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Abstract 

This study improved the numerical optimization technique used to compute mixed 

#2/-#oo controllers. The run time to generate the full curve of an #2/#oo design was reduced 

by a factor of almost 200 for a specific example. This was accomplished by improving gradient 

calculations, upgrading the H^ norm calculation to capture multiple peaks in the singular value 

plot and using routines that minimized processing time. The optimization routine used was the 

MATLAB 'CONSTR' Sequential Quadratic Programming (SQP) routine. This SQP routine 

was compared to a FORTRAN SQP numerical optimizer, IMSL/DNCONG. The method 

was applied to an F-16 SISO example and a missile MIMO example. The mixed H^/Hoo 

controller for both these examples are compared to previous controller designs created using 

the LQG/LTR technique. 
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IMPROVED NUMERICAL SOLUTION OF MIXED H2/H< 

OPTIMIZATION WITH APPLICATIONS 

00 

/. Introduction 

1.1 Objectives 

This study will investigate improving computation of the mixed #2/#00 controller 

using different optimization techniques. The following objectives will be addressed: 

1. Reduce excessive run time and improve reliability of the optimization code. 

2. Derive solutions for an F-16 SISO example. 

3. Derive solutions for a missile MEVIO example. 

4. Compare MATLAB optimization routine to a FORTRAN IMSL/DNCONG routine. 

1.2 Justification 

Controller designs for aerospace systems, which are highly nonlinear, are often based 

on linear, time-invariant models. The primary purpose of a controller is to provide stability 

and performance in the presence of disturbances and uncertainties (i.e., perturbations or 

unmodeled dynamics). The challenge to the control designer is to develop a linear solution 

for these nonlinear systems. A multi-objective controller can be used to provide both stability 

and performance. One example of a multi-objective controller is the EifE^ controller. The 

H2 part of the controller provides stability and performance in the face of noises acting on 

the system. The H^ part of the design is used to make the system behave as closely as 

possible to some ideal linear model (model matching) and provides for unmodeled dynamics 

and uncertainties in the model. The goal then is to find a controller which minimizes the effect 

of disturbances while providing an acceptable level of model matching and robustness. 
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The process of computing an optimal E2fE00 controller is iterative. It is done by 

minimizing the two-norm of one system transfer function while constraining another's infinity- 

norm to be less than or equal to some given value. Many different values of the infinity-norm 

must be selected. The designer can then make tradeoffs in controller performance between 

noise rejection, tracking and uncertainties in the model. The desire is to provide a range 

of controllers between the optimal H2 and optimal E^ controllers. With the capability to 

develop this range of controllers, the designer can decide what level of noise rejection versus 

what level of robustness to uncertainty is required for the system. 

Over the past five years several optimization routines have been used to improve the 

process of generating a mixed controller. The first numerical optimization approach to find 

a mixed #2/#00 controller was developed by Ridgely using a Davidon-Fletcher-Powell 

(DFP) routine [Rid91]. This routine used variable metrics, where information about previous 

iterations are stored and used to define a better search direction for the next iteration. This 

took several weeks to generate a set of mixed controllers when running on a SPARC 10 SUN 

workstation. There were also examples where the numerics caused such a problem that the 

mixed EifE^ controller could not be calculated for various infinity-norm constraints. Since 

then, other optimization routines such as penalty methods and conjugate gradient routines 

have been used on this controller design development. Currently, the MATLAB version of 

the Sequential Quadratic Programming (SQP) method is used. This method obtains a search 

direction by solving a quadratic objective function with linear constraints. The SQP method 

has cut the run time by a factor of 10 from the DFP routine. 

There were cases where the infinity-norm gradients could not be accurately calculated 

for use in the SQP optimization routine. One of the causes of this problem was found to be 

multiple peaks in the singular value plot of the system. If the infinity-norm gradients can 

not be accurately calculated, the full range of controllers can not be designed. Without this 

full range of designs, the engineer is limited in the choice of controllers. Algorithms have 

been developed in this work that take into account the multiple peak problem and allow the 

calculation of the mixed controller. 
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There are two specific control design examples for which the mixed controllers could 

not be calculated at a full range of infinity-norm values. These include an F-16 Single-Input- 

Single-Output (SISO) normal acceleration command following controller and a controller 

for a tail/fin guided missile that is a Multiple-Input-Multiple-Output (MIMO) set-up. The 

algorithm developed to improve the accuracy of the i/oo gradient will be used on these two 

examples. 

The new algorithm is much faster and more reliable than the previous version. This 

provides the engineer with a more practical and complete method for designing controllers for 

uncertain (possibly nonlinear) systems operating in the face of disturbances. 

13   Literature Review 

The initial approach to the mixed objective problem was developed by Bernstein and 

Haddad [BH89]. Their approach was limited in that it minimized an upper bound to the 

two-norm rather than the two-norm itself. It also lacked the ability to define the order of the 

controller and to freely define the two-norm and infinity-norm transfer functions. Work done 

by Zhou [ZDB89], [ZDGB90] presents an approach where different exogenous inputs were 

allowed, but only one controller output. Yeh [YBC90] showed this to be the dual of [BH89]. 

The mixed controller design problem of [BH89] was transformed into a convex nu- 

merical optimization program by Khargonekar and Rotea [KR91]. This approach is an 

effective alternative to solving coupled nonlinear equations required by the method developed 

by [BH89]. Several software routines are currently available to solve convex optimization 

problems. Rotea and Khargonekar were the first to develop a true mixed ^2/^00 solution, 

valid only for a special case. They did not use an upper bound to the two-norm but rather the 

two-norm itself. They also allowed for two sets of exogenous inputs and controlled outputs. 

The one restriction of their development was full state availability. Ridgely developed a 

numerical solution to nine necessary conditions for an optimal mixed H2/Hoo controller. He 

solved an unconstrained optimization problem for the controller state space matrices using 

the DFP algorithm [Rid91]. His work also lifted the restriction of full state availability and 
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developed the conditions that an output feedback #2/#oo controller must satisfy. The most 

recent contribution to the solution of this problem was by Walker [Wal94], who significantly 

reduced the time required to generate the #2/^00 controller. He reformed the mixed #2/#oo 

optimization design process into a constrained optimization problem with an ifoo constraint. 

He then applied the MATLAB SQP method of optimization to the constrained nonlinear 

problem. 

Walker identified the problem of the multiple peaks in the singular value plot as the 

reason some problems do not converge to a mixed controller [Wal94]. The infinity-norm is 

defined by doing a frequency search of the magnitude of the singular value plot. The point 

where the maximum occurs is the infinity-norm. The difficulty in calculating the infinity- 

norm gradients is created when there is more than one frequency at which the maximum 

occurs. The optimization routine does not know at which frequency the norm should be 

differentiated. It will continually shift back and forth from one frequency to another, and thus 

prevent convergence to a mixed solution. 

Several types of examples have been used to demonstrate the mixed controller design 

approach. Luke [Luk93] used an example of an F-16 normal acceleration command following 

model. His results showed that controllers designed using mixed #2/#00 provided excellent 

performance and robustness at orders less than the order of the conventional LQG/LTR control 

design. He also addressed the problem of a MIMO tail-fin controlled missile. He used the 

MATLAB SQP routine, but the problem became numerically ill conditioned with no useful 

mixed controllers calculated. 

1.4   Approach 

Reduction of the run time for development of the mixed H2/Hoo controller was at- 

tempted first by trying other optimization routines. The original software developed by 

Walker was run using the MATLAB optimization toolbox [Gra93]. MATLAB has one built-in 

optimization routine, which is 'CONSTR'. There are several other routines written in FOR- 

TRAN that are numerically well conditioned for this type of problem and that can provide 
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faster run times. MATLAB can be linked to FORTRAN to provide the capability of running 

FORTRAN optimization routines. One of the FORTRAN routines that will be tested is the 

DNCONG routine [IMS89]. DNCONG is a double precision routine that uses the SQP al- 

gorithm with user supplied gradients. This will allow a comparison between the line search 

and Hessian update methods used in MATLAB SQP with the the methods used in FORTRAN 

IMSL SQP routine. 

Other things were also done to optimize the run time. First, most of the time used to 

calculate the mixed controller is spent doing the frequency search to find the infinity-norm. 

This search can be optimized by doing one general search to find the peaks of the problem, 

and then reducing the search down to a smaller range of frequencies about those peaks. This 

should not only improve run times but should also improve the accuracy of the infinity-norm 

and its gradients. Second, an active set strategy can be applied to only calculate the derivatives 

of the constraint when the program determines that the constraint is active. This is estimated 

to be where the second largest amount of computer time is spent. Third, the run time may 

also be improved by defining less storage space and having fewer function calls. Finally, 

normalizing the objective and constraints should also improve the efficiency of the code. 

The most important improvement to the optimization code was the correction of the 

gradients for the objectives and constraints. Modifications were made to the gradients to 

take into account the subdiagonal terms of the controller state space matrices once it was 

put into modal form. Corrections also included a change to the two-norm gradient when the 

mixed controller was not at the H2 optimal design. Modifications were also made to the 

stability constraint gradient so that it could be calculated analytically instead of using finite 

differencing. 

The problem of multiple peaks when calculating the H^ constraint was also addressed. 

The solution was to incorporate a routine that defines where the peaks occur. This can be done 

by checking the slopes of the singular value plot. Peaks can be identified wherever the slope 

of the singular value plot is zero, and the slope changes from positive to negative about that 

point. An active set strategy can then be applied to constrain the problem at each point where 
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a peak is identified. Using separate constraints for each peak will prevent the optimizer from 

jumping back and forth between peaks and causing the problem to not converge. 

Other improvements were made to the code to reduce the run time, prevent non- 

stabilizing controller designs, and provide the capability to step along the mixed H2/Hoo 

curve automatically. A function in MATLAB called FMIN was used to find maximum points 

in the singular value plot once apeak had been defined. This was much more efficient than the 

several hundred point search over the entire frequency range. Also, to prevent non-stabilizing 

solutions a penalty function was added to the objective function when the stability constraint 

was violated. This proved to be an effective means to prevent non-stabilizing designs. An 

autostep function was also developed that allows the designer to set a desired percentage 

change in two-norm and infinity-norm and the function automatically steps along the curve. 

This reduced the run time and the required interaction by the designer with the code. 

Finally, the inability to produce a mixed solution for some specific examples will be 

addressed. The algorithms developed for the multiple peak problem will be used along with 

other improvements in the code to provide a full range of solutions to these cases. The SISO 

F-16 acceleration command following problem and the MIMO tail/fin controlled missile 

problem have been identified as cases with multiple peaks. Application of the algorithm 

should provide improvements in the capability of calculating the mixed controllers and reduce 

the time required to find them. 
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//. Background 

This chapter discusses the theory used to develop the mixed Hi/H^ controller along 

with background of numerical optimization. The discussion on the mixed H2/Hoo controller 

is broken into three parts. The first part begins with a discussion on how the H2 controller is 

developed and then the background of the #00 controller follows. After the separate design 

methods for H2 and Hoo have been presented, an explanation of how these two methods are 

combined to form a mixed design is given. The numerical optimization section gives a brief 

overview of optimization, presents the history of the numerical optimization of the mixed 

i/2/i/oo controller and provides a discussion of the SQP optimization routine. The numerical 

optimization section also contains the methods used to calculate derivatives of the H2 and 

Hoo norms. 

2.1   Mixed H2 / #00 Controller Design 

2.1.1   H2 Optimization. The H2 method is a well defined process to design 

internally stabilizing controllers for linear dynamic systems. The objective of an H2 design is 

to synthesize a controller which minimizes the energy of a system output to a zero-mean white 

Gaussian noise input. The H2 method is a generalization of the standard Linear Quadratic 

Gaussian (LQG) problem. 

The H2 optimization process can be explained using the diagram shown in Figure 2.1. 

The linear time-invariant model of the system dynamics is defined by P. The compensator 

developed through H2 design is represented by K. Inputs to the system are zero-mean, Unit 

intensity White Gaussian Noise (UWGN) shown as w. The measured values coming out of 

the system are shown as y and are input into the compensator. The control signal generated 

by the compensator is labeled u and is fed back into the system. The controlled output of the 

system is represented as z. The goal of this method is to design a K that minimizes the energy 

of the output z, given a (UWGN) w. 
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Figure 2.1   H2 Feedback System 

The plant represented as P in the diagram can be partitioned into its separate input and 

output transfer functions 

P = 
P      P 1 zw     ± zu 

p     p ■*■ yw     ■*■ yu 

where 
z   =   Pzww   +   Pzuu 

y = PyyjW + PyUU 

A state space realization of P can be written as 

(2.1) 

(2.2) 

a?2 = A2x2 + Bww + BU2u 

z = Czx2 + Dzww + Dzuu 

y    =   CV2x2   +   Dyww   +   Dyuu 

(2.3) 

Minimizing the two-norm of the closed-loop system is the same as minimizing the energy of 

the output of the system, given a (UWGN) input. 

a   = inf.. .    ||z||2   for™   G   UWGN 
K(s) Stabilizing 

= inf        \\TZW\\2 
K (s)Stabilizing 

inf . WPzW+PzuKil-PyuK^Pyvlh 
K(s) Stabilizing 

(2.4) 

(2.5) 

(2.6) 

The following assumptions are standard when designing an H2 controller: 
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(i) Dzw = 0 

(Ü) Dyu = 0 

(iii) (A2, BU2) is stabilizable and (CV2, A2) is detectable 

(iv) DT
ZUDZUMS. rank and DywDyWM\ rank 

A2 - jul   BU2 
(v) 

(vi) 

a      zx 

A2 - jw J    5„ 

C D 

has full column rank for all u; 

has full row rank for all u 

Assumption (i) is required so that the closed loop two-norm of the system is finite. 

Condition (ii) makes the development easier but can be removed completely. Requirement 

(iii) is required for existence of a stabilizing solution. This guarantees that the set of stabilizing 

controllers is not empty. Assumption (iv) is needed to prevent the use of inifinite control power 

and avoids the singular control problem. Finally, requirements (v) and (vi) are required to 

ensure the existence of solutions to the two Algebraic Ricatti Equations (ARE) required in the 

H2 solution. These AREs are defined in (2.14) and (2.16). 

All H2 controllers can be represented by a Lower Fractional Transformation (LFT) 

of a transfer function J and a freedom parameter Q as shown in Figure 2.2. The freedom 

parameter is used to identify suboptimal H2 controllers. These suboptimal controllers may be 

useful when used for computing designs that trade off H2 performance for H,*, performance. 

The mixed H2/Hoo optimization process will usually start at the H2 optimal solution, where 

Q=0. Rescaling y and u so that condition (iv) is strengthened to 

(iv)/ DT
ZUDZU = I and DywDT

yw = I 

results in the following H2 optimal controller parameterization: 
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where 

w —> 

1—> p 
—> z 

—> 

<— 
<—1 

I u 

J 
y 

|  V r 

K Q 
1 

Figure 2.2   H2 system with parameterized controller 

J(s) .= 

Aj Kj Kfi 

-Kc 0 I 

Kd / 0 

(2.7) 

(2.8) 

Aj = A — KfCy2 — BU2KC 

Kc = BT
UX2 + DT

ZUCZ 

Kf = YiCy2 + BwDyw 

Kd = ~Cyi 

Kfi = BU2 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

X2 and Y2 are the stabilizing solutions to the AREs 

(A - BU2D
T

ZUCZ)
TX2 + X2(A - BU2D

T
ZUCZ) - X2BU2B

T
UX2 + CjCz = 0     (2.14) 

where 

Cz = (I - DZUD
T

ZU)CZ (2.15) 
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and 

(A - BwDT
ywCn)Y2 + Y2(A - BwDT

ywCy2)
T - Y2C

T
yCy2Y2 + BWBT

W = 0      (2.16) 

where 

Bw = BW{I - DT
ywDyw) (2.17) 

If Q = 0, the controller is unique and optimal. If Q is nonzero, the set of all controllers such 

that ||T2W|| < a is parameterized by any Q E RH2 such that 

\\Q\\l<a2-a2 (2.18) 

Another approach to minimize the two-norm of the system is through the use of the 

definition of the controllability grammian and a Lyapunov equation. Assume the state space 

closed-loop A matrix for the H2 problem is stable. Define the controllability grammian as 

roo 
Lc = /    eAtBBTeAtdt (2.19) 

Jo 

where Lc is the unique, real, symmetric positive semi-definite solution to the Lyapunov 

equation 

0 = ALC + LCA
T + BBT (2.20) 

The two-norm is then defined as 

\\G(ju)\\l = tr[CLcC
T] (2.21) 

This method was used for the mixed ^/H^ optimization code. The Lyapunov 

equation is solved using the MATLAB command 'GRAM'. The objective function used for 

the optimization process is then the square of the two-norm, with the Lyapunov equation 

appended as a constraint. 
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Figure 2.3   Perturbed stability diagram 

2.1.2 Hoo Optimization. The objective of an H^ controller is to minimize the 

energy of the output to the worst possible bounded energy input. This is the same as minimizing 

the infinity-norm of the transfer function. This type of design is robust to uncertainties in 

the plant. Let the uncertainty be called A. Figure 2.3 shows how the uncertainty would be 

introduced to the system. The question of how large a A can be introduced and the system 

remain stable is answered by use of the small gain theorem [Zam89]. For the closed loop 

system to be stable, Equation (2.22) must be satisfied. 

Theorem 1 (Small Gain Theorem) Let Ted € Hoo. Assume A e H^o is connected from e 

to d as shown in Figure 23. Then the closed-loop system is internally stable if 

HTerfOOAOOlU <  HTe^lUIA^IU <  1 (2.22) 

Proof: [Zam89] 

Thus, by minimizing ||Ted||oo, the allowable ||A||oo that cannot destabilize the system is 

maximized. Hoo optimization is given by 

K, 
inf   sup   ||e||2 =  inf ||Ted||oo = 7 
«dm \\d\U<\ 

(2.23) 
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Figure 2.4   H^ Feedback System 

where the infinity-norm of Ted is 

Halloo = supcr[Ted] (2.24) 

and a denotes the maximum singular value.   The minimum achievable infinity-norm, as 

indicated by Equation (2.23), is designated 7. 

The design diagram for i/00 is the same as the figure for H2 except for the definition of 

the inputs and outputs. Where the input to H2 was a white noise labeled w, the input for #00 

is a bounded energy exogenous input labeled d. The output for H2 was a controlled output z, 

where the controlled output for H^ is labeled e. This diagram is shown in Figure 2.4. 

The plant P in Figure 2.4 can be partitioned into its separate transfer functions as given 

by 

■'ed     -»eu 
(2.25) 

or 
e   =   Pedd   +   Peuu 

y   =   Pydd   +   Pyuu 
(2.26) 
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A state space realization of the plant P is defined by 

3-00     —      -Aoo-Z-oo      -\-      tSdÜ      +     JJUCOU 

e     =    CgXoo    +   Dedd   +   Deuu (2.27) 

y    =   Cyoo^oo   +   A/<fd   +   Dyuu 

The following assumptions are made for the H^o design: 

(i) Ded = 0 

(ii) Dyu = 0 

(iii) (Aoo, 5Uoo) is stabilizable and (Cyoo, Aoo) is detectable 

(iv) D*uDeu = I and DydDyd = I (strengthened through scaling) 

Aoo - jul   BUo 
(v) 

a      De 
has full column rank for all u 

(vi) has full row rank for all u 
Aoo - jul    Bd 

Cj/oo Dyd 

Conditions (i) and (ii) are not required for a solution to exist, but reduce the complexity of 

the solution. Condition (iii) is necessary for the existence of a stabilizing controller. Condition 

(iv) is a requirement that all control usage is penalized and no perfect measurements are 

allowed. Finally, conditions (v) and (vi) guarantee there is a solution to the Riccati equations 

for the Hoo norm calculation. 

The i/oo controller is found by an iterative process. The H^ optimal controller found 

by this process is not unique. The family of all Hoo compensators such that 

\\Ted\\oo < 7 (2.28) 

is given by (see Figure 2.5) 

K(s) = Fi[J(s),Q(s)] (2.29) 
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where 

d P 
e 

u 

V 

K 

y 

r 

J <—1 

 > 

Q 

Figure 2.5   #00 system with parameterized controller 

J(s) = 
*Jyy *Jyp 

= 

Aj Kf Kfi 

-Kc 0 I 

0 

(2.30) 

and 

Aj 

Kc 

Kf 

Kd 

Kfi 

A - KfCyco - BUooKc + ^YocCjiCe - DeuKc) (2.31) 

(B^X^ + DjuCe)(I - T-^Xoo)"1 (2.32) 

¥„<%. + BdD
T

yd (2.33) 

-(7-2A/^J*°o + CVoo){I - r'YooX^)-1 (2.34) 

7-
2yooCe

T
JDe„+JBUoo (2.35) 

The matrices X™ and Yoo are the solutions to the AREs 

(A - BuDlCefXo« + X^A - BUooD
T

euCe) 

+X00(r
2BdBj - B^BljX^ + CjCe = 0 (2.36) 
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where 

and 

^T Ce = (I-DeuDiu)Ce (2.37) 

where 

(A - BdD
T

ydCyoo)Y^ + Y„{A - BdD
T

ydCyoof 

+Y00(r
2CjCe - C^CyJYoo + BdB

T
d = 0 (2.38) 

Bd = Bd{I-DT
ydDyd) (2.39) 

Finally, Q can be chosen to be any Q G E^ such that 

IMIoo < 7 (2.40) 

The above parameterization of a controller K is valid if and only if the following three 

conditions hold: 

(i) Hx € dom(Ric) withXoo = Ric(Hx) > 0 

(ii) HY e dom(Ric) with Y^ = Ric(HY) > 0 

(in) piY^Xeo) < 7
2 

The process of finding a controller which results in a closed-loop infinity-norm close 

to 7 is iterative. To find a controller, select 7 and check to see if it meets all three conditions 

above. If any condition fails, increase 7 and repeat the check. If all three conditions are met, 

decrease 7. The desired 7 can be found by this process to any desired accuracy. 

2.13 Mixed H2 /H^ Optimization. A method was derived to achieve the robustness 

of #00 control with the noise rejection properties of H2 by Ridgely [Rid91]. The mixed 

H2/Hoo diagram is shown in Figure 2.6. Using this method, weights can be added to both the 
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Figure 2.6   General mixed H^H^ optimization problem 

H2 and i/00 set-up. The final goal of this mixed design process is to develop an admissible 

controller that satisfies the following: 

inf .    \\TZW\\2 subject to HT^H«, < 7 
A stabilizing 

A general form of the mixed system can be written as 

e 

z 

y 

Ped P P J eu 

Pzd P 1 zw P ± zu 

Pyd p ■I yw p 

d 

w 

u 

(2.41) 

The state space form of the system can be written as 

x = Äx + Bdd + Bww + Buu (2.42) 

e = Cex + Dedd + Deww + Deuu 

z = Czx + Dzdd + Dzww + Dzuu 

y    =   CyX   +   Dydd +   DywW   +   DyUU 

(2.43) 

(2.44) 

(2.45) 
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The individual H2 and H^ problems can be approached separately, as described in 

Subsections 2.1.1 and 2.1.2. The goal for H2 is to find an admissible controller that minimizes 

the two-norm of Tzw, while the goal for H^ is to find an admissible controller for Ted that has 

an infinity-norm less than or equal to some specified 7. The closed-loop transfer functions 

Ted and Tzw for the mixed problem are defined as 

Tzw   =   Cz(sI-A2)-
1Bw + Vzw 

Ted     =    CeisI-A^Bd + Ved 

(2.46) 

(2.47) 

The state space formulation of the mixed H2/Hoo controller is defined as: 

xc — Acxc T ticy 

U       LSQXQ 

(2.48) 

(2.49) 

The individual closed loop state space matrices can be represented by 

x2   = 

XQQ   

A2   = 

«^*oo      — 

Bn 

X2 

Xc 

#00 

XQ 

A2      . BU2CC 

BcCy2 Ac 

A-oo ■öuoo^c 

■Dc^yoo Ac 

Bw 

BCD yw 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 
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Bd = 

Cz = 

Ce = 

V = 

Bd 

BCDyi 

^z      L)ZUKJC 

^'e     Ueu^c 

V, ed 

0 

Ded 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

The assumptions for the mixed problem can simply be a combination of the assumptions 

for the separate H2 and #oo problems. However, Walker [Wal94] has reduced the required 

assumptions to the following: 

(i) Dzw = 0 

(ü) Dyu = 0 

(iii) (A2, BU2) stabilizable, (Cy2,A2) detectable 

(iv) DT
ZUDZU full rank, DywDT

yw full rank 

A2 - jul   BU2 
(v) 

(vi) 

C2 Dz 

A2 - jul    Bu 

a 3/2 D. yw 

has full column rank for all UJ 

has full row rank for all u 

These are simply the assumptions for the H2 problem. Since (i-vi) guarantee a strictly 

proper admissible controller, Walker found that the H^ assumptions could be relaxed. Ded 

no longer must be zero and no assumptions need to be made on the ranks of Deu and Dyd (i.e., 

singular and non-strictly proper H^ constraints are allowed). 

The following definitions are made to simplify the development: 

1   ■=    K   inf .„  \\Ted\U K admissible 
(2.60) 
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a   := inf.    \\TZW\\2 (2.61) 
K admissible 

K2opt := the unique K(s) that makes ||TZIU||2 = a (2.62) 

7 := \\Ted\\00v,henK(s) = K2opt (2.63) 

Ä'mtx := a solution to the Hi/H^ problem for some 7 > 7 (2.64) 

7* == Halloo when tf(s) = 7^ (2.65) 

a* := ||TSJ2 when #(*) = #,»,•* (2.66) 

where "admissible" in (2.60) and (2.61) means stabilizing and at a fixed order. The conditions 

of the mixed H2/'B'<*> problem can now be stated as: 

(i) A2 and -4oo are stable 

(ii) ||Ted||oo < 7 for some given 7 > 7 

(iii) 11 Tzw 112 is minimized. 

The following theorem defines the problem further: 

Theorem 2 Let (AC,BC, Cc) be given and assume there exists a Qoo = Q^> ^ 0 satisfying 

Ax>Qoo + QooAl + (Q^Cj + BdV
T

ed)R-1 (QooCf + BdV
T

edf + BdB
T

d = 0     (2.67) 

where R = (i2I — VedT>Jd) > 0. Then the following are equivalent: 

(i) (-AM, Bd) is stabilizable 

(ii) «4<x> is stable 

(iii) A2 is stable. 

Moreover, if the above hold then the following are true: 

(iv) \\Ted\\oo < 7 
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(v) the two-norm of the transfer function Tzw is given by 

\\T2W\\l = tr[CzQ,Cj} = tr[Q2CjCz) 

where Q2 = Q2 > 0 is the solution to the Lyapunov equation 

A2Q2 + Q2A\ + BJBl = 0 

(vi) all real symmetric solutions Qoo of (2.67) are positive semidefinite 

(vii) there exists a unique minimal solution Qoo to (2.67) in the class of real symmetric 

solutions 

(viii) Qoo is the minimal solution of (2.67) iff 

ReiUAoo + BdV^R-'Ce + QooCjR-1^)} < 0 for alii 

(ix) \\Ted\\oo < (<)liff$e [\i(Aoo + BdV
T

edR-xCe + Q^R^C,)] < {<)Owhere 

Qoo is the minimal solution to (2.67). 

Proof: See [Wal94] Theorem (5.2.1) 

The result of this theorem is that, given a controller which satisfies (2.67) [and thus 

bounds ||Ted||oo], we can determine the minimum a by also requiring tr[C^Q2Cj] to be 

minimized. The mixed problem can then be rewritten as: determine the controlledAc, Bc and 

Cc) that minimizes 

J(AC, Bc, Cc) = \\TZW\\\ = tr[Q2CjCz] (2.68) 

where Q2 is the real symmetric, positive semidefinite solution to 

A2Q2 + Q2A^ + BwBl = 0 (2.69) 
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and such that there exists a real, positive semi-definite solution to 

AoQoo + QooAl + (QooCj + BdV
T

ed)R-' (Q^Cj + BdV
T

edf + BdB
T

d = 0     (2.70) 

The minimization problem now looks like an objective function, (2.68), and two con- 

straint functions, (2.69) and (2.70). To solve this minimization problem a Lagrange multiplier 

approach is used. The Lagrangian is 

C   =   tr[Q2CjCz] + tr{[A2Q2 + Q2A^ + BwBl]X} 

+   *r{[Ax,Qoo + QooAl + (QooCj + B^R-^QooCj + BdV
T

ed)
T 

+   BdBj]y} (2.71) 

This approach was introduced by Ridgely [Rid91] and modified by Walker [Wal94] to include 

the Ded term and allow for the singular #oo constraint. The first order necessary conditions 

for the minimum of the Lagrangian (where X and y are symmetric Lagrange multipliers) are 

dC 
dAc 

dC 
dBc 

dC 
dCc 

dC 
~dX 

=   X?2Q12 + X2Q2 + YTQab + Y2Qb = 0 (2.72) 

=   X^Q.Cl + X2Q
T

l2Cl + X?2V12 + X2BCV2 + Y?2QaC
T

yaa 

+ Y2Q
T

ahC
T

yao + Y?2Vab + Y2BcVb + (Y*Qa + Y2Q
T

ab)CjM 

+ (Y?2Qab + Y2Qb)CjDlM = 0 (2.73) 

=   BT
U2XXQX2 + Bl2X12Q2 + RT

12Q12 + R2CCQ2 + B^Qat 

+ B^Y12Qb + RlQaYtQab + RT
abQaY12Qb + RT

ahQabY?2Qab 

+ RabQabY2Qb + RbCcQabYiQab + RbCcQbY12Qab 

+ RbCcQabYi2Qb + RbCcQbY2Qb 

+ PiiYiQai + Y12Qb) + P2(Y?2Qab + Y2Qb) = 0 (2.74) 

=   A2Q2 + Q2AT + BwBl = Q (2.75) 
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dC 

dQ~2 
de 
oy 

dC 

dQoo 

A\X + XA2 + CjCz = 0 (2.76) 

AooQo, + QooAl + (QooCj + BjV^R-'iQ^Cj + BdV
T

edf 

(2.77) + BdBj = 0 

(Ax> + BdV
T

edR-lCe + QooCjR-'Cefy 

+ y(Aoo + BdVldR-xCe + Q^CjR-'Q = 0 (2.78) 

where 

M   =   R-'D^D^ 

Pt   =   DT
euR-'DedB

T
d 

P2   =   DlMBj 

Q2    = 
Qi    Qi2 

QTx2   Qi 

X 

Qc 

y 

BwBl 

Bd(VidR-'Ved + I)Bj 

*i    X 12 

X12   x2 

Qa Qab 

QT
ab   Qb 

Yr Y12 

Yl Y2 

-&c-*-'yw 
Bw   DywBc 

V!       V12BJ 

BCV£   BCV2B
T

C 

Bd 

BcDyd 

(V^R-'V^ + I) BJ   D^B? 

(2.79) 

(2.80) 

(2.81) 

(2.82) 

(2.83) 

(2.84) 

(2.85) 

(2.86) 
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CTC 

K       VabBj 

BcVjh   BcVbBj 
(2.87) 

CJDI 
Cz   VZUCC 

Ce R   Ce 

R\       R\2CC 

Cc R12   Cc R2CC 

(2.88) 

CJDL 
R-1 

^e        -LrpAL^C 

CjRT
ab   CjRbCc 

(2.89) 

Equations (2.75) and (2.77) are the original constraint functions. One solution to (2.78) 

is that y equals zero; the other possibility is that (Ax> + BdT>1dR~lCe + Q^C^R'1^) 

is neutrally stable. The first solution corresponds to 7 being off the boundary of the H^ 

constraint. The second solution corresponds to 7* lying on the boundary of the #00 constraint. 

The off boundary condition of y = 0 results in the Lagrangian reducing to 

C = tr[Q2CjCz] + tr{[A2Q2 + Q2A
T

2 + BWBT
W)X) (2.90) 

which is just the H2 Lagrangian; thus, for y = 0, Kmix = K2opt. The following theorem 

was developed by Walker [Wal94]. 

Theorem 3 Assume nc > n2, where nc is the order of the controller and n2 is the order of 

the plant for the H2 problem. Then the following hold: 

1. If^<jjno solution to the mixed H-ijH^ problem exists 

2. If '7 < 7 < 7, Kmix is such that 7* = 7 

3. Ifi > 7, K2opt is the solution to the mixed E2jE^ problem. 
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IITJI, 

irr ji. 

Figure 2.7   Typical #2/-ff» curve 

In summary, the solution to the mixed H2/Hoo problem will lie on the #00 constraint 

boundary whenever the order of the controller is chosen greater than or equal to that of the 

H2 problem. Theorem 3 implies that, for 7 < 7 < 7, each point on the mixed #2/#oo 

curve occurs on the boundary of the #00 constraint. Therefore, between 7 and 7 the value 

of a* is a smooth monotonically decreasing function as shown in Figure 2.7. This type of 

curve assumes the optimization process has found the global minimum of the mixed Rij Hoo 

problem or that the local minimum does not change between 7 steps. Currently, the mixed 

problem can not be solved analytically, and must be solved through a numerical approach. 

The numerical approach is addressed in Section 2.2. 

2.2   Numerical Optimization 

2.2.1 Optimization Background. This section is a general overview of optimization 

theory. For details the reader is referred to [Van84]. The general nonlinear constrained 

optimization problem can be stated mathematically as: 

Minimize:   1 ?(X) objective function (2.91) 

Subject to: 

9j{X) < 0 j = l,m inequality constraints (2.92) 

h(X) = 0 k= 1,1 equality constraints (2.93) 
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X\<Xi<Xf i = l,n side constraints (2.94) 

where 

X = 
X2 

Xn 

(2.95) 

The design variables are defined as Xi to Xn. 

Most optimization algorithms start from an initial guess and are iterated upon to find 

the optimal solution. The most common form of the iterative procedure is 

xq = x"-' + ß*Sq (2.96) 

where q is the iteration number, 5 is the search direction in the design space and ß* is the 

optimal step length in that direction . 

2.2.1.1 Unconstrained Optimization. From calculus, we know that for F(X) 

to be a minimum, the gradient of F(X) must be equal to zero. This condition is necessary 

to say the point is a local minimum, but does not guarantee a global minimum. Also from 

calculus, we know that if the second derivative of the function with respect to all variables is 

positive definite, that point is a minimum. This leads to the definition of the Hessian matrix. 

The Hessian matrix is a matrix of second partial derivatives of the function with respect to 

the design variables. See Equation (2.97). If the Hessian is positive definite and the gradient 

is equal to zero, this ensures a local minimum. The design is a global minimum only if the 

Hessian is positive definite for all possible values of the design variables within the design 

space. 
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H = 

d2F(X) 
dXf 

d2F(X) 
dXi 8X2 

d2F(X) -1 
dX\dXn 

82F(X) 
8X28X1 

82F(X)      . 
8X$ 

82F(X) 
8X28X71 

82F(X) 
8Xn8X\ 

82F(X) 
8Xn8X2 

82F(X) 
8X1     J 

(2.97) 

2.2.1.2 Constrained Optimization. For constrained optimization, it isn't 

necessary that the gradient of the objective vanish at the optimum. This type of optimization 

problem works to reduce the objective without violating the constraints. This is done by 

finding a search direction. A direction that will reduce the objective is called usable. A 

feasible direction is defined as one that will not violate a constraint if a small step is taken. An 

active constraint is defined as one that is within some tolerance of zero. A search direction 

is found that is feasible with respect to all active constraints. As stated, the search direction 

must be both usable and feasible. 

Usable Direction: VF(X) ■ S < 0 (2.98) 

Feasible Direction:    Vft-,(X) ■ S < 0   all j for which gj (X) = 0 (2.99) 

The optimum of a constrained optimization problem can be defined as meeting three 

criteria called the Kuhn-Tucker Necessary Conditions. These conditions are: 

1. X* is feasible 

2.Xj9j(X*)=0 j = l,m Ai>0 

3.   VF(X*)+   E,m
=1 Xj V^(X*) +   £Afc+roV/>fc(X*) = 0 

Xk+m unrestricted Ai>0 

(2.100) 

(2.101) 

(2.102) 
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where X* is the vector of optimum design variables, g is the vector of inequality constraints, 

F is the objective, h is the vector of equality constraints and the A's are Lagrange multipliers. 

The first Kuhn-Tucker condition (2.100) states that the optimal solution must satisfy all the 

constraints. The second Kuhn-Tucker condition (2.101) says that if the constraint is not equal 

to zero, then the Lagrange multiplier must be equal to zero. The last Kuhn-Tucker condition 

states that the objective gradient at optimum must be in the subspace spanned by the active 

constraint gradients. Also, for the Kuhn-Tucker conditions to be necessary for a constrained 

optimum, the X* must be a regular point, (i.e., a design where the active constraint gradients 

are linearly independent). If the objective function and all constraint surfaces are convex, 

then the design space is said to be convex and the necessary Kuhn-Tucker conditions are also 

sufficient to guarantee that the optimum reached is a global optimum. 

2.2.2 History of the Mixed Numerical Method. This section addresses the numerical 

approach to designing a mixed H2/Hoo controller. This method approaches an optimal fixed 

order solution. The controller from this design method will not satisfy the constraint exactly, 

but is as close as numerically possible within some tolerance. 

Ridgely [Rid91] developed a numerical solution using a new performance index. This 

was based on a connection between the central #<» controller [DGKF89] and the mixed 

controller. This performance index is 

J, = (1 - ii)\\Tzw\\l + ß triQ^CjCe] (2.103) 

The value ß was varied from one to zero, resulting in a mixed controller. When \i 

equals 1, the central H^ controller is the solution. The DFP method was used in optimizing 

this set-up. There were several drawbacks to this method: 

1. Amount of computational time required was on the order of one week for one point on 

the mixed H^fE^ curve, since each \i design was optimized to a point on the mixed 

curve. 
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2. The order of the controller achieved by this method is the order of the mixed plant 

together with all of its weights. 

3. This method does not allow for singular H^ constraints. 

Walker developed a numerical approach which restated the mixed #2/#oo optimization 

problem, where the two-norm is the objective and the infinity-norm is the constraint. The 

initial guess for the optimization process was the H2 optimal controller, since it was a relatively 

easy point to calculate. Then steps in the infinity-norm constraint were made to develop the 

a* versus 7* curve. Inequality constraints were used to develop this performance index: 

min.   \\T2W(X)\\l 
K stabilizing 

subject to 

||Terf(X)|U-7<0 

This method saved time compared to Ridgely's method since each controller found was 

a point on the mixed curve. Walker initially used the DFP method to minimize the performance 

index. To prevent non-stabilizing controllers, the performance index was set to an artificially 

high value if an unstable closed-loop controller was calculated. Thus, that controller would 

not be accepted. Initially, equality constraints were addressed, but due to numerical drawbacks 

Walker then turned to using an inequality constraint approach. The final algorithm used to 

minimize the performance index was the MATLAB version of the SQP technique. 

2.23 SQP Optimization. The Sequential Quadratic Programming method uses a 

technique where the search direction is found by solving a quadratic objective function and 

linear constraints. The search direction is found by creating a quadratic approximation to the 

objective function. The general problem set-up is as follows: 

Minimize:   Q{S) = F(X) + [VF(X)]TS + \STBS (2.104) 
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Subject to: Vgj(X)*S + 6jgj(X)<0 j = l,m       (2.105) 

Vhk{X)*S + 6hk{X) = 0 k = l,l        (2.106) 

The design variable for this subproblem is S, the search direction. The matrix B is updated 

through iterations to approach the Hessian matrix. The <$'s ensure that the linearized constraints 

do not cut off the feasible region of the design space. These are problem dependent and should 

be chosen as close to 1 as possible. 

6j = \    if^(X)<0 (2.107) 

8j = 6   \fgj(X)>0 (2.108) 

0 < 6 < 1 (2.109) 

Once the search direction is found, a one dimensional search is performed with an exterior 

penalty function added. 

m I 

$ = F(X) + £ UJ (max [0,&(*)]} + £ um+k MX)} (2.110) 
.7=1 fc=l 

X = Xq-1+ßS (2.111) 

uj = \^j\ j = l,m + l    first iteration   (2.112) 

Uj = max |A;|,^; + M) next iterations (2.113) 

The variable u is a vector penalty parameter. The way this problem is set up, the one 

dimensional search is well conditioned and the step of ß = 1 is a good step size to make 

once the matrix B approaches the Hessian matrix. Now that the first step has been taken, the 

B matrix needs to be updated. The B matrix improves the quadratic approximation for the 

search direction subproblem. There are several methods used to update B. The method used 

by MATLAB is the Broydon-Fletcher-Shanno-Goldfarb (BFGS) update formula [Van84]. 

B*   =   B_-i2L—+ -LL- (2.ii4) 
•p1 Bp       p • 7/ 
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p   =   Xg-Xq-1 (2.115) 

rj   =   0y + (l-O)Bp (2.116) 

y   =   V^XW^-V^iXi-1,^1) (2.117) 
m I 

<J>(X,\)   =   FW + E^ffl + EWW (2.H8) 
3=1 k=l 

[     1.0ifp-y>0.2pTBp     ) 

This update formula maintains positive definiteness and is called a variable metric 

method. This update method also allows for infeasible designs with no other additional 

methods required. Since the solution is allowed to approach from the infeasible design space, 

the resulting controller may be non-stabilizing. The previous performance index and problem 

set-up discussed in Section 2.2.2 can be used, but an additional stability constraint must be 

added. 

2.2.4 Two-Norm Gradients. The gradient of the two-norm at H2 optimal was 

defined by Ridgely [Rid91]. He used the definition of the two-norm 

\\Tzw\\l=tr[Q2CT
zCz] (2.120) 

The Hi problem can be set up as an optimization problem by forming a Lagrangian. This 

Lagrangian has the objective function as the definition of the two-norm. The constraint in the 

Lagrangian is the Lyapunov equation that must be solved to find a real, positive semidefinite 

solution for Q2 in Equation (2.120). The Lagrangian is then 

C = tr [Q2CjC2] + tr [(A2Q2 + Q2A\ + BwBl)X] (2.121) 

2-25 



Taking the partial derivatives of this equation with respect to all the unknown variables 

yields 

ÖC 

dAc 

dC 
dBc 

ÖC 
dCc 

dC 

W2 
d£ 
ax 

= 2[X(2Q12 + X2Q2] (2.122) 

= 2[X?2Q1C*+X2Q?2C*+XT2Vi2] (2.123) 

= 2[Bl2X1Q12 + Bl2X12Q2 + RT
l2Ql2 + R2CcQ2] (2.124) 

= A2
rX + XA2 + Cz

vCz (2.125) 

= A2Q2 + Q2A2 + BwBl (2.126) 

The process in which to calculate the H2 gradient with respect to a specific controller is as 

follows 

1. Set (2.125) and (2.126) equal to zero and solve for X and Q2 

2. Compute |£, -§§-c, and -§§-c from (2.122), (2.123), and (2.124), respectively 

3. Rearrange the gradient by 

dZ 
(M.Y (M.Y     (9£.Y KdAcJi    '"    \dAc) „c    VaßcA 

ml ml ■■ mlf      <>■*» 

A method to solve the derivative of the two-norm at a sub-optimal point was derived 

by Canfield [Can94]. He showed that the derivative of the two-norm can be derived through 

a Direct Method. The derivation begins with the definition of the two-norm. 

\\TZW\\22 = tr[Q2CjCz] (2.128) 

where Q2 is the solution to the following Lypaunov equation 

A2Q2 + Q2A\ + BwBl = 0 (2.129) 
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The closed-loop matrices A2, Bw and Cz are explicit functions of the controller matrices 

Ac, Bc, and Cc which are parameterized by the design vector P. Equation (2.128) can be 

differentiated with respect to the design vector P. 

\\Tzw\\l' = tr[Q2'CjCz + QCj'cz + Q2CjCz'] (2.130) 

Since Q2 is an implicit function of P, the Lyapunov equation (2.129) can be differentiated 

with respect to each design variable. This is given by 

A2'Q2 + A2Q2' + Q2'A
T

2 + Q2A
T' + BjBl + BWB%' = 0 (2.131) 

This can then be rearranged to form another Lyapunov equation: 

A2Q2' + Q2'Al + (A2'Q2 + Q2A
T' + BjBT

w + BwBl') = 0 (2.132) 

Then (2.132) can be solved for Q2 for each design variable. The derivative of the two-norm 

is then found by substituting Q2 into (2.130). This method was not used to calculate the H2 

gradients at sub-optimal mixed E2jH^ designs since a Lyapunov equation would have to be 

solved for every design variable for every gradient. This would be too expensive. Rather, 

Canfield also derived an Adjoint Method for the gradient of the two-norm. 

The Adjoint Method begins with the definition of the two-norm which will be called * 

for this derivation. 

*(P, Q2) = tr[Q2Cj(p)Cz(p)] (2.133) 

Take the first variation of (2.133), treating p and Q2 as independent variables. 

«M2) = E^fe+EE^^      (2,34) 

However, variations ^<?2>jt are not independent of 6pn rather, they are related through the 

Lyapunov equation (2.129). An identity can be formed by post-multiplying (2.129) by the 
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adjoint matrix X and taking the trace. 

T(p, 02, X) = irp2Q2 + Q2A
T + BwBl)X] = 0 (2.135) 

The equation (2.135) will be called the adjoint equation. The variation of the adjoint equation 

is then 
dT(p,Q2,X) dT(p,Q2,X) 

 %  * + ? ?       *fc*      "^ = ° (2-136) 

where X is not free to vary, but instead is defined as the matrix that satisfies 

dT(p,Q2,X)        d$(p,Q2) 
dQ2 0Q2 

which when combined with equation (2.133) and (2.135) can be written as 

(2.137) 

AT
2X + XA2 + CzCj = 0 (2.138) 

Therefore (2.138) is a Lyapunov equation for X that does not depend on any derivatives 

with respect to p (i.e., it is only solved once). Substituting equation (2.137) into (2.136) the 

following is found 

£ ?       dQ2]k      
6Q^ - S Qp-% to (2-139) 

which provides the necessary relationship to determine how small variations 8p of the design 

parameters cause corresponding small variations 8Q2 of the Lyapunov matrix Q2. Next the 

total variation can be expressed by substituting equation (2.139) into (2.134). 

i        dPi dPi 
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where the terms in brackets are recognized as the design derivatives that we seek 

d\\T„\\l_d*(p,Q2) , d?(p,Q2,X) 
dp dp 

+ 
dp 

(2.141) 

where 

dT(P, Qt, X) = tr[{^lQ2 + Q2^tL + ^BT + BmZp>)X] dAl     8BU 

dpi       dpi dpi 

(2.142) 

(2.143) 
dpi " LV dp8- 

and where Q2 is found by solving the Lyapunov equation (2.129) and X is found by solving 

the Lyapunov equation (2.138). 

Equation (2.143) represents the change in the two-norm with respect to the design 

variables in vector form. Equation (2.143) can be used to show the change in the two-norm 

with respect to the design variables in matrix format (i.e., Ac, Bc and Cc). 

d*(Ae,Be,Cc,Q2) 
dAc 

dV(Ac,Be,Ce,Q2) 
dBc 

d$(Ac,Bc,Cc,Q2) 

dCr 

dT(Ac,Bc,Cc,Q2,X) 
dAc 

dT(Ac,Bc,Cc,Q2,X) 
dBr 

=   0 

=   0 

(<?a 0   Dzu 

0   Dzu 

Cz + 

) 

=   ( 
0   0 

0   1 

0     0 

cy2 0 

0 

D. 

Q2 + Q2 

Q2 + Q2 

0   0 

0   1 
)X 

0 cy2 

0     0 
+ 

0   D. yw )X 

dT(Ac,Bc,Cc,Q2,X) 

da = ( 

'yw 

0   Bu2 

0     0 
Q2 + Q2 

0     0 

Bu2   0 

(2.144) 

(2.145) 

(2.146) 

(2.147) 

(2.148) 

)X      (2.149) 
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By simplifying Equations (2.144) through (2.149) and substituting them into (2.142) through 

(2.143) and then substituting the result into (2.141), in turn, the final equations for the derivative 

of the two-norm for a suboptimal mixed H2/Hoo design are found. The result can also be 

expressed in matrix form as 

dAe 
=   2[Xf2Q12 + X2Q2] (2.150) 

^1   =   2[A£Q1C£ + X2Qj2Cl + X?2V12] (2.151) 

d\\T   II2 

-iL^l   =   2[BlX1Q12 + BlX12Q2 + RT
uQ12 + R2CcQ2]        (2.152) 

Therefore, the right side of (2.150) through (2.152) is the right side of (2.122) through (2.124). 

The two-norm can be defined for both a stable and unstable closed-loop system. The 

two-norm is defined for an unstable transfer function as long as the system has no poles on 

the imaginary axis and is strictly proper. If the system is stable the two-norm is calculated 

by the methods discussed in Section 2.1.1. If the system is unstable, it can be broken into its 

stable and anti-stable parts. The two-norm of an anti-stable transfer function is the two-norm 

of its complex conjugate transpose, which is stable. Therefore, the two-norm of an antistable 

transfer function can be found by setting the state space matrices of the antistable system equal 

to A = -AT, B = CT and C = -BT. Then the two-norm can be calculated by the methods 

discussed in Section 2.1.1. Finally, through orthogonality, \\G\\l = ||IIG|||+ ||II-LG||| where 

IIG is the stable projection and II-LG is the antistable projection. The two-norm and therefore 

the gradients must be calculated for stable and unstable closed-loop systems. 

2.2.5 Infinity-Norm Gradients. The infinity-norm gradient can be calculated by 

an analytic method. This method is called a singular value sensitivity approach, which was 

developed by Geisy and Lim [GL93]. Assuming the maximum singular value of Ted at X has 

a single peak, the derivatives of the infinity norm can be evaluated as: 

dxi 
«?p|M 

2-30 

Xa 

(2.153) 



where ua and v\ are the singular vectors associated with the maximum singular value of Ted. 

The u0 is the frequency at which the peak occurs, Xg is the current guess of X and 3?e denotes 

the real part. The derivative of the transfer function with respect to the design variables can 

be written as 

dTedM 
dxi 

d [Ce (ju0 - Aoo) xBi + Ved 

dx{ 
(2.154) 

There are several advantages to this method over finite differencing: 

1. The analytical method is quicker since there is only one gradient calculation per design 

variable. The finite difference method requires an infinity-norm calculation with the 

design variables perturbed forward and backward and then an average is taken between 

the two. The finite difference method therefore requires twice as many calculations as 

the analytical derivative. 

2. The accuracy of the analytic gradient is better since in finite difference the solution 

is based on differences between very small numbers which can result in errors due to 

round off. 

3. The f/oo norm can be identified as a piecewise continuous function since the norm 

definition is the peak of the maximum singular value plot. The finite difference ap- 

proach perturbs the controller and then finds the norm. The frequency where the peak 

is found could change and the gradient at a different frequency is usually not the same 

as the previous peak. Therefore, a central difference method could result in an incorrect 

gradient. The analytic method does not have this problem, since it provides information 

only on the unperturbed transfer function. 

However, the sensitivity method has some disadvantages: 
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1. The method has difficulty converging when the peaks are located at more than one 

frequency. This results in a discontinuous gradient. This is a problem for both finite 

difference and the analytic gradient method. 

2. The method depends on a search range over frequency. Previous knowledge of the 

shape of the singular value plot can be used to specify this range. A check needs to be 

made that the range given includes the maximum singular value. 

3. The fineness of the frequency search can dictate the accuracy of the #<» norm. 
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///. Optimization Code Improvements 

This section is divided into two parts. Section 3.1 discusses improvements made to 

the code. For each improvement the problem definition and solution are given. Section 3.2 

discusses an implementation of the improvements for a simple SISO example. 

3.1    Code Improvements 

There were eight general improvements made to the mixed E-ijE^ optimization code. 

They are listed in order of importance relative to the improvement in run time and accuracy 

of the optimization code. 

3.1.1   Peak Identification. 

Problem Definition: The infinity-norm of Tej is defined as the supremum over all frequency 

of the maximum singular value of Ted. There can be several peaks in the singular value 

plot of a system. It was found that the optimization routine could not handle the case when 

two or more peaks had approximately the same singular value. The routine would constrain 

the peak at one frequency while the other frequency was not constrained. This caused the 

optimizer to switch back and forth between the peak values and not be able to complete the 

optimization iteration where the multiple peaks occurred. This is an identified limitation of 

using the analytic gradient method discussed by Geisy and Lim [GL93]. 

Problem Solution: The solution to this problem was to identify all peaks (and their frequencies) 

which were within a specified tolerance of the maximum. The peaks were identified by 

evaluating the change in slope of the singular value plot. The peaks were then separately 

constrained. The singular value at a frequency of zero rad/sec was automatically constrained 

and a frequency search range of 10~6 to 104 rad/sec was used. A frequency band was placed 

around each peak to allow for movement of the peak as the controller design changed in the 

optimization routine. A function was implemented that allowed for a ± 0.3 rad/sec band about 
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Singular Value Plot 

1Cf 10" 
frequency 

Figure 3.1   Singular Value Plot (7=20) 

the peak and also prevented the bands from overlapping. Two examples of singular value 

plots identifying peaks and bands are shown in Figures 3.1 and 3.2. 

The frequency search for peak identification was done before and after each 7 step. 

The search before the optimization was done to set up the bands once a peak was identified. 

The search after the optimization was to check that another peak had not risen above the 

constrained 7 level outside the bands previously set. If a peak was identified outside the bands 

of the optimization, the bands from before the optimization and after the optimization would 

be combined. The bands were sorted and the frequencies were compared in log scale. If 

the difference between each band was less than 0.05 in log scale, then that band would be 

removed. This was a way to prevent overlapping and duplication of bands. Once the bands 

were reordered, the optimization sequence would begin again with the new bands and the last 

design vector found. The optimization sequence would not end until the #00 constraint was 

completely satisfied. 

3.1.2 Gradient Calculation. The following five subsections will discuss the cor- 

rections made to the gradient calculations. They are listed in order of importance. First, the 

correction to the Hoo gradient is presented and then the correction made to the H2 gradient 
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Singular Value Plot 
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frequency 

Figure 3.2   Singular Value Plot (7=1.36) 

follows.   Finally, introduction of an analytic means to take the derivative of the stability 

constraint (previously done using finite differencing) is given. 

3.1.2.1 Hoo Gradient Modification. 

Problem Definition: The analytic method for calculating the #<» gradient is faster, more 

accurate and better conditioned for finding a numeric answer than the finite difference method. 

However, when comparing the results of these two gradient methods, the gradients with 

respect to each design variable should be close in value. When comparing the #00 gradients, 

the results were significantly different. The gradients were opposite in sign in some cases. 

Another indication of a gradient problem was that the SQP optimization routine was regularly 

giving negative step sizes. This indicated the search direction the optimizer was calculating 

might be in error. This led to an investigation of the analytic gradient calculation for the 

infinity-norm. 

Problem Solution: The background for the infinity-norm calculation is presented in Sec- 

tion 2.2.5. The two equations that define the analytic H^ gradient are 
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d\\T( ed\ 

dxi 
= &e 

H (dTed(uoy 
11   {    dxi    . 

v\ 
Xa 

(3.1) 

and 

dTed{u0) 
dxi 

d Ce O'Wo - -4oo)    1&d + Ved 

Xa 
dxi 

(3.2) 
x„ 

The important part of (3.2) is that it defines the derivative of the closed loop transfer function 

Ted with respect to each value in the controller state space (i.e., the design variables for a 

numerical optimization solution). Using these two equations, the derivative of the infinity- 

norm of the closed loop Ted transfer function can be found with respect to each design variable. 

The original set-up of the mixed problem was to put the controller state space into 

modal form. Modal form places the real parts of the eigenvalues of the controller A matrix 

on the diagonal, with the imaginary parts of the eigenvalues on the superdiagonal and the 

negative of the imaginary parts of the eigenvalues on the subdiagonal. An example of a modal 

transformation is 

1 4 5 7 

3 8 2 9 

3 5 7 1 

0 3 6 8 

■fl-modal     — 

18.10 0.000 

0.000 0.117 

0.000 0.000 

0.000 0.000 

0.000 0.000 

0.000 0.000 

2.886 3.662 

-3.662 2.886 

(3.3) 
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This modal form significantly reduces the amount of design variables needed to be 

found in an optimization routine. The higher the order of the controller, the more the savings 

in design variables. The reduction in number of design variables with the modal form comes 

from the fact that only the diagonal terms and superdiagonal terms in the A matrix need to 

be found. The subdiagonal terms do not need to be calculated since they are just the negate 

of the superdiagonal. The state space B and C matrices for the controller are assumed to be 

fully populated. An example of a fourth order controller A matrix is 

-™-modal 

Xl Xh 0 0 

Xs X2 x6 0 

0 -XQ X3 x7 

0 0 -x7 X4 

(3.4) 

Notice for this example that putting the A matrix into modal form reduces the required number 

of design variables in A from 16 down to 7. 

The derivative as defined in (3.2) must be taken with respect to every design variable. 

Previously, the gradients with respect to the subdiagonal terms were not factored into the 

overall gradient. This caused the gradients to be in error. This error caused examples of 

the search direction generated by the SQP optimization routine to be in opposite directions 

from what the finite difference gradient calculated. Adding the gradient with respect to the 

subdiagonal terms of the A matrix corrected this problem, and the finite difference matched 

very well with the analytic gradients for the infinity-norm. 

3.1.2.2   H2 Modification for Modal Form. 

Problem Definition: The background of the H2 gradient is given in Section 2.2.4.   This 

development showed that the resulting gradients are a function of taking the partial derivative 

of the Lagrangian function with respect to each of the controller state space matrices. Since 

there is a partial with respect to the controller A matrix in the definition of the H2 gradient, 
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the subdiagonal gradient terms were neglected, similar to the H^ gradient problem. The 

following shows the Lagrangian equation and the partial of the Lagrangian with respect to Ac, 

(i.e., the controller A matrix): 

C = tr [Q2CJCZ] + tr \{A2Q2 + Q2A
T

2 + BwBT
w)x] (3.5) 

11* 

2(X^Q12 + X2Q2) (3.6) 
dAc 

The problem with the H2 gradients was identified in the same way as the H^ gradients. The 

H2 gradients were significantly in error from finite difference without the subdiagonal terms. 

Problem Solution: Adding the derivative with respect to the subdiagonal terms to the equation 

for the partial of the Lagrangian with respect to Ac corrected this problem. 

3.1.23 H2 Modification for Sub-Optimal Design. 

Problem Definition: Comparison of the finite difference to the analytical two-norm gradients 

for each design variable showed a difference of a factor of two. This lead to a further investi- 

gation of the analytic two-norm gradient. Through calculation of the necessary conditions it 

was found that there was a factor of two in each of these derivatives. This factor was ignored 

in the two-norm gradient equations, since this calculation was considered at the H2 optimal 

point and therefore the necessary conditions would be equal to zero. 

Problem Solution: If the mixed design is not at the H2 optimal point, the mixed design is by 

definition sub-optimal. Therefore, the gradients of the Lagrangian of H2, when completing a 

mixed E2jE^ optimization design, should contain the factor of two for each derivative with 

respect to the controller state space matrices. The two-norm derivative at sub-optimal designs 
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can be written as 

dC 
dAc 

dC 

dBc 

dC 
dCr 

=   2*[X?2Q12 + X2Q2] (3.7) 

=   2*[XT2Q1CZ+X2Q'(2CZ+X*V12] (3.8) 

=   2*[BlX1Q12 + BlX12Q2 + RT2Q12 + R2CcQ2]       (3.9) 

Solve for X : [AT
2X + XA2 + CjCz] = 0 (3.10) 

Solve for Q2: [A2Q2 + Q2A2 + BWBT
W\ = 0 (3.11) 

3.1.2.4 H2 Gradient Modification if Unstable. 

Problem Definition: The SQP optimization method is allowed to begin with an initial guess 

that is in the infeasible region. SQP also allows a feasible solution to go into the infeasible 

region during the optimization process. A non-stabilizing controller is defined when the 

stability constraint is violated, and therefore the design is in the infeasible region. Since it is 

possible that the controller could be non-stabilizing, the code should be able to calculate the 

two-norm for this case. The previous code did a stable/anti-stable projection to calculate the 

two-norm, but did not consider this projection for the gradient of the two-norm. 

Problem Solution: An addition was made to the code to calculate the H2 gradient when 

the controller was identified as non-stabilizing. This gradient was calculated using finite 

differencing. The section of the code that calculates the gradient using finite differencing is 

called whenever the real part of the maximum eigenvalue of the closed loop A2 matrix of the 

H2 problem is positive. 

3.1.2.5 Stability Gradient Modification. 

Problem Definition: The previous method calculated the stability gradient using the finite 

difference method. This method became costly due to the fact that for every design variable, 

two eigenvalue evaluations must be done. This must be done for every derivative calculation in 

the gradient. A method was derived to find the gradients of the stability constraint analytically. 
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Problem Solution: The stability constraint is defined as requiring the real part of the maximum 

eigenvalue of the closed-loop A2 matrix to be negative. The derivative of this constraint is the 

derivative of the eigenvalue. The eigenvalue of the closed-loop A2 matrix can be expressed 

as 

A = u? A2v2 (3.12) 

where u2 and v2 are the left and right eigenvectors, respectively, associated with the eigenvalue 

A. The stability constraint is 

max&e(A)<0 (3.13) 

so the stability constraint gradient is 

sfceg- = MUH ^V2] (3.14) 

The mixed H2/Hoo A2 matrix is an explicit function of the design variables. Taking the 

derivative of A2 with respect to each design variable, and then pre- and post- multiplying it 

by the normalized eigenvectors produced the analytic stability gradient. This allowed one 

eigenvalue evaluation per stability gradient instead of 2n+l evaluations, where n=number of 

design variables. Although eigenvalue calculations are not expensive, the cost increases with 

an increase in the number of design variables. Note that this development assumes that the 

maximum eigenvalue is not repeated. If it were a repeated eigenvalue, further modifications 

would need to be made. These were not considered here. 

3.13   Penalty Function. 

Problem Definition: SQP allows infeasible designs in the optimization process; therefore, 

a design (i.e., controller) may be non-stabilizing. If the controller is non-stabilizing, the 

calculation of the two-norm gradient may be very expensive. The expense is due to the finite 

differencing routine that was added to calculate the two-norm gradient when the stability 
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constraint was violated.   Therefore, it would be advantageous to prevent non-stabilizing 

controller designs while in the optimization process. 

Problem Solution: The solution to this problem was to add a penalty to the objective function 

which was a function of the stability constraint. The penalty function 6 added is 

6 = [A3 * max(real(eig(A2)))]2 (3.15) 

where A3 is the scale factor used to prevent unstable designs. This will be discussed in the 

scaling section. 

If the controller is non-stabilizing, the gradient of the two-norm must also have the 

penalty function gradient added. The derivative of the penalty function is shown in (3.16). 

This equation was added to the original two-norm gradient when the stability constraint was 

violated. Therefore, 

06 o d\ 
— = 2 * A^ *max(real(eig(A2)))* (—) (3.16) 

where ■§£-. is defined in Section 3.1.2.5. 

3.1.4    Use ofFMINfor #«, Norm Calculation. 

Problem Definition: The highest percentage of computer time used to calculate the H-ijH^ 

curve was spent doing the frequency search over the singular value plot. Since the infinity- 

norm is found by a frequency search over the singular value plot for the maximum magnitude, 

the finer the search grid over this plot the better the infinity-norm calculation. The finer the 

grid, however, the more expensive the calculation of the #«, norm. 

Problem Solution: Use of a function in MATLAB called FMIN to find the maximum point 

within defined bands for each peak improves the run time. A frequency search is still required 

to identify the peaks and set up the bands for the problem, but this search is only done one 
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time per 7 step. The original code did a frequency search for every function evaluation. The 

frequency search for the new code can also use many fewer points since it only needs slope 

information to identify the peaks and generate the bands, but is no longer required to find the 

precise value of the infinity-norm. 

Each function evaluation requested by the SQP optimization routine solves for the 

Hoo norm for each band using FMIN. This function finds the minimum of an unconstrained 

function of one variable within a fixed interval. The function that is to be minimized must 

be continuous. Also, FMIN may return a local minimum if the function it is given is not 

unimodal. This method was used to find the minimum of the negative of the singular value 

plot since FMIN finds the minimum of a function. It was found that using FMIN provided 

significantly fewer evaluations and took less time to run than the previous frequency search. 

An example of the savings is where previously 800 points were used to search over the singular 

value plot to find the maximum value, FMIN would find the maximum in approximately 20 

function evaluations. This equates to a 97 percent savings in time. This comparison was made 

when there was only one peak in the singular value plot, and therefore only one band. FMIN 

also offers the advantage of specifying the tolerance to which the infinity-norm is calculated 

without a significant increase in the number of function evaluations. 

3.1.5   Scaling. 

Problem Definition: Numerical difficulties are often encountered in an optimization process 

when one constraint is larger or changes more quickly than another constraint. Difficulties are 

also encountered when the value of the objective is not of the same order of magnitude as the 

constraints. The goal then is to normalize the objective and constraints to unity before each 

optimization run (i.e., for each 7 step for the mixed E^jE^ problem). 

The original code for this calculation used scale factors to multiply the objective and 

constraints. These scale factors were arbitrarily set, depending on the problem and the point 

on the H2 /E^ curve where the optimization is begun. 
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Problem Solution: The H2 objective was normalized by the last value of the two-norm. A 

constant scale factor was used to multiply the normalized H2 objective. See (3.17). It was 

found that by scaling the objective constantly in this manner, the time spent in the line search 

was much less. A scale factor of (0.001) was used for all examples shown in this thesis. The 

scale factor used for the infinity-norm was found by normalizing the infinity-norm constraint 

using the current set constraint value of 7. See (3.18). Finally, a constant scale factor of 

(1000) was used for the stability constraint. See (3.19). The stability constraint was not 

normalized. The intent for this constraint was that it always stay negative, not that it approach 

zero. This scale factor, along with the penalty function discussed earlier, worked well to 

prevent a non-stabilizing controller design. The scalings were 

Scalle for 2-Norm Objective   =   l/HT«,,,., |jl * (1/1000) (3.17) 

Scale for Infinity-Norm Constraint   =   l/HTe^JI«, (3.18) 

Scale for Stability Constraint   =   1000 (3.19) 

where ||Tau,4_i \\\ and ||Te<*,_i1|^ are the two-norm calculation and the constraint level set for 

the infinity-norm for the previous 7 iteration. The objective and constraints then become 

Objective   =   l/||r,w,_1||2*(l/l000)||r«)||^ (3.20) 

Infinity-Norm Constraint   =   l/HT«^^^!!«, (3.21) 

Stability Constraint   =   1000[maxSRe(A)] < 0 (3.22) 

3.1.6   Modifications for M1MO Designs. 

Problem Definition: The code for mixed #2/#00 optimization needs to be setup to calculate 

a solution for a MIMO problem. The infinity-norm calculation must search multiple singular 
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Figure 3.3   Singular Value Plot for MEMO Example (7=800) 

value plots to find a maximum and therefore the calculation of peaks and bands must be 

adjusted. 

Problem Solution: The modification that needed to be made for this case was for the #<» norm 

calculation. The maximum singular value over all the singular value plots for the MIMO 

system was found. The FMIN function was still used to calculate the peak values within 

the bands. Two examples of MEMO singular value plots with bands and peaks identified are 

shown in Figures 3.3 and 3.4. 

3.1.7   Automatic Hoo Steps. 

Problem Definition: The improvements to the code significantly reduced the run time required 

to generate the E2jE^ curve. However, large step sizes in 7 caused numerical ill conditioning 

of the problem. This caused the user to set a step size, run the optimization code, stop the code 

when ill conditioning occurred, save the controller and restart the optimizer with a different 

step size. 
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Figure 3.4   Singular Value Plot for MIMO Example (7=360) 

Problem Solution: A routine was added that would automatically set the step size, and therefore 

generate the entire mixed curve automatically. The autostep function begins by taking two 7 

steps from H2 optimal. The information from these two steps is then used to form a linear 

approximation of the mixed curve. An estimate is made using that approximation of what size 

the next 7 step should be for a specified change in the two-norm. See Figure 3.5. If the step 

size is larger than the original step size it is ignored. If the step size is smaller than the original 

7 step size, the next iteration is set at that 7 level. The original specified levels of percentage 

changes of infinity-norm and two-norm can be input by the designer. 

This automatic routine works well when the designer chooses a small percentage change 

in 7 for the first step size. The larger the percentage the better the chance of numerical ill 

conditioning. The examples run using this routine used a change in a of 5 percent and a 

change in 7 of 5 percent. 

3.1.8   Requiring H^ Constraint to be Active. 

Problem Definition: A theorem was given by Walker [Wal94] which proved that if the con- 

troller order is greater than or equal to the order of the H2 problem, then the mixed ^2/^00 
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Figure 3.5   Linear Projection to Estimate Gamma Step 

solution lies on the boundary of the H^ constraint. It was found that by setting the opti- 

mization problem up with an inequality constraint occasionally would result in cases where 

the #00 constraint would not be active. If the problem was set up with equality constraints, 

the optimizer would try to force all the #<*> constraints from the frequency bands to zero. 

However, when multiple H^ peaks were present, it is not possible to know in advance which 

peak should be constrained as an equality. 

Problem Solution: The mixed #2/#oo active constraint requirement was that only the maxi- 

mum #00 constraint (from the bands) must be active. Therefore, a modification was made to 

the MATLAB SQP routine. The modification required that the maximum #00 constraint was 

close to zero within some tolerance. This change resulted in the E^ constraint being active at 

each step along the mixed E^/E^ curve. It should be noted that this requirement is only true 

for one E^ constraint. If multiple E^ constraints are added to the problem, (i.e., ||Te(ji||oo 

and ||red2||oo, not constraints from several peaks of one E^ problem), then only one #<*> 

constraint is required to be active. Therefore, in the multiple E^ constraint case, this active 

requirement is dropped. 
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3.2   Numerical Test Example 

A SISO example was chosen to demonstrate these fixes. It does not represent any 

physical system. The example is taken from [DS79], where it was used to demonstrate how 

to recover robustness with observers. This study used this example to demonstrate the fixes to 

the optimization code because of the limited number of design variables required to develop 

the controller. It was also chosen because it had a low 7 at if2 optimal, and would require 

less optimization time to generate the mixed H2/HfX, curve. This was important for ease of 

making comparisons between the previous and the improved numerical method. 

3.2.1   Problem Set-Up.    The equations for the system can be represented as 

x =   Ax + Bu + TC 

' 0 1 " 
x + 

"0' 
u   + 

' 35 ' 

-3 -4_ 1 _-61_ 
=   Cx + n 

=   [2    l]x + n 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

where the open-loop plant transfer function for this system is given by 

s + 2 
yu (a+ !)(* +3) 

(3.27) 

3.2.1.1 H2 Problem. The objective of the H2 design is to find an internally 

stabilizing controller which minimizes the response of the system when disturbances and 

noises are present. For this example, the H2 problem is a standard LQG problem. The 

following matrices were chosen in constructing the regulator [DS79]: 

Hx = 4Vb[V35   l]x 
35     x/35 

Qc   =   HTH = 80 
V§5      1 

(3.28) 

(3.29) 
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Rc   =   1 (3.30) 

These choices produce an optimal control law of 

u = -Kcx = -[5Q   10] x (3.31) 

which produces the closed-loop regulator poles 

Ac/ = -7.0±j2.0 (3.32) 

An estimator (i.e., Kaiman Filter) was designed to reconstruct the states.   The following 

matrices were selected for the Kaiman Filter design [DS79]: 

Qf   =   TQ0T
T 

Rf   = 1 

35 

-61 
(1)[35   -61] (3.33) 

(3.34) 

The resulting H2 matrices are as follows: 

B„ 

' 0 1 " 

-3 -4 

" 35 0' 

-61 0 

B, u2 

a = 
Cy2 — 

"0" 

1 

4 * \/5 
"V35    1" 

0      0 

[2 1] 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 
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-*--'?,in       — 

Uyw     — 

-Uyu     — 

"0 0" 

0 0 

[0 1] 

[0] 

(3.40) 

(3.41) 

(3.42) 

3.2.1.2 Hoo Problem. The H<*, problem is a weighted sensitivity minimiza- 

tion problem. It is used to improve tracking performance. The closed loop sensitivity was 

chosen to give good noise rejection, tracking at low frequency and attenuate system response 

to high frequency noise and uncertainties. The H^ problem can be set-up to minimize the 

weighted sensitivity of a system. The sensitivity weight was selected as the inverse of the 

desired sensitivity, given by 

WA = 
s + 12.5 
s + 0.7 

The state space representation of the weight can be written as 

(3.43) 

As = [-0.7 

Bs = [1] 

Ca = [11.0] 

Ds = [1] 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

The resulting H^ matrices are as follows: 

■AQO        — 

Bd 

A2 0 

Bs * Cy2    As 

0 " 

Bs 

(3.48) 

(3.49) 
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-£>uoo (3.50) 
BU2 

0 

Ce   =   [Ds*Cy2   Cs] (3.51) 

Cyoo = [Cy2 0]                                              (3.52) 

Ded = [Ds] (3.53) 

Deu = [0] (3.54) 

Dyd = [1] (3.55) 

DyU = [0] (3.56) 

where the sub-matrices above were given previously. 

3.2.2 Test Example Results. The numerical code, as it was prior to this work, 

was run for this example. The full mixed #2/#oo curve could not be generated. Due to 

numerical problems discussed earlier in this chapter, the lowest 7 level that could be achieved 

was 7=4. The 7 for this problem was found using a routine in MATLAB called HINFSYN. 

The minimum 7 achievable for the third order H^ problem was found to be 7=1.0. The mixed 

#2/#oo controller was run at the order of the H2 problem, which is 2. Thus, 7=1.0 is not 

necessarily achievable at order 2, but as will be seen, it can be reduced to much lower than 4. 

The problem of the multiple singular value peaks was found to be the reason the solution 

close to 7 could not be reached. When the frequency search was divided into two regions, (see 

Figure 3.6), and separate Hoo constraints were set for each region, 7=1.001 was achieved. A 

comparison of the mixed curves before the division for the peaks and after is shown in Figure 

3.7 and Figure 3.8. The step size in 7 was unity. 

The solution time using the method of manually dividing the peaks and running the 

original code was approximately 14 hours. This is an excessive amount of time when consid- 

ering that this was a second order control problem that only required seven design variables 

and had a maximum of two peaks (i.e., two #00 constraints). Also, the number of controllers 

generated in this time frame was only 15. Finally, this method required a manual division 
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Figure 3.6   Singular Value Plot for Test Example 

Figure 3.7   Mixed if2/^oo Curve Original Code 

of peaks by the designer. The division of peaks was relatively simple for this problem since 

there were only two peaks, but for problems that had four or five peaks this manual division 

technique would be very time consuming. 

Another comparison between the old and new method is the maximum number of 

function and gradient evaluations required (see Table 3.1). The old method, when the peaks 

were divided manually, required an average number of function evaluations of approximately 

400 per 7 iteration. The new method required only an average of approximately 10 function 

evaluations per 7 iteration. 
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Figure 3.8   Mixed E2IE00 Curve Improved Code 

Table 3.1   Number of Function and Gradient Evaluations Comparison 

Original Code New Code 
7 NUMFUN NUM GRAD NUMFUN NUM GRAD 
14 88 32 4 4 
13 285 40 4 4 
12 685 65 4 4 
11 344 76 4 4 
10 92 25 4 4 
9 685 64 11 11 
8 689 57 4 4 
7 10 10 5 5 
6 11 11 5 5 
5 11 11 5 5 
4 11 11 5 5 
3 688 58 6 6 
2 12 12 6 6 
1 694 231 119 98 

TOTAL 4305 703 186 165 
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Figure 3.9   Mixed #2/#oo curve with over 150 controllers 

Note that the maximum number of function evaluations per 7 step was set at 700. There 

were five cases in the original code where number of function evaluations was close to 700; 

in these cases, the optimizer was stopped at maximum iterations. The value of the size of 

the line search step for each of these cases was consistently negative, indicating the solution 

to within the specified tolerance would not have been found. Controllers with infinity-norms 

very close to tolerance were generated in this manner. 

Using the improvements discussed in Section 3.1, the run time was reduced from 14 

hours down to 2 minutes as measured in CPU time. The CPU time compared very closely to 

real time when working on a dedicated SPARC20 SUN workstation. Many more controllers 

could also be calculated. The time required to calculate the 150 controllers shown in Figure 

3.9 was 17 CPU minutes. 

33   Summary 

This chapter presented eight general improvements made to the optimization code for 

the mixed H2/Hoo controller design. It discussed how each problem was recognized and a 

solution implemented. These improvements were then tested on a small example to compare 
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improved efficiency. The example shows that a solution for the mixed problem could be 

found very close to 7, where previously this controller could not be found. The mixed 

H-ijUoo controller came very close to the absolute minmum 7, but could not equal it since it 

was computed at an order less than the order of the E^ problem. The example also showed 

that the new code ran approximately 200 times faster than the previous code. This was 

calculated for the example where the frequency search was manually divided and a complete 

mixed curve could be generated. Finally, this example demonstrates the speed in which many 

controllers along the mixed #2/#00 curve could be found. The results showed it took 17 

CPU minutes for 150 controllers to be calculated with the new code and 14 CPU hours for 15 

controllers to be calculated with the old code and the manually divided peaks. 
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TV. F-16 Example 

4.1   Introduction 

The purpose of this chapter is to design mixed E2/E00 controllers for a normal accel- 

eration command following model of the AFTIF-16. This example was first examined by 

Luke [Luk93]. He designed both LQG/LTR and mixed Ä2/-H00 controllers for this problem. 

Luke's study was done to compare the performance of the two controllers and draw conclu- 

sions about the effectiveness of the mixed E2/Eoo design. After completion, it was found 

that the bandwidth for the LTR design was different than the bandwidth for the sensitivity 

weighting of the E^ design. The maximum bandwidth for the LQG/LTR design was 10 

rad/sec, whereas the E^ sensitivity weighting's bandwidth was 1 rad/sec. The objective for 

this thesis was to change the E^ sensitivity weighting's bandwidth to 10 rad/sec, rerun the 

mixed E2/E(X> controllers, and compare them to the LQG/LTR design calculated by Luke. 

Another objective for this example is to examine controllers of orders different than 

that of the E2 problem. Three different order controllers were evaluated. The first was at the 

order of the E2 problem and the second was the order of the #00 problem. Finally, a reduced 

order mixed E2/E(x> controller, which was one order lower than the E2 problem, was also 

evaluated. 

This chapter first defines the F-16 problem set-up in Section 4.2. The mixed E2/Eoo 

controllers for different orders are defined and analyzed in Section 4.3. Finally, the compar- 

isons between the LQG/LTR and the mixed E2/E00 designs are presented in Section 4.4. 

4.2   Problem Set-Up 

This example is a normal acceleration command following model of an AFTI F-16 

flying at sea level, Mach 0.6. The linear model consists of a servo, longitudinal dynamics 

and a delay. This is shown in Figure 4.1. A more detailed model of the F-16 model is shown 

in Figure 4.2 This section will first discuss the state space development for the E2 and #«> 
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Figure 4.2   F-16 Plant 

problems. Next, the noise model used for this example will be developed. Finally, a brief 

description of an LQG/LTR design will be presented. 

The states for the core plant are 

x cp 

U 

a 

0 
(4.1) 

In (4.1), the states, u, a, 0 and, q are perturbations in the forward speed, angle of attack, pitch 

angle, and pitch rate, respectively. All angles and angular rates are in radians and radians/sec 

and velocity is in ft/ sec. 
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4.2.1   Servo.      The servo is modeled as a first order lag with a pole at -20. This is 

represented in transfer function form as 

20 
s + 20 

(4.2) 

This can be written in state space format as 

xSe = [-20]x5e + [20]Se (4.3) 

Se = [l]xSe + [0]Se (4.4) 

4.2.2   Longitudinal Dynamics.     The longitudinal dynamics of the F-16 at sea level 

flying at Mach 0.6 were obtained from Baird [Bai92]. 

bcp 

-0.0015 37.382 -32.200 -17.940 

-0.0001 -1.4910 -0.0013 0.9960 

0     0     0 1.0000 

-0.0004 9.7530 0.0003 -0.9600 

&Cp     I 

0.0021 

-0.1880 

0 

-19.0400 

(4.5) 

Nz = 0.0015   35.2640   0.0272   -0.3340 xcp + [-4.3660]<5e (4.6) 

4.23   Time Delay.      For the time delay, a period of 0.05 seconds is chosen, which 

leads to a first order Pad6 approximation transfer function of 

Nz      40 - s 
N: Z9 s + 40 

(4.7) 

The corresponding state space representation of the delay is 

xd=[-40]xd + [l]Nz, (4.8) 

Nz = [80]zd + [-1]^ (4.9) 

4-3 



4.2.4 Complete State Space. The servo, longitudinal dynamics, and delay can be 

combined into one complete state space. The states xcp represent those for the core plant 

(the longitudinal dynamics). The states xSe represents those for the servo, and the states Xd 

represent those for the time delay. 

•"Op 

xse 

id 

'■cp BcpCse       0 

0 ASe 0 

BdCcp   BdDCpCge   Ad 

Xcp 

Xd 

+ 
BcpDse 

BSe 

BdDcpDse 

(4.10) 

Nt "del DdCcp   DdDCpCse   Cd 

X cp 

xse 

Xd 

+ [DdDcpDs^ ec 

or, substituting in the values, 

-0.0015 37.3820 -32.2000 -17.9400 0.0021 

-0.0001 -1.4910 -0.0013 0.9960 -0.1880 

0     0      0 1.0000    0 

-0.0004 9.7530  0.0003 -0.9600 -19.040 

0 0 0 0 -20 

0 

0 

0 

0 

0 

0.0015  35.2640  0.0272  -0.3340 -4.366 -40.000 

N: 2de! -0.0015 -35.264 -0.0272 0.3340 4.3360 80.000 

xp+ 

(4.11) 

0 

0 

0 

0 

20 

0 
(4.12) 

xp + [0]<5ec (4.13) 

4.2.5 Noise. The noise models for the LQG/LTR design are given in this subsection. 

These noises were used in all simulations. The noises introduced in this system were wind 

gusts and sensor noise. The wind gusts were introduced as perturbations in angle of attack. 

They were modeled as UWGN inputs that were then filtered. The sensor noise, which entered 

at the output of the plant, was also modeled as a filtered UWGN. 
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The filter used for the wind gust was developed by Baird [Bai92]. It is a low pass filter 

which cuts off at 6.7 rad/sec. The filter in transfer function form is 

, .     w      0.0187 
G«s,so(*) = J = J^J (4-14) 

The sensor noise filter was designed to closely match the assumed error in measuring 

a 1 G response. This assumed error was ± 0.04Gs or 4 percent. The filter is high pass with 

scaling to adjust the rms to 0.04. The filter in transfer function form is 

n      0.04(s + 0.01) 
Gnsiso(s) = -=    lQ{s + 1Q) (4.15) 

4.2.6 LQGILTR Design. A brief discussion of Luke's [Luk93] LQG/LTR design 

is given here. This background is presented so that the design process for LQG/LTR is 

understood when comparing the mixed H2/Hoo controller to the LQG/LTR controller. For 

details on this design see [Luk93]. 

The first step in the design process is to develop a desired loop shape. A loop shape 

was chosen that had a maximum bandwidth of 10 radians/sec and a 20 dB/decade roll-off at 

bandwidth. In order to make the loop shape meet the specified barriers, a bank of integrators 

is added to the design plant. These integrators increase the order of the controller by two. 

The next step was to design the Kaiman filter and the regulator. The design parameters 

H, p, A and ß (which are the state weighting, the control weighting, the process noise distri- 

bution matrix, and the sensor noise intensity, respectively) were chosen by Luke [Luk93].The 

design variable H was set equal to the C matrix of the plant, p=l, A was set equal to the 

second column in the A matrix, and fi was chosen to be 100. The variable that affects recovery, 

q, was varied, with q = 1000 chosen. The resulting controller will be compared with mixed 

#2/#oo controller designs in Section 4.4. 
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4.3   Mixed 112/Hoo Controller Design 

The mixed H2/Hoo controller design method allows the designer to choose levels of 

tracking and noise rejection performance. The objective for this example is to calculate mixed 

Hi/Hoo curves for different orders of the controller, and then compare their performance. 

The mixed controller designs at different orders will also be compared to the LQG/LTR 

design from the previous section. The mixed design is developed using the updated numerical 

optimization code discussed in Chapter 3. This section is broken into five parts. First, the H2 

and Hoo problems are developed. Then different controller orders are analyzed for the mixed 

#2/#oo design. The first controller order evaluated is the order of the H2 plant. Next the 

mixed #2/#00 controller with order of the H^ plant is examined, and finally, a reduced order 

controller one order less than the H2 problem is analyzed. 

4.3.1 H2 Problem. The minimum order of the mixed -ff2/#oo controller for which 

strong statements can be made about its characteristics is driven by the order of the H2 plant. 

Therefore, the designer may wish to keep the order of the H2 problem as low as possible. To 

keep the order as low as possible, it is best to use static weights on z and w. When static 

weights are used, the H2 problem then becomes the standard LQG problem. This means the 

filters used for the noise will attenuate all frequencies equally. The values chosen for the static 

gains were C?o=0.0028 for the process noise (i.e. wind) and i?/=0.004 for the sensor noise. 

The control weighting chosen was RC=100 and H was chosen equal to the C matrix of the 

plant. The vector T corresponds to the column in the plant A matrix that multiplies the a 

state. The value A is equal to 1. 

The H2 problem for this example can then be written as 

Xp 

id 

A2 

Ap BpCa 0 

0 Aa 0 

BdCp BdDpCa Ad _ 

Xp 

Xd 

Bw 

T^/Q: 0 
+ 0   0 

0   0 

B. U2 

Wi 

w2 

+ 
BdDa 

Ba 

BdDpDa 
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Z2 

DdCp   DiDpCa   Cd 

The full state space matrices are in Appendix A. 

43.2 Hoc Problem. The tracking performance of the ifoo controller for a step input 

is based on the weighting put on the system sensitivity. Usually this weighting is chosen to be 

the inverse of the desired sensitivity. Since a bandwidth of close to 10 rad/sec was required to 

compare to the LQG/LTR design, the weighting chosen was 

W.(s) = 
s + 8.0001 

(4.16) 
s + 0.0001 

Figure 4.3 shows that the loop shape meets the boundaries chosen for the target loop shape. 

In state space the weight can be written as 

A, = [-0.0001]     Bs = [l]     CS = [S]     D. = [l] 

Now, with the sensitivity weight added to the i/<x> system, the resulting complete H0 

state space matrices can be written as 
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Figure 4.3   Target Loop Shape for #00 Problem 
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0       0 

Ad      0 
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*"p 0 

Xa 

Xd 

+ 
0 

0 
d+ 

X s Bs 

BdDa 
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a 
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+ 
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The full state space matrices for this example are in Appendix A. Since the sensitivity weight 

added to this problem is not strictly proper, the Ded term is not zero. Also, Deu=Q, which 

means the problem is singular. However, from Walker's development [Wal94] there is no 

requirement for Ded to be zero and singular H^ problems are allowed. 

433 H2 Order Mixed H2I#00 Solution. The optimization routine was initiated at 

the H2 optimal design. The calculation of the H2 order mixed controller previously required 

days to compute only six points on the mixed H2/Hoo curve. The new code generated over 

150 controllers in less than 3 hours. A plot of the mixed curve is shown in Figure 4.4. 

Note that the lowest value of 7 achieved for this example was 1.361. The minimum 

value of 7 found for the H«, problem, which is one order higher than the H2 order, was 
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Figure 4.5   Sensitivity of Closed Loop System : Dashed Line - Target Loop Shape (Order 

7=1.3201. This value should not be expected to be achieved, since this is for a controller of 

the #oo order. As the order of the controller is decreased, 7 increases. 

Sensitivity curves for this problem are plotted in Figure 4.5. This shows the trade-off 

between H2 and Hoo. As 7 is decreased, the H<*, part of the problem becomes more dominant 

and the sensitivity plot approaches the target loop shape, (i.e., the dashed line on Figure 4.5). 

The margins for the problem can be found using this plot. Notice the peak is relatively low 

indicating good margins. 

4.3.4 Hoo Order Mixed i^/i/oo Solution. Since the optimal value of 7 at the H^ 

order of the plant is known to be 1.3201, the optimizer at this order should get very close to 

this value. It was desired to look at the effect of performance of a mixed controller as close 

as possible to this optimal 7 level. The optimization code must be started with a controller of 

the appropriate order. The previously generated controllers have order one less than required 

here. The order of the controller can be increased to provide an acceptable starting point by 

adding a near pole-zero cancellation or by adding a pole beyond the bandwidth of the system. 

The second approach was chosen. A lag was added to a controller found for the H2 order 
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Figure 4.6   Singular Value Plot During Optimization (Order Hoo) 

problem with a 7=1.5. Consequently, the lag increased 7 for the starting controller from 7=1.5 

to 7=1.58. This lag was 

1000 
(4.17) 

s + 1000 

Running the optimization code at the order of the H^ problem should allow the optimizer to 

get very close to the optimal 7 level. The final 7 level achieved for this problem was 1.331. 

Figure 4.6 shows the resulting singular value plot of the closed loop system for 7=1.331. 

There were six peaks constrained for that singular value plot. It should be noted how flat the 

singular value plot has become. A plot of the mixed H-ijHcx, curve at the H^ order for the 

controller is shown in Figure 4.7. 

The sensitivity plot for this order controller shows that the low frequency dip is removed 

as 7 is decreased. It also shows the higher frequency dip in the sensitivity is not removed. 

This plot is given in Figure 4.8. 

43.5   Reduced Order #2/#oo Solution.     The final question is what is the controller 

performance when the order of the controller is reduced from H2 optimal. A direct technique 
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was used to reduce the order of the controller. This was accomplished by running the 

MATLAB function 'SCHMR'. This function uses the Schur method for model reduction. 

The function SCHMR constrains the infinity-norm of the difference between the original and 

reduced transfer functions to be less than a specified value. The designer also has the option of 

choosing the order of the reduced transfer function. There is no guarantee that the controller is 
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stabilizing after this model reduction routine has been performed. The reduced order controller 

was formed from a mixed H2/Hoo design that was the order of the H2 problem. This controller 

had a 7=2000 and o=1.156. This controller was found to be both stable and stabilizing for 

the closed loop system. The mixed H2/Hoo curve for the reduced order problem is shown in 

Figure 4.9. The point on the graph marked with an 'o' was the starting point for the reduced 

order controller. At this point, the two-norm was 1.725 and the infinity-norm was 2000. Note 

the infinity-norm did not change from the sixth order controller to the fifth order. The optimum 

two-norm value was found for this controller by setting the 7 step level equal to zero and 

letting the optimizer find the controller with the lowest two-norm. The optimum two-norm 

for the starting controller is marked by a '*' on Figure 4.9 at a value of 1.156. 

The H2 optimal controller at orders less than the plant is no longer unique. There may 

be many different controllers at this order that give the same H2 norm, but may have different 

#00 norms for Te(j. No attempt was made to find an optimal reduced order H2 controller here; 

rather, the starting point described above was used. 

A plot of the closed loop sensitivity is shown in Figure 4.10. The sensitivity plot for 

reduced order shows a slight improvement from the H2 order in being able to match the target 

4-13 



Sensitivity F-16 PhugokJ 
20 

-120- 

-140- 

10^ 10~ 10^ 10" 10' 10" 
Frequency 

Figure 4.10   Sensitivity of Closed Loop System (Order Reduced) 

loop shape. The phugoid dip in the sensitivity plot is removed completely at the lowest 7 

controller for the reduced design. The H2 order sensitivity plot shows the short period dip 

still remains at the lowest 7 level achieved. 

4.4   Comparison of Controller Designs 

Each of the mixed #2/#00 designs was compared to the LQG/LTR design discussed 

in Section 4.2.6. Simulations were run on MATLAB SIMULINK. Comparisons were made 

for each controller's closed-loop response to a unit step and an initial 5 degree perturbation in 

angle of attack. 

4.4.1 Mixed H2 Order vs LQG/LTR . This section presents the comparison of the 

LQG/LTR controller versus the H2 order mixed E2jEcx, controller. Figure 4.11 shows the 

mixed curve for the H2 order controller. The LQG controller is shown with the symbol '0' 

in Figure 4.11. Note that the LQG two-norm is higher than that of H2; this is due to the 

augmented integrators in the LQG design. Since Loop Transfer Recover techniques were 

used to improve the tracking of the LQG design, the LQG/LTR design is shown on the mixed 
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Figure 4.12   Mix #2/#oo Curve with LQG/LTR design (Order H2) 

-S2/Ä00 curve in Figure 4.12. It is important to note that the LQG and LQG/LTR designs are 

eighth order where the mixed design shown here is sixth order. 

Figure 4.12 shows that the eighth order LQG/LTR controller can be improved in both 

noise performance and tracking compared to the mixed 6th order controller. The LQG/LTR 

design resulted in a=1.58 and 7=551.88. A mixed controller was chosen which resulted in 
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Table 4.1   Gain and Phase Margin Comparison (H2 Order) 

Mixed #2/#oo 
VGMs (dB) VPMs (deg) VGMt(dB) VPMt(deg) Total VGM (dB) Total VPM (deg) 

[-4.4 9.8] ±39.5 [-10.3 4.5] ±40.8 [-10.3 9.8] ±40.8 

LQG/LTR 
VGMs (dB) VPMs (deg) VGMt (dB) VPMt(deg) Total VGM (dB) Total VPM (deg) 
[-4.6 10.6] ±41.35 [-6.5 3.7] ±30.8 [-6.5 10.6] ±41.35 

a=1.76 and 7=1.5 to compare to the LQG/LTR design. The gain and phase margins were 

calculated for the mixed E2fH^ controller and the LQG/LTR controller, and are shown in 

Table 4.1. The total phase margins are virtually the same for both controllers, but the mixed 

H-i/H^ total gain margins are slightly better than LQG/LTR. 

Figure 4.13 shows the response of both controllers for an initial 5 degree perturbation 

in angle of attack and a 1 G unit step in Nz. The noise characteristics look about the same but 

the mixed H2/Hoo controller is a better tracker. The mixed controller takes less time to settle 

for the response to an initial five degree angle of attack. It also shows less of an overshoot for 

the step-response. 

4.4.2 Mixed H^ Order vs LQG/LTR. The mixed H2 /i?«* curve at the order of the 

-ffoo problem is shown in Figure 4.14. The point 'o' on the curve is the LQG/LTR 8th order 

design. As in the previous example, there is a mixed design at 7th order that improves the 

two-norm and infinity-norm of the system compared to the LQG/LTR controller. The mixed 

controller chosen for comparison produced a two-norm equal to 1.66 and an infinity-norm 

equal to 1.5. The gain and phase margins were calculated for the mixed H2/Hoo controller. 

These are in Table 4.2. The margins for Hoo order are approximately the same as the margins 

for H2 order. 

The response of the mixed design at if«, order is shown in Figure 4.15. The response 

of the mixed design demonstrates better performance than the LQG/LTR design. The mixed 
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Figure 4.13   Responses of Mixed #2/#oo (Order H2) (dash) vs LQG/LTR (solid) 

Table 4.2   Gain and Phase Margin Comparison (Hoo Order) 

Mixed #2/#oo 
VGMs(dB) VPMs(deg) VGMt(dB) VPMt(deg) Total VGM (dB) Total VPM (deg) 

[-4.4 9.6] ±39.2 [-10.3 4.5] ±40.7 [-10.3 9.6] ±40.7 

LQG/LTR 
VGMs (dB) VPMs (deg) VGMt (dB) VPMt(deg) Total VGM (dB) Total VPM (deg) 
[-4.6 10.6] ± 41.35 [-6.5 3.7] ±30.8 [-6.5 10.6] 41.35 
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Figure 4.14   Mix H2 /#«> Curve with LQG/LTR design (Order #<*,) 

controller, as in the H2 order, has a quicker settling time for the initial condition and less of an 

overshoot for the step response. The noise performance is approximately the same. Overall, 

there is no real benefit in using the #oo order versus the H2 order mixed controller. 

4.43 Mixed Reduced Order vs LQG/LTR . The mixed H2/#«> curve for one order 

lower than the H2 problem (order 5) is shown in Figure 4.16. The mixed controller chosen for 

comparison gave a two-norm of 1.89 and an infinity-norm of 1.59. The LQG/LTR design is 

also plotted on this curve for comparison purposes. It can be seen that even at this lower order 

for the mixed controller the two-norm and infinity-norm can be improved over the LQG/LTR 

design. The gain and phase margins were also calculated for this mixed reduced order H2 /Hoo 

controller. They are in Table 4.3. Both the gain and phase margins are slightly better for the 

LQG/LTR design than the mixed #2/#00 design. The lower order mixed margins are slightly 

worse than the H2 and H^ order margins with little degradation in tracking performance. 

This was expected at reduced order. 

The response performance for the reduced order controller versus the LQG/LTR design 

is shown in Figure 4.17. This shows that the mixed design has a faster response time to an 

initial input of a 5 degree alpha command and the unit step response to a 1 G input of Nz has 
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Figure 4.15   Responses of Mixed #2/#oo (Order H^) (dash) vs LQG/LTR (solid) 

Table 4.3   Gain and Phase Margin Comparison (5th Order) 

Mixed H2/H0 

VGMs (dB) VPMs (deg) VGMt(dB) VPMt (deg) Total VGM (dB) Total VPM (deg) 
[-4.3 9.23] ±38.2 [-9.9 4.5] ±39.8 [-9.9 4.5] ±39.8 

LQG/LTR 
VGMs (dB) VPMs (deg) VGMt(dB) VPMt (deg) Total VGM (dB) Total VPM (deg) 
[-4.6 10.6] ± 41.35 [-6.5 3.7] ±30.8 [-6.5 10.6] ± 41.35 
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Figure 4.16   Mix HijHeo Curve with LQG design (Reduced Order) 

less overshoot. This mixed H2/Hoo design of order five performs better than the LQG/LTR 

design of order eight. 

4.4.4 Summary of Comparisons. The purpose of this example was to determine 

the effectiveness of mixed H2/Hoo optimization versus LQG/LTR for a real-world example. 

The results from this example show the mixed approach is better than LQG/LTR design 

method. This example demonstrated that the.mixed EijH^ controller at three orders less 

than the LQG/LTR design is a better tracker. The noise response for the different order mixed 

controllers versus the LQG/LTR remained relatively the same. The optimal infinity-norm at 

seventh order was 1.33, sixth order was 1.36 and fifth order was 1.59. This similar noise and 

tracking response between the different order controllers is due to choosing mixed controllers 

with the same approximate two-norm and infinity-norm. Although this was not done by 

design, the infinity-norm for the mixed controllers was 1.5,1.5 and 1.59. The two-norm for 

the designs chosen were 1.66,1.76 and 1.89 for seventh, sixth and fifth order mixed #2/#<x> 

controllers. Each choice was based on achieving the best two-norm and infinity-norm for that 

particular curve. 
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The results presented in this chapter also demonstrate the improvement in the E^jE^ 

optimization code. This optimization improvement provides the capability to trade off E2 and 

#oo objectives for the entire mixed E^fE^ curve. Previously the mixed solution could not 

generate enough of the curve in the region of the #<*> optimal mixed solution to examine the 

full tradeoff. 

The results of this example showed improvement in performance at lower order con- 

trollers. The results also demonstrated the improved numeric capability to generate the full 

mixed EijE^ curve in significantly less time than was previously required.  These were 
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important for a SISO example; however, these improvements become much more significant 

for a MIMO example. The missile MIMO problem is addressed in Chapter V. 
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V. MIMO Example 

The control problem discussed in this chapter is for an air-to-air missile that uses tail- 

control fins. The purpose of this chapter is to design a mixed E2fEoa controller for this 

example and then compare that design to a LQG/LTR design previously completed by Brown 

[Bro91]. The mixed E2IE00 design was attempted with the previous optimization code, but 

due to numerical difficulties no results could be generated. The improved optimization code 

was applied to this MIMO problem to test its effectiveness. The full E2(E^ curves could be 

generated for this problem. Since the goal is to make a comparison between the LQG/LTR 

and the mixed controller designs, this example concentrates on one point in the missile flight 

envelope. 

5.1   Background 

The added challenge of the controller design for this example is that the plant is non- 

minimum phase with lightly damped complex poles. Although this is usually a difficult 

problem for LQG/LTR, Brown successfully calculated the LQG/LTR controller using the 

method of eigenstructure reassignment through static feedback. This static feedback matrix 

does not add to the dimension of the plant, therefore keeping the controller order at a minimum. 

Eigenstructure reassignment was used first on the plant to shift the poles and then LQG/LTR 

was applied to the problem. This method proved beneficial to the design. 

5.7.7 Eigenstructure reassignment. It has been shown by Andry [ASC83] that 

complete pole reassignment is possible if the system is completely observable, completely 

controllable, andra<r + ra-l where n is the order of the system, r is the number of inputs, 

and m is the number of outputs. This missile MIMO example did not require all the poles 

to be moved. A method developed in [Bro91] allows a limited number of the system's poles 

to be reassigned with the remaining poles drifting to unassigned positions. This method also 

allows arbitrary assignment of portions of the system's eigenvectors. 
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The method begins with the state space representation of a completely controllable 

completely observable system. 

x   =   Ax + Bu 
(5.1) 

y   =   Cx 

where A is of rank n, B is rank ra, and C is rank r. Note this development assumes that there 

is no D matrix. 

The problem then is to calculate a constant gain matrix Kstat that has dimensions mxr, 

which will reassign the poles through inner loop feedback. The state space equation with 

Kstat is now 

x   =   [A + BKstatC]x + Bu 
(5.2) 

y   =   Cx 

5.1.2 Eigenvector assignability. The definition of eigenvector assignability was 

addressed by Andry [ASC83]. He discusses the extent of possible eigenvector specification 

for the closed-loop system. The definition of the eigenvalue, eigenvector pair (A, and v4) is 

given as: 

[A + BKstatC]vi = Xi\/i (5.3) 

or, rearranged, 

Mi = [Xil - A]'1 BKstatCvi (5.4) 

It is required, from the development, that the eivenvector v, must lie in the subspace 

spanned by the columns of [A,/ - A]~1B which is rank B. Since the desired eigenvector will 

probably not be in the exact subspace defined an achievable eigenvector is calculated by a 

projection of the desired vector onto the subspace spanned by the columns of [Xil — A]B. 

Only some of the components of the eigenvector are reassignable. The desired 

assignable components are chosen by the designer to try to affect performance goals. The de- 
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sired eigenvector can be reordered to contain the assignable components at the top of the vector 

and the unassignable components at the bottom of the vector. This allows the calculation of 

the assignable eigenvector. 

5.13 K3tat Calculation. The gain matrix Kstat is developed assuming the eigen- 

vectors are in the assignable general subspace. The process of forming Kstat begins by 

transforming the system so that the B matrix becomes: 

B^B' 

[h 

[0] 

(5.5) 

A similarity transformation matrix, T, is formed such that 

x = Tx' (5.6) 

where 

T [B]   i   [P] (5.7) 

This similarity transformation allows the eigenvalues of the system to be unchanged but the 

eigenvectors have been transformed by: 

v' = T-Xv (5.8) 

The equation for the closed-loop eigenvalues and eigenvectors written in partitioned form 

becomes 

[\ilm - An] [-Ai] 

[ 431] [Kln-m ~ A22] 

\ [m] ' 

[ M _ 
= 

'  [Im]  ' 

.    [°1    . 
Kstaf£ (5.9) 
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Au : A 11 • -^12 the equation can be Using the top equation, rearranging and defining -4i = 

written as 

[Ai + KnafilVi^XiTli (5.10) 

This equation must be true for all eigenvalue/assignable eigenvector pairs. Rearranging (5.10) 

and solving for Kstat gives the equation 

Krtot = [N - AW] [CW]-1 (5.11) 

5.2   Missile Model 

The missile is assumed rigid and the missile's airframe dynamics are modeled using six 

state variables; u, a, ß, p, q, and r. These variables represent forward velocity in feet/second, 

angle of attack in the missile's pitch-plane in radians, sideslip angle in radians, roll rate, pitch 

rate, and yaw rate in radians/second. The model is driven by four fin inputs: Si, S2,63, and 64. 

The outputs are p, q, r, Nx, Ny, and Nz. The outputs p, q and r are measurements from the 

rate gyros of roll, pitch and yaw respectively. The terms Nx, Ny and Nz are accelerometer 

measurements from the rate gyros in the x, y and z directions repsectively. 

Brown developed the linearized equations of motion for this problem. The linearized 

equations were compared to the sponsor's six degree of freedom (6-DOF) model. Overall, 

it was determined that the linearized model was adequate for the LQG/LTR study. These 

equations of motion were put into standard state space format using the notation 

Ax+ Bu 

Cx + Du (5.12) 

5-4 



v- 
KsTAT 

KLQG -» s J> G 

Figure 5.1   Schematic of Closed-Loop System for Missile 

where 

u p 

a *i q 

ß 

P 
, u = 

82 

s3 
, y = 

r 

Nx 

1 . V Ny 
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The A, B and C matrices for this problem are shown in Appendix B. 

53   LQGILTR Design 

The design process includes evaluating performance boundaries, evaluating the need for 

augmenting the plant with integrators, eigenstructure reassignment and the filter and regulator 

design. The closed-loop system can be represented by Figure 5.1. The inputs to Kstat are p, 

q, r, Ny and Nz. The output of Kstat is then fed directly into the plant before the bank of 

integrators. The performance bounds for this design include a 68 percent rise time in normal 

acceleration within 200ms. Another requirement is minimum overshoot. A final requirement 

is zero steady state error for a step input. 
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The system response equation was then defined by Brown. The particular quantities 

that were to be controlled were roll rate(p), y-axis acceleration (Ny) and z-axis accleration 

(Nz). This is a subset of the system outputs. Defining the response equation in this manner 

effectively discards the output information of the two states. The system response equation is: 

Hx = 

P 

Ny 

Nz 

(5.13) 

Order reduction of the problem was first accomplished by recognizing that the first state, 

u was totally decoupled from the other states and did not appear in any of the equations for 

the system response inputs. Therefore, the linear model could be reduced by one state. This 

was done by eliminating the rows in the state space A, B, and C matrices that corresponded 

with the state u. Finally an order reduction in the plant was achieved by reducing the order of 

the model of the actuator dynamics. The actuator dynamics of the missile can be modeled as 

where 

Vm     =     t^m T Lsm^m 

Si 

s2 

S3 

S4 

(5.14) 

Um  = (5.15) 

Brown reduced the order of the actuator models. The original model presented by the 

sponsor was second order with high damping (( = 0.8) and undamped natural frequency 

of 408 rad/sec. He showed that a useful approximation of this actuator was a first order 

model with the pole at s=-400. The state space representation of the plant augmented with the 
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actuators is given as: 

Xj7l •r^m BmCa "m + 
0 

Xa 0 A     \ Xa Be 

ym   = c V c 
Xm 

^ Xa 

(5.16) 

The four fin deflections (#i through 84) were expressed in standard fin deflections 

(6p, Sg, 8r). These were the required fin deflections to produce roll-rate, pitch-rate, and yaw- 

rate respectively. The transformation from four inputs to three was done by mixing the fin 

deflections accordingly 

8i 

83 

84 

0 -1 
8p 

-1 Ü 
*i u -1 
Sr 

-1 Ü L            J 

(5.17) 

53.1 Design for Condition 7. Flight condition 7 represents the missile flying at 

Mach 2 near sea level. Brown did this design both with and without eigenstructure reassign- 

ment. This discussion will only present the design with the eigenstructure reassignment since 

that design performed better. 

The eigenvector reassignment was done with a goal of achieving specific relationships 

between the states. Reassigning the defined components for the eigenvectors is the same for 

each flight condition. The one real pole was moved to the left slightly to keep gains low. The 

two complex pairs of poles were moved slightly to the left, increasing the natural frequency 

and particularly the damping. Original poles (-1.6, —1.22 ± j 13.9 and —1.31 ± j 14.0). The 

new poles were (-2, -15 ± J15.0 and -15 ± J15.0). 
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The filter was designed with a value of ^=3000 to accomplish a 30 dB lowering of the 

singular value plot. The controller design used 92=10000 to get the best loop shape. This 

design only slightly violated the left boundary for the loop shape. 

5.4   Mixed H2/Hoo Design 

The mixed H2/Hoo design was approached in two ways. The first formulation follows 

Brown's LQG/LTR design method where two of the five outputs are discarded. The two 

measurements not used were q and r. This will be referred to as the 3x3 MIMO problem. The 

second approach is not to ignore the other two measurements and include them in the mixed 

H2/Hoo design. This will be called the 5x3 MIMO problem. 

The LQG/LTR design by Brown is 14th order, where the plant to be controlled is eighth 

order. Since the mixed #2/#co design is the same order of the plant of the H2 problem, the 

resulting controller will be order eight. 

5.4.1 3x3 MIMO Example. This development ignores two measurements. This 

problem is broken into the separate H2 and i/oo problems. 

5.4.1.1 H2 Problem. The goal of the H2 problem is to keep the order of the 

problem as low as possible since that will be the order of the controller for the mixed design. 

The weights that will be used are static and again as in the SISO example the set-up becomes 

the standard LQG problem. The order for the H2 problem is then eight. 

The weight chosen for the LQG design was H = Cpiant, so that Qc = HTH. The 

control weighting Rc was equally weighted for each fin. This was done due to the fact that 

the missile is symmetric about its longitudinal axis. Thus, Rc = pi where />=5000 for this 

design. 

The Kaiman filter design used MIMO noise models. These models were developed in 

the same way as the SISO noise model development in Chapter 4. The difference between the 

wind noise model for the SISO problem and the noise model for the MIMO problem was that 
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a perturbation in ß must also be added. The process noise was modeled as 

G WMIMO 

2xl0"3       0 

0       2xl0"4 
(5.18) 

and no filter dynamics were added. The sensor noise was developed in exactly the same way 

as the SISO problem. The sensor noise model used was 

Gn 

U.l 

(32)(57.3) 0 0 Ü u 

n 

V 

0 

0 

0.1 0 
0.1 

0 

0 

0 

0 

(32)(57.3) 

0 nMIMO (32)(57.3) 

0 0 0 0.04 
32 0 

0 0 0 0 0.04 
32 

The Kaiman filter design then used 

(5.19) 

tyo  —   ^WMIMO^WMIMO 

The H2 problem is formulated as 

B„ B. 

+ 

a 

Ty/Q~0     0 

D% 

WA 

WB 

«2 

+ B„ 

Dz 

ZA H r            -I 0   0 WA 0 
= + + 

. ZB  . 0 L            J 0   0 wB \JRC 

(5.20) 

(5.21) 

(5.22) 

(5.23) 
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a S/2 D yw D, yu 

G« Xr. + 0  JRf 
wA 

WB 

+ D„ (5.24) 

Appendix B contains the full state space matrices. 

5.4.1.2 Hoc Problem. The sensitivity weighting used for the H^ problem 

was derived by the specifications used by Brown in designing the LQG/LTR controller. This 

ensures a better one-for-one comparison between the two methods. The target loop transfer 

function chosen was 

G(s)K(s) 
20 

s + 0.0001 

the sensitivity weighting matrix can be written as 

W,(s) = 

the state space representation of this weighting matrix is given by 

«+20.0001 
s+O.OOOl 0 0 

0 s+20.0001 
s+O.OOOl 0 

0 0 s+20.0001 
s+O.OOOl 

AWs = 

-0.0001 0 0 

0 -0.0001 0 

0 0 -0.0001 

BWs = 

1 0 0 

0 1 0 

0 0 1 

cv, = 
20 0 0 

0 20 0 

0 0 20 

Dw.= 

1 0 0 

0 1 0 

0 0 1 

(5.25) 

(5.26) 

5-10 



The Hoo part of the 3x3 MIMO problem is then 

X e Bs(^m 

0 

A, 

BA BUo 

•E"tn 
+ 

0 
d + 

Bm 

X$ [BS\ BsDm 

(5.27) 

Ce 

e = URLim    G« 

c, Moo 

y Cm      0 

X-m 

X s 

Xm 

X 5 

+ 

£>eci 

£>., 

De 

d + DaDn (5.28) 

D i/d D yu 

+ d + Dn (5.29) 

The order of the H^ problem is 11.  The values in the state space matrices are given in 

Appendix B. 

5.4.2 5x3 MIMO Example. This set-up uses all five measurements of the system. It 

is very similar to the 3x3 MIMO set-up. The H2 design is exactly the same as the 3x3 MIMO 

problem. The same values for H, Qc, Rc, Q0 and Rj were used. The only difference is that 

the C matrix for the plant now has five measurements. 

5.4.2.1 Hoo Problem. The most significant difference between the 5x3 

MIMO design and the 3x3 MIMO design is the weighting matrix used. The five outputs make 

the weighting matrix 5x5, but the requirements for tracking haven't changed. There is no 

requirement to track pitch and yaw rates (q and r); therefore, the sensitivity weights for q and 

r are set to one. These measurements will then be used for margin control only and not to 

improve the tracking. The weighting matrix Ws is then 
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W.{s) 

s+20.0001 
s+0.0001 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 s+20.0001 
s+0.0001 0 

0 0 0 0 s+20.0001 
s+0.0001 

this can be represented in state space format as 

AWs = 

-0.0001 0 0 

0 -0.0001 0 

0 0 -0.0001 

Bws 

1 0 0   0 0 

0 0 0   1 0 

0 0 0   0 1 

a ws 

20 0 0 

0 0 0 

0 0 0 

0 20 0 

0 0 20 

D w, 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

The set-up for the H^ problem is symbolically the same as the 3x3 MIMO problem. The 

weight changed but the order of the i/oo problem remained 11 since the two weights added 

were static. The state space matrices with numerical values for this problem are located in 

Appendix C. 

5.5   Mixed H2 /i/oo Controller Results 

The optimization of this problem is more difficult than the SISO problem due to the 

number of design variables. The SISO problem, at the order of the H2 problem, has 23 design 

variables. The MIMO 3x3 case has 63 design variables. The MIMO 5x3 case has 79 design 

variables. The increase in the number of design variables from the 3x3 to the 5x3 is caused 
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X10 

Figure 5.2   Mixed #2/#oo Curve (3x3 MIMO) 

by the increased size of the controller C matrix due to the two additional measurements. No 

mixed H^/H^ controllers were able to be found using the original optimization code. Both of 

these problems have been run using the improved optimization code and full H-ilH^ curves 

were generated for both examples. The mixed curves along with the sensitivity plots are 

presented in this section. 

5.5.1 3x3 Mixed H^/H^ Controller Design. The mixed H2 /#oo controller design 

for this problem was initialized at the H2 controller. The order of this controller is eight. 

This 3x3 MIMO example is what will be used to compare to the LQG/LTR design since 

two measurements were not used for either design case. The mixed #2/#oo curve for this 

problem is shown in Figure 5.2. The minimum 7 achieved for this problem was 202.85. The 

minimum absolute 7 for the problem with an 11th order controller is 1.783. The minimum 7 

at 8th order was expected to be much closer to 1.783. This could be due to two factors; 1) the 

optimization routine is stuck in a local minimum of the design space and can not move away 

from that point or 2) the MATLAB 'CONSTR' can not handle the numerics of the problem at 

that point in the mixed H^/H^ design space. 
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Figure 5.3   Singular Value Plot (3x3 MEMO) 

The singular value plot of the closed-loop sensitivity approaches the target sensitivity 

as 7 approaches 7 for the system. This is shown in Figure 5.3. The controller with 7=202.85 

produced approximately the same shape for the sensitivity plot as the inverse of the weight, 

but the plot was shifted up by about 30 dB. This indicates the tracking performance will be less 

than desired. Also, higher values of 7 produced sensitivity plots closer to the target sensitivity. 

5.5.2 5x3 Mixed iy2/#oo Controller Design. The mixed E2fE^ controller design 

for this problem was started at the E2 controller. The order of this controller is eight. This 

design contains all five outputs. The mixed E2/Eoo curve for this problem is shown in Figure 

5.4. The minimum 7 achieved for this problem was 346. 

The maximum singular value of the sensitivity approaches the target sensitivity as 7 

nears the optimal value for the system. This is shown in Figure 5.5. The controller with an 

7 equal to 346 produced the sensitivity curve that has the same shape as the target sensitivity, 

but is shifted up by about 30 dB. 
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Figure 5.5   Singular Value Plot (5x3 MEMO) 

5.6   Comparison of Mixed H2 / H^ controller designs to LQGILTR 

The mixed ^/-ooo controller with a 7=202.85 was simulated for a lateral acceleration 

command of 1 G. The simulation showed the tracking performance to be very poor. A 

simulation of the three outputs for a 1 G step in Ny is shown in Figure 5.6. The LQG/LTR 
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Figure 5.6   Response of system to 1 G Ny step (Mixed E^jE^ Controller) 
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Figure 5.7   Response of system to 1 G Ny step (LQG/LTR Controller) 

controller with Kstat design for the same step input produced very good tracking, as shown in 

Figure 5.7. 

5.6.1    Comparison of Mixed H2 jE^ with Kstat to LQG/LTR.     The mixed E2 /E^ 

design was done for the original missile plant with the non-minimum phase zeros and the 
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Figure 5.8   Response of system with Kstat to a 1 G Ny step (i/oo Optimal Controller) 

lightly damped poles. This is a very hard plant to control. Brown used the static gain matrix 

to move the poles of the system. Brown's study showed that without moving the poles, the 

LQG/LTR controller did not perform well. Therefore, the next step was to check the i/oo 

optimal controller design for the modified plant, (i.e., with the static gain closed in a loop with 

the plant). The simulation of the controller showed very good tracking performance. This is 

shown in Figure 5.8. The optimal H^ controller order, however, was eleven. The Hi optimal 

order for the problem was eight. 

The mixed Hi/H^ design was then done for the modified missile plant using Kstat, 

and still for order eight. The mixed #2/#<x> curve is shown in Figure 5.9. It was simulated 

for the same 1 G step acceleration in Ny. The tracking performance was about the same as 

the design for the original missile plant. There is an unacceptable amount of overshoot and 

extremely long settling time for the response to a 1 G Ny step. A plot of the response is in 

Figure 5.10. 

5.6.2 Comparison of Mixed EifE^ at 11th order to LQG/LTR. Previous results 

showed that the E^ optimal controller performed well. See Figure 5.8. The final attempt 

made to design an E2lE^ controller was to run the optimization code at 11th order (i.e., the 

5-17 



Figure 5.9   Mixed #2/#oo Curve with Kstat (3x3 MIMO) 
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order of the H^ problem). Since using Kstat to do the mixed E2jElx> design at 8th order 

did not improve tracking performance, Ksiat was not incorporated into the 11th order design. 

At 11th order, 7=1.76. Therefore, it is known that the optimization routine should be able to 

get very close to 7=1.76 at this order. The H2 optimal mixed controller for the 3x3 problem 

was increased from 8th to 11th order by adding a lag to each transfer function. The lag can be 

represented as 

Alag — 

Bug = 

1 0 0 

0 1 0 

0 0 1 

[000       0 0 

0       -1000       0 

0           0       -1000 

1000      0 0 

Clag — 0      100C 0 

0        0 1000 

D, 

0 0 0 

0 0 0 

0 0 0 

lag 

The mixed üTa/^oo curve at 11th order requires 87 design variables. This higher order 

problem controller design was attempted using the MATLAB 'CONSTR' optimization rou- 

tine. Although the previous 3x3 and 5x3 problems at H2 order (8th order) could be run using 

the MATLAB optimizer, the 3x3 problem at 11th order could not be done using MATLAB. 

No mixed #2/#oo controllers could be found using MATLAB. Next, a FORTRAN/TMSL 

optimization routine was used for this problem. A FORTRAN program was written that 

called the same MATLAB files used for the previous examples only where the MATLAB 

program had called the 'CONSTR' optimization routine the FORTRAN program now called 

EvISL/DNCONG. For further explanation on the details of MATLAB versus IMSL's opti- 

mization routines, see Chapter 8. This routine was able to find mixed H^/Hoo designs for 

this problem. The mixed HijE^ curve is shown in Figure 5.11. The local minimum in 

the plot could not be removed by the means discussed in Chapter 6. The lowest 7 found 
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Figure 5.11   Mixed #2/#oo Curve 3x3 MIMO (Order 11) 
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Figure 5.12   Singular Value Plot Mixed #2/#<x> 11th Order (7=66 

using the optimization routine was 7=66. The absolute 7 for this problem was 1.76. The 

difference between these two numbers was much less than for the 8th order mixed design. The 

closed-loop singular value plot at 7=66 is shown in Figure 5.12. Note how flat the singular 

value plot has become. 
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Figure 5.13   Comparison of LQG/LTR Controller to Mixed E2IE<X> Controller 

A comparison was then made between the a and 7 for the LQG/LTR design by Brown 

with Kstat to that found for the mixed #2/#00 controller with Kstat at 11th order with the 

lowest 7 found. This is shown in Figure 5.13. This comparison shows two things: 1) that the 

mixed E2IE<X> design can never achieve the a and 7 produced by the LQG/LTR controller 

or 2) that the mixed E2/Eco controller at 7=66 is at a local minimum and could be reduced 

further. The latter is believed to be the case. 

The step response for the mixed HifRoo controller to a 1 G step in Ny improved as 

shown in Figure 5.15. However, when compared with the LQG/LTR design, the mixed has 

five times as much overshoot as LQG/LTR. 

5.7   Summary 

The mixed EijE^ controller design was completed for both the 3x3 MIMO and the 

5x3 MIMO 8th order problems using the MATLAB optimizer 'CONSTR'. The optimization 

code was able to find mixed controllers for this larger MIMO example. Mixed controllers can 

be found in approximately a day for this size of problem(79 design variables). The 11th order 

could not be optimized using MATLAB 'CONSTR'. Rather, a FORTRAN/DVISL optimizer 
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was used to generate the mixed H2/Hoo curve. Due to the size of the problem, the 11th order 

problem took several days to converge to 7=66. 

Simulation of these controllers shows that the controller does not track a step input very 

well at 8th order. There is an unacceptable amount of overshoot and the settling time does not 

meet the requirements. When the optimal order Hoo controller was tested on this problem, 

it performed very well, but it was three orders higher than the H2 problem. The 11th order 

mixed H2/Hoo controller at 7=66 demonstrated improved tracking performance compared 

to 8th order but was still not as good as LQG/LTR. This is believed to be a local minimum 

problem. Work is currently being done to help the numerical code "kick out of local minima. 

Finally, it was shown that moving the poles of the system did not improve the mixed H2 /Hoo 

controller performance as it did for the LQG/LTR design. 
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VI. Evidence of Local Minimum 

6.1   Introduction 

It is usually very difficult, when applying optimization techniques, to be sure a global 

minimum has been found. This is true for any problem that is not convex. The necessary 

conditions and a positive definite Hessian matrix ensure that the design found by the opti- 

mization routine is a local minimum. If the problem is not convex, the only way to ensure 

that the design is a global optimum is to prove that the Hessian is positive definite for all 

possible values of design variables. This is rarely practical in a design application. Posing the 

optimization problem as a convex problem (if possible) is the best way to ensure a design is a 

global minimum. 

The optimal-order mixed #2/#00 controller design was posed as a convex problem 

by Walker [Wal94]. He states that if the transfer function Tzw is in the space H2 then the 

two-norm of TZW(Q) is a strictly convex functional of Q. If a function is convex there is one 

global minimum and therefore the design at that point is unique. The optimal order for the 

mixed problem has not be determined analytically. Numerical results have suggested that 

the optimal order is larger than the combined H2 and #00 plant. Wells and Ridgely [WR92] 

have suggested that the optimal order is infinite. The optimal-order mixed HijE^ controller 

design is a convex problem in the design space of the Youla parameter Q, but what about the 

fixed-order controller problem? The two-norm objective and the infinity-norm and stability 

constraints are not convex functions in the design variable space. Currently, it is not know 

whether it is possible to pose the fixed-order mixed problem in a convex setting. 

This section present results for both the F-16 SISO problem and the missile MIMO 

problem that show evidence that the fixed order problem is not convex as posed in this work. 

There are mixed #2/#00 curves generated for both these examples which show that local 

minimum occur. 

6-1 



Figure 6.1   Mixed #2/#00 Curve Local Minimum (H2 Order) 

6.2   Examples of Local Minimum 

Both the F-16 and missile examples will be discussed in this section. The local minimum 

are more frequent and more pronounced in the missile example. 

6.2.1 F-16 Example. The F-16 example was discussed in Chapter IV. This example 

was the first to show evidence of a local minimum. The local minima for this example occur 

more frequently when small steps in 7 are taken. They also occur more frequently the closer 

the design gets to H^ optimal. Figure 6.1 shows a place in the mixed H2/H00 curve where a 

local minimum occurred. 

Further evidence that this point was a local minimum was the singular value plot. At 

the point the local minimum occurred, the shape of the singular value plot changed drastically. 

This lead to the conclusion that a completely different controller design had been found, and 

that a local minimum was the reason for this design change. Figure 6.2 shows the change in 

the singular value plot. 

6.2.2 Missile Example. The missile MIMO example also demonstrated local 

minima. The trends are similar to the F-16 case, in that they occur more frequently with small 
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Figure 6.2   Singular Value Plot where local minimum occurred (H2 Order) 
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Figure 6.3   Mixed H2 /H^ Curve Local Minimum (3x3) 

steps in 7. They also occur more frequently the closer the mixed design gets to H^ optimal. 

A plot with local minima for the MEMO 3x3 example is shown in Figure 6.3. 

The MEMO 5x3 example also showed local minimum. A plot of the mixed #2/#00 

curve for this example is in Figure 6.4. An example of local minimum occurring very close 

to optimal is shown in Figure 6.5. 
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Figure 6.4   Mixed H2/Hoo Curve Local Minimum (3x5) 
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Figure 6.5   Mixed #2/#oo Curve Local Minimum (3x5) 

6.3   Solutions to Local Minimum 

One way to prevent local minima from occurring is by taking large steps in 7, thereby 

possibly skipping over a local minimum. This is not a good solution, however, since large 

steps may cause numerical ill conditioning. Smaller steps work well to make sure low points 

in the design space are found. The drawback of small steps is that there is more of a chance the 
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optimizer will be stuck in a local minimum and will not be able to move enough to find a lower 

local minimum or the global minimum. Methods such as simulated annealing offer the ability 

to move away from a local minimum and possibly find a global minimum. Although they 

were not used for this study, they could possibly decrease the chances of the design getting 

stuck in a local minimum point when taking small steps. 

Once a local minimum has been found, there is a way to "fix" the mixed H2/Hoo design 

curve. This is done by using the controller that was found just after the drop in the mixed 

#2/.ffoo curve. Using this controller, the drop in the mixed #2/#oo curve can be "removed" 

by tracing the curve in the opposite direction, (i.e., taking positive steps in 7). This method 

was used to remove the local minimum points for the F-16 and missile examples. This is the 

reason the examples in Chapters 4 and 5 do not show the local minimum points as described 

in this chapter. 

6.4 . Summary 

Local minimum have occurred in both the F-16 and missile example completed for 

this thesis. The reason these local minimum have not been obvious before is due to the 

limited reliability of the code. When only seven to ten controllers could be calculated for 

the entire mixed i/2/#oo curve, the chances of seeing this problem were very low. With the 

improved reliability and the means to generate hundreds of controllers for a specific example, 

the problem has become more evident. 

These examples demonstrated that the chances of a local minimum becoming obvious 

are increased when smaller step sizes in 7 are taken. Local minima also appear more frequently 

the closer the design gets to H^ optimal. There is no means to determine if the curve generated 

is the absolute lowest local minimum. However, if a local minimum is obvious to the designer, 

(i.e., the mixed curve drops to a lower part of the curve), that local minimum point can be 

removed from the mixed curve. This clearly shows that the fixed order problem is not convex 

in the design variable space. 
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VII. Time Savings Comparisons 

The main objective of this thesis was to reduce the time to compute a mixed E2\EO0 

controller. To verify that this was done, a time comparison was made between the old software 

and the new improved software for two examples. This was done for the small SISO system 

discussed in Chapter 3 and for the F-16 problem. No time comparison could be made for the 

missile problem, since no solution could be reached with the original code. 

7.1 SISO Second Order System 

Table 3.1 showed the number of required function evaluations. This section will present 

a comparison of the required amount of CPU time in seconds for the example to be run on a 

dedicated SPARC20 SUN workstation using the old and new optimization code. 

Table 7.1 shows the second order SISO example discussed in Chapter 3 with the old 

code and the peaks manually divided. This comparison was chosen since a complete curve 

could not be generated without the peaks constrained separately. Note, as discussed in Chapter 

3, the original code with separately constrained peaks had five out of the fourteen cases where 

the iteration terminated by maximum iterations exceeded. This means the tolerances set on 

the design variables, the function and the constraints were not met. Therefore, the code would 

have taken even longer to run if the limit on maximum number of iterations was not imposed. 

7.2 F-16 Example 

The original code was run for the F-16 example. Few points were generated due to the 

time required to generate one point. A comparison of the time to generate those points using 

the old code versus the new code is shown in Table 7.2. To get an answer, the scale factors of 

the original code were set at Ai=0.001, A2=l and A3=1000. For other scale factors, such as 

0.01,1 and 10 respectively, a controller for the first 7 step could not be found. 
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Table 7.1   Time Comparison of Old versus New Optimization Code (Test Example) 

OLD CODE NEW CODE 

7 CPU sec CPU sec 
14 436.36 8.16 
13 1795.41 3.39 
12 2130.45 3.38 
11 4895.68 3.58 
10 4835.21 3.69 
9 4903.26 6.8 
8 1949.76 3.41 
7 1974.93 4.25 
6 167.21 3.98 
5 521.26 4.07 
4 4816.35 4.05 
3 464.28 4.71 
2 5224.44 4.72 
1 3238.2 85.58 

TOTAL 37352.8 143.71 

Table 7.2   Time Comparison of Old versus New Optimization Code (F-16 Example) 

OLD CODE NEW CODE 
7 CPU sec CPU sec 

76744 518.10 17.21 
75744 31.45 11.91 
74755 91.80 14.01 

TOTAL 641.35 43.13 

7.3   Summary 

It is obvious that improving the gradients alone for this problem would increase the 

reliability and efficiency of the code. The tables in this chapter give a perspective of just 

how much time is saved from the original method compared to the new optimization code. 

Examples which originally took hours now take minutes. 
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VIII. MATLAB Compared to FORTRAN IMSL/DNCONG 

The purpose of this chapter is to compare MATLAB to FORTRAN IMSL/DNCONG 

for mixed #2/#00 optimization. Both MATLAB and the FORTRAN IMSL routines use 

SQP as the method of optimization. However, the SQP method is implemented differently 

in each routine. First, a background on IMSL and its implementation of SQP is given. 

Next, a background on the MATLAB optimization package and its implementation of SQP 

is presented. Following the background of these methods, a comparison between the SQP 

implementations is made. Finally, the F-16 example is used to compare run times and 

convergence between MATLAB and FORTRAN IMSL. 

8.1   Background IMSL Optimizer 

The IMSL FORTRAN library contains optimization routines classified in the follow- 

ing categories: unconstrained minimization, minimization with simple bounds, linearly con- 

strained minimization, and nonlinearly constrained minimization. The routines are proprietary 

and can not be altered by the user. The DNCONG routine in that library solves a general 

nonlinear programming problem using the SQP algorithm with a user supplied gradient. It 

is a double precision routine. The optimization algorithm is based on a FORTRAN code 

developed by Schittkowski [Sch85]. First, the general optimization problem is stated. 

minimize f(x) 

subject to: 

equality constraints: gj(x) = 0     j = l,...,rae 

inequality constraints: gj(x) = 0     j = 1 + me,..., m 

side constraints: xx < x < xu 

8.1.1 IMSL Implementation of Quadratic Sub-Problem. The IMSL routine includes 

two improvements that make the code more efficient. The first improvement is the use of 
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an active set strategy to calculate constraint gradients. This reduces the number of gradient 

calculations required. The active set flag was not utilized for this thesis; therefore, this did not 

effect the comparison between IMSL and MATLAB. 

The second improvement in IMSL's implementation of SQP is the introduction of a 

variable 8 which is added to the subproblem to minimize possible inconsistent subproblems. 

This equation is only used if a search direction cannot be found for 8 = 0. The QP problem 

given by (2.104) through (2.106) is rewritten here as 

1 1 
minimize sTV/ + -sTWs + -pk8

2 (8.1) 

subject to (8.2) 

(1 - 8)9j{xk) + sTWgj(xk) | ~ 1 0,j e Jk (8.3) 

gj(xk) + sTVgj{xk}) > 0, j e Kk (8.4) 

xi — xk < s < xu- xk (8.5) 

0 < 8 < 1 (8.6) 

where x is a vector of design variables and H is updated using a quasi-Newton method to 

approach the Hessian matrix. The update method used in IMSL is the BFGS method discussed 

in Chapter 2. 

8.1.2 IMSL Implementation of the Merit Function. The merit function is used to 

determine the end of a line search. The next values of the design variables and the Lagrange 

multipliers are defined at the end of the line search. The equations for the design variables 

(xfc+i) and Lagrange multipliers (vk+i) are 

xk+1 = xk + ßksk (8.7) 

^fc+i =vk + ßk(uk - vk) (8.8) 

where uk is the Lagrange multiplier used in the quadratic sub-problem. 
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The merit function is minimized so that the design vector xk+1 is in the feasible design 

space and the design vector shows some improvement. The penalty function used in IMSL is 

M<*)=<Prk{(
Xk)       +ß(        Sk |) 
\ vk J \uk-vkJ 

(8.9) 

where y is a penalty function and rk is a vector of penalty parameters. The IMSL routine 

implements the augmented Lagrangian function proposed by Schittkowski as the penalty. 

This method has been determined to be more efficient than an exact penalty function. The 

augmented Lagrange penalty is 

me m'     [ (vj9j{x) ~ Q-§rj9](x))   if 9j(x) < vj/rj 
^>r(x,v) = f(x)-Y^{vj9j(x)-0.5rjg](x))-   £    < 

j=\ j=me+i { O.oVj/rj otherwise 
(8.10) 

where m' = m + 2n is used to include the design variable bounds as constraints. The line 

search starts at ß = 1 and is reduced until (8.11) is met, where <£>'fc(0)<0 must hold. 

<Ma)<<^(0) + //V,(0) (8.11) 

where ^ is a constant and <pk<0. The penalty parameters are used to guarantee convergence. 

There is a different penalty parameter for each constraint, given by 

Jk+l) _ m^ (     (k)   (k)        2m(u^-v3(k)f 

where 

^k) = min(h    -fc) (8.13) 

8.13 Convergence Criteria. The convergence criteria for IMSL is less restrictive 

than the criteria for MATLAB. It is not an option to input to the IMSL code. The source 

code is required to modify this parameter. The following is the convergence criteria on the 
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objective, where KTO is a measure of the Kuhn-Tucker optimality conditions. 

KTO = ^/1 + EKftWI^ (8-14) 
i=\ 

The convergence criteria on constraints is measured by SCV the sum of constraint values. 

This criteria is 

SCV<   Ve (8.15) 

The variable e is the error tolerance. This is the variable that the user can set if the source 

code is available. 

8.2   Background MATLAB Optimizer 

The MATLAB optimization toolbox contains functions that solve many types of general 

nonlinear optimization problems. Some examples of optimization problems MATLAB can 

solve are constrained and unconstrained problems, nonlinear least square problems and matrix 

minimization problems. MATLAB also allows the user to supply gradients. If gradients are not 

supplied by the user, finite difference gradients are calculated. The constrained minimization 

routine in MATLAB 'CONSTR' uses SQP. The MATLAB implementation is discussed in this 

section. 

8.2.1 MATLAB Implementation of Quadratic Subproblem. The MATLAB routine 

uses a quadratic subproblem to calculate the search direction. It is a quadratic approximation 

of the Lagrangian with no constant term. The nonlinear constraints have been linearized for 

this problem. The quadratic subproblem that the MATLAB routine solves is given in (2.104) 

through (2.106). This sub-problem is solved using a Quadratic Programming (QP) routine in 

MATLAB. The solution to the QP problem is iterative. The MATLAB QP solver calculates 

all constraints, decides which ones are active, and then uses those to solve the QP problem. 

It should be noted that all the constraints and their gradients must be calculated, and then the 

routine determines which ones are active. 
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8.2.2 Merit Function. Once the search direction is found the step length in that 

direction must be determined. A requirement of the step length is that it must decrease a merit 

function by a certain amount. The MATLAB implementation has two merit functions. The 

first merit function is an exact penalty that is written as: 

<t>i = f(x) + YJ 
ri9i(x) + J2 r*max { °>    9i{x) } (8.16) 

»=1 «=me 

where 

rki = maxAi, -{r(k-\)i + Ai),i=l,...,m (8.17) 

This penalty function allows a contribution from old Lagrange multipliers, which were inactive 

in the QP solution, but which were recently active. This less stringent merit function was added 

to improve convergence. The second merit function is used to improve either the constraint or 

the objective function unless the QP subproblem is infeasible. If the QP problem is infeasible 

the routine only tries to reduce the maximum constraint. This second merit function is: 

<t>2 

maxj gj (X)     if X is infeasible 

Ftx]+1     if X infeasible and F(X) > 0 

F(X) -1     otherwise 

(8.18) 

Both of the merit functions (8.16) and (8.18) must be satisfied and the number of 

iterations in the line search must be less than some maximum for the line search to continue. 

If a step length of one does not meet the criteria of the two merit functions, the step length 

is bisected and another function evaluation is done. This is completed up to the number of 

maximum iterations. Once the step size is less than 10~~4, the step length is set negative at 

every other bisection step. The step length is divided fifteen times before the step length of 

10~4 is set. This forces the optimizer to look in the opposite direction than the original search 

direction. 
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8.2.3 Convergence Criteria. The convergence criteria for the objective, constraint 

and the design variables for MATLAB can be input by the user. The optimization is considered 

successful when: 

1. The maximum absolute change in the search direction is less than two times the tolerance 

on the design variables. 

2. The gradient of the objective multiplied by the search direction is less than two times 

the tolerance on the objective. 

3. The maximum constraint is less than or equal to a set tolerance from zero (i.e., the 

maximum constraint must be active). This was modified for the H2/Hoo optimization 

problem for the criteria to be the maximum constraint must be within a set tolerance 

from zero. 

83   Comparison of Methods 

The IMSL method provides an improved active set strategy to calculate the gradients 

compared to MATLAB. This means that fewer gradients should be calculated by the user 

when the active flag is used. The biggest difference in this comparison is that IMSL has an 

improved merit function and line search methodology compared to MATLAB. Instead of a 

bisection of the step length as in the MATLAB routine, the IMSL interpolation is limited by 

default to, at most, five function evaluations per line search. The penalty function used in 

the merit function in MATLAB can reduce the effectiveness of convergence of the problem. 

Finally, the modified QP problem in IMSL should prevent failure to produce a search direction 

when constraints are grossly violated. These comparisons lead to the conclusions that IMSL 

should be more efficient and more accurate in the optimization process than the MATLAB 

optimization routine. To prove this conjecture, the F-16 SISO example was run using both 

optimization routines and comparisons were made. This is discussed in Section 8.4. 
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le-8 le-4 
le-8 le-4 
le-8 le-4 

Table 8.1   Convergence Criteria for MATLAB 

Comparison   Objective   Constraint _ 

2 
3 

8.4   Comparison Using F-16 Example 

The F-16 example discussed in Chapter 4 was run using the IMSL/DNCONG opti- 

mization routine. The FORTRAN program called MATLAB as an "engine" so that MATLAB 

routines for controls were available. Therefore, the core MATLAB code was called from FOR- 

TRAN to generate the function and gradient calculations and the IMSL/DNCONG routine 

was used for the //2/#oo optimization. 

Three comparisons were made for this example. The first was done at H2 optimal and 

then reduced in 7 increments of 1000. The second comparison was done close to the knee of 

the curve. It began at a 7 value of 100 and reduced 7 by steps of 5. Finally, a comparison was 

made at the knee of the mixed curve where many multiple peaks in the singular value plot 

were evident. This comparison started at a 7 level of 5 and was reduced by 7 steps of 0.5. 

Note the absolute 7 for a seventh order controller is 1.32. The order of the mixed controller for 

this example is six. These three comparisons will be discussed in the following subsections. 

The comparisons were made as close as possible by setting the tolerances in MATLAB 

as close to the tolerance in IMSL. See Tables 8.1 and 8.2 The numbers were not always 

exactly the same since the criteria for IMSL convergence on a constraint is measuring the sum 

of all the violated constraints and comparing that to the tolerance. When multiple peaks were 

constrained and caused a constraint violation this tolerance was relaxed to provide a better 

comparison. This provided as close a match for convergence between the two routines as 

possible. The maximum number of iterations within a line search was also adjusted in IMSL 

from 5 to 20. 
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Table 8.2   Convergence Criteria for IMSL 

Comparison KTO SCV 
1 le-8 le-4 
2 le-8 le-4 
3 le-4 le-2 

x10 Singular Value Plot 

10"' 10" 
frequency 

Figure 8.1   Singular Value Plot MATLAB (Comparison 1) 

8.4.1 Comparison 1: Initial 7 at H2 Optimal, A'y=-1000 . This comparison 

was done to investigate the performance of the two methods beginning at the H2 optimal 

compensator. Large steps were taken to identify how the methods handled updating the 

Hessian matrix. The number of 7 steps was set at 70. The MATLAB routine became 

numerically ill conditioned with Hessian update errors at the 18th 7 step. The IMSL routine 

completed all 70 7 steps. The singular value plots for the MATLAB and IMSL examples are 

shown in Figures 8.1 and 8.2. 

The number of function and gradient evaluations is presented in Table 8.3. Only the 

first 18 iterations of IMSL are presented for comparison purposes, since that was the number 

of iterations completed by MATLAB. The IMSL routine used approximately 100 less function 

and gradient evaluations than the MATLAB optimizer. A comparison of CPU time per each 
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Figure 8.2   Singular Value Plot IMSL (Comparison 1) 

step of 7 is presented in Table 8.4, where the IMSL and MATLAB times are practically the 

same. This was true even though the number of function and gradient evaluations was much 

less for IMSL. This may be due to more time spent in the IMSL optimizer versus time spent in 

the MATLAB optimizer or due to the extra overhead for IMSL to call MATLAB as an engine. 

Again, the first 18 steps of the IMSL run are compared here to the MATLAB data. 

A comparison of the mixed H2/Hoo curves are given in Figure 8.3. The MATLAB 

curve could not go below 7=60,000. It is difficult to see on the plot, but the MATLAB 

curve at 7=61744 shows a dip attributed to a local minimum point. This dip causes the 

MATLAB curve to be located on the IMSL curve. The IMSL mixed curve shows a smooth 

but non-monotonically increasing plot. 

8.4.2 Comparison 2: Initial 7=100, A^=-5. This comparison was done close to 

the knee of the mixed if2/^oo curve. There was only one peak for most of the iteration so 

the tolerance used was 10~8. 

Both IMSL and MATLAB completed all 19 iterations. The singular value plots of 

MATLAB and IMSL are given in Figures 8.4 and 8.5.  The MATLAB optimizer found a 
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Table 8.3   Comparison 1 Number of Function and Gradient Evaluation 

MATLAB MSL 
7        NUMFUN   NUMGRAD   NUMFUN   NUMGRAD 

76744 13 12 17 15 
75744 16 12 15 10 
74744 20 14 11 9 
73744 11 9 14 8 
72744 17 9 14 9 
71744 36 19 11 7 
70744 14 6 13 8 
69744 14 6 12 7 
68744 13 6 10 6 
67744 37 19 13 7 
66744 13 6 19 14 
65744 17 11 8 4 
64744 11 5 9 5 
63744 15 9 9 5 
62744 15 10 9 5 
61744 32 22 10 5 
60744 7 5 11 6 

TOTAL 301 280 205 130 

1.05 

X10 

Figure 8.3   Mixed #2/#<x> Curve MATLAB-'o' IMSL-'x' (Comparison 1) 
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Table 8.4   Comparison 1 CPU Time of MATLAB vs IMSL 

MATLAB IMSL 

7 CPU sec CPU sec 
76744 27.21 31.92 
75744 20.36 21.87 
74744 21.93 19.00 
73744 17.36 19.33 
72744 19.26 21.07 
71744 28.39 18.47 
70744 17.25 20.55 
69744 17.01 19.70 
68744 16.78 18.36 
67744 29.31 21.20 
66744 17.53 27.54 
65744 20.00 16.34 
64744 16.06 17.64 
63744 18.69 19.11 
62744 19.30 18.55 
61744 28.14 19.00 
60744 15.21 20.22 

TOTAL 349.88 349.74 

different design than the IMSL optimizer. The shapes of the singular value plots are different 

at the first values of 7. The shape of the MATLAB singular value plot indicates a local 

minimum will be evident on the mixed E^jE^ curve for MATLAB near the first three 7 

steps. The local minimum for the IMSL run should appear at 7=30. 

The number of function and gradient evaluations is presented in Table 8.5. The number 

of function evaluations for IMSL was 600 more than for MATLAB. This increase in function 

evaluations can be attributed to not relaxing the tolerance on IMSL enough for the multiple 

peaks to match the tolerance used for MATLAB. Since the convergence criteria was not the 

same for MATLAB and IMSL different local minima were found during the optimization 

process. This is evident from the singular value plots using the two methods. IMSL did not 

find the lower local minimum as soon as MATLAB did. Also, due to different convergence 

criteria, the shapes of the singular value plots are different between 7=90 through 7=30. The 
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Figure 8.4   Singular Value Plot MATLAB (Comparison 2) 

Singular Value Plot 
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frequency 

Figure 8.5   Singular Value Plot IMSL (Comparison 2) 

time in CPU for both methods is shown in Table 8.6. The increase in time is due to the increase 

in the number of function evaluations. This increase can also be attributed to the tolerance set 

for the convergence criteria of the IMSL routine. 

The mixed Ri jE^ curves show a significant difference in local minima. The MATLAB 

optimization routine found a local minimum after three 7 steps. The IMSL routine found a 
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Table 8.5   Comparison 2 Number of Function and Gradient Evaluation 

MATLAB IMSL 

7 NUMFUN NUMGRAD NUMFUN   NUMGRAD 
95 41 20 190 100 
90 28 10 13 8 
85 178 118 9 7 
80 12 8 10 8 
75 9 4 9 7 
70 10 6 9 7 
65 6 6 12 10 
60 9 4 23 15 
55 8 6 20 12 
50 7 4 34 23 
45 7 6 17 11 
40 11 7 12 8 
35 5 4 14 12 
30 4 4 186 100 
25 4 4 147 81 
20 5 5 5 5 
15 4 4 7 7 
10 8 8 12 10 
5 8 8 268 98 

TOTAL 364 236 997 529 

local minimum after 13 steps in 7. This difference in local minimum can be attributed 

to the difference in convergence criteria used between the two methods. Both curves do 

end at the same mixed design points but both took different paths. Also when comparing 

function evaluations and time required it can be seen that after MATLAB found the lower 

local minimum it was much quicker in calculating the rest of the curve. IMSL, on the other 

hand, took longer to find that local minimum and required more function evaluations and time. 

The MATLAB and IMSL mixed curves are presented in Figure 8.8. 

Since it is evident that the IMSL routine was not tracking the same local minimum 

as MATLAB due to convergence criteria the comparison is not valid. It would be a better 

comparison for number of function evaluations and time if both MATLAB and IMSL were 

tracking the same local minimum. Removing the scale factor of (0.0001) from the objective 

8-13 



Table 8.6   Comparison 2 CPU Time of MATLAB vs IMSL 

MATLAB IMSL 

7 CPU sec CPU sec 
95 43.95 153.33 
90 27.41 20.05 
85 148.86 17.93 
80 20.53 18.56 
75 16.84 18.11 
70 18.66 18.01 
65 17.04 20.43 
60 17.45 29.38 
55 18.18 26.65 
50 16.16 37.21 
45 17.05 25.13 
40 19.63 20.03 
35 17.66 24.18 
30 16.26 166.05 
25 16.69 249.13 
20 18.03 18.15 
15 16.45 21.03 
10 22.59 24.86 
5 22.81 260.88 

TOTAL 512.35 1169.1 

1.34 

120 

Figure 8.6   Mixed H2/Hco Curve MATLAB-'o' IMSL-'x' (Comparison 2) 
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Figure 8.7   Singular Value Plot No Scale IMSL (Comparison 2) 

function for IMSL, caused IMSL to find the same local minimum as MATLAB found much 

earlier. Since the scale factor on the objective was removed, the convergence criteria was set 

to 10~7 to allow IMSL to converge in 20 steps in the line search. A plot of the singular value 

plot using IMSL with no scale factor on the objective is shown in Figure 8.7. IMSL then took 

one 7 step to achieve the same singular value plot shape as MATLAB. A plot of the mixed 

H-ilHoo curve with the MATLAB curve and the IMSL curve with no scale on the objective is 

shown in Figure. IMSL and MATLAB compare much better. Finally, without the scale factor 

for IMSL tables of function evaluations and time comparisons are shown in 8.7 and 8.8. 

Notice that even though the scale factor has been taken off the objective for IMSL, the 

IMSL runs took less time and less function evaluations than the previous IMSL run with the 

scales. This can be attributed to finding the lower local minimum earlier with the scale than 

without the scale. The final conclusion from this comparison is that without the scale factor 

on the objective for IMSL, the mixed curve for MATLAB and IMSL compared very well. The 

time and number of function evaluations is still more for IMSL than MATLAB. 

8.43 Comparison 3: Initial Gamma=5, A/y=-0.25. The final comparison is very 

close to Hoo optimal for this problem. Again, 7 for this problem is 1.32. This comparison is 
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Figure 8.8   Mixed #2/#oo Curve MATLAB-'o' IMSL No Scale-'x' (Comparison 2) 

Table 8.7   Comparison 2 Number of Function and Gradient Evaluation 

MATLAB IMSL 
7 NUMFUN NUMGRAD NUMFUN   NUMGRAD 
95 41 20 174 88 
90 28 10 27 11 
85 178 118 103 28 
80 12 8 29 12 
75 9 4 27 10 
70 10 6 24 12 
65 6 6 26 10 
60 9 4 27 12 
55 8 6 28 11 
50 7 4 37 20 
45 7 6 27 13 
40 11 7 25 12 
35 5 4 27 15 
30 4 4 37 19 
25 4 4 41 20 
20 5 5 41 25 
15 4 4 28 16 
10 8 8 27 16 
5 8 8 33 24 

TOTAL 364 236 840 374 
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Table 8.8   Comparison 2 CPU Time of MATLAB vs IMSL 

MATLAB IMSL 

7 CPU sec CPU sec 
95 43.95 153.43 
90 27.41 30.20 
85 148.86 86.90 
80 20.53 32.38 
75 16.84 30.96 
70 18.66 29.76 
65 17.04 30.16 
60 17.45 32.83 
55 18.18 31.83 
50 16.16 42.68 
45 17.05 34.03 
40 19.63 32.05 
35 17.66 40.76 
30 16.26 50.26 
25 16.69 53.30 
20 18.03 57.65 
15 16.45 42.20 
10 22.59 42.30 
5 22.81 49.10 

TOTAL 512.35 909.7 

down to 7 = 1.5. Due to four peaks being constrained at the start of the example and up to 10 

peaks total per iteration being constrained, the IMSL convergence tolerance was relaxed to 

10-4. This was the best comparison possible for convergence criteria. Both cases completed 

all 19 iterations. The singular value plots for MATLAB and IMSL are approximately the same 

shape except at the frequencies between 10"6 and 10~2. The IMSL plot shows a different 

design being caused by a local minimum at the lowest value of 7. However, the lowest 7 

singular value curve matches for IMSL and MATLAB. They are shown in Figures 8.9 and 

8.10. 

The number of function and gradient evaluations is presented in Table 8.9. The IMSL 

routine required 200 less function evaluations and 100 less gradient evaluations than MAT- 
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Figure 8.9   Singular Value Plot MATLAB (Comparison 3) 
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Figure 8.10   Singular Value Plot IMSL (Comparison 3) 

LAB. A comparison of CPU time for each step of 7 is presented in Table 8.10. The time was 

reduced by over 1000 CPU seconds by using IMSL. 

The mixed EijE^ curves are shown in Figure 8.11. The local minimum dip in the 

mixed curve for IMSL is evident at the lowest 7 level found. The two-norm and infinity-norm 

match at the lowest 7 value for both the mixed curves of IMSL and MATLAB. 
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Table 8.9   Comparison 3 Number of Function and Gradient Evaluation Comparison 

MATLAB IMSL 

7 NUMFUN   NUMGRAD NUMFUN   NUMGRAD 
4.75 18 18 2 2 
4.50 6 6 2 2 
4.25 4 4 2 2 
4.00 17 17 2 2 
3.75 6 6 5 4 
3.50 6 6 3 3 
3.25 7 7 10 6 
3.00 37 32 6 5 
2.75 22 15 100 35 
2.50 32 26 25 11 
2.25 32 27 28 12 
2.00 204 37 38 16 
1.75 155 64 55 21 
1.5 42 21 63 26 

TOTAL 588 286 341 147 

Table 8.10   Comparison 3 CPU Time of MATLAB vs IMSL 

MATLAB IMSL 
7 CPU sec CPU sec 

4.75 49.64 19.78 
4.50 19.33 13.22 
4.25 16.48 13.06 
4.00 34.73 13.44 
3.75 19.85 17.60 
3.50 19.64 15.17 
3.25 20.90 23.96 
3.00 71.76 20.21 
2.75 44.44 133.05 
2.50 63.65 50.43 
2.25 73.30 56.25 
2.00 305.15 81.39 
1.75 422.43 102.31 
1.5 465.20 127.57 

TOTAL 1626.50 687.44 
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Figure 8.11   Mixed #2/#co Curve MATLAB-'o' IMSL-'x' (Comparison 3) 

8.5   Summary and Conclusions 

The number of function and gradient evaluations for each of the three cases is signif- 

icantly less by approximately (100 to 200 evaluations) for IMSL than MATLAB. The time 

required to calculate the mixed controller is, in general, less for IMSL than MATLAB. This 

can be attributed to less function and gradient calculations and the use of FORTRAN code 

which is, in general, faster than MATLAB. The singular value plots were shown to compare 

the general trends of the peaks using each method. They were generally the same using either 

method, but there were examples of different designs being found by either optimizer. The 

mixed H^/Hoo curves were generally smoother for IMSL. 

The first comparison showed the IMSL curve to be smooth with no local minimum 

jumps. However, it was not monotonically increasing. The MATLAB curve showed a 

monotonically increasing curve with a local minimum dip at the left of the curve. The values 

of the two-norm were approximately the same in the range of 7 that could be compared. 

The second comparison showed IMSL's mixed curve as a smooth monotonically increasing 

function. The MATLAB plot showed significant local minimum dips in the curve. The other 

observation is that the MATLAB curve demonstrated lower values of the two-norm for 7 
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between (5 to 180). The last comparison demonstrated very similar mixed H^jH^ curves for 

both MATLAB and IMSL. They were both monotonically increasing with approximately the 

same two-norm value at different 7 levels. The IMSL plot did show a dip in the mixed curve 

due to a local minimum, but ended at the same design point as MATLAB. 

The conclusion from this comparison is that the IMSL/DNCONG routine is a better 

optimizer than the MATLAB 'CONSTR' function for mixed RifE^ optimization. It is faster 

and takes less function and gradient evaluations. It also helps to calculate a smoother mixed 

#2/#oo curve but does demonstrate local minimum jumps. The second comparison, where 

the MATLAB curve showed a lower two-norm, means that the MATLAB program found a 

lower local minimum than the IMSL program. Since this is not a convex problem, this is to 

be expected. 

The final conclusion from this chapter is that the mixed H2/Hoo problem should be 

run using the Shittkowski penalty method for the merit function and his method to update the 

quadratic sub-problem. These are implemented in IMSL but are not easily accessible to the 

user to make modifications to tolerances and number of evaluations. Also, calling MATLAB 

from FORTRAN is cumbersome to code and very difficult to debug. The best solution would 

be to implement the Shittkowski methods in place of MATLAB's 'CONSTR' function. This 

would improve the speed and convergence of the mixed H2/Hoo problem. 
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IX. Conclusions and Recommendations 

9.1 Thesis Summary and Conclusions 

This thesis identified ways to improve the run time and the reliability of the mixed 

#2/#oo optimization process. The improved code was run for a realistic flight control 

problem of an F-16. The controller design for the realistic F-16 problem was done at fifth, 

sixth and seventh order. Comparisons were then made between the mixed H^jH^ controllers 

at different orders to the LQG/LTR design. The improved code was then used to generate 

mixed #2/#00 controllers for a MIMO missile problem. Mixed HijHoo curves were found 

for both the 3x3 MIMO and the 5x3 MIMO designs. Finally, a comparison of the MATLAB 

'CONSTR' optimization function and the FORTRAN IMSL/DNCONG optimization routine 

was done. 

The purpose of this thesis was to improve the run time and reliability of the mixed 

#2/#00 optimization process and then demonstrate its effectiveness on realistic control prob- 

lems. The examples discussed show that the run time and reliability of generating a mixed 

H2/H00 controller has significantly improved. The results from this thesis show that the 

mixed E-ijE^ design is better for the F-16 example than the LQG/LTR example even for 

a controller that is three orders less than the LQG/LTR. It has also demonstrated that where 

numeric problems for the MIMO missile example prevented mixed H2/Hoo designs, these 

controllers can now be found. Finally, the comparison between the MATLAB and IMSL op- 

timization routines proved that the IMSL optimization method was better for mixed H^IE^ 

optimization. 

9.2 Recommendations 

This study has raised several new questions about the mixed H2/Hoo optimization 

design process. The following are suggested avenues of study which the results of this thesis 

indicate to be worthwhile. 
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• Code Shittkowski's optimization methods in MATLAB. This would provide the designer 

with the efficiency of the IMSL optimization routine and the user friendliness of MAT- 

LAB. It would also provide the ability to make modifications to the optimization code 

when necessary, such as the change to only evaluate the maximum H^ constraint. 

• Investigate way to reduce the probability of finding a local minimum in the mixed 

Hi I Hoe optimization process. There are methods called simulated annealing and 

genetic algorithms that could be added to this code to improve the chances of the 

optimization routine moving away from a local minimum. Implementing these meth- 

ods could improve the mixed Hi/H^ curve by improving the chances that a global 

minimum could be found. 

• Scale the design variables. This would be done to possibly increase efficiency. The 

functions, constraints and their gradients were all scaled for this study. The other 

possibility to improve performance of the optimization process is to scale the design 

variables. 
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Appendix A. SISO Example: Matrices for Underlying H<i and H^ Problems 

The matrices for the SISO example's underlying H2 problem are: 

-1.4850E-02 

-8.0000E - 05 

0.0000E + 00 

-3.6000E - 04 

O.OOOOE+OO 

1.5000E-03 

3.7382E + 01 -3.2200E + 01 

-1.4910E + 00 -1.3000E-03 

O.OOOOE + 00 O.OOOOE + 00 

9.7530E + 00 2.9000E - 04 

O.OOOOE + 00 O.OOOOE + 00 

3.5264E + 01 2.7200E - 02 

-1.7940E + 01 

9.9600E-01 

l.OOOOE + 00 

-9.6000E - 01 

2.1400E-03 

-1.8800E-01 

O.OOOOE + 00 

-1.9040E + 01 

O.OOOOE + 00     -2.0000E + 01 

-3.3400E - 01     -4.3660E + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

-4.0000E + 01 

Ow       — 

8.3589E - 01 

-3.3340E - 02 

O.OOOOE + 00 

2.1808E - 01 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

Bu 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + 00 

2.0000E + 01 

O.OOOOE + 00 

-1.5000E-03     -3.5264E + 01     -2.7200E - 02    3.3400E-01    4.3660E + 00    8.0000E+01 

O.OOOOE+OO        O.OOOOE+OO        O.OOOOE+OO    O.OOOOE+OO    O.OOOOE + OO    O.OOOOE+OO 

Dz 
O.OOOOE + 00    O.OOOOE + 00 

O.OOOOE + 00    O.OOOOE + 00 
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DZu    = 
O.OOOOE + 00 

l.OOOOE+01 

-1.5000E-03    -3.5264E + 01     -2.7200E-02    3.3400E-01     4.3660E + 00    8.0000E+01 

r>„ O.OOOOE + 00    4.0000E - 03 

Dv O.OOOOE+00 

The matrices for the SISO example's underlying #00 problem are: 

Aoo      — 

-1.4850E-02 

-8.0000E - 05 

O.OOOOE + 00 

-3.6000E - 04 

O.OOOOE + 00 

1.5000E-03 

-1.5000E-03 

3.7382E+01 

-1.4910E+00 

O.OOOOE+00 

9.7530E+00 

O.OOOOE+00 

3.5264E+01 

-3.5264E+01 

-3.2200E+01 

-1.3000E-03 

O.OOOOE + 00 

2.9000E - 04 

O.OOOOE + 00 

2.7200E - 02 

-2.7200E-02 

-1.7940E+01 

9.9600E - 01 

l.OOOOE+OO 

-9.6000E - 01 

O.OOOOE + 00 

-3.3400E - 01 

3.3400E-01 

2.1400E-03 

-1.8800E - 01 

O.OOOOE + 00 

-1.9040E+01 

-2.0000E + 01 

-4.3660E + 00 

4.3660E + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

-4.0000E + 01 

8.0000E+01 

O.OOOOE+ 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

-1.0000E-04 

Bd 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

l.OOOOE+OO 

A-2 



Bna 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

2.0000E + 01 

O.OOOOE + 00 

O.OOOOE + 00 

Ce      = -1.5000E-03     -3.5264E+01     -2.7200E-02    3.3400E-01     4.3660E+00    8.0000E + 01     l.OOOOE+OO 

De l.OOOOE+OO 

De O.OOOOE+00 

-1.5000E-03     -3.5264E + 01     -2.7200E-02    3.3400E-01     4.3660E+00    8.0000E+01     O.OOOOE+00 

Dyd     = l.OOOOE+OO 
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Appendix B. 3x3 MIMO Problem: Matrices for Underlying H2 and H( 

Problems 

oo 

The matrices for the 3x3 MIMO example's underlying H2 problem are: 

A2    = 

-4.0000E + 02 

0.0000E+00 

O.OOOOE+00 

-8.7451E - 01 

-2.4756E-01 

4.5574E+06 

-1.0943E + 03 

-1.2180E + 02 

O.OOOOE + 00 

0.0000E + 00 

0.0000E+00 

-9.8435E - 01 

-9.2340E - 02 

-2.6737E+02 

-1.9462E+02 

6.9673E - 01 

O.OOOOE+ 00 

-4.0000E+02 

O.OOOOE+00 

1.3044E+02 

6.2620E - 01 

1.2009E + 06 

1.2844E + 05 

5.6387E + 02 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

-9.2340E-02 

-9.8435E-01 

2.6737E+02 

-6.9672E - 01 

1.9462E+02 

O.OOOOE + 00 

O.OOOOE + 00 

-4.0000E + 02 

-4.5412E-01 

-1.2753E + 02 

-4.2461E + 03 

5.8025E + 01 

1.2598E + 05 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

-1.5949E+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

l.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

-1.5498E+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+ 00 

O.OOOOE+ 00 

-l.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

-1.5498E + 00 

Bw    = 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

-1.9687E-03 

-1.8468E-04 

-5.3474E - 01 

-3.8924E - 01 

1.3935E-03 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

-1.8468E-05 

-1.9687E-04 

5.3474E - 02 

-1.3934E-04 

3.8924E - 02 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+ 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 
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l.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE + 00 

l.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE+00 

l.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

Cz 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

-5.4953E + 02 1.3982E + 03 -2.8476E + 05 

-1.9504E + 03 2.9126E+05 -1.0140E+03 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE+00 O.OOOOE + 00 l.OOOOE + OO     O.OOOOE+00 

-2.0619E+02 -2.1979E + 03 O.OOOOE + 00    O.OOOOE+00 

-2.1979E+03 -2.0619E + 02 O.OOOOE + OO    O.OOOOE+OO 

O.OOOOE+00 O.OOOOE + 00 O.OOOOE + 00    O.OOOOE+00 

O.OOOOE+OO O.OOOOE+OO O.OOOOE + OO    O.OOOOE+OO 

O.OOOOE+00 O.OOOOE + 00 O.OOOOE + 00    O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

D ZW — 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

Dzu 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

7.071 IE+01 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

7.071 IE+ 01 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + OO 

O.OOOOE + 00 

7.071 IE+01 
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O.OOOOE+00 O.OOOOE+00 O.OOOOE+00     ... 

-5.4953E + 02 1.3982E+03 -2.8476E+05     ... 

-1.9504E + 03 2.9126E+05 -1.0140E+03    ... 

O.OOOOE+00 O.OOOOE+00 l.OOOOE + 00    O.OOOOE+00    O.OOOOE + 00 

-2.0619E+02 -2.1979E+03 O.OOOOE + OO    O.OOOOE+OO    O.OOOOE + OO 

-2.1979E+03 -2.0619E+02 O.OOOOE + 00    O.OOOOE + OO    O.OOOOE + OO 

Dv 

O.OOOOE+OO O.OOOOE+OO 5.4538E-05 O.OOOOE + OO O.OOOOE+OO 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 1.2500E - 03 O.OOOOE + 00 

O.OOOOE+OO    O.OOOOE + OO    O.OOOOE+OO    O.OOOOE + OO    1.2500E-03 

Du 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + OO O.OOOOE+OO O.OOOOE+OO 
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The matrices for the 3x3 MIMO example's underlying #<*, problem are: 

-4.0000E + 02 

0.0000E + 00 

0.0000E + 00 

-8.7451E - 01 

-2.4756E-01 

4.5574E + 06 

-1.0943E + 03 

-1.2180E + 02 

0.0000E + 00 

-5.4736E + 02 

-1.9502E + 03 

O.OOOOE+OO 

O.000OE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

-1.5949E+00 

O.O0O0E + 00 

O.OOOOE+OO 

l.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

-4.0000E+02 

O.OOOOE+OO 

1.3044E+02 

6.2620E - 01 

1.2009E+06 

1.2844E+05 

5.6387E + 02 

O.OOOOE+OO 

1.3982E+03 

2.9126E+05 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

l.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + 00 

-1.5498E + 00 

O.OOOOE + OO 

O.OOOOE + OO 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+OO 

-4.0000E+02 

-4.5412E-01 

-1.2753E+02 

-4.2461E+03 

5.8025E+01 

1.2598E+05 

O.OOOOE+OO 

-2.8476E+05 

-1.0140E+03 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

-l.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + 00 

-1.5498E + 00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

-9.8435E - 01 

-9.2340E - 02 

-2.6737E + 02 

-1.9462E + 02 

6.0673E - 01 

O.OOOOE+OO 

-2.0619E+02 

-2.1979E+03 

O.OOOOE + OO 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + OO 

-1.0000E-04 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + OO 

O.OOOOE + OO 

-9.234E - 02 

-9.8435E - 01 

2.6737E+02 

-6.9672E - 01 

1.9462E+02 

O.OOOOE + OO 

-2.1979E + 03 

-2.0619E + 02 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

-1.0000E-04 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

-1.0000E-04 

B,    = 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

l.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE + 00 

l.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

l.OOOOE + OO 
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Bu0 

l.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

I5.0000E+00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE + 00 

l.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

l.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE + 00 

ce   = 
O.OOOOE+00 O.OOOOE + OO O.OOOOE+OO O.OOOOE+00 O.OOOOE + 00 ... 

-5.4953E + 02 1.3982E+03 -2.8476E+05 -2.0619E+02 -2.1979E + 03 ... 

-1.9502E + 03     2.9126E + 05     -1.0140E+03     -2.1979E+03     -2.0619E + 02     ... 

l.OOOOE+OO O.OOOOE+00 O.OOOOE+00 2.0000E+01 O.OOOOE + OO O.OOOOE+OO 

O.OOOOE+00 O.OOOOE+00 O.OOOOE + 00 O.OOOOE+00 2.0000E + 01 O.OOOOE+00 

O.OOOOE+00    O.OOOOE+00    O.OOOOE+00    O.OOOOE+00    O.OOOOE + OO     2.0000E+01 

Ded     = 

De 

1 .OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 1 .OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 1 .OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE+00 O.OOOOE + OO 

-5.4736E+02 1.3982E+03 -2.8476E + 05 

-1.9502E + 03     2.9126E+05     -1.0140E + 03 

O.OOOOE + 00 O.OOOOE + 00 

-2.0619E+02 -2.1979E + 03 

-2.1979E + 03     -2.0619E+02 

l.OOOOE + OO O.OOOOE + 00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+00 O.OOOOE+OO 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE+00 O.OOOOE + 00 O.OOOOE+00 O.OOOOE+00 

O.OOOOE + 00    O.OOOOE + OO    O.OOOOE+00     O.OOOOE+OO    O.OOOOE+00    O.OOOOE+OO 

Dyd     = 

1 .OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE+OO l.OOOOE + OO O.OOOOE+00 

O.OOOOE + 00 O.OOOOE +00 1 .OOOOE + 00 
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Appendix C. 5x3 MIMO Problem: Matrices for Underlying H2 and #< 

Problems 

00 

The matrices for the 5x3 MIMO example's underlying #2 problem are: 

A2     = 

-4.0000E+02 

O.OOOOE+00 

O.OOOOE+00 

-8.7349E - 01 

-2.4611E-01 

3.3304E+06 

-1.0950E+03 

-1.2044E+02 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + OO 

-9.2340E - 02 

-9.8435E - 01 

2.6737E + 02 

-6.9672E - 01 

1.9462E + 02 

O.OOOOE+OO 

-4.0000E + 02 

O.OOOOE+OO 

1.3044E+02 

6.2620E - 01 

1.2009E+06 

1.2844E+05 

5.6387E+02 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE + 00 

-1.5949E + 00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

-4.0000E+02 

-4.5412E - 01 

-1.2753E + 02 

-4.2461E + 03 

5.8025E + 01 

1.2598E + 05 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

l.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

-1.5498E+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

-9.8435E - 01 

-9.2340E - 02 

-2.6737E + 02 

-1.9462E + 02 

6.9673E-01 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

-l.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

-1.5498E+00 

But    = 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE + 00 

-1.9687E-03 

-1.8468E-04 

-5.3474E-01 

-3.8924E - 01 

1.3935E-03 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

-1.8468E-05 

-1.9687E-04 

5.3474E-02 

-1.3934E-04 

3.8924E-02 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 
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l.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+OO 

O.OOOOE + 00 

l.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

l.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

Cz     = 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

-5.4953E + 02 

-1.9504E + 03 

O.OOOOE + OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

-2.0619E+02 

-2.1979E+03 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

1.3982E+03 

2.9126E+05 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

-2.1979E+03 

-2.0619E+02 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

-2.8476E+05 

-1.0140E+03 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

l.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

l.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE + 00 

l.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+00 

Dz 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + 00 
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Dzu 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

7.071 IE+01 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

7.0711E + 01 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

7.0711E+01 

O.OOOOE + 00    O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00    O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00    O.OOOOE + 00 O.OOOOE + 00 

- 5.4953E + 02     1.3982E + 03 - 2.8476E + 05 

-1.9504E + 03    2.9126E+05 -1.0140E+03 

O.OOOOE+00       O.OOOOE+00 l.OOOOE + 00    O.OOOOE+00    O.OOOOE+00 

O.OOOOE+00       O.OOOOE+00 O.OOOOE + 00     l.OOOOE+OO    O.OOOOE+ 00 

O.OOOOE+00       O.OOOOE+00 O.OOOOE + 00    O.OOOOE+00    l.OOOOE+OO 

-2.0619E+02     -2.1979E+03 O.OOOOE+ 00    O.OOOOE+00    O.OOOOE + 00 

-2.1979E+03    -2.0619E+02 O.OOOOE + 00    O.OOOOE+00    O.OOOOE+ 00 

D„ 

O.OOOOE+ 00 O.OOOOE+00 5.4538E - 05 O.OOOOE+00 O.OOOOE + 00 O.OOOOE+00 O.OOOOE+00 

O.OOOOE+ 00 O.OOOOE+00 O.OOOOE+ 00 5.4538E-05 O.OOOOE + 00 O.OOOOE+00 O.OOOOE+00 

O.OOOOE + 00 O.OOOOE+00 O.OOOOE+ 00 O.OOOOE+00 5.4538E - 05 O.OOOOE+00 O.OOOOE+00 

O.OOOOE + 00 O.OOOOE+00 O.OOOOE+ 00 O.OOOOE+00 O.OOOOE+ 00 4.0250E-02 O.OOOOE+00 

O.OOOOE + 00 O.OOOOE+00 O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 O.OOOOE+00 4.0250E-02 

Dyu       = 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE+ 00 O.OOOOE+00 O.OOOOE+00 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE+00 O.OOOOE+00 
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The matrices for the 3x5 MIMO example's underlying #<» problem are: 

AQC      — 

-4.0000E + 02 

O.OOOOE + 00 

0.0000E + 00 

-8.7349E - 01 

-2.4611E-01 

3.3304E + 06 

-1.0950E + 03 

-1.2044E + 02 

O.OOOOE + 00 

0.0000E + 00 

O.OOOOE + 00 

-1.0991E + 04 

-3.9008E + 04 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

l.OOOOE + OO 

O.OOOOE+00 

O.OOOOE+ 00 

-1.5498E + 00 

O.OOOOE+00 

O.OOOOE+ 00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+00 

-4.0000E+02 

O.OOOOE+00 

1.3044E+02 

6.2620E-01 

1.2009E+06 

1.2844E+05 

5.6387E + 02 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

2.7964E+04 

5.8252E+06 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

-l.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

-1.5498E + 00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

-4.0000E+02 

-4.5412E-01 

-1.2753E+02 

-4.2461E+03 

5.8025E+01 

1.2598E+05 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

-5.6952E+06 

-2.0280E+04 

O.OOOOE + 00 

O.OOOOE+ 00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

-1.0000E-04 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 

O.OOOOE + 

O.OOOOE + 

-9.8435E - 

-9.2340E - 

-2.6737E + 

-1.9462E + 

6.9673E - 

O.OOOOE + 

O.OOOOE + 

O.OOOOE + 

-4.1238E + 

-4.3958E + 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

00 O.OOOOE+OO 

00 O.OOOOE + 00 

00 O.OOOOE+00 

01 -9.2340E - 02 

02 -9.8435E - 01 

02 2.6737E + 02 

02 -6.9672E - 01 

01 1.9462E+02 

00 O.OOOOE+00 

00 O.OOOOE+OO 

00 O.OOOOE+00 

03 -4.3958E + 04 

04 -4.1238E + 03 

O.OOOOE + 00 0 

O.OOOOE + 00 0 

O.OOOOE + 00 0, 

O.OOOOE + 00 0 

O.OOOOE + 00 0, 

O.OOOOE+OO 0. 

O.OOOOE+00 0, 

O.OOOOE+OO 0, 

O.OOOOE + 00 0. 

O.OOOOE+OO 0, 

O.OOOOE + 00 0. 

O.OOOOE + 00 -1. 

O.OOOOE + 00 0. 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

-1.5949E + 00 

O.OOOOE+00 

O.OOOOE + 00 

2.0000E + 01 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE + 00 

.OOOOE + 00 

.OOOOE+00 

OOOOE+00 

OOOOE+OO 

OOOOE+00 

.OOOOE+OO 

OOOOE+00 

OOOOE + 00 

OOOOE+00 

OOOOE+OO 

OOOOE+00 

OOOOE - 04 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

OOOOE+00    -1 .OOOOE - 04 
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Bd    = 

O.OOOOE+00 

O.OOOOB+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

2.0000E + 01 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + OO 

2.0000E + 01 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+00 

2.0000E+01 

Bu„ 

l.OOOOE+OO 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE+00 

O.OOOOE + 00 

l.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + 00 

l.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE + 00 

O.OOOOE + OO 

O.OOOOE+00 

O.OOOOE+OO 

O.OOOOE+00 

O.OOOOE + 00 

O.OOOOE+00 

O.OOOOE + OO 
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O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE+00 

-5.4953E + 02 

-1.9504E + 03 

O.OOOOE+00 0 

l.OOOOE+OO 0 

O.OOOOE+00 1. 

O.OOOOE+00 0, 

O.OOOOE + 00 0, 

O.OOOOE + 00 O.OOOOE + 00   O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00   O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00   O.OOOOE + 00 

1.3982E+03 -2.8476E + 05 -2.0619E + 02  -2.1979E + 03 O.OOOOE+00 

2.9126E+05 

O.OOOOE + 00 1 .OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 

-1.0140E + 03  -2.1979E+03  -2.0619E+02 O.OOOOE+00 

OOOOE+00 l.OOOOE+OO O.OOOOE+ 00 O.OOOOE+00 O.OOOOE+ 00 O.OOOOE+ 00 

OOOOE+ 00 O.OOOOE+00 O.OOOOE + 00 O.OOOOE+ 00 O.OOOOE + 00 O.OOOOE + 00 

OOOOE+00 O.OOOOE+00 O.OOOOE + 00 O.OOOOE+ 00 O.OOOOE + 00 O.OOOOE+00 

OOOOE+ 00 O.OOOOE+00 O.OOOOE+ 00 O.OOOOE+00 l.OOOOE + OO O.OOOOE+00 

OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 O.OOOOE +00 1 .OOOOE + 00 

Ded 

l.OOOOE+OO O.OOOOE+00 O.OOOOE+ 00 O.OOOOE+00 O.OOOOE+00 

O.OOOOE + 00 1 .OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE +00 1 .OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE+ 00 O.OOOOE+00 O.OOOOE + 00 l.OOOOE+OO O.OOOOE+00 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 O.OOOOE +00 1 .OOOOE + 00 

Deu  = 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

O.OOOOE+ 00 O.OOOOE+00 O.OOOOE+00 
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O.OOOOE + 

O.OOOOE + 

O.OOOOE + 

-5.4953E + 

-1.9504E + 

O.OOOOE+ 00 

l.OOOOE+00 

O.OOOOE + 00 

O.OOOOE + 00 

O.OOOOE + 00 

00 O.OOOOE+00 

00 O.OOOOE + 00 

00 O.OOOOE+00 

02 1.3982E+03 

03 2.9126E+05 

O.OOOOE+00 0, 

O.OOOOE+00 0. 

l.OOOOE+OO 0, 

O.OOOOE + 00 0. 

O.OOOOE + 00 0. 

O.OOOOE + 

O.OOOOE + 

O.OOOOE + 

-2.8476E + 

-1.0140E + 

OOOOE + 00 

OOOOE + 00 

OOOOE + 00 

OOOOE + 00 

OOOOE + 00 

O.OOOOE + 

O.OOOOE + 

O.OOOOE + 

05 -2.0619E + 

03 -2.1979E + 

O.OOOOE+00 0. 

O.OOOOE + 00 0. 

O.OOOOE+00 0, 

O.OOOOE + 00 0, 

O.OOOOE + 00 0. 

00 O.OOOOE+00 l.OOOOE+OO 

00 O.OOOOE+ 00 O.OOOOE+00 

00 O.OOOOE+ 00 O.OOOOE+00 

02 -2.1979E + 03 O.OOOOE + 00 

03 -2.0619E + 02 O.OOOOE+00 

OOOOE+ 00 O.OOOOE+ 00 O.OOOOE+00 

OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 

OOOOE+ 00 O.OOOOE+ 00 O.OOOOE+00 

D. yd    = 

l.OOOOE + OO O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+ 00 

O.OOOOE+00 l.OOOOE+OO O.OOOOE+00 O.OOOOE+00 O.OOOOE+ 00 

O.OOOOE+00 O.OOOOE+OO l.OOOOE + OO O.OOOOE+00 O.OOOOE + OO 

O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 l.OOOOE+OO O.OOOOE + 00 

O.OOOOE + 00 O.OOOOE + 00 O.OOOOE + 00 O.OOOOE +00 1 .OOOOE + 00 
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