
Computer Science

Control-Flow, Analysis aind Type Systems

N EV IN F 1,%,* 17
Dereniher 19941
CIU -C s .9 4-22

19941228 124
Carnei DTIj

M e!ei JAN.O0 4 M

BEST
AVAILABLE COPY

ADA289338

Control-Flow Analysis and Type Systems

NEviN HEiN=

December 1994

CMU-CS-94-227

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

(Also appears as Fox Memorandum CMU-CS-FOX-94-09.)

Abstract
We establish a series of equivalences between type systems and control-flow analyses. Specifically,
we take four type systems from the literature (involving simple types, subtypes and recursion)
and conservatively enrich them to reason about control-flow information. Similarly, we take four
standard control-flow systems and conservatively enrich them to reason about type consistency. Our
main result is that for each type system, there is a control-flow system with equivalent reasoning
power. In essence, type systems and control-flow analysis can be viewed as complementary
approaches for addressing questions of type consistency and control-flow.

This work was sponsored by the Advanced Research Projects Agency, CSTO, under the title "The Fox Project:
Advanced Development of Systems Software", ARPA Order No. 8313, issued by ESD/AVS under Contract No. F19628-
91-C-0168.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of ARPA or the U.S. Government.

i

Keywords: typi!',, type Nyslemx, Subtypes, recuri~v types. program analvsis. contrcil-flow
anailysks.

ADA289338

1 Introduction

A central concept in compiler optimization and code generation is a graph of how control can
flow from one program point to another. Such a graph identifies block and loop structure in a
program, and this is the starting point for a large number of optimizations. In many languages, this
control-flow graph can be directly constructed from a program because information about flow of
control from one point to another is explicit. However, in a language with higher-order functions,
the flow of control from one point to another is not readily apparent from program text because
a function can be passed around as data and subsequently called from anywhere in the program.
If this happens sufficiently often, then the lack of control-flow information can significantly limit
compiler performance. To addresses this issue, systems for control-flow analysis [3, 4, 10, 2, 81
have been developed. The purpose of control-flow analysis is to compute an approximation of the
possible functions that can be called from each program point.

In contrast, the purpose of a type inference system is to derive invariants about the potential
bindings of variables in a program. However, in the context of higher-order functions, functions
can be data and therefore can be bound to variables. Hence, there is an intuitive connection
between reasoning about function (in control-flow analysis) and reasoning about the data values to
which variables may be bound (in type inference). In fact it is possible to extend type systems to
perform control-flow analysis [11, 12], and conversely, extend control-flow systems to perform type
analysis [7, 8]. There are also informal connections between the kinds of reasoning done by type
and control-flow systems. For example, consider the essence of the application rule of a subtype
system:

if Al has type r1 - r2 and N has type -r' such that T-' C Tr, then (,1 A') has type r2

Contrast this with a control-flow view of (Al N): if the results of Al are described by r' and the
functions that flow to Al are such that, when called on arguments described by some ri such that
71 includes 7r, they return results that are described by :.2, then it is correct to use r. to describe !he
results returned by (I' N).

Despite these informal similarities, type systems and control-flow system possess quite different
structure. Type systems are typically specified using deductive systems. Such systems associate
a type with each program expression and this type completely captures the type system's view of
the behaviour of the expression. These systems are compositional and often have direct application
to modular analysis and separate compilation. In contrast, control-flow analysis systems typically
reason globally using finite sets of "function labels". Such presentations are rarely compositional,
but they are often more suggestive of feasible implementation strategies.

In this paper we give a unifying presentation and systematic comparison of type systems
(extended to reason about control-flow) and control-flow systems (extended to reason about type
consistency). The type systems we consider are simple types, partial types, simple recursive types,
and recursive subtypes. Each system is extended in a generic way so that the types carry control-flow
information. In each case, the extension preserves the structure of the underlying type system: the
same sets of" term, are typable under the extended system, and in fact we can fairly easily translate

between derivations in the extended system and the original system. The control-flow systems
we consider are "control-flow-O" (a standard system in the control-flow literature), a system based

on unification, and two derived systems that exclude recursion. In each case, these systems are
modified to reason about type consistency in such a way that their ability to reason about control-flow

is not changed. Our main result is that the families of types systems and control-flow systems are
equivalent in the following sense: for each type system there is a control-flow system such that (i)
both systems compute the same control-flow information, and (ii) the type consistency components
of both systems coincide.

Two main technical issues arise in these equivalence proofs. First, type systems and control-
flow systems compute over different representations. For the type systems used in this paper, types
can be viewed as (possibly infinite) trees that are decorated with control-flow information. Each
type system associates one of these trees with each subexpression of the program. In contrast, the
control-flow systems used in this paper compute using finite sets (which essentially contain labels
of functions). Each control-flow system annotates program subexpressions with control-flow sets.
A key part of the proof involves mapping from one representation to the other. While mapping from
a type to a control-flow annotation can be achieved by just suppressing type structure, the mapping
in the reverse direction is more complex: it involves reconstructing a type tree using the annotations
of the entire program. Thus, type information is not explicit in the control-flow annotations, but
rather it is distributed over the entire program. In essence, the control-flow annotations of the
program collectively represent encodings of (potentially infinite) trees. The second difficulty is that
the type and control-flow systems cmploy different notions of "consistency-. For example consider
an application A.1 N. In a control-flow system, consitency involves considering all functions that
can flow to Al and reasoning about the annotations of these functions. In contrast, a type system
would reason about this application by considering just the types associated with A I and N. Ay
information about the functions that can flow to .1. is already represented in the type associated with
A .In short, types involve only local reasoning; control-flow involves highly non-local reasoning.

The equivalences established in the paper reveal much about the underlying stnicture of control-
flow and type systems. For example, adding recursive types to a type system corresponds exactly
to allowing cycles in the control-flow graph computed by a control-flow analysis. Similarly, adding
subtypes to a type system corresponds exactly to replacing equalities by set containment in the
consistency conditions of a control-flow system. Our results also provide a basis for exploiting
the advantages of both the type and control-flow view. From the point of view of implementing
an analysis, it is usually easier to start from a control-flow system. Conversely, for the purposes
of designing a modular analysis system, type systems have an advantage since they are usually
presented compositionally (we remark that one of the original motivations for this paper was the
development of modular analysis). In addition, certain results arc sometimes easier to prove in one
system that the other (e.g. correctnes.s becomes a subject reduction result in the type system. and
such results are often easy to establish).

Related Work

Previous works [7, 8] have established that the typing component of the control-flow-0 system (when'
extended to reason about type consistency) is more accurate than simple types and partial types. (We
remark that the equivalences established in this paper can be viewed as an alterative explanation of
these results. Moreover, on combining our equivalence results with obvious relationships between
the accuracy of type systems, we obtain a number of additional accuracy relationships.) Very
recently, Palsberg and O'Keefe [9] have independently obtained the equivalence of the typing
component of control-flow-0 and the recursive subtype system of Amadio and Cardell [1). We also
prove this result, in addition to analogous results for three other control-flow systems. No previous
works have established relationships between the control-flow component of (suitably extended)
types systems and control-flow systems.

2 Preliminaries

We define a variant of the A-calculus with labeled abstractions. The reason for the labels is that
they allow us to talk about program "control-flow". 'We remark that the language is suggestive of
an intermediate language that might be produced by a compiler front end; it is not intended as a
language for writing programs. Let LABELS be a countably infinite set of labels, and define terms C
by:

e ::= T I tA..c I C. Ie2 10 1 Succ e.

where I C LABELS. The intention is that labels distinguish different occurrences of abstractions.
Free and bound occurrences of variables in a term are defined in the usual way. A term is closed if
all occurrences of variables are bound. A program is a closed term in which each abstraction has a
unique label. Evaluation for this language is based on .3-reduction:

where e[r/e1 denotes the result replacing of e' by z in e, after appropriate renaming of bound
variables. Note that this process preserves labels on abstractions: e.g. (A'a".(x x)) (Al',x.(x .)).
- (A"x.(x x)) (A'x.(x a)).

There are no restrictions on the reduction order: the 3-reduction can be applied at any subterm
at any time. However, we do require that whenever an application (eI e2) appears in a term, then eI
cannot be 0 and if el is Succ then e2 must be 0 or of the form (Suee ,. .). If these conditions are
not met, then program execution terminates with an error. The possibility of this behaviour leads
to a very natural typing problem that forms a key part of this paper. Although this typing problem
arises precisely because 0 and Sicc have been added to the language. we remark that our results are
largely independent of the specific choice of constants, and could be generalized to other settings.

The language also gives rise to a natural control-flow problem: given a program to, construct a

3

set of labels L such that if e(1 evaluates to a lambda expression, the label of this expression will be
contained in L. More generally, we are interested in the sets of labels for subexpressions as well.

7b formalize type and control-flow systems, we shall introduce various systems for "correctly"
annotating a term (and all of its subterms) with either type or control-flow assertions. In general,
these annotated terms will have the following form: if A is a countable set of annotations, then the
A-annotated terms z (or just annotated terins) are defined by:

Z ::=- x:A j (Atx.z):A I (z z2)'A I O:A I (Succe):A

where A (A. Given an annotated term :, we define annot(z) to be the outermost annotation of z.
That is, annol(exp : A) is A. We also define IZ1 to be the (standard) term resulting from stripping
all annotations from z. Note that if A is a collection of types, then an annotated term is essentially
an explicitly typed term; such a term carries with it much of the structure of a typing derivation for
1-1.

3 Type Systems for Control-Flow Analysi

3.1 Simple Types

We begin by describing a type system for control-flow analysis based on simple types [6]. Consider
a system of simple types where types r are constncted from the single base type l/ and -- as
follows:

The usual formulation of simple typCs uses a deductive system involving jtdgenients of thc form
F i-- i: r. Such a judgement indicates that. in the ronter: F" (a partial mapping from variables to
types). e has type r. However, for this paper, we shall need to simultaneously associate types with
all of the subexpression of a term. Hence, we shall formulate our type system using ivpe-annnated
ierms. Using such terms, the standard simple type system can be presented as:

r '- X:7" (ifx : r apremr.in r) (VAR)

1,x Z. (if annott-) is :)(ABS)
r i-- Afx.z.':-,T,

ri-~ Fr'-:'IF(;f ,,: t.-)i.s r,- r .,d anro.I : is ri)(.,APP)
r F (z :') r ,

r i- O:Int (t.r)

(if an,,o:) is hit) (St fCC)r H- (S5urc z:" /t

4

r -- x:r (if z : r appears in F) (VAR)

l,x:Tj f- zr 7- Atx.z: l _-2 (ifI E L and annot(r) is ri) (ASS)

rF- z r - z'
Ir (Z Z') :r72 (ifannot(.) is L. 7-in) and annoi(z') is 7j) (APP)

r" 0: (L, Int) (N-r)
FI-S-. (5uce a):(L, Int) (if annot(x) is (0,/n,)) (SUCC)

Figure 1: Inference rules for control-flow type system based on simple types.

We empha ize that this is just a reorganization of the standard formulation of simple types. We now
describe a uniform method for enriching a type system to perform control-flow analysis. The first
step is to enrich types so that they carry information about labels of abstractions. Corresponding to
simple types, we define control-flow tpes by:

7 ::= (L. Int) I (L, 71--.7,)

where L ranges over finite subsets of LABELS. Note that the set of labels L in (L, Int) is unnecessary
because no functions can have type Int; we retain this notation for uniformity with later definitions.
The next step is to modify tiie typing rules of the system to accommodate control-flow types. For
simple types, we modify the above typing rules and obtain the system of Figure 1. Note the side
condition on the ABS rule to track labels of abstractions. We write 1-- z and say that z is correctly
typed, if the judgement empty l-. z is derivable (empty is the empty context). A program to, is
said to be 1-, -typable if there exists a control-flow annotated term z such that fz(= co and f-x An
important property of the control-flow type system is that it preserves the essential character of the
underlying type system. In particular, the set of ypable terms remains unchanged: e0 is F-A-typablc
iff t0 is typable in the standard simply typed system. In fact there is a very close correspondence
between the two systems. If I--% z, then by stripping away the control-flow information in the
annotations appearing in z, we can construct a derivation to show that z[a has simple type r in the
simply typed system, where r is annot (z) with all control-flow information removed. Conversely,
if a term e has simple type r in the simply typed system, then we can look at the derivation of this
judgement. and by systematically inserting trivial control-flow information', obtain an annotated
term z such that I--, - and ,zl is c. The control-flow calculus also possesses standard properties
such as subject reduction:

Proposition 1 (Subject Reduction) If ',, z and z -. ,? z' then I-, 2'. [

This property establishes not only the correctness of the type aspects of the system, but also its
control-flow aspects. For example, if I-, e : r and c reduces to Aix.e', then subject reduction
implies that r must have the form (L. r-+-2) such that I E L.

1That is. cach type r is sy.tqmni :a!y , rpaecd by 4c ,. ... ,...,. t.. cot fArl-h1 ;n.

We now address the control-flow component of the system. First note that typing is not unique:
given an untypcd tcrrn co. there may be many correctly typed terms z such that I-: - Co. For
example, corresponding to the untyped term (Aa..x), we can construct a family of correctly typed
terms:

where -r is any control-flow type, and L is any (finite.) set of labels containing 1. Part of this choice
lies at the "type" level; there is also choice at the "control-flow" level. Recall that the sets of
labels that are associated with each expression in a correctly typed term represent an upper bound
on the functions that can flow to that expression. Smaller sets mean more accurate control-flow
information, and so from a control-flow perspective, we seek annotated terms with minimal label
sets.

To address this issue, we first formalize the control-flow content of an annotated term :. For
any control-flow type ,-. define that CF(7) (the control-flow component of 7) is L such that r has the
form (L, exp). Lifting this to annotated terms :, define that CF(Z) denotes the result of replacing
each annotation r appearing in : by CF(r). That is, CF(z) is an annotated term in which annotations
are finite subsets of LABELS; this term identifies exactly the control-flow content of z, stripping
away the extra type structure. Now, there is a natural information ordering t> between control-flow
annotated terms that have the same undcrlying term structure:

* f: L > -: L' if /, D L and r is.r or 0.

* (A'.r.z):L >. (Al.r.z'):L' if L _D/and: > z'.

(z1 z2):L t. (z .'):L' if L L' and:1 z': and:, t> z-

S(Suce z): L > (Surc Z') :1' if 1, D L' and: > z'.

We reminark that this ordering can be lifted to order types and also to order correctly r-annotated
terms. The resulting orderings would give a covariant treatment of functions. Note that this
ordering cannot be used as the basis for a semantic subtyping relationship - even ignoring the
"type" component of control-flow types, it is not the case that "Zi 1, :," implies that a subterm z
of : can be replaced by z- to obtain another correctly typed term. Importantly. I> gives rise to a
notion of minimality with respect to control flow information (this follows directly from results in
Section 4):

Proposition 2 (Minimality) For any rypabte progrin co. the set of controd.fow annoi ted terms
{CF(Z) :1:1 = c and -> :J hns a mininal element, call it cr(-)(Co).

In summary, we can define typing and control-flow aspects of I-,

* Let typlhh(b-) denote the set of terms typable under --,.

* Let rontrol-flow(-A) denote the partial mapping from ro into c"(i-.)jf,).

3.2 Partial Types

The second control-flow type system we describe is based on partial types (13] (with constants
0 : Int and Sue : Int -+ Int). Partial types extend simple types with a new type Q that is a
supertype of all other types. To illustrate its effect, consider the term

(Af.... (f 0) ... (f Ay.0) ..) (Ax.x)

which defines the identity function, binds it to the variable f, and then applies it to an integer in one
place and an integer function in another. It is not possible to give this term a type using simple types
because the term requires that f simultaneously has a type Tnt -+ T and a type (r' -- Int) -* -,.
However, by using the f1 type, we can give f the type Q-41. In other words, 92 can be used to
"unify" different types (or parts of types) that have incompatible structure, but little can be done
with expressions that are given this type - they can neither be applied nor used as an argument of
Succ.

We extend the developments of the previous section to define a type system for control-flow
analysis based on partial types. In this extended system, types are defined by:

r ::= (L, rnt) I (L,(Q) I (L.7'--r 2)

These types are ordered as follows:

" (L, exp) < (L',.1) if L L'
* (L. r-r2) < (L',r -4) if L C L',r r1 andr, <

Note that this ordering not only involves the "type" structure, but it also involves control-flow
information. For example,

({1,1, [ni-+lnt <_5 ({11, (2}, Int-+Int)

Typing rules for these types can be obtained by modifying the rules in Figure I so that both the
assumptions and conclusions of the rules can be weakened using the subtype relationship. The
resulting rules are given in Figure 2, and we write t-(z if empty I-,Ia, - is derivable using
these rules. We remark that if one considers only typability questions, then we could just augment
Figure 1 with a subsumption rule. However, we shall consider properties of type-annotated terms.
and make connections with these annotations and annotations obtained rising control-flow systems.
For these purposes, the system of Figure 2 (for which there is a simple correspondence between
program text and typing rules) is advantageous.

A program e0 is said to be t-\AtIytpable if there exists a control-flow annotated term z such that
I:1 = eu and I-tn) z. As in the previous subsection, the control-flow type system and the underlying
basic type system (this time partial types) are closely related. They have the same sets of typable
terms, and derivations in one system can be replayed (after appropriate addition or suppression
of structure) in the other system. The K-A(V) system also satisfies the subject reduction property

7

1 x I- :T (ifr: r' appCnrsin r and -r' < r) (VAR)

r, :r F-
Si- A'.=:(L, TI---) 71f, < -r.annot(:)< r ,and IE I) (ADS)

rF.-: (/,rH---'
r r 1- f (if nn.) i (L. r,.-). ann ot(' _ r, and r: i r) (APP)F - (Z Z') :7

r I- O:T (if(L, (,,) < r) (INT)

IF '- Z . -
r" I- (Succ z) : r

Figure 2: Rules of inference for simple subtype system.

(the obvious modification of Proposition). Moreover, the t> preference ordering can be used to
order the accuracy of control-flow information in annotatcd tcrms. An appropriate version of the
minimality proposition (Proposition 2) also holds, and so, given a -typable pro-ram to, we
can define a "best" control-flow annotated term CF(-,.n,)(0). Hence, typability and control-flow
aspects of F:O: can be given:

* Let !tpabl((-t~r) denote the set of terms typable under ';.n .

* Let control-flow(-,1 .,) denote the partial mapping from ro into CF(K,,n)(co).

3.3 Recursive "ypes

The third system is based on recursive types, another extension of simple types. This time types are
extended by adding a fiypoint construction pm.. The effect of thk addition is that terms involving
recursion such as (x.(.r r)) (A x.(x x)) can be typed. To define a control-flow type system based
on recursive types, we first define open types to be expressions of the following form:

a ::= a I (Jlnt) I (L,,7 1 -)ter) I pI .oT

where o ranges over a countably infinite collection of type variables, and Ito. is treated as a binding
construct. Free and p-bound occurrences of type variables in open types are defined in the usual way.
We define an equality on open types by pn.ey = cr[po./o]. where ,[ptn.tr /o denotes the result
of replacing free occurrences of o by pr .7r in " (after renaming of bound variables. if necessary).
This is extended in the obvious way to become a congruence on open types: ifai ? (.-, and ei' is the
result of replacing ac by C72 in a then ti' = t7. Finally, types 7 are defined to he those expressions er
that do not contain free type variables.

The typing nles for this new system consist of exactly the rules previously given in Figure 3.1.
We write -.,) z if c il! F z is derivable. A program ro is said to be TP.:l,ht if fhrV exist' s

a control-flow annotated term z such that 1:I = eo and z. This control-flow type system
preserves many of the basic properties of the underlying recursive type system. The set of typable
terms is the same, and subject reduction is preserved. An appropriate version of the minimality
proposition (Proposition 2) also holds; for a 1-A, -typable program .O, let CF(-,) ()eo) denote the
minimal control-flow annotated term thus obtained. Typability and control-flow aspects of I-(,) can
now be defined:

a Let typable(-r() denote the set of terms typable under F%.).

Let control-flow(Ib)) denote the partial mapping from f,, into CF(-. ,,) (erl.

3.4 Amadlo/Cardelli's System

Finally, we define a control-flow type system that combines partial types and recursive types. The
starting point of this development is essentially Amadio and Cardelli's recursive subtype system
[II (with extensions for 0 and Succ). For definitional convenience, we shall use a formulation of
recursive subtypes that differs slightly from those used previously in the literature [1, 5, 91. We
therefore begin by presenting this system without the control-flow information component. Define
expressions a by

o" ::= I "' J I l Ie- ; I /Ia.c

where o ranges over type variables. Occurrences of types variables are defined to be free and
p-bound in an expression a in the usual way. Again we define a congruence on open types: pa.a
--" aa.CT/c]. Types r are defined to be those expressions or that do not contain free type variables.

Next, we define an ordering between types (strictly speaking, this ordering is between equiva-
lence classes of types). This ordering is defined by successive approximation (see [1, 5] for related
constructions). Specifically, define an ordering !5p. k > 0, as follows:

0 7 <0 T'

-I < k D2* /L'<k

" Int <k (nt

" r-1-2 5'k '--- if r' <,-I T and r, <.:-I -2

where r and r' are arbitrary types. We now define that r < r' if r <k -' for all k > 0. If we ignore
ni, identify T with Q2 and treat I as shorthand for jin.or, then this ordering is equivalent to the one

given by Amadio and Cardelli (call it <,,,) in the following sense:

Proposition 3 For all it and r2 nor containing tnt, 1 <712 iff 71 <,c 72. 0

9

To extend this system to control-flow, we first define open types o by:

a ::= a r (L,Int) I (L. (l I (L, 1 m I)p.a

where n ranges over type variables. Then, types r are those expressions a that do not contain free
type variables. A congnwncc on types is defined by p-.a = alp.a n/], and an ordering _54., k 2! 0,
is defined by:

* T" - Tt

" (L, 'L',fU) if L C L'

" (L,pn.)<-.(L', ep) if L C L'

* (L, JIt) :k (L', nt) if L C L'

* (L, j7-r 2) V. (L'.- T) if r' - 17. 72 <.- 7 and L C L'.

We define that -, < 9 if 7 <,- r for all k > 0. The infcrcncc rules for these types are the exactly
those from Figure 2. We write 1-. (0.,) to denote the type-correctness judgement thus defined. Again
subject reduction carries over to the control-flow types system. and typability for the control-flow
system coincides with that for the underlying Amadio/Cardelli system. An appropriate version of
the minimality proposition (Proposition 2) also holds, and so w- can define, given a - ,,, -typable
program eo, the minimal control-flow annotated version of Co. call it cF(t- ,.)(co). Typability
and control-flow aspects of A(n.,,) can now be given:

Let lypablf (I-: ,) denote the set of t T.sl,. ,, iii.

" Let control-flo(I-,.,,) denote the partial mapping from co into CF(I- ,a ,(co).

4 Control-Flow Analysis

The purpose of control-flow is to detcrmine information about the functions that can he called from
various program points during execution of a program. In the following development, a function
shall he identified its label. We define control-flow svstcms using annotated terms and consistency
conditions between "neighbouring" annotations. By varying these consistency conditions and some
additional properties, we shall define a family of four control-flow systems.

If we were concerned only with control-flow information, it would be sufficient to annotate
terms using control-flow flow information (finite subsets of LABELS). However, we wish to construct
control-flow systems that capture typing properties (in addition to control-flow properties), for the
purpose of establishing closer links with the type systems presented in Section 3. Hence, we shall
use annotations , that are finite suhsets of LABELS U{hIt). Our presentations of control-flow
system.s is closely related to those by Palsberg and Schwartzbach 17, 81.

10

4.1 Standard CFA

We begin a system that corresponds to a widely studied notion of control-flow analysis [3,4, 10, 7, 8j.
often called control-flow-0. The system we give is equivalent to the system described by Palsberg
and Schwartzbach in [7, 8]. The only difference is in presentation: we directly use annotated terms
instead of set variables and constraints. We present the system by defining that an annotated term z
is well-annotated if it satisfies the following conditions:

1. if At.z:7 appears in z then I E -.

2. if (zI z2) :-' appears in Z then ITt auot(zj) and for all I C armor(z, ; if A 1 n' ;nears
in z then:

(a) annot, z') C -,and
(b) if x occurs free in z' with annotation -,, then onnot(z2) .

3. ifO:-; appears in z then'-" D {int}

4. if (Succ .'):-i appears in z then - . {Int} and annot,, C {In}.

We shall refer to this system as CFAc. As in the previous section, we shall define typing and control-
flow properties of this system by relating untyped programs and annotated terms. First, consider
typing. Define that a program c(is CFAC_-type-consistent if there exists an annotated term z such
that co = jzl and z is well-annotated according to the above definition. Next consider control-flow.
Clearly there will in general be many well-annotated versions of e0, each identifying potentially
different control-flow information. These terms can be related using the ordering t> defined in
Section 3. Strictly speaking, > orders terms that are annotated with finite subsets of LABELS, but it
can clearly be generalized to order any annotated terms where the annotations are sets.

Proposition 4 (Minimality) For any CrAc-type-eon.rir ent term co, there ls .-,,,,ni,,,,, Cis,-
anznotated rerm Z such that I- = to.

This proposition follows from the fact that well-annotated terms are closed under intersection.
Specifically, if :I and z2 are well-annotated terms such that izil = I:2 then we can define an
annotated term : fn z. by intersecting the corresponding annotations of z: and z2, and this new
term will be well-annotated and such that Izil = 1:21 = IzI n z21. This follows immediately from
inspection of the well-annotated conditions.

Using Proposition 4, we can define the control-flow component of CFA-. First, recall that
annotated terms used in the system may include Int. To give just the control-flow information of
an annotated term, let CF(z) denote the result of replacing each annotation in .4 appearing in = by
A - {Int}. Finally, given a program e0 that is CF.-type-consistent, define that CF(CFAC)(eo) is
CF(z) where z is the t>-minimal well-annotated term such that IzI = to. We can'now define typing
and control-flow aspects of CF,%c as follows:

" Let typable (CF. ,c) denote the set of type-consistent terms under C'AC,.

" Let control-flow(Cf.ac) denote the pailial mapping from eo into CF(CF,%c

I1

4.2 Standard CFA without Recursion

The CFAC system defined in the previous subsection can reason ahout recursion. For cxample, one
well-annotatcd version of (Al'a.(r xr)) (A1'..(x T)) is

((A11!.(x :' X : {)) {J: (1) .(x {i '} x: I ')}) : (')) {

We now define a control-flow system that is based on equality but specifically excludes programs
involving recursion. In this modified system, an annotated term - is well-annotated if it satisfies the
conditions given in Subsection 4.1 and in addition there is a non-reflexive ordering >. on LABELS

such that

e if Atx.Z': -I, appears in : and r occurs free in :' with annotation , then (VI' 6 "'.)(I >- I').

Call this system CFA-.y. A program eo is CFAC...y-1pe-consisrenf if there exists an annotated
term z such that eo = 1z? and z is well-annotated according to the above definition. Given,
a type-consi.stent program (0. we can aain use t> to define a unique minimal well-annotated
term corresponding to co, and so using CF we can CF(CFA,.- .. y)(o) in analogy with the previous
subsection. Hence; typing and control-flow aspects of CFA-..,y can be defined:

" Let typnbkr(CFAc:,_y) denote the set of type-consistent terms under CFAC.-.y.

" Let conrro1-floivfCfAc.-) denote the partial mapping from cc into CF(CFAc,-.)

4.3 CFA via Equality

The next system we consider essentially corresponds to the analysis considered by Bondorf and
Jorgensen [2). The only differences are that we do not consider arbitrary data-constnictors, and we
include Int to reasnn abowi type consistency. The definition of well-annotated programs for this
system is a modification of the definition in Subsection 4.1 in which subset is replaced by equality.
Specifically, an annotated term Z is wel/-anmotared if:

I. if (A'z') : appears in Z then I E y.

2. if (:1 z2,):- appears in :,I C annot(:,) and A1.r.z' appears in : then:

(a) -no-(.) = -y, and

(b) if x occurs free in :' with annotation -.,. then rantno(:) =

3. if 0:- appears in z then I! = {T!)

4. if (Su.c :') : appears in z then 1 = nnot(z') { {hi).

Call this system CF,\.. Definitions of type-consistency, miniality and (V(('FA=)(ce) can e
given analogously to those in the previous subsections. Typing and control-flow aspects of Cr,\-
are defined by:

12

* Let typable(CFA=) denote the set of type-consistent terms under CFA=.

* Let control-flow(CFA.) denote the p.rt an inv from &t inVt CF(rpA.

4.4 Standard CFA without Recursion

As with CFAc, the CFA= system can reason about recursion. We now define a fourth control-flow
analysis system that combines CFA= with the recursion restriction. In this new system, an annotated
term z is well-annotated if it satisfies the conditions given in Subsection 4.1 and in addition satisfies
the recursion restriction given in Subsection 4.2. Call this system CFA=,-,y. Definitions of type-
consistency, minimality and CF(CFA=,-,y)(eo) can be given analogously to those in the previous
subsections. Ty'ping and control-flow aspects of CFA= are defined by:

* Let typable(CFA=,-,y) denote the st o^f ,,,..,,;c,tent rn tidr r;:A

* Let control-flow(CFA=-,y) denote the partial mapping from co into CF(cFA=_-,y)

5 'Iypes = Control-Flow

Wc now establish a series of correspondences between the four type systems and the form control-
flow systems that have been presented. In short, we prove the following equivalences:

-% --- CFA=.-,y -:.p E CFA=

CFA-_,-,y CFA_)

That is, the two subtype systems correspond to the control-flow systems based on C; the two other
type systems correspond to the control-flow systems based on =. Non-recursive type systems
correspond to control-flow systems that exclude control-flow cycles, and recursive type systems
correspond to control-flow systems that do not restrict control-flow cycles.

For each pair of type and control-flow system, we establish that the type and control-flow
components of the systems correspond. For example, for I-, and CFA=-,y we prove that (a)
tipable(-,) =- ylpable(CFA=.-,y), and (b) control-flow(F-A) = conrrnl-flow(CFA=._,). These
connections are proved by showing that a "correctly annotated" term in one system can be used to
reconstruct a closely related "correctly annotated" term in the other system. Specifically, for each
pair of systems, we prove the following two theorems:

Theorem 1 If Ztjp; is correctly o'ped then there exists a well-annotated term z,! 2 such that z. 1 =
Z:I ad t> CF(z,).

Proof Sketch(for I-), and CFA:) Suppose that F-,A(f ,) z,.,.. Unfortunately, we cannot proceed
to define a well-annotated term :C,, directly using the control-flow information in Zq.,, hecause

13

there is some slack in the dcfinition of correctly typed terms with respect to the specification of
control-flow information. In essence, the set of control-flow information associated with a tcrm

can often be enlarged using subtyping, without affecting correctness of the type annotations. Due
to minor structural differences between type systems and control-flow analysis, such enlargements
cannot necessarily be replayed in a control-flow analysis. Hence, we must first trim this slack. In
the context of z,,, define a function trin on typcs as follows: trim(,r) is the result of replacing
thccontrol-flow componcntof r with the set of all labels I E CF(r) such that if Aa.z : Tf appears in
• :,.then -.I _< r. Then, define that trim (z< ,) is the annotated term such that all types r appearing
in z:,p, (and subexpressions thereof that are types) are systematically replaced by irim(r). It is
easy to verify that l-,,..,.I trim (z,,) and that z b. trim(Z).

Now, consider systematically replacing the annotations in trim (as follows: an annotation
r is replaced by CF(r) U {hit) if({}, Int) <_ r and CF(7) otherwise. Call the resulting term
Clearly I Z.f,,I = IZ:Yr,,,! and CF,t,,,,,) t> CF(:,tj). It remains to show that zf. is well-annotated
according to the control-flow definitions. This is mostly straightforward; the most interesting case
is application, and here the proof follows the following property of any annotation appearing in
trini(

if I C CF(r) and A.r.Z : r., appears in trim(z,,p) then -,, < T.

This is an immediate consequence of the trim conqtruction. U

The proof for the othcr three cases of this theorem are modifications of this basic result. For
type systems that do not include recursion. the above construction can be modified to yield a well-
annotated terms that does not involve control-flow cyclcs. For type systems that do not involve
subtyping, the type systems do not include the subtyping rule, and when translated to well-annotated
terms (via the above construction). this means that the control-flow consistency conditions becorrie
equalities rather than inclusions.
Theorem 2 If Zc! is well-annotated then there exists a correctly typed term ::', Such 111(1! .,rJ =

]z:,]and CF(z.,) = CF

Proof Sketch(for - and CF,\) Suppose that ::.,. is well-annotated according to CFA. and
consider the following translation T(y) from the annotations -, appearing in -,, into types:

I if -= {}
T- t if- = {nl}

= (-,T(do(Y)) -+ 7(ran(I))) if , {) andy C LARELS

T otherwise

where donr and ran are defined by:

do,, (.) = l{. " Atx.: appears in :..,, and some free occurrence of .x in z has annotation -

ran(-;) = nf{alnot(z) : A'.r.: appears in ::;j }

14

To explain these, consider an abstraction A.z appearing in z,,,. Annotations on tile free occur-
rences of x in z represent upper bounds on the arguments to which this abstraction can be "safely"
applied. Hence, dom(-y), the intersection of these annotations over all I E 7, is the largest set that
satisfies all of these bounds, and this represents an upper bound on possible applications of a term
with label -i. Similarly, ran(7) represents a lower hound on the possible results of an application
of a term with annotation y. Observe that the above translation defines an infinite object if z.°
involves control-flow cycles. To deal with this situation, we modify the mapping T as follows.
First, we set aside a collection of distinct type variable ct for each annotation y. We then modify
the above definition to give a translation r' which carries the sequence of annotations , that have
already been considered. The key modification is the part for arrow types: if 7 _ LABELS then
T'h(.) is

ify .
('v, Ti"(dom(y)) -+' T~'Y(ran(-7'))) otherwise

In other words, the recursion operator it is used to fold infinite types into finite ones. Now define
that T(r) is TO(r) where 0 denotes the empty sequence. A key property of T is that if -yj 72 then
T(-,) 5_ T(7 2). Finally, define that zt,,,s is the term that results from systematically replacing
each annotation -f in zja by T(y). Clearly IzcfaI = Iztvr.,I and CF(z,!) = CF(zt,;e), and it only
remains to show that z is correctly typed. This is essentially a structural induction on Ztypes

(although note that contexts have the be constructed), and is fairly straightforward. f -

Again the proof for the other three cases of this theorem are modifications of this basic result.
For control-flow systems that exclude recursion, note that the original definition of T is sufficient
since the ordering >- on LABELS means that cycles cannot appear in this definition. Hence, it is clear
that the image of T consists of non-recursive types. For control-flow systems that do not involve
subtyping, the control-flow consistency conditions become equalities rather than inclusions. When
translated to types, such annotations correspond to type derivations that do not require subtyping
(we remark that when the above construction is applied to a CFA..,y-well-annotated term, the
resulting term can contain __; by replacing such occurrences by Int, we obtain the desired result).

15

References

I I R. Amadio and L. Cardelli, "Subtyping Recursive types", ACM-TOPLAS, 15(4):575-631.
1993. (Also in POPL-91, pp. 104--i 18).

121 A. Bondorf and J. Jorgensen, "Efficient Analysis for Realktic Off-Line Partial Evaluation".
Journal of Function Programming, 3(3), pp. 315-346, 1993.

13) N. Jones, "Flow Analysis of Lambda Expressions", S'np. on Fmciona! lag,,e ,,d
Computer Architecture, pp. 66-74, 1981.

141 N. Jones, "Flow Analysis of Lazy Higher-Order Functional Programs", in Abstract Inter-
pretation of Declarative Languages, S. Abramsky and C. Hankin (Eds.). Ellis Horwood,
1987.

[5) D. Kozen, J. Palsberg, M. Schwartzhach, "Efficient Recursive Subtyping" POPL-93, pp.
419-428, 1993.

[6] R. Milner, "A Theory of Type Polymorphism in Programming", Journal of Computer System
Science. 17. pp. 348-375.

17J 1. Pulsberg and M. Schwartzbach, "Safety Analysis versus Type Inference for Partial Types"
Information Processing Letters, Vol 43, pp. 175-180, North-Holland, September 1992.

18] J. Palsberg and M. Schwartzbach, "Safety Analysis versus Type Inference" Information and
Computation, to appear.

[9] J. Palsberg and P. O'Keefe, "A Type Syem ' Foqivnlt inv A n!%v,i". In i-.ppir -WWI.

95.

[101 0. Shivers. "Control Flow Analysis in Scheme", Proc. 1988 ACM Conf on Programming
Language Designi and Inplementation, Atlanta. pp. 164-174, 1988.

fII] Y. Tang and P. Jouvelot, "Control-Flow Effects fr -Escape Analys", 4t.4'o , ,
France. 1992.

[121 Y. Tang and P. Jouvelot, "Separate Abstract Interpretation for Control-Flow Analysis". TACS-
94, LNCS 789, pp.224-243, 1994.

1131 S. Thattc, "Type Infercnce with P-rtil T,,,,c" P P.Q.q i , wy ,,(¢S_1Q I

16

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

'iscrrn 31 -atc ams er:r yrp(r, *:i'n..%y' ! C gjrsv i- .,re i~x >
iia n .; 'e -a -d Za4 it tu 1. 4 ii v, c; 1--c.- ; A6 :-I : :c ~

E®u: Iitar A-r t-ocr c-es w. ,72 'rc S::!c t WI E 7 v1 A I ~ c :c ':~ i:''-"I
ri'! C :,I I a., r extcJi1l~ Olcers

i- acdt.:.n CD"C;9 - Ae on un i;'; iv ncec rc: ix- nwt -tU c!PT,~ ' ':cr- o: 0Jin
rd:ic' wt Is n'.- .C- :he C si c 'j:--e.Zi:Yi~i. i ~ea' £3u.Zv

)rtet~ci-n, ir' rnrc irom. rnv Me on .poxrty. :xiC % A.-ftPrr.st '.~

