
CM
CM

Embedology and Neural Estimation for Time Series Predicts

THESIS

Robert E. Garza
Second Lieutenant. USAF

AFIT/GE/ENG/94D-11

M9v^ -l - OaisaMd OUtrtbWoo

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GE/ENG/94D-11

Embedology and Neural Estimation for Time Series Prediction

THESIS

Robert E. Garza
Second Lieutenant, USAF

AFIT/GE/ENG/94D-11

,- -■■<■''"". £

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U. S. Government.

AMMBIOO JW -;y
■ i ii mmmmmT^

ITIS ORAAI \S
OTIC TAB O
UtaaoaousacöiJ D
Jwetlficatlo» i ■.-.

By —
Disteibuti«iBAi
Availability C*d.«s«i

»1st

A
Avail and/or

Spaoial

»:;'4i
—

AFIT/GE/ENG/94D-11

Embedology and Neural Estimation for Time Series Prediction

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Robert E. Garza, BSEE

Second Lieutenant, USAF

December, 1994

Approved for public release; distribution unlimited

Acknowledgements

I could not have completed this thesis without the assistance of many people.

Dr. Steven Rogers, my thesis advisor, showed me how to enjoy the work even while

struggling to learn. Dr. Dennis Quinn provided support and several suggestions on

how to continue my research. Dr. Dennis Ruck provided some invaluable suggestions

at crucial points of my thesis. Dr. Joe Sacchini provided code to run the spectal

estimation technique I needed, when it would have taken much too long to develop

myself. My fellow students Rich Sumner, Lori Thorson, and Dennis Wolstenholme

helped me keep my head above water when I really thought I was going to drown.

I want to especially thank Georgia Harrup for her help with probability estimation

and for always laughing at my jokes. Finally, I want to thank my family for all their

support which has helped me to finally finish this thesis.

Robert E. Garza

u

Table of Contents

Page

Acknowledgements ii

List of Figures vi

List of Tables ix

List of Symbols xi

Abstract xii

I. Introduction 1

1.1 Historical Background 1

1.2 Problem Statement 3

1.3 Scope 4

1.4 General Approach 5

1.5 Thesis Organization 6

II. Background Material 7

2.1 Introduction 7

2.2 Fractal Dimension 7

2.3 Chaos Predictor 10

2.4 Parametric and Spectral Estimation 14

2.5 Nearest Neighbors in State Space 17

2.6 Artificial Neural Networks 20

2.7 Probability Theory and Non-Parametric Estimation of the

Bayes Error 28

2.8 Bayesian Classifiers 35

2.9 Summary 36

iii

Page

III. Algorithm Procedures for Time Series Prediction 37

3.1 Introduction 37

3.2 Data Manipulation and Preparation 37

3.3 Prediction Methodology Using Casagli and Spectral Estima-

tion 43

3.4 Prediction Methodology Using Artificial Neural Networks . 48

3.5 Prediction Methodology Using Nearest Neighbors 50

3.6 Non-Parametric Bayes Error Estimation 53

3.7 Bayes Classifiers 54

3.8 Fusion of the Algorithms 55

3.9 Statistical Significance of the Algorithms 57

3.10 Summary 58

IV. Results and Discussion 59

4.1 Introduction 59

4.2 Casdagli's DVS Predictions 59

4.3 Casdagli and Spectral Estimation 61

4.4 Casdagli and Neural Networks 68

4.5 Nearest Neighbor Neural Adaptation 71

4.6 Bayes' Bounding Error Probability 75

4.7 Bayesian Classifiers 78

4.8 Fusion of the Algorithms 81

4.9 Statistical Significance of the Algorithms 86

4.10 Summary 88

V. Conclusions and Recommendations 90

5.1 Introduction 90

5.2 Conclusions 90

IV

Page

5.3 Recommendations 92

5.4 Summary 95

Appendix A. LNKnet Summary 96

Appendix B. Data Manipulation: Excerpts from R. Garza's EENG 699

Report 101

Appendix C. Data Setup and Detrend Algorithms for MATLAB 104

Appendix D. Curtis Martin's Non-Parametric Density Estimation Code 106

Appendix E. Jim Stright's DVS Algorithm C Code 118

Appendix F. Joe Sacchini's TLS Prony Code for MATLAB 134

Appendix G. Bayes Bounding Curves 139

Bibliography 159

Vita 162

List of Figures
Figure Page

1. The Lorenz Time Series Approximation [27] 1

2. Laser Data obtained from the Santa Fe Competition [27] 9

3. The Standard and Poors Data 12

4. The Nearest Neighbors for k=16 for the Standard and Poors Data . 13

5. The Prediction using a Linear Regression Hyperplane 14

6. A Sample Signal Usable with the TLS Prony Method 16

7. A TLS Prony Method Reconstruction of the Sample Signal 18

8. The Nearest Neighbors to b in reconstructed State Space [27] 19

9. Fitting a Nonlinear Surface Through the Nearest Neighbors 20

10. A Single Perceptron [30] 21

11. A Multi-Layer Perceptron Architecture [31] 23

12. The Sigmoid Nonlinear Function 24

13. A Radial Basis Function Neural Network Architecture [14] 25

14. The Probability Density Function (PDF) for a fair coin toss [13] . . 29

15. A Continuous Probability Density Function (PDF) [13] 30

16. PDFs and Error Probabilities [13] 31

17. k-NN Density Estimation for k=4 [13] 31

18. Parzen Window Density Estimation [13] 33

19. k-NN Algorithm Splitting the Space into k Decision Regions 35

20. The S and P Data Set 39

21. The S and P Data Set Detrended by First Differences 39

22. The S and P Data Set Detrended by First Ratios 40

23. The S and P Data Set Detrended by Image Ratios 41

24. The INFFC Data Set 42

25. The INFFC Data Set Detrended by First Differences 42

VI

Figure Page

26. Block Diagram of the Casdagli DVS Algorithm 45

27. Multilayer Perceptron Setup for the SandP Data Set 49

28. Block Diagram of Nearest Neighbor Algorithm using DVS Algorithm 51

29. Radial Basis Function Setup for the SandP Data Set 53

30. Testing Error History Plot of the 200 Point Test Set to Determine the

Number of Hidden Nodes 69

31. Testing Error History Plot of the 200 Point Test Set to Determine the

Number of Training Epochs 69

32. Bayes Bounding of Raw SandP data, m=7 76

33. Bayes Bounding of First Differences SandP data, m=7 77

34. Bayes Bounding of Raw INFFC data, m=3, classes 0,1 78

35. Bayes Bounding of Raw INFFC data, m=3, classes 0,2 79

36. Bayes Bounding of Raw INFFC data, m=3, classes 1,2 79

37. The Main LNKnet Window [16] 96

38. The Files Window [16] 97

39. The Algorithm Parameters Window for the MLP [16] 99

40. Bayes Bounding of Raw SandP data, m=l 140

41. Bayes Bounding of Raw SandP data, m=2 140

42. Bayes Bounding of Raw SandP data, m=3 141

43. Bayes Bounding of Raw SandP data, m=4 141

44. Bayes Bounding of Raw SandP data, m=5 142

45. Bayes Bounding of Raw SandP data, m=6 142

46. Bayes Bounding of Raw SandP data, m=7 143

47. Bayes Bounding of Raw SandP data, m=8 143

48. Bayes Bounding of Raw SandP data, m=9 144

49. Bayes Bounding of Raw SandP data, m=10 144

50. Bayes Bounding of First Differences SandP data, m=l 145

51. Bayes Bounding of First Differences SandP data, m=2 145

Vll

Figure Page

52. Bayes Bounding of First Differences SandP data, m=3 146

53. Bayes Bounding of First Differences SandP data, m=4 146

54. Bayes Bounding of First Differences SandP data, m=5 147

55. Bayes Bounding of First Differences SandP data, m=6 147

56. Bayes Bounding of First Differences SandP data, m=7 148

57. Bayes Bounding of First Differences SandP data, m=8 148

58. Bayes Bounding of First Differences SandP data, m=9 149

59. Bayes Bounding of First Differences SandP data, m=10 149

60. Bayes Bounding of Raw INFFC data, m=l, classes 0,1 150

61. Bayes Bounding of Raw INFFC data, m=l, classes 0,2 150

62. Bayes Bounding of Raw INFFC data, m=l, classes 1,2 151

63. Bayes Bounding of Raw INFFC data, m=2, classes 0,1 151

64. Bayes Bounding of Raw INFFC data, m=2, classes 0,2 152

65. Bayes Bounding of Raw INFFC data, m=2, classes 1,2 152

66. Bayes Bounding of Raw INFFC data, m=3, classes 0,1 153

67. Bayes Bounding of Raw INFFC data, m=3, classes 0,2 153

68. Bayes Bounding of Raw INFFC data, m=3, classes 1,2 154

69. Bayes Bounding of First Differences INFFC data, m=l, classes 0,1 . 154

70. Bayes Bounding of First Differences INFFC data, m=l, classes 0,2 . 155

71. Bayes Bounding of First Differences INFFC data, m=l, classes 1,2 . 155

72. Bayes Bounding of First Differences INFFC data, m=2, classes 0,1 . 156

73. Bayes Bounding of First Differences INFFC data, m=2, classes 0,2 . 156

74. Bayes Bounding of First Differences INFFC data, m=2, classes 1,2 . 157

75. Bayes Bounding of First Differences INFFC data, m=3, classes 0,1 . 157

76. Bayes Bounding of First Differences INFFC data, m=3, classes 0,2 . 158

77. Bayes Bounding of First Differences INFFC data, m=3, classes 1,2 . 158

vm

List of Tables
Table Page

1. Sample Output from the TLS Prony Method 17

2. Sample Output using the Search Method for the Determination of k 19

3. Casdagli DVS Predictions on S and P Data, k=16 60

4. Casdagli DVS Predictions of INFFC Data 60

5. DVS and Phase Prediction on S and P: Window - 20 pts 62

6. DVS and Phase Prediction on S and P: Window - 40 pts 63

7. DVS and Phase Prediction on S and P: Window - 100 pts 63

8. DVS and Phase Prediction on First Difference S and P: Window - 20

pts 64

9. DVS and Phase Prediction on First Difference S and P: Window - 40

pts 65

10. DVS and Phase Prediction on First Difference S and P: Window - 100

pts 65

11. DVS and Phase Prediction on INFFC: Window - 20 pts 66

12. DVS and Phase Prediction on INFFC: Window - 40 pts 67

13. DVS and Phase Prediction on INFFC: Window - 100 pts 67

14. S and P DVS and Neural Network: MLP: 7,4,2 70

15. S and P DVS Nearest Neighbor MLP: 7,3,2 72

16. S and P DVS Nearest Neighbor RBF: 7,2, Centers: 16 72

17. S and P DVS Nearest Neighbor MLP: 7,1,2 73

18. S and P DVS Nearest Neighbor RBF: 7,2, Centers: 8 74

19. INFFC DVS Nearest Neighbor MLP: 3,1,3 74

20. INFFC DVS Nearest Neighbor RBF: 3,3 Centers: 16 75

21. S and P Bayesian Classifier: k-NN with Varying k 80

22. INFFC Bayesian Classifier: k-NN with Varying k 81

IX

Table Page

23. First Differences S and P Fusion Method # 1: Majority Rule 82

24. First Differences S and P Fusion Method # 2: Average Probability-

Fusion 83

25. First Differences S and P Fusion Method # 3: Weighted Probability

Fusion 84

26. Raw INFFC Fusion Method # 1: Majority Rule 85

27. Raw INFFC Fusion Method # 2: Average Probability Fusion 85

28. Raw INFFC Fusion Method # 3: Weighted Probability Fusion ... 86

29. t-Scoring and Confidence Intervals for the S and P data 87

30. t-Scoring and Confidence Intervals for the INFFC data 87

31. Algorithms using S and P: Ranking from Best to Worst 88

32. Algorithms using INFFC: Ranking from Best to Worst. . 88

33. Fusion Methods using S and P: Ranking from Best to Worst 88

34. Fusion Methods using INFFC: Ranking from Best to Worst 89

List of Symbols
Symbol Page

Xi 8

€i(t) 8

D 9

Nf 10

m 10

Nt 11

k 12

*>t 22

77 22

K 26

a 27

h 33

xi

AFIT/GE/ENG/94D-11

Abstract

Time series prediction has widespread application, ranging from predicting the

stock market to trying to predict future locations of scud missiles. Recent work by

Sauer and Casdagli has developed into the embedology theorem, which sets forth

the procedures for state space manipulation and reconstruction for time series pre-

diction. This includes embedding the time series into a higher dimensional space

in order to form an attractor, a structure defined by the embedded vectors. Em-

bedology is combined with neural technologies in an effort to create a more accurate

prediction algorithm. These algorithms consist of embedology, neural networks, Eu-

clidean space nearest neighbors, and spectral estimation techniques in an effort to

surpass the prediction accuracy of conventional methods. Local linear training meth-

ods are also examined through the use of the nearest neighbors as the training set

for a neural network. Fusion methodologies are also examined in an attempt to com-

bine several algorithms in order to increase prediction accuracy. The results of these

experiments determine that the neural network algorithms have the best individual

prediction accuracies, and both fusion methodologies can determine the best perfor-

mance. The performance of the nearest neighbor trained neural network validates

the applicability of the local linear training set.

Xll

Embedology and Neural Estimation for Time Series Prediction

/. Introduction

1.1 Historical Background

Recorded data gives a general idea of how a system is operating without actu-

ally explaining how the data is generated. The dynamical system which generates

the data is only implied, not given. The time series, a discrete time-ordered set of real

numbers corresponding to a single component of a dynamical system, does not define

the underlying dynamics which will allow for accurate prediction of its behavior [30].

The time series can be used, however, in order to determine an approximation of the

underlying dynamics of the dynamical system.

0 100 200 300 400 500 600 700 800 900 1000
Time Units

Figure 1. The Lorenz Time Series Approximation [27]

For example, the time series seen in Figure 1.1 is a 1-D approximation of the

Lorenz attractor. The Lorenz system is made up of three differential equations.

x = a(y-x) (1)

y = px - y - xz (2)

z = -ßz + xy (3)

with the parameters at the values set by Lorenz [20, 27].

/3 = 8/3,p = 28,<7 = 10 (4)

The solution to this system of equations reveals the sensitivity to initial conditions

which characterizes a chaotic system.

A trajectory of the Lorenz attractor can be generated by using a differential

equation solver, and a time series can be extracted by sampling a single coordinate.

In this example, the x-coordinate is sampled with a period of At = 0.05 [27]. This

time series, as seen in the figure, tells nothing of the differential equations which

determine it, yet can be used to model the underlying dynamics of the generating

system.

How can a time series be used to develop a prediction algorithm without know-

ing the series' generating principles? One method is through the use of embedology.

In simple terms, embedology algorithms place a time series into a high dimensional

state space, with respect to the space which is used to currently represent the data,

so that they can be projected down onto locally generated regression hyperplanes.

By determining the movement of the nearest points in state space, the movement of

a particular point can be approximated, in order to forecast its position in the future

[27].

As may be expected, some time series are predictable with a greater accuracy

than others. There are many factors which determine the degree of predictability. A

dynamical system with poorly understood characterizing factors is less deterministic

than one with controlled factors [30]. A system with poorly understood influences

is a chaotic time series [30]. Based on this definition, a chaotic time series is harder

to predict than a more stable system.

As greater understanding of chaotic processes occurs, the inherent sensitivity

to initial conditions of a chaotic dynamical system is easily seen. This sensitivity

to initial conditions destroys long term predictability in the sense that, given an

approximation to an object's phase space location, the divergence of nearby trajec-

tories renders worthless any attempt to infer future nearness from current nearness

[11, 30].

It is possible to accurately predict time chaotic time series, as shown by Martin

Casdagli and Tim Sauer. Casdagli presented the first working algorithm, the Deter-

ministic Versus Stochastic algorithm, in order to develop a more accurate nonlinear

prediction method for use with chaotic aperiodic data [1]. A nonlinear, variable

smoothing parameter exploits the inherent make up of the time series for forecasting

purposes. The algorithm uses knowledge of the behavior of portions of the embedded

data in order to form predictions. Prediction accuracy is related closely to the low

dimensional chaotic nature (or lack of it) of the time series.

1.2 Problem Statement

Casdagli's Deterministic Versus Stochastic (DVS) algorithm will be improved

to provide more robust prediction. Several improvement algorithms are developed:

phase component confidence determination, Deterministic Versus Stochastic nearest

neighbors as neural training set, Deterministic Versus Stochastic fusion with neural

networks, and Bayesian Classification.

1.3 Scope

Casdagli's Deterministic Versus Stochastic algorithm has been refined by Dr.

Tim Sauer, in a successful attempt to improve the prediction algorithm [1, 27]. This

algorithm is based upon short term prediction of a time series. Both algorithms

exploit the reconstruction of the state space of a dynamical system using delay

coordinates, based upon work done by Ruelle and Takens [1, 24, 27, 32].

Attempts to improve Casdagli's algorithm stem from the need for more ac-

curate prediction algorithms. The United States Air Force currently has several

problems which require an accurate time series prediction method to provide an ad-

equate solution. One such problem is SCUD identification, which employs a time

series made up of multiple looks at projected targets. Another is anti-air capabili-

ties, which need an accurate, time-critical determination of where the threat is going

based upon its present and previous location.

The attempts to improve upon Casdagli by this thesis are restricted with re-

spect to data set and method. Data sets are restricted to Standard and Poors

financial data and the International Financial Forecasting Competition data [33].

The financial prediction area is one of the most difficult problems currently being

researched. By restricting the data sets to financial data, the algorithms will have a

measurable objective. In this way, the research done here for use in other areas will

have an accuracy level comparable with other algorithms currently being researched.

The algorithms themselves are restricted to four areas. The first is the phase

component confidence determination for the Casdagli algorithm. Limited success has

been obtained through the application of Fourier series components as a measure of

the accuracy of the Casdagli algorithm. The second algorithm is the use of the

nearest neighbors, as determined by the Deterministic Versus Stochastic algorithm,

to train a neural network. Pruning nearest neighbors using Casdagli's Deterministic

Versus Stochastic algorithm did not significantly affect the prediction accuracy. The

nearest neighbors should provide a basis for training, without having to use all of

the training data for neural adaptation. The third is to use the fractal dimension,

found by the Deterministic Versus Stochastic algorithm, to determine the number of

time components needed to successfully train a neural network. Captain Jim Stright

had some success in classification using a similar process [30]. The conjecture is that

it will also apply to neural training. The fourth is Bayes Bounding the data sets in

order to determine the range of the error probabilities. This allows for comparison of

specific algorithm prediction accuracies to the upper bound of the error probability

range.

1.4 General Approach

Since the thesis data set is restricted to financial data, issues present in the

financial engineering field become applicable to the current problem. One question

is how underlying trends can be determined using a point-by-point prediction al-

gorithm, such as Casdagli's Deterministic Versus Stochastic. Stock market analysts

state the main goal of the investor as avoiding selling out of uptrends and buying into

downtrends. Unfortunately, a point-by-point prediction algorithm, in itself, does not

take this 'big picture' into account. This is an inherent problem in the point-by-point

solution itself, because the question cannot be answered using any of the current al-

gorithms. This problem is relevant for all prediction cases, since underlying trends

need to be known to completely characterize any system.

A preliminary suggestion is to use the phase components of the time series to

increase the confidence of the prediction. The phase components were determined

through the use of Fourier series expansion. The current approach is to determine

the phase components through the use of a parametric spectral estimator, in order

to verify the Fourier expansion findings and reduce computation time.

Another problem is processing time. What good is a daily predictor that is

ninety-nine percent accurate if it takes twenty-five hours to compute due to the

computational complexity? To reduce the complexity, and therefore save time, the

nearest neighbors are examined to determine if they can be used as the neural net-

work training set without losing any accuracy. This would substantially reduce the

training time for the neural net.

One last problem is how to apply a nonlinear model to a time series. The simple

solution to this problem is to use a neural network. The set-up of the neural network

should resemble that of Captain Stright's classifiers used in his dissertation. The

fractal dimension of the time series is used to determine the number of past samples

that the neural network needs to train on. This should optimize the prediction

accuracy for the time series if several neural net configurations are examined.

Bayes Bounding the data set allows for comparison of the bounds to the al-

gorithms' prediction accuracies. Knowing the error probability range allows for the

results of each algorithm to be compared to the error region. Each algorithm is

analyzed according to the margin between its resulting prediction accuracy and the

upper Bayes Bound for the data set. The comparison determines whether the algo-

rithm can be improved, or whether it already minimizes the error probability for the

data set.

1.5 Thesis Organization

Chapter I has provided a brief historical perspective of time series analysis,

a statement of the research goal, and an outline of the approach to time series

prediction. Chapter II will examine background material essential to understand

the bases for the experiments presented in chapter III. Chapter IV will discuss the

results of the time series prediction experiments. Chapter V will present conclusions

and recommendations based upon the results of the research.

77. Background Material

2.1 Introduction

Chapter I provides a brief historical view of the time series prediction problem

and the goals of this research. This chapter will provide the background material

necessary to understand the prediction algorithms developed in this thesis. This

includes an in-depth examination of the following topics: (1) the fractal dimension

of the time series, a measurement developed to characterize the inherent nature of

the time series, (2) the chaos predictor developed by Casdagli, an algorithm which

determines the inherent nature of the time series to provide better prediction capa-

bilities, (3) parametric spectral estimation, a process which determines the phase of

a time series, (4) nearest neighbors and state space, the determination of the embed-

ding space of the time series using the points closest to the hyperplane, (5) artificial

neural networks, a processing tool which allows for nonlinear approximation. These

tools allow prediction strategies to be combined in order to allow for classification

of the movement of the prediction point. Knowing where the prediction point is

moving is essential to developing an actual number prediction algorithm.

2.2 Fractal Dimension

The fractal dimension is a measurement which allows for the characterization of

a dynamical system in terms of its chaotic nature. Chaotic systems are those which

are not (multiply) periodic and are unpredictable over long times, being extremely

sensitive to initial conditions [12]. One example of a chaotic system is a degenerative

laser, whose response is seen in Figure 2.1. The laser response can be described as a

function f and a countably infinite number of derivatives f, f" , The set of all

function values constitutes the phase space approximation of the system.

Phase space is the dimensional space which completely contains an attractor.

For example, a time series may be defined as the functional approximation for a

given time period r [20].

t0 = t(0),ti=t(r),t2=t(2r),... (5)

Now choose a time delay T, a multiple of r, such that a series of vectors of dimension

m is defined [20].

(t(0),t(T),t(2T),...,t(MT) (6)

(t(r),t(r + T),t(r + 2T),... ,t(r + MT) (7)

: (8)

(*(*""), t(pr + T), t{pr + 2T),..., t(pr + MT) (9)

Plotting these (p+1) points in (m+1) dimensional space with connecting line seg-

ments, the essential features of the attractor are apparent [20]. The method of

choosing the dimension size m is discussed in Section 2.3.

The laser's response thus approaches an attractor, a subset of the phase space.

In a system with F degrees of freedom, an attractor is a subset of F-dimensional

phase space towards which almost all sufficiently close trajectories get 'attracted'

asymptotically [12]. Strange attractors are attractors which characterize the final

state of dissipative systems which are highly complex and exhibit all the signs of

chaos [20]. Dissipative dynamical systems, such as the pendulum, are those which

lose energy over time.

In efforts to define the nature of strange attractors, the Lyapunov exponents

have been extensively studied. The Lyapunov exponents, A;, are determined by

€i(t)«ei(0)expAit (10)

where 6j(t) defines the principle axes of an ellipsoid constructed of an innnitesimally

small F-dimensional ball in phase space [12]. The sum of the Aj's have to be negative

0 100 200 300 400 500 600 700 800 900 1000
Time Units

Figure 2. Laser Data obtained from the Santa Fe Competition [27]

since they describe the contraction of volume [12]. However, the strange attractor

results from the stretching and folding of the volume into a fractal structure, which

guarantees that at least one of the A;'s is positive. The drawbacks are that the

Lyapunov exponents are not easily measured and that they do not describe the

volumetric folding action used in the generation of the strange attractor.

The fractal dimension is thus a measure of the local structure of strange attrac-

tors. To define the fractal dimension, first cover the attractor with F-dimensional

hypercubes with sides of length 1 and consider the limit as I —► 0. If the minimum

number of cubes needed for the covering grows like

M(l) ~ I -D
(11)

then the exponent D is the fractal dimension [12]. Solving for D gives

D = lim
logMjl)

Ho \log(l)\
(12)

Chaotic attractors typically have fractal dimensions in the range of 1.95 to 7.5 [30].

Grassberger and Procraccia provide an algorithm which embeds time series

data into phase space and finds the fractal dimension of the data [12]. Casdagli's

Deterministic Versus Stochastic algorithm may also be used to determine the fractal

dimension using the scaling law defined as:

Em(k) « C(A)* (13)

where Em is the normalized root-mean square (RMS) forecasting error, C is a 'cur-

vature' constant, Nf is the number of elements in the fitting set of the data, and D

is the fractal dimension [1].

The fractal dimension is necessary in that it plays a critical role in embedding

the time series into the correct dimension of the state (phase) space to allow for

complete reconstruction. These techniques of state space reconstruction, first intro-

duced by Packard et al and Takens, show that it is possible to address the problem

of dimension estimation by direct observations of sufficiently long time series of the

systems of interest [1, 19, 32]. Takens proved that if the embedding dimension, m,

is greater than twice the fractal dimension, then the delay vectors of the embedded

time series fill out a reconstructed attractor in Htm which is diffeomorphic to the

original attractor. Further work by Sauer et al show that, for

D<m<2D (14)

a reconstructed attractor can be obtained almost anywhere [1, 26].

2.3 Chaos Predictor

Nonlinear modeling and forecasting of time series data is a relatively new field,

with stochastic nonlinear modeling introduced about 1980 and deterministic nonlin-

ear models introduced about 1987 [1]. Casdagli's Deterministic Versus Stochastic

10

algorithm is the first attempt to bridge the gap between the stochastic and deter-

ministic approaches. Casdagli surmises that if models nearer the deterministic end

of the algorithm give the most accurate short-term forecasts, then the data contains

low dimensional chaotic behavior [1].

Casdagli focused his efforts on forecasting algorithms, which incorporate state

space reconstruction and fractal dimension calculations. The main focus of the

research, to determine whether a high dimension chaotic system is equivalent to a

stochastic system, will determine if a single algorithm can thus distinguish between

low dimensional chaotic dynamics and stochastic dynamics [1]. This premise is based

upon several experimental findings.

If the effects of noise are small, and the fractal dimension is relatively small,

then a modest amount of data, approximately 10^, can find an accurate approxi-

mation for f. This is tested using out-of-sample short term forecasting, obtaining

more accurate results as tested than if a substantial stochastic component is present

[1]. Conversely, if the fractal dimension is relatively large, the same amount of data

will not be able to approximate the equation with a deterministic model [1]. This

supports the premise that a high dimensional system is equivalent to a stochastic

system.

A stronger argument in favor of Casdagli's premise is that high dimensional

chaotic systems with low noise can induce a large noise term when using Taken's

Rule for state space reconstruction [1]. Previous knowledge of the scaling parameters

and the smoothing function do not help to improve the accuracy of short term fore-

casting no matter the length of the time series. This argument in favor of Casdagli's

premise substantially strengthens the argument that low dimensional chaos can be

distinguished from stochastic dynamics.

Casdagli's algorithm, based upon the Farmer-Sidorowich algorithm, is fairly

simple [7]. The time series is divided into two sets, Nf, the fitting set, and Nt, the

testing set. Find the distances dij between the test vector, Xj, and the delay vectors

11

made up of the fitting set. Order dij from smallest to largest. Find the k nearest

neighbors, and fit the linear model

Xj(l)+T ~ a0 + $3 anxj(l)-(n-l)r (15)

for I = 1,... A; to calculate XJ^)+T- This is repeated for several k values in order

to determine the correct number of nearest neighbors. Use the model to estimate a

T-step-ahead forecast xi+T(k) for the test vector Xj. Compute the local error e^k).

This is repeated to forecast in the entire testing set and compute the root-mean-

square (RMS) forecasting error [1].

For example, consider the Standard and Poors data set. It contains the closing

values for the Standard and Poors index, an average value of a number of stocks

used to show the trends of the stock market. The input requirement for the Casdagli

algorithm is a single vector of data point, such as the data seen here.

S and P Data from 10/20/88 to 2/26/93
450

400

350

300
0 100 200 300 400 500 600 700 800 900 1000

Days

Figure 3. The Standard and Poors Data

12

The Casdagli algorithm queries the user for the embedding dimension, m, the

number of data points in the fitting set, Nf, and the number in the testing set, Nt. It

also requires the r and the T to perform the prediction. The first step the algorithm

takes is to determine the nearest neighbors, in Euclidean space, for the final point of

Nf. The number of nearest neighbors, k, is varied in order to determine the optimal

k. This value can then be fixed to optimize the prediction performance.

Nearest Neighbors for Point 899
10-

8-

6-

o> 4r

o> 2E
c :

'55 •■
o 5
o o|
'S
a>
■D
X£
C
O) a
2 -4

-6

-8

■10. 4
Index

Figure 4. The Nearest Neighbors for k=16 for the Standard and Poors Data

The Casdagli algorithm uses least squares estimation to predict the next value

of the time series. This algorithm places a linear regression hyperplane through

the nearest neighbors. This allows for the prediction point to be estimated on the

hyperplane, based upon on the movements of the neighbor's trajectories toward the

hyperplane.

This process is repeated for each prediction point. Remember that the number

of nearest neighbors, k, is now fixed. This is based upon studies done by Stright

which conclude that the k found for a local area is representative of the k for the

13

- Nearest Neighbor

0 ■ Prediction Point

Figure 5. The Prediction using a Linear Regression Hyperplane

whole series [31]. This allows for one k to be used for prediction no matter what

part of the series is being analyzed.

2.4 Parametric and Spectral Estimation

In determining the spectral components of a time series, there are two ap-

proaches which can be taken. The first is using a classical spectral estimation tech-

nique, such as the periodogram or the Blackman-Tukey spectral estimator. The

second is the parametric spectral estimation techniques, such as the autocorrelation

or modified covariance method [15].

The classical approaches for spectral estimation use Fourier transform opera-

tions on either windowed data or windowed autocorrelation function (ACF) estimates

[15]. Windowing data in such a fashion smears the spectral estimate, due to the as-

sumption that the data, or autocorrelation function, values outside of the window

are zero. This smearing causes the classical techniques to become unreliable, los-

14

ing most of the spectral components to noise even when the window is large. The

parametric techniques prove to be more reliable.

Use of a priori information may permit the selection of an exact model for

the process which generated the data samples, or at least a model that is a good

approximation of the actual underlying process [15]. This allows for a better spectral

estimation based upon the model. This approach allows for the assumptions con-

cerning the data to change, eliminating the need for the data outside of the window

to be zero or cyclic. This elimination of windowing brings parametric techniques,

such as autoregressive (AR) modeling and the Prony Method, to the forefront [15].

Autoregressive (AR) spectral estimators exhibit poor performance when ap-

plied to sinusoids in noise. The Prony Method also performs poorly in the presence

of noise, although superior to other methods in the same situation. If the noise is

not white Gaussian, the least squares estimate does not produce an approximate

maximum likelihood estimate of the amplitude coefficients, thereby rendering the

model ineffective [15]. The Prony Method will perform well if there is no noise, or if

the data can be modelled as a signal mixed with white noise

d[n] = f[n] + w[n] (16)

where d[n] is the modelled data, f[n] is the signal, and w[n] is white, Gaussian noise

[25]. The Prony Method works in these cases because the maximum likelihood

estimate is well approximated by the least squares method, using the Singular Value

Decomposition (SVD).

The Least Squares (TLS) Prony's Model is given by equation 17.

K

I d(n) = 5>*P2>« = 0,l,...,tf-l (17)

15

-i 1 r
The Data Set detrend2186b
 1 1 1 1 1 r-

80 100 120
Data Point

200

Figure 6. A Sample Signal Usable with the TLS Prony Method

where pk is the kth pole, a^ is the kth amplitude coefficient, and K is the number

of modes [25]. Prony's Model models the frequency domain data, to estimate the

poles and amplitude coefficients from the given data. A backward linear predic-

tion approach, utilizing a Singular Value Decomposition (SVD) based noise cleaning

algorithm, determines the pole estimates. An in-depth algorithm is presented by Sac-

chini in his dissertation [25]. Several examples presented by Sacchini demonstrate

the utility of parametric techniques, especially the TLS Prony Model, to determine

the spectral components of a time series [25].

Running the TLS Prony Method, as defined by Sacchini [25], results in a series

of numbers which define the poles and amplitude coefficients of the major phase

components of the data. The data is presented as a single vector of the time series

values. A sample output of the TLS Prony Method shows the amplitude coefficients

and the poles of the determined phases. Remember that poles occur in pairs, as

defined by the Fourier Transform of sinusoids.

16

Phase of Pole Magnitude of Pole Amplitude Coefficient
-0.0300 1.0004 2.5360
0.0300 1.0004 2.5360
-0.0824 0.9950 3.7776
0.0824 0.9950 3.7776
-0.3509 1.0317 0.0038
0.3509 1.0317 0.0038

Table 1. Sample Output from the TLS Prony Method

To remove spurious poles, look at the magnitude of the pole and the size of

the amplitude coefficient. A pole magnitude of 1.000, on the unit circle, is the best

approximation available. A pole which is not on, or really close to, the unit circle is

usually an error due to an incorrect model order. Looking at the example above, the

pole located at 0.3509 does not really exist. Now consider the amplitude coefficient.

The amplitude coefficient of a pole should be as large as possible. If an amplitude

coefficient is too small, determined on a case-by-case basis, then the pole should be

removed. Notice in the example that the pole removed for its pole magnitude will

also be removed for its small amplitude coefficient.

The poles determined by the TLS Prony Method can be used in an attempt

to reconstruct a given time sequence. The poles are the component sine waves of

the reconstructed signal. If the TLS Prony Method accurately determines the phase

components of the time series, it can give an accurate approximation of the original

signal. If the phase determination is done using a noisy signal, the accuracy of the

reconstruction will be reduced, since the sine wave components of the signal will be

distorted in their determination.

2.5 Nearest Neighbors in State Space

The use of the nearest neighbors in state space is the foundation of the the

embedology approach to prediction. The present state of the system is identified,

and similar previous states are sought. The evolution of the time series of the

17

Reconstructed Data Set using the Prony Method

Figure 7. A TLS Prony Method Reconstruction of the Sample Signal

previous states yields information concerning the future [27]. The nearest neighbors

are relatively straightforward to calculate. The time series is embedded into the

space 3ftm, which is determined through the use of the fractal dimension and Taken's

Rule [1, 32]. The present state x is the vector of length n which constitutes the

present point in Wn. To do the search for the k nearest neighbors, the past samples

of the time series are broken up into m-tuples, and compared to x using the Euclidean

distance measure.

d(x, y) = ij(x - y)T(x - y) = +
\ i=l

(18)

The k m-tuples with the smallest values for d are chosen as the nearest neighbors.

Thus, for a time series with n=7, the data is broken up into its constituent 7-tuples.

These vectors are then compared to the present vector x. The k closest vectors are

chosen, giving a data set of size k x 7.

18

Figure 8. The Nearest Neighbors to b in reconstructed State Space [27]

The main issue concerning the nearest neighbors is the determination of k, such

that the error is minimized using various algorithms. The easiest way to determine

the proper value for k, as seen in Casdagli's Deterministic Versus Stochastic algo-

rithm, is to run the algorithm several times for the same point using varying values

of k [1]. The error can then be examined to determine the best value for k, which

would be the value which gives the smallest error. Using this algorithm will lead to

the generation of a list of nearest neighbors versus error. In the sample search, k

would be set equal to 16. This k can then be used as the k value for local prediction,

number of nearest neighbors, k Mean Squared Error
8 0.3980
16 0.2805
32 0.3573
64 0.3769
128 0.3904
256 0.4030

Table 2. Sample Output using the Search Method for the Determination of k

19

since an optimal k value often changes after a short window of time [31].

This leads to the question of whether a local k could be further optimized for

each particular prediction run. The answer to this question, as shown by Stright in

his dissertation, is yes and no. Yes, each particular prediction run can prune the

number of nearest neighbors, starting at k, to optimize its performance. No, in that

this methodology does not significantly improve the prediction error [31].

2.6 Artificial Neural Networks

The neural network is used to fit a nonlinear surface to the problem of time

series analysis, as seen in Figure 9. Neural networks are able to generalize the

function of a time series through adaptation of the times series data. Once the

neural network generalizes the function, new points can be presented to the network

for classification. The accuracy of the neural network is based upon how well it can

determine the underlying function of the time series.

w - Nearest Neighbor

0 - Prediction Point

Figure 9. Fitting a Nonlinear Surface Through the Nearest Neighbors

20

Artificial neural networks are models composed of nonlinear processes oper-

ating in patterns reminiscent of biological neuron interconnections [17, 30]. The

structure consists of an input layer, hidden layers, and an output layer. Cybenko

and others have shown that one hidden layer is sufficient for any arbitrary transfor-

mation, given enough nodes, but several hidden layers may speed up processing time

by decreasing learning time [6, 22].

After study of biological examples, researchers developed the perceptron, as

in Figure 10, as an artificial neural approximation. The perceptron has N inputs,

which are each multiplied by a weight in order to find the output value y. The

weights are varied according to the importance of the input node to the output,

since y is a function of the sum of the weights and a bias. Finding the weights which

best approximate y is called "learning."

Figure 10. A Single Perceptron [30]

The learning procedure for a perceptron is fairly simple, using gradient descent

to update the weights. First break the data up into three sets, the training set, the

test set, and the evaluation set. Having randomly set the weights, the perceptron

21

receives a training vector and the desired output. The training vector's real output

is calculated, and the weight update is computed using equation(2.15) [22].

wt = wi + vid - V)xi (19)

where wf is the new weight, iut~ is the old weight, r) is the step size, d is the desired

output, y is the true output, and X{ is the training vector. This process is repeated

for every training vector. This type of updating is known as instantaneous, since it

occurs after each training epoch. After a specified number of training epochs, supply

the weights to the test set to find the network's current capabilities.

Training occurs until the training error continues dropping but the test error

starts to rise. To continue to learn would simply memorize the training data without

generalizing for the function being sought. The weights are then fixed, and the

evaluation set tested to find out how well the network approximated the data's

underlying function [22].

This is the procedure for a single perceptron, which is fairly limited in size and

scope. Thus evolved the multi-layer perceptron (MLP) architecture. The multilayer

perceptron works on the same principles as the perceptron, except that there is an

entire structure of neurons used to approximate the output function.

The multilayer perceptron (MLP) is a static network which passes a weighted

sum of the inputs through a nonlinearity, in this thesis a standard sigmoid function.

fsigmoid(y) = (l+e-ßy)-1 (20)

y is the output of a hidden node and ß is the gain of the sigmoid, equal to 1 in this

thesis. The sigmoid's differentiability allows for the use of gradient descent learning

algorithms [14]. The nonlinear sigmoidal function is also used in order to provide

a better structure from which to derive the output function's approximation. One

22

Hidden Layer

X, . I

A *

— Y,

Outputs inputs

•)\\ •
•
• 1/ x\\ • /

> Ym

x„ - \lis \\ * /
w*

Figure 11. A Multi-Layer Perceptron Architecture [31]

big advantage is that the sigmoid is infinite, and will therefore form some type of

approximation for areas in which no training samples occur [22].

Learning for the multilayer perceptron is based upon gradient descent, as is

that of the single perceptron. The learning process occurs for every weight of every

node of the multilayer perceptron, with different update formulas for the hidden and

output layers. The formula for the hidden layer update is found in equation 21 and

that for the output layer update is found in equation 22. These formulas are based on

the architecture found in Figure 2.10 and the output nodes' use of nonlinear sigmoid

functions for adaptation.

wff = w^ - v Z) w%(dk - y^fjWi1 - fj{x))xi
k=l

(21)

wtk = wik + Wk(l - Vk)fj{x) (22)

Another class of neural networks is the Radial Basis Function (RBF) classifiers

[22]. This network calculates discriminant functions using local Gaussian functions

23

Figure 12. The Sigmoid Nonlinear Function

instead of sigmoids for the hidden layer. This network forms a linear combination of

the kernel functions computed by the hidden layer nodes, which produces a localized

response to input stimulus [14]. The kernel function of the hidden layer nodes, \i\j

is Gaussian.
(Y — I.U \ (v. — liU \

(23) Wi-=exp[>-"'f (*-"">]
la)

Hij is the output of the jth hidden node, u>ij is the weight vector associated with

the jth hidden node, x is the input vector, a2 is the normalization vector for the jth

hidden node, and N is the number of hidden nodes (j ranges from 1 to N) [14].

This has led to the establishment of a single hidden layer network, with the

nodes in the hidden layer using radial basis functions to transform their inputs into

their outputs. The most appealing characteristic of the RBF networks is almost

instantaneous training times involved with setting the network parameters [34]. One

problem with this classifier is that the function exists only where the training samples

have occurred. If the test vector occurs in a previously unseen area, the output is no

24

better than a guess. The multilayer perceptron performs better in this case, since

the approximation is based upon the infinite sigmoidal function [22].

Figure 13. A Radial Basis Function Neural Network Architecture [14]

Several training rules apply to the use of neural networks. Two rules apply if

the operator is prepared to accept a testing error of approximately ten percent [22].

Foley's rule states that if the number of training samples per class is greater than

three times the number of features and the function is a multivariate Gaussian, then

the density functions can be estimated [22]. Bernie's Rule states that the network

will not memorize the training data if the number of training samples is greater than

ten times the number of weights [22].

For the multilayer perceptron, Foley's rule states that ten times the number

of weights should be less than the total number of training vectors. If the number

of input nodes and output nodes is determined using the problems parameters, the

number of hidden nodes can then be determined [22].

Tr

TO < (In + Bn) * Hn + On * En (24)

25

Tr is the number of training vectors, In is the number of input nodes, Bn is the bias

node, On is the number of output nodes, and Hn is the number of hidden nodes.

The bias node is a threshold value often set to 1. The number of training vectors

per class is easily met with all data sets considered in this thesis. This setup will not

memorize the training data with a minimum expected testing error of ten percent

[22].

For the Radial Basis Function, the number of hidden nodes is determined by

a clustering algorithm. An exhaustive search over K, the number of clusters, will

determine the optimal number of clusters to reduce the training error rate. Once

chosen, K is used for all networks using the same data set. The K-means clustering

algorithm is used to cluster the data.

The K-means clustering algorithm is straightforward. Initialize the cluster cen-

ters ujj, j=l,2,... ,N1, with the clusters initially set to the first Nl training samples.

All training samples are assigned to the closest clustering center using Euclidean dis-

tance as the metric. Compute the means of the clusters, and then move the cluster

centers to the means. Recompute the assignment of the training vectors, find the

means of the new clusters, and again move the cluster centers to the new means.

Repeat this process until there is no change in the cluster assignments from one

iteration to the next [14].

The architectures of the neural networks need to be set up correctly so that

they will work properly. If too few nodes are used, the network is overwhelmed with

information and never learns. Too many nodes allows the network to memorize the

training data, which does not generalize the data's underlying function very well. In

order to find a size more suitable to the problem, start at the maximum size and

reduce the size of the structure. Find the structure that gives the minimum error

for the minimum amount of training time, and use that structure for the remainder

of the research.

26

Features are the inputs to the network which allow it to determine the non-

linear boundaries which separate the classes. Schalkoff says that features are any

extractable measure used [28]. This is true for time series prediction features, which

range from economic indicators to the latest trends in the data. In this thesis, the

features are kept the same for all of the neural networks used, including those in

the nearest neighbor algorithms found in Section 3.5. The features are an m-tuple

of the data, with m determined through the use of Casdagli's Deterministic Versus

Stochastics algorithm (See Sections 2.3 and 3.3).

Now that the features and the architectures are determined, the Radial Ba-

sis Function networks are ready for use. The multilayer perceptron still has some

parameters which need to be determined. The number of training epochs, the step

size, and the momentum need to be assigned. First consider the step size. Properly

setting the step size and momentum will properly apply the gradient descent training

algorithm [4], The step size, r], as seen in Equation 21, is a function of the number of

training samples used. A small training set usually requires a larger step size while

a large training set requires a smaller one. With a common step size of 0.1, a small

training set might use a step size of 0.2 while a large training set might use a step

size of 0.01.

The momentum, a, must be chosen to aid in learning. If the network is tak-

ing too long to learn, with a flat training error curve, the momentum needs to be

increased [4]. This increases the size of each movement during the gradient descent,

thus increasing the training rate. If the network is oscillating, or dropping down in a

ragged manner, the momentum needs to be reduced [4]. This will keep the gradient

descent algorithm from bouncing from one extreme to another, as it does when the

momentum is too large.

Consider how long the neural network needs to be trained. One training epoch

is a single presentation of the entire training set to the network, which sets the

networks weights. As expected, training times differ greatly dependent upon the

27

data sets being used. Thus training times are discretionary. One criterion commonly

used is to stop training once the testing set error starts to rise while the training

error is still falling [22]. This fixes the weights when the network determines the

smallest error.

With these parameters determined, the multilayer perceptron model is ready

for use. Several network sizes are run, in order to determine which combination of

parameters and network sizes determines the lowest test set error. The multilayer

perceptron starts with the maximum number of hidden nodes and work down, in

order to determine the best architecture to use for the particular data set and pa-

rameters. The Radial Basis Function networks will run the optimal K-clustering

algorithm as determined by the exhaustive K-means search.

2.7 Probability Theory and Non-Parametric Estimation of the Bayes Error

Probability theory is a mathematical method used to describe random phenom-

ena that can be approximately described by the relative frequency of the occurrence

of the possible outcomes [13]. A simple example of this is tossing a fair coin. Al-

though the outcome on any given toss cannot be predicted, it is likely that after

many tosses, approximately half of the outcomes will be heads and the other half

tails.

The probability density function (PDF) is a representation of the distribution

of the outcomes of a random experiment. It shows the probability for observing any

outcome on a given trial of the experiment. The PDF has the following properties

[13]:

f(x) > 0 for all x (25)

/oo
f(x)dx

-oo
1. (26)

The PDF for the coin toss mentioned above is discrete, based upon a summation

rather than an integral, as seen in Figure 14.

28

head tail x

Figure 14. The Probability Density Function (PDF) for a fair coin toss [13]

Continuous PDFs are characterized by the probability of any given point oc-

curring being 0. The probability of the outcome of the experiment falling between

points a and b is the shaded area described by

/ f(x)dx.
Ja

(27)

An example of a continuous PDF is seen in Figure 15.

Once the PDFs are estimated, error probabilities can be found. When two

PDFs are plotted against each other, a decision threshold (t) can be placed at any

point on the axis based upon a particular decision rule. For example, given the

PDFs in Figure 16, the decision rule is to choose Si if the outcome falls to the left

of the decision threshold and £2 if it falls to the right. Using the decision rule, the

probability of error for Si, any S% point that is classified as belonging to 5*2, is the tail

area of the Si PDF which lies to the right of the threshold. Similarly, the probability

29

f(x)

Figure 15. A Continuous Probability Density Function (PDF) [13]

of error for S2 would be the tail of the S2 PDF which lies to the left of the threshold

[13].

Density estimation is a way of estimating the PDF of a process given a finite

number of samples. The two non-parametric estimation techniques examined in this

thesis are k-nearest neighbor and Parzen window techniques.

The k-nearest neighbor (k-NN) technique for estimating PDFs is based upon

a volume created by enclosing the k nearest samples to a data point by a contour

of constant distance [13, 18]. An example of this can be seen in Figure 17. If the

volume is small, the points are densely packed and the probability of an outcome

falling within this region is high. The PDF has a large value at this point. When the

volume is large, the points are spread out and the probability of an outcome falling

in this region is low. The PDF has a small value at this point.

30

f(x)

p(errl s) p(errl s)
< —x y

Figure 16. PDFs and Error Probabilities [13]

Data Points
and

example contours for k=4

Estimated pdf

Figure 17. k-NN Density Estimation for k=4 [13]

31

The k-NN density estimation for a given class at point x is

**> = W^) (28)

where N is the total number of samples, k is the number of neighbors, and Vk is the

volume of constant distance which encloses the k nearest neighbors [8, 13, 18].

To calculate the volume, a distance metric is chosen. The metric used here is

the squared Mahalanobis distance described by

d2(x,y) = (x-y)T^-i(x-y) (29)

which uses the covariance matrix to scale each axis of the n-dimensional space pro-

portional to the variance in each dimension [8, 18]. Note that J2 i"1 denotes the

inverse covariance matrix.

For an n-dimensional space, a surface of constant Mahalanobis distance is a

hyp er ellipsoid [8, 13, 18]. The volume of the hyp er ellipsoid is

i il/2

V = Vd\j2\ rik(x) (30)

where

rik = \jd2
i{x,x{

k
l)_NN) (31)

Vd is the volume of an n-dimensional unit radius hypersphere.

V,
/2 n even (n/2)!

g*--1^' n odd
(32)

These equations lead to the definition of the class Wi PDF at a point x as

Pi{x) = NiVd\ E, |i/*rä(aO (33)

32

The Parzen window technique for estimating PDFs consists of placing a small

window function at every data point. When the areas of all the window functions are

added together, the resulting function approximately estimates the density function.

An example is shown in Figure 18.

Parzen Window Function

Data Points

■■>■■> • • •—•-

Windows put at each Data Point

Estimated pdf

Figure 18. Parzen Window Density Estimation [13]

Mathematically, the Parzen estimate of the PDF at point x for one class of

data in n-dimensional space is

Ni 1 ^) = ^g/^ x — x

~h

ar
(34)

where k(-) is the kernel function, h is a parameter which controls the window spread,

N is the number of samples, and Xj are the samples [8, 18].

The code used to find the error incurred through classification was obtained

from Curtis Martin and modified to give the output information of interest to this

thesis work [13, 18]. This code may be found in Appendix C.

33

Different Matlab files are used to put the data into a form suitable for use in

the classifying code. These files define an up matrix, a down matrix, a hold matrix,

the Parzen window size, and the number of nearest neighbors to be used in the

classifying code. The up, down, and hold matrices are created so that the columns

represent separate data points and the rows represent the n-tuple time partitions

associated with those points. The two matrices do not have to be the same size, but

they must contain the same number of rows. This determines the error probability

for a given k or h value [13, 18].

In the original unmodified code, the data matrices, a range of values for h

and k, and the leave-one-out option are passed to the pknn.m function. Then the

following procedure is performed five times and the results are averaged together

[13, 18].

• For each set, every fifth point is taken as a test sample and the rest of the

points are used to create the covariance matrices.

• The sample sets and inverse covariance matrices are passed to the function

compute.distances.m which computes the Mahalanobis distances between all

the points, both inter-class and intra-class. The distance matrices formed are

then returned to pknn.m.

• For each value of h, the resubstitution and leave-one-out discriminant values

are calculated for the Parzen window technique. These values are passed to

classify.m which calls min_error.m to find the resubstitution minimum error

and threshold. This is done by determining how the two discriminant value

sets overlap, varying a threshold over that region, and counting the errors. The

resubstitution minimum error and threshold values are returned to classify.m

and then the leave-one-out minimum error and threshold are calculated in a

similar fashion. These error values are then returned to pknn.m.

• The same procedure is followed for the k-NN technique for each value of k.

34

• All of the error values are then passed back to the driver script file where plots

can be created [13].

2.8 Bayesian Classifiers

Bayesian estimation models the parameters to be estimated as random vari-

ables with some (assumed) known a priori distribution [28]. The training samples are

considered observations of the a priori information in order to approximate an a pos-

teriori density. The training set is thus used to update the training set-conditioned

density function of the unknown parameters [28].

The non-parametric k-NN classifier uses direct classification based upon the

training set. The k-NN algorithm breaks the feature space Rn into k decision regions.

A new vector presented to the algorithm is classified by its location relative to the

decision regions. The decision boundaries are set for each problem with respect to

the distance metric chosen. An example of this classifier is presented in Figure 19.

Figure 19. k-NN Algorithm Splitting the Space into k Decision Regions

35

Another way to classify the data points is to determine the k vectors nearest

the test vector. The class of each training set is determined. The class of the test

vector is determined by a majority vote rule of the k training vectors' classes [16].

For example, for a two class problem, a point which has 16 nearest neighbors 02

the class which has 9 or more examples. If no class has a majority, the class whose

observations are closer to the point is chosen.

2.9 Summary

Chapter II reviews work done in a number of research areas which are being

investigated in an attempt to improve the prediction capabilities of current embedol-

ogy techniques. Nearest neighbors, spectral estimation, and neural networks, and

non-parametric density estimation are all examined to provide the reader with a

basic understanding of the theory behind the procedures being investigated in the

following chapter. The next chapter examines data preparation through detrending,

the use of the spectral components to provide a confidence measure of the embedol-

ogy prediction, the use of nearest neighbors as the training set for a neural network,

the use of different neural network architectures to aid in the classification of the

prediction point, the Bayes Error Bounding using non-parametric density estimation

for classification of the data, and fusion of the methods.

36

III. Algorithm Procedures for Time Series Prediction

3.1 Introduction

This chapter outlines the development of the improvements made to the Deter-

ministic Versus Stochastics (DVS) algorithm proposed by Martin Casdagli in 1991

[1]. Section 3.2 examines the steps taken to prepare the data sets for use with the

various algorithms. Section 3.3 examines the use of the data's phase to determine

the accuracy of the prediction. Section 3.4 examines the use of the multilayer per-

ceptron (MLP) and Radial Basis Function (RBF) architectures in prediction. The

inputs for these networks are time series vectors of size m, the embedding space size,

as determined by Taken's Rule and the fractal dimension of the data [32]. Section

3.5 examines the algorithm which uses the nearest neighbors, as determined by the

Deterministic Versus Stochastics algorithm [1]. The nearest neighbors are the train-

ing set for a neural network, in order to determine if an accurate prediction can

be made with this reduced data set. The use of this algorithm may also determine

a new confidence measure of the prediction if a number of nearest neighbors with

the same trajectories in state space can be found which consistently give a correct

prediction. Section 3.6 examines the Bayes' Bounding probability curves in order

to determine the prediction accuracy attainable using a given data set. Section 3.7

then examines a fusion algorithm of the aforementioned concepts in order to develop

a robust prediction network.

3.2 Data Manipulation and Preparation

Time series data, as a rule, does not contain a lot of extraneous information

which may be necessary for the proper use of an algorithm. In fact, most time series

data simply contains the time signature, such as minutes, hours, days, ..., and the

data samples themselves. In order to prepare the data for use in the algorithms, a

number of parameters must first be determined.

37

Given a time series for local linear prediction, the data is assumed to be fractal,

which implies that a correlation (fractal) dimension d has been determined for it [31].

This allows for the use of Taken's Rule and Sauer's Embedology Theorem, which have

already been discussed in Section 2.2, in making a determination of the embedding

dimension, m [27, 32].

Once the embedding dimension, m, is chosen, some number k of neighbors

nearest the m-tuple closest to the prediction point must also be chosen. Both of

these parameters are determined through the examination of several values for each.

Those values which give the minimum amount of error are chosen.

In order to create a time series having locally identical statistics, the data set

must be detrended [31]. Detrending is necessary in that many time series exhibit

strong upward and downward trends. These trends may cause the final m-tuple,

used as the point nearest the prediction point, to have a small number of neighbors.

With such a small number of neighbors, the regression is rendered ineffective [31].

This trend action is strong in the financial data being examined here, which makes

detrending a necessary action.

There is more than one way to detrend the data. The simplest, and most

often seen in research, is that of first differences. The method of first differences

approximates the first derivative of the data, yn, by taking the difference of xn and

the previous point xn-\. This method acts like a high pass filter, only letting low

frequency components through.

Vn — %n ~ xn-\ (35)

For n=l, the data point HQ is set to zero, to keep the time signatures accurate but

not for use in any prediction method. The scoring of the detrended data, in order

to relate it to the original data, is a signum function. When a data point from

the detrended set is predicted, the sign of the prediction point yn determines the

38

Figure 20. The S and P Data Set

movement of the original data set : up, down, or hold. For example, predicting

point 900 of the detrended data set gives a negative number as the output from the

algorithm. The negative number for point 900 of the detrended data set maps to

point 900 of the original data set minus point 899 of the same set. Point 900 of the

original data set is thus predicted to be the value of the detrended prediction point

900 less than point 899.

First 200 Points of newsandpl

Figure 21. The S and P Data Set Detrended by First Differences

39

Another detrending method is a modification of first difference called First Ra-

tios. Instead of subtracting a:m_i from xn, xn is divided by zm_i. Again, this method

acts like a high pass filter, with the added feature that it reduces the magnitude of

the series.

yn = log(-^-) (36)
•"n—1

The base-10 logarithm of the set is taken in order to prepare the data for scoring.

The relative nearness of one point to the next insures the proportion of the detrend

function is approximately one. Taking the logarithm of this set thus enables a

positive-negative scoring technique since a detrend value of less than one, which

corresponds to a larger previous number in the original data set, is negative. A

detrend value of greater than one, denoting a larger prediction point in the original

set, is now positive. This enables the use of the same scoring technique as the first

differences set.

First 200 Points of newsandp2

Figure 22. The S and P Data Set Detrended by First Ratios

A final detrend method examined is based upon edge detection techniques

used in image processing called Image Ratios [23]. This method consists of the first

difference divided by the addition of the points. Another high pass filter method,

the data's magnitude is reduced even further than by First Ratios.

Vn
Xn %n—l

Xn T" >^7i—l
(37)

40

This method is successfully used to detect edges in images, and is theorized to do well

in local linear prediction [21]. Scoring for this method is the same as the previous

two methods. The prediction point yn of the detrended data set is negative if the

previous point of the original data set, £ra_i, is bigger than the original data sets xn.

Likewise, the prediction point yn of the detrended data set is positive if the previous

point of the original data set, xn_i, is smaller than the original data sets xn.

First 200 Points of newsandp3

Figure 23. The S and P Data Set Detrended by Image Ratios

The different methods used to improve upon the Deterministic Versus Stochas-

tics algorithm have varying requirements for data presentation. Although discussed

in detail in each individual section, a brief overview of the data requirements is pre-

sented here. Detrending and setup of the data is done using the MATLAB package.

These algorithms can be found in Appendix C.

For implementation with the Deterministic Versus Stochastics algorithm, as

well as the Prony Method, the data set must be presented as a single vector of the

data values leading up to the prediction point. Time signatures exist only as the

vector's indices. Both of the data sets examined here, the S and P data set and the

INFFC data set, are presented as several data vectors along with a single vector of

time signature. These data sets may be reduced to single vectors in a variety of ways,

such as using UNIX's AWK and SED functions [10]. Data manipulation schemes

can be found in Appendix B. Once this is done, these sets can be detrended for use.

41

INFFC Data Close Values by Minute

1.5
Time (Minutes)

Figure 24. The INFFC Data Set

: -10
P

-20

_30

-40

-50,

INFFC First Difference Data

Ji |.l ,,!, «I.LJ IHLUi-M.' ^l|Bl.lL|j ■||..,l,|l|.,„,|.jP,.l.l> l.l.i(.U....l,.j

1.5
Time (Minutes)

Figure 25. The INFFC Data Set Detrended by First Differences

42

The inputs to the neural network, whether using the multilayer perceptron

or radial basis function architectures, are the time series values which make up the

m-tuples of the data set, where m is the size of the embedding space of the data set.

Since the neural network is used with detrended data, the data must be detrended

and then broken up into component m-tuples before use.

The data must be prepared twice for the nearest neighbors calculations. The

nearest neighbors are determined using the Deterministic Versus Stochastics algo-

rithm, which means the data must be prepared, for size and detrending, as discussed

previously. For use as the inputs to the neural network, however, the data must be

broken up into vectors of length m, which determine the nearest neighbor m-tuples.

This process needs to be performed upon the detrended data, which is already avail-

able from the Deterministic Versus Stochastics portion of the algorithm.

3.3 Prediction Methodology Using Casagli and Spectral Estimation

In an attempt to improve prediction accuracy, many researchers attempt to

determine when their algorithms are the most practical. In many ways, it is just

as important to know when the time series is most successfully predictable using

a particular algorithm. This allows the attractor to be broken up into highly pre-

dictable and unpredictable areas. If an algorithm is known to fail in a certain area of

the attractor, then efforts can be made to determine how to improve the algorithm

specifically for that area. If it is possible to eliminate or ignore some of the predicted

data, then knowing where the algorithm fails will effectively eliminate all prediction

points located in the same portion of the attractor from contention.

Using these ideas, a hypothesis that the phase of the time series is able to deter-

mine whether the prediction is accurate was formed. The Fourier Series components

are used to find out what the major phase components of the original time series

are. Once the phases are determined, the rise and fall of the time series is compared

to the rise and fall of the phase component. The accuracy of the predictions are

43

increased by only accepting the prediction points which follow the rise and fall of

the phase components, when the two series are "in phase."

To test out the viability of this method, other methods of frequency analysis

are examined to determine a likely replacement for the Fourier Series analysis. The

method chosen to determine the time series' phase is the Least Squares (TLS) Prony

Method. This method is the most accurate of the autoregressive (AR) modern

spectral analysis techniques currently found in the field of signal processing [25].

This method is used to determine the spectral components of the time series based

upon a window of data immediately proceeding the prediction area. Assuming that

the phase components found in the window are representative of those found in the

prediction area, the phase components are then used to define a second time series.

Keeping the prediction points only when the phase's time series is "in phase" with

the prediction series should hypothetically increase the accuracy of the prediction

set.

To test this, a prediction set of data is first determined using Casdagli's De-

terministic Versus Stochastics algorithm, which has been implemented here by Jim

Stright [31]. Stright's code 0 the algorithm as presented in Section .2.3. The fitting

set size Nf is set to one less than the desired prediction point. For example, to

predict point 900, Nf is equal to 899. The test set size Nt is set to zero, in order to

determine the delay vectors Xj from the fitting set. Set the value of the embedding

dimension at a small value, such as 3 or 4. If the fractal dimension, d, of the data

set is already known, set m equal to 2d+l, as determined by Taken's Rule [32].

Run the code using a C compiler. The output of the program is a series of

error values for k, along with a prediction point. If m is determined using Taken's

Rule, choose the value of k which gives the minimum error. If m is being chosen

arbitrarily, m needs to be varied and the algorithm rerun. The m and the k values

which give the minimum error are chosen. All prediction points prior to this point

are ignored. Once m and k are chosen, the algorithm is rerun to determine the

44

The Generalized Casdagli
DVS Algorithm

Input: NEWSANDP
inserted into x vector

Compute the Nearest
Neighbors for each
time series value

REPEAT FOR ALL

(i)

1

Find the
Standard Deviation

1
Compare Nearness
and Establish the
Error Matrix E(k)(l)

Compute the Normalized
root-mean square (RMS)
forecasting error Era (JO

I
Output to CASDATA :

the number of nearest
neighbors, Em(k), and
the predicted value

Figure 26. Block Diagram of the Casdagli DVS Algorithm

prediction point. Debate continues on the length of the prediction set before a new

k must be chosen, although research done by Stright indicates that the use of a

global k value is approximately as accurate as using local k values for equally sized

test sets [31].

For use with Casdagli's algorithm, the Standard and Poor's data set is de-

trended using the three methods discussed in Section 3.2. This creates the files

newsandpl, newsandp2, and newsandp3, which implement the detrending methods

of First Differences, First Ratios, and Image Ratios respectively. These detrended

sets are single vectors of data, in order to conform with Casdagli's algorithm's re-

quirements, which are thus also usable with the TLS Prony Method.

The TLS Prony Method, as implemented by Sacchini, uses least squares ap-

proximation to determine a maximum likelihood estimate of the poles of the data.

This method is able to achieve greater resolution than Fourier methods for the same

number of points [25]. This allows the TLS Prony Method to work well with fewer

data points than the Fourier Series.

45

The TLS Prony method needs to have a model number in order to make the

pole estimates. The model number is the number of frequency spikes expected in the

spectrum of the signal. This corresponds to twice the number of sinusoids present in

the data, since the Fourier Transform of a sine wave consists of positive and negative

frequency impulses. Overestimating the model is not a bad practice since the model

presents the additional impulses with small amplitudes and large distances from the

unit circle.

The assumption of how many poles to keep needs to be made. Through experi-

ence, the choice of the number of poles to keep varies greatly from one problem to the

next. In this case, after running several examples, the best criterion for elimination

is based upon the amplitude coefficients. Keeping those amplitude coefficients which

are of similar magnitude eliminates most of the spurious poles. This technique keeps

out small fluctuations in the data set, which do not improve the prediction accuracy.

The size of the data window can be varied in order to determine if the frequency

components of the data change. This indicates that trends can occur over different

time periods of data. Thus, a frequency which occurs over a hundred point window

may not be observable when using a twenty point window. This change in the data

size can lead to an optimal data window for phase determination.

This windowing assumption leads to several window sizes being used for spec-

tral estimation. These windows are taken from the data with the forward window

edge falling on the last point of the fitting set. This analysis assumes that the phase

components found within the windows are representative of the local phase phenom-

ena in a periodic fashion, which thus allows the phase components to be applied to

the prediction set.

The TLS Prony Method is ran to provide the pole estimates, amplitude coef-

ficients, and energy for twenty point, forty point, and one hundred point windows.

This means, for example, that if the point being predicted occurs on the set 900

through 919, then the Prony Method uses the data vectors from 880 through 899,

46

860 through 899, and 800 through 899, respectively. The parameters are listed out

according to the energy ranking of the poles, with the pole with the highest energy

content being listed first. Once listed, the poles are analyzed for applicability to

the current problem. The poles whose distance from the unit circle is too great are

eliminated. Those poles whose amplitude coefficients are a magnitude of size, or

more, smaller than the largest pole are also eliminated.

Once this is done, the amplitude coefficients are used as the multiples of the

sinusoids defined by the poles.

phasedata(n) = ai * sin(2irfin) + a2 * sm(27r/2n) + ... (38)

This model is then used to create a data set whose size is equal to the number of

predictions taken using the Deterministic Versus Stochastic algorithm. These points

are then analyzed to determine the phase movement, using zero as a starting point.

In the case of the Standard and Poors and INFFC sets, the setup is identical

for all three sets. First, the size of the testing sets is set at twenty points. The De-

terministic Versus Stochastics algorithm is then used to predict the twenty points for

each set. These predicted points are analyzed to determine whether each prediction

point is higher or lower than the previously predicted point. In order to determine

the prediction set's true accuracy, compare each predicted point to the previous ac-

tual point. Once this is done for all twenty points of the test set, the TLS Prony

Method is used.

The TLS Prony Method is setup for three sets of phase determination. The

first set uses the 20 point data window, the second uses the 40 point data window,

and the third uses the 100 point data window. The TLS Prony Method is used,

with the output of each set being recorded in a data file. Each of these data files is

examined to determine the relevant poles. Once the poles are picked for each set, the

47

pole's phase and amplitude coefficient are put into the model in order to determine

the phase data set.

Each phase data set is placed next to the corresponding Casdagli prediction

set. If the movements are "in phase", such as both points move upward, then the

prediction point is kept. If the points are "out of phase", where one point moves up

while the other moves down, then the prediction is disregarded. This is done for all

twenty points of each test set. The relevant prediction points are then analyzed to

find the reduced set's true accuracy, by comparing the predicted points to the actual

points for the reduced set. If the hypothesis is true, the reduced set should have a

higher correct prediction accuracy than the total set.

3.4 Prediction Methodology Using Artificial Neural Networks

The processing methods commonly used today, such as Casdagli's Determinis-

tic Versus Stochastic and Sauer's Embedology algorithms, employ the use of linear

hyperplanes, fit to the nearest neighbors through regression techniques, to determine

the likely trajectory of the m-tuple nearest the prediction point [1, 27]. This esti-

mation technique allows the prediction point to be determined through projection

of the trajectory on to the hyperplane.

In order to improve upon the process, researchers have endeavored to place

nonlinear surfaces through the nearest neighbors in order to determine the predic-

tion point. In most cases, this method has been shown to yield very little, if any,

improvement [27]. Subsequently, research into this method is currently minimal.

This thesis will try to prove the validity of using a nonlinear surface.

For the S and P data set, the embedding space size, m, is chosen through

the use of the Casdagli algorithm. This m is used to partition the data into its

component m-tuples. For this 1100 point data set, m is determined to be 7. This

allows the data set to be broken up into 1093 7-tuples of data, with the first 7-tuple

corresponding to the 8th point of the original index. Breaking the data up into a

48

training set of the first 850 training vectors, 243 vectors are left for testing. Testing

is done on ten 20 point sets and one 240 point set.

Figure 27. Multilayer Perceptron Setup for the SandP Data Set

To determine the architecture for the multilayer perceptron, the node equations

24 are applied.

85 < 8 * Hn + 2 * Hn (39)

This shows that the maximum number of hidden nodes usable without memorization

occurring is eight. The data set is reasonably sized, so the step size is set to 0.1,

with a varying momentum starting at 0.5. The multilayer perceptron is ready for

use. To determine the number of cluster centers to use, K-means clustering is done

and the training error is examined. This determines that 16 clusters should be used

for this data set. The Radial Basis Function network is now ready to use.

For the INFFC data set, the embedding space size, m, is determined to be 3.

The 28465 point sample-and-hold data set partitions into 28462 3-tuples. these are

evenly divided into training and testing sets of 14231 vectors each. To determine the

49

multilayer perceptron architecture, the node equations 24 are applied.

1423 < 4 * En + 3 * En (40)

This determine that the maximum number of hidden nodes is 203. The data set is

large, so the step size is set to 0.01 with a varying momentum starting at 0.05. Mov-

ing on to the Radial Basis Function, the K-means clustering algorithm determines

that 32 is the optimal number of cluster centers for this data set. Both architectures

are now ready for use.

A top down methodology to determine the optimal number of hidden nodes and

number of training epochs is employed. The initial number of training epochs is set

at one hundred, with a variable number of hidden nodes ranging from the maximum

number down. The number of hidden nodes which determines the smallest error for

the large testing set is chosen. Once the architecture is set, the number of training

epochs is varied until the number of epochs which determines the least error for the

large testing set is determined. Once the number of training epochs is determined,

the neural network is ready for testing using the smaller test sets.

3.5 Prediction Methodology Using Nearest Neighbors

After looking at neural processing, a question arises concerning the locality of

the prediction within the data set. The time series is constantly changing with time,

which naturally leads to the conclusion that the parameters of the data set are also

constantly changing. This has been shown to be true, but of little consequence to

the prediction accuracy [31]. Choosing a global set of parameters accomplishes the

same prediction accuracy as locally choosing them.

What of the locality of the prediction algorithms? Is it possible to train a neu-

ral network predictor locally to achieve the same level of accuracy as when training

on the entire training set? These questions have led to the use of the nearest neigh-

50

bors for the m-tuple closest to the prediction point as the training set for a neural

network. The nearest neighbors, determined by the Deterministic Versus Stochastics

algorithm, are found using Euclidean distance as a metric. The k-nearest neighbors

are the k closest points in m-space to the last point of the fitting set, Nf. This gives

k vectors of m-dimensional size.

Opeo NEWSANDP
for reading

Open CASDATA

The Generalized CasdagH
DVS Algorithm-

V

Rend in the Time Series
Data from NEWSANDP

Computing the Nearest Neighbors
for each X ■

Compute d(i)Q)

load dmatrix with the
indices of the nearest
neighbors

1
Sort dtfXJ) into ascending
order of nearness

1
replace d(iXi) with the
indices of the vectors,
arranged in ascending
order of nearness

Figure 28. Block Diagram of Nearest Neighbor Algorithm using DVS Algorithm

The Deterministic Versus Stochastics algorithm uses the nearest neighbors in

order to fit the linear hyperplane used for prediction (See Section 2.3). The rest of

the training set, the fitting vectors, are relatively useless once the covariance matrix

is determined. This verifies the importance of the nearest neighbors for the actual

prediction and reiterates the question of whether a local training set can match the

accuracy of the entire training set.

Supposing that a nonlinear surface better generalizes the data's underlying

dynamics, the use of the nearest neighbors as the training set for a neural network

becomes a necessary exercise. The use of the small, local training set allows for

51

shorter training times, as well as focusing the neural network's adaptation abilities

on the most 0 training data with regard to the prediction.

As with the general neural adaptation techniques presented in Section 3.4, both

the multilayer perceptron and the Radial Basis Function architectures are used. The

same requirements apply, except that the number of weights need not necessarily

determine the number of nodes required. The neural network's memorization of

the training data is not the critical error it is under normal circumstances. The

nearest neighbors form a surface based upon their immediate presences in state

space. Memorizing the data will simply fit the nonlinear surface more precisely to

the points present. Since these points are conjectured to carry enough information

to formulate a prediction with an accuracy equivalent to that of the Deterministic

Versus Stochastics algorithm, the resulting surface is more than sufficient for the

task at hand.

In order to create the desired algorithm, a number of nodes must be decided

upon. At least one hidden node is needed to fit a nonlinear surface to the training

data. The fewer hidden nodes, the longer it takes the neural network to memorize

the data. In order to fully determine the best architecture, a number of hidden nodes

must be started upon and then reduced in a top-down fashion. This causes the neural

network to better generalize the underlying dynamics of the data as the architecture

gets smaller. The architecture which provides the smallest error is chosen.

The neural networks are set up as in Section 3.4. For the Standard and Poors

data set, the number of nearest neighbors, k, is determined to be 16. The embedding

dimension size, m, is 7. This gives a training set of sixteen 7-tuples. The test set is

a single 7-tuple. The step size needs to be large since the training set is so small.

The step size is set to 0.2, with a variable momentum starting at 0.5. The Radial

Basis Function does not receive clustered information in this case, but rather works

based upon the actual training vectors as the cluster centers.

52

J/^\
// Hn \\
/ ' \

X
1

'^\ v> - Yt

X
2

\ 1 Hn \
\/ 2 V

Outputs

Inputs
• \
• Y

pYR]/
• / VA Hn / W 3 / - Y2

X
7 —*{)s.

\\ • /
\\ • /

Hn16

Figure 29. Radial Basis Function Setup for the SandP Data Set

For the INFFC data, k is set at 5 to limit the computation time. The em-

bedding dimension, m, is 3. The training set is made up of 3-tuples. The step size

is again 0.1 with a variable momentum starting at 0.5. The Radial Basis Function

again works with the cluster centers set at the actual training data vectors.

3.6 Non-Parametric Bayes Error Estimation

Curtis Martin's code is used to find the Bayes Bound on the data's error

probability [18]. The data set needs to be organized properly for the algorithm first.

The data set needs to be split up into smaller data sets for each class. The code is

written for a two class problem, although it can be applied to larger problems by

breaking them up into a set of two class problems. Each class needs to be organized

with each row defining a different feature. For the data sets examined in this thesis,

the m features are the time series points which make up the m-tuples. Thus a

data set with an m of 7 is broken up into component data sets with 7 rows each.

53

Remember that the number of data points in each class set need not be equal, but

that the number of features must be the same for each class.

The algorithms used to create the two class sets are MATLAB functions. In

order to better characterize the data set, the parameter m is varied along with k and

h. The variation of these parameters allows for the combination which determines

the best error bounds to be found. Since a range of k and h is inherent in the

algorithm, m is the parameter which needs to be varied. The parameter m is varied

by changing the embedding space of the data. Since the features are made up of the

m-tuple points, varying m varies the number of features.

For the S and P data set, the parameter m is varied from 1 to 10. This range

is based upon the determination of m using the DVS algorithm. Since the DVS

algorithm gives an m of 7 for this data set, the range 1 to 10 is deemed sufficient

to complete the experiment without inducing too much computational complexity.

The data sets are broken up into classes of up and down movements. This two class

set needs a single run of the Martin code to determine the Bayes Error Bound.

For the INFFC data set, the parameter m is varied from 1 to 3. This satisfies

the fractal dimension determination of the embedding space size, m, as 3. Since the

Martin code is set up for a two class problem, this three class problem is broken up

into its two class problem components. The data sets three classes are up, down,

and no movement (hold). The three component data sets are the up-down set, the

up-hold set, and the down-hold set. The fusion of these three sets characterize the

error probability bounds of one m-tuple data set.

3.7 Bayes Classifiers

The k-NN algorithm is 0 using the LNKnet software package [16]. LNKnet's

k-NN classifier trains by storing all of the training vectors presented to it. During

testing, the k stored patterns closest to the test vector are found using the Euclidean

54

distance metric. A vote is taken amongst the k neighbors and the class which occurs

the most is assigned to the test pattern [16].

The algorithm queries the user for the value of k. The k value can be obtained

from the DVS algorithm (See Section 2.3). The k value can also be determined from

the PDF estimation using Martin's code. The k value which gives the least error

is determined twice in the Martin Code, using two threshold options. For these

experiments, each of Martin's k values are used, along with the k determined using

the DVS algorithm, in order to see which k determines the smallest error.

For the S and P data set, the k value determined by the DVS algorithm is

16. The k values determined by Martin's code are 25 and 42, as determined by

threshold options 1 and 2 respectively. These three k values are used as the input to

LNKnet's k-NN algorithm. For the INFFC data set, the k value determined by the

DVS algorithm is 5. The k values determined by Martin's code are 7 and 9. These

three k values are then used as the input to LNKnet.

3.8 Fusion of the Algorithms

Fusion of the various algorithms is done to create a more robust prediction

network. Fusion is only advantageous if the different algorithms make incorrect

predictions based upon different criteria. In other words, if an algorithm "loses"

when another algorithm "wins", a fusion methodology can be formed in order to

form an optimized prediction set based upon the two algorithms.

In reality, a fusion algorithm needs an odd number of "voters", i.e. prediction

algorithms, in order to make a decision for a two class problem upon the collective

prediction. With an odd number of algorithms, an even majority prediction deter-

mines the fusion prediction. The supposition is that the fusion algorithm attains a

lower probability of error than that obtained by any one class.

For the S and P and INFFC data sets, the algorithms are compared pointwise in

order to determine which prediction points they incorrectly classify. If the algorithms

55

all "miss" the same points, then a fusion method is ineffective, since the combination

of the algorithms still incorrectly classifies the same points. If the algorithms "miss"

different points, however, taking a majority vote across the algorithms may decrease

the probability of error.

Probabilistic classification can also be used as a fusion method. Colombi has

shown that postprobabilities may be used to combine, or fuse, various classifiers

as well as features themselves [5]. Two different techniques are derived to use the

postprobabilities of the various algorithms, the goal is to choose the maximum likely

class i from the v classifiers.

The postprobabilities for each algorithm need to be derived for each class.

For the DVS algorithm, the post probabilities are found by examining the relative

probabilities of the nearest neighbors for each point. For instance, with 16 nearest

neighbors, four points are defined as up and twelve points are defined as down. The

relative probability for an up movement is 25 percent and for the down movement

is 75 percent. The postprobabilities for the nearest neighbor neural adaptation,

neural networks, and k-NN algorithms are all found using the LNKnet error files,

the postprobabilities for each class are the values of the output nodes for these

algorithms.

The first algorithm fuses the postprobabilities over a varying number of clas-

sifiers. This algorithm, the average fusion method, is defined by equation 41.

^(O=4X;F.(O (4i)

where -PA(«) is the fusion probability of class i, pv(i) is the postprobability of class i

for classifier v, and V is the number of classifiers used. The maximum PA^) is the

fusion algorithm's choice for the point's class.

For the S and P data set, the classifiers used are the DVS, the k-NN with k=16,

the neural network with sets based on random seed 0 and 2, and the MLP nearest

56

neighbor neural adaptor with k=16. There are two classes, down = 0 and up = 1,

with variable V based upon the number of classifiers used. For the INFFC data set,

the classifiers used are the DVS, the k-NN with k=5, and the RBF nearest neighbor

neural adaptor with k=19. There are three classes, down = 0, up = 1, and hold =

2, with variable V based upon the number of classifiers used.

The second algorithm also fuses the possibilities over the classifiers. This al-

gorithm, the weighted probabilities method, is defined by the equation 42

v
Pw(i) = Y,WvPv(i) (42)

v=l

where Pw(i) is the fusion probability of class i, Wv is the weight associated with

classifier v, and pv(i) is the postprobability of class i for classifier v, and V is the

number of classifiers used. The weights are based upon the relative success of the

algorithms. The better the prediction accuracy of the specified algorithm, the larger

the corresponding Wv.

The same algorithm choices for the S and P and INFFC data sets exist as those

used with the average fusion algorithm. The best combination of the algorithms

derived for both data sets using the average fusion method is used, with the weights

based upon the relative accuracies of the algorithms. The weights are varied until

the best prediction accuracy is found.

3.9 Statistical Significance of the Algorithms

A determination of the statistical significance of the different algorithms when

compared to the DVS algorithm is done to determine if the methods have different

average prediction rates than the DVS algorithm. This is done through the use of

the t-score. The t-score is computed as

« = i=&« (43)

57

where i— 1,... ,10, d[i] and e[i] are results for test set i with the DVS and an ex-

perimental algorithm, sj, is the sample standard deviation of the paired differences,

and n is the number of test pairs [29]. In these experiments, the paired differences

have a t distribution with nine degrees of freedom. Under these conditions, a t-score

with a magnitude greater than 1.833 indicates an experimental algorithm which is

statistically different than the DVS algorithm [29]. The confidence interval for each

algorithm is also found using the following formula

x±U-= (44)

where x is the average prediction error, ts. is the table t-score, S is the standard

deviation, and n is the number of test sets.

3.10 Summary

Chapter III reviews the hypotheses and algorithms used to explore the improve-

ment techniques for Casdagli's Deterministic Versus Stochastic algorithm. Spectral

estimators, neural networks, nearest neighbors, Bayes Error Bounding, Bayes Clas-

sifier, and fusion are all examined to show the procedures behind each experiment

conducted for this thesis. Chapter IV examines the results of each experiment in

detail.

58

IV. Results and Discussion

4-1 Introduction

This Chapter presents the results of the experiments in Chapter III. Section 2

examines the use of the TLS Prony Method as an acceptance method for the DVS

algorithm. Section 3 examines the use of a neural network as a classifier while Sec-

tion 4 examines the use of the DVS nearest neighbors as the training set for a neural

network. Section 5 examines the PDF estimation of the data for error boundary cal-

culation. Section 6 examines Bayes classification using the k-NN algorithm. Lastly,

Section 7 examines several fusion methods of classification based upon the previous

methods.

4 ■ 2 Casdagli 's D VS Predictions

In order to determine how well the methods perform, the accuracy of the

Casdagli DVS algorithm must be determined for the test sets. The S and P test

group consists of the raw data detrended by First Difference, First Ratio, and Image

Ratio methods as described in Section 3.2. Each detrend set consists of 10 twenty

point data sets. The INFFC test group is made up of the raw close data. The test

group consists of 10 twenty point test sets.

The S and P two class test group is used to determine which detrend method

is used throughout the remaining research. For each detrend method, the predic-

tion accuracy for each twenty point test set is calculated. The individual test set

accuracies are then averaged to provide an overall prediction accuracy for the de-

trend method. Once the average prediction accuracy for all three detrend methods

is computed, they are compared in order to chose a detrend method.

All of the average test accuracies are within half a percent of each other.

Examining the behavior of the individual test sets for each detrend group, both

the First Ratio and Image Ratio detrend sets have relatively consistent prediction

59

Data Set Prediction Accuracy Prediction Accuracy Prediction Accuracy
First Differences First Ratios Image Ratios

(%) (%) (%)
860 65 55 50
880 50 55 55
900 55 55 55
920 40 55 55
940 60 55 55
960 55 55 55
1000 30 50 50
1020 55 50 50
1040 60 55 55
1060 45 35 35

AVG 51.50 52.00 51.50

Table 3. Casdagli DVS Predictions on S and P Data, k=16

Data Set Prediction Accuracy Prediction Accuracy Prediction Accuracy
k=5 k=19 k=110
(%) (%) (%)

25000 40 40 45
25100 45 55 50
25500 20 15 25
25600 25 35 30
26000 50 30 30
26100 30 15 35
26500 30 45 30
26600 40 25 30
27000 35 15 35
27000 25 40 40

AVG 34.00 31.50 35.00

Table 4. Casdagli DVS Predictions of INFFC Data

60

accuracies, with 7 and 6 test sets respectively which are 55 percent accurate. The

First Differences detrend set has a larger range of values, from 30 percent for test set

1000 to 65 percent for test set 860. Since the average test accuracies of the three sets

are so similar, the First Differences detrend method is chosen because of its large

test accuracy range and because it is the better known detrend set in this field.

The INFFC three class test group is not detrended. The Stright Code which

implements the DVS algorithm can not function properly with this data set due

to the large number of data points. The code has been revised to use the INFFC

data, but cannot run with the detrended data because of the current decomposition

method employed by the algorithm. The Lower Upper Decomposition (LUD) method

currently used does not work with long strings of zeros, which occur for hold values.

A Singular Value Decomposition (SVD) algorithm needs to be employed to be able

to work correctly. The raw close data is used, with varying k values.

In order to choose the optimal k value, the test accuracies must be examined

in much the same way as for the S and P data. The individual test set accuracies

are determined, which enables the average test set accuracy for each k to be found.

Since the data is found to be stochastic by the DVS algorithm, a reduction in root-

mean-square error occurs as k approaches infinity [1]. The k values are thus chosen at

various intervals in order to test the theory, with the first k value, 5, being determined

by the Bayes Error Probability. The average test set accuracies vary, although the

largest k value determined the best prediction accuracy. The k value determined by

the Martin Code k-nearest neighbor algorithm is a close second, being the best k

value less than 50.

4-3 Casdagli and Spectral Estimation

The TLS Prony Spectral Estimator is used to evaluate whether the DVS pre-

diction is in phase with the two largest spectral components of the data set. Three

different data windows are examined: 20, 40, and 100. In one set of predictions,

61

the spectral components are determined from the undetrended data, while for the

other set of predictions the spectral estimators are determined from detrended data.

Only the first differences detrended data is presented since the other two detrend

sets do not have large enough magnitudes to determine the amplitude coefficients

for the spectral estimators. In this case, no single component dominates since all of

the magnitudes of the poles are approximately zero.

The results of the spectral estimation algorithm are presented with respect to

the type of data set which determines the phase, raw or detrended, and window size.

The prediction accuracy for each twenty point test set is presented, as well as an

average prediction accuracy for the ten test sets. The rejection rate is presented for

the individual test sets and for the entire set, where rejection is defined as not using

a prediction point because it is out of phase with the spectral components. This

allows for comparison with Casdagli's DVS algorithm on the individual test level as

well as on the average. If there is no value for the prediction accuracy, no single

spectral component dominates and all the points for that set are rejected.

Data Set Prediction Accuracy Rejection Rate
using Phase using Phase

(%) (%)
860 75.00 60.00
880 60.00 50.00
900 75.00 60.00
920 44.44 55.00
940 46.15 35.00
960 50.00 70.00
1000 36.36 45.00
1020 66.67 40.00
1040 37.50 60.00
1060 55.56 55.00

AVG 54.67 53.00

Table 5. DVS and Phase Prediction on S and P: Window - 20 pts.

62

Data Set Prediction Accuracy Rejection Rate
using Phase using Phase

(%) (%)

860 75.00 40.00
880 54.55 45.00
900 54.55 45.00
920 20.00 50.00
940 46.15 35.00
960 61.54 35.00
1000 35.71 30.00
1020 42.86 65.00
1040 75.00 40.00
1060 63.64 45.00

AVG 52.90 43.00

Table 6. DVS and Phase Prediction on S and P: Window - 40 pts.

Data Set Prediction Accuracy Rejection Rate
using Phase using Phase

(%) (%)

860 75.00 40.00
880 60.00 75.00
900 50.00 50.00
920 18.18 45.00
940 - 100.00
960 - 100.00
1000 33.33 40.00
1020 42.86 65.00
1040 72.73 45.00
1060 27.27 45.00

AVG 47.42 60.50

Table 7. DVS and Phase Prediction on S and P: Window - 100 pts.

63

Examining the S and P data set, two of the window sizes for the raw data phase

set improve upon Casdagli's DVS prediction accuracies on the average, although not

by a large amount. Individual test sets vary in their results, with some reporting

impressive improvements while others show significant loss. Notice that the 860 test

set in all of the windows is well above the DVS accuracy for the set. The 940 test

set is significantly lower for the 20 and 40 point windows, and does not exist for the

100 point window at all, where the phase is determined to be 0. The determination

of the best phase set of the three different windows depends upon the criterion of

the user. If obtaining the best prediction accuracy supersedes the number of points

actually tested, the twenty point window is chosen because the average prediction

accuracy is approximately two percent more accurate than its competitor. If the

amount of points being tested is more important than the exact prediction accuracy,

the forty point window is chosen because it accepts ten percent more points than its

competitor.

Data Set Prediction Accuracy Rejection Rate
using Phase using Phase

(%) (%)
860 57.00 65.00
880 42.86 65.00
900 54.54 45.00
920 44.44 55.00
940 72.00 45.00
960 54.55 45.00
1000 21.43 30.00
1020 72.73 45.00
1040 60.00 50.00
1060 50.00 50.00

AVG 45.68 49.50

Table 8. DVS and Phase Prediction on First Difference S and P: Window - 20 pts.

For the detrended data set, only the 100 point window's prediction accuracy

surpasses the prediction accuracy of the DVS algorithm, and then only by a small

64

Data Set Prediction Accuracy Rejection Rate
using Phase using Phase

(%) (%)

860 81.81 45.00
880 22.22 55.00
900 60.00 50.00
920 38.46 35.00
940 50.00 40.00
960 40.00 50.00
1000 30.77 35.00
1020 63.64 45.00
1040 72.73 45.00
1060 50.00 40.00

AVG 50.96 44.00

Table 9. DVS and Phase Prediction on First Difference S and P: Window - 40 pts.

Data Set Prediction Accuracy Rejection Rate
using Phase using Phase

(%) (%)
860 - 100.00
880 22.22 55.00
900 66.67 55.00
920 33.33 55.00
940 80.00 50.00
960 - 100.00
1000 28.57 30.00
1020 71.43 65.00
1040 66.67 55.00
1060 - 100.00

AVG 52.70 66.50

Table 10. DVS and Phase Prediction on First Difference S and P: Window - 100
pts.

65

amount. In essence, running the DVS algorithm is preferable to using the phase

acceptance algorithm since the prediction accuracy is approximately one percent

lower without any rejection. In fact, none of the accuracy rates for either the raw or

detrended phase sets surpasses the DVS accuracy rate by a large amount, especially

with respect to the rejection rate.

Examining the INFFC data set, three different data windows are examined: 20,

40, and 100. The spectral components are determined from the undetrended data,

in order to compare the results to the DVS prediction accuracy. The prediction

accuracy and rejection rate are presented for the individual test sets as well as for

the entire test group.

Data Set Prediction Accuracy Rejection Rate
using Phase using Phase

(%) (%)
25000 25.00 80.00
25100 71.00 90.00
25500 11.00 55.00
25600 33.33 55.00
26000 62.00 60.00
26100 14.00 65.00
26500 25.00 80.00
26600 14.00 65.00
27000 14.00 65.00
27100 00.00 80.00

AVG 26.93 69.50

Table 11. DVS and Phase Prediction on INFFC: Window - 20 pts.

Although none of the average test set accuracies for the three windows reach the

prediction accuracy of the DVS algorithm, the 40 point window comes the closest

with a 33.17 percent accuracy. The range of prediction accuracies amongst the

window sets vary, with the smallest range belonging to the 40 point window set.

The rejection rates across the windows are fairly constant on average, ranging from

66 to 70 percent.

66

Data Set Prediction Accuracy Rejection Rate
using Phase using Phase

(%) (%)

25000 00.00 50.00
25100 43.00 65.00
25500 33.33 55.00
25600 27.00 45.00
26000 56.00 55.00
26100 29.00 65.00
26500 43.00 65.00
26600 17.00 70.00
27000 50.00 80.00
27100 33.33 85.00

AVG 33.17 63.50

Table 12. DVS and Phase Prediction on INFFC: Window - 40 pts.

Data Set Prediction Accuracy Rejection Rate
using Phase using Phase

(%) (%)
25000 00.00 75.00
25100 17.00 70.00
25500 00.00 70.00
25600 10.00 50.00
26000 40.00 50.00
26100 00.00 60.00
26500 17.00 70.00
26600 60.00 75.00
27000 20.00 75.00
27100 17.00 70.00

AVG 18.10 66.50

Table 13. DVS and Phase Prediction on INFFC: Window - 100 pts.

67

The individual test accuracies are often disparate from the DVS test accuracies.

For example, data set 26000 has a DVS accuracy of 50 percent. The 20 point window

accuracy for 26000 is 62 percent, the 40 point window accuracy is 56 percent, and

the 100 point window accuracy is 40 percent. The window test accuracies are mostly

above the DVS accuracy in this case. For data set 25000, however, the DVS accuracy

is 45 percent. The 20 point window has an accuracy of 25 percent, while both the

40 point and 100 point windows have 0 percent test accuracies. In this case, all of

the window test accuracies are below the DVS accuracy. In most cases, however, the

test set accuracies vary in respect to the DVS accuracy.

4-4 Casdagli and Neural Networks

The use of a multilayer perceptron neural network with the parameters calcu-

lated by the DVS algorithm allows the use of a nonlinear surface to fit the points.

The main concerns presented by this algorithm are the architecture size and num-

ber of training epochs. The architecture size and training epochs are chosen in the

combination which determines the lowest test error. A top down approach to finding

these variables is taken in this thesis.

For the S and P data set, the number of inputs is 7, determine by the embedding

dimension obtained from the DVS algorithm. The number of outputs is 2, enough

to classify the data as up and down. The number of middle nodes is varied, ranging

from the maximum number, determined to be 8, down. Using the 200 point test set,

the test errors are taken after 100 training epochs. The lowest test error is obtained

with 4 middle nodes.

With the architecture determined, the number of training epochs is varied

in order to minimize the test error. Examining the training errors for the 7,4,2

architecture, learning is completed before the original 100 epochs is complete. The

number of epochs is thus varied from 100 down. Using the 200 point test set, the

lowest error is obtained with 51 training epochs.

68

Error History Tor Chooeing the S and P Hidden Nodes

4 5 6 7
Number of Hidden Nodes

Figure 30. Testing Error History Plot of the 200 Point Test Set to Determine the
Number of Hidden Nodes

TOO 200 300 400 500
Number of Training Epochs

60 70 80 90
Number of Training Epochs

S3 54 55 56
Number of Training Epochs

Figure 31. Testing Error History Plot of the 200 Point Test Set to Determine the
Number of Training Epochs

69

In order to determine how training is affected by the initial conditions of the

neural network, the initial weights are varied to observe the effect upon the classifi-

cation of the test sets. The initial weights are set by picking the random seed used

by LNKnet. Five different seeds are used, in order to ensure that a good range of

initial weights is used, which causes a variance in the results.

Data Set SeedO Seed 1 Seed 2 Seed 3 Seed 4

(%) (%) (%) (%) (%)

860 60 50 55 50 40
880 60 50 45 55 60
900 50 60 40 45 55
920 80 65 75 65 70
940 50 50 70 55 55
960 80 55 75 65 75
1000 65 75 60 60 75
1020 65 65 70 50 55
1040 30 30 50 35 35
1060 50 40 50 50 45

AVG 59.00 54.00 59.00 53.00 56.50

Table 14. S and P DVS and Neural Network: MLP: 7,4,2

The network is trained with 850 data vectors. The results range from 53 percent

correct to 59 percent correct, with all of the sets' accuracies above the initial accuracy

obtained by the DVS algorithm. Either random seed 0 or 2, which determine 59

percent test accuracy, may be chosen as the best implementation, dependent on

whether a few major changes of the individual 20 point test set prediction accuracies

are preferred over small changes of several individual test set prediction accuracies.

For the INFFC data set, the number of inputs is 3. The DVS algorithm does

not determine an embedding dimension for this set, but rather shows that the data

is stochastic. The embedding dimension is thus chosen to minimize the run time

of the neural networks. The number of outputs is 3, enough to classify the data as

up, down, or hold. The number of middle nodes ranges from the maximum number,

200, down. Using the 200 point test set, the test errors are taken after 100 epochs.

70

The testing error does not change for any number of hidden nodes. The network

classifies all of the test data vectors as holds.

In order to see if the neural network will learn if trained longer, the number of

training epochs is varied from 500 epochs down. Again using the 200 point test set,

the test errors do not change for any number of training epochs. All of the points are

still classified as holds. The number of training epochs and the architecture could

not be set to induce the neural network to learn the test data properly. Indeed, the

neural network would not even learn the training set, moving around from value to

value randomly.

4-5 Nearest Neighbor Neural Adaptation

Using the nearest neighbors as a neural training set is an attempt to create a

local prediction method [3]. These procedures are designed to determine if a local

set of data, i.e. the nearest neighbors, is able to train a neural network so that

its performance is at the same, or better, level of prediction accuracy as the DVS

prediction set. The nearest neighbors are those vectors which most closely mirror

the trajectory of the attractor when the test vector occurs.

The first set of experiments is a top down approach to determine the best

architecture and training size of the multilayer perceptron and radial basis function

neural networks with respect to the large training set. The MLP and RBF archi-

tectures which provide the best testing accuracy for both data sets are chosen. The

second set of experiments is designed to create a more generalized neural network

since a higher level of generalization is normally an indicator of a more successful

network for use in the world where the data was taken.

For the S and P data set, the architecture for the optimized neural network

is determined to be 7 inputs, 3 middle nodes, and 2 outputs for the multilayer per-

ceptron and 7 inputs, 2 outputs, and 16 cluster centers for the radial basis function.

The multilayer perceptron achieves an average test accuracy of 56.50 percent, five

71

Data Set Prediction Accuracy
(%)

860 45
880 60
900 50
920 55
940 55
960 70
1000 55
1020 60
1040 60
1060 55

AVG 56.50

Table 15. S and P DVS Nearest Neighbor MLP: 7,3,2

Data Set Prediction Accuracy
(%)

860 45
880 25
900 55
920 45
940 40
960 55
1000 50
1020 55
1040 40
1060 35

AVG 44.00

Table 16. S and P DVS Nearest Neighbor RBF: 7,2, Centers: 16

72

percent higher than the DVS prediction of 51.50 percent. Notice that the test sets

with the highest and lowest accuracy rates are not consistent across the two meth-

ods. The MLP's most accurate test set is 960 and the least accurate is 860. The

DVS's most accurate test set is 860 and the least accurate is 1000. This provides

some incentive to create a fusion method for the algorithms, in order to exploit the

disparate testing accuracies. The radial basis function does not perform as well as

the DVS algorithm, with an accuracy of 44 percent. The individual test sets do not

do very well, with 6 of them below 50 percent accurate.

Data Set Prediction Accuracy

(%)
860 40
880 65
900 55
920 65
940 55
960 60
1000 45
1020 55
1040 50
1060 40

AVG 53.00

Table 17. S and P DVS Nearest Neighbor MLP: 7,1,2

The architecture of the generalized neural network is determined to be 7 inputs,

1 middle node, and 2 outputs for the multilayer perceptron and 7 inputs, 2 outputs,

and 8 cluster centers for the radial basis function. The multilayer perceptron achieves

an average test set accuracy of 53 percent, 1.5 percent higher than that achieved by

the DVS algorithm. The radial basis function again does not achieve the DVS

accuracy, with an average test set accuracy of 45.50 percent. Again, the test sets are

disparate across the methods, warranting the use of a fusion algorithm.

For the INFFC data set, the architecture for the optimized neural network is

determined to be 3 inputs, 2 middle node, and 3 outputs for the multilayer perceptron

73

Data Set Prediction Accuracy

(%)

860 40
880 50
900 45
920 45
940 45
960 55
1000 45
1020 60
1040 35
1060 55

AVG 45.50

Table 18. S and P DVS Nearest Neighbor RBF: 7,2, Centers: 8

Data Set Prediction Accuracy

(%)
25000 15
25100 30
25500 30
25600 15
26000 20
26100 30
26500 35
26600 30
27000 30
27100 15

AVG 25.00

Table 19. INFFC DVS Nearest Neighbor MLP: 3,1,3

74

Data Set Prediction Accuracy

(%)
25000 10
25100 50
25500 40
25600 45
26000 20
26100 40
26500 55
26600 45
27000 40
27100 40

AVG 38.50

Table 20. INFFC DVS Nearest Neighbor RBF: 3,3 Centers: 16

and 3 inputs, 3 outputs, and 16 centers for the radial basis function. The neural

network architecture which is designed to generalize the data is not implemented for

this test set since it did not prove very successful with the S and P data.

The multilayer perceptron achieves an average test set accuracy of 25 percent,

much lower than the DVS prediction accuracy of 35 percent. The radial basis func-

tion performs better than the MLP, with an average prediction accuracy of 38.50

percent. The test sets with the highest and lowest accuracy rates again are not

consistent across the two methods. The RBF's most accurate test set is 26500 and

the least accurate is 25000. The DVS's most accurate test set is 25100 and the least

accurate is 25500. This disparity again provides incentive to create a fusion method

to tie the algorithms together in an attempt to raise the prediction accuracy.

4-6 Bayes' Bounding Error Probability

The Bayes Error Probability is used to determine a range of probable error

for a given data set based upon the set of features. These calculations will enable

the determination of the upper bound for the prediction accuracies for the given

data set. The Bayes Error Probability is found for both the k-nearest neighbors and

75

Parzen Windows algorithm. This algorithm tells if the prediction algorithms are

giving accuracies which approximate the Bayes Probability.

Examining the S and P data, the undetrended and First Difference errors are

bounded. The embedding dimension is 7, as determined by the DVS algorithm. This

number is used to determine the number of features. Using 2 different leave-one-out

methods, the optimal k for the k-nearest neighbor method is determined for both

leave-one-out methods. The optimal h for the Parzen windows method is also found

for both leave-one-out curves.

For the raw S and P data, the error boundaries converge upon a lower bound

of 45 percent and an upper bound of 50 percent for both the k-nearest neighbor and

Parzen window methods. For this data set, only one leave-one-out option gives an

error estimate. The other option does not present results. The optimal k value is

determined to be 2, while the optimal h value is determined to be 0.8.

Standard and Poors Data (k-NN)
55i 1 1 1 1 1 1 1 1 r~

Band 11mage (Parzen)

1

0 5 10 15 20 25
k

35 40 45 50

Figure 32. Bayes Bounding of Raw SandP data, m=7

For the First Differences S and P data, the error boundaries are different for

the two methods. Both leave-one-out options give error estimates for this data set.

76

The k-nearest neighbor error boundaries converge to an upper bound of 28 percent

with a lower bound of 26 percent. The optimal k, determined from the dotted line, is

43. The Parzen Window error boundaries converge to an upper bound of 28 percent

with a lower bound of 25 percent. The optimal h value is 2.2.

Dstrended Standard and Poors Data (k-NN)
401 1 1 1 1 1 1 1 1 r—

Detrendsd Standard and Poors Data (Parzen)

V.
i ':

15' ' 1 "- -J I I I L_
0 5 10 15 20 25 30 35 40 45 50

k
9 10

Figure 33. Bayes Bounding of First Differences SandP data, m=7

For the INFFC data, the code is run three times. Since this data is made up of

three classes, the Martin Code must be run for all combinations of 2 classes that exist.

The embedding dimension is 3, as discussed in Section 4.4. This number determines

the number of features. The three runs, for classes 01, classes 02, and classes 12,

are combined in order to determine the optimal k for the k-nearest neighbor method

and the optimal h for the Parzen windows method.

For the INFFC data, the k-nearest neighbor plots all converge upon an upper

bound of 50 percent error. The lower bound for the class 01 set converges upon

47 percent error. The lower bound for the class 02 set converges upon 10 percent

error. The lower bound for the class 12 set converges upon 18 percent error. For

all of the class sets, the error starts at zero, and rises as k increases. This seems to

indicate that the more information which is presented, the more confused the classes

77

become. The first 10 values for k are optimal for all of the three class sets. For the

Parzen windows method, the upper bounds for the class 01 set converges upon 48

percent error, the class 02 set converges upon 40 percent error, and the class 12 set

converges upon 43 percent error. The lower bounds for the class 01 set converges

upon 47 percent error, the class 02 set converges upon 38 percent error, and the class

12 set converges upon 42 percent error. The optimal h is 2.2 for class 01, 5.3 for

class 02, and 7.1 for class 12.

INFCC Data (k-NN)
701 1 1 1 1 1 1 1 r~

J| l I L

INFCC Data (Parzen)
"T 1 1 1 1 1 1 1 r-

i 1 1 1 _l l i i_
0 5 10 15 20 25 30 35 40 45 50

k
5 6 7 8 9 10
h

Figure 34. Bayes Bounding of Raw INFFC data, m=3, classes 0,1

4-7 Bayesian Classifiers

Having used the Bayesian Error Probabilities to determine the optimal k, a

method designed to use this k value for classification is the next step. The k-Nearest

Neighbor algorithm is thus chosen to implement the results of the Bayes Bounding

in order to determine the validity of Martin's Code for this problem, as well as

try to improve upon the accuracy obtained by the DVS algorithm. The k-Nearest

Neighbors algorithm is implemented using the LNKnet software package.

78

INFCC Data (k-NN)
701 1 1 i 1 1 1 1 1 r-

-j 1 1 i_ _i 1 1 1_

0 5 10 15 20 25 30 35 40 45 50
k

9 10

Figure 35. Bayes Bounding of Raw INFFC data, m=3, classes 0,2

< 20

INFCC Data (k-NN)
-n—i 1 1 1 r"

-i 1 i i i i i i i_

INFCC Data (Parzen)
55

50

45 i

40

^35

g

!25

20

15

10

*
*

i i i i i i i i i

5 10 15 20 25 30 35 40 45 50
k

0 12 3 4 5
h

7 8 9 10

Figure 36. Bayes Bounding of Raw INFFC data, m=3, classes 1,2

79

Data Set k=16 k=25 k=42
(%) (%) (%)

860 55 55 55
880 55 50 40
900 55 45 50
920 50 60 65
940 50 65 30
960 60 70 55
1000 70 70 70
1020 65 60 55
1040 35 35 40
1060 55 55 50

AVG 55.00 56.50 51.00

Table 21. S and P Bayesian Classifier: k-NN with Varying k

For the First Differences S and P data, several k values are examined. The

first k value is 16, which is the k found using the DVS algorithm. The second k

value is 25 and the third is 42, the optimal k values found using the two options

of the Bayesian Error Probability Estimation. The individual test set accuracies

are calculated, as well as the average test set accuracy. The second k value, k=25,

provides the best average test set accuracy, with an accuracy of 56.50 percent, which

is below the Bayes bounding error range determined by the Martin Code.

Examining the individual test set accuracies, and comparing them to the DVS

test accuracies, the disparity between the sets is evident. For the DVS set, the most

accurate test set is 860 and the least accurate test set is 1000. For the k=25 Bayesian

classifier, the most accurate test sets are 960 and 1000 while the least accurate is

1040. This disparity between the sets provides great incentive to create some type

of fusion algorithm.

For the INFFC data, several k values are also examined. The first k value is 5,

determined by the Bayes Error Probability curves. The second k value is 19 and the

third k is 100, since the data is determined to be stochastic by the DVS algorithm.

80

Data Set k=5 k=19 k=100
(%) (%) (%)

25000 20 10 15
25100 50 25 30
25500 45 30 20
25600 30 35 40
26000 30 30 35
26100 25 50 30
26500 40 25 20
26600 40 35 40
27000 50 35 45
27100 40 45 40

AVG 37.00 32.00 31.50

Table 22. INFFC Bayesian Classifier: k-NN with Varying k

The individual test set accuracies are calculated, as well as the average test set

accuracies. The first k value, k=5, provides the best average test set accuracy, with

an accuracy of 37.00 percent.

Examining the individual test set accuracies, and comparing them to the DVS

test accuracies, the disparity between the sets is again evident. For the DVS set, the

most accurate test set is 25100 and the least accurate test set is 25500. For the k=5

Bayesian classifier, the most accurate test sets are 25100 and 27000 while the least

accurate test set is 25000. This disparity provides some incentive to creating fusion

algorithms.

4-8 Fusion of the Algorithms

A fusion method tries to combine several algorithms in order to increase predic-

tion accuracy. Trying to fuse the methods together is only effective if the methods'

errors are complimentary. Errors are complimentary if the occur at different times

in the test sets. A successful fusion method chooses the algorithm with the best

prediction accuracy for the given test set.

81

The first fusion method is called the majority rule without rejection. This

method incorporates an odd number of algorithms and examines the classification

for each point. The class which receives the majority vote, i.e. is chosen by the

most algorithms, is the winner. This process is repeated for all of the data points

in the test set. No rejection is implemented since the DVS and Spectral Estimation

algorithm is not considered in this method.

The second fusion method is the average fusion method, this method incorpo-

rates a various number of algorithms, from two to five algorithms at a time. PA{^)

is found using the algorithms' postprobabilities. The class i with the largest PA(0

is chosen as the winner. This method is used for all the data points in the set.

The third fusion method is the weighted probability fusion method. The

method uses the best combination of the algorithms as found by the average fu-

sion method. The v algorithms are weighted by their individual successes. Once

the initial weights are derived, the fusion method is run. The prediction accuracy is

calculated, and the weights are changed until a threshold probability is found and

the weights are set.

Data Set Prediction Accuracy
(%)

860 65.00
880 60.00
900 50.00
920 70.00
940 65.00
960 80.00
1000 50.00
1020 60.00
1040 40.00
1060 55.00

AVG 59.5

Table 23. First Differences S and P Fusion Method # 1: Majority Rule

82

For the First Differences S and P data set, the majority rule fusion method uses

the neural network, nearest neighbor neural adaptation, and the k-Nearest Neighbor

algorithms to classify the data as up and down. This fusion method works well,

obtaining an average prediction accuracy of 59.50 percent. No individual test set

accuracies for the fusion methods drop below 40 percent, which is higher than the

least accurate test set for any of the individual algorithms.

Algorithms Average Prediction Accuracy
(%)

DVS, k-NN, netl, nn 48.5
DVS, k-NN, net2, nn 49.00

DVS, k-NN, netl, net2, nn 50.00
DVS and k-NN 53.50

DVS and nn 49.00
DVS and netl 58.00
DVS and net2 52.50

DVS, netl, net2 57.00
k-NN and netl 56.50

nn and net 2 49.00
netl and net2 57.00

Table 24. First Differences S and P Fusion Method # 2: Average Probability Fusion

The average fusion method uses the postprobabilities for the DVS, the neural

network for two different random seeds, the nearest neighbor neural adaptor, and

the k-nearest neighbor algorithms. As seen in Table 24, ten different combinations of

the algorithm are examined. Judging from the average prediction accuracy, the best

combination of the algorithms is the DVS and the first nearest neighbor algorithms.

This combination achieves an average prediction accuracy of 58 percent, below that

of the majority rule algorithm.

The weighted probability fusion method uses the DVS and first neural net-

work algorithm combination to try to improve upon the average fusion method. The

weights are initially set by the algorithms' prediction accuracies. After several cal-

culations, the weights are set at W\ = 0.1 and Wi = 0.25. The average prediction

83

Algorithm DVS and netl
Data Set Prediction Accuracy

(%)

860 60.00
880 55.00
900 50.00
920 80.00
940 55.00
960 75.00
1000 70.00
1020 50.00
1040 45.00
1060 45.00

AVG 58.5

Table 25. First Differences S and P Fusion Method # 3: Weighted Probability
Fusion

accuracy, found in Table 25, is 58.50 percent, above the average fusion method, but

below the majority rule method.

For the raw INFFC data set, the majority rule fusion method uses the neural

network, the nearest neighbor neural adaptor, and the k-nearest neighbor algorithms

to classify the data as up,down, and hold. This fusion method does not work very

well, obtaining an average prediction accuracy of 26.50 percent, well below the prob-

ability of chance.

The average fusion method uses the probabilities for the DVS, k-nearest neigh-

bor, and two nearest neighbor neural adaption algorithms. The first nearest neighbor

set, nn, is the raw postprobabilities of the algorithm. This set contains NaNs, which

stands for either infinity or minus infinity. The second nearest neighbor set is nnl,

which is the postprobabilities with the NaNs replaced with zeros, which allows these

points to have no bearing upon the outcome of the fusion. As seen in Table 27,

nine combinations of the algorithms are examined. The best combination of the

84

Data Set Prediction Accuracy
(%)

25000 5.00
25100 55.00
25500 30.00
25600 30.00
26000 25.00
26100 20.00
26500 30.00
26600 35.00
27000 35.00
27100 30.00

AVG 26.50

Table 26. Raw INFFC Fusion Method # 1: Majority Rule

Algorithms Average Prediction Accuracy
(%)

DVS, k-NN, nn 38.50
DVS, k-NN, nnl 38.00

DVS, k-NN, nn, nnl 39.00
DVS and k-NN 38.50

DVS and nn 37.50
DVS and nnl 35.50
k-NN and nn 38.50
k-NN and nnl 36.00

nn and nnl 38.50

Table 27. Raw INFFC Fusion Method # 2: Average Probability Fusion

85

algorithms is DVS, k-nearest neighbors, and both nearest neighbor neural adaption

sets. This combination achieves an average prediction accuracy of 39 percent.

Algorithm DVS, k-NN, nn, nnl
Data Set Prediction Accuracy

(%)
25000 30.00
25100 45.00
25500 40.00
25600 45.00
26000 25.00
26100 35.00
26500 60.00
26600 40.00
27000 30.00
27100 45.00

AVG 39.50

Table 28. Raw INFFC Fusion Method # 3: Weighted Probability Fusion

The weighted probability fusion method uses the best algorithm combination,

as determined by the average prediction method. The weights are initially set by

the algorithms' individual prediction accuracies. After setting the initial weights at

Wi = 0.1 for the DVS data, W2 = 0.2 for nn and nnl data, and W3 = 0.4 for the

k-NN data, the method is run. After many calculations, the weights are set at W\

= -0.1, W2 = 0.1, and W3 = 0.4. The average prediction accuracy, from Table 28, is

39.5 percent, the best achieved by any of the fusion methods for this data set.

4.9 Statistical Significance of the Algorithms

The Statistical Significance of the various experimental algorithms with respect

to the DVS algorithms is also calculated.

86

Algorithm t-score Confidence Interval
Magnitude Magnitude

DVS - 7.5494
Spectral 0.7682 10.1970

k-NN 0.8733 7.9170
Neural 1.2247 4.7836

NN neural 1.1028 10.7693
Fuse #3 1.1290 8.1645
Fuse #1 1.7143 8.9294

Table 29. t-Scoring and Confidence Intervals for the S and P data

Algorithm t-score Confidence Interval
Magnitude Magnitude

DVS - 6.9105
Spectral 0.1493 11.7172

k-NN 0.6429 7.3877
NN neural 0.7297 9.69263
Fuse #1 0.9493 8.9929
Fuse #3 1.0287 7.2419

Table 30. t-Scoring and Confidence Intervals for the INFFC data

87

4-10 Summary

This Chapter examines and discusses the results of the individual classifica-

tion algorithms and the fusion methods described in Chapter III. The following

tables present the significant results from the experiments conducted for this thesis,

including the error bounds determined from the Bayes Error Probabilities.

Algorithm Prediction Accuracy
(%)

Neural Network, seeds 0,2 59.00
Nearest Neighbor Neural, MLP, k=16 56.50

k-NN, k=25 56.50
DVS and Phase, k=16 54.67

DVS, k=16 51.50

Table 31. Algorithms using S and P: Ranking from Best to Worst

Algorithm Prediction Accuracy
(%)

Nearest Neighbor Neural, RBF, k=19 38.50
k-NN, k=5 37.00
DVS, k=5 34.00

DVS and Phase, k=5 33.17

Table 32. Algorithms using INFFC: Ranking from Best to Worst

Algorithm Prediction Accuracy
(%)

Majority Rule 59.50
Weighted Probability 58.50
Average Probability 58.00

Table 33. Fusion Methods using S and P: Ranking from Best to Worst

Error bounds are determined from the Bayes Error Probability.

88

Algorithm Prediction Accuracy
(%)

Weighted Probability 39.50
Average Probability 39.00

Majority Rule 26.50

Table 34. Fusion Methods using INFFC: Ranking from Best to Worst

S and P error: (k) (01) upper: 35% lower: 25%

(h) (01) upper: 28% lower: 20%

INFFC error: (k) (01) upper: 60% lower: 48%

(k) (02) upper: 60% lower: 30%

(k) (12) upper: 60% lower: 40%

(h) (01) upper: 50% lower: 47%

(h) (02) upper: 50% lower: 39%

(h) (12) upper: 50% lower: 41%

Conclusions concerning the validity of the classification algorithms and the fu-

sion methods, as well as some suggestions concerning additional work in this research

area, are presented in Chapter V.

89

V. Conclusions and Recommendations

5.1 Introduction

Chapter V examines the results of the algorithms for both data sets with

respect to the overall emphasis of this thesis. The success rate of the individual

algorithms is examined, as well as the success of the various fusion methods. The

ability to train a neural network upon a limited data set is also examined, as well as

the determination of the error bounds based upon the Bayes Error rates.

This chapter also presents some recommendations for further work to be done

in this field of study. The first examines the use of the detrended INFFC data set

to check for improvement over the raw data, while the second examines the addition

of phase to the training vector as an additional feature. The third recommenda-

tion examines the development of a nearest neighbor confidence measure, while the

fourth examines pruning the nearest neighbors for the nearest neighbor neural adap-

tor. The final recommendation the Mahalanobis distance metric k-Nearest Neighbor

algorithm.

5.2 Conclusions

The focus of this thesis is to increase the prediction accuracy of current time

series prediction algorithms. This can be readily measured by comparing the algo-

rithms' prediction accuracies to that of the DVS algorithm. For the Sand P data

set, all four of the experimental algorithms tested surpassed the prediction accu-

racy of the DVS algorithm. The specific parameters needed for each algorithm are

described in Chapter IV. For the INFFC data set, only two of the experimental algo-

rithms tested surpassed the prediction accuracy of the DVS algorithm. The specific

parameters needed for each algorithm are again described in Chapter IV.

The fusion algorithms are attempts to combine the algorithms in order to capi-

talize upon their individual successes. The fusion methodologies form two categories,

90

the majority rule voting algorithm and the probabilistic classification algorithms. For

the S and P data set, the majority rule algorithm provides the best prediction accu-

racy, which also surpasses the prediction accuracies of all the individual algorithms.

For the INFFC data set, the weighted probability algorithm provides the best pre-

diction accuracy, which also surpasses the prediction accuracies of the individual

algorithms. In both cases, the fusion algorithms surpass the prediction accuracies

achieved by any one prediction algorithm.

Martin Casdagli raised several interesting questions in his article written for

the Santa Fe Competition. One of these is the ability to use a limited local training

set to predict the next point of a time series [3]. This question led to the neural

network algorithm, trained with the nearest neighbors, used in this thesis. This

algorithm uses the nearest neighbors for the last vector of the fitting set to predict

the next point. Both the MLP and RBF architectures are used to determine which

algorithm best suits the data set. For the S and P data set, the MLP architecture is

successfully trained with the nearest neighbor set consisting of the sixteen training

vectors. The prediction accuracy of this algorithm surpasses that of the DVS algo-

rithm, ranking second out of the five tested algorithms. For the INFFC data set,

the RBF architecture is more successful in training with the nearest neighbor set

consisting of nineteen training vectors. The prediction accuracy of this algorithm

surpasses the DVS accuracy, and is the best algorithm out of the four successfully

tested. These results indicate that locally training an algorithm can achieve the

same, or better, results than using the entire training set.

The Bayes Error Probabilities are found in order to determine probabilistic

error bounds for each of the data sets. These bounds should be able to determine

the success of the prediction algorithms. The success is measured by the nearness of

the the algorithms' prediction accuracies to the bounds found by the Martin Code.

For the S and P data set, none of the algorithms' prediction accuracies approach the

error bounds found by the Bayes Error Probability. This shows that there is room for

91

improvement for the prediction accuracy of the algorithm to reach the Bayes Error

Probability bounds. For the INFFC data set, the algorithms' prediction accuracies

seem to approach the error bounds. This is hard to detect since an exact error

bound for the three class problem has not been determined. The algorithms are at

least closer to the bounds evident from the two class component bounds. The Bayes

Probability bound shows that some improvement can be made in both data sets.

Examining the t-scores determines the statistical significance of the various

experimental algorithms with respect to the DVS algorithm. For the S and P algo-

rithms, none of the algorithms have t-score magnitudes which surpass 1.833. This

shows that all of the algorithms are statistically similar with a 95 percent confidence

interval. Notice that the t-score magnitude gets bigger as the algorithms' average

prediction accuracy increases. The fusion method with the best average prediction

accuracy amongst all the algorithms is also the one with the largest t-score. The

more the experimental algorithm differs from the DVS algorithm, the better the

prediction accuracy is. For the INFFC algorithms, none of the algorithms have t-

score magnitudes which surpass 1.833. This shows that all of the algorithms are

statistically similar. The t-scores again increase as the algorithms' average predic-

tion accuracy increases. The more the experimental algorithm differs from the DVS

algorithm, the better the prediction accuracy is. This leads to the conclusion that,

for these experimental algorithms, the more statistically significant the algorithm,

the better the prediction accuracy it attains.

5.3 Recommendations

There are several questions which arise from the conclusion of this thesis. Find-

ing the answers to a particular problem inevitably leads to more questions concerning

the actual answers to the problem. This section examines some of the work which

can be done to answer the new questions which have recently surfaced.

92

The detrended INFFC data set needs to be run through the algorithms to see

if it performs better than the raw data. All evidence suggests that detrending the

data aids in prediction, as discussed in Section 3.2. This set has not been done

since the DVS algorithm implemented by Stright can not handle the large amount

of data, and the DVS algorithm implemented by Stewart can not be properly run

with strings of zero in the data, which the detrended set contains. Running this set

through the algorithms should significantly improve the prediction accuracy for this

set.

A new way of using the phase information to aid in prediction needs to be

examined. Instead of using the phase to reject points as in the current algorithm,

the phase should have some value as a feature. One modification which can easily

be made is to add the phase component to the current neural network feature vector

as a new feature. This makes the features contained in the training vector the n

time series points which make up the n-tuple and the phase component. This will

hopefully be a significant feature and increase the prediction accuracy.

A new use for the nearest neighbor probabilities has been suggested . the

relative probability of what direction the nearest neighbors are moving in can be

determined from the number of neighbors which are moving in the same direction.

For example, if six neighbors are moving upward and four neighbors are moving

downward, the supposition is that there is a sixty percent probability that the next

point is moving along the upward trajectory and a forty percent probability that it is

moving downward. These probabilities can be used as a confidence measure for the

prediction. If the prediction is up, and there is more than a fifty percent probability

that the next point will move up, then the prediction is said to be confident. If the

prediction is down, however, and there is more than a fifty percent probability that

the next point is up, then the prediction is no longer confident. This method can

be used in conjunction with any algorithm which incorporates the use of the nearest

neighbors.

93

If the training set can be reduced down to the nearest neighbors, can it be

reduced any further? This effort to further prune the nearest neighbors can be done

if several training vectors present nearly identical information to the algorithm. In

order to determine if a training vector is extraneous, a leave-one-out methodology

must be employed upon the training set. This allows the algorithm's output to

analyzed with each training vector removed from the nearest neighbor training set.

Once a determination is made concerning the applicability of each training vector to

the successful training of the algorithm, those vectors deemed unnecessary can then

be removed. The remaining vectors make up the pruned nearest neighbors training

set.

Another recommendation is to create a Mahalanobis distance k-Nearest Neigh-

bor algorithm. The Bayes Error Bounding is based upon code which uses the Ma-

halanobis distance as the metric. All of the algorithms used in this thesis use the

Euclidean distance metric. Since the algorithms' performances are based upon the

Bayes Error Bound, the difference in the distance metric is a factor which must be

considered. It must be determined if algorithms using the Mahalanobis distance

metric perform better than their Euclidean counterparts. Creating the Mahalanobis

k-Nearest Neighbors algorithm is the first step in this endeavor. This particular

algorithm is chosen since the Bayes Error Bounding finds an optimal k value using

the Mahalanobis metric. Along the same lines of thought, the creation of a Parzen

Windows classifier will provide further evidence for the adoption of the Bayes Error

Probability as a reliable method of the determining the data's actual error bounds.

The final recommendation is to combine the two class probabilities of the mul-

ticlass problem in order to derive a single upper and lower bound error set with

respect to all of the classes. This problem is a statistical one dealing with the

combination of several probability curves determined using PDF estimators. Look-

ing at the individual two class probabilities does not convey enough information

concerning the probability set for the multiclass space to reliably make a bounds

94

determination. Only if this problem is solved can multiclass prediction problems be

better understood through the analysis of the algorithms' success with respect to

the error bounds.

5.4 Summary

This Chapter has presented conclusions concerning time series prediction based

upon the results of the experiments run for this thesis. These conclusions are followed

by the recommendations on how to continue the work presented here for further

exploration and possible improvement of current algorithms designed to perform

time series prediction.

95

Appendix A. LNKnet Summary

LNKnet is a software package which impliments neural and statistical pattern

recognition algorithms. It runs under the UNIX system in SUN Openwindows, with

the keyboard and mouse as the input devices. Over 20 static pattern classification,

clustering, and feature selection algorithms are presented with graphical outputs

as wellas confusion matrices and error history lists. Classifiers have been success-

fully trained using more than 1000 features and 100,000 training patterns. To start

LNKnet, type 'LNKnet' at the command line. This will bring up the main LNKnet

window. It is advisable that LNKnet is started in the home directory, so that any

other directory may be accessed by it.

«§11111 mmSSSBMm
CONTROL EXPERIMENT:

Wi§MWiM§ MLP (Multi-Layer Perception)

vi-.viv.-.vivl'.vi

iff Only store shell script do net run
EXPERIMENT

If Train

II Test on Training Data

§1 Eval

i£ Test

H Enabe Plotting >.ftfete<»;

H N-fold Cross-validation

IHI I'«!« !":•£<) n?,; .<:■■

0:^r»r.{:feöb3)jjntV^J^h«nt:,;>Xs

Normalization: fH Simple (mean=0, variance=1)
Nnrm. FüR: nr^SOOO.norm^imnlPi

Cxper. Name: X Number 1

Auto-incre-nent expsrimsnt rumter

M Randon pi-3sen:atloi urcer
Random Seed: 0 i'&W.

m Movie Moje
£:&s*s<;isx (>(?<• PU<t: (;__ |!|§

NOTE: Entries in text fields MUST be followed by <Return> or <Tab>

tttUtUUMMttttMMtMiiitMUäUUmmtmiUiM!

Figure 37. The Main LNKnet Window [16]

There are many algorithms presented in LNKnet, for supervised and unsu-

pervised training. Neural network algorithms, conventional pattern classification

96

algorithms, and feature selection algorithms are all present, with several examples of

each algorithm type. The algorithms used in this thesis are the multilayer perceptron

neural network, the radial basis function neural network, and the k-nearest neighbor

algorithm using k-means clustering. This section presents guidelines to run any of

the algorithms.

For use with any of the algorithms, the data files need to be formatted for use

with LNKnet. The data base is usually split into three files: the training file, the

evaluation file, and the testing file. The training file is used to train the classifier.

The evaluation file is used to evaluate the classifier in order to determine the classifier

size and tune classifier parameters. The testing file is used to determine the final

error rate. For smaller data sets, the evaluation file may be eliminated.

^•*y^y*yyty**y^y^y*y***x*^y*<y*y*^yx^?^y*if*p?' ywywiw^w>yw.v»w; mmm
current Directory. /tmp.mr.tfhome/fiawte^iaWdA-ga«^
?kfM»iimt>n> fiti»«?
es»**> P&öB 5iftkr6tyr$Jfe/<am&as/2S0Cf*
&*&»«*&* fites frttefasmm

fcag fate* X'mfe-ftg ^ rf

$£WB« life "fO^^l»J««s¥™,.J™™™™™™-
Ogttattstt Rttmote Swsw Nam»*

; Data Files:

: Data path: •>. t-:na:/data/comptw/23<3üü
ST/NDARD DA_rt SET!

ReptitvetlKisitw 1

tm>rfife VerH&sity: ^

OfbUffVerbOSitvi 0

; bulls

Oat» File PK*HV: ntfMOCO
Data File Extension: Mumber of Patterns:
Train .tralr Train 19 fjij
Eval .evai Eval »_ *j;*:"
T«>* twH Te>l J ~£iZl

input Features; 3 _jjjj
Ouiput Classes; 5 ^ZS

Class Lahetsi d^a.u&ftcrftj

i~J

Figure 38. The Files Window [16]

97

The format of these files is identical. All files are ASCII, with one pattern per

line. The first number of each pattern is an integer determining the class, from zero

to the number of classes minus one. The remaining numbers are floating point values

of the features of the pattern, each seperated by a space or a tab. The last line must

have a carriage return at the end.

The files window is used to select the data base. The names of data files are

generated by adding extensions to the data base name. The default extensions,

used with the sandp data base, are sandp.train, sandp.eval, and sandp.test. Each of

these data files must have a corresponding default file. These default files contain

a list of flags and their values. The defaults for a particular data file are named

<datafiles>.defaults. The file must be set up in the following fashion:

describe -ninputs 7 -noutputs 2 npatterns 20 -labels down,up

Every training, evaluation, and testing files need one.

The LNKnet algorithms generate several files. The files which are pertinent

for evaluation of the algorithm are the log and error files. The log file contains

information saved from the run in the .log file, with the amount of information

dependent upon the verbosity choice. The higher the verbosity level, the more

information which is retained. In most cases, the verbosity level should be set to 3,

the highest level, since a loss of information concerning the running of the algorithm

may be damaging to future research.

When a classifier is used, the classification results for each pattern can be

stored in an error file. The Error File Verbosity is chosen to set the amount of

information contained by the error file. If the error file verbosity is set to None,

no error file is written at all. If set to Short, the error file contains the following

information:

pattern # - correct class - classifier's class - classification error - cost

98

If set to Long, the error file contains the information contained in the IShort file

plus the following information:

normalized input parameters (nodes) - classifier output parameters (nodes)

The file name extension for these files is .err.

""J1"1"J1)JJ111"1'J1IJ""UJ nun *y^x^^^yyyy?^yyy^?^^yy^^y^^i^^$^^f^'$^''^^^!$$^^^^^?*

Weight update mode:

ft of Epochs (cycles through all data): 10C^
Modes/Layer (input,hidden output): 3,2,3

PARAMETERS:

Step size: jOJ2viimvramram

Momentum: 0,5

Tolerance: 0,01

Decay: (3

Cost Function

Batch size (first,maximum,epoch inert:
1,1,0

PPilÄÄl^^il:

AlGORiTHM OHIO MS:

H Multi&is Ad-:«Di:. SHu;;

MAS liter W: 0.0]
MASde<a>{'): J-J^

Output Node Function

•■■f. ' Wjf. Z'.

S1:e<5p(!«ss; 1

\\Smw " ' \

Figure 39. The Algorithm Parameters Window for the MLP [16]

Once the data base files are correctly set up, the algorithm is almost ready to

run. The Algorithm menu on the Main LNKnet window allows the user to chose

an algorithm. Pressing the Algorithm Parameters button on the Main window

allows the user to completely set up the algorithm. Pressing the Files button brings

up the Files window. The correct Data Path is set by the user, including all of

the folders leading up to the user's home directory. The Experiment Path is set

to write to the folder where the user wants to write the output, starting from the

99

current directory where LNKnet is being run. With the files and paths set up, the

algorithm is now ready to run.

To actually run the experiment, use the buttons under the Experiment head-

ing on the Main window. Press the Train button and the Test button. If the

experiment is to be run immediately, press the Start New Exper. button. If the

experiment is to be run later, or in the background, press the Store Shell Script

button before pressing the Start button. If the data trains, but does not test, rerun

the experiment with only the Train button pressed. Press the Train button again

to remove the check mark and press the Test button. Press the Continue Experi-

ment button to run the test files. The experiment can only be continued if the shell

script has already been run once.

If the experiment is saved to a shell script, it may be run in the background.

The shell script file is named <filename>.run. To run this shell script in a command

window, change directories until the directory with the shell sript in it is chosen.

Type '<filename>.run' and press return. The shell script now runs as normal. To

run the shell script in the background, change directories in the command tool to

the one which contains the experimental files. Type 'NICE <filename>.run &' and

press return. The files may be run without the NICE mode designation, but this is

not advisable unless no one is scheduled to be using the particular SUN station for

a lengthy amount of time.

100

Appendix B. Data Manipulation: Excerpts from R. Garza's EENG

699 Report

Data format deals with as many formats as there are sources. Different appli-

cations need a different setup for data, such as a single column of the data or two

columns with spaces in between each row. The methods discussed in this section

deal exclusively with ASCII to ASCII transformations.

There are three main methods available for this type of data manipulation.

The first is to write a program in a computer language, such as C, that will do the

necessary manipulations. The second method is to use several UNIX commands,

AWK and SED, to format the data. The third method is to take the data into an

application, such as MATLAB or MATHEMATICA, which will allow the necessary

changes to be made. Due to the complexity of the first method, only the second and

third methods will be discussed.

In order to give a real world example of the use of these methods, an example

case will be set forth, with its solution shown in both of the two methods. Time series

data, such as that for the stock market, often comes in a multicolumned, commented

ASCII file. Many Algorithms, such as Casdagli's Deterministic Vs. Stochastic (DVS)

or Sauer's Embedology, use a single column of data at a time, without spaces or

comments. An example of a typical file is given below in the initdata file:

Rob-
this is the data file you wanted

-Jim

881020 327.20

881021 332.55

881024 333.70
881025 332.05
881026 332.05

101

For use by the DVS algorithm, the first three lines and the first column of

dates must be removed. This can be done in either of our two methods.

The AWK and SED commands are for use in the UNIX operating system

only. These commands may be run in the command tool window or the terminal,

dependent on the user's preference.

Examining the example file, there are two changes that have to be made.

First, the first three lines must be removed. Second, the first columned needs to

be removed. To remove the first three lines, use the SED command sed '1,3d'

filename. Now remove the dates column. Choose to keep the second column by

using the AWK command, {print $2}. The AWK command should be written in

a short file, which I call awkscr. For the file dataset, set up a command tool with

dataset's directory. The following code will be what the user needs to type in at the

command line:

> sed '1,3d' dataset
> awk -f awkscr dataset»dataset

Another method uses only the AWK command set. To impliment this, a short

file needs to be written. The changedata file would contain the following:

#\!/bin/csh -f

awk -f awkscr initdata»gooddata

The first line of the changedata code is set-up parameters. The second line

contains the actual AWK command line routine.

The awkscr file would contain the following:

BEGIN{lines=0;}
{if(lines>2) print $2; lines=lines+l;}

END

102

With the initdata, changedata, and awkscr files all in the same directory, run

the changedata file in the command tool or terminal by typing 'changedata' at the

command line.

The file gooddata will be created, containing the following:

327.20

332.55

333.70

332.05

332.05

SED is often used to add or remove single characters, amongst other applica-

tions. For more on SED, see Lern Myers EENG 699 report.

This method employs a computer application to manipulate the data. The case

presented here is done in Matlab. To run MATLAB on any of the spare stations,

type 'matlab' at the command line of a command tool.

First, the comment lines at the beginning of the file must be removed in a

text editor. The file must then be read into Matlab. This is done by typing load

filename.xxx at the Matlab prompt. This creates a variable 'filename' in the appli-

cation. Type diary on at the prompt, and press return. This starts a screen dump

of the command lines in Matlab. Type x=sandp(:,2) to keep only the second data

column. Type diary off to end the screen dump, and exit matlab by typing 'quit' at

the command line. Take the diary file into a text editor, using the 'load' command

or double-clicking on the file in the file manager. Remove the extra lines at the

beginning and end of the file using the 'cut' option in the editing menu. Highlight

the words and symbols you want to remove, and select the 'cut' button. Rename

the file, and the data is ready for the algorithm.

103

Appendix C. Data Setup and Detrend Algorithms for MATLAB

'/odetrend the data

load newsandp;

data=newsandp;

°/oJimJs Method (First Difference Method)
n=1100;

for i=2:n;

jim(i)=data(i)-data(i-l);

end;

jim =jim';

save newsandpl jim -ascii;

°/,dbarr's method (First Ratio Method)

for j=2:n;
barr(j)=log(data(j)/data(j-l));
end;

barr =barr';

save newsandp2 barr -ascii;

°/0book method (First Image Method)

for k=2:n;
book(k)=(data(k)-data(k-l))/(data(k)+data(k-l));
end;

book =book';
save newsandp3 book -ascii;

104

'/.matlab m-file which creates training data for mlp nn

clear;

load closesh66vl.dat;

x=closesh66vl;

[a,n]=size(x);
m=n-3;

k=3; °/k is 2*f+l, where f is the fractal dimension

for i=l:m
for j=2:k+l;

train(i,j)=x(i+j-2);
end;
end;

for l=l:m-l

if train(l+l,4) > 0

train(l,l)=l;
else
train(l,l)=0;
end;

if train(l+l,4) == 0

train(l,l)=2;
else

k=k;

end;

end;

save closesh66vl.train train -ascii

105

Appendix D. Curtis Martin's Non-Parametric Density Estimation

Code

% CLASSIFY: Select thresholds and classify resubstitution and
% leave-one-out discriminant values.

I
I [R, L] = CLASSIFYCLrl, Lr2, Lll, L12, option)
I
% Inputs: Lrl, Lr2: resubstitution discriminant values
% Lll, L12: leave-one-out discriminant values
% option: 1 = threshold option 3
% 2 = threshold option 4
I
% Outputs: R: Resubstitution error
% L: Leave-one-out error

function [R, L] = classify(Lrl, Lr2, Lll, L12, option)

% First get the minimum resubstitution error and threshold
fprintfCl,' Resubstitution...');
[R, t] = min_error(Lrl, Lr2);
fprintf(1,'done.\n');

% Mow, depending on the option, get the minimum leave-one-out error
fprintf(1,' Leave one out...');
if option == 1

L = sum(Lll > t) + sum(L12 < t);
else

nl = size(Lll, 2);
n2 = size(L12, 2);
L = 0;

fprintfCl,'Class 1...');
for i = l:nl,

[err, t] = min_error(Lll([l:i-l i+l:nl]), L12);
if Lll(i) > t

L = L + 1;
end '/„ if Lll(i) > t

end % for i
fprintfCl,'Class 2...');

for i = l:n2,
[err, t] = min_errorCLll, L12([l:i-1 i+l:nl]));

106

if L12(i) < t
L = L + 1;

end '/, if L12(i) < t

end I for i

end % if option == 1

fprintf(1,'done.\n');

107

% COMPUTE_DISTANCES: Compute K distances between samples
% in XI and X2.
%
I [Dil, D12, D21, D22] = C0MPUTE_DISTAMCES(X1, X2, invSl, invS2)

I
°/0 Dll = class 1 distances for samples of class 1
% D12 = class 2 distances for samples of class 1
% D21 = class 1 distances for samples of class 2
% D22 = class 2 distances for samples of class 2

% invSl and invS2 are the covariance matrix inverses
% (maybe estimated).
% XI and X2 have one observation per column.

function [Dll, D12, D21, D22] = compute_distances(Xl, X2,
invSl, invS2)

% Number of columns is the number of samples
Nl = size(Xl,2);
N2 = size(X2,2);

% Allocate space
Dll = zeros(Nl,Nl)
D12 = zeros(Nl,N2)
D21 = zeros(N2,Nl)
D22 = zeros(N2.N2)

% Calculate intra-class distances:
% Class 1:

for i = 1:N1-1
for j = i+l:Nl

Dll(i.j) = (Xl(:,j) - Xl(:,i))' * invSl * (Xl(:,j) - Xl(:,i));
Dll(j.i) = Dll(i.j);

end
end

°/. Class 2:
for i = 1:N2-1

for j = i+l:M2
D22(i,j) = (X2(:,j) " X2(:,i))' * invS2 * (X2(:,j) - X2(:,i));
D22(j,i) = D22(i,j);

end

108

end

% Calculate inter-class distances:

lor i = l:Ni °/. Rows for D12, Columns for D21

for j = 1:N2 °/, Columns for D12, Rows for D21
% Pull samples out of matrices only once

v = X2(:,j) - Xl(:,i);
D12(i,j) = v' * invSl * v;

'/, These could be (-v), but there's no reason for it. (note (j,i))

D21(j,i) = v' * invS2 * v;

end
end

109

% MIN_ERROR: Select threshold which gives the minimum error
% for classifying two sets of discriminants.
% This is designed to be used for any number of
°/, elements in each set. In the case of several
% minimum errors, the threshold that yields the
°/0 same number of misclassifications from set 1 and
% set 2 is selected.

%
% [ERROR, THRESHOLD] = MIN_ERR0R(SET1, SET2)
I
% Inputs: SETI, SET2: sets of discriminants from classes 1
I & 2
I
% Outputs: ERROR: Minimum error obtainable
% THRESHOLD: "Best?" threshold yielding the minimum error

function [error, threshold] = min_error(setl, set2)

big = realmax - realmin;
search = 0;

% Eliminate infinities from the search.
infs = find(setl==inf);
setl(infs) = big * ones(size(infs));
infs = find(setl==(-inf));
setl(infs) = -big * ones(size(infs));
infs = find(set2==inf);
set2(infs) = big * ones(size(infs));
infs = find(setl==(-inf));
set2(infs) = -big * ones(size(infs));

a = min(setl)
b = max(setl)
c = min(set2)
d = max(set2)

if b < c
threshold =0.5*b+0.5*c;
error = 0;
return;

end °/0 if

110

if (min([a b c d]) == c) & (max([a bed]) == b)
"/pick c or b at random.

choice = round(rand);

if choice == 0

threshold = b + realmin;

else

threshold = c - realmin;
end °/0 if choice

error = sum(setl > threshold) + sum(set2 < threshold);
fprintf(l,'Bad decision rule: a=°/,d, b=°/„d, c=°/,d, d=%d\n',a,b,c,d);
return;

end % if

if(a<c&c<d&d<b) | (c<a&a<b&b<d)
lo = a;
hi = d;

elseif (a<c&c<b&b<d)
lo = c;
hi = b;

else

% What's left??? Write a message.write out a, b, c, and d

fprintfd,'Equal condition: a=0/,d, b='/,d, c=°/„d, d=,/,d\n\a,b,c,d);

threshold = .25*a+ .25 * b + .25*c+ .25 * d;
error = -1;
return;

end '/, if

°/, go fish (in a limited pool)

pool = [setl(setl>=lo & setl<=hi) set2(set2>=lo & set2<=hi)];

% Get one copy of each distinct value in temp
temp(l) = lo;

n = size(pool,2);
for i = 2:n,

temp(i) = min(pool(pool>temp(i-l)));
if temp(i) == hi

break
end '/, if

end % for

n = size(temp,2);

errl = zeros(1, n+1);

111

err2 = zeros(1, n+1);

% Count the errors for each guess

for i=l:n,

errl(i) = sum(setl >= temp(i));

err2(i) = sum(set2 < temp(i));

end % for
errl(n+l) = sum(setl > temp(n));
err2(n+l) = sum(set2 <= temp(n));

% Find the minimum total error

total = errl + err2;

error = min(total);

index = find(total == error);
if size(index,2) == 1

tidx = index;
else

diff = abs(errl(index) - err2(index));
mindif = min(diff);

didx = find(diff == mindif);

nminds = size(didx, 2);
if nminds == 1

tidx = index(didx);
else

choice = round((nminds-1) * rand) + 1;

tidx = index(didx(choice));

end % if nminds
end °/0 if size (index, 2)

if tidx > 1 & tidx <= n

threshold = 0.5 * temp(tidx) + 0.5 * temp(tidx-l);
elseif tidx == 1

lower = max([max(setl(setl<temp(l))) max(set2(set2<temp(l)))]);
if size(lower,2) == 0

threshold = temp(l) - realmin;
else

threshold = 0.5 * temp(l) + 0.5 * lower;

end % if size(lower, 2)
else

higher = min([min(setl(setl>temp(n))) min(set2(set2>temp(n)))]);
if size(higher,2) == 0

threshold = temp(n) + realmin;

112

else

threshold = 0.5 * temp(n) + 0.5 * higher;
end °/0 if size (higher, 2)

end % if tidx...

113

% PKNN: Run Parzen and kNN procedure for XI, X2 10 times.
'/.

'/„ [Rp, Lp, Rk, Lk] = PKNMCX1, 12, h, k, opt)

y.
% Inputs: XI, X2: data sets (n x Nl and n x N2)
% h, k: values to use for h and k
% opt: 1 = threshold option 3
°/o 2 = threshold option 4
I
I
% All h's must be greater than zero, and k must be between 2
°/„ and min(Nl, N2)-l
I
% Outputs: Rp, Lp: Parzen R and L errors for each test
% (one test per row)
% Rk, Lk: k-NN R and L errors for each test

function [Rp, Lp, Rk, Lk] = pknn(Xl, X2, h, k, opt)

[nl, Nl] = size(Xl);
[n2, N2] = size(X2);
if nl "= n2

fprintf(2, 'Data sets XI and X2 must have same number
of rows (features)\nJ);

return;
end % if

% Keep this value on hand
dim = nl;
ntests = 5;

Rp = zeros(ntests, size(h,2))
Lp = zeros(ntests, size(h,2))
Rk = zeros(ntests, size(k,2))
Lk = zeros(ntests, size(k,2))

fprintf(1, 'Threshold Option = °/„d \n\ opt);
fprintf(1, 'Performing °/0d independent tests: \n', ntests);

for test = l:ntests,

fprintf(1,' Test #°/„d:\n', test);

114

testsamps = test:ntests:Nl;
tl = [1, testsamps+1];
t2 = [testsamps-1, Nl];
others = [];
for i = l:size(tl,2),

others = [others, tl(i):t2(i)];
end % for i

xl = Xl(:, testsamps);
iSl = cov(Xl(:.others)');

testsamps = test:ntests:N2;
tl = [1, testsamps+1];
t2 = [testsamps-1, N2];
others = [] ;
for i = l:size(tl,2),

others = [others, tl(i):t2(i)];
end % for i

x2 = X2(:, testsamps);
iS2 = cov(X2(:.others)');

clear testsamps others tl t2

nl = size(xl, 2);

n2 = size(x2, 2);

fprintf(l, ' °/0d Class 1 samples, °/0d Class 2 samples\n', nl, n2);

fprintf(l, ' Estimating and inverting covariance matrices

...\n');
detratio = -0.5 * log(det(iS2)/det(iSl));
iSl = inv(iSl);

iS2 = inv(iS2);

fprintf(l, ' Computing distances ...\n');

[dll, dl2, d21, d22] = compute_distances(xl, x2, iSl, iS2);

fprintfd, ' Classifying (Parzen) ...\n');
Rerr = [] ;
Lerr = [] ;

115

for r = h,

7, Compute sums:

temp = -0.5 / r'2;

sll = sum(exp(temp * dll))
sl2 = sum(exp(temp * dl2))
s21 = sum(exp(temp * d21))
s22 = sum(exp(temp * d22))

lrl = detratio - log((n2 * sll) ./ (nl * s21));

lr2 = detratio - log((n2 * sl2) ./ (nl * s22));

111 = detratio - log((n2 * (sll - 1)) ./ ((nl - 1) * s21));

112 = detratio - log(((n2 - 1) * s12) ./ (nl * (s22 - 1)));

[rerr, lerr] = classifyQrl, lr2, 111, 112, opt);

Rerr = [Rerr, rerr];
Lerr = [Lerr, lerr];

end % for r

Rp(test,:) = 100 * Rerr / (nl+n2);
Lp(test,:) = 100 * Lerr / (nl+n2);

fprintfd,' Classifying (k-NN) ...\n');

% sort distances

dll = sort(dll)
dl2 = sort(dl2)
d21 = sort(d21)
d22 = sort(d22)

tr = detratio + log(nl/n2);

til = detratio + log((nl-l)/n2);

tl2 = detratio + log(nl/(n2-l));

Rerr = [];
Lerr = [] ;

for i = k,

116

lrl = tr + 0.5 * dim * log(dll(i,:) ./ d21(i,:));

lr2 = tr + 0.5 * dim * log(dl2(i,:) ./ d22(i,:));

111 = til + 0.5 * dim * log(dll(i+l,:) ./ d21(i,:));

112 = tl2 + 0.5 * dim * log(dl2(i,:) ./ d22(i+l,:));

[rerr, lerr] = classifyClrl, lr2, 111, 112, opt);

Rerr = [Rerr, rerr];

Lerr = [Lerr, lerr];

end % for i

RkCtest,:) = 100 * Rerr / (nl+n2);
LkCtest,:) = 100 * Lerr / (nl+n2);

end °/0 for test

117

Appendix E. Jim Stright's DVS Algorithm C Code

The Casdagli Algorithm is designed to do time series prediction by determining

the underlying principles of the time series. The algorithm will determine whether

the time series is low dimensional deterministic or high dimensional stochastic, to

better estimate the predicted value.

The x vector is an observed scalar time series generated from a D dimensional

attractor of a deterministic dynamic system with d degrees of freedom.

Choose an embedding dimension m, a delay time tau, and a forecasting time

T. The dimension, m, should be the last dimension which significantly minimizes

the root-mean-square error. Tau depends on the length of the delay between points

that you want. Finally, T depends on the length of prediction that you want.

Calculate all of the nearest neighbors for each time series value of newsandp.

Find the standard deviation of the time series, future use in error calculations.

Then find the maximum number of vectors which will be compared for nearness, and

calculate the error matrix e(k)(i).

After finding the error matrix for the particular i, repeat the previous steps for

all i. This will allow for the computation of the normalized root-mean square (RMS)

forecasting error Em(k). The program then outputs the number of nearest neighbors

and its forecasting error for user analysis. The predicted value is also output at this

time. This output is written to the file casdata.

The remainder of the code defines vectors, and defines error sequences for the

program.

The following code calculates the relative mean-square error for various num-

bers of nearest neighbors when fitting a time series to a certain embedology dimen-

sion. This code was written by Capt. Jim Stright in the course of his pHD work

here at AFIT.

118

/* This program, casdagli7.c, implements the forecasting
algorithm described on page 307 of Casdagli's article

"Chaos and Deterministic versus Stochastic Non-linear

Modelling." It was written in May 1993 by Jim Stright.

Casdagli7.c also provides a prediction of a single value

beyond the end of the data used for testing (an unknown).
It does so using the best i it k as found from previous
runs of this program. Usually Nt=0 is used in the
prediction mode, with Nf the number of time series values
assumed known. Many of the subroutines are taken from
Press et al, "Numerical Recipes in C." As a predictor,
casdagli7.c implements "DVS prediction." */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>
#define TINY 1.0e-20

double *dvector();
int *ivector();

double **dmatrix();
double moment();
double ludcmpO;

double lubksbO;
double sort2();

void free_dvector(),free_dmatrix(),free_ivector();

void main(void)

{
FILE *fpl, *fp2; /* fpl is newsandp (input);

fp2 is casdata */

int m=6; /* embedding dim */
int tau =1; /* delay time */

int T = tau; /* forecasting time;
not necessarily tau!! */

int kbest = 2*(m+l); /* replace with best k,
else use 2*(m+l) */

int i,j,ctrl,ctr2,ctr3; /* counters */

int row,col,1; /* more counters */

int k; /* nbr nearest neighbors */

int klast =0; /* This counter is at the nbr (+2*(m+l))
of the last nearest neighbor incorporated

in the A matrix */

119

int Nf = 2500; /* nbr of time series values
in fitting set */

int Mt = 150; /* nbr of time series values

in testing set */

int Ns = 1; /* spacing of the sampled

delay vectors */

int n; /* required for call to

"moment" */
int FLAG =0; /* used in ludcmp for "too

large" check */
int kexp =0; /* counter for exponential

spacing of k's */
double kbase =2.0; /* base for exponential

spacing of k's */

double ave,adev,s igma,svar,skew,curt;
/* all of these required for call "moment" although

only sigma is used in casdagli7.c; see Press Ed 2,
p.613 */

double *ave_ptr=&ave,*adev_ptr=&adev,*sigma_ptr=σ

double *svar_ptr=&svar,*skew_ptr=&skew,*curt_ptr=&curt;
double *x;

double **A,**Alud,**d,*dhold,*alpha,*b,dnr;

/* Alud is repeatedly destroyed by ludcmp, dnr is
Press's d, p.46 */

int *indx;
int *nbrtested;

double **xhat,**e,*Em,errsum;
x = dvector(l,Nf+Nt);

indx = ivector(l,m+l);

nbrtested = ivector(0,Nf-T-(m-l)*tau-2*(m+l));

A = dmatrix(l,m+l,l,m+l);

Alud = dmatrix(l,m+l,l,m+l);

d = dmatrix(Nf,Nf+Nt,l,Nf-T-(m-l)*tau);
/* d[i][l] is the distance from vector x[i] to vector

x[l+(m-l)*tau] ;

d[i] [2] is the distance from vector x[i] to vector
x[l+(m-l)*tau+l] ;

d[i][Nf-T-(m-l)*tau] is distance from vector x[i]

to vector x[Nf-T], before a swap for nearness is

120

performed. */

dhold = dvector(l,Nf-T-(m-l)*tau);

alpha = dvector(l,m+l);

b = dvector(l,m+l);

xhat = dmatrix(0,Mf-T-(m-l)*tau-2*(m+l),Nf+T,Nf+Nt+T);
e = dmatrix(0,Nf-T-(m-l)*tau-2*(m+l),Nf,Nf+Nt);
Em = dvector(0,Nf-T-(m-l)*tau-2*(m+l));

/* open newsandp for input */

if ((fpl = fopen("newsandp","r")) == NULL) {
printf("Cannot open file newsandp\n");
exit(l);

}

/* open casdata for output */
if ((fp2 = fopen("casdata", "w")) == NULL) {
printf("Cannot open file casdata\nM);
exit(l);

}

/* read in the time series data */
for (ctrl=l; ctrl<=Mf+Nt; ctrl++) {
fscanf(fpl, "°/„lf", &x[ctrl]);
}

/* compute distances d[i][j] and load d matrix with
nearness indices */

for (i=Nf; i<=Nf+Nt; i++) {
for (j=l; j<=Nf-T-(m-l)*tau; j++) { /* see

indexing note below */
d[i][j] = fabs(x[i] - x[j + (m-l)*tau]);
for (ctrl=tau; ctrl<=(m-l)*tau; ctrl=ctrl+tau) {
if (fabs(x[i-ctrl]-x[j+(m-l)*tau-ctrl])

> d[i][j]) {
d[i][j] = fabs(x[i-ctrl]-x[j+(m-l)*tau-ctrl]);

}
}
/* dist d[i][j] between vctrs x[i] &

x[j + (m-l)*tau] is fixed */
}

121

/* the distances d[i][j] are now established for all j */

/* initialize the index-swap vector dhold */

for (ctr2=l; ctr2<=Nf-T-(m-l)*tau; ctr2++) {

dhold[ctr2] = ctr2 + (m-l)*tau;

/* now the contents of dhold[l], eg, is l+(m-l)*tau */

}

/* Sort the contents of the vector d[i] and
simultaneously sort the vector dhold into ascending

order of nearness of vectors to x[i];
see Press Ed 2, page 334. */

sort2(Nf-T-(m-l)*tau, d[i], dhold);

/* replace contents of vector d[i] with indices of

vectors arranged in ascending order of nearness to
x[i] */

for (ctr3=l; ctr3<=Nf-T-(m-l)*tau; ctr3++) {
d[i][ctr3] = dhold [ctr3] ;
}

/* Now the contents of vector d[i] is the set of indices of
vectors compared for nearness to vector x[i], arranged in
ascending order of nearness to x[i]. eg, d[i][1] is the
index of the vector nearest x[i]. */

}

/* Find standard dev sigma for the time series; see Press 2,
page 613. */

n = Mf+Nt;

moment(x,n,ave.ptr,adev_ptr,sigma_ptr,svar_ptr,skew_ptr,curt_ptr);

fprintf(fp2,"Data output from program casdagli7.c\n");
fprintf (fp2, "m=°/.2d\n" ,m);
fprintf(fp2,"Nf = 0/„d\n",Nf);
fprintf(fp2,"Nt = %d\n",Nt);

f printf (fp2,"T = tau = y.dXn",!);

fprintf (fp2,"average data value ave = °/.2.5f\n",ave);

fprintf(fp2,"data standard deviation sigma = %2.5f\n",sigma);

/* Initialize the max nbr of vectors to be compared for nearness */

122

k = 0;
kexp = 0;

while (k <= Nf-T-(m-l)*tau-2*(m+l)) {

nbrtested[k] = (Nt-T+1)/Ns; /* recall int division trucates */

k = (int) pow(kbase,kexp);

kexp = kexp + 1;

}

/* Establish the error matrix e[k][i] */
for (i=Nf; i<=Nf+Nt; i++) {

/* Initialize the A matrix at k=2*(m+l) */
/* First the diagonal entries: */
A[l][l] = 2*(m+l);
Alud[l][l] = A[l][l];
for (ctrl=2; ctrl<=(m+l); ctrl++) {
A[ctrl][ctrl] =0.0;

for (ctr2=l; ctr2<=2*(m+l); ctr2++) {

A[ctrl][ctrl] = A[ctrl][ctrl]
+ x[(int)(d[i][ctr2])-(ctrl-2)*tau]

* x[(int)(d[i][ctr2])-(ctrl-2)*tau];
}
Alud[ctrl][ctrl] = A [ctrl] [ctrl] ;
}

/* Now the first row (and first column) entries: */
for (col=2; col<=(m+l); col++) {
A[l] [col] = 0.0;
for (1=1; K=2*(m+1); 1++) {
A[l][col] =A[l][col] + x[(int)(d[i][l])-(col-2)*tau];
}
Alud [1] [col] = A[l][col];
A[col][l] = A[l][col];

Alud [col] [1] = A[col][l];
}

/* Now initialize the off-diag, off-first-row-or-col entries: */
for (row=2; row<=m; row++) {
for (col=row+l; col<=(m+l); col++) {
A[row][col] =0.0;
for (1=1; K=2*(m+1); 1++) {
A[row][col] = A[row][col]
+ x[(int)(d[i][l])-(row-2)*tau]

123

* x[(int)(d[i][l])-(col-2)*tau];
}
Alud[row][col] = A[row][col];
A[col][row] = A[row][col];

Alud[col] [row] = A[col][row];
}
}

/* And last, initialize the b vector, and its equal alpha vector;
alpha gets replaced with the proper solution when one solves
A*alpha = b as A*x=b=alpha; see Press, page 44. */

b[l] = 0.0;
for (1=1; K=2*(m+1); 1=1+1) {
b[l] = b[l] + x[(int)(d[i][l])+T];
}
alpha [1] = b[l];
for (row=2; row<=(m+l); row++) {
b[row] =0.0;
for (1=1; K=2*(m+1); 1++) {
b[row] = b[row]
+ x[(int)(d[i][l])-(row-2)*tau]
* x[(int)(d[i][l])+T];
}
alpha [row] = b[row];
}

/* Go after the e[k][i]; may easily change the k indexing to sample

k's at exponentially spaced intervals. In what follows, k
equals the nbr of neighbors nearest x[i] minus 2*(m+l). */

klast = 0;
k=0;

kexp = 0;

while (k <= Nf-T-(m-l)*tau-2*(m+D) {

/* Nf-T-(m-l)*tau is the nbr of nghbrs in fitting set whose
"predicted" value is <= Nf */

/* Update the A matrix */

/* First update the diagonal entries */
A[l][l] = 2*(m+l) + k;

124

Alud[l][l] = A[l][l];
for (ctrl=2; ctrl<=(m+l); ctrl++) {

for (ctr2=l; ctr2<=(k-klast); ctr2++) {

A[ctrl][ctrl] = A[ctrl][ctrl]
+ x[(int)(d[i][2*(m+i)+klast+ctr2])-(ctrl-2)*tau]
* x[(int)(d[i][2*(m+l)+klast+ctr2])-(ctrl-2)*tau];
}
Alud[ctrl][ctrl] = A [ctrl][ctrl];
}

/* Now update the first row (and first column) entries: */
for (col=2; col<=(m+l); col++) {
for (1=1; K=(k-klast); 1++) {
A[l][col] = A[l][col]

+ x[(int)(d[i] [2*(m+l)+klast+l])-(col-2)*tau] ;
}
Alud [1] [col] = A[l][col];
A[col][l] = A[l][col];
Alud [col] [1] = A[col][l];
}

/* Now update the off-diag, off-first-row-or-col entries: */
for (row=2; row<=m; row++) {
for (col=row+l; col<=(m+l); col++) {
for (1=1; K=(k-klast); 1++) {
A[row][col] = A[row][col]
+ x[(int)(d[i][2*(m+l)+klast+l])-(row-2)*tau]
* x[(int)(d[i][2*(m+l)+klast+l])-(col-2)*tau];
}
Alud[row][col] = A[row][col];
A[col][row] = A[row][col];
Alud[col][row] = A[col][row];
}
}

/* Finally, update the b vector: */
for (1=1; K=(k-klast); 1++) {
b[l] = b[l] + x[(int)(d[i][2*(m+l)+klast+l])+T];
}
alpha [1] = b[l];
for (row=2; row<=(m+l); row++) {
for (1=1; K=(k-klast); 1++) {

125

b[row] = b[row]
+ x[(int)(d[i][2*(m+l)+klast+l])-(row-2)*tau]
* x[(int)(d[i][2*(m+i)+klast+l])+T];
}
alpha[row] = b[row];
}

klast = k;

/* Solve the normal eqtns for alpha[1] thru alpha[m+1] */
ludcmp(Alud,FLAG,m+1,indx,fednr);

if (FLAG==1) {
alpha[1] = 1000001;
FLAG=0;}
else {

lubksb(Alud,m+1,indx.alpha);

}

/* alpha[1],alpha[2],... are now optimum in Casdagli's eqtn 5, if
the normal equations admit a solution. Otherwise set alpha[l]
= x[i+T], alpha[2]=alpha[3] = .. .=alpha[m+l]=0, so that
xhat[k][i+T] = x[i+T], the exact data value. Also, decrement
nbrtested so this unusual event isn't included in Em[k]. */

for (ctrl=l; ctrl<=(m+l); ctrl++) {
if ((fabs(alpha[ctrl]) > 1000000)11
(alpha[ctrl] == HUGE_VAL)) {
nbrtested[k] = nbrtested[k]-l;

fprintf(fp2,"Error at l\n");

alpha [1] = x[i+T] ;
for (ctr2=2; ctr2<=(m+l);ctr2++) {
alpha[ctr2] =0.0;
}
break;
}
}

xhat[k][i+T] = alpha [1] ;
for (ctrl=2; ctrl<=(m+l); ctrl++) {
xhat[k][i+T] = xhat [k] [i+T] + alpha [ctrl] *x[i-(ctrl-2) *tau] ;
}

126

/* xhat[k][i+T] has now been established */

if (i <= Nf+Nt-T)
e [k] [i] = f abs (xhat [k] [i+T] - x [i+T]);
else
e[k][i] = O.O;

k = (int) pow(kbase,kexp);
kexp = kexp + 1;

} /* closes the loop over k's */

} /* closes the loop over i's */

k = 0;
kexp = 0;

while (k <= Nf-T-(m-l)*tau-2*(m+l)) {
errsum = 0.0;

for (i=Nf; i<=Nf+Nt-T; i++) {
errsum = errsum + e[k][i]*e[k][i];
}
Em[k] = (sqrt(errsum/nbrtested[k]))/sigma;

fprintf(fp2, "°/„d", 2*(m+l)+k); /* Output nbr of nearest nghbrs */
fprintf(fp2," ");

fprintf(fp2, '701.6f\n", Em[k]); /* Output forecasting error */

k = (int) pow(kbase,kexp);
kexp = kexp + 1;

}

fprintf(fp2, "Predicted value at time °/,d is °/,f\n",
Nf+Nt+T,xhat [kbest-2*(m+D] [Nf+Nt+T]);

free_dvector(x,l,Nf+Nt);

free_dvector(dhold,1,Nf-T-(m-1)*tau);

free_dvector(alpha,l,m+l);

free_dvector(b,l,m+l);

free_dvector(Em,0,Nf-T-(m-l)*tau-2*(m+l));
free_ivector(indx,l,m+l);

free_ivector(nbrtested,0,Mf-T-(m-1)*tau-2*(m+1));
free_dmatrix(A,l,m+l,l,m+l);
free_dmatrix(Alud,1,m+l,1,m+l);

127

free_dmatrix(d,Nf,Nf+Nt-T,l,Nf-T-(m-l)+tau);
free_dmatrix(xhat,0,Nf-T-(m-l)*tau-2*(m+l),Nf+T,Nf+Nt);

free_dmatrix(e,0,Mf-T-(m-l)*tau-2*(m+l),Nf,Nf+Nt-T);

fclose(fpl);

fclose(fp2);

}

double moment(data,n,ave,adev,sdev,svar,skew,curt)
int n;

double *data,*ave,*adev,♦sdev,*svar,*skew,♦ curt;
{
int i,j;

double s,p;
void nrerrorO ;

if (n <= 1) nrerrorC'n must be at least 2 in MOMENT");

s=0.0;

for (j=l;j<=n;j++) s += data[j];

♦ave=s/n;
*adev=(*svar)=(*skew)=(*curt)=0.0;
for (j=l;j<=n;j++) {

♦adev += fabs(s=data[j]-(*ave));
*svar += (p=s*s);
♦ skew += (p *= s);
♦curt += (p ♦= s);
}
♦adev /= n;
♦svar /= (n-1);
♦sdev=sqrt(+svar);
if C+svar) {
♦skew /= (n+(+svar)+(+sdev));
♦curt=(♦curt)/(n+(♦svar)♦(+svar))-3.0;
} else nrerror("No skew/kurtosis when variance = 0 (in MOMENT)");

}

double ludcmp(a,FLAG,n,indx,d)

int FLAG.n.+indx;

double ♦♦a,+d;
{
int i,imax,j,k;

double big,dum,sum,temp;

128

double *vv,*dvector();
void nrerrorO ,free_dvector();

vv=dvector(l,n);
*d=1.0;
for (i=l;i<=n;i++) {
big=0.0;
for (j=l;j<=n;j++)
if ((temp=fabs(a[i][j])) > big) big=temp;
if (big == 0.0){
FLAG = 1;
return;
}
vv[i]=l.O/big;
}
for (j=l;j<=n;j++) {
for (i=l;i<j;i++) {
sum=a[i] [j] ;
for (k=l;k<i;k++) sum -= a[i][k]*a[k][j];
a[i] [j]=sum;
}
big=0.0;
for (i=j;i<=n;i++) {
sum=a[i] [j] ;
for (k=l;k<j;k++)
sum -= a[i][k]*a[k][j];
a[i] [j]=sum;
if ((dum=vv[i]*fabs(sum)) >= big) {
big=dum;
imax=i;
}
}
if (j != imax) {
for (k=l;k<=n;k++) {
dum=a[imax][k];
a[imax] [k]=a[j] [k] ;
a[j] [k]=dum;
}
*d = -(*d);
vv[imax]=vv[j] ;
}
indx[j]=imax;

129

if (a[j][j] == 0.0) a[j][j]=TINY;
if (j != n) {
dum=1.0/(a[j][j]);
for (i=j+l;i<=n;i++) a[i][j] *= dum;
}
}
free_dvector(vv,l,n);
}

double lubksb(a,n,indx,b)
double **a,b[] ;
int n,*indx;
{
int i,ii=0,ip,j;
double sum;

for (i=l;i<=n;i++) {
ip=indx[i];
sum=b[ip];
b[ip]=b[i];
if (ii)
for (j=ii;j<=i-l;j++) sum -= a[i] [j]*b[j];
else if (sum) ii=i;
b[i]=sum;
}
for (i=n;i>=l;i—) {
sum=b[i];
for (j=i+l;j<=n;j++) sum -= a[i] [j]*b[j] ;
b[i]=sum/a[i] [i] ;
}
}

double sort2(n,ra,rb)
int n;
double ra[] ,rb[] ;
{
int l,j,ir,i;
double rrb.rra;

l=(n » 1)+1;
ir=n;
for (;;) {

130

if (1 > 1) {
rra=ra[—1];
rrb=rb[l];
} else {
rra=ra[ir];
rrb=rb[ir];
ra[ir]=ra[l] ;
rb[ir]=rb[l];
if (~ir == 1) {
ra[l]=rra;
rb[l]=rrb;
return;
}
}
i=i;
j=i « i;
while (j <= ir) {
if (j < ir && ra[j] < ra[j+l]) ++j;
if (rra < ra[j]) {
ra[i]=ra[j] ;
rb[i]=rb[j];
j += (i=j);
}
else j=ir+l;
}
ra[i]=rra;
rb [i]=rrb;
}
}

void nrerror(error_text)
char error_text [];

{
void exitO;

fprintf(stderr,"Numerical Recipes run-time error..An");

fprintf (stderr,M,/,s\n",error_text);

fprintf (stderr,11.. .now exiting to system. . .\n") ;
exit(l);

}

131

int *ivector(nl,nh)
int nl,nh;
{
int *v;

v=(int *)malloc((unsigned) (nh-nl+l)*sizeof(int));

if (!v) nrerror("allocation failure in ivectorO");
return v-nl;

}

double *dvector(nl,nh)

int nl.nh;

{
double *v;

v=(double *)malloc((unsigned) (nh-nl+l)*sizeof(double));
if (!v) nrerrorC'allocation failure in dvectorO");
return v-nl;

}

double **dmatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

{
int i;
double **m;

m=(double **) malloc((unsigned) (nrh-nrl+l)*sizeof(double*));
if (!m) nrerrorC'allocation failure 1 in dmatrixO");
m -= nrl;

for(i=nrl;i<=nrh;i++) {
m[i]=(double *) malloc((unsigned) (nch-ncl+l)*sizeof(double));
if (!m[i]) nrerrorC'allocation failure 2 in dmatrixO");
m[i] -= ncl;
}
return m;
}

void free_dvector(v,nl,nh)
double *v;
int nl,nh;

{

132

free((char*) (v+nl));

}

void free_ivector(v,nl,nh)

int *v,nl,nh;

{
free((char*) (v+nl));

}

void free_dmatrix(m,nrl,nrh,ncl,nch)
double **m;

int nrl,nrh,ncl,nch;

{
int i;

for(i=nrh;i>=nrl;i~) free((char*) (m[i]+ncl)) ;
free((char*) (m+nrl));

}

133

Appendix F. Joe Sacchini's TLS Prony Code for MATLAB

'IXIXIXIX tlsprony.m - Run this code to run the algorithm
W/XIXIXI, Input at command line : [phase,magnitude,amplitude] =
VX/X/X/X tlsprony(\# of points, model \#, 1/3 \# of points, 0);

function [p,A,sh]=tlsprony(s,L,ns,constraint)

p=backsolv(s,L,ns,constraint);

[p,A,sh]=ampsolv(s,p,ns);

'/X/X/X/,7, backsolv.m - A Component File for Use with the tlsprony.m

function p=backsolv(s,L,ns,constraint)

I
% data should be in column form, each new look in a new column.

%

[N,looks]=size(s);
nrows=N-L;

Q=zeros(looks*nrows,L+l);
for i=l:looks,

Q((i-l)*nrows+l:i*nrows,:)=hankel(s(l:nrows,i),s(nrows:N,i));
end

b=svdtls(Q,ns);

p=roots(flipud([l;b]));

if constraint==l,
p=p./abs(p);

end;

'IXIXIXIXI, svdlts.m - A Component File for Use with the backsolv.m
function b=svdtls(Q,ns)

[dummy,n]=size(Q);

[U,E,V]=svd(Q,0);

134

V2p=V(2:n,ns+l:n);
c=V(l,ns+l:n).';
b=V2p*conj(c)/(c'*c);

135

VIX/XV/Xl ampsolv.m - A Component File for Use with the tlsprony.m

function [p,A,sh]=ampsolv(s,p,ns)

[N,dummy]=size(s);

p(find(abs(p)>(1.2)|abs(p)<l/1.2))=[];

if length(p)==0,

A=[];

sh=zeros(size(s));

else

[A,dummy]=lsamp(s,p);

[p,A]=pkeep(p,A,ns,N);
[A,sh]=lsamp(s,p);

end

0/o7o0/o°/o0/oC/o0/o0/o°/o lsamp.m - A Component File for Use with the ampsolve.m

function [A,sh]=lsamp(s,p)

[N,dummy]=size(s);

P=ones(N,length(p));
for n=l:N-l,

P(n+l,:)=P(n,:).*p.';
end

A=P\s;

sh=P*A;

W/X/XWhV/o pkeep.m - A Component File for Use with the ampsolve.m

function [r,a]=pkeep(p,A,ns,N)

e=energy(p,A,N);

[e,i]=sort(e);

136

i=flipud(i);
if ns <= length(i),
i=i(l:ns);

else
i=i(l:length(i));

end
r=p(i,:);
a=A(i,:);

137

%%%%%%%% energy.m - An Additional File for Use with the tlsprony.m
°/X/X/X/J> if the energy is to be included in the determination,
'/XIX/X/X which is the suggested configuration.
yX/X/X/'l* Input at command line :

W/XIXIXIo [phase,magnitude, amplitude, energy] =

V/XIXIXL tlsprony(\# of points, model \#, 1/3 \# of points, 0);

function e=energytest(p,A,M);

[dummy,looks]=size(A);
[np,psets]=size(p);
absp=abs(p);

if looks==l,
ea=abs(A)."2;

else
ea=sum(abs(A)."2')';

end

if psets==l,

ep=(l-absp.-(2*N)+N*(absp==l))./(l-absp.-2+(absp==l));
else

ep=prod(((l-absp.~(2*ones(np,l)*N)+ones(np,l)*N.*(absp==l))./ ...
(l-absp.-2+(absp==l)))')\-

end

e=ea.*ep;

138

Appendix G. Bayes Bounding Curves

139

Standard and Poors Data (k-NN) Band 11mage (Parzen)
-i 1 r—

9 10

Figure 40. Bayes Bounding of Raw SandP data, m=l

Standard and Poors Data (k-NN)
-i 1 1 1 1 1 r 56

50

Band 11mage (Parzen)

45

40

£35

>
?
I25

20

15
,

■

10

1

1
i i i i i t i

12 3 4 5
h

9 10

Figure 41. Bayes Bounding of Raw SandP data, m=2

140

Standard and Poors Data (k-NN)
551 1 1 1 1 1 1 1 1 1-

= 40-

35-

l I L

Band 11mage (Parzen)
601 ; 1 1 1 1 1 1 1 1-

0 5 10 15 20 25 30 35 40 45 50
k

9 10

Figure 42. Bayes Bounding of Raw SandP data, m=3

Standard and Poors Data (k-NN)
55i 1 1 1 1 1 1 r

Band 11mage (Parzen)

J I I I I I I I L

0 5 10 15 20 25
k

35 40 45 50

Figure 43. Bayes Bounding of Raw SandP data, m=4

141

Standard and Poors Data (k-NN)
 1 1 1 1 1 1 1 1 1—

1 \ « / / I '

Band 11mage (Parzen)
70i 1 1 1 1 1 1 1 1 r~

£30-

201 i i i i i i i i i—
0 5 10 15 20 25 30 35 40 45 50

f i i i r i i i

0 1 2 3 4 5 6 7 8 9 10
h

Figure 44. Bayes Bounding of Raw SandP data, m=5

640

Standard and Poors Data (k-NN)
-i 1 1 1 1 1 1 1 r-

Band 11mage (Parzen)

_i i i i i i i i i

0 5 10 15 20 25 30 35 40 45 50
k

Figure 45. Bayes Bounding of Raw SandP data, m=6

142

Standard and Poors Data (k-NN)
-1 1 1 1 1 r-

1

Band 1Image (Parzen)
1001 1 1 1 1 1 1—

Figure 46. Bayes Bounding of Raw SandP data, m=7

Standard and Poors Data (k-NN) Band 11mage (Parzen)
-i 1 1 1 1 1 1 r-

\,V'V"''U-v-'\/V./V

*40-

—i 1 1 1 1 1 i ■ *

5 10 15 20 25 30 35 40 45 50
k

Figure 47. Bayes Bounding of Raw SandP data, m=8

143

551 1-

*40

Standard and Poors Data (k-NN)
n 1 1

Band 11mago (Parzen)
T i r^

Figure 48. Bayes Bounding of Raw SandP data, m=9

Standard and Poors Data (k-NN) Band 11mage (Parzen)
~l 1 1 1 1 1 1 1 T"

201 1 1 1 1 L. _j 1 1_
0 5 10 15 20 25 30 35 40 45 50

k

Figure 49. Bayes Bounding of Raw SandP data, m=10

144

Detrended Standard and Poors Data (k-NN)

40 ■

35

30

£25

>
?
"HE

I15

' tß^i§.
10

]
It In

5 •

0 - !

 1 1 L 1

Detrended Standard and Poors Data (Parzen)

5 10 15 20 35 40 45 50

Figure 50. Bayes Bounding of First Differences SandP data, m=l

Detrended Standard and Poors Data (k-NN)
401 1 1 1 1 1 1 1 1 1-

£30

J 1 1 i i
0 5 10 15 20 25 30 35

k
45 50

Detrended Standard and Poors Data (Parzen)
-i 1 1 r-

Figure 51. Bayes Bounding of First Differences SandP data, m=2

145

Detrendad Standard and Poors Data (k-NN)
 1 1 H 1 1 1 r~

Detrended Standard and Poors Data (Parzen)
~i 1 r- -i 1 1 1 r-

9 10

Figure 52. Bayes Bounding of First Differences SandP data, m=3

32

30

Mended Standard and Poors Data (k-NN)

■\

■ \\

■1

28
1.-. .' ':

V/^'---. • ''•' 'v\/ ">\ :
£26

S
»2*

?
it 22 ■

20

18

16 ' ' 1 1 i ' i i <

Detrended Standard and Poors Data (Parzen)

0 5 10 15 20 25 30 35 40 45 50
k

Figure 53. Bayes Bounding of First Differences SandP data, m=4

146

Detrended Standard and Poors Data (k-NN)
-I 1 1 1 1 1 1 1 r-

Datrended Standard and Poors Data (Parzen)
l 1 r-

rji*-£—i 1 1 1 1 1 i i i
0 1 2 3 4 5 6 7 8 9 10

h

Figure 54. Bayes Bounding of First Differences SandP data, m=5

I25

Detrended Standard and Poors Data (k-l
-1 1 1 1 1 1 1—

_i i i * * _J I L_

0 5 10 15 20 25 30 35 40 45 50
k

Detrended Standard and Poors Data (Parzen)
80

i

70
i
i ■

60
i
i

■

£50
i:':

■

0

Ü« 0
D
O
0

\ ":
i
:"\ '■...-••; : \

•

k 30 "" ;'■*-' "■ -■

20

10

0 ilr-i—' J 1 1 i i i ■ ■
0 12 3 4 5 6

h
9 10

Figure 55. Bayes Bounding of First Differences SandP data, m=6

147

Detrended Standard and Poors Data (k<
401 1 1 , 1 , T 1 1-

151 1 1 1 1 I 1 I 1 '
0 5 10 15 20 25 30 35 40 45 50

k

90

80

Detrended Standard and Poors Data (Parzen)

1
1
1
1

70
1

•1
1

60
1

.1

t
j>50
UJ
0

?40
0

X
30

1
I:-.
'(.'■■

t •
j '"•

' :l • ': \ : : \ ':
: s ''.
: "vv^v^^^i.,,^^..^:^.^.,^

20 1 /*
10

n » / 1 1- 1 1 1 1 1 1 1

12 3 4 5 6 7 8
h

Figure 56. Bayes Bounding of First Differences SandP data, m=7

Detrended Standard and Poors Data (k-NN)
451 , 1 1 1 , j 1 f-

151 1 1 1 1 1 1 1 ' 1

0 5 10 15 20 25 30 35 40 45 50
k

Figure 57. Bayes Bounding of First Differences SandP data, m=8

148

Mi 1 r
Delrended Standard and Poors Data (k-NN) Detranded Standard and Poors Data (Parzen)

~i 1 1 r~

151 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

k

Figure 58. Bayes Bounding of First Differences SandP data, m=9

401 r-
Detrended Standard and Poors Data (k-NI

—, 1 1 1 1 1 1—
Detrended Standard and Poors Data (Parzen)

100| 1 1 r-

151 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

k

Figure 59. Bayes Bounding of First Differences SandP data, m=10

149

< 20

1NFCC Data (R-NN)
~i 1 1 1 1 1 1 1 r-

INFCC Data (Parzen)

*J

-i 1 1 i i i ' ■

0 5 10 15 20 25 30 35 40 45 50
K

Figure 60. Bayes Bounding of Raw INFFC data, m=l, classes 0,1

INFCC Data (k-NN)

-J 1 1 1 i i i ■ '

0 5 10 15 20 25 30 35 40 45 50
k

-i 1 r-
INFCC Data (Parzen)

—i 1 1— ~i 1 r-

........ii'li.« ,H, s*. - *W an''««
'" ' i'lÄ'u'ft Ali! r»nUii»!

.j—i—i i i 'ill
0 12 3 5 6

h

Figure 61. Bayes Bounding of Raw INFFC data, m=l, classes 0,2

150

INFCC Data 0t-NN)
-i 1 1 1 1 r-

0- *-

i i ■ ■ -j 1 1 i
5 10 15 20 25 30 35 40 45 50

k

INFCC Data (Parzen)
~i 1 1 1 1 1—

-J 1 1 1 1 i ■ ■ ■
12 3 4 5 6 7

h
9 10

Figure 62. Bayes Bounding of Raw INFFC data, m=l, classes 1,2

INFCC Data (k-NN)
701 1 1 1 1 1 r—

-J 1 1 l l l ' i

0 5 10 15 20 25 30 35 40 45 50
k

INFCC Data (Parzen)

60

i

55

'i :
£50 ' NM ,

£ —«— /
^45
o
S

■

«40

35 •

30

' ' i i i i

0 1 2 3 4 5 6 7 8 9 10
h

Figure 63. Bayes Bounding of Raw INFFC data, m=2, classes 0,1

151

1NFCC Data (k-NN)
-, , , , , j_

-I 1 l_

INFCC Data (Parzen)
~i r-

0 5 10 15 20 25 30 35 40 45 50
k

Figure 64. Bayes Bounding of Raw INFFC data, m=2, classes 0,2

INFCC Data (k-NN) INFCC Data (Parzen)

< 20-

~ i r~

-*\
I .. !■'
I, : ■. t
I.''' v1
t

,\ ,\ ' \ « \

-I 1 1 1 I I I 1_
0 5 10 15 25 30 35 40 45 50

k

-i 1 1 r-

Figure 65. Bayes Bounding of Raw INFFC data, m=2, classes 1,2

152

' ' I L_ _J I I L.

INFCC Data (Parzen)

/ : :

50 'V^, v__ v .»'<•":v-"•-«."-"••-">■»-•>

40

^-^^™~ ,.,,,,.

? :/

>
D
2
0

4 I 20

10

0 i i i i i i—i—i—i—

0 5 10 15 20 25 30 35 40 45 50
k

0 12 3 4 5 6
h

Figure 66. Bayes Bounding of Raw INFFC data, m=3, classes 0,1

< 20

-l 1 r-

INFCC Data (k-NN)
—i 1 1 1 1 r-

J I L _J I L_

5 10 15 20 25 30 35 40 45 50
k

60
INFCC Date (Parzen)

55

50

45

^40

\ :

1

1
?30 <

25 -Jj
20 - i

15 :-:

10
i
t i i i i 1 1 1 1 1 1

0 12 3 4 5
h

7 8

Figure 67. Bayes Bounding of Raw INFFC data, m=3, classes 0,2

153

-J 1 1 1 I'll

5 10 15 20 25 30 35 40 45 50
k

INFCC Data (Parzen)
55

50

45 * :
~x'v

4U

&35

t-

>
•
??5 <

20

15

10

t,

*
 1 1 .1 1 1 1 1 1 1

1 2 3 4 5 6 7
h

9 10

Figure 68. Bayes Bounding of Raw INFFC data, m=3, classes 1,2

0

-0.02

Detrended INFCC Data(k-NN)
■ i i i t i i i

-0.04

-0.06

i
g-0.08
Li
0

S" -0.1
0

1
-0.12

-0.14

-0.16

-TUB 1 '

5 10 15 20 30 35 40 45 50

Dslrended INFCC Data (Parzen)

60

55

50
. i.!i'"v'''

Ä \i-'
£45

6
>
es
a
?35 <

*

•

30 rvA/\r^_ M UrirMJi DfH A Ih '

25 MUl|»ILJ! DUt Y

20 lU U
-1 1 L 1 1 1 1 1 1

0 1 2 3 4 5

Figure 69. Bayes Bounding of First Differences INFFC data, m=l, classes 0,1

154

Detrended INFCC (k-NI Detrended INFCC Data (Parzan)

Figure 70. Bayes Bounding of First Differences INFFC data, m=l, classes 0,2

Detrendad INFCC (k-NN) Detrended INFCC Data (Parzen)

*y.

"•']' ' V k" " ii"i ','', iV W *Xf! *".' iSW;«*^ <"•).'

Figure 71. Bayes Bounding of First Differences INFFC data, m=l, classes 1,2

155

501 1 r

DetrandBd 1NFCC Data (h-NN)

l 1 1 1 1 1 r~

i 1 1 1 1
5 10 15 20 25 30 35 40 45 50

k

65i r-

Dstrendad INFCC Data (Parzen)

~i 1 1 1 r-

9 10

Figure 72. Bayes Bounding of First Differences INFFC data, m=2, classes 0,1

40

35

Detrended INFCC (k-NN)
i i

i

30
j
i
j

25
i
i

t I

jj20
ui i"r'
ID

Jp5

!
* n i /if
i
1 /I

10 r v .j / 1 ■

5

• ■ _«; ' 1— i i i i

Detrended INFCC Data (Parzen)

0 5 10 15 20 25

k
35 40 45 50

-i r 1 r-

-J 1 1 ^ i * ■
0 12 3 4 5

h
6 7 9 10

Figure 73. Bayes Bounding of First Differences INFFC data, m=2, classes 0,2

156

45
Detrended INFCC (k-NN)

i l

40 :;

35
j

30 1 •

>

Sl6 < I

k'
1 I'
' A 1 j\
i I
i J

10
I

r-—' \ ■

5 i
i ■

0 i 1

' i i i i i i l

Detrended INFCC Data (Parzen)

0 5 10 15 20 25 30 35 40 45 50
k

-T 1 1 1 1 1 1 1 r-

-i i i i i i i_
1 2 3 4 5 6 7 8 9 10

h

Figure 74. Bayes Bounding of First Differences INFFC data, m=2, classes 1,2

-10

Detrended INFCC Data (k-NN)
-i 1 1 1 1 1 r~

Detrended INFCC Data (Parzen)

i 1 1 1 i L
0 5 10 15 20 25 30 35 40 45 50

k

_i 1 1 : i i * ■

Figure 75. Bayes Bounding of First Differences INFFC data, m=3, classes 0,1

157

Detrended INFCC (k-NN)
—I 1 1 1 1 j 1 1 r-

,--\|

* ■ i_ ■ ■ ■ ■
0 5 10 15 20 25

k
35 40 45 50

Detrended INFCC Data (Parzen)
45 i i i i i i i i i

\ \
40 -■ . 1_. ZT. .

35

? 1

>
?
ID

25
'

20

12 3 4 5
h

6 7 9 10

Figure 76. Bayes Bounding of First Differences INFFC data, m=3, classes 0,2

Detrended INFCC (k-NN)

-I 1 1 1 1 1 i 1 L_

5 10 15 20 25 30 35 40 45 50
k

251

15'

Detrended INFCC Data (Parzen)
^ i i i i

_i 1 1 i i i i ■ '
12 3 4 5 6

h
7 8

Figure 77. Bayes Bounding of First Differences INFFC data, m=3, classes 1,2

158

Bibliography

1. Casdagli, Martin C, "Chaos and Deterministic versus Stochastic Non-linear
Modelling", Journal of the Royal Statistical Society B, 54(2): 303-328, 1991.

2. Casdagli, Martin C, et. al, "Non-linear Modelling of Chaotic Time Series: The-
ory and Applications", Proceedings of Electric Power Research Institute Work-
shop Applications of Chaos: 1991.

3. Casdagli, Martin C. and Andreas S. Weigend, "Exploring the Continuum Be-
tween Deterministic and Stochastic Modelling", Time Series Prediction: Fore-
casting the Future and Understanding the Past edited by Andreas S. Weigend
and Neil A. Gershenfeld: 347-366, Addison-Wesley, 1994.

4. Chan, L.W. and F. Fallside, "An Adaptive Training Algorithm for Back Prop-
agation Networks", Computer Speech and Learning: Academic Press, 1987.

5. Colombi, John M., Cepstral and Auditory Model Features for Speaker Recogni-
tion, MS thesis, Air Force Institute of Technology, 1992.

6. Cybenko, G., "Approximation by Superpositions of a Sigmoidal Function", Re-
search Note, Computer Science Department, Tufts University, October 1988.

7. Farmer, J. Doyne and John J. Sidorowich, "Predicting Chaotic Time Series",
Physical Review Letters 59(8), 1987.

8. Fukinaga, Keinosuke and Donald M. Hummels, "Bayes Error Estimation Using
Parzen and k-NN Procedures", IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-9, 1987.

9. Gainey, James C. Jr., Predicting Nonlinear Time Series, MS thesis, Air Force
Institute of Technology, 1993.

10. Garza, Robert E., Report on Data Manipulation, Plotting, and Prediction, EE
699 Final Report, Department of Electrical Engineering, Air Force Institute of
Technology, 1994.

11. Gleick, James, Chaos: Making A New Science, Viking Penguin, New York, 1988.

12. Grassberger, Peter and Itamar Procaccia, "Measuring the Strangeness of
Strange Attractors", Physica D, 9: 189-208, 1983.

13. Harrup, Georgia K., ROC Analysis of IR Segmentation Techniques, MS thesis,
Air Force Institute of Technology, 1994.

14. Hush, Don R. and Bill G. Home, "Progress in Supervised Neural Networks:
Whats New Since Lippman", IEEE Signal Processing, 1993.

15. Kay, Steven M., Modern Spectral Estimation: Theory and Application, Prentice-
Hall, New Jersey, 1988.

16. Kukolich, Linda and Richard P. Lippman, LNKnet Users Guide, MIT Lincoln
Laboratories, July 1993.

159

17. Lippman, Richard P., "An Introduction to Computing with Neural Networks",
IEEE ASSP Magazine: 4-22, 1987.

18. Martin, Curtis E., Non-Parametric Bayes Error Estimation for UHRR Target
Identification, MS thesis, Air Force Institute of Technology, 1993.

19. Packard, N.H., J.P. Crutchfield, J.D. Farmer, and R.L. Shaw, "Geometry from
a Time Series", Physics Review Letters: 45, 712-16, 1980.

20. Peitgen, Heinz-Otto, Hartmut Jürgens, and Dietmar Saupe, Chaos and Fractals:
New Frontiers of Science, Springer-Verlag, New York, 1992.

21. Rao, Valluru B. and Hayagriva V. Rao, C++ Neural Networks and Fuzzy Logic:
311-329, Management Information Source, New York, 1993.

22. Rogers, Steven K., Matthew Kabrisky, Dennis W. Ruck, and Gregory L. Tarr,
An Introduction to Biological and Artificial Neural Networks, Air Force Institute
of Technology, 1990.

23. Rogers, Steven K.,"Edge Detection for Image Processing", Class Notes, Depart-
ment of Electrical Engineering, Air Force Institute of Technology, May 1994.

24. Ruelle, D., "Deterministic Chaos: the Science and the Fiction", Proceedings of
the Royal Statistical Society of London A: 427, 241, 1990.

25. Sacchini, Joseph J., Development of Two-Dimensional Parametric Radar Signal
Modelling and Estimation Techniques with Application to Target Identification,
Ph.D. dissertation, The Ohio State University, 1992.

26. Sauer, Tim, " Embedology", Technical Report 91-01-008, Santa Fe Institute,
1991.

27. Sauer, Tim, "Time Series Prediction by Using Delay Coordinate Embedding",
Time Series Prediction: Forecasting the Future and Understanding the Past,
edited by Andreas S. Weigend and Neil A. Gershenfeld: 175-193, Addison-
Wesley, 1994.

28. Schalkhoff, Robert, Pattern Recognition: Statistical, Structural, and Neural Ap-
proaches, John Wiley and Sons, New York, 1992.

29. Scheaffer, Richard L. and James T. MClave, Statistics for Engineering, Prindle,
Weber & Schmidt, 1982.

30. Stright, James R., A Neural Network Implimentation of Chaotic Time Series
Prediction, MS thesis, Air Force Institute of Technology, 1988.

31. Stright, James R., Embedded Chaotic Time Series: Applications in Prediction
and Spatio-Temporal Classification, Ph.D. dissertation, Air Force Institute of
Technology, 1994.

32. Takens, Florin, "Detecting Strange Attractors in Fluid Turbulence", Dynamical
Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics 898,

160

edited by D.A. Rand and L.S. Young: 366-381, Springer-Verlag, 1981. Printed
in Germany.

33. TenoriOjM.F., et. al., International Financial Forecasting Competition, financial
data, 1994.

34. Zahirniak, Daniel R., Characterization of Radar Signals Using Neural Networks,
MS thesis, Air Force Institute of Technology, 1990.

161

Vita

Lieutenant Robert E. Garza was born on 9 July 1971 in Wolford Hall Medical

Center, a little known hospital in San Antonio, Texas. After moving to California,

he graduated from Wheatland High School as a co-Validictorian in 1989. He entered

the United States Air Force Academy three weeks later. He graduated from the

Academy with a Bachelor of Science in Electrical Engineering and a commission

in the USAF in 1993. Not ready to face the turmoil of actually having to work

for a living, he accepted a selection to attend the School of Engineering, Air Force

Institute of Technology.

Permanent address: 6670 Deer Bluff Drive
Huber Heights, OH 45424

162

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average l hour per response, including the time for reviewing instructions, searching existing data sources,
qathermq and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect ot this
collection of information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports U15 Jefferson
Davis Highway Suite 1204 Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1994

3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

Embedology and Neural Estimation for Time Series Prediction

6. AUTHOR(S)
Robert E. Garza

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Capt. Jim Stright
WL/MNGA
Bldg. 13 101 W. Eglin Blvd. Suite 206
Eglin AFB, FL 32542-6810

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GE/ENG/94D-11

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Abstract

Time series prediction has widespread application, ranging from predicting the stock market to trying to
predict future locations of scud missiles. Recent work by Sauer and Casdagli has developed into the embedology
theorem, which sets forth the procedures for state space manipulation and reconstruction for time series prediction.
This includes embedding the time series into a higher dimensional space in order to form an attractor, a structure
defined by the embedded vectors. Embedology is combined with neural technologies in an effort to create a more
accurate prediction algorithm. These algorithms consist of embedology, neural networks, Euclidean space nearest
neighbors, and spectral estimation techniques in an effort to surpass the prediction accuracy of conventional
methods. Local linear training methods are also examined through the use of the nearest neighbors as the
training set for a neural network. Fusion methodologies are also examined in an attempt to combine several
algorithms in order to increase prediction accuracy. The results of these experiments determine that the neural
network algorithms have the best individual prediction accuracies, and both fusion methodologies can determine
the best performance. The performance of the nearest neighbor trained neural network validates the applicability
of the local linear training set.

14. SUBJECT TERMS

Time Series Prediction, Embedology, Neural Networks

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

177
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C
G
PE

Contract
Grant
Program
Element

PR
TA
WU

Project
Task
Work Unit
Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unigue alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

DOE - See authorities.
NASA- See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categories

from the Standard Distribution for
Unclassified Scientific and Technica
Reports.

NASA- Leave blank.
NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

► U S GPO 1P90-0-273

