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Abstract

Software arhitectures increase productivity when used as the basis for devel-

oping applications in a problem domain. This thesis describes the creation of

Easy-Sim, an object-oriented software architecture for visaln srimilation s-

tems, and its corresponding implementation as an application framework in

Ada 9X. The research built upon ObjectSim, an existing object-oriented simu-

lation architecture implemented as a Ci,! ppic,.on frame-ork. oth )lhi"Fr.

Sim and Easy-Sim operate on Silicon Graphics platforms and use the IRIS Per-

former graphics programming library. Easy-Sim is implemented using ver-

sion 1.83 of the GNAT compiler.

The investigation for this thesis involved honing ObjectSim's design,

implementing the improved result in both C++ and Ada 9X, and developing

applications to compare the two versiens. The study achieved t Io ma)n o.b-

tives: producing Easy-Sim as an Improved visual simulation system architec-

ture by building on ObjectSim's experience, and producing a visual simulation

system application from Easy-Sim In Ada 9X that performs at a level compara-

ble to the same application built in C+-.
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EASY-SIM: A
VISUAL SIMULATION SYSTEM

SOFTWARE ARCHITECTURE
WITH AN
ADA 9X

APPLICATION FRAMEWORK

I. Introduction

1.1 Background

A visual simulation is a system in which an operator is placed in a computer

generated environment and presented with graphical stimuli m" micking ac-

tual objects and events. These systems have numerous commercial, military,

and recreational applications because they provide safe, inexpensive, and ef-

ficient means of training personnel, serve as a logical test bed for innovative

ideas, and have tremendous entertainment value, One of the most familiar vi-

sual simulation systems is the flight simulator, in which pilots step irto an ar-

tificial cockpit and practice flying techniques without leaving the ground.

The simulator allows the pilots to gain invaluable practice and train fnr ad-

verse conditions without risking their safety, putting stress on real airplanes,

or wasting valuable resources.

While there is no doubt that visual simulation systevm, - hanrfrin

their graphics-intensive software nature has presented numerous challenges

throughout the years for system developers. The constantly increasing com-

plexity of the simulated systems has Jled to a.,...esn,,,g Incr,•eae In the

1e. O a . .. ,....6 ... .. . ..



software complexity of the simulators. In order to manage this complexity

more easily, the building of reusable base designs, or software architectures,

has begun In earnest by the makers of visual simulation systems. This trend is

not unique to simulators; software developers in other prohlpm areas, or do-

mains, are also designing architectures to create solid foundations for their

systems.

Software architectures can lead to m,"a" iv,,poe,,,t itn the devop-_

ment of software systems within a domain. Because an architecture promotes

reuse at the design level, systems developers do not have to devote effort to
analyzing and designing basic suc res y t"" eve.' .. a "lap anpp in of thea

system Is needed. The existing grot ndwork allows developers to concentrate

more of their work on problem specific areas, and cuts down on overall pro-

duction time and cost [Law94,3). The softw...are architeCture al.sO makes te.1 e-"

sultant system more maintainable and supportable, because changes can be

incorporated more easily. By finding the place in the base design where a

change will occur, its effects throughout the entire system can ble determi.. ed

and the impact of the change can be minimized. This ability to make changes

more easily also leads to the practice of rapid prooroyping, in which stepwise

refinements are made to the implementation until the end result reaches pro-

duction quality. Rapid prototyping allows system users to become more in-

volved In the development process, giving them more control over the final

outcome.

1.2 Problem History

The research for this thesis builds upon recent developments in creating soft-

ware architectures for the visual simulatio,, sl,,stem, d atn . It ,rlmA,, & a,
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to recent work accomplished in the Graphics Laboratory (Lab) of the Air Force

Institute of Technology (AFIT), This graduate research involves distribured

simulators, which allow a more realistic training situation by Inco .oratin-

physically separated actors into a battlefield situation, The interaction be-

tween the various simulators is accomplished by means of network connec-

tions and established communication protocols. As part of this research, the

AFIT Graphics Lab has recently produced a virtual cockpit fnr the F-15E

fighter [Eri93. Ger93, Dia94], a space modeler JKun93, Van94), a commander's

situational battle bridge [Sol93, Wil93, Kes94, Roh94], and an air combat de-

briefing tool for the Air Force's Red Flag,.. ,ex.rce - ,ar,,o, J. Talte,2,)-%a 1

gives the details of the research projects completed in 1993.

Because these projects and their predecessors are visual simulation

systems, they perform many of the sarmn tasks. risori..lly,. hse c. mmon

tasks were re-accomplished for each new application in the Graphics Lab.

Under an Initiative started in 1992, this unfortunate and inefficient problem

ý,as addressed by creating a software architecture dubbed 0bJct -^,"- Ti.. ud-

sign provided the common strtcture for each of the applications and allowed

the different developers to concentrate more heavily on the unique aspects of

their particular applications. ObjectSim also served as the focus of Mark S1y-

der's graduate thesis [Law94, Sny93].

The implementation of ObjectSim exists at a high level of generality, and

can be used to create diverse simulation systems, as evidenced by the four

applications. ObjectSim is also a completely nojetr-orriented tin hnr.1rcdgy In or-r

der to produce an application, developers must create their own versions of

the structure by inheriting and deriving from the basic design. Because the
ObjectSim implementation Is abstract and can only sei% " am s te bv s-e f•o .....

3



Table 1. AFIT Graphics Lab Research Projects for 1993

Project Description Research Guals

Virtual Cockpit lm= ersive flight sunulator for an - Research incxpcnsive
[Erich93] F-I 5E alternative to domed
[Ger93] simulator

. Build man-in-the-loop DIS
platform

. Study modeling of
advanced weapons system,

Synthetic Battle Bridge lmmersive/Console based corn- - Research jimnersive
LSoltH)3] mander's eye view of battlefield interface techniques for
[Wil93] commander

. Study expert computer
situational analysis

. Study situational
representation techniques
for battlefield

- Study user interface
techniques for effective
user view control

Satellite Modeler Immcrsivcconsole simulation for Repre.ent single orbit.; or
IKudz93] analy..,is of satellites constellations

. Study immersive interface
into satellite ximulation

- Interface satellite data
onto DIS simulations

Red Flag Display Tool Conrsole based debncfing/display - Study user interface for
IGard93l tool for Air Force exercise., debriefing system

. Interface live or recorded
exercise data onto DIS

tern applications, it is called an application framework [Sny93,12]. The reuse of

ObjectSim's implemented code resulted in a vast increase in the production rate

of visual simulation systems in the AMIT Graphics Lab I!Snyo3, 78-.R2

Unfortunately, ObjectSim does also have some drawbacks. Most notable

is Its heavy reliance upon underlying software libraries and hardware pro-

duced by Silicon Graphics, Inc. (SGI). The rea,.it'c speeds, ,r frm, ,-,,, ,,.h

which ObjectSim applications are able to draw, or render, visual simulations

can be attributed almost entirely to its use of SGI's IRIS Performer (Perfermer)

graphics application development cnvronmcnt 16110-192, FIA,.oI. ,.-C•b .e,_ ,

4



therefore not system independent, or portable. Another indirect consequence

of ObjectSim's dependence on its SGI en\ironment is its implementation in C+-.

This choice was necessary to allow object-orented extension an.d t.o aChV^

compatibility with Performer, whose inrerface is writren in C: Many of the vi-

sual simulation system application developers have expressed that they could

have been more productive had they not had to fight the cryptic intricacies of

C++ (Law94,7].

1.3 Research Motivation

Ada is preferable to C+- as an implemientation ... language fo.....r m..An a I i .Cycle

software engineering reasons. These factors all cause Ada to be more expen-

sive in terms of cost and time in the initial phase of a software project, but

long run benefits justify these costs over thel if;t Vim %fAthesYstem... . A- a c•,o

is inherently more readable than C-+ code, due to the more verbose and ex-

plicit nature of Ada syntax. More readable code is necessarily more under-

standable, and in an irena in which application developers build 'from a com-

mon framework, it is vital that they can comprehend that framework. More

understandable code also contributes to Ada's higher modifiability, as the lo-

cations of changes are more readily apparent, and th, effects of the changes

throughout the entire program are more ea.sily determined, In contrast, the

cryptic notation of the C language which underlies all C++ code is notorious for

pioducing unexpected results (Feu82].

Reliability is also much harder to achieve in C++ than Ada. C++ cannot.

dodge its C underpinnings, its weaker data typing facilities, or its currently

non-standard implemcatation of exception handling, all factors that con-

tribute to its lesser reliability. Even main prorponents of C++ acknoniolardg ire



disadvantages in this area. P. J. Plauger; the author of the ANSI C standard, has

stated, "Beyond 50,000 lines of C, you'd better take a hard look at converting to

C+.. Beyond 100,000 lines, you should probby.be coding in A,-•a [,IP1• 8

Pla94].

Mark Snyder was well aware of the benefits of Ada when he imple-

mented ObjectSim, but he also had good reasons to choose C+-. First, C++ was

compatible with the underlying C tools of the SGT environment. Given that six

other concurrent thesis efforts in the AFIT Graphics Lab relied on his work,

* Snyder did not have the time to finagle compatibility with Ada. Second, Snyder
* needed a language that supported the object-orPnrted eytpenhilitv he envi-

sioned for ObjectSim. While Ada 9X supports this feature, It was not yet avail-

able. Snyder could only consider using Ada 83, which has no facility for ex-
tensibility. His choice for ObjectSi•,, wa' th"eore- ,,,c,,',,.^1"

Ada 9X has now become available through the development of prelimi-

nary compilers for the language. Although they are not yet complete, they do

provide support for object-oriented eXte.n.s1..lbl..ity and m.any ^-other featt•ur-s that

can enhance ObjectSlm. Five more thesis efforts in the AFIT Graphics Lab

have evolved the four applications, but the), use Snyder's C-,- version of the

ObjectSim framework. The research on Easy,.Sfm, ,h,-- ova 0 ,, 9X 'n" of tl'o,

framework, the efore has been free to experiment with different versions of

the implementation of the Easy-Sim architecture.

1.4 Scope of Research

This research has two primary goals: to develop a substantially improved

EasySim architecture using the knowledge gained from work accomplished

with ObjectSim, and to demonstrate that a visual simulation system application

6



framework can be implemented using Ada 9X and provide capabilities equal to

or better than a similarly designed C+- framework. The end result of the effort

is therefore to demonstrate concept feasibility by prdu-,n" an applia.ton'

using the EasySirn framework, and showing that the application's perfor-

mance has not suffered. A C-+ implementation of the EasySim architecture is

maintained with the same functionality as the Ada 9X version. This version

serves as a control so that a fair comparison still pnssi pih1e if fbhie•rqim and

EasySim diverge substantially. Three questions were investigated in this re-

search.

The first question investigated the design of Objecrtim Mark Snyder's

domain analysis consisted of examining components of each of the four appli-

cations under development during his tenure in the AFIT Graphics Lab, and

fl.Ietermining which of these componen•',,s htbu..e. to.o.. er vp ..........

Even with this localized approach, Snyder's time constraints did not allow Ob-

jectSim to encompass all of the functionality originally envisioned. Most no-

* tably absent is the handling of net-work interactionS b..tw.. th, di.s.ribted

* simulators [Sny93,96-99).

The second question to investigate in producing a working application

was the implementation of the soft-ware arte..Ct.ur.e dUesi•gn Ada 9X. Th-s,.

question scrutinized the method for migration from C++ to Ada 9X structures.

This question also involved ensuring that the proper tools were available to

assist in the code production, including an Ada 9X compiler and bindings to the

underlying SGI environment,

Once the EasySim framework was built, the final question investigated

the building of an application using Ada 9X. Mark Snyder describes example
applications in the ObjectSim Application Developer's Manual nnny93,AppA].

7



Implementing these sample programs in Ada 94 and anaiyzing their perfor-

mance demonstrated the ability of the Easy-Sirm framework.

Although it would be beneficial to divorce EasySini from its reliance orn

the SGI environment, there ar. reasons this researrch didi nnt ontrtnin thp

idea. A high level comparison Is a primary focus of this study, and it is there-

fore important that the frameworks be implemented similarly. The SGI envi-
ronment is utilized because of its availabillt,. In the ArTT Gricslit b oi o"a It

proven capability for efficiently rendering graphics applications.

1.5 Methodology Overview

Each of the three questions outlined in the previous section corresponds to a

set of actions that influenced the development of the EasySim architecture

and framework, as well as example applications.

The first question, investigating ObjectSim's design. corresponded to the

domain analysis of the problem. The original analysis of ObjectSim was scru-

tinized for Inconsistencies and deficiencies, and any changes deemed neces-

* sary or beneficial were Incorporated Into the design of EasySim.,

The second investigative question implemented the results of the do-

main analysis in Ada 9X. Different strategies for this process were considered,

with an emphasis on reusing as much existfng code as possible; The GNAT

compiler was used to test these strategies. The first hurdle in the Implementa-

tion process was the creation of Ada bindings to the Performer library. Luck-

Illy, visual simulation system de, venor,•. ai S•ii•,n r.,-,hirc alen h,,e a Ieon

interest in Ada 9X, and they created a preliminary set of bindings, as well as a

port of the GNAT compiler. They generously agreed to contribute these prod-

ucts to this research effort.

8



The final investigative question compared the ObjectSim and Easy-Sim

frameworks by demonstrating similar applications using each versmn. These

demonstrations were initially accomplished by building Ada 9X versions of the

ObjectSim example applications [Sny93.ApA1 Rer~mio thp hOhiprtrirn andi

Easy-Sim implementations differ, comparing them is unfair, and the C-+ ver-

sion of the Easy-Sim framework was used as a reference point.
In the discussion above, it mistakenly ap••a•s thar the reea-rih ec-

curred in three large chunks. In reality, investigation of the questions was

performed repetitively in a rapid prototyping fashion, incorporating more of
the solution's functionality with each i1ertion The o . ... ef r prot1A ,,,n,

allowed development of a working application earlier in the process. Each it-

eration corresponded to the addition of another feature in the architecture,
•.th the existing ObjectSim example applications sevring as pd baseln,-.

1.6 Research Environment

This research effort used the equipment and tools located in the .4F-7 Graphics

Lab. The SGI environment consists of various proprietary hardware and soft-

ware systems. The machines include interconnected Indigo, Indigo2 , VGXT,

and Onyx/Reality Engine 2 computer systems, with most of the work and all of

the results collection accomplished on the four-processor Onyx known as

Leonardo. The machines use version 5.2 of SGI's IRIX incarnation of the UNIX

operating system. Version 1.2 of the IRIS Performer library (Har94j and ver-

sion 5.2 of SGI's Graphics Library r[M-1 enabled the ol ra .. phics nr..O.cs. tn

occur at realistic rates. Version 3.2.1 of SGI's C+- preprocessing compiler was

responsible for compiling the C++ code.

9



The Ada 9X code compilation occurred courtesy of GNAT, the Ada addition

to the Free Software Foundation's gcc compiler family. A team at New York

University (NYU) produces this shareware com.P.Ller. WW..th" "h" ... p... VA "€

Ada Joint Program Office. Although the GNAT compiler is not complete. it has

continually evolved and matured throughout the endurance of this thesis. The

results presented were compiled with version 1.83.

Outside of the Graphics Lab, the contributions nf varinio ind.ivi.dlu.l w.;.z

instrumental in the progression of this thesis. SGI's Ada team provided solu-

tions to binding problems and ported the GNAT compiler to the SGi systems.

The GNAT development team at NYU g""aciously r"spondei tin quniiries abh,,t

the compiler and its maturity.

1.7 Document Overview

This research investigated developing a new version of a visual simulation

system software architecture and implementing that architecture as an appli-

cation framework in the Ada 9X programming language. The h,1÷story, ratio-

nale, focus, and methods for this effort have been outlined throughout this

chapter. The remaining chapters describe the research completely.

Chapter II details background topics pertinent to this effort. It cowers

object-oriented methodologies and programming languages, software archi-

tecture and application framework theory, industrial simulation architectures,

the basics of the SGI environment, and the ObjectSim architecture. Chapter II

illustrates the changes made to the ObjectSlm domain anaiysn -an deplgn tn

produce EasySirm. Chapter IV presents the techniques used in the migration

from the C-+ implementation of ObjectSim to the Ada 9x Implementation of

Easy-Sim. Chapter V describes the development of vis-al ' ,,iltin,•, ,toA

10



applications built from EasySim. Chanter VT anav7pt tho rpU 1tr nf the c-m-

parison of the different versions of the architecture. Finally, Chapter VII

summarizes the research accomplishments and suggests areas for improve-

ments and future study.

11



II Overview of Current Rescarch

Before discussion of the details of this thesis occurs, this chapter presents

various prerequisite topics. The chapter is constructed so that the reader can

easily skip any of the concepts with which he or She, iS .alareavy famil..iar.

The first section of this chapter gives an Introduction to object-oriented

software development by looking at different related topics. It first covers the

overall concepts that define the term obje.ct.-.o, A..,F d, La %; t, d ,i....... the,

Implementation of the object-oriented methodology in both the C++ and Ada 9X

programming languages. The final portions of the first section cover the

Rumbaugh technique for describing object-oriented analyses and designs, and

the ROMAN-9X method for developing Ada 9X code from Rumbaugh diagrams.

The second section of this chapter defines software architectures, and

the third section analyzes these architectures as they are used within the

simulation industry today. The fourth section describes the Silicon Graphics

Performer library, and the final section introduces ObjectSim, the architec-

ture upon which Easy.Sim is based.

2.1 Object-Oriented Concepts

Object-oriented methods, including analysis and design techniques as well as

programming languages, have certain chrc•,a"terit'•ls that g,,%,, theM,° '. cer

advantage in the software development process. Perhaps the most obvious of

these is their reliance on an objective problem view instead of the more tradi-

tional functional view. People are more easily able to Identify the concrete

players, or objects, involved in solving a problem than they are able to imag-

ine the abstract processes needed to achieve a result. Object-oriented pro-

12



gramming paradigms capitalize on this more intuitive way of attacking a

problem, and have been more readily received because of it. Software devel-

opers first determine which object,.s they mneed in a prb•Im, anld theo f•ire

the processes, or operations that go with each object.

While an object-oriented method may be more intuitive, it would be

useless if it did not lend itself to the production of systems that adhere to the

common goals of software engineering [Ros75], Luckily. maintainnb!e, %in-

derstandable, reliable, and efficient code can be readily produced through ob-

ject-oriented programming techniques. Technically, most experts agree that

there are four major features that make a methndnlnog nb*icrt-nintot" ab-

straction, encapsulation, inheritance, and polymorphism [Boo94, Rum9l,

Str9l]. Each of these features contributes in the effort to attain the goals of

software engineering.

Abstraction is the separation of an object's specified functionality from

its implementation. One programmer writes a set of routines with a well-de-
fined interface, and another programmer easily 4""nt"rat te Into o"" ,.,, $%&r

own work with simple calls. The caller's code is unaffected by changes in the

implementation, and she can therefore be completely oblivious of the rou-

tine's implementation. This feature is preferab,,le In a large project, i, fa,

because it is impossible for a single programmer to understand the entire sys-

tem. Types that use abstraction have historically been termed abstract data

types (ADTs), and to effectively use this powerful concept, the programmer

must learn to rely on what a piece of code does, instead of how exactly it works,

Ironically then, abstraction allows software developers to accomplish more by

understanding less. The reality of this situation makes abstraction the key to

objects.
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The second major feature of object-oriented langluages. enncap hlarinn.

builds upon abstraction. Encapsulation is also often commonly referred to as

information hiding. Where abstraction logically separates what happens with

an object from how it occurs, encapsuI•tinn nhy,0irll' divnrrp,, thp twA ideas.

A piece of code's implementation is no longer simply irrelevant to a client

programmer, it is also inaccessible, grouped together and hidden within the

code's innards. There are two basic scen.arioSwr thoins AS in-,alu,,,,•",,O a

system's reliability. The first is to prevent hackers, who know the intricacies

of the implementation, from intentionally trying to affect the outcome of a

routine. Tricks or kludges that they think enhanc. the cod..e May UnoLu'-

nately introduce errors into the work of other client programmers. The sec-

ond scenario occurs when a maintenance programmer is charged with en-

hancing a piece of code, but only par-ty t.. n ......L i*t, Th...• ... . A -r,,

programmer makes some minor changes in a module that seem to achieve the

desired result. While he is not intentionally trying to change the overall im-

plementation of the system, he may inadvertently end up doing so and once

again affect the whole system. Encapsulation Is therefore a feature that can

increase reliability by grouping all related code together. It serves as a safety

mechanism preventing both malicious and accidental breaches of an abstrac-

tion.

Inheritance is the third major feature of object-oriented languages. It

follows from the real world model of objects, where one object can be very

similar to another object, only with a few new additional detapis. An FM stereo

radio, for instance, is an FM radio with left and right channels. Its basic

functionality is the same--it produces sound. However, FM stereo radios may

also have balance controls or a stere o 4ndicator ... 6, OULbU"e Snot found" Anla
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regular FM radio. Inheritance works just this way, taking the basic func-

tionality from one type of object and extending it to a new type of object,

adding new attributes to the new type if necessary.

Object-oriented terminology states that a particular object is an instance

of a type of object, or class, A class consists of all the types derived from it,

including itself. The derived classes are often called subclasses or children of

the base or parent class, and together they form A deprivotinn tre. P M I: ro

radios are therefore subclasses derived from FM radios, which could in turn be

a child of a generic radio class. Often, as in this example, a derivation tree's

root class is abstract, merely factoring,, out flintionlit, cnmn," in All %f it€

subclasses, and instances of the abstract base class cannot exist. In this exam-

ple, the abstract radio class has power switches, tuning controls, and volume

controls, but creating an instance of the radio class"dos not m sense unoes

it also receives some band of frequencies, such as FM, AM, or short wave. An

instance of the abstract radio class, therefore, must belong to one of its con-

crete subclasses.

Inheritance is very important in improving the maintainability of a

system. It makes the task of extending a module's behavior independent of the

module itself. In other words, the new functionality can be adde t n a- nev

module without making any changes to the original. This concept is helpful

for three main reasons. Whenever code Is changed, the possibility of unin-

tentionally introducing errors always exists, and reliability may therefore

suffer. Second, if a piece of code does not change, it does not have to be tested

again. When inheriting code, the programmer only has to test the extensions

in the new module, saving time, effort, and cost. The final reason for avoiding

working in the original module lies with compilArion dePenreinrcie If a mo•d



ule is recompiled, some language systems require that all other dependent

modules also be recompiled to incorporate any possible caanges. This extra
step Is necessary regardless of wheth"er or not thA dependent ,, d,,, a,.,,l,

used the new capabilities, Obviously this task can slow down, or even retard.

development, and is an annoying hindrance to a project's productivity. The

object-oriented feature of inheritance is therefore a welcome enhancement

for any software maintainer, saving her from nunmPrnous unnpcprar, annoy-

ances [And93].

Just as the feature of encapsulation adds to abstraction, the final major

feature, polymorphism, adds to in.heri•t•an-e. Ret,,,no the eArlipe- evamle,

all radios share a basic operation--they produce sound. Analyzing the radio

class, radio users are always given a method for turning a radio's power on and

off to produce this sound, wheth•r they he an a .!, 2n ANA r •hnrt w,,ave radi.

The switches to do this operation may differ depending on the subclass of ra-

dio, and the Inner workings of the radio's power source may vary, but power
switches are common throughout the entire class. This ""'monaIty Is %""1

morphism, the inductive Idea that although an operation is invoked similarly

for different subclasses, the operation may behave differently for each class.

Technically, the system makes a dispatching operatlon, detcr-MI'I""ng how to

perform the operation depending on the particular subclass upon which the

operation is called. If the system cannot determine the subclass with which it

Is dealing until run-time, the dispatch is performed dynamically.

Polymorphism helps us achieve the goal of understandability in the

same way function overloading does, because similar operations are given

similar understandable names. If the main radio operation is "Power-On," this

namne is used throughout the derivation tree no matter how the operation Is
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performed. This convention has a positive effect on maintainability for mod-

ules that call a dispatching operation. If a new subclass is added to a derivation

tree, absolutely no change will have to be made to the existing call. If t*he call

is made with an object of the ne1w type, it will still dispatch arncrdingly.

A general trend is very noticeable in the discussion of object-oriented

features. Programmers continually mention using other programmers' ob-

jects. The objects can call each. other eassily ,,ue, rn w-.el-eipfinp1 nhztrnrtitnnc

and not worry about the encapsulated details. They can design by inheriting

from and extending another programmer's design, allowing calls to be made to

either design in the same manner with p"ol.ym.Vor pism &4AL . ThA io ,f ree is

central to object-oriented programming and is its "most tangible advantage"

[Ban92). Once an object and its operations are defined, it can be shared among

different developers in one project, or even across different projets a4l•

gether. There is no need to try to modify an object if it already works. If more

capabilities are needed, simply inherit from the established to create the new.

Reuse is not a new idea, but object-oriented programming languages

can realize its benefits without the recompilation necessary in more tradi-

tional languages. This feature cuts down tremendously on production time and

translates directly into development and maintenance savings. Dr. Edmond

Schonberg of New York University has said about object-oriented program-

ming, "the gain is in the amount of code that one does not have to write"

[Sch92]. This concept alone is perhaps the most compelling reason to readily

accept the object-oriented paradigm.... Combined with the mocre inrfithive

methodology for breaking down a problem and the improvements brought to

the software engineering goals of maintainability, understandability, relia-
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bility, and efficiency, it is clear why objerr-nrIented methorf5 are revolutinniz-

ing the software industry.

Discussion now turns to the two programming languages that are used

in this thesis effort to realize the objcrt-oriented anrwaigm C..+ and Ard (4V

2.1.1 ObJect-Orleii%.ed Programming in C++

The C+- language serves as an extn-sion to te C, iAnAg, y and ..th, e V ,. .,-

rently used widely throughout industry. C is notorious for allowing program-

mers to produce unstructured code, and C by itzelf lends little support for any

of the design principles associated with object-oriented programrtming. Th'Is

section addresses the features of C-- that support the object-oriented

paradigm, giving structure to the C language family [Str9l, Poh93].

The class typing construct in C-- directly maps to the nodof- oil' ab0-

straction and class in object-oriented terms. A C-+ class defines a type that can

be used by client programmers. Its definition includes an), attributes, or

members, as well as any operations, or member functions, that might act on an

instance of the class. The term member ts used in both these cases to Indicate

that both the attributes and operations are declared within the scope of the

class [Ker78,120]. Instanccs of the class are achieved through variable decla-

rations in a client program, and creation, and deletlon of these hioerrt can be

controlled by the class designer through the use of automatic constructors and

destructors. The separation of specification and implementation that consti-

tute abstraction is accomplished in C+,. through the us. . Of hider ond c."•r

files, which respectively contain the two views of an object. The header file in

Figure 1 defines the interface for an FM radio.
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"The source tile for the FNRadio class, shown in Figure 2, defines how

the member functions achieve their effects. These implementations can only

be accessed by clients through the interface "def-ned i% thke h1,.eader Afil. The.

"::" notation gains access into the scope of the class preceding the symbol. and

is necessary because many classes can have member functions with the same

name (Str9l,145]. It is also vital because C++ does not define rules for locating

the definitions of the member functions in Any Specific -o;ireP filk. Note how

no part of the language determines the beginning or end of the header file--it

is, by convention, a simple list of the definitions of the member functions but

it could easily contain other entities.

'i file fmradio.*.
class FMRadio

public: /! Grants client prograritr.ers access to what follows

:Y.Radic ( l; / c constructcr has same name as class
-FK_Radio :}; // estructor's name is simrilar, but with tilde

S1; emrber functions:
11 Syntax-- re:urn-type nwme (parameter-typc paramate:-nan.i,';

void PowerOn ); 1/ Void functions return nr values
void Po-.,_O (; // Eipty parameter :.ists must be exp5.ci-

void Volume-Up
void Vclun~eDown ;

void Tuning_Up •);
void TjningDc%. );

float Station );

// Reeu:ar members, stcring state of class;
int power; i1 0 is eff
iot curren:...yolumee;
float current-station;

// Seini-cclcn completes class declaration

Figure 1. FMRadio Class Header File

19



/: f2e fmrL~adie, cc

*include "fr-radio.h"
FJ:Radic::--_Radio (;

power 0;
-urrent-yol-,re = 0;

current-station -97.7;
II/ No seni-:olor, here

;/ Other member functions omitted

r _Radio: :PowerOn ,

power = ";)

i/ and sc cn...

Figure 2. FMRadio Class Source File

Instances of a C-+ class each get their own copies of all its members.

When a member function is called In a cilent program, the instan,. ce name ,os

part of the call, and the member data upon which the function operates is

passed implicitly. Figure 3 shows a main C++ function that uses the FM-Radio:

Just as the FM_.Radio header file above declares a part of the file to be

public, It can declare a part to be private. This feature brings encapsulation to

/Ifile -nain-co

*i•clud. "f._adi7.hN / Tc access class header Lie

int main {)

FV_Radio *MYRadic; i/ Declaras pcLntar to instance cF,

MyRadic = new ?"MRadio (; // Allocates space & calls constructor

It,_Radio->Pow.erOn (1; , .urrs or My.--adio instance
My_Radio->Volume_. p /I; ? Turns up !%,_Radio instance

Figure 3. Main Using FMRadio Class
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C-+, hiding whatever is declared in the private part from clients of the class,

and only allowing access to member functions. In fact, private is the default,

and all members will be encapsulated unless li.ted otherwis.. 1o0 .

mally, a class encapsulates its regular members in the private part, while

keeping its member functions available in the public part. The definition of

member functions in a separate source file also contributes to the encapsula-

tion of C++.

Any C.-+ class can form the root of a derivation tree, and this feature

brings inheritance into the language. Another class can simply declare that it
is a child of FMRadio, and it gets a ocal• roy f ill theo me•mhber f the pnarnt

class. The derived class does not gain any special privileges, however, and any

members of the base class declared private are inaccessible to the child. If this

effect is not desired, the parent can hnave a part i•sMNilar to Ins public a. pri-

vate parts, called protected, and any members declared in this part are visible

throughout its descendant subclasses. A child class can add member data ele-

ments to those inherited from its parent by simply declaring more o t.s .... ,

in whichever of its own parts it prefers.

The subclass cannot, however, customize its parent's member functions

unless the parent explicitly grants permission for this polymorphism t Occur".

A class can declare any of its member functions to be virtual, allowing that

function to be overridden or redefined by its subclasses. Additionally, a class

can make itself abstract by indicating chat one or more of its virtual functions

is pure. Pure virtual functions cannot have definiticns in the class in which

they are members, and no instances of a class with pure virtual functions can

be created. Any descendant of an abstract class must override the abstract
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1/ file radio.h

class Radio

public:

Radio (i; // zn:ined nu:: function e.cts as destructor
-Radio '• {•'; // Simple funczions can likewise be irined

virtual void Power_On
virtual void ?owerOff ',;

virtual void Volume_-U p );
virtual void Volume_Dov. • ';

virtual void Tuning_' C) = 0; i/ "= D" indicateE pure functior.
virtual void TuningDo. () = 0; /1 Freqrnrey band is urnknowrn

virtual int Station () = C;

virtual float Station () - C;

protected:

ant power; /. c is off
int current-vo .me;

Figure 4. Abstract Radio Class Header

functions, unless it too is intended to be abstract. Figure 4 shows the abstract

Radio class, and Figure 5 demonstrates how the FMRadio is derived from it.

The main program can now declare instances of any class derived from

Radio, and expect that If a Tuning or Station member function is called, the ap-

propriate routine will be executed depending on the subclass of the instance.

Figure 6 shows a function which demon.stratess thje ,,,,N, -

In this example, the parameter passed to TurnOff.Radio is a pointer to

any subclass of the abstract Radio class. When making the call to Power-Off,

the run-time system will determine th%., a .ualU ,, Of .te ..--.....

dispatch the call to the PowerOff function for that subclass, be it an FM_Radio,

an AM-Radio, a ShortWaveRadio, or a Banana-Radio, whatever that may be.
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This section has provided a brief overview of the C+- language's support

// fi:e f!_radio, h

*include "radio.h"

class FMLRdio : public R&d:c /; Derived fror Radic

public:

F1(.1Radic 0'; // Override constructcr

// Destructcr, Fo::er, and Vclume- f n=ticen ^r=_ inhri-t-, ne 4_

virtual void Tuninngrp (; 1! Redefine pure !-rnctions, and make
virtual void TiningDov. (); // virtu.al to allow over- idina

virtual int Station 'I:
virtual float Station 0);

protected:

float current-stazicn; / Add new frequency band

3;

Figure 5. FMRadio Subclass Header

for the object-oriented programming pnratdim. More in e-pth treatment nf

the subject is available from many sources [Str91, Poh93). Discussion now

continues with a similar implementation of the radio hierarchy in Ada 9X.

2.1.2 Object-Oriented Programming in Ada 9X

The Ada programming language became an ANSI standard in 1983, with the

Intent that It would be updated pe, r"odiCaL s 1prgmi %ethodologes;

evolved. Ada 9X is the first of these updates, supplementing the original lan-

void Turr._Off_Radi•o 'Radio 'MyRadioa

MYR.adi4o-,.?cwer..cff ~) i~ncdisrA:c~rinc call

Figure 6. Dispatching Radio Function
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guage with many new features deemed necessary by its users. Ada 9X was ap-

proved by the International Standards Organization in November 1994, and

will be officially dated according to the printing date of the new Ada Language

Reference Manual. Upward compatibility has been a primary goal of the re-

vision process, and because Ada 9X fully embraces Ada 83, this objective has

been successfully achieved.

Unlike the C basis of C--+, the Ada 83 blal,,, for Adroa 91 ,,. al-re-ady ,-ovides a

sound basis for object-oriented principles, fully supporting both abstraction

and encapsulation. It also contains a limited form of inheritance, but does not

readily allow polymorphism. This se"tin loo- at the .. An featr..e s .. thatadr.s

the four object-oriented principles. A tra't common solely to one of the Ada

versions is clearly indicated, while mention of an "Ada" feature indicates a

feature common in both versions.

Because the Ada language was originally intended to be used on large

software development projects, Its designers decided to provide extensive ca-

pabilities for abstract data types. Ada realizes this well-proven programming

concept by an idiom using both Its private type and package features. An Ada

package can serve as a container for many programming entities, but it is also

a tool for abstraction. Just like the C+4 class, an Ada package physically sepa-

rates Its interface from its implementation, and these parts are respectively

called the specification and body of the package. Ada mixes its rich typing

facilities with packaging in the form of private types, which split a package's

specification into public and privat-e parts. The private typo and any pe.ra-

tions that manipulate its values are declared in the public part, so that client

programmers can access them. The components that the private type com-

prises are then defined In the private part of the packa,,.s,. clfcat"o, and
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are encapsulated so that the client programmer cannot access them. The body

of the package, which defines the implementation of the operations that ma-

nipulate values of the private type, has full access to the pcifcato r

vate part, but is also hidden from any client programmers. Ada packages that

export private types are sometimes called class packages, since the abstract

data type corresponds to a class in the object-oriented paradigm [Cer93]. In

fact, experts often call Ada 83 an object-based language because of its abstract

data typing facilities [Boo94, Taf92a].

Returning to the example of the FM radio, Ada syntax corresponding to

the C+--- code for the FMRadio class appears in Figure 7.

The most notable semantic difference between the C++ code and the Ada

code is the use of parameters in the operations of the FMLRadio class. Ada re-

quires these parameters as a consequence. nof its sppo-"nrt" for connunrre.-r Re-

cause an Ada procedure or function must be able to execute flawlessly when

many copies of it are running concurrently, each copy must get its own copy

of the data upon which it is operatIng.

The result for the client programmer is not very dire, as the names used

in the call simply appear in a different order. The main difference in the
client is the reference that is made to the -acka eq where th y•pe 4 nd ....

erations are defined. Ada uses this explicit reference to increase maintain-

ability on large programs, where tracing a declaration can be cumbersome.

This explicit referencing can be circumvented if the programmer so debsires,

but this practice is discouraged and is not shown in Figure 8.
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-- !ile fmradic.ads

-- Naming conventions for objects taken !rom MO2AN-PX [Cer931
-- See appropriate section below: for more irnormation.
package FiRadio is

type object is private; -- ?rivate type declaration

-- Cperaticn declarations
-- Syntax-- procedure [function: name
-- •paraneter-name : parameter-modes parame:er-type)
-- jreturn return-type];
procedure PcwerOn tInszance : in out CbJect);
procedure Power_Cff (Instance : in out Cbject);

procedure VolumeUp (Instance in out Object);
procedure Volume_Dowmn (Instance in out Ob~ect);

procedure Turing_.Up (Instance in out Object);

procedure TuningrDvAT' (:nstanr-e in out Object);

function Station :Instance : in Objec:; zeturn Floe.;

private

-- Encapsulated types needed for full private type
type Sw*:itch is (Off, On);
subtype Frequency is Float range 67.7..107.9;
subtype Vol'ume is Natural range C..10;

-- Fut: private typr definition
type Object is

record -- default initial values provided for compcnents
Pcwer : Switch Cff;
CurrentStaticn : Frequency Frequeney'First;
Current-Vclume : Volume 0;

end record;

end FrM.Radio;

-- f~ie fmradio.adb
package body FVj_Radio is -- Body te::s compiler wha: Is

procedure Power-On (Instance : in out Cbfect% is
begin

Instance.Pcwer := On;
end Power_.On;

-- And so or....

end M-_adio;

Figure 7. FMRadio Class Package
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-- .ile listener.adh

with FMRadio; -- Tc access public package ccnzents

procedure Listener is

My'_Radio : FM_Radio.Objiet; - Declares ir.stance of F:MRadic

begin

F_..Radic.PcwerOn tMyRadio;
FMRadic.VclumeUp WMy_Radio!;

end Listener;

Figure 8. FM Radio Listener Procedure

Ada 83 permits inheritance of an object's attributes, inheritance of an

object's operations, and extension of an object's operations through its derived

types. A type declared in a package epecification is. autoatically drprivahblo a

are any subprograms in the public part of the package specification that take

a parameter of the type in question. These subprograms are called the tvpe's

primitive operations. A client program unIt cran derive a ne,, t-pe frn, th

original, and the child inherits the attributes and operations of the parent.

The child may override any of the inherited subprograms as necessary, and

any subprograms It declares that take a para-m'eter "of the doeri-ed type are

further derivable in other program units.

Ada's derived types do not, however, allow extension of an object's at-

tributes, a concept vital to object-oriented programming. Ad& ;1 Ar.ouc_.a a.

new kind of record type to correspond to a class, called the tagged type, that

allows new record components to be added to any type derived from It. Tagged

types therefore provide full support for inheritance. The new components

that correspond to the attributes of the subclass may be specified in the public

part, but a design fully adhering to the idea of encapsulation declares the new

attributes with a private extension, defined in the package's private part.
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Tagged types may also be abstract, a.nd may declare al-stract operations that

must be overridden in child classes. Finally, a tagged t.'pe may be controlled,

providing a default constructor and destructor, if it is derived from a prede-

fined abstract tagged type called Ada.Finqli7atin.nCnntrnloPd, Ada 9X'S con-

trolled types also allow value adjusting, so that assignment between different

instances of a class can also be controlled by the programmer. If assignment

is not desired between instances of a class, the rin •,n hr d•eried frm

Ada.Finalization.LimitedControlled. These limited controlled types only in-

herit a constructor and destructor. The package specification in Figure 9

shows the Ada 9X version of the COntrolled', abtr--act- adj•o .a.

Just as in the C+- implementation of classes, Ada 9X does not allow a child

class default access to its parent's private part. Unlike C++, however, Ada 9X

does not grant the parent class the ability to Change t.his som•. -im-es bother-

some feature. In Ada 9X, the derived type takes control by exploiting the new

feature of hierarchical library units. The new package declares itself to be

part of another package, so that it is logically nested Inside its owtkL, .....

though It is physically separated. Because Ada 9X's new type of package is used

in combination with inheritance, it is often referred to as a child library unit,

or simply a child package. In visibility terms, the child package does not need

to access its parent package using an explicit 4ith clause, because the com-

piler recognizes the child's intent to be part of its parent. The public part of

the child is logically located at the end of the parent's public part, and the pri-

vate part of the child is logically located at the end of the parent's rivate prt,

so that the child has access to the entire parent. The package specification for

the FM radio child class package follows in Figure 10.
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-- file radic.ads

with Ada.Finaliza:icn; -- Tc provid& cornzylled ..... iii-i&

package Radio is

-- Allow visibility of attribute types:
type Switcfh is (Off, On);
subtype VoLne is Natural range C..10;

-- Make subclass of base for contro~led types:
type Object is abstract new Ada.Fina:izatior.Conrtrolled with

private;

-- Controlled operations:
procedure Initialize :,nstance in out Object:;
procedure Adjust 1r.stance in out Object);
procedure Finalize !Instance in out Object);

procedure PowerOn (Cnstance in out Cbject.;
procedure PowerCff tInstance in out Objec.:;

procedure VclureUp (Instance in out CbIecte;
procedure Volume_Dcwn (Instance in out Cbject);

procedure TuningUp (Instance in out Objezt) is abstract;
prc,.dure Tuning_Do'.. n (Instance in out Object) is abstract;

function Station (Irstance Object' return Natural is abstract;
function Station (Instance :hjectl return FPoat is abstract;

private

type cbjecz is abstract new Ada..Fin&1izaion.0ntried with
record

Pcwer : Switch Cff;
Current_Vclume ; Vcoume 0;

end Tecord;

and Radio;

Figure 9. Controlled. Abstract Radio Class Package Specification

Just as tagged types bring the object-oriented principle of inheritance

to Ada 9X, they also bring polymorphism to the language. The name ragged, in

fact, refers to the polymorphic qualities of tagged types, as the system main-

tains a rag to keep track of an instance's subclass, so that it can dispatch to the

proper primitive operation. Because each tagged type forms the root of a class

derivation tree, Ada 9X provides a new langua-ge, type attrib, for tr--gr tvp-o
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-- file radio-f-.ads

package Radic.FM is

subtype Frequency is Float range 07.7_107..e

type Object is new Radic.Cbect with private:

procedure Initialize (Instante : in out Object);

-- Other Controlled, Po-:.er, and Volume operations inherited

-- Abstract operations must be overridden:
procedure Tunin'ngUp (:nstance : in out Object!;
procedure TuninrDowr (:nstance : in out Object:;

function Station (:nstance 0: b*ect) return Natural;
function Szaticn iIns:ance : Object) return Float;

private

type Object is new Radio.Object with record
CurrentStation : Fre'.er.=y := Frequen-cy-first;
-- Power, Current.Volurne inherited

end record;

end Radic.FM;

Figure 10. FM Radio Subclass Child Package SpecificaUon

called T'Class. This attribute refers to any subclass in the hierarchy started at

type T, and allows the declaration of unconstrained objects that can take the

form of any type derived from T. These objects are accordingly called class-

tide objects, and can be declared •,herever an ,b,,, deC...ara.... i. aroprri-

ate. Figure 11 shows a modification to the Listener procedure previously seen

in Figure 8. Listener is now a classwide opera ion because it takes a classwide
object as a parameter to exploit the dynamic d•isptcin• .... " on Ada ^ X.

AA PaL mt& nvatMU Ask /4&Qu4 .1d%.

Both of the procedure calls above perform dynamic dispatching. The

procedure corresponding to the Instance's tag will be called by the system, and

this procedure may not necessarily be the one defined in Radio.Cl,,swide op-

erations normally call the operations of the root type for understandability as
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-- file 'istener.adb

with Radic; -- Tc access roct ef hierarcy.-.
procedure Listener (Instance in out Radic.OCDec-'Class) is

begin

Radio.Power*..._On (Instance);

Ra~do.Volu.ie_ p (Instance);

end Listener;

Figure 11. Classmide Radio Listener Procedure

shown here, but run-time polymorphism allows any primitive operation in

the classwide object's hierarchy to be used [Taf92a].

While classwide objects are quite useful, in object-oriented -,rogram-

ming it is often more practical to deal with pointers to objects. Ada 9X provides

classwide access types to implement this functionality, and these types are

normally included in a class package to provide additional crnmhility. A

classide access type declaration appears:

type Reference is accead all Objeat'Class

Assuming this line exists in the Radio class package, the Listener procedure

can be changed to handle pointers, ,,with -an adju,{tme.t mada in thp .-at,,l pa-

rameter passed to the calls accounting for the poinier dereference. Figure 12

shows the new version of Listener. Seeing pointers used in this fashion, and

realizing that the .all dereference is not ah AllyO"" -leaSing, & .V ,% seemA

that the next logical step would be to change the parameter types of the deriv-

able operations to use classwide access types instead of tagged types. This move

would be quite erroneous, however, because It Is the tagged type parameter it-

self that makes the operations derivable and allows dispatching to occur.

Changing the parameter type of the primitive operations to a class%%ide access
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-- file listenor.adb

with R.adic;
procedure Lis:ener :Irnsfance : in out Radic.Reference) is
begin

E-14 Co. Po*.-.er_0n ( Instarz:e. all ;
E~do.Vlum Up(Ir.sterc.all);

end Listener;

Figure 12. Class'ride Radio Listener Prcedure .. i... Ac .c.. T-,,,

type is unnecessary, as the intent of the change is already providedA with, the,

simple tagged type. The somewhat ugly result of this rule is the necessity to

keep the .all.

This section has provided a brief overview of the Ada 9X's suppor f-or

the object-oriented programming paradigm. More in depth treatment of the

subject Is available from many sources [Bal93, Bar93, Bar94, Cer93, Coh93,

Kam93 Kem94, Rat94]. Discussion now turns to one method for analyzling a

problem in an object-oriented fashion, independent of programming lan-

guage.

2.1.3 The Rumbaugh Object Modellng Tech...ue

Dr. James Rumbaugh and his colleagues at the General Electric Research Cen-

ter have devised an object-oriented approach to attacking the analysis and de-
sign phases of the system life Cycle. This methodolog. the Oiect. .

Modeling Technique, and results in a design that is independent of both pro-

gramming languages and hardware platforms [Rum91]. Although the Object
Modeling Technique covers many aspects of the ana•" It- and desa,, ,dase,

this section centers on the Rumbaugh diagrams that are used to show the rela-

tionships among the objects in a system. Figure 13 shows a Rumbaugh dia-

gram of the Radio system. in order to illustrate the features of the Ub"-"t
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Radio (abstract)

Power a Off
Current_Volume & 0

Powar_On/Off
VolumeUp/Down
TuningUp/Down (abs)

Station (abs)

FAN-Radio

l•°.b 1W - ,+ 1•,___._

FH_Radio

CurrentStation
LEGE•,': ...TuningUp/Down

0 Arv Nurmber Station

0 Optional

0 Corprises Used By Crott Inherits

Figure 13. Rumbaugh Object Mode! D, for Radio Hierarchy

Modeling Technique that are necessary for this thesic, addir-ona c-lasss :are

shown that have not been previously discussed.

Each box shows a class within the hierarchy, with the optional three

subdivisions respectively showing the name, the set of smple .at,.b,,,, L,,.

the set of operations that belong to the class. A simple attribute may denote an

initial or default value, and an operation may specify any parameters needed

to perform its task. There is no specific way to show anabract CQ3.3" , ,o "tAg

characteristic may be written explicitly. In the figure, the abstract Radio class
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has two attributes, both of which have default values. The operations of the

Radio class are shown in pairs, and the abstract operations are noted. In the

FMIRadio class, only the new attributes and the new or overridin operations

are indicated.

Lines connecting the classes represent the relationships that exist be-

tween them. Inheritance is shown with a triangle, and the diagram above

therefore demonstrates that the AMN.Radio. Shr2_wo,, and, FL UnaiA rinv~o1

are all derived from the Radio class. Aggregation is a special relationship in

object-oriented analysis that indicates that a class has attributes that are them-
selves classes. These attributes are separated from . -, ,o,-,-.,,t, at-

tributes because more Information is required to understand their values and

operations. In the diagram above, the Radio class and all its descendants are

now composed of Displays, Knobs. and Buttons, In addition, to the Simple at

tributes already mentioned.

While Inheritance and aggregation are common, relationships between

classes can exist that do not have special characteristics. A normal line shows

that an instance of a class on one end must coexist with an instance of the

other class, and these lines are normally labeled to describe the relationship.

Different multiplicity balls dictate the number of Instances that must be re-

lated in the real system. An outlined ball indicates an optional relationship,

while a solid ball shows that any number of instances of the class can be re-

lated. In the Radio Object Model, the Listener class must use an FNI-Radio, al-

though the FMRadio can stand on its own. The three classes that make the

aggregate for the Radio also have multiplicity balls. They indicate that a Radio

may or may not possess a Display, can have any number of Knobs, and can

contain as many Buttons as It needs.
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This section has introduced the basics of the Rumbaugh Object Modeling

Technique. More details can be found in the text that Dr. Rumbaugh and his

colleagues have published [Rum9l]. Discussion., n...w aC .... a thn•iqUefo,

developing Ada 9X code frort Rumbaugh Object Models.

2.1.4 Representing Object Models in Ada 9X Notation

This section serves as a summary of a techniqlue for Rnrscenting Objhetr Und-

els in Ada 9X Notation (ROMANi-9X) [Cer93]. It serves as the basis for convert-

ing Rumbaugh diagrams into Ada 9X package specifications. This design

methodology has already been us.ed thiroughout the divmccinn nhn% Y tmpinlp.

ment the radio hierarchy, but is explained more explicitly here. Some addi-

tions to the technique have been made, and they are included in the discussion

below.

The basis of ROMAN-9X is that each class is implemented in its own class

package, a module which wholly and distinctly contains everything particular

to that class. To aid program readability, the p-ackage . namre La- Ch.on .crful4l,

to serve as the name of the class. The class type represents the class itself and

is called Object. The class type is implemented as a tagged type to allow Inheri-

tance, and is usually controlled to allow for constructors and destructors. The

Ada type mark for client programmers declaring Instances of the class is

therefore Class.Name.Object. This name reads nicely, and avoids confusion by

equating the class name with the Ada type itself. To provide flexibility in us-
ing the class, the class package providp- n rc1wide acessP type named Refer-

ence. This type allows client programmers to easily and efficiently use the

class as an attribute, and allows more flexibility in the exploitation of poly-

morphism.
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Class operations are declared as proceu1,s, and functnsin, thp muh1!r

part of the class package specification. Default initialization is accomplished

either through explicit initialization in the record component declaraion or

by Initialize if a controlled type is used. in cases where paramet~ers must be

passed to complete Initialization, perhaps because of dynamically determined

data values, a procedure called Configure takes in the necessary values. By

convention, the class object is the first parannaeter to 03'any ,oeration,,- On, to,

formal parameter is named Instance. This standard idiom aids readability and

provides a similar way for all operations to refer to the instance of the class

object upon which they are operating.

Class attributes are encapsulated in the tagged record in the private part

of the package specification. The class declares Get and Set operations to ac-

cess the class attributes when necessary, and the at,,r"butes Care nVer acc .e

globally. The Get operations are implemented as functions when possible, and

are given the name of the attribute they return. If the Get operations returns

more than one value and must therefore be a procedure, it Is named

Get_(Attrlbute). The Set operations are always procedures, and are named

Set_(Attribute). Both the Get and Set operations are inlined whenever possi-

ble. If the class is an aggregate, and it has attributes that are themselves

classes, these attributes are stored as References, and the class package that

defines the attribute must be accessed via a with clause. Using a classwide ac-

cess to the attribute allows the attribute to be passed easily and efficiently and

avoids the potential dispatching conflict of having two distinct targged typves in.

an operation's parameter list. It also allows the attribute to take on the value

of any subclasses that may be derived from the class originally envisioned.
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A derivation tree is rooted at a class package ,iln rh! hiorarchircI li-

brary units of Ada 9X. The root of the tree serves as the base class package,

with each descendant implemented in a child package. A t% hi....ra ...l.,hX - an

abstract root is implemented using the corresponding new Ada 9X syntax for

abstract types. Within the hierarchical packages, the package name indicates

a class' position, with each dot indicating its depth within the derivation tree.
Having gone from the basics of the objeCtz•"o-r" m"thodoloyA t. a

technique for creating object-oriented code, discussion now turns to more

general styles for designing software architectures.

2.2 Software Architectures

David Garlan and Mary Shaw of Carnegie Mellon University's School of Com-

puter Science teach a course on Software System Architectures, a"n hAv' e" .. re-

cently summarized their knowledge base [Garl93]. This section discusses "the

current state of the discipline," by explaining Garlan and Shaw's definition of

a software architecture and describing numerous architectural styles.

A software architecture defines the style used to organize a software

system. This style helps to structure the flow of control throughout the sys-

tem, and decides which portions of the system handle which of the required

tasks and computations. An architecture also establi-she.s standard techniques

used for communicating and accessing data in the system [Garl93,1]. By creat-

ing a software architecture, a system becomes easier to grasp for anyone try-

ing to analyze it, design It, Implement it, or maintni- I.. The arch~tecture de-

fines a prescribed structure that the system follows, and comprehending this

base structure eases understanding throughout the entire system . While it

may not seem that a maintenance programmer has.. t,.e edr, l , o, -iing tho
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scope of the changes she is making within the system can allow her to ac-

complish her task much more efficiently, responsibly, and safely.

Technically, Garlan and Shaw state that al ,rhitart,,rc tr hrnkPn

into components, so that the pieces of the system are more understandable and

manageable. Communication methods between these components occurs ac-

cording to the architecture's system of connectors. Finally, the behavior of

the system must adhere to certain consmraints, which set rules for combining

the components and connectors. The constraints help the system to be more

uniform, which also makes it more understandable by decreasing its complex-

ity [Garl93,4-5]. In order to completely understand different methods for

defining components, connectors, and constraints, Garian and Shaw give

many examples of architectural styles. This section analyzes those that are

pertinent to this research effort, by first eXPlaining them. and then discus.ing

their advantages and disadvantages.

The pipe and filter architecture is familiar to users of the UNIX operat-
ing system because it works very sirrilar to the ni•ing command found thors

A pipe model indicates that data is brought into the system, manipulated or

filtered by one component, passed to another component, filtered again, passed

in a different form further down the pipe to the next comro-nena, ,passedo

through another filter, and so on, until the final product is finally achieved.

This architectural style has certain advantages. It is highly maintainable, be-

cause the different filter components have no o.. ge of each othera

any of them can be replaced without affecting the others. This independence

also makes the filters very reusable elsewhere, and allows them to be imple-

mented as concurrent processes. The pipe and filter style Is also easy to un-

derstand, corresponding mathematically to a composition of functions. This
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model also has its disadvantages, however. if user interction is necessary. It

does not fit well into this batch-oriented processing scheme. Finally, the pipe

passes data down the stream globally, and it must pasg all data required at any

filter down the entire stream. This model therefore necessitates that the

passed data be the union of everything that the different filters need, and it

can be costly if they have widely spread data requirements. In summary, the

pipe and filter architectural style is simple and ne..at, but.it ,r2n requr. -. vrr

overhead and does not wear well in interactive systems [Gari93,5-6].

The second architectural style examined by Garlan and Shaw is the data

abstraction model. In this model, each component is an Inst'ance,, of ar.n .,,ctrart

data type, and is termed a manager because it Is responsible for maintaining

its own state, and it keeps this state hidden from other components. Connec-

tors in this style are Implemented through subroutine calls, as are common to

many block structured languages, Object-oriented architectures are a special

case of the data abstraction model, and the advantages of data abstraction have

already been described in excoriating detail in Section 2,1. The most signifi-

cant disadvantage of the data abstraction model is that in order to interact with

a component, the identity of that component and its connectors must be known

and visible. This problem negatively affects modifiability, because a charge

in the identity of a component causes a ripple effect throughout the system, as

every other component dependent on the changed component must also be

altered [Garl93,7-8].

Of special interest to this research effort is the Garlan and Shaw view

that inheritance is a method for organizing components, not of connecting

them [Gar193,8]. Regardless, a special kind of object-oriented architecture,

called an application framework, is often used within the bject-n.iPnte,
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community [Str9l]. This model provides a base set of abst.ract or default com-

ponents within a particular problem area, or domain. From this base set, a

system developer can use inheritance to derive components necessary for the

architecture they foresee for their specific application

The third architectural style that Garlan and Shaw examine is the

event-based architecture. This model uses components very similar to the data

abstraction model, but these components are..cone teda n A..",..I--P-,r.. ffr.

ent manner. Whereas the earlier style required explicit calling of another

component's subroutines, the event-based model broadcasts requests for ser-

vice throughout the system. The system, resp.onsile for managing, .. h..

components are interested in which broadcasts, then implicitly invokes the

necessary components and the data is passed accordingly. The event-based

model has its advantages through component independenCe, as each o mpo-

nent is abstract and encapsulated, and can be reusable or concurrent. The

main disadvantage is lack of event ordering and determinism, as the system

cannot guarantee the sequence in which connections are made, or that they

get made within a particular length of time. To correct for this problem, most

event-based systems also allow explicit invocation. Another practical disad-

vantage of this style Is the overhead incurred because the system must manage

the implicit calls [Garl93,8-9].

The final style that this section looks at in detail Is the layered architec-

ture. This style organizes its components hierarchically, with each layer

providing services to the layers above it, and acting as a client to the layers

below it. In the ideal layered system, each layer only has visibility to the lay-

ers directly above and below it, effectively encapsulating each layer as the hi-

erarchy extends upward. The connections In a layevred model r once ,, ,,
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usually achieved through means of subroutine calls, In addition to reaping

the benefits of abstraction and encapsulation, layered models also positively

impact modifiability. Because of limited scope, a modification, o1,•.,Yaf. .th

layers directly connected to the point of change. There are also disadvantages

to the layered style. Not all systems lend themselves to a layere'. breakdown,

and those that do are susceptible to high coupling between layer3. Efficiency

losses can be large when an upper layer must go through multitudes of other

layers to get at functionality implemented at a much lower layer [Gar]93,9-10).

Garlan and Shaw continue to describe different architecturai styles that

are used less often in industry (Gar,,O•9.....-13. Theey conclude their i(iiucsion

of the different styles by pointing out that most large application. are de-

signed combining more than one style. This intertwining often :s accom-

plished by using an encapsulated hierarchy, withth ea, Iovls imp]lmentation

being hidden from, and therefore irrelevant to, the other levels. This hetero-

geneous style takes advantage of each architectural model in the areas in
which it is strong, and does not force a style to be used in a s;it...tion it, ,inwhch

it has shortfalls [Garl93,13].

Having concluded the pedagogical discussion of architectures, discus-

sion now turns to architectures that exist In the real world.

2.3 Current Industrial Simulation Architectures

This section describes software architectures used in the visual simulation in-

dustry today. The search for this Information is partly obscured, however, be-

cause of the proprietary nature of the field. Traditional producers of flight

simulators, such as CAE-Link and Evans & Sutherland, rightfully do not care to

divulge the details of innovations that give them an advantage in the market-
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place. Luckily, they have agreed to share -some high level knowledge. and

other organizations have published summaries of the software architecture

work done at these corporations [Epp94]. The main players in the dissemina-

tdon of this information are the Software Enginpering Institute at Carnegie

Mellon University and the Training Systems Program Office of the Air Force's

Aeronautical Systems Center (ASC/YT) [Abo93, ASC93, SEI93].
As the primary Air Force agency responsible for rho Th r r"c r rufnt of

flight simulators, ASC/YT has years of experience with these complex training

devices. It also has quite a stake in ensuring that suppliers can implement the

software aspects of flight simulators efficientlyand inesvl,. In 19nd r ,,

ASC/YT realized that simulator software systems were outgrowing their origi-

nal designs, and that modifications due to changing requirements were

becoming more and more impractical. The added complexity also forced

simulator vendors to rely on subcontractors, and the resultant geographic and

organizational disparity introduced inconsistencies into the development

process. In order to correct these problems, ASC/1T began to oversee

investigations Into the design of a common flight simulator software

architecture, or what it termed a structural model [Abo93, ASC93,2].

The basic structural model has evolved since it! inception, and has re-

cently been adjusted to Incorporate the lecsons learned from the development

of the B-2 and C-17 aircraft systems trainers [ASC93,2]. Boeing's Defense and

Space Group has also adopted the structural modeling method, and has started

to release results of using the technique i.n. s,,,tins of %'arl,,. fighter . .r-

craft, fire control units, and missile simulation systems [Cr194,280].

Technically, the structural model serves as "a pattern for specifying

and Implementing software system functionality" [ASC93,5J. The, t..... .,,,,,an -as,
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pects of ASCAT's structural mode! are pa•"rririnnn a =nr d •nrrinaronr, •nn they

correspond directly to the components and connections described In Section

2.2. Partitioning refers to the strategy that systems analysts use to divide a
complex problem into smaller. less complex, and more manageatleipi•ecs. ozn-

ordination involves the method by which the partitioned components interact

with each other. E;tablishing strategies for partitioning and coordination en-

courages consistency and eases integration by gi v•ng the nu.merou.• mebr

of a development team a common implementation plan from which they can

work. Different partitioning and coordination strategies may all lead to

proper system functionality, but they may also vary In their attainment o-"

basic software engineering goals like modifiability, reusability, and effi-

ciency. Because these goals are often contradictory, the software systems de-

velopers will have to evaluate which goals pertain to their simulator proJect,

and choose the strategy most suitable for their particular needs. AS_C/YT calls

its software architecture a model because it permits rapid establishment of

partial solutions that resemble the desired system. These models can be evalu-

ated inexpensively and adjusted incrementally until the end product is finally

achieved [ASC93, 5-11).

Boeing calls its latest incarnation of the structural model the Domain

Architecture for Reuse in Training Systems (AR.TS). DARTS rnrtirinns the

problem space of a flight simulator into twelve segments, each of which corre-

sponds to a flight simulator subproblem. Examples of these subproblems in-

clude flight dynamics, radar, and p, ,o , slon. oac ,semen s further d•vided

into components which represent air vehicle parts or functions. The design-

ers of DARTS consider the coordination aspect of the structural model "of

paramount importance." Traditional simulation syst,,mso-,,,o-,,,,,: ha ,used, global, in-"
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terfacing between compone:its, but ne^,r-ina•tnn mitcr 1h "defined and con-

trolled" to ensure correct functionality and reliability [Cri94,273]. Because of

this belief, DARTS co)rdinates its segments by using message passing as op-

posed to shared memory. Although shared memory' is en.•rally faster, mes-

sage passing is less dependent on hardware platforms. Deciding to use a coor-

dination strategy that values reliability and portability over efficiency Is the

first step in creating a software architecture that carn truly be applied in MIU-

tiple environments [Cri92,2-5].

The techniques of both ASC/YT and Boeing give an architecture that is

too complete for any real system. They model every known aspect of the fhght

simulator domain, so that nothing will be overlooked on any particular flight

simulator. Each development team will then have to hone or tailor the archi-

tecture to fit its application. This approach is In keeping with the general

trend In the field of domain analysis [Cri92.51.

It is surprising that, despite the current development trends, neither

the ASC/YT nor the Boeing architecture is overly object-oriented. The Boeing

team states, "Note that the analysis that produces the final architecture begiIns

with functional decomposition and ends with what can sensibly be described

as objects" [Cr192,5]. The flight simulator systems contractors have basically

chosen to exploit the advantages of both the funcdtonal and nobiet-oriented

programming methodologies. Partitioning can occur at the base level until

simple, low-level objects can be designed and implemented. At the higher

level, coordination dictates "n easily understood flow of o,, which . s mnor

easily analyzed in a functional manner.

The discussion of background topics now moves from simulation archi-

tectures to the Performer graphics programming library.
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2.4 The Silicon Graphics IRIS Performer T hra.

IRIS Performer (Performer) [Coo92, McL92, l1ar94] is a toolkit that allows

graphics programmers to create high performance applications on Sillcon

Graphics hardware systems. It is bu!Wt on top of the existing IR!S Graphics Li-

brary (GI,) [McL911, which eases low-level rendering on SGI platforms. Per-

former supports two seemingly orthogonal objectives: building applications

more easily through a well-defined programmer interface anrl inrreaino

performance of any GL application. It turns out, L.wever, that since Per-

former combines optimization with abstract calls to modules, both of these ob-

jectives are actually intermingled. Performer theref-re retyly enhancs the

productivity of graphics programmers by allowing them to minimize devel-

opment time for their applications and automatically maximizing the visual

impacts and effects of their efforts.

Although Performer factors out many of the tasks necessary in graph-

ics programming, it does not constrict the application developer's creativity.

The dynamics of the visual simulation objects are stillleft to the d ,veloper,

who has the freedom to define the entire feel of the project. The basis of the

developer's creativity lies in the models she uses to represent the entities in

her simulation. These models are usually established by using a three dimen-

sional modeling tool, which stores the geometric representation of an entity in

a database. Performer supports many different modeling tools, reading their

databases and translating them into data structures which it renders to pro-

duce an application. The primary modeling, tooT. used ' i At-.F.T Graph!ri __Jh

is called MultiGen, and it is developed by Software Systems [Mu192].

Performer's magic is created through the means of two main libraries,

the fi,.'st of which is called pr. The code to optimize the visual i'part of the
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graphics rendering is kept in this low-level library. It contains functions

that are vital to concurrent real-time graphics programming, including

highly optimized math functions, geometry proces,%in"g r,,irnes, -,ot"htir"te

state management techniques, menmory allocation techniques, and other ren-

dering tricks. Although these concepts are rather simple to fathom, the intri-

cacies needed to make subtle improvements in their performance can be quite

complex. Acknowledging this fact, Performer prov.,•d abstract ca!, 1 to these

functions, and Implements the details itself, allowing the applications devel-

oper to concentrate on less mundane activities.

The second Performer library, p1.: holds the code that allows the appli-

cations programmer to easily access visual simulation functions. This library

also defines a rendering tree data structure for holding the entities being rep-

resented in the scene, as well as the mean,.s to methodicallyv travrs this

structure. When told to do so, Performer assimilates the model databases de-

scribed above Into the rendering tree, so that they can be properly displayed

In the scene. It Is important to note that the pf library totally enco~mpasses the

pr library', and because of this structure; the client programmer can access all

Performer functionality either directly or Indirectly through pf.

Visual simulation applications are Implemented by Performner in the

pipe and filter manner described in the section above on software architec-

tures. This pipelining allows extremely efficient multiprocessing, exploiting

as many processors as are available to increase the computational throughput.

Performer continually repeats a three step algorithm that traverses the ren-

dering tree structure and its corresponding scene. The first step In this al-

gorithm, application, actually moves the objects in the scene by conducting

the necessary calculations, "nd Is defined by the proarammer. The second
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step, cull, moves through the tree-diding which. objects are inside the field

of vision and therefore need to be drawn. The cull step builds a display list of
these objects. The final step, draw, renders the objects in the.display 1it. Ttoe

fact that these three steps are separate makes It possible to split them into

threads and take advantage of multiprocessor machines. If this optimization

can be accomplished, however, Performer does so automatically and the appli-

cation programmer need not be concene, d %%,- h any , details.

By default, the complicated and tedious cull and draw processes are ac-

complished automatically by Performer. However, an application developer

may customize these processes through an establishld m"etod of ........ '..

The programmer provides his own functions for culling and drawing, and no-

tifies Performer of their existence during Performer initialization. During

the simulation, Performer calls his functions at the appropr.ate tine, n th...

customization occurs. This Performer feature is useful If certain entities

within the simulation must react to input devices, which are usually read on

the draw thread, or have specialized output requirements. ra'psack are 3,,o%

used by Performer and GL to perform window management.

Finally, Performer has some other important features which applica-

tion developers can use. Channels can be used by the programmer to set up

different views into a scene, as if various observers were watching from

completely different angles. Multiple views are also useful if entirely differ-

ent representations of a scene are necessary. For example, when simulating a

radar in a plane's cockpit, both the radar screen and the canopy provide views

of what is occurring outside the plane, but these two "windows" display the

scene in utterly distinct fashions. In addition to multiple view handling, Per-

former provides mechanisms for using,'•, shared m ,emory to enhanrc prnroc0ina
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speed through the pipes. This feature allows developers to hone the perfor-

mance of their applications. Other features in Performer allow the developer

to include such features as collision detection, sequenced animations, atmo-

spheric effects like fog or haze, or light sources to imitate beacons. stars, and

sunlight.

This section has provided a brief overview of Performer and its capa-

bilities. More complete coverage can be found in ho ,inreomenrrinn for Por.

former and its related tools [Coo92, Har94, McL91, MuW92). Discussion now fo-

cuses on ObjectSim, the architecture that was created in the AFIT Graphics Lab

by Mark Snyder to provide further abstraction., o, On toof Perfnr•nm.•

2.5 ObjectSim Concepts

Since 1989, the AFIT Graphics Lab has been sponsored by all A,',...._ Re-

search Projects Agency (ARPA) to investigate low-cost distributed interactive

simulations. As technology has progressed since then, so have the capabilities

of the applications produced by the score of graduate students who have

worked in the Lab. However, this increase in capability has been accompanied

by a corresponding increase in software complexity. In the academic cycles

ending in 1991 and 1992, it became apparent that the students were spending

more time redoing tasks common to all visual simulations than developing so-

lutions for their particular projects. Patricia Lawlis, Assistant Professor of

Software Engineering at AFIT, became involved in the research in 1992 to at-

tempt to manage a reuse effort within the Lab. Reuse would allow the students

to concentrate more of their efforts on their specific simulations, instead of

recreating common graphics functionality. Lawlis enlisted the help of her

student, Mark Snyder, and he produced the ObjectSim framework to curb the
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complexity problems in the Lab. This section outlines the basic design of Ob-

jectSim (Sny93].

Snyder's primary task was to factor out the commonalities between the

four ongoing projects within the Graphics Lab [Eri93, Gard93, Ger93, Kun93,

So193, Wil93]. He began his effort by examining components that already ex-

isted, to see if they could be reused. His survey quickly revealed that the.e

components, developed for specific applications, were not malleable enough to

use on varied projects. Snyder realized that it would be more productive to

make reusable components from scratch (Sny93,31-32]. Of notable exception

were the network communications components, which were reused. The

probable reason for this exception is that the original designer of these com-

ponents, Steven Sheasby, has been maintaining them since their inception

[She92, She941. He could therefore serve as living documr entation to define

their use, whereas the knowledge necessary to use the other components had

disappeared with the graduation of their designers. The network communica-

tion components were never completely integrated into Objec.Sim, however.

After determining what he could reuse, Snyder performed a require-

ments analysis by talking with the other students in the Graphics Lab.

Through this analysis he was able to establish the functionali,, thar w•,, rnm-

mon to every application [Sny93,32-33). Snyder decided to allow the other stu-

dents to access these common capabilities by means of an application frame-

work. This programming paradigm provides an avenue for sofltyare reuse, but

at the domain level instead of the traditional component level. Within the do-

main, the components of the framework provide templates from which actual

components can be derived and customized. The framework therefore "pro-

vides major savings," as the basic architecture for the code already exists
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[Sny93,39-40]. Not surprisingly, components of an application framework are

often implemented as abstract classes in object-oriented programming lan-

guages.

Snyder began to rapidly develop ObjectSim by incorporating compo-

nents donated by the other six students. He also developed generalized imple-

mentations of common components on his own. Snyder designed test applica-

tions to evaluate new functionality, and through this methodology he was able

to quickly coerce the Virtual Cockpit to rely on the ObjectSim framework. The

other applications followed soon thereafter [Sny93,40-44].

In terms of architectural style, ObjcitrSm belong. to the data abstraction

model. Its object-orientation defines abstract Interfaces to different compo-

nent classes, with straight function calls acting as connectors. The use of ab-

stract classes determines the basic architectural, Stnirrwre, and forces the ap-

plication developer to adhere to the provided scheme for components 'and con-

nections in order to benefit from the framework. While ObjectSim itself ad-

heres to the data abstraction model, Its use of the pipe a,d,.,' filter Performer ar-

chitecture makes the entire system heterogeneous. The fact that Performer is

kept separate from ObjectSim, with interaction again occurring by function

calls, adds layering into the system as well. Under Performer -are two lower

layers, one for GL and one for the IRIX operating system, but the), exist at a

level of abstraction below what is examined In this thesis. Figure 14 shows the

architectural layering of ObjectSim.
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Silicon Graphics IRIS Performer 1.2

Silicon Graphics Graphics Library 5.2

Silicon Graphics IRIX Operating System 5.2

Figure 14. ObjectSlm Architectural Layering

Figure 15 shows the ObjectSim Object Model. The main objects in the

application framework and the relations between them are indicated in the

Rumbaugh diagram. The most basic object Is the FltM21odel, w hstore

database information describing how an object appears graphically. A Ter-

rain serves as the visual background for an application. A Simulation serves

as the basis for an application and encompasses a Terrain and any number of

Players, the entitles whose interaction define the graphics appication. A

View allows vision into the application's scene, and a Modifier can be used to

move a View around the scene. Finally, the PfmrRenderer controls the actual

drawing by making the necessary Performer ca!ls.
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Tbh! Terrain, Simulation, Player, and View classes of the ObjectSim

framework are abStract. This approach allows application developers to cus-

tomize their simulations freely while letting them exploit proven, methods and

algorithms. It also encourages developers to produce standardized app!;ca.

tions, making them more interoperable and modifiable. Two of the concrete

classes were not intended to be portable, as their names reflect. FiLModel'



algorithms. It also encourages develonpers to produce -strndardized applica-

tions, making them more interoperable and modifiable. Two of the concrete

classes were not intended to be portable, as their names reflect. Flt-Model

handles Flight format models created using the M,_tltGen vi.sua database de-

velopment tool, and the PfmrRenderer is intended to isolate the Simulation's

dependency on the Performer library.

While this summary has simplified Obj.ectim in many• was,,,, it does cn-.

vey the general ideas behind its development. ObjectSim was an unqualified

success in the AFIT Graphics Lab, increasing student productivity between

thirty and forty percent [Sny93,79]. The next chapter loks. 2t Qrbo-,,im mre

closely in order to develop its successor, Easy.Sim.
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II Architectural Design

This chapter relates the analysis performed on the ObjectSim architecture and

the lessons that were learned from it and applied to the formation of Easy.Sim,

a language independent software architecture for visual simulation systems.

This chapter firsts analyzes the advantagess and disadvantagpe of the method

Mark Snyder used to develop ObjectSim. and then describes the radically dif-

ferent method used for Easy-Sim. The majority of this chapter describes the

Easy-Sim classes and their relationshi••. Thi rtask is accomp1ished by examln-

Ing each component of ObjectSim, retaining its positive points, and modifying

its negative aspects. The chapter concludes by presenting the final EasySim

Object Model, and examining the overa.. d1 of the --'y .. i. archfrctilre.

3.1 The Design Processes

Mark Snyder developed ObjectSim with four 1"arge sl•nuZot ,n,, ortt nnei ci.

other students reliant on his success. This pressure and dependence had both

positive and negative effects on his design efforts. This section describes how
Easy-Sim benefited from Objec.Sim's achievement while trying to avod lt p ,.-

falls. It first examines the method used for developing 9bjectSim, then out-

lines the diametrically opposed approach used with EasySiem.

3.1.1 The ObjectSlm Development Method

Mark Snyder created ObjectSim according to what he termed the necessity

model [Sny93,44]. When the Graphics Lab projects were originally converted

to use ObjectSlm, Snyder analyzed their components for Inclusion in the

framework. Classes deemed suitable were generalized and incorporated Into
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ObjectSim. Alternatively, if a student desired new functionality in hls appli-

cation, he would implement a solution locally, and Snyder would evaluate the

utility of the new code for everyone, once again incorporating it if it promised

to "promote the general welfare."

Snyder's necessity model allowed a tremendous number of ideas, designs

and components to be considered for ObjectSim, and enabled them to be consid-

ered early In the thesis life cycle. The amount of useful code in the Lab was

able to expand rapidly because of this technique. More importantly, the code

brought into ObjectSim was tested in numerous applications, so any defects

were rapidly detected and eliminated.

While the necessity model allowed the general productivity in the

Graphics Lab to increase dramatically, it also had some negative effects. Be-

cause of the dynamic nature of the framework, the other students often h1.ad to

suspend their own projects to incorporate new versions of ObjectSim. Config-

uration management problems occurred frequently [Sny93,ii]. With seven

individuals contributing code, conflicts in style and convention were common.

Unfortunately, these conflicts were carried into the framework, and because

the changes needed to be made quickly, standardization was often performed

hastily. Many of ObjectSim's component and connector names remain Incon-

sistent. The haste associated with version updates also had a more long lasting

side effect--it created an oral culture within the Lab. Modifications were sug-

gested, made, and forgotten before their rationale was documented. ObjectSlm

is currently filled with enigmatic code that seemingly doe,, nnthing, bin whose

removal causes utter destruction.

The reader may have noticed a shift during discussion of the necessity

model. It lowered the focus of ObjectSim's development from the ana).y-ls and
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design level to the code level. Unfortunately, the necessity model was often

reactive when it should have been guiding, letting the implementation drive

the design. This shift is evident when ObjectSim is evaluated thoroughly, es-

pecially in the area of network interaction. Because the Graphics Lab de-

pended on a contractor to handle this area of their projects, network interac-

tion capabilities were never completely incorporated into ObjectSim. This di-

vergence resulted in network components that han-dled intanertion differ.

ently for each application. Anytime new functionality was added, kludges had

to be introduced in many places, including the basic ObjectSim framework

[Sny93,57, She94]. The intermingling of Ampl..entat.on And •.eA j¢ •

evident in Snyder's thesis, as his design chapter frequently refers to imple-

mentation issues [Sny93,Ch4].

3.1.2 The Easy-Sim Development Method

Easy-Sim was developed without the pressure of any other students reliant on

its results, as the five students working concurrently used the existing Object-

Sim framework. This decision was made consciously because of the risk in-

volved with the primary implementation of Easy-Sim occurring with an

untested language in an untested environment. Accordingly, Easy-Sim was

designed with a set of circumstances completely reversed from the ObjectSim

case. This section briefly describes those differences, and concludes by outlin-

ing design decisions common to all EasySim classes.
• afiti-ei€Inm+ricah frnrn hnving

Where the production of Object . eeie. bmmens fo h n

seven developers simultaneously recognizing requirements, contributing de-

signs, and testing solutions, Easy-Sim is primarily implemented as a solo effort.

Its requirements are drawn by trying to match , ,bje•-rS1&M funtiat, and
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conversing with the current students, but no code has been donated through

this method. The Easy-Sim implementation draws some ideas and code from a

demonstration program, Paintbalh, under development at ,ili-s%,"n .°,,,, by

Wes Embry and John Templeton [Emb94l. This effort converts an Ada 83 pro-

gram to Ada 9X, but does not exploit the object-oriented capabilities of the new

language. Paintball's contributions to the Easy-Sim architectural design are

therefore limited. Consequently, EasySim€ha-s bn develodnnA murh nore

slowly and with much less implementation testing than ObjectSim, but with

considerations for it to be language Independent.

The development method for EasySim does have its advantages, how-

ever. Because the design is not influenced by the need to be rapidly inte-

grated, it remains more pure. Its development by one individual also makes

the components and connectors more standardized, a,• rconfiguration man-

agement is not a factor. Finally, design decisions are documented both in this

document and in the code, so that continuing work both at AFIT and elsewhere

wiI be able to understand Easy-Sim's evolution.

This section has analyzed the positive and negative aspects of the Ob-

jectSim and Easy-Sim architectural design methods. Before the design of each

class is detailed, the next section outlines the overall conventions used

throughout the entire Easy-Sim design.

3.2 Easy-Sim Class Design Conventions

The classes in Easy-Sim are designed using the desigvn level ideas of the

ROMAN-9X technique (see Section 2.1.4). This method keeps the different

classes consistent by providing standardized naming conventions and con-

structs, and it enhances the definition of t1he dat, asCtractinn arrhltartrmp'
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components and connectors (see Section 2.2). Each cLa_ s ha.e.a......... ... -

tion and finalization operations, a parameterized initialization operation called

Configure, and Get and Set operations as appropriate for its attributes. Classes

that contain visual models have a special Get operatio, Image, whirh returns

the node in the rendering tree corresponding to the root of the object's

graphical representation. The existence of the Get and Set operations is as-

sumed in the remainder of this chapter, and no further, ...... nl. o.f th.m is

made. Most classes also have an Update operation, which determines the be-

havior of an instance of that class, and a Draw operation, which defines any

necessary class specific rendering functionality. Both the Update and Draw

operations are called each frame of the simulation.

Resources needed commonly throughout the Easy-Sim architecture are

defined in a common location. The most visible of these resources is Coords,

the data type used to describe coordinates in an application. This type contains

the X, Y, and Z vector values which define the Position where an entity exists

in the simulation. Coords also contains a vector referring to the entity's Di-

rection at its Position. This vector comprises three values as well- the f eading,

Pitch, and Roll of the entity.

The rest of this chapter examines the design of each component within

ObjectSilm, examines any positive and negative aspects Of that desian dnne de-

tails how that component has been migrated into Easy-Sim. Each section is

concluded with a Rumbaugh diagram showing the two versions of the ciass

next to each other so chat they can be easily compared. The ObJeCS-,r,

Object Model [Sny93,45] Is presented as Figure 15 at the end of Chapter I. Dis-

cussion begins with the most basic classes and progresses through the more
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complex components. The discusslon of neW Ea•s•,.Sim rnm o nmPnte Is Intpr.

spersed as appropriate.

3.3 The FitModel Class

The intent of ObjectSim's FiltModel class is to provide the abstract capability of

handling the geometric models used to represent images in a visual simulation.

The class name is prefixed by "Fit" to show that It can only represent m"dels

created in MultiGen's Flight format [Sny941 t see Section 2.4). The main opera-

tion of this class, readmodel, reads in a Flight format database, converting it

into a format that the simulation can process. This conversion is handled by-

simple Performer operation, and It stores the database into an attribute, roor.

This attribute forms the base node of the tree representing the geometry for

the Model. Flt_.,Nodel also contains a constructor for initialization purposes.

Figure 16 shows the Rumbaugh diagram for FitModel,

Since the completion of ObjectSim, a new version of Performer has been

released [Har941. This version contains more flexible conversions of geometry

databases, enabling this class to become independent of the Plight format. This

generalization is the first change made to this component In Easy-Sirm, and the

component is renamed Model to reflect its added capabilities. The new archi-

tecture also allows the reading of the Model databace rno be Interpre-Pte 2e -3

form of parameterized initialization, and Eas.vSim therefore assigns this

functionality to Model's Configure operation.

In its readmodel operation, O,,ectSIM. S .,a ,ALo&-.M l la p.3.3 ,,,V d s. thk,

ability to cop), a model. This characteristic enables a simulation to avoid inef-

ficient replication of complex databases if two or more entities share a com-

mon geometric representation. For cxamplc, in an a-l,.irf.ied siml n .h.r
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Figure 16. Model Class Object Model Diagrams

may be many similar F-15s flying in the area., but, one Model of an F-15 can

represent all these planes. ObjectSim's design of this feature uses a straight

duplication technique, which works adequately for simple models, but fails on

models with moving parts. At the a-..port', an arr.ving plane would, hv.e It

landing gear down and visible while a departing or circling plane would have

Its landing gear up and hidden from view. ObjectStm's omission is corrected in

the EasySim Model class, and Is available public-y by m"ans oil t01-ci

eration.

Finally, the ObjectSim design of FltNModel maintains a list of all the

models to be used In an application. In EasySini, the Model class 1&simpl"fiedu
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R,, A, 3 m.-3 IA rrn rrl-•€iC iz i tn t trAA I t Itr (ito operate on a single Model, and a ,. .... ...... ................ ........ tr.r.-

multiple instances of the Model class. This change makes the Model class con-

sistent with other Easy-Sim classes and is explained further in Section 3.7.

Figure 16 shows a Rumbaugh diagram r-pr,,,entny the EasySim kinod1 rlr.

3.4 The Terrain Class

The abstract ObjectSim Terrain class is intended tovi,. a ,,q"1-to, v., ,H,..

each application can develop a unique visual background in which its Simula-

tion can operate. Features intended to be implemented here include lighting

models, weather models, time of day management, the terrain, and any other

environmental variables. ObjectSim comes with a default Terrain subclass.

Simple-Terrain, which uses simple sun and horizon models as well as a

FitModel to represent the ground. Figure 17 diagrams the ObjectSim Terrain

and Simple-Terrain clases.

The Terrain class is a perfect indicator of the disadvantages of Object-

Sim's necessity model development method. Originally part of the Virtual

Cockpit application [Er193, Ger93] and incorporated into ObjectSim, the de-

scription of Terrain does not fit the Space Modeler lVan94] application, which

uses stars and planets as its background. The ObjectSim Object Model also does

not reflect the relationship bet-ee, Teroin and Fit-model, ,,here Terrain Is

mysteriously implemented as a derived subclass of FiltModel. This kludge al-

lows a Fit-Model to be used to represent the Terrain, without explicitly making

It an attribute.
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Figure 17. Environment Class Object Model Diagrams

Fortunately, ObjectSim's Terrain class also indicates the advantages of

Snyder's necessity model. The creation of an abstract class clearly defines the

62



component and connectors that a developer needs to form a useful environ-

ment, and illustrates an example of the object-oriented data abstraction archi-

tectural style described by Garlan and Shaw [Garl93,7-8] (see Section 2.2). The

Terrain class has two initialization operations, -'amp and..... A g^,- Chian n..,

and an abstract draw operation. SimpleTerrain adds two more initialization

operations. build-terrain and initialize, along with attributes to represent the

horizon and sun.

The use of abstract classes is adopted by EasySim for this clwss ane

throughout many of the other classes in the architecture. Easy-Sim renames

the Terrain class Environment to indicate its more flexible capabilities and

prominently shows the non-inheritance based ,,1rin-,hi- bet'xape, the Evnvi-

ronment and Model classes. EasySim assigns the functionality of the initial-

ization operations to Initialize and Configure, its default and parameterized

initialization operations, as appropria Easy,, e. atn, the abtrat Dr...

operation.

The new architecture also renames the default Simple-Terrain Terrain,

for those applications where the basic g.rOund, sn, an. h% r Model iss• .-

sible. Easy-Sim breaks its Terrain class into smaller classes, however, provid-

ing functionality for Sun and Horizon classes separately, and making Terrain

an aggregate containing these classes. 71his moudul.ar approach establishes a

precedent, whereby a subclass can gather functionality from many smaller

classes and organize this functionality in one place to suit the requirements of

the architecture. This method makes building Environments much more

flexible and establishes a set of modules that are reusable both at the deslgn

and code levels. Figure 17 shows a Rumbaugh diagram of the Environment

classes.
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3.5 The Player Class

ObjectSim's abstract Player class serves as the base class for defining the enti-

ties whose interaction defines the simulation. The Player class follows the

same basic approach as Terrain, establishing an architecturaltemp.,late r.. a

component and its connectors. Each Player has an attribute which defines co-

ordinates for its position and direction within the simulation, and three op-

erations modify this attribute. One operation.. ' ove.-aong...headhfg, adva1es

the Player along its current path a given distance, while a second operation,

*)ok.at-point, pivots the Player to face a given position within the simulation.

Th,2 propagate operation is abstract, and it is the avenue through which a

* subclass defines how the Player behavc• during each advancing frame of the

simulation. The Player class also provides an abstract initialization operation,

init.

Most ObjectSim Players contain a Fit-Model which represents the Play-

er's physical appearance. Some Players may exist in a simulation without rep-

resentation, however, purely existing to provide a vantage point into the

scene. ObjectSim categorizes these Players by calling them "teafthPlhyers.

and they are generally derived from another abstract Player subclass called

Attachnble.Player. This class is used for players to which a View can be at-

tached, and it contains attributes rel",ating thne pnosst,,c ,an tdirerctlnn 0 f the

View relative to the Player. Because most Players within an ObjectSim appli-

cation can view the scene, simulations derive the majority of their Players

from the Attachable-Player subclass. Figure 18 outlines the U b.jctI', Plye.

classes.
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Figure 18. Player Class Object Model Diagrams

EasySirm uses the sound design of ObjectSim's abstract Player class in

defining it own Player class with ony minor cosmetir rhangoes The prnnuoate

operation is equated with Easy-Sim's standard Update operation. While some

other ObjectSim classes also use the name propagate to denote the operation
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that updates an instance of ,he class each Simidti tinn fra !e; this similar o0-

eration is named inconsistently throughout the ObjectSim architecture.

EasySire uses Update throughout all of its classes to provide consistent cOn-
nection protocols within the architecture. Eascy._im ans renames the Object-

Sim Player's move-along.heading and look-at-point operations, calling them

MoveStraight and Look-At respectively. Finally, Easy-Sim converts the init

operation so that its functionality is achieved by theVIC co.ntrol•,ed ,rAI,!,,.. c.-.

structor.

The Attachable-Player class is not carried into Easy-Sim. The purpose

of this class in ObjectSim is to track the position and orientation of the View,

that is attached to the Player. The Easy_.Sim interpretation of these View at-

tributes places them within the View class. Easy-Sim application developers

are free to develop subclasses similar to ObjectSim's Steal't-..IPaycr cocept b.y

deriving directly from the Player class.

ObjectSim makes no provision for standard protocols for handling mul-

tiple Players. EasySire introduces the Player-_Manager class to supply this

added functionality, and this class is further described in 5ecion. 3,7,

Figure 18 shows a Rumbaugh Object Model diagram of the Player classes.

Some of the Get and Set operations for the Coords attribute have been omitted

for brevity, and are listed in full with the Modifie rclass in Fig-re 20.

3.6 The View and Modifier Classes

The intent of ObjectSirn's View class is to Allow th, ue- s o-f. a• .sa slinularton

to look into the scene being rendered. Unfortunately, the View class is also a

victim of the negative aspects of the necessity development model, and de-

scription beyond its purpose is rather clouded. A View must be r C."ated t 01 An
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AttachablePlayer with its attached attribute, bNt this oonnection is not shown

in the ObjectSim Object Model. At one point the View class is described as en-

capsulating a single view [Sny93,48], while the Object Model diagram labels it

as managing multiple views. Examination of the implamentntion shows the

former to be true. ObjectSim's View class operations include setview, which

updates the Views each frame, and atrach.to.player, which switches a View

between different Players. The View class also prOvi.deS two,% v,2eparate- initia!.

ization operations, alloc-shared and new-view.

To quickly clear a common misconception, a View can be attached to dif-

ferent players consecutively, and a scene can therefore be obser•ved from

many different angles in a single View simulation. Multiple Views are only

needed when different aspects of the simulation need to be observed simulta-

neously. Some examples include a rear view mirror in a driving simulation, a

radar screen in a flying simulation, or an inset channel box on a television

set. This last example demonstrates the case where the different Views may

not be observing the same scene. In order to manage this complexity, each

ObjectSim View has two Performer related attributes, ahka and scene, A Per-

former Channel represents a window in a simulation, while a Scene serves as

the root of that Channel's rendering tree, storing the graphical data seen in

each window.

The ObjectSim View class also provides operations which the application

developer can use to customize Performer's cull and draw processes (see Sec-

tion 2.4). Both the cull and draw operations provide dea", , be,,. , ,or ,.,eah

window in the simulation, basically doing nothing. The), do, however, define

points in the architecture where the application developer can modify this

behavior. Customized culling can enhance the application's performance, and
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the draw operation can add o Ixnfa-v-ntinn tn thp er no slrh as text over-

lays. Figure 19 shows an Object Model diagram of the ObjectSim View class.

In ObjectSi.,, a View may be associated with a Modifier class, which is

represented by the View's Delta attribute. The Modifier Is used to .manipulate

the View's position and direction relative to its Attachable-Player, and the

Modifier contains coordinate attributes, called State, accordingly. Like the

Terrain and Player, the Modifier class defines an abstract component, with

connectors that must be provided in its subclasses. Examples of Modifier sub-

classes used in ObjectSim applications are the mouse, keyboard, spaceball, and

head mounted display. The main operation of the Modifier class is call.ed P-11

and subclasses must override this operation to define how the device receives

input data every frame of the simulation. The Modifier class also provides a

reset operation and two initialization operations, init-state and init. Figure 20

displays the Rumbaugh diagram representing the Modifier class.

Easy-Sim does not follow the ObjectSim design for Its View class. To be

consistent with its Model and Player classes, Easy-Sim defines the class to man-

age a single View, pushing multn.i-pe View adm!nistratinn to ihp Vim? Manavger

class as described in the next section. As attributes, the Easy-Sim View class

incorporates the Player to which the View is attached, the optional Modifier,

and the Coords eliminated pre-"^iil ',y the less of !he Auachable-Plaver

class. Additionally, the View contains a Channel and Scene. These attributes

allow simulations with multiple Views to display distinct collections of entities

In each of its windows.
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The Easy-Sim View class provides "-perations eqixa-lnt tn thntopse pnt

in ObjectSim, but setvlew is renamed Update, alloc-shared and new-view are

done by Initialize and Configure, and attach.to.player is a simple attribute Set
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operation. Figure 19 shows the EasySiem design of the View c!AP. A45 with

the EasySim Player diagram, the Get and Set operations on the Coords attribute

are not shown, and a full listing can be found with the Modifier in Figure 20.

ObjectSim Easy1Sim

Modifier (abstract) Modifier (abstract)

State Coords

init-state Initialize
init (abstract) Finalize
poll (abstract) Update (abstract)
toast Roset

SetCoords
Set-Position
SetXPosition
SetYPosition
,St ZPosition
Set_Direction
Sot_Heading
SetPitch

set_Roll
Head_.Trackor Spaceball Coords

Position
X.Position

init init Y.Poaition
,poll poll ZPosition

Direction
Heading
Pitch
Roll

LEGEND: Standard_xnput

h Inherits Mouse
Event

Initialize
Update

Figure 20. Modifier Class Object Model Diagrams
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EasySim reuses the clean design of the abstract Modifier class, but re-

names the poll operation, observing that many input devices use queueing

instead of polling to gather data. For this operation, EasySim oceagain uIe C.

its ubiquitous name, Update. The function.alitv of ObJectSim's init-state, init.

and reset operations are migrated to EasySim by the Initialize constructor and

Reset operation. The Modifier class works analogously to the Environment

class, whereby smaller pieces may be Comb-,,ned i, ,, an aggregoate that follows

the architectural design established by the abstract base class. Easy-Sim pro-

vides a default Modifier class, Standard-Input, that accepts input from a mouse
and keyboard. Figure 20 outlines the Easy S.- design ^f theNl, ,difar rica-,,

3.7 The New Manager Classes

As previously mentioned, the Model, Player, and View clas ...... , in1 EAy.-,, each

form an abstraction representing a single object. However, multiple instances

of each of these classes are necessary to achieve a viable simulation. Object-

Sim handles these multiple instances inconsistently throughout the %,,.ferenA&%

classes, as the Flt_.Model class administers numerous objects, but the Player and

View classes handle only one. Easy-Sim seeks to make multiple instance

handling more architecturally harmonious, and achieves this with the %AdA-

tion of container classes to manage mutitple Models: Players, and Views. The

Easy-Sim architecture benefits from the addition of these classes, as they pro-

vide customization points for application developers that are not available in

ObjectSim,

The ModelManager class provides an architectural vehicle for con-

trolling the various Model classes that represent entities in the simulation.

This manager class defines a simple difailt oner-ationn, 4ccia ,n P.OMPl, which
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determines whether a Model already exists and should be cloned to efficiently

manage memory. Figure 21 contains a Rumbaugh diagram of the Easy'_Sim

ModelManager class.

This simple default design of the .ModelManager should suffice for most

applications, but others may wish to customize how the Models in the simula-

Easy-Sim

Model_Manager ViewManager

List (Models, Views (Views,
FileoNames) Count)

Count States (Players,

Initialize Offsets, Count)

Finalize Initialize
Finalize

As s ignMIode 1- Configure

Add
Update

lModel Set_.yiew
Sot_Player

PlayerManager

List (Players)
CountVi

initialize
Finalize

Add
Update

LEGEND:
L Any Number

Player Comprises

Figure 21. Manager Class Object Model Diagrams
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tion are manipulated. A ModelManager su-class ma' wish to define different

techniques for level of detail control or for compatibility with a different co-

ordinate system. A subclass may also simply require ,,,,.,,w,.uelfor a"-

signing the Models. The ability to easily customize the control over Models is

not present in ObjectSim, so the addition of the manager class into the

EasySim architecture has had an impact on the overall design larger than the

simple addition of functionality. Th, addtinn fof this rlass h.s rreated the nn-

tential for the addition of many functions by supplying a common architec-

tural componr.nt and standard connectors from which customization can read-

ily occur.

The PlayerNManager class also provides a simple default class, and it

maintains the list of Players that Interact in the simulation. Its operations in-

clude Add, which places a new Player into the list, and Updvre, i.... v.i-

calls the Update for each Player in the list. Figure 21 also shows the Rum-

baugh diagram representing the Player-Manager class.

The PlayerManager class also forms the arch-"tectural. Entryk, .iflt. fr .

limitless number of customizations for EasySim applications. The default class

provides no real organization of the Players, but different subclasses could

institute methods for ottimizing rendering by spatially organizing the Play.ers

[Har94,130]. An application could also add collision detection into Easyv.Sim

applications through the Player-Manager. Most importantly 'or the AFIT

Graphics Lab, the Player-Manager class provides a sound starting point for

bringing network player managers into the arrhitr ture. lda-ally3 an abstract

class could be designed that is general enough for any distributed interactive

simulation. Subclasses could be derived for each particular application, cus-
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tomizing Its specific need- accord!ng to a standard, undcrsta~ndabh archt.(.c-

tural plan.

Like the other manager classes, the View.%Linager cllas maintain. a list

aflowing a simulation to have m,,,!iple Viw4. Th,, Vipw fn n:r Ia• n

stores a list of View states, each of which describes a Player and the relative

offset of the last View attached to that Player. Administering a list of' View

states allows a View to attach to one Player at n " "u"t f"" ""e" ti'"n

period, then attach to a different Player for another time period, and then

eventually reattach to the first Player, remembering the previous offset and

orientation. This feature works norne ,asily ins ......... d.t..h..c

able-Player storing its own state, but the elimination of the AttachablePlayer

class to maintain a pure design (see Section 3.5) forces EasySim to develop this

alternate solution.

The View..Manager class provides some hasic operations. Add places a

new View into the list, SetViw activates a View, SetPlayer switches the

Player to which a View is attached, and Update calls the Update operations for

all active Views View state management L- undertAlen .1the Set Playr onp-

eration. Figure 21 shows a Rumbaugh diagram of the ViewManager class.

Like the other manager classes, EasySim's ViewManager class pro-

vides default functionality, fully ep,-tng tha, a•!tca:itlnns u•wII ritqnmi~ p

their View management by Inheriung from the component and connector

protocols established by this class. Window management will probably be the
most widely used reason for tallorin.. the \• '!"" a" er 4"c In a,,,,n,,

as each View has Its own window in the display. The ViewManager class will

also administer Input device handling, because user input is commonly ob-

tained from windows through the operating syszcnm.
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3.8 The Pfmir-.Renderler and Sinuiatio rn c~ass

The main purpose of the ObjectSim Simulation class is to glue together all of'

the other pieces within the simulation. Like many other classes, the Simula-

tion class Is abstract, and prescribes a compo0,nre nt a9nA its ro-nnoteictr w~ith~in

the architecture. Its attributes consist of Terrain and Pfmr...Renderer objects.

In order to fully, understand the Simulation class, the Pfm.rr.Renderer class

must also be examined.

just as ObjectSim prefaced the name of its Ml-Model, class to indicate its

dependence on a particular software package, the Pfmr-Renderer class is

named to show its reliance on the Performer library. Originally this class ,;as

designed to collect all of a simulation's Performer dCepedencies in one module,

so that ObjectSim would be more portable ISn)y941. While this concept is com-

mendable, it was never realized, as all of thc ObjectSimn classes are dependent&L'

on Performer in varying degrees, Besides isolatins! dependencies. the

Pfmr..Rendercr class mai~izains lists of Players and Views, and effectively only

provides the functionality for drawing the simulation. In other words, the

Pfmr..Rcnderer class is functionally oriented, and the one-ratlons that It de-

fines operate on attributes which should belong to the Simulation class. This

anomaly is evident from thc discussion of the design of the ObjectSim Sirnula-

tion class, which explains that the Simulatlon per-forms state transiions rip-

pending on Pfmr-.Renderer operations !Sny93,Flg14]. Finally, the

Pfmr-.Renderer class contains a Performer related attribute, pipe,which stores

a representation of the processors on wvhich, fefre xc t.si~apia

tion, cull, and draw threads (see Section 2.4).

The Easy-.Sim software architecture defines an abstract Simulation class
by combining ObjectSim's Pfmr-Renuderer and liu~ a~ncas Theelml
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nation of PfmrRenderer prescr.'es the in,.grit, of the object-orinted at

abstraction architectural style employed by EasySim. Like Its namesake in

ObjectSim, the Simulation class in EasySim serves as the glue that holds the

other pieces of the application togeth.r. The operations. ol' th hfil ..... . im-,

lation class are drawn from its two predecessors.

The ObjectSim Simulation class has one main operation, propagate. This

operation is abstract, and must be overridden by a subd~laq.s to updaite each

frame of the simulation. The Simulation class also provides two separate ini-

tialization operations, alloc-shared and Inittsim. Operations in the

PfiarRenderer class include render, which is the continuous 'loop that directs

the entire simulation. arbitrare. which opens screen windows and establishes

callback operations for the customi7ation of Performer's cull and draw

threads, and insertmodel, which ;Ads an entity to the simulation. ObjectSim's

PfmrRenderer and Simulation clas. -.s are representted by the -..umba-h dia-

grams in Figure 22.

EasySim's Simulation class has attributes for a Performer Pipe, an En-

vironment, a Player.Manager, a Model.Manager, and a it

builds these data structures by means of three overloaded Add operations. The

first of these operations adds an Environment and its Model into the Simulation
for a given View. The second adds a Vicnw q,*0- itc MsNi,, nr• itc arttranhd

Player and its offset from the Player, into the View-Manager. Th. final Add

operation stores a Player with its Model and its Coords in the PlayerManager

tor a given View. Each Add which deals with a Nlodacl also assigns that Mod,,,I

using the ModelManager.
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In addition to the Add operations, the Simulation class also provides

constructors, an OpcnWindowv operation, a Render operation, and an abstract

Update operation. These operations correspond to th, afloc,._oarcd an,%,,

init.sim. arbitrate, render, and propaeate operations in ObjectSim. Some of the

ObjectSlm Easy..Sim

simulation (abstract) simulation (abstract)

Randerobj Pipe

Tar ModelManagerS. .. .PlayarManager

init_sim (abstract) 
VlewrManager

allocshared Environment
propagate (abstract)

Initialize
Finalize
Configure
OpenWindo•,

PfmrRenderar Terrain Application_Name
Add

players Render
the_view. Update (abstract)

pipe SetEnvironment

init SetModelManager

arbitrate Set PlayerManager

toggle-view SetViewManager

render 
Pi pe

insertmodel Vi,,lr t11mpnt
SPlaye )1anager

V i .wManager

Fview EPlayer

LEGEND: I I
"0 Any Number < Comprises PlayerManager Vi.•w_Manager

Figure 22. Simulation Class Object Model Diagrams
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functionality assigned to the PfmrRenderer operations: such as multiple

Player and View management, are moved to EasySim's manager classes.

EasySim supplies an abstract Appj"c" ..... ,NaRnc Opera.. .tin.. ,•. %&a% app.,a:,i,.

developers can customize the title of their simulation windows. Figure 22

shows a Rumbaugh diagram of the EasySim Simulation class.

3.9 Summary of Easy-Sim Design

Figure 23 shows a Rumbaugh diagram outlining the relationships among the

classes in the Easy-Sim architecture. To summarize the discussion in this

chapter, the Model class stores databae inform,,tir•n ,ncrrib-,in, h,,,,, -in ,,hlort

appears graphically, and this functionality is used by the Environment, which

serves as the visual background for the application. The Model class may also

represent Players, which are the e.tites hoe, -.6.,,,,ondfie t, .,, .

cation. A single Model may be cloned to represent multiple Players of the same

type. The application is seen through Views, which must be attached to a

Player, and may be changed by a Modifier. A.,,1 Simulativon ... t1i the application

together and encompasses the Environment along with manager classes, each

of which administers multiple copies of their respective namesake classes.

The diagram Implies that the Simulation clas. has knowledge of the M,,ode,,

Player, and View classes.

Figure 24 shows the language Independent architectural model for

EasySim. Eas'..'Sim retains the architectural style of ObjectSim as a layered,

heterogeneous system (see Section 2,2), The EasySim layer follows the object-

oriented data abstraction style, and defines the basis for components and their

connectors in an application. Under the EasySim layer sits the Performer

layer, which is a case of the pipe and filter mode!. A! the core of the EasySh.m
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Figure 23. Simu1atlon Class Object, Mo",deldia

architecture lie the GL. rendering library and the IRIX operating system, but

they exist at a low level of cabstraction ufnd are- USenerally omltted from dsc.

sion through jut this thesis. A developer builds an application on top of this

structure, mnainly interacting with Easy...Sim. Because the lower libraries

provide powerful capabilities, the archiltecture retal-ns the 1 AV~it f 31 t %Ad

veloper to acce:;s them directly.

Ideally, the Easy...Sim architecture should be portable, and Its underlY-

rIng layers should be interchangeable witth a graphlc& library from any plat-

form. There is nothing inherent in the Easy...Sirn architectural design that
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prevents this adaptation, but no industry standards for graphics libraries cur-

rently exist. The architectural connectors that allow Interaction between the

EasySim and Performer layers thercfr1U, , OPC,,AtC ,,,,c.,,,, ,.h,.,,,c.t,,

to other commercial graphics libraries would operate. EasySim attempts to

minimize the points where any modification would be necessary, but evalua-

tion of these attempts cannot be quantified objectively without attempting to

migrate an implementation.

This chapter has discussed the architectural design issues involved in

migrating from ObjectSim to EasySim. The next chapter examines the imple-

mentation issues involved in the tr-nstion. Ada 01Y. ,u.tions re v•,.o w,,,, ?at

realize the EasySim application framework.

Application

EasySim

Silicon Graphics IRIS Performer 1-.2

Silicon Graphics Graphics library 5,2

Silicon Graphics IRIX Operating System 5.2

Figure 24. EasySim Architectural Layering
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IV Application Frame . mplen tAto

This chapter examines the implementation phase of this thesis effort. It de-

scribes the transformation of the architectural design explained last chapter

into the EasySim application firame•,..•,k. ThII. chapter ,e,,oes th " A ,%a 9

version of EasySim, but a corresponding C+4 version was also developed, so

that a fair performance comparison could be made. The differences between

these two versions are described In Section 6.3.

The discussion first covers general concepts that relate to the imple-

mentation effort. These topics include the ObjectSim framework, strategies for

migrating ObjectSim to EasySim, the framework's dependence on PerfOr•e•r,

and the maturity of Ada 9X compilers. The chapter then presents the code

template that EasySim uses as the basis for each of its classes. The final por-

tions of the chapter highlights the implementation issues specific to each

EasySim class. The details of the implementation can be found in the headers

of the Easy-Sim code, which can be obtained by following the directions at the

end of this document in Section 7.3.

4.1 General Issues

This section serves as a preface to discussing the implementation of Easy-Slm.
It presents the underl ing decisions that were, ,•4a to% for the ge-eA-1 tr-Da.

egy for the production of the code. It first examines the ObjectSim application

framework and describes the ideas considered for migrating this code to Ada
9X. This section also addresses Ea.... s dp- c-c•--., on.the Sco GrAll-

ic•s P• •efr•mer •ibrar andt VII GtN AT ompile

ics Performer library and the GNAT compiler.



4.1.1 ObjectSim ImplementatIon

Chapter III described the necessity model that Mark Snyder used to develop

ObjectSim, and discussed how the code produced b. t,.e .,, .. e...n &r. .. d, ab .tu-

dents influenced ObjectSirn's structure, While the necessity modeal o•lw•

great gains in the Lab's productivity, it had negative effects on both the Ob-

jectSim design and implementation. Snyder states in his thesis, "For each new

problem solved, the major challenge was to fit it into the architect-re ,hile

preserving a good design and not perturbing the existing code too much"

(Sny93,72J. This section addresses the consequences of this approach.
Because the C+- language used to deveop t•h•e oc,•... framew.ork. wa.

new to each of its contributors [Sny94), many of its positive features were not

exploited. The encapsulation mechanism in C,+ provides public, protected, and

fl*.flMI l
1  

l ,..laont ofMm

private sections in a class, and is used tovent g II• A;L ,A,•A"",,L VI mm-

ber data. ObjectSim makes free use of global access, however, as class members

are generally public and modified by other classes. This lack of encapsulation
results in ObjectSim's classes having low C...c,1sion, an4 high coup.lln,. and

causes logically abstruse code with untraceable effects. In addition to neglect-

ing C++'s encapsulation mechanisms, ObjectSim also avoids constructors when

initializing its classes. The omission of this basic C-4 feature is rather curiouS,

and results in the t';e of inconsistent initialization operations throughout the

framework.

ObjectSim is further complicated by the contribution of code from seven

individual developers. First, the differing styles, naming conventions, depth

of comments, and coding Idioms make various portions of the framework in-

consistent and hamper Its understandability. Second, the rapidity with which

code contributions were integrated often results in a !ack of pro,,nr ,ocuimeo-
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tation. Portions of the ObjectSim code rem-ain a .•,mpleto ,vta., Theo !o0y ,,f

encapsulation further exacerbates this matter, as an attempt to modify code in

one class often causes unexpected behavioral changes in another class.
The next section describes now the ngtie as•p.et ,

application framework affects the development of the EasySimr framework.

4.1.2 Easy-Sim Migration Strategies

Originally EasySim was envisioned as an extension of ObiectSim, with the in-

tent of exploiting reuse where possible. Because ObjectSim has proven such a

success, its code was assumed to be a viable starting point for the production of

Easy-Sim's code. However, the discovery of the problems described above

caused contingency plans to be evaluated and executed.

Interaction with any foreign language from Ada presupposes a method

of conversing with that language. This feat is accomrliqhe h.y usino Vg ca nf

bindings. These Ada packages are filled with interface pragmas that tell an

Ada compiler how to translate Ada entities to the foreign language. The Ada

linker can then interact with the foreign object code arid' incorpora i. t into%

the Ada executable file. Two categories of bindings exist. A thin binding con-
tains straight interfaces to the foreign language, and makes the caller trans-

late complex parameters so that teyare compt"bl .. th the fr,, &all-

guage's method for storing data. A thick binding is more robust and easier to

use. Instead of simply providing interfaces, a thick binding provides subpro-

grams which convert Ada parameter values to the Correct .ormat and .h.n.al

the appropriate operation. All of the migration strategies for the Easy-Sim

application framework use some form of bindings.
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The first and perhaps most grandio-se s-a•tpvy rnnidered for imple-

menting Easy-Sim took reuse to the extreme. By convincing the compiler to

derive Ada tagged types from C++ classes, EasySim would act as a binding to

the already proven ObjectSin framework. This idea was eliminated, however,

because the design ObjectSim classes were deemed incompatible with the

highly cohesive and encapsulated design envisioned for Easy-Sim. (Since the

dismissal of this strategy, Thomas Quiggle of Silicon Grap-.hicsand .r... Cyr,-iloe

Comar of the GNAT Team have successfully demonstrated this technology

[Qui94b). It Is unknown, however, if their solution can derive from C-,+ classes

with the low cohesion of the ObjectSim classes.)

The second strategy considered for the implementation of Easy.Sim also

reused the existing ObjectSim code. Although derivation from the abstract C-,+

classes had been discarded, reusing the concrete classes was examined. This

strategy would build individual bindings to each of the member fuIctions of

each concrete C++ class, and would treat them as if they were regular C func-

tions. This approach requires an additional step in designing the bindings, as

the implicit C-4 class pointer, th!s, must be passed explicitly in Ada (Qui94a].

This technique is further complicated if the C,, member function accesses

variables outside its scope. Unfortunately, ObjectSim's reliance on global ac-

cess caused the dismissal of tb.s sratef•y.

The most practical strategy for the Easy-Sirm development was also the

most obvious strategy, and the Easy-Sim layer of the application framework is

written entirely in Ada 9X. Although a mapplng betweN,, ar, eneauaed C"-

class and an Ada class package is straightforward, the low cohesion of the Ob-

jectSim classes confounds the process. The final strategy adopted by EasySim,

therefore, Implements its classes by using the ObjectSlm classes s .oIy as a 9%.%r-
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erence base. Easy..Sim does not a,,e",,t t directly translate nbject(im and

omits some of the most complex functionality contained in its predecessor.

Easy-Sim instead concentrates more effort on the architectural design and

only provides the basic functionality needed to produ"e- v,%ual simulatios.

4.1.3 Performer Dependencies

Although the final migration strategy chosen elmi,"nates the ned -, int,,f"ce,

with C+4, it maintains interfaces to the C-based Silicon Graphics Performer and

GL libraries. Performer manages all multiprocessing and drawing an applica-

tion undertakes by efficiently processing complicated data structures every

frame of the simulation. The efficient rendering of the models managed by

Performer is accomplished by GL at a lower level. In order to reap the tremen-

dous benefits offered by these libraries and achieve acceptable performance

for realistic applications, EasySim must rely upon both the Performer and GL

libraries.

As both of these Silicon Graphics libraries are extensive, creating bind-

Ings to interact with them is a complicated undertaking. Tuckily, dev p nnper.

at Silicon Graphics have built bindings to both libraries in order to produce

their Paintball demonstration program (Emb941, and they have been gracious

enough to contribute their work to this r.,r.c.,.h e.ff,.,rt. ra,,,, GL is odr

than Performer, its binding has evolved and become thick. The Performer

binding is still in its infancy and is therefore thin. Easy-Sim makes man),

additions to the Performer binding, in fact, be,-ca, the b&nin d , nor deine

interfaces to many of the Performer function calls used by EasySim.

Completely freeing the EasySim application framework from its Silicon

Graphics based environment is necessary to make the application framew,,. ,ork
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fully portable, but this division is beyond the scope .. f thlc r,,•,•.r1H P rr,-

Additionally, in order to achieve a fair performance comparison with an Ob-

jectSim Implementation, an EasySim implementation must use the same un-

derlying architecture.

However, because portability is a long-range goal of EasySim, Per-

former dependencies are isolated wherever possible. The first step in this

process is to ensure that an application developed using EasySSlm is not, for..ed

to access Performer. The second step is to push the Performer dependencies to

the bodies of components, using Ada subunits where appropriate. This ap-

proach allows a new body to be written using a different graphics library,

changing the implementation without .affec:ting the interface and therefore

saving expensive recompilations.

EasySim has allowed its application developers to lessen their depen-

dency on Performer and GL, and the example nrngram d1erribed In Section 5.1

is testament to this independence. However, most developers realistically will

want to access Performer and GL to benefit from their extensive capabilities.

The second isolation step has been real,,d fr GL, ac Eas,, S.m on..r~l1i itc

routines when opening the simulation window. This dependency is placed in a

separate subunit, and the procedure can therefore be replaced easily.

While the vast majority of .asySim's Perf.rm.er derpendence hnve

been placed in package bodies, some still remain as a.tribute and parameter

types in package specifications. Theoretically, the Performer entities can be

renamed or subtyped In one centralized location so that Easy.Sim's S,-.rt

liance is obscure throughout the rest of the framework. EasySim has proven

this approach by subtyping Performer's coordinate types. This step has not
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been taken for every Performer type, however, and it is left fr & t "a..

searchers.

Before anal3sis of the implementation strategy is described in full, the

next section covers topics relating to the compilation s ... , to i.'ie"...

the Easy.Sin application framework,

4.1.4 Compiler Issues

Just as EasySim's implementation in the SGI environment depends upon

bindings to SGI libraries, it is also reliant on the existence of an Ada 9X com-

piler for SGI's [RIX 5.2 operating system. A team at New York University (NYJ)

has been sponsored by the Ada Joint Program Office to develop an Ada 9X

compiler under GNU Public License for both Sun SPARC and IBM OS/2 systems.

Their product is called the GNU NYU Ada Translaror (GNAT), and it is widely

available on the Internet even though it is still under development. GNAT haý

been ported to run on many operating systems other than those for which it

was originally targeted. Luctily, the developers at Silicon Graphics have

ported GNAT to IRIX 3.2 for use with Paintball, and the•y. ha&ve.. •agr- .ainl. to,,

contribute their work to this thesis efort.

GNAT is part of the Free Software Foundation's gcc compiler family. Gcc

accepts code in a wide variety of languages, transforms that c.de .;t,, a I=,-"

guage specific front end, ard generates executables with a common back end.

Use of this common back end makes GNAT quite mature for its age, as gcc has

been continually improved over the last decade. However, the A... t e%"

front end Is still rather Immature and has plcnty of room for growth.

A new version of GNAT is released roughly once a month. The version

of EasySimn baselined for this thesis is compiled undeir GNAT versioil 1.S3. Un-
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fortunately, this version does not fully -Implee-n, evry A,2 9Y f,•t,¶rm tha

EasySim attempts to use, and alternate solutions are developed In these infre-

quent cases. Private extensions for derived tagged types is the most important

of these incomplete features. To correct this problem9, th.e t,,, ovt e•r•, scr,

in most Easy-Sim classes remain public. Other compiler problems include the

destructor Finalize not being called automatically, and occasional semantic
confusion when a nested function call is misIrterpreted., " Neithr of thee

cases cause much trepidation, thankfully, as Finalize is called explicitly, and

the data obtained with function calls is accessed directly.

GNAT version 1.84 has been released on a small scale si.l.. th. baselin-

ing of Easy-Sirm, and the arrival of its successor, 2.00. is due. The GNAT devel-

opment team has addressed the problems above, as they use ERsySim as one of

their test cases. This thesis therefore assumes that the problems mentioned

above have been rectified, and presents the impleentr.a.tion of Fasy_.Sim as if a

complete Ada 9X compiler were available.

Discussion now concentrates on the Easy-Sim implementation, starting

with the package that serves as the parent for the Eas.-ySim framework.

4.2 The Easy-Sim Parent Package

The Easy-Sim application frameworkIK'•s .mpl nt'aton in Ad 9X employs hi-

erarchical library units to create a large, logically related subsystem, while

maintaining small, physically distinct pieces. This notion creates a cohesive

and understandable hierarchy that remains modular an.,d, "man,,age,,,able.

At the root of this subsystem lies the EasySim package. Nothing needs

to be placed inside this package, but it must exist to serve as the skeleton that

provides the basic structure for the rest of the hierarchy. For convenience,
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entities commonly used through"out the , Ea..y A... °,ramew ork arepace ,"+',

the parent package, because all declarations in the parent are visible to any

child units. The coordinate types from Performer are subtyped here, because

they are used by many different classes. An operatIV,, to , e.aud oorna.t u,,, ,.es" "

from a file, ReadCoords, is also localized vith the type on which it operates.

The context clauses for packages accessed throughout the framework are de-

clared ahead of EasySim. These clauses include the Perform'•er bindings arid

Ada.Finalizatlon, which declares the root types for controlled types.

Before analysis of each class in the EasySire application framework oc-

curs, the next section describes the commonalities that exist in each class.

4.3 Easy-Sim Class Package Conventions

Because the classes in EasySim use the ROMAN-9X technique for their Ada 9X

implementation, they each share common naming cnnventinns, noding idinrnq,

and a general structure (see Sections 2.1.4 and 3.2). This section presents the

code that all classes have in common, so that is not repeated throughout the

discussion. It also addresses the additionns t, •ROMAN- th,° ,Al,. ,a s•e-.

cially for EasySirm..

Figure 25 contains the general outline of the code used to a class in the

EasySim application framework. A herarchical l Ibrar, ,,It encapsuate,

each class, and this package is a child of the framework encompassing pack-

age, Easy-Sime. The class is defined as a controlled tagged type called Object,

and may be abstract. New attributes used to extend IIIs ty.e are d,•.•c.a.. ILA

the private part. Each class provides a classwide access type, and this type is

called Reference. Controlled operations are declared, and a parameterized ini-

tialization operation, Configure, is also supplied. The parameters to Configure
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are often given default values, so that they, onhy need be addressed in up nirie

cases. The class package then declares its main operations, which usually in-

clude Update and Draw, and they may be abstract or provide default behavior.

The Set procedures and Get functions are thenn d•earend fnr tho ,rtrihiitr for

which they are needed. The Set procedures are named explicitly Set-(Attri-

bute), while the Get functions are named by the attribute they return. Because

the Get and Set subprograms a~e usually simpl.e prag.a I.nAA.n.. .so to

them to optimize the code's execution time. In the actual type extension,

attributes that are instances of another class are stored as OtherClass.Ref-

erence. This indirection is necessary so that the attribute can be passed to and

from class operations, including the simple Get and Set operations, without

violating the one tagged subtype per operation rule [RM94, 3.9.2.12]. The use

of a pointer also more closely models a real world situation, where only one

copy of each entity exists.

Two categories of EasySim classes are declared at another level of depth

within the Easy-Sim framework. The manager classes exist as hierarchical li-

brary units within the class they manage. The Player Managpr rlas. npacrkage

for example, is declared as Easy-Sim.Player.Manager, logically adding a Man-

ager child package to the EasySim.Player package. This technique of embed-

ding packages is also used for the default tmplementatinn oF the Classes crh

as EasySim.Environment.Terrain and EasySim.Modifier.StandardInput that

are provided for applications developers.
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with Easy-Sir..OtherClass;

package EasySim.Class is

type Object is abstract new Ada.Finalization.Controlled with
private;

type Reference is access all Object'Class;

poceadure Initialize (Instance: in out CbJect);
procedure AdJust (Instance ± in out Cbjez:);
procedure Finalize (Instan :e in out Ozezt);

procedure Configure (Instance : in out Object;
Par&meter : in Paraeter.-ype := 0:;

procedure Update tZnstance : in out Ctject) is abstract;
procedure Draw (Inszance : in out Obfect) is abstract;
procedure Operaticn (Instance : in out Object;

Parameter : in Paramater_76ype);

procedure SetAttribzteA
(:rnstance :in out Object;
TcAttribute-A in At:ribu.e_.".-pe:;

procedure Se:_AttributeP
(Instance 2 in out COject;
Tc_A:tribute_3 : in Easy_$ix.Czher Class.Reference);

pragma Inline (SetAttribute._A, SetAttributeB);

function AttributeA (Instance : Object) return AttributeType;
function AttributeB (Instance : Object)

return EasySin.OtherC.ass.Reference;
pragma :rline (AttributeA, Attribu:e-t:;

private

type Object is abstract new Ada.Finalization.Controlled with
recordAttrib'utaA : Attribute .lpe := Attribute_-:LitiaiValue;

AttributeB : Easy_Sim.Other-Ciass.Reference;
end record;

and EasySirr.Class;

Figure 25. General Easy-Sir, C)as1 Format

The package specification in Figure 23 represents the basis for all of the

class packages corresponding to the EasySim architectural components. The

rest of the chapter describes the features of each class .haN .,k iUs
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implementation unique. Discussion Starts at the hnrrnm nf the dependency

chain, and progresses until the Simulation is reached. The code to accompany

this discussion is not included in the text due to its length, and the figures in

Chapter III can help the reader follow discussion. Secotin 7"3 describes

methods by which the reader can obtain a copy of the code.

4.4 The Model Classes

This section discusses the Model and Model-Manager classes, which are re-

markable because of their simplicity. The power of Performer accounts for

this positive property, as the library supplies most of the functional.ity. ML..-

el's Configure operation, for instance, turns graphical database geometry built

from many different tools into a Performer rendering tree node with one call

to Performer's LoadFiIe function. The remainder of this section examines the

Adjust operation in the Model class and briefly describes the workings of the

ModelManager class. Figure 16 shows the Rumbaugh diagram of the Model

class, while the ModelManager can be found in Figure 21.

The Model class is unique among the EasySinr classes herause it is the

only class whose Ada type, Object, is controlled, instead of limited controlled

(see Section 2.1.2). This trait follows from the need to copy instances of the

class (see Section 3.3), which does not Tx;st elsehere. The Mnrp ,i-i prn-

vides both a procedure and function to Clone Models, and both of these rely on

the controlled Adjust procedure and a Performer Clone function to accomplish

their objective. The Adjust procedure, however, wa.,not as st,,•,htfo""ard to

use as originally envisioned. Because it only takes one Model.Object parame-

ter, the notion of source and target for assignment inside Adjust becomes

rather clouded--the parameter must serve as both. A"h-o" s"luo- ito sta r wi th.-dA
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a temporary variable as the target and the parameter as the soue Per-

former's Clone function is called on the parameter, with the result saved to the

temporary variable. The final step is to assign the temporary back to the pa-

rameter. This step must be accomplished using the recorra rnmponents of the

Model.Object, as assigning the Model.Object itself will result in infinite recur-

sion. The remainder of the Model class is implemented in a straightforward

manner.

The container that differentiates Models, the Model.Manager class, uses

the file name containing a database to distinguish various Models. It stores a
list of these file names and their accompanying M,,Aode. The, Aroon,4 k,,,,&.

procedure Is given a string parameter. File_.Name, which it compares against

the names in the list using the private Index function. If a match is found, the

Model being assigned is copied from the Model at thle at nex in the

list, using the Model.Adjust procedure. If no match is found, Model.Configure

is called to convert File-Name Into a rendering tree, and the new Model and

File-Name are stored in the list. The reader should note that if two distinct

files contain the same Model, the Model.Manager cannot recognize this equal-

ity. The developer can also use this trait if, for some reason, he does not wish

Model cloning to occur.

The next section examines the interesting aspects of the Environment

class and its descendants.

4.5 The Environment Classes

This section analyzes the Environment classes in the Easy-Sim application

framework. It begins with the abstract base class, then discussion turns to the

Horizon and Sun building blocks, and the secton o.u,. ,, b, decribin. t, e
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default Terrain class. Figure 17 shows an Object Model diagram of the Envi-

ronment classes.

The abstract Environment class works quite simply. The Initialize op-

eration allocates the Model that represents th.e simulation's b eaground. The

Set-Model procedure is used to assign the Model, and the Image function re-

turns the root of the Model's rendering tree. The Configure procedure places

the Model's local tree into the Simulation's tree by using a Per. fOrMe, r c.all to

add the Model to the tree node which it is given as a parameter. This technique

is used throughout the Easy-Sirm classes, in fact, wherever a Model needs to be

placed in the Simulation's rendering tree. The only other operation in En&At

ronment is the abstract Draw procedure, which forces a subclass to declare if it

intends to do unique rendering on the draw thread. Examples of this special

drawing includes landscape grids or text overlays.

The Terrain class is derived from Environment and joins the basic

functionality of the Horizon and Sun classes to model the earth, sky, and sun-

light. All of these classes were based on the ObjectSim Simple-Terrain class,

but modularizing the prev.,-,sl,,,,, monolithic class has allowed for greater pos-

sibilities of future reuse at both the design and coding levels.

The Horizon class uses the basic Performer earth/sky capabilities, ESky

It establishes a green earth and a blue sky that gets gighter with increasing

altitude. Its values are hard coded and taken from many of the examples pro-

vided with Performer. Performer requires the Esky to be attached to a window,

or Performer Channel, as it does many iteMs. The Crnffigure., ,,,,On. ••W, o ,.ea o ts

this parameter and makes the proper call to fasten the Esky to the window.

Performer automatically draws the Horizon for the rest of the simulation, and

no Update procedure is necessary for the class.
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The Sun works similarly, but has attributes f.o its Pos°t"o, and Amb!

ence, and is an Instance of the Performer LightSource type. Ambience Is simi-

lar in effect to brightness. In the Initialize constructor, the LightSource Is

allocated, the Position and Ambience are gi"ven defalt values ,a•, the 5:,,* ia

set to shine from directly overhead. Performer requires a LightSource to be

Included in the rendering tree, and the Configure operation places the Sun in

the tree as Environment.Configure did above. Once the Sun is part of the " en-

dering tree, Performer automatically draws it every frame and no Update pro-

cedure needs to be provided.

The Terrain class brings together the Environment, Horizon, and Sun in

a direct manner that shows the benefits of the building block approach. The

Terrain class has both Horizon.Reference and Sun.Reference attributes. Its

Initialize calls its parent's Initialize and invokes Its attributes' Initializes by

allocating them. Terrain.Configure likewise calls the Configures for its parent

and components. Terrain must override the abstract Draw procedure it inher-

its from Environment, and it makes this procedure null. Because Performer

handles the execution of its attributes, it, alse tr-Ainithtrlv, TUrnitpt thp Tprrain,

and after initialization is complete, there is nothing more to do.

This section has described the ease with which a default Environment

can be created due to the building block,• ,-,ppro,-hn. The nxt nwcartio' higlh-

lights the implementation of the Player and Player.Manager classes.

4.6 The Player Classes

This section examines the interesting aspects of the Player and

Player-Manager classes of the Easy-Sim application framework. The Rum-
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baugh Object Model diagram for the Play.r class is fou,,nA in FiTiue 1, R anti ig-.

ure 21 shows the Player-Manager class.

The abstract Player class provides the basis for entities within the simu-

lation. Its controlled Initialize procedur, al•lnoca its MntdI 2trrihltp, ind itv

Configure procedure adds the Model's geometry under the given node in the

rendering tree. Both the MoveStraight and Look-At procedures use analytic

geometry principles to calculate the new Position an"d nir.ct-ion, -f t Vhe 4 Plyr.

An instantiation of Ada 9X's new Ada.Numerics.GenericElementarvyFunctions

package is used in MoveStraight to calculate the Sin and Cos.

The Player class provides an extensive set of Cet and Set operations so

the client programmer can gain access to encapsulated data. The Model at-

tribute is accessed by both Image and Model Get functions, with the Image re-

turning the rendering subtree for that Model. The Coords attribute, wich,c

contains two arrays of three values each, has flexible Get and Set components

which return world coordinate values to a client programmer. These opera-

tions include Position, XPosition, Y..Position, ZPosition, Direction, Heading,

Pitch, and Roll, in addition to Coords. This finial operation i.s over oaded and

can be addressed as a whole or as a Position and Direction pair. Because the Co-

ords operation cannot return two values, the Get operation for the second Co-
ords is a procedure called GetCoords. Fnl,, th ,lay, r,.as•s ,•, lo• 3n ah.

stract Update procedure through which a client programmer must define the

behavior of the subclass.
The Player_.Manager class provides• dea,,t -d,,-ltr,-o, ,f the Play-

ers who interact in the Simulation. It stores, List, an array of the Players as

well as the Count of Players in List. The Update procedure simply calls Update

for each of the Players in List. The Add procedur tak"es in a Player .. d a nde
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under which the Player gets stored in Oh, ronAorin, t,,o A•A, inr.,•Pnt.

Count, adds the Player to List, and calls Player.Configure passing the tree node

under which the Player's geometry will be attached. Client programmers can

override the simplistic operation of the Pi•yp,•ye .nagr if they, so rhnosp

This section has highlighted the implementation of the Player and

Player-Manager classes. The next section looks at the abstract Modifier class.

4.7 The Modifier Class

The abstract Modifier class is intended to provide the means through which a

user of an Easy-Sim application can Change t. Vie .W. A ....... ,,te Vodifier..

does not have access to the View, however, it simply stores its own state and

lets the View read that state to update itself. This section looks at both the ab-

stract base class and the Standard-Input default subclass. Figure 20 shows the

Easy-Sim Modifier class hierarchy.

The abstract Modifier class contains a Coords attribute that maintains

the offset between the View and the position and direction to which the user

has moved and pivoted. The Modifier therefore has a s1ew of Get and Set at.-

tributes to access these values. Unlike the Player's global coordinates, the

Modifier class maintains local coordinates, in that its Coords are an offset and

pivot relative to the View. The Reset p,--,,r- cs trio the vnq of th, nffpy ,nd

pivot all back to zero. The abstract Update procedure is the connector through

which subclasses define how the Coords are changed.
The Standard-Input subclass of Mod•f•l- er"piro"bve inp'"t imone, fr''- the

mouse and keyboard, and is only partly implemented. The package maintains a

list of Boolean flags, each of which represents a key press or mouse click

during a frame. The flags are maintained - &_a'-".' he• .a.. , ... ftc.--
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tion so that client packages can reset them after their m. A finctionn

Flag-Copy, returns a pointer to the structure, and it is the preferred method

through which the flags are accessed.

The Standard-Input class operates by means of Performer utilities that

collect input from the mouse and keyboard through the simulation window.

The Initialize constructor initializes both the Mouse and Keyboard compo-

nents, and the Update procedure defers to Rea&M.1 us, an.d. .ReC 2 d6,e,,6- , AL."a

each of which checks the queues for each part of each device and updates the

corresponding input flag if necessar3'. The StandardInnut package currently

reads data, but it does not modify its inherited Cords attribute-'. Thi, te W. O

the next addition scheduled for the Easy-Sim framework when it was baselined

for this thesis.

The Modifier class currently Is the location in the EasySim arch"tec-

ture where it is most sensible to store the input values that are used through-

out the Simulation for executive control. This approach may not be the best

model to achieve this effect. Section 7.2 contains discussion of alternate solu-

tions.

This section has outlined the operation of the Easy-Sire Modifier class.

The next section looks at the EasySim View and ViewManager classes.

4.8 The View Classes

The View class provides the ability for the user to look into the Simulation, and

each View can be thought of as a dff*ere.t wi•nadoto th•e# 5sce.n.e A&

must be attached to a Player within the Simulation. The ViewManager class is

responsible for administering multiple Views, and it keeps track of the list of

View states. Each View state contains a Player and the ofA'S," and rotato,-t" of
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the last View that was attached to thart Pla ,v Thit •ertinn ,vxm;rin tho im-

plementation of the View and View Manager classes. Figure 19 shows the

Rumbaugh diagram of the View class, while the ViewManager can be seen in

Figure 21.

The View class maintains attributes for the Modifier and Player with

which it is associated, its local Coords relative to the Player. and the Performer

types Channel and Scene. The Get and Set attributes f-or the co.mpon.n. .....

are straightforward. The Performer types are controlled by the View. and Set

procedures are not available for them, although they can be accessed with Get

functions. The Set procedures for Coords all expect local coordinates, and the

Gets on the entire Coords structure also return values relative to the Player.

However, the Get functions all return world coordinate values, as they com-

bine the local Coords with the Player's world coordinates by using matrix

transformations.

The View's controlled Initialize procedure creates a new Scene that

serves as the root of the rendering tree for the items In that View. The Con-

figure operation is rather bus), in the Viae- rcias. The Cnfigirp ,r-%e the,

processing Pipe on which the Simulation is operating as a parameter, and the

Pipe is required by Performer to allocate the Channel. Configure also fastens
the Scene to the Channel and sets up d.fa,,lt ,,Ol, fr ,14% "l,,a-c the

View can see. Finally, Configure establishes the calibacks for Performer's cull

and draw processes.

The Cull and Draw procedures provide defAult h.ple.mel.- t.t.on. s f. r -.-. •-i

respective threads for the given Channel. Cull calls Performer's cull function,

while Draw first clears the Channel and then calls the Performer draw func-

tion. Pre-Cull, Post-Cull, Pre-Draw, and Post-Draw procedures are providied by
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Easy-Sim, althouj' they were omitted from Figure 19 due tr cne- ronstraints,

They are called before and after their respective Performer functions to allow

maximum flexibility in apr'ication customization. They all defoult to null ex-

cept PostDraw, which nakes the l Perfrmer uttiliy, a211 tn f-nllUrt iirpr inmit

Because of the currently unresolved incompatibilities between the C-

based Performer execution and the Ada 9X callbacks, no Ada variables can be

accessed inside any of the callback operations, either global" y or through- the

parameter list. However, as this process was not necessary to achieve a work-

ing simulation, not much effort was put forth in finding a solution. Section

7.2.2 addresses possible corrections to this dilemma.

The incompatibility between the languages also affects the ability of the

application developer to customize the callback operations. Because the Con-

figure operation establishes the procedure to which the callback occurs, it

must be overridden first. The new Cull or Draw procedure must also be over-

ridden, and then any Pre or Post operations on it can also be redefined. While

this process seems like extra work, C+- also does not allow callbacks to virtual

functions, and a similar strategy must be applied there.

The final View class operation, Update, first updates it- local Coords with

any new changes from the Modifier. It then calls its own Get functions to ob-

tain its Position and Direction in w.,orld coordinates, and it nniias thic infrrma-

tion to Performer so that the View can be placed correctly to look into the

Scene.

The View Manager class maintains two lit % -th'_ .

View Stares. The controlled operations and Configure currently are all null

operations. Because no testing has been performed with multiple Views, their

discussion here is limited. The remainder of this section" d.s.s... I',w .. a.e;.
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M, Itiple Views can be added to the Views lirt hb tho Arid prcerdrurA. I ikp .

the PlayerManager.Add, this procedure increments the Count. places the new

View into the Views list, and calls Configure on the new View paSsing .the P 1-,e

parameter it was given. The SentV ,-i, prroedurP taepsz 2 a.ivtn- Vipw, finrds It in

the Views list using an Index function, and activates it by setting a Boolean

flag. The Update procedure iterates through the Views list, and calls Update on

the Views which are activated.

The Set-Player procedure takes a View and a Player with the intent of

attaching the View to the Player. The use of View States allows the View to be

placed at the same offset and rotation from the Player as the V", ", .... Wa...

attached. In order to achieve this effect, the first step in this procedure is to

remember the current state of the Player being detached. This step is ac-

complished by a procedure within the body of the package, .•',;ve_Srvc. The

next step is to call the View.SetPlayer procedure. Finally. the Coords of the

View must be assigned to the last state associated with the new attached Player.

This step is performed by another hidden subprogram, the Offset functiorn,

which recovers the old state from the States list,

This section has summarized the implementation of the View and

View-Manager classes. The fina: section of this chapter highlights the opera-

tion of the EasySim Simultio, class, which Ic thp r•pnrnnp nf tho% Easy Sim

framework.

4.9 The Simulation Class

The abstract Simulation class provides the structure to bring all of the pieces

in a visual simulation together. The basic interaction with Performer occurs

in this class, establishing the foundation of the aC--rr;,^,,, Ths eo,, ,-
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scribes the implementation of the Simulation class. Figure 22 shows the Rum-

baugh Object Model representing the EasySim Simulation class.

The controlled operations for the Si.mul, ,a clas. rewsp-•et.,y ,- 1 tle

Init and Exit functions of Performer. The Configure procedure has a long list

of parameters, all of which provide information to configure Performer dif-

ferently, and all of which have normal default values. These parameters ad-

dress such Items as the FrameRate desIred for the applicatinn, the _nnuMode

that will be used to gather user input, the MessageLevel describing the

amount of processing information the user would like displayed to the console,

and so on. Configure uses all of thes, parameters to nrpnnre the anpliration.

and finally calls Performer's InitPipe function which performs a callback to

Open-Window to start the Simulation.

Open-Window is implemented as a separat.e subuit because it. r,

only part of Easy-Sim which uses GL functions. It calls Application-Name as it

issues the window opening command so that the application developer can

customize the title of the window in which the simulat-ion -S rnd.ered. Jusa as

the callbacks in the View class have inter-language communication problems,

so does the Open-Window procedure. Any attempt to access the application

name globally or through parameters falls, and the function call IS u-sed "e-

cause it works.

The Simulation class has five attributes. Environment, ModelManager,

PlayerManager, and ViewManager are all class References, and they have

both Get and Set attributes. The Set attributes for the manager classes act

slightly differently than normal Set operations, because they all take null val-

ues by default and allocate themselves the first time they are called. This imi-

plementation was chosen because of the privacy problem caused by sabciassel
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not being able to access the components of their parent (see Section 6.3). Al-

ternatively, the managers could all be allocated in Initialize, but thiq arnproach

prevents them from being overridden e"aSll. The flfth r is Pie th

processor model from Performer. This value is initialized in Configure and

cannot be changed. Pipe therefore only has a Get function associated with it.

The Simulation class declares three overloaded Add procedures, to re-

spectively add the Environment, a Player, or a View to t.he Simulation. These

opcrations are where the Simulation ties all of its pieces together. The Add

View must be called before the others, so that they can be placed in a View.

Add View takes a New.View, a Player to which It will be attached. a Modifier if

one is needed, and either a set of Coords or a file from which the Coords can be

read. The procedure first calls View.Manager.SetPlayer with the given

Player and then calls SetModifier. These steps ftste, these irtnm to the View

The next step calls View.SetCoords to set the offset from the Player, either by

assigning the given Coords, or by calling ReadCoords to retrieve the data from

a file. The latter method allows applications to be easi'ly ,hanoe•, uithr,, re-

compilation. Finally, the Add View procedure calls View.Manager.Add, and the

View becomes part of the Simulation.

The Add Environment procedure takes aroaeo,, r, fr the

New-Environment, a View to which is attached, and a ModelFile containing

the graphics database. The procedure first calls Model.Manager.AssignModel

and Environment.SetModel to get the Model and attach it to th"e Environ-nt..

Environment.Configure is called next, passing the Channel and rendering

subtree so that any necessary linking between the Environment and the View

can occur. The final step is to call Set-Environment with the
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New-Environment, ensuring that the Simulation is also properly tied to its

background.

The third and final Add procedure adds a NcwP,_, , rto the ,

and it combines the features of the other two Adds. Add Player takes parame-

ters for the View it appears in, its ModeLFile, and either method of passing its

Coords. Like Add Environment, it first calls Model.Manager.AssignModel and

Player.SetModel. Like Add View, i, t1,e- c-!!s ?!ave,-Set bnnren nprhaps hy

reading from a file first. Finally, Add Player calls Player.Manager.Add to en-

sure that the Player becomes part of the Simulation.

The culmination of the Simulation occurs in it. Render. rore.... Thi.

procedure loops continually, causing Performer to draw the application on the

display. Render first calls Performer's Sync function to coordinate all three

Performer threads on a frame bound'ary. It thben '1 na or Uindate rto

Update the positions of all the Views. Render's call to the Performer Frame

function causes the start of the cull and draw threads. The Player.Manager.-

Update is called next, to move all the Players In the Simulatin. r{,nal,,,,,, the

Simula"on calls its own abstract Update procedure, allowing any overriding

functionality of its subclass to be incorporated into the main rendering loop.

Usually, user input that controls the flow of the application is processed here,

possibly ending the loop. Otherwise, another frame is drawn, and so on...

This chapter has described the implementation of the Easy-Sim applica-

tion framework. Most of the discussion here holds in both the Ada 9X and C-+

versions, with the differences described in Section 6,3: instructions on

obtaining the Easy-Sim code appear in Section 7.3. The next chapter describes

an Ada 9X Implementation of an example application using the EasySim

software architecture and application framework.
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V Example Application

This chapter describes how to develop a basic visual simulation using the

Easy-Sirm application framework. It first does this by presenting an example

application, the Circling Planes. The example "lads the Acader thkrougah• Ufha

entire application development process. The chapter ends by illustrating gen-

eral guidelines for deriving from the different Easy.Slm classes to develop any

application.

5.1 The Circling Planes Example Application

This section covers the complete development of an Ada 9X solutiOn s,, fr .a.

application. The overall plan for the simulation is described first, and then a

detailed look at each of the necessary components follows.

This simulation, Circling Planes, involves two aircraft circling over a
ground-based background and a observation point from which the planes can

be tracked. The simulation's view can be attached to either of the planes or the

tracker point, and can be switched between these entities by using the mouse.

This application is taken from Example 2 In th,,, Obje,,,. Ar.•i.Dee•rin. . .Vp-n..

er's Manual [Sny93,A7-16).

The Circling Planes simulation mainly uses the default classes supplied

by the Easy-Sim framework, but It also derives app,, sp,.cfc, c-mp-

nents from Easy-Sim's abstract classes. Figure 26 shows an Object Model dia-

gram representing the overall design of the system, with the Easy-Sim frame-

work shown in the top portion, and the application spe..'fil-c ca-•ss,•s& ow, .,

the lower portion. Bold lines show inheritance relationships, while normal

lines show aggregations and regular associations.

105



Easy...Sim
gySe 26 rc PansSimulation t

"Te Player c t Model Pnre an easManager seated Manager anmetit

r ie w Attached To keetsoomy RepresentsChan•L ged By- ver

appliction ackgrond uss Eas..Sms stnad.erincasadthrfr

Circling A'-
Planes bCircling-Planes 

n

hndardjnput oerrcas

"1Observ

0 Any Numbre 00optional 0 Cci•ripries An -nherits

figure 26. Circling Planes Simulation Object Mlodel Diagram

The Player class provides the basis for both the Plane and Tracker
classes, and each Tracker Is related to the Player it follows.. (This a.•ýoclation is

restricted to Planes in Figure 26 to keep too many lines from crossing.) The

application background uses Easy-Sim's standard Terrain class, and therefore

includes basic representations for th e H or.i zor %r 4 "jn d Szm.a h,,,, tu,, i.5 o -tof i..t -

the application through the use of Easy-Sim's Standard-Input Modifier class,
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which provides services for keyboard and mouse en,-trie5  V.in;Ily, the Cir-

cling-Planes class is derived from EasySim's Simulation, and serves to con-

nect all of the pieces to make the application.

The remaining portions of this section conentrte nn earh of the

classes derived to make the Circling Planes example. Because these classes are

not part of the EasySim application framework, they are not declared as child

packages of EasySim. Instead, they each stand alone. The PMane class 'IS he

first to be examined.

5.1.1 The Plane Class

In order to simulate an entity within an EasySim application, a subclass of the

Player class must be defined. To simulate a plane, the new class is appropri-

ately named Plane. An instance of the Plane class moves by simply moving

forw'ard and changing its heading to the right, each frame;, making a clockwise

circle.

To implement this design in Ada following the Easy-Sim architecture, a

class package named Plane is created Which derives its Class tvip Obiert from

EasySim.Player.Object. This step requires access to EasySim.Player through a

with context clause. The Plane class dres not need to add any attributes to the
Player class, and inherits the majority of its pre nt tionwtd

fication. To be consistent with Easy-Sim structure, the Plane class declares a

classwide access type, Reference, and places its attribute extensions in the pri-
vate part. The circling movement of the PLane is a.omp...h. d by ,,rdn

the Player's Update procedure. Finally, the Player's abstract Draw procedure is

also overridden, but because no special drawing is needed in this application,
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witb EasySin. Player;

package Plane is

type Object is new Eas .... . .. . a.. .

type Reference is access all Object2.lass;

procedure Update (:nstance : in out Objec:t;
procedure Draw !vnstance : in out Cbtect);

private

type Object is now E-s' _- P ,rI.% -- ,v-;-t with null roeord-

end Plane;

Figure 27. Plane Class Package Specification

this operation does nothing. Figure 27 contains the Ada package specification

for the Plane class.

The body of the Plane package is slightly more complex. The body first

shows its dependence on the Performer's pf library by accessing it via the

wi th clause. The Plane implementation also intrd,-"•"w rho . -cir Tvn pa-t."A..

age, which .s implemented to provide Ada types analogous to the C types used

in Performer. The Update procedure then moves the Plane forward by calling
its inherited MoveStraight procedure, and decrements the Plane•', heading by

using Get and Set operations and a temporary variable. The use of this vari-

able ensures that the Plane's heading stays within a realistic range. The final

step in Update is to change the coordinates for the Plane In. the ,nnderint;,-A%." tree,

and this step is accomplished by means of a Performer call. The implementa-

tion of the Plane class is completed by providing a dummy procedure to over-

ride the Draw procedure. Figure 28 shows the body of the Plane package.
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with PerformerP!;
with BasicTypes.

package body Plane is

,.-ocedura Update 'Instance : in out Obiact) is

Ne',._Heading : Easic_¶v,pes.Flont32 C.C;

begin

MoveStraight ;rnstance, 4.0:;

NewHeading := Heading 'Znstance) - 0.5;
if NewHead'.ng < D.0 then -- Wrap arcound i! !ull circle

Nev._Heading :=60.;
end it;
Sat_HHeading (Instance, Ne-e.NHeadina):

Performe._Pf.P.DCS.oord (Tna•ge eInstance', Ccords !Instance));

end Update;

procedure Draw !Instance : in cut Ob-ectj is
begin

null;
and Dra;..";

end Plane;

Figure 28. Plane Class Package Body

5.1.2 The Tracker Class

To observe the circling planes, another Player s,,l, sis Nedatihe TraCker.

This class has no model of its own, and merely exists to watch another Player.

Like the Plane class, the Tracker class inherits the majority of its attributes

and operations from Player. It does add an a-tr"u .... k% A..V r. VU ackck, t, Ato,.% e

a Reference to the Player being tracked. It also adds a Set operation to modify

its new attribute. Tracker overrides Update to define its tracking techniques,

and must override Draw to become concrete. Tracker also redefines 'n"-'ali--
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with EasySim.Player;

package Tracker is

type Object is new EasySim.Player.Object with private;

type Reference is access all Objec't'-ass;

procedure Initialize :Instance : in out CbJect);

procedure Update (Instance 1 in out Ob- ct);

procedure Sat_Trackee
(Instance : in out Object;
_o_Trackee : iz EasySSirr.Player.Reference);

pragma In2ine (SetTrackee ;

private

type Ob-:ect is new Easy._Sir.. "- yer.Obe-t with
record

Trackee : EasySirn.Player.Reference;
end record;

end Tracker;

Figure 29. Tracker Class Package Specification

here to demonstrate this process, even though it is not necessary. Figure 29

outlines the Tracker package specification.

The body of Tracker Is similar to P.lae, but due o ,ts.r l,-ac, of a Model, hac

no dependency on Performer. The Initialize procedure here is superfluous,

but serves to show the concept of view conversion. To reuse the steps in ini-

tializing its inherited components, -,..,.%. ,,1 s.1,I, cals jpare-n,'s

operation. Logically, this call passes only the components of the parent record

type, and Tracker is free to initialize its new components afterwards. The Up-

date procedure uses the inherited Look-At procedure to ordent, th TrAke %.N% .

wards the position of the Trackee. It finds this position by dereferencing its

component's pointer and calling the Get operation on the Player.Object'Class to

find its location. This technique works on any Player subclass, as the tag of
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package body Tracker is

procedure Initialize InsranzG : in out Objezt) is
begin

Easy_Sim. Plaver.Initialize (Easy_S4i.?layer.Object :.:nstance';
"rnstance.Trackee := null;

end :nr.itialize;

procedure Upda:e (Ins:ance : in out Ob:ecz) is
begin

Look_At (Instance, EasySim.Player.Positior.(Irstance.Trackee.all));

and *Cpdate;

procedure SetzTrackee
tInstance i;n out Cb/iect;
ToTrackee : in EasySii.Playe-.Referen-e) is

begin
Instan-e.Tra-kee := ToTrackee;

end SetTrackee:

procedure Craw CTnstance : in out Cbfact) is
begin

null:
end Draw;

end Tracker;

Figure 30. Tracker Class Package Body

Trackee's designated object dispatches the call to the ,propriate Position

function. Figure 30 contains the body of the Tracker clas package.

5.1.3 The Circling-Planes Class

As stated In the design chapter, the Simulation class serves as the organiza-

tional fulcrum of the application, tying together all of the simu.lation's pieces.

This application, Circling-Planes. is no different. The context clauses show

that it uses the Easy-Sim classes as building blocks. The class type is derived

from Easy..Sim.Simulation.Object, and 'At a-tr -%i,,t dAeinh the antetest in% nhyatd
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with EasySir.. Player;
with EasySim.Modifier;
with -asySinr..View;
with EasySirr..Simuia'ion ;

package CirclingFlanes is

type object is new EasySim. Si.ulatior..Object with
private;

type Reference is access all Oec:'C!ass;

procedure Initialize tIns:ance in out Chjec::;

procedure Updat• (Instan=& in out Obtect);

Quit_Program : exception;

private

function ApplicationNarne 1ns:ance : access Chjec:
return Szring;

type Object is new EasSim.Simuation.Ob•-t with
record

MairView : Easy_Sire.View. Reference;
Tracker : Easy_Sim. Player.Raference;
FlightLead : Easy_Sirr..,ayer.Reference;
Wing_MJn : EasySin.rPlayer.Reference;
Input : EasySim..Xodi-ier .Reference;

end record;

and •irclingPlanes;

Figuie 31. Circling-Planes Class Package Body

in the application. There is one View, Maln.Viewf three Players, Tracker,

FlighrLead and WingMan; and one i~nsPut dev"Ce", "n" "ot. T ,- ,nr%-iirtn--,r

Initialize, defines the relationships between the different attributes, and Up-

date defines how input affects the Simulation each frame. An exception,

QuiLProgram, provides an avenue for gracefully exiting f•rom the ,-her

Render loop. Finally an overriding private function, Applicatlon-Name, al-

lows the window to be labeled with the title of this example. Figure 31 holds

the code for the Circling-Planes specification.
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with Perform.erP!;
with PerformerPfut i" ;
with Easy-St:n..Envrxronr~ent.Terra in:
with -asySii.Mcdi fier .Standard_.n=,u-z;
with Plane;
with Tracker;

package body CirclinC_Planes is

procedure initializ. ! 8nstance in out Object: is (in Figure £z;
procedure Update ;:ns-an-: in out Zbject, is .. n Figure S!;".

function Applicaticn_Narre ;Instance : access Cb!ec-_)
return String is

begin
return ("-asySim Circlir.n Planes Exaxle-);

and ApplicationNam-;

and CirclingPlanes;

Figure 32. Skeleton of CirclLng_'anes Class Package Body

The body of the Circling-Planes package establishes the relationships

between the different entities in the simulation, and assigns the approprna.'

subclasses for the different attributes. These subclasses are accessed by the

collection of with clauses that precedes the program unit. Figure 32 shows the

Circling-Planes class body. The code is too la'ge to show at once, however, so

the figure only presents part of the body, and discussion of Jn!r!a1ie and It p-

date follows below. The one operation shown. Application-Name, is called just

before the window for the simufation is opened, and (t provides the name that

appears in the corner of the window. Because ths f is specific tno thi.

application and only needs to be called once, it is declared In the private part

of the package specification.
Figure 33 shows the Initialize proc,,dure of CircllngDlanes bi itcelf !t

first calls its parent's Initialize and Configure operations so that Performer

and the Easy-Sim framework are initialized. Most of the parameters of Config-

ure take their default values, but the Modifier in th.,s app.ilcatL10-," uses Per-
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procedure Initialize (Zrnstan:e :~ 'i1¶ O 4a

-ir~itialization of Terrair. xist occ.:r after PfCor.±ic,
-- which- is ca:ýed in. Sirn.7r-It. so allozatior. jns wait

1ýe-np-Terrair. :E=-sy.ýSý.M. Er.-viror.Trer~t.Refer:er.e;

begin

configure :..

InptJMoe => Perf oer..pf-ýt i pr:-,INp*_*T3CL)

ir~starnce.Mair-View new TasyS`M.Vý&W.Ohject;
instnce.Traaker now :recker.Cbhject;
1nst=&nce.F-7.aht-.,ead new Piane.Cbject;
:nstance.Wing-Man now Plane.Ci:rect;
Thr~tanc*..nput new EasySin..Mcdifier.Szandard-In'j.Ob.ýect;
lenl:Terrain now Easy-Simr. Envircnrnent. Terrain. Obf e=t;

Add (Instance, NewVi ew => Ir~stance.Mainth~'vw
With_Plavar => Instance.Wir.;. Ar.,
Wlith 2M!cdlifer a> rs~~e1.
Coords-Fy2.e => Iview.d&ta")

Aid (-rsztance, New-;&yer => :ns:ance. Tr&cke:.
Cccords-ie => Oracker.data*:;

Tracker.Set_'Trackee (Trac~ker.7Reference Unstance.?racker:l all,
Inszance.Flig*-t_.Lead);

Add (Insftance, Net:_.,Plever => lrstane.Flicnt Lead
Coords~jile => *le d.4ata",

Add ý:rnstance, New-?:yer => ZstanCe.W-`r,_Mar.,

Add %,rnstance, Nev.En ironment => Tem. Tarrain,

end Initialize:

Figure 33. Circring-Planes Class hldaltlize ft.-cdtA,

former's GL mode of reading input, and 'the delfault X Wtndow %ACu mod

therefore overridden.

Initialize then allocates each of its attributes, and they are allocated

with particular subclasses. Declaring the attributes In the spedificat~on as
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base classes and alloCating them in the btdy as ,mhrTui;req allows more flexi-

bility in their handling in the application. Attributes inherited from the

Simulation class are private, so the Environment and various Manager at-

tributes cannot be accessed or allocated Adirertly herp The of

TempTerrain shows a method for bypassing Lhis annoyance when necessary.

The default manager classes all allocate themselves when they first are refer-

enced to circumvent this privacy problemn.

The relationships among the Environment, Modifier, Views, Players,

and Managers are all incorporated into the simulation by using the various
Add procedure calls and Set operations where appropriate. TV,^ AA ope.aton,

allow files containing rendering models to be specified for the Environment

and any Players that need them, and the Adds also allow the Initial coordinates

for the Views and Players either to be passed explicitly or read fronm a fLle.

Using files for reading Models and Coords .alows the developer to customize the

application by simply changing the models or coordinates contained in a par-

ticular file. This flexibility saves inefficient recompAilations should different

velues for these attributes need tr !-. tested or used in P simulation.

The Update procedure of the Circling-Planes package, shown alone in

Figure ? allows user input to change the state of the simulation each frame.

The user can press the capita! S to toggoe Perfnrn•er'. . -tntitticr tsip!a'Ys or

press the Escape key to quit the program. By using the mouse, the user can

attach the View to the different players in the application. The left mouse

button corresponds to the Tracker, the right ',utton art.-'-, t, 0^0 10-4 01-

and the middle button moves the View to the following Plane.
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procedizrs Uo'ate (r.taflce : itOut Ob"e"" 'P

input..iS -:pýFasPitr

(Easy_.Sirn.M401'f-.e-.Standard-:r~plt .object

(E.sySirt.View.Modif'er I.tr~.&r..~Wal a2)

if inutFlgss:-Dw then
:npu:_.Ftags.Dra%,-Szats := n~ot InputFlags.Draw...Szats;

!nput-Fla2s.:ýeV Dv.. (IS*) := ale

elsif Inplit-Flage.Ke\'_Do:r. (Accii.Esc) then
Input-Flags.Quit-Proare-n: re

riase Quit ..r-rZ

elsif :r.put-.F1&ps .Left_.MouseD.owrA than

irptFeg.,fcs_~,n: False;

Fasy_.Sirr..VieW.M..ý'nacer .Set..Plyer
(Vie-eMarager (Ir~stanlce) all,

0O-. _V ie -. => inst arce .Mair....ieSW,

ToPlayer => :rnstancee2racker);

alsif ?nputFlas.?CiddleFlcuseDc-.n then

npt.-:g.i 2eVcseD%, Fralse;

F~asySi5m..View... Manager. SetPlayer
(ViewýMar.&ger (Tstarnee) .al1,
Of -Vi eu => lrnstarncc.Mair.View,
ToPlayer => :nstarnce.Wir.;.)*j-1r.);

elsif :npiutFJa;s.1RighMcuse-Dcm' then
srnputvl igs.Rig*.-t..YcuseDcý- := False;

Easy_.Sir..VieWe.M.Yfager.SetPlayer
(Viev..Manager (In~stan~ce) .all,

O!_Vi aw => Instance.Mair._VieW,,
To_.Player r> T.stmflce.F:.4ht...Lead)

end if;

if :nu-~y.Da-~t then

Perfcrrner..Yf .PflDraw..C~anStat s

end if;

azd *.Ydate;

Figure 34. Circling-PYlanes Class Upd~ate Procedure
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User input results In the setting of glObal in.ut fags within the

EasySim.Modifier.StandardInput package. The Update procedure calls Flag.-

Cop)y to gain access to the input flags and monitors those in which it is inter-

ested. When one of these flags is set, Updjate gener1a-l, raeset it a!'d atst apnnro-

priately. For the mouse operations, this action is to call the ViewManager to

switch the Player to which the View is attached.

5.1.4 The Application-Driver Program

With all of the organization accomplished in the Circling-Planes package, the

driver has little left to do. The AppllcationDrlver procadure is hOw.. in Fit :

ure 35. The driver declares the Simulation object, whose initialization is per-

formed automatically by constructor, and then calls Render on Simulation.

This operation does not complete until the user hits the Escape key.

with Cb-rc-Jng_Penes;

procedure Appic.:±cn.n_Driver is

Simulation : CirclingFlanes.Obcect;

begin

CirclingPlanes.Render (Simulation);

*n4 App:icatior..Dr.ver;

Figure 35. Circling-Planes Simulation Driver Procedure

The Circling Planes example has shown the development of one specific

Easy-Sim application. The following section provides more general guidance

for developing applications.
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5.2 General Application Development

This section describes the entry points in the Easy-Sim software archi-

tecture where different types of functionality may be added to enhance a

simulation. Many of these concepts are also pres.ented ;i 1arlierhapters, ,

they are summarized here. The abstract classes are analyzed first because

their customization is necessary to produce a working application. This sec-

tion then analyzes the concrete basic classes, and It finishets..k•,,,,,-,,,, by c rng sp,-"

cializations of the manager classes.

The most basic abstract class is the Player class. It provides the basic

component for differentiating entity behavior withiAn, a o,,-,. It ,..,

supplies the architectural connectors that serve as the focal points for defin-

ing the different aspects of that behavior. A Player's behavior can be simple,

like the Plane examined last section, or it can be complex and consist of many

different pieces. The Plane modeled in the Virtual Cockpit application. for in-

stance, comprises radar capabilities, an inertial navigation system, a weapons

delivery systems, a head's up display, and a throttle and stick, all in addition to

correctly modeling aircraft flight dynamics [.SPnv.93,68.25)

This modular approach establishes a precedent, whereby a subclass can

gather functionality from many smaller classes and organize this functional-

ity in one place to suit the requirements of the architRertr.e. Thi.s btilding

block method makes creating components much more flexible and establishes

a set of modules that are reusable both at the design and code levels. The
building block approach is not '"imited t, the Plae, c. I can be app.ied tA

any class within the Easy-Sim hierarchy.

The other basic abstract classes in the Easy-Sim architecture include

the Environment and the Modifier. In the Circling P ..l a-e xapl, the %;,,,
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ronment class has already demonstrated the bui!ln hlnock annrnoarh to ma:k-

Ing simulation backgrounds by combining the Horizon and Sun classes to form

a Terrain subclass that adheres to the Environment's predefined structure.

Similarly, application deve-opers rn extenrd the Mdnifier rlass to hanlIp thp

user input into their applications. The possibility exists that these user input

devices may be used to modify Player movement or control the Simulation as
well, but these concepts are still under dcvel..mc.t. Th, abst^act raw op. -

eration in Environment forces its subclasses to declare any intentions of

adding application specific features to the draw thread. Some Environments

may be aided by grids or text overlays, and these features must b'e "dded dur'ng

the draw thread.

The final abstract class in the Easy-Sim architecture, Simulation, Is the

hub of the Easy-Sim concept. Serving to coordinate the attributes that com-

pose it, the Simulation supplies architectural connectors so that the applica-

tion developer can Isolate the location where organizational algorithms can be

used in an application. As the Circling Planes example demonstrated, accom-

plishing the coordination during initialization simplifies the simAlatjon pro-

cessing later. Because the Simulation encompasses all other classes, it is re-

visited at the end of this section.

There are two basic concrete classes in the EasyS- S airchtture., of.

which Model is the more basic. The Model class forms a module isolating the

representation of graphical images, and provides default behavior to process
these images. Performer allows the M,,,,c l.ts tIN& b•e ,6 &x,,l ,nouh to% hadle,,,

many different formats of images and automatically adjust for level of detail

control, but a developer may still need to customize his Models. The most likely
occurrence would br when the developer must ...v. .. t. a.' ,., ,nate system
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that differs from the Performer conventions. The current standards for dis-

tributed interactive simulations (DIS) fall into this category, and a Model sub-

class to correct for this discrepancy is warranted in DIS app"lcatons.

The other basic concrete class in the Easy_Sim architecture is the View

class. A View encompasses window displaying, and it therefore also directs

functions that are tied to windowing. These include user input and the ability

to affect Performer's cull and draw• threads, both of which 2n nnnlicrtion dep-

veloper may want to customize. User input can be customized through the

Modifier class to P.ccommodate different input devices, but the handling of the

input data may fall more sensibly in the View cacc. rCu ,,te•,,ae culing ran

enhance the application's performance, and the draw operation can add extra

information to the scene, such as text overlays.
The manager classes in the EasySirm architectur, are contine classes

each of which directs the interaction among its constituents. The default

Model-Manager prevents duplicate nodes in the simulation's rendering tree

by cloning Models that are used more than once. This simple default, design off

the Model-Manager should suffice for most applications, but others may wish

to customize how the Models in the simulation are manipulated. A

ModelManager subclass may wish to define different techniques for level of

detail control, or for compatibility with a different coordinate system. A sub-

class may also simply require another avenue for assigning the Models.

The Player-Manager class also forms the architectural entry point for a
limitless number of customizations for Easy Sr.m applirntinn& The default r la.v

provides no real organization of the Players, but different subclasses could

institute methods for optimizing rendering by spatially organizing the Players

[Har94,130]. An application could add, collision, de,•e.ti•on,,,, inrt , a: ,S ali-
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cations through the Player-1...Manager. Mosct lmprvtanýthl for dtv~ts-0-butP1 intpr.

active simulations, the PlayerManager class provides a sound starting point

for bringing network player managers into the architecture. Ideally, an ab-

stract class could be designed that is genePrAl Pnnoigh fnr any network gimuli-

tion. Subclasses could be derived for each particular application, customizing

its specific needs according to a standard, understandable architectural plan.

Like its other manager classes, EasySim's Vic.. ,.... ..... p ,o

default functionality: fully expecting that applications will customize their

View management by inheritance. Window management will probably be the

most widely used reason for tailoring the View-Marnager class in applications,

as each View has its own window in the display. The View-Manager class will

also administer interactions between input de'.rices, because user input is

commonly obtained from windows through the operating system.

Finally, the Simulation class serves as the focal point of an application,

defining how its different pieces interact and providing executive control

over the program. A Simulation subclass must first define the Environment,

Players, and Views that it uses, as well as the .ssociationt that interconnect

them. A subclass must provide initialization techniques for its attributes and

ensure that each piece of the simulation is properly incorporated into the

application's scheme. Finally, a Simul,,ato ,•,,cls. mu,,t su,,, th. go,,-

rithms that define the interactions among its attributes during the simulation.

This chapter has outlined the development of one application and de-

scribed the general techniques used to iher&t f,.o. ,the Easy.,,S, f,.mWor,.

to create an application. The next chapter looks at the different versions of

the EasySirm and ObjectSim frameworks, and draws results from their compar-

ison.
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VI Results and Comparisons

This chapter presents an analysis of the different versions of the ObjectSim

and Easy-Sim application frameworks. The data contained here shows the suc-

cess of this research effort by demonstrating that a visua s i-mLA latonsytem.

software architecture can be implemented with an Ada 9X application frame-

work so that it provides capabilities comparable to a similarly designed C+-.

framework.

The first section of this chapter covers background material and com-

pares two performance measurements, frame rate and application thread time.

The second section shows the different sizes of the executable programs. T'he

final portion of the chapter examines differences in language features be-

tween the Ada 9X and C++ versions of the Easy-Sim framework.

6.1 Performance Comparisons

The most important performance measurement in any visual simulation sys-

tem is its frame rate, or the number of Individual screen images the simulation

displays per second. This number indCat.s the. ,xr,,ai p ,Ort.ray,,, to the ,.y

tem's users, as the illusion of motion tricks the human eye when individual

frames are presented in rapid succession. If the frame rate becomes too slow,

the viewer begins to notice Individual frAme b.undar.es, a phenomenon

known as jitter.

The frame rate considered adequate for a simulation depends on the

purpose of the simulation system, the expectations of its user, aL"L -the _1thod.,

of display. A person being entertained demands total realism, while trainees

tolerate some jitter in order to accomplish their objectives. Additionally, the
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consequences of jitter are multiplied if the ... r are ,ot,,oh Imm-red In

display, as the stability offered by their peripheral vision is absent.

Taking these variables into account, jitter becomes noticeable near

thirty frames per second. The ideal frame rate for .i,,,ton, is si.., frames

per second, the rate at which most televisions operate. The AFIT Graphics Lab

considers twelve to fifteen frames per second acceptable for its simulations, as
the users accept some inaccuracy in a research environment. -his a.... •r

somewhat depending on the type of viewing device used.

This research effort used functions provided by SGI's Performer library

to gather and display performance statistics. The data collected includes the

frame rate and the time spent per frame In each of the application, cull, and

draw threads (see Section 2.4). Because an application is only rendered as fast

as its slowest process, the thread times are important in determining if one

process impedes the entire application. An..ysi of the applicration thread

shows the differences among the different versions of the implementation,

because the application developer's code is executed in this thread. By default,

Performer executes the cull and draw t.hreadsoorni," irt •nn

A simple application, like the Circling Planes described in Chapter V, is

draw limited, meaning that the draw thread takes much longer to execute than

either the application or cull thread. The co.ex models• ,used uo ,repioreose•t

the Planes and Terrain, contrasted with the simple movement of the Planes,

account for this difference. Most applications are application limited, how-
ever, as the reproduction of realistic Player behavior Is often quite inAr-catC.

The Space Modeler [Van94], for instance, models the movement of planets and

stars, and performing the corresponding calculations each frame is many
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times more computationally expensive than lighting the small areas..n the

screen that represent these objects graphically.

Throughout the developmunt of the Easy-Sim application framework,

much of the complex functionality of Obje;tim w,, C.nct trans.erre,. Th,,es

features all contribute to the ObjectSim framework, but they are not essential

in the production of a visual simulation. Unfortunately, the two frameworks

cannot be compared fairly with this differing functionality. Anticipating this

divergence, a C+- version of the Easy._Sim architecture was maintained to

parallel the Ada 9X version. A comparison between these two versions of the

Easy..Sim framework is made later in this chapter.

The tests gathering performance statistics were undertaken on a four-

processor SGI Onyx/Realiry Engine2 machine running at 150 megahertz. The

tests were conducted under controlled conditions, with one user logged into

the machine, and two open winterm windows. The appliration window was

opened to full screen size to maximize the rendering area and provide consis-

tency for each test. The machine uses version 5.2 of the IRIX operating sys-

tem. Both the Ada 9X and C÷+ versions of the annliratinn frarnmwork w.re

compiled with maximum optimization.

6.1.1 Frame Rate Comparlscns

The implementation of Easy-Sim was originally tested by reproducing the first

two ObjectSim example applications [Sny93,AppA] with both Easy-Sim and Ob-

JectSim. However, because these examples are ra .... 1,111t1.0d , a ,• C,,ccU

and Easy-Sim implementations render the same scenes, the frame rates match

exactly. These tests were therefore inconclusive, and computationally expen-

sive applications were devised to provide a better comparison.
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These new applications were boased on the r ingo Pilnan o, ipl 2nrt

merely prolonged its application thread by increasing the number of aircraft.

This expansion resulted in a simulation in which multitudes of planes fly
routes whose paths resemble the overlapping ,inc rn of the Olympnir flag. Thp

number of planes in the formation was first expanded to 10, then to 100, 400,

and 1,000.

Each of these simulations can be viewed from t-hree- locations: th.. S.c-

ond plane on one end of the formation, the last plane on the other end, or the

tracker who observes from afar. When viewed from the tracker, an intimidat-

ing line of planes moves across the screen. Unfortunately, this angle does not

provide any better comparison data, because drawing the entire formation is

still more costly than moving it. If the view is moved to one of the planes, the

desired effect is achieved. From these angles, the plane cycles through poflnts

where the attached view sees al! the other planes aligned and points where it

sees no other planes. The first case remains draw limited, because rendering

all of the planes is still arduous. However, the second case is application lim-

ited, as the simulation still performs calculations to move the planes even

when they are hidden from view.

Given these standard applications, tests were run using both the Ada 9X

and C+- versions of the EasySim iMle.ment.tiornk. Oei-i s ai -Asn tested as

a baseline reference point, even though its differing C-- functionality pre-

vented a truly fair comparison. Table 2 shows the test results. For each of

these frameworks, data was gathered on the four diff"erent quntn&•fe of r-

craft. The first row for each framework shows the application limited test,

when all planes are moving but none are being shown. The second row for
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Table 2. Frame Rates for Circling Planes Simulartions

Architecture/ Planes Plane Positions B1i~ng Updated
-LnuSeen 10 to10o 400 1 1000

Easy-..Sim/
Ada 9X none 30 30 30 10

_________ .11 2012 4.0 1.7
Easy-..Sim/

C++ none 30 30 30 10

__________all 20 12 3.8 1.6
ObjectSim/

C++ none 30 30 30 12

I________ all 20 1 i1 3.8 1.6

I (Frames per second)

each framework shows the draw limited case, when all planes are moving and

being drawn.

These results are remarkable becauise they suggest that there is no si7,-

nificant difference in the performance of the three versions at given levels of

stress. Most important is the direct comparison between the Ada 9X and C-+

versions of Easy...Sim, which have mirror-like implementations (see Section

6.3). The results demonstrate that the use of the Ada 9X language itself does not

hinder the rendering of a visual simulation. The gathering of evidence that

the Ada 9X version of Easy-Siin performs at a level comparable t.n the Rame

application built in C++ succeeds in satisfying one of the main goals of this

thesis effort.

The next section examines a more spec~flic aspect Of the perfonrmance by

focusing on the application thread times of the Circling Planes simulation.
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6.1.2 Application Thread Time Compareons

While Table 2 above shows that the bottom line performance of the Ada 9X

Easy-Sim framework is similar to both the ObjectSim and EasySim,.,- ver-

sions, the frame rate encompasses the execution times nf all rhree of the Per-

former threads (see Section 2.4). It is only the application thread, however

that illustrates the differences between thri different versions of the CircliI'.-

Planes application, because Perfor-er • x•ec•u, the ove,,h,,minng mi,-rity o:

the cull and draw threads. Table 3 shows the applicatiot. thread times per

frame for the Circling Planes applic'.tions. Because the application thread

time does not depend on the view, on,,y , e r, is necPar-yi fnr earh b,'ercion

of the application framework.

Table 3 clearly shows the performance difference of the Ada 9X code,
which runs 25% slower than the corresponding Cr-÷ code. "hsexr . r.oc.. -•

ing is expected, and can mainly be attributed to the immaturity of the GNAT

compiler. Just like this thesis, the GNAT team's first objective is to produce

working code, with optimization a secondary long term goal. in fa., n.o Work

at all has been done on Ada specific optimizations [Dew94b). Given this state-

ment, the fact that the code is only 2S% behind is remarkable. Furthermore,

given that the bottom line performance of the simulation is eqaival°e"" t with

Table 3. Application Thread Times for Circling Planes Si-,1.i!aions

_ _ _ Plane Positions Leing Updated
Architecture/Language 10 100 400 1000

EasySim/Ada 9X 1.7 8.5 31 75
Easy_Sire/C++ 1.4 6.5. 25 60
ObJectS1m/C++ 7.1 11.4 26 61

(Milliseconds per Frame)
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the compiler in this state, the future looks ",r bright for %da 0Y in th. Vi.--

latlon industry.

Another common factor in the slower running of Ada code is the run-

time checking associated with exception handling. Th'e AA, QV -irm,,;.oiti,.

framework for Easy-Sim follows the Ada mindset of using exception handling

to make the code more reliable and easier to test, and this programming style

greatly eased the development of the EasySire framework. RegardlEss, the

Circling Planes test cases were recompiled with the run-time checks sup-

pressed to see how it would affect the performance of the code. Surprisingly,

the e fects were minimal. Once again, however, the compiler developers

blame this behavior on the immaturity of their product, Because the checks in

the run-time system of version 1.83 have not been suppressed, suppr.ssing the

checks in a source program %%ilI not affect its performance. This hindrance

has been removed from version 2.00 f an941,.

The ObjectSim row of Table 3 is interesting for two reasons. Somewhere

ObjectSim incurs processing overhead in its applications, most likely because

of its use of shared memory. UsIng tshiS 4Verffor.,,.,, fwo,,,,.0 a e ,-,1, fr. ,M,,

applications, but the initial investment is returned when the siraulalion be-

comes complex. The test results also demonstrate that the efficiency suppos-

edly gained by ObjectSim's rejecting encapsul.at.on aad r gon gob.al ac-

cess is not perceptible, as both C.+ frameworks slow at an equal rate when the

processing load is Increased. This result is welcome news for supporters of the

software engineering discipline. Programmers In, ......... "-.ical -f-_

ware fields have often dismissed the principles of software engineering by

citlng efficiency concerns, but these results indicate that similar efficiency

can be attained when following a well-planned, encapsulated design. just as
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the immaturity of the GNAT CO..pilaer m -;-a blamre fer the lnvonpes of tbhe

Ada code, the maturity of th- optimization techniques of the AT&T C++ compiler

can be thanked for unraveling encapsulation on the machine code end.
The performance issues analyzed in this sct•io, srngl. suggest that

Ada 9X can perform alongside the C-based languages. Ada's shortcomings in

the application thread time are well worth the development headaches it
avoids. This notion is especially true considering that *h- b•"-"ýo,. leeOr-

mance is not affected and future gains in compiler optimizations are assured.

The next section 2lso anal)zes an area in which Ada is notorious--code size.

6.2 Executable Size Conparisons

With the constantly expanding space available on today's computer systems.

the importance of program size is waning rapidly. However, this section

quickly examines the issue for a comp~c. .naI,_i_.

Ada programs have traditionally been larger than C and C-, programs.

The reasons for this dilemma included difficulty in optimizing the complexity

of the language features, the run-tiMe checRing mentined above, and the

inclusion of large libraries for such tasks as input and output. Recently, Ada

83 compiler maturity has alleviated this problem [Law92j.
Table 4 shows the sizes of the executable floes for the rircling Planes

example programs. Because the different versions of Circling Planes only

vary In the length of an array, the 10, 10G, 400, and 1,000 plane versions are all

vfrtuafly the same size. Gerierally, the Ada 9X versions are ,, st,- ndr t;, c

large as the C++ versions.

129



Table 4. Sizes of Executable Code for Ording P1'o nnoc imItit;nn5

Architecture -Language I Features Kbjes
Easy-Siem Ada 9X Optimized, Inllned 1186

"Easy-Sim Ada 9X Opti mlzed 1185

Easy-SireSm Ada 9X Totally Regular 1189

Easy-Sim Ada 9X Inlined 1211

Easy-SiSm Ada 9X Optimized, Inlined, 1164
Suppressed

Easy-.Sim Ada 9X Optimized, Inlined, 1174
No Text_1O

Easy-Sim C++ Optimized, Some Inlining 703

ObjectSim C++ Optimized, Some Inlining 666

The table shows six different versions of the Ada 9X examples, showing

experimentation with different com,,,,lflation optrins. Th" v rrsinn whrop per-

formance statistics were presented in the last section is the inlined and opti-

mized version, shown at the top. The inlining was applied to the Get and Set

operations, as described in Section 4.3. Varied. compilatio nptrins w•r• ana-

lyzed originally because the AT&T C-.- compiler would not support Wining to

the extent of the GNAT compiler. To ensure that the Ada version's more

prominent use of Infining did not sway the results, the "•anli,3fl ,m fr,.oowr,

was rewritten without using the inline pragma, and all four tests were run

again. No appreciable differences were found in the performance of the non-

inlined version, and the size of the code remained .irtually the same.

This result is slightly surprising, but it is more understandable when

the maturity of the compiler Is again considered. The machine code optimiza-

tion of the established GNAT gcc back end Is mature enough to auto. al.caly...

inline the simplistic calls within the same module. However, the GNAT 1.83

130



front end has not yet tackled tnlimnog acrors pnrkackg hmurinarles [Deew94al.

Therefore, the optimization originally intended by the use of the pragma was

never being completely realized. The pragmas are therefore redund"ant wh.en"

the compiler's optimization techniques •rp nnnvii, ;m thp darta in thp firsr

two rows of Table 4 indicates.

A more normal increase in the size of the inlined version is evident in
the fourth row of the table, when optimization is n-, ud. A, e,.v,.,-.,. t"

performances of the versions run without optimizatic: are a notch slower

than their optimized counterparts. The application thread ,!me of the non-op-

timized inlined Ada 9X version runs 88 milliseconds for I.,..: crcl'"in pVne,

as compared with 71 milliseconds when optimized. This exta time translates

into a frame rate of 8.6, instead of the optimized version's 10 frames per sec-

ond.

Additional data was collected on two other versions of the EasyvSim

framework running the Circling Planes tests. The first was compiled with all

run-time checks suppressed. This version lessened the code by 22 kilobytes, or

2%. Removing the use of the Text-1O and thereby all of the information dis-

played on the console removed 12 kilobytes from the code size.

Because of the lessening importance on code size, this problem ha'; been

a very low priority for the GNAT developers They do plan, however, To Ilse

dynamic linking sometime in the future. Because this technique "can make a

significant difference," the potential does exist for GNAT to become more com-

petitive with the C languages in the arena of cod-e Size tr,•,,aAi

The next section discusses the similarities and differences between the

Ada 9X and C-+ implementations of the EasySim application framework.
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6.S Language Comparisons

As shown throughout this chapter, a C++ version of the EasySire application

framework was maintained with the same functionality as the Ada 9X version,

so that objective performance comparisons c"uld be made.,b1eten th, t,.,,,

languages. This section compares and contrasts the more subjective features

of the languages themselves.
The C++ version of the E,.sySim framework was csuceL A•a ,,.

the Ada 9X version as closely as possible, again to provide a fair performance

comparison. While this approach seems like it would neglect important fea-

tures of C-,+ design, the two languages have actually converged so closely that

the major object-oriented features of C-4 are employed heavily. In other

words, a C+÷- implementation of the EasySim software architecture developed

straight from the design would look almost identical to the version produced

by translating the Ada 9X implemeta.ti•,,on.

Each class package in Ada 9X became a class in C+.-, with constructors,

destructors, a Configure function, and various virtual functions. The private

parts of the Ada code were generally pl•ced in tho das headr'q nrtrrtPrl

section, so that they could be accessed by client programmers deriving sub-

classes. Ada 9X's child packages were brought to the top level in C++. The rest

was generally translated construct for C-onr"lCt, 1n "a ve4ry •.•rihtfor,,.,ar,

manner, so that the frameworks ended extremely similar. The rest of this sec-

tion points out the minor differences that arose.

Just like GNAT, the AT&T C4- complier woul..d. toV ••alo A. •all:suposveo, le-

gal constructs within the language to be implemented. As alluded to in the

previous section, the compiler would not allow inlining within the source

files. The C++ compiler also did not support the language's new exception

132



handling mechanisms, and the locations, in rOi Ada OY ce whenre - ah -ar~nrinni

are used were implemented with conditional statements. Finally, the C.-+

compiler had problems discerning different uses of the same identifier. In the
Ada version, a Get function returning a class ,,nri-e gen,,orall, 1b.ear rho

name of that class, The C+÷- compiler was confused by this ambiguity, however,

and Get was therefore included explicitly in the names of all the Get functions.

While the unimplemented features of C++ werc Impossible to us,, those

features that were implemented are often more complicated than their Ada

counterparts. Parameter passing Is one of these cases. Because C-,+ stores ar-

rays as constant pointers, a function cannot return an array value. This limi-

tation caused all of the Get operations for the Positions and Directions to be

implemented as void functions where the array In which the value was to be

placed is passed by reference as an argument. This inconsistency in handling

types causes the uniformity of the C-+ version to suffer. both Ada_. andA C-+ 1A-

low parameters to have default values, but this feature is easier to use in Ada.

Because the use of named notation in Ada parameter passing allows specifica-

tion of actual parameters In any order, n,,t eery prameter need to be passed.

C++ only allows the last parameters in a function's argument list to be skipped.

This rule does not allow a client programmer to use the default value for the

second last argument and provide a va'le for the last ar,.,M.ent.,. M-.y of

Easy-Sim's Configure operations are designed so that only one or two parame-

ters of six or seven need be specified, but this design will not work in C-+

given certain combinations of arguments. Th'e,, C4-' programmer L ",, ,,A,.w, %-fl thereore

have to provide values for variables she would rather ignore.

The Configure operation is one aspect of the Easy-Sim architectural de-

sign that might be implemented differently in C++. Because constructors in
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C-+ can have arguments, some of the Configure operationsc rmld he perfnrmed

as overloaded constructors. However, many of the parameters to Configure are

not known when the object is created, so some of the Configure operations

would still have to be explicitly called after c...tru.t..nt^ o er to l aintain"
consistency throughout the architecture, therefore, the solution used in the

Ada 9X version is also the better solution in C+-.

Controlled operations, Ada's counterpart to Aefault CCnstructr A e

structors, also contain the Adjust procedure, whose functionality is absent in

the C+-, model. Adjust is used so that a client programmer can explicitly con-

trol assignment between two variables (see Section 2.1.2). The Ada 9X EasySirm

application framework uses the Adjust procedure to conveniently clone dif-

ferent models, as this operation is called automatically when a model is as-

signed to another. The C-+ version requires the explicit call of the Clone op-

eration.

Lest it appear that this section is too Ada biased, the final feature dis-

cussed is easier to use in C+-. Ada 9X package specifications have kept to the

original Ada design of a public and priate ,nr. Tf the atrrihbirtesf na rlass are

encapsulated privately, they are not automatically visible within derived sub-

classes. If a child class would like access to the private part of its parent, it

must be declared inside a hierarchical librar,' uIt that it rhilfl nf t*hp clas

package. This model is not always desirable, however. First, private parts are

no longer that private. Second, the components of the Easy-Sim framework

are all defined to be part of the EasySirnm p---e-' ... An -App-lcation d .v.., .pe.ra

are encouraged to derive subclasses of the EasySim components in their own

packages. The subclasses therefore do not have access to their parent's at-

tributes (see Section 5.1.3). Protected parts of C++ header f'Nes .o ,ve this
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dilemma by specifying that subclasses are allowed visibility of the parent's

member data. This model is much cleaner and preserves the privacy model

necessary to ensure proper encapsulation.

This chapter has compared the different versions of the Easy,.Sim appli-

cation framework by analyzing both performance and language issues. The

next chapter concludes this research effort and suggests areas of focus for

future studies.
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VII Conclusions and -3Uitr• 'Stiryv

The development of EasySim has improve,. the ObjectSim software architec-

ture for visual simulation systems and bec.n instrumental in showing that the

object-oriented features of Ada 9X can compare with their .,ounterprts in C-in ._

There is still much more potential for these languages to work together, as

well as for the added benefits of Ada 9X to be realized. This chapter reviews the

accomplishments of this thesis effort, makes sugge•stionas T--r area f ftture

study, and outlines methods for the reader to obtain more information on

Easy-Sim.

7.1 EasySim and Its Accomplishments

Easy-Sim is both a software architecture and an application framework realiz-

ing that architecture. At the design level, EasySim follows the object-ori-
ented data abstraction model defined by Garlah and Shaw [Gar19].7-8] (see Sec-

tion 2.2). EasySim provides the structure by which developers can create

their applications, allowing them to exploit a proven basic design and behav-

ior for their systems.

Easy-Sim improves upon its predecessor, ObjectSim, in many ways.

Where ObjectSim tried to present a coherent, encapsulated, and consistent de-

sign, it fell prey to productivity demands. The result was a framework that is

difficult to understand, arduous to use, and troublesome to modify. Without the

pressure of dependent projects, Easy-Sim's architecture was able to evolve into

the design that was envisioned for ObjectSim. Dr. Jean lchbiah., the •-•6i", •ga

architect of Ada, has said, "I am driven by aesthetic considerations and the

strong belief that only beautiful shape can be correct shape" [Ich92].
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Easy..Sim follows this tenet, and creates an evenly formed architec•rture and

implementation whose consistency throughout differing levels of abstraction

breeds simplicity and ease of use.

This thesis effort has produced more than just aesthetically pleasing

code, however. By backing up the architecture with data demonstrating the

framework's production of efficient applications, Easy-Sim has shown that

good designs can also be successfully implemented. 'ette..r eto, ••,-_j...qm ha.

displayed this concept in the graphics field, a discipline which historically

has shunned software engineering principles under the auspices of effi-

ciency. Hopefully Easy-Sim has made inroads that, wil, n,,t b•e• far,.oten.

Easy-Sim has also been one of the seminal object-oriented projects to be

implemented in Ada 9X. Many of the concepts originally thought to be trivial

in the language proved more complex when scaled to a project the si1ze of

EasySim. The lessons learned from EasySi.m have already contributed to the

object-oriented Ada community, and hopefully further Easy-Sim development

will continue this trend.

7.2 Suggestions for Future Study

Although the Easy-Sim architecture and framework have succeeded in attain-

ing their preliminary objectives, work reman-s tn further thelr development.

Many features implemented in ObjectSim were not carried into Easy-Sim, and

no m, ýrics have been collected to quantify the quality of either system. Both

the architecture and framework of Easy_.Sim could enef•, t frm th•. ,tpwpnn-

ment of a large scale application to test the varying uses of Easy-Sim classes

proposed in Section 5.2. If successful, this project could serve as an example

throughout the object-oriented, graphics, simulation, and A•a c....n.. ftles

137



The following discussion of the areas for future work is broken into two

sections. The first section outlines the architectural issues to investigate, and

the second section lists areas in which improving the implementation w..ould

be beneficial.

7.2.1 Architectural Improvements

Many ideas that were entertained during the evolution of the .Ea..y. ;., des.ign,

were never realized, as the primary effort was focused on producing and eval-

uating a working system. Now that this endeavor has been accomplished,

there is room to go back to the simulator industry and conspire to prew',i,, an

architecture that defines the industry standard and is independent of the SGI

platform. Individuals throughout the commercial sector have already ex-

pressed interest In helping to attack this problem.

As many techniques for general EasySim application development

have been proposed in this thesis (see Section 5.2), components need to be

built to examine the feasibility of these techniques. For instance, is the

Player-Manager class the right place to incorporarP collision detection or

network management capabil'Vies? The construction of an Easy-Sim applica-

tion can validate this question. The remainder of this section proposes specific

areas of the Easy-Sim architecture where imprv.,em-ents can be made or alter-

native designs studied.

There are two areas in which the View-Manager needs to be analyzed

further. Because Views provide a method of looking into a cane, the-t are nf-

ten associated with display windows. Realizing this, an attempt was made to

move the Open-Window operation from the Simulation class to the

ViewManager, but an Inexplicable compiler bug prevented the comple... on • f
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this architectural change. This preferred str• tl re s-houlTd hp r 'rP-ed as

the compiler matures. The View-Manager class also supports multiple View

management, but this feature has not been tested by an application. Perform-

ing these tests can validate the model upon wjich the multiple View supp.rt is

based.

Another manager class, the PlayerManager, also has yet to be tested to

the extent of its design. In Sections 3.7 and 5.2, it was s,-,etoe that tho

Player-Manager serve as the basis for collision detection and distributed in-

teractive simulation (DIS) communication for an application. Like the multi-

ple Views, these design concepts also still need to bevadatd by ,,-,,%, nra"" "-

tion.

Although it was not mentioned in Section 3.3, the ObjectSim FltModel

class provides mechanisms to convert a FltModel established for the DIS co-

ordinate systems so that they are compatible wfth Performer's coordinate sys-

tem. While this functionality is necessary and useful for DIS applications,

Easy-Sim endeavors to place it inside a subclass of the Model class instead of

the Model Itself. This approach allows an app•iratin-. developer to avoid the

extra overhead if they do not require DIS capabilities, but provides a useful

class if they do want to use it. Once again, a demonstration application can be

developed to show off the capabllitles of the framework.

The model used for handling user input within the Easy-Siem framework

is based on ObjectSim and performed in the Modifier class. However, there is
no reason that the input need be associated 09,N %w.th the.. View,' class, as Th.

Modifier is intended. Players also need a standardized component with con-

nectors to provide a common method for steering entities within a simulation.

With this idea in mind, a standardized model for input shouhd be dee,,opeo
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taking into account that input can affect control of a View, control of a Player,

or control of the Simulation itself. The most likely solution would be to provide

a new Input class, through which the Modifiers could etri the ,,, ,

intentions and pass the consequence of the input to Views or Players. The

Simulation class could access the Input class directly to control the application.

Suggestions for the implementation of this idea are developed further in the

next section.

There are a couple of other design areas that may be implementation is-

sues, but they are proposed briefly here. First, the Configure operation, which
is used by Easy-Siem to provide parameterized initialization, was' oriiginally

employed because controlled operations In Ada 9X do not allow parameters

other than the controlled type itself. Some recent ideas have been put forth

that propose to trick the compiler Into a'lowing parameteriz•,,-.,n, h e•,e%-. ... r

[Kem94). These proposals should be evaluated to see if they might enhance

both the Easy-Sim design and implementation. Second, Easy-Sim currently

has no provisions for multiple Performer Pipes. each of which represents a

multiprocessing system for the Performer threads. Providing the capability

within the EasySim architecture to support this capability opens an avenue

for limitless expansion of computing power, as the hardware for visual s1mu-

lations to exploit continually advances.

Having provided numerous areas In which improvements in the

Easy-Sim software architecture might occur, discussion now focuses on aspects

of the Easy-Sime implementation that might be improved: Roth Performer and

Ada 9X issues are presented.
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7.2.2 Implementation Improvements

Just as the design of EasySim could benefit from more in-depth analyses, so

could the implementation. Because not a!! of the ObjectSim functionality was

carried into Easy-Sim, migrating the rest of this functionality would be a good

starting place for enhancing the EasySim framework. These fea~ures include

traversal masks, jitter removal, shared memory use, and round earth ,no.ri.

nate utilities. The rest of this section suggests improvements to the Performer

and Ada 9X aspects of the code.

There are several areas where the use of Performer could be enIhanZ-6ced

in the Easy-Sim framework. The most critical and probably most beneficial of

these is the collection of user input. Currently this task is performed by GL

functions. However, these capabilities will be removed in the next genera.dcn

of GL, and the current Performer documentation suggests that all user input

be handled by X Windows utilities [Har94,321).

Another area for improved use of Performer is the use of a texture list to

preload all of the complicated textures Into the appliration's memory. If this

step is not performed, each time the simulation encounters a texture for the

first time, the application halts while the database information for that texture

Is loaded. This hiccuping should be avoided if poss;ble.

There are areas where communication between Performer and Ada 9X

must occur. The callback operations for the cull and draw threads, as well as

the window opening callbacks, currently do not have the abhl!ty to access any

Ada variables, either through parameters or globally. For the cull and draw

operations, the use of Performer's Passthrough Data capabilities may solve the

problems [Har94,140-143]. Alternate solut,,,ns may be nece sar for the win-
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dow opening operation, ho"e""r Tf thk ni•itinn wnrk, in all cases, then a

consistent approach should be used throughout the entire framework.

There are some general coding concerns that Ada can address in
EasySim. The first and perhaps most ,isible Of these is the rnPntitinn of the

coordinate functions in Player. View, and Modifier. This massive code dupli-

cation can be avoided through the use of a generic package, but may also be

corrected with tagged types. Either a'az the coordin-ates chr,,id ,nrobbhl. hb

put in their ownpackage and separated from the parent Easy-Sim package in

which they are currently declared. The use of coordinates might also be en-

hanced by the use of subtyping for the heading, pitch, AnL. ro-L. Thr• m tep was

not carried out however, because it is unclear that all applications would want

to interpret these ranges similarly. For instance, should a pitch of 91 wrap

around to 89 with the heading reversed? Or is it all righit- to h'.ave. a roll o- 40-?

This change should be carefully examined and justified if it is undertaken.

The Manager classes present a few interesting possibilities for code im-

provement. Because they have similar foundations, it may be possible to make

a base generic package from which they could all be instantiated. The Man-

ager classes might also be able to profit from the use of Ada 9X's protected

types, which are a form of monitor [Bar93, RM941. Because each class main-

tains a single list of objects, an.d ,access to those objects should be protected

against multiple access problems in SGI's multiprocessor environments, the

Managers seem a perfect fit for this new language construct. The manage-

ment of the View states In the View M'ana"ger is "rathr comlicated, and may

stand to be split from the rest of the class. Because the application developer

would have no reason to access this class package, It could be implemented as a
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private package visible only within rhe .Sy im application framework hier-

archy.

Possible design changes for the handling of user input were proposed
above. Better solutions for the impl,, mentatin nf thi• area of the program are

also needed. In the current design user input is recorded in flags contained in

Modifier subclasses, and these flags are accessed globally by the application,

the View, or whoever else might need them". This glniol ico nf the innp. vin-

lates the design of the Modifier class, which is only intended to be used by the

View class. Hopefully a design solution will find a way to handle input that is

not reliant on global access or the Mo"i )a€r .. s...ý' . ,,h- t in

Input class as discussed in the previous section. This approach would allow the

flags to be kept in a package by themselves, and this package should clearly

denote that it is meant to be used as a global repository. 0., rI it

Easy, Sim.GlobalFlags or a similar name would at least make its purpose dread-

fully understandable. The flags package would also be a textbook example of a

case where a protected type could be used to guarantee that the many dff,,,,,,,,e

classes in an application that access the global data do so safely.

Along the vein of Input discussions, the Standard-Input class as cui-

rently implemented is monolithic, as it contains functionality for the mouse.

keyboard, and keypad which could all be separated into building blocks. This

disassociation would allow better modularity and flexibility, as an application

developer could choose to use any combination of the standard devices.

The dependencies on Performer may be -co•leehy oscured in th Aoa

package specifications by liberal use of subtyping. This technique has been

demonstrated by the Coords type, and could be instrumental in making the in-

terfaces for the EasySim framework platform f•-sdepep,,den•,t,.
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Finally, the use of Finalization to perforri. memory reclamation when

dynamically allocated objects are no longer needed has not been thoroughly
examined. Although this neglect .as in paru to Finalization immat,..

implementation by GNAT, this concept should be used in Easy-Sim so that

memory management on the heap is as efficient as possible.

This section has described many areas in which the implementation of

the Easy-Sirm application framework mlg't. be impnrnvpdr hx, futurr re-

searchers. The next section tells the reader where more information on

Easy-Sim can be found, and it concludes this thesis.

7.3 Conclusion

It has been a pleasure to describe the work done in developing EasySim. The
task was certainly challenging and red• ,,Aingr, 2And t•he nter,•t ,f te re.adOr

is sincerely appreciated. The code for the EasySim framework and a version

of this document are available via anonymous ftp from archive.afit.af.mil in

the pub/jkayloe directory. This directory can %. so beaaceW% d,. through the, 1•

World Wide Web at ftp://archive.afit.af.mil. If more information is needed or

there are any questions, please contact the author directly.

144



Bibliography

[Abo93] Gregory D. Abowd, Len Bass, Larry Howard. and Linda Northrop,
"Structural Modeling: An Application Framework and Development
Process for Flight Simulators," Software Engineering Institute
Technical Report CMU/SEI-93-TR-14, Pittsburgh, PA: Carnegie
Mellon University, August 1993.

JAnd93] Christine Anderson and Erhard Ploedereder, "Managing the
Transition to Ada 9X,' TRI-Ada '93 Conference Tutorials Volume 1,
Seattle, WA: Association for Computing Machinery, Inc., September
1993.

[ASC93] United States Air Force, "An Introduction to Structural Models,"
Technical Report USAF ASC-TR-93-S008, Wright-Patterson AFB, OH:
Aeronautical Systems Center, 1993.

[Atk93] Colin Atkinson and David G. Weller, "Integrating Inheritance and
Synchronization in Ada 9X," TRI-Ada '93 Conference Proceedings,
Seattle, WA: Association for Computing Machinery, Inc., September
1993.

[Bai93] Brad Balfour. "Object-Oriented Programming Using Ada 9X," TRI-Ada
'93 Conference Tutorials Volume 3, Seattle, WA: Association for
Computing Machinery, Inc., September 1993.

[Ban92] Bernard Banner and Edmond Schonberg. "Assessing Ada 9X OOP:
Building a Reusable Components Library," TRI-Ada '92 Conference
Proceedings, Orlando, FL: Association for Computing Machinery,
Inc., November 1992.

[Ban941 Bernard Banner. "Support for Pragma Suppress," Electronic Mail
Message, New York: GNU New York University Ada 9X Translator
Project, 2 December 1994.

[Bar93] John G. P. Barnes, Introducing Ada 9X, Office of the Under Secretary
of Defense for Acquisition, 3 February 1993.

[Bar941 Stephane Barbey, Magnus Kempe, and Alfred Strohmeier, "Advanced
Object-Oriented Programming with Ada 9X," TRI-Ada '94 Conference
Tutorials (Sunday), Baltimore, MD: Association for Computing
Machinery, Inc., November 1994.

(BeI941 John Beldler, "Building Data Structure Components: A Case Study in
Making the Transition from Ada 83 to Ada 9X," Proceedings of the
Eighth Annual ASEET Symposium, Albuquerque, NM: January 1994.

[Boo941 Grady Booch and Doug Bryan, Software Engineering w!ch Ada,
Redwood City, CA: Benjamin/Cummings, 1994.

145



[Cer93] Gary J. Cernosek, "ROMAN-9X: A Technique for Representing Object
Models in Ada 9X Notation," TRI-Ada '93 Conference Proceedings.
Seattle, WA: Association for Computing Machirnery, Inc., September
1993.

[Coh93] Norman H. Cohen, "Ada 9X as a Second Ada," TRI-Ada '93 Conference
Tutorials Volume 3, Seattle, WA: Association for Computing
Machinery, Inc., September 1993.

[Com941 Cyrille Comar, "Support for Pragma Suppress," Electronic Mail
Message, New York: GNU New York University Ada 9X Translator
Project, 2 December 1994.

[Coo92] Laura Cooper, IRIS ie,frrmer Man Pages, Mountain View, CA: Silicon
Graphics, Inc., 1992.

[Cri92] Robert G. Crispen, Brett W. Freemon, K. C. King. and William V.
Tucker, "DARTS: A Domain Architecture for Reuse in Training
Systems," Fourteenth Inter-Service/Industry Training Systems and
Education Conference Proceedings, November 1992,

[Cri94] Robert G. Crispen and Lynn D. Stuckey, Jr., "Structural Model:
Architecture for Software Designers," TRI-Ada '94 Conference
Proceedings, Baltimore, MD: November 1994.

[De,94a) Robert Dewar, "Prgma Inline and Overloaded Subprograms,"
Electronic Mail Message, New York: GNU New York University Ada 9X
Translator Project, 10 October 1994.

[Dew94b] Robert Dewar, "Support for Pragma Suppress," Electronic Mail
Message, New York: GNU New York University Ada 9X Translator
Project, 2 December 1994.

[Dia94] Milton E. Diaz, The Photo Realistic AFIT Virtual Cockpit, MS Thesis
AFIT/GCS/ENG/94D-02, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, OH: December 1994.

(Dis92] Gary Dismukes, "Position Paper on Ada 9X and OOP," TRI-Ada '92
Conference Proceedings, Orlando, FL: Association for Computing
Machinery, Inc., November 1992.

[Emb94] Wesley Embry and John Templeton, The Ada 9X Paintball Demo,
Mountain View, CA: Silicon Graphics, Inc., September 1994.

[Epp94] Robert Epps, Telephone Interview, Binghamton, NY: CAE-Link
Corporation, February 1994.

[Eri93] Matthew N. Erichsen, Weapon System Sensor Integration for a DIS
v2.O.3 Compatible Virtual Cockpit, MS Thesis AFIT/GCS/ENG/93D-07,
School of Engineering, Air Force Institute of Technology, Wright-
Patterson AFB, OH: December 1993.

146



[Feu82] Allan R. Feuer, The C Puzzle BookP Englewood Cliffs. NJ: Prentice Hall.
1982.

[For94] Jonathan L. Fortner, Distributed Interactive Simulation Virtual
Cassette Recorder: A Datalogger with Variable Speed Replay, MS
Thesis AFIT/GE/ENG/94D-10, School of Engineering, Air Force
Institute of Technology, Wright-Patterson AFB, Oil: December 1994.

[Gard93] Michael T. Gardner, A Distributed Interactive Simulation Based
Remote Debriefing Tool for Red Flag Missions, MS Thesis

AFIT/GCS/ENG/93D-09, School of Engineering, Air Force Institute of
Technology, Wright-Patterson .AFB, OH: December 1993.

JGarl93) David Garlan and Mary Shaw, An Introduction to Software
Architecture, Advances in Software Engineering and Knowledge
Engineering, Volume 1, World Scientific Publishing Company, 1993.

[Ger93I William E. Gerhard, Jr., Weapon System Integration for the AFIT
Virtual Cockpit, MS Thesis AFIT/GCS/ENG/93D-10, School of
Engineering, Air Force Institute of Technology, W'-ight-Patterson
AFP, OH: December 1993.

[Gro92] David C. Gross and Lynn D. Stuckey, Jr., "Is Object-Oriented Design
Sound Simulator Software Engineering?" Fourteenth Inter-
Service/Industry Training Systems and Education Conference
Proceedings, November 1992.

[Har94) Jed Hartman and Patricia (McLendon) Creek, IRIS Performer
Programmer's Guide, Mountain View, CA: Silicon Graphics, Inc., 1994.

[Ich92] Jean D. lchb~ah, "A Farewell to Ada With Null," Electronic Mail
Message to Christine Anderson, 20 November 1992.

[Kam93] J. Michael Kamrad, "Ada 9X: The Next Generation," TRI-Ada '93
Conference Tutorials (Addendum), Seattle, WA: Association for
Computing Machinery, Inc., September 1993.

fKay94J Jordan R. Kayloe and Patricia K. Lawlis, "EasySim: Using Ada 9X in a
Graphics System Software Architecture", TRI-Ada '94 Conference
Proceedings, Baltimore, MD: Association for Computing Machinery,
Inc., November 1994.

(Kem94] Magnus Kempe, "Abstract Data Types are Under Full Control with Ada
9X," TRI-Ada '94 Conference Proceedings, Baltimore, MD: Association
for Computing Machinery, Inc., November 1994.

[Ker78] Brian W. Kernighan and Dennis M. Ritchie, The C Programming
Language, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

[Kes94] Jim E. Kestermann, Immersing the User in a Virtual Environment:
The AFIT Information Pod Design and Implemenration, MS Thesis

147



AFIT/GCS/ENG/94D-13, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, OH: December 1994.

[Kun93] Andrea A. Kunz, A Virtual Environment for Satellite Modeling and
Orbital Analysis in a Distributed Interactive Simulation, MS Thesis
AFIT/GCS/ENG/93D-14, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, OH: December 1993.

[Law92] Patricia K. Lawlis and Terence W. Elam, "Ada Outperforms Assembly:
A Case Study," TRI-Ada '92 Conference Proceedings, Orlando, FL:
Association for Computing Machinery, Inc., November 1992.

[Law941 Patricia K. Lawlis and Mark I. Snyder, "An Object-Oriented Software
Architecture for Large Scale Reuse," Software Technology
Conference Proceedings, Salt Lake City, UT: Software Technology
Center, 1994.

fMcL91] Patricia McLendon, Graphics Library Programming Guide, Mountain
View, CA: Silicon Graphics, Inc., 1991.

[McL92] Patricia McLendon, IRIS Performer Programmer's Guide, Mountain
View, CA: Silicon Graphics, Inc., 1992.

[Mu192] MultiGen Modeler's Guide, San Jose, CA: Software Systems, December
1992.

[Pla89) P. J. Plauger, "Language Derby", Embedded Systems Programming,
November 1989.

[Pla94) P. J. Plauger, "Ada for Large Systems?" Electronic Mail Message, 14
November 1994.

LPoh93] Ira Pohl, Object-Oriented Programming Using C4+, Redwood City, CA:
Benjamin/Cummings, Inc., 1993.

[Qui94a] Thomas 1. Quiggle, "Calling C+- Member Functions," Electronic Mail
Message, Mountain View, CA: Silicon Graphics, Inc., 12 September
1994.

[QuW94b] Thomas J. Qulggle, "SGI Inheriting C++ Classes," Usenet Posting to
comp.lang.ada News Group, Mountain View, CA: Silicon Graphics,
Inc., IS November 1994.

[Rat92] Ada 9X Mapping/Revision Team, Ada 9X Mapping Rationale,
Cambridge, MA: Intermetrics, Inc., March 1992.

1Rat931 Ada 9X Mapping/Revision Team, Ada 9X Rationale, Draft Version 4.0,
Cambridge, MA: Intermetrics, Inc., September 1993.

[Rat94, Ada 9X Mapping/Revision Team, Ada 9X Rationale, Draft Version 5.0,
Cambridge, MA: Intermetrics, Inc., 8 June 1994.

148



[RM93] Ada 9X Mapping/Revision Team, Ada 9X Reference Manual, Draft
Version 4.0, Cambridge, MA: Intermetrics, Inc., 15 September 1993.

[RM941 Ada 9X Mapping/Revision Team, Ada 9X Reference Manual, Draft
Version 5.0, Cambridge, MA: Intermetrics, Inc., 1 June 1994.

[Roh94] J. J. Rohrer, Design and Implementation of Tools to Increase User
Control and Knowledge Elicitation in a Virtual Bartlespace, MS Thesis
AFIT/GCS/ENG/94D-20, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, OH: December 1994.

[Ros75J D. T. Ross, J. B. Goodenough, and C. A. Irvine, "Software Engineering:
Process, Principles, and Goals," Computer, May 1975.

[Rum9l] James Rumbaugh, Michael Blaha, William Premerlani, Frederick
Eddy, and William Lorensen, Object-Oriented Modeling and Design.
New York: Prentice-Hall, Inc., 1991.

[Rus94] James E Russell, Multiple Model Adaptive Estimation and Head Motion
Tracking in a Virtual Environment: An Engineering Approach, MS
Thesis AFIT/GCS/ENG/94D-21, School of Engineering, Air Force
Institute of Technology, Wright-Patterson AFE, OH: December 1994.

(Sch921 Edmond Schonberg, "Contrasts: Ada 9X and C-,+," Albuquerque, NM:
Ada 9X Project Office, 22 April 1992.

[SE1933 Software Engineering Institute, "Structural Modeling Guidebook
(Draft)," Pittsburgh, PA: Carnegie Mellon University, January 1993.

[She92] Steven M. Sheasby, Management of Simnet and DIS Entities in
Synthetic Environments, MS Thesis AFIT/GCS/ENG/92D-16, School of
Engineering, Air Force Institute of Technology, Wright-Patterson
AFB, OH: December 1992.

[She94] Steven M. Sheasby, Personal Interviews, Wright-Patterson AFS, OH:
Distributed Simulation Technologies, Inc., October 1994.

[Sny93J Mark I. Snyder, ObjectSim: A Reusable Object-Oriented DIS Visual
Simulation, MS Thesis AFIT/GCS/ENG/93D-20, School of Engineering,
Air Force Institute of Technology, Wright-Patterson AFB, OH:
December 1993.

[Sny94] Mark I. Snyder, Electronic Mail Messages. Albuquerque, NM: Ph1.,-.ps
Laboratory, Fall 1994.

(Sol93] Brian B. Soltz, Graphical Tools for Situational Awareness Assistance
for Large Synthetic Battle Fields, MS Thesis AFIT/GCS/ENG/93D-21,
School of Engineering, Air Force Institute of Technology, Wright-
Patterson AFB, OH: December 1993.

(Str86] Bjarne Stroustrup, The C.+ Programming Language, Reading, MA:
Addison-Wesley, 1986,

149



[Str9l] Bjarne Stroustrup, The C++ Programming Language: Second Edition,
Reading, MA: Addison-Wesley, 1991.

[Str94] Bjarne Stroustrup, "Ada for Large Systems?" Electronic Mail Message,
Murray Hill, NJ: AT&T Research Laboratories, 13 November 1994.

[Taf91] S. Tucker Taft, "Multiple Inheritance in Ada 9X," Cambridge, NIA:
Intermetrics, Inc., 1991.

[Taf92a] S. Tucker Taft, "Ada 9X: A Technical Summary," Communications of
the ACM, Vol. 35, No. 11, November 1992.

[Taf92b] S. Tuck,: Taft, "Panel on Ada 9X and Object-Oriented Programming,"
TRI-Ada '92 Conference Proceedings, Orlando, FL: November 1992

[Van94] John C. Vanderburgh, Space Modeler: An Expanded, Distributed,
Virtual Environment for Space Visualization, MS Thesis
AFIT/GCS/ENG/94D-23, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, OH: December 1994.

[Wi193) Kirk G. Wilson, Synthetic Battle Bridge: Information Visualization
and User Interface Design Applications in a Large Virtual Reality
Environment, MS Thesis AFIT/GCS/ENG/93D-26, School of
Engineering, Air Force Institute of Technology, Wright-Patterson
AFB, OH: December 1993.

ISO



Vita

Captain Jordan Russell Kayloe was born on 16 June 1968 at Wright-Patterson

Air Force Base, Dayton, Ohio. He spent his formative years in suburban Cleve-

land where he graduated from Strongs,,,v.•le !.1gh Schnnl in 1496f. Kavloe at-

tended Stanford University and graduated with a Bachelor of Science in Com-

puter Science in June 1990. After his commissioning in the United States Air

Force, Kayloe entered active duty in April 1991 and anrendare Rasir Coi."..u.ic.a-

tions Officer Training at Keesler Air Force Base, Biloxi, Mississippi. He re-

mained at Keesler afterwards with the 333rd Technical Training Squadron and

served on its Mobile Training Team as an Ada -and So^IftwVar ... tg,,n,!n-

structor. During his tenure he trained over 150 students at 10 sites nationwide,

until he was selected to attend the Air Force Insitute of Technology, where he

enrolled in the School of Engineering in May 1993. Kayloe was pro....tted [0

Captain on 8 November 1994.

Permanent Address:
19482 Albion Rd.
Strongsville, OH 44136
kayloezcs.stanford.edu

151



REPORT DOCUMENTATION PAGE
Af ,- . f iamr I re. Ca rfV 0 SA cerum a." we., n.. ..2or i,

,. AGENCY USE ONLY (Leave blank) 2. -EPORT DATE 3. REPORT TYPE ANO DATES COVERED

I December 1994 Master's Thesis
•4. TJTLE AND SUBTITLE ! 5. FUND!NG NUMBERS

EASYSIM: A VISUAL SIMULATION SYSTEM
SOFTWAREARCHITECTURE WITH AN ADA 9X
APPLICATION FRAMEWORK

6. AUTHOR(S)

Jordan R. Kayloe, Capt, USAF

7. PER•;CNRMIN. OFZGANIZATION NAME(S) AN 4D ,DDRE -:4-S! -lC.l .IJC6 :'. TIt.

Air Force Institute of Technology
2950 P Street AFIT]GCS/ENG/94D.11
WPAFB OH 45433-6583

9. SPONSORING ;MONITORING AGENCY NAME(S; AND A0.SPS'.(') . S....NG " N! TC C "ING
Mr. Donald J. Reifer AGEtC CY REPORT NUNBER

Chief, Ada Joint Program Office (AJPO)
701 South Courthouse Road
Arlington, VA 22204-2199

11. SUPPLEMENTARY NOTES

i,;,. ;-L ;,N AV'-h•.iT .TA, , T .. . ..- "..

Approved for public release; distribution unlimited

Software architectures increase productivity when used as the basis for developing applications nL a
problem domain. This thesis describes the creation of Easy-Sim, an object-oriented software architecture for
visual simulation systems, and its corresponding implementation as an application framework in Ada 9X. The
research 6uilt upon ObjectSim, an existing object-oriented simulation architecture implemented as a C++
application framework. Both ObjectSim and Easy-Sim operate on Silicon Graphics platforms and use the IRIS
Performer graphics programming library. EasySim is Implemented using version 1.83 of the GNAT compiler.

The investigation for this thesis involved honing ObjectSim's design, implementing the improved result
in both C+.+ and Ada 9X, and developing applications to compare the two versions. The study achieved two
main objectives: producing Easy-Sim as an improved visual simulation system architecture by building on
ObjectSin's experience, and producing a visual s•inulation system application from Easy..Sim in Ada 9X that
performs at a level comparable to the same application built in C++.

14. SUBJECT TERMS .15 NUMBER OF PAGES

1601
Software Engineering, Ada 9X, Software Architecture, Application Framework, 1 16. PRICE CODE
Object-Oriented,

17. SECUR:TY CLASSIF!CATION 18. SECURITY CLASSIFICAI.:N -SCURiTY CLASSI:I ;A. -- 0. ;.IUTA'!INt+ C: ABSTRACT
OF IREPOPT OF THIS PAGE C ,F ', .-.T:. CT

Unclassified Unclassified, Unclassified i UL
Unlasiie UL.. .. .;"•


