
L

Accelerating Conservative Parallel Simulation

of VHDL Circuits

THESIS
Joel F. Hurford
Captain, USAF

AFIT/GCS/ENG/94D-10

CNJf This doeime"t has be-e n appmoved
_ _for public e-.ese and £nde; its

di-tribution is

DEPARTMENT OF THE AIR FORCE
ZAIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/94D- 10

Accelerating Conservative Parallel Simulation

of VHDL Circuits

j THESIS
U 7K; IJoel F. Hurford.

.- J Captain, USAF

--------- -----

)TIC -Z imPITLD

Approved for public release; distribution unlimited

AFIT/GCS/ENG/94D- 10

ACCELERATING

CONSERVATIVE PARALLEL SIMULATION

OF VHDL CIRCUITS

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Joel F. Hurford, B.S.C.S.

Capt, USAF

30 Nov 1994

Approved for public release; distribution unlimited

Acknowledgements

This thesis is a product of the efforts of many individuals who have my gratitude. Many

contributors are presented in the bibliography on whose shoulders I have stood. My thanks to cur-

rent students in Parallel Computation at AFIT. These people can be found in the Parallel Lab

around the clock, ready and willing to discuss theoretic implications, implementation techniques,

available tools, or the last episode of the X-Files. I would like to thank the previous AFIT re-

searchers of Parallel Simulation that built the tools that allowed me to conduct my study. Addi-

tional thanks goes to various and sundry faculty members at AFIT: Dr. Gary Lamont, LtCol Bill

Hobart, Maj Roger Burk, Maj Mark Mehalic, and Dr. Dennis Quinn. These gentlemen taught me

the foundations that directly supported my research. In addition, they availed themselves to yet

another graduate student, me, pestering them with spurious and occasionally misguided questions.

Of course, special thanks to my thesis committee that made all this possible. Dr. Henry Potoczny,

my advisor, allowed me complete freedom to work through the issues of developing and construct-

ing a thesis. He has my gratitude for his patience when schedules were missed and plans modified.

The individual that deserves great credit for the completion of this research is Dr. Thomas

Hartrum. Advising many other students, this committee member met with me weekly to evaluate

and critique progress. He was the scientific logic that formed the questions that required explora-

tion. He was the antagonist that shook the structure of my research to test its integrity. He was the

intellect that probed experimental evidence to verify my conclusions. He was the manager that

kept my efforts proximate to the established schedule. If he cared to be a typist as well, his name

would also appear on the cover page. I would feel more individual gratitude for Dr. Hartrum if I

did not know that his generous assistance comes from his own passion and committment for the

research topic. I regret that faculty are not offered a grade on their contributions to student re-

search. If this were different, Dr. Hartrum has certainly earned his "A".

Joel F. Hurford

Table of Contents

1. Introduction..1I

1.1 Background .. I

1.2 Research Objectives ... 5

1.3 Assumptions... 6

1.4 Scope.. 7

1.5 Overview .. 8

1.6 Summary .. 9

2. Literature Review ... 10

2.1 Conservative Simulation.. 10

2.2 Circuit Simulation... 13

2.3 Previous AFIT Results .. 14

2.3.1 Random Partitioning .. 14

2.3.2 Simple Data Partitioning.. 15

2.3.3 Strongly Connected Components... 15

2.3.4 AB Annealing ... 16

2.4 Hierarchical Model .. 19

2.5 Parameters of Partition Models.. 23

2.5.1 Lookahead ... 24

2.5.2 Lookahead Ratio... 26

2.5.3 Contention.. 27

2.5.4 Fanout ... 27

2.6 Techniques and Special Considerations... 28

2.7 Statistical Analysis ... 29

2.8 Summary... 33

3. Methodology and Tol ... 34

3.1 Overview... 34

3.2 Spectrum... 35

3.3 VSIM .. 37

3.3.1 VHDLClocks 94... 38

3.4 Graph Partitioning Tool (GPT).. 40

3.4.1 Mnimum Delay... 41

3.4.1.1 Dijkstra,... 41

3.4.1.2 Dynamic Search.. 41

3.4.1.3 Worst Case Delay.. 42

3...4 Infinite Delay .. 42

3.4.2 Graph Parameters ... 43

3.5 Wallace Tree... 45

3.6 Associative Memory... 45

3.7 Model Structure ... 45

iv

3.8 Summary... 46

4. Data Description and Analysis... 48

4.1 Model Development... 48

4. 1.1 Top Level Model.. 48

4.1.2 Application Processing Model.. 49

4.1.3 Synchronization Processing Model... 56

4.1.4 Blocking Model .. 59

4.1.5 Composite Model ... 61

4.1.6 Minimum Delay Revisited .. 63

4.2 Model Verification ... 64

4.3 Model Extrapolation (Assoc Mem) .. 71

4.4 Feedback... 72

5. Conclusions and Recommiendations .. 76

5.1 Research Summary ... 76

5.2 Conclusions ... 77

5.3 Recommendations for Further Research.. 79

A. Correlation of Wallace Tree Parameters................................... Appendix A

V

List of Figures

FIGURE 1 SPEEDUP CURVES FOR WALLACE TREE ... 3

FIGURE 2 BASIC CYCLE OF DISCRETE EVENT SIMULATION ... 10

FIGURE 3 BASIC STRUCTURE OF PARALLEL DISCRETE EVENT SIMULATOR 11

FIGURE 4 SDF PARTITION OF PROBLEM GRAPH & RESULTING LP GRAPH 16

FIGURE 5 QUEUING SYSTEM AND LOOKAHEAD .. 23

FIGURE 6 MULTIPLE PATHS AND LOOKAHEAD .. 24

FIGURE 7 NULLS POSED WITH DELAY AND EVENT LIST TIMESTAMPS (WALLACE TREE)..26

FIGURE 8 BOTTLENECK OF QUEUING MODEL ... 28

FIGURE 9 SPECTRUM STRUCTURE AND INTERNAL DEPENDENCIES 34

FIGURE 10 REDIRECTION OF LP MANAGER CALLS TO FILTER ... 36

FIGURE 11 VSIM INTERACTION WITH SPECTRUM ... 37

FIGURE 12 VHDLCLOCKS94 GET EVENT .. 39

FIGURE 13 TsyNc VERSUS LPSNVM ... 57

FIGURE 14 TSYNC VERSUS LPSNUM X ARCSNUMINTERLP .. 57

FIGURE 15 SPEEDUP CURVES WITH COST MODELS ... 64

FIGURE 16 SUM OF LP ACTIVITY VERSUS NUMBER OF LPS ... 65

FIGURE 17 COSTjRoc VERSUS TPROC .. 67

FIGURE 18 COSTsyNc VERSUS Tsrwc ... 67

FIGURE 19 COSTBLocK VERSUS TBocK ... 68

FIGURE 20 STATISTICAL COSTMODELS VERSUS TMA RUN .. 69

FIGURE 21 6LP WALLACE TREE RUNTIME VERSUS COST MODELS 70

FIGURE 22 SPEEDUP CURVES FOR ASSOCIATIVE MEMORY ... 71

FIGURE 23 INDUCED FEEDBACK ON FEEDFORWARD NETWORK 72

FIGURE 24 FEEDFORWARD NETWORK WITHOUT INDUCED FEEDBACK 73

FIGURE 25 NO FEEDBACK SPEEDUP OF WALLACE TREE ... 74

FIGURE 26 SUMMARY PROFILE OF NO FEEDBACK PROCESSING STATES 75

vi

Abstract

As modem digital circuits grow larger and more complex, the time required to perform

sequential simulations becomes unacceptably slow. Since simulation is a vital input to the design

and validation of circuits, this bottleneck affects the efficiency of the entire development cycle.

Parallel simulation offers a solution that scales with the problem. By assigning circuit components

to distributed processors, the work of the simulation can be divided. There is, however, an addi-

tional cost of synchronization between the cooperative processors not present in sequential simula-

tion. The manner in which circuit components are partitioned among processors greatly influences

the amount of overhead incurred. The task is to partition intelligently such that computational

parallelism is not overwhelmed by synchronization overhead.

In this research effort heuristic techniques of intelligent partitioning were considered. By

observing trends of successful partitions, a statistical relationship of a priori, graph-based parame-

ters was developed with parallel simulation runtime. Formal definition of this relationship in the

form of a cost model allowed allocations to be ordered by predicted runtime. By choosing the allo-

cation with the lowest cost model value, the simulation using that allocation was expected to have

the lowest runtime of the set considered. "The set considered" is an important distinction because

the mapping of tasks to processors to achieve the lowest runtime is a known NP-Complete prob-

lem. Finding an optimal solution is intractable; finding relatively good solutions is desirable. The

set of candidate allocations is chosen by using Kapp's AB Improvement search procedure (Kapp,

1993:84). Unfortunately, both current and previous cost models failed to achieve significant sta-

tistical correlation with runtime.

Improvement was achieved through controlling feedback. In example circuits, previous

partitioning techniques induced feedback among processors. By eliminating this, better than linear

speedup was achieved.

vi

ACCELERATING

CONSERVATIVE PARALLEL SIMULATION

OF VHDL CIRCUITS

1. Introduction

1.1 Background

Simulation provides fundamental analysis capabilities for many theaters of research and

industry. Similar to static models, simulations provide the ability to examine target systems at an

economy of time and resources. Furthermore, simulations provide an ability to examine systems

impossible to construct, for example weather patterns or sub-atomic particles. Simulations exceed

static models by adding the ability to examine the dynamics of a system, not just the state of its

components. Because of these benefits, computer simulation is a basic tool of defense, weather,

biomedical, chemical, financial, electronic, and many other industries.

A repeating theme for the computer is its inability to keep up with user requirements.

Each developmental leap of processing power is met by a larger need for computational resources.

For simulations, researchers seek finer resolution of simulation, or consumption of larger datasets,

or both. In the case of digital circuit design, chip transistor counts increase by 25% per year,

doubling every three years (Hennessy and Patterson, 1990:17). For all the marvels of processor

development, the sequential system ceates an inherent bottleneck that will be realized with a suffi-

ciently large problem or sufficiently small timing constraint. For circuit design, slow simulation

lengthens the design cycle and increases the cost of the final product (Kapp, 1993:1). Assuming

that computer users will continue to require more than computer designers can fit into a single data

processor, a solution is to enlist more computers. Parallel processing is an alternative that may

prevent simulation from being the limiting phase of the research or development cycle. Immedi-

ately, parallel simulation offers the ability to process larger datasets, perhaps in less time. More

importantly (if scalable1) a large simulation can be accommodated by increasing the number of

processors regardless of the size of the dataset. Or, by utilizing more processors, a solution to a

defined problem can be found within some requisite timespan.

This paper results from the Advanced Research Projects Agency's (ARPA) desire to

achieve performance improvement for the simulation of VHSIC Hardware Description Language

(VHDL) circuits. ARPA sponsors the QUEST project with the objective of a thousand-fold

speedup in large VHDL simulations (Kapp, 1993:1). Reasearchers at the Air Force Institute of

Technology (AFIT) have been investigating conservative parallel simulation of VHDL circuits for

several years. In 1992 Breeden (Breeden, 1992) demonstrated speedup for a random allocation of

VHDL behaviors2 to processors (See Figure 1). In 1993, Kapp showed the benefit of more intelli-

gent partitioning strategies and the feasibility of iterative improvement of initial partitions using his

AB Border Improvement process (Kapp, 1993:84). This study continues AFIT research by further

exploring the potential of intelligent partitioning to increase speedup3 of parallel VHDL simulation.

'Scalability is the ability to solve a problem for an increasing number of processors. Scalability is consid-
ered with regard to size, time, and memory consumption.
2A behavior is an executable VHDL process representing a logic gate, source signal, or other simple
VHDL process (Kapp, 1993:2).
3Speedup is the ratio of single processor runtime / parallel runtime.

2

8.000

7.000

6.000
-.- Unear

" 5.000 5 Breeden Random
U) -*--SDF

S4.000--- - B

40- Kapp SBF Annealing
3.000-.

1.000
1 2 3 4 5 6 7 8

NumLPs

Figure 1 Speedup Curves for Wallace Tree (Kapp, 1993)

If the simulation of a VHDL circuit is the end problem, partitioning that problem for paral-

lel execution is a preceding step of significant weight. Specifically, the allocation of N precedence

constrained tasks to P processors to achieve minimum runtime is referred to as a version of the

Mapping Problem and is NP-Complete (Sartor, 1991:1-4). Fundamentally, an NP-Complete

problem has many potential solutions without a polynomial way to find an optimal in that solution

space. Thus, it is unreasonable to seek an optimal solution for problems of large size (greater than

100 nodes to be allocated). Actually, problems of relatively small size are also unreasonable.

Sartor gives the example of 60 nodes allocated to 2 processors. An exhaustive search of the 60!

possible combinations would take 2.63 x 1066 centuries if a processor could consider 1,000,000

combinations a second. The circuits worthy of consideration for parallel simulation have more

than 1000 nodes. Inherently, one is limited to a sub-optimal approximation of the best solution

locatable in some reasonable amount of time. "Reasonable" need not be polynomial, but it does

3

need to be amortizable over the number of simulation runs of the applicable circuit (Nandy and

Loucks, 1993:46).

Furthermore, the goal of decreasing simulation runtime4 cannot be measured without run-

ning the simulation. Ideally, one could determine the best partition using a priori parameters

(measurable before the simulation). "However, it is often difficult to relate this goal (minimum

runtime) to a usable parameter in the partitioning process" (Nandy and Loucks, 1993:43). The

task evolves to find a priori indicators or a combination of indicators that correlate to a good run-

time. Further complicating the task at hand is the number of parameters significant to simulation

runtime. Candidate parameters include:

* number of behaviors
* number of interconnections
* number of dependencies crossing processor boundaries
* imbalance of load (number of behaviors) allocated to processors
* minimum path length of subgraphs allocated to each processor
* granularity5 of host machine
* granularity of application
* fanout of behaviors
* level of feedback
* frequency of signal change
* efficiency of event list
" utilization of resources
" task switching capabilities of host operating system
* test bench size and nature
* many, many more

41n a parallel execution, runtimne is the max[finish time of all processors] - min[start time of all proces-
sors].

5Hardware granularity refers to the computational capabilities of each processor versus the ability to com-
municate among processors. When computational and communication capabilities are equal, the machine
is labeled fine-grain. Usually computational speed exceeds communication throughput making the ma-
chine tend towards coarse-grain. Software granularity is the ratio of the computational demands versus
communication demands. Similar to hardware, low computational workload between communications
indicates a fine-grain application. Greater computation to communication ratio indicates a coarse-grain
application.

4

In order to make an analysis tractable, assumptions and scope must be used to focus the study and

likely limit the general applicability of results (Bailey and Pagels, 1991:627).

Despite the daunting number of complications in parallel VHDL simulation, it is a greatly

simpler case than general simulation since logic circuits have a static dependency graph. A logic

gate is exactly wired at the start of a simulation as it is at the finish. Non-deterministic simulations

allow actors to dynamically interact and consequently change lines of communication. Hopefully,

conclusions from this research will find applicability in more general simulation cases.

1.2 Research Objectives

As alluded to in the previous section, the goal of this research is to speed conservative

simulation of VHDL circuits. Pursuit of this goal includes graph based analysis of the subject cir-

cuit and statistical correlation of sub-graph parameters to runtime in order to achieve iterative im-

provement of a "first-cut" allocation. A partition is a component, or subgraph, of the subject cir-

cuit allocated to a single processor. An allocation is the set of partitions that make up a subject

circuit and is the end result of the partitioning process including the mapping relation of partition to

processor. Iterative improvement investigates moving candidate nodes from one partition to an-

other assessing benefit based on a representative cost model. Small cost model results should cor-

relate to comparitively small observed rntime values. Specific objectives are:

" Determine graph based partitioning strategies significant to the speed of VHDL simulations.

* Use statistical analysis to identify allocation parameters consequential to runtime.

" Form a cost equation that assesses the cost of an allocation and correlates to the runtime for

that allocation. The cost equation should at least define a partial ordering of allocations.

* Demonstrate improvement of a statistically derived cost model over Kapp's theoretically de-

termined model.

5

Questions to address in accomplishing the above objectives include:

* How general is the statistical cost equation? Is it circuit specific? Is it host architecture spe-

cific?

* How well does the statistical model do? How does it compare to other simple strategies

(random, breadth-first, depth-first) and the Kapp Cost Model?

* How reliable is the statistical cost model? How frequently does it demonstrate benefit over the

Kapp Cost Model? How accurately does it order allocations?

1.3 Assumptions

The toolset used in this research is based on the commercial Intermetrics VHDL compiler

(Intermetrics VHDL Compiler, 1990). Previous AFIT researchers, Comeau and Breeden, devel-

oped VSIM which translates Intermetrics compiler output into parallel source code which can then

be used to run on the host parallel computer (Comeau, 1991). VSIM requires SPECTRUM which

provides the interprocessor communication services and implements a version of Chandy-Misra's

null protocol (Chandy and Misra, 1988). VSIM has been executed on Intel iPSC/2, iPSC/860, and

Paragon architectures. This report exclusively collects data on the iPSC/2. The final tool of sig-

nificance is the Graph Partitioning Tool (GPT). Modified to verion 3.0, this software creates the

necessary mapping files and delay information deduced from an allocation. GPT performs initial

and iteratively improved allocations. There is a fundamental assumption that results from this

toolset are applicable to other simulation environments.

A biased speedup metric is used to evaluate parallel circuit performance. Speedup is

therefore overstated by using a non-optimized sequential simulation runtime in the numerator

(Wieland, 1990:1). However, statistics gathered on single processor execution of VSIM demon-

6

strate negligible execution of overhead routines which supports the assumption that biased speedup

is representative of true speedup.

Modifications to the VSIM tool may affect runtimes of research conducted in this thesis.

Thus, comparison to previous results will be accomplished via speedup. It is assumed that tool

specific differences will be isolated allowing assessment of the statistical cost model.

Also presupposed is that observed data follows a linear relationship in the space defined by

currently measured parameters. If runtime is very different than linear or pertinent parameters

have not been included, the model will liely prove unacceptable except for the specific cases com-

posing the sample set on which the model was derived.

1.4 Scope

As stated, the Mapping Problem is NP-Complete making an optimal allocation unlikely

and unverifiable. This research seeks to achieve "good" allocations assessed by comparison with

random and best-to-date speedup measures.

The focus is on the feasibility of effective a priori partitioning. Naturally the efficiency

with which partitioning is accomplished is basic to the merit of that strategy. However, efficiency

is not considered here under the assumption that once demonstrated as effective, additional re-

search can be spent to make the allocation process efficient.

Only Chandy-Misra null protocol simulation of VHDL circuits is considered. Also, only

VHDL simulation is studied. This reduces the scope to the static dependency subset of the general

simulation problem.

in developing the cost equation, gates are assumed to be uniformly active. The test vectors

used are general and do not seek to isolate circuit subcomponents nor boundary conditions. Addi-

tionally, despite the fact that runtime is a maximum measurement for some single processor of the

7

simulation, data collected and analyzed is based on cumulative statistics across processors. It is

assumed that individual processor perfonmance is close to mean perfonmance. Th1is global view of

the circuit allocation allows simpler analysis. Partitions are, therefore, constructed in a balanced

manmer to avoid deviation from this assumption. Consequently, potential advantages of non-

unifonm allocations are not investigated and specific data pertinent to the LP driving the maximum

runtime is not reported.

Single circuit, multiple allocation ordering is pursued. It is rarely of interest to compare

runtimes of two different circuits, only the runtimes of different allocations of the same circuit.

Model development occurs for a single circuit. The general applicability of that model is consid-

ered separately.

1.5 Overview

Chapter 2 presents a current literature survey in simulation prediction and modeling in-

cluding results from previous AFIT research. After establishing the basics of conservative parallel

simulation and terms used in this paper, alternative cost models and significant parameters to run-

time are presented. Chapter 3 discusses the methodology and practices followed in this study. The

statistical analysis technique applied throughout is presented in detail. Other issues, including

further detail of the tools used and specifics of the simulation environment are also furnished. Im-

plementation specifics and data results can be found in Chapter 4. Chapter 5 presents the conclu-

sions offered in this paper and recommends avenues of further study.

8

1.6 Summary

The simulation of VHDL circuits provides required insight for computer designers and is a

necessary part of the circuit development cycle. Sequential simulation is inherently limited in that

a problem can grow large enough to exceed the resources of that sequential system or violate con-

straints on execution time. Parallelization offers hope of a scaleable solution such that no matter

what the problem size (or perhaps timing constraint), effective and efficient simulation can take

place through the application of additional processors. Mapping is the NP-Complete problem that

is coupled with detenmining an allocation. It seeks to partition a problem into subcomponents and

to allocate each subcomponent to a processor to achieve some optimal condition. In this case,

atomic behaviors of the overall circuit are grouped into partitions and allocated to processors to

achieve short runtime. Since the mapping problem is so difficult, an optimum solution cannot be

found within reasonable time for large circuits. This research uses statistical analysis of graph

parameters to find good runtime performance. Effective models for simulation performance are

still immature, analytic modeling of parallel simulation is an art, for which I hope to shed light

(Nicol, 1991:30)."

9

2. Literature Review

2.1 Conservative Simulation

In order to proceed with the specifics of this research, a brief presentation of the actors and

dynamics of conservative simulation is required. Fujimoto describes parallel discrete event simu-

lation in his excellent article (Fujimoto, 1989). There are three major actors in a sequential dis-

Event List Clock

Event(E)

• i 'Process
Event State Variables

Event(5)

Event(5)

Event(2)

Figure 2 Basic Cycle of Discrete Event Simulation

crete event simulation as portrayed in Figure 2. A discrete event simulation proceeds by jumping

from significant event to significant event as presented by the event list. Events are supplied for

processing in monotonically increasing order of timestamp which represents the simulation time at

which the event should occur. Processing an event requires updating the clock which tracks the

progression of the simulation. Additionally, processing an event interacts with the state variables

of the specific system being simulated. For VHDL simulation, state variables are specific seg-

10

ments of wire, or signals, which can be logical 0 or 1. Processing an event may cause future events

to be scheduled as in the propagation of a signal change through affected gates. These new events

are submitted to the event list which will hold them until all earlier events have been released.

Parallel simulation extends this basic sequential structure to multiple processors. As de-

picted in Figure 3, each processor has its own sequential simulator with each holding a disjoint

view of the state variable space. In general PDES (parallel discrete event simulation) strategies

avoid coherency issues by strictly forbidding direct access to shared state variables (Fujimoto,

19 89:3). The collection of simulation structures and unique view of the state variable space de-

LPO LPl

-----~~------------- - -- -- - -- -- -

fLP 3 P

-0------ ---------- ----

Figure 3 Basic Structure of Parallel Discrete Event Simulator

fines a Logical Process (LP). The U LP, for all i defines the state of the entire simulation

(Fujimoto, 19 89:4). Upon encountering an event that affects the state variable space of another

LP, the source LP sends a timestamped event to the appropriate destination LP. Communication

between LPs requires additional data structures. These structures may buffer or somehow priori-

tize message traffic, but the fundamental service required is to report to the owning LP the times-

11I

tamp information of each event received (or sent) on the communication channel'. In addition to

the communication data structures, some protocol must manage the presentation of remote mes-

sages to the local sequential simulator as well as the formatting of events destined for other LPs. It

is the responsibility of the protocol to preserve causality.

Critical to any simulation is the concept of causality. A correct simulation does not allow

causally related events to proceed out of order. If A affects B, A must be processed before B. A

causality error occurs when events are executed out of order and amounts to the future affecting

the past (Fujimoto, 1989:2). Two schools of thought prevail in discrete event simulation. Opti-

mistic protocols use a detection and recovery method to identify when causality errors occur and

rollback or otherwise correct the execution mistake. Conservative simulation uses prevention to

avoid causality errors. Conservative protocols force each LP to block (suspend simulation) until it

can be guaranteed that no messages from the past will arrive at the blocked LP. Chandy-Misra

methods guarantee that messages sent over communication channels will be monotonically increas-

ing by order of timestamp. Once all input channels have received a message equal to or later than

an LP's local clock, that LP is guaranteed to be able to proceed with simulation without risking a

causality error. Unfortunately, the act of blocking introduces the possibility of deadlock. Chandy-

Misra's null message protocol uses messages that carry only a timestamp. The sender guarantees

not to send any messages earlier than the null message timestamp. Null message recipients update

their input channel and progress even though the sender has no real message for that LP. Chandy-

Misra requires that all cycles of the contracted problem graph2 carry a non-zero minimum delay

and that nulls be sent:

'A channel represents a uni-directional line of communication between a source and destination. It is not
a structure, but represents the possibility of communication between the two actors.
2The contracted problem graph, or LP graph, is the graph that results from contracting all nodes allocated
to an LP into a single node.

12

" on all other output channels upon sending a real message down some channel

* on all output channels upon blocking

* on all output channels upon receiving a null message

Optimizations can be made to reduce null message traffic, but the above conditions guarantee to

prevent deadlock. While deadlocks are prevented, cyclic dependencies are not. The propagation of

null messages through a cyclic dependency allows all members to increase their input channel times

and, consequently, their local clocks. The cycle in effect "winds up" to allow processing to con-

tinue on each participating LP.

2.2 Circuit Simulation

Circuit simulation is appropriate for discrete event simulation in that only a small fraction

of logic gates, typically 0. 1%, change output values on a single clock tick (Soule and Gupta,

1989:85). Synchronous or continuous simulation would leave a majority of processing resources

idle in any time window. Soule and Gupta, however, state that this small activity level also pre-

cludes a null message protocol fr-om being efficient. The implication is that real messages would

numerically trail null messages by a similar ratio. Soule and Gupta are correct if using classic

Chandy-Misra which assumes simple LPs and a large number of processors. The situation

changes when logic gates are grouped onto LPs exceeding the simple processing envisioned in

classic Chandy-Misra. Inter-LP arcs are collapsed into channels and only a fraction of logic gates

on the LP border contribute to the generation of null messages.

13

Frequently, when developing cost models' for parallel simulation systems, researchers use

queuing systems as the example application (e.g. Fujimoto, Nicol). Circuit simulation differs from

queuing simulation in that queues do not generate new events. Every input event from a source in

a queuing system realizes exactly one terminal event in some sink of that system. Circuit simula-

tion differs in that fanout, cycles, and internal generators increase the event population of a circuit

beyond the number of events generated from source nodes. Similarly, events can terminate at arbi-

trary vertices. If a signal change on the input of a logic gate does not change the output of that

gate, no subsequent event will be scheduled. This makes it difficult to predict the population of

events in the simulation at any given time which makes it more difficult to predict the processing

activity of any circuit subcomponent.

2.3 Previous AFIT Results

2.3.1 Random Partitioning.

Breeden explored random partitioning which allocated behaviors to partitions arbitrarily,

seeking only to maintain a balance in the quantity assigned to each LP. While very simple and

quick to execute, this approach completely ignores the cost of inter-LP dependencies which are

manifested from arcs4 between behaviors on different LUs. The results in Figure 1 and other tests

show that random partitioning provides speedup in limited cases and does not scale well due to

overwhelming communication dependency overhlead.

3 A cost model is a mathematical assessment of some criterion of the simulation system. In this research,
that criterion is runtime and the parameters of the mathematical model are graph based measurements of
the partitioned circuit.
4 A single signal between two behaviors is an arc.

14

2.3.2 Simple Data Partitioning.

Kapp first implemented Simple Data Partitioning (SDP) in his Graph Partitioning Tool

v2.0. The problem graph is traversed in breadth-first or depth-first manner allocating behaviors to

partitions as they are marked as found. Upon exceeding some threshold value for LP size, behav-

iors are allocated to the next LP. SDP algorithms are simple and quick to execute while yielding

the benefit of allocating dependent behaviors to the same LP. Simple Depth-First (SDF) groups

paths in a circuit onto an LP. This promotes larger minimum delays through LPs and around cy-

clic LP dependencies allowing null messages to "wind up" at larger increments. However, as

shown in Figure 4, SDF with LP load balancing may result in fragmented paths which counteract

the benefit of minimum delay. Simple Breadth-First (SBF) also succeeds in grouping dependent

behaviors onto the same LP. Like SDF, SBF does not sufficiently counteract communication

overhead particularly as the number of processors grows large.

2.3.3 Strongly Connected Components.

Strongly connected components (SCC) are a basic concept of graph theory and represent

the largest set of nodes such that every node in a SCC is reachable by every other node. There can

be many SCCs in a particular graph. SCCs can also be defined as a set of cycles. The SCC is the

union of all vertices in inclusive cycles. Kapp and others observed the tightly coupled communica-

tion of cycle members in a problem graph. Even if the frequency of real message traffic between

members is low, null protocol communication will have to occur within the SCC to prevent dead-

lock. Given this easy way to identify coupled behaviors, Kapp enhanced Simple Data Partitioning

to consider SCCs as part of his AB Improvement partitioning technique described in the next sec-

tion. The idea is to keep SCC members on the same LP to prevent their significant contribution to

inter-LP communication.

15

--- --- --- --- --- ---

- - - - -- "P

Figure 4 SDF Partition of Problem Graph & Resulting LP Graph

2.3.4 AB Annealing.

Despite the title, Kapp's AB Annealing process is actually an iterative improvement tech-

nique. Kapp performs a simple data partition with consideration of SCCs. Upon finding a node

that is part of an SCC, all members of the SCC are marked found and allocated to the current LP

under consideration. From this simple, efficient initial allocation, Kapp identifies a priority queue

of candidate vertices for movement to other LPs. A candidate vertex is one that has more arcs to a

single, external LP than to the LP to which it is currently assigned. A candidate vertex v has a pri-

ority calculated as follows:

Priority(v) = Max_ExtemalArcs(v) - Local_Arcs(v) (Kapp, 1993:61)

Each candidate vertex is considered for movement to all other LPs. If a move reduces the marginal

approximation of communication cost and does not violate load balance tolerances, then the vertex

16

is moved and the allocation data structures updated. A single iteration considers all candidate

nodes. Subsequently, a new iteration begins by re-identifying candidate vertices and repeating the

move processing. Iterations continue until a user-specified number or until iterations yield no im-

provement of the marginal approximation of communication cost. Kapp's entire cost model is

H := I3 "Hn'H. (1 +Hd) +a Hb

Equation 1 Kapp Cost Model (Kapp, 1993:57)

where

Hn: estimate for cost of null message traffic

H, estimate of cost for real message communication

Hd: estimate of effect of communication imbalance

Hb estimate of effect of load imbalance

P coefficient for communications cost

a coefficient for processing cost

To estimate Hn, Kapp defines Lookahead. Lookahead is based on the minimum delays in travers-

ing LPs. As stated, the magnitude of the minimum delay influences the overhead incurred in

"winding up" cyclic dependencies and should therefore influence the number of nulls transmitted.

Kapp defines H. = L,, • O, where Lr is Kapp's Lookahead and O,, is the number of com-

munication channels in the LP graph. H, estimates the amount of communication traffic induced

by an allocation. Kapp forms a communication matrix C where each entry is

Cij = number of arcs from LPi to LPj . weight of communication from LPi to LPj.

Weight of communication between LPs allows consideration of the number of hops in the underly-

ing architecture, available bandwidth on hardware communication line, etc. H, is then found by

17

H,= i i Kapp divides by the number of arcs to normalize this metric over

total number of arcs

different circuits. The distribution of communication is a unique term that attempts to assess the

delay due to communication imbalance much like one would expect a delay due to computational

imbalance between LPs. If one considers the maximum row sum for the communication matrix

versus the average row sum for that matrix, a measure of communication imbalance can be
Dm.x - D.V9

formed. Let D i = Cij and Hd D Finally, Hb adds the effect of computational
aVg

load imbalance. By summing the computational weights of behaviors allocated in a partition, a

measure for computational load can be assessed for that LP. Actual computational work also de-

pends on the frequency of event generation for each behavior, but since that information not avail-

able a priori; only the static weight is considered. Similar to Hd, if

Workm. -Work ,
Work i = weight of behaviors then Hb = . a and 1 are weighting

behaviore , HI Work ae

parameters to balance the influence of communication costs versus computation cost for a specific

host architecture. For the Intel iPSC/2, Kapp assumed x = 100.0 and P = 1.0. Note that in the

AB Annealing process, the entire cost equation is not evaluated to decide the movement of candi-

date vertices. Kapp instead uses Cost = O, ,.H,(1-Hd). Summary results for all previous AFIT

partitioning techniques on the Wallace Tree Multiplier are shown in Figure 1.

AB Annealing shows substantial improvement for the Wallace Tree at 8 nodes. However,

this technique is suspect for several reasons:

1. Improvement requires finding a best simple partition. Ultimate speedup depends on the quality

of the initial partition. Also, since this is a greedy technique, local minimums will limit the

benefit of the iterative search.

18

2. Improvement for the Associative Memory is not as dramatic as for the Wallace Tree raising

the concern of general applicability of the model.

3. Iterative improvement is based on a partial model thus losing the influence of some terms. If

successful, the significance of those missing terms becomes questionable.

4. The layers of the model hide a canceling affect between H, and Rd. H, has a E i EC, term in
ij

its numerator and Hd has one in its denominator.

5. The estimates for (x and P are arbitrary and require mathematical basis.

Despite these drawbacks, however, Kapp successfully demonstrated iterative improvement of run-

time via graph based partitioning. In no instances did his model cause a worsening of the base al-

location and does provide an efficient way to potentially get better allocations. It becomes the task

of this follow on research to continue the successes of previous ART research and address its

shortcomings.

2.4 Hierarchical Model

Chamberlain and Franklin studied the simulation of digital circuits on a hypercube archi-

tecture (Chamberlain and Franklin, 1990). Beginning with a simple cost model, they considered

and expanded terms until measurable terms became available. Upon achieving the layer of meas-

urable detail, they used their model to predict speedup. Unfortunately, the protocol used to manage

the parallel simulation was based on a global synchronous clock and therefore cannot be directly

applied to the distinct types of overhead incurred with a null protocol. However, the path of model

development is applicable to any protocol.

Chamberlain's protocol uses a master processor to synchronize processing. Slave proces-

sors perform all computation of the simulation under the direction of the master. The master

19

transmits a time to all slave processors which then simulate up to that global time (barrier) ex-

changing data with other slaves as necessary. Upon reaching that time, each slave sends a message

indicating arrival at the global time and includes the time of its next event. After receiving arrival

messages from all slaves, the master determines the lowest next event time and broadcasts that time

to the slaves. Also fundamental to this cost model is the imposed assumption of hierarchical circuit

structure. Circuits are built from components which are in turn built from sub-components which

eventually are constructed from gates. In order for the synchronous protocol to be efficient, time

steps must be sufficiently large to allow the processing of many gate level events. Thus, instead of

Table 1 Hierarchical Model Terms (Chamberlain and Franklin, 1990:11)

Variable Type Definition
RD Output Simulation runtime using p processors
C Input Number of system components to be simulated
L Number of levels in hierarchical system description
B Number of busy ticks in the simulation
E Number of events
F Number of functional evaluations
M_ Number of state change messages when P---oo
k Fraction of event/component evaluations at level 1
aX Work distribution across communications links
3 Work distribution across processors

P Design/Hardware Number of processors
specific

tE Single event processing time
tFl Single functional evaluation time at level I
tCF CPU time for single message formulation
tc_ CPU time for single message transmission
tCR CPU time for single message reception
t__ Link time for single message transmission
tLV Link time for single message protocol overhead
M Abstract Number of state change messages with P processors
H Average number of hops required per message
W Average communications width
tcpu CPU time per busy tick
tCOMM Communications link time per busy tick
tSYNC Synchronization time per busy tick
tEVAL Event/functional evaluation time per busy tick
tF Average single functional evaluation time
tcoMcpu Communications overhead for CPU per busy tick

20

allocating individual behaviors to LPs, Chamberlain and Franklin allocate by functional unit.

Event times are based on functional unit delays, not gate delays. This is an example of increasing

the granularity of the problem. Unfortunately, increasing the granularity decreases the potential

degree of parallelism. From this simulation system, Chamberlain and Franklin build their model.

If the simulation executes for B busy ticks (a busy tick is a clock increment in which

simulation activity occurs),

Rp = B. [max(tcpu, tcoMM) + tSYpTcH]

This assumes that computation and communication occur concurrently in a busy tick. CPU time

dedicated to message formation and protocol service are included in a component term of tcpu.

tcomt refers to the time spent in inter-slave communication for cooperative processing. tsyivc is the

communication with the master for global synchronization. The CPU time used over all processors

per busy tick can be broken down as tcpu = tEVAL + tCOMCPU where tZvAL is time spent performing

actual event/functional evaluations and tcoMcpu is CPU time spent forming and executing message

protocol. The CPU time spent evaluating can be expressed in terms of the time to perform an event

evaluation per busy tick, average number of events per busy tick, time to perform a functional

evaluation, and average number of functional evaluations per busy tick. On a per processor basis,

this becomes tcomcpu = 0 - [(E / BP)tE + (F / BP)tF]. 13 is a imbalance coefficient since the

computational work may not be completely uniform. The average time to perform a functional

evaluation is the sum of all functional evaluations divided by the number of evaluations. On aver-

age there are Mp/B state change messages over the communication network between interacting

slaves. On average, each processor receives Mp/BP messages on each busy tick. Messages travel

through an average number of intermediate nodes which must incur processing time to forward

them. The resultant expression for CPU time spent in communications overhead is

tcoMcPU =a - {H.(Mp / B)[(tc +tcR) / P]+(Mp / B)(tcF/ P)}

21

(x is a term representing communications imbalance and serves a similar purpose as P3. tcomm conl-

siders the expected volume of inter-slave messages versus the available bandwidth of the architec-

ture as

tcomm = a .H -(MP /B) -[(tzm+ tLv)/IW

The last term tsyNc is assumed to be accomplished via a complete exchange. In a hypercube archi-

tecture, each processor sends a message down log2)' adjacent channels.

A version of this model was used to simulate several circuits allocated by a simulated annealing

partitioning strategy. The results were disappointing in that random allocation consistently ex-

ceeded the performance of the simulated annealing allocation. Chamberlain and Franklin cite the

following reasons for this unexpected result:

* The cost model does not consider load balancing while that is all the random partition consid-

ers -- load balancing is a pertinent parameter.

* The frequency of evaluation was assumed uniform over all components. Some components

were executed 12 times more than the average causing a significant computational and com-

munications imbalance.

" Achievable parallelism is limited by the global clock protocol to the number of processors able

to simulate at any single point in simulation time.

Additional problems with this model include the high degree of knowledge required of a simulation

and its environment. Some terms can only be determined by running the simulation once and

feeding that information back into the cost model. Many terms are average quantities that would

suffer the same failure as assuming uniform activation frequency for behaviors. Significant devia-

tions from the average are probable and will throw the model. While the terms themselves are

questionable, the way in which they were identified and determined are admirable. Any model de-

22

velopment must reflect the theoretical basis of the system in meaningful terms; otherwise the model

becomes incomprehensible and unextendable.

2.5 Parameters of Partition Models

An early question in model development is, "which parameters are important?". Failure to

identify a robust set of candidates will ignore pertinent degrees of freedom (dimensions) of the tar-

get space and limit the correctness of the model to a subset of that space. What parameters are

important in predicting the nmtime of conservative VHDL simulations? Certainly, the number of

gates is influential. Also, the size and nature of the test vector is material. This section presents

additional parameters of merit.

2.5.1 Lookahead

The minimum delay through an LP of the simulation allows the prediction of the earliest

subsequent event to come from that LP. Special considerations must be given to event generating

applications like VHDL simulation which will be discussed later. "Quantitatively, if a process has

knowledge of all events that will occur up to simulated time T, and can predict all new events it

Arrival[lO]
ArrivalE

15]
e)

Departure[151 Departure[20]

Algorithm without
Lookahead

Algorithm with

Lookahead B

Figure 5 Queuing System and Lookahead

23

will generate with timestamp T + L or less, then a process is said to have lookahead L" (Fujimoto,

1988-1:34). A lower bound on lookahead is the minimum delay through that process. By the

definition, additional knowledge (perhaps event dependent) could allow larger lookahead instances.

But this would require more intelligent processing. Minimum delay is static for static problem

graphs and is generally synonymous with lookahead used in practice. Reducing lookahead limits

the parallelism inherent in the system. For example, in Figure 5, Queue A sends an arrival event to

B for each local departure event. If the processing time of each queue is known (say 5), greater

LPO LP1

12

t

10+6k
L J

Figure 6 Multiple Paths and Lookahead

parallelism can be exploited by immediately sending B its arrival for T+5. This is an overly sim-

plified example since Queue A may have jobs in its queue and cannot process the new arrival for

some time. However, this, too, is a known quantity. Instead of sending arrival-time + process-

ingtime, A can send an arrival to B at LastScheduledFinishTime + processingtime. Conserva-

tive simulations are acutely sensitive to cyclic dependencies. Expanding the previous single queue

example to the LP level, lookahead is critical to the speed at which cycles are wound up and simu-

lation allowed to proceed.

24

As previously mentioned, circuit simulation differs from queuing simulation in that events

can procreate or terminate between source and sink nodes. Multiple paths through an LP may

cause events to arrive at a destination LP at a time increment less than the minimum delay through

the LP. As shown in Figure 6, the upper path is 12 hops and the lower path is minimally 10 hops.

Consequently, any event arriving at LPO will not be seen by LP1 until at least t + 10. It would be

beneficial to allow LP1 to simulate up to this time. Unfortunately, a single event to LPO may gen-

erate many arrivals at LP1. An event at t may generate arrivals to LP1 at times t+10, t+12, t+16,

t+22 This is caused by multiple paths and an included cycle which may periodically generate

events indefinitely. Thus, an arrival at LPO at t does not free LPl to simulate up to t + 10. A

previous arrival at LPO may have caused events destined for LP1 at times less than t + 10.

This does not completely deny the benefit of lookahead to digital simulations, it just re-

quires more intelligence in determining lookahead. LPs are informed of lookahead possibilities via

null messages. Upon any arrival, the source LP adds its minimum delay to the arrival timestamp

and sends an appropriate null to the destination LP. As discussed, minimum delay is not guaran-

teed to represent the minimum time increment for a departure from the source; the source must test

for earlier departures. A simple way to do this is to check the next event list of the local sequential

simulator. The time of the earliest event on the list is a lower bound on potential departures. Thus,

a safe time to send adjacent LPs is nin[t,.,, tcok+delay]. The first term of the min function is

extremely limiting since many events will be in the next event list with timestamp less than t,,af, for

the destination LP. However, it is hoped that the later term will be used with enough frequency to

yield the benefits of lookahead. Figure 7 demonstrates that as the number of LPs grow (and com-

5All incoming events to an LP are guaranteed to be later or equal to tsaf,. Thus, the LP may safely prog-
ress to that point.

25

350000

300000

250000

= 200000
o * Safe Nulls Posed
I.

M Neq Nulls Posed
150000z

100000

50000

0
C%J CM N~ C%J M' CO) V) 'I 1* LO tO 10 ID CO CO CO F- P~- P,- CD CO 00

Number of LPs

Figure 7 Nulls Posed with Delay and Event List Timestamps (Wallace Tree)

putation becomes finer grained), the number of null messages posed for transmission with the

minimum delay timestamp grows relative to those posed with the minimum event list timestamp.

2.5.2 Lookahead Ratio.

Fujimoto added to the definition of lookahead by observing that the absolute value for loo-

kahead is not as important as the lookahead relative to the time between the arrival and departure

of an event. Similarly, Wagner and Lazowska observed that "since LPs affect each others' clocks

by exchanging messages, this implies that lookahead values need to be comparable to the average

message timestamp increment in order to be useful" (Wagner and Lazowska, 1989:150). Intui-

tively, a lookahead of x is somewhat meaningless unless x is large relative to the expected delay

through the circuit. Fujimoto, therefore, defines Lookahead Ratio (LAR) as

mean timestamp increase
LAR= a h ea (Fujimoto, 1988-2:18). Note that this formula assumes that

lookahead

26

lookahead is constant. In reality, lookahead can be unique for all (source LP, destination LP)

pairs. Furthermore, Fujimoto offers no advice on an aggregate LAR metric that incorporates the

LAR values for all LPs of an allocation.

2.5.3 Contention

Increasing the number of processors upon which a circuit is simulated makes the applica-

tion finer grained (less average computation between communications). Correspondingly, com-

munications overhead will likely increase as will the influence of contention. Contention occurs

when message delivery between processors is delayed due to unavailable physical channels of the

underlying hardware. Chittor and Enbody develop a mathematical model to predict actual message

throughput (X,) based on an applied message rate (%a) and a saturation message rate (Xsct).

2(1l- X)- X (+ \o,) + =0 (Chittor and Enbody, 1991:11-3)

This model, like others, requires accurate prediction of the message generation rate of LPs which is

very difficult to come by for logical circuits. Chamberlain has proposed pre-simulation to form

reasonable estimates of circuit activity.

2.5.4 Fanout.

Nicol observed that the higher the fanout, the more descendent nodes are held back by con-

servative blocking. This is particularly true of fine grained applications. Grouping nodes together

onto an LP as well as partitioning to increase lookahead will serve to diminish the amount of

blocking occurring in the simulation (Nicol, 1991:34). Then, Nicol maintains, for coarse grained

machines, performance degradation is not due to blocked processors, but due to communication

and synchronization overheads (Nicol, 1991:42).

27

2.6 Techniques and Special Considerations

Terminals Disks

00

NK

Figure 8 Bottleneck of Queuing Model

Bottlenecks in the problem graph present inherit limitations to parallelism that may not be

observable in the actual system being simulated. Wagner and Lazowska give the example of a

queuing network model of computer terminals accessing a central CPU with multiple disks at-

tached (see Figure 8). In an actual system as depicted, the service time of the CPU would be much

less than the service time of the disks such that the CPU would not delay disk service requests. In

a simulation, however, a CPU service and disk service are of the same relative magnitude. Ideally,

all nodes of Figure 8 would be simulated on unique processors. However, since the disks receive

all requests from the CPU and the maximum utilization of the CPU is 1.0, the sum of disk utiliza-

tion cannot exceed 1.0. Nor can the terminals' effective utilization exceed the consumption rate of

their only destination. Thus, the maximum parallelism available in this model is 3.0 (Wagner and

Lazowska, 1989:147).

A fundamental structure of discrete event simulation is the next event list (also imprecisely

called the next event queue). This structure will hold all the events generated and processed on an

28

LP. Its efficiency is material to the speed of processing. Nicol recommends a splay tree implemen-

tation for large event populations (Nicol, 1993:325).

2.7 Statistical Analysis

"The goal of scientific analysis is the collection and organization of information concern-

ing the world around us with the goal of increasing our understanding of the things we observe."

(Thomndike, 1978:3). Thomndike continues to outline the stages of scientific discovery: observa-

tion, organization and prediction, explanation and understanding. This study fits in the second

stage of "exploration". While there are many parameters with documented relationships to simu-

lation runtime, many others remain with inter-relationships that are currently unexplored and un-

defined. Using basic techniques of statistical analysis, further insight to parallel simulation model-

ing is sought.

Numbers are a convenient way to label parameter values. Despite the absolutism of digits.

numbers do not always carry the same meaning. When measuring parameters of interest, four

types of scaling are pertinent. Nominal scaling attempts no quantitative assessment; it merely

identifies membership to a particular category (e.g. male, female). Ordinal scaling makes general

quantitative implication within a category (e.g. IQ levels). Interval scaling provides a precise

quantitative relationship between differing values within a category (e.g. degrees Celsius). Ratio

scaling is the final type and is interval scaling where 0 represents the absence of that trait in the

sample (e.g. degrees Kelvin, or age).

The principle of least squares forms the basis of correlational procedures. Finding a least

squares solution to a problem asserts that any other point, line, or curve will result in a larger sum

if the difference between the estimator and each measured result is squared and summed together.

It provides the most accurate predictor "on average for the group" (Thomndike, 1978:21). It does

29

this regardless of the shape of the observed data. However, if the data is decidedly non-normal,

other statistics may be better suited for the analysis. Each parameter will vary over observed data

points. If not, no significant conclusion can be made about the parameter and the criterion to be

predicted. If a parameter increases as the criterion increases, there is a positive correlation. If a

parameter change of amount x consistently corresponds to a criterion change of amount y, then a

high degree of correlation can be expected between the parameter and the criterion. Variance of

the criterion can therefore be explained by variance in the parameter. The ratio of explained vari-

ance (SSR) to unexplained variance (SSE) indicates the significance of the model, or the ability to

conclude that the predictor is not coincidentally related to the criterion. The total variance (SSy) is

the sum of explained and unexplained variance.

Particularly important to the accuracy of a statistical model is the assumption of linearity.

If the data samples fail to follow a linear form, than the use of a linear model is inappropriate. The

difficulty becomes "seeing" if the data is linear in k-dimensional space. Linearity of two dimen-

sional cross-sections (partials) of the overall sample space does not imply linearity of the problem.

Based on a sound theoretical model, mathematical techniques can be used to form a linear model.

Alternatively, polynomial and logarithmic regression techniques are available. A linear regression

equation has the following form:

Y= O+01VX+.+PkrXk

Equation 2 General Linear Equation

or, in matrix form,

P 0

30

or

Equation 3 Matrix form of General Linear Equation

Equation 3 represents the prediction of a single criterion value y, given a parameter vector I and a

coefficient vector f. Each entry of the parameter vector, xj, represents a single sample measure

for some unique parameter. For sample i of the sample set,

Yi = ".x,

Let X be a matrix such that row i of X = I Vi. This two-dimensional matrix has each row as the

vector of parameter values for a single data sample. Each column is the vector of values for a

single parameter over all samples. Using the vector yj Vi as the predicted results, sum of squares

comparison to observed data is possible as is correlational and significance testing.

Alternatively, observed y values can be substituted in the above equation to find the f that

results in the minimum sum of squares. Since the rest of the discussion uses only the vector and

matrix forms of variables, let [3= f, x = X, and y= vector of observed runtime values. As such, the

following equation finds 3:

0 =(lx)-I. T -

Equation 4 Coefficients of Linear Model

Sum of square error not explained by parameters can then be found by:

SSe:= y -y f3 TxTy

Equation 5 Residual Error of Sum of Squares

Sum of squares explained by regression is:

31

n-i1
E i

SSr:= p IxT.y i=0
n

Equation 6 Regressive Error of Sum of Squares

To test the significance of the model, the appropriate F statistic is calculated by:

SSR / k MSR

F° -SSEI(n-k-1) MSE

reject insignificance if Fo >

Equation 7 Linear Regression Test of Significance

where k is the number of parameters (columns) in the x matrix, and n is the number of samples

taken (rows of x matrix).

If a model has already been established, statistical testing is straightforward using the

above equations. If no model exists, one must be formed from the candidate set of parameters.

Many techniques are available to construct a linear model. Thomdike proposes starting with the

candidate with the highest correlation. Add to this the parameter which results in the greatest in-

crease of the Fo statistic. Test each parameter of the combined model for significance by a new

statistic F, = (SSR - SS) where SS.' is the regressive sum of squares of the linear model exclud-

MSE

ing the parameter of interest. Essentially, this test sees if the marginal contribution of the parame-

ter of interest is significant. If the marginal test indicates insignificance, remove that parameter

from the model. Continue building by the Fo test.

It is difficult to assess the general applicability of a model built from sample data. That

sample data may be biased or insignificant to the characteristics of the overall population from

which the samples are drawn. Thomdike recommends a double cross-validation technique to limit

32

this risk. The sample set is divided in half and independent models developed for both halves. If

each independently developed model appears similar to the other in form while effectively predict-

ing the other's sample data, then the parameter set of the model is verified and can be redeveloped

on the combined sample.

2.8 Summary

Conservative parallel discrete event simulation carries with it assumptions of the basic

data structures used. Conservative simulation guarantees that an LP will never receive a remote

event with a limestamp less than its current clock. It does this by blocking an LP until all input

channels have a most recent communication timestamp greater or equal to the next event time of

the LP. Blocking, however, creates the risk of deadlock which can be eliminated with the use of

null messages. Previous ARIT researchers succeeded in achieving limited speedup of circuits using

random, simple data, and iterative improvement partitioning strategies. Key to hill-climbing or

annealing searches is a cost function to evaluate the worth of the current search position. Cham-

berlain developed a model for a synchronous protocol simulation and others like Nicol, Fujimoto,

and Wagner have identified parameters of interest to any cost model. No published cost model has

been demonstrated as statistically significant to partial or total ordering by runtime of VHDL cir-

cuit simulation. One particular difficulty with VHDL is the inability to predict load balance since

nodes may create or destroy events differently depending on the input vector. Using statistical

analysis may offer some insight into model building and add the legitimacy of mathematical sig-

nificance to proposed models.

33

3. Methodology and Tools

3.1 Overview

The approach to this research is outlined by the steps of statistical analysis discussed in

Section 2.7.

1. Using the Graph Partitioning Tool (GET) from Kapp's research, generate a sample set of

Wallace Tree simulations.

2. Use this sample set to form a cost model using double cross-validation.

3. Simulate the Wallace Tree to create a validation set to test the reliability of the statistical cost

model

4. Simulate the Associative Memory circuit to test the general applicability of the statistical cost

model.

Support of this plan required major revisions to the Graph Partitioning Tool (GPT). Also, addi-

LP Manae Filter

Node Manager

Operating System of Host Architecture

Figure 9 SPECTRUM Structure and Internal Dependencies

34

tional instrumentation of SPECTRUM provided insight into the work breakdown of processors in

VHDL simulations.

3.2 Spectrum

SPECTRUM was originally developed at the University of Virginia on a BBN Butterfly.

AFIT researchers converted this code for execution on the Intel iPSC/2 hypercube. SPECTRUM

uses a SPMD (Single Program Multiple Data) model which means that each processor has its own

copy of the simulation. The state space is divided among processors using the configuration files

Table 2 SPECTRUM Standard Filter Descriptions

Filter Name Access Control

Initialization Invoked as part of simulation startup, this fills an array with the
addresses of filter functions for the six defined filters.

Get Event Upon a request by the application for the next event to process
Post Event Upon a request by the application to send a specified event to some

remote destination
Post Message Upon a Node Manager request to provide a remote event to the

local LP Manager
Enqueue Event Upon needing to place a specified event into the next event list
Advance Time Upon needing to update the LP Manager clock
Termination Upon conclusion of the simulation usually to collect and print sta-

tistics
lpx.arcs and lpx.map where x is the number of LPs. Figure 9 shows the structure of SPECTRUM

which uses various levels of abstraction to simplify and standardize the interface to interprocessor

communication for the application. As has been demonstrated at AFIT, applications using SPEC-

TRUM have been ported to other architectures with little or no recoding of layers above the node

level interface. SPECTRUM claims compatibility with any synchronization protocol and does not

innately favor conservative versus optimistic techniques. In other words, SPECTRUM does not

implement a protocol which must be developed separately. It does, however, provide a structure

upon which a protocol can be built. The synchronization protocol is implemented in the filter layer

of SPECTRUM. Well defined points of execution allow filter routines to be called and thereby

35

control the communication between LPs. As can be seen by the dependencies of the various

"layers" of SPECTRUM, the LP Manager, Node Manager, and Filter are tightly coupled. The

Filter layer is particularly complicated with its access to (and knowledge of) all layers but the op-

erating system. Overall, the application benefits from a defined, simplified interface to SPEC-

TRUM and SPECTRUM benefits from a defined localized interface to the operating system.

The interaction of the SPECTRUM abstractions are important. Only LP Manager directly

calls filter routines which are "registered" with the LP Manager as a part of the initialization of the

Node Manager -- Maniger AppicatlonEvent List Clock
St te

Htii

Get Event

Post Event
Post Message
Enqueue Event
Advance Time

Figure 10 Redirection of LP Manager calls to Filter

system. Those routines and invocation points are described in Table 2. As visible in Figure 10,

the basic discrete event simulator is broken between the application and SPECTRUM. LP Man-

ager controls the next event list and a clock reflecting the time of the last message processed. The

application performs the interpretation and consequence of events which it applies to its state

space. When the application requires an event to process, it requests it from the LP Manager. If a

Get Event filter is defined, LP Manager redirects the request to the Filter layer. The behavior of

the Get Event fiter is protocol dependent. For a null message protocol, Get Event will block until

36

it is able to find an event in the next event list with a timestamp earlier than or equal to the safe

time. This may require waiting until a remote LP sends an event with the appropriate timestamp or

a remote LP sends a message that allows updating tae. Similar redirection of LP Manager calls to

the filter occur for the other filter functions.

3.3 VSIM

Node Manager , EvntLiVSIM
' I fClock

: X..I /" , /Eent List -

State Space.

Intialize

Get Event
Post Event

Post Message
Enqueue Event
Advance Time

Figure 11 VSIM Interaction with SPECTRUM

VSIM is the application developed by Comeau and Breeden that simulates VHDL circuits.

It is actually an extension of a sequential VHDL simulator by Intermetrics. Consequently, the ba-

sic interaction of the application, VSIM, and SPECTRUM is modified from Figure 10. As seen in

a VSIM specific reproduction of the previous diagram, Figure 11 shows that VSIM is a simulator

unto itself and has its own event list and clock. VSIM, however, has devices to limit its behavior

evaluation to some subset of the whole circuit based on the LP number and the LPx.map configu-

ration file. Signal changes that affect behaviors mapped to other LPs result in VSIM forming an

37

event with the appropriate destination. VSIM sends the remote event via a call to LP Manager's

PostEvent function upon retrieving it from the local event list at its designated time. All events

are inserted in the VSIM event list. Built around the conservative protocol, VSIM will request an

event from SPECTRUM if the time of its next event exceeds the time of the SPECTRUM clock.

SPECTRUM must provide a valid event or update the clock for VSIM to continue processing.

Thus, VSIM only invokes SPECTRUM to send or receive remote information (events or channel

times). Currently, the only access SPECTRUM has to the status of VSIM is get low time()

which provides the time of the earliest event on the VSIM event list.

3.3.1 VHDLClocks 94

VHDLCLOCKS is the null message filter implementation used by Kapp. VHDLClocks94

is a modified version that eliminates some inefficiencies and adds additional instrumentation in or-

der to gain insight into the activities of the processor. For this discussion, let:

tin : Minimum time of all input channels = taf,
tsti :Minimum timestamp of event in SPECTRUM Event List
tvis "Minimum timestamp of event in VSIM Event List
tnW1 : timestamp on null message = niln[tv , ti, + delay]

Figure 12 captures the most complex synchronization of the new protocol. The Get Event filter

applies most policies of the protocol in its own code or by invocation of the other filters (not de-

limited in the figure). The Post Event filter sends nulls down all channels not used by the message

being sent and is invoked upon finding a message to another LP in the VSIM event list. The proc-

essor can be involved in one of three disjoint states: application processing, synchronization

processing, and blocking. Measuring the time spent in each of these states for all LPs in the

simulation may reveal pertinent or even limiting factors of runtime. VHDLClocks94 measures tGet

from the invocation of the LP Manager's GetEvent routine until it exits, including all time con-

sumed in the Get Event filter. The Get Event filter is the only portion of code that implements

38

blocking.. tBlock begins at the demarcation indicated in Figure 12 and ends when the Get Event fil-

ter exits (i.e. upon receiving an event that allows application processing to continue). tp ,t is the

time spent in the Post Event Filter. Since these getting and posting events represents almost the

entirety of protocol overhead, the sum of tret and tpo, approximates the time spent in synchroniza-

tion processing and blocking. Since only one LP will be allocated to a processor, task switching

overhead can be ignored. Ignoring other operating system induced overheads, the difference be-

tween observed runtime for an LP and its measured synchronization overhead is a good estimate

PoEen inen

from

SPECTRUM
List No

BeginttsL >

Send Nulls on

Event for
event to Deist this LP

Yes
Yes

Fgr N Vcs Event in

E xit t l > tinS

lceBegin timing

Sen Nul oesag Yes
all OutisNl

Channels
t

Figure 12 VHDLClocks94 Get Event

39

for the application processing time. Summary definitions for an LP are:

tGet : wall time spent in the LP Manager Get Event subroutine
tpost wall time spent in the LP Manager Post Event subroutine
tBlock : wall time spent waiting for a message to allow continued processing
tsy, wall time spent processing synchronization protocol routines = tGet + tp,,t - tBlock

tp,,ro : wall time spent processing the application = Runtime - (tGet + tpot)

VHDLClocks94 corrects an overflow error. When generating null messages, time stamps may be

calculated as the sum of the input channel time and the minimum delay to the specific output chan-

nel. Since VSIM operates in picoseconds, a 2000 ns simulation concludes at timestamp

2,000,000,000. The maximum value for the timestamp datatype is 2,147,483,648. Input channels

plus delay times were occasionally exceeding this maximum and appearing as negative values.

This cause of overflow has been corrected, but the risk is still present in all time calculations when

large numbers are used with a restricted datatype.

3.4 Graph Partitioning Tool (GPT)

Kapp developed the Graph Partitioning Tool v2.0 from an earlier version written by Major

Eric Christensen, USA. Kapp's most significant improvement from the initial version was to add

the ability to perform cost model based partitioning. Structures and procedures were added to al-

low various measurements of the graph and its allocation. These measurements can then be used

as terms in a cost model to ordinally compare two allocations. Kapp's AB Improvement routine

uses iterative improvements of the cost model to find better allocations.

Unfortunately, the tool uses a partial cost model to search for iterative improvements. The

partial cost model is much more efficient to evaluate, allowing rapid execution of the search. The

primary goal of the new version of the Graph Partitioning Tool (version 3.0) is to localize the cost

model to a single Ada package and let the AB Annealing routines use the entire cost model in its

decisions.

40

3.4.1 Minimum Delay

Lookahead is ignored in the AB Annealing routines of GPT v2.0. This is not an arbitrary

oversight since the calculation of minimum distance for graph partitions is O(input arcs5 x nil)

where ni is the number of behaviors in LPi and input arcs5 is the number of input arcs for LPi. The

AB Annealing routine considers a subset of the total number of vertices and must re-evaluate all

LPs in the circuit for each allocation raising the cost to O(numLPs x input arcs5 x n/). With this

complexity, it becomes difficult to amortize a week long allocation analysis for a 30 second simu-

lation. While partitioning efficiency is not a goal of this research, reasonable performance is re-

quired to progress. As an implementation note, delays are implemented by association with com-

munication channels. Reference to a minimum delay will be equivalently made in terms of the LP

pair or the appropriate adjacent channel.

3.4.1.1 Dijkstra

Dijkstra's algorithm is the most efficient (O(n3)) known for the task of finding the mini-

mum distance between all nodes of a graph with non-negative distances. The actual problem is to

find the minimum distance from the subset of input nodes to the subset of output nodes for each

LP. Since the graph of a circuit is static, one could find the minimum distances between all nodes

and then store this information. Subsequent partitioning analysis could then reference this archived

data instead of calculating it at runtime. For a one time cost, efficient use of minimum delay and

lookahead can be added to cost model partitioning. Following this reasoning, Dijkstra minimum

distance (delay) calculation is offered as a menu option in GPT v3.0.

3.4.1.2 Dynamic Search

Unfortunately, Dijkstra's also carries an O(n2) space requirement. The 4 Mb of disk space

for the Wallace Tree becomes 64 Mb for the 4,243 behavior Associative Memory circuit. Addi-

tionally, only knowing the minimum delay of an LP does not allow accurate calculation of Fuji-

41

moto's Lookahead Ratio. All paths through an LP contribute to the average delay of that LP. It is

the ratio of average delay to minimum delay that defines Lookahead Ratio. There is justification

for dynamically measuring all paths through an LP. Therefore, an alternate minimum delay meas-

urement device is offered as a menu option. Dynamic measurement is implemented as a depth first

search and may result in unreasonably long partitioning analysis. But, when feasible, it will give

better assessment of the delays in an LP.

3.4.1.3 Worst Case Delay

As the circuits get very large, neither of the above options may be reasonable. As a fail-

safe option, the user can enter the minimum gate delay to be used as the distance through all LPs.

This guarantees the quickest partitioning analysis and correct simulation, but eliminates lookahead

as a configurable parameter. Very likely this technique of delay determination will inhibit simula-

tion performance due to the under estimated minimum delay.

3.4.1.4 Infinite Delay

An interesting situation is the occurrence of a source node in one LP and its descendants in

adjacent LPs. If no other paths make up such a communication channel, it is not obvious what the

delay of that channel should be. Sources have a delay of zero since they perform no processing.

However, a channel delay of zero could contribute to a violation of the null protocol if a zero cycle

formed between LPs. Based on an understanding of the behavior of the simulation, GPT v3.0 as-

signs this channel a delay of infinity (implemented as MAX INTEGER). Upon initialization, all

events of the testbench are scheduled. Consequently, all the events of a source are in the VSIM

event list of the host LP. Since null messages are timestamped nin[tvi,,, tin + delay], as long as

events of the source are in the VSIM event list, tvi, will be the timestamp of the null messages

down the anomalous channel. The adjacent LP will not receive the infinite delay null message until

42

there are no more events in the VSIM event list. If the VSIM event list empties, an infinite delay

may be sent down the source's channel because it will not be generating any more events.

3.4.2 Graph Parameters

The following parameters are measured by the GPT v3.0 statistics gathering package:

Table 3 Graph Partitioning Tool Measured Parameters

Number of Vertices VerticesNm Count of behaviors in problem graph
Number of Arcs ArcsN,, Count of arcs in problem graph
Number of Compo- LPSNum Number of LPs for which the circuit was allocated
nents
Inter-LP Arcs ArcsN,1r,,,T1_ Count of arcs that cross LP boundaries
Channels Channels&. Count of the channels between LPs; channels encapsulate arcs
Weight of Inter-LP Arcswtntert Assuming natural assignment of LPs to processors, a weight
Arcs wi, can be assigned to communication between any two proc-

essors. If ai is a directed arc that crosses the LP boundary
from LPi, to LP, then

Weight of Inter-LP Arcs = ai," wij
ij

Average Weight of ArcsAvgwrinter_ Weight of Inter-LP Arcs / Number of Components
Inter-LP Arcs
Standard Deviation of Arcsstdwd,0t Each LP has a set of output arcs which sums to a weight
Output Arcs Weight based on w values. Standard deviation is based on the output

weight of each LP versus the average output weight for all
LPs.

Maximum Deviation ArcsM.,w, If OutWeight is the sum of the weights of output arcs for LPj,
of Output Arcs then
Weight Maximum Deviation of Output Arcs Weight =

OutWeightM, - OutWeight &,g

OutWeight ,,
Standard Deviation of Arcsstadwti Similar to output arc counterpart but for arcs that cross the LP
Input Arcs Weight boundary into LPs. This attempts to assess the balance of

communication demands for both input and output messages.
Maximum Deviation ArcsMCwI Similar to output arc counterpart. Since runtime is based on
of Input Arcs Weight max runtime of the LPs, it makes sense to track max parame-

ters as well as average and standard deviation.
Average Lookahead LookaheadA,, Fujimoto defines Lookahead Ratio as average message delay
Ratio over minimum message delay. Only path lengths through the

LP are available a priori to estimate average delays. Actual
average with depend on event frequency down the various
paths as well as event generation and termiination within the
LP.

L Note that LPs will have different delays for different pairs of

43

input and output nodes. The overall minimum does not apply
to output nodes not on that path. Thus, the minimum dis-
tances for all input-output node pairs in an LP is calculated
resulting in a single minimum path measure for each output
channel.

Lookahead Ratio is defined for a single LP. There is no ag-
gregate measure for the whole simulation. Consequently, the
aggregate measure used here is found by summing the average
paths in all LPs and dividing by the sum of minimum paths
through all LPs: Xdelayj

#of paths from LP to LPj
Average Lookahead = min(delay)

AU hej

Note that the different techniques for finding minimum delay
will produce different values of Average Lookahead since they
track different numbers of total paths.

Standard Deviation of Lookaheadstd Lookahead Ratio is calculated for each LP and compared to
Lookahead the average over all LPs.
Maximum Deviation LookaheadMa, Same calculation technique as other maximum quantities.
of Lookahead
Average Computa- Loadvg Each behavior bi is assigned a computational weight cwi. Av-
tional Load erage load for all LPs is:

Xb, .cw,

Number of LPs
Maximum Deviation LoadMa Same calculation technique as other maximum quantities.
Computational Load
Standard Deviation Loadstd Each LP load compared to the overall average.
Computational Load
Time spent in Appli- tp,,oc Sum of time spent by each LP in application processing for an
cation Processing allocation
Time spent in Syn- tsy, Sum of time spent by each LP in synchronization processing
chronization Process- for an allocation
ing
Time spent in Block- tBlock Sum of time spent by each LP in blocking for an allocation
ing
Maximum Runtime tMaxlun Runtime taken by last LP to complete processing.
Speedup Speedup Time for biased sequential execution / time for parallel alloca-

tion execution
Nulls Sent NuliSNm Total number of nulls actually sent by all LPs during a simu-

lation
VList Nulls Posed Nullsvj, Total number of nulls posed by Get Event filter with the

timestamp of the earliest event of the VSIM event list
Delay Nulls Posed NullSDet Total number of nulls posed by Get Event filter with the

44

timestamp of the earliest input channel plus the minimum de-
lay

Total Nulls Posed NUllSpo..d Sum of Nullsvti, and NullSDelay. Incorrectly ignores nulls sent
as part of Post Event filter. NuliSposed will exceed NullsN,
since some nulls posed will not increase the channel time so
VHDLClocks94 will not send them.

Total Reals Sent RealsNm Count of real messages sent by all LPs in a simulation.

3.5 Wallace Tree

The majority of data collection and model formulation is based on the same Wallace Tree

Multiplier used by Breeden and Kapp. This circuit is large enough to permit conclusions while

small enough to wield in an experimental environment. The circuit consists of 1,050 behaviors and

1,770 arcs. It accepts two 8 bit input vectors to form their 12 bit product.

3.6 Associative Memory

The associative memory circuit developed by Kapp consists of 4,234 behaviors and 9,312

arcs (Kapp, 1993:89). It is the largest circuit simulated at AFIT, requiring 20-40 minutes to

simulate on the iPSC/2. Implementing a 16x16 memory array, the testbench performs several read

and write tests including pattern searches. Kapp reports that design conveniences may hinder

simulation performance. A common enable signal causes all registers to schedule events, although

only one may be of interest in a particular cycle (e.g. read versus write registers).

3.7 Model Structure

The cost model proposed in this research was developed by collecting several hundred

samples of Wallace Tree statistics for the various partitioning strategies on 2 through 8 processors.

By using the AB Improvement routine a representative spectrum of values for all parameters was

45

pursued. Blind use of three different cost models, allowed data to be gathered while avoiding bias

to a particular region of the search space.

Runtime performance is a function of many disparate parameters and their interrelation-

ships. In order to add theoretic structure to the model development, an abstract mathematical de-

scription is now developed. Since processors are in one of three states at all times, the sum of time

spent for each state should give the runtime of that processor. While the critical runtime is the

maximum over all LPs, the sum of all states over all LPs is guaranteed to include the performance

of the slowest. Also, if LPs are generally balanced, the sum over all LPs will be a good indicator

for the performance of the slowest LP. Rather than attempt to build a cost model for runtime di-

rectly, cost models were built for the component states: application processing, synchronization

processing, and blocking. Upon determining the component cost models, the terms of each were

used to construct the overall model. These subordinate cost models provide accuracy and reliabil-

ity data for each component, allowing a more insightful critique of the composite cost model. All

cost models were developed in accordance with the procedure outlined in Section 2.7.

trunti- = b0+b1 - +o, -Yt b2
• ts+. b3

• t,,
AlLPs AIILPs AILPs

Equation 8 Top Level Cost Model

3.8 Summary

This chapter outlined the operating environment and specific test cases used in this re-

search. The three major software systems supporting this project are: SPECTRUM, VSIM, and

the Graph Partitioning Tool v3.0. The specific software used for synchronization management is

the null message filter VHDLCIocks94 which is instrumented to measure the time spent by the

processor in each of three states: application processing, synchronization processing, and block-

46

ing. Only a summary description of the support software behavior is presented here. Each system

has several thousand lines of code and demands an in depth study to be fully understood.

By predicting the time spent in the three component states, a cost model is formed to pre-

dict overall runtime. The statistical methods used exactly follow those presented by Thomndike and

are outlined in Section 2.7 of this paper. The analysis is primarily performed on the Wallace Tree

Multiplier of previous AFIT research. The cost model is then applied to Kapp's Associative

Memory circuit to assess robustness.

47

4. Data Description and Analysis

4.1 Model Development

This section presents summary forms of the sample data collected and the development of

the cost model. Three hundred fifty eight simulations for the Wallace Tree Multiplier comprised

the entire sample set. Each data tuple was randomly assigned into one of two sets, Set A or Set B.

All cost models were developed from each dataset independently and then compared in accordance

with double cross-validation. Upon validation of the terms, each cost model was redeveloped over

the entire sample set. To avoid ambiguity between the various cost models under development, the

following names apply to this discussion:

Costproc : predicts total time of all LPs spent in application processing

Costsyc : predicts total time of all LPs spent in synchronization processing

COStBock predicts total time of all LPs spent in blocking

COStRtir : the ultimate model of this research, predicts the maximum LP runtime

built from the assumed model that

CostR.,m = bo+bCostPo+b2Costsync+b3CostBio~k

Equation 9 COStRuntjme Top Level Model

All cost models use a priori parameter values for a specific allocation as input.

4.1.1 Top Level Model

Before forming cost models for the component terms, the top level model should be

validated. A linear regression of Equation 8 over the entire sample population results in the

following coefficient vector

48

-2.6688

0.81

0.09 1
. 0.0907.

Thus, measured tp,,oc, tsyn, and tBkok can be used to form a CostR,, linear model with 0.978

correlation and average error of prediction of 1.006 seconds. The correlation seems solid and the

absolute error measure is within 4% of the average runtime. Therefore, if a priori parameters can

be found to predict tpro., tsy,, and tBl,k, the component cost models can be accumulated to predict

tMaxRun.

4.1.2 Application Processing Model

The initial step of model development is identifying a candidate set of terms (parameters)

pertinent to the criterion term which is to be predicted. An initial set is formed from the parameters

that demonstrate significant correlation to the criterion. Appendix B presents multiple correlation

data for all parameters in the sample set. From this, ArcsN.,,at,.J, Arcssdw ot, Arcssdwa , and

Lookaheadvg are added to the candidate set. The Costp,,¢ model offers the greatest potential for

prediction accuracy since tproc is defined to be independent of the complex synchronization

protocol. It is logical that load and load balance will influence the time spent in application

processing. Consequently, LoadMa, LoadA8, Loads&d are added to the candidate set. An LP's

application processing time should be fundamentally dependent on the number of events it has to

process. A crude complexity analysis can be accomplished by calling E the set of all events that

will be processed in a simulation. Note that E is constant over all allocations. In order to

accomplish E, VSIM must enqueue and process all events over the course of the simulation. The

implementation of the next event queue therefore has direct relevence to the performance of the

simulation. Insertion into the next event queue sort is O(N) in the worst case where N = IEI.

Consequently, the entire simulation performs O(NI 2) of application processing. Assuming uniform

49

gate activity and balanced loads on each partition, the amount of application processing for each

LP should be 0 ((N)2). Note that this implies that application processing can achieve superlinear

speedup since o((N) 2) is less than O(N2/p). However, this was an extremely crude analysis which

P

should not be taken too literally. Its purpose was to identify additional terms to add to the

candidate set. Combinations of the l/p term are included to complete the candidate set of terms for

Costp,,oc. The candidate set is:

{ Arcssdwo,, Arcsstdwti., Lookaheadvg, LoadM,,, Loadsd, l/[LPs,,,2log(LPsNum)],

1/LPSNm 2 , Iog(LPsN,m), 1/LPSN,.r}.

Note that Loadvg was dropped from the candidate set. Since the Verticesur is constant between

allocations, VerticesN,,LPsu,,, offers no more information than just l/LP Nm. The corresponding

coefficient of the linear model will incorporate the Verticesu,, constant.

The mathematical software used for cost model development is MathCad 5.0+ for

Microsoft Windows. Datasets are arrays where each row is a single sample instance and each

column is a specific parameter. A (row,column) pair identifies the value of a single parameter for

a single simulation run. For example, SetA2o0oat,4v is the LoadM value for the twentieth sample

of Set A. Since not all parameters are considered during model construction, a subset array X is

the data array of the candidate set. Let x be the array including a specific subset of candidates.

Let y be the sample vector of the criterion parameter. The development of Costpo, follows:

50

Initialize candidate data array:

log(x)
i:= 0.. rows(SetA) - 1 lg(x):=

log(2)

Xi,0 := 1

2 i
o:= Xi, 2 := Xj 3i, Set

Si,1 A.Se~iV~ts

SetA sN Xi,6= SetAi,ArsWlnterLP Xi,7:= SetAi, ArcsStdWtln Xi,8:= SetAi,

-SetA.LN X -X X -SetA

xL,9:= SetAi, hedAvg Xi,10:= Xi, I"Xi, 5 yi'= StAitproc

Each row of X has candidate parameter values for a single simulation. Each column of X has the

values over all SetA runs of a specific candidate parameter. The first column of X is initialized to

a vector of is to keep 3 and X of compatible dimensions.

Choose the first parameter to add to the model:

rT-.4.....

Vector r is the multiple correlation vector for each X column and the y vector. The second column

of X carries the greatest correlation to the criterion parameter so the initial linear regression

equation is

1
Costp oroc Io + P 1 " X 2 or Costo = o0 + I3 SetAm

Matrix x is used to collect the selected columns of X into a single matrix.

=1:= Xi,2

51

(xTx) 1 T _(12.312):= .x.y 13 50.264)

p := cols(x) p=2
k:=p- 1 k=1
n:= rows(x) n =179

SSr:= 0TxTy i=0 SSe:=yTiy- 3 TxTy MSe:=(SSe /
n 0,0 \n -i0,0

SSr
k

F - Fstat = Fk,np= 2.71
MSe

F = 4.196.103

MSe = 1.313

SSr02:= SSr

The F statistic is used to verify that the model is not just coincidentally related to the criterion.

Using an a of 0. 1, the calculated F must be greater than Fstat to reject the null hypothesis. The

large number of samples encourages that any relationship observed is likely to actually exist. The

MSe is the mean squared residual error. Thus, on average, the model will predict V from

observed criterion values due to error not accounted for in the regression. SSr02 saves the amount

of error accounted for in the regression for later marginal comparison with a larger model. To

select the next parameter to add to the model, each remaining candidate will be included with the

current model, individually.

Add additional terms to the model:

52

x:= 0

.-:1 7 =x . x *X.0= 1i,2 i,2 i,6

93.595

0.003 I
p:= cols(x) p=3

k:=p- 1 k=2
n:=rows(x) n=179

n-1 2

E Yi __)

SSr:= 3 -x y- i- 0 .0 SSe:= yTy _ 3 x MSe := (n- k 1

SSr

F k Wstat = Fmk n.p= 2.30
MSe

F = 6.23,103

MSe = 0.773

SSr026:= SSr

In the above calculations, testing each remaining candidate as another term in the model resulted in

the F statistics in Table 4. Note that X2 was not considered for addition again. Since X6 resulted in

the highest F statistic, it is selected for addition to the model. The addition of a new parameter to

the model raises the question of the marginal contribution of that parameter in lieu of those already

present. Additionally, does the addition of this new term negate the necessity for other terms

already in the model? Using the partial F test of Section 2.7, each term is removed from the model.

The marginal decrease in SSr is tested for significance as follows:

53

Candidate Parameter Resulting F statistic

X1 2188

X3 2463

X4 2486

X5 2213

X6 6230

X7 2395

X8 2772

X9 3771

X10 2143

Table 4 F Statistic Comparison for Parameter Selection

x:= 0

0 = i, 1 i,6

(•x.x 26.762/

p:= cols(x) p=2
k:=p- 1 k=1
n:= rows(x) n= 179

n-1 2

SSr:= J3 *xTy i= SSe:=y y- T x T*y MSe:= Me

n -0,0 (n- k- 11o'o

Fp SSr26 - SSr Fstat = Fk,n-p= 2.71
MSe

Fp = 174.419

As seen in the Fp statistic, the SSr of the model with X2 and X6 is significantly more than just using

X6. Therefore, both terms should stay.

54

The model continues to be developed by using the F statistic to select from the remaining

candidate set and then test the significance of each term in the model. Soon, additional terms do

little to improve the accuracy of the model upon which the process is concluded. For the SetA

development of Cost,,oc, the model is:

Cost'o =P. + P1 () + 0 2 * (ArcsNwt.rP)+ P3* (Arcssra.d)+ f,"(2)+ I5 " (Arcssw,,)
LPSN,,, LPsN,

Equation 10 Costp,,oc

10.185

37.734

0.004

0.041

21.456

0.005

corr(CostProc,y) =0.995 Me = 0.633 v

As can be seen, the Costroc for SetA is very successful in both correlation and absolute error. The

identical form of the model was developed over SetB with the following coefficients and summary

statistics:

10.135

39.92

0.004

0.039

15.203

0.011

corr(CostProc, y) =0.995 =Me 0.656 1

55

Double cross-validation requires that the P for SetA be used for SetB and visa versa. Upon

performing this,

SetA SetB

Pa Corr = 0.995 Corr = 0.995

/M- e= 0.633 fM."e= 1.895

P3b Corr = 0.995 Corr = 0.995

[Me = 1.632 M-e= 0.656

Although the absolute error increased in cross-validation, both the form and the correlation of the

model applied well. The model is validated. Regressing this model on the entire sample set yields:

10.109

38.75

0.004
0.041

18.267

0.008

corr(CostProc,y) =0.995 =Me 0.651

4.1.3 Synchronization Processing Model

Synchronization costs present a much more formidable challenge in identifying candidate

parameters. Correlations are weaker and fewer than with tp,o. Since tsy, is a function of many

parameters, it becomes difficult to interpret two dimensional projections of the k-space within

which the tsn, criterion is varying. Figure 13 presents a repeating projection pattern for both tsyn

and tBlock. Although the relationship is essentially linear, two disparate lines demonstrate the

influence of other parameters. Some other parameter is discretely (not continuously) affecting the

slope of the tsyn, versus parameter. relationship. By sorting the sample set on the independent

variable (parameters) and then observing consistent changes in other parameters of the dataset, the

56

terms varying with slope can be identified. In the case of LPsNm the companion parameter is

Arcslvumnterp,,(See Figure 14). By using this technique, the final form of the Costsy , model

performs very well over the sample set.

, 87 .133 10 0 1

80-

60-

Yi

40- I

20-

,3.561 o I I I I I
2 3 4 5 6 7 8
.2, DataSeti.LPsNmn ,8,

Figure 13 tsy., versus LPSNm

, 87 .1 3 310 0 1

80-

60-

Yi

40-

20-

,3.561 0 I I I I I1
0 2000 4000 6000 8000 1. 0 i.2104 1.4,104

DataSetiLpsN DataSetiA=NuhterLp J2352

Figure 14 tsy., versus LPSNum x Arcs..rt,,LP

57

Costsy = 3 + P+ 2 " (LPs,.,,2)+ 133 "(Arcs snIo,)+ f34 " (LookaheadA,)+ 35. (LPs ,,)

Equation 11 Costsy.,

For SetA

16.386

0.005

0.45313= I
-0.094

-0.51

-1.77

For SetB

12.001

0.006

0.48913= 3

-0.06

-0.285

-1.801

Cross-validation

SetA SetB

Pa Corr = 0.994 Corr = 0.987
,F'M-e = 2.107 rMS= 7.657

b Corr = 0.993 Corr = 0.99

FMt-e= 7.773 i rM--e= 2.305

While not as accurate as Costp,,oc, Costs, shows good correlation and absolute error within 9% of

the average tsyn,. Cross-validation kept good correlation, but absolute error jumped to 30% of the

58

average tsy, This suggests that the ordinal scaling of Costsy,, is correct, but its ability to retain

interval information is poor.

For the whole sample set:

13.787

0.005

0.462

-0.078

-0.38

-1.639

corr(CostSync,y) =0.992 =Me 2.244

4.1.4 Blocking Model

Modeling blocking proves to be the most difficult of the three components to predict.

While similar difficulties as with Costsy, are encountered, where the Costs, issues are resolved,

COStBock remains a problem. The combining technique of the previous section failed to collapse the

disparate linear relationships into one. Additionally, tBock varies over a much larger range resulting

in a similarly large discrepancy between variance due to regression terms and total variance.

Additionally, the models formed on SetA and SetB failed to include the same terms. Without

insight into alternative parameter combinations, both models were cross validated and the best

chosen for regression over the whole sample set. Note, the chosen model failed double cross-

validation, but is the best one available.

COStBV = [o + P 1 "(LPsro 2)+ 0 2 .(LPSN,. Arcsd,,O)+ 03 ' (LookaheadA,)+ 034 '(e' t)+ P 5 . (LPsN,)

Equation 12 Cost1ock

For SetA

59

4.758106

5.503

0.007

= -2.65

-4.758. 106

4.52-103

For SetB

2.873•106

4.629

0.002

-1.294

-2.87310

2.731.103

Cross-validation

SetA SetB

P3a Corr = 0.987 Corr = 0.978
,M_-Me= 11.186 [M'Se= 75.604

[3b Corr = 0.984 Corr = 0.98

fMSe = 53.353 "M-1e= 12.767

For whole sample set

4.307 106

5.257

0.005

-2.107

-4.307.16

4.093" 103

corr(CostBlock,y) =0.983 M e = 12.229

While the correlation remains impressive, the average error of prediction is now 15% of the

average tBlock. In cross-validation that error jumps to over 90%. This model is seemingly

60

unreliable with regard to interval scaling. Hopefully, that phenomenon will dissolve in the

composite model for runtime.

4.1.5 Composite Model

The composite model development for CostRn,WIE places all the terms of the component

models into the candidate set. The candidate matrix is initialized by:

/. 1
xi. 1:= DataSe .LPsNm Xi.2 :--(DataSe .LPsNm) 2 X.:=DataSeLLPsN!

1X., Data~et X, DataSetL. 2

X, DataSe S X, (e) DataSeti,LoadAvg Xi6 DataSetLkadAvg

X., X., DataSet * u.DataSetAsnn~ X-,: DataSet,
i7 :DataSeat 18 e 1 1 ArcsWtlnterLP

x DataSetXi.10 1, Dte.AresStdWtln

The correlation vector of these parameters with observed tmaxin is

0 .0.507o067-00o88 -0.44690508081 -o.217j0.670.4751-0.375

As can be seen, the correlations are not nearly as strong as those observed for CostpO,,. The model

development, however, is surprisingly well-behaved. Both SetA and SetB select identical terms for

the model.

S= 8 + 1 " (Lesj) + f2 "(- s)+ 3 .(LPsM,. Arcs.d4,)+ j, .(LookaheadAg)+ 5 .(Arcss.'1 ,a)

Equation 13 CostR,,f.e

For SetA

61

7.908

0.251

52.273

0.002

-0.39

-0.013

For SetB

7.701

0.264

47.171

0.001

-0.236

-0.002

Cross-validation

SetA SetB

Pa Corr = 0.935 Corr = 0.868

M-e = 1.88 M-S'= 2.962

Ob Corr = 0.919 Corr = 0.872

S Me= 5.926 VM-e= 2.195

For whole sample set

7.908

0.251

52.273

0.002

-0.39

-0.013

con'(CostRuntimey) =0.935 e= 1.88

62

4.1.6 Minimum Delay Revisited

Unfortunately, the CostRtm. model raises an issue. The minimum delay has not been

resolved for very large circuits like the Associative Memory. Dijkstra's would require a 64 Mb

data structure on disk while the dynamic search performs too slowly for iterative improvement of a

4,000 node circuit. It would have been convenient if the cost model allowed ignoring Lookahead

which would prevent the need to find the minimum delay. Unfortunately, the issue must be forced

by redeveloping CostRU.n,. without Lookahead~g as a candidate. Let this cost model be labeled

Cot.Ru.a., and it is

Cost.=00+01= t .(LPsM.)+f2 2)+ f3 .(LPs.. Arcs,..)
LPSM.

Equation 14 Cost.,.,

for the whole sample set

5.852

0.298

44.196

0.001 J

corr(CostxRuntimey) =0.894 Me=2.176

While the correlation has diminished from the component cost models, it still appears well

correlated and average error is less than 8% of the average runtime. Except for the limited degrees

of freedom, there is no reason to doubt this model. Note that the only pertinent parameters are

manipulations of LPsN.m and ArCSN.,&IM.rLp. There is a linear term that reflects the increase in

communication as LPsNm increases as well as a inverted square term that decreases application

processing time as LPsN.. increases. The few unique parameters legitimize their importance in

accelerating VHDL simulations, but imply the model is making assumptions regarding other

63

parameters. Load~g is an obvious influence to runtime; however, when developing over a single

circuit, the term is redundant to 1/LPsN , since Verticesu, is constant. Since no load balancing

term remained in the cost model, it is likely the sample set failed to expose enough variance in

Loadsod to introduce it into the model. The following section presents speedup curves for the

various types of partitioning.

8.000

7,000

S6.000---- Unear

5.0 -s Breeden Random5.000 " " SB

& *- SBF
V -W:.. Kapp SBF Annealing

, . .4.000.." M Cost Runtime

, 000. - 4 Cost xRuntime
3.000

2.000

1.0001. I

1 2 3 4 5 6 7 8

NumLPs

Figure 15 Speedup Curves with Cost Models

4.2 Model Verification

Two hundred eight additional runs comprise the validation set. All cost models were

evaluated on their ability to improve initial partitions via AB Improvement. Figure 15 shows the

results of the AB Annealing routine using the CostWu,,Wr and Costy,,,, models for simulation of

the Wallace Tree Multiplier. Performance is disappointing and difficult to interpret. Foremost,

64

400

350

300

250
o DtBbock

200 *tSync

15 0.............

100

50

N% Co) 0 C M Co't le 't to to LO CO CD to 1, 1 r- 0 CD

Number of LPs

Figure 16 Sum of LP Activity versus Number of LPs

both statistical models show conflicting results in contrast with the Kapp model. A margin is given

to the Kapp model in that instrumentation of the three processing states adds about a 10%

performance overhead. This overhead would not be realized in sequential execution since the filter

is not called and consequently diminishes speedup. However, both models developed in this thesis

demonstrate erratic speedup patterns with isolated points of extremely good or extremely bad

performance relative to the preceding curve. Inspection of the data reveals that continued iteration

using either cost model may result in performance degradation. CostR.n,,Ie,, frequently lessens

speedup over the SBF partition on which it was based.

The next step involves identifying the sources of error for the cost models. Figure 16

demonstrates the behavior of the validation set as the number of LUs increases. Note that

cumulative processing time decreases. In other words, partitioning the simulation requires less

total work to be accomplished and provides the opportunity for superlinear speedup. Of course,

partitioning the sequential implementation would also realize this reduction in overall work.

65

Blocking seems to dominate LP performance beginning with 4 LP partitioning. Next, each

component cost model is compared to appropriate values of the validation set. Costpoc maintains a

correlation of 0.993 with tp,,o (see Figure 17 Costp, versus tpro). Costsy, and CoStBto0 k report

equally impressive correlation with their observed counterparts. Correlation for Costsy,7 and tsyn, is

0.951 and correlation for CostBtok and tBk is 0.944. Despite this prowess at predicting time spent

in the component states, CostRWjd and Cost,j,. deliver correlations of 0.722 and 0.727

respectively. Somehow the sum of the parts is not equaling the whole. An interesting phenomenon

occurs when comparing the top-level component model (Equation 8) using observed components

and then calculated components (Equation 9). When using observed data of the validation set

Equation 8 exhibits a correlation of 0.954 with tMoxRun. However, when using the component cost

models, Equation 9 demonstrates a correlation of 0.765 to tMaxRun. Correlation (>-) fails to survive

through the linear model! Put in symbolic terms:

a >-a' b >-b c>-c'

f(d, b', c') >- Y but

f(a, b, c) * Y

66

4 0- ----------------- ---- ------------------- I- ---------

35

F tPro1

20-

15
0 50 100 150 200 250

Trial

Figure 17 Costp,, versus tp,,

Of course, the final cost model does not include the component cost models, only the terms

90..................................

80

70

60-

a5 0 -

40.

i30

20

10

0.. ..
10

Trial

Figure 18 Costsy,,, versus s.

67

250-

200

1 0 CostBock

100......

5010

0 50 100 150 200 250

Trial

Figure 19 CostloCk versus tIoc.k

indicated by the component cost models. The ultimate failure lies with the composite cost models'

(CostR.Im. and Cost.,R.,i) inability to predict the complex, multi-dimensional surface of the

runtime versus allocation relationship. While the underlying linear model may be an incorrect form

of parameter relationship to runtime, another likely insufficiency is the choice of parameters for the

model. Fundamental influences to the performance of VHDL simulations are not included in the

current models (e.g. event balance, lookahead, feedback). Furthermore, the simple heuristics

implied by a 3-6 term equation cannot accurately predict the pitted surface this and previous

research seeks to model. As demonstrated in Figure 21, Kapp's theoretic model also fails to

correctly order allocations for just the case of 6 LP simulations of the Wallace Tree multiplier.

Unpredictable results can be expected in application to other circuits as well. Note that the models

are not necessarily inaccurate, their usefulness is simply limited to an unacceptably small and

undefined portion of the search space.

68

45-4

40-

35- CostRuntime
R CostxRuntime

E 3o A tMaxRun

20

1 5.

0 50 100 150 200 250

Trial

Figure 20 Statistical CostModels versus tm,,,R..

69

33
31

*29
S27
*u25
S23
.021

19

17
15

5 10 15 20 25 30

Kapp Partial Model

35-
33-
31
29-

S27-
25-

S23- .2 ..
21 21

0
19-
17
15

20 25 30 35 40

Coaituntime

Figure 21 6LP Wallace Tree runtime versus Cost Models

70

4.3 Model Extrapolation (Assoc Mem)

8.

7.

6-- - Unear

D Random
5 --- Kapp DFS

U- Kapp DFS v Ar
CL 4 ... *-No-Feedbac B............... ~~~~~~~~~~~.......... ::.. V D ~ o k, 9

S-0- VHDLCIock. 94
3 CostxRuntirr

2

2 3 4 5 6 7 8

Number of LPs

Figure 22 Speedup Curves for Associative Memory

Figure 22 demonstrates the mediocre performance of the cost model for another circuit.

Here, however, the Costa,, suffers a handicap since the simple DFS partition has no induced

feedback (see next section). Ignorant of the influence of feedback, Cost,R,, creates the problem.

The no-feedback BFS allocation displays the destructive effect of pipeline initialization costs

associated with that technique (see next section). The true curiosity of this graph is the uppermost

curve which is a simple DFS partition. Simple data partitioning of graphs was enhanced in GPT

v3.0. By keeping strongly connected components of the graph together during depth first

partitioning, GPT v3.0 coincidentally creates an allocation with no induced feedback. This

radically improves the simulation runtime as discussed in the next section.

71

4.4 Feedback

The effect of feedback on conservative simulations has been qualitatively understood if not

quantitatively. Cycles in the problem graph cause participating LPs to proceed in lockstep fashion.

No member can proceed until the feedback of its last message propagates around the cycle. Kapp

identifies strongly connected components within the problem graph and avoids breaking them over

multiple LPs. Contracting the problem graph into strongly connected components results in an

..

LPO LP1

0,0>0i >©

Figure 23 Induced Feedback on Feedforward Network

acyclic directed graph. Another form of feedback is caused by the contraction of the problem

graph into the LP graph where it is possible to induce feedback on a feedforward network (Mannix,

1988:3-19). Figure 23 presents an example of induced feedback. Oddly enough, Simple Depth

First and Simple Breadth First allocations of strongly connected components both fail to guarantee

prevention of induced feedback. A general algorithm developed in this research uses the strongly

connected component contraction of the problem graph to further contract onto LPs without

inducing feedback.

72

No Feedback Breadth First Allocation

For each vertex (v) define d(v) where
d(Source) = 0 and
d(v) = max(d(wi))+l for all vertices wi to which v is adjacent - i.e. (wi,v) is an edge.

Perform a Breadth First Search as
Initialize

color(v)*-white for all v
Q +- {all sources}
i -0

while Q is not empty loop
v <- head(Q)
D +- d(v) + 1
for each u E Adj(v) loop

if color(u) is white and d(u) = D then
color(u) <- gray
Enqueue(Q,u)

end loop
Dequeue(Q)
LPi<-v
if size(LP) > NumVertices/NumLPs then

i--(i+ 1)
end if
color(u) +- black

end loop

Figure 24 is the resulting partition of applying the algorithm to the graph of Figure 23.

Applying this technique to the Wallace Tree Multiplier resulted in the speedup curve of Figure 25.

LPO 1 2

i2

0 LP1

2 3

Figure 24 Feedforward Network without Induced Feedback

73

Superlinear speedup is achieved through a 7 LP partition! As can be seen in Figure 26, the

elimination of feedback radically changes the component influences to runtime. Blocking is now a

minority influence through 8 processors. The algorithm fails in that it forms an allocation that

behaves like a pipelined system. There is an initialization cost to "fill" the pipeline resulting in the

end processor having significantly more idle time than the first. This initialization cost can be

amortized to insignificance by increasing the number or size of simulation test benches. However,

the detrimental effect of "filling the pipe" can be seen in comparing the DFS and BFS No-

Feedback partitions of the Associative Memory circuit in Figure 22.

9.000

8.000--.. .

7.000

6.000-- Linear

Cx--- Breeden Random
V" 5.000 I Kapp SBF Annealing

No Feedback. 4.000

3.000

2.000-/

1.000 I I I I

1 2 3 4 5 6 7 8

NumLPs

Figure 25 No Feedback Speedup of Wallace Tree

While the identification and exploitation of feedback allows a new, pertinent parameter to

enter a cost model, a new cost model must be completely redeveloped due to the drastic changes in

the behavior of the circuit. Furthermore, currently there is only a nominal measure of feedback:

presence or absence. Feedback may have a graduated influence which would require the definition

and measurement of a feedback metric.

74

60---- --- ------------ ---- --- --- ---

..
..
...

50

1*tProc

E 20

10

0
2 3 4 6 8

NumiPs

Figure 26 Summary Profile of No Feedback Processing States

75

5. Conclusions and Recommendations

5.1 Research Summary

As modem digital circuits grow larger and more complex, the time required to perform

sequential simulations becomes unacceptably slow. Since simulation is a vital input to the design

and validation of circuits, tliis bottleneck affects the efficiency of the entire development cycle.

Parallel simulation offers a solution that scales with the problem. By assigning circuit components

to distributed processors, the work of the simulation can be divided. There is, however, an addi-

tional cost of synchronization between the cooperative processors not present in sequential simula-

tion. The manner in which circuit components are partitioned among processors greatly influences

the amount of overhead incurred. The task is to partition intelligently such that computational

parallelism is not overwhelmed by synchronization overhlead.

In this research effort heuristic techniques of intelligent partitioning were considered. By

observing trends of successful partitions, a statistical relationship of a priori parameters to parallel

simulation runtime was developed. Formal definition of this relationship in the form of a cost

model allowed allocations to be ordered by predicted runtime. By choosing the allocation with the

lowest cost model value, the simulation using that allocation was expected to have the lowest run-

time of the set considered. "The set considered" is an important distinction because the mapping of

tasks to processors to achieve the lowest runtime is a known NP-Complete problem. Finding an

optimal solution is intractable; finding relatively good solutions is desirable. The set of candidate

allocations is chosen by using Kapp's AB Improvement iterative search procedure. This algorithm

moves vertices on partition borders to other LUs until moves fail to improve the cost model. The

best allocation is then used for simulation.

76

A 1,050 gate Wallace Tree Multiplier was used to develop and validate the statistical cost

models proposed. The 4,243 gate Associative Memory circuit was used to test the general appli-

cability of the cost models.

5.2 Conclusions

The following conclusions about partitioning VHDL circuits for parallel simulation result

from this research:

*Partial ordering of allocations by runtime is still not possible via proposed models. The re-

lationship that the proposed cost models attempted to emulate is that between runtime and allo-

cation. For any circuit, this surface can be imagined in three dimensions where each allocation

is a point in the xy plane and the corresponding observed runtime is plotted along the z-axis. If

total knowledge were available, a desired cost model would efficiently follow this surface using

a priori parameters. Of course, this target surface has many more dimensions than three. Ad-

jacent allocations differ by the placement of only one behavior. There are VerticesNm avail-

able for placement in LPsN.um4- other LUs, thus the surface has something less than

VerticesNme(LPsN.m -1) dimensions. While some dimensions may be constant, it is easy to see

the inherent intractability of effectively modeling this complex relationship. As demonstrated

in this research, current models fail to partially order allocations under the most restrictive of

conditions. Further restrictions would make successful conclusions uninteresting.

*Good cost models are those that demonstrate stochastic reliability and efficiency, not correct

partial ordering. This paper does not suggest the abandonment of simulation cost models.

Most intelligent allocations exceed the performance of random partitioning. Instead of attempt-

ing to order allocations, cost models that demonstrate good correlation to observed runtime

should be pursued. Scatter plots of observed runtime versus cost model results would assist in

77

deternining the form of the model. Correlation and regression measurements would allow

quantitative assessment of the model. Computational effort should also be considered in

evaluating cost model merit.

*Statistical model development is an effective technique. 'The three component cost models

proved very accurate for predicting tproc,, tsy, and tBikk for the validation set. Unfortunately,

these predicted parameters do not hold much value. Moreover, the original component cost

models will likely fail when applied to no-feedback allocations. But, under the restrictions of

feedback-littered simulation of a Wallace Tree Multiplier, the models were accurate. The key,

as with any model, is identifying all pertinent parameters and the scope of application. Given

this infonmation, statistical model development was able to accommodate and offer insight to

the nature of inter-parameter relationships.

*Feedback is a major contributor to conservative simulation blocking. The concept of explicit

feedback was addressed by Kapp's use of strongly connected components. An efficient algo-

rithm, O(VerticesN.m), is presented as part of this research to guarantee no feedback between

LPs. In the case of the Wallace Tree Multiplier, this improvement reduced blocking from an

exponential influence (as LPsN.. increases) to a linear one. Yet, again, no single parameter is

the panacea of VHDL circuit partitioning. Feedback must be measured and included in any ef-

fective cost model.

* Conservative Parallel VHDL Simulation can achieve super-linear speedup. Speedup curves

for both the Wallace Tree Multiplier and the Associative Memory demonstrated speedup to 8

processors (the limit of this research). This verifies that the complexity of VHDL simulation

has some form of complexity such that real work reduces as the number of LPs increases (see

Figure 16). This implies that scalabiity is feasible for coarse grain simulation using a conser-

vative protocol.

78

5.3 Recommendations for Further Research

Given the strong conclusions of this research, several directions should be taken to continue the

maturity of conservative simulations at AFIT.

Change the research goal from partial ordering to stochastic reliability. At this evolutionary

stage of sophistication for modeling parallel simulation perfonmance, partial ordering is an un-

realistic goal. If achieved, the conditions would be so restrictive as to negate the usefulness of

the findings. The goal must be redirected to achieving a statistically reliable model in accor-

dance with the conclusion of the previous section. This change in direction would free the re-

searcher to open the scope of investigation since the weight of proof would be limited to statis-

tical evidence, not exhaustive trials of isolated cases. The real burden becomes to collect ade-

quate statistics to form the cost model and demonstrate significant correlation. Perhaps an

evolving database of statistics could realize guidelines for model choice based on circuit pa-

rameters (e.g. test bench, feedback level, average fanout, etc.).

" Expand the parameters considered in model development. As a minimum, the GPT v3.0

needs to maintain LP specific statistics. Valuable insight into the relationship between parti-

tioning and runtime is being lost to summary statistics which hide the max function that drives

runtime. Many statistics are already gathered and just need to be included in the output.

" Enhance the search capabilities of GPT v3.0. Current iterative processing moves a single

vertex at a time. This is computational suicide. Evaluation of graph statistics is relatively ex-

pensive in the current version of GPT. Moving a single vertex at a time amounts to mowing a

soccer field a blade at a time. More drastic steps are required to adequately explore the huge

search space. The first method to accomplish this would be to turn the current process into a

true annealing routine. It would be better to parallelize a genetic algorithm which can consider

79

several points at once per processor. However, all techniques will be limited by the current

expense of statistics evaluation. Since each iteration of the graph is some delta from the previ-

ous cost model value, some technique of marginal evaluation would lower the computational

costs and pemit more time for searching. Given that this benefit would be realized many

thousands of times per search, it should be given significant consideration. Unfortunately, the

more complicated the model, the more difficult marginal accounting would be.

Continue to enhance the simulation environment. The first item to change must be the data

type of timestamps and clocks in VSIM and SPECTRUM. Overflow has already caused

problems for researchers (Kapp, 1993:125). The time datatype should be changed to a float-

ing point value. Additionally, the use of tvi, as the null message timestamp is extremely limit-

ing. Only when output arcs are the hosts of the next event is that the correct timestamp. If

some method of identifying the event host arc were accomplished, a more accurate timestamp

would yield the benefit of lookahead.

Automate the simulation cycle. Batch files and utility programs allowed over 600 VHDL

simulations to be considered in this research. To support the quantity of results required to

provide statistical significance, the entire simulation cycle from partitioning through data col-

lection should be seamlessly automated.

Unfortunately, the objectives of this research were not met. The cost models developed in

this study demonstrated no statistical improvement over Kapp's theoretic model. Nor did the

models succeed in defining a partial order of allocations for even the limited case of a fixed number

of LPs for a single circuit upon which the model was derived. This report concludes that research

has not progressed as far as previously thought such that previous findings aren't statistically sig-

nificant. What was accomplished, however, was the mathematically rigorous investigation and

80

documentation of VHDL simulation behavior. By maturing the tools developed in preceding re-

search, additional instrumentation allowed quantitative exploration of the behavior that limits run-

time. It was this instrumentation that demonstrated the decreasing complexity of real work as more

processors are utilized in the simulation. Similarly, by eliminating feedback, the dominating effect

of conservative blocking was tamed. By introducing statistical methods into this research, elusive

theoretic proofs were avoided in favor of stochastic legitimacy.

In a word, this report succeeds in displaying our ignorance of simulation behavior. How-

ever, by accurately assessing what is known, more productive steps can be taken into the unknown.

Statistical techniques are excellent ways to overcome the inability to describe complex systems.

Current research of parallel discrete event simulation remains in Thorndike's "organization and

prediction" phase of the scientific process. With the appropriate software and mathematical tools

in place, maturation to explanation and understanding are just a matter of time.

81

Bibliography

Bailey, Marl L. and Michael A. Pagels. "Measuring the Overhead in Conservative Parallel
Simulations of Multicomputer Programs" Proceedings of the 1991 Winter
Simulation Conference: 627-636 (1991).

Breeden, Thomas A. Parallel Simulation of Structural VHDL Circuits on Intel
Hypercubes. MS Thesis, AFIT/GCE/ENG/92D-01. School of Electrical and
Computer Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1992. DTIC AD-A887491

Chamberlain, Roger D. and Mark A. Franklin. "Hierarchical Discrete-Event Simulation
on Hypercube Architectures" IEEE Micro v 10 n 4:10-20 (Aug 1990).

Chandy, K., and J. Misra, "Asynchronous Distributed Simulation via a Sequence of
Parallel Computations," Communications of the ACM, vol. 24, April 1981.

Chittor, Suresh and Richard Enbody. "Predicting the Effect of Mapping on the
Communication Performance of Large Multicomputers" 1991 International
Conference on Parallel Processing: 11-1 - 11-4 (1991).

Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. Cambridge, MA: MIT Press, 1990.

De Vries, Ronald C. "Reducing Null Messages in Misra's Distributed Discrete Event
Simulation Method" IEEE Transactions on Software Engineering, Vol 16 Num 1:
82-91 (Jan 1990).

Fujimoto, Richard M. "Performance measurements of distributed simulation strategies"
Proceedings of the International Conference on Parallel Processing: 14-20 (1988).

Fujimoto, Richard M. "Lookahead in parallel discrete event simulation" Proceedings of
the 1988 International Conference on Parallel Processing: 34-41 (Aug 1988).

Fujimoto, Richard M. "Parallel Discrete Event Simulation" Proceedings of the 1989
Winter Simulation Conference: 1-33 (Dec 1989).

Hennessy, John L. and David A. Patterson. Computer Architecture: a Quantitative
Approach. San Mateo CA: Morgan Kaufmann Publishers, Inc., 1990.

Hines, William W. and Douglas C. Montgomery. Probability and Statistics in Engineering
and Management Science (Second Edition). New York: John Wiley & Sons,
1980.

Kapp, Kevin L. Partitioning Structural VHDL Circuits for Parallel Execution on
Hypercubes. MS Thesis, AFIT/GCE/ENG/93D-07. School of Electrical and
Computer Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1993. DTIC AD-A274390

Mannix, David Louis. Distributed Discrete-Event Simulation Using Variants of the
Chandy-Misra Algorithm on the Intel Hypercube. MS Thesis,
AFIT/GCS/ENG/88D- 14. School of Electrical and Computer Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1988.
DTIC AD-A202849

Mathcad Plus 5.0 for Windows. 80386 or better IBM Compatible, 8 Mb RAM, MS
Windows 3.1 or later. Computer Software. MathSoft Inc, Cambridge. MA, 1994.

Nandy, Biswajit and Wayne M. Loucks. "On a Parallel Partitioning Technique for use
with Conservative Parallel Simulation" Proceedings of the 1993 Workshop on
Parallel and Distributed Simulation: 43-51 (May 1993).

Nicol, David M. "Performance Bounds on Parallel Self-Initiating Discrete-Event
Simulations" ACM Transactions on Modeling and Computer Simulations. v 1 n 1:
24-50 (1991).

Nicol, David M. "The Cost of Conservative Synchronization in Parallel Discrete Event
Simulations" Journal of the ACM, v 40 n 2: 304-333 (Apr 1993).

Sartor, JoAnn M. Optimal Iterative Task Scheduling for Parallel Simulations. MS Thesis,
AFIT/GCS/ENG/91M-03. School of Electrical and Computer Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, May 1991.
DTIC AD-A238631

Soule Larry and Anoop Gupta. Characterization of Parallelism and Deadlocks in
Distributed Digital Logic Simulation" Proceedings of the 26th ACM/IEEE Design
Automation Conference: 81-86 (1989).

Thorndike, Robert M. Correlational Procedures for Research. New York: Gardner Press
Inc, 1978.

Wagner, David B. and Edward D. Lazowska. "Parallel Simulation of Queueing
Networks: Limitations and Potentials" Performance Evaluation Review, v 17
n 1:146-155 (May 1989).

Weiland, Frederick, Peter Reiher, and David Jefferson. "Speedup Bias" California
Institute of Technology (1990).

Wilson, Robin J., Introduction to Graph Theory (Third Edition). Essex, England:
Longman Scientific and Technical, 1985.

Vita

Joel F. Hurford was In June, 1985 he graduated

from Rochester Adams High School, just one month before reporting at the US Air Force

Academy. There he earned a Bachelor of Science degree in Computer Science and was

commissioned a second lieutenant in the US Air Force in May, 1989. Hs first assignment was

with the 7th Communications Group, Pentagon, Washington D.C.. Working as a System

Administrator, Database Administrator, and Network Administrator, he directly supported the

Offices of the Air Staff. In May 1993, Capt Hurford began his pursuit of a Master of Science in

Computer Engineering at AFIT.

Permanent Address:

REPORT DOCUMET N Form ApprovedREPOT DCUMNTATION PAGE Oa o07-o8

Puoiic reortine curen for this collection Of nformation is estimated to average I hour oer response, including the time for reviewing instructions, searching existing data sources,

gathering ano naintaining the data neeaed, and completing and reviewing the collection of information. Sena comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for nformation Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paoer' CrK Reduction Project (0704-0188),Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1994 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Accelerating Conservative Parallel Simulation
of VHDL Circuits

6. AUTHOR(S)
Joel Hurford

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER
AFIT/GCS/ENG/94D-10

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

Mr. Robert Parker AGENCY REPORT NUMBER

ARPA/CSTO
3701 N. Fairfax Dr.
Arlington, VA 22203

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)
This research effort considers heuristic and cost model based techniques for the optimal partitioning of VHDL
circuits for parallel simulation. Correlation statistics are gathered on a wide variety of graph-based a priori
parameters. Linear regression is used to identify significant parameters for inclusion in a representative cost
model. Driving a greedy search, this cost model is used to improve upon initial heuristic partitions. The influence
of feedback dominated previous research so a no-feedback algorithm is used to create the initial partition. The
circuits studied range from 1,050 to 4,243 gates.

'5R. 15. NUMBER OF PAGES14scarFei Wsrete Event Simulation, Conservative, VHDL, Feedback 99

Static Dependency Graph, superlinear 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

