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Abstract

This thesis examines methods for isolated digit recognition without using time align-

ment. Resource requirements for isolated word recognizers that use time alignment can

become prohibitively large as the vocabulary to be classified grows. Thus, methods capable

of achieving recognition rates comparable to those obtained with current methods using these

techniques are needed.

The goals of this research are to find feature sets for speech recognition that perform

well without using time alignment, and to identify classifiers that provide good performance

with these features. Using the digits from the T146 database, baseline speaker-independent

recognition rates of 95.2% for the complete speaker set, and 98.1% for the male speaker set,

are established using dynamic time warping (DTW).

This work begins with features derived from spectrograms of each digit. Based on a

critical band frequency scale covering the telephone bandwidth (300-3000 Hz), these critical

band energy features are classified alone, and in combination with several other feature sets,

with several different classifiers. With this method, there is one "short" feature vector per

word. For this work, the number of features per vector ranges from 9 to 31, based on the

combination of features involved.

For speaker-independent recognition using the complete speaker set and a multi-layer

perceptron (MLP) classifier, a recognition rate of 92.4% is achieved. For the same classifier

with the male speaker set, a recognition rate of 97.1% is achieved. For the male speaker set,

there is no statistical difference between results using DTW and those using the MLP and no

time alignment. This shows that there are feature sets that may provide high recognition rates

for isolated word recognition without the need for time alignment.
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Isolated Digit Recognition

Without Time Alignment

I. Introduction

1.1 Background

Achieving total control over machines through voice commands has been a dream of

many scientists and engineers for over forty years. However, while most people have no

trouble perceiving what is said by another person speaking a common language, regardless of

who the speaker is or the time interval between words, speech recognition systems have yet

to reach this level of maturity.

The complexities of speech recognition have forced researchers to seek intermediate

solutions by classifying recognizers according to the speaker and the time relationship between

words. For example, a system that is accurate with voice input from only one speaker is called

a speaker-dependent recognizer while a system that requires pauses between adjacent words

is called an isolated-word recognizer.

Research in speech recognition in the 1980s was characterized by a shift in technology

from template-based approaches to statistical modeling methods (15). Indeed, statistical

approaches based on hidden Markov models (HMMs) are the most accurate recognizers

available today (14), (17). To improve the performance of these statistical approaches, the

concept of time normalization or time alignment using dynamic programming techniques was

developed. Time normalization is the process of stretching or compressing the time axis in

order to compare an input to a stored pattern.

Dynamic programming is a broad mathematical concept for analyzing processes in-

volving optimal decisions, which has been widely applied to many problems outside the

speech realm (6). A popular method of accomplishing time normalization that uses dynamic
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programming techniques is a procedure called dynamic time warping (DTW). While HMMs

provide the best recognition rates, it has been shown that template-based recognizers using

DTW can provide similar results (13). Thus, this work is constrained to DTW methods for

time alignment to provide a baseline recognition rate.

As systems develop and mature using these techniques, resource requirements can

become prohibitively large. To that end, many other techniques are continuously under study.

One method that has been gaining in popularity in recent years is the application of artificial

neural networks (ANNs) to the speech recognition task.

ANNs attempt to mimic the dense parallel nature of the human nervous system, by

employing dense interconnections of simple, nonlinear, computational elements. Using this

principle, topologies known as multi-layer perceptrons (MLPs) are proving to be useful for

speech recognition.

1.2 Problem Description

Sufficient features for recognition of isolated digits already exist. However, feature

selection is more of an art than a science. Therefore, alternative feature sets exist which may

have advantages over the commonly used feature sets. The goals of this research are to find

feature sets for speech recognition that perform well without using time alignment and to

identify classifiers that provide good performance with these features.

A performance baseline is established with existing feature sets using a DTW-based

classifier. Then, the developed feature sets are judged based on relative accuracy and compu-

tational complexity. The relative merits of several classifiers are also tested in this work as

they apply to the new feature sets.

1.3 Assumptions

The underlying premise of this research is that alternative feature sets exist that may

have advantages over those commonly used for isolated word recognition. To test such

an hypothesis requires that a significant number of speech samples be recorded or otherwise

1-2



obtained. For this work, the digits from the Texas Instruments T146 Word Speech Database are

used. Recorded in 1980 under controlled conditions, all data are assumed to be un-corrupted

and usable.

Another premise of this research is that recognition rates approaching or exceeding those

from methods using time alignment are achievable. By realizing high recognition accuracies

with alternative feature sets that are insensitive to the need for time alignment, a framework

will be provided for isolated word recognition that dramatically reduces resource requirements

relative to those of current statistical models.

1.4 Scope

The goals of this research are to generate and test feature sets and classifiers, without

using time alignment, for use in isolated word recognition, and to provide a basis for further

research in this area. Throughout this work, the vocabulary to be recognized is limited to

the digits zero through nine. Several classifiers are considered, beginning with the Gaussian

classifier, since it is the simplest. Other classifiers considered are the multi-layer perceptron

(MLP) and k-nearest neighbors (KNN).

1.5 Approach and Methodology

Linear Prediction Coefficient (LPC) cepstral features coupled with a DTW-based clas-

sification strategy are considered as part of the base-lining procedure for this work. A DTW-

based classifier is also used to classify the critical band energy feature set described below.

These results provide the benchmark, for methods using time alignment, for comparison with

recognition rates from the other classifiers that are considered.

The baseline feature set for classification without time alignment consists of critical

band energies derived from the time-averaged spectrogram of each digit in the TI database.

For these features, the frequency range is restricted to the telephone bandwidth, defined to

be 300 to 3000 Hz. These features are initially tested using a Gaussian classifier. MLP and

1-3



KNN classifiers are used next, since they have proven successful for digit recognition in the

past (11).

From this procedure, a sufficient number of features is determined empirically based

on the accuracy obtainable with the critical band energy feature set, and the MLP is found to

provide the best results of the three classifiers listed above.

Using averaged 12th-order LPC cepstral and 10th-order LPC feature sets, various

multiple set combinations, constructed by concatenation with the critical band energy features,

are classified with an MLP. Recognition rates are computed for each individual speaker for

each experiment, as well as overall accuracies for each particular feature set and classifier.

Confusion matrices are generated from each experiment, and individual and combined results

are considered in analyzing the recognition rates.

Finally, statistical hypothesis testing is used to compare the results of the experiments

performed without time alignment to the baseline DTW experimental results.

1.6 Materials and Equipment

No special equipment beyond a general purpose workstation with approximately 1 GB

of disk space is required for this work. The software required includes MATLAB, UNIX,

Entropics Signal Processing System (ESPS), and LNKnet. The only outside resource required

is the TI database.

1.7 Conclusions

While there have been studies in the past regarding isolated word recognition without

using time alignment (11), (21), the current belief is that some form of time alignment is

necessary in order to achieve the best results. This work will show that such resource

intensive methods need not be used without regard for the alternatives. With the advent

of back propagation algorithms for neural network training, the MLP has become a viable

alternative to the current statistical models.
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Given the simplicity of the individual elements in a neural network, and the ability to

form dense, largely parallel systems with them, the MLP approach lends itself nicely to VLSI

technology. In fact, Intel manufactures the ETANN (Electrically Trainable Analog Neural

Network) chip, which is a complete hardware-software tool set for simulating, training, and

prototyping neural networks (2).

Since the direct storage of massive quantities of training patterns is not required for a

fully trained MLP recognizer, there is a great potential reduction in resource overhead versus

that required for methods using time alignment.
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H. Literature Review

2.1 Introduction

This chapter examines current literature in the field of speech recognition, with emphasis

on isolated word recognition (IWR), and the recognition rates provided by various methods

currently in use. Classification methods that use time alignment are considered, and currently

published results and system limitations are discussed.

This is followed by a discussion of artificial neural networks, emphasizing recent

developments that make them an attractive choice for IWR systems, and a brief look at a paper

by Pols, which provides useful concepts for feature extraction.

Finally, the results from two IWR experiments where no time alignment was used

are considered. Both experiments make use of the same TI database used in this work.

By comparing the results from these experiments to those obtained through the use of time

alignment, ample support is given for pursuing IWR methods that do not use time alignment.

2.2 Dynamic Time Warping and Hidden Markov Models

Although there are many theories and procedures available for application to the field of

speech recognition, those currently enjoying the most popularity and success usually employ

some form of time alignment. At the heart of these systems is a procedure called dynamic

programming.

Dynamic programming (DP) has a rich and varied history in mathematics. It is a broad

mathematical concept for analyzing processes involving optimal decisions (6). Silverman and

Morgan describe the history of DP along with an extensive bibliography in (22). The first

paper to apply these methods to speech was published by Nagato, Kato, and Chiba (8), but

it was the paper by Sakoe and Chiba (18) that initially attracted the attention of the speech

processing community.
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The interest in time alignment arises from the fact that different utterances of the same

word will generally be of different duration. Since initial attempts at improved recognition

accuracy through linear expansion and compression of the time axis did not achieve the desired

results, the concept of nonlinear time modification or time warping was developed. This was

incorporated with the benefits of DP resulting in a process called dynamic time warping.

Dynamic time warping (DTW) is fundamentally a feature matching scheme that inher-

ently accomplishes time alignment of pairs of reference and test feature vectors through a DP

procedure. The DTW approach to recognition of isolated words underlies a relatively mature

technology that is the basis for many recognition systems (6).

In experiments performed at AT&T Bell Laboratories, using the digit vocabulary, the

recognition rate for a DTW classifier was 98.2% (13). However, while dynamic time warping

has been successfully employed in simple applications requiring relatively straightforward

algorithms and minimal hardware, this method requires that a template be available for every

utterance to be recognized. Thus, DTW-based IWR systems that can account for numerous

sources of variation in speech and large vocabularies are not feasible, due to the resources

required to implement them.

Another type of algorithm that uses time alignment is the hidden Markov model (HMM).

HMMs are currently the most accurate speech recognition algorithms (14), (17). According

to (5), digits can be recognized using HMMs with a recognition rate of 99.7%, for a speech

database recorded under laboratory conditions in a soundproof booth. However, HMMs

require large amounts of training data which can also result in prohibitively large resource

requirements.

2.3 Artificial Neural Networks

With the recent development of efficient training algorithms, neural network-based

speech recognizers are gaining in acceptance. Although single-layer networks known as

perceptrons have existed since the late 1950s, they did not see widespread application due to

limited classification ability and the lack of a training algorithm for the multi-layer case (20).
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However, there are many advantages inherent in the structure of neural networks that make

them attractive candidates for speech recognition.

Figure 2.1 shows a multi-layer perceptron (MLP), where each interconnected circle

represents an artificial neuron. These neurons are the basic building blocks of the MLP.

Using recently developed back-propagation training algorithms, MLPs have exhibited superior

classification abilities over the original perceptron (10). A major advantage of the MLP is

Output

Input

Figure 2.1 A multi-layer perceptron with one hidden layer.

that it can readily implement a massive degree of parallel computation. This parallel structure

also lessens the sensitivity of the MLP to noise or defects within the structure (15).

Since the neural net is a highly parallel structure composed of simple, identical com-

putational elements, it is readily implemented with VLSI technology. In an August 1994

report (2), Hopfield and Mitchell discuss a chip containing 128 trainable neurons that is cur-

rently available. Called ETANN (Electrically Trainable Analog Neural Network), this device

can be electrically trained for numerous applications.
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2.4 Real-Time Recognition of Spoken Words

In a paper published in 1971, Louis C. W. Pols discusses experimental results from

a real-time speech recognizer based on spectral analysis of the input utterances (12). Even

though Pols uses linear time alignment to prepare the data for comparison, his ideas for feature

space reduction and octave band filtering proved useful for this work.

Using 18 1/3-band octave filters, the spectra of 12 Dutch vowels spoken by a group of

50 male speakers were determined. Using principal components analysis, Pols reduced the

18-dimensional space describing the vowels to a 4-dimensional subspace.

Pols conducted real-time recognition experiments using a vocabulary of 20 Dutch words,

including the ten digits. For these experiments, 17 filters were used, and an 1 8th channel,

consisting of information about the overall level of the speech sample, was added.

Again using principal components analysis, Pols was able to reduce this 18-dimensional

space to a 3-dimensional subspace. Three-dimensional traces were stored for each of the 20

words for 20 different speakers. After linear time alignment, the traces were compared with

20 reference traces. Pols reports a recognition rate of 98.8% for the 20-word vocabulary.

2.5 Digit Recognition Using Vector Quantization

There are experimental results that support the notion of performing speech recognition

without using time alignment. In a paper published in 1983, Shore and Burton obtained

accuracies greater than 98% for speaker-dependent recognition of a ten-word vocabulary

containing the ten digits, without using time alignment. The database for their experiments

was the same T146 database used in this work (21).

Their approach was based on vector quantization using code books designed by an

iterative clustering technique. Classification of the words was accomplished using two gain-

insensitive versions of the Itakura-Saito distortion measure; the gain-insensitive Itakuro-Saito

distortion, and the gain-normalized distortion. To classify the digits, distortion measurements
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were accumulated at each frame for all codebooks, and the word corresponding to the smallest

cumulative distortion was chosen.

Using vector quantization code books for features restricted to the telephone bandwidth

(defined by Shore and Burton to be 4000 Hz), they achieved a speaker-dependent recognition

accuracy of 98.8% for 1280 utterances.

Speaker-independent experiments were performed using the 8 male speakers in the

data base. To accomplish these experiments, a hold-one-out method was used in which the

utterances from the speaker to be classified are held out of the training process. Training is then

accomplished using the utterances from the seven remaining speakers, and classification then

proceeds using both the test and training sequences from the held out speaker. To facilitate

this process, the data are partitioned into male and female sets. Each of these sets is also

partitioned by speaker number.

The hold-one-out procedure used by Shore and Burton has the effect of increasing the

amount of training data, and the total number of classifications. Their accuracy for speaker-

independent classification using vector quantization code books is 95.9%.

2.6 Digit Recognition Using Neural Networks

In a more recent effort, Lippmann reports good results using MLP and KNN classifiers

for digit recognition (11). Using the TI database, Lippmann classified the first seven single-

syllable digits ("one,""two,""three,""four,""five,'"'six," and "eight").

The features used to classify the digits were 11th-order mel cepstral coefficients ex-

tracted using 10 msec frames. Each classifier was presented with 22 input coefficients for

every test or training utterance. Eleven of the coefficients were obtained from the highest-

energy frame for the word, and 11 from the frame preceding the highest-energy frame by 30

msec (11).
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Multi-layer perceptron classifiers trained with back propagation were compared with

Gaussian and KNN classifiers involving speech from a variety of speakers. All MLP classifiers

had 22 inputs, seven outputs, and used logistic sigmoidal nonlinearities.

The KNN classifier provided a recognition rate of 94%, while a single-layer perceptron

had the worst rate at 85.6%. The Gaussian classifier gave an intermediate results of 91.3%,

while the two and three-layer MLP provided accuracies of 92.4% and 92.3%, respectively.

2.7 Conclusions

While dynamic time warping and hidden Markov models are proven performers in a

laboratory environment, the overhead in terms of resources make systems for large vocabu-

laries undesirable. Much of the overhead for these systems results from the use of nonlinear

time-normalization, and dynamic programming methods.

To establish a performance baseline for this work, a DTW-based classifier is used. This

decision was based partly on the fact the ESPS provides built-in DTW-based classifiers. Also,

since the experiments performed at AT&T Bell Laboratories using a DTW-based classifier

performed slightly better than an HMM classifier (98.2% versus 98.1% accuracy) (13) for

digit recognition, a baseline established with DTW should be reasonable.

In searching for examples of IWR systems that do not use time alignment, it was found

that several researchers have had success in the past with the digit recognition task. Even

though Pols used time normalization with his principal components analysis approach, his

method was a simple linear normalization amounting to end-point matching. However, his

concepts for feature space reduction are useful in searching for new feature sets.

Shore and Burton's results using vector quantization, more than a decade ago, indicate

that recognition rates in the high 90s, for isolated digits, can be achieved without the use of

time alignment. This, coupled with the recent renewal of interest in the MLP as a speech

classifier indicates that there are at least a few methods available that can be applied to new

feature sets.
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Considering the past successes in IWR without using time alignment, there is ample

reason to believe that there are feature set and classifier combinations that may yield recognition

rates similar to those currently available with methods using time alignment.
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III. Methodology

3.1 Introduction

This chapter explains the methodology of experimentation, including database analysis,

preparation, and baselining procedures. Feature extraction and classification using the Entropic

Signal Processing System (ESPS) and the LNKnet software environment are discussed, as

well as conversion of MATLAB features to the ESPS format. The classification methods

discussed in this chapter include dynamic time warping (DTW), multi-layer perceptrons

(MLPs), Multivariate Gaussian, and k-nearest neighbors (KNN).

The database used for all classification experiments is the digit subset from the T146

Word Speech Database, Speaker-Dependent Isolated Word Corpus. This corpus of isolated

spoken words was designed and collected at Texas Instruments (TI) in 1980, and contains

16 speakers: 8 males labeled ml, ... , m8 and 8 females labeled fl, ... , f8, with 46 words

per speaker. Each utterance was recorded in a low noise sound isolation booth, using an

Electro-voice RE-16 cardioid dynamic microphone, positioned two inches from the speaker's

mouth and out of the breath stream (1). For this work, all non-digit utterances were removed

from the database.

It is assumed that the data are "noise free." However, during the segmentation process

many utterances appeared to contain more noise relative to the majority. This is significant

where segmentation of the waveforms is concerned, as discussed below.

The C-shells used to manipulate data, control experiments, and quantify results are

contained in Appendix B. All MATLAB m-files used to generate and manipulate feature sets

are included in Appendix C.

3.2 Feature Extraction, ESPS

Since this work considers digit recognition without using time alignment as compared

to techniques using time alignment, a baseline recognition rate is established in which time
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alignment is used in the classification process. To accomplish this, ESPS is used since it has

the built-in capability to perform dynamic time warping based recognition experiments on a

given set of input data.

3.2.1 Conversion to ESPS Format. Since the TI database files are provided in

binary form, conversion to the ESPS sampled data format is required. To accomplish this, the

ESPS btosps utility is used. btosps converts a header-less binary sampled data file into an

ESPS FEA..SD file.

During this conversion several utterances were selected at random and viewed. This

process showed that the actual utterance of each digit is surrounded on either side by about

200 msec of silence, as shown in Figure 3.1. Since this can adversely affect the DTW results,

each utterance is segmented to remove the silence portions from just before and after each

word.
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3.2.1.1 Data Segmentation. The data were segmented using the ESPS

find-ep utility. During this procedure ESPS occasionally provided an empty file as the

segmented result. Error messages showed that during segmentation find-ep was unable to

locate the end of that particular utterance, indicating a possible word starting at the end of the

file.

Viewing the source files from which the empty files were generated showed that low-

level noise or "clicks" and "pops" were the culprits. In other words, there was enough noise

(samples above the threshold in find-ep) following the completion of an utterance to convince

ESPS that there might be a word there.

At this point, the noisy utterances were manually segmented. During this process, any

noise that might cause find-ep to start segmenting is ignored, and only the actual utterance is

selected. Since relatively few utterances are manually segmented, some of the final samples

might actually have silence portions left in them by find-ep. This should be considered in the

final outcome of the DTW experiments.

3.2.2 Converting Sampled Data to Acoustic Features. 12th-order LPC cepstral

coefficients, which are the coefficients of the Fourier transform representation of the log

magnitude spectrum (15), are the features used in the first series of DTW experiments. To

obtain these features, the ESPS acf utility is used. This utility takes a single channel FEASD

fie, reads frames of data, and produces acoustic features based on each frame.

In order to extract features from the sampled speech waveform, a series of typical

preprocessing steps are completed (7). These steps process the data into a form better suited

for subsequent analysis and classification. These initial steps include the following.

* Pre-emphasis filtering (for cepstral)

* Framing

o Window selection

3.2.2.1 Pre-emphasis Filtering. Pre-emphasis filtering is the process of

applying a filter to the speech sample that increases the relative energy of the high frequency
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spectrum (above about 3500 Hz). This has the effect of flattening the spectrum, removing the

natural roll-off of speech. Typically, a filter with the system function

P(z) = 1 - AZ-' (3.1)

is used with p ; 1. This filter introduces a zero near w = 0, and a 6-dB per octave shift in the

speech spectrum (6). For this work, /t = 0.95 is used, based on recommendations in (15). The

magnitude response for this filter is shown in Figure 3.2.
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Figure 3.2 Pre-emphasis filter magnitude response.

3.2.2.2 Framing and Window Selection. Framing and window selection are

applied after pre-emphasis. Each individual frame is windowed so as to minimize the signal

dliscontinuities at the beginning and end of each frame (15). A Hamming window was chosen

for this work.

Frame sizes for speech are based on assumptions of a stationary speech signal. Typical

valid assumptions for speech stationarity range from 50 msec to 70 msec (15).
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Finally, a frame rate is chosen. The frame rate describes the amount of overlap that

occurs as each frame is shifted across the speech waveform. Typical frame rates range between

one third to one half of the frame length. For this work, the frame length is 12 msec with a

step size of 6 msec. At 12,500 samples per second, this corresponds to 150 sample frames,

with a step size of 75 samples.

Pre-emphasis filtering, framing, and windowing are accomplished by the ESPS acf

utility. To extract the desired features with this utility, an acf-params file is required. This file

lists the pre-emphasis filter weight (it), frame length, overlap, window type, and one or more

of several features to be extracted. An example acf.params file is provided in Appendix B.

3.3 Time/Frequency Averaged Spectrograms

The search for features that could be used to perform digit recognition without time

alignment began by considering the spectrogram of each digit. A typical spectrogram for the

digit zero is shown in Figure 3.3. The spectrograms were created using 12 msec frames, with

a 6 msec step size and a Hamming window with no pre-emphasis. A simple way to convert a

spectrogram into an n-dimensional feature vector is to average the spectrogram over time and

frequency based on some predetermined window format. Applying this procedure to each file

in the database results in a single feature vector per utterance.

3.3.1 Critical Band Energy Features. The first reduced dimensionality feature set

created for this work consists of critical band energies computed from spectrograms of the

digits. The first step in computing these features is to linearly average each spectrogram over

time. Next, the frequency axis is segmented into bands based on the mel scale approximation

to the critical band scale and the energy in each band is averaged.

The mel scale is a perceptual frequency scale that approximates human auditory per-

ception (6). As shown in Figure 3.4, mel scale frequencies are linearly distributed up to

about 1 kHz, and logarithmically distributed above 1 kHz. The frequency interval end points

used for each critical band are computed using Equation 3.2, which gives the mel scale
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Figure 3.3 Spectrogram of the digit "zero."
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Figure 3.4 The mel scale.
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approximation (6).
1000
e 10 0 log(1 + (3.2)fe= log 2 l muuu"IOHZO

Equation 3.2 is used to determine the start and stop frequencies for a specified number of

critical bands covering the range from 300 Hz to 3000 Hz. Feature sets are generated with 6,

9, 12, 15, 18, 21, and 24 critical band energy features per vector.

Since the database contains 1600 training utterances, and 2542 test utterances, this

procedure generates 4142 n-element feature vectors per feature set (there should be 2560 test

utterances, but the database provided for this work was missing the 18 test files indicated in

Appendix A).

A plot of ten typical nine-element critical band energy feature vectors, created by this

process, is shown in Figure 3.5. This figure shows ten feature vectors from the digit zero,

spoken by the same individual.

5000

4000

,3000

C:
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1000

0
2 4 6 8

Frequency Band

Figure 3.5 Typical 9-element critical band energy feature vectors for ten utterances of the
digit zero by speaker ml.
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3.3.2 Energy Profile Feature Extraction. As a second attempt at creating additional

features, a form of linear time alignment was used. The procedure consisted of segmenting

each utterance, breaking them into 9 equal-duration intervals, and computing the energy

over each interval. Endpoint detection for the segmenting routine is accomplished using the

envelope of the utterance, as shown in Figure 3.6.
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Figure 3.6 Segmentation by envelope detection: (a) Original utterance of the digit "six," (b)
Absolute value of the utterance, (c) Envelope of the utterance (with threshold),
(d) Segmented utterance.

A threshold was determined empirically, and applied to the envelope of each utterance

(see Figure 3.6 (c)). The starting point for a segmented utterance is located by the first breech

of the threshold by the envelope, and the stop point is marked by the second crossing.
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Due to the large number of files, it is impractical to visually inspect segmentation

performance for the entire working database. However, by viewing about 100 examples,

this simple method proved to be adequate in obtaining a segmented utterance with which to

calculate the energy per interval as described above. Once the energies are computed, the total

energy per feature vector is normalized to one.

3.4 DTW with Critical Band Energy Features

To create a benchmark, experiments using dynamic time warping are conducted with

critical band energy features. These features are generated by omitting time averaging from

the critical band energy feature extraction method, and converting the resulting MATLAB files

to the ESPS format using the mat2fea utility. Thus, each matrix contained 9 rows representing

the number of critical bands, and a number of columns equal to the number of frames required

to cover the segmented utterance. Since dtw-rec considers one column of the input matrix

at a time, these features provide a valid set for comparison between the DTW results and the

results from experiments where time alignment is not used.

3.5 Concatenation of Feature Vectors

Another way to create feature sets is to concatenate previously generated features with

each other. Since the critical band energy and energy profile features were generated with

MATLAB, they were easily concatenated with another MATLAB routine. The procedure for

converting features created by ESPS is discussed below.

3.5.1 Averaged LPC and LPC Cepstral Features. A major premise of this work

is that each word may be represented by a single feature vector computed over the duration

of the word. The time-averaged critical band energy spectrogram is one such feature vector.

Jennings reports successfully using averaged LPC coefficients in an isolated digit recognition

task (4).
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We are deeply indebted to Captain Dave Jennings for suggesting this unique approach,

and for providing the C code that performs the averaging and attaches a class label to each

vector. The procedure is to linearly average the LPC coefficients from each frame over the

word duration. A similar procedure is performed on the LPC cepstral coefficients. Typical

averaged LPC cepstral and LPC coefficients are show in Figures 3.7 and 3.8, respectively. A

copy of Jenning's code is provided in Appendix B.

3.6 Baseline Experiments/Dynamic Time Warping

Figure 3.9 illustrates the procedures involved in performing DTW classification using

the LPC cepstral feature set. A step by step procedure for obtaining the feature sets and

controlling the experiments for this work is provided in Appendix B.

3.6.1 List Preparation. With the data now ready for the dynamic time warping utility

dtw-rec, the final preparatory step is creating the lists necessary to control the experiments.

dtw-rec requires lists designating the training and testing templates for each pass through the

classification routine. For this work, the lists were set up to perform hold-one-out speaker-

independent recognition of the form used by (21).

With this method, the lists of reference templates (a series of LPC or LPC cepstral

vectors) each contain all the templates (from TI/train and TI/test) for each of the speakers

except the one to be classified. The test lists contain not only the test templates, but also the

training templates from the held out speaker. This method increases the size of the actual

training and testing sets, while providing speaker-independent classification. dtw-rec uses

the lists to pair up test and reference templates for distance measurements.

Having extracted the features and prepared the lists, the digits are classified using

dtw-rec. A single speaker-independent DTW experiment using all 16 speakers requires about

24 hours to complete. Once an experiment is completed, results are quantified by totaling the

number of digits classified, and computing the accuracies collectively, and on a per speaker

basis.
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Figure 3.8 Typical averaged 10th-order LPC coefficient features for ten utterances of the
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Figure 3.9 Typical processing steps for classification using DTW with the LPC cepstral
feature set.

To obtain the recognition accuracies for each digit, the number of correctly classified

digits is divided by the total number of digits classified for each digit. The result is multiplied

by 100, providing the percent accuracy for each digit.

Finally, the overall results are obtained by adding up the individual results and dividing

by ten. Confusion matrices for each experiment were generated by hand. These results are

used as a baseline against which the recognition rates for the other feature set and classifier

combinations are compared.

3.7 Recognition Without Time Alignment

The experiments in speaker-independent digit recognition without time alignment were

accomplished using LNKnet. LNKnet is a software environment that simplifies the application

of neural network, statistical, and machine learning pattern classification algorithms to new

databases (9).

Figure 3.10 shows a block diagram of the procedures involved in classifying the digits

using a multi-layer perceptron classifier with critical band energy features. The process is

similar for the other classifiers.

3.7.1 Experiments Using LNKnet. To determine the number of critical bands

resulting in the highest recognition accuracy for the LNKnet experiments, feature sets with

vectors containing 6, 9, 12, 15, 18, 21, and 24 elements are classified using Gaussian, multi-
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Figure 3.10 Typical processing steps for classification using a MLP with the critical band
energy feature set.

layer perceptron (MLP), and k-nearest neighbors (KNN) classifiers. The programs and step

by step procedures for performing these experiments are given in appendix B.

3.7.1.1 Gaussian Classifier. Gaussian classifiers are the simplest and most

common classifiers (9). The Gaussian classifier models each class with a Gaussian distribution

centered on the mean of that class. For this work, the variance was computed for each

class, using full covariance matrices with a minimum allowable variance of le-05. A priori

probabilities used during classification were computed from the training data using all of the

features.

3.7.1.2 Multi-layer Perceptron. Multi-layer perceptrons have been shown to

be useful for the digit recognition task (11). While LNKnet provides tremendous flexibility in

designing the structure of the MLP network, the same configuration is used for all experiments

in this work.

For these experiments, a two-layer perceptron with 25 hidden nodes is used. The number

of output nodes is set to ten (one for each digit), and the number of input nodes is determined

by the number of features per input feature vector. Gradient descent back propagation is used

to update the weights, with a step size of 0.1 and momentum equal to 0.6. The tolerance is

set such that back propagation is turned off if one of the outputs is within 0.01 of the desired

output. A squared error cost function and standard sigmoid nonlinearity are used, and the
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weights are updated after each trial. Training is performed over 20 epochs, where each epoch

represents a single pass through the entire training set.

Several experiments are conducted using the MLP classifier. These experiments involve

both original and concatenated feature vectors. The theory behind the use of concatenated

feature vectors is that different types of features may have different strong points when

compared to each other.

For example, suppose critical band energies perform better in classifying male speakers

versus female speakers, or all the digits except twos and eights, whereas LPC cepstral features

perform well with female speakers and twos. By using multiple perspectives of each word,

one may be able to combine the benefits from each feature set, thereby classifying both male

and female speakers, and twos, with greater accuracy.

An example of an MLP classifier that combines three different feature sets for the digit

recognition task is shown in Figure 3.11. Given the nature of the training process where back

"One" "...Three" "Five" "Seven" "Nine"
"Two" "Four" "Six" "Eight" "...Ten"

Input
II II

9 Critical Band 12 LPC Cepstral 10 LPC
Energy Coefficients Coefficients Coefficients

Figure 3.11 A MLP classifier that considers three different sets of features.

propagation is used, by introducing multiple feature sets at the MLP inputs, a sort of feature
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fusion takes place. The different feature set combinations considered in this work are shown

below.

* Critical band energy and energy features

* Critical band energy and averaged LPC cepstral features

* Critical band energy and averaged LPC coefficient features

* Critical band energy, averaged LPC cepstral and LPC coefficient features

Experiments are completed using an MLP classifier and each of these feature sets for all 16

speakers, as well as for the male and female speaker sets individually.

3.7.1.3 k-Nearest Neighbors. According to (11), the KNN classifier performs

equal to or slightly better than the MLP for digit recognition. For this work, a KNN algorithm

with k = 1, and no cross-validation was used.

3.8 Quantifying the Results

In order to determine overall recognition rates, C-shells were written to gather the results

for each speaker and compute the overall accuracies. Confusion matrices are generated for

each experiment, and are presented in Chapter IV. All C-shells written to compile the results

are contained in appendix B.

3.9 Summary

To facilitate the continuance of this research we hope that the next group to take up this

effort can make use of, and improve upon, the ad hoc codes generated for this work. Several

conclusions that can be drawn from the actual experiments are listed below.

* When time alignment is used, words shall be segmented to eliminate silence preceding

and following an utterance.

* The DTW classifier with both critical band energy and LPC cepstral coefficients provides

a benchmark for testing new feature set/classifier combinations without time alignment.

3-15



" The time-averaged critical band energy feature set is used for initial experiments in

recognition without time alignment. The best number of bands is found empirically.

" Three classifiers are considered for initial classification of the critical band energy

features.

1. Gaussian.

2. MLP

3. KNN

"* The MLP is selected to exploit its inherent "feature fusion" capability.

"* Concatenated feature vectors are used to build new feature sets. The sets include

1. Critical band energy + energy profile.

2. Critical band energy + averaged LPC coefficients.

3. Critical band energy + averaged LPC cepstral coefficients.

4. Critical band energy + averaged LPC + averaged LPC cepstral coefficients.
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11. Results

4.1 Introduction

This chapter discusses the results of the experiments detailed in Chapter H. For this

work, only speaker-independent recognition is considered, using the hold-one-out method

described in Chapter III, and in (15). Optimal feature length determination for the critical

band feature set is considered first. Comparisons are made between the recognition rates for

Gaussian, KNN, and MLP classifiers using several different vector lengths.

Three sets of experiments are conducted for most of the classifiers. These are male-only

recognition using the eight male speakers, female-only recognition using the eight female

speakers, and male-female recognition using the complete sixteen speaker set.

The results of the DTW experiments are introduced first, providing a baseline recog-

nition accuracy that is used as a goal for the experiments accomplished without using time

alignment. Features considered for the DTW experiments are 12th-order LPC cepstral coef-

ficients, and critical band energies.

Following the DTW experiments, results for the classifications without time alignment

are presented. The features sets considered in these experiments are the critical band energy,

averaged 12th-order LPC cepstral coefficients, averaged 10th-order LPC coefficients, and

energy profiles.

Several combinations of these feature sets are constructed by concatenation, and clas-

sified using a multi-layer perceptron. These combinations include the time-averaged critical

band energy features concatenated with the energy profile, averaged 12th-order LPC cepstral

coefficient, averaged 10th-order LPC coefficient, and averaged 12th-order LPC cepstral and

10th-order LPC coefficient features.

Statistical hypothesis testing is used to compare the DTW results with the results from

classifiers in which time-alignment is not used. The chapter is concluded by considering the
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performance of the concatenated feature sets versus the critical band energy feature set with

the MLP classifier.

4.2 Optimum Feature Length Determination

To determine the optimum vector length for the critical band energy features described

in Chapter EI, several experiments were completed for three classifiers for vectors containing

6, 9, 12, 15, 18, 21, and 24 features. Figure 4.1 shows a plot of the recognition accuracy versus

the number of features for Gaussian, KNN, and MLP classifiers, using all sixteen speakers.

These experiments were repeated for the male-only and female-only speaker sets, yielding the

results shown in Figures 4.2 and 4.3.

While the accuracy for the MLP is slightly higher at eighteen elements versus nine in

Figure 4.1, all three classifiers show little or no improvement beyond nine elements. A similar

effect is seen for the male-only and female-only results of Figures 4.2 and 4.3.
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Figure 4.1 Comparison of recognition accuracy versus the number of elements per feature
vector using both male and female speakers.
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Figure 4.2 Comparison of recognition accuracy versus the number of elements per feature
vector using male speakers only.
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Figure 4.3 Comparison of recognition accuracy versus the number of elements per feature
vector using female speakers only.
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Based on these results, it was determined that nine elements are sufficient for this feature

set. Thus, for all experiments involving the concatenation of vectors, nine-element critical

band energy feature vectors are used. Figures 4.1 through 4.3 also indicate that the MLP gives

the best results for the critical band energy feature set. Thus, the MLP is used to perform the

remaining experiments that do not involve time alignment.

Finally, since the male speaker recognition rate is substantially higher than the other

configurations (a phenomenon cited by (21) as common), results for this speaker set are

emphasized throughout this work.

4.3 Dynamic Time Warping

This section presents results from the dynamic time warping experiments. The ba-

sic experimental setup is discussed and confusion matrices and percent accuracy tables are

presented.

4.3.1 DTW Results Using LPC Cepstral Features. In the first DTW experiment,

12th-order LPC cepstral coefficients were used to classify the digits for both the male and

female speakers, yielding an overall recognition rate of 95.2%. This experiment was executed

to provide an idea as to what could be achieved using dynamic time warping. Table 4.1 shows

the confusion matrix for this experiment.

For this experiment, a short reference list was used for the distance computations.

Relative to a long list, a short reference list contains only one of ten possible templates for

each digit per each speaker. This was done to save time, since it took hours to complete a

DTW experiment.

For example, using a long list and a SPARC 20 work station, it took over 13 hours

to complete a speaker-independent experiment for just 8 of the 16 speakers! By reducing

the number of templates per digit per speaker from ten to one, the time required to run an

experiment was reduced to four or five hours for an eight speaker set.
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Table 4.1 Confusion matrix for DTW classification using LPC cepstral features with both
male and female speakers.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 398 8 11 6 2 10 3 1
1 386 2 23
2 4 1 389 2 3 6 1
3 1 403 5
4 3 2 402 1 3
5 2 2 2 4 380 1 3 9
6 403
7 8 1 10 2 4 405 2
8 3 400
9 14 6 23 2 1 378

Total 410 415 415 414 414 414 414 416 416 414

Table 4.2 shows individual results for all sixteen speakers. There is a discrepancy here

in the number of results for speaker m5, versus the number for the rest of the experiments.

Apparently, for these features, the distance measurement for sample 08m5set9 (digit 8, male

speaker 5, session enrollment token 9) was outside the maximum distance allowed by dtw-rec.

Therefore, a distance measurement was not computed for this template. This did not occur

for any other experiments.

It is interesting to note that a visual inspection of this sample (and many others for m5)

shows that the plosive burst, or t is missing from this utterance, indicating poor enunciation

by the speaker.

4.4 DTW Results Using Critical Band Energy Features

To create an experiment that would provide a valid comparison with the non time-

alignment results from LNKnet, feature vectors were generated with elements obtained through

critical band frequency averaging of the spectrograms for each digit. Linear time averaging

was not used for this feature set. These features were applied to dtw-rec for classification.
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Table 4.2 Overall results for DTW classification using LPC cepstral features with both male

and female speaker sets.

Speaker Classified Errors IAccuracy (%)
fl 258 1 99.6
f2 259 3 98.8
f3 259 12 95.4
f4 259 19 92.7
f5 260 7 97.3
f6 260 18 93.1
f7 260 4 98.5
f8 260 3 98.8

ml 260 13 95.0
m2 260 2 99.2
m3 260 6 97.7
m4 256 0 100.0
m5 255 17 93.3
m6 258 12 95.4
m7 257 10 96.1
m8 260 70 73.1

Total 4141 J 197 95.2

Tables 4.3 and 4.4 show the results for all sixteen speakers using a short reference

list. The overall accuracy was 86.1 %, which is less than the results obtained from the DTW

experiment using the LPC cepstral coefficients. Even though the lower overall average is

mainly due to poor performance for the female speakers, it appears that these features are

inferior to the LPC cepstral coefficients. Tables 4.5 and 4.6 show DTW results where a short

list was used for the male speakers only. The overall recognition accuracy was 95.1%.

To compare the DTW recognition accuracy for a long list experiment to that of a short

list experiment, the previous experiment for male speakers was repeated using a long list. This

experiment took over 13 hours to complete, with an overall recognition rate of 98.1%. Based

on the t-score described in Section 4.7, this 3% increase is statistically greater than the short

list results at the 95% significance level. These results are shown in Tables 4.7 and 4.8.
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Table 4.3 Confusion matrix for DTW classification using critical band energy features and
a short reference list with both male and female speaker sets.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 359 23 1 2 11 13 1 11
1 4 299 4 37 5 12
2 15 2 374 79 4 29 3 17
3 15 2 38 324 3 1 10 9
4 10 11 392 2 9 1
5 14 2 340 25

6 .1 2 357 8
7 11 1 384 1
8 1 5 25 380
9 7 53 2 35 1 355

Total 410 415 415 414 414 414 414 416 416 414

Table 4.4 Overall results for DTW classification using critical band energy features and a
short reference list with both male and female speaker sets.

Speaker Classified Errors Accuracy (%)
fl 258 27 89.5
f2 259 41 84.2
f3 259 68 73.8

f4 259 88 66.0
f5 260 67 74.2
f6 260 71 72.7

V 260 34 86.9
f8 260 81 68.8
ml 260 7 97.3
m2 260 11 95.8
m3 260 24 90.8
m4 256 18 93.0
m5 256 14 94.5
m6 258 10 96.1
m7 257 10 96.1
m8 260 7 97.3

Total [ 4142 1 578 86.1
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Table 4.5 Confusion matrix for DTW classification using critical band energy features and
a short reference list with male speakers only.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 202 1 2
1 189 1 2

2 3 202 7 8
3 4 193 1 5 4

4 2 204
5 1 199 22
6 204 4
7 11 1 207 1
8 1 4 1 191
9 2 3 2 7 1 175

Total 203 208 208 208 208 208 208 208 208 208

Table 4.6 Overall results for DTW classification using critical band energy features and a

short reference list with male speakers only.

Speaker Classified Errors Accuracy (%)
ml 260 7 97.3
m2 260 11 95.8
m3 260 24 90.8
m4 256 18 93.0
m5 256 14 94.5
m6 258 10 96.1
m7 257 10 96.1
m8 260 7 97.3

Total I 2067 101 [ 95.1
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Table 4.7 Confusion matrix for DTW classification using critical band energy features and
a long reference list with male speakers only.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 203
1 206 3
2 3 197 2
3 7 202 1 1
4 206 4
5 203 9
6 2 204
7 207
8 1 2 1 208
9 2 1 3 193

Total 203 208 208 208 208 208 208 208 208 208

Table 4.8 Overall results for DTW classification using critical band energy features and a
long reference list with male speakers only.

Speaker Classified Errors Accuracy(%)
ml 260 5 98.1
m2 260 3 98.8
m3 260 13 95.0
m4 256 3 98.8
m5 256 7 97.3
m6 258 2 99.2
m7 257 0 100.0
m8 260 6 97.7

Total 2067 j 39 j 98.1
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4.5 Results For Recognition Without Time Alignment

This section contains the results from all experiments accomplished without using time

alignment. The classifiers used for these experiments are the multi-layer perceptron, k-nearest

neighbors, and Gaussian.

The first experiment was accomplished using the critical band energy features. Note

that these features take the form of one vector per word versus numerous (usually more than

100) vectors per word for the DTW experiments. This represents a tremendous savings in

storage space for this procedure.

These experiments were followed by classification of the energy profile vectors, aver-

aged LPC cepstral features, averaged LPC coefficient features and various combinations of

these features.

4.5.1 Critical Band Energy Feature Classification. A confusion matrix for the

nine-element critical band feature set using all sixteen speakers with an MLP classifier is

shown in Table 4.9. Individual results for each speaker are given in Table 4.10. Similar results

for the KNN and Gaussian classifiers are provided in Appendix A. The overall recognition

accuracy for this experiment is 76.2%.

4.5.1.1 Best Results for Critical Band Features. As indicated in Figure 4.2,

the highest recognition accuracy for the MLP classifier using critical band energy features was

obtained for the male-only experiment. The confusion matrix and individual speaker results

for this experiment are shown in tables 4.11 and 4.12, respectively. The overall accuracy for

this configuration was 84.7%.

4.5.2 Results Using Concatenated Feature Vectors. In an attempt to improve the

MLP classifier accuracy, experiments were conducted with various concatenated feature sets in

which the original critical band energy features were kept, with different features concatenated

to them. Before concatenation, each feature set to be included with the critical band features

was classified by itself. In no instance did these other features provide a higher accuracy than
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Table 4.9 Confusion matrix for the MLP classifier using critical band energy features for

both the male and female speakers with nine-element feature vectors.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 288 6 5 22 2 1 1 27 1 11
1 4 283 1 14 19 5 31
2 20 11 239 69 4 2 2
3 43 152 286 4 19
4 19 30 393 2 1 2
5 55 4 367 3 52
6 4 3 6 336 28 66 3
7 17 3 1 1 4 6 339 3 15
8 1 13 29 66 3 325
9 14 27 2 1 21 5 300

Total 410 415 415 414 414 414 414 416 416 414

Table 4.10 Overall results for the MLP classifier with critical band energy features for both
the male and female speakers using 9-element feature vectors.

Speaker Classified Errors Accuracy (%)

fl 258 71 72.5
f2 259 74 71.4
B 259 66 74.5
f4 259 104 59.8
f5 260 73 71.9
f6 260 67 74.2
P7 260 52 80.0
f8 260 47 81.9
ml 260 97 62.7
m2 260 48 81.5

m3 260 36 86.2
m4 256 16 93.8
m5 256 75 70.7
m6 258 41 84.1
m7 257 54 79.0
m8 260 65 75.0

Total j 4142 [ 986 76.2

4-11



Table 4.11 Confusion matrix for the MLP classifier with critical band energy features for
male speakers only using 9-element feature vectors.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 176 19 1 2 3
1 1 191 9 4 2 18
2 1 175 19 3 2
3 20 30 165 2 6 1
4 11 197 1

5 3 190 40

6 1 174 25 21 3
7 1 1 7 173 9
8 5 3 3 19 175
9 2 2 11 6 135

Total 207 207 207 206 206 206 206 208 208 206

Table 4.12 Overall results for the MLP classifier with critical band energy features for male
speakers only using 9-element feature vectors.

Speaker Classified Errors J Accuracy (%)
ml 260 53 79.6
m2 260 38 85.4
m3 260 28 89.2
m4 256 21 91.8
m5 256 50 80.5
m6 258 15 94.2
m7 257 66 74.3
m8 260 45 82.7

Total 2067 3161 84.7
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the critical band energy features alone. The results of these individual experiments are given

in Appendix A.

4.5.2.1 Critical Band Energy and Energy Profile Features. The first con-

catenated feature set contained the critical band energy features and features obtained by

computing the energy in nine equal-duration segments spread across the length of each utter-

ance. The energy computations were detailed in Chapter III. As shown in Appendix A, this

experiment resulted in a slight increase in recognition accuracy (from 84.7% to 85.9%) for the

male speaker set.

4.5.2.2 Critical Band Energy and Averaged LPC Coefficients. The next

feature set consists of the critical band energy features concatenated with averaged 10th-order

LPC coefficients. These feature vectors contain 19 elements.

The confusion matrix for the male speaker set is shown Table 4.13. As Table 4.14

shows, this experiment results in a recognition rate of 94.1%. The tables for the female and

male-female experiments, contained in Appendix A, indicate recognition rates of 86.2% and

88.4%, respectively.

4.5.2.3 Critical Band Energy and Averaged LPC Cepstral Coefficients. The

third feature set consists of the critical band energy features concatenated with averaged

12th-order LPC cepstral coefficients. These feature vectors contain 21 elements.

The confusion matrix for the male speaker set is shown in Table 4.15. As Table 4.16

shows, this experiment results in a recognition accuracy of 94.6%. The tables for the female

and male-female experiments, contained in Appendix A, indicate recognition accuracies of

86.5% and 89.0%, respectively.

4.5.3 Critical Band Energy, Averaged LPC Cepstral, and LPC Features. The last

feature set considered consists of the critical band energy features combined with both the
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Table 4.13 Confusion matrix for MLP classification using concatenated critical band energy

and averaged 10th-order LPC coefficient features for male speakers only.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9

0 192 3 2 26 1 1 3
1 1 193 2 2 16
2 2 202 1 1
3 8 3 176 1
4 7 204
5 1 201 12

6 1 203 10 1
7 1 1 3 196
8 1 3 1 205 1
9 1 3 2 173

Total 207 207 207 206 206 206 206 208 208 206

Table 4.14 Overall results for MLP classification using concatenated critical band energy

and averaged 10th-order LPC coefficient features for male speakers only.
Speaker Classified [Errors I Accuracy (%)

ml 260 18 93.1

m2 260 9 96.5
m3 260 25 90.4
m4 256 0 100.0
m5 256 35 86.3
m6 258 8 96.9

m7 257 12 95.3
m8 260 15 94.2

Total 2067 122 94.1
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Table 4.15 Confusion matrix for MLP classification using concatenated critical band energy

and averaged 12th-order LPC cepstrum features for male speakers only.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 196 10 1 1 1 3
1 191 1 10

2 6 1 191 5 1
3 2 4 197 1 1
4 6 206 1
5 1 200 8 7
6 205 4 2
7 1 1 1 1 189 7
8 2 1 2 1 204
9 . 9 4 4 177

Total 207 207 207 206 206 206 206 208 208 206

Table 4.16 Overall results for MLP classification using concatenated critical band energy
and averaged 12th-order LPC cepstrum features for male speakers only.

Speaker Classified Errors Accuracy (%)
ml 260 20 92.3
m2 260 3 98.8
m3 260 10 96.2
m4 256 3 98.8
m5 256 30 88.3
m6 258 7 97.3
m7 257 18 93.0
m8 260 20 92.3

Total 2067 111 [ 94.6
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averaged 12th-order LPC cepstral coefficients and averaged 10th-order LPC coefficients. The

resulting feature vectors contain 31 elements.

The confusion matrix for the male speaker set is shown in Table 4.17. Table 4.18

indicates a recognition accuracy of 97.1% for this experiment. This represents an improvement

from 84.7% to 97.1%, or 12.4%, as compared to the results obtained using the critical band

energy features alone.

Table 4.17 Confusion matrix for MLP classification using concatenated critical band energy,
averaged LPC cepstrum, and averaged LPC coefficient features for male speakers
only.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 203 5 3
1 1 201 14

2 2 202

3 1 202 1 2
4 1 206 1

5 205 1 11

6 206 8 1
7 196
8 1 206

9 5 1 2 179

Total 207 207 207 206 206 206 206 208 208 206

4.6 Accuracy Comparison for Various Feature Sets

Table 4.19 provides a comparison of the recognition accuracies achieved for the various

feature set configurations. For the chosen combinations, the accuracy improves as the number

of different features is increased. This supports the theory that recognition rates can benefit

from multiple perspectives of a word, especially when MLP classifiers are used.
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Table 4.18 Overall results for MLP classification using concatenated critical band energy,
averaged LPC cepstrum, and averaged LPC coefficient features for male speakers
only.

Speaker IClassifiedI Errors I Accuracy (%)

ml 260 10 96.2
m2 260 2 99.2
m3 260 7 97.3
m4 256 3 98.8
m5 256 23 91.0
m6 258 0 100.0
m7 257 7 97.3
m8 260 9 96.5

j Total [ 2067 1 61 j 97.1

Table 4.19 Comparison of MLP recognition accuracy for the original critical band energy
features and the various concatenated feature sets.

Feature Male Female Male-Female
Set % Accuracy % Accuracy % Accuracy

Critical Band Energy 84.7 77.9 76.2
LPC Features 79.4 74.9 74.4

Energy Profile Features 61.0 - -

Cepstral Features 78.4 74.5 69.7
Critical Band/Energy 85.9 - -

Critical Band/LPC 94.1 88.2 88.4
Critical Band/LPC Cepstrum 94.6 86.5 89.0

Critical Band/LPC Cepstrum/LPC 97.1 89.1 92.4
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4.7 Statistical Hypothesis Testing

In order to compare the DTW results with those from the MLP classifier, one can look

at the statistical significance of the accuracy differences. Using the results for male speakers

only, there are eight speakers to consider for each experiment.

Table 4.20 shows the per-speaker accuracy for the best MLP results, and the short and

long list DTW results. To determine whether or not DTW and the MLP have a statistically

significant difference in average recognition rates, the t-score is computed as

t n - 1(d[i] - m[i]) (4.1)

where i = 1,... ,8, and d[i] and m[i] are the percent accuracy results for speaker i for the

DTW and MLP classifiers, and Sd is the sample standard deviation of the paired differences,

and n is the number of pairs.

In these experiments, the paired differences have a t distribution with seven degrees

of freedom (3). Under these conditions, a t-score greater than 1.895 indicates that the DTW

recognition rate is greater than the MLP rate at the 95% significance level. A t-score less than

-1.895 indicates that the DTW recognition rate is less than the MLP at the 95% significance

level (19).

The t-score for the MLP v.s. long list comparison is t = 1.1537, indicating no statistical

difference for the DTW recognition rate versus the MLP. The t-score for the MLP versus

the short list DTW comparison is t = -1.5266. Thus, for a short DTW reference list there is

again no statistical difference between the accuracy of dynamic time warping versus the MLP

classifier. Table 4.20 also includes the overall accuracy and 95% confidence interval for each

of the methods.

These results are impressive, considering that it takes over thirteen hours to complete

the long-list DTW experiment for eight speakers, over 3 hours to complete the short-list DTW

experiment, and only a few minutes to complete the MLP experiment. Table 4.21 shows

individual speaker accuracies for all sixteen speakers for the short list DTW experiment and
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Table 4.20 Per speaker recognition accuracies for male speakers only. The confidence
interval for the overall results is 95%.

Speaker % Accuracy
MLP DTW Short DTW Long

ml 96.2 97.3 98.1
m2 99.2 95.8 98.8
m3 97.3 90.8 95.0
m4 98.8 93.0 98.8
m5 91.0 94.5 97.3
m6 100.0 96.1 99.2
m7 97.3 96.1 100.0
m8 96.5 97.3 97.7

Overall 97.1 ± 2.3 95.1 ± 1.9 98.1 ± 1.3

Table 4.21 Per speaker recognition accuracies for both male and female speaker sets. The
confidence interval for the overall results is 95%.

Speaker % Accuracy
MLP DTW Short

fl 89.9 99.6
f2 96.5 98.8
03 96.9 95.4
f4 79.9 92.7
f5 91.5 97.3
f6 90.8 93.1
V 90.8 98.5
f8 93.8 98.8
ml 75.8 95.0
m2 98.1 99.2
m3 95.8 97.7
m4 99.6 100.0
m5 87.9 93.3
m6 97.7 95.4
m7 98.8 96.1
m8 94.6 73.1

Overall 92.4 ± 3.6 95.2 ± 3.4
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the MLP using the concatenated critical band energy, averaged 12th-order LPC cepstral, and

averaged 10th-order LPC coefficient feature set.

For these data, the t-score is t = 1.3065. Again, there is no statistically significant

difference between the recognition rates of the two classifiers. However, it should be noted

that this is not a completely fair test since there were fewer reference templates (due to the

short reference lists) for the DTW classifier than there were training samples for the MLP. The

overall accuracy and confidence interval for both methods is also shown in Table 4.21.

4.8 Performance Breakdown

One possible question, given these results, is "how can such a dramatic improvement in

the recognition rate be achieved by concatenating three feature sets that perform rather poorly

on an individual basis?" To try to answer this question, consider Tables 4.22, through 4.25.

These tables give a digit by digit synopsis of the performance of each speaker for the

three sets of features used to get the best results for the male speaker set. Table 4.22 shows

the individual results that combine to yield a 97.1% recognition rate. The two digits with the

highest error rates are seven and nine. In fact, nearly 40% of the errors for this experiment

can be attributed to speaker ml uttering the digit "seven" and speaker m5 uttering the digit

"nine." From the confusion matrix (see Table 4.17), it is apparent that "seven" is most often

confused with "six," whereas "nine" is most often confused with "one" and "five."

Considering Tables 4.23 through 4.25, insight is gained as to what occurs. In general,

utterances of the digit nine by speaker m5 are not well recognized for any of the feature sets,

and the combined feature sets seem unable to improve the overall results for this speaker-digit

combination.

However, the digit seven results for the critical band energy features show only four

errors for speaker ml versus for the combined features. It seems possible that the 23 errors

resulting with the LPC cepstral features somehow hampers the ability of the combined feature

sets to provide substantial improvement.
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Table 4.22 Error synopsis for male-only speaker-independent recognition using concate-
nated critical band energy, LPC cepstral, and LPC coefficient features.

Digit Number of Errors
Spoken Per Speaker

ml [ m2] m3 I m4 m5 I m6 I m7 [ im78l Totals

zero 0 0 1 0 0 0 3 0 4
one 0 0 1 0 0 0 1 4 6
two 0 0 0 0 0 0 0 5 5

three 0 0 1 0 3 0 0 0 4
four 0 0 0 0 0 0 0 0 0
five 0 0 0 0 0 0 1 0 1
six 0 0 0 0 0 0 0 0 0

seven 7 0 1 1 2 0 1 0 12
eight 1 0 0 0 1 0 0 0 2
nine 23 2 17 0 1 0 27

Totals 10 2 7 3 23 0 7 9 61

Table 4.23 Error synopsis for male-only speaker-independent recognition using the critical
band energy features.

Digit Number of Errors
Spoken Per Speaker

mlm21 m3 m4[m5Im6 m7Im8 11Totals
zero 2 1 1 0 0 6 19 2 31
one 0 0 3 0 10 1 1 1 16
two 3 0 1 0 0 1 10 17 32

three 0 2 6 7 22 3 0 1 41
four 0 0 4 0 0 0 0 5 9
five 0 3 0 6 1 0 5 1 16
six 5 0 9 1 2 3 12 0 32

seven 4 0 0 5 0 1 17 8 35
eight 15 9 0 2 1 0 0 6 33
nine 24 23 4 0 14 0 2 4 71

Totals 53 38 28 21_1 50 15 66 45 -316
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Table 4.24 Error synopsis for male-only speaker-independent recognition using the LPC
cepstral features.

Digit Number of Errors
Spoken Per Speaker

_ _ml m2 [ m3 I m4 1m5 1 m6 I m7 I m8 11 Totals

zero 22 26 20 1 1 15 11 2 98
one 0 0 1 4 15 12 15 11 58
two 24 15 4 1 23 1 3 26 97

three 1 0 6 2 22 4 11 4 50
four 6 5 0 0 0 3 1 0 15
five 1 0 2 3 4 2 0 0 12
six 0 2 1 0 0 0 2 0 5

seven 23 1 3 0 9 1 9 0 46
eight 7 1 0 0 2 0 0 1 11
nine 1 0 6 4 25 1 14 3 54

Totals 85 50 43 15 101 39 66 47 446

Table 4.25 Error synopsis for male-only speaker-independent recognition using the LPC
coefficient features.

Digit Number of Errors
Spoken Per Speaker

ml m2 m3 m4] m5 I m6 [m7 Im8 Totals

zero 15 4 6 7 5 11 19 8 75
one 3 1 6 0 4 4 1 13 32
two 11 25 16 5 6 1 6 14 84

three 9 2 3 0 9 2 0 10 35
four 1 0 1 0 16 7 0 0 25
five 2 21 3 3 7 15 1 3 55
six 0 1 3 0 0 0 0 0 4

seven 7 4 3 7 14 6 0 1 42
eight 5 0 7 0 6 0 1 0 19
nine 19 0 5 3 18 5 3 1 54

Totals 72 1 58 53 25 85 51 31 5011 425
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Yet, this type of result pertains to only a few of the 80 combinations shown in Table 4.22.

Specifically, there are only 4 of 80 speaker-digit combinations where performance is worse for

the combined feature set versus the critical band energy features, and only 3 of the remaining

76 cases where the performance is the same. Thus, the recognition rate is improved for 73 out

of 80 speaker-digit combinations.

Tables 4.23 through 4.25 also show that the combined feature set performs better on

all digits across all speakers when compared with the individual feature sets. Through this

analysis, the MLP is seen to perform feature fusion, improving upon the best features from

each individual feature set, for each digit.

4.9 Conclusions

From the results given in this chapter, one can conclude that for speaker-independent

recognition of male speakers, an MLP classifier can achieve results statistically equal to

classifiers using dynamic time warping.

The recognition rates for both the male and female speakers are also shown to be

statistically equivalent for a shortened list of reference templates for the DTW classifier versus

an MLP classifier. Therefore, recognition accuracies equal to those obtainable with DTW can

be achieved with the MLP.

These results also show that the MLP can be used to perform feature fusion when several

different feature sets are presented at the inputs to the classifier. Even though the feature sets

considered in this work are newly developed, they are based on well known parameters. The

results given in this chapter support the hypothesis that high accuracy speech recognition is

possible without performing time alignment.
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V Conclusions and Recommendations

5.1 Conclusions

The goals of this research are to find feature sets for speech recognition that perform

well without using time alignment, and to identify classifiers that provide good performance

with these features. Using the digits from the T146 database, baseline speaker-independent

recognition rates of 95.2% for the complete speaker set, and 98.1% for the male speaker set,

are established using dynamic time warping.

Energies for a selected number of critical bands covering 300 to 3000 Hz were computed

from time-averaged spectrograms of the digits. These features performed poorly by themselves

in experiments without time alignment using an MLP classifier.

Other features considered in this work include linearly averaged LPC and LPC cepstral

coefficients. While these additional features also performed poorly on an individual basis, by

concatenating them with the original time-averaged critical band energy features recognition

accuracy was dramatically improved.

For the male speaker subset, there was no statistical difference between the recognition

rates using DTW and those using the MLP with no time alignment. These results support

further research into speech recognition without time alignment.

5.2 Accomplishments

Through this work, the following objectives were successfully accomplished:

Feature sets were found that perform well in the digit recognition task without the need

for time alignment of the data. All experiments were conducted using the hold-one-out

method for speaker-independent recognition, and telephone bandwidth (300 - 3000 Hz)

critical band energy features.

1. 94.1% accuracy was achieved for the male speaker set using concatenated critical

band energy and averaged LPC coefficient features.
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2. 94.6% accuracy was achieved for the male speaker set using concatenated critical

band energy and averaged LPC cepstral features.

3. 97.1% accuracy was achieved for the male speaker set using concatenated critical

band energy, and averaged LPC cepstral and LPC coefficient features.

4. 92.4% accuracy was achieved for the complete male and female speaker set using

concatenated critical band energy, and averaged LPC cepstral and LPC coefficient

features.

5.3 Recommendations

Considering the accuracies obtained by Lippmann (11), and by Shore and Burton (21),

as well as the results from this work, there is enough evidence to support further research

into obtaining alternative feature sets for speech recognition without time alignment. Due

to time limitations, an extensive search for new feature sets was not completed here. Some

suggestions for carrying on this work include:

"* Further consideration of new feature sets.

"* Continue looking at combinations of existing features as new feature sets.

"* Analysis of the strengths of individual feature sets and classifiers.

5.3.1 Expanding the Vocabulary. Given the successful performance of the features

generated for this work on the digit recognition task, and the interest in voice recognition for

limited vocabulary applications such as the cockpit vocabulary studied by (16), extending the

vocabulary to the complete T146 database should be considered.

5.3.2 Performance in Noise. Since this is a crucial consideration for many military

applications, a comprehensive analysis of the effects of noise should be considered in future

research.
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5.3.3 How Does It Work? An interesting aspect of the results obtained from this

work are the individual results for each speaker that combine to give the overall results. While

this was briefly analyzed in Chapter IV, there are still many open questions in this area. One

area to consider is:

9 Is there a mathematical basis for why the averaged LPC and LPC cepstral coefficients

add useful information to the critical band energy feature set?

5.3.4 Real-time Recognizer. Since the structure of the MLP with multiple identical

elements is compatible with current VLSI technology, the possibility of creating a real-time

word recognizer seems reasonable. The ETANN chip discussed in (2) is available with 128

trainable "neurons," which is enough to reproduce the software MLP used in this work. Since

the chip is trainable, new feature sets could be tested with such a system.
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Appendix A. Experimental Results

A.1 Introduction

This appendix contains experimental results generated by this work that do not directly

contribute to the overall conclusions. Confusion matrices and individual speaker accuracies are

briefly discussed. This material is presented to provide a complete package of all experimental

results obtained from this work.

By file name, the 18 files missing from the testing data set provided for this work are

00flsltO, 00flsltl, OOf2sltO, OOf3sltO, OOf4sltO, 00m4s4tl, 04m4s8t0, 05m4s7t0, 09m4s5t1,

02m5s4t1, 04m5s6t1, 06m5s2tl, 09m5sltO, 03m6s4tl, 05m6s4t1, Olm7s4tl, 03m7s4t1, and

06m7s7t0.

A.2 Classifier Accuracy Comparison

To determine the optimum number of features per feature vector, experiments were

completed for 6, 9, 12, 15, 18, 21, and 24 element feature vectors. Plots of recognition

accuracy versus the number of features are shown in Chapter IV.

Figures A. 1, A.2, and A.3 show, in tabular form, the recognition accuracies obtained for

the MLP, KNN, and Gaussian classifiers. Based on these results, it is determined that nine-

element feature vectors are sufficient when considering time-averaged critical band energies.

The tables also indicate that the MLP classifier gives the best results for the critical band

energy feature set.

A.3 Results For Individual Feature Sets

This section contains the classification results for each feature set considered before

concatenations are performed. Confusion matrices and individual speaker results are provided,

with a brief discussion of each.
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Table A. 1 MLP classifier accuracy per number of features for male, female, and complete
speaker sets using critical band energy features.

Number of Overall Accuracy Overall Accuracy Overall Accuracy
Features Male (%) Female (%) Both (%)

6 79.40 74.88 71.86
9 84.71 77.93 76.21
12 85.30 80.82 75.77
15 84.73 80.04 75.63
18 84.44 79.85 77.12
21 83.81 78.98 75.58
24 85.25 78.44 74.08

Table A.2 KNN classifier accuracy per number of features for male, female, and complete
speaker sets using critical band energy features.

Number of Overall Accuracy Overall Accuracy Overall Accuracy
Features Male (%) Female (%) Both (%)

6 74.76 66.59 67.73
9 81.38 72.33 74.34
12 81.21 72.23 75.00
15 82.41 71.51 74.80
18 82.84 71.85 75.05
21 82.27 70.16 74.42
24 84.01 71.60 75.08

Table A.3 Gaussian classifier accuracy per number of features for male, female, and com-
plete speaker sets using critical band energy features.

Number of Overall Accuracy Overall Accuracy Overall Accuracy
Features Male (%) Female (%) Both (%)

6 79.74 72.81 69.73
9 82.22 76.23 75.25

12 82.03 73.97 72.96
15 80.44 75.12 71.78
18 80.84 73.97 71.15
21 80.89 72.86 70.07
24 80.79 71.76 69.49
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A.3.1 Critical Band Energy Feature Set. Tables A.4 and A.5 show the results for the

female speaker set for the MLP classifier, using critical band energy features. The confusion

matrices for the nine-element KNN and Gaussian classifier results for the complete feature

set, the male speaker set, and the female speaker set are shown in even numbered tables A.6

through A. 16, while the individual speaker results are shown in odd numbered tables A.7

through A. 17.

The overall recognition rate for the MLP classifier for the female speaker set is 77.93%.

The overall recognition rates for the complete speaker set for the KNN and Gaussian classifiers

are 74.34% and 75.25%, respectively. Results for the male speaker set are 81.38% for the

KNN classifier and 82.22% for the Gaussian classifier, and results for the female speaker set

are 72.33% for the KNN classifier and 76.23% for the Gaussian classifier.

Table A.4 Confusion matrix for the MLP classifier using critical band energy features for
the female speaker set.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 147 2 6 5 6 4 1 4
1 155 2 15 18
2 14 11 103 64 11 2 1
3 10 93 127
4 19 4 199 1
5 1 26 1 176 14
6 5 11 178 2 30
7 4 1 1 3 190 2 2
8 2 27 173
9 6 10 1 16 169

Total 203 208 208 208 208 208 208 208 208 208
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Table A.5 Overall results for the MLP classifier using critical band energy features for the
female speaker set.

Speaker I Classified I Errors Accuracy (%)
fi 258 57 77.91
f2 259 41 84.17
f3 259 39 84.94
f4 259 104 59.85
f5 260 75 71.15
f6 260 59 77.31
f7 260 40 84.62
f8 260 43 83.46

Total 2075 j 458 j 77.__93

Table A.6 Confusion matrix for the KNN classifier using critical band energy features for
both the male and female speakers using 9-element feature vectors.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 297 8 18 50 4 3 16 3 12
1 8 315 0 18 22 4 46
2 13 1 273 90 3 7 8
3 55 107 240 2 2 18 12
4 8 18 387 2 3
5 42 2 348 1 54
6 6 5 11 314 25 85 3
7 5 2 3 1 2 1 12 337 3 17
8 12 9 20 1 79 7 299 1
9 6 29 2 41 1 14 269

Total 410 415 415 414 414 414 414 416 416 414
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Table A.7 Overall results for the KNN classifier using critical band energy features for both
the male and female speakers using 9-element feature vectors.

Speaker [ Classified Errors Accuracy(%)

fl 258 108 72.48
f2 259 49 71.43
f3 259 61 74.52
f4 259 131 59.85
f5 260 84 71.92
f6 260 82 74.23
f7 260 42 80.00
f8 260 50 81.92
ml 260 75 62.69
m2 260 41 81.54
m3 260 59 86.15
m4 256 31 93.75
m5 256 66 70.70
m6 258 57 84.11
m7 257 49 78.99
m8 260 78 75.00

Total 4142 j 1063 74.34

Table A.8 Confusion matrix for the KNN classifier using critical band energy features for
the male speaker set.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 56 6 14 32 68 39 4 15 4 10
1 4 72 10 11 5 13 3 3 7 56
2 17 22 94 15 18 14 3 21
3 46 31 33 87 47 13 43 19 41
4 51 11 19 26 50 50 1 8 5 19
5 3 7 9 8 11 14 3 2 15
6 2 2 2 150 6 22 2
7 22 15 16 12 5 12 18 111 5 11
8 4 21 5 2 3 19 5 139 11
9 5 21 6 13 12 2 22

Total [-207 207 207 206 206 206 206 208 208 206
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Table A.9 Overall results for the KNN classifier using critical band energy features for the
male speaker set.

Speaker Classified [ Errors Accuracy (%)

ml 260 61 76.54
m2 260 32 87.69
m3 260 47 81.92
m4 256 28 89.06
m5 256 61 76.17
m6 258 39 84.88
m7 257 42 83.66
m8 260 75 71.15

Total 2067 385 81.38

Table A. 10 Confusion matrix for the KNN classifier using critical band energy features for
the female speaker set.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 151 7 3 15 3 2 2 2 8
1 3 133 7 26 26
2 7 113 75 3 9 2 2
3 21 82 96 1 5
4 7 13 197 4
5 38 1 171 1 17
6 1 7 10 158 8 33 1
7 2 2 1 5 168 5 1
8 9 1 12 39 14 161
9 2 17 10 2 153

Total 203 208 208 208 208 208 208 208 208 208
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Table A. 11 Overall results for the KNN classifier using critical band energy features for the
female speaker set.

Speaker Classified J Errors I Accuracy (%)
fl 258 92 64.34
f2 259 46 82.24
f3 259 59 77.22
f4 259 115 55.60
f5 260 83 68.08
f6 260 80 69.23
f7 260 41 84.23
f8 260 58 77.69

Total 2075 574 72.33

Table A. 12 Confusion matrix for the Gaussian classifier using critical band energy features
for both the male and female speakers using 9-element feature vectors.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 308 7 12 16 2 5 3 28 20 21
1 8 279 1 27 48 2 1 35
2 4 312 78 8 4

3 60 74 295 13 18
4 1 39 378 1
5 1 31 5 326 2 31
6 1 . 2 4 293 11 55 3
7 9 1 6 1 22 299 5 10
8 7 8 2 75 56 312
9 18 58 1 13 33 18 1 314

Total 410 415 415 414 414 414 414 416 416 414
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Table A. 13 Overall results for the Gaussian classifier using critical band energy features for
both the male and female speakers with 9-element feature vectors.

Speaker Classified Errors I Accuracy (%)]

fl 258 108 72.48
f2 259 49 71.43
f3 259 61 74.52
f4 259 131 59.85
f5 260 84 71.92
f6 260 82 74.23
f7 260 42 80.00

f8 260 50 81.92
ml 260 75 62.69
m2 260 41 81.54
m3 260 59 86.15
m4 256 31 93.75
m5 256 66 70.70
m6 258 57 84.11
m7 257 49 78.99
m8 260 78 75.00

Total 4142 1026 j 75.25

Table A. 14 Confusion matrix for the Gaussian classifier using critical band energy features
for the male speaker set.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 163 1 11 1 3 10 10 2
1 4 183 9 2 3 10
2 162 15 7
3 33 33 180 2 8
4 6 192
5 5 4 183 1 40
6 1 159 15 21 3
7 3 2 1 21 164 7
8 4 13 169
9 4 13 4 1 19 1 15 144

Total 207 207 207 206 206 206 206 208 208 206
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Table A. 15 Overall results for the Gaussian classifier using critical band energy features for
the male speaker set.

Speaker Classified Errors Ac~curacy(%)

ml 260 88 66.15
m2 260 31 88.08
m3 260 48 81.54
m4 256 25 90.23
m5 256 41 83.98
m6 258 19 92.64
m7 257 58 77.43
m8 260 58 77.69

Total 2067 368 82.22

Table A. 16 Confusion matrix for the Gaussian classifier using critical band energy features
for the female speaker set.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 179 3 10 2 3 12 12 6
1 131 5 9 3 31
2 6 131 55 9 2 1
3 10 73 139 7 3
4 3 11 197 2 1
5 39 177 1 29
6 1 4 144 5 19
7 1 2 3 1 5 176 5 2
8 40 5 168
9 4 24 1 1 19 3 140

Total 203 208 208 208 208 208 208 208 208208
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Table A. 17 Overall results for the Gaussian classifier using critical band energy features for
the female speaker set.

Speaker [Classified Errors Accuracy (%)

fl 258 75 70.93
f2 259 42 83.78
f3 259 67 74.13
f4 259 100 61.93
f5 260 67 74.23
f6 260 68 73.85
f7 260 26 90.00
f8 260 48 81.54

Total [ 2075 1 493 j 76.23
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A.3.2 Energy Profile Feature Set. Tables A. 18 and A. 19 show the confusion matrix

and individual speaker results for the male speaker set for MLP classification of the energy

profile feature set. The overall recognition accuracy is 38.99%. There are no results for the

female and complete speaker sets.

Table A. 18 Confusion matrix results for the MLP classifier using energy profile features for
the male speaker set.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 56 6 14 32 68 39 4 15 4 10
1 4 72 10 11 5 13 3 3 7 56
2 17 22 94 15 18 14 3 21
3 46 31 33 87 47 13 43 19 41
4 51 11 19 26 50 50 1 8 5 19

5 3 7 9 8 11 14 3 2 15
6 2 2 2 150 6 22 2
7 22 15 16 12 5 12 18 111 5 11
8 4 21 5 2 3 19 5 139 11
9 5 21 6 13 12 2 22

Total 208 208 208 208 208 208 208 208 208 208
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Table A. 19 Overall results for the MLP classifier using energy profile features for the male
speaker set.

Speaker Classified J Errors Accuracy (%)
ml 260 132 49.23
m2 260 142 45.38
m3 260 151 41.92
m4 260 157 39.62
m5 260 165 36.54
m6 260 174 33.08
m7 260 152 41.54
m8 260 196 24.62

Total 2080 1269 [ 38.99
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A.3.3 LPC Cepstral Coefficient Feature Set. Tables A.20 and A.21 show the confu-

sion matrix and individual speaker results for the complete speaker set for MLP classification

of the 12thorder LPC cepstral coefficient feature set. The overall recognition accuracy is

69.7 1 %. The recognition accuracy for the female speaker set, shown in Table A.23, is 74.5 1 %.

Table A.20 Confusion matrix for the MLP classifier using 12th-order LPC cepstral features

for both the male and female speaker sets.

Computed Desired

Class Class

0 1 2 3 4 5 6 7 8 9

0 211 134 32 7 68 9 22 50

1 34 176 42 2 5 28

2 39 37 177 54 1 25 3 37

3 4 1 91 303 3 24 18
4 55 27 325 9 27 4

5 8 11 380 18 12

6 1 404 4

7 17 13 17 5 11 9 287 15 14
8 3 7 28 1 1 17 374 1
9 39 40 53 3 2 13 250

Total 410 415 415 414 414 414 414 416 ýý 414
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Table A.21 Overall results for the MLP classifier using 12th-order LPC cepstral features for
both the male and female speaker sets.

Speaker Classified Errors Accuracy(%)

fl 258 77 70.16
f2 259 93 64.09
f3 259 74 71.43
f4 259 124 52.12
f5 260 68 73.85
f6 260 71 72.69
f7 260 54 79.23
f8 260 72 72.31
ml 260 93 64.23
m2 260 78 70.00
m3 260 77 70.38
m4 256 38 85.16
m5 256 98 61.72
m6 258 82 68.22
m7 257 66 74.32
m8 260 90 65.38

Total 4142 1255 69.71

Table A.22 Confusion matrix for the MLP classifier using 12th-order LPC cepstral features
for the female speaker set.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 132 22 18 5 19 6 1 4 10
1 13 122 16 6 1 34
2 14 15 104 31 1 12 11
3 1 44 165 2 21
4 31 20 170 3 1 10
5 3 1 4 4 176 10 12

6 7 204 10 3
7 18 1 5 8 4 164 1 1
8 1 1 4 179
9 8 28 3 2 3 8 7 130

Total 203 208 208 208 208 208 208 208 208 208
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Table A.23 Overall results for the MLP classifier using 12th-order LPC cepstral features for
the female speaker set.

Speaker Classified [Errors [Accuracy (%)

fl 258 62 75.97
f2 259 19 92.66

B3 259 67 74.13
f4 259 112 56.76
f5 260 36 86.15

f6 260 70 73.08
f7 260 55 78.85
f8 260 108 58.46

Total 2075 529 74.5 1
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A.3.4 LPC Coefficient Feature Set. Tables A.24 and A.25 show the confusion

matrix and individual speaker results for the complete speaker set for MLP classification of

the 10th-order LPC coefficient feature set. The overall recognition accuracy is 74.40%. The

recognition accuracy for the female speaker set, shown in Table A.27 is 74.93%.

Table A.24 Confusion matrix for the MLP classifier using 10th-order LPC coefficient fea-
tures for both the male and female speaker sets.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 213 15 48 27 1 5 62
1 7 291 21 19 2 25
2 41 12 199 2 10 34 12 22 1 16
3 20 2 357 5 9 14 5
4 4 13 36 348 4 5 2
5 17 8 28 1 31 293 33 6
6 1 389 19 10
7 30 12 7 1 25 10 321 11 3
8 4 3 16 3 5 375
9 74 76 65 4 5 51 1 295

Total 410 415 415 414 414 414 414 416 416 414
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Table A.25 Overall results for the MLP classifier using 10th-order LPC coefficient features
for both the male and female speaker sets.

Speaker Classified Errors Accuracy(%)

fi 258 74 71.32
f2 259 74 71.43
f3 259 84 67.57
f4 259 56 78.38

f5 260 74 71.54
f6 260 111 57.31
f7 260 15 94.23

f8 260 68 73.85
ml 260 69 73.46
m2 260 62 76.15
m3 260 79 69.62
m4 256 38 85.16
m5 256 57 77.73
m6 258 61 76.36
m7 257 63 75.49
m8 260 76 70.77

Total 4142 1061 74.40

Table A.26 Confusion matrix for the MLP classifier using 10 th-order LPC coefficient fea-

tures for the female speaker set.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9

0 74 1 35 1 1 8 1 28
1 1 163 2 3 13
2 36 2 105 3 7 5 15

3 6 1 195 5 3
4 5 5 12 180 19
5 20 11 20 115 20 2

6 204 1 6
7 9 10 1 46 178 1 2
8 7 4 2 196
9 52 26 43 5 13 1 145

Total 203 208 208 208 208 208 208 208 208 208
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Table A.27 Overall results for the MLP classifier using 10th-order LPC coefficient features
for the female speaker set.

Speaker [Classified I Errors Accuracy (%)

fl 258 58 77.52
f2 259 35 86.49
f3 259 106 59.07
f4 259 100 61.39

f5 260 53 79.62
f6 260 67 74.23
f7 260 24 90.77

f8 260 77 70.38

Total 2075 1 520 74.94
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A.4 Experiments With Concatenated Vectors

This section contains the results for experiments involving the concatenation of feature

vectors with the original time-averaged critical band energy features.

A.4.1 Critical Band Energy and Energy Profile Features. Tables A.28 and A.29

show the confusion matrix and individual speaker results for the concatenated critical band

energy and energy profile feature set. Each feature vector in this set contains eighteen elements.

The first nine elements are the original critical band energy features, and the last nine elements

are the energy profile features. The results of this experiment are an increase in recognition

accuracy from 84.71% to 85.93

Table A.28 Confusion matrix for the MLP classifier using concatenated critical band and

energy profile features for male speakers only.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 179 4 26 1 3 4 5
1 191 10 4 1 23
2 171 15 4 1
3 22 32 160 1 1 1
4 4 195 2 1
5 2 181 35

6 1 1 192 14 13 3
7 1 1 1 1 5 184 5
8 4 3 4 5 184
9 . 5 20 2 139

Total 207 207 207 206 206 206 206 208 208 206
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Table A.29 Overall results for the MLP classifier using concatenated critical band and energy
profile features for male speakers only.

Speaker Classified Errors Accuracy (%)
ml 260 39 85.00
m2 260 38 85.38
m3 260 24 90.77
m4 256 15 94.14
m5 256 40 84.38
m6 258 28 89.15
m7 257 56 78.21
m8 260 51 80.38

Total 2067 J291J 85.93
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A.4.2 Critical Band Energy and LPC Coefficient Features. The results shown in

Tables A.30 through A.33 are for the female and complete speaker set MLP classifications

using the concatenated critical band energy and averaged 10th-order LPC coefficient feature

set. The improvement over the critical band energy features alone is from 77.92% to 88.15%

for the female speaker set and from 76.21% to 88.45% for the complete speaker set.

Table A.30 Confusion matrix for the MLP classifier using concatenated critical band energy

and averaged 10th-order LPC coefficient features for female speakers only.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 145 1 12 18 3 4
1 2 171 5 12 19
2 16 2 189 1
3 4 7 184
4 10 1 203

5 9 172 3 14

6 3 200 7
7 2 2 192 6

8 5 1 8 2 202
9 21 24 1 22 171

Total 203 208 208 208 208 208 208 208 208 208
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Table A.31 Overall results for the MLP classifier using concatenated critical band energy

and averaged 10th-order LPC coefficient features for female speakers only.

Speaker Classified Errors Accuracy (%)
fl 258 15 94.19
f2 259 24 90.73
f3 259 32 87.64
f4 259 50 80.69
f5 260 33 87.31
f6 260 28 89.23
f7 260 8 96.92
f8 260 56 78.46

Total 2075 246 88.15

Table A.32 Confusion matrix for the MLP classifier using concatenated critical band energy
and averaged 10th-order LPC coefficient features for both male and female
speakers.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 312 2 4 6 1 4 10 1 24
1 1 332 1 6 6 58
2 26 10 400 1 11 6 2
3 11 3 389 5
4 12 10 400 2 1
5 2 8 7 370 8 1 17
6 3 405 20 5
7 22 1 3 357 10 2
8 2 4 19 6 8 388 1
9 19 53 2 31 1 310

Total 410 415 415 414 414 414 414 416 416 414
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Table A.33 Overall results for the MLP classifier using concatenated critical band energy
and averaged 10th-order LPC coefficient features for both male and female
speakers.

Speaker Classified Errors Accuracy (%)

fl 258 36 86.05
f2 259 38 85.33
f3 259 18 93.05
f4 259 68 73.75
f5 260 40 84.62
f6 260 33 87.31
f7 260 14 94.62
f8 260 30 88.46
ml 260 58 77.69
m2 260 28 89.23
m3 260 13 95.00
m4 256 3 98.83
m5 256 35 86.33
m6 258 19 92.64
m7 257 17 93.39
m8 260 29 88.85

Total 4142 ] 479 88.45
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A.4.3 Critical Band Energy and LPC Cepstral Features. The results shown in

Tables A.34 through A.37 are for the female and complete speaker set MLP classifications

using the concatenated critical band energy and averaged 12th-order LPC cepstrum feature

set. The improvement over the critical band energy features alone is from 77.92% to 86.51%

for the female speaker set and from 76.21% to 88.97% for the complete speaker set.

Table A.34 Confusion matrix for the MLP classifier using concatenated critical band energy

and averaged 12th-order LPC cepstral features for female speakers only.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 170 2 26 7 3 1 4 2
1 163 3 3 6
2 9 1 144 19 1 6 1
3 1 35 178 19
4 23 15 199 1
5 4 186 3 26
6 208 6 3
7 2 2 1 189 1
8 1 4 1 183
9 23 15 175

Total 203 208 208 208 208 208 208 208 208 208
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Table A.35 Overall results for the MLP classifier using concatenated critical band energy
and averaged 12th-order LPC cepstral features for female speakers only.

Speaker I Classified I Errors I Accuracy (%)
fl 258 31 87.98
f2 259 8 96.91
f3 259 28 89.19
f4 259 51 80.31
f5 260 19 92.69
f6 260 19 92.69
f7 260 25 90.38
f8 260 99 61.92

Total 2075 [ 280 [ 86.51

Table A.36 Confusion matrix for the MLP classifier using concatenated critical band en-
ergy and averaged 12th-order LPC cepstral features for both male and female
speakers.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 335 4 42 1 2 31 2 9
1 5 356 1 3 3 38
2 34 8 336 22 5 5
3 2 26 374 2 12 1
4 19 9 403 2 1
5 2 1 6 395 2 29
6 1 413 2 1
7 4 1 3 4 361 9 10
8 5 5 16 1 9 392 2
9 3 36 2 1 10 3 320

Total 410 415 415 414 414 414 414 416 416 414
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Table A.37 Overall results for the MLP classifier using concatenated critical band energy and
averaged 12th-order LPC cepstral features for both male and female speakers.

Speaker Classified Errors Accuracy (%)
fi 258 39 84.88
f2 259 28 89.19
B3 259 10 96.14
f4 259 62 76.06
f5 260 21 91.92
f6 260 42 83.85
f7 260 28 89.23
f8 260 35 86.54
ml 260 50 80.77
m2 260 21 91.92
m3 260 12 95.38
m4 256 1 99.61
m5 256 39 84.77
m6 258 25 90.31
m7 257 13 94.94
m8 260 31 88.08

Total 4142 457 88.97
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A.4.4 Critical Band Energy, LPC Cepstral, and LPC Coefficient Features. The

results shown in Tables A.38 through A.41 are for the female and complete speaker set MLP

classifications using the concatenated critical band energy, averaged 12th-order LPC cepstral,

and averaged 10th-order LPC coefficient feature set. The improvement over the critical band

features alone is from 77.92% to 89.07% for the female speaker set and from 76.21% to

92.40% for the complete speaker set.

Table A.38 Confusion matrix for the MLP classifier using concatenated critical band energy,

averaged 12th-order LPC cepstrum, and averaged 10th-order LPC coefficient
features for female speakers only.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 148 17 14 1 4
1 3 184 2 1 5
2 21 6 161 2 4
3 29 188 11

4 26 1 203 2
5 3 185 1 23
6 2 207 1 2
7 1 1 2 5 198 1

8 4 1 1 195
9 2 14 14 179

Total 203 208 208 208 208 208 208 208 208 208
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Table A.39 Overall results for the MLP classifier using concatenated critical band energy,

averaged 12th-order LPC cepstral, and averaged 10th-order LPC coefficient
features for female speakers only.

Speaker Classified Errors Accuracy (%)
fl 258 16 93.80
f2 259 8 96.91
f3 259 27 89.58
f4 259 53 79.54
f5 260 12 95.38
f6 260 24 90.77
f7 260 24 90.77
f8 260 63 75.77

Total 2075 227 89.07

Table A.40 Confusion matrix for the MLP classifier using concatenated critical band energy,
averaged 12th-order LPC cepstral, and averaged 10th-order LPC coefficient
features for both male and female speakers.

Computed Desired
Class Class

0 1 2 3 4 5 6 7 8 9
0 352 0 19 4 4 27 16
1 1 356 5 2 2 31
2 15 12 387 2 1 10 7
3 2 2 406 3 18
4 24 3 408 2
5 1 2 394 9
6 413 2 10
7 4 1 374 1 1
8 5 1 387
9 1 42 1 1 11 350

Total 410 415 415 414 414 414 414 416 416 414
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Table A.41 Overall results for the MLP classifier using concatenated critical band energy,
averaged 12th-order LPC cepstral, and averaged 10th-order LPC coefficient
features for both male and female speakers.

Speaker Classified Errors [Accuracy (%)

fl 258 26 89.92
f2 259 9 96.53
f3 259 8 96.91
f4 259 52 79.92
f5 260 22 91.54
f6 260 24 90.77
f7 260 24 90.77
f8 260 16 93.85
ml 260 63 75.77
m2 260 5 98.08
m3 260 11 95.77
m4 256 1 99.61
m5 256 31 87.89
m6 258 6 97.67
m7 257 3 98.83
m8 260 14 94.62

Total 4142 315 92.40
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Appendix B. C-shells

B.1 Introduction

This appendix contains the C-shells written to control experiments and compute results

for this work. The sections are arranged sequentially so that each experiment can be reproduced

with minimum effort. The interested reader need only pay attention to file and extension names

when reproducing the code. Questions may be directed to Capt Jeff Gay or Dr Martin DeSimio

at E-mail address jgay@afit.af.mil or mdesimio@afit.af.mil.

Most of the routines were written to be executed within the directory containing the data.

While the shells provided in no way represent optimum code for conducting word recognition

experiments, they are proven examples. There are "man" pages available that explain the

operation of the ESPS utilities. They are obtained by typing emanfilename.

To avoid confusion, the database is broken up by individual speaker. This format is

adhered to throughout all experiments. Thus, the converted SD files are stored in directories

identified by gender and type of data (either test or training). These were further broken down

by speaker numbers ml,... , m8 for the male speaker set and fl, ... , f8 for the female speaker

set.

This format is crucial for the LNKnet experiments, since the data for each speaker

has the same filename. For example, for a 31 element feature vector belonging to any male

speaker, the filename for data stored in the directories ml, ... , m8 is m.tr31 for the training

set and m.te31 for the test set.

B.2 C-shells for Controlling ESPS Experiments

This section contains the C-shells used to manipulate data, and control the experiments

performed in this work using ESPS. Each shell was written for implementation within the

directory containing the data. In each case, a foreach loop is used to cycle through the large

number of data files.
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B.2.1 Binary to Sampled Data Conversion. The following shell can be used to

convert the TI database files to ESPS FEASD, or "SD" files. This procedure is necessary

whenever the input data are given in binary form. The input files carry a .way extension, and

the output files have a .s d extension. The ESPS utility btosps performs the proper conversion

from binary to the ESPS SD format.

foreach i (*.wav)
set oname = $i:r
set oname = $oname.sd
btosps -f 12500 -t short -S 1024 -c "Binary to ESPS" $i
end

B.2.2 Segmenting Sampled Data Files. The following shell can be used to remove

silence portions from before and after the actual utterance within a sampled speech file. This

procedure is called segmenting, and may enhance the accuracy of the classification process.

The ESPS utility that performs segmentation is called find-ep.

The input files for find-ep are the filename. sd files produced by btosps, and the output

files carry the same . sd extension. The path given for the output file location is a typical path

for this work.

foreach i (*.sd)
find-ep -w $i /home/cub2/jgay/test-stuff/mtest-seg/ml/$i
end

B.2.3 Converting Sampled Data Files to Acoustic Feature Files. The following

shell can be used to convert ESPS SD fies to ESPS ACF files. These "acoustic feature" files

can be used with the various classification methods provided with ESPS. The input files for

the acf utility are the filename. sd files from either btosps or find-ep, depending on whether

or not segmentation was used. The output fies carry a .acf extension.

All paths shown are particular to this work. The file acf-params is required by ESPS.

It designates the features that are to be extracted by acf. A typical acf.params file is shown

following the shell. The example below is for the male speaker set from this work.
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cd Ifea..stufflfea-malelml
foreach i (*.sd)
set oname = $i:r
set oname = $oname.acf
acf -P IParamslacf-params $i IAcousticslmjtcfsl$oname
end
cd Ifea-stufflfea-malelni2
foreach i (*.sd)
set oname = $i:r
set oname = $oname.acf
acf -P /Params/acf..params $i /Acoustics/m..acfs/$oname
end
cd Ifea-stufflfea-malelm
foreach i (*.sd)
set oname = $i:r
set oname = $oname.acf
acf -P /Params/aef-params $i IAcousticslm-acfsl$oname
end
cd Ifea..stufflfea-malelm4
foreach i (*.sd)
set oname = $i:r
set oname = $oname.acf
acf -P IParanislacf-params $i /Acoustics/m-acfs/$oname
end
cd Ifea..stufflfea..male/m5
foreach i (*.sd)
set oname = $i:r
set oname = $oname.acf
acf -P /Params/acf-params $i /Acoustics/m-acfs/$oname
end
cd Ifea-stufflfea-malelm6
foreach i (*.sd)
set oname = $i:r
set oname = $oname.acf
acf -P /Params/acf-params $i IAcousticslm-acfsl$oname
end
cd Ifea-stufflfea-malelm7
foreach i (*.sd)
set oname = $i:r
set oname = $oname.acf
ad' -P /Params/acf..params $i IAcoustics/m-acfsl$oname
end
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cd /fea-stuff/fea-male/m8
foreach i (*.sd)
set oname = $i:r
set oname = $oname.acf
acf -P /Params/acf-params $i /Acoustics/m-acfs/$oname
end

B.2.3.1 Typical acf-params File. The list shown below is a typical acf-params

file, indicating which features are to be extracted by ESPS. This particular file indicates that

pre-emphasis filtering with p = 0.95 is to be used. Also indicated are a frame length of 150

with 50% overlap using a Hamming window.

This file instructs ESPS to extract the power, zero crossing, 10th-order LPC coefficients,

12th-order LPC cepstrum, and 1024 point FFr features. Thus, with a single file, many acoustic

features are made available for classification.

string sd-field-name = "samples";
float pre-emphasis = 0.950000;
float frame-len = 150.000000;
float start = 0.000000;
float step = 75.000000;
float nan = 0.000000;
string window-type = "HAMMING";
string units = "samples";
int sdilag = 0;
string sdlfname = "sd";
int pwr-flag = 1;
string pwrlfname = "power";
int zcilag = 1;
string zclfname = "zero-crossing";
int aciflag = 0;
string acifname = "auto-corr";
int ac-order = 10;
int rciflag = 0;
string rclfname = "refcof";
int Ipc-flag = 1;
string lpclfname = "lpc.coeffs";
int lartlag = 0;
string larifname = "log-areaxratio";
int Isfflag = 0;
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string 1sf name ="line-spec-freq";
float Isf-freq-res = 9.000000;
jut Ipccep-flag =1;
string lpccepi'name = "lpc-cepstrum";
jut Ipccep-order = 12;
string Ipccep-deriv = ";

float warp-param = 0.000000;
jut ffcep..flag = 0;
string ffcep fuame M-ffcepstrum";
jut ffcep..order = 0;
string ffcep-deny =

jut ff-flag = 1;
jut if-order = 10;

B.2.4 Generic Header Item. In addition to the above database preparations, a

generic header item can be added to each acf file to make interpreting the classification results

easier. For this work, this was accomplished in a loop with the ESPS addgen utility, as shown

below. With the header item added, the results from a classifier such as dtw-rec are distance

measures and pairs of classes instead of distance measures and pairs of filenames

foreach i (00m*)
addgen -g sequence-id -t CHAR -v zero -F $i
end
foreach i (01m*)
addgen -g sequence-id -t CHAR -v one -F $i
end
foreach i (02m'*)
addgen -g sequence-id -t CHAR -v two -F $i
end
foreach i (03m*)
addgen -g sequence-id -t CHAR -v three -F $i
end
foreach i (04m*)
addgen -g sequence-id -t CHAR -v four -F $i
end
foreach i (05m*)
addgen -g sequence-id -t CHAR -v five -F $i
end
foreach i (06m*)
addgen -g sequence-id -t CHAR -v six -F $i
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end
foreach i (07m*)
addgen -g sequence-id -t CHAR -v seven -F $i
end
foreach i (08m*)
addgen -g sequence-id -t CHAR -v eight -F $i
end
foreach i (09m*)
addgen -g sequence-id -t CHAR -v nine -F $i
end

B.2.5 Performing Dynamic Time Warping. The file below shows the commands

needed to run a complete DTW experiment for a 16 speaker data set. Again, the paths shown

are particular to this work, but represent a typical setup for this type of experiment.

To perform DTW, ESPS requires several lists. The list dtw.params tells ESPS which

acoustic features to use for classification. The following example tells ESPS to use the LPC

cepstrum for classification, and return only the closest distance measurement.

string sequence-field = "lpc-cepstrum";
int delta = 0;
int best-list-length = 1;

In the file shown below, the reference list is called inref_*, where the asterisk indicates the

appropriate speaker. inref_* contains a list of the reference templates, including the directory

path, that ESPS will use. Also shown below, the test lists are designated intest-*. These files

contain lists of the templates to be compared to the reference templates.

Finally, the results of the DTW classification are stored in the output files inres_*. These

output files fist the results of the experiment by giving the routine name, such as dtw-rec, the

header items associated with the test and reference templates, and the computed distance.

echo "Process ID: " $$
echo "The starting time and date are:"
date
cd /home/cub2/j gay
dtwxrec -P Params/dtw-params lists/indep-seg/ceplists/inreffl
lists/indep-seg/ceplists/intestfl Results/indseg/inres-fl
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dtwxrec -P Params/dtw..params lists/indep-seglcep-lists/inrefl2
lists/indep-seglcep-lists/intestl2 Results/indseglinresf2
dtw-rec -P Params/dtw-params lists/indep..seglcep-lists/inrefi3
lists/indep-seglcepiists/intestlf3 Results/indseglinresif3
dtw-rec -P Params/dtw-params lists/indep-seglcep-lists/inreflf4
lists/indep..seglcepiists/intest-f4 Results/indseglinresl4
dtw-rec -P Params/dtw-params lists/indep..seglcepiists/inrefl35
lists/indep-seglcepiists/intestlf5 Results/indseglinresi5
dtw-rec -P Params/dtw-params lists/indep-seglcepiists/inref-f6
lists/indep-seglcepiists/intestlf6 Results/indseglinresif6
dtw-rec -P Params/dtw..params lists/indep-seglcepiists/inrefl7
lists/indep-seglcep-lists/intesti'7 Results/indseglinresif7
dtw-rec -P Params/dtw-params lists/indep-seglceplfists/inrefl'
lists/indep..seglcep-lists/intestA'8 Results/indseg/inresl8
dtw..rec -P Params/dtw-params lists/indep-seglcepiists/inref-ml
lists/indep-seglcepiists/intest-ml Results/indseglinres..m1
dtwxrec -P Params/dtw..params lists/indep-seglcep-lists/inrefni2
lists/indep-seglcepiists/intest-m2 Results/indseglinres-m2
dtw-rec -P Params/dtw-params Iists/indep..seglcep-lists/inrefin3
llsts/indep-seglcepiists/intestni3 Results/indseglinres-m3
dtw-rec -P Params/dtw-params lists/indep-seglcep-lists/inref-m4
lists/indep-seglceplists/intest-m4 Results/indseglinres-m4
dtw-xec -P Paranis/dtw-params lists/indep..seglceplists/inref-m5
lists/indep-seglcep-lists/intestsn5 Results/indseglinres-m5
dtw-xec -P Params/dtw-params lists/indep..seg/cep-lists/inref-n6
Iists/indep..seglcep-lists/intest-m6 Results/indseglinres-m6
dtw-rec -P Params/dtw-params lists/indep-seglcep-lists/inref-m7
lists/indep-seglcepiists/intest-m7 Results/indseglinres-m7
dtwxrec -P Params/dtw..params 1ists/indep..seg/cepiists/inref-n8
lists/indep-seg/cep~ists/intest-ii8 Results/indseglinres-m8
echo "The stop time and date are:"
date

The following is a piece of a typical output results file showing results for classification

of the digits one and two. There are no errors indicated in this example.

dtw-rec: zero zero 3.082504e+05
dtwxrec: zero zero 2.446642e+05
dtw-rec: zero zero 1.940040e+05
dtwsrec: zero zero 2.022112e+,05
dtw-rec: zero zero 2.30J5640e+05
dtw..xec: zero zero 3.996790e+05
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dtw-rec: zero zero 2.185334e+05
dtw-rec: zero zero 2.581923e+05
dtw-rec: zero zero 3.141368e+05
dtw-rec: zero zero 2.884247e+05
dtw-rec: one one 1.918850e+05
dtwirec: one one 1.772558e+05
dtw-rec: one one 1.188105e+05
dtw.rec: one one 1.255484e+05
dtwxrec: one one 1.169767e+05
dtwxrec: one one 1.287016e+05
dtwxrec: one one 1.106396e+05
dtw.rec: one one 1.632882e+05
dtw-rec: one one 1.416697e+05
dtwxrec: one one 1.187777e+05

B.2.6 Quantifying The Results From ESPS. Since the output from the procedures

discussed above are lists of raw results, a method of quantification is needed to bring it all

together. The shell listed below can be used to score the results from a DTW experiment.

awk -f iesps-utils/confawk $1

This one-line script uses awk to call the shell called confawk. Shown below, this shell

totals up the number of matches for each digit, as well as the overall number of classified

digits. These two values are used to compute a classification accuracy for each digit, which is

printed to the screen.

For this work, the shell was called results. Thus, to quantify the results of a DTW

experiment you would type results inres-ml to get the results for speaker ml. A typical output

listing is shown following the shell.

BEGIN{
count = 0
zeroc = 0
onec = 0
twoc = 0
threec = 0
fourc = 0
fivec = 0
sixc = 0
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sevenc = 0
eightc = 0
ninec = 0
rightO = 0

righti = 0
right2 = 0
right3 = 0
right4 = 0
right5 = 0
right6 = 0
right7 = 0
right8 = 0
right9 = 0
}
{
true = $2
assigned = $3
if(true == "zero"){ zeroc += 1}

if(true == "one"){ onec += 1}

if(true == "two"){ twoc += 1}
if(true == "three"){ threec += 1}
if(true == "four"){ fourc += 1}
if(true == "five"){ fivec += 1}

if(true =="six") sixc += 1}
if(true == "seven"){ sevenc += 1}
if(true == "eight"){ eightc += 1}

if(true == "nine"){ ninec += 1}
if( true == "zero" && assigned == "zero" ) {rightO += 1}

if( true == "one" && assigned == "one" ) {rightl += 1}

if( true == "two" && assigned == "two" ) {right2 += 1}

if( true == "three" && assigned == "three" ) {right3 += 1}

if( true == "four" && assigned == "four" ) {right4 += 1}

if( true == "five" && assigned == "five" ) {right5 += 1}

if( true == "six" && assigned == "six" ) {right6 += 1}

if( true = "seven" && assigned == "seven" ) {right7 += 1}

if( true == "eight" && assigned == "eight" ) {right8 += 1}

if( true == "nine" && assigned == "nine" ) {right9 += 1}

}
END{
printf(" number of zeroes classified is: %d \n", zeroc)
printf(" correctly classified zeros: %d \n", rightO)
printf(" number of ones classified is: %d \n", onec)
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printf(" correctly classified ones: %d \n", righti)
printf(" number of twos classified is: %d \n", twoc)
printf(" correctly classified twos: %d \n", right2)
printf(" number of threes classified is: %d \n", threec)
printf(" correctly classified threes: %d \n", right3)
printf(" number of fours classified is: %d \n", fourc)
printf(" correctly classified fours: %d \n", right4)
printf(" number of fives classified is: %d \n", fivec)
printf(" correctly classified fives: %d \n", right5)
printf(" number of sixes classified is: %d \n", sixc)
printf(" correctly classified sixes: %d \n", right6)
printf(" number of sevens classified is: %d \n", sevenc)
printf(" correctly classified sevens: %d \n", right7)
printf(" number of eights classified is: %d \n", eightc)
printf(" correctly classified eights: %d \n", right8)
printf(" number of nines classified is: %d \n", ninec)
printf(" correctly classified nines: %d \n", right9)
printf(" zero classification accuracy: %f % \n", 100*
rightO/zeroc)
printf(" one classification accuracy: %f % \n", 100*
rightl/onec)
printf(" two classification accuracy: %f % \n", 100*
right2/twoc)
printf(" three classification accuracy: %f % \n", 100*
right3/threec)
printf(" four classification accuracy: %f % \n", 100*
right4/fourc)
printf(" five classification accuracy: %f % \n", 100*
right5/fivec)
printf(" six classification accuracy: %f % \n", 100*
right6/sixc)
printf(" seven classification accuracy: %f % \n", 100*
right7/sevenc)
printf(" eight classification accuracy: %f % \n", 100*
right8/eightc)
printf(" nine classification accuracy: %f % \n", 100*
right9/ninec)
numright = rightO + rightl + right2 + right3 + right4 + right5 + right6
numright = numright + right7 + right8 + right9
total = zeroc + onec + twoc + threec + fourc + fivec + sixc
total = total + sevenc + eightc + ninec
overall = numright/total
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printf(" overall classification accuracy: %f \n", 100*overall)
}

The following is a typical output listing created by the results C-shell listed above. The

default output device is the terminal screen, but can easily be redirected to a separate file for

each speaker.

number of zeroes classified is: 26
correctly classified zeros: 26
number of ones classified is: 26
correctly classified ones: 25
number of twos classified is: 26
correctly classified twos: 25
number of threes classified is: 26
correctly classified threes: 24
number of fours classified is: 26
correctly classified fours: 26
number of five classified is: 26
correctly classified fives: 25
number of six classified is: 26
correctly classified sixes: 26
number of seven classified is: 26
correctly classified sevens: 26
number of eights classified is: 25
correctly classified eights: 25
number of nines classified is: 26
correctly classified nines: 24
zero classification accuracy: 100.000000 %
one classification accuracy: 96.153846 %
two classification accuracy: 96.153846 %
three classification accuracy: 92.307692 %
four classification accuracy: 100.000000 %
five classification accuracy: 96.153846 %
six classification accuracy: 100.000000 %
seven classification accuracy: 100.000000 %
eight classification accuracy: 100.000000 %
nine classification accuracy: 92.307692 %
overall classification accuracy: 97.297297

B-11



B.2.7 Converting MATLAB Files to ESPSFEA Files. In order to perform DTW ex-

periments on features created with MATLAB, the MATLAB files must be converted to ESPSFEA

files. This can be done with the shell listed below.

foreach i (*.f9)
set oname = $i:r
set oname = $oname.fea
addfeahd -c "convert type" -aiesps-utils/ASCII2esps $i
-/feamod/mtefea/$oname
end

This script uses the ascii2esps file to format and label the MATLAB files for use with

ESPS. The typical ascii2esps file is shown below indicates that there are nine elements per

row of the input matrix. The converted data is given the label crit-band-en and designated as

floating point.

crit-band-en FLOAT 9

B.3 C-shells For Controlling LNKnet Experiments

This section lists and discusses the C-shells used to control experiments performed

using LNKnet. While LNKnet is mainly window driven, we were able to perform multiple

experiments, without accessing the windows each time, with the codes included below. This

section is designed such that if followed step by step, the interested reader should be able to

reproduce the experiments discussed in this work.

B.3.1 Preparing The Data For LNKnet. LNKnet requires ASCII data files in order

to perform its classification routines. For this work, we used either MATLAB results that were

saved in ASCII form, or the ESPS pplain utility to convert acoustic features generated with

acf to ASCII form.

LNKnet requires that the first element in each line of the ASCII data file be the class

indicator for that line. For this work, each line was a feature vector, and since we were

interested in classifying digits, the first element of each vector was one of the digits from "0"

to "9."
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B.3.2 Setting The Defaults. LNKnet gets important information for classification

fromtwo defaultfiles. The files are call fname. test. default and fname. train. default.

These files tell LNKnet the number of input features to look for, the number of output classes,

the number of patterns to be tested, and the labels to attach to each pattern. An example

fname. test. default file is shown below.

describe -ninputs 31 -noutputs 10 -npatterns 260 -labels
zero,one,two,three,four,five,six,seven,eight,nine

This file should be entered as a single line. The example indicates 31 features per

feature vector, ten output classes, 260 possible patterns to be classified, and that the English

words for each digits are to be attached as labels. Similarly, a fname. train, defaults file

should appear as below.

describe -ninputs 31 -noutputs 10 -npatterns 3640 -labels
zero,one,two,three,four,five,six,seven,eight,nine

This file indicates 31 features per feature vector, ten output classes, and 3640 possible

training patterns, with the English words for the digits attached as labels.

The shell shown below automatically creates the proper default files for LNKnet. We

called it snb-setup. To run this file you would type snb-setup 31 1 at the command line. The

"31" indicates the number of features, and the "1" is an arbitrarily chosen speaker number.

rm indep.train
rm indep.test
# enter extension to identify number of critical bands
echo begin at:
date
echo Process ID is: $$
foreach k ([f1[$2]/)
set speaker = 'echo $k I cut -cl-2 -'

foreach i ([t1[1-8]/[fI.tr{$1} [m][1-8]/[m].tr{ $1})
set j = 'echo $i I cut -cl-2 -'
if ($j == $speaker) then
set pre = $i:r
set namel = {$pre}.te{$1}
cat $namel >> indep.test
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echo $namel will hold test data
set name2 = { $pre}.tr{$1}
cat $name2 > > indep.test
echo $name2 will hold test data
else
set pre = $i:r
set namel = {$pre}.te{$1}
cat $namel >> indep.train
echo $namel copied to indep.train
set name2 = {$pre}.tr{$1}
cat $name2 >> indep.train
echo $name2 copied to indep.train
endif
end
set ntr-pat = 'wc -1 indep.train I cut -cl-8'
set nte-pat = 'wc -1 indep.test I cut -cl-8'
echo $ntr-pat
echo $nte-pat
echo describe -ninputs {$1} -noutputs 10 -npatterns 3640 -labels
zero,one,two,three,four,five,six,seven,eight,nine >! indep.train.defaults
echo describe -ninputs {$1} -noutputs 10 -npatterns 260 -labels
zero,one,two,three,four,five,six,seven,eight,nine >! indep.test.defaults
echo finished with $speaker
end
echo end at:
date

The first two lines of this code remove any existing . default files. Following a time

and date stamp and process ID labeling, the program cycles through the individual speaker

directories one at a time. This program is setup to perform hold-one-out speaker-independent

word recognition as described in Chapter III and in (21)

If speaker "1" is chosen when the command is entered, that speaker is "held out" of the

training process. Thus, this routine stores the patterns for speaker fl in the test .def ault s

file, and the rest of the "training" patterns in the train, defaults file.

B.3.2.1 Getting The .run File. Several files are created by LNKnet each

time an experiment is executed. In order to run multiple experiments without accessing the

windows environment, a . run file is needed. To get this, a single LNKnet experiment is
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executed. Executing an experiment generates all of the necessary files for multiple passes

through LNKnet.

B.3.3 Classifying The Features With LNKnet. After obtaining the necessary files

as described above, we were able to conduct multiple experiments - one for each speaker.

This was accomplished using a shell called snb.runex. This program is nearly identical to

the setup program, except that it cycles through all sixteen speakers instead of just one. To

execute this program for a feature set containing 31 features per vector, type snb-runex 31.

The actual shell is shown below.

rm indep.train
rm indep.test
# enter extension to identify number of critical bands
echo begin at:
date
echo Process ID is: $$
foreach k ([f][1-8]/ [m][1-8]/)
set speaker = 'echo $k I cut -cl-2 -'

foreach i ([f][1-8]/[ft.tr{$1} [m][1-8]/[ml.tr{$1})
set j = 'echo $i I cut -cl-2 -'
if ($j == $speaker) then
set pre = $i:r
set namel = {$pre}.te{$1}
cat $namel >> indep.test
echo $namel will hold test data
set name2 = {$pre}.tr{$1}
cat $name2 > > indep.test
echo $name2 will hold test data
else
set pre = $i:r
set namel = {$pre}.te{$1}
cat $namel > > indep.train
echo $namel copied to indep.train
set name2 = {$pre}.tr{$1}
cat $name2 > > indep.train
echo $name2 copied to indep.train
endif
end
set ntr.pat = 'wc -1 indep.train I cut -cl-8'
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set nte-pat = 'wc -1 indep.test I cut -cl-8'
echo $ntr-pat
echo $nte-pat
echo describe -ninputs {$1} -noutputs 10 -npatterns 3640 -labels
zero,one,two,three,four,five,six,seven,eight,nine >! indep.train.defaults
echo describe -ninputs {$1} -noutputs 10 -npatterns 260 -labels
zero,one,two,three,four,five,six,seven,eight,nine >! indep.test.defaults
echo finished with $speaker
# LNKnet is called here to do a train and test run for each
# held out speaker Xl*.run >! results.{$speaker}
rm indep.train
rm indep.test
echo finished with $speaker
end
echo end at:
date

B.3.4 Quantifying The Results. Once a set of experiments is completed, the results

need to be quantified. Notice that the classification results are saved in files designated

results f 1, ... , results .m8. These files contain confusion matrices, individual speaker

results, and a great deal of other information. In order to pick out just the individual results,

the following shell was used.

set variable sumSamp = 0
set variable sumErr = 0
grep model Xl*.param > total.res
echo" " >> total.res
echo "Results Samples Errors %Error StdDev RMS Err" >> total.res
echo"-" >> total.res
foreach i (results.*)
grep Overall $i > > total.res
set Samp = 'grep Overall $i I cut -c14-16'
@ sumSamp = $sumSamp + $Samp
set Err = 'grep Overall $i I cut -c25-27'
@ sumErr = $sumErr + $Err
end
echo"-" >> total.res
echo" " >> total.res
awk -f /link-utils/gather total.res > > total.res
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echo" " >> total.res echo "the total number of samples was: "$sumSamp
> > total.res

echo" " > > total.res
echo "the total number of errors was: "$sumErr >> total.res
echo" " >> total.res
grep normalize X1*.param > > total.res

Using the grep command, this shell first grabs the name of the type of classifier used and

stores it in the file total. res. Then, using the same command, the overall results for each

results. ext file are stored in total. res Next, the number of samples and the number of

errors are computed.

Using the awk command, the script called gather, which is shown below, is used to

compute the average error rate, average accuracy, and number of speakers classified. These

results are also stored in total. res.

BEGIN{ count = 0 sum = 0 } /Overall/{ count += 1 val = $4 sum = sum*(count-
1)/count + val/count } END{ print "the average error rate is: " sum" %"
print "the average accuracy is: " 100-sum" %" print "count is: " count

}
Finally, the number of samples and number of errors is stored in total. res, as well

as the particular characteristics of the routine used (e.g., number of nodes, hidden layer, etc.

... ). A typical output from this routine is shown below.

mip model
Results Samples Errors %Error StdDev RMS Err

Overall 260 10 3.85 ( 1.2) 0.090
Overall 260 2 0.77 (0.5) 0.048
Overall 260 7 2.69 (1.0) 0.072
Overall 256 3 1.17 (0.7) 0.052
Overall 256 23 8.98 ( 1.8) 0.121
Overall 258 0 0.00 (0.0) 0.045
Overall 257 7 2.72 (1.0) 0.078
Overall 260 9 3.46 (1.1) 0.082

the average error rate is: 2.955%
the average accuracy is: 97.045%
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count is: 8
the total number of samples was: 2067
the total number of errors was: 61
-debug 0 -verbose 3 -verror I -nodes 31,25,10 -alpha 0.6 -etta 0.1

B.3.4.1 Extra Procedures For MLP Quantification. If the classifier used was

a MLP, there is an extra step necessary to obtain the quantified results of the experiments.

Before running the routine described above, the shell shown below must be executed. This

shell arranges the results for use with the above routine, and stores them in the files mip re s . f 1,

.... mlpres.m8.

foreach i (results.*)
set name = $i:e
sed -n '138,156 p' $i >! mlpres.$name
end

Once this is completed, the original quantifying script should be altered such that

results. * is replaced by mipres. * in the loop argument. Also, the word "normalize"

should be replaced with "nodes." It is helpful to have separate shells instead of continuously

altering the original shell.

B.3.5 Obtaining an Overall Confusion Matrix. To get an overall confusion matrix

for the MLP classifier from the individual matrices provided for each speaker, the shell shown

below can be used.

mlp-confus
coldcut grpmat
refuz prepmat
cleanup

This script calls four separate shells that each perform a specific task. The shell called

mlp.confus, shown below, cuts the confusion matrices out of each individual results . * file

and stores them in the file called grpmat.

foreach i (results.*)
set name = $i:e
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sed -n '123,132 p' $i >> grpmat
end

Next, the script called coldcut, shown below, uses a different script called blank2zero

to place the digit "0" into the blank spaces in the original confusion matrices.

cut -c4 $1 >! bob-lines
cut -clO-12 $1 >! bob-zeroes
cut -c16-18 $1 >! bob-ones
cut -c22-24 $1 >! bobtwos
cut -c28-30 $1 >! bob-threes
cut -c34-36 $1 >! bob-fours

cut -c40-42 $1 >! bob-fives
cut -c46-48 $1 >! bob-sixes
cut -c52-54 $1 >! bob-sevens
cut -c58-60 $1 >! bob-eights
cut -c64-66 $1 >! bob-nines
cut -c71-73 $1 >! bob-totals
awk -f Ilink-utils/blank2zero bob-lines >! reallines
awk -f /link-utils/blank2zero bob-zeroes >! real-zeroes
awk -f /link-utils/blank2zero bob-ones >! real-ones
awk -f /link-utils/blank2zero bobtwos >! real-twos
awk -f /link-utils/blank2zero bob-threes >! real-threes
awk -f /link-utils/blank2zero bob-fours >! real-fours
awk -f /link-utils/blank2zero bob-fives >! real-fives
awk -f /link-utils/blank2zero bob-sixes >! real-sixes
awk -f /link-utils/blank2zero bob-sevens >! real-sevens
awk -f /link-utils/blank2zero bob-eights >! real-eights
awk -f /link-utils/blank2zero bob-nines >! real-nines
awk -f /link-utils/blank2zero bob-totals >! real-totals

paste real-lines real-zeroes real-ones real-twos real-threes real-fours
real-fives real-sixes real-sevens real-eights real-nines
real-totals >! prepmat

The results from this script are stored in a file called prepmat. The blank2zero script

is shown below.

{ printf(" %d \n" ,$1) }

Finally, the shell called refuz constructs the overall confusion matrix using yet another

shell called fuzme. These two files are shown below in order of precedence.
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awk -f-/link-utils/fuzme $1 > total.con

BEGIN{ count = 0
total = 0
zeroc = 0 onec = 0
twoc = 0
threec = 0
fourc = 0
fivec = 0
sixc = 0
sevenc = 0
eightc = 0
ninec = 0
zero-one = 0
zerotwo = 0
zerothree = 0
zero-four = 0
zero-five = 0
zero-six = 0
zero-seven = 0
zero-eight = 0
zero-nine = 0
zero-total = 0
one-zero = 0
one-two = 0
onethree = 0
one-four = 0
one-five = 0
one-six = 0
one-seven =0
one-eight = 0
one-nine = 0
one-total = 0
two-zero = 0
two-one = 0
two-three = 0
two-four = 0
two-five = 0
two-six = 0
two-seven = 0
two-eight = 0
two-nine = 0
two-total = 0

B-20



three-zero = 0
three-one = 0
three-two = 0
three-four =0
three-five = 0
three-six = 0
three-seven = 0
three-eight = 0
three-nine = 0
three-total = 0
four-zero = 0
four-one = 0
four-two = 0
four-three = 0
four-five = 0
four-six = 0
four-seven = 0
four-eight = 0
four-nine = 0
four-total = 0
five-zero = 0

five-one = 0
five-two = 0

five-three = 0
five-four = 0
five-six = 0

five-seven = 0
five-eight = 0
five-nine = 0
five-total = 0

six-zero = 0
six-one = 0
six-two = 0
six-three = 0
six-four = 0
six-five = 0

six-seven = 0
six-eight = 0
six-nine = 0
six-total = 0
seven-zero = 0
seven-one = 0
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seven-two = 0
seven-three = 0
seven-four = 0
seven-five 0

seven-six = 0
seven-eight = 0
seven-nine = 0
seven-total = 0
eight-zero 0
eight-one = 0
eight-two - 0
eight-three = 0
eight-four = 0

eight-five = 0
eight-six = 0
eight-seven = 0
eight-nine = 0
eighttotal = 0
nine-zero 0

nine-one = 0
nine-two = 0
nine-three = 0
nine-four = 0
nine-five = 0
nine-six = 0
nine-seven = 0
nine-eight = 0

nine-total = 0
}
{
linenum = $1
addO = $2
addi = $3
add2 = $4
add3 = $5
add4 = $6
add5 = $7
add6 = $8
add7 = $9
add8 = $10
add9 = $11
addtot = $12
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if(linenum == "O"){zeroc = zeroc + addO
zero-one = zero-one + add1

zerotwo = zerotwo + add2

zero-three = zero-three + add3

zero-four = zero-four + add4
zero-five = zero-five + add5

zero-six = zero-six + add6
zero-seven = zero-seven + add7
zero-eight = zero-eight + add8
zero-nine = zero-nine + add9
zerototal = zerototal + addtot}
if(linenum == "l"){onec = onec + addl
one-zero = one-zero + addO
one-two = one-two + add2
onethree = one-three + add3
one-four = one-four + add4
one-five = one-five + add5
one-six = one-six + add6
one-seven = one-seven + add7
one-eight = one-eight + add8
one-nine = one-nine + add9
one-total = onetotal + addtot}
if(linenum == "2"){twoc = twoc + add2
two-zero = two-zero + addO
two-one = two-one + add1
two-three = twothree + add3
two-four = two-four + add4
two-five = two-five + add5
two-six = two-six + add6
two-seven = two-seven + add7
two-eight = two-eight + add8
two-nine = two-nine + add9
two-total = twototal + addtot}
if(linenum == "3"){threec = threec + add3

three-zero = three-zero + addO
three-one = three-one + add1
three-two = threetwo + add2
three-four = three-four + add4
three-five = three-five + add5
three-six = three-six + add6
three-seven = three-seven + add7
three-eight = three-eight + add8
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three-nine = three-nine + add9
three-total = three-total +i addtot}
if(linenum == "4"){fourc = fourc + add4
f'our-zero =four-zero + addO
four-one =four-one + addl.
four-two =four-two + add2
four-three = four-three + add3
four-five = four-five + add5
four-six = four-six + add6
four-seven =four-seven + add7
four-eight =four-eight + add8
four-nine = four-nine + add9
four-total = four-total + addtot}
if(linenum == "5"){flvec = flvec + add5
five-zero = flve-zero + addO
five-one = five-one + addi
fiveiwo = fiveiwo + add2
flveihree = flve-three + add3
five-four = five-four + add4
five-six = five-six + add6
five-seven =five-seven + add7
five-eight =five-eight + add8
five-nine = five-nine + add9
flve-total = five-total + addtot}
if(linenum == "6")f{sixc = sixc + add6
six-zero = six-zero + addO
six-one = six-one + addi
six-two = sixitwo + add2
sixihree = sixihree + add3
six-four = six-four + add4
six-five = six-ilve + add5
six-seven =six-seven + add7
six-eight =six-eight + add8
six-nine = sixunine + add9
sixitotal = sixitotal + addtot}
if(linenum == "7"){sevenc = sevenc + add7
seven-zero =seven-zero + addO
seven-one =seven-one + addi
sevenitwo =sevenitwo + add2
seven-three = seven-three + add3
seven-four = seven-four + add4
seven-five = seven-five + add5
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seven-six = seven-six + add6
seven-eight =seven-eight + add8
seven-nine =seven-nine + add9
seveniotal =seven-total + addtot}
if(linenum == "8"){eighte eightc + add8
eight-zero =eight-zero + addO
eight-one =eight-one + addi
eigh~two =eigh~two + add2
eigh~three = eight-three + add3
eight-four = eight-four + add4
eight-five = eight-five + add5
eight-six = eight-six + add6
eight-seven =eight-seven + add7
eight-nine = eight-nine + add9
eigh~total = eigh~total + addtot}
if(linenum == "9"){ninec ninec + add9
nine-zero nine-zero + addO
nine-.one =nine-one + addi
nine-two =nineiwo + add2
nineihree = nineihree + add3
nine-four = nine-four + add4
nine-five = nine-five + add5
nine-six = nine-six + add6
nine-seven =nine-seven + add7
nine-eight =nine.-eight + add8
nine total =nineiotal + addtot}

END{ printf(" %d %d %d %d %d %d %d %d %d %d %d
\ n", zeroc,zero-one,zero-two,zero three zero. four,
zero-five,zero-six,zero-seven,zero-eight,zero.-ine,zero-tota1)
printf(" %d %d %d %d %d %d %d %d %d %d %d
\ n", one-zero,onec,one-two,oneihree one-four,
one-five,one-six,one-seven,one..eight,one-nine,one-total)
printf(" %d %d %d %d %d %d %d %d %d %d %d
\ n", two-zero,two-one,twoc,two~hree,two-four,
two-five,two-six,two-seven,two-eight,two-nine,two-total)
printf(" %d %d %d %d %d %d %d %d %d %d %d
\ n", three-zero,three-one,three-two,threec,threei'our,
three-ive,three-six,three-seven three-eight,three-nine,three-total)
printf(" %d %d %d %d %d %d %d %d %d %d %d
\ n", four-zero,four-one,four..two,fourihree,fourc,
four-five,four-six,four-seven,four-eight,four-nine,four-total)

B -25



printf(" %d %d %d %d %d %d %d %d %d %d %d
\n", five-zero,five-one,fivetwo,fivethree,five-four,
fivec,five-six,five-seven,five-eight,five-nine,five-total)

printf(" %d %d %d %d %d %d %d %d %d %d %d
\n", six-zero,six-one,sixtwo,sixthree,sixifour,

six-five,sixc,six-seven,six-eight,six-nine,sixAotal)
printf(" %d %d %d %d %d %d %d %d %d %d %d
\n", seven-zero,seven-one,seven-two,seventhree,sevenfour,
seven-five,s,seven-six,sevenc,seven-eight,seven-nine,seven-total)
printf(" %d %d %d %d %d %d %d %d %d %d %d
\n", eight-zero,eight-one,eighttwo,eightthree,eight-four,
eight-flve,eight-six,eight-seven,eightc,eight-nine,eight-total)
printf(" %d %d %d %d %d %d %d %d %d %d %d
\n", nine-zero,nine-one,nine-two,ninethree, nine-four,
nine-five,nine-six,nine-seven,nine-eight,ninec,nine-total)
}

The first thing this file does is initialize a multitude of variables. Next, the fields in

prepmat that contain the class and each of the digits are stored in the variables linenum, addO,

add9, and addtot. This is followed by a count of each digit for each line in prepmat.

Next, the lines containing the totals for each digit are printed to the file total. con.

Finally, the cleanup removes from the current directory the multitude of files that are created

by this process. Thus, the overall confusion matrix is stored in total . con.

B.3.5.1 Modifications For Other Classifiers. If a classifier other than the

MLP is used, the routine mlp-confus will probably have to be modified for the overall

confusion matrix procedure to work properly, since the individual confusion matrices are

located at different line numbers in the result s .ext file based on which classifier was used.

The only modification necessary is in the "sed" line of this routine. In this line, substitute

the appropriate line numbers for "123,132." It is helpful to have separate files to quantify the

results of different classifiers.
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B.4 Feature Vector Averaging

The following program, written in C, was provided by Captain Dave Jennings. This

program is used to compute the average LPC coefficient and LPC cepstral coefficient features

for the acoustic features converted from the ESPS ACF format to ASCII. The program requires

lists designating the input file names and the class that the file falls in as shown in the example

below.

00mlsetO.acf 0
01mlsetO.acf 1
02mlsetO.acf 2

09mlsetO.acf 9

It should be noted that there is a bug in this program. The output is typically a file of

vectors of all utterances of the ten digits by a single speaker, with the class attached as the first

element of each vector. For some reason, the code duplicates the last vector. For this work,

the last vector is simply deleted from each file.

After compiling the code, the feature vectors are averaged by calling the routine as

follows.

lpcmeans listname /path/outfile.ext

The actual program is shown below. The variable numlpc can be set to accommodate

any number of coefficients.

Program Name: LPCmeans.c
Thesis Task : Neural nets on features on isolated word recognition.
Program Task : Calculate the means of the lpc-cepstral data and output
the information in a format compatible with LNKnet.
Author: Lt David L. Jennings
Written: 4 Aug 1994

/* ................... MAIN PROGRAM ......................... *
main(int argc,char *argvyl)
{
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FILE *jn-file,*out-fjle,*file-ljst;
jut count,i,numlpc;
char fname[80],class[80];
float a[20],mean[1201;
* ..... Check command line arguments......

if(argc<2)

printf(" You need to provide the names of input and output
files.\nV1);
printf("The format is: LPCmeans {input file list} {output
file}\n");
exit(1);

1*........... Open input files..............
if((file-iist =fopen(argv [1]," r" ))= =NULL)

printf(" Cannot open input file\ n")

exit(1);

I
if((outiile =fopen(argv[121," w" ))==NULL)

I
printf("Cannot open output file\n");
exit(1);

I
numlpc = 12;
while(!feof(file-list))

I
fscanf(file-list," %s" ,fname);
fscanf(fileilist," %s" ,class);
if((in-file = fopen(fname," r" ))==NULL)

I
printf(" Cannot open input file specified in file list.\n");
printf(" %s is the culprit" ,fname);
exit(1);

I
for (i=0;i<numlpc;i++) mean[i] = 0;
count = 0;
for (i=0;i<numlpc;i++) fscanf(in-file," %f" ,&a[i]);
while(!feoffin-file))

I
for (i=0;i<numlpc;i++) mean[i] = mean[i] + a[i];
for (i=0;i<numlpc;i++) fscanf(in-.file," %f" ,&a[i]);
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count+i+;

for (i=O;i<numlpc;i++) mean[i] = mean[iI/count;
for (i=O;i<numlpc;i-i+) printf(" %5.4f ",meanfi]);
printfC' \n" );
felose(in-file);
fprintf(outfile," %s ",class);
for (i=O;i<numlpc;i-i+) fprintf(out-file," %5.4f ",mean[i]);
fprintf(out-file," \')
I
felose(fileilist);
felose(out-file);
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Appendix C. MATLAB Files

C.1 Introduction

This appendix contains the m-files and functions used for this work. In many cases,

multiple files exist that perform the same functions, but for different speaker sets. This is

noted in the descriptions that accompany each file, but only one example of each file is given.

C.2 Critical Band Energy Feature Calculation for the Training Data Set

The following m-file can be used to compute the critical band energy features from a

set of binary sampled data speech files. This file was used to create feature vectors for the

male training set from the TI data base. Another file was created to compute the features for

the female training set.

%function []=mtrainfeat(window,overlap)
clear

% Masters Thesis
"% Advisor: Dr Martin P. DeSimio, mdesimio@afit.af.mil
"% Student: Capt Jeffrey M. Gay, jgay@afit.af.mil
"% Program: mtrainfeat.m

"% PURPOSE: Spectrogram and feature vector computation.
"% DESCRIPTION: This m-file compute critical band energy features for
"% each input file. First, a spectrogram is computed for the
"% file, then the features vectors are created from the
"% spectrograms. The results are stored in matrices comprised
"% of the set of all utterances of the same digit for each
"% speaker. That is, each matrix contains the features
"% representing all utterances of the same digit for a
"% particular speaker. The data are saved in ascii form.

% BEGIN:

% 1. Set frame length to 150 samples.
% 2. Set frame overlap to 50%.
% 3. Determine number of frame shifts to be completed.
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window = 150;
overlap = 1/2;

OL = fix(window*(1-overlap));

% 1. Read the data.

forj 1:8;
for k =0:9
for i= 0:9
filename = ['O',int2str(k),'m',int2str(j),'set',int2str(i)];
fname = [filename,'.wav'];
fid = fopen(fname,'r');
data = fread(fid,'short');
fclose(fid);
data = data(513:length(data));

% 1. Remove one frame length from the data length.
% 2. Determine number of windows needed.

N = length(data);
done = fix((N-window)/OL);

% Compute spectrogram-

% 1. Multiply frame by given window.
% a. Rectangular implied if no "win" selected.
% 2. Compute Fourier transform, and select zero to pi points.

% 3. Average the frequency bin over time.

windat = zeros(window,1);
win = hamming(window);
for ii= 1:done
stop = window + (OL*ii-OL);
start = 1 + (OL*ii-OL);
temp - data(start: stop);
windat(:,ii) = win .* temp;
end
Windat = abs(fft(windat,256));
Windat = Windat((1:128),:);
[m,n] =size(Windat);

timeavg(i+l,:) = (1/n)*sum(Windat');
Windat = -Windat;
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end

% 1. Set counter for number of features per vector.

for b = 6:3:24

% 1. Compute bin endpoint locations based on critical band scale.

delta = 128/6250;
end-pt(1) = 380;
piece = (2000 - 380) / b;
for s = 2:b
end-pt(s) = end-pt(s - 1) + piece;
end
end-pt(b + 1) = 2000;
Lh = (exp(end-pt*log(2)/1000) - 1)*1000;
bin-temp = round(fLh * delta);
right = [bin-temp(2:b) - 1,bin-temp(b + 1)];

bins = [bin-temp(l :b)',right'];

% 1. Average the critical band frequency windows.

for y = 1:10
for kk = l:b
forl= 1:2
a(l) = bins(kk,l);
end
count = a(1):a(2);
div = length(count);
freqavg(y,kk) = (1/div)*sum(timeavg(y,a(1):a(2)));
end
end

% 1. Store the matrix containing the critical band energy features.

filename2 = ['m',int2str(j),'dig',int2str(k),'all'];
fname = [filename2,'.f',int2str(b)];
savmag = ['save ',fname,' freqavg -ascii'];
eval(savmag);
clear end-pt
clear freqavg
end
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clear timeavg
end
end

C.3 Critical Band Energy Feature Calculation for the Testing Data Set

The following m-file can be used to compute the critical band energy features from a

set of binary sampled data speech files. This file was used to create feature vectors for the

male test set from the TI data base. Another file was created to compute the features for the

female test set.

%function[]=mtrainfeat(window,overlap)
clear

"% Masters Thesis
"% Advisor: Dr Martin P. DeSimio, mdesimio@afit.af.mil
"% Student: Capt Jeffrey M. Gay, jgay@afit.af.mil
"% Program: mtestfeat.m

"% PURPOSE: Spectrogram and feature vector computation.
"% DESCRIPTION: This m-file compute critical band energy features for
"% each input file. First, a spectrogram is computed for the
"% file, then the features vectors are created from the
"% spectrograms. The results are stored in matrices comprised
"% of the set of all utterances of the same digit for each
"% speaker. That is, each matrix contains the features
"% representing all utterances of the same digit for a
"% particular speaker. The data are saved in ascii form.

% BEGIN:

% 1. Set frame length to 150 samples.
% 2. Set frame overlap to 50%.
% 3. Determine number of frame shifts to be completed.

window - 150;
overlap - 1/2;
OL = fix(window*(1-overlap));

% 1. Read the data.
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forj = 1:8;
for k = 0:9
for m = 0:1
fori= 1:8
filename = ['O',int2str(k),'m',int2str(j),'s',int2str(i),'t',int2str(m)];
fname = [filename,'.wav'];
fid = fopen(fname,'r');
if fid == -1
Warning = ['The data 0',int2str(k),'m',int2str(j),'s',int2str(i),'t',...
int2str(m),' is missing or inaccessible.']
else
data = fread(fid,'short');
fclose(fid);
data = data(513:length(data));

% 1. Remove one frame length from the data length.
% 2. Determine number of windows needed.

N = length(data);
done = fix((N-window)/OL);

% Compute spectrogram-
% 1. Multiply frame by given window.
% a. Rectangular implied if no "win" selected.
% 2. Compute Fourier transform, and select zero to pi points.
% 3. Sum the frequency bin over time.

windat = zeros(window, 1);
win = hamming(window);
for ii = 1:done
stop = window + (OL*ii-OL);
start = 1 + (OL*ii-OL);
temp = data(start: stop);
windat(:,ii) = win .* temp;
end
Windat = abs(fft(windat,256));
Windat = Windat((1:128),:);
[zz,n] =size(Windat);
timeavg(i+m*8,:) = (1/n)*sum(Windat');
Windat = -Windat;
clear data
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end
end
end

% 1. Set counter for number of features per vector.
%

for b = 6:3:24

% 1. Compute bin endpoint locations based on critical band scale.

delta = 128/6250;
end-pt(1) = 380;
piece = (2000 - 380) / b;
for s = 2:b
end-pt(s) = end-pt(s - 1) + piece;
end
end-pt(b + 1) = 2000;
fh = (exp(end-pt*log(2)/1000) - 1)* 1000;
bin-temp = round(fih * delta);
right = [bin-temp(2:b) - l,bin-temp(b + 1)];

bins = [bin-temp(l:b)',right'];

% 1. Average the critical band frequency windows.

for y = 1:16
for kk = 1:b
for I = 1:2
a(l) = bins(kk,l);
end
count = a(1):a(2);
div = length(count);
freqavg(y,kk) = (1/div)*sum(timeavg(y,a(l):a(2)));
end
end

% 1. Store the matrix containing the critical band energy features.

filename2 = ['tin',int2str(j),'dig',int2str(k),'all'];
fname = [filename2,'.f',int2str(b)];
savmag = ['save ',fname,' freqavg -ascii'];
eval(savmag);
clear end-pt
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clear freqavg
end
clear timeavg
end
end

C.4 Adding The Class Indicator To The Feature Vectors

Before the features created from the previous file can be used with LNKnet, a class

indicator must be added as the first element of each feature vector. This could be incorporated

into the previous file, but for this work, was left to the file shown below.

This file adds a non-integer class as the first element of each feature vector. This happens

because the rest of the data in each vector is floating point data. If integer class indicators are

desired, conversion is most easily done with the vi editor.

clear

% Masters Thesis
% Advisor: Dr Martin P. DeSimio, mdesimio@afit.af.mil
% Student: Capt Jeffrey M. Gay, jgay@afit.af.mil
% Program: addclass.m

% PURPOSE: Add a class indicator as the first element of each
% feature vector.
% DESCRIPTION: This program adds as the first element of each
% feature vector a class indicator. For the digits, this is
% one of the numbers 0, ... , 9. The files, which are
% matrices of features, are then stacked and stored according
% to speaker sex and number.

% BEGIN:

% 1. Set variable equal to feature vector length.
% 2. Initialize counters.
% 3. Load feature files
% 4. Concatenate class and feature vectors.
% 5. Increment counters.
% 6. Stack the features.
% 7. Save the new feature files.
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z = 9;
for j =8:8
cntmI = 0;
cntm2 = 0;
cntf 1 = 0;
cntf2 = 0;
for k =0:9
classm = fix((zeros(1, 10) + k)');
classf = fix((zeros(1, 10) + k)');
ifilenamel = ['in',int2stroj), 'dig' ,int2str(k), 'all'];
fflename2 = ['f' ,int2stroj), 'dig' ,int2str(k), 'all'];
fnamel = [filenamel ,'.f',int2str(z)];
fname,2 = [filename2, '.f',int2str(z)];
fnamel = [filenamel,'.asc'];
fname2 = [filename2,'.asc'];
eval(['load 'fnamel]);
eval(['load 'fname2]);
eval(['m ',int2stroj), 'dig' ,int2str(k), 'all
[classm~m' ,int2stroj), 'dig' ,int2str(k), 'all];'])
eval(['f',int2stroj),'dig',int2str(k),'alI =
[classf,f' ,int2stroj), 'dig' ,int2str(k). 'all];'])
cntml = 10*k + 1;
cntmn2 = crtntmI + 9;
cntfl = 10O*k + 1;
cntf2 = cntf 1 + 9;
eval(['tempm((cntml1:cntm2),:) = in',int2stroj), 'dig' ,int2str(k), 'all;'])
eval(['clear ','m' ,int2stroj), 'dig' ,int2str(k), 'all;'])
eval(['teinpf((cntfl1:cntf2),:) = f' ,int2stroj), 'dig' ,int2str(k), 'all;'])
eval(II'clear ','f ',int2stroj), 'dig' ,int2str(k), 'all;'])
end
[roa,coa] = size(tempin);
savenamelur = ['mtrainspkr ',int2strOj)];

snarnelin = [savenameim. ' .L',int2str(coa - 1)];
eval(['save ',snamelmi,' teinpi -ascii ']);
savenameif = ['ftrainspkr ',int2strOj)];

snameif = [savenamel1f, '.L',int2str(coa - 1)];
eval(['save ',snamelf,' tempf -ascii']);
end

% 1. Initialize counters.
% 2. Load feature files.
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% 3. Concatenate class and feature vectors.
% 4. Increment counters.
% 5. Stack the features.
% 6. Save the new feature files.

for j =8:8
jm = 0;

jf = 0;
cntml = 0;
cntm2 = 0;
cntf 1 = 0;
cntf2 = 0;
for k =0:9
classtmn = fix((zeros(1,16) + k)');
classtf = fix((zeros(1,16) + k)');
filenamel = ['tin',int2stroj), 'dig' ,int2str(k), 'all'];
filename,2 = ['if' ,int2stroj), 'dig' ,int2str(k), 'all'];
fnamel = [filename 1,' .f' ,int2str(z)];
fname2 = [filename2, '.f ',int2str(z)];

fnamel = [filenamel,'.asc'];
fname2 = [filename2,'.asc'];
eval(['load 'fnamel]);
eval(['load 'fname2]);
eval(II'tm' ,int2stroj), 'dig' ,int2str(k), 'all
[classtm,tm' ,int2stroj), 'dig' ,int2str(k), 'all];'])
eval(['tf ',int2stroj).'dig' ,int2str(k), 'all =

[classtf,tf ',int2stroj), 'dig' ,int2str(k), 'all];'])
cntml = 16*k + 1;
cntm2 = cntml + 15;
cntfl = 16*k + 1;
cntf2 = cntfl + 15;
eval(['temptm((cntmnl:cntm2),:) = tn' ,int2stroj), 'dig' ,int2str(k), 'all;'])
eval(['clear ','tm' ,int2stroj), 'dig' ,int2str(k), 'all;'])
eval(['temptf((cntf 1 :cntf2),:) = tf' ,int2stroj), 'dig' ,int2str(k), 'all;'])
eval(['clear ','if' ,int2stroj), 'dig' ,int2str(k), 'all;'])
end
[rob,cob] = size(temptm);
savename2m = ['mtestspkr ',int2stroj)];

sname2m =[savename2m,'.L',int2str(cob - 1)];

eval(['save ',sname2m,' temptin -ascii']);
savename2f = ['ftests~pkr' ,int2strOj)];
sname2f = [savename2f,'.L',int2str(cob - 1)];

C-9



eval(['save ',sname2f,' temptf -ascii']);
end

C.5 Energy Window Computation

The following m-file computes the energy in each of nine identical length segments

of each digit utterance. Each "energy profile" result is a feature in an energy profile feature

vector.

clear

% Masters Thesis
% Advisor: Dr Martin P. DeSimio, mdesimio@afit.af.mil
% Student: Capt Jeffrey M. Gay, jgay@afit.af.mil
% Program: profile.m

"% PURPOSE: Compute the energy in nine separated equal sized segments
"% spanning each input speech sample.
"% DESCRIPTION: This program detects the endpoints of an input speech
"% sample by first computing the envelope of the data, then
"% thresholding the envelope. The endpoints are those points
"% at which the threshold is initially and finally breached.
"% Using this "segmented" data, an energy profile is computed
"% for a selected number of energy windows. The Energy is
% normalized to 1.

% BEGIN:

% 1. Read a data file.
% 2. Normalize the amplitude of the sample for a maximum value of 1.
% 3. Compute the envelope of the sample data.

for j =8:8
for k =0:9
for i= 0:9
filename = ['0',int2str(k),'m',int2str(j),'set',int2str(i)];
fname = [filename,'.wav'];
fid = fopen(fname,'r');
data = fread(fid,'short');
fclose(fid);
data = data(513:length(data));
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norm-div = max(abs(data));
norm-dat = data / norm-div;
check = abs(norm-dat);
[b,a] = butter(5,0.008);
Y = filter(b,a,check);
Y-norm-div =max(Y);

Y-norm = Y /Y-.norm-div;

% 1. Find the endpoints based on empirically derived threshold.

done = length (Y-.norm);
cnt = 0;
for s= L~done
if Y-.norm(s) >= 0.0063 15
cnt =cnt + 1;
stop..pt s ;
if cnt == 1
start-pt s ;
end
end
end

% 1. Segment the data based on the computed endpoints.
% 2. Compute the normalized energy for each segment.
% 3. Store results in ascii form.

seg-dat = data(start-pt:stop-pt);
E = seg-dat' * seg-dat;
norm..E = seg-dat / sqrt(E);
[ro,col] = size(seg-dat);
increase = floor(ro/9);
for s = 1:9
inda = 1 + (s - 1) * increase;
indb, = increase * s;
chunk(:,s) = norm-E(inda:indb,1);
end
bob-E(i+1,:) = sum(chunk. ^2);
clear chunk
end
fiename2 = ['in',int2stroj), 'dig',int2str(k), 'all'];
fname2 = [filename2,'.asc'];
eval(['save ',fname2,' bob-E -ascii'])
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end
end

C.6 Concatenating Feature Vectors

The following m-file may be used to concatenate feature vectors. Again, this example

covers the male feature set, but is easily modified for the female feature set. Be sure to remove

the class indicator from the feature vectors being attached, or you will have a class indicator

in the middle of your new feature vectors. A file to remove the indicator is given in the next

section.

clear

"% Masters Thesis
"% Advisor: Dr Martin P. DeSimio, mdesimio@afit.af.mil
"% Student: Capt Jeffrey M. Gay, jgay@afit.af.mil
% Program: concat.m

"% PURPOSE: Concatenate different feature vectors to be used
"% later in recognition experiments.
% DESCRIPTION: This program concatenates two input vectors to create
"% a single feature vector. Concatenation is by class, but
"% only one first input vector should have the class included
"% as the first elements of each vector. If needed, the file
"% "bobcat.m" can be used to remove the classes from the
"% second input vector before use in this file.

% FORMAT:

% 1. The naming convention for files containing the classes is
% m.tr21 for a 21-element feature vector, from the training
% set.
% 2. The naming convention for classless files is mlcat.tr21 for
% speaker ml, 21-element feature vectors, from the training
% set.

% BEGIN:

% 1. Load vectors to be concatenated.
% 2. Concatenate vectors.
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% 3. Store new vectors in ascii form.

for j=1:8
ifienamel = ['m',int2stroj)];
fflename3 = ['m',int2str0j),'cat'iI;
filename4 = ['tm',int2str0j),'cat'];
filename5 = ['treat' ,int2stroj)];
fflename6 = ['tecat',int2stroj)];
fhamel = [filenamel,'.tr2l'];
fname2 =[filenamel,'.te2l '];
fname3 = [filename3,'.asc'];
fhame4 = [filenamne4, '.asc'];
fname5 = [filename5,'.tr2l'];
fhame6 = [filename6,'.te2l '];
eval(['load 'fnamel1]);
eval(['load 'fname3]);
eval([II'oad 'fname4]);
eval(II'traincatn' ,int2str0j),' = [in',int2stroj), ',m' ,int2stroj), 'cat]; 'i)
eval(['save ',fname5,' traincatm' ,int2stroj),' -ascii'])
eval(II'clear m' ,int2stroj)])
eval([II'oad ', fname2]);
eval(['testcatm'jnt2str0j),' = [m' ,int2stroj), ',tm' ,int2stroj), 'cat];'])
eval(II'save ',fname6,' testcatm' ,int2stroj),' -ascii'])
end

C.6.1 Removing The Classes From A Feature Set. In order to concatenate two sets

of features that both have class elements included, the class must be removed from the set

to be concatenated. The following in-file removes the class elements from an input feature

vector.

clear

% Masters Thesis
% Advisor: Dr Martin P. DeSimio, mdesimio@afit.af.mil
% Student: Capt Jeffrey M. Gay, jgay@afit.af.mil
% Program: bobcat.m

"% PURPOSE: Remove the class elements from a feature set.
"% DESCRIPTION: This program removes the first element in each row of
"% an input feature set.
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% FORMAT:

% 1. The naming convention for files containing the classes is
% ml.trl0 for speaker ml, with 10-element feature vectors,
% from the training
% set.
% 2. The naming convention for classless files is mlcat.asc for
% speaker ml, with 10-element feature vectors, from the
% training set.

% BEGIN:

% 1. Load vector to be stripped.
% 2. Remove first element from each row.
% 3. Store new vectors in ascii form.

fork= 1:8
eval(['load m',int2str(k),'.trl0'])
eval(['data = m',int2str(k),'(:,(2: 11));'])
eval(['save m',int2str(k),'cat.asc data -ascii'])
end

C.7 Statistical Hypothesis Testing

The following m-file computes the t-distribution for two input vectors of the same

length. To run this file, the first vector is "d," the second vector is "m," the number of

elements per vector is "n," and a is called "c-val." The variable "a" is taken from a table of

t-distribution values for a particular number of degrees of freedom. The output from this file

is the degrees of freedom, t score, and the confidence interval for each vector.

% Masters Thesis
% Advisor: Dr Martin P. DeSimio, mdesimio@afit.af.mil
"% Student: Capt Jeffrey M. Gay, jgay@afit.af.mil
"% Program: tdist.m

"% PURPOSE: This program calculates the t-distribution, degrees of freedom,
"% and confidence interval for pairs of input vectors.

% BEGIN:
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% 1. Compute degrees of freedom.
% 2. Compute vector difference.
% 3. Compute mean of the difference vector.
% 4. Compute the standard deviation of the difference vector.

dof = n - 1
diff = d - m;
mn-diff = mean(dift);
sd.diff = std(diff);

% 1. Compute t-distribution for the input vectors.
% 2. Compute confidence interval for each vector.

t = mn-diff * sqrt(n) / sd-diff
sdd = std(d);
sdm = std(m);
dconf.int = c.val * sd-d / sqrt(n)
mconf-int = c.val * sd-m / sqrt(n)
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