <clean-towel> “quantity (compute <ct> + 48)))

(p 437.done-laundry

{{context “name laundry} <context>}
-->

{remove <contexts>))

; there is a cross-product in this production it can be eliminated
; by using the ordering on the name and room-num fields.
{p 438.new-resexvation

(context “name reservation)

{(reservation “name <n> “arrival-date <ad>

“departure-date <dd>} <reservations>)

{{room “status vacant “room-pum <r>) <room>}

-{room “status vacant “room-num > <rs>)
-

(modify <room> “status reserved “name <n>)

(remove <reservation»))

(p 439.excess-reservation
{context “name reservation)
{(reservation) <reservations)

-{xoom “status vacant)

-->

(remove <reservations))

(p 446 done-reservation

ADA289345

E 7. SEQUENTIAL VERSION OF HOTEL

{(context “name reservation) <context>}
- {reservation “status new)
-—>
(mocrfy <context> “name reservation-done))

(p 447.with-reservation
{context “name check-in)
(Gate “day <d>)
{ (customer “name <n> ~status new
~arrival-date <d> “departure-date <dd>)} <customer>}
{(room “room-num <rn> “name <n> “status reserved) <room>}
-->
(modify <customer> “status staying “roor-num <rn>)
(modify <room> “status occupied “departure-date <dd»))

(p 448.without-reservation
(context “name check-in)
(Cate “day <d>)
{ (customer “status new “name <n>
~arrival-date <d> “departure-date <dd>) <customer>}
-(room “status reserved “nare <n>)
{ (room “room-num <rrn> “status vacant) <room>}
-(room “room-num > <rn> “status vacant)
.-
(modify <customer> “status staying “room-num <rn>)
(modify <room> “status occupied “departure-date <dd>)

(p 4%5.done-check-in
{ (context “name check-in) <context>}
-{customer “status new)

.-
(remove <context>))

(p 488.set-menu~chowder-full
(context “name conference)
{oxder-chowder “conference <conf> “quantity <q>)
{ (conference-chowder “conference <conf> “quantity 0) <conference>}
{ {(soup “name chowder ~quantity {<qi> >z <>} } <scup>}
>
(modify <conference> “quantity <gq>)
(modify <soup> “quantity (compute <ql> - <q>}})

{p 488.set-nenu-chowder-part.al
{context “rame conference)
(order-chowder “conference <conf> “quartity <q>)
{ {conference-chowder “conference <conf> “quantity 0) <conference>}
{{soup “nane chowder ~quantity {<ql> < <g»}) <soup>}
~>

ADA289345

E.7. SEQUENTIAL VERSION OF HGTEL

(modify <conference> ~quantity <ql>)
(modify <soup> ~“quantaty 0))

(p 489.set-menu-chicken-full
{context ~name conference)
{order-chicken “conference <conf> ~quantity <g>)
{ (conference-chicken “conference <conf> “quantity 0) <conference>}
{{soup "name chicken ~quantity {<gl> >z <g>}) <soup>}
-——>
(modify <conference» ~quantity <g>)
{modify <soup> “quantity (compute <ql> - <g>)))

(p 489.set-menu-chicken-partial
{context “name conference)
(order-chicken “conference <conf> “quantity <g>)
{ (conference-chicken “conference <conf> ~quantity 0) <conference>}
{(soup “name chicken ~quantity {<gl> < <g>}) <soup>]
-
(modafy <conference» ~quantity <ql>)
(modify <soup> “quantity 0}}

(p 490.set-menu-hamburger~full
(context “name conference)
(order-hamburger “conference <conf> ~quantity <q>)
{ (conference-hamburger “conference <conf> “quantity 0) <conference>}
((dish “name hamburger ~quantity {<ql> >» <g>}) <dish>}
-
(modify <conference» “quantity <q>)
(modify <dish> ~quantity (compute <gl> - <g>)))

(p 490.set-menu-hamburgex-partial
(context “name conference)
{order-hamburger “conference <conf> ~“quantity <g»}
{ (conterence-hamburger “~conference <conf> “quantity 0) <conference>)
{(dish “name hamburger ~quantity {<qgl> < <g>)}) <dish>}
-—>
(modify <conference> ~quantity <qi>)
(modify <dish> ~quantity 0))

(p 492.set-menu-steak~full
(context “name conference)
(order~steak “conference <conf> “quantity <q>)
{{conference-steak “conference <conf> ~quantity 0) <conference>}
((dish “name steak “quantity {<ql> >= <q>}) <dish>}

-—>
(modify <conference> “quantity <q»)
(modify <dish> “quantity (compute <ql> - <q>!}}

ADA289345

(3%
\Q
W

R
L
$a

E.7. SEQUENTIAL VERSION OF HOTEL

{p 492.set-menu-steak-partial
(context “name conference)
(order-steax “conference <conf> “quantity <g>)
{ {conference-steaX ~conference <conf> ~quantity 0) <conferences}
{{dish “name steak ~quantity {<ql> < <q¢>}} <dish>}
-—>
(rodify <conference> “quantity <gi>)
{rodify <dish> “quantaity 0))

{p 498.set-menu-seafood-full
{context “name conferaence)
{order-seafood “conference <conf> “quantity <q>}
{{conference-seafood “conference <conf> “quantity 0) <conference>}
{{dish “name seafood “~quantity {<gl> >= <g>)) <dish>}

-—>
{modify <conference> “quantity <q>)
(modify <dish> “quantity (compute <ql> - <g>))})}

(p 498.set-menu-seafood-partial
(context “name conference)
{order~seafood “conference <conf> “quantity <qg>)
{{conference~seafood “conference <conf> “quantity 0) <conference>}
{({dish “name seafood “quantity {<gl> < <q>}) <dish>)

-->
{modify <conference> “guantity <ql>)
(modify <dish> “quantity 0))

(p 493.set-menu-salad-full
{context “name conference)
{order-salad “conference <conf> “quantity <g>)
{ (conference-salad ~conferance <conf> *quantity 0) <conference>}
{{veg “nare salad ~quantity {<ql> >= <q»}) <veqg>)}
—_—
{modify <conference> ~quantity <q»)
(modify <veg> “quantity (compute <ql> - <q>)))

(p 493.set-menu-salad-partial
(centext ~“name conference)
(order-salad ~“conference <conf> “gquantaty <q>)
{ {conference-salad “conference <conf> “quantity 0} <conference>)
{(veg “name salad ~quantity {<ql> < <g»}} <veg»}
——>
{modify <conference> ~guantity <gl>)
(modify <veg> “qQuantity 0)}
{p 495.set-menu~fruir-full
{context ~name conference)
(order-fruit ~conference <conf> “quantity <g>)
{({conterence-fruit “conference <conf> “quantity 0) <conference>}

ADA289345

b2
N

E.7. SEQUENTIAL VERSION OF HOTEL

{{veg “name fruit ~quantity {<ql> >= <g»}) <veg>}
-=>

(modify <conference> “quantity <q»>)

(modify <veg> ~quantity (compute <ql> ~ <q>))})
(p 495.set-menu-fruit-partial

{context “name conference)

(order-fruit ~conference <conf> ~quantity <g>)

{{conference-fruit “conference <conf> “quantity 0} <conference>}

‘{veg "name fruit “~quantity (<ql> < <@>}} <veg>}
-~>

{rodify <conference> “quantity <gi>)

(rodify <veg> “quantity 0))

(p 499.done-set-menu

{(context “name conference) <coniext>}
-

(remove <context>)

(make context “name food-soup)

{make context “name food-salad-fruit)

(make context “name food-dish)

(make context “name brew-coffee)

(make context “name table})

(p 505.clean-table
(context “name table)
{(table “number <n> “clean no) <table>}
{(table-clotl ~table-nurber <n>) <cloth>}
{({table-plate ~table-number <n>) <plate>)
{(table-knife “table-number <n>) <knife>)
{ (table-fork ~table~number <n>) <fork>)
{(table-napkin “table-number <n>) <napkin>}
-—>
(modify <table> ~clean yes)
(modify <cloth> “nunber 0)
(modify <plate> “number 0)
(modify <knife> ~number 0)
(modify <fork> “number 0)
(modify <napkin> “number 0))

(p 500.set-chair
(context “name table)
{table “number <table-id> “clean yes)
{(table-chairs “table~number <table-id> “number 0) <taple-chairs>}
{(chair “number {<n> >= 4}} <chair»}
-—>
(modify <table-chairs> “number 4)
(modify <chair> “number (compute <n> - 4)))

ADA20Q240

E.7. SEQUENTIAL VERSION OF HOTEL 296

(p 541.put-tanle-cloth
{context “name table)
{table “number <table-id> “clean yes)
{ (table-cloth ~table-number <table-id> “number 0) <table-cloth>}
{{cloth ~number {<n> > 0}) <cloth>}
-—>
{modify <tasle-cloth> “number 1)
{rodi fy <clotn> ~number (compute <n> - 1)}))

{p 546.put-plate
{context “name table)
{table “number <table-id> “clean yes)
{table-clota ~table-number <table-id> “number 1)
{{table-plate “table-number <table-id> “number 0) <table-plate>}
{(plate “number {<n> >= 4}) <plate>}
-
(modsfy <table-plate> “nunber 4)
(modxfy <plate> ~number (compute <n> - 4)))

{p 551.put-knife
{context “name table)
(table “number <table-id> “clean yes)
{table-cloth “table~number <table-id> “number 1)
{{table-knife “~table-number <table-id> “number 0) <table-knife>)
{{knife “number {<n> »>= 4})) <knife>}
-
{modify <table-knife> “number 4}
{modify <knife> “number (compute <n> - 4}))

{p 556.put-fork
{context “name table}
{table “number <table-id> “clean yes)
{table-cloth ~table-number <table-id> “number 1)
{(table-fork ~table-number <table-ad> “ruumber 0) <table-fork>}
{{fork “number {<n> >z 4}) <fork>}
>
(modify <table-fork> “number 4)
{modify <fork> “number (compute <n> - 4)})

{p 561.put-napkin
(context “name table)
{table “number <table-id> “clean yes)
{table-cloth ~table-number <table-id> “number 1)
{{table-napkin ~table-number <table-id> “number () <table-napkin>}
{ (napkin ~number {<n> >= 4}) <napkin>}
-
{modify <table-napkin> “number 4)

>
»
3

[
O
]

E.7. SEQUENTIAL VERSION OF HOTEL

(modify <napkin> “number (compute <n> - 4}))

(p 641.done-table

{{context “name table) <context>}
=-~>

{remove <context>))

(p 542.need-new-brew
(context ~name brew-coffee)
{(coffee-machine “coffee o0ld) <machine>}
-~
{(modify <machine> “power off “pot off))

(p 643.empty-beans

(context “name brew-coffee)

{(coffee-machine “power <> on “beans {<> new <> empty}} <machine>}
-3

(mod1fy <machine> “beans empty))

(p 644.add-new-beans

(context “name brew-coffee)

{{coffee-machine “power <> on “beans empty) <machine>)
-——>

(modify <machine> “beans new))

(p 645 add-pot
(context “name brew-coffee)
{(coffee-machine “power <> on
Apot <> on) <machine>}
-——>
(modify <machine> “pot on})

(p 646.add-water
(context “name brew-coffee)
{ (coffee-machine “power <> on
~water-level <> full) <machine>}
-3
(modify <machine> ~“water-level full))

(p 647 .brew-coZfee
(context “name brew-coffee)
{(coffee-machine “power <> on “beans new “pot on
“water-level full) <machine>)
—_——
(modify <machine> “power on “coffee new))

(p 690.done-brewing-coffee
{(context “name brew-coffee) <brew>}

E.7. SEQUENTIAL VERSION OF HOTEL 208

-—>
(remove <brew>))

{p 691 dish-hamburger
{context “name food-dish)
{ {dish~counter-hamburger “conference <conf>
“quantity {<h> < 10}) <counter>}
{ (conference-hamburger “conference <conf>
~quantaty {<hl> > 0}} <conference-dish>)
-—>
(rod:ify <counter> “quantity (compute <h> + 1})
(rodify <conference~dish> “quantity {(compute <hl> - 1}))

(p 692.4.sh-steak

{context ~name food-dish)

{ {dish-counter~steak ~conference <conf»>

‘quantity {<s> < 10})} <counter>}
{ {conference-steak “~conference <conf>
~quantaty {(<s8i> > 0}) <conference-dish>}

-

(modify <counter> “quantity {(compute <s> + 1))

{modify <conference-dish> “quantity (compute <sli> - 1)})

(p €93.dish-seafood
{context “name food-dish)
{ (disa-counter-seafcod ~conference <conf>
Aquantity {<s> < 10}) <counter>}
{ (conference-gseafood ~conference <conf>
~quantity {<sl> > 0}) <conference-dish>}
-l
(modify <counter> ~quantity {compute <s> + 1))
(modify <conference-dish> “quantity (compute <sl> - 1}))

(p 703.done-dish

{(context “name food-dish) <context>}
-2

(remove <context>}}

(p 704.salad
(context “name food-salad-fruit)
{(salad-bar “conference <conf> “quantity {<s> < 10}} <bar>}
{ (conference-salad “conference <conf>
“quantity {<sl> > 0}) <conference-veg>)
-->
(modify <bar> “guantity (compute <s> + 1))
(modify <conference-veg> “quantity (compute <gl> - 1}}}

(p 705.frust

14
w
w

E.8. PARALLEL VERSION OF HOTEL

{context “name food-salad-fruat)
{(fruat-bar “conference <conf> “cuantity {<f> < 10}) <bars}
{ (conference-fruit ~conference <conf>
~quantity {<fl> > 0}) <conference-veg>}
-—>
(modafy <bar> “quantity (compute <f> + 1))
(modify <conference-veg> “quantity (compute <Il> - 1}))

{p 712.done-salad-fruit

{(context “name food-salad-fruit) <context>}
-->

(remove <context>))

(p 713.soup-chowder

(context “name food-soup)

(conference~chowder “conference <conf> ~quantity > 0)

{ (soup-bar ~conference <conf> “name chowder “status empty} <soup>}
-——2

(modify <soup> “status full))

{p 714.soup-chicken

(context “name food-soup)

{conference~chicken “conference <conf> “quantity > 0}

{(soup-bar ~conference <conf> “name chicken “status empty) <soup>}
-

(modify <soup> ~status full))

(p 721.done~soup
{ {context ~name food-soup) <context>)

-=>
{remove <context>))

{p 722.synchronization
(context “name done-maid-cleaning)
fcontext “name reservation-done)
-->
{make context “name check-in}))

E.8 Parallel version of hotel

; Program to model the operation of a hotel.
; Original version by' Steve Kuo, University of Southern California

; Parallelized by: Anurag Acharya, achalgs.comu adu

PRIV EAN W

E.8. PARALLEL VERSION OF HOTEL

(

{

(

Tre original version had a faxed number of floors and had applied
; copy and constraint very extensively. Sc much so that C compilers
refused to compile files that large. Tnere are several other
optiamizations including splitting room-linen and room-furrniture

; tuples so that the affect set size goes down.

literalize customer name status reservation arrival-date
departure-date num-person room-num cash)

literalize room room-num status phase departure-date room-type
floor name)

literalize hallway floor restroom section)

{literalize rate room-type num-person rate)

{

(

literalize reservation status name num-person
arrival-date departure-date)
literalize room-towel room-num number)

{literalize room-sheet room-num number)
{literalize room-pillow-case room-num number)
(literalize room-trash-can room-num status)

(
{
{
{
{

literalize room-blanket room-num status)
literalize room-bedspread room-num status)
literalize room-bathroom room-~num status)
literalize room-dresser room-num status)
literalize room-table room-num status)

{literalize room-chairs room-num status)

{
{
{
[
{

literalize room-vacuum room-num status)
literalize dirty-sheet floor quantity)
literalize washed-sheet floor quantity)
literalize clean-sheet floor quantity)
literalize dirty-towel floor quantity)

(literalize washed-towel floor quantity)

(
{
{
{
{
{
{
{
{
{
(
{
(

literalize clean-towel floor quantity)
literalize dirty-pillow-case £loor quantity)
literalize washed-pillow-case floor quantity)
literalize clean-pillow-case floor quantity)
literalize soup nare quantity)

literalize dish name quantity)

literalize veg name quantisty)

literalize order-chowder conference quantity)
literalize order-chicken conference guantity)
literal:ze order-hamburger conference quantity)
literal.ze order-steak conference quantity)
literalize order-seafood conference guantity)
literalize order-salad conference quantity)

E.8. PARALLEL VERSION OF HOTEL 301

{iiteralize order-fruit conference quantity)

({literalize conference-chewder conference quantity)

{literalize conference-chicken conference quantaity)

[literalize conference-hamburger conference quantity)

{literalize conference-steak conference guantity)

{literalize conference-seafood conference quantity)

{literalize conference-salad conference quantity)

{literalize conference~fruit conference quantity)

{literalize table conference number clean)

{literalize table-cloth table-number number)

{literalize table-plate table-numbax number)

{literalize table-knife table-number number)

{literalize table-fork table-number number)

{literalize table-napkin table-number numbex)

(literalize table-chairs table-number number)

{literalize chair number)

{literalize cloth number)

(literalize plate number)

{literalize fork number)

(lateralize knife number)

(literalize napkin numbexr}

(literaZize dish-counter-hamburger conference number gquantity)

(literalize dish-counter-steak conference number quantity)

{literalize dish-counter-seafood conference number quantity)

{literalize salad-bar conference number qQuantity)

(literalize fruit-bar conference number quantity)

(literalize soup-bar conference name status)

(literalize coffee-machine conference number power coffee
beans pot water-level)

(literalize context name)

(literalize date day'

(p 0.1nmtialize
(start)

-
(make context “name clean-hallway)
(make context “name conference)
(make context “name check-out)
(make context “name reservation)
{make context “name check-in)}

{(p 73.done-check-out

{{context “name check-out} <context>)
-->

(modify <context> “name maid-laundry))

{(p lé6.done-maid-laundry
{{context “name maid-laundry) <context>}

ADA289345

E.8. PARALLEL VERSION OF HOTEL 302

-{room “phase maid-laundry)
>
(rod1fy <context> “name maid-cleaning))

(p 381.done-maid-cleaning
! {context “name maid-cleaning) <context>}
-(room “phase maid-cleaning)
-3
(remove <context>)
(make context “name laundry))

(p 437.done-laundry
{ (context “name laundry) <context>;
-(dirty-pillow-case “quantaty > 7)
-(dirty-sheet “quantity 7)
-(dirty~-towel “quantity > 47)

>
(remove <context>}}

(p 400.done-clean-hallway
((context “name clean-hallway) <context>)
-(hallway “res.room {> 0) “section {> 0})
-—>
{remove <context>))

(p 446.done-reservation
{(context “name reservation) <context>)
-(reservation “status new)

-
(remove <context>})

(p 455.done-caeck-in
{ (context “name check~-in} <context>)
-{customer “status new)

-
(remove <context>})

{p done-menu
{ (context “name conference) <context>}
{ {done-task “name chowder) <menul>}
{ {done-task ~name chicken) <menu2>:
{ {done-task “name hamburger) <menu3>}
{ {done~task “name seafcod) <menud>}
{ (done-task “name salad) <menub>}
{ (done-task ~name fruit) <menué>}
-—d
(remove <context> <menul> <menul> <menu3> <menud> <menusd>
<menu6>)

ADA289345

(¥
[+~
L

E.8. PARALLEL VERSION OF HOTEL

(rake context “rame clean-table)
(make context “name brew-coffee)
(make context “name food-dish)

(make context “name food-salad-fruit)
(make context “name food-soup))

(p done-clean-table
{{context “name clean-table) <context>}
-
(modify <context> “name set-table))

(p 641.done-table
{(context “name set-table} <context>}
{ (Gone-task “name table-cloth) <taski>)
{ (done-task “name plate) <task2>}
{ (Sone-task “name knife} <task3>)
{ (done-task “name fork) <taskd>}
((done-task “name napkin) <taskS5>}
-—>
(remove <context> <taskl> <task2> <task3> <taské> <taskS>))

(p 703.done~dish
{(context “name food-dish) <context>}
{ (done-task “name hamburger) <taski>)
{ (dorne-task “name steak) <task2>}
{ (done-task “name seafood) <taskd:}
>
(remove <context> <taskl> <task2> <task3>))

(» done-food-salad-fruit
{ (context “name food-saliad-fruit) <contexts>)
{ (done-task “name salad-bar) <taskl>)
{ (done-task "name fruit-bar) <task2»}

——>
(remove <context> <taskl> <task2>))

(p 721.done-soup
{{context “name food-soup) <context>)
({(done-task “name chowder) <tagskl>)
{{done-task “name chicken) <task2>)
-
{remove <context> <taskl> <task2>))

{peat leaving-customer
{parp l.check-out

ADA289345

E.3. PARALLEL VERSION OF HOTEL

(context “name check-out)
(date ~day <d>)
{ (customer ~status staying “arrival-date <ad> “departure-date <&>
Anum-person <np> “room-nun <r> “cash <c>) <customer>)
{{room ~room-num <r> ~“room-type <rt> *status occupied) <room>}
(rate ~room-type <rt> “num-person <np> “rate <rate>)
{ (xoom-towel “room-rum <r>) <towel>}
{ (zoom-sheet “room-num <r>) <sheet>}
{(xoom-pillow-case “room-num <r>} <pillow-case>:
{ (room-trash-can “room-num <r>) <trash-can>}
{ (room-blanket *room-num <x>} <blanke:>)
{ (room-bedspread “room-nium <r>) <bed-spread>}
{ (room-bathroom “room-npum <r>) <bathroom>}
{ (room-dresser “room-num <xr>) <dresser>}
((room-table “room-num <r>) <table>}
{ (xroom-chairs ~room-num <r>) <chairs>}
{ (room-vacuum “room-num <r>) <vacuum>)}
-3
(modify <customer> “status check-out
rcash (compate <c> - (<rate> * (<d> - <ad>}}))
(modify <room> “status change “phase maid-laundry)
(modify <towel> “number 8)

{modify
{modify
(mod1fy
(modify
(modify
(modify
(modafy
(modify
(modify
{moda £y

<sheet> “number 4)
<pillow-case> “number 4)
<trash-can> “status not-empty)
<blanket> ~status not-made)
<bed-gpread> ~status not-made)
<bathroom> ~status dirty)
<dresser> “status dirty)
<table> “gtatus dirty)
<chairs> ~status dirty)
<vacuum> ~“status darty))}

{pset staying-customer

(parp 19.staying-over
{context “name check-out}
(date ~day <d>)
{{(customer “~status staying “room-num <r>

~departure-date {<dd> > <d>}) <customer>)

{{room “room-num <r> “status occupied) <room>}
{ {room~towel “room-num <r>) <towel>}
{ (room~-sheet ~room-nam <r>) <snheei>}
{ (room-pillow-case “room-num <r>) <pillow-case>}
{{room-trash~car “room-num <r>) <trash-can>}
{(room-blanket “room-num <r>) <blanket>)
/ (room-bedspread “room-num <x>} <bed-gpread>}
/({room-bathreom “room-num <r>} <bathroom>}
{{room-dresser “room-num <r>) <dresser>}

ADA289345

304

E.8. PARALLEL VERSION OF HOTEL

(¥
(=3
A

{(room-table “room-num <r>) <table>}
{{room-chairs “room-num <r>) <chairs>}
{ (room-vacuum “room-num <r>) <vacuuwn>}

-=>
(modify
(modify
{modify
(modify
{modify
(modify
{modify
(modify
(modify
{modify
(modify
{modify

<room> “status make-up “phase maid-cleaning)
<towel> “number 0)

<sheet> “number 0)
<pillow-case> “number 0)
<trash-can> “status not-empty)
<blanket> “status not-made)
<bed-spread> “status not-made)
<bathroom> “status dirty)
<dresser> “status dirty)
<table> “status dirty)
<chairs> ~“status dirty)
<vacuum> “status dirty)}}

{pset strip-towels

(p 74.strip-towel
(context “name maid-laundry)
(room “room-num <r> “phase maid-laundry ~floor <floor>)
{(room-towel “room-num <r> “number {<t> > (}) <room-linen>)
((dirty-towel “floor <floor> “quantity <q») <towel>}

-
(modify <room-linen> “number 0)
(modify <towel> “quantity (compute <q> + <t>)))}

(pset strip-sheet

(p 75.strip-sheet
(context “name maid-laundry)
(room “room-num <r> “phase maid-laundry ~flooxr <floor>)
((room-gheet “room-num <xr> “number {(<e> > 0}) <room-linen>}
((dirty-sheet “floor <floor> “quantity <q>} <sheet>}

—=>
(modify <room-linen> “number 0)
(modify <sheet> ~quantity (compute <g> + <g5>}))}

(pset strip-pillow-case

(p 76.strip-pillow-case
(context “name maid-laundry)
{room ~room-num <r> “phase maid-laundry ~floor <floor>)
{(xoom-pillow-case “room-num <r> “number {(<p> > C}) <room-linens}
{(dirty-pillow-case “floor <floor> ~quantity <g>) <case>}

-—>
(modify <room-linen> “number 0)
(modify <case> “guantity (compute <g> + <p>}))}

{pset finish-laundry-room

ADA289345

E.8. PARALLEL VERSION OF HOTEL 306

(parp 77.finish-lavndry-room
(context “name maid-laundry)
{(xroom “room-nun <r> “phase maid-laundry) <room>}
{room-towel “room-num <r> “naxder 0)
(room-sheet “room-num <r> “namber 0)
(room-pillow-case “room-num <r> “number 0}

-—>
(modify <room> “phase maid-cleaning)))

{pset towel-needed
(parp 147.towel-needed

(context “name maid-cleaning)

(room “room-num <r> “phase maid-cleaning)

{ (room~towel “room-num <r> “number < 8) <room-linen>}
-—>

(modify <room-linen> “number 8))}

{pset make-sheet
{parp 148.make-sheet

{context “name maid-cleaning)

(room “room-num <r> “phase maid-cleaning)

{ (room-sheet “room-num <r> “number < ¢) <room-linen>}
—-—>

(modify <room-linen> “number 4))}

{pset make-pillow
(parp 149.make-piliow
(context “name maid-cleaning)
(room “room-num <r» “phase maid-cleaning)
{(room-pillow-case “room-num <r> ‘number < 4) <room-linen>}
-—>
(modify <room-linen> “number 4))}

{pset clean-trash-can
(parp 150.clean-trash-can

{context “name maid-cleaning)

{roor “room-num <x> “phase maid-cleaning)

{ (room-trash-can “room-num <r> “status not-empty) <room-linen>}
-

{modify <room-linen> “status empty))}

{pse: make-blanket
{parp 151.make-~blanket

{context “name maid-cleaning)

{room “room-num <r> “paase maid-cleaning)

{{room-blanket “room-num <r> “statug not-made) <rocm-linen>}
s>

(modify <room-linen> “gtatus made}}}

ADA289345

E.8 PARALLEL VERSION OF HOTEL 307

{pset make-bed-spread
(parp 152.make-bed~spread

{context “name maird-cleaning)

(xroom “room-num <r> “phase maid-cleaning)

{ (room-bedspread “room-num <r> “status not-made) <room-linen>)
-

(modify <room-linen> “status made)))

{pset clean-bathroon
{parp 153.clean-bathroom

{context “name maid-cleaning)

{room “room-num <r> “phase maid-cleaning)

{ (room-bathroom “room-num <r> “status dirty) <room-furniture>}
-

(modzfy <room-furniture> “status clean)))

{pset clean-dresser
(parp 154.clean-dresser

(context ~“name maid-cleaning)

{room “room-num <r> “phase maid-cleaning)

{(room-dresser “room-num <r> “status dirty) <room-furnitures)
-~>

(modify <room-furniture> ~status clean))}

(pset clean-table-room
{parp 155.clean-table

(context “name maid-cleaning)

(room “room-num <r> “phase maid-cleaning)

{(xroom-table “room-num <r> ~“status dirty) <room-furniture>)
——>

{modify <room-furniture> “status clean)))

{pset clean-chairs
(paxrp 156.clean-chairs

(context ~name mazid-cleaning)

{room “room-num <r> “phase maid-cleaning)

{ (room-chairs “room-num <r> “status dirty) <room-furnitures}
-3

(modify <room-furniture> “status clean))}

{pset vacuum
{parp 157.vacuunm

{context “name maid-cleaning)

{room “room-num <r> “phase maid-cleaning)

{ (room-vacuum “room-num <r> ~“status dirty) <room-furnitures}
-—

(modify <room-furniture> “status done)))

ADA289345

E.8. PARALLEL VERSION OF HOTEL 308

{pset finish-room-changing

(parp 158.finrsh-roor-changing
(context “name maid-cleaning)
{(room “room-num <r> “status change “phase maid-cleaning) <roomsj
{room-towel “~room-num <r> “number 8)
(room-gheet “~room-nur <r> “number 4£)
(room-pillow-case “room-num <r> “number 4)
{room-trash-can “room-num <y> “status empty)
{room-blanket “room-num <r> ~status made)
{rocm-bedspread “room-num <r> “status made)
{room-bathroom “room-num <r> “status clean)
{roor-dresser ~room-num <r> “status clean)
{room-table “room-num <r> “status clean)
{room-chairs “room-num <r> “status clean)
{room-vacuum “room-num <r> “status done)

-
{rodafy <room> “status vacant “phase clean)

1

{pset finish-room-makeup

(parp 159.finish-room-make-up
(context “name maid-cleaning)
{(room “room-num <r> “status make~-up “phase maid-cleaning) <room>)
{room-towel “room-num <r> “number 8)
{room-sheet “room-num <r> “number 4)
(room-pillow-case “room-num <r> “number 4)
(room-trash-can ~yoom-num <r> “status empty)
(room-blanket “room-num <r> “sgtatus made)
(room-bedspread ~room-num <r> “status made)
(room-bathroom “room-num <r> “status clean)
(room~dresser “room-num <r> “status clean}
(room-table “room-num <r> “status clean)
{room-chairs “room-nwm <r> “gtatus clean)
(room-vacuum “room-num <r> “gtatus done)

~->
(modi. fy <room> “status occupied “phase clean)))

{pset launder-sheet
(p 401, launder-sheet
(context “name laundry)
{(dirty-sheet “floor <floor> ~quantity {<ds> > 7}) <dirty-sheet>}
{(clean-sheet “floor «floor> ~quantity <c8>) <clean-sheet>)
-=>
{mod1fy <dirty-sheet> “quantity {(compute <ds> - 8))
(modify <clean-sheet> “quantity (compute <¢s> + 8)))}

{pset launder-pillow-case

ADA289345

w
8

E.8. PARALLEL VERSION OF HOTEL

(p 401.launder-pillow-case
(context “name laundry)
{(dirty-pillow-case “floor <floor>
~quentity {<dpc. > 7}) <dirty-pillow-case>)
{{clean-pillow-case “floor <floor>
~gquantity <cpc>) <clean-pillow-case>}
-->
(modify <dirty-pillow-case> “guantity (compute <dpe> - 8])
(modify <clean-pillow-case> “quantity {compute <cpc> + 8))))

{pset launder-towels
(p 405.launder-towel
(context “name laundry)
{(dirty-towel ~floor <floor> “quantity {<dt> > 47)}) <dirty-towel>}
{(clean-towel “floor <floor> “quantity <ct>) <clean-towels)
-2
(modify <dirty-towel> ~quantaty (compute <dt> - 48))
(modify <clean-towel> “qguantaty (compute <ct> + 48))))

{pset clean-restroom
(p 382.clean-restroom
(context “name clean-hallway)
{ (hallway “restroom {<n> > 0)}) <hallway>)
-->
(modify <hallway> ~“restroom (compute <n> - 1)))}

{pset reservation
(p 438.new-reservation
(context “name reservation)
{ (reservation “name <n> “arrival-date <ad>
~departure-date <dd>) <reservation>)
{{room “status vacant “room-pum <r>) <room>}
-{room “status vacant “room-num > <r>)
-——
(modify <room> “status reserved “name <n>)
(remove <reservation>)}

(p 448.without-reservation
(context “name check-in}
(date ~day «<d>)
{(customer ~status new “name <n> “reservation nc
~arraval-date <d> “departure-date <dd>) <nustomer>}
{{room “room-num <rn> “status vacant) <room>}
-{room “room-num > <rn> “status vacant)
-——>>
{modify <customer> ~status staying “room-num <rn>)
(modify <room> ~status cccupired “departure-date <dd»)))

ADA289345

E.8. PARALLEL VERSION OF HOTEL

{pset excess-reservation

(parp 439.excess-reservation
(context “nare done-maid-cleaning)
{(reservation “name <ns>) <reservation>)
-{room “status vacant)

-——
(remove <reservation>))}

{pset with-reservation
(parp 447.with-reservation
(context “name c¢neck-in)
{date “day <d>)
{ (customer “name <n> “status new “reservation yes
~arrival-date <d> “departure-date <dd>)} <custcmer>}
{(room “room-num <rn> “name <n> “status reserved) <room>}
-——>
(modify <customer> “status stayang “room-num <rn>)
(modify <room> “status occupied ~departure-date <dd>)})}

{pset chowder-menu
(p 488.set-menu-chowder-£full
{context “name conference)
(order-chowder “conference <conf> “quantity <q>}
{ (conference-chowder ~conference <conf> ~quantity 0) <conference>}
{{soup “name chowder *quantity {<ql> >= <g@>} } <soup>}
-—>
(mod:rfy <conference> “quantity <q>)
(modify <soup> “guantity (compute <qi> - <q>}})

{p 488.set-menu-chowder-partial
{context “name conference)
{order~chowder “conference <conf> ~quantity <g>}
{ {conference~chowder “conference <conf> ~quantity 0) <conference>)
{(soup “name chowder “~guantity {<ql> < <g»}) <soup>)
-——>
(modrfy <conference> “quantity <q:i>)
(modify <soup> “quantity 0))

(p done-chowder-menu
(context “name conference)
-
(nake done~task “name chowderj)}

{pset chacken-menu
{p 489.set-menu-chicken-full
(context “name conference)
(order-chicken “conference <conf> “quantity <g>j
{ {conference-chicken *conference <conf> “quantity 0) <cenferences)

ADA289345

310

E.8. PARALLEL VERSION OF HOTEL

w
—

{{soup “name chicker “quantity {<ql> >= <q>})} <soup>}
-—>

{modify <conference> “quantity <g>)

(modify <soup> “quantity (compute <qi> - <g>}})

{p 489.set-menu-chicken-partial
{context “name corference)
{order-chicken “conference <conf> “quantity <q>)
{{conference-chicken “conference <conf> ~quantity 0) <conference>}
{{soup “name chicken ~quantity {<qgl> < <q>}) <soup>}

-—>
(modify <conference> “quantity <qis)
(modify <soup> “~quantity 0))

{p done-chicken-menu
(context “name conferernce)
-——>
(make done-task “name chicken))}}

{pset hamburger-menu
(p 490.set~menu-harmburger-full
{context “name conference)
{order-hamburger “conference <conf> ~quantity <g>}
{ (conference-hamburger “conference <conf> “quantity 0) <conference>}
((dish “name hamburger “quantity {<ql> »>= <g>}) <dish>}
-
(modify <conference>» “quantity <g>)
(modify <dish»> “quantity (compute <qi> - <g>}))

(p 490.set-menu-hamburger-partial
(context “name conference)
(oxder-hamburger “conference <conf> “quantity <g>)
{(conference-hamburger “conference <conf> “quantity 0) <conference>)
((dish “name hamburger “quantity {<ql> < <g>}) <dish>}

-
{modify <conference> “quantity <gi>)
(modify <dish> “quantity 0))

(p done-hamburger-menu
(context “name conference)
-
(make dore-task "“name hamburger))}

{pset steak-menu

{p 492.set-menu-steak-full
{(context “name conference}
{order-gteak “~conference <conf> ~quantaty <q>)
{{conference-~steak “conference <conf> “quantity 0} <conference>}

ADRA2Q934R

E.8. PARALLEL VERSION OF HOTEL 312

{(G1sh "name stea< “quantity {<ql> >= <g>}) <dish>}
-—>

(meéify <conference> ~quantity <g>)

(modify <disn> “quantity (compute <gl> - <g>}))

(p 492.set-menu-steak-partial
(context “name confaerence)
(order-steak “conference <conf> “quantity <g>)
{ (conference-steak ~conference <conf> “quantity 0) <conference>}
{(dish "name steak “quantity {<qgl> < <g>}) <dish>}
-->
(modify <conference> ~quantity <ql>)
(modify <dish> “quantity 0))
(p done~steak-menu
(context -name conference)
-->
(make done-task “name steak))}

{pset seafood-menu

(p ¢98.set-menu-seafood~full
(context “name conference)
(order-seafood “conference <conf> “quantity <q>)
{(conference-seafood “conference <conf> “quantity 0) <conference>}
{(dish “name seafood ~quantity {<ql> >= <qg>}} <dish>}

-——>
(modify <conference> “quantity <g>)
(modify <dish> ~quantity (compute <qgl> - <q>}))

(p 498.set-menu-seafood-partial
(context “rame conference)
(order-seafood “conference <conf> “~quantity <q>)
((conference-seafood “conference <conf> ~quantity 0) <conference>)
{(dish “name seafood “quantity {<q@l> < <g>}) <dish>}
-—>
(modify <conference> “quantity <ql>}
(modify <dish> ~quantity 0))

(p dona-seafood-menu
{context “name conference)
it d
{make done-task “name seafood))}

(pset salad-menu

{p 493.set-menu-salad-full
{context “name conference)
{order-salad ~conference <conf> “quantity <g>)
{{conference-salad “conference <conf> “quantity 0) <conference>}
{(veg “name salad ~quantity (<qgl> >= <q@>}) <veg>)

ADAROQ AL

(V)
—
w

E.8. PARALLEL VERSION OF HCTEL

-~>
{modafy <conference> “quantity <qg>)
(modify <veg> ~quantity (compute <gi> - <@>})}}

(p 493.set-menu-salad-partial
{context “name conference)
{order-salad “conference <coni> “gquantity <g>)
{ (conference-salad ~“conference <conf> “quantity 0} <conference>}
{(veg “name salad “quantity {<ql> < <q>}) <veg>}
-=>
{modify <conference> “quantity <ql>}
(modify <veg> ~quantity 0))
(p done-salad-menu
(context “name confererce)
—=>
{make done-task “name salad)}

{pset fruit-menu
(p 495.set-menu~-fruit-full
{context “name conference)
(order-fruit ~conference <conf> “quantity <g>)
{{conference-fruit ~conference <conf> “quantity 0) <conference>}
{{veg “name fruit ~quantity {<ql> >= <q>}} <veg>}
-->
{modify <conference> “quantity <q>)
{modify <veg> “quantity (compute <ql> - <g>}})
(p 495.set-menu-fruit-partial
(context “name conference)
{order-fruit “conference <conf> “quantity <g>)
{{conference-fruit “conference <conf> ~quantity 0) <conference>)
{(veg “name fruit “~quantity {(<ql> < <q@>}) <veg>}
-—>
{modify <conference> “quantity <ql>}
{modify <veg> “quantity 0))
{p done-fruit-menu
(context “name conference)
~—>
(make done-task “name fruit)))

{pset cliean-table-conf

{parp 505.clean-table
{context “name clean-table)
{{table “number <n> “clean no) <table>}
{({table~cloth ~table-number <n>) <cloth>}
{({table-plate “table-number <n>) <plate>)
{({table-knife “table-number <n>) <knife>)
{{table-fork ~table-number <n>) <forks)
{{table~-napkin ~table-number <n>) <napkin>)

E.8. PARALLEL VERSION OF HOTEL 314

-2
(modiiy <table> “~clean yes)
(rodify <cloth> “number 0)
{rod:2£fy <plate> “nurber 0)
{rodify <xnife> “number 0)
(rod_fy <fork> “number 0)
(modify <napkin> “number 0))}

{pset set-chair
(p 500.set-chairx
{context “name set-table)
(table “number <table-id> “clean yes)
{({table-chairs “table-number <table-id> “number 0; <table-chairs>)
{{chair “number {<n> >= 4}) <chair>}
-2
(modify <zable-chairs> “number 4}
(modify <cnair> “number (compute <n> - §)))

(p done-chairs
(context “name set~-table)
-—>
(make dcae-task “name chairs))}

{pset put-tablie~cloth
(p 541.put-sable-clo:h
(context “name set-table)
{table “number <table-id> “clean yes)
{({table-cloth ~table-number «table-id> “number 0) <table-cloth>)
{(cloth “numbar {<n> > 0}) <nlcith>}
-—2
{modify <table-cloth> “number 1)
{modify <cloth> “number (compute <n» =~ 1)))
(p done-table-cloth
{context “name set-table)
-
(make done-~task “name table-cleth}))

{pset put-plate
({p S46.put-plate
{context “name set-table)
(cable “number <table-id> “clean yes)
{cable-cloth “table-number <table-id> “number 1)
{{table-plate “table-mumber <table-id> “number 0) <table-plate>}
{{plate “number {<n> >= 4}) <plate>}
-3
{modify <table-plate> “number §)
{modrfy <plate> “number (comoute <n> - 4}))

w
wh

E.8 PARALLEL VERSION OF HCTEL

(p dore-plate
{context “name set-table)
-—>
(make done-task “name p.ate)))

{pset put-knife
(p 551.put-knife
(context “name set-table)
{table ~“number <table-id> “clean yes)
{table-cloth ~“table-number <table-id> “number 1)
{{table-knife ~table-number <table-id> “number 0) <table-knife>}
{{knife ~number {<n> >= 4}) <knifes>)
—-——>
{modify <table-knife> “number 4)
(modafy <knife> “number (compute <n> - 4}))
{p done-knife
(context “name set-table)
—-—>
(make done-iask “name knife)))

{pset put-fork
(p 556.put-fork
{context “name saet-table)
{table “number <table-id> “clean yes)
{table-cloth “table-rumber <table-id> “number 1)
{(table-fork “table-number <table-id> ~number 0) <table-fork>}
({fork *“number {(<n> >= 4}) <fork>)
~=>
(modify <table-fork> “number 4¢)
(modify <fork> “number (compute <n> - 4)))
{p done-fork
(context “name set-table)
-——>
(make done-task “name forkx)))

{pset put-napkin
(p 561.put-napkin
(context “name set-table)
(table “number <table-id> ~clean yes)
(table-cloth “tuble-pumber <table-id> “number 1)
{{table-napkin ~table-number <table-ia> “number 0) <table-napkin>}
{(napkin “number {<n> >= 4)) <napkin>}
-2
(modify <table-napkin> “number 4)
(modify <napkin> “~number (compute <n> « 4}})
(p done-napkin
(context ‘name set-table)
-

ADA289345

E 8. PARALLEL VERSION OF HOTEL 316

{make done-task “rame napkin)}}

{pset dish-hamburger
(p 691.dish-hamburger

{context “name food-dish)

{ {dish-counter-hamburger “conference <conf>

~guantity ‘<h> < 10}) <counter>}
{ (conference-hamburger “conference <conf>
~quantity {<hl> > 0}) <conference-dish>}

-=>

(mod1rfy <counter> “quantity (compute <h> + 1})

{modify <conference-dish> “cuantity (compute <hl> - 1)})

(p done-dish-hamburger
{context “name food-dish)
-=>

(make done-:task dish-hamburger))}

{pset dish-steak
(p 692.dish-steak

{context ~name food-dis)

{(dish-counter-steak “~conference <conf>

~quantity {<s> < 10}) <counter>}
{ (conference-steak “conference <conf>
Aquantity (<sl> > 0}) <conference-dish>)

-

(modify <counter> ~quantity (compute <s> + 1)}

(modsfy <conference-dish> “quantity (compute <sl> - 1)))
{p done-dish-steak

{context “name food-dish)

-—>

(make done-task dish-steak))}

{pset dish-seafood
{p 693.dash-seafood

{context "name food-dish)

{{dish-counter-seafood ~conference <conf>

~quantity {<s>» < 10}) <counter>}
{(conference-seafood ~conference <conf>
~quantity {<sl> > 0}) <conference-dish>}

-——

{rod1fy <counter> “quantity {(compute <s»> + 1))

{rodify <conference-disn> “quantity (compute <sl> -)y
{p done-dish-seafood

{context “name food-dish)

——>

{make done-task dish-seafood)))

ADA289345

E.8. PARALLEL VERSION OF HCTEL

0
-
-2

{pset salad
(p 704.salad
(context ~name food-salad-fruit)
{(salad-bar “cenference <conf> ~quantity {<s> < 10}) <bar>}
{{conference-salad “conference <conf>
~quantity {<sl> > 0}} <conference-veg>}
>
(modify <bar> "“quantity (corpute <s> + 1))
(modify <conference-veg> “quantity (compute <sl> - 1})})
(p done-salad-dish
{context “name food-salad-fruit)
-—>
(make done~task “name salad-bar)))

{pset fruit
{p 705.fruit
(context “name food-salad-fruit)
{(fruit-bar “conference <conf> ~quantity (<f> < 10}) <bar>}
{ (conference-fruit “confexence <conf>
~quantity {<fl> > 0}) <conference-veg>}
-—>
(modafy <bar> “quantity (compute <f> + 1))
{modify <conference-veg> “quantity (compute <fi> - 1}})

(p done~fruit~dish
(context “name food-salad-fruit)
—-——>
(make done-task “name fruit-bar}))}

{pset chowder-digh
{p 713.soup-chowder

(context “name food-soup)

{conference-chowder ~conference <conf> “quantity > 0)

{ (soup-bar ~conference <conf> “name chowder “status empty) <soup>}
-->

(modafy <soup> “status full))

(p done-chowder
{context “name food-soup)
-->
{make done-task “name chowder}))

{pset chicken-dish
(p 714 .soup-chicken

(context “name food-soup)

(conference-chicken ~conference <conf> “quantity > 0)

{ (soup-bar “conference <conf> “name chicken “status empty) <soup>}
-3

ADA289345

E8. PARALLEL VERSION OF HOTEL 318

(modify <soup> “status full))
(p done-chacken
(context “name food-soup)
--~>
(make done-task “nare chicxen})’

{pset brew-coffee
{parp 642.need-new-brew

(context “name brew-coffee)

{ (coffee-machine “coffee old) <machine>}
-=>

(modify <machane> “power off ~pot off})

(parp 643.empty-beans

{context “name brew-coffee)

{ (coffee-machine “power <> on “beans {<> new <> empty}) <machine>}
.=>

(modify <machine> “beans empty))

(parp 644.add-new-beans

(context “name brew-coffee)

{(coffee-machine “power <> on “beans empty) <machine>}
-——>

(modify <machine> “beans new))

{parp 645.add-pot
{context “name brew-coffee)
{(coffee-machine “power <> on
~pot <> on) <machine>)
-—>
{modify <machine> ~pot on))

(parp 646.add-water
{context “name brew-coffee)
{{coffee-machine “power <> on
~water-level <> full) <machine>)
-
{modsfy <machine> “water-level full))

(parp 647.brew-coffee
(context “name brew-coffee)
{(coffee-machine “power <> on “beans new “pot on
‘water-levael full ~conference <conf>
“number <number>) <machine>}
-
(modafy <machine> “power on “coffee new))

(p €90.done-brewing-coffee

ADA289345

(73]
s
O

E.8. PARALLEL VERSION OF HOTEL

{(context “name brew-coffee) <brew>)
-->
(remove <brew>)))

ADA289345

Appendix F

Code for benchmarks used in COM
experiments

This appendix contains the source code for the three benchmarks used in the collection-oriented
match experiments. Two versions are presented for every program — a tuple-oriented version
written in PPL and a collection-oriented version written in COPL

F.1 Tuple-oriented version of make-teams

This program counts the total number of “high-quality*
teams that can be assembled from a pool of indivaduals
, different specializations. The quality of the team
is measured as a simple function of the merit points of
, eaca .ndividual
written by: Milind Tambe, Carnegie Mellon University
converted to PPL: Anurag Acnarya, Carnaegie Mellon Unaversity

(literalize person id area previcus-project rerit-points)

{literalize goal type)

{literalize count value)

(literalize team hardware operating-systems networks compilexs
merit-value select-status)

{p start
(start)
~=>
(make goal “type create-team))

ADA289345

w
*
iy

F.I. TUPLE-ORIENTED VERSION OF MAKE-TEAMS

(p change-goal-type-1

{{goal “type create-team) <condl>)
-—->

{modify <condl> “type select-team})

(p change-goal-type-2

{(goal “type select-team) <condi>}
-

(modify <condl> “type count-teams;)

(p count-teams-start
(goal “type count-teams)
(team “select-status selected)
-{count}
>
(make count ~value 0})

(p count-teams=-2
(goal “type count-teams)
({team “select-status selected) <cord2>}
{ (court “value <value>) <cond>}
-
(modify <cond> “value (compute ({<value> + 1)))
(modrfy <cond2> “select-status counted))

{(p change-goal-type-3

{(goal “type count-teams) <condl>}
>

{modify <condl> “type print-value))

{p prant-value
(goal “type print-value)
{count “value <value>)
EEY
(write (crlf) value is <value> (crlf)))

{pset create-teams

(parp make-team
(goal “type create-team)
(person ~ad <2dl> “area hardware “previcus-project <pl»>
‘merit-points <vl>)
(person ~id <id2> “area operating-systems
~previous-project <p2> “‘merit-points <v2s)
(person “1d <i1d3> “area networks “previous-project <pi>
“merit-points <v3>)
(person ~id <id4> “area comp:lers “previous-project <pli»
*merit-points <v4>)

ADA289345

F2. COLLECTION-ORIENTED VERSION OF MAKE-TEAMS

-2
(make team “hardware <i1di> ~“operating-systems <id2>
~networks <i1d3> “compilers <idi>
“select-status unknown
*merit-value (compute (<vi>+<y2>+<v3i>+<vd>)}}i}

{pset filter-teams
(parp select-teams-1

(goal “type select-team)

{ <cond2> (team ~merit-value > 8 “select-status unknown)}
-——>

(modify <cond2> “select-status selected))}}

F.2 Collection-oriented version of make-teams

This program counts the total number of "high-quality*

teams that can be assembled from a pool of individuals
different specializations. The quality of the team

; is measured as a simple function of the merit points of

; each individual

Converted to COPL: Anurag Acharya, Carnegie Mellon University

(e, —————— em——— B T s gy

{external computed)

(external cardinality)

{literalize paerson id area merit-points previous-project)

(literalize goal type)

(literalize count value)

{literalize team hardware operating-systems compilers
networks merit-value select-status)

{p start
(start)
-->
{insert (make goal ~type create-team)))

(p make-team
{goal “type create-tean)
(person “id <idl> “~area hardware
“previous-project <pl> “merit-points <vi>)
(person “1d <id2> “area operating-systems
~previous-project <p2> “merit-points <v2>)
{person *id <id3> “area networks
~previous-project <p3> “merit-points <v3»)
{person “id <id4> “area compilers
“previous-project <pl> “merit-points <v4>)

ADA289345

(T3]
N2
o

1
n
W

E3. TUPLE-ORIENTED VERSION OF CLUSTERS

=->
(insert {update (make team “select-status unknown “hardware <idi>
~operating-systems <id2> “networks <id3>
~compilers <adé>}
“merit-value {computed <vl> <v2> <vi> <v4>)}})

(p change-goal-type-1

{(goal “type create-team) <condl>)}
-->

(modify <condl> “~type select-team))

(p select-teams

(goal “type select-team)

{(team “merit-value > 8 “select-status unknown) <cond2>}
-——>

(modify <cond2> “select-status selected))

(p change-goal-type-2

{(goal “type select-team} <condl>}
-

(modify <condl> “type count-teams))

(p count-teams-start

(goal “~type count-teams)

(team “select-status selected “hardware <id>)
-2

(insert (make count “value (cardinality <id>»))}))

(p change-~goal-type-3

{(goal “type count-teams) <condl>}
-->

(modify <condl> “type print-value))

{p print-value
{goal “type print-value)
{count “value <value>)
-->
(write (crlf) value is <value> (crlf)))

F.3 Tuple-oriented version of clusters

, this program was motivated from a high level vision expert system.
; It calculates the distance between different objects in a scene,
i given the co-ordinates of the objects. It then takes one object

ADA289345

(73
1 %3
+a

F.3. TUPLE-ORIENTED VERSION OF CLUSTERS

as the center poant and groups together objects that are close
to it {ie within a certain range of distance) The SPAY expert
; system ases a sim:lar corputation in its LCC and

; functional-area phase (although in a much more complex

, fashion)

; wratten by: Milind Tambe, Carneg:e Mellon University

; Converted to PPL: Anurag Acharya, Carnegie ¥ellon University
{literalize object number x y focus type)

{literalize distance objectl object2 value)

(literalize group center member counted)

(literalize group-count center size counted)

(literalize average-size sum total average)

(literalize coal nane)

{p start
{staxrt)
-=>
{make goa. “name calculate-distance))

{p s2
{{goal ~name calculate-distance} <cl>)
-
(modify <cl»> “name create-foci))

{p 84
{(goal “name create-foci) <cl>}
-
(modxfy <cl» “name create-groups))

(p s6

{{goal “name create-groups) <cl>}
-—>

(modify <c¢l> “name get-group-sizes))

(p s7
(goal “name get-group-sizes)
{object *rumber <nl> “focus yes)
-
(make group-count “center <nl> “size 0 ~counted no))

(p s8

(goal “name get-group-sizes)

{ (group-count “center <nl> “size <num>) <ci>)

{ (group “center <nl> “member <n2> “counted no) <c2>}
-->

(modify <cl> “size (compute (<num> + 1)))

(modify <a¢2> “counted yes))

ADA289345

w
[
wn

F3. TUPLE-ORIENTED VERSION OF CLUSTERS

(p 89
{{goal “name get-group-sizes) <e€3>}
-—>
(modify <c3> “name average-group-sizes)
(make average-size “sum 0 ~ctotal 0))

(p sl0

(goal “name average-group-sizes)

{ (average-size ~sum <s> “total <t>) <c2>}

{ (group-count “center <nl> “size <sz> “counted no} <cl> }
-2

(moGify <c2> “sum [compute (<s> + <82>))

“total (compute {(<t> + 1)))
(modify <cl> “counted yes))

(p s11

(goal “name average-group-sizes)

{ (average-size ~sum <sum> ~total {<> 0 <total>)} ~average nil) <c2>}
-=>

(modify <c2> “average (compute (<sum> / <total>)}))

(p sl2

(goal “name average-group-sizes)

{average-size “sum <sum> ~“total <total> “average <ave>)
-

(write (crlf) average is <ave> (crlf)))

{pset find-distance
{parp sl

{goal "“name calculate-distance)

(object “number <nl> ~x <x> “y <y>

~type <<tarmac parking-apron hangar-buildings>>)

(object “number <n2> *x <xi> *y <yls)
-

{make distance “objectl <nl> “object2 <n2>

“value (compute ((<xl>-<xX>}*(<xX1>=<x>)+(<yl>=-<y>)*(<yl>-<y>)}))})

{pset create-seeds
(parp s3
(goal “name create-foci)
{ (object ~“number <n2> “focus no
~“type <<tarmac parking-apron hangar-building>>} <cl>}
———>
{modafy <cl> ~focus yes))}

ADA289345

F4. COLLECTION-ORIENTED VERSION OF CLUSTERS

{pset make-areas
{parp s5
(goal "name create-groups)
[object "“number <ni> ~focus yes)
{distance “objectl <nl> “object2 <n2Z> “value { > 0 < 800 }}
-=>
{make group “center <nl> “membexr <n2> “counted noj})

F.4 Collection-oriented versien of clusters

It caliculates the distance between different objects in a scene,
; given the co-ordinates of the objects. It then takes one object
; as the center point and groups together objects that are close

; to it (ie within a certain range of distance) The SPAM expert

; system uses a similay computation in its LCC and

, functional-area phase (although in a much more complex

4 fashion)

Converted to COPL: Anurag Acharya, Carnegie Mellon University

(external distanceconpute)

(external bigsum)

(external divcompute)

(external cardinalaity)

(literalize object nuwnber x y focus type)
(literalize distance objectl object2 value)
(litexalize group center member counted)
(literalize group-count center size counted)
(literalize average-size sum total average)
{literalize goal name)

(p start
(start)
-e>
(insert (make goal “name calculate-distance}))

(p sl
(goal “name calculate-distance)
(object “number <nl> "X <x> "y <y>
~“type <<tarmac parking-apron hangar-building>>)
(object “number <n2> “x <x1> *“y <yl>)
-—>
(insert (update (make distance ~objectl <nl> "“opject2 <n2»>)
“value (distancecompute <xl> <x> <yl> <y>})})

ADA289345

this program was motivated from a high level vision expert system.

wd

w
[357
~J

F4. COLLECTION-ORIENTED VERSION OF CLUSTERS

{p s2
{{goal “name calculate-distance) <ci>)
-2
(modafy <cl> “rame create-foci))

{p 83
(goal “name create-foci)
{{object *number <n2> “focus no
“type <<tarmac parking-apron hangar-bailding>>) <cl>)
-~>
(modirfy <cl> “focus yes))

{p sé
{{goal “name create~-foci) <cl>}
-—>
{modafy <cl> “name create-groups))

(p 85

(goal "name create-groups)

{object “number <nl> ~focus yes)

{distance “objectl <nl> “object2 <n2> “value { > 0 < 800 })
-

{ingart (make group ~center <nl> “rember <n2> “counted no)))

{p 86

{{goal “name create-groups) <cl>}
~—>

{modafy <cl> "name get-group-sizes))

{p s7-modified
(goal “name get-group-sizes)
(object “number <nl> “focus yes)
(group “center <nl> “member <n2»> “counted no)

~—>
{insert (make group-count “center <nl>
*size (cardinality <n2>) “counted no)})
(p 89
{ (goal “name get-group-sizes) <c3>}
-->

(modify <c3» “name average-group-sizes))

(p si0
(goal “name average-group-sizes)
{ (group-count “center <nl> ~“size <sz> ~“counted no) <cl>}
-
(ansert (make average-gize “sum (bigsum <sz>)
“total (cardinality <nl>) “average 0)))

ADAROC2AE

s

(V2
[
(-]

F5. TUPLE-ORIENTED VERSION OF AIRLINE-ROUT|

(p sl1

(goal “name average-group-sizes)

({average-size “sum <sum> “:otal {<> 0 <t> } “average 0) <c2>)
-->

(modify <c2> “~average (divcompute <sum> <t> }))

(p si2

(gocal “name average-group-sizes)

(average-size “sum <sum> “total <total> “~average <ave>)
-->

(write (crlf) average is <ave> (crlf)))

F.5 Tuple-oriented version of airline-route

’
; This program operates on a £flight database and finds the
; minimum cost route for a desired source and destination

, written by: Milipd Tambe, Carnegie Mellon Univ rsity

5 Converted to PPL: Anurag Acharya, Carnegie Mellon University

T el e O ro———— p—

(literalize goal name)

(literalize route id cost flightl flight2 flight3 flighcd flight5
length for)

{literalize mincost for length recomrended cost)

{literalize flight source destination airline time id cost)

(literalize traveller name source destinataon)

{literalize travel-constraint name hop-constraint time-constraint)

(p 1nitialize
(start}
-->
(make goal “name get-traveller-information))

(p get-traveller-information
(goal “name get-traveller-information)
(goal “name get-traveller-~information)
-—>
(make traveller “name Anurag “source Pittsburgh
~destination Jhumritaliyya)
(make travel-constraint “name Anurag “hop-constraint 3}}

(p change-goal-type

{{goal “name get-trave_ler-information} <cil»)
-—>

(modify <cl> “name compute-routes))

ES5. TUPLE-ORIENTED VERSION OF AIRLINE-ROUTE

w

, currently we will only éeal with hop constraznc
{p print-reutes

{ <cl1> {goal “rame compute-routes)}
-

(rodify <cl> “name print-routes))

, the following production uses specificity to ensure
; fir:ng it. it is a hack
{p prant-lowest-route-cost
{goal “name print-routes)
{goal “name print-routes)
{goal “name print-rcutes)
{travel-constraint “name <x> “hop-constraint <length>)
{route ~id <route> “length <length> “for <x> “cost <c>)
-(route ~id <route2> “length <length> “for <x> “cost < <¢>}
-
(make mincost ~cost <c> “for <x> “length <length> “recommended yes))

(p delete-if-hop-constraint-satisfied
(goal “name print-routes)
{aoal “name praint-routes)
(goal “name print-routes)
{(travel-constraint “rame <x> “hop-constraint <length>) <d>}
(route ~id <route> “length <length> “for <x>)
(mincost “cost «c> “for <x> “length <length> “recommended yes)
>
(remove <d>})

(p no-constrained-routes-min-cost

(goal “name print-routes)

(goal “name print-routes)

(travel-constraint “name <x> “hLop-constraint <length>)

(route ~id <route> “length <lengthl> “~for <x> “cost <c>)

-(route ~id <route2> “length <length2> ~for <x> ~cost { < <c> }J
-

(make mincost “cost <c> “for <x> “length <length> “recommended no))

(p delete-if-hop-constraint-satigf.ed-2
{goal “name print-routes)
{ (travel-constraint “name «x> “hop-constraint <length>) <d>)
(route ~id <route> “length <length2> “for <x>)
(mincost ~cost <c> “for <x> “length <length> “recommended no)
g
(remove <d>})

ADA289345

)
U

F5. TUPLE-ORIENTED VERSION OF AIRLINE-ROUTE

{p change-goal-value-to-print-cost
{{goal “name print-routes) <c»> }
-—
(modify <¢> “name prant-cost))

(p prant-cost-1
(goal “name print-cost)
(mincost ~cost <c> “length <length> *“for <x> “recommended no)
-2
(write mincost undesired route for <x> has cost <¢> (crlij})

{p prant-cost-2

{goal “name praint-cost)

{mincost ~cost <c> “length <length> ~for <x> “recommended yes)
-—>
{write (crlf) mincost desired route for <x> has cost <c»})

{pset direct-routes
{parp hopl
(goal “name compute-routes)
{traveller “name <x> “source <source> “destination <dest>)
(£laght “source <sourca> ~destination <dest> ~cost <cost> ~id <id>)
-
(make route “length 1 ~:d (genatom) “for <x> “flightl <id> “cost <cost>))
}

{pset one-stops
(parp hop2
{goal “nare compute-routes)
(traveller “name <x> “source <source> “Qestination <dest>)
(flight ~source <source> “destination <intmd> ~cost <costl> "~id <idl>)
(flight “~source <intmd> “destination <dest> “cost <cost2> ~id <id2>)
-—>
(make route “length 2 “1d4 (genatom) “for <x> ~flightl <idl>
~flight2 <1d2> “cost (compute <costl> + <cost2>)})
}

{pset two-stops
(parp hop3
(gozl “name compute-routes)
{traveller “name <x> “source <source> “destination <dest>)
{£light “source <source> ~destination <intmd> “cost <costl> *1d <idl>)
(flight “source <intmd> “destination <intmd2> “~cost <cost2> *id <id2>)
(£light “source <intmd2> ~destination <dest> “~cost <cost3> ~1d <id3»>)
-->
(make route “length 3 “1d (genatom) ~for <x> ~flightl <idi»>
“flight2 <id2> ~flight3 <id3>

ADA289345

<

w
w
—_—

F6 COLLECTION-ORIENTED VERSION OF AIRLINE-ROUTE

~cost {compute <costl> + <cost2> + <cost3>}))
}

{pset three-stops
(parp hopd
(goal “rame compute-routes)
(traveller “name <x> “source <source> “destination «dest>)
(flight “source <source> ~destinataon <intmd> “cost <costi> *~id <1di>)
{flight “source <antmd> ~destination <intmd2> ~cost <cost2> ~1d <id2>)
(flight “source <intmd2> ~destination <intmd3> “cost <cost3> ~id <i1d3>)
(flight “source <intmd3> “~destination <dest> ~cost <costd> ~id <1d4»)
~.>
(make route ~length 4 ~id (genatom) *for <x> ~flightl <idl>
~£1light2 <id2> ~flight3 <id3> ~flight4 <i1dd>
~cost (compute <costl> + <COSt2> + <cost3> + <costd>)))
}

{pset four-stops
(parp hop5
(goal “name compute-routes)
(traveller “name <x» “source <source> “destination <dest>)
(flight “source <source> ~destination <intmd> “cost <costl> ~id <idl>)
(flight “source <intmd> ~destination <intmd2> “~cost <cost2> ~id <id2>»)
(flight “source <intmd2> ~destination <intmd3> ~cost <cost3> “~id <id3>)
(flight “source <intmd3> ~destination <intmdd> ~cost <costd> ~id <idd>)
(£flight “source <intmdd> “destination <dest> ~cost <cost5> ~id <id5>)
-3
(make route “length 5 “id (genatom) “for <x> ~flightl <idl>
~flight2 «<id2> ~flight3 <id3> ~flightd <idd>
~flights <id5>
4cOoSt (compute <coStl>+<cost2>+<co5ti>+<costd>+<costs>)))

F.6 Collection-oriented version of airline-route

, This program operates on a flight database and finds the

; manamum cost route for a desired source and destination

i Converted to COPL: Anurag Acharya, Carnegie Mellon University
{external computez)

{external computel)

(external computed)

(external computeS)

(external min)

(external cardinality)

ADA289345

F6 COLLECTION-ORIENTED VERSION OF AIRLINE-ROUTE 332

{literalize goal name)
{literalize route id cost flightl fi-ghtZ fl:ght3 flight4
£lignt5 length for)
{literalize mincost for length recommended cost)
(literalize flight 14 source destination time airline cost)
(literalize traveller name source destinetior)
(literalize travel-constraint name hop-constraint time-constraint)

(p initialaze
(start)
“->
(1nsert (make goal “name get-traveller-information;;)

(p get-traveller-information
(goal “name get-traveller-information)
(goal “name get-traveller-informat:on)
-->
(ansert (maxe traveller “name Anurag “~source Pittsburgh
~destination Jhumritaliyya))
(insert (make travel-constraint “name Anurag “hop-constxaint 3)))

(p change-goal-type

{(gcal “name get-traveller-information) <cl>}
-

(modify <cl> “name compute-routes))

(p hopl

(goal “name compute-routes)

(goal “name compute-rouies)

(traveller “name <x> “source <source> “destination <dest>)

{£l1ght ~source <source> ~destination <dest> ~cost <cost> ~id <id>)
-->

(insert (updaze (make route “length 1 ~for <x> ~flightl <i&>»)

“cost <cost>

~id (vector-genatom (cardinality <id>}))))
(p hop2

{goal “name compute-routes)

{traveller “name <x> “source <source> ~destination <dest>)

{fl1ght “source <source> ~destination <intmd> “cost <cestl> ~id <idl>)

(£light “source <intmd> “destination <dest> ~1d <id2> “cost <cost2>)

-——>
(insert (update (make route “length 2 “for <x> “flightl <idl>
~flight2 <id2>)
~cost (compute2 <costl> <cost2>)
~id {vector-genatom (cardinality <idl>) *
(cardinality <ad2>)))))
(p hop3

(goal “name compute-routes)

ADA289345

F6. COLLECTION-ORIENTED VERSION OF AIRLINE-ROUTE

)
o
o

(traveller “name <x> “source <source> “destination <dest>)
(£laght “source <source> “destination <intmd> ~cost <costl> *i1d <iél>)
(£light “source <intmé> "destination <intmd2> “cost <cost2> ~id <id2>)
{flight “source <intmé2> ~destination <dest> “~cost <cost3> ~1d <1d3>)
-—>
(insert (update (make route “length 3 ~for <x> ~flightl <idl>
~flight2 <1d2> ~flight3 <:d3>)
“cost (compute3 <costl> <cost2> <cosii>)
~id (vector-genatom {cardinality <idl>) *
{cardinality <i1d2») *
{cardinality <id3>)))))
{p hopd
(goal “name compute-routes)
{traveller “name <x> “source <source> “destination <dest>)
{flaght “source <source> “~destination <intmd> “cost <costl> *id <iél>)
{£light “source <intmd> ~destination <intmd2> “~cost <cost2> ~id <id2>)
{£light “source <intmd2> “~destination <intmd3> “cost <cost3> “i1d <id3>)
{£light “source <intmd3> ~destination <dest> ~id <idd> “cost <costd>)
-—>
{insert (update (make route “length 4 ~for <x> ~flightl <idl>
~flight2 <1d2> ~flight3 <id3>
~flight4 <idd>)
“cost {computel <costl> <costl> <cost3> <costd>)
~id (vector-genatom (cardinality <adi>) *
(cardinaiity <id2>) *
{cardinality <id3>)
{cardinality <idd>)))})

{(p hop3
{goal “name compute-routes)
{traveller “name <x> “source <source> ~“destination <dest>)
(£light “source <source> “destination <intmd> “cost <costl> *id <idl>)
(£1ight “source <intmd> “destination <intmd2> “cost <cost2> “~id <id2»)
(£.2ght “source <intmd2> “~destination <intmdd> “cost <cost3> *id <id3>)
(flight “source <intmd3> ~destination <antmd4> “cost <costé> ~id <id4>)
{flight “source <intmdé> ~destination <dest> “cost <cost5> *id <idSs>)
——>
{insert (update (make route ~length 5 ~“for <x> *flightl <igl>
~flight2 <1d2> ~flight3 <id3>
~flightd <i1dd> ~flight5 <ids>)
“cost (computel <costl> <cost2> <costd> <costd> <cost5>)
~id (vector-genatom (cardinality <idl>) *
(cardinality <id2>) *
(cardinality <1d3>)
{cardinality <1d4>)
(cardinality <idS>)})))

(p print-routes

ADA289345

F6 COLLECTION-ORIENTED VERSION OF AIRL

N OF AIRLINE-ROUTE

{{goal “name compute~routes} <ci>)
-5

(modify <cl> "“name print-routes))

(P print-lowest-route-~cost
{goal “name print-routes)
(goal “name print-routes)
{goal “name print-routes)

(travel-constraint “name <x> “nop-constraint <length>)
(route ~id <route> “length

<length> “for <x> ~cost <c>)
-->
(insert (make mincost “cost (min <c>) “for <x> ~length <length>
“recommended ves)))

(p delete-if hop-constraint-satisfied
(goal “name print-routes)
(goal “name print-routes)
{goal “name print-routes)
{{travel -constraint “name <x> “hop-constraint <lengtia>)} <d>}
(route *~id <route> “length <length> ~for <x>)

(mircost “cost <c> “for <x> “length <length> “recommended yes)
-n>

(remove <d»))

(p no-constrained-routes-min-cost
(goal “name print-routes)
(goal “name print-routes)
(travel-constraint “name <x> “hop-constraint <length>)
(route “id <route> “length <lengthl> “for <x> “cost <c>)
-
(insert (make mincost ~cest (min <¢>) “~for <x> “length <length>
~recommended noj)}

(p delete-if-hop~censtraint-satisfied-2
(goal “name print-routes)

{(travel-constraint “name <x> “hop-constraint <length>)} <d>}
(route ~id <route> “length <length2> ~for <x>)

(mincost ~cost <c> “for <x> “length <length> “recommended no)
>

(remove <d»})

(p change-goal-value-to-print-cost

{(goal “name print-routes) <c>)
-->

(modify <c> “name print-cost))

ADA289345

w

F.6. COLLECTION-ORIENTED VERSICN OF AIRLINE-RCUTE

(p print-cost-1
(goal “name print-cost)
(mincost “cost <c> “length <length> “for <x> “reconrended nc)
-—>
(write (crlf) mincost undesired route for <x> has cost <c> (crif}))

(p print-cost-2

(goal “name print-cost)

{mincost ‘cost <c> “length <length> “for <x> “recommended yes)
-2

(write (crlf) rincost desired route for <x»> has cost <c> (crif)))

ADA289345

L8
L
th

Bibliography

(1] A. Acharya and D. Kalp. Release notes for CParaOPSS5 5.3 and ParaOPSS 4.4. This
is distributed with the CParaQOPS5 release on dravido.soar.cs.cmu.edu in
/usr/nemo/cparaopss, 1990.

[2] A. Acharya, M. Tambe, and A. Gupta. Implementations of production systems on
message passing computers. IEEE Transactions on Parallel and Distributed Computing,
3(4):477-87, July 1992.

[3] 3. R. Anderson. The Architecture of Cognition. Harvard University Press
Massachusetts, 1983.

[4] Arvind and R. S. Nikhil. Executing a program on the MIT tagged-token dataflow
architecture. In Proceedings of PARLE’87, volume 2, pages 1-29, June 1987.

(5] J. Bein, R. King, and N. Kamel. MOBY: An architecture for distributed expert database
systems In Proceedings of the thirteenth Intermational Conference on Very Large
Databases, pages 13-20, Sept 1987.

{6] B. Bershad, M. Zekauskas, and W. Sawdon. The Midway distributed shared memory
system. Technical Report CMU-CS-93-119, School of Computer Science, Camegie
Mellon University, 1993.

{71 G. Blelloch. CIS: A massively parallel rule-based system. In Proceedings of the Fifth
National Conference on Artificial Intelligence, pages 735-41, August 1986.

{81 G.E.Blelloch. NESL: A nested data-paralle} language. Technical Report CMU-CS-93-
129, School of Computer Science, Camnegie Mellon University, April 1993.

£
aa

[9) A.Bonner and M. Kifer. Transactional logic programming. Technical Report CSRI-270,
Computer Systems Research Institute, University of Toronto, December 1993.

(10} E. Brewer, A. Colbrook, C. Dellarocas, and W. Weihi. PROTEUS: a high-performance
parallel-architecture simulator. In Proceedings of the ACM SIGMETRICS and Perfor-
mance'92 Conference, pages 247-8, June 1992.

336

ADA289345

BIBLIOGRAPHY 337

[11] L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Expert Systems in OPS5:
An Introduction to Rule-based Programming Addison-Wesley, Reading, Massachusetts,
1985.

[12] B. Buchanan and E. Feigenbaum. DENDRAL and Meta-DENDRAL: Their application
dimensions. Artificial Intelligence, 11(1):5-24, 1978.

{13} P. Buneman and E. Clemons. Efficiently monitoring database systems. ACM Transac-
tions on Database Systems, Sept 1979,

[14] P. L. Butler, J. D. Alien, and D. W. Bouldin. Parallel architecture for OPS5. In
Proceedings of the Fifteenth International Symposium on Computer Architecture, pages
452-7, 1988.

[15] J.-P. Cheiney, G. Kiernan, and C. de Maindreville. A database rule language compiler
supporting parallelism. Technical Report 1397, Institut National de la Recherche en
Informatique et Automatique, February 1991.

(16] E-C. Cheng and M.-Y. Wu. DFLOPS: A data flow machine for production systems.
Technical Report CUCS-025-93, Department of Computer Science, Columbia Univer-
sity, November 1993,

[17] W. Clocksin and C. Mellish. Programming in Prolog. Springer-Verlag, Heideiberg,
1981.

(18] R. Davis. Reasomng about control. Artificial Intelligence, 15:179~222, 1980.

{19] R. Davis, B. Buchanan, and E. Shortliffe. Production rules as a representation for
knowledge-based consultation program. Artificial Intelligence, 8:15-45, 1977.

{20} R. Dechter and J. Pearl, Network-based heuristics for constraint-satisfaction probiems.
Artificial Intelligence, 34(1):1-38, 1988.

[21] L. M. Delcambre, J. Waramahaputi, and J. N. Etheredge. Pattern match reduction for the
relational production language in the USL MMDBS. SIGMOD Record, 18(3):59-67,
September 1989.

{22] E Dijkstra. Guarded commands, nondeterminacy and formal derivation of program
Communications of the ACM, 18(8):453~7, August 1978.

173

{23) R. Doorenbos. Matching 100,000 rules. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, pages 290-6, 1993.

ADA289345

BIBLIOGRAPHY 338

[24] K. Easwaran. Specification, implementation and interactions of a rule subsystem in an
integrated database system. Technical report, IBM Research Report RJ1820, August
1976.

[25] C. Forgy. Note on production systems and ILLIAC-IV. Technical Report CMU-CS-80-
130, Department of Computer Science, Carnegie Me¢llon University, 1980.

[26] C. Forgy and D. Phillips. RAL Language Guide {version 1). Preduction System Tech-
nologies Inc., 1991.

[27] C. L. Forgy. On the Efficient Implementation of Production Systems. PhD thesis,
Computer Science Department, Carnegie Mellon University, February 1979.

(28] C.L.Forgy. OPSS user’s manual. Technical Report CMU-CS-81-135, Computer Science
Department, Carnegie Mellon University, July 1981.

[29] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19(1):17-37, 1982.

(30] C.L.Forgy. The OPS83 report. Technical Report CMU-CS-84-133, Computer Science
Department, Carnegie Mellon University, May 1984.

[31) A.Forin,J. Barrera, andR. Sanz1. The shared memory server. In Proceedings of USENIX
-~ Winter 89, pages 22943, 1989

[32] E. Freudenthal and A. Gottlieb. Process coordination with fetch-and-increment. In
Proceedings of the Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 260-8, April 1991

[33] D. Gadbois and D. Miranker. Discovering procedural executions of rule-based programs.
In Proceedings of AAAI-94, pages 459~64, 1994,

[34] J-L. Gaudiot, S. Lee, and A. Sohn. Data-driven multiprocessor implementation of
the rete match algorithm. In Proceedings of the International Conference on Parallel
Processing, pages 256-9, 1988,

[35] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and V. Sunderam. PVM3
Users’s Guide and Reference Manual. Oak Ridge National Laboratory, May 1993.

{36] D. Gordin and A. Pasik. Set-oriented constructs: From Rete rule bases to database
systems. In Intemational Conference on Management of Data (SIGMOD) 1991, pages
60-7, May 1991.

{37] A.Gupta. Implemenung OPSS production systems on DADQ. Technical Report CMU-
CS-84-115, Computer Science Department, Carnegie Mellon University, March 1984.

ADA289345

BIBLIOGRAPHY 339

[38] A. Gupta. Parallelism in Production Systems. PhD thesis, Computer Science Depart-
ment, Carnegie Mellon University, March 1986.

[39] A. Gupta and C. Forgy. Measurements on production systems. Technical Report CMU-
CS-83-167, Computer Science Department, Camegie Mellon University, December
1983.

[40] A. Gupta, C. Forgy, A Newell, and R. Wedig Paralle! algorithms and architectures
for production systems. In Proceedings of the Thirteenth International Symposium on
Computer Architecture, pages 28-35, June 1986.

[41] A. Gupta, C.L. Forgy, D. Kalp, A. Newell, and M, Tambe. Parallel OPS5 on the Encore
Multimax. In Proceedings of the International Conference on Parallel Processing, pages
271-80, August 1988.

[42] A. Gupta, M. Tambe, , D. Kalp, C. Forgy, and A. Newell. Parallel implementation of
OPS5 on the Encore multiprocessor. Results and analysis. International Journal of
Parallel Programming, 17(2):95-124, April 1988.

[43] A. Gupta and M. Tambe. Suitability of message passing computers for implementing
production systems. In Proceedings of the National Conference on Artificial Intelligence,
pages 687-92, August 1988.

[44] E. N. Hanson. The design and implementation of the Ariel active database rule system
Technical Report UF-CIS-018-92, Department of Computer and Information Sciences,
University of Florida, September 1991,

[45) E. N. Hanson. Rule condition testing and action execution in Ariel. In Proceedings
of the 1992 ACM SIGMOD Internatonat Conference on Management of Data, pages
49-58, June 1992.

[46] E. N. Hanson and J. Widom. An overview of production rules in database systems.
Knowledge Engineering Review, 8(2):121-43, June 1993,

[47] W. Harvey. Personal communication, 1993,

(48] W. Harvey, D. Kalp, M. Tambe, , D. McKeown, and A. Newell. Measuring the effective-
ness of task-level parallelism for high-level vision. Journal of Parallel and Distributed
Computing, 13(4):395-411, 1991.

[49] F. Hayes-Roth and D. Mostow. An automatically comptlable recognition network for
structured patterns. In Proceeings of the Fourth Intemational Jont Conference on
Artificial Intelligence, pages 246-51, 1975,

ADA289345

BIBLIOGRAPHY 340

[50] M Hernandez and S. Stolfo. Parallel programming of rule-based systems in PARULEL.
In Proceedings of the IICAI-93 Workshop on Production Systems and their Innovative
Applications, August 1993,

[51] B. K. Hillyer and D. E. Shaw. Execution of OPSS5 production systems on a massively
parallel machine. Journal of Parallel and Distributed Processing, 3:236-268, 1586.

{52] P. Hudak et al. Report on the programming language Haskell: A non-stnict purely
functional language (version 1.2). SIGPLAN Notices, May 1992,

[53] IBM Systems Application Architecture, Common Frogramming Interface: Database
Reference, October 1988. IBM Form Number SC26-4348-1,

[54] INGRES Products Division, Alameda CA. Ingres V6.3 Reference Manual, 1990.

{55] T. Ishida. Parallel rule firing in production systems. IEEE Transactions on Knowledge
and Data Engineering, 3(1):11-7, March 1991.

[56) T. Ishida and S. Stoifo. Towards the parallel execution of rules in production system
programs. In Proceedings of the International Conference on Parallel Programming,
pages 568~74, August 1985,

[57] J.E.Laird. Universal Subgoaling. PhD thesis, Computer Science Department, Camegie
Mellon University, June 1983. (Also available in Universal Subgoaling and Chunking:
The automatic generation of goal hierarchies, Kluwer Academic Publishers, 1986.).

[58] R. H.Jr. An assessment of Multilisp: lessons from experience. International Journal of
Parallel Programming, 15(6):459-501, December 1986.

[59] G. Kahn and J. McDermott. The MUD system. In Proceedings of the First Conference
on Artificial Intelligence Applications, December 1985.

[60] D. Kalp. Personal communication, 1991,

{611 M. A. Kelly and R. A. Seviora. Performance of OPS5 matching on CUPID. Micropro-
cessing and Microprogramming, 27:397-404, August 1989.

[62]) T. Kowalski and D. Thomas. The VLSI design automation assistant: Prototype system.
In Proceedings of the 20* Design Automation Conference, June 1983.

[63) D. Kranz, J. RH. Halstead, and E. Mohr. Mul-T* a high-performance paraile] lisp. In
ACM SIGPLAN’89 Conference on Programming Language Design and Implementation,
pages 81-90, June 1989.

ADA289345

BIBLIOGRAPHY 341

[64] C.-M. Kuo, D Miranker, and J. Browne. On the performance of the CREL system.
Joumnal of Parallel and Distributed Computing, 13(4).424-41, December 1991.

[65] S. Kuo, D. Moldovan, and S. Cha. MCMR: a multiple rule firing production system
model. In Proceedings of the Fifth International Parallelism Processing Symposium,
pages 256~9, 1991.

[66] J. Laird, A. Newell, , and P. Rosenbloom. Soar: An architecture for general intelligence.
Artificial Intelligence, 33(1):1-64, 1987.

[67) R.Landau. Diagnosing faults at the Australia Telescope. In Proceedings of the IJCAI-93
Workshop on Production Systems and their Innovative Applications, August 1993,

[68] J. Larus. Abstract execution: A technique for effictently tracing programs. Sofiware -
Practice and Experience, 20{12):1241-58, Dec 1990.

(69] S. Manchanda. A Dynamic Logic Programming Language for relational updates. PhD
thesis, Department of Computer Science, Staie University of New York at Stony Brook,
December 1987. (also available as technical report TR-88-2 from the Department of
Computer Science, University of Arizona, Tucson).

{70] R. McBride and K. Lynn. Anatomy of rule-based simulation. In Proceedings of the SCS
Multiconference 1990, pages 24-9, January 1990.

[713 D. McCracken. A Production System Version of the HEARSAY-]I Speech Understarding
System. PhD thesis, Department of Computer Science, Carnegie Mellon University,
Pittsburgh, 1978.

[72] J. McDermott. R1: A rule-based configurer of computer systems. Artificial Intelligence,
19(2):39-88, 1982.

{73] J. McDermott and C. Forgy. Production system conflict resolution strategies. Pattern-
directed Inference Systems, pages 177-99, 1978.

[74] J. McDermott, A. Newell, and J. Moore. The efficiency of certain production system
implementations. Pattern-directed Inference Systems, pages 15576, 1978.

[75] D. McKeown, W. Harvey, and J McDermott. Rule based interpretation of aerial imagery.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(5):570-85, 1985.

[76] S. Minton. Leaning Effective Search Control Knowledge: An explanation-based ap-
proach. PhD thesis, Computer Science Department, Carnegie Mellon University, March
1988.

ADA2R9348

BIBLIOGRAPHY 342

[77] D. P. Miranker. Performance estimates for the DADO machine: A comparison of Rete
and Treat. In Proceedings of the International Conference on Fifth Generation Computer
Systems, 1984,

[78] D.P Miranker. TREAT. A New and Efficient Match Algorithm for Al Production Systems.
PhD thesis, Computer Science Department, Columbia University, 1987.

{79] D. P. Miranker and D. A. Brant. An algorithmic basis for integrating production systems
and large databases. In Proceedings of the Sixth International Conference on Data
Engineering, pages 353-60, February 1990,

{80] D. P. Miranker, D. A. Brant, B. Lofaso, and D. Gadbois On the performance of lazy
matching in production systems. In Proceedings of the Eighth National Conference on
Artificial Intelligence, pages 685-92, August 1990.

[81] D. P. Miranker, C.-M. Kuo, and J. C. Browne. Paralielizing transforms for a concurrent
rule execution language. Technical Report TR-89-30, Department of Computer Science,
University of Texas at Austin, October 1989,

{82] D. P. Miranker and B. Lofaso. The organization and performance of a TREAT-based
production system compiler. IEEE Transactions on Knowledge and Data Engineering,
3(1):3~10, March 1991.

[83] J. Miyazaki, K. Takeda, H. Amano, and H. Aiso. A new version of a paralle] production
system machine, MANIJI - I1. In Proceedings of the Sixth International Workshop on
Database Machines, pages 317-30, June 1989.

{84} D. I. Moldovan. RUBIC:: A multiprocessor for rule-based systems. IEEE Transactions
on Systems, Man and Cybernetics, 19(4):699-706, July/August 1989,

[85] S.NagqviandR. Krishnamurthy. Database updates in logic programming. In Proceedings
of the ACM Symposium on Principles of Database Systems, pages 251-62, March 1988,

{86] D. E. Neiman. Control issues 1n parallel rule-firing production systems. In Proceedings
of the Ninth National Conference on Artificial Intelligence, pages 310-6, July 1991.

[87] A. Newell Production systems: Models of control structures. In W. G. Chase, edutor,
Visual Information Processing, pages 463-526. Academic Press, New York, New York,
1973

(88} A. Newell. Unified Theories of Cogrution. Harvard University Press, Cambridge, MA,
1990.

S Na¥ . aloYutaWind

BIBLIOGRAPHY 343

[89) A. Newell and H. Simon. Human Problem Solving. Prentice-Hall, Englewood Chffs,
New Jersey, 1972.

[90] K. Oflazer. Partitioning in Parallel Processing of Production Systems. PhD thesis,
Computer Science Department, Carnegie Mellon University, March 1987,

[91] A. Os™isanwo and P. Dasiewicz. A parallel mode! and architecture for production
s. In Proceedings of the International Conference on Parallel Processing, pages
14133, August 1987.

{92] A.Pasik. A source *9-source transformation for increasing rule-based system parallelism,
IEEE Transactions on Knowledge and Data Engineering, 4(4):336-43, August 1992.

[93]) A.1J. Pasik. A Methodolgy for Programming Production Systems and its Imphcations on
Paralielism. PhD thesis, Department of Computer Science, Columbia University, 1989.

[94]1 M. Perlin and J.-M. Debaud. Match Box: Fine-grained parallelism at the match level.
In Proceedings of the IEEE International Workshop on Tools for Antificial Intelligence,
pages 428-34, Oct 1989,

[95] M. Rao, T.-S. Jiang, and J. J.-P. Tsai. Integrated inteligent simulation environment.
Simulation, 5(6):291-5, June 1990.

[96] 1. Rhyne. On finding conflict sets in production systems. Technical report, Department
of Computer Science, University of Houston, 1977.

[97] Y. Rim and H. Cragon. Multicache system simulation using a production system. In
Proceedings of the 1988 Southeastern Simulation Conference, pages 64-9, October
1988.

(98] P. Rosenbloom, J. Laird, J. McDermott, A. Newell, and E. Orciuch. Ri-soar: An
experiment in knowledge-intensive programming in a problem-solving architecture.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(5):561-9, 1985,

{99] P.S. Rosenbloom. The Chunking of Goal Hierarchies: A model of practice and stimulus-
response compatibility. PhD thesis, Computer Science Department, Carnegie Mellon
University, August 1983,

{100] D. J. Scales. Efficient matching algonthms for the SOAR/OPSS production system.
Techmical Report KSL-86-47, Knowledge Systems Laboratory, Stanford Untversity,
June 1986.

{101] 1 G. Schmolze and S. Goel. A parallel asynchronous distributed production system. In
Proceedings of the Nanonal Conference on Antificial Intelligence, pages 65-71, 1990,

ADA289345

BIBLIOGRAPHY 344

[102] F Schreiner and G. Zimmerman. Pesa-1: A parallel architecture for production systems.
In Proceedings of the International Conference on Parallel Processing, pages 166-9,
August 1987.

[103] J. Schwartz, R. Dewar, E. Dubinsky, and E. Schonberg, Programming with Sets: An
Introduction to SETL. Springer-Verlag, New York, 198¢.

[104] T. Sellis and C.-C. Lin. Performance of DBMS implementations of production sys-
tems. In Proceedings of the Second International Conference on Tools for Antificial
Intelligence, pages 393-9, Nov 1990.

[105] S. Stolfo. Five parallel algorithms for producion system execution on the DADO ma-
chine. In Proceedings of the National Conference on Artificial Intelligence, pages 300-7,
August 1984,

[106] S. . Stolfo and D. P. Miranker. The DADO production system machine. Journa! of
Parallel and Distributed Computing, 3:269-96, 1986.

[107] S.J. Stolfo, O. Wolfson, P. K. Chan, H. M. Dewan, L. Woodbury, J. S. Glazier, and D. A,
Ohsie. PARULEL: Parallel rule processing using meta-rules for redaction. Journal of
Farallel and Distnbuted Computing, 13(4):366-82, December 1991.

[108] M. Stoncbraker. Integration of rule systems and database systems. IEEE Transacnons
on Knowledge and Data Engineering, 4(5):415-23, November 1992.

[109) I Subramaniam. Managing Discardable Pages. PhD thesis, Department of Electrical
and Computer Engineering, Carnegie Mellon Umiversity, 1993.

[110] Sybase Corporation, Emeryville CA. Sybase V4.0 Reference Manual, 1950.
{111] M. Tambe. Personal communication, 1988.

[112] M. Tambe Eliminating Combinatorics from Production Match. PhD thesis, School of
Computer Science, Carnegie Mellon University, 1991.

[113} M. Tambe, D. Kalp, A. Gupta, C. Forgy, B. Milnes, and A. Newell. Soar/PSM-E:
Investigating match parallelism in a learning production system. In Proceedings of the
ACM/SIGPLAN Symposium on Parallel Programming: Experience with Apphcations,
Languages and Systems, pages 146-60, July 1988,

{114} M. Tambe, D. Kalp, and P. Rosenbloom. An efficient algorithm for production systems
with linear-time match. In Proceeings of the Fourth International Conference on Tools
with Artificial Intelligence, pages 36—43, November 1992,

ADA289345

BIBLIOGRAPHY 345

[115] M. Tambe and A. Newell. Some chunks are expensive In Proceedings of the Fifth
Intemational Conference on Machine Learning, pages 451-8, June 1988.

[116] M. Tambe and P. Rosenbloom. A framework for investigating production system for-
mulations with polynomially bounded match. In Proceedings of the Eighth National
Conference on Arnficial Intelligence, pages 693-700, August 1990.

[117] M. Tambe and P. Rosenbloom Investigating production system representations for
non-combinatorial match Artificial Intelligence, 68(1), August 1994,

[118] J. Tan, M. Maheshwari, and J. Srivastava. GridMatch: A basis for integrating production
systems with relational databases. In Proceedings of the Second International Conference
on Tools for Antificial Intelligence, pages 400-7, Nov 1990.

[119] M.E M. Tenorio and D. E. Moldovan. Mapping production systems into multiprocessors
In Intemational Conference on Parallel Processing, pages 56-62, August 1985,

[120) D. Turner. Anoverview of Miranda SIGPLAN Notices, December 1986.

[121] A. Tzvieh and S. Cunningham. Super-imposing and network structure on a production
system to improve performance. In Proceedings of the IEEE workshop on Tools for
artificial intelligence, pages 345-52, Oct 1989.

[122) M.vanBiema, D. Miranker, and S. Stolfo. The Do-loop considered harmful in production
system programming. In Proceedings of the First Intermational Conference on Expert
Database Systems, pages 177-89, 1987.

[123] W.van Melle, A. Scott, J. Bennett, and M. Peairs. The EMYCIN manual. Technical Re-
port STAN-CS-81-885, Department of Computer Science, Stanford University, October
1981,

{124] D. Waltz. Generating semantic descriptions from drawings of scenes with shadows.
Technical Report AI-TR-271, Project MAC, Massachusetts Institute of Technology,
1972. (Reprinted 1n P. Winston (Ed.) 1975. The psychology of computer vision. McGraw-
Hili, New York, 19-92).

[125] D. Waterman and F. Hayes-Roth. Pattem-directed Infeience Systemis Academic Press,
1978.

{126) J. Widom, R. Cochrane, and B. Lindsay. Implementing set-oriented production rules as
an extension to Starburst. In Proceedings of the Seventeenth International Conference
on Very Large Databases, pages 275-85, Sept 1991.

ADA289345

BIBLIOGRAPHY 346

[127) J. Widom and S. Finkelstein. A syntax and semantics for set-oriented production rules
1n relationat database systems. SIGMOD Record, 18(3):36-45, September 1989.

[128] S.-Y. Wu and J. C. Browne. Explicit paraliel structuring for rule-based programming. In
Proceedings of the Seventh International Parallel Processing Symposium, pages 47988,
April 1993,

ADA289345

P

o Py S

,u
t

:

:

Schaol of Computer Scienco
Carnagio Mellon University
Pittsburgh, PA 15213-3890

(BT RN RN T T
ity I
Cons Gt am g)

VR ARy

’ Best Available CGopy

ADA289345

