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Abstract

Software ar-hitectures increase productivity when used as the basis for devel-
oping applications in a problem domain. This thesis describes the creation of
Easy.Sim, an object-oriented software architecture for visual simulation sys-
tems, and its corresponding implementation as an application framework in
Ada 9X. The research built upon ObjectSim, an existing object-oriented simu-
lation architecture implemeitted as a C++ application framework, Roth Obiect-
Sim and Easy_Sim operate on Silicon Graphics platforms and use the IRIS Per-
former graphics programming library. Easy_Sim is implemented using ver-

sion 1.83 of the GNAT compiler.

The investigation for this thesis involved honing ObjectSim's design,
implement'ing the improved result in both C++ and Ada 9X, and developing
applications to compare the two versicns. The study achieved two main objec-
tives: producing Easy_Sim as an improved visual simulation system architec-
ture by building on ObjectSim's experience, and producing a visual simulation
system application fromn Easy.Sim in Ada 9X that performs at a level compara-

ble to the same application built in C+-,

vii



EASY_SIM: A
VISUAL SIMULATION SYSTEM
SOFTWARE ARCHITECTURE
WITH AN
ADA 9X
APPLICATION FRAMEWORK

I. Introduction

1.1 Background

A visual simulation is a system in which an operator is placed in a computer
generated environment and presented with graphical stimuli mimicking ac-
tual objects and events. These systems have numerous commercial, military,
and recreationa! applications because they provide safe, inexpensive, and ef-
ficient means of training personnel, serve as a logical test bed for innovative
ideas, and have tremendous entertainment value, One of the most familiar vi-
sual simulation systems is the flight simulator, in which pilots step irto an ar-
tificial cockpit and practice flying techniques without leaving the ground.
The simulator allows the pilots to gain invaluable practice and train for ad-
verse conditions without risking their safety, putting stress on real airplanes,
or wasting valuable resources.

While there is no doubt that visual simulation systems are beneficial,
their graphics-intensive software nature has presented numerous challenges
throughout the years for system developers. The constantly increasing com-

plexity of the simulated systems has led to 2 corresponding increase in the




software complexity of the simulators. In order to manage this complexity
more easily, the building of reusable base designs, or software architectures,
has begun in earnest by the makers of visual simulation systems.
not unique to simulators; software developers in other problem areas; or do-
mains, are also designing architectures to create solid foundations for their
systems.

Software architectures can lead to many improvements in the develop-
ment of software systems within a domain. Because an architecture promotes
reuse at the design level, systems developers do not have to devote effort to
analyzing and designing basic structures every time 2 new application of the
system Is needed. The existing grot ndwork allows developers to concentrate
more of their work on problem specific areas, and cuts down on overall pro-
duction time and cost [Law24,3]. The software architecture
sultant system more maintainable and supportable, because changes can be
incorporated more easily. By finding the place in the base design where a
change will occur, its effects throughout the entire system can be determined
and the impact of the change can be minimized. This ability to make changes
more easily also leads to the practice of rapid prototyping, in which stepwise
refinements are made to the implementation until che end result veaches pro-
ductioﬁ quality. Rapid prototyping allows svstem users to become more in-

volved in the development process, giving them more control over the final

ou(come.

1.2 Problem History

The research for this thesis builds upon recent developments in creating soft-

ware architectures for the visual simulation system domaln. It primarily adds




to recent work accomplished in the Graphics Laboratory (Lab) of the Air Force
Institute of Technology (AFIT). This graduate research involves distributed
simulators, which allow a more realistic training situation by incorporating
physically separated actors into 2 barttlefield situation. The interaction be-
tween the various simulators is accbmplished by means of network connec-
tions and established communication protocols. As part of this research, the
AFIT Graphics Lab has recently produced a virtual cockpit for the F-15E
fighter [Eri93. Ger93, Dia94], a space modeler [Kun93, Van94], a commander's
situational battle bridge [Sol93, Wil93, Kes94, Roh94], and an air combat de-
briefing tool for the Air Force's Red Flag exercise [Gard93, For24], Table 1
gives the details of the research projects completed in 1993.

Because these projects and their predecessors are visual simulation
systems, they perform many of the samc tasks. Historically, these common
tasks were re-accomplished for each new application: in the Graphics Lab.
Under an initiative started in 1992, this unfortunate and inefficient problem

was addressed by creating a software architecture dubbed ObjectSim. This de-

-

sign provided the common structure for each of the applications and allowed
the different developers to concentrate more heavily on the unique aspects of
their particular applications. ObjectSim also served as the focus of Mark Sny-
der's graduate thesis [Law94, Sny93).

The implementation of ijectSim exists at a high level of generality, and
can be used to create diverse simulation systems, as evidenced by the four
applications. ObjectSim is also a completely obiect-oriented technclo
der to produce an application, developers must create their own versions of
the structure by inheriting and deriving from the basic design. Because the

ObjectSim implementation Is abstract and can only serve as the basis for sys-




Table 1. AFIT Graphics Lab Research Projects for 1993

Project Description Reseurch Guals
Virtual Cockpit Immersive flight simutator foran | - Rescarch incxpensive
[Erich93] F-15E alternative to domed
{Ger93) simulator
- Build man-in-the-loop DIS
platform

- Stwdy modeling of
advanced weapons system

Synthetic Battle Bridge Immersive/Console based com- |- Research immensive
|Soltz93} mander's eve view of battleficld interface techniques for
[Wil93] commander

- Study expert computer
situational analysis

> Study situational
representation techniques
for battlefield

- Study user interface
techniques for effective
vser view control

Satellite Modeler Lmmersive/console simulation for Represent single orbits or

{Kuiuz93} analysis of satellites constellations

- Swdy immersive intcrface
into satellite simulation

- Interface satellite data
onto DIS simulationc

Red Flag Display Tool Consale based debricfing/display Study user interface for

[Gard93) ool for Air Force exercises debriefing system

- Interface live or recorded
excrcise data onto DIS

tem applications, it is called an application framework [Sny93,12}. The reuse of
ObjectSim's implemented code resulted in a vast increase in the production rate
of visual simulation systems in the AFIT Craphics Lab {Sny93 78-82),
Unfortunately, ObjectSim does also have some drawbacks. Most notable
is its heavy reliance upon underlying software libraries and hardware pro-
duced by Silicon Graphlcs, Inc. (SGI). The realistic speeds, or frame rates, with
which ObjectSim applications are able to draw, or render, visual simulations
can be attributed almost entirely to its use of SGI's IRIS Parformer (Perfermer)

graphics application development environment {Mcl92, Harg4). ObjectSim is



therefore not system independent, or portadle. Another indirect consequence
of ObjectSim's dependence on its SGI environment is its implementation in C+-.
This cholce was necessary to allow object-oriented extension and 10 achieve
compatibility with Performer, whose interface is written in C. Many of the vi-
sual simulation system application developers have expressed that they could
have been more productive had they not had to fight the cryptic intricacies of
C++ [Law94,7].

1.3 Research Motivation

Ada is preferable to C+- as an implementation language for many life ove
software engineering reasons. These factors all cause Ada to be more expen-
sive in terms of cost and time in the initial phase of a software project, but
long run benefits justify these costs over the lifetime of the system. Ada cede
is inherently more readable than C-+ code, due to the more verbose and ex-
plicit nature of Ada syntax. More readable code is necessarily more under-
standable, and in an 2rena in which application developers build from a com-
mon framework, it is vital that they can comprehend that framework. More
understandable code also contributes to Ada's higher modifiability, as the lo-
cations of changes are more readily apparent, and th2 effects of the changes
throughout the entire program are more easily determined. In contrast, the
cryptic notation of the C language which underlies all C++ code is notorious for
p:oducing unexpected results {Feu82].

Reliability is also much harder to achieve in C++ than Ada, C++ cannot
dodge lts C underpinnings, its weaker data typing facilities, or its currently
non-standard implemcatation of exception handling, all factors that con-

tribute to its lesser reliability, Even main proponents of C++ acknowledge its




disadvantages in this area. P. J. Plauger, the author of the ANSI C standard. has
stated, "Beyond 50,000 lines of C, you'd better take a hard look at converting to
C++. Beyond 100,000 lines, you should probably be coding in Ada" [Plago,
Pla94).

Mark Snyder was well aware of the benefits of Ada when he imple-
mented ObjectSim, but he also had good reasons to choose C+~-. First, C++ was
compatible with the underlying C tools of the SGI environment. Given that six
other concurrent thesis efforts in the AFIT Graphics Lab relied on his work,
Snyder did not have the time to finagle compatibility with Ada. Second, Snyder
needed a language that supperted the gbject-oriented extensibility he envi-
sioned for ObjectSim. While Ada 9X supports this feature, it was not yet avail-
able. Snyder could only consider using Ada 83, which has no facility for ex-
tensibility. His choice for ObjectSim was therefore shvisus,

Ada 9X has now become available through the development of prelimi-
nary compilers for the language. Although they are not yet complete, they do
provide support for object-oriented extensibility and many other features that
can enhance ObjectSim. Five more thesis efforts in the AFIT Graphics Lab
have evolved the four applications, but they use Snyder's C~~ version of the
ObjectSim framework. The research on Easy_Sim, the Ada 9X version of the
framework, the-efore has been free to experiment with different versions of

the implementation of the Easy_Sim architecture.
1.4 Scope of Research

This research has two primary goals: to develop a substantially improved
Easy_Sim architecture using the knowledge gained from work accomplished

with ObjectSim, and to demonstrate that a visual simulation system application



framework can be implemented using Ada 9X and provide capabilities equal to
or better than a similarly designed C+- framework. The end result of the effort
is therefore to demonstrate concept feasibility by producing an application
using the Easy_Sim framework, and showing that the application's perfor-
mance has not suffered. A C-+ implementation of the Easy._Sim architecture is
maintained with the same functionality as the Ada 9X version. This version
serves as a control so that a fair comparison is still possible if ObjectSim and
Easy_Sim diverge substantially. Three questions were investigated in this re-

search.

domain analysis consisted of examining components of each 6f the four appli-
cations under develcpment during his tenure in the AFIT Graphics Lab, and
determining which of these components might be useful t¢ other applications.
Even with this localized approach, Snyder's time constraints did not allow Ob-
jectSim to encompass all of the functionality originally envisioned. Most no-
tably absent is the handling of network interactions between the distributed
simulators [Sny93,96-99].

The second question to investigate in producing a working application

was the implementation of the software architecture design in Ada 9X. This
9

N=]
=
[0 d
1%
=X
(=
=
wn
n
2
=)
=
~N
m
j=%
-
=2
0n
=]
o
~
=3
(=]
[o5
=
-
2
oQ
-
»
o
o
=
=
[=]
3
(]
+
+
-
[=]
>
[e X
n

This question also involved ensuring that the proper tools were available to
assist in the code production, including an Ada 9X compiler and bindings to the
underlyving SGI environment,

Once the Easy_Sim framework was built, the final question investigated
the building of an application using Ada 9X. Mark Snyder describes exampie

applications in the ObjectSim Application Developer's Manual [Sn

-3




Implementing these sample programs in Ada 9X and analyzing their perfor-
mance demonstrated the ability of the Easy_Sim framework.

Although it would be beneficial to divorce Easy_Sim from its reliance on
the SGI environment, there are reazons this research did not entertain the
idea. A high level comparison is a primary focus of this study, and it is there-
fore important that the frameworks be implemented similarly. The SGI envi-

h

ronment is utilized because of its availability in the AFIT Graphics Lab and it

proven capability for efficiently rendering graphics applications.
1.5 Methodology Overview

Each of the three questions outlined in the previous section corresponds to a
set of actions that influenced the development of the Easy_Sim architecture
and framework, as well as example applications.

The first question, investigating ObjectSim's design, corresponded to the
domain analysis of the problem. The original analysis of ObjectSim was scru-
tinized for inconsistencies and deficiencies, and any changes deemed neces-
sary or beneficlal were incorporated into the design of Easy_Si

The second investigative question implemented the results of the do-
main analysis in Ada 9X. Different strategies for this process were considered,
with an emphasis on revsing as much existing code as possible. The GNAT
compiler was used to test these strategies. The first hurdle in the implementa-
tion process was the creation of Ada bindings to the Performer library. Luck-
ily, visual simulation system developers at Silicon Graphics also have a2 keen
interest in Ada 9X, and they created a preliminary set of bindings, as well as a
port of the GNAT compiler. They generously agreed to contribute these prod-

ucts to this research effort,



The final investigative question compared the ObjectSim and Easy._Sim
frameworks by demonstrating similar applications using each versian. These
demonstrations were initially accomplished by building Ada 9X versions of the
ObjectSim example applications [Sny93,AppAl. Because the ObjectSim and
Easy_Sim implementations differ, comparing them is unfair, and the C-+ ver-
sion of the Easy_Sim framework was used as a reference point.

In the discussion above, it mistakenly appears that the research oc-
curred in three large chunks. In reality, investigation of the questions was
performed repetitively in a rapid prototyping fashion, incorporating more of
the solution's functionality with each iteration. The use of rapid prototyping
allowed development of a working application earlier in the process. Each it-
eration corresponded to the addition of énother feature in the architecture,

with the existing ObjectSim example applications serving as product baselines.
1.6 Research Environment

This research effort used the equipment and tools located in the AFIT Graphics
Lab. The SGI environment consists of various proprietary hardware and soft-
ware systems. The machines include interconnected Indigo, IndigoZ, VGXT,
and Onyx/Reality Engine2 computer systems, with most of the work and all of
the results collection accomplished on the four-processor Onyx known as
Leonardo. The machines use version 5.2 of SGI's IRIX incarnation of the UNIX
operating system. Version 1.2 of the IRIS Performer library {Har94] and ver-
sion 5.2 of SGI's Graphics Library [McL91] enabled the graphics processing 1o
occur at realistic rates. Version 3.2.1 of SGI's C+~ preprocessing compiler was

responsible for compiling the C++ code.




The Ada 9X code compilation occurred courtesy of GNAT, the Ada addition
to the Free Software Foundation's gcc compiler family. A team at New York
University (NYU) produces this shareware {omp
Ada Joint Program Officz. Although the GNAT compiler is not complete, it has
continually evolved and matured throughout the endurance of this thesis. The
results presented were compiled with version 1.83.

Outside of the Graphics Lab, the contributions of varions individuals was
instrumental in the progression of this thesis. SGI's Ada team provided solu-
tions to binding problems and ported the GNAT compiler to the SGI systems.
The GNAT development team at NYU gracicusly responded 10 inguiries about

the compiler and its maturity.
1.7 Document Overview

This research investigated develaping a new version of a visual simulation
system software architecture and implementing that architecture as an appli-
cation framework in the Ada 9X programming language. The history, ratic-
nale, focus, and methods for this effort have been outlined throughout this
chapter. The remaining chapters describe the research completely.

Chapter Il details background topics pertinent to this effort. it covers
object-oriented methodologies and programming languages, software archi-
tecture and application framework theory, industrial simulation architectures,
the basics of the SGI environment, and the ObjectSim architecture. Chapter Iii
llustrates the changes made to the ObjectSim domalin analysis and desion to
produce Easy_Sim. Chapter IV presents the techniques used in the migration
from the C++ implementation of ObjectSim to the Ada 9x implementation of

Easy_Sim. Chapter V describes the development of visual simulation system
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applications built from Easy_Sim. Chapter VI analyzes the results of the com-
parison of the different versions of the architecture. Finally, Chapter VIl

summarizes the research accomplishments and suggests areas for improve-

ments and future study.
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II Overview of Current Rescarch

Before discussion of the details of this thesis occurs, this chapter presents
various prerequisite topics. The chapter is constructed so that the reader can
eastly skip any of the concepts with which he or she is alrea
The first section of this chapter gives an introduction to object-oriented
software development by looking at different related topics. It first covers the
overall concepts that define the term cbject-oriented, and then
implementation of the object-oriented methodology in both the C++ and Ada 9X
programming [anguages. The final portions of the first section cover the
Rumbaugh technique for describing object-oriented analyses and designs, and
the ROMAN-9X method for developing Ada 9X code from Rumbaugh diagrams.
The second section of this chapter defines software architectures, and
the third section analyzes these architectures as they are used within the
simulation industry today. The fourth section describes the Silicon Graphics
Performer library, and the final section introduces ObjectSim, the architec-

ture upon which Easy._Sim is based.

2.1 Object-Oriented Concepts

Object-oriented methods, including analysis and design techniques as well as
programming languages, have certain characteristics that give them a clear
advantage in the software development process. Perhaps the most obvious of
these is their reliance on an objective problem view instead of the more tradi-
tional functional view. People are more easily able 1o identify the concrete
players, or objects, involved in solving a problem than they are able to imag-

ine the abstract processes needed to achieve a result. Cbhject-oriented pro-
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gramming paradigms capitalize on this more intuitive way of attacking a
problem, and have been more readily received because of it. Software devel-
opers first determine which objects they need in a2 problem, and then figure
the processes, or operations that go with each object.

While an object-oriented method may be more intuitive, it would be
useless if it did not lend itself to the production of systems that adhere to the
common goals of software engineering [Ros75]. Luckily, maintainable, un.
derstandable, reliable, and efficient code can be readily produced through ob-
ject-oriented programming techniques. Technically, most experts agree that
there are four major features that make a methodology object-griented: ab-
straction, encapsulation, inheritance, and polymorphism {Boo94, Rum9l,
Str91]. Each of these features contributes in the effort to attain the goals of
software engineering.

Abstraction is the separation of an object's specified functionality from
its implementation. One programmer writes a set of routines with a well-de-
fined interface, and another programmer easily integrates that code intg her
own work with simple calls. The caller's code is unaffected by changes in the
implementation, and she can therefore be completely oblivious of the rou-
tine's implementation. This feature is preferable in a large project, in fact,
because it is impossible for a single programmer to understand the entire sys-
tem. Types that use abstraction have historically been termed abstract data
types (ADTs), and to effectively use this powerful concept, the programmer
must learn to rely on what a piece of code does, instead of how exactly it works,
Ironically then, abstraction allows software developers to accomplish more by
understanding less. The reality of this situation makes abstraction the key to

objects.
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The second major feature of object-oriented languages, encapsulation,
builds upon abstraction. Encapsulation is also often commonly referred to as

information hiding. Where abstraction logically separates what happens with

(V)

an object from how it occurs, encapsulation physically divorces the two idea
A piece of code’s implementation is no longer simply irrelevant to a client
programmer, it is also inaccessible, grouped together and hidden within the
code's innards. There are two basic scenarics where this is invaluable for 2
system's reliability. The first is to prevent hackers, who know the intricacies
of the implementation, from intentionally trying to affect the outcome of a
routine. Tricks or kludges that they think enhance the code may unfortu-
nately introduce errors into the work of other client programmers. The sec-
ond scenario occurs when a maintenance programmer is charged with en-
hancing a piece of code, but only partly understan
programmer makes some minor clianges in a module that seem to achieve the
desired result. While he is not intentionally trying to change the overall im-
plementation of the system, he may inadvertently end up doing so and once
again affect the whole system. Encapsulation is therefore a feature that ¢an
increase reliability by grouping all related code together. It serves as a safety
mechanism preventing both malicious and accidental breaches of an abstrac-

tion.

Inheritance is the third major feature of object-oriented languages. It
follows from the real world model of objects, where one object can be very
similar to another object, only with a few new addirional detalls. An FM stereo
radio, for instance, is an FM radio with left and right channels. Its basic
functionality is the same--it produces sound. However, FM stereo radios may

also have balance controls or a stereo indicator light, arrribures not found in 2
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reguiar FM radio. Inheritance works just this way, taking the basic func-
tionality from one type of object and extending it to a new type of object,
adding new attributes to the new type if necessary.

Object-oriented terminology states that a particular object is an instance
of a type of object, or class, A class consists of all the types derived from it,
including itself. The derived classes are often called subclasses or children of
the base or parent class, and together they form a derivation tree. FM stereo
radios are therefore subclasses derived from FM radios, which could in turn be

a child of a generic radio class. Often, as in this example, a derivation tree's

subclasses, and instances of the abstract base class cannot exist. In this exam-
ple, the abstract radio class has power switches, tuning controls, and volume
controls, but creating an instance of the radioc class does not make sense unless
it also receives some band of frequencies, such as FM, AM, or short wave. An
instance of the abstract radio class, therefore, must belong to one of its con-
crete subclasses.

Inheritance is very important in improving the maintainability of a
system. It makes the task of extending a module's behavior independent of the
module itself. In other words, the new functionality can be added in 3 new
module without making any changes to the original. This concept is helpful
for three main reasons. Whenever code is changed, the possibility of unin-
tentionally introducing errors always exists, and reliability may therefore
suffer. Second, if a piece of code does not change, it does not have to be tested
again. When inberiting code, the programmer only has to test the extensions
in the new module, saving time, effort, and cost. The final reason for avoiding

working in the original module lies with compilation dependencies, If a mod-
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ule is recompiled, some language systems require that al! other dependent
modules also be recompiled to incorporate any possible caanges. This extra
step is necessary regardless of whether or not
used the new capabilities. Obviously this task can slow down, or even retard.
development, and is an annoying hindrance to a project's productivity. The
object-oriented feature of inheritance is therefore a welcome enhancement
for any software maintainer, saving her from numerous unnecessary annoy-
ances [And93).

Just as the feature of encapsulation adds to abstraction, the final major
feature, polymorphism, adds to inheritance. Returning to the earlier example,
all radios share a basic operation--they produce sound. Analyzing the radio
class, radio users are always given a method for turning a radio's power on and
.off to produce this sound, whether they have an AM, FM, or short wave radio,
The switches to do this operation may differ depending on the subclass of ra-
dio, and the inner workings of the radio's power source may vary, but power
switches are common throughout the entire class, This commonality is poly-
morphism, the inductive idea that although an operation is invoked similarly
for different subclasses, the operation may behave differently for each class.
Technically, the system makes a dispatching operation, determining how o
perform the operation depending on the particular subclass upon which the
operation Is called. If the system cannot determine the subclass with which it
{s dealing until run-time, the dispatch is performed dynamically.

Polymorphism helps us achieve the goal of understandability in the
same way function overloading does, because similar operations are given
similar understandable names. If the main radio operation is "Power_On," this

name is used throughout the derivation tree no matter how the operarion is
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performed. This convention has a positive effect on maintainability for mod-

ules that call a dispatching operation. If a new subclass is added to a derivation

ing ¢

is made with an object of the new type, it will still dispatch accordingly,

A general trend is very noticeable in the discussion of object-criented
features. Programmers continually mention using other programmers' ob-
jects. The objects can call each other easily due 1o well-defined abstractions
and not worry about the encapsulated details. They can design by inheriting
from and extending another programmer’s design, allowing calls to be made to
etther design in the same manner with polymorphism. This idea of reuse is
central to object-oriented programming and is its "most tangible advantage"
[Ban92]. Once an object and its operations are defined, it can be shared among
different developers in one project, or even across different projects alto-
gether. There is no need to try to modify an object if it already works. If more
capabilities are needed, simply inherit from the established to create the new.

Reuse is not a new idea, but object-oriented programming languages

tional languages. This feature cuts down tremendously on production time and
translates directly into development and maintenance savings. Dr. Edmond
Schonberg of New York University has said about object-oriented program-
ming, "the gain is in the amount of code that one does not have to write"
{Sch92]. This concept alone is perhaps the most compelling reason to readily
accept the object-oriented paradigm. Combined with the maore inruitive
methodology for breaking down a problem and the improvements brought 1o

the software engineering goals of maintainability, understarndability, relia-
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bility, and effictency, it is clear why obiject-oriented methods are revolutioniz-
ing the software industry.
Discussion now turns to the two programming languages that are used

in this thesis effort to realize the ghject-oriented paradiom C+4 and Ada 9X,

2.1.1 Object-Orienied Programming in C++

The C+- language serves as an extension t¢ the € language, an

rently used widely throughout industry. C is notonous for allowing program-
mers to produce unstructured code, and C by itceif lends litdde support for any
of the design principles associated with object-oriented programming.
section addresses the features of C-- that support the object-oriented
paradigm, giving structure to the C languaye family [Str91, Poh93].

The class typing construct in C-- directly maps to the notions of ab-
straction and class in object-oriented terms. A C-+ class defines a type that can
be used by client programmers. Its definition includes any attributes, or
members, as well as any operations, or member functions, that might act on an
instance of the class. The term member is used in both these cases to indicate
that both the attributes and operations are declared within the scope of the
class (Ker78,120]. Instanccs of the class are achieved through variable decla-
rations in a client program, and creation and deletion of these ohiects can he
controlled by the class designer through the use of automatic constructors and
destructors. The separation of specification and implementation that consti-
tute abstraction is accomplished in C+4+ through the use of header and source
files, which respectively contain the two views of an object. The header file in

Figure 1 defines the interface for an FM radio.
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The source file for the FM_Radio class, shown in Figure 2, defines how

the member functions achieve their effects. These implementations can only

S on . oh

be accessed by clients through the interface defined iu the hea

"." potation gains access into the scope of the class preceding the symbol, and

is necessary because many classes can have member functions with the same
name [Str91,145]. It is also vital because C++ does not define rules for locating
the definitions of the member functions in any specific source file. Note how
no part of the language determines the beginning or end of the header file--it
is, by convention, a simple list of the definitions of the member functions but

it could easily contain other entities,

7/ £ile Im_radio.n
class FM_Eadio

publiec: 7/ Grarts client prograrmers access to what fcllews

TM_Radic (}; /¢ Constructcr has same name &s class
~FM_Radieo !}; // OTestyxucter's nams is similar, dur with tilde
/7 NMemder functiens:

f¢  Syntax-~ return-type nams (parameter-type parameter-
void power On () /7 Volid functions veturn no> vaiues
void Power_ 022 (): // Erpty parareter ~ists must ke exp.icis

void Volume_Up
void Vo ure_ Dowrn

{
{

void Tuning_Up 0
void Tuning_Decwna ()

.~

£loat Station ();

7/ Regular members, stcring state of class:
int power; i/ 0 is cff

int current_volume;

2loat current_statiecn;

}: // Semi-ceclen completes class declaration

Figure 1. FM_Radio Class Hcader File
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i/ file fm_radio.cc

tinclude °*fr_redio.h*

-~

FM_Radic::FM_Radio

{
powsr = 0;
current_volure = J;
current_statien = 97.7;

/7 N> semi-zolor Lere

/4 Othey member functions omitted

r:

FM_Radio::Power_Or (!}
{

)

// and sc ¢n...

power = Z;

Figure 2. FM_Radio Class Source File

Instances of a C++ class each get their own copies of all its members.
When a member function is called in a client program, the instance name is
part of the call, and the member data upon which the function operates is
passed implicitly. Figure 3 shows a main C++ function that uses the FM_Radio:

Just as the FM_Radio header file above declares a part of the flle t6 be

public, it can declare a part to be private. This feature brings encapsulation to

7/ file mair.cc
#include *fm _ra2dis.h* // Tc access c.2ss haader file

int main {)

{
.

th
23
]

FM_Radio *My_Radic; /7 Declares pointer t¢ instanc: ¢
My_Racic = mew FM_Radio (): // Allocatee space & calls constructor

My_Radic->Power_On (); // urrs on My_Radio instarce
My_Radio->¥olume_Up (); /2 Turns up My_Kadio instance

Figure 3. Main Using FM_Racdio Class
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C-+, hiding whatever is declared in the private part from clients of the class,
and only allowing access to member functions. In fact, private is the default,
and all members will be encapsulated unless explicitly listed othenwise,
mally, a class encapsulates its regular members in the private part, while
keeping its member functions available in the public part. The definition of
member functions in a separate source file also contributes to the encapsuia-
tion of C++.

Any C-+ class can form the root of a derivation tree, and this feature
brings inheritance into the language. Another class can simply declare that it

is a child of FM_Radio, and it gets a local copy of all the members of the narent

Q.
)
=
<

class. The derived class does not gain any special privileges, however, an

-
-~
=2
=.
w

members of the base class declared private are inaccessible to the child. |

0

effect is not desired, the parent can have 2 part similar to its public and pri-
vate parts, called protected, and any members declared in this part are visible
throughout its descendant subclasses. A child class can add member data ele-
ments to those inherited from its parent by simply declaring more of its own,
in whichever of its own parts it prefers.

The subclass cannot, however, customize its parent's member functions
unless the parent explicitly grants permission for this polymorphism o occur.
A class can declare any of its member functions to be virtual, aliowing that
function to be overridden or redefined by its subclasses. Additionally, a class
can make itself abstract by indicating cthat one or more of its virtual functions
is pure. Pure virtual functions cannot have definiticns in the class in which
they are members, and no instances of a class with pure virtual functions can

be created. Any descendant of an abstract class must override the abstract
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/! f£ile radio.h
clasg FRacio

public:

Radio {}; /¢ Inlined null furctior acts as destructor
~Redio () {}; // Sirple functiions car likewise ke in.ined

virtual void Power_On !
virtual void Pcwer_Off !

.

’
e
¢

‘

virtual void Volume_YUr {);
virtual veid Volume_Dovn ()

virtual void Tuning_Tr () = 0; // "= 0" indicates pure functior
virtual void Tuning_Dowm () = 0; // Freguency bard is unkrowr

virtual int Statior () = C;

virtual float Statior () = C;
protected:

int power; /¢ C is off

int surrent_vo-ume;
):
Figure 4. Abstraci Radio Class Header

functions, unless it too is intended to be abstract. Figure 4 shows the abstract
Radio class, and Figure 5 demonstrates how the FM_Radio is derived from it.

The main program can now declare instances of any class derived from
Radio, and expect that if a Tuning or Station member function is called, the ap-
propriate routine will be executed depending on the subclass of the instance.
Figure 6 shows a function which demonstrates this polymorphism.

In this example, the parameter passed to Turn_Off_Radio is a2 pointer to
any subclass of the abstract Radio class. When making the call to Power_Off,
the run-time system will determine the actual subclass ©
dispatch the call to the Power_Off function for that subclass, be it an FM_Radio,

an AM_Radio, a Short_Wave_Radio, or a Banana_Radio, whatever that may be.
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This section has provided a brief overview of the C+- language's support

/! f£ile fm_radic.h
#include *yadio.h”

class FM_Radic : public Radic // Derived from Radic

{
public:
FI4_Radic {}; // Override censtructer
// Destructer, Fower, and Velums functions arvz innzritad ac is

virtual void Tuaing_Up (}; /7 Redefine pure functiorns, ard meake

g_ur
virtual void Tuaing_Down (): // virteal to allow over-iding

virtual int Station ()
virtual float Statior f});

protected:

float current_staticn; /¢  Add new freguency zand
Figure S. FM_Radio Subclass Header

for the object-oriented programming paradigm, More in depth treatment of
the subject is available from many sources [Str91, Poh93]. Discussion now

continues with a similar implementation of the radio hierarchy in Ada 9X.
2.1.2 Object-Oriented Programming in Ada 9X

The Ada programming language became an ANS! standard in 1983, with the
intent that It would be updated pericdically as programming methodologies

evolved. Ada 9X is the first of these updates, supplementing the original lan-

void Turr_0ff_Radio {Radis *My_Redic!

1
My_Radlo->Pcwer_Cff [); l7 Dynamic dispatcehning call

)

Figure 6. Dispatching Radio Function
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guage with many new features deemed necessary by its users. Ada 9X was ap-

proved by the International Standards Organization in November 1994, and

will be officially dated according to the printing date of the new Ada Language
Reference Manual. Upward compatibility has been a primary goal of the re-

vision process, and because Ada 9X fully embraces Ada 83, this objective has
been successfully achieved.

Unlike the C basis of C-+, the Ada 83 basis for Ada 9X already provides a
sound basis for object-oriented principles, fully supporting both abstraction
and encapsulation. [t also contains a limited form of inheritance, but does not
readily allow polymorphism. This section lock~ at the Ada features thar address
the four object-oriented principles. A trait common solely to one of the Ada
versions is clearly indicated, while mention of an "Ada" feature indicates a
feature common in both versions.

Because the Ada language was originally intended to be used on large
software development projects, its designers decided to provide extensive ca-
pabilities for abstract data types. Ada realizes this well-proven programming
concept by an idiom using both its private type and package features. An Ada
package can serve as a container for many programming entities, but it is also
a tool for abstraction. Just like the C++ class, an Ada package physically sepa-
rates its interface from its implementation, and these pans are respectively
called the specification and body of the package. Ada mixes its rich typing
facilities with packaging in the form of private types, which split a package's
specification into public and private parts. The private type and any opera-
tior:s that manipulate its values are declared in the public part, so that client
programmers can access them. The components that the private type com-

prises are then defined in the private part of the package specification, and
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are encapsulated so that the client programmer cannot access them. The body
of the package, which defines the implementation of the operations that ma-
nipulate values of the private type, has full access to the specification’s pri-
vate part, but is also hidden from any client programmers. Ada packages that
export private types are sometimes called class packages, since the abstract
data type corresponds to a class in the object-oriented paradigm [Cer33]. In
fact, experts often call Ada 83 an object-based language because of its abstract
data typing facilities [Boo94, Taf92a].

Returning to the example of the FM radio, Ada syntax corresponding to
the C++ code for the FM_Radio class appears in Figure 7,

The most notable semantic difference between the C++ code and the Ada
code is the use of parameters in the operations of the FM_Radio class. Ada re-
quires these parameters as a consequence of its support for concurrency. Be-
cause an Ada procedure or function must be able to execute flawlessly when
many coples of it are running concurrently, each copy must get its own copy
of the data upon which it is operating.

The result for the client programmer is not very dire, as the names used

in the call simply appear in a different order. The main difference in the

M

£

$rc N
e Ups

client is the reference that is made tc the package where the type an

e

erations are defined. Ada uses this explicit reference to increase maintain-
ability on large programs, where tracing a declaration can be cumbersome.
This explicit referencing can be circumvented if the programmer so desires,

but this practice is discouraged and is not shown in Figure 8.




~- £ile Im_radic.ads

~- Naming corventiones for ob’ects taken Zrom ROMAN-9X [Cerdd)
~-- See appropriate sectior below for more irnfeormation.
package FM_Kadio is

type Object is private; -~ ?Privete type declavation

-- Cperaticn declaraticns

-~ Syntax-- procedure [function. name
-- {paraneter-nare : parameter-rodes paramerer-type)
-- (reTurn return-typel;
procedure Fcwer_Cn {(Instance : in out Cbjec
procedure Povwer Cff (Instance : in out Cbhlec

¥
Y;

procedure Volume Up  (Instancs : in out Oblect);
procedure Volume_Dowm (Instance : in out Object);

procadure Turing Upo {(Instance : in out Object);
procedure Turirg_Down (Instarce : in out Object);

function Stztior. [Instance : in Okject) roturm Fioi.;
private

-- Encapsulated types needed fcr full private type

type Switch is (GZZ, Cn);
subtype Frequency is Float range §7.7..107.9;
subtype Volume i Natiral range C¢..10;

-~ Full private type defiritior
typa Otject is
record -- defau.t initial wvalues provided for compcnents
Fower Switch := Cff;
Curreas_Szetien Frequency := FreQueney'Firs:;
Currenz_Velume Velure t= Oy
end xecord;

FYSY

end TV_Racio:

-~ file fm_xedis.adb
package body FM_Radlo is ~-- Body tells cempller what it is

procedure Fcwer_On {Instance : in out Crh-ect! is
bagin
Instance.Fewer := On;
end Fower_On;
-- Ard so or...

ond FJ_Radio;

Figure 7. FM_Radio Class Package
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-~ £ile listener.ad:
with FM_Radio; -- Tc access public package ccntants
procedure Listener is

My_Radio : FM_Radio.Object; -- Declares irstance of FY _Radic

begin

FV_Radic.Pcwer_On {(My_Radie;;
F_Radic.Vclume_Up (My_Radio};

end Listensr;

Figure 8. FM Radio Listener Procedure

Ada 83 permits inheritance of an object's attributes, inheritance of an
object's operations, and extension of an object’s operations through its derived
types. A type declared in a package specification is automatically derivable, as
are any subprograms in the public part of the package specification that take
a parameter of the type in question. These subprograms are called the type's
primitive operations. A client program unlt can derive 2 new type from the
original, and the child inherits the attributes and operations of the parent.
The child may override any of the inherited subprograms as necessary, and
any subprograms it declares that take a parameter of the derived type are
further derivable in other program units.

Ada's derived types do not, however, allow extension of an object's at-
tributes, a concept vital to object-oriented programming. Ada oX introduces a
new kind of record type to correspond to a class, called the tagged type, that
allows new record components to be added to any type derived from it. Tagged
types therefore provide full support for inheritarice. The new components
that correspond to the attributes of the subclass may be specified in the public
part, but a design fully adhering to the idea of encapsulation declares the new

attributes with a private extension, defined in the package's private part.




Tagged types may also be abstract, and may declare atstract operations that
must be overridden in child classes. Finally, a tagged 1--ne may be controlled,
providing a default constructor and destructor, if it ic derived from a prede-
fined abstract tagged type called AdaFinalization Controlled. Ada 9X's con-
trolled types also allow value adjusting, so that assignment between different
instances of a class can also be controlled by the programmer. If assignment
is not desired between instances of a class, the class can be derived from
Ada.Finalization.Limited_Controlled. These limited controlled types only in-
herit a constructor and destructor. The package specification in Figure 9
shows the Ada 9X version of the controlled, abstract Radic class.

Just as in the C++ implementation of classes, Ada 9X does not allow a child
class default access to its parent's private part. Unlike C++, however, Ada 9X
does not grant the parent class the ability to change this sometimes bother-
some feature. In Ada 9X, the derived type takes control by exploiting the new
feature of hierarchical library units. The new package declares itself to be
part of another package, so that it is logically nested inside its owner, evzin
though it is physically separated. Because Ada 9X's new type of package is used
in combination with inheritance, it is often referred to as a child library unit,
or simply a child package. In visibility terms, the child package does not need
to access its parent package using an explicit with clause, because the com-
piler recognizes the child's intent to be part of its parent. The public part of
the child is logically located at the end of the parent's public part, and the pri-
vate part of the child is logically located at the end of the parent's private part,
so that the child has access to the entire parent. The package specification for

the FM radio child class package follows in Figure 10.
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-- £ile radic.ads
with Ada.Finalizaticn; -- T¢ provide eentyclled caparilities
package Racic is

-~ Allow visibility of attribute types:

type Switsh is (OZf, On);

subtype Volums is Natural range C..1C;

-~ Mzke subclass of base for cortrolled tvpes:
type Object is abstract new Adz.Finalizatiorn.lontrolled with
private;

-=- Controiled operatiore:
procedure Initialize {Irnetance : im out Okject);

procedure Adjust {Irstance : in out Object;;
procedure Finszlize fInstance : in out Okjec:z!;
procedurae Fower_On {Instence : in out Chkjec::;
procedure Fower_ Cff tInstance : in out Ckject;;
procedure Vclume_Up {Instance : in out Chiect)

procedure Volums_Dcwn (Instance : in out Cbject);

procedure Tuning_Up (Instanze : in out Obieczt) is abstract;
precsduzre Tuning _Dowm (Instarce : in out Object) ie abstract;

function Statior (Instance : Object) return Natural is abstract;
function Station (Irstance : Object! return F.ozt is abstract;

private

type Ckiject is absatract new Ada.Finalization.lontrslled with

record
Fcwer : Switeh := Cff;
:= 03

Current_Vclure : Vc_ume
end vecord;

end Radic:

Figure 9. Controlled, Abstract Radio Class Package Specification

Just as tagged types bring the object-oriented principle of inheritance
to Ada 9X, they also bring polymorphism to the language. The name tagged, in

fact, refers to the polymorphic qualities of tagged types, as the svstem main-

hat™

tains a rag to keep track of an instance's subclass, so that it can dispatch to the

proper primitive operation. Because each tagged type forms the root of a class

derivation tree, Ada 9X provides a new language t
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-- file radio-fm.als

package Radic.FM is
pubtype Freguency is Float ramge 387.7..i07.%
type Obsec= is new Radic.Ctject with private;
procedure Initialize (Instance : in out Object);
-- Other Contvolled, Powar, and Volume operations inherited
-= Abstract operations must be overridden:
procedure Turnirg Up ilnstance : in out Okjec:t);

procedure Tuning_Dowr. {Instance : in out Okject);

fuynction Station {Instence : Oxiect) return Natural;
function Staticn {Iastance : Chbject) returm Floar;

private

type Obiect is new Radio.Object with record
Current_Station : Frecuercy := Freguency'first;
-- Power, Jurrert_Voclume inherited

end record;

end Radic.FM;

Figure 10. M Radio Subclass Child Package Specification

called T'Class. This attribute refers te any subclass in the hlerarchy started at
type T, and allows the declaration of unconstrained objects that can take the
form of any type derived from T. These objects are accordingly called c/ass-
wide objects, and can be declared wherever an chject declaration is appropri-
ate. Figure 11 shows a modification to the Listener procedure previously seen
in Figure 8. Listener is now a classwide operation because it takes a classwide
object as a parameter to exploit the dynamic dispatching available in Ada oX.

Both of the procedure calls above perform dynamic dispatching. The
procedure corresponding to the Instance's tag will be called by the system, and
this procedure may not necessarily be the one defined in Radio. Classwide op-

erations normally call the operations of the root type for understandability as




-~ £ile listener.adk

with Radic; -- Tc access roct cf hierarchy
procedure Listener {Instance : in out Radic.Cziecz'Class) is

bagin

Radio.Power_On (Instance);
Radio.Volume_Tp (Instance);

end lListener;

Figure 11. Classwide Radio Listener Procedure

shown here, but run-time polymorphism allows any primitive operation in

the classwide object's hierarchy to be used [Taf92a).

While classwide objects are quite useful, in object-oriented wrogram-
ming it is often more practical to deal with pointers to objects. Ada 9X provides
classwide access types to implement this functionality, and these types are
normally included in a class package to provide additional capability, A

classwide access type declaration appears:

type Eefererce 1s access all Obiect'Class

Assuming this line exists in the Radio class package, the Listener procedure

3
<%
£

can be changed to handle pointers, with a
rameter passed to the calls accounting for the poincer dereference. Figure 12

shows the new version of Listener. Seeing pointers used in this fashion, and

realizing that the .all dereference is not aestheticalls
that the next logical step would be to change the parameter types of the deriv-
able operations to use classwide access types instead of tagged types. This move
would be quite erronecus, however, because it is the tagged type parameter it-
self that makes the operations derivable and allows dispatching to occur.

Changing the parameter type of the primitive operations to a classwide access
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-~ file listencr.adt

with Radic;
procedure _istener [Instance : in out Radic.Reference) is

begin

Radio.Power_On (Instarce.all:;
Radio.Volume_Up (Irnetance.all);

end _istener;
Figure 12. Classwide Radio Listener Procedure with Access Types
type is unnecessary, as the intent of the change is already provided with the

simple tagged type. The somewhat ugly result of this rule is the necessity to

keep the .all.

This section has provided a brief overview of the Ada 9X's support for
the object-oriented programming paradigm. More in depth treatment of the
subject is available from many sources [Bal93, Bar93, Bar94, Cer93, Coh93,
Kam92 Kem94, Rat94]. Discussion now turns to one method for analyzing a

problem in an object-oriented fashion, independent of programming lan-

guage.
2.1.3 The Rumbaugh Object Modeling Technique

Dr. James Rumbaugh and his colleagues at the General Electric Research Cen-
ter have devised an object-oriented approach to attacking the analysis and de-
sign phases of the system life cycle, This methodology is called the Object
Modeling Technique, and results in a design that is independent of both pro-
gramming languages and hardware platforms [Rum91]. Although the Object
Modeling Technique covers many aspects of the analysis and design phases,
this section centers on the Rumbaugh diagrams that are used to show the rela-
tionships among the objects in a system. Figure 13 shows a Rumbaugh dia-

gram of the Radio system. In order to illusirate the features of the Object
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Figure 13. Rumbaugh Object Mode! Diagram for Radio Hierarchy

Modeling Technique that are necessary for this thesis, additional classes are
shown that have not been previously discussed.

Each box shows a class within the hierarchy, with the optional three
subdivisions respectively showing the name, the set of simple attributes, and
the set of operations that belong to the class. A simple attribute may denote an
initial or default value, and an operation may specify any parameters needed
to perform fts task. There is no specific way to show an abstract class, so this

characteristic may be written explicitly. In the figure, the abstract Radio class
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has two attributes, both of which have default values. The operations of the
Radio class are shown in pairs, and the abstract operations are noted. In the
FM_Radio class, only the new attributes and the new or overriding operations
are indicated.

Lines connecting the classes represent the relationships that exist be-
tween them. Inheritance is shown with a triangle, and the diagram above
therefore demonstrates that the AM_Radic, Short_Wave, and FM_Radio classes
are all derived from the Radio class. Aggregation is a special relationship in
object-oriented analysis that indicates that a class has attributes that are them-
selves classes. These attributes are separated from simple value-oriented at-
tributes because more information is required to understand their values and
operations. In the diagram above, the Radio class and all its descendants are
now composed of Displays, Knobs, and Buttons, in addition t¢ the simple at-
tributes already mentioned.

While inheritance and aggregation are common, relationships between
classes can exist that do not have special characteristics. A normal line shows
that an instance of a class on one end must coexist with an instance of the
other class, and these lines are normally labeled to describe the relationship,
Different multiplicity balls dictate the number of instances that must be re-
lated in the real system. An outlined ball indicates an optional relationship,
while a solid ball shows that any number of instances of the class can be re-
lated. In the Radio Object Model, the Listener class must use an FM_Radio, al-
though the FM_Radio can stand on its own. The three classes that make the
aggregate for the Radio also have multiplicity balls. They indicate that a Radio
may or may not possess a Display, can have any number of Knobs, and can

contain as many Buttons as it needs.
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This section has introduced the basics of the Rumbaugh Object Modeling

Technique. More details can be found in the text that Dr. Rumbaugh and his

-

colleagues have published [Rum81]. Discussion now addresses a

developing Ada 9X code from Rumbaugh Object Models.
2.1.4 Representing Object Models in Ada 9X Notation

This section serves as a summary of a technique for Representing Object Mod-
els in Ada 9X Notation (ROMAN-9X) [Cer93]. It serves as the basis for convert-
ing Rumbaugh diagrams into Ada 9X package specifications. This design
methodology has already been used throughout the discussion above 1o imple-
ment the radio hierarchy, but is explained more explicitly here. Some addi-
tions to the technique have been made, and they are included in the discussion
below:.

The basis of ROMAN-9X is that each class is implemented in its own class
package, a module which wholly and distinctly contains everything particular
to that class. To aid program readability, the package name is chosen carefully
to serve as the name of the class. The class type represents the class itself and
is called Object. The class type is implemented as a tagged type to allow inheri-
tance, and is usually controlled to allow for constructors and destructors. The
Ada type mark for client programmers declaring instances of the class is
therefore Class. Name.Object. This name reads nicely, and avoids confusion by
equating the class name with the Ada type itself. To provide fiexibility in us-
ing the class, the class package provides a classwide access type named Refer-
ence. This type allows client programmers to easily and efficiently use the
class as an attribute, and allows more flexibility in the exploitation of poly-

morphism,
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either through explicit initialization in the record component declaration or
by Initialize if a controlled type is used. In cases where parameters must be

passed to complete initialization, perhaps because of dynamically determined
data values, a procedure called Configure takes in the necessary values. By
convention, the class object is the first parameter t¢ any operation, and the
formal parameter is named Instance. This standard idiom aids readability and
provides a similar way for all operations to refer to the instance of the class
object upon which they are operating.

Class attributes are encapsulated in the tagged record in the private part
of the package specification. The class declares Get and Set operations to ac-
cess the class attributes when necessary, and the atiributes are never accessed
globally. The Get operations are implemented as functions when possible, and
are given the name of the attribute they return. If the Get operations returns
more than one value and must therefore be a procedure, it is named
Get_(Attribute). The Set operaticns are always procedures, and are named
Set_(Attribute). Both the Get and Set operations are inlined whenever possi-
ble. If the class {s an aggregate, and it has attributes that are themselves
classes, these attributes are stored as References; and the class package that
defines the attribute must be accessed via a with clause. Using a classwide ac-
cess to the attribute allows the attribute to be passed easily and efficiently and
avoids the potential dispatching conflict of having two distinct 1agged types in
an operation's parameter list. It also allows the attribute to take on the value

of any subclasses that may be derived from the class originally envisioned.
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———— - .

A derivation tree is rooted at a class package using th2 hierarchical li-
brary units of Ada 9X. The root of the tree serves as the base class package,
with each descendant implemented in a child package. A hierarchy with an
abstract root is implemented using the corresponding new Ada 9X svntax for
abstract types. Within the hierarchical packages, the package name indicates
a class' position, with each dot indicating its depth within the derivation tree.

Having gone from the basics of the ob_ject=criemed methodelogy 10 a2
technique for creating object-oriented code, discussion now turns to more

general styles for designing software architectures.
2.2 Software Architectures

David Garlan and Mary Shaw of Carnegie Mellon University's School of Com-

T
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puter Science teach a course on Software System Architectures, and
cently summarized their knowledge base [Garl93]. This section discusses "the
current state of the discipline,” by explaining Garlan and Shaw's definition of
a software architecture and describing numerous architectural styles.

A software architecture defines the style used to organize a software
system. This style helps to structure the flow of control throughout the sys-
tem, and decides which portions of the system handle which of the required
tasks and computations. An architecture also establishes standard technigues
used for communicating and accessing data in the system [Garl93,1]. By creat-
ing a software architecture, a system becomes easier to grasp for anyone try-
ing to analyze it, design it, implement it, or maintain it, The architecture de-
fines a prescribed structure that the system follows, and comprehending this

base structure eases understanding throughout the entire system . While it

may not seem that a maintenance programmer has this need, realizin
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scope of the changes she is making within the system can allow her to ac-
complish her task much more efficiently, responsibly, and safely.

Technically, Garlan and Shaw state that 2ll architectures are broken
into components, 5o that the pieces of the system are more understandable and
manageable. Communication methods between these components occurs ac-
cording to the architecture’s system of connectors. Finally, the behavior of
the system must adhere to certain constraints, which set rules for combining
the components and connectors. The constraints help the system to be more
uniform, which also makes it more understandable by decreasing its complex-
ity [Garl93,4-5]. In order to completely understand different methods for
defining components, connectors, and constraints, Garian and Shaw give
many examples of architectural styles. This section analyzes those that are

pertinent to this research effort, by first explaining them and then discussing

o

their advantages and disadvantages.

The pipe and filter architecture s familiar to users of the UNIX operat-
Ing system because it works very similar to the piping commands found there,
A pipe model indicates that data is brought into the system, manipulated or
filtered by one component, passed to another component, filtered again, passed
in a different form further down the pipe to the next component, passed
through another filter, and so on, until the final product is finally achieved.
This architectural style has certain advantages. It is highly maintainable, be-
cause the different filter components have no knowledge of each other, and
any of them can be replaced without affecting the others. This independence
also makes the filters very reusable elsewhere, and allows them to be imple-
mented as concurrent processes. The pipe and filter style is also easy to un-

derstand, corresponding mathematically to a composition of functions. This
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model also has its disadvantages, however, If user interaction is necessary, it
does not fit well into this batch-oriented processing scheme. Finally, the pipe
passes data down the stream globally, and it must pass all data required at any
filter down the entire stream. This model therefore necessitates that the
passed data be the union of everything that the different filters need, and it
can be costly if they have widely spread data requirements. In summary, the
pipe and filter architectural style is simple and neat, but it can require extra
overhead and does not wear well in interactive systems [Gari93,5-6].

fhe second architectural style examined by Garlan and Shaw is the data
abstraction model. In this model, each component is an instance of an abstract
data type, and is termed a manager because it is responsible for maintaining
its own state, and it keeps this state hidden from other components. Connec-
tors in this style are implemented through subroutine calls, as are common 1o
many block structured languages. Object-oriented architectures are a special
case of the data abstraction model, and the advantages of data abstraction have
already been described in excoriating detail in Section 2.1. The most signifi-
cant disadvantage of the data abstraction model is that in order to interact with
a component, the identity of that component and its connectors must be known
and visible. This problem negzatively affects modifiability, because a change
in the identity of a component causes a ripple effect throughout the svstem, as
every other component dependent on the changed component must also be
altered [Garl93,7-8).

Of special interest to this research effort is the Garlan and Shaw view
that inheritance i{s a method for organizing components, not of 'connecting
them {Garl93,8]. Regardless, a speciai kind of object-oriented architecture,

called an application framework, is often used within the object-orientea
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community {Str91]. This mode! provides a base set of abstract or default com-
ponents within a particular problem area, or domain. From this base set, a
system developer can use inheritance to derive components necessary for the
architecture they foresee for their specific application.

The third architectural style that Garlan and Shaw examine is the
event-based architecture. This model uses components very similar to the data
abstraction model, but these components are connected in an entirely differ-
ent manner. Whereas the earlier style required explicit calling of another
component's subroutines, the event-based model broadcasts requests for ser-
vice throughout the system. The system, responsible for managing which
components are interested in which broadcasts, then implicitly invokes the
necessary components and the data is passed accordingly. The event-based
mode! has its advantages through component independence, as each compo-
nent is abstract and encapsulated, and can be reusable or concurrent. The
main disadvantage is lack of event ordering and determinism, as the system
cannot guarantee the sequence in which connections are made, or that they
get made within a particular length of time. To correct for this problem, most
event-based systems also allow explicit invocation. Another practical disad-
vantage of this style {s the overhead incurred because the system must manage
the implicit calls [Gar!93,8-9],

The final style that this section looks at in detail is the Jayered architec-
ture. This style organizes its components hierarchically, with each layer
providing services to the layers above it, and acting as a client to the layers
below it. In the ideal layered system, each layer only has visibility to the lay-
ers directly above and below fit, effectively encapsulating each layer as the hi-

erarchy extends upward. The connections in 2 layered model are once apain
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usually achieved through mcans of subroutine calls. In addition to reaping
the benefits of abstraction and encapsulation, layered models also positively
impact modifiability. Because of limited scope, a modification only affects the
layers directly connected to the point of change. There are also disadvantages
to the layered style. Not all systems lend themselves to a layerec. breakdown,
and those that do are susceptible to high coupling between layers. Efficiency
losses can be large when an upper layer must go through multitudes of other
layers to get at functionality implemented at a much lower layer [Gari93,9-10).

Garlan and Shaw continue to describe different architecturai styles that
are used less often in industry {Garl®3,10-13]. They conclude their discussion
of the different styles by pointing out that most large applications are de-
signed combining more than one style. This intertwining often :5 accom-
plished by using an encapsulated hierarchy, with each level's implementation
being hidden from, and therefore irrelevant to, the other levels. This hetero-
geneous style takes advantage of each architectural model in the areas in
which it {s strong, and does not force a style to be used in a situation in which
it has shortfalls [Gar]93,13).

Having concluded the pedagogical discussion of architectures, discus-

sion now turns to architectures that exist in the real world.

2.3 Current Industrial Simulation Architectures

This section describes software architectures used in the visual simulation in-
dustry today. The search for this Information is partly obscured, however, be-
cause of the proprietary nature of the field. Traditional producers of flight
simulators, such as CAE-Link and Evans & Sutherland, rightfully do not care to

divulge the detalls of innovations that give them an advantage in the market-

secw asellitLl
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place. Luckily, they have agreed to share some high level knowledge, and
other organizations have published summaries of the software architecture
work done at these corporations [Epp94]. The main players in the dissemina-
tion of this information are the Software Engineering Institute at Carnegie
Mellon University and the Training Systems Program Office of the Air Force's
Aeronautical Systems Center (ASC/YT) [Abo93, ASC93, SEI93].

As the primary Air Force agency responsible for the procurement of
flight simulators, ASC/YT has years of experience with these complex training
devices. It also has quite a stake in ensuring that suppliers can implement the
software aspects of flight simulators efficiently and inexpensively. In 19864
ASC/YT realized that simulator software systems were outgrowing their origi-
nal designs, and that modifications due to changing requirements were
becoming more and more impractical. The added complexity also forced
simulator vendors to rely on subcontractors, and the resultant geographic and
organizational disparity introduced inconsistencies into the development
process. In order to correct these problems, ASC/YT began to oversee
investigations into the design of a common flight simulator software
architecture, or what it termed a structural model {Abo93, ASC93,2].

The basic structural model has evolved since its inception, and has re-
cently been adjusted to incorperate the lessons learned from the development
of the B-2 and C-17 aircraft systems trainers {ASC93,2). Boeing's Defense and

Space Group has also adopted the structural modeling method, and has started

v

varione fighter air-
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to release results of using the technique in simulations o
craft, fire control units, and missile simulation systems {Cri94,280].
Technically, the structural model serves as "a pattern for specifying

and {mplementing software system functionality" [ASC93,5]. The twe main as-
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pects of ASC/YT's structural mode! are partitioning and coordination, and they
correspond directly to the components and connections described in Section
2.2. Partitioning refers to the strategy that systems analysts use to divide a

complex problem into smaller, less compley, an
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ordination involves the method by which the partitioned components interact
with each other. Establishing strategies for partitioning and coordination en-
courages consistency and 2ases invegration by giving the numerocus mem
of a development team a common implementation plan from which they can
work. Different partitioning and coordination strategies may all lead to

~$
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proper system functionality, but they may also vary in their attainmen
basic software engineering goals like modifiability, reusabiiity, and effi-
ciency. Because these goals are often contradictory, the software systems de-

velopers will have to evaluate which goals pertain to their simulator project,

its software architecture a model because it permits rapid establishment of
partial solutions that resemble the desired system. These models can be evalu-
ated inexpensively and adjusted incrementally until the end product is finally
achieved [ASC93, 5-11].

Boeing calls its latest incarnation of the structural model the Domain
Architecture for Reuse in Training Systems (DARTS). DARTS partitions the
problem space of a flight simulator into twelve segments, each of which corre-
sponds to a flight simulator subproblem. Examples of these subproblems in-
clude flight dynamics, radar, and propulsion. Each segment is further divided
into components which represent air vehicle parts or functions. The design-
ers of DARTS consider the coordination aspect of the structural model "of

paramount importance.” Traditicnal simulation systems have used globa! in-
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terfacing between componeits, but coordination must be “"defined and con-
trolled" to ensure correct functionality and reliability [Cri94,273]. Because of
this belief, DARTS coordinates its segments by using message passing as op-
posed to shared memory. Although shared memory is generally faster, mes-
sage passing is less dependent on hardware platforms. Deciding to use a coor-
dination strategy that values reliability and portability over efficiency Is the
first step in creating a software architecture that can truly be applied in mul-
tiple environments |Cri92,2-5].

The techniques of both ASC/YT and Boeing give an architecture that is
too complete for any real system. They model every known aspect of the flight
simulator domain, so that nothing will be overlooked on any particular flight
simulator. Each development team will then have to hone or taiior the archi-
tecture to fit its application. This approach is in keeping with the genera
trend in the field of domain analysis [Cri92.5],

It is surprising that, despite the current development trends, neither
the ASC/YT nor the Boeing architecture is overly object-oriented. The Boeing
team states, "Note that the analysis that produces the final architecture begins
with functional decomposition and ends with what can sensibly be described
as objects" [Cri92,5]. The flight simulator systems contractors have basically
chosen to exploit the advantages of both the functional and obiect-oriented
programming methedologies. Partitioning can occur at the base level until
simple, low-level objects can be designed and implemented. At the higher
level, coordination dictates :'n easily understocd flow of control, which is more
easily analyzed in a functional manner.

The discussion of background topics now moves from simulation archi-

tectures to the Performer graphics programming library:,
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2.4 The Silicon Graphics IRIS Performer Library

RIS Performer (Performer) [C0092, McL92, Har94] is a toolkit that allows

graphics programmers to create high performance applications on Silicon

pet

Graphics hardware systems. 1t is built or top of the existing IRIS Graphics Li-
brary (Gl) [McL91], which eases low-level rendering on SGI platforms. Per-
former supports two seemingly orthogonal objectives: building applications
more easily through a well-defined programmer interface and increasing
performance of any GL application. It turns out, Lowever, that since Per-
former combines optimization with abstract calls to modules, both of these ob-
jectives are actually intermingled. Performer therefore greatly enhances the
productivity of graphics programmers by allowing them to minimize devel-
opment time for their applications and automatically maximizing the visual
impacts and effects of their efforts.

Although Performer factors out many of the tasks necessary in graph-
ics programming, it does not constrict the application developer's creativity.
The dynamics of the visual simulation objects are still left to the developer,
who has the freedom to define the entire feel of the project. The basis of the
developer's creativity lies in the models she uses to represent the entities in
her simulation. These models are usuaily established by using a three dimen-
sional modeling tool, which stores the geometric representation of an entity in
a database. Performer supports many different modeling tools, reading their
databases and translating them into data structures which it renders to pro-
duce an application. The primary medeling too! used in the AFIT Graphics Lah
is called MultiGen, and it is developed by Software Systems [Mu192],

Performer's magic is created through the means of two main libraries,

the first of which is called pr. The code to optimize the visual impact of the
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graphics rendering is kept in this low-leve! library. It contains functions
that are vital to concurrent real-time graphics programming, including
highly optimized math functions, geometry processing routines, sophisticated
state management techniques, memory allocation techniques, and other ren-
dering tricks. Although these concepts are rather simple to fathom, the intri-
cacies needed to make subtle improvements in their performance can be quite
complex. Acknowledging this fact, Performer provides abstract calls to these
functions, and implements the details itself, allowing the applications devel-
oper to concentrate on less mundane activities.

The second Performer library, pf, holds the code that allows the appli-
cations programmer to easily access visual simulation functions. This library
also defines a rendering tree data structure for holding the entities being rep-
resented {n the scene, as well as the means to methodically traverse this
structure. When told to do so, Performer assimilates the mode} databases de-
scribed above into the rendering tree, so that they can be properly displayed
in the scene. It is important to note that the pf library totally encompasses the
pr library, and because of this structure, the client programmer can access all
Performer functionality either directly or indirectly through pf.

Visual simulation applications are implemented by Performier in the
pipe and filter manner described in the section above on software architec-
tures. This pipelining allows extremely efficient multiprocessing, exploiting
as many processors as are avaflable to increase the computational throughput.
Performer continually repeats a three step algorithm that traverses the ren-
dering tree structure and its corresponding scene. The first step in this al-
gorithm, application, actually moves the objects in the scene by conducting

the nccessary calculations, “nd s defined by the programmer. The second
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step, cull, moves through the tree deciding which objects are inside the ficld

of vision and therefore need to be drawn. The cull step builds a display list of

these objects. The final step, draw, renders the objects in the display list. The

threads and take advantage of multiprocessor machines. If this optimization
can be accomplished, however, Performer does so automatically and the appli-
cation programmer need not be concerned with any details,

By default, the complicated and tedious cull and draw processes are ac-
complished automatically by Performer. However, an application developer
may customize these processes through an established method of callbacks.
The programmer provides his own functions for culling and drawing, and no-
tifies Performer of their existence during Performer initialization. During
the simulation, Performer calls his functions at the appropriate time, and the
customization occurs. This Performer feature is useful if certain entities
within the simulation must react to input devices, which are usually read on
the draw thread, or have specialized ocutput requirements. Callbacks are also
used by Performer and GL to perform window management.

Finally, Performer has some other important features which applica-
tion developers can use. Channejs can be used by the programmer to sé&t up
different views into a scene, as if various observers were watching from
completely different angles. Multiple views are also usefu! if entirely differ-
ent representations of a scene are necessary. For example, when simulating a
radar in a plane's cockpit, both the radar screen and the canopy provide views
of what is occurring outside the plane, but these two "windows" display the
scene in utterly distinct fashions. In addition to multiple view handling, Per-

former provides mechanisms for using shared memory 10 enhance processing
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speed through the pipes. This feature allows developers to hone the perfor-
mance of their applications. Other features in Performer allow the developer
to include such features as collision detection, sequenced animations, atmo-
spheric effects like fog or haze, or light sources to imitate beacons, stars, and
sunlight,

This section has provided a brief overview of Performer and its capa-
bilities. More complete coverage can be found in the documentarion for Per-
former and its related tools (Co092, Har94, MclL91, Mul92]. Discussion now fo-
cuses on ObjectSim, the architecture that was created in the AFIT Graphics Lab

by Mark Snyder to provide further abstraction ¢n top of Performer,

2.5 ObjectSim Concepts

-
(&l

Since 1989, the AFIT Graphics Lab has been sponsored by
search Projects Agency (ARPA) to investigate low-cost distributed interactive
simulations. As technology has progressed since then, so have the capabilities
of the applications produced by the score of graduate students who have
worked in the Lab. However, this increase in capabilitv has been accompanied
by a corresponding increase in software complexity. In the academic cycles
ending in 1991 and 1992, it became apparent that the students were spending
more time redoing tasks common to all visual simulations than developing so-
lutions for their particular projects. Patricia Lawlis, Assistant Professor of
Software Engineering at AFIT, became involved in the research in 1992 to at-
tempt to manage a reuse effort within the Lah, Reuse would allow the students
to concentrate more of their efforts on thelr specific simulations, instead of
recreating common graphics functionality., Lawlis enlisted the help of her

student, Mark Snyder, and he produced the ObjectSim framework to curb the
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complexity problems in the Lab. This section outlines the basic design of Ob-
jectSim {Sny93].

Snyder's primary task was to factor cut the commonalities between the
four ongoing projects within the Graphics Lab [Eri93, Gard93, Ger93, Kun93,
S0193, Wil93]. He began his effort by examining components that already ex-
isted, to see if they could be reused. His survey quickly revea!ed that these
components, developed for specific applications, were not malleable enough to
use on varied projects. Snyder realized that it would be more productive to
make reusable components from scratch [Sny93,31-32]. Of notable excepticn
were the network communications components, which were reused. The
probable reason for this exception is that the original designer of these com-
ponents, Steven Sheasby, has been maintaining them since their inception
[She92, She94). He could therefore serve as living documentation to define
their use, whereas the knowledge necessary to use the other components had
disappeared with the graduation of their designers. The network communica-
tion components were never completely integrated into ObjectSim, however.

After determining what he could reuse, Snyder performed a require-
ments analysis by talking with the other students in the Graphics Lab.
Through this analysis he was able to establish the functionality that was com-
mon to every application [Sny93,32-33]. Snyder decided to allow the other stu-
dents to access these common capabilities by means of an application frame-
work. This programming paradigm provides an avenue for software reuse, but
at the domain Jevel instead of the traditional component level. Within the do-
main, the components of the framework provide templates from which actual
components can be derived and customized. The framework therefore "pro-

vides major savings," as the basic architecture for the code already exists
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[Sny93,39-40]. Not surprisingly, components of an application framework are
often implemented as abstract classes in object-oriented programming lan-
guages.

Snyder began to rapidly develop ObjectSim by incorporating compo-
nents donated by the other six students. He also developed generalized imple-
mentations of common components on his own. Snyder designed test applica-
tions to evaluate new functionality, and through this methodology he was able
to quickly coerce the Virtual Cockpit to rely on the ObjectSim framework. The
other applications followed soon thereafter {Sny93,40-44].

In terms of architectural style, ObjectSim belongs to the data abstraction
model. Its object-orientation defines abstract interfaces to different compo-
nent classes, with straight function calls acting as connectors. The use of ab-
stract classes determines the basic architectural structure, and forces the ap-
plication developer to adhere to the provided scheme for components and con-
nections in order to benefit from the framework. While ObjectSim itself ad-
heres to the data abstraction model, its use of the pipe and filter Performer ar-
chitecture makes the entire system heterogeneous. The fact that Performer is
kept separate from ObjectSim, with interaction again occurring by function
calls, adds layering into the svstem as well. Under Parformer are nwo lower
layers, one for GL and one for the [RIX operating system, but they exist at a
level of abstraction below what is examined in this thesis. Figure 14 shows the

architectural layering of ObjectSim.
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Figure 14. ObjectSim Architectural Layering

Figure 15 shows the ObjectSim Object Model. The main objecté in the
application framework and the relations between them are indicated in the
Rumbaugh diagram. The most basic object is the Flti_Model, which stores
database information describing how an object appears graphically. A Ter-
rain serves as the visual background for an application. A Simulation serves
as the basis for an application and encompasses a Terrain and any number of
Players, the entitles whose interaction define the graphics application, A
View allows vision into the application's scene, and a Modifier can be used to
move a View around the scene. Finally, the Pfmr_Renderer controls the actual

drawing by making the necessary Performer calls,
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Figure 15. ObjectSim Objcct Model {Sny93,45]

Th2 Terrain, Simulation, Plaver, and View classes of the ObjectSim
framework are abstract. This approach allows application developers to cus-
tomize their simulations freely while letting them exploit proven methods and
algorithms, It also encourages developers to produce standardized applica-
tions, making them more interoperable and modifiable. Two of the concrete

classes were not intended to be portable, as their names reflect. Flt_Model

o
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algorithms. It also encourages developers to produce standardized applica-
tions, making them more interoperable and modifiable. Two of the concrete
classes were not intended to be portable, as their names reflect. Flt_Model
handles Flight format models created using the MultiGen visual database de-
velopment tool, and the Pfmr_Renderer is intended to isolate the Simulation's
dependency on the Performer library.

While this summary has simplified ObjectSim in many ways, it does con-
vey the general ideas behind its development. ObjectSim was an ungualified
success in the AFIT Graphics Lab, increasing student productivity between
thirty and forty percent {Sny93,79]. The next chapter locks at ObjectSim more

closely in order to develop its successor, Easy_.Sim.
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III Architectural Design

This chapter relates the analysis performed on the ObjectSim architecture and
the lessons that were learned from it and applied to the formation of Easy_Sim,
a Janguage independent software arciiftecture for visual simulation systems.
This chapter firsts analyzes the advantages and disadvantages of the method
Mark Snyder used to develop GbjectSim, and then describes the radically dif-
ferent method used for Easy_Sim. The majority of this chapter describes the
Easy.Sim classes and their relationships, This task is accomplished by examin-
ing each component of ObjectSim, retaining its positive points, and modifying
its negative aspects. The chapter concludes by presenting the final Easy_Sim

Object Model, and examining the overa!! design of the Easy_Sim architecture,
3.1 The Design Processes

Mark Snyder developed ObjectSim with four large simulation projects and six
other students reliant on his success. This pressure and dependence had both
positive and negative effects on his design efforts. This section describes how
Easy_Sim benefited from ObjectSim’s achlevement while trying to aveoid its pit-
falls. It first examines the method used for developing ObjectSim, then out-

lines the diametrically opposed approach used with Easy_Sim.
3.1.1 The ObjectSim Development Method

Mark Snyder created ObjectSim according to what he termed the necessity
model [Sny93,44]. When the Graphics Lab projects were originally converied
to use ObjectSim, Snyder analyzed their components for inclusion in the

framework. Classes deemed suitable were generalized and incorporated into
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ObjectSim. Alternatively, if a student desired new functionality in his appli-
cation, he would implement a solution Jocally, and Snyder would evaluate the
utility of the new code for everyone, once again incorporating it if it promised
to “promote the general welfare."

Snvder's necessity model allowed a tremendous number of ideas, designs

and components to be considered for ObjectSim, and enabled them to be consid-

»

th

(2]

ered eariy In the thesis life cycle. The amount of useful code Lab was
able to expand rapidly because of this technique. More importantly, the code
brought into ObjectSim was tested in numerous applications, so any defects
were rapidly detected and eliminated.

While the necessity model allowed the general productivity in the
Graphics Lab to increase dramatically, it also had some negative effects. Be-
cause of the dynamic nature of the framework, the other students often had to
suspend their own projects to incorporate new versions of ObjectSim. Config-
uration management problems occurred frequently [Sny93.,ii]. With seven
individuals contributing code, conflicts in style and convention were common.
Unfortunately, these conflicts were carried into the framework, and because
the changes needed to te made quickly, standardization was often performed
hastily. Many of ObjectSim’s component and connector names remain incon-
sistent. The haste associated with version updates also had a more long lasting
side effect--it created an oral culture within the Lab. Modifications were sug-
gested, made, and forgotten before their rationale was documented. ObjectSim
is currently filled with enigmatic code that seemingly does nothing, but whose
removal causes utter destraction.

The reader may have noticed a shift during discussion of the necessity

model. It lowered the focus of ObjectSim's development from the analveis and
1 p m MEAN HASMMAL UL Sacone




design level to the code level. Unfertunately, the necessity model was often
reactive when it should have been guiding, letting the implementation drive
the design. This shift is evident when ObjectSim is evaluated thorough!
pecially in the area of network interaction. Because the Graphics Lab de-
pended on a contractor to handle this area of their projects, network interac-
tion capabilities were never completely incorporated into ObjectSim. This di-
vergence resulted in network components that handled interaction differ-
ently for each application. Anytime new functionality was added, kludges had
to be introduced in many places, including the basic ObjectSim framework
[Sny93,57, She94). The intermingling of implementation and design is also
evident in Snyder's thesis, as his design chapter frequently refers to imple-

mentation issues [Sny93,Ch4}.
3.1,2 The Easy_Sim Develecpment Method

Easy_Sim was developed without the pressure of any other students reliant on
its results, as the five students working concurrently used the existing Object-
Sim framework. This decision was made consciously because of the risk in-
volved with the primary implementation of Easy_Sim occurring with an
untested language in an untested environment. Accordingly, Easy_Sim was
designed with a set of circumstances completely reversed from the ObjectSim
case. This section briefly describes those differences, and concludes by outlin-
ing design decisions common to all Easy_Sim classes.

Where the production of ObjectSim benefited immensely from having
seven developers simultaneously recognizing requirements, contributing de-
signs, and testing solutions, Easy_Sim is primarily implemented as a solo effort.

fts requirements are drawn by trying to match CObjectSim functionality and

56



conversing with the current students, but no code has been donated through

this method. The Easy.Sim implementation draws some ideas and code from a

demonstration program, Paintball, under development at Silicon Graphics by
Wes Embry and John Templeton [Emb94]. This effort converts an Ada 83 pro-
gram to Ada 9%, but does not exploit the object-oriented capabilities of the new
language. Paintball's contributions to the Easy_Sim architectural design are
therefore limited. Consequently, Easy_Sim has been developed much more
slowly and with much less implementation testing than ObjectSim, but with
considerations for it to be language independent.

The development method for Easy_Sim does have its advantages, how-
ever. Because the design is not influenced by the nead to be rapidly inte-
grated, it remains more pure. Its development by one individual also makes
the components and connectors more standardized, and configuration man-
agement is not a factor, Finally, design decisions are documented both in this
document and in the code, so that continuing work both at AFIT and elsewhere
will be able to understand Easy_Sim's evolution.

This section has analyzed the positive and negative aspects of the Ob-
jectSim and Easy._Sim architectural design methods. Before the design of each
class is detailed, the next section outlines the overall conventions used

throughout the entire Easy_Sim design,

3.2 Easy_Sim Class Design Conventions

The classes in Easy_Sim are designed using the design level ideas of the
ROMAN-9X technique (see Section 2.1.4). This method keeps the different
classes consistent by providing standardized naming conventions and con-

structs, and it enhances the definition of the dat
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components and connectors (sce Section 2.2). Each class has defaulr initializa-
tion and finalization operations, a parameterized initialization operation called
Configure, and Get and Set operations as appropriate for its attributes. Classes
that contain visual models have a special Get cperation, Image, which returns
the node in the rendering tree corresponding to the root of the object's
graphical representation. The existence of the Get and Set operations is as-
sumed in the remainder of this chapter, and no further menticn of them is
made. Most classes also have an Update operation, which determines the be-
havior of an instance of that class, and a Draw operation, which defines any
necessary class specific rendering functionality. Both the Update and Draw
operations are called each frame of the simulation.

Resources needed commonly throughout the Easy_Sim architecture are
defined in a common location. The most visible of these resources is Coords,
the data type used to describe coordinates in an application. This type contains
the X, Y, and Z vector values which define the Position where an entity exists
in the simulation. Coords also contains a vector referring to the entity's Di-
rection at its Position. This vector comprises three values as well: the Heading.
Pitch, and Roll of the entity.

The rest of this chapter examines the design of each component within
ObjectSim, examines any positive and negative aspects of that design, and de-
tails how that component has been migrated into Easy_Sim. Each section is
concluded with a Rumbaugh diagram showing the two versions of the ciass
next to each other so that they can be easily compared. The entire ObjectSim
Object Model [Sny93,45] Is presented as Figure 15 at the end of Chapter II. Dis-

cussion begins with the most basic classes and progresses through the morse
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complex components. The discussion of new Easy_Sim components is inter-

spersed as appropriate.
3.3 The Flt_Model Class

The intent of ObjectSim's Flt_Model class is to provide the abstract capability of
handling the geometric models used to represent images in a visual simulation.
The class name is prefixed by "Flt" to show that it can only represer
created in MultiGen's Flight format [Sny94] (see Section 2.4). The main opera-
tion of this class, readmodel, reads in a Flight format database, converting it
into a format that the simulation can process. This conversion is handled by a
simple Performer operation, and it stores the database into an attribute, roor,
This attribute forms the base node of the tree representing the geometry for
the Model. Flt_Model also contains a constructor for initialization purposes.
Figure 16 shows the Rumbaugh diagram for Flt_Model,

Since the completion of ObjectSim, a new version of Performer has been
released (Har94]. This version contains more flexible convers.ions of geometry
databases, enabling this class to become independent of the Flight format. This
generalization is the first change made to this component in Easy.Sim, and the
component {s renamed Mode/ to reflect its added capabilities. The new archi-
tecture also allows the reading of the Model darabase to be interpreted as a
form of parameterized initialization, and Easy_Sim therefore assigns this
functionality to Model's Configure operation.

In its readmodel operation, ObjectSim's Flr_Moda!l class provides the
ability to copy a model. This characteristic 2nables a simulation to avoid inef-
ficient replication of complex databases if two or more entities share a com-

mon geometric representation. For cxample, in an airfield simulation there
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Figure 16. Modec! Class Object Mode! Diagrams

may be many similar F-15s flying in the area, but cne Model of an F-15 can
represent all these planes. ObjectSim's design of this feature uses a straight
duplication technique, which works adequately for simple models, but fails on
models with moving parts. At the alrport, an arriving plane weuld have its
landing gear down and visible while a departing or circling plane would have
its landing gear up and hidden from view. ObjectSim's omission is corrected in
the Easy_Sim Model class, and Is available publicly by means of the Clone op-
eration.

Finally, the ObjectSim design of Flt_Mode! maintains a list of all the

models to be used fn an application. In Easy_Sim, the Model class is simplified
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to operate on a single Model, and a Model_Manager class is introduced to track
multiple instances of the Model class. This change makes the Model class con-

sistent with other Easy.Sim classes and is explained further in Section 3.7.

Figure 16 shows a Rumbaugh diagram representing
3.4 The Terrain Class

The abstract ObjectSim Terrain ciass is intended to provide a template so thar
each application can develop a unique visual background in which its Simula-
tion can operate. Features intended to be implemented here include lighting
models, weather models, time of day management, the terrain, and any other
environmental variables. ObjectSim comes with a default Terrain subclass.
Simple_Terrain, which uses simple sun and horizon models as well as a
Flt_Model to represent the ground. Figure 17 diagrams the ObjectSim Terrain
and Simple_Terrain classes.

The Terrain class is a perfect indicator of the disadvantages of Object-
Sim's necessity model development method. Originally part of the Virtual
Cockpit application [Eri23, Ger23] and incorporated into ObjectSim, the de-
scription of Terrain does not fit the Space Modeler {Van94] application, which
uses stars and planets as its background. The ObjectSim Object Model also does
not reflect the relationship between Terrain and Flt_Model where Terrain is
mysteriously implemented as a derived subclass of Fit_Model. This kludge al-
lows a Flit_Model to be used to represent the Terrain, without explicitly making

{t an attribute.
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Figure 17. Environment Class Object Model Diagrams

Fortunately, ObjectSim's Terrain class also indicates the advantages of

Snyder's necessity model. The creation of an abstract class clearly defines the
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component and connectors that a developer needs 1o forim a useful environ-

ment, and illustrates an example of the object-oriented data abstraction archi-
tectural style described by Garlan and Shaw [Garl93,7-8] (see Section 2.2). The
Terrain class has two initialization operations, clamp and configurée.channéi,
and an abstract draw oneration. Simple_Terrain adds two more initialization
operations, build_terrain and initialize, along with attributes to represent the
horizon and sun.

The use of abstract classes is adopted by Easy_Sim for this class and
throughout many of the other classes in the architecture. Easy_Sim renames
the Terrain class Environment to indicate its more flexible capabilities and
prominently shows the non-inheritance based relatienship between the Envi-
ronment and Model classes. Easy._Sim assigns the functionality of the initial-

ization operations to Initialize and Configure, its default and parameterized
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initialization operations, as appropriat
operation.

The new architecture also renames the default Simple.’rerrain Terrain,
for those applications where the basic ground, sun, an
sible. Easy.Sim breaks its Terrain class into smaller classes, however, provid-
ing functionality for Sun and Horizon classes separately, and making Terrain
an aggregate containing these classes. This modu
precedent, whereby a subclass can gather functionality from many smaller

classes and organize this functionality in one place to suit the requirements of

the architecture. This method makes buliding Environments much more

and code levels. Figure 17 shows a Rumbaugh diagram of the Environment

classes.
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3.5 The Player Class

ObjectSim's abstract Player class serves as the base class for defining the enti-
ties whose interaction defines the simulation. The Player class follows the
same basic approach as Terrain, establishing an architectural temp
component and its connectors. Each Player has an attribute which defines co-
ordinates for its position and direction within the simulation, and three op-
erations modify this attribute. One operation, move_along_heading, advances
the Player along its current path a given distance, while a second operation,
leok_at_point, pivots the Player to face a given position within the simulation.

Tho propagate operation is abstract, and it is the avenue through which a

subclass defines how the Player behaves during each advancing frame of the
simulation. The Player class also provides an abstract initialization operation,
init.

Most ObjectSim Players contain a Fit_Model which represents the Play-
er's physical appearance. Some Players may exist in a simulation without rep-
resentation, however, purely existing to provide a vantage point into the
scene. ObjectSim categorizes these Players by calling them Stealth_Plavers,
and they are generally derived from another abstract Player subclass called
Attachable_Player. This class is used for players to which a View can be at-
tached, and it contains attributes relating the position and direction of the
View relative to the Playcr. Because most Players within an ObjectSim appli-
cation can view the scene, simulations derive the majority of their Players
from the Attachable.Player subclass. Figure 18 outlines the ObjectSim Player

classes.
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Figure 18. Player Class Object Model Diagrams

Easy_Sim uses the sound design of ObjectSim's abstract Player class in
defining it own Player class with only minor cosmetic changes. The propagate

operation is equated with Easy_Sim's standard Update operation. While some

other ObjectSim classes also use the name propagate to denote the operation




that updates an instance of the class each simulation frame, this similar op-
eration is named inconsistently throughout the ObjectSim architecture.
Easy_Sim uses Update throughout all of its classes to provide consistent con-
nection protocols within the architecture. Easy_Sim also renames the Object-
Sim Player's move_along_heading and look_at_point operations, calling them
Move_Straight and Look_At respectively. Finally, Easy_Sim converts the init
operation so that its functionality is achleved by the controlled Initialize con-
structor.

The Attachable_Player class is not carried into Easy_Sim. The purpose
of this class in ObjectSim is to track the position and orientation of the View
that is attached to the Player, The Easy_Sim interpretation of these View at-
tributes places them within the View class. Easy_Sim application developers
are free to develop subclasses similar to ObjectSim's Stealth_Player concept by
deriving directly from the Player class.

ObjectSim makes no provision for standard protncols for handling mul-
tiple Players. Easy_Sim introduces the Player_Manager class to supply this
added functionality, and this class is further described in Section 3.7,

Figure 18 shows a Rumbaugh Object Model diagram of the Player classes.
Some of the Get and Set operations for the Coords attribute have been omitted

for brevity, and are listed in full with the Modifier clacs in Figure 20,

3,6 The View and Modifier Classes

The intent of ObjectSim's View class is to allow the users of a visual simulation
to look into the scene being rendered. Unfortunately, the View class is also a
victim of the negative aspects of the necessity development model, and de-

scription beyond its purpose is rather clouded. A View must be related 1o an
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Attachable_Plaver with its attacked attribute but this connection is not shown
in the ObjectSim Object Model. At one point the View class is described as en-
capsulating a single view [Sny93,48], while the Object Model diagram labels it
as managing multiple views. Examination of the implementation shows the
former to be true. ObjectSim's View class operations include setview, which
updates the Views each frame, and attach_to_player, which switches a View
between different Players. The View class also provides twe separate initial-
ization operations, alloc_shared and new._view.

To quickly clear a common misconception, a View can be attached to dif-
ferent players consecutively, and a scene can therefore be cohserved from
many different angles in a single View simulation. Multiple Views are only
necded when different aspects of the simulation need to be observed simulta-
neously. Some examples include a rear view mirror in a driving simulation, a
radar screen in a flying simulation, or an inset channel box on a television
set. This last example demonstrates the case where the different Views may
not be observing the same sceune. In order to manage this complexity, each
ObjectSim View has two Performer related attributes, chan and scene. A Per-
former Channel represents a window in a simulation, while a Scene serves as
the root of that Channel's rendering tree, storing the graphical data seen in
each window.

The ObjectSim View class also provides operations which the application
developer can use to cugtomize Performer's cull and draw processes (see Sec-
tion 2.4). Both the cull and draw operations provide dé.au}: behavior for each
window in the simulation, basically doing nothing. They do, however, define
points in the architecture where the application developer can modify this

behavior. Customized culling can enhance the application's performance, and



the draw operation can add extra information to the scene, such as text over-
Jays. Figure 19 shows an Object Model diagram of the ObjectSim View class.

In ObjectSi.y, a View may be associated with a Modifier class, which is
represented by the View's Delta attribute. The Medifier is used 1o maninulate
the View's position and direction relative to its Attachable_Flayer, and the
Modifier contains coordinate attributes, called State, accordingly. Like the
Terrain and Player, the Modifier class defines an abstract componcnt with
connectors that must be provided in its subclasses. Examples of Modifier sub-
classes used in ObjectSim applications are the mouse, keyboard, spaceball, and
head mounted display. The main operation of the Modlfier class is called poll,
and subclasses must override this operation to define how the device receives
input data every frame of the simulation. The Modifier class also provides a
reset operation and two initialization operations, init_state and init. Figure 20
displays the Rumbaugh diagram representing the Modifier class.

Easy_Sim does not follow the ObjectSim design for its View class. To be
consistent with its Model and Player classes, Easy_Sim defines the class to man-
age a single View, pushing multiple View administration to the View_Manager
class as described in the next section. As attributes, the Easy_Sim View class
incorporates the Player to which the View is attached, the optional Modifier,
and the Coords eliminated previcusly by the loss of the Attachable_Plaver
class. Additionally, the View contains a Channel and Scene. These attributes
allow simulations with multiple Views to display distinct collections of entities

in each of its windows.
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The Easy_Sim View class provides sperations egquivalent to those nresent

e wire

in ObjectSim, but setview is renamed Update, alloc_shared and new_view are

done by Initialize and Configure, and attach_to_player is a simple attribute Set
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operation. Figure 19 shows the Easy_Sim design of the View classes, As with
the Easy_Sim Player diagram, the Get and Set operations on the Coords attribute

are not shown, and a full listing can be found with the Modifier in Figure 20.
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Easy_Sim reuses the clean design of the abstract Modifier class, but re-
names the poll operation, observing that many input devices use queueing
instead of polling to gather data. For this operation, Easy_Sim once again uses
its ubiquitous name, Update. The functionality of ObjectSim's init_state, init,
and reset operations are migrated to Easy_Sim by the Initialize constructor and
Reset operation. The Modifier class works analogously to the Environment
class, whereby smaller pieces may be combined in an aggregate that follows
the architectural design established by the abstract base class. Easy_Sim pro-
vides a default Modifier class, Standard_Input, that accepts input from a raouse

and Keyboard. Figure 20 outlines the Easy_Sim design of the Modifier classes,
3.7 The New Manager Classes

As previously mentioned, the Model, Player, and View classes in Easy_Sim each
form an abstraction representing a single object. However, multiple instances
of each of these classes arz necessary to achieve a viable simulation. Object-
Sim handles these multiple instances inconsistently throughout the different
classes, as the Flt_Model class administers numerous objects, but the Player and
View classes handle only one. Easy_Sim seeks to make multiple instance
handling more architecturally harmonious, and achieves this with the addi-
tion of container classes to manage multiple Models, Players, and Views. The
Easy_Sim architecture benefits from the addition of these classes, as they pro-
vide customization points for application developers that are not available in
ObjectSim,

The Model_Manager class provides an architectural vehicle for con-
trolling the various Model classes that represent entities in the simulation.

This manager class defines a simple default operation, Assign_Mode!l w




determines whether a Model already exists and should be cloned to efficiently

manage memory. Figure 21 contains a Rumbaugh diagram of the Easy_Sim

Model _Manager class.

This simple default design of the Model_Manager should suffice for most

applications, but others may wish to customize how the Models in the simula-
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tion are manipulated. A Model_Manager subclass may wish to define different
techniques for level of detail control or for compatibility with a different co-
ordinate system. A subclass may also simiply require ancth  avenue for as-
signing the Models. The ability to easily customize the control over Models is
not present in ObjectSim, so the addition of the manager class into the
Easy_Sim architecture has had an impact on the overall design larger than the
stmple addition of functionality. The addition of this class has created the po-
tential for the addition of many functions by supplying a common architec-
tural compencnt and standard connectors from which customization can read-
ity occur,

The Player.Manager class also provides a simple default class, and it

maintains the list of Players that interact in the simulation. Its operations in-
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clude Add, which places a new Player into the list, an
calls the Update for each Player in the list. Figure 21 also shows the Rum-
baugh diagram representing the Player_Manager class.
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The Player_Manager class also forms the architectura oint for a
limitless number of customizations for Easy_Sim applications. The default class
provides no real organization of the Players, but different subclasses could
institute methods for optimizing rendering by spatially organizing the Players
[Har94,130]. An application could also add collision detection into Easv_Sim
applications through the Player_Manager. Most importantly for the AFIT
Graphics Lab, the Player_Manager class provides a sound starting point for
bringing network player managers into the architecture, ldeally, an abstract
class could be designed that is general enough for any distributed interactive

simulation. Subclasses cculd be derived for each particular application, cus-




tomizing its specific needs according to a standard, understandable architec-
tural plan.

Like the other manager classes, the View_Manager class maintains a list
allowing a simulation to have multiple Views. The View_Manager class also
stores a list of View states, each of which describes a Player and the relative
offset of the last View attached to that Plaver. Administering a list of View
states allows a View to attach to one Plaver at a particular offset for seme time
period, then atiach to a different Player for another time period, and then
eventually reattach to the first Player, remembering the previous offset and
ortentation. This feature works miorc casily in ObjectSim due 1o cach Attach-
able_Player storing its own state. but the climination of the Attachable_Player
class to maintain a pure design (sce Section 3.3) forces Easy_Sim to develop this
alternate solution.

The View_Manager class provides some bhacic operations.  Add places a
new View into the list, Set_View activates a View, Set_Plaver switches the
Player to which a View s attached, and Update calls the Update operations for
all active Views View state management it undertaken in the Set_Player op-
eration. Figure 2i shows a Rumbaugh diagram of the View_Manager class.

Like the other manager classes, Easv_Sim's View_Manager class pro-
vides default functionality, fully expecting thar anplications will customize
their View management by inheriting from the component and connector
protocols established by this class. Window management will probably be the
most widely used reason for talloring the View_Manager class in applications,
as cach View has its own window in the display. The View_Manager class will
also administer input device handling. because user input is commonly ob-

tained from windows through the operating systeai.



3.8 The Pfmr_Renderer and Simulation Classes

The main purpose of the ObjectSim Simulation class is to glue together all of
the other pieces within the simulation. Like many other classes, the Simula-
tion class (s abstract, and prescribes a component and its connectors within
the architecture. Its attributes consist of Terrain and Pfmr_Renderer objects.
In order to fully understand the Simulation class, the Pimr_Renderer class
must also be examined.

Just as ObjectSim prefaced the name of its Flt_Model class to indicate its
dependence on a particular software package, the Pfmr_Renderer class is
named to show its reliance on the Performer library. Originally this ¢
designed to collect all of a simulation's Performer deperdencies in one module,
so that ObjectSim would be more portable [Sny94!. While this concept is com-
mendable, it was never realized, as all of the ObjectSim classes are dependent
on Performer in varying degrees. Besides isolating dcpendencies, the
Pfmr_Renderer class maiaiains lists of Players and Views, and effectively only
provides the functionality for drawing the simulation. In other words, the
Pfmr_Renderer class is functionally oriented, and the operations that |t de-
fines operate on attributes which should belong to the Simulation class. This
anomaly is evident from the discussion of the design of the ObjectSim Simuia-
tion class, which explains that the Simulation performs state transitions de-
pending on Pfmr_Renderer operations [Sny93 Figl4). Finally, the
Pfmr_Renderer class contains a Performer related attribute, pipe,which stores
a representation of the processors on which Performer executes its applica-
tion, cull, and draw threads (see Section 2.4).

The Easy_Sim software architecture defines an abstract Simulation class

by combining ObjectSim's Pfmr_Renderer and Simulation ¢lasses. The elimi-
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nation of Pfmr_Renderer preserves the integrity of the ohiect-oriented datra
abstraction architectural style emploved by Easy_Sim. Like its namesake in
ObjectSim, the Simulation class in Easy_Sim scrves as the glue that holds the
other picces of the application together. The operations of the Easy_Sim
lation class are drawn from its two predecessors.

The ObjectSim Simulation class has one main operation, propagate. This
operation is abstract, and must be overridden by a subclass to update each
frame of the simulation. The Simulation class also provides two separate ini-
tialization operations, alloc_shared and init_sim. Operations in the
Pfrar_Renderer class include render, which is the continuous loop that directs
the entire simulation. arbitrate. which opens screen windows and establishes
callback operations for the customization of Performer's cull and draw
threads, and insertmodel, which : ids an entity to the simulation. ObjectSim's
Pfmr_Renderer and Simulation cla:. :s are represented by the Rumbauch dia-
grams in Figure 22,

Easy_Sim's Simulation class has attributes for a Performer Fipe, an En-
vironment, a Player_Manager, 2 Model_Manager, and a View_Manager, and it
builds these data structures by means of three overloaded Add operations. The
first of these operations adds an Environment and its Model into the Simulation
for a given View. The second adds a View al-ag wi
Player and its offset from the Player, into the View_Manager. The final Add

operation stores a Player with its Model and its Coords in the Player_Manager

-

for a given View. Each Add which deals with a Mode

using the Model_Manager.



In addition to the Add operations. the Simulation class also provides
constructors. an Open_Window operation, a Render operation, and an abstract
Update operation. These operations COr

init_sim. arbitrate, render, and propagate operations in ObjectSim. Some of the

ObjectSim Easy_Sim
gimulation (abstract) Simulation (abstract)
Randerobj Pipe
Ter Nodel_Managar

Playar_ Manager

init_sim (abstract) r View Manager

alloc_shared Environment
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Initialize
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Configure
Iv* I Open_Windov
Pfmr_Rendaraer Terrain Application_Name
Add
players Render
the_views Update {abstract)
pipe Set_Environment
init et _Model Manager
arbitrate Set,P%ayaeranage:
toggle_view Set_View Manager
rendar l‘ ipe
insertmodal Envivonment

M- 1el Mansgar

Flayar_Manager
View_Manager

View Player
i 1
Environment Model_Manager
LEGEND: I ]
©® Any Number o Comprises “ Player_Manager Visw_Manager

Figure 22, Simulation Class Object Mode! Diagrams
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functionality assigned to the Pfmr_Renderer operations, such as multiple

Player and View management, are moved to Easy_Sim's manager classes.

Easy_Sim supplies an abstract Application_Name ope
developers can customize the title of their simulation windows. Figure 22

shows a Rumbaugh diagram of the Easy_Sim Simulation class.
3.9 Summary of Easy_Sim Design

Figure 23 shows a Rumbaugh diagram outlining the relationships among the
classes in the Easy_Sim architecture. To summarize the discussion in this
chapter, the Model class stores database information describing how an chiject
appears graphically, and this functionality is used by the Environment, which
serves as the visual background for the appiication. The Model class may also
represent Players, which are the entities whose interaction defines the app
cation. A single Model may be cloned to represent multiple Players of the same
type. The application is seen through Views, which must be attached to a
Player, and may be changed by a Modifier. A Simulation ties the appli
together and encompasses the Environment along with manager classes, each
of which administers multiple copies of their respective namesake classes.
The diagram implies that the Simulation class has knowledge of the Model,
Player, and View classes.

Figure 24 shows the language independent architectural model for
Easy_Sim. Easy_Sim retains the architectural style of GbjectSim as a layered,
heterogeneous system (see Section 2.2), The Easy_Sim laver follows the object-
oriented data abstraction style, and defines the basis for components and their
connectors in an application. Under the Easy_Sim layer sits the Performer

layer, which is a case of the pipe and filter model. At the core of the Fasy_Sim
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architecture lie the GL rendering library and the IRIX operating system, but
they exist at a low level of abstraction and are generally omitted from discus-
sion throughout this thesis. A developer builds an application on top of this

structure, mainly interacting with Easy_Sim. Because the lower libraries

veloper to access them directly.
Ideally, the Easy_Sim architecture should be portable, and its underly-
ing layers should be interchangeable with a graphics library from any piat-

form. There is nothing inherent in the Fasy_Sim architectural design that
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prevents this adaptation, but no industry standards for graphics libraries cur-
rently exist. The architectural connectors that allow Interaction between the
Easy_Sim and Performer layers thercfore operate
to other commercial graphics libraries would operate. Easy_Sim attempts to
minimize the points where any modification would be necessary, but evalua-
tion of these attempts cannot be quantified objectively without attempting to

migrate an implementation,

This chapter has discussed the architectural design issues involved in

migrating from ObjectSim to Easy_Sim. The next chapter examines the imple-
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mentation issues involved in the transition, Ad

realize the Easy_Sim application framework.

Application

Easy_Sim

Silicon Graphics IRIS Performer 1.2

Silicon Graphics Graphics Library 5.2

Silicon Graphics IRIX Operating Svstem 5.2

Figure 24, kasy_Sim Architectural Layering
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IV Application Framework Implementation

This chapter examines the implementation phase of this thesis effort. It de-
scribes the transformation of the architectural design explained last chapter
into the Easy_Sim application framework, This chapter describes the Ada 9¥
version of Easy_Sim, but a corresponding C++ version was also developed, so
that a fair performance comparison could be made. The differences between
these two versions are described in Section 6.3.

The discussion first covers general concepts that relate to the imple-
mentation effort. These topics include the ObjectSim framework, strategies for
migrating ObjectSim to Easy_Sim, the framework's dependéence on Performier,
and the maturity of Ada 9X compilers. The chapter then presents the code
template that Easy_Sim uses as the basis for each of its classes. The final por-
tions of the chapter highlights the implementation issues specific to each
Easy_Sim class. The details of the implementation can be found in the headers
of the Easy_Sim code, which can be obtained by following the directions at the

end of this document in Section 7.3.

4.1 General Issues

This section serves as a preface to discussing the implementation of Easy_Sim.
It presents the underlying decislons that were made to form the general strar-
egy for the production of the code. It first examines the ObjectSim application
framework and describes the ideas considered for migrating this code to Ada
9X. This section also addresses Easy_Sim's dependencies on the Silicon Graph-

ics Performer library and the GNAT compiler.,

81




4.1.1 ObjectSim Implementaticn

Chapter [II described the necessity model that Mark Snyder used to develop

ObjectSim, and discussed how the code produced by the seven Graphi

dents influenced ObjectSim's structure, While the necessity model allowe!
great gains in the Lab's productivity, it had negative effects on both the Ob-
jectSim design and implementation. Snyder states in his thesis, "For each new
problem solved, the major challenge was to fit it into the architecture while
preserving a good design and not perturbing the existing code too much”
[Sny93,72). This section addresses the consequences of this approach.

Because the C+- language used to develop the ObjectSim framewerk was
new to each of its contributors {Sny94), many of its positive features were not
exploited. The encapsulation mechanism in C~+ provides public, protected, and
private sections in a class, and is used to prevent global manipu
ber data. ObjectSim makes free use of global access, however, as class members
are generally public and modified by other classes. This lack of encapsulation
results in ObjectSim's classes having low cohesion and high coupling, and
causes logically abstruse code with untraceable effects. In addition to neglect-
ing C++'s encapsulation mechanisms, ObjectSim also avoids constructors when
Initializing its classes. The omission of this basic C-+ feature s rather curious,
and results in the vie of inconsistent initialization operations throughout the
framework.

ObjectSim is further complicated by the contribution of code from seven
individual developers. First, the differing styles, naming conventions, depth
of comments, and coding tdioms make various portions of the framework in-

consistent and hamper {ts understandability. Second, the rapidity with which

code contributions were integrated often results in a lack of nro

.
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tation. Portions of the ObjectSim code remain 2 complete mystery. The lack of
encapsulation further exacerbates this matter, as an attempt to modify code in
one class often causes unexpected behavioral changes in another class.

The next section describes how the negative aspects of the

application framework affects the development of the Easy_Sim framework,

4.1.2 Easy_Sim Migration Strategies

Originally Easy_Sim was envisioned as an extension of ObjectSim, with the in-
tent of exploiting reuse where possible. Because ObjectSim has proven such a
success, its code was assumed to be a viable starting point for the production of
Easy_Sim's code. However, the discovery of the problems described above
caused contingency plans to be evaluated and executed.

Interaction with any foreign language from Ada presupposes a method
of conversing with that language. This feat is accomplished by using a set of
bindings. These Ada packages are filled with interface pragmas that tell an
Ada compiler how to translate Ada entities to the foreign language. The Ada
linker can then interact with the foreign cbject code and incorporate it inro
the Ada executable file. Two categories of bindings exist. A thin binding con-
tains straight interfaces to the foreign language, and makes the caller trans-
late complex parameters so that they are compatible with the foreign lan-
guage's method for storing data. A thick binding is more robust and easier to

b

use. Instead of simply providing interfaces, a thick binding provides subpro-

" -
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grams which convert Ada parameter value
the appropriate operation. All of the migration strategies for the Easy_Sim

application framework use some form of bindings.




The first and perhaps most grandiose strategy considered for imple-
menting Easy_Sim took reuse to the extreme. By convincing the compiler to
derive Ada tagged types from C++ classes, Easy_Sim would act as a binding to
the already proven ObjectSim framework. This idea -was eliminated, however,
because the design ObjectSim classes were deemed incompatible with the
highly cohesive and encapsulated design envisioned for Easy_Sim. (Since the
dismissal of this strategy, Thomas Quiggle of Silicon Graphics and Dr. Cyrille
Comar of the GNAT Team have successfully demonstrated this technology
[Qui94b). It is unknown, however, if their solution can derive from C++ classes
with the low cohesion of the ObjectSim classes.)

The second strategy considered for the implementation of Easy_Sim also
reused the existing ObjectSim code. Although derivation from the abstract C++
classes had been discarded, reusing the concrete classes was examined. This
strategy would build individua! bindings to each of the member funactions of
each concrete C++ class, and would treat them as if they were regular C func-
tions. This approach requires an additional step in designing the bindings, as
the tmplicit C=+ class pointer, this, must be passed explicitly in Ada [Qui94a].
This technique is further complicated if the C-~ member function accesses
variables outside its scope. Unfortunately, ObjectSim’s reliance on global ac-
cess caused the dismissal of this strategy.

The most practical strategy for the Easy_Sim development was also the
most obvious strategy, and the Easy_Sim layer of the application framework is
written entirely in Ada 9X. Although a mapping between an encapsulated C+-
class and an Ada class package is straightforward, the low cohesion of the Ob-
jectSim classes confounds the process. The final strategy adopted by Easy_Sim,

therefore, implements its classes by using the ObjectSim classes solely as a ref-
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erence basc. Easy_Sim does not attempt tc directly
omits some of the most complex functionality contained in its predecessor.

Easy_Sim instead concentrates more effort on the architectural design and

only provides the basic functionality needed t¢ preduce visual simulations,
4.1.3 Performer Dependencies

Although the final migration strategy chosen eliminates the need (o interface
with C++, it maintains interfaces to the C-based Silicon Graphics Performer and
GL libraries. Performer manages all multiprocessing and drawing an applica-
tion undertakes by efficiently processing complicated data structures every
frame of the simulation. The efficient rendering of the models managed by
Performer is accomplished by GL at a lower level. In order to reap the tremen-
dous benefits offered by these libraries and achieve acceptable performance
for realistic applications, Easy_Sim must rely upon both the Performer and GL

libraries.

tngs to interact with them is a complicated undertaking. Luckily, developers
at Silicon Graphics have built bindings to both llibraries in order to produce
their Paintball demonstration program [Emb94], and they have been gracious
enough to contribute their work to this research effort, Because Gl is older
than Performer, its binding has evolved and become thick. The Performer
binding is still in its infancy and is therefore thin. Easy_Sim makes many
additions to the Performer binding, in fact, because the binding 4id nor define
interfaces to many of the Performer function calls used by Easy_Sim.

Completely freeing the Easy_Sim application framework from its Silicon

Graphics based environment is necessary to make the application fr
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fully portable, but this diviston is beycnd the scope of this resaarch effort,
Additionally, in order to achieve a fair performance comparison with an Ob-
jectSim implementation, an Easy_Sim impiementation must use the same un-
derlying architecture.

However, because portability is a long-range goal of Easy_Sim, Per-
former dependencies are isolated wherever possible. The first step in this
process is to ensure that an application developed using Easy_Sim is not forced
to access Performer. The second step is to push the Performer dependencies to
the bodies of components, using Ada subunits where appropriate. This ap-
proach allows a new body to be written using a different graphics library,
changing the implementation without affecting the interface and therefore
saving expensive recompilations.

Easy_Sim has allowed its application developers to lessen their depen-
dency on Performer and GL, and the example program described in Section 5.1
is testament to this independence. However, most developers realistically will
want to access Performer and GL to benefit from their extensive capabilities.
The second isolation step has been realized for GL, as Easy_Sim only calls its
routines when opening the simulation window. This dependency is placed in a
separate subunit, and the procedure can therefore be replaced easily.

While the vast majority of Easy._Sim's Performer dependencies have
been placed in package bodies. some still remain as a.tribute and parameter
types in package specifications. Theoretically, the Performer entities can be
renamed or subtyped in one centralized locaticn so that Easy_Sim's SG! re-
liance is obscure throughout the rest of the framework. Easy_Sim has proven

this approach by subtyping Performer's coordinate types. This step has not
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been taken for every Performer type, however, and it is le
searchers.

Before analysis of the implementation strategy is described in full, the
next section covers tepics relating to the compilation system used 0 implemen

the Easy_Sim application framework,
4.1.4 Compiler Issues

Just as Easy_Sim's implementation in the SGI environment depends upon
bindings to SGI libraries, it is also relian: on the existence of an Ada 9% com-
piler for SGI's IRIX 5.2 operating system. A team at New York University (NYU}
has been sponsored by the Ada Joint Program Office to develop an Ada 9X
compiler under GNU Public License for both Sun SPARC and IBM 0S/2 systems.
Their product is called the GNU NYU Ada Translator (GNAT), and it is widely
available on the Internet even though it is still under development. GNAT has
been ported to run on many operating systems other than these for which it
was originally targeted. Luckily, the developers at Silicon Graphics have
ported GNAT to IRIX 3.2 for use with Paintball, and they have agreed again to
contribute their work to this thesis efort.

GNAT is part of the Free Software Foundation's gce compiler familv, Gee
accepts code in a wide variety of languages, transforms that code +ith 2 lan-
guage specific front end, ard generates executables with a common back end.
Use of this common back end makes GNAT quite mature for its age, as gcc has
been continually improved over the last decade. However, the Ada specific
front end s still rather immature and has plenty of room for growth.

A new version of GNAT is released roughly once a month. The version

of Easy_Sim baselined for this thesis is compiled undar GNAT vetsion 1.83. Uli-







fortunately, this version does not fully implement every Ada 9X features thar
Easy_Sim attempts to use, and alternate solutions are developed in these infre-
quent cases. Private extensions for derived tagged types is the most important
of these incomplete features. To correct this problem, the type extensions used
in most Easy_Sim classes remain public. Other compiler problems include the
destructor Finalize not being called automatically, and occasional semantic
confusion when a nested function call is misinterpreted. Neither of these
cases cause much trepidation, thankfully, as Finalize is called explicitly, and
the data obtained with function calls is accessed directly.

GNAT version 1.84 has been released on a small scale since the baselin-
opment team has addressed the problems above, as they use Ezsy_Sim as one of
their test cases. This thesis therefore assumes that the problems mentioned
above have been rectified, and presents the implementation of Easy_Sim as if a
complete Ada 9X compiler were available.

Discussion now concentrates on the Easy_Sim implementation, starting

with the package that serves as the parent for the Easy_Sim framework.
4.2 The Easy._Sim Parent Package

The Easy_Sim application framework's implementation in Ada 9X employs hi-
erarchical library units to create a large, logically related subsystem, while
maintaining small, physically distinct pieces. This notion creates a cohesive
and understandable hierarchy that remains modular and manageable.

At the root of this subsystem lies the Easy_Sim package. Nothing needs
to be placed inside this package, but it must exist to serve as the skeleton that

provides the basic structure for the rest of the hierarchy. For convenience
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entities commonly used throughout the Easy_Sim framework are placed within
the parent package, because all declarations in the parent are visible to any
child units. The coordinate types from Performer are subtyped here, because
they are used by many different classes. An operation 16 read coordinates
from a file, Read_Coords, is also localized *vith the type on which it operates.
The context clauses for packages accessed throughout the framework are de-
clared ahead of Easy_Sim. These clauses include the Performer bindings and
Ada Finalization, which declares the root types for controlled types.

Before analysis of each class in the Easy_Sim application framework oc-

curs, the next section describes the commonalities that exist in each class.
4.3 Easy_Sim Class Package Conventions

Because the classes {n Easy.Sim use the ROMAN-9X technique for their Ada 9X
implementation, they each share common naming conventions, coding idioms,
and a general structure (see Sections 2.1.4 and 3.2). This section presents the
code that all classes have in common, so that is not repeated throughout the
discussion. It also addresses the additicns 10 ROMAN-9X that were added espe-
cially for Easy_Sim. .

Figure 25 contains the general outline of the code used to a class in the

Easy_Sim application framework. A hlerarchical! library unit encapsulates

and may be abstract. New attributes used to extend this ty'pe are declared in
the private part. Each class provides a classwide access type, and this type is
called Reference. Controlled operations are declared, and a parameterized ini-

tializatlon operatfon, Configure, is also supplied. The paramieters to Configure
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are often given default values, so that they enly n in unicu
cases. The class package‘ then declares its main operations, which usually in-
clude Update and Draw, and they may be abstract or provide default behavior.
The Set procedures and Get functions are then daclared for the arttribures for
which they are needed. The Set procedures are named explicitly Set_(Attri-
bute), while the Get functions are named by the attribute they return. Because
- the Get and Set subprograms are usually simple, pragma Inline is applied to
them to optimize the code's execution time. In the actual type extension,
attributes that are instances of another class are stored as Other_Class.Ref-
erence. This indirection is necessary so that the attribute ¢an be passed to and
from class operations, including the simple Get and Set operations, without
violating the one tagged subtype per operation rule [RM94, 3.9.2.12]. The use
of a pointer also more closely models a real world situation, where only one
copy of each entity exists.

Two categories of Easy_Sim classes are declared at another level of depth
within the Easy.Sim framework. The manager classes exist as hierarchical li-
brary units within the class they manage. The Player_Manager class package,
for example, is declared as Easy_Sim.Player.Manager, logically adding a Man-
ager child package to the Easy_Sim.Player package. This technique of embed-
ding packages is also used for the default implementations of the classes such
as Easy_Sim.Environment.Terrain and Easy_Sim.Modifier.Standard_Input that

are provided for applications developers.
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with Easy_Sim.Other_Cliass;
package Easy_Sim.Class is
type Obiest is abstract new Ada.Firnalization.Contrelled with
private;

type Reference is access all Object 'Class;

procedure Inizizliize {Instance : in out Ckjec:i};
procedure Adiust {Instance : in out Cbjezt};
procedure Finalize {Instance : in cut Cxlecst);
procedure Cor.figure (Instance : in out Object;

Parzmeter : in Parameter_Type := (};
procedure Update {Instance : in out Ckject; is abstract;
procedurae Draw {Inszance : in out Ch’ec:) is abstract;
procedura Cperaticn ({Instance : in out Object;

Parameter : in Faramstex_Type);
procadure Set_Attribute A

{Irstance : in out Okject;
Te_Attribute_A : in Atzrikuze_Type';
procedure Set At:irikute B
{Instance :+ in out Cklect;
Tc_Aztripute 3 : in zasy_Sim.Cther_Class.Reference);

pragma Inline (Set_Attribute_A, Sot_Attridbute_B);
function Attribute_A (Irnstance : Objest) return Attribute_Type;
function Attribute_ B (Instance : Object)
return Easy_Sim.Other_Cleass . Reference;
pragma Irnline (Attribute_A, Attrikute_R!;
private
type Oz“ect is abstract nmew Aca.Finalization.Contreolled with
record
Atexribute_A : Attribute_Type := Attyribute_lritial_Vaive;
Attribute_B : Easy_Sim.Other_Class.Refererce;
end record;
end Easy_Sim.Class;

Figure 25. General Easy_Sim Class Format

The package specification in Figure 235 represents the basis for all of the
class packages corresponding to the Easy_Sim architectural components. The

rest of the chapter describes the features of each class that make its
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implementation unique. Discussion starts at th
chain, and progresses until the Simulation is reached. The code to accompany
this discussion is not included in the text due to its length, and the figures in
Chapter III can help the reader follow discussion, Section 7.3 describes

methods by which the reader can obtain a copy of the code.
4.4 The Model Classes

This section discusses the Model and Model_Manager classes, which are re-
markable because of their simplicity. The power of Performer accounts for
this positive property, as the library supplies most of the functionality. »
el's Configure operation, for instance, turns graphical database geometry built

from many different tools into a Performer rendering tree node with one call

m

to Performer's LoadFile function. The remainder of this section examines th
Adjust operation in the Model class and briefly describes the workings of the
Model_Manager class. Figure 16 shows the Rumbaugh diagram of the Model
class, while the Model _Manager c¢an be found in Figure 21.

The Model class is unique among the Easy_Sim classes because it is the
only class whose Ada type, Object, is controlled, instead of limited controlled
(see Section 2.1.2). This trait follows from the need to copy instances of the
class (see Section 3.3), which does not exist elsewhere, The Mode! class pro-
vides both a procedure and function to Clone Models, and both of these rely on
the controlled Adjust procedure and a Performer Clone function to accomplish
their objective. The Adjust procedure, however, was not as straightforwargd 1o
use as originally envisioned. Because it only takes one Model.Object parame-
ter, the notion of source and target for assignment inside Adjust becores

rather clouded--the parameter must serve as both. The scluiion is 1o start with
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a temporary variable as the target and the parameter as the source, Per-
former's Clone function is called on the parameter, with the result saved to the
temporary variable. The final step is to assign the temporary back to the pa-
rameter. This step must be accomplished using the record components of the
Model.Object, as assigning the Model.Object itself will result in infinite recur-
sion. The remainder of the Model class is implemented in a straightforward

manner.

The container that differentiates Models, the Model.Manager class, uses
the file name containing a database to distinguish various Models. It stores a
list of these file names and their accompanying Models, The Assign_Moda!
procedure is given a string parameter, File_Name, which it compares against
the names in the list using the private Index function. If a match is found, the
Mode! being assigned is copied from the Model at the appropriate Index in the
list, using the Model.Adjust procedure. If no match is found, Model.Configure
is called to convert File_Name into a rendering tree, and the new Mode! and
File_Name are stored in the list. The reader should note that if two distinct
files contain the same Model, the Model.Manager cannot recognize this equal-
ity. The developer can also use this trait if, for some reason, he does not wish
Mode! cloning to occur.

The next section examines the interesting aspects of the Environment

class and its descendants.
4.5 The Environment Classes

This section analyzes the- Environment classes in the Easy_Sim application
framework. It begins with the abstract base class, then discussion turns to the

Horizon and Sun bullding blocks, and the section concludes by describing the
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default Terrain class. Figure 17 shows an Obiject Model diagram of the Envi-
ronment classes.

.

The abstract Environment class works quite simpiv. The Initialize op-
eration allocates the Model that represents the simulation's backeround, The
Set_Mode! procedure is used to assign the Model, and the Image function re-
turns the root of the Model's rendering tree. The Configure proceciure places
the Model's local tree into the Simulation's tree by using a Performer call ©o
add the Model to the tree node which it is given as a parameter. This technique
is used throughout the Easy_Sim classes, in fact, wherever a Model needs to be
placed in the Simulation's rendering tree. The only other operation in Envi-
ronment is the abstract Draw procedure, which forces a subclass to declare if it
intends to do unique rendering on the draw thread. Examples of this special
drawing includes landscape grids or text overlays.

The Terrain class is derived from Environment and joins the basic
functionality of the Horizon and Sun classes to model the earth, sky, and sun-
light. All of these classes were based on the ObjectSim Simple_Terrain class,
but modularizing the previously monolithic class has allowed for greater pos-
sibilities of future reuse at both the design and coding levels.

The Horizon class uses the basic Performer earth/sky capabilities, ESky.
It establishes a green earth and a blue sky that gets lighter with increasin
altitude. Its values are hard coded and taken from many of the examples pro-
vided with Performer. Performer requires the Esky to be attached to a window,
or Performer Channel, as it does many items. The Configure ¢
this parameter and makes the proper call to fasten the Esky to the window.
Performer automatically draws the Horizon for the rest of the simulation, and

no Update procedure is necessary for the class.
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The Sun works similarly, but has attributes for its Positicn and Ambi-
ence, and is an instance of the Performer LightSource type. Ambience is simi-
lar in effect to brightness. In the Initialize constructor, the LightSource is
allocated, the Position and Ambience are given default values and the Sun is
set to shine from directly overhead. Performer requires a LightSource to be
included in the rendering tree, and the Configure operation places the Sun in
the tree as Environment.Configure did above. Once the Sun {5 part of the ren-
dering tree, Performer automatically draws it every frame and no Update pro-
cedure needs to be provided.

The Terrain class brings together the Environment, Horizon, and Sun in
a direct manner that shows the benefits of the building block approach. The
Terrain class has both Horizon.Reference and Sun.Reference attributes. Its
Initialize calls its parent's Initialize and invokes its attributes’ Initializes by
allocating them, Terrain.Configure likewise calls the Configures for its parent
and components. Terrain must override the abstract Draw procedure it inher-
its from Environment, and it makes this procedure null. Because Performer
handles the execution of its attributes, it also transitively Undates the Terrain,
and after initfalization is complete, there is nothing more to do.

This section has described the ease with which a default Environment

b
4

can be created due to the building block approach.

lights the implementation of the Player and Player.Manager classes.
4.6 The Player Classes

This section examines the interesting aspects of the Player and

Player_Manager classes of the Easy_Sim application framework. The Rum-




baugh Object Model diagram for the Player class is found in Figure 18, and Fig-
ure 21 shows the Player._Manager class.

The abstract Player class provides the basis for entities within the simu-
latton. Its concrolled Initialize procedure allocates its Model atiribute, and its
Configure procedure adds the Model's geome’ry under the given node in the
rendering tree. Both the Move_Straight and Look_At procedures use analytic
geometry principles to calculate the new Position and Direction of the Player.
An instantiation of Ada 9X's new Ada.Numerics.Generic_Elementarv_Functions
package is used in Move_Straight to calculate the Sin and Cos.

The Player class provides an extensive set of Cet and Set operations so
the client programmer can gain access to encapsulated data. The Model at-
tribute is accessed by both Image and Model Get functions, with the Image re-
turning the rendering subtree for that Model. The Coords attribute, which
contains two arrays of three values each, has flexible Get and Set components
which return world coordinate values to a client programmer. These opera-
tions include Position, X_Position, Y_Position, Z_Position, Direction, Heading,
Pitch, and Roll, in addition to Coords. This final operation is overloaded and
can be addressed as a whole or as a Position and Direction pair. Because the Co-
ords operation cannot return two values, the Get operation for the second Co-
ords is a procedure called Ger_Coords. Finally, the Player class provides an ab-
stract Update procedure through which a client programmer must define the
behavior of the subclass.

The Player_Manager class provides default administration of the Pla
ers who interact in the Simulation. It stores, List, an array of the Players as
well as the Count of Players in List. The Update procedure simply calls Update

for each of the Players in List. The Add procedure takes in a Player and 2 node
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under which the Player gets stored in the rendering tree, Add increments
Count, adds the Player to List, and calis Player.Configure passing the tree node
under which the Player's geometry will be attached. Client programmers can
override the simplistic operation of the Player_Manager if they so choose,

This section has highlighted the implementation of the Player and

Player_Manager classes. The next section looks at the abstract Modifier class.
4.7 The Modifier Class

The abstract Modifier class is intended to provide the means through which a
user of an Easy_Sim application can change the View. Because the
does not have access to the View, however, it simply stores its own state and
lets the View read that state to update itself. This section looks at both the ab-
stract base class and the Standard_Input defauit subciass. Figure 20 shows the
Easy_Sim Modifier class hierarchy.

The abstract Modifier class contains a Coords attribute that maintains
the offsetAbetween the View and the position and direction to which the user
has moved and pivoted. The Modifier therefore has a slew of Get and Set at-
tributes to access these values. Unlike the Player's global coordinates, the

Modifier class maintains local coordinates, in thart its Coords are an offset and

nd

pivot relative to the View, The Reset procedure sets the values of the offser

;n

pivot all back to zero. The abstract Update procedure is the connector through
which subclasses define how the Coords are changed.

The Standard_Input subclass of Modifier provides input values from the
mouse and keyboard, and is only partly implemented. The package maintains a
list of Boolean flags, each of which represents a key press or mouse click

during a frame. The flags are maintained globally in the package specifica-




tion so that client packages can reset them afrer their use, A function,
Flag_Copy, returns a pointer to the structure, and it is the preferred method

through which the flags are accessed.

collect input from the mouse and keyboard through the simulation window.

The Initialize constructor initializes both the Mouse and Keyboard compo-

£
)

nents, and the Update procedure defers to Read_Mousc an
each of which checks the queues for each part of each device and updates the
corresponding input flag if necessary. The Standard_Input package currently-
reads data, but it does not modify its inherited Coords atiribute. This step was
the next addition scheduled for the Easy_Sim framework when it was baselined
for this thesis.

The Modifier class currently is the location in the Easy_Sim architec-
ture where it is most sensible to store the input values that are used through-
out the Simulation for executive control. This approach may not be the best
model to achieve this effect. Section 7.2 contains discussion of alternate solu-
tions.

This section has outlined the operation of the Easy_Sim Modifier class.

The next section looks at the Easy_Sim View and View_Manager classes,

4.8 The View Classes

The View class provides the ability for the user to look into the Simulation, and
each View can be thought of as a different window into the scene, A View
must be attached to a Player within the Simulation. The View_Manager class is
responsible for administering multiple Views, and it keeps track of the list of

View states. Each View state contains a Player and the offse
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the last View that was attached 1o that Player, This section examines the im-
plementation of the View and View Manager classes. Figure 19 shows the
Rumbaugh diagram of the View class, while the View_Manager can be seen in
Figure 21.

The View class maintains attributes for the Modifier and Plaver with

which it is associated, its local Coords relative to the Player, and the Performer

types Channel and Scene. The Get and Set attributes for the component ¢

- o
O
1]
-

are straightforward. The Performer types are controlled by the View, an
procedures are not available for them, although they can be accessed wit
functions. The Set procedures for Coords all expect local coordinates, and ©
Gets on the entire Coords structure also return values relative to the Plaver.
However, the Get functions all return world coordinate values, as they com-
bine the local Coords with the Player's world coordinates by using matrix
transformations.

The View's controlled Initialize procedure creates a new Scene that
serves as the root of the rendering tree for the items {n that View. The Con-
figure operation is rather busy ir the View class, The Configure rakes the
processing Pipe on which the Simulation is operating as a parameter, and the
Pipe is required by Performer to allocate the Channel. Configure also fastens
the Scene to the Channel and sets up default values for the angles that the
View can see. Finally, Configure establishes the calibacks for Performer's cull
and draw processes.

The Cull and Draw procedures provide default implementations for their
respective threads for the given Channel. Cull calls Performer's cull function,
while Draw first clears the Channe! and then calls the Performer draw func-

ton. Pre_Cull, Post_Cull, Pre_Draw, and Post_Draw procedures are provided by
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Easy_Sim, althougt they were omitted from Figure 19 due to spzce constraints,
They are called before and after their respective Performer functions to allow

maximum flexibility in application customization. They all default to null ex-

-

cept Post_Draw, which "nakes the Performer utiliry call to collect user input,

Because of the currently unresolved incompatibilities between the C-
based Performer execution and the Ada 9X callbacks, no Ada variables can be
accessed inside any of the callback operations, either globally or through the
parameter list. However, as this process was not necessary to achieve a work-
ing simulation, not much effort was put forth in finding a solution. Section
7.2.2 addresses possible corrections to this dilemma.

The incompatibiiity between the languages also affects the ability of the
application developer to customize the call>ack operations. Because the Con-
figure operation establishes the procedure to which the caliback occurs, it
must be overridden first. The new Cull or Draw procedure must also be over-
ridden, and then any Pre or Post operatiors on it can also be 1edefined. While
this process seems like extra work, C+- also does not allow callbacks to virtual
functions, and a similar strategy must be applied there,

The final View class operation, Update, first updates its local Coords with
any new changes from the Modifier. [t then calls its own Get functions to ob-
tain its Position and Direction in world coordinates, and it passes this informa-
tion to Performer so that the View can be placed correctly to look into the

icene,
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The View Manager class maintains tw:
View States. The controlled operations and Configure currently are all null

operations. Because no testing has been performed with muluple Views, their
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M Itiple Views can be added to the Views list by the Add procedure. Like
the Player_Manager.Add, this procedure increments the Count, places the new
View into the Views list, and calls Configure on the new View passing the Pipe
parameter it was given. The Set_View procedure takes a given View, finds it in
the Views list using an Index function, and activates it by setting a Boolean
flag. The Update procedure iterates through the Views list, and calls Update cn

the Views which are activated.

The Set_Player procedure takes a View and a Player with the intent of
artaching the View to the Player. The use of View States allows the View to be
placed at the same offset and rotation from the Player as ¢
attached. In order to achieve this effect, the first step in this procedure is 10
remember the current state of the Player being detached. This step is ac-
complished by a procedure within the body of the package, Save_Siate. The
next step is to call the View.Set_Plaver procedure. Finally, the Coords of the
View must be assigned to the last state associated with the new attached Player.
This step is performed by another hidden subprogram, the Offset funciion,
which recovers the old state from the States list,

This section has summarized the implementation of the View and
View_Manager classes. The fina! section of this chapter highlights the opera-
tion of the Easy.Sim Simulation class, which s the capstone of the Fasv_Sim

framework.

4.9 The Simulation Class

The abstract Simulation class provides the structure to bring all of the pleces
in a visual simulation together. The basic interaction with Performer occurs

In this class, establishing the foundation of the application. This saction de-
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scribes the implementation of the Simulation class. Figure 22 shows the Rum-
baugh Object Model representing the Easy_Sim Simulation class.

The controlled operations for the Simulation class respectively call the
Init and Exit functions of Performer. The Configure procedure has a long list
of parameters, all of which provide information to configure Performer dif-

ferently, and all of which have normal default values. These parameters ad-

that will be used to gather user input, the Message_Level describing the
amount of processing information the user would like displaved to the console,
and so on. Configure uses all of these parameters to prepare the application,
and finally calls Performer's InitPipe function which performs a callback to
Open_Window to start the Simulation.

Open_Window is implemented as a separate subunit because it is rhe
only part of Easy_Sim which uses GL functions. It calls Application_Name as it
issues the window opening command so that the application developer can
customize the title of the window in which the slmulation is rendered. Just as
the callbacks in the View class have inter-language communication problems,
so does the Open_Window procedurg. Any attempt to access the application
name globally or through parameters fails, and the function call is used be-
cause it works.

The Simulation class has five attributes. Environment, Model_Manager,
Player_Manager, and View_Manager are all class References, and they have
both Get and Set attributes. The Set attributes for the manager classes act
slightly differently than normal Set operations, because they all take null val-
ues by default and allocate themselves the first {ime they are called. This im-

plementation was chosen because of the privacy problem caused by subclasses
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not being able to access the components of their parent (see Section 6.3). Al-
ternatively, the managers could all be allocated in Initialize, but thki< anproach
prevents them from being overridden easily. The fifth a
processor model from Performer. This value is initialized in Configure and
cannot be changed. Pipe therefore only has a Get function associated with it.

The Simulation class declares three overloaded Add procedures, to re-
spectively add the Environment, a Plaver, or a View to the Simulation. These
operations are where the Simulation ties all of its pieces together. The Add
View must be called before the others, so that they can be placed in a View.
Add View takes a2 New_View, a Player to which it will be attached. a Modifier if
one is needed, and either a set of Coords or a file from which the Coords can be
read. The procedure first calls View.Manager.Set_Player with the given
Player and then calls Set_Modifier. These steps fasten these items to the View,
The next step calls View.Set_Coords to set the offset from the Player, either by
assigning the given Coords, or by calling Read_Coords to retrieve the data from
a file. The latter method allows applications to be easily changed withour re-
compilation. Finally, the Add View procedure calls View.Manager.Add, and the
View becomes part of the Simulation.

The Add Environment procedure takes parameters for the
New_Environment, a View to which is attached, and a Model_File containing
the graphics database. The procedure first calls Model.Manager.Assign_Model
and Environment.Set_Model to get the Mode! and attach it to the Environment.
Environment.Configure is called next, passing the Channel and rendering
subtree so that any necessary linking between the Environment and the View

can occur. The final step is to call Set_Environment with the
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New_Environment, ensuring that the Simulation is also properly tied to its
background.

The third and final Add procedure adds a New_Player 1o the Simulation,
and it combines the features of the other two Adds. Add Player takes parame-
ters for the View it appears in, its Model_File, and either method of passing its
Coords. Like Add Environment, it first calls Model.Manager.Assign_Model and
Player.Set_Model. Like Add View, it then calls Player.Set_Coords, perhans hy
reading from a file first. Finally, Add Player calls Player.Manager.Add to en-
sure that the Player becomes part of the Simulation.

The culmination of the Simulation occurs in its Render procedure, This
procedure loops continually, causing Performer to draw the application on the
display. Render first calls Performer's Sync function to coordinate all three
Performer threads on a frame boundary. It then calls View Manager lindate 10
Update the positions of all the Views. Render's call to the Performer Frame
function causes the start of the cull and draw threads. The Player.Manager.-
Update is called next, to move all the Players in the Simulation. Finally, the
Simula“‘on calls its own abstract Update procedure, allowing any overriding
functionality of its subclass to be incorporated into the main rendering loop.
Usually, user input that controls the flow of the application is processed here,
possibly ending the loop. Otherwise, another frame is drawn, and so on...

This chapter has described the implementation of the Easy_Sim applica-
tion framework. Most of the discussion here holds in both the Ada 9X and C-+
versions, with the differences described in Section 6.3, Instructions on
obtaining the Easy_Sim code appear in Section 7.3. The next chapter describes
an Ada 9X implementation of an example application using the Easy_Sim

software architecture and application framework,
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V Example Application

This chapter describes how to develop a basic visual simulation using the

Easy_Sim application framework. It first does this by presenting an example

entire application development process. The chapter ends by illustrating gen-

era) guidelines for deriving from the different Easy_Sim classes to develop any

application.

5.1 The Circling Planes Example Application

This section covers the complete development of an Ada 9X solution for an
application. The overall plan for the simulation is described first, and then a
detailed look at each of the necessary components follows.

This simulation, Circling Planes, involves two aircraft circling over a
ground-based background and a cbservation point from which the planes can
be tracked. The simulation's view can be attached to either of the planes or the
tracker point, and can be switched between these entities by using the mouse.
This application is taken from Example 2 in the ObjectSim Application Develop-
er's Manual [Sny93.A7-16).

The Circling Planes simulation mainly uses the default classes supplied
by the Easy.Sim framework, but it also derives application specific compo-
nents from Easy_Sim's abstract classes. Figure 26 shows an Object Model dia-
gram representing the overall design of the system, with the Easy_Sim frame-
work shown in the top portion, and the application specific classes shown in
the lower portion. Bold lines show inheritance relationships, while normal

lines show aggregations and regular associations.
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Figure 26. Circling Planes Simu!lation Object Mode! Diagram

The Player class provides the basis for both the Plane and Tracker
classes, and each Tracker is related to the Player it follows. (This astoclation is
restricted to Planes in Figure 26 to keep too many lines from crossing.) The
applif:ation background uses Easy_Sim's standard Terrain class, and therefore
includes basic representations for the Horizon and Sun. In

the application through the use of Easy_Sim's Standard_Input Modifier class,
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which provides services for keyboard and mouse entries, Finally the Cir-
cling_Planes class is derived from Easy_Sim's Simulation, and serves to con-
nect all of the pieces to make the application.

The remaining portions of this section concentrate on each of the
classes dzrived to make the Circling Planes example. Because these classes are
not part of the Easy_Sim application framework, they are not declared as child
packages of Easy_Sim. Instead, they each stand alone. The Plane class is the

first to be examined.
5.1.1 The Plane Class

In order to simulate an entity within an Fasy_Sim application, a subclass of the
Player class must be defined. To simulate a plane, the new class is appropri-
ately named Plane. An instance of the Plane class moves by simply moving

wianasas

forward and changing its heading to the right each frame, making a clockwise
circle.

To implement this design in Ada following the Easy_Sim architecture, a
class package named Plane is created which derives its class type Object from
Easy_Sim.Player.Object. This step requires access to Easy_Sim.Player through a
with context clause. The Plane class dr.2s not need to add any attributes to the
Player class, and inherits the majority of its parent's operations without modi-
fication. To be consistent with Easy_Sim structure, the Plane class declares a
classwide access type, Reference, and places its attribute extensions in the pri-
vate part. The circling movement of the Plane is accomplished by overriding
the Player's Update procedure. Finally, the Player's abstract Draw procedure is

also overridden, but because no special drawing is needed in this application,
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with Easy_Sim.Plaver;

package Plane is
type Obiect is pew Easy_Sim.Flayer.Object with private;
type Refererce is access all Object'Class;

procedure Update (Instance : in out Ckject;;
procedure Draw {Instance : in out Ckiect);

private

type Object is mew Easy_3im.Player.lbiect with null record;
end Plane;

Figure 27. Plane Class Package Spedcification

this operation does nothing. Figure 27 contains the Ada package specification
for the Plane class.

The body of the Plane package is slightly more complex. The body first
shows its dependence on the Performer's pf library by accessing it via the
with clause, The Plane implementation als¢ intreduces the Rasic_Types pack-
age, which is implemented to provide Ada types analogous to the C types used
in Performer. The Update procedure then moves the Plane forward by cafling
its inherited Move_Straight procedure, and decrements the Plane's heading by
using Get and Set operations and a temporary variable. The use of this vari-
able ensures that the Plane's heading stays within a realistic range. The final
step in Update is to change the coordinates for the Plane in the rendering tree,
and this step is accomplished by means of a Performer call. The implementa-
tion of the Plane class is completed by providing a dummy procedure to over-

ride the Draw procedure. Figure 28 shosws the body of the Plane package.
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with Performer_P%;
with Basic_Types:;

package body Plare is

.~ocedura Update {Instance : in out Objest) is
New_Heading : Easic_Tvres.Float3Zz := (.C;

begin

Move_Straight i{Instance, 4.0,

New_Heading := Heading !Instance) - .5;

if New_Heading < 2.0 then -~ Wrap arcuné i%f 2ull circie
New_Heading := 5360.0;

end itf;

Sst_Heading (Instance, New_Keading);
Performer_P£.PIDTSCTooré (Image /Instance!, Ccords !Instencel):

end Update;

procedure Craw {Instance : in cut Opjecti is
bagin

aull;
end Draw;

end Plare;

Figure 28. Plane Class Package Body

5.1.2 The Tracker Class

To observe the circling planes, another Player subclass is defined the Tracker.
This class has no model of its own, and merely exists to watch another Player.
Like the Plane class, the Tracker class inherits the majority of its attributes
and operations from Player. It does add an attribute however, Trackes to store
a Reference to the Player being tracked. It also adds a Set operation to modify
its new attribute. Tracker overrides Update to define its tracking techniques,

and must override Draw to become concrete. Tracker also redefines Initialize
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with Easy_Sim.Flayer;
package Tracker is
type Objesct is new Easy_Sim.Player.Object with privates;

type Reference is accaess all Object'Class;

procedure Initialize iInstance : in out Cojecti;
procedure Update (Instance : in out Objsct);

procedure Sct_Trackee

{Instarce : in out Object;

To_Traczkee : in Easy_Sim.?layer .Reference);
pragma In_ine [(Set_Trackee);

private

type Obiect is mew Easy _Sim.P. ver.Obiect with
record
rackes : Easy_Sim.Plaver.Referernce;
end record;

end Tracker;

Figure 29. Tracker Class Package Specification

here to demonstrate this process, even though it is not necessary. Figure 29
outlines the Tracker package specification.

The body of Tracker is similar to Plane, but due to its lack of a Model, has
no dependency on Performer. The Initialize procedure here is superfluous,
but serves to show the concept of view conversion. To reuse the steps in ini-
tializing its inherited components, Tracker.Initizlizc simpl
operation. Logically, this call passes only the components of the parent record
tvpe, and Tracker is free to initialize its new components afterwards. The Up-
date procedure uses the inherited Look_At procedure (¢ orient the Tracker 1o-
wards the position of the Trackea. It finds this position by dereferencing its
component's pointer and calling the Get operation on the Player.Object’Class to

find its location. This technique works on any Player subclass, as the tag of
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package body Tracxker is

procedure Initialize (Iastanze : in out Oriect:) de

bagin
Easy_Sim.Plaver.Iritialize (Easy_Sim.Player.Object IInstance!’;

Instarnce.Trackee := null;
end Iritialize;

procedure Urdate {Instance : in out Ok ec:’ is

begin
Leok_At (Instance, Easy_Sim.Plaver.Pogition
(Instarce,.Trackee.all));

end Update;

procedure Set_~rackee
{Instance : in out Cziect;
Tc_Trackee : in Easy_Sim.Plavev.Raferencze) is

begin
Instance.Trackase := To_Trackee;
end Set_Trackee:

procedure Craw {Instance : im out Chiect) is
begin

null;
end Drav;

end Trackeyr;

Figure 30. Tracker Class Package Body

Trackee's designated object dispatches the call to the «~oropriate Position

function. Figure 30 contains the body of the Tracker class package.
5.1.3 The Circling._Planes Class

As stated in the design chapter, the Simulation class serves as the organiza-
tional fulcrum of the application, tying together all of the simulation’s pieces.
This application, Circling_Planes, is no different. The context clauses show
that it uses the Easy_Sim classes as building blocks. The class type is derived

from Easy_Sim.Simulation.Object, and its attributes define the entities involved
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with Zasy _Sim.Player;
with E=sy_Sim.Modifler;
with Zasy_Sim.View;

with Easy_Sim.Simuliation;

package Circling_Flanss is

type Object is new Easy_Sim.Simulation.Object with
private;

type Reference is access all OzZect'Cless;
procedure Initialize {Instance : in out Ckject:;
procedure Update (Instance : in out Odbiect);
Quit_Program : exceptiocn;

private

function Appiicatiosn_Nare {Ins:tance : access Ckject!
return String;

type OLiect is new Easy_Sim.Simulation.Onject with

record
Mair_View : Easy_Sim.View.Reference;

Trasker : Besy_Sim.Player.Refererce;
F.ight_Lead : Easy_Sim.Flayer.Reference;
wing_Men : tasy_Sim.Flayer . Reference;
Input : ELasy_3Sim.Mocifier.Reference;

and record;
end Circling_Flanes;

Figure 31, Circling_Planes Class Package Body

in the application. There is one View, Main_View, three Players, Tracker,
Flight_Lead and Wing_Man; and one input device, Input. The constructor,
Initialize, defines the relationships between the different attributes, and Up-
date defines how input affects the Simulation each frame. An exception,
Quit_Program, provides an avenue for gracefully exiting from the inherited
Render loop. Finally an overriding private function, Application_Name, al-
lows the window to be labeled with the titl2 of this example. Figure 31 holds

the code for the Circling_Planes specification.
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with Performer_PE;

with Performeyr_P2futil;

with Ezsy_Sir.Environment.Terrain:
with Zasy_Sim.Mcdifier.S:tandard_Inzucz;
with Flane;

with Tracker;

package body Circling_Planes is

procedure Iritializa {Inetance : in out Otject! is (in Figure 33};
procedura Update iZnszan~z : in out Chject’ is ‘in Figure 34v;

functicn Applicaticn_Name (Instance : access Chiecst)

retura S:tring is
begin

return (*Zasy_S&im Circlirg Planes Examgls);
end Applicaticn_Namz;
end Tircling Planes;

Figure 32. Skeleton of Circling_Planes Ciass Package Body

The body of the Circling_Planes package establishes the relationships
between the different entities in the simulation, and assigns the appropriate
subclasses for the different attributes, These subclasses are accessed by the
collection of with clauses thar precedes the program unit. Figure 32 shows the
Circling_Planes class body. The code is too large to show at once, however, 50
the figure only presents part of the body, and discussior: of [nitialize and Up-
date follows below. The one operation shown, Application_Name, is called just
before the window for the simulfation is opened, and it provides the name that
appears in the corner of the window. Becaunse this function is specific to this
application and only needs to be called once, it is declared in the private part
of the package specification.

Figure 33 shows the Initialize procedure of Circling_Planes by itcelf, 0t
first calls its parent's Initialize and Configure operations so that Performer
and the Easy_Sim framework are initialized. Most of the parameters of Config-

ure take their default values, but the Modifier in this application uses Per-
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procedure Initialize (Instance : im out Obscti is
~= Iritialization of Terrair must ocozur after PEConiig,

-~ vhich is called ir Sim.Irit, s> allocation must wait
~memp_fervair : Easy Sim.Envirorment.Refersrnce;

begin

Zasy _Sim.Sirn’: ‘en.Initialize
({Easy_S.- «jon.Cb est (Instanceil;

Corfigure | .
Mode => Performer_PLutil.PFUINPUT_GLY;

new zasy _Sim.View.0kject;
Treczer.Cbhbject;

Irecvance.Main_View
irstance.Trazker
Inszance.Fiight_lead := new Plane.Ckject;

snstance.Wing_Man new Plane.Crect;

Inuzance.input := naw Easy_Zim.Mcdifier.Standard_Input.Cdlect:
Temy_Terrain := new Easy_Sim.Eanvircament.Terrain.Colect;

nonoan
[+
[ ]
<

AGE (Instance, New_View 2> Iregtance.Main_Yiew,
Witk _Plaver => Instarnce.Wirg. ar,
with Modifier => Instance.lnpy
Coords_File => "view.dzta")

aAdd !irstance, New_rlayer => Instance.Tracker,
Cocrds_Filie => "tracker.date®;;
Tracker.Set_Trackee {(Tracker.Reference (Instance.Tracker).all,
Instance . Flight_Lead);

Add (Instance, New_Plaver => Instarce.Flignt_Llead,
Coords_File => "leaZ.Zata”,
Model_File => "lezd.flt*):

Add {Irstance, New_Player => Instence.wing_Marn,
Cosrds_F.le => *wing.dzzea®,
Mcdel_File 2> *wing.fic*;;

Add (Instence, New_Eavironment => Temy_Terrain,
Mcéel_File => *"terrain.flt*);

end Initialize:;

Figure 33. Circling_Planes Class Initialize Procedure

former’s GL mode of reading input, and the default X Windows input mode is
therefore overridden.
Initialize then allocates each of its attributes, and they are allocated

with particular subclasses. Declaring the actributes in the specification as
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base classes and allocating them in the body as subclasses allows more flexi-
bility in their handling in the application. Attributes inherited from the
Simulation class are private, so the Environment and various Manager at-
tributes cannot be accessed or allocated directly here,  The use of
Temp_Terrain shows a method for bypassing chis annoyance when necessary.
The default manager classes all aliocate themselves when they first are refer-
enced 0 circumvent this privacy problem.

The relationships among the Environment, Modifier, Views, Players,
and Managers are all incorporated into the simulation by using the various
Add procedure calls and Set operations where appropriate. The A
allow files containing rendering models to be specified for the Environment
and any Players that need them, and the Adds also allow the initial coordinates
for the Views and Players either to be passed expliciily or read from a fi
Using Ziles for reading Models and Coords allows the developer to customize the
application by simply changing the models or coordinates contained in a par-
ticular file. This flexibility saves inefficient recompilations should different
values for these attributes need tc "2 tested or vused ip a simulation.

The Update procedure of the Circling_Planes package, shown alone in
Figure Z* allows user input to change the state of the simulation each frame.
The user can press the capital S to toggle Performer’s statistics displays or
press the Escape key 1o quit the program. By using the mouse, the user can
attach the View to the different players in the application. The left mouse
button corresponds to the Tracker, the right button artaches 1o the lead Plane,

and the middle button moves the View to the following Plane.
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procedurs Update (Instsnce : in out Objest) is

-
-

Input_Flags : E&sy_Sim.Modifier.s:andard,:npu:..1ags,Poin:er;
begin

Input_Flags := Easy_sim.Modifier.Standard_Input.F:ag_:opy
(Easy_Sim.Modifie:.Stanﬂard~:.put.abject
{Easy_S:im.View.Modifler ‘Instarce.Main_View.all;.alll};

it Input_Flags.Xey.Down {('S*': then
:npu:_?lags.braw_S:ats := not Input_Flags.Draw_Scats;
Inpuz_Flags.Rey . Dovn {('8*) := Talse;

elsif Input_Flage.Key_Dowr (Azcii.Esc) then
Inpuc,?lags.Quit_Program 1= True;
raise Quit_Program;

elsif :nput_Flags.Lef:_Mcuse_Down tben
Inpu:_?iags.Lef:_Mcuse,Down 1= False;

Easy,Sim.View.Manager.Sat_Player
(View_Marager (Irnstance) .all,
oi_vView => Instarce.Mair_View,
To_Player => “ristance.Tracker};

alsif Input_Flags.Middle_Mouse_Dcwn then

:nput_?lags.Middle_MCuse_Dcwn 1= ralse;

Easy_Sim.View.Manager.Set_Player
(View_Marager (Irstance) .s&ll,
0f_View => lrstarce.Mair_View,
To_Playexr => cnstance.wing ¥anl;

elsif :nput‘Flags.Righ:,Ncuse_Dcwn then
Input_¥lags.Right _Mouse DJcwn := False;

Easy_Sim.View.Manager.Set_Player
(Viet:_Manager (Irnstarce).all,
02 _View => Instance.Mair _View,
To_Player => Irstance.F.ight_Lead};
end if;

if Input_Flags.Draw_5Stats than
perfermer_Pf.PfDravwChanStats
{Easy_Sim.View.Criannel (Instance.Main_View.all)};
end if;
end Upcate:

Figure 34. Circling_Planes Class Upcdate Procedure
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User input results in the setting of global input flags within the
Easy_Sim.Modifier.Standard_Input package. The Update procedure calls Flag_-
Copy to gain access to the input flags and monitors those in which it is inter-
ested. When one of these flags is set, Update generally resets it and acts appro-
priately. For the mouse operations, this action is to call the View_Manager to

switch the Player to which the View is attached.
5.1.4 The Application_Driver Program

With all of the organization accomplished in the Circling_Planes package, the
drtver has little left to do. The Application_Driver procedure is shown in Fig
ure 35. The driver declares the Simulation object, whose tnitialization is per-
formed automatically by constructor, and then calls Render on Simulation.
This operation does not complete until the user hits the Escape key.
with Cirecling_Planes:
procedure Applicaticn_Driver is
Simulation : Circling_Flanes.Ot-ect;
begin
Cireling_Planes.Rerdey (Simuletior);
oend App.icatiorn_Driver;

Figure 35. Circling _Planes Simulation Driver Procedure

The Circling Planes example has shown the development of one specific
Easy_Sim application. The following section provides more general guidance

for developing applications.




5.2 General Applicaticn Development

This section describes the entry points in the Easy_Sim software archi-
tecture where different tvpes of functionality may be added to enhance
simulation. Many of these concepts are also presented in earlier chapters, but
they are summarized here. The abstract classes are analyzed first because
their customization is necessary to produce a working application. This sec-
tion then analyzes the concrete basic classes, and it finishes by covering spe-
cializations of the manager classes.

The most basic abstract class is the Player class. It provides the basic
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component for differentiating entity behavior within
supplies the architectural connectors that serve as the focal points for defin-
ing the different aspects of that behavior. A Player's behavior can be simple,
like the Plane examined last section, or it can be complex and consist of many
different pieces. The Plane modeled in the Virtual Cockpit application, for in-
stance, comprises radar capabilities, an inertial navigation system, a weapons
delivery systems, a head's up display, and a throttle and stick, all in addition o
correctly modeling aircraft flight dynamics [Snv93,68 Fig25].

This modular approach establishes a precedent, whereby a subclass can
gather functionality from many smaller classes and organize this functional-
ity in one place to suit the requirements of the architecture, This building
block method makes creating components much more flexible and establishes

a set of modules that are reusable both at the design and code levels. The
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building block approach is not limired to th
any class within the Easy_Sim hierarchy.
The other basic abstract classes in the Easy_Sim architecture include

the Environment and the Modifier. In the Circling Planes exam
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ronment class has already demenstrated the building block approach 10 mak-
ing simulation backgrounds by combining the Horizon and Sun classes to form
a Terrain subclass that adheres to the Environment's predefined structure.
Similarly, application developers can extend the Madifier class to handle the
user input into their applications. The possibility exists that these user input
devices may be used to modify Player movement or control the Simulation as
well, but these concepts are still under development. The abstract Draw op-
eration in Environment forces its subclasses to declare any intentions of

adding application specific features to the draw thread. Some Environments

n
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may be aided by grids or text overlays, and these features must b
the draw thread.

The final abstract class in the Easy_Sim architecture, Simulation, is the
hub of the Easy_Sim concept. Serving to coordinate the attribtites that com-
pose it, the Simulation supplies architectural connectors so that the applica-
tion developer can isolate the location where organizational algorithms can be
used in an application. As the Circling Planes example demonstrated, accom-
plishing the coordination during initialization simplifies the simulation pro-
cessing later. Because the Simulation encompasses all other classes, it is re-
visited at the end of this section.

There are two basic concrete classes in the Easy_Sim architecture of
which Model is the more basic. The Model class forms a module isolating the
representation of graphical images, and provides default behavior to process
these images. Performer allows the Model class 16 be flexible encugh 1o handle
many different formats of images and automatically adjust for level of detail
control, but a developer may still need to customize his Models. The most likely

occurrence would b when the developer must work with a coordinate system

119




that differs from the Performer conventions. The current standards for dis-
tributed interactive simulations (DIS) fall into this category, and a Model sub-
class to correct for this discrepancy is warranted in DIS applications.

The other basic concrete class in the Easy_Sim architecture is the View
class. A View encompasses window displaying, and it therefore also directs
functions that are tied to windowing. These include user input and the ability
to affect Performer’s cull and draw threads, both of which an apnlication de-
veloper may want to customize. User input can be customized through the
Modifier class to cccommodate different input devices, but the handling of the
Input data may fall more sensibly in the View class. Customized culling can
enhance the application's performance, and the draw operation can add extra
information to the scene, such as text overlays.

The manager classes in the Easy_Sim architecture are container classes,
each of which directs the interaction among its constituents. The default
Model_Manager prevents duplicate nodes in the simulation's rendering tree
by cloning Models that are used more than once. This simple default design of
the Model_Manager should suffice for most applications, but others may wish

to customize how the Models in the simulation are manipulated. A

—n

Model_Manager subclass may wish to define different techniques for level o
detail control, or for compatibility with a different coordinate system. A sub-
class may also simply require another avenue for assigning the Models.

The Player_Manager class also forms the architectural entry point for a
limitless number of customizations for Easy_S.m applications, The default class
provides no real organization of the Players, but different subclasses could
institute methods for optimizing rendering by spatially organizing the Players

(Har94,130]. An application could add collision detection into Fasy Sim
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cations through the Player_Manager. Most importantly for distributed inter-
active simulations, the Player_Manager class provides a sound starting point
for bringing network player managers into the architecture. Ideaily, an ab-
stract class could be designed that is general enough for any network simula-
tion. Subclasses could be derived for each particular application, customizing
its specific needs according to a standard, understandable architectural plan.

Like its other manager classes, Easy_Siin's View_Manager class provides
default functionality, fully expecting that applications will customize their
View management by inheritance. Window management will probably be the
most widely used reason for tailoring the View_Manager class in applications,
as each View has its own window in the display. The View_Manager class will
also administer interactions between input de‘ices, because user input is
commonly obtafned from windows through the operating system.

Finally, the Simulation class serves as the focal point of an application,
defining how its different pieces interact and providing executive control
over the program. A Simulation subclass must first define the Environment,
Players, and Views that it uses, as well as the associations that interconnect
them. A subclass must provide initialization techniques for its attributes and
ensure that each piece of the simulation is properly incorporated into the
application's scheme. Finally, 2 Simulation subclass must supply the algo-
rithms that define the interactions among its attributes during the simulation.

This chapter has outlined the development of one application and de-
scribed the general techniques used to {nherit from the Easy_Sim framework
to create an application. The next chapter looks at the different versions of
the Easy_Sim and ObjectSim frameworks, and draws results from their compar-

ison.
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VI Results and Comparisons

This chapter presents an analysis of the different versions of the ObjectSim
and Easy_Sim application frameworks. The data contained here shows the suc-
cess of this research effort by demonstrating that a visual simulation system
software architecture can be implemented with an Ada 9X application frame-
work so that it provides capabilities comparable to a similarly designed C++

framework.

The first section of this chapter covers background material and com-

pares two performance measurements, frame rate and application thread time.

[¢5]

The second section shows the different sizes of the executable programs. Th
final portion of the chapter examines differences in language features be-

tween the Ada 9X and C++ versions of the Easy_Sim framework.
6.1 Performance Comparisons

The most important performance measurement in any visual simulation sys-
tem is its frame rate, or the number of individual screen images the simulation
displays per second. This number indicates the realism portrayed io t..e'sys-
tem's users, as the illusion of motion tricks the human eye when individual

frames are presented in rapid succession. If the frame rate becomes too slow,
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the viewer begins to notice individual fram
known as jitter.

The frame rate considered adequate for a simulation depends on the
purpose of the simulation system, the expectations of its user, and the method
of display. A person being entertained demands total realism, while trainees

tolerate some jitter in order to accomplish their objectives. Additionally, the
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consequences of jitter are multiplied if the viewers are totally immersed in
display, as the stability offered by their peripheral vision is absent.

Taking these variables into account, jitter becomes noticeable near
thirty frames per second. The ideal frame rate for simu
per second, the rate at which most televisions operate, The AFIT Graphics Lab
considers twelve to fifteen frames per second acceptable for its simulations, as
the users accept some inaccuracy in a research environment. This rate va
somewhat depencing on the tvpe of viewing device used.

This research effort used functions provided by SGI's Performer library
to gather and display performance statistics. The data collected includes the
frame rate and the time spent per frame in each of the application, cull, and
draw threads (see Section 2.4). Because an application is only rendered as fast
as its slowest process, the thread times are important in determining if one
process impedes the entire application. Analysis of the application thread
shows the differences among the different versions of the implementation,
because the application developer's code is executed in this thread. By default,
Performer executes the cull and draw threads on its own.

A simple application, like the Circling Planes described in Chapter V, is
draw limited, meaning that the draw thread takes much longer to execute than
elther the application or cull thread. The complex models used 10 represent
the Planes and Terrain, contrasted with the simple movement of the Planes,
account for this difference. Most applications are application limited, how-
ever, as the reproduction of realistic Player behavior Is often quite intricate.
The Space Modeler [Van94), for instance, models the movement of planets and

stars, and performing the corresponding calculations each frame is many

123




times more computationally expensive than lighting the small areas on the
screen that represent these objects graphically.

Throughout the developi.znt of the Easv._Sim application framework,

-

497
LX <8

"
M

un

+ re
o

much of the complex functionality of CbjectSim
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features all contribute to the ObjectSim framework, but they are not essential
in the production of a visual simulation. Unfortunately, the two frameworks
cannot be compared fairly with this differing functionality. Anticipating this
divergence, a C+- version of the Easy_Sim architecture was maintained to
parallel the Ada 9X version. A comparison between these two versions of the
Easy_Sim framework is made later in this chapter.

The tests gathering performance statistics were undertaken on a four-
processor SGI Onyx/Reality EngineZ machine running at 150 megahertz. The
tests were conducted under controlled conditions, with one user logged into
the machine, and two open winterm windows, The application window was
opened to full screen size to maximize the rendering area and provide consis-
tency for each test. The machine uses version 5.2 of the [RIX operating sys-
tem. Both the Ada 9X and C++ versions of the application framework were

compiled with maximum optimization.
6.1.1 Frame Rate Compariscns

The implementation of Easy_Sim was originally tested by reproducing the first
two ObjectSim example applications |Sny93,AppA] with both Easy_Sim and Ob-
JectSim. However, because these examples are draw limited, and the ObjectSim
and Easy_Sim implementations render the same scenes, the frame rates match
exactly. These tests were therefore inconclusive, and computationally expen-

stve applications were devised to provide a better comparison.
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These new applications were based gn the Circling Planes examnle and
merely prolonged its application thread by increasing the number of aircraft.

This expansion resulted in a simulation in which multitudes of planes fly

routes whose paths resemble the overlapping rings of the Olympic flag. The

number of planes in the formation was first expanded to 10, then to 100, 400,
and 1,000.

Each of these simulations can be viewed from three locations: the sec-
ond plane on one end of the formation, the last plane on the other end, or the
tracker who observes from afar. When viewed from the tracker, an intimidat-
ing line of planes moves across the screen. Unfortunately, this angle does not
provide any better comparison data, because drawing the entire formation is
still more costly than moving it. If the view is moved to one of the planes, the
desired effect is achieved. From these angles, the plane cycles through points
where the attached view sees 2ll the other planes aligned and points where it
sees no other planes. The first case remains draw limited, because rendering
all of the planes is still arduous. However, the second case is application lim-
ited, as the simulation still performs calculations 1o move the planes even
when they are hidden from view.

Given these standard applications, tests were run using both the Ada 9X
and C+- versions of the Easy_Sim implementation, ectSim was also tested as

a baseline reference point, even though its differing C-- functionality
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vented a truly fair comparison. Table 2 shows the test results, For eac
these frameworks, data was gathered on the four different guantities of air-
craft. The first row for each framework shows the application limited test,

when all planes are moving but none are being shown. The second row for




Table 2. Frame Rates for Circling Planes Simulations

Architecture/ |Planes Plane Positions Bring Updated
an | Seen R _ 10
Easy_Sim/
Ada 9X none 30 30 10
all “ 20 12 4.0 1.7
Easy_Sim/
Ce+ none 30 - 30 30 10
all 20 12 3.8 1.6
ObjectSim/
C++ none 30 30 30 12
all k 20 15 3.8 1.6
t (Erames per second)

each framework shows the draw limited case, when all planes are moving and
being drawn.

These results are remarkable because they suggest that there is no sig-
nificant difference in the performance of the three versions at given levels of
stress. Most important is the direct comparison between the Ada 9% and C-+
versions of Easy_Sim, which have mirror-like implementations (see Section
6.3). The results demonstrate that the use of the Adz 9X language itself does not
hinder the rendering of a visual simulation. The gathering of evidence that
the Ada 9X version of Easy_Sim performs at a level comparable to the same
application built in C++ succeeds in satisfying one of the main goals of this
thesis effort.

The next section examines a2 more specific aspect of the performance by

focusing on the application thread times of the Circling Planes simulation.
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6.1.2 Application Thread Time Comparisons

While Table 2 above shows that the botiom line performance of the Ada 9X
Easy_Sim framework is similar to both the ObjectSim and Easy_Sim/C++ ver-
sions, the frame rate encompasses the execution times of all three of the Per-
former threads (see Section 2.4). [t is only the application thread, however
that illustrates the differences between thr different versions of the Circling
Planes application, because Performer executes the ovenwvhelming maioriry of
the cull and draw threads. Table 3 shows the applicatior. thread times per
frame for the Circling Planes applications. Because the application thread
time does not depend on the view, only cne row i necessary for each version
of the application framework.

Table 3 clearly shows the performance difference of the Ada 9X code,
which runs 25% slower than the corresponding C++ code. This extra process-
ing is expected, and can mainly be attributed to the immaturity of the GNAT
compiler. Just like this thesis, the GNAT team’s first objective is to produce
working code, with optimization a secondary long term goal. ln fact, no work
at all has been done on Ada specific optimizations [Dew94b). Given this state-
ment, the fact that the code is only 25% behind is remarkable. Furthermore,

ala } 23

given that the bottom line performance of the simulation is equivalent with

Table 3. Application Thread Times for Circling Planes Simulations
Plane Positions being  Updated
Archltecture/Language 10 100 400 1000
Easy_Sim/Ada 9X 1.7 8.5 31 75
jEasy Sim/C++ 1.4 6.5 25 60
ObjectSim/C++ 7.1 11.4 26 61
(Milliseconds per Frame)
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the compiler in this state, the future Jooks very bright for Ada 9X in the simu-
lation industry.

Another common factor in the slower running of Ada code is the run-
time checking associated with exception handling.
framework for Easy_Sim follows the Ada mindset of using exception handling
to make the code more reliable and easier to test, and this programming stvle
greatly eased the development of the Easy_Sim iframework. Regardiess, the
Circling Planes test cases were recompiled with the run-time checks sup-
pressed to see how it would affect the performance of the code. Surprisingly,
the e’fects were minimal. Once again, however, the compiler developers
blame this behavior on the immaturity of their product, Because the checks in
the run-time system of version 1.83 have not been suppressed, suppressing the
checks in a source program will not affect its performance. This hindrance
has been removed from version 2.00 [Ran94},

The ObjectSim row of Table 3 is interesting for two reasons. Somewhere
ObjectSim incurs processing overhead in its applications, most likely because
of its use of shared memory. Using this Performer feature is costly for small
applications, but the initial investment is returned when the siriula‘ion be-
comes complex. The test results also demonstrate that the efficiency suppos-
edly gained by ObjectSim's rejecting encapsulation and relying on globa!l ac-
cess is not perceptible, as both C++ frameworks slow at an equal rate when the
processing load is increased. This result is welcome news for supporters of the
software engineering discipline. Programmers In performance critical soft-
ware fields have often dismissed the principles of software engineering by
citing efficiency concerns, but these results indicate that similar efficiency

can be attained when following a well-planned, encapsulated design. Just as
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the immaturity of the GNAT compiler can be blamed
Ada code, the maturity of th2 optimization techniques of the AT&T C++ compiler
can be thanked for unraveling encapsulation on the machine code end.

The performance issues analyzed in this section strongly suggest that
Ada 9X can perform alongside the C-based languages. Ada's shortcomings in
the application thread time are well worth the development headaches it

hn b
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avoids. This notion is especially true considering that t
mance is not affected and future gains in compiler optimizations are assured.

The next section 2lso analyzes an area in which Ada is notorious--code size.
6.2 Executable Size Comparisons

With the constantly expanding space available on today’s computer systems,
the importance of program size is waning rapidly. Howcver, this seciion
quickly examines the {ssue for 2 compleic analvsis,

Ada programs have traditionally been larger than C and C-+ programs.
The reasons for this dilemma included difficulty in optimizing the complexity
of the language features, the run-time checking mentiuned ahove, and the
inclusion of large libraries for such tasks as input and ou(put. Recently, Ada
83 compiler maturity has alleviated this problem {Law92].

Table 4 shows the sizes of the executable files for the Circling Planes
example programs. Because the different versions of Circling Planes only
vary in the length of an array, the 10, 106, 400, and 1,000 plane versions are all
virtually the same size. Generally, the Ada 9X versicns are just under nwice as

large as the C+4+ versions,
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Table 4. Sizes of Executable Code for Circling Planes Simulations

! Architecture =___LLimguasze Features Kbytes

Easy_Sim Ada 9X Optimized, Inlined 1186

Easy..Sim Ada 98X Optimized 1185

Easy_Sim Ada 9X Totally Regular 1189

Easy..Sim Ada 9X Inlined 1211

Easy_Sim Ada 9X Optimized, Inlined, 1164
Suppressed

Easy_Sim Ada 9X Optimized, Inlined, 1174
No Text_IO

Easy_Sim C++ Optimized, Some Inlining 703

ObjectSim C++ Optimized, Some Inlining 666

The table shows six different versions of the Ada 9X examples, showing
experimentation with different comptlation options, The version whose per-
formance statistics were presented in the last section is the inlined and opti-
mized version, shown at the top. The inlining was applied to the Get and Set
operations, as described in Section 4.3. Varied compilation options were ana-
lyzed originally because the AT&T C-+ compiler would not support inlining to
the extent of the GNAT compiler. To ensure that the Ada version's more
prominent use of inlining did not sway the results, the application framework
was rewritten without using the inline pragma, and all four tests were run
again. No appreciable differences were found in the performance of the non-
inlined version, and the size of the code remained virtually the same.

This result is slightly surprising, but it is more understandable when
the maturity of the compiler is again considered. The machine code optimiza-
tion of the established GNAT gec back end is mature enough to automatically

inline the simplistic calls within the same module. However, the GNAT 1.83




front end has not yet tackled inlining across package boundaries [Dew94al.
Therefore, the optimization originally intended by the use of the pragma was

never being completely realized. The pragmas are therefore redundant when
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the compller's optimization technigues are employed, as the data in the first
two rows of Table 4 indicates.

A more normal increase in the size of the inlined version is evident in
the fourth row of the table, when optimization is not used. As expected, the
performances of the versions run without optimizatic: are a notch slower
than their optimizec counterparts. The application thread time of the non-op-
timized inlined Ada 9X version runs 88 milliseconds for 1.000 circling planes,
as compared with 71 milliseconds when optimized. This ext.a time translates
into a frame rate of 8.6, instead of the optimized version's 10 {rames per sec-
ond.

Additional data was collected on two other versions of the Easy_Sim
framework running the Circling Planes tests. The first was compiled with all
run-time checks suppressed. This version lessened the code by 22 kilobytes, or
2%. Removing the use of the Text_lO and thereby all of the information dis-
played on the console removed 12 kilobytes from the code size.

Because of the lessening importance on code size, this problem has been
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a very low priority for the GNAT developers. The
dynamic linking sometime in the future. Because this technique "can make a
significant difference," the potential does exist for GNAT to become more com-
petitive with the C languages in the arena of code size [Com94),

The next section discusses the similarities and differences between the

Ada 9X and C-+ implementations of the Easy_Sim application framework.




6.3 Language Comparisons

As shown throughout this chapter, a C++ version of the Easy_Sim application
framework was maintained with the same functionality as the Ada 9X version,
so that objective performance comparisons could be made between the twe
languages. This section compares and contrasts the more subjective features
of the languages themselves.

The C++ version of the E sy _Sim framework was consirucied 16 maich
the Ada 9X version as closely as possible, again to provide a fair performance
comparison. While this approach seems like it would neglect important fea-
tures of C++ design, the two languages have actually converged so closely that
the major object-oriented features of C-+ are employved heavily. In other
words, a C++ implementation of the Easy_Sim software architecture developed
straight from the design would lcok almost identical to the version produced
by translating the Ada 9X implementation.

Each class package in Ada 9X became a class in C++, with constructors,
destructors, a Configure function, and various virtual functions. The private

parts of the Ada code were generally placed in the class header's protected
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section, so that they could be accessed by client programmers deriving sub-
classes. Ada 9X's child packages were brought to the top level in C++. The rest
was generally translated construct for construct, in a very straightforward
manner, so that the frameworks ended extremely similar. The rest of this sec-
tion points out the minor differences that arose.

Just like GNAT, the AT&T C++ compiler would not allow al! supposedly le-
gal constructs within the language to be implemented. As alluded to0 in the
previous section, the compiler would not allow inlining within the source

files. The C++ compiler also did not support the language's new exception
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handling mechanisms, and the locations in the Ada 9X code where excentions

are used were implemented with conditional statements. Finally, the C-+
compliler had problems discerning different uses of the same identifier. In the
Ada version, a Get function returning a class variable generally bears the
name of that class. The C++ compiler was confused by this ambiguity, however,

and Get was therefore included explicitly in the names of all the Get functions.

While the unimplemented features of C++ were 'mpossible 16 use, those
features that were implemented are often more complicated than their Ada
counterparts. Parameter passing is one of these cases. Because C++ stores ar-
rays as constant pointers, a function cannot return an array value. This limi-
tation caused all of the Get operations for the Positions and Directions to be
implemented as void functions where the array in which the value was to be
placed is passed by reference as an argument. This inconsistency in handling
types causes the uniformity of the C-+ version to suffer, Both Ada and C-+ al-
low paranﬂeters to have default values, but this feature is easier to use in Ada.
Because the use of named notation in Ada parameter passing allows specifica-
tion of actual parameters in any order, not every parameter needs 10 he nassed,
C++ only allows the last parameters in a function's argument list to be skipped.
This rule does not allow a client programmer to use the default value for the

second last argument and provide 2 value for the last argument, Many of

L 4

Easy_Sim's Configure operations are designed so that only one or two parame-
ters of six or seven need be specified, but this design will not work in C-+
given certain combinations of arguments. The C++ programmer will therefore
have to provide values for variables she would rather ignore.

The Configure operation is one aspect of the Easy_Sim architectural de-

sign that might be implemented differently in C++. Because Construciors in
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C-+ can have arguments, sgme of the Configure aperations could he performed
as overloaded constructors. However, many of the parameters to Configure are
not known when the object is created, so some of the Configure operations
would still have to be explicitly called after construction. In order to maintain
consistency throughout the architecture, therefore, the solution used in the
Ada 9X version is also the better solution in C+-~.

Controlled operations, Ada's counterpart to default constructors and de-
structors, also contain the Adjust procedure, whose functionality is absent in
the C+- model. Adjust is used so that a client programmer can explicitly con-
trol assignment between two variables (see Section 2.1.2), The Ada 9X Easy_Sim
application framework uses the Adjust procedure to conveniently clone dif-
ferent models, as this operation is called automatically when a model is as-
signed to another. The C-+ version requires the explicit call of the Clone op-
eration.

Lest it appear that this section is 100 Ada biased, the final feature dis-
cussed is easier to use in C+-. Ada 9X package specifications have kept to the
original Ada design of a pub‘ic and private part, If the artributes of a class are
encapsulated privately, they are not automatically visible within derived sub-
classes. If a child class would like access to the private part of its parent, it
must be declared inside a hierarchical library unit that is 2 child of the class
pachage. This model is not always desirable, however. First, private parts are
no longer that private. Second, the components of the Easy_Sim framework
are all defined to be part of the Easy_Sim package, and application developers
are encouraged to derive subclasses of the Easy_Sim components in their own
packages. The subclasses therefore do not have access to their parent's at-

tributes (see Section 5.1.3). Protected paris of C++ header files solve this
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dilemma by specifying that subclasses are allowed visibility of the parent's
member data. This model is much cleaner and preserves the privacy model

necessary to ensure proper encapsulation.

This chapter has compared the different versions of the Easy,Sim appli-
cation framework by analyzing both performance and language issues. The
next chapter concludes this research effort and suggests areas of focus for

future studies.




VII Conclusions and Future Study

The development of Easy_Sim has improve.. the ObjectSim software architec-
ture for visual simulation. systems and becn instrumental in showing that the
object-oriented features of Ada 9X can compare with their counterparts in C+-,
There is still much more potential for these languages to work together, as
well as for the added benefits of Ada 9X to be realized. This chapter reviews the
accomplishments of this thesis effort, makes suggestions for areas of future
study, and outlines methods for the reader to obtain more information on

Easy_Sim.
7.1 Easy_Sim and Its Accomplishments

Easy_Sim is both a software architecture and an application framework realiz-
ing that architecture. At the design level, Easy_Sim follows the object-ori-
ented data abstraction mode! defined by Garlan and Shaw [Gar]l93,7-8] (see Sec-
tion 2.2). Easy_Sim provides the structure by which developers can create
their applications, allowing them to exploit a proven basic design and behav-
for for their systems.

Easy_Sim improves upon its predecessor, ObjectSim, in many ways.
Where ObjectSim tried to present a coherent, encapsulated, and consistent de-
sign, it fell prey to productivity demands. The result was a framework that is
difficult to understand, arduous to use, and troublesome to modify. Without the
pressure of dependent projects, Easy_Sim's architecture was able to evolve into
the design that was envisioned for ObjectSim. Dr. Jean Ichbiah, the criginal
architect of Ada, has said, "l am driven by aesthetic considerations and the

strong belief that only beautiful shape can be correct shape" [lch92].
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Easy_Sim follows this tenet, and creates an evenly formed architecture and
implementation whose consistency throughout differing levels of abstraction
breeds simplicity and ease of use.

This thesis effort has produced more than just aesthetically pleasing
code, however. By backing up the architecture with data demonstrating the
framework's production of efficient applications, Easy_Sim has shown that
good designs can also be successfully implemented. Better yer, Easy_Sim has
displayed this concept in the graphics field, a discipline which historically
has shunned software engineering principles under the auspices of effi-
clency. Hopefully Easy_Sim has made inroads that will not be forgotten,

Easy_Sim has also been one of the seminal object-oriented projects to be
implemented in Ada 9X. Many of the concepts originally thought to be trivial
in the language proved more complex when scaled to a project the size of
Easy_Sim. The lessons learned from Easy_Sim have already contributed to the
object-oriented Ada community, and hopefully further Easy_Sim development

will continue this trend.

7.2 Suggestions for Future Study

Although the Easy_Sim architecture and framework have succeeded in attain-
ing their preliminary objectives, work remains to further their development.
Many features implemented in ObjectSim were not carried into Easy_Sim, and
no mv (rics have been collected to quantify the quality of either system. Both
the architecture and framework of Easy_Sim could benefit from the develop-
ment of a large scale application to test the varying uses of Easy_Sim classes

proposed in Section 5.2. If successful, this project could serve as an example

throughout the object-oriented, graphics, simulation, and Ada communitias,
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The following discussion of the areas for future work is broken into two
sections. The first section outlines the architectural issues to investigate, and

the second section lists areas in which improving the implementation would

be beneficial.
7.2.1 Architectural Improvements

Many ideas that were entertained during the evolution of the Easy_Sim design
were never realized, as the primary effort was focused on producing and eval-
uating a working system. Now that this endeavor has been accomplished,
there is room to go back to the simulator industry and conspire ¢ produce an
architecture that defines the industry standard and is independent of the SGI
platform. Individuals throughout the commercial sector have already ex-
pressed interest in helping to attack this problem

As many techniques for general Easy_Sim application development
have been proposed in this thesis (see Section 5.2), components need to be
built to examine the feasibility of these techniques. For instance. is the
Player_Manager class the right place to incorporate collision detection or
network management capabii‘ties? The construction of an Easy_Sim applica-
tion can validate this question. The remainder of this section proposes specific
areas of the Easy_Sim architecture where improvements can he made or alter-
native designs studied.

There are twn areas in which the View_Manager needs to be analyzed
further. Because Views provide a method of locking into a scene, they are of-
ten associated with display windows. Realizing this, an attempt was made to
move the Open_Window operation from the Simulation class to the

View_Manager, but an inexplicable compiler bug prevented the completion of
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this architectural change. This preferred structure should be reassessed as
the compiler matures. The View_Manager class also supports multiple View
management, but this feature has not teen tested by an application. Perform-
ing these tests can validate the mode! upon which the multiple View support is
based.

Another manager class, the Player_Manager, also has yet to be tested to
the extent of its design. In Sections 3.7 and 5.2, it was suggested that the
Player_Manager serve as the basis for collision detection and distributed in-
teractive simulation (DIS) communication for an application. Like the multi-
ple Views, these design concepts also still need to be validated by demonstra-
tion,

Although it was not mentioned in Section 3.3, the ObjectSim Flt_Model
class providés mechanisms to convert a Flt_Mode] established for the DIS ¢o-
ordinate systems so that they are compatible with Performer's coordinate sys-
tem. While this functionality is necessary and useful for DIS applications,
Easy.Sim endeavors to place it inside a subclass of the Model class instead of
the Modet itself. This approach allows an application developer to avoid the
extra overhead if they do not require DIS capabilities, but provides a useful
class if they do want to use it. Once again, a demonstration application can be
developed to show off the capabilities of the framework,

The model used for handling user input within the Easy_Sim framework
is based on ObjectSim and performed in the Modifier class. However, there is
no reason that the input need be associated only with the View class, as the
Modifier is intended. Players also need a standardized component with con-
nectors to provide a common method for steering entities within a simulation.

With this {dea fn mind, a standardized model for input should be developed,
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taking ir.to account that input can affect control of a View, control of a Player,
or control of the Simulation itself. The most likely solution would be to provide
a new Input class, through which the Modifiers could determine the user’s
intentions and pass the consequence of the input to Views or Players. The
Simulation class could access the Input class directly to control the application.
Suggestions for the implementation of this idea are developed further in the
next section.

There are a couple of other design areas that may be implementation is-
sues, but they are proposed briefly here. First, the Configure operation, which
is used by Easy_Sim to provide parameterized initialization, was originally
employed because controlled operations in Ada 9X do not allow parameters
other than the controlled type itself. Some recent ideas have been put forth
that propose to trick the compiler into allowing parameterization, however
[Kem94]. These proposals should be evaluated to see if they might enhance
both the Easy_Sim design and implementation. Second, Easy_Sim currently
has no provisions for muftiple Performer Pipes. each of which represents a
multiprocessing system for the Performer threads. Providing the capability
within the Easy_Sim architecture to support this capability opens an avenue
for limitless expansion of computing power, as the hardware for visual simu-
lations to exploit continually advances,

Having provided numerous areas in which improvements in the
Easy_Sim software architecture might occur, discussion now focuses on aspects
of the Easy_Sim implementation that might be improved. Both Performer and

Ada 9X issues are presented.
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7.2.2 Implementation Improvements

Just as the design of Easy_Sim could benefit from more in-depth analyses, so
could the implementation. Because not all of the ObjectSim functionality was
carried into Easy_Sim, migrating the rest of this functicnality would be a good
starting place for enhancing the Easy_Sim framework. These features include
traversal masks, jitter removal, shared memory use, and roungd earth coordi-
nate utilities. The rest of this section suggests improvements to the Performer
and Ada 9X aspects of the code.

There are several areas where the use of Performer could be enhanced
in the Easy_Sim framework. The most critical and probably most beneficial of
these is the collection of user input. Currently this task is performed by GL
functions. However, these capabilities will be removed in the next generaticn
of GL, and the current Performer documentation suggests that all user input
be handled by X Windows utilities {[Har%4,321).

Another area for improved use of Performer is the use of a texture lis: 1o
preload all of the complicated textures into the application's memory. If this
step is not performed, each time the simulation encounters a texture for the
first time, the application halts while the database information for that texture
fs loaded. This hiccuping should be avoided if possible,

There are areas where communication between Performer and Ada 9X
must occur. The callback operations for the cull and draw threads, as well as
the window opening callbacks, currently do not have the ability 1o access any
Ada variables, either through parameters or globally, For the cull and draw
operations, the use of Performer’s Passthrough Data capabilities may solve the

problems {Har94,140-143). Alternate solutions may be necessary for the win-
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dow opening operation, however, If this solution works in all cases; then a
consistent approach should be used throughout the entire framework.

There are some general coding concerns that Ada can address in
Easy_Sim. The first and perhaps most visible of these is the repetition of the
coordinate functions in Player. View, and Modifier. This massive code dupli-
cation can be avoided through the use of a generic package, but may also be
corrected with tagged types. Either way the coordinates should nrobably he
put in their own package and separated from the parent Easy_Sim package in
which they are currently declared. The use of coordinates might also be en-

hanced by the use of subtyping for the heading, pitch, and roll. This step was

.

not carried out however, because it is unclear that all applications would want
to interpret these ranges similarly. For instance, should a pitch of 91 wrap
around to 89 with the heading reversed? Or is it all right to have a roll of 4507
This change should be carefully examined and justified if it is undertaken.

The Manager classes present a few interesting possibilities for code im-
provement. Because they have similar foundations, it may be possible to make
a base generic package from which they could all be instantiated. The Man-
ager classes might also be able to profit from the use of Ada 9X's protected
types, which are a form of monitor {Bar93, RM94]. Because each class main-
tains a single list of objects, and access to those objects should be protected
against multiple access problems in SGI's multiprocessor environments, the
Managers seem a perfect fit for this new language construct. The manage-
ment of the View states in the View Manager is rather complicated, and may
stand to be split from the rest of the class. Because the application developer

would have no reason to access this class package, it could be implemented as a
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private package visible only within the Easy_Sim application framework hier-

archy.

also needed. In the current design user input is recorded in flags containad in
Modifier subclasses, and these flags are accessed globally by the application,
the View, or whoever else might need them. This global use of the input vie-
lates the design of the Modifier class, which is only intended to be used by the

View class. Hopefully a design solution will find a way to handle input that is

1 %]

not relfant on global access or the Modifior, pos
Input class as discussed in the previous section. This approach would allow the
flags to be kept in a package by themselves, and this package should clearly
denote that it is meant to be used as a global repository. Naming it
Easy_Sim.Global_Flags or a similar name would at least make its purpose dread-
fully understandable. The flags package would also be a textbook example of a
case where a protected type could be used to guarantee that the many different
classes in an application that access the global data do so safely.

Along the vein of Input discussions. the Standard_Input class as cui-
rently implemented is monolithic, as ii contains functionality for the micuse,
keyboard, and keypad which could all be separated into building blocks. This
disassociation would allow better modularity and flexibility, as an application
developer could choose to use any combination of the standard devices.

The dependencies on Performer may be completely obhscured in the Ada
package specifications by liberal use of subtyping. This techaique has been
demonstrated by the Coords type, and could be instrumental in making the in-

terfaces for the Easy_Sim framework platform independent.
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Finally, the use of Finalization to perforrn. memory reclamation when
dynamically allocated objects are no longer needed has not been thoroughly
examined. Although this neglect was in part due t¢ Finalization's immature
implementation by GNAT, this concept should be used in Easy_Sim so that
memory management on the heap is as efficient as possible.

This section has described many areas in which the implementation of
the Easy_Sim application framework might be improved by future re-
searchers. The next section tells the reader where more informaticn on

Easy_Sim can be found, and it concludes this thesis.

7.3 Conclusion

It has been a pleasure to describe the work done in developing Easy_Sim. The
task was certainly challenging and rewarding, and the interest of the reader
is sincerely appreciated. The code for the Easy_Sim framework and a version
of this document are available via anonvmous ftp from archive.afit.af.mil in
the pub/jkayloe directory. This directory can alsg be accessed through the
World Wide Web at fip://archive.afit.af.mil. If more information is needed or

there are any gquestions, please contact the author directly.
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