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Preface 

This research is an investigation to determine if and under what conditions general 

analytical solutions for electric field screening could be applied to wide bandgap 

semiconductors such as bismuth silicate. The analytical solutions are based upon a single 

impurity level within a wide bandgap semiconductor. If screening for bismuth silicate could 

be described using a single impurity level, then this would greatly simplify the numerical 

calculation involved in a two dimensional model currently being investigated by Major Gary 

D. Barmore. I found this work to be gratifying because I learned a great deal more about 

semiconductors and the dynamics within them. Prior to this effort, my mind was full of bits 

and pieces of physics acquired from classes. Now I understand how several of the pieces fit 

together, and I am eager to add more pieces in the future. 

I would like to thank my advisor, Dr. T. E. Luke, for opening a new door of 

semiconductor physics to me. His support, encouragement, and forever open door policy was 

greatly appreciated. Also, Major Gary D. Barmore, who is soon to receive his Ph.D. in 

physics, was very instrumental in initially getting me "up to par" and in bridging the gap 

between instructor and student terminology. I thank my wife for her continued support 

through this effort. She would always know when I needed room and when I needed 

encouragement. Thank you my son, Caleb, who always knew how to make Daddy smile. 

Most of important, my thanks goes to my Lord and Savior, Jesus Christ, who gave me the 

patience and persistence to complete this thesis. 

Anthony N. Dills 
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Abstract 

A mathematical model of the influence on electric field screening arising from a single 

impurity in a wide bandgap semiconductor has been numerically investigated and compared 

with analytically derived solutions. The parameter set chosen to perform the comparison of 

analytical solution and numerical solution is based upon a bismuth silicate crystal. Both the 

analytical calculations and the numerical calculations are an attempt to mathematically model 

the internal electric field within a semiconductor. Two types of impurities were looked at: a 

single donor level and a single trap impurity level. In general, after an abrupt application of a 

voltage across the semiconductor, net charge regions begin to redistribute and create internal 

electric fields that screen the applied field. A trap impurity is found to be more self-consistent 

with the analytical solutions than a donor impurity; the former satisfying the assumption of a 

constant free electron lifetime. The analytical solutions are valid for observation times much 

less than the Maxwellian relaxation time xM: t « xM. The analytical solution properly predicts 

stratification conditions when the observation time is prior to xM; however, oscillatory 

behavior, characteristic of stratification, of the internal electric field occurs for times much 

greater than xM. During this regime the analytical solutions are invalid. 



MODEL OF A SINGLE IMPURITY IN A WIDE BANDGAP SEMICONDUCTOR 
DESCRIBING ELECTRIC FIELD SCREENING 

/. Introduction 

Electric field screening is a typical response in a wide bandgap semiconductor that has 

been subjected to an external electric field in which injection is not sufficient to maintain 

charge neutrality. Screening refers to an internal modification of the external electric field. In 

effect, the changing internal field creates internal forces on the mobile carriers. These forces 

differ from the external force created by the external electric field. From the change in forces, 

the mobile carriers are screened from the external field. 

Different mathematical models exist to describe screening. These models can be very 

complicated in that many species are involved. As shown in Figure 1 some models like that of 

bismuth silicate use a deep donor site and one or more trap sites. The mathematics describing 

the charge dynamics can quickly become very cumbersome with these complex models. In 

fact, closed form solutions are usually impossible to derive. For this reason, these 

mathematical models with many impurity sites can only be solved numerically. Recent work 

by A.S. Furman claims that screening in most wide bandgap semiconductors held at thermal 

equilibrium can be accurately modeled with one impurity level which is the source of thermally 

generated electrons. Using only a single impurity, Furman derives a closed form solution for 

the internal electric field which screens the external electric field. A closed form solution has 



many advantages. The obvious being a great reduction in numerical calculations, while 

another advantage is a closed form solution facilitates the validation of experimental results. 

— e. 

2.6 eV 

.3eV    ' 
.6eV 

Shallow 
Traps 

Donors 

1.3 eV 

2.5 eV 

Deep Traps 

Figure 1. A typical model of a wide bandgap semiconductor. This is one of 
the models used for bismuth silicon oxide (BSO). The energy band gap is 
3.25eV while the donor and traps are labeled respectively. 

The purpose of this thesis is to numerically determine if, and under, what conditions 

A.S. Furman's analytical solution can accurately describe the dynamics of field screening. This 

task will be accomplished by numerically validating or disproving his solutions. To 

realistically accomplish this task, both the analytical solutions derived by Furman and the 

numerical solutions must be based on a real example. In his example, Furman alludes to a 

bismuth silicate (bismuth silicon oxide, BSO) crystal with an applied electric field in which 

injection is not sufficient to maintain charge neutrality. Typically, BSO is characterized by a 

deep donor level and many trap levels similar to those shown in Figure l.1'2  A deep donor is 

donor site whose energy level is located far from the conduction band. Previous work with 



BSO yields good agreement with experimental results when BSO is modeled with one deep 

impurity level and one or more shallow trap levels.2 Even so, no analytic solution exists. If a 

single impurity level model with an analytic solution can accurately describe the screening 

dynamics involved in BSO, then theoretical comparisons to experimental observations of 

screening can become easier and exact with an analytical solution. For this reason, this thesis 

uses a parameter set that should reflect screening within BSO modeled with a single impurity 

level. This analysis is very similar to the analysis of a PRIZ device of which BSO is the active 

medium placed between transparent electrodes. Appendix A has more information concerning 

the PRIZ. 

To obtain a goal one must set some milestones to accomplish along the way. The first 

milestone is to understand Furman's model of a single impurity level. This includes an 

analysis of the physics behind the different processes as well as the assumptions used to derive 

Furman's analytical solutions. The second milestone is to analytically derive estimates for 

some of the parameters needed to calculate the numerical solutions and to evaluate Furman's 

analytical solutions. These parameters include lifetimes and rate coefficients. The third 

milestone is to validate Furman's analytical solutions by using numerical routines available in 

MatLAB® to solve the rate equations describing the time and spatial evolution of the internal 

electric field. Once obtained, the numerical solutions will be compared to Furman's analytic 

solutions to determine when Furman's analytical solutions accurately describe the dynamics of 

electric field screening. 

This chapter serves as an introduction to the problem, and the background in Chapter 

II defines the experimental setup for the single impurity model as well as many of the terms 

and processes involved. The third chapter is a full description of the contents of A.S. 
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Furman's paper to include the mathematical model described by a set of rate equations and 

their solution. Chapters IV and V explain numerical solutions to the same rate equations 

applied to the single donor level model and to the single trap level model that explains some of 

the discrepancies the numerical solution gave when compared to the analytical solution. 

Chapter VI concludes the thesis with a summery of results, conclusions, and 

recommendations. Appendix A gives an explanation of the PRIZ device and the BSO crystal. 



//. Background 

General 

This research uses an experimental setup shown in Figure 2 that is common among all 

the models of wide bandgap semiconductors. Initially the system is assumed to be under 

thermal equilibrium. At time equal to zero an external field is applied from a contact on each 

end of the crystal where the injection of electrons is prohibited by a non-injecting cathode. 

The applied electric field is negative because the field points toward the cathode and the 

coordinate system begins at the cathode for z = 0 and ends at the anode for z = d. Because 

the focus is on extrinsic wide bandgap semiconductors, impurities exist. The types of 

impurities and their concentrations vary depending on the crystal. 

The two types of impurity energy levels investigated in this research are a donor level 

and a trap level. For an electron carrier, a donor site is a neutral species within a crystal that 

has a high probability of contributing an electron to the conduction band when subjected to an 

excitation mechanism. Once the donor loses an electron, the donor becomes positively 

ionized. The current research focuses on thermal excitation, which in thermal equilibrium is 

governed by Fermi statistics. A trap site is a neutral species within a crystal that can capture 

an electron from the conduction band. Similar to the donor, once the trap gains an electron, 

the trap is negatively ionized. This site is different from a conventional recombination center 

in that the trapped electron has a higher probability of returning to the conduction band rather 

than recombining with ionized donors or holes in the valance band. To get a feel for relative 

impurity levels, in BSO shallow electron traps are normally 0.2 eV to 0.8 eV from the 



conduction band, and the donor levels are around 2.6 eV from the conduction band. 

Typically, the donor levels are lie at any energy level depth within the energy bandgap. A 

conventional semiconductor donor is an impurity that replaces one of the semiconductor 

atoms, but the donor in BSO originates from a crystal defect.3 

z = 0 ->     z = d 

< 

Non-injecting 

Cathode (-) 

E   = - V / d o 

Crystal 

Figure 2. The modeled crystal defined by a length d with an 
applied voltage V. The direction of the electric field is in the 
negative direction. 

The effect of both trap impurities and donor impurities are investigated in this 

research; however, they are treated separately in order to maintain a single impurity model. In 

the following qualitative discussion, the donor impurity is used to describe the physics behind 

field screening. 



Screening 

A simple one level donor impurity model will suffice to explain screening dynamics. 

As stated in the introduction, the system is held in thermal equilibrium. In thermal 

equilibrium, an initial concentration of electrons exists in the conduction band due to thermal 

excitation governed by Fermi statistics. These free electrons came from the donor level as 

shown in Figure 3. 

free electrons 

CB 

©00000© 
ionized donors 

Energy 

/ Distance 
VB 

<- Crystal Length > 

Figure 3.  A qualitative picture explaining the initial neutral 
charge throughout the crystal. 

Thus, the initial concentration of electrons is equal to the initial concentration of ionized 

donors. For this reason, before any electrical force is applied, the system has a net neutral 

charge throughout the crystal. Upon the application of an electric field, the free electrons 

move away from the cathode and toward the anode. Assuming a blocking contact at the 

cathode, the cathode region becomes positive since the ionized impurity level is a donor level 



as seen in Figure 4 below. For future reference, the positive region near the cathode is called a 

depletion region. 

c   I positive \    • 
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Figure 4. Band diagram showing the ionized donor sites and the free 
electrons under the influence of the applied electric field. The darkened 
oval depicts the formation of the net positive region as the free 
electrons drift toward the anode. The black dots are the free electrons 
and the hollow dots with the plus (+) signs are the ionized donor sites. 
CB = conduction band. VB = valence band. 

As the charge distribution within the crystal changes under the influence of an external 

electric field, certain regions become more positive than others. For this reason, local fields 

are generated between different net space charge regions throughout the crystal. As a result, 

free electrons in a macroscopic region experience the influence of the external field modified 

by an internal field, which is spatially dependent. Some of the electrons may "feel" larger (or 

smaller) effects from the fields than others depending on their location within the crystal. For 

example, free electrons near the cathode may experience a stronger electric field force than do 
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the free electrons near the anode due to a large positive region forming near the cathode as 

shown in Figure 5. Between the cathode and the net positive region is a narrow regime where 

the electric field, potential divided by distance, is very large and pointing toward the cathode. 

This process of modulating the influence of the external field is referred to as screening. The 

following chapter discusses two types of screening. 

yo^kiv^   drifting electrons 

'     1     .J 

A 

N 

O 

D 

E 

Figure 5. A sketch of internal fields generated by net space 
charge movement. The height the electric field represents a 
stronger field. 



III. A.S.Furman'spaper 

Simple Screening 

Chapter II introduced the concept of screening. Two types of screening exist, 

however. In one, the depletion region grows in thickness away from the cathode and in the 

other the net space charge regions redistribute to form alternating layers of net charge which 

create oscillations in the internal electric field. The first screening process does not have a 

specific name, while the second is called stratification.4 For simplicity in the rest of the paper, 

the term "simple screening" will refer to the first process. 

As discussed in the previous chapter, all available free electrons leave the cathode 

region when the field is applied, thus the cathode region becomes positive. This net positive 

region is the depletion region. As time evolves, the free electrons continue to drift toward the 

anode. This movement causes the depletion region to increase its net positive charge and to 

expand in thickness away from the cathode until a steady state is reached. Steady state occurs 

when the free electron distribution becomes temporally constant. 

The terms "steady state" and "equilibrium" are often confusing and misinterpreted. 

For this reason, a clear understanding of these terms is imperative before they are used in the 

following discussion. If a system has no external forces affecting it and if the internal 

particles, e.g., electrons, are perturbed slightly, then the particles will naturally relax back to 

equilibrium. The characteristic time for the particles to relax back to equilibrium is the 

Maxwellian dielectric relaxation time, xM, which is defined as the permittivity divided by the 

conductivity. Using this concept of equilibrium, steady state can be redefined as equilibrium 
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when a force is applied to the system. In the following analysis, the initial Maxwellian 

relaxation time is used as a measuring stick for when the system reaches steady state. Even 

though this characteristic time is for equilibrium, it still gives a good feel for the steady state 

time. 

Stratification 

Stratification is similar to simple screening; however, the space charge oscillates in the 

spatial dimension instead of monotonic change as in the simple screening. With stratification, 

the cathode depletion region thickness moves toward the cathode until reaching steady state, 

and the net space charge regions that develop have alternating net charges. This layering of 

space charge regions with alternating net charges is the stratification effect.4 Since Poisson's 

equation relates the electric field and the net space charge, oscillations occur in the electric 

field distribution as well. V.N. Astratov gives an excellent description of stratification and the 

parallel between space charge oscillations and electric field oscillations in his 1984 paper on 

"Stratification of the space charge in the case of screening of a field in crystals."   Figure 6 

delineates the basic process, which is discussed below. 
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Figure 6. Qualitative description of the net space charge p, the free electron 
concentration n, and the magnitude of the electric field IEI. (a) and (b) depict the 
first and second space charge layers while (c) and (d) depict the three space charge 
regions.5 

Before the application of the external field, an equilibrium exists between the 

generation of electrons to the conduction band and the recombination of electrons to the 

impurity level. During this initial time, the concentration of free electrons and the 

concentration of ionized impurities are in equilibrium and are uniformly distributed throughout 

the crystal. Thus the net charge density is zero over the entire crystal. Applying the field 

creates a force on the electrons and the positive ions. Assuming the ions remain stationary, 

only the electrons will drift toward the anode. Assuming no injection at the cathode, the 

movement of the electrons creates a region near the cathode, a depletion layer, that has a 

deficiency of electrons and therefore has a net positive charge. The formation of the positive 
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region near the cathode is the first layer of the space charge stratification, and the formation of 

the negative region near the anode is the second layer of the space charge region. According 

to Poisson's equation, V«E=p / e0, the point zi at which the space charge goes from positive 

to negative is the first local minimum of the electric field. As depicted in Figure 6, this 

inflection point is a minimum in the electric field, thus, it minimizes the amount of the force, q 

E, acting on the electrons and acts to prevent electrons from drifting past zi. This has two 

consequences. First, the electron concentration near zi will begin to increase and thus 

eventually creating a maximum in the electron distribution and a net reduced positive charge 

region just short of zi. This build up of the electron concentration continues until the net 

space charge just short of zi becomes negative. By becoming negative, the inflection point of 

the electric field has shifted to the left of z\. In effect, the depletion layer thickness has 

decreased or zx has moved to the left. Second, the decrease of electrons passing zi as well as 

the continued drift of electrons to the right of zi toward the anode creates another depletion 

region at z2 where the net charge density is positive and the identical process discussed for z\ 

will again happen at a new location z2 where zi < z2.  This second process creates a third 

stratification layer and the process continues for more layers as the original depletion layer 

gets closer to the cathode. 

Description of Cases 

A. S. Furman's mathematical model6 addresses the dynamics of electric field screening 

to include stratification. His mathematical model serves as a good quantitative introduction 

into the problem. This model contains one impurity level and assumes a constant ionization 

rate and a constant lifetime of electrons in the conduction band. The boundary conditions 
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include a doped, n-type semiconductor with a static applied voltage and a potential barrier 

created by the metal contact and the semiconductor prohibiting the flow of electrons from 

crossing the cathode (no injection). Furman's model for one impurity level covers three cases 

with different characteristic times. The three cases are shallow impurities and two types of 

deep impurities. 

The characteristic times that define the three cases are the ionization time X;, the free 

electron lifetime x, the Maxwellian relaxation time XM, and the transit time to. The ionization 

time is the inverse of the ionization rate, which characterizes how many electrons per second 

are thermally excited into the conduction band. The free electron lifetime is the average time 

the free electron is in the conduction band. As discussed earlier, the Maxwellian relaxation 

time is the time in which the system of free electrons and ions reach equilibrium. If the initial 

concentration of free electrons is known, then the Maxwellian time in seconds is defined as 

^M i-   =   —i- (1) 
a e \i no 

where 8 is the semiconductor permittivity, e is the electron charge, |i is the electron mobility, 

and n0 is the initial concentration of electrons in the conduction band. This Maxwellian time 

is, in general, dependent on the changing electron concentration; however, using the initial 

concentration of electrons allows the use this time as a characteristic time of the system. Its 

use is primarily to help distinguish between the three cases of screening. The fourth 

characteristic time is the transit time. The transit time is the initial time for an electron to drift 

across the semiconductor and is defined as the crystal length divided by the electron drift 

velocity. The electron drift velocity can be written as the drift mobility times initial internal 

field which equals the external electric field. The external electric field is in turn defined as the 
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applied potential voltage divided by the crystal length. Thus, in terms of the device 

parameters, the transit time can be written as d2 / (\i V) where d is the crystal length, \i is the 

free electron drift mobility, and V is the applied voltage across the crystal. 

Case One: Shallow Donors, x; « x. In case one, shallow donors lead to a very short 

ionization time X; when compared to the electron lifetime x, i.e. X; « x. Since the ionization 

time is very short or the ionization rate is very large, all the available electrons are excited into 

the conduction band and convectively transported from the cathode region before 

recombination of free electrons occur in x. As explained in Chapter I, the depletion layer 

thickness grows in time. 

Case Two: Deep Donors, x « Xi « xM. In case two, the donor level is further away 

from the conduction band, thus the donor is called a deep donor. The term "deep" is not the 

typical deep donor in semiconductor that is 2 eV or more below the conduction band. 

Instead, the donor in this case, and in the latter case, is on the order of 0.8 eV which is 

considered deep when compared to 0.2 eV shallow donors. In this case, the free electrons 

have a lifetime less than the ionization time, but both of these times are much less than the 

Maxwellian relaxation time, x « x; « xM. With these characteristic times, the electrons 

recombine at a higher rate than they are generated and long before they can redistribute 

themselves to counter the internal electric fields. Under these conditions, recombination to 

the donor level will dominate, and in regions where this happens the net charge becomes less 

negative due to the loss of free electrons. Before equilibrium is established (prior to the 

Maxwellian time, t < xM), more ionization occurs and the excited electrons recombine again. 

Thus the cathode region becomes more positive and the net positive space charge migrates 
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toward the anode as it does in Case 1. If the observation time is much greater than the 

Maxwellian time (t» xM) then the recombination, generation, and charge redistribution reach 

equilibrium and the space charge distribution attains steady state. 

Case Three: Deep Donors, T « xM « x;. For Case 3, the deep donor is similar to Case 

2 but with the Maxwellian time between the other two characteristic times, x « xM « x;. With 

these characteristic times, the electrons recombine before they can redistribute and try to 

counter the internal electric fields. In addition, the electrons recombine long before they are 

thermally re-generated. Under an applied field, the initial electron density in the conduction 

band migrates to form a concentration of electrons in a region away from the cathode. The 

cathode region becomes more positive and the region containing the bulk of the electrons 

becomes more negative. Since the free electron lifetime is much shorter than the other 

characteristic times, a portion of the bulk electrons will recombine with the donor level. This 

results in a decrease in negative charge for this bulk region of free electrons. At this point the 

system has three distinct space charge regions like the ones in Figure 4, 5, and Figure 6. As a 

result of this net space charge behavior, stratification occurs. For this case, Furman says that 

for observation times much less than the ionization time, the ionization time and the lifetime of 

the free electrons are practically constant. With this observation, Furman solves the governing 

rate equations, which are described in the following discussion. 

The rate equations 

For each impurity energy level a rate equation exists as well as a rate equation for the 

free electrons. Furman explains his equation in terms of an unionized probability distribution 

function. For simplicity, the equations are rewritten in terms of ionized impurity 
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concentrations. The signs in Furman's rate equations suggest a donor impurity, thus the first 

of his two rate equations, Eq (2) and Eq (6), describes the rate of population change for the 

ionized donor concentration ND
+
: 

8 N°(
t

Z' °   =   ß(ND   -  N+(z, t))  -  Y  •  N+(z, t)  •  n(z, t)        (2) 

The first term on the right hand side is the generation term for ionized donors (or impurities), 

ND
+; it depends on the number of unionized donors and a generation rate. The unionized 

donor concentration is the total minus the ionized donor concentration. Furman's generation 

term includes a summation of both a thermal generation coefficient ß and a photogeneration 

term, S • I, which is the product of the photoionization cross section and the illumination 

intensity. However, this thesis considers only the thermal generation. The second term on the 

right hand side of Eq (2) is a recombination term and consists of a thermal recapture 

coefficient y, the number of ionized donors ND
+, and the free electron density n. This equation 

is often written in terms of characteristic times. Since this thesis compares characteristic 

times, rewriting Eq (2) is appropriate: 

d N+(z, t)   =       (ND   -   N+(z, t))   _   n 

d t Xj X 

where the ionization time Xi is 1/ß and the recombination time x is l/[y ND
+(z,t)] which may or 

may not be a constant. 

The second equation, which describes the rate of change in free electron density, is 

derived from the continuity equation. Furman's model consists of a single donor level 

between the conduction band and the valence band, thus the net charge density p is defined as 

p(z, t)   =   eN+(z, t)  -  en(z, t) (4) 
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and when put into the one dimensional continuity equation, 

a j(z, o = _ a p(z, t) =      a N+(Z, Q + e a n(Z, o 
a z at at at 

yields Furman's second rate equation: 

an(Z, t) = 3N+(Z, t) + _i aj(Z) t) (6) 

at at e    az 

where j(z,t) is the free electron current density consisting of drift current [e |i n(z,t) E(z,t)] 

and diffusion current [e D an(z,t)/az]. Furman ignores the diffusion current when he solves 

these equations. Thus, when one compares the numerical results with Furman, one must solve 

the equations without diffusion current in the "j" term. 

The third equation completing the set of governing equations is a relationship for the 

total electric field. In general, the total electric field is defined as the negative potential 

gradient, E = -VO, and can be broken down into two parts, the external field plus the internal 

field. The external field is -V/d and the internal field is defined by integrating Poisson's 

equation. At the cathode, the total electric field is the external field plus the internal field 

integrated over the entire crystal length, 

d Jo 
E(0, .)--■£  +  !    f * (z  -  d) P^i)   dz 

d        d    In e 

Elsewhere in the crystal, the total electric field is defined as the cathode electric field above 

plus the internal field integrated up to the current location, z, within the crystal. Thus the total 

electric field expression is 

Jo 
E(z, t)   =   E(0, t)   +    I   ^-^ d^ (7) 

'o    E 
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where the system is held under a constant voltage, V, which is explicitly written as 

JO 

•d 
V   =   -I   E(z)dz 

'0 

and where the spatial dependence in the longitudinal direction and time dependence have been 

shown. For the true model of the semiconductor, the spatial dependence is three dimensional. 

These equations are the basic equations describing the dynamics of the screening of an electric 

field in a semiconductor with a donor level. They are spatially and temporally dependent, thus 

they are subject to initial and boundary conditions. The boundary conditions stated in 

Furman's paper use the fact that the total current density is a constant with respect to 

position. The total current density is the sum of the bound displacement current density, 

e3E/3t, and the free electron current density, j(z,t). The second boundary condition assumes 

the applied voltage is held constant across the semiconductor. The first boundary condition 

comes directly from Maxwell's equation, V  x  H   =   j  +     =   i  • Taking the 
dt 

divergence of each side yields zero for the change in total current as a function of a change in 

distance. Consistent with Furman's boundary conditions, one must assume that at the cathode 

(z = 0), no injection occurs. With this assumption, the free current density at the cathode is 

zero because no carriers exist in this region. The initial conditions also require the initial 

concentration of free electrons to be a set amount corresponding to the equilibrium 

temperature of the crystal. Under thermal equilibrium, this initial free electron concentration 

can be calculated from knowing basic semiconductor physics. (See Chapter IV, Eq (12).) 
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The solutions and their assumptions 

Furman solves the two rate equations, Eq (3) and Eq (6), and then considers the three 

cases discussed earlier. The actual derivation of the solutions is not repeated in this research; 

however, the solutions and the assumptions governing them are discussed. In each of the 

three cases, Furman assumes the observation time is much less than the Maxwellian time. By 

assuming this, Furman can linearize the rate equations and combine them into one differential 

equation for each case. 

Case One: Shallow Donors, Ti « T. In the first case of shallow impurities, a quasi 

steady state is established as a result of slow expansion of the depletion layer. Furman 

assumes the space charge is positive for locations within the depletion layer (z < z0) and for z 

> z0, the net space charge is zero because he assumes the electrons leave at the anode. In the 

following expression, z0 tracks the depletion layer thickness and E shows the distribution of 

the electric field: 

E(z, t)   = 

( 

EQ 
ZQ(t) 

2^ 
eno(zQ(t) -  z),   z   <   ZQCO   =   Wtanh 

'O 
VT0y 

(8) 

EQ 1 - 
zp(t) 

W7 

2^ 
,   z   >   z0(t) 

where n0 is the initial concentration of carrier electrons; E0 is the applied electric field defined 

as the applied voltage of -V over the crystal length d; W is the steady state thickness of the 

screened depletion layer defined as 

W 
EV 

en. Vt0 
(9) 
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where e is the permittivity of the semiconductor, e is the magnitude of the electron charge; 

and the characteristic time T0 is defined as 

to    = 
2ed 

Ve no po|y 
=   ^Ph^ (10) 

where \i is the mobility of the free electrons. 

Case Two: Deep Impurities, t « TJJ«_XM. For the first process of deep impurities, a 

local equilibrium is set up between electron generation and recombination. In this case, the 

change in ionized donors with respect to time, the first term in Eq (6), goes to zero and the 

rate equation for ionized donors, Eq (3), is ignored. The resulting rate equation describes the 

screening which is due to a redistribution of bound charge which can be treated, according to 

Furman, as a free electron gas characterized by a drift velocity. When the observation time, t, 

is much less than the Maxwellian time, xM, then the resulting linearized differential equation is 

the same as that derived for Case 1. For this reason, the Case 1 solution applies for Case 2. 

Because they have the same solutions, only Case 2 will be analyzed. 

For Case 2, the plots of Eq (8) are given in Figure 7. This figure shows the depletion 

layer size increasing in time. Outside the depletion layer is a homogeneous electric field. 
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0.1    0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9 

Distance / crystal length 

" 0.039 Maxwellian time 
0.077 Maxwellian time 
0.143 Maxwellian time 

" 0.386 Maxwellian time 
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" 0.386 Maxwellian time 
0.626 Maxwellian time 
1.000 Maxwellian time 

Figure 7. Plot of Eq (8) for case two deep impurities. The electric field 
is normalized to the applied field magnitude, V/d. The distance is 
normalized to the crystal length, d. 

Case Three: Deep Impurities x « xM « Xi- For the second case of the deep impurities, 

Furman also achieves a solution. After approximating that the rate of generation and the 

electron lifetime remain nearly constant but not equal and that recombination dominates, 

Furman derives this general solution: 

"1  -  A  •   B  •  C   ,   z   <   z0 

1 
E(z, t)   =   E0\ t 

,    Z     >     ZQ(t)     =     -   If) 
X 

(11) 

where 
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t 10 

B   = 

XMz 

exp 

mj 

1/2 

z 
i - 

^M 

C   =   Ji 
( ,    ( 

io UM     'CM io 

•\A 

yy 

1/2' 

and where Ji is the Bessel function of the first kind and lo is the drift length (JLL X IE0I). 

This equation has one primary restriction: t« xM . Furman assumes t« xM in order to 

linearize and solve the differential equations that results in Eq (11). The plot of Eq (11) is 

shown in Figure 8. As in the previous two cases, simple screening occurs; however, 

stratification does not occur except for times outside the time restriction (t > XM). Even 

though the field oscillations occur outside the Maxwellian time, Case 3 is the only case that 

stratification is observed analytically. The question is whether or not this stratification is real. 

Furman continues to say that the stratification can also occur for a third deep level case, XM « 

x « Xi; however, according to Eq (11), it only occurs when t > (XXM)
1/2

 > XM and Eq (11) is no 

longer valid. 
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Figure 8. Case three analytical solution for different time slices. Figure (a) is for 
times much less than the Maxwellian relaxation time. Figure (b) shows 
oscillatory behavior of the electric field can only occur outside the Maxwellian 
time. For times outside the Maxwellian time, the field equation is invalid. 

The plots in Figure 8 show two types of behavior as time increases. During t < xM , 

the electric field distribution is nonlinear and approaches a normalized value of -1. Only for 

times greater than the Maxwellian time, t > xM, does the electric field oscillate and exhibit 

stratification. The times in this region violate Furman's time restriction. For this reason, one 

may wonder why Furman reported oscillations. Even though his equations are invalid during 

this time regime, he still showed oscillatory behavior. This oscillatory behavior is not the 

same as that seen in the laboratory; however, he may have wanted to show that only 

oscillations exist. In order to accurately predict the single impurity level electric field 
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dynamics, one must solve the governing rate equations (Eqs (2) and (6)) numerically for all 

the times of interest. 

The next two chapters numerically solve two examples of single impurity level models. 

Chapter IV contains an analysis of the single donor level, while the single trap level is 

analyzed in Chapter V. In both chapters, numerical results are compared to the previously 

obtained analytical results. 
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IV. Single Donor Level 

Numerical simulation 

Since thermal equilibrium conditions are assumed, a parameter set can be derived to 

properly model any single donor level in a wide-bandgap semiconductor. The following 

discussion analyzes the origin of a particular parameter set based upon thermal equilibrium 

conditions. The parameter set chosen coincides with bismuth silicate being the active medium. 

Bismuth silicon oxide (BSO) was chosen since Furman alluded to an example for which BSO 

was the active medium. By choosing a concrete example such as BSO, material properties 

such as mobility, permittivity, and donor energy level are known. The other parameters, such 

as characteristic times, must be calculated. These calculations are facilitated by thermal 

equilibrium conditions. The next few paragraphs explain how to determine a complete 

parameter set using thermal equilibrium conditions. 

The basic parameter set includes three of the characteristic times discussed in the 

previous chapter. To reiterate, the three times are the ionization time x;, the free electron 

lifetime T, and the initial Maxwellian relaxation time TM. Using first principles in physics, all of 

these times can be determined if the magnitude of one is arbitrarily chosen. In the following 

explanation, the lifetime of the free electrons is arbitrarily chosen to be 0.1 times the initial 

Maxwellian time. Thus the first characteristic time to calculate is the initial Maxwellian 

relaxation time. From Eq (1), the only unknown that must be calculated is the initial 

concentration of free electrons. 

26 



According to standard solid state texts,7 when a system is in thermal equilibrium, 

Boltzmann statistics accurately predict the thermal equilibrium concentration of electrons in 

the conduction band. For n-type semiconductors, this expression is written as: 

( Egap - EFem 
no(T)   =   Nc(T) exp 

kBT 
(12) 

where 

NC(T)   =   2 
( 27cmeffkBT 

(13) 

is the effective density of states in the conduction band,8 Egap is the bandgap energy separation 

which is assumed to be the conduction band energy level, kB is Boltzmann's constant, T is the 

temperature in Kelvins, meff is the effective mass of the semiconductor, and h is Planck's 

constant. And as shown in Appendix B, solving the charge neutrality condition, n0 = Nd
+(t=0) 

for n-type semiconductors having only a donor level and for incomplete ionization, yields a 

Fermi level energy as 

EF(T) = - (: 
2 \2Egap ED) + kßT J    ND    ^ 

In 
2NC(T) 

(14) 

kgT  •  arcsin 
|NC(T) 
8ND 

exp ED 

2kBT 

Y\ 

J) 

where ED is the donor energy level below the conduction band and ND is the total donor 

concentration. 

Once the equilibrium concentration of electrons is known, the Maxwellian relaxation 

time is easily calculated from the permittivity divided by the electrical conductivity: 
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TM(T)   =   ^   =      „ £ m (15) G enn0(T) 

where e is the permittivity, e is the elementary charge, |i is the electron mobility, and n0(T) is 

the initial electron concentration in the conduction band defined by Eq (12). 

After calculating the Maxwellian time, the electron lifetime is known from the above 

choice for the ratio of xM to the electron lifetime x. To reiterate, this choice for the ratio, x / 

xM, is 0.1. This ratio says the Maxwellian time is much larger than the free electron lifetime 

and assumes the carrier electrons will not reach equilibrium during an observation time of t < 

xM. With this assumption the lifetime of the free electrons is simply x(T) = 0.1 xM(T), which 

allows the determination of other parameters such as the drift length, 10(T) = (i x(T) IE0I and 

(from the second term on the right hand side of Eq (2)) the initial recombination coefficient: 

Y(T)   =    —^  (16) 
x(T)N+(z, t   =   0) 

where ND
+
(Z, t = 0) is the initial ionized donor concentration, which is equal to n0 as long as 

the model consists of a single donor level with no injection occurring and no excitation from 

the valence band. 

The relationship between the recombination coefficient and the ionization rate, ß = 

1/Xi, from solving Eq (2) under steady state conditions as shown in Appendix C is: 

ß(T)   =   ^p- NC(T) exp 
( ED (17) 

This relationship is a useful expression relating the ionization time and the free electron life 

time. Since the free electron lifetime is arbitrarily chosen, the ionization time can be readily 

calculated for a given temperature. Using Eqs (12) to (17) the characteristic times can be 
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calculated for different temperatures. By using the temperature to calculate the Maxwellian 

time and the recombination time, the relative magnitudes between the characteristic times (x, 

Xi, and TM) can be changed such that the three cases mentioned above can be obtained. 

Before the characteristic times are actually calculated, a few parameters are needed to 

use the formulas above. For this reason, an example system is used. As stated earlier, the 

example system is a BSO crystal subjected to an external electric field. In this numerical 

model, the field is generated by applying 9 kV across a 0.8 cm long bismuth silicate crystal. 

The effective mass, meff, of BSO is fourteen times the mass of an electron, me,
8 while the 

permittivity, 8, is 50 8o. The free electron mobility, (J., is very dependent on the crystal 

growth; however, the most notable value for the intrinsic mobility at room temperature is 

0.029 cm2 / (volt sec).9 To complete the initial parameter set before calculating the 

characteristic times, the energy levels must be known as well as the donor concentration. 

BSO has energy bandgap, Egap, of 3.25 eV. Within this gap, a realistic donor energy level, 

ED, of 0.816 eV from the conduction band is chosen. The typical donor concentration, No, is 

1016 cm"3. This initial parameter set is listed in Table 1 below. 

Table 1. Initial parameter set for the crystal. 
Parameter 

Symbol Value  
V 9kV 
d 0.8 cm 
Hleff 14 me 

e 50 x8.85xl014 farad/cm 

H 0.029 cm2/(volt sec) 
ED 0.816 eV 
F 3.25 eV 
ND lxl016cm"3 
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With the above initial parameter set and governing equations, the characteristic times 

for each case are calculated and reported in Table 3. Without redefining the location of the 

donor energy level to reflect a shallow donor, Case 1 is achieved for the given donor energy 

level above when the temperature is 800 degrees Kelvin. T = 800 K may seem high; however 

the temperature only reflects the donor energy level being shallow. Case 3 is met for lower 

temperature such as room temperature, 293 K. It is case 2 that can not be achieved by 

thermal excitation alone. For this reason, the ionization time for case two is artificially chosen 

to be four times that of the electron lifetime in case three. This is in effect adding S*I = 638 

sec"1 in Eq (2)'s generation term while maintaining thermal excitation at 293 K. Even though 

illumination (S»I) is initially being used to help generate electrons out of the donor sites, 

thermal equilibrium still applies since the illumination is "turned off prior to the application of 

the external field. 

Normalization. In order to facilitate computations, the rate equations given in Chapter 

II are normalized with respect to the initial transit time t0 = d2/(|i V), the crystal length, the 

electron concentration when the initial Maxwellian time equals the initial transit time nnonn = e 

V/ (e d2), and the applied electric field, E0 = -V/d.1 The normalization of a few parameters is 

given in Table 2. Substituting in the normalization variables into the rate equations (Eqs (3) 

and (6)) yield the same first rate equation and a slightly modified second rate equation. In Eq 

(6), the normalized mobility is unity. While the rate equations remain nearly the same, the 

electric field equation (Eq (7)) is slightly changed. These equations are repeated here for 

convenience and to clarify that all the parameters from this point are now normalized 

parameters: 
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a t 

(ND   -   K)        n 
(18) 

3n   _   3N^_       9(nE) 

9t 3t 3z 

E(z, t)   =   E(0, t) + P(z > 
Jo 

t)dz 

(19) 

(20) 

where the cathode field is defined as 

Jo 
E(0, t)   =   -1  + (z  -  l)p(z, t)dz 

'0 

and the applied voltage is held constant 

f 
Jo 

E(z) dz 

Table 2. Conversion to normalized parameters, 
unnormalized. 

The primed variables are 

Normalized 
Quantity 

Normalization 
of unnormalized 

Normalized 
Quantity 

Normalization 
of unnormalized 

t 
n 

Y 

t'/to 

A  / flnoim 

Y' to nnorm 

ß 
z 

E 

ß'to 
z'/d 

E/Eo 
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Table 3. List of unnormalized and normalized parameter values as well as a description 
of each. 

Parameter Unnormalized Normalized Description 
Symbol Value Value of Parameter 
d 0.8 cm 1 crystal length 
Eo 11250 voll/cm 1 applied electric field 
Unoim 3.884 x 1011 cm"3 1 density normalization factor 
to 2.452107 x 10"3 sec 1 transit time 
ED 0.816 eV 0.816 eV donor energy level 
ND lxl016cm"3 25747 donor concentration 

Nc(293 K) 1.269 x 1021 cm"3 3.267 x 109 effective density of states in the 
conduction band (cases 2 and 3) 

Nc(800 K) 5.726 x 1021 cm"3 1.474 xlO10 effective density of states in the 
conduction band (case 1) 

no(293 K) 2.432 x 1011 cm"3 0.626 number density of free electrons 
(cases 2 and 3) 

no(800 K) 7.380 x 1015 cm"3 1.9 xlO4 number density of free electrons 
(case 1) 

xM(293 K) 0.00392 sec 1.599 Maxwellian relaxation time 
TM(800 K) 0.000000129 sec 0.0000526 Maxwellian relaxation time 

Til 0.00458 \isec 1.87x10^ ionization time (case 1) 

Ti2 0.00157 sec 0.64 ionization time (case 2) 

la 16.103 sec 6567 ionization time (case 3) 

ti 0.0129 sec 5.26 electron lifetime (case 1) 

12 0.000391644 sec 0.1597 electron lifetime (case 2) 

T3 0.000391644 sec 0.1597 electron lifetime (case 3) 

ßl 2.18 xlO8 sec"1 5.356 x 105 ionization rate (case 1) 

ß2 636.9 sec"1 1.565 ionization rate (case 2) 

ß3 0.062 sec4 1.523 x 104 ionization rate (case 3) 

Yi 3.187 xlO"10 cm3 sec"1 10 recombination coefficient (case 1) 

Y2 1.677 xlO"9 cm3 sec"1 1.597 recombination coefficient (case 2) 

Y3 3.187 xlO"10 cm3 sec"1 10 recombination coefficient (case 3) 
lo(293 K) 0.1278 cm 0.1597 drift length (cases 2 and 3) 
lo(800 K) 4.2xl0"6cm 5.26 x 10"6 drift length (case 1) 
Wi 0.006 cm 0.0075 steady state depletion layer 

thickness for case 1 
w23 1.011cm 1.264 steady state depletion layer 

thickness for cases 2 and 3 

Results 

The results of the numerical calculations are presented in this section. One of the 

assumptions Furman makes is that the lifetime of the free electrons is constant. The first part 
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of this section analyzes the electric field dynamics with a constant free electron lifetime in the 

governing equations (Eqs (18) to (20)); whereas, the second part of this section analyzes the 

dynamics of the electric field without making such an assumption in the governing equations. 

In the following analysis, plots of the total electric field as a function of the crystal length is 

employed to compare Furman's analytical results with the numerical results. As seen in the 

previous chapter, Furman's equations for Case 1, 2, and 3 predict a movement of the 

depletion layer thickness toward the anode. Case 3 is the case for which stratification should 

occur; however, his results did not accurately predict stratification during the observation 

times that are valid for his solution. While his solutions are invalid for observation times 

longer than the Maxwellian time, the numerical solutions are valid for all time. For this 

reason, the numerical results are extended to include times beyond the Maxwellian time to 

capture the stratification. To facilitate the comparison of the electric fields at different 

observation times, the following table is created as a guide to the reader. This table allows the 

reader to compare the observation time in micro seconds to the initial Maxwellian relaxation 

time and the initial transit time. 
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Table 4. Comparison of the observation time 
slices as different ratios. 

Value Value / TM Value / to 

151.2 |isec 0.039 0.062 
302.4 usec 0.077 0.123 
559.5 |isec 0.143 0.228 
1512.1 |Lisec 0.386 0.617 
2452.1 |Lisec 0.626 1.000 
3024.3 |isec 0.772 1.233 
3916.4 |isec 1.000 1.597 

0.025 sec 6.261 10.00 
0.049 sec 12.522 20.00 
0.074 sec 18.783 30.00 
0.123 sec 31.305 50.00 
0.245 sec 62.611 100.0 
0.368 sec 93.916 150.0 

Constant Electron Lifetime Results. Since the electric field dynamics in Case 1 

(shallow impurities with i;« x) and Case 2 (deep impurities with t« xi « TM) have similar 

behavior, only Case 2 is presented and analyzed. Case 3 is analyzed in anticipation of 

observing stratification. 

In the analysis, Furman's analytical solutions are compared at identical times with the 

numerical solutions presented in this research. Since the electric field is spatially and 

temporally dependent, plots of the field for different times or time slices along the crystal 

length serve as the method of comparison. In the following paragraphs, Case 2 is analyzed 

first then Case 3. 

As shown below in Figure 9 for Case 2, a similarity exists between the analytical 

solution and the numerical solution in terms of the general shape of the electric field. Both 

solutions predict a linear rise; however, the numerically established value of the electric field 

rise occurs much closer to the cathode than does the analytic electric field at the same time. 
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In terms of the velocity of the depletion layer expansion, the analytical solution predicts a 

higher velocity of expansion. To be specific, at 0.386 xM, the numerical field reaches steady 

state around 0.03 d; whereas the analytic field at 0.386 xM reaches steady state around 0.9 d. 

This observation of the depletion region growth could be misinterpreted if no other time slices 

are observed. A closer observation quickly shows that the analytical depletion region 

thickness grows away from the cathode; while the numerical depletion region thickness 

actually narrows or gets closer to the cathode in time. Along with the discrepancy in the 

depletion region growth along the crystal length, the relative cathode magnitudes are 

significantly different. As seen in Figure 9, Furman's equations predict the cathode field 

magnitude to be around 1 to 1.15 E0; whereas, the numerical results show the cathode field on 

the order of 10 E0's. For these reasons alone, one can conclude Furman's analytical 

expressions are invalid for Case 2. 

Where Furman's analytical solutions fail for Case 2, Case 3 analytical solutions and 

numerical solutions shown in Figure 10 exhibit improved agreement. Both the shapes of the 

electric fields and the cathode magnitudes of the electric fields at different time slices closely 

agree in the numerical solution and Furman's analytical solution. As stated earlier, one of the 

reasons the numerical calculations are performed is to extend the observation time out into the 

stratification regime. As seen in Figure 11, the oscillations start occurring for observation 

times around 6 xM- As the qualitative description predicted in Figure 6, the depletion layer 

thickness decreases in time and the cathode field increases.  As seen in Figure 11, Furman's 

equations are completely inaccurate in describing stratification. This inaccuracy originates 

from his equations being invalid for times larger than the Maxwellian time. 
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Explicit Examination of Constant Electron Lifetime Assumption. To try to understand 

the physical differences between the numerical solutions and Furman's analytical solutions, the 

lifetime is numerically evaluated and plotted to double check the validity of Furman's 

assumption of constant free electron lifetime. To do this, Eqs (2) and (6), which include the 

temporal and spatial dependence of the free electron lifetime, are solved instead of Eqs (18) 

and (19), which assume a constant free electron lifetime. The results, shown in Figure 12 and 

Figure 13, show the lifetime is not constant for an observation time larger than about 0.039 

XM- The lifetime is approximately a constant prior to about 0.039 XM but quickly varies 

afterwards due to the changing concentration of ionized donor sites. The t = 93.916 XM curve 

in Figure 13 suggests the lifetime is approaching a constant value of 0.16 to at observation 

times greater than 100 XM- 
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Figure   12.   Numerical results  depicting  a  non-constant lifetime of 
electrons for case three and for specific times slices prior to the transit 
time (see Table 4). 
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Figure  13.    Numerical results depicting a non-constant lifetime of 
electrons for case three and for specific times slices after the transit time 
(see Table 4).   At later times the system approaches equilibrium and 
steady state. 

Since the lifetime is not constant, Furman's analytical results are proven to be even 

more inaccurate for the single donor level model. To emphasize, this point, the numerical 

results for the non-constant lifetime condition are examined using the normalized Eq (2) and 

Eq (19). Depicted in Figure 14, Case 2 results do not agree with the analytical solution either 

in depletion layer movement or in field magnitude at the cathode. 
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Figure   14.     Numerical  calculations  of the   electric   field 
distribution for Case 2 with a non-constant electron lifetime. 
The electric field does not agree with that predicted by Furman. 

As before, the numerical calculations of the electric field distribution in case three do 

not completely agree with the analytical predictions. The electric field in Figure 15 and Figure 

16 demonstrates very similar behavior in depletion layer movement and field magnitude as 

with the constant x condition for times less than to (Figure 10), but no oscillations occur even 

at exaggerated observation times of 376 xM, which are not shown in these figures. 
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Figure 15.   Numerical calculations of the electric field distribution for 
Case 3 with a non-constant electron lifetime and for times within the 
transit time.  The depletion layer thickness and magnitude increase in 
time as predicted analytically. 
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Figure 16.   Numerical calculations of the electric field distribution for 
Case 3 with a non-constant electron lifetime and for times much greater 
than the transit time.   The depletion layer thickness and magnitude 
increases in time as predicted analytically. 

As a result of poor agreement between the numerical predictions and the analytical 

solutions of the total electric field, the conclusion is that a single donor level does not properly 

model screening in any of the three cases. To reiterate, the justification for such a statement 

includes the fact that the free electron concentration is not a constant. Specifically for Case 1 

and Case 2, the numerical results and Furman's results predict opposite movement of the 

depletion layer thickness as well as the electric field magnitude at the cathode.   For Case 3, 

stratification does not occur for all reasonable times. The only area of agreement between the 

numerical results and Furman's results lies in Case 3 for observation times less than the 

Maxwellian relaxation time. With the conclusion that a single donor level impurity does not 

properly model screening in a wide bandgap semiconductor, one is forced to look upon a 
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possible reason for such a discrepancy between the numerical and analytical results. One may 

infer that the impurity level is not a donor level but possibility a trap level. For this reason, the 

set of rate equations is modified to represent a single trap level and the analysis is repeated for 

a single trap level model in Chapter V. 
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V. Single Trap Level 

Numerical simulation 

The previous chapter demonstrated that a single donor level model does not accurately 

predict the stratification effect; however, Chapter IV suggests that a trap level model may 

work. For this reason, this chapter addresses a trap level model. As with the donor level 

model in thermal equilibrium, all the cases discussed in Chapter IV can be achieved in a similar 

manor for the trap level model in thermal equilibrium. Since the main reason for analyzing the 

trap level model is to numerically determine if stratification can occur, this chapter focuses on 

case three, the stratification case. In the following single trap level model analysis, the 

screening concept is discussed followed by a comparison of numerical results with Furman's 

results shown earlier. 

The process of screening due to trap sites occurs in a slightly different way than with 

donor sites. In the case of bismuth silicate, the initial concentration of electrons in the traps 

and the conduction band originally come from uniform photoillumination. It will be assumed 

that a pulse of photoillumination excites electrons out of a deep donor into the conduction 

band and then electrons are thermalized between the trap level and the conduction band. At 

this moment, the uniform photoillumination is turned off and the electrons reach thermal 

equilibrium between the trap level and the conduction band. Once thermal equilibrium is 

reached, the modeling time is set to zero: t = 0. At t = 0, the external electric field is applied 

and the process of screening begins. Screening involving the trap level is similar to screening 

with the donor level in terms of electron movement; however, the origin of the positive charge 
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is governed by the ionized deep donor concentration which is assumed to be uniform and 

unchanging. Figure 17 gives a band diagram of a simple representation of where the energy 

levels and charge regions are. As in the donor level model, a net positive region forms near 

the cathode, while alternate layers of net charge regions form in regions away from the 

cathode. 

net net net negative negative 
positive     ^JL,.,,^ 

,   drift 

|   filled traps 

Q0:00O© 
lllfllNp donors 

;CB 

A 
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o 
D 

IVB 

Figure 17. Band diagram showing the ionized trap sites and the free 
electrons under the influence of an applied voltage. 

The rate equations for the trap level model are similar to the single donor level model 

in that the ionized impurity equation contains a production term and a loss term; however, 

some differences exist in the ionized trap equations. An ionized trap is a trap site that has 
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captured a free electron thus taking on a net negative charge. The following rate equation 

describes the rate of change for the ionized trap: 

d ^ °   =   -ßnT(z, t)  +  Y  •  n(z, t) (NT   -  nT(z, t))        (21) 
a t 

where nT(z,t) is the concentration of electrons in the trap, n(z,t) is the concentration of free 

electrons, ß is the ionization rate of trapped electrons to the conduction band, y is the 

recombination coefficient for free electrons being captured by the trap, and NT is the 

concentration of traps. The recombination process is dependent on the net concentration of 

unionized traps. For this reason, the second term on the right hand side of Eq (21) contains 

nT(z,t) subtracted from NT. The signs in Eq (21) delineate a loss occurring when a trapped 

electron is thermally ionized out of the trap and a production occurring when a trap captures a 

free electron. 

As with the donor level, the second rate equation is derived from the continuity 

equation. Using the same procedure to derive Eq (6), the rate equation describing the rate of 

change for the free electrons is 

3n(z, t)   _   _ 3nT(z, t) d [n(z, t) E(z, t)] 
at at        ^        3z 

where |i is the free electron mobility. 

With a proper parameter set, the trap rate equations (Eqs (21) and (22)) can be 

numerically solved with the same boundary conditions and initial conditions used for the 

donor level. The parameter set differs from the donor parameter set in the energy level 

location of the trap, the thermal equilibrium values of initial concentrations, free electron 

lifetime, and characteristic ionization time. A lower energy level value for the trap site was 
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chosen to accurately model trap sites within BSO which are typically between 0.2 eV and 0.8 

eV. 

The trap level is chosen to be 0.45 eV below the conduction band, and for BSO, the 

photoillumination has a 488nm wavelength to excite electrons from a 2.6 eV deep donor level. 

Assuming a Maxwellian time of TM = 0.09 sec and solving Eq (1) for the initial electron 

concentration in the conduction band yields n0 = 1010 cm"3. The initial concentration of 

electrons in the traps nTo is calculated using the relationship for ß / y; however, this 

relationship for traps is slightly different from the donors model (Eq (17) and Appendix C). 

After rederiving this expression for the trap model, the result is: 

f     E, ^ 
ß(T)   =   2y(T)Nc(T) exp 

v    kBTy 
(23) 

where the factor of 2 originates from the thermal equilibrium expression for the ionized trap 

concentration. In the derivation, one can assume the ionized trap concentration has the same 

functional form as an ionized acceptor. With this assumption, Eq (21) can be solved under a 

steady state condition for ß/y to yield Eq (23).  From Eqs (21) and (23), the concentration of 

electrons in the traps is nTo = 4.7 x 1013 cm"3. The sum of n0 and nT0 is the total number of 

electrons generated by uniform photon illumination np = 4.7 x 1013 cm"3, This number is a 

constant and is reflected in the numerical calculation. 
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Figure 18. A picture to help explain the different concentra- 
tions of electrons involved in the trap model. 

As in Chapter IV, the lifetime of the free electrons is arbitrarily chosen. Setting this to 

be about 100 times smaller than xM, x = 0.008 sec and applying Eq (23), the ionization time 

becomes x; = 3.6 sec. Thus Case 3 is achieved. A long ionization time indicates very little 

thermal ionization of trapped electrons occurring before electrons are trapped and begin to 

counter the external electric field. A summary of the characteristic times and concentrations is 

given in Table 5. 
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Table 5. Trap level model parameters. 

Characteristic Characteristic 
Parameter Value 

V 9kV 
d 0.8 cm 
Ex 0.45 eV 

Egap 
NT 

n0 

3.25 eV 

lxl016cm"3 

1010cm-3 

n-ro 4.7 x 1013 cm"3 

np 
4.7 x 1013 cm"3 

tM 0.09 sec 

X 0.008 sec 

Xi 3.6 sec 

As a result of going to a trap level model, the recombination coefficient expression 

changes as well. From Eq (21) this expression becomes: 

Y   =    7 r (24) 
x   •   (NT   -  nT(z, t)) 

but unless the system is saturated with electrons, NT is always much greater than nT(z,t) and 

the expression simplifies to 

y   =    L— (25) 
x   •  NT 

Solving for the lifetime of free electrons x, yields a constant: the very assumption Furman 

makes but is invalid for the donor level model. 

Results 

Using the above relationships for the single trap level model, the internal electric field 

can be numerically calculated and compared to Furman's analytical results given in Chapters 

III and IV. As states earlier in this chapter, only Case 3 is analyzed for the single trap level 
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model. As shown in Figure 19, the outcome does not portray large oscillations in the 

stratification as expected. The results are very similar in shape to the non-constant lifetime 

results obtained for the donor model; however, the trap model contains some oscillations at 

very long time slices, e.g., times that are above 150 transit times. Even so, the oscillations 

occur much later and with much smaller amplitudes than the ones predicted by Furman. 
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Figure 19. Trap level model of the electric field for Case 3 as a function of the 
crystal length. Oscillations occur at very long times and with very small 
amplitude changes. 
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VI. Conclusions and Recommendations 

The attempt to determine if and under what conditions A.S. Furman's analytical 

solution accurately describes the dynamics of field screening was successful. For a system in 

thermal equilibrium, Furman's solutions are invalid for shallow impurities (Xi « x, Case 1) and 

for deep impurities (x « x; « xM, Case 2), where x is the free electron lifetime, x; is the 

characteristic ionization time, and xM is the Maxwellian relaxation time. In either case, the 

numerical solutions did not agree with the analytical solutions in both movement of the 

depletion layer thickness and electric field distribution. For deep impurities (x « xM « xi5 Case 

3), Furman's analytical solutions and the numerical solutions agree for observation times less 

than the Maxwellian relaxation time xM. Because of the assumptions he made in his 

derivation, Furman's solutions are not applicable for times greater than the Maxwellian time; 

whereas, the numerical calculations are valid for all time. As seen'in Figure 11 and Figure 19, 

stratification does not occur before xM but occurs at very long times, e.g., t > 6 xM for the 

single donor model and t > 93 xM for the single trap level model. Even at these extended 

times, the oscillations in the electric field either have small amplitudes or no oscillations at all. 

One of the major assumptions Furman makes is the free electron lifetime is constant. 

As shown in Figure 12 and Figure 13, the free electron lifetime is not a constant for the single 

donor level model, but from Eq (25) x is constant for the single trap level model. Thus based 

upon this one finding, his theory is inaccurate for a single donor level model and is accurate 

for the single trap level model. As stated above, Furman's analytical solutions are only valid 

for Case 3 and for times less than the Maxwellian time. 
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While the model may be accurate for other applications, the conclusion is that 

Furman's single impurity level analytical model does not accurately predict the oscillatory 

behavior numerically calculated for bismuth silicate. Along with this discrepancy, neither the 

results obtained from the single donor model nor from the single trap model agree with 

behavior experimentally observed for bismuth silicate. For this reason, future work in 

modeling field dynamics in BSO should consider returning to more than one impurity level 

models such as the two trap levels model.10 Future effort should include investigations of the 

screening behavior of a number of types of photorefractive materials. To accomplish this, 

other models must be considered. These models may include one or more of the following: 

two or more trap levels, hole and electron carrier transport, impurity band transport, and 

injection. Of course, these characteristics can be combinations of each other. Having an 

understanding of these material models, one can then determine what major influences each of 

these material models have on the dynamics of screening. The last recommendation for future 

research is to propose experiments involving screening that can be used to identify material 

types based upon the models just mentioned. 

53 



Appendix A: The PRIZ Device 

Photorefractive materials were once regarded as laser damaged materials. The original 

material, Lithium Niobate, was "damaged" due to a change in refractive index. Later it was 

discovered that the crystal could return to its original state of refraction by heating it above 

200°C.n Research soon discovered ways to optimize these materials for storage and 

nonlinear optical applications. One device using photorefractive materials is a spatial light 

modulator (SLM) called the PRIZ. For the PRIZ, after write light illumination, the readout 

light intensity is modulated through the transverse electro-optic effect under a longitudinal 

applied voltage.12 

The experimental setup of a PRIZ device includes a bismuth silicate crystal 

sandwiched between transparent electrodes that represent a cathode(-) and an anode(+). An 

applied voltage, V, to the crystal creates a uniform electric field, E0 = -V/d through out the 

crystal. The PRIZ also includes an illuminating beam directed onto the cathode side. For 

thermal only conditions, no beam is used; whereas, in normal operating conditions, a write- 

beam and a read-beam are used. The write-beam has a shorter wavelength than the read-beam 

and is used to create a desired pattern of information within the crystal, e.g., hologram. The 

read-beam probes the crystal to extract the stored information. 

Bismuth silicate (bismuth silicon oxide, Bii2Si02o) is a wide-bandgap non- 

centrosymetric cubic photorefractive crystal used in the PRIZ device. Non-centrosymetric 

means that BSO has no center of symmetry. BSO is grown by the standard Czochralski 

method.13 On the average this crystal is yellow-orange in color and is difficult to reproduce 
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with consistent material properties.13 The Russian literature reports that samples taken from 

the same boule produce significant discrepancies in the properties of the PRIZ spatial light 

modulators (SLMs).14 The resulting crystal has a high density of defects and impurity levels 

of which there is a high density defect that acts much like a deep donor. Located throughout 

the bandgap of the material are a number of carrier traps. These traps are responsible for 

collecting mobile carriers and allowing the creation of a refractive index grating by forming 

nonuniform space charge regions throughout the material. 

While the Czochralski method is the historical growth process, recent work by Rome 

Laboratory15 yields high quality BSO crystals produced by hydrothermal techniques-a major 

step in BSO crystal growth. These clear crystals do not have the deep defects-the very 

property that allows the PRIZ to behave as a SLM. For this reason, it is necessary to 

establish the material properties required for such operations in the anticipation of introducing 

them back into the crystal and creating a controlled nonlinear optical device. 

A proper model of the PRIZ device helps to explain the processes that occur during 

PRIZ operation. Fully understanding the model allows one to have a large insight into 

understanding what governs the nonlinear optical properties. For the last twenty years, the 

Russian scientists have been studying the PRIZ both experimentally and theoretically. They 

have made significant discoveries and breakthroughs in modeling the dynamics that govern the 

PRIZ operation. The most common and fairly accurate model is the one deep donor and a 

single trap level. The donor level is considered deep at 2.6 eV below the conduction band in a 

3.25 eV bandgap. The trap levels in BSO range from 0.4 to 0.8 eV below the conduction 

band and are reasonably modeled as one trap level with an energy level within the range given. 
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Most of the previous AFIT work uses the Russians' two level models. Two levels 

refer to one donor level and one trap level. A.S. Furman's paper, "Dynamics of screening of 

an electric field in a semiconductor with a deep impurity level," continues some of the 

previous work but looks at an analytical solution for a model with only a single impurity level. 

Furman says the two levels model simplifies to a one level model under certain conditions. 

Chapters II through V demonstrate that his claim is not as accurate for the stratification effect 

as he claims. 
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Appendix B: Derivation ofFermi Energy Level 

In order to derive the Fermi energy level, one must apply charge neutrality and solve for the 
Fermi energy. Under charge neutrality, 

n0 + Nd
+ = 0 

Assuming Maxwell Boltzmann statistics, the equilibrium value of the electron concentration is 
given by 

n0   =   NC exP kBT 

where 

Nc   =   2 
/^__    „„u^rrY/2 2jimeff kBT 

V 

The concentration of ionized donors is given as, 

T + N Nd 
1 

1  +  2 exp EF   ~  Ep 
kBT 

where Nd is the donor concentration. 

After substituting these two expressions into the charge neutrality condition, one can solve for 
the Fermi energy level and yield Eq(14). The steps for this derivation are outlined here: 

1) Charge neutrality: 
n0 + Nd

+ = 0 

2) Substituting in the thermal equilibrium values for these parameters, 

Nc exp 
EF   ~   EC 

kBT 

A 
+  Nd 

1 

1  +  2 exp EF   ~  Ep 
kBT 

=   0 

3) Multiplying through by the denominator from the second term, 

Nc exp EF 
kBT 

EC^l       oxr fEp ^     +  2Nc exp    r EC 
kBT 

exp EF   ~  Ep 
kBT 

-  Nd   =   0 
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4) Further simplification, 

~NQ exp 
( EF   ~   EC 

kBT 
+  2NC exp 

( 2EF   -  EC   -   EC 

kBT 
exp EF   ~   ED 

kBT 
Nd    =   0 

5) Now make the following substitutions: 

ßc 
(. 

exp EC 
kBT .   ßD exp 

-Ep_ 
kBT 

,   a   =   exp EF 
kBT 

6) To yield the following simplified expression: 

NCßC<*  +  2NCßcßD«/   -  Nd   =   0 

7) Simplifying into a quadratic expression in terms of a: 
2 or + NCßC 

2NCßCßD 
a Nd 

2NcßCßD 
=   0 

2 1 a     + —-— a - 
2ßD 

Nd 

2NcßcßD 
=   0 

8) Using the quadratic formula to solve for a yields: 
1 a 

4ßD 
+ 1 + Nd 

16ßj3        2NCßCßD 

9) Using the "+" sign, 10) taking the natural logarithm of both sides, and 11) using the law 

In x   + Vx2   +   a: ln(a)   +   sinh lfx 

yields the following expression after doing a little algebra, 

lnCßrßr^ +  sinh-1! - |NC   'ßC 

2NC J        2 

1 
ln(a)   =   — In 1 ln(ßCßD) +  sinh"1 - ^Jc 

2 yw^UJ n8NdVßD 

12) After substituting back in for the expressions for a and ß yield Eq(14): 

EF(T) - (2Egap   -  ED) + kBT ( 
In ND 

2NC(T) 

kßT  •  arcsin 
fNC(T) 
8ND 

exp ED 

2kBT 

\A 

JJ 

where E„ap = Ec (EVALENCE BAND = 0 eV) and ED = Ec - ED. Notice the ED in Eq(14) is the 
energy separation between the conduction band the donor energy level. 
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Appendix C: Derivation of $/y 
for the Single Donor Level Model 

Derivation of 
£=N (jexp - 

En-E^r 

Y \      k-T    / 

1) Solve the ionized donor rate equation for steady state: 

n p=ß-(N d " n p) " Y-n p-n ^ 0=ß-(N d - n p) - yn p-n 
dt 

2) Use known equation for n, n , and Nd-n 

ß_   n'np 

Y   Nd"np 

n=N Q-expl 
i    k-T     / 

f( E)sBMaxwell_Boltzmann_stats =- 

1 + 2-exp 
EF~ED| 

k-T    / 

np=Nd-(l-f(E))=Nd- 

1 + 2-exp| 
EF~EP] 

>    k-T 

Nd"np=Nd- ED-EF\ 
1 H—expl 

2      \     k-T 

(1) 

(2) 

3) Substitute Eqs.(2) into Eq.(l) and simplify: 

N Q-expl 
/EF-EC\ / 

k-T 
N, 

ß_   n'np \ 
1H- 2-exp! 

EF~EDj 

>     k-T    I 

Y   Nd"np N, 
ED~EF1 

1-H— exp 
2       \     k-T 

59 



simplifies to 

ß_   n'np   .1 

y Nd-n
P 

2 

=--N Q-exp 
(-EF+Ec) 

(k-T) 

2-t-exp 

1 -t- 2-exp 

(-EFH-ED)"" 

(k-T) 

-(-EF+ED) 

(k-T) 

At this point, one can multiply thru in the numerator and denominator the following: 

to yield, 

•N C 

ED      EF 

„        kT       kT 
2-t-e     -e 

2     ^    Ec    -Ep EC    -ED 

kT      kT       r,    kT       kT 
e     -e      -H 2-e     -e 

E C~~ED 

Now, pull out from the bottom, e kT 

to yield, 

E 

—Np-e 
2    ^ 

T,               
ED     EF 

C
_E

D        —  
  0        kT        kT 

kT      2+e     -e 

Ec    -Ep 

1 

2 

E C~ED 

kT 

kT      kT 
e     -e 

EC    "ED 
kT       kT 

e     -e 

+ 2 

ED      Ep 

0        kT        kT 
2-f e     -e 

ED      up 

kT        kT      0 e     -e      -f-2 

Ec    "Ep 

k-T      k-T 
e     -e 

E~-E C"CD 

——N p-e 
2    ^ 

THUS, 
ß-1 Nce 

EC~ED 
kT Note the extra factor of 1/2 in front. 

(3) 
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