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Abstract

This thesis explores the use of ti and mixed H2/I1 optimization methods to design

flight control systems. tj optimization is used to handle tracking issues in the design of

digital compensators. Control deflection and rate limitations, overshoot and undershoot

limitations and steady-state error requirements are discussed. Model-matching techniques

which produce acceptable tracking results with lower order controllers are also examined.

New numerical methods for continuous H2/L1 and discrete H2/11 optimization are

presented. These methods are used to design an aircraft controller in continuous and

discrete time and the results are compared.

xi



APPLICATIONS OF 11 AND MIXED H11l2 OPTIMIZATION

I. Introduction

1.1. Overview

Much of the research in optimal flight control design in recent years has focused

on H2 and H_ optimization. While each method is well suited for specific classes of inputs

and outputs of a system, neither method adequately handles the complete flight control

problem. 1-12 optimization, for example, attempts to minimize the energy of a system's

output to a white Gaussian noise input. The resulting H2 design is adept at handling

noises, but can have poor stability margins. Further, additional work is usually required to

produce an t-2 design with good tracking. H_ optimization attempts to minimize the

energy of a system's output to an unknown but bounded energy input. The resulting H,

design can have excellent stability margins and tracking performance, but be notably

deficient at handling noises. Both methods are extremely poor at handling "hard"

magnitude and time domain constraints on the system, such as control deflection

limitations, control rate limitations and overshoot restrictions in the system response.

The 9, optimization method minimizes the maximum magnitude of a system's

output to an unknown but bounded magnitude input. Since this optimization method is

also a time domain approach, it can handle "hard" magnitude and time domain constraints

on the system. Little research has been done on using 9, optimization to improve a

system's stability margins; however, it has been shown ([DDB94]) that tj optimization can

produce systems with good tracking. Unfortunately, f, designs can be deficient at handling

noises.

Although 41 optimization still requires further research, it is clear that this

optimization method alone will not address the complete flight control problem. The next
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logical step to a complete design methodology is to mix some of the optimization methods

discussed above. Many researchers have worked in this area, but few have incorporated ti

optimization into a mixed design approach. A notable exception is Jacques ([JR94]), who

has developed a fixed-order mixed H2/t,/H0, numerical optimization method for discrete

systems. This approach, however, is relatively new and, thus, questions still remain on

how to best utilize this mixed design methodology. A mixed design approach for

continuous systems incorporating the continuous version of the 1, problem, known as L,

optimization, has not been developed.

Given that some mixed optimization method is desired, the next question is

whether this method should be utilized in continuous or discrete time. Even though

aircraft are inherently continuous systems, most aircraft controllers are actually

implemented digitally. One way of producing a discrete controller in this case is to use a

continuous design approach and discretize the resulting controller. Another alternative is

to discretize the continuous plant and use a discrete design methodology to obtain a

discrete controller directly. Perhaps the best way to determine which approach is better is

to produce designs using each approach and compare the results.

This thesis explores the use of 91 and fixed-order, mixed H2/1, optimization. A

fixed-order, mixed H./L1 design approach for continuous systems is also developed to

compare the two methods of producing discrete controllers mentioned above.

1.2. Review of Related Work

Dahleh and Diaz-Bobillo ([DDB94]) have done the most comprehensive work on 11

optimization. They pose the 11 optimization problem as a linear programming problem and

solve it exactly for one block systems. Three methods for finding approximate solutions

to multi-block problems are also presented in [DDB94]. Dahleh and Diaz-Bobillo

propose a few methods of incorporating control deflection limitations, control rate

limitations and overshoot restrictions in the 1, optimization problem; however, many
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implementation details are omitted and few comparisons between the different methods

are shown.

Several researchers have worked on fixed-order, mixed-norm optimization

methods for continuous systems, but Walker's approach ([Wal94]) solves the most

general mixed-norm problem. [Wa194] discusses fixed-order, mixed H2/HI optimization

where the I-I2 and H_ subproblems can be posed with dissimilar transfer functions.

Singular and multiple H_ constraints can also be incorporated into his design method.

Walker formulates a method of incorporating LI constraints into his algorithm using a

forward Euler transformation of the continuous L1 problem, but does not implement the

method.

As mentioned in the previous section, Jacques ([JR94]) has developed a numerical,

fixed-order, mixed-norm control synthesis method for discrete systems. Jacques' work

essentially extends Walker's method to discrete time systems, and incorporates f1

optimization. The 1, portion of Jacques' algorithm, however, does not handle systems

with both fast and slow dynamics due to the large number of sample periods required to

estimate the pulse responses of these systems. Since most aircraft problems have fast and

slow dynamics (such as actuator dynamics and phugoid modes), this restriction in Jacques'

algorithm severely limits the number and type of aircraft control problems that can be

considered.

1.3. Research Objectives

The purpose of this research is first to thoroughly investigate and compare

different magnitude and time domain constraints that can be added to the 91 optimization

problem to produce systems with good tracking characteristics. Next, fixed-order, mixed

H2/L 1 and H2/11 optimization methods will be developed which handle realistic flight

control problems (i.e. systems with both fast and slow dynamics). Finally, both mixed

1-3



approaches will be used to compare two different methods of producing discrete aircraft

controllers.

1.4. Outline

This thesis consists of 6 chapters including this introduction. Chapter 2 presents

important background theory that is used throughout this thesis. Topics include state-

space systems and transfer functions, transformations from continuous to discrete time,

the Youla parameterization, linear programming and duality theory, 91 and 'L1 optimization

methods, and H2 optimization (both continuous and discrete).

Chapter 3 discusses using 11 optimization to solve tracking problems. Unweighted

and weighted sensitivity minimization problems are considered, along with constraints on

the control deflections and rates, steady-state error, and maximum overshoot and

undershoot values. Each technique is demonstrated on a realistic flight control problem.

Two different model matching methods are also presented which yield acceptable tracking

results with lower order controllers.

Mixed HA/L1 optimization is developed in Chapter 4. New numerical methods of

evaluating the Li norm and its gradient are also presented. The -a/L, algorithm is used to

design a series of continuous aircraft controllers which demonstrate the trade-offs between

pure H2 and L1 designs.

In Chapter 5, the mixed Ha2/9 optimization problem is presented. New numerical

methods of evaluating the 1, norm and its gradient are developed which offer dramatic

improvements in terms of computational efficiency over the methods presented in [JR94].

The new H12/1 algorithm is tested on a discrete version of the aircraft control problem

presented in Chapter 4, and several mixed H12/1 designs are compared. The aircraft model

is then tested with a discretized controller from I-A/L optimization, and the results are

compared to a similar H12/1 design. Finally, Chapter 6 presents the author's conclusions

and recommendations for further research.
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II. Background Theory

2.1. Chapter Overview

This chapter covers some of the basic theory used to conduct the research in this

thesis. State-space systems and transfer functions are discussed in Section 2.2. Section

2.3 covers three transformation methods from continuous to discrete time. Section 2.4

covers the Youla parameterization. Concepts in linear programming and duality which lay

the foundation for discussing 11 optimization are discussed in Section 2.5. The 11

optimization method is subsequently developed in Section 2.6. Section 2.7 covers L,

optimization. The chapter ends with discussions of continuous H2 optimization in Section

2.8 and discrete H2 optimization in Section 2.9.

2.2. State-Space and Transfer Functions

All finite dimensional linear systems, whether continuous or discrete, can be

written in state-space form. While the state-space form of a system is not a unique

representation, it is often used in controller synthesis since matrix manipulations are easily

handled by digital computers.

The continuous state-space form of a linear, time-invariant system is written as

i(t) = Acx(t) + B cu(t) (2.1)

y(t) = Ccx(t) + Dcu(t)

and the discrete state-space model is written as

x(k + 1) = Adx(k) + Bdu(k) (2.2)

y(k) = Cdx(k) + Ddu(k).

In both cases, Ae 91'n, Be =- %P, CE 9 1q' and DE 91 qxp are constant matrices, and xc •",

uc SRP and ye 9 jq are the state, control and output vectors, respectively. In the discrete

state-space model x, u and y are sequences with index kc (0,1,2,....

2-1



The state-space forms above are considered minimal if A has the smallest possible

number of states. A state-space system is minimal if and only if (A,B) is controllable and

(A,C) is observable.

The Laplace transform is used to transform continuous state-space realizations to

input-output transfer functions. The z and X• transforms perform the same function for

discrete state-space realizations. Given any continuous time signal, f, starting at t=O and

sampled at T intervals, the z transform, F(z), is defined by

F(z) = f(kT)z-k, (2.3)
k=O

where z = esT. Note that this form of the z transform can only be used on causal systems,

i.e. systems with current outputs that are not influenced by future inputs. This is not a

significant restriction for this thesis, however, since causality will be assumed for all

systems considered. The X transform, fQ(k), of a continuous signal starting at t=O is

defined as

F(X) = Xf(kT)k2. (2.4)
k=O

Using the Laplace transform, the continuous state-space realization can be put in

transfer function form,

TY,,(s) = Cc (sI - A c) -lBc + Dc. (2.5)

The z transform on a discrete state-space realization produces

Ty, (z) =Cd(zI-Ad)-'Bd +Dd, (2.6)

and the X transform produces

Ty.(),?= Cd -I- Ad Bd +Dd. (2.7)

Since this work considers both continuous and discrete systems, great care is taken

to differentiate between the two and the different discrete domains. In places where
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equations or results apply to all cases, the clarifying notation will be omitted. In addition,

transfer functions in this thesis will occasionally be written in a convenient shorthand

notation,

[A ]= CI- A)-'B + D, (2.8)

where 4=s, z or 1/X.

Control system design is standardly done in terms of two transfer functions, P and

K, where P is the weighted plant and K is the compensator to be found (see Figure 2.1).

r p m

U y

K

Figure 2.1. Nominal Feedback System

Note from Figure 2.1,

[y] =P[r] u=Ky (2.9)

where m is a vector of controlled outputs and r is a vector of exogenous inputs. If P is

partitioned as

P • =[P P] (2.10)
P=, Py•e•

then the closed-loop transfer function, Tmr, can be determined from the lower fractional

transformation (LFT)
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T. = F,(P,K) = Pmr + P.uK(I- P•K)-YP,• (2.11)

The system shown in Figure 2.1 is well posed if and only if (I-PUK) is invertible. This

condition is assumed throughout this work.

P and K can also be written in terms of the state-space matrices as

Cm DmB DB] K=[Ak Bk] (2.12)
P=C= Dmr DinU - CkTDk I

Since the system is assumed to be well posed, both (I-DkD,) and (I-DyDk) are invertible

and the closed-loop transfer function can be written as

Tmr=-[A Ir 1  (2.13)

where

[A + B.(I- DkD,)DkCy Bu(I-DkD)Y-IDCk (2.14)Bk(IDyuDk)_1Cy Ak +B k(I -DYUDk)- D UCkJ

_r[ B~ D 1 -1D (2.15)

B, = Br + Bu(I- DkDyu)-l DkDyr](.5
Bk (i_ DyuDk)_Dyr I 2.5

Cm = [Cm + DmuD, (I-D DDk)-ICY Dmu(I-DkDyu)-'Ck] (2.16)

Dmr = [D, + DmUDk(I- DpDk)-'D,1]. (2.17)

Stability for both continuous and discrete systems is determined by the eigenvalues

of the A matrix. If all the eigenvalues of a continuous system lie in the open left-half of

the complex plane, the system is stable. Discrete systems in the z-domain must have all

their eigenvalues inside the open unit disk for stability, while discrete systems in the ).-

domain must have all their eigenvalues outside the open unit disk. A distinct relationship
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exists between the z and X, domains, namely z = 1/ X. The next section discusses

relationships between the continuous and discrete systems.

2.3. Continuous to Discrete

Most often, controller designs are developed for continuous systems but are

actually implemented with digital controllers. The resulting mixed system is known as a

sampled data or a hybrid system. One effective way to design a digital controller for such

a system is to discretize the system and complete the controller design in the discrete time

domain. To do this effectively, however, an appropriate method must be used to

discretize the system.

There are several ways to transform a system from continuous to discrete. Some

transformations maintain the integrity of the stability boundary, others do not. Some

transformations are better for matching frequency responses and others for time responses.

Since discrete signals only contain samples of their continuous counterparts, all the

transformations tend to distort some information. The three transformations that are

important in this work are presented below with their corresponding limitations.

2.3.1. Zero Order Hold Equivalence

In actual practice, a discrete signal does not directly drive a continuous plant. The

discrete signal is passed through a digital-to-analog converter (DAC) which produces a

continuous output from the discrete input. Most DAC devices convert a binary computer

output to a voltage level and then hold the level for T seconds until the next computer

output. These types of devices are known as zero order holds (ZOH) and represent the

most common method for transforming a system from discrete time to continuous time.

The ZOH method is also known as the step invariant method because it matches

the step response of a discrete system to a continuous one. For example, the step

responses of the continuous system,
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Hs (2.18)

s+1'

and its ZOH equivalence are shown in Figure 2.2.

The ZOH transformation in state-space form is

T

Ad=eAjT, Bd=JeA°tBcdt, Cd= C,, Dd =Dc, (2.19)
0

where T is the sample period.

0.9

0.8

0.7

0.6

a.5,

E

0.4

0.3•

0.2

0.1

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

Figure 2.2. Step responses for a continuous system and its ZOH equivalent

The main limitation of ZOH equivalent systems is that their frequency responses

do not match their continuous counterparts well unless the sample rate is very fast. For

this reason, the ZOH method is seldom used to transform continuous filters to digital

ones.
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2.3.2. Forward Euler Rule

The forward Euler rule is one transformation method which attempts to maintain

the frequency response of the continuous transfer function. This technique essentially

replaces the Laplace variable, s, with a function of z. The rule is defined as

z = 1 + sT. (2.20)

Since z = esT, it is easy to see that the forward Euler rule is simply the first two terms in

the Taylor series expansion of the exponential.

The main limitation of using this method is that the j0w axis in the s plane does not

map to the unit circle in the z-plane. In fact, the location of the stability boundary is

dependent on the sample rate chosen to discretize the system. Consider the system in

(2.18), which has a pole at -1. The forward Euler transformation of this system is

H(z) = T (2.21)

z-l+T'

which has a pole at 1-T. Clearly, if the sample rate chosen is greater than or equal to 2,

the resulting discrete system will be unstable.

2.3.3. Tustin or Bilinear Transformation

Like the forward Euler rule, the Tustin or bilinear transformation attempts to

maintain the frequency response of the continuous transfer function. Unlike the forward

rule, however, this transformation maintains the integrity of the stability boundary. The

transformation is defined as

1+ sT/2z=- (2.22)
1-sT/2

To see that the stability boundary is correctly mapped in this transformation, let s=jco in

(2.22) and solve for the magnitude and phase of the resulting discrete transfer function

Zl=jcoT/2 IzI=l, 0z=2tanO)T/2.

1-joff/2-
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Notice that as co increases, the phase increases, but the magnitude is always 1. Thus, the

jo axis in the s-domain correctly maps to the unit circle in the z-domain.

Since the Tustin transformation works well at maintaining frequency and stability

information, it is the most common method used to discretize continuous filters. The main

disadvantages of using this method, however, are that it does not maintain the step

response of the continuous system and it is more difficult to implement.

A comparison of frequency responses for the system in (2.18) and its ZOH,

forward Euler and Tustin transformations with T=0.5 sec is shown in Figure 2.3.

0.8\

0.6 \

c"\...\

', .. \ /

0.4

- Continuous "
0.2 . O..... H

- - Forward Euler
-- Tustin

' I

101--2 10- 10o 0
Frequency (radians/second)

Figure 2.3. Frequency response comparisons

Note in this particular example that the sample rate is fast enough for the ZOH method to

match the frequency response of the continuous system. However, the sample rate is too

slow for the forward Euler rule to provide a good match.
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2.4. Youla Parameterization

Any type of normed optimization on the closed-loop transfer function described in

(2.13) involves a search over all possible stabilizing compensators. This search can, in

general, be quite difficult since the closed loop transfer function is a nonlinear function of

K [see (2.11)]. The Youla parameterization, however, defines the set of all possible real-

rational compensators that stabilize the closed-loop transfer function in terms of a free

parameter, Q. In fact, the resulting expression for K is affine (linear with an offset) in the

parameter Q. Optimization problems can thus be done as a search for Q instead of K,

which is much easier. The only restriction is that Q must be a stable, real-rational transfer

function (the set of which are a convex set).

To understand the Youla parameterization further, consider the system in Figure

2.4, where K= F (J, Q).

r p m

U1Yul yl

K Q

Figure 2.4. Youla parameterization

The closed-loop transfer function between m and r is given by

Tmr = F,(P, K) = F,(S,Q) (2.23)
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where

S = FF(P,J). (2.24)

If S is partitioned as

S =S1 S12], (2.25)

(2.23) becomes

Tmr =S 11 + S12Q(I-S 22Q)-'S21 - (2.26)

It can be shown ([Mac89]) that the Youla parameterization of K produces S2,=0, which

simplifies (2.26) to

Tmr = S11 +S 12QS21, (2.27)

which, for ease of notation, will be written as

Tmr = H- UQV

from this point on. Note that this expression is indeed affine in terms of Q.

It can also be shown ([Mac89]) that if F is a gain matrix which stabilizes A+BF F,

and L is a gain matrix which stabilizes A+LCy, then H, U and V are given by

A BY -B.F 1,
H = 0 A+LCy Br+LDy, (2.28)

C.- -Dm.F Dmn,

U A+B.F B.] (2.29)
Cm +DmuF Dmu

VD=[ALCY B,+LDJ (2.30)

The sizes of the transfer functions U and V, above, are often used to classify

different types of problems. If U and V have the same number of rows as columns, then U

and V are square and all-pass, or inner. Problems of this type are known as one block
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problems. If U has fewer columns than rows, and/or V has fewer rows than columns, the

problem is classified as a multi-block problem.

Note that, by definition, H, U and V are all stable transfer functions. Therefore,

the closed-loop transfer function from m to r will be stable if and only if the parameter Q is

stable.

2.5. Linear Programming and Duality

Since linear programming and duality concepts will be used to find 11 solutions in

the next section, it is important that they are reviewed. First, consider the standard linear

programming problem,

min c Tx
x

subject to Ax Ž_ b (2.31)
xi_>!0, i= 1.,n

where x is a column vector of variables, c is a vector of coefficients, and A and b are a

matrix and vector, respectively, which form constraints on the variables. Dimensionally, x

and ce 91', be 91P and Ac 91P'. Any optimization problem with a linear objective and linear

equality and/or inequality constraints can be transformed into this form.

For each standard linear minimization problem in the above form, known as the

primal problem, there corresponds a linear maximization problem known as the dual

problem. The standard dual problem is written as

max yb
y

subject to yA < c (2.32)
y j > 0 ,' j = l ... ..p

where ye 91P is a row vector of dual variables. Note that the dual problem simply reverses

everything. In the primal problem, c was the cost function and b was the constraint. In the
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dual problem, b is the cost function and c is the constraint. The inequality sign also

changes between the two problems, and the unknown, y, becomes a row vector instead of

a column vector.

The primal and dual problems are closely related through several key results of

duality theory. First, it is known that if the primal or the dual problem has an optimal

solution, then the other also has an optimal solution and their values are the same. Second,

if x and y are any feasible vectors in the minimum and maximum problems, then

yb < cTx. (2.33)

This concept is known as weak duality. Finally, if the vectors x and y are feasible and

cTx = yb, then x and y are optimal.

The primal and dual variables are also related through the complementary

slackness conditions. If x and y are feasible solutions, then both are optimal solutions of

their respective problems if and only if for all i=1 .... n,

i) xi > 0 =(yA)j ci,

ii) (yA)i < ci = xi =0.

These conditions are also known as the alignment conditions.

2.6. ( Optimization

The goal of 11 optimization is to minimize the maximum magnitude of the

controlled output of a system given a bounded magnitude exogenous input. Vidyasagar

([Vid86]) first introduced this problem, but Dahleh and Pearson ([DP87]) are responsible

for its more general solution. Dahleh and Pearson's method of solution involves posing

the problem as a linear programming problem. The goal of this section is to explain their

method of solution.
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To simplify the explanation, the introductory development considers the case of

one-block problems only. The changes necessary to find solutions to multi-block

problems are discussed thereafter.

The system in Figure 2.1, where r(k) e 91'r is an exogenous input sequence of

unknown but bounded magnitude and m(k) -91-m is the output sequence to be

controlled, represents the standard 1, problem. If (D is the closed-loop transfer function

from m to r, then the objective of 11 optimization can be written as

mi 10111 = min [ maxn •i j (k)I. (2.34)
K stabilizing K stabilizing 1..in =n k=

Several steps must be taken in order to pose this as a linear programming problem.

First, the nonlinear absolute value function in the norm calculation must be removed. This

is accomplished by a standard change of variables from linear programming. Let

S= (D - D- , where (D' and (D- are sequences of n. x n, matrices with positive entries.

The norm calculation can then be replaced by

maxI (0k) + (k)), (2.35)
j=1 k=O

which is equal to the norm if, for every (i,j,k), either 0+ or 0- is zero. But either 0+ or 4r

must be zero at the optimal solution, so the substitution is valid. To see this fact more

clearly, consider minimizing the sum of two non-negative numbers that must remain a

fixed distance apart. For example, consider the problem

min(a+ b)

subject to a-b=2, a_>0, b> 0.

The solution to this problem is a=2, b=O. Note that, with the substitution of 0+ and •-,

(2.35) is linear but the number of variables has doubled.
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Before searching for the variables (D' and 0- which minimize the one-norm of (D,

constraints must be imposed to ensure that the resulting cD will be stable and realizable.

These two problems are handled by the Youla parameterization. Recall that

'D=H-UQV, (2.37)

and is stable if and only if Q is stable. Also recall that U and V are inner for one block

problems, and thus invertible. This means that Q can be solved for directly,

Q = U-1 (H -4)V-1 , (2.38)

which makes it easy to see that Q will be stable if and only if the transfer function (H-4))

cancels the unstable zeros of U and V. In other words, if the unstable zeros of U and V

are denoted as ai , then Q will be stable if and only if

4)(ai) = H(ai), for 1l__ i•< N. (2.39)

Further, if (D is written as a function of X,

)(k) = £ 4)(k)2k, (2.40)
k=O

then this constraint can be expressed as

1 al al . DOF)  H(a1 )

2 H(a
a2 a2 

2 ) (2.41)

aN aN [.H(aN)J

for the case of simple zeros. It can also be expressed as Af's8 = bfes, which is linear in

8).

With all of the above modifications, the 91 optimization problem becomes

min (k) + $- (k)
k=O

subject to AfaS(8+(k)-$-(k)) = be,

D+ (k) > 0, 4)-(k) > 0 (2.42)
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which is a linear programming problem with an infinite number of variables and a finite

number of constraints. The corresponding dual problem has a finite number of variables

and an infinite number of constraints. However, if there are no unstable zeros of U and V

on the unit circle, at some large enough k, ak will be small enough that only a finite

number of these constraints will be active. Thus, the dual problem is finite dimensional,

and an exact solution can be found. Further, the existence of a solution to the dual

problem guarantees the existence of the same solution to the primal problem. In fact, the

11 optimization problem can be solved directly in the primal space by truncating the above

series at a large enough value.

There are a few modifications that must be made to the above formulation for

multi-block problems. First of all, U and V may not be invertible. However, from (2.29)

and (2.30) it's clear that if Dm,,u has full column rank and D• has full row rank, then a left-

inverse of U and a right-inverse of V will exist, which is all that is required. These two

restrictions ensure that all the controls are penalized and that no measurements are perfect.

Additionally, for multi-block problems it is the left unstable zeros of U and the right

unstable zeros of V that must cancel with zeros of (H- -).

Multi-block problems have an infinite number of variables as well as an infinite

number of constraints, and thus cannot be solved exactly. To counter this problem,

Dahleh and Diaz-Bobillo ([DDB94]) proposed three ways to find approximate solutions.

The first method, known as the Finitely Many Variables (FMV) approach, constrains the

polynomial solution $ to a fixed length. The resulting compensator provides a sub-

optimal but feasible solution to the problem. The second method, known as the Finitely

Many Equations (FME) approach, truncates the number of dual variables, which is the

same as solving the primal problem with a finite number of constraints. The solution to

this problem is super-optimal and infeasible. The final and most viable method is known as

the Delay Augmentation (DA) approximation. This method is generally considered the
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best method to use for multi-block problems since it carries more information about the

optimal solution than the other two approaches.

The DA approach embeds the multi-block problem into a larger one-block problem

by augmenting pure delays to U and V. The resulting one-block problem, which contains

extra degrees of freedom in Q, can then be solved exactly. While the solution to this

problem is super-optimal and infeasible, it serves as an upper bound to the true optimal.

To get a feasible solution, the extra degrees of freedom are simply stripped out of Q. The

resulting solution is sub-optimal but provides a lower bound to the optimal solution.

Thus, this method produces both a feasible solution and bounds on the optimal solution.

The 9, optimization method is discussed further in Chapter 3. In parts of Chapter

3, the standard 9, linear programming problem in (2.42) is augmented with constraints on

the maximum magnitude of the controlled output to an exogenous step input. These

additional constraints are posed using the vector 1_ norm,

jInll = suplm(k)]. (2.43)
k

2.7. L, Optimization

The goal of L, optimization is the same as 11 optimization, except that it is applied

to continuous systems. While 11 optimization attempts to minimize the absolute sum of the

pulse response of a discrete system, L, optimization attempts to minimize the absolute

integral of the impulse response of a continuous system.

The impulse response matrix for a continuous causal system,

TMr(S) = A I B, (2.44)

with p inputs and q outputs is given by

H(t) = CmeAI"B, + Dmrn(t), (2.45)
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where 5(t) is an infinite pulse of zero time duration applied at t=O. If hij are the elements

of H(t), then the objective of L, optimization can be written as

I- 1
mrin Tmr (S) = min max " jh ij dt (2.46)

K stab ikng 1 K stabiizin

Unlike t, optimization, there is no known way of solving the L1 problem exactly.

In fact, Dahleh and Diaz-Bobillo ([DDB94]) have shown that if a solution could be found,

the optimal compensator would have infinite order. Theory has been developed to find

approximate solutions to the L1 optimization problem. Much of this theory involves

discretizing the continuous system with a forward Euler transformation and performing 11

optimization on the resulting discrete system. It can be shown ([Wal94]) that the 11 norm

of this discrete system is an upper bound to the L1 norm of the original continuous system,

and that the ti norm monotonically approaches the L1 norm as the sample period is

decreased to zero.

Unfortunately, this approach is not very practical for systems with slow modes.

Since these systems generally have very slowly decaying pulse responses, a larger sample

period is required to capture the pulse response with a reasonable number of samples.

This larger sample period, however, leads to poor approximation of the L, norm. Further,

it may not be possible to pick a large sample period and have the discrete system remain

stable. Recall from Section 2.3.2 that the forward Euler transformation does not correctly

map the stability boundary from continuous to discrete time, and larger sample periods

increase the likelihood that the discrete system will be unstable.

Two numerical methods of computing the Li norm of a continuous system are

presented in Chapter 4. Both methods avoid the above complications by approaching the

problem more directly. The primary focus in Chapter 4 is fixed-order, mixed I-A/L1

optimization for continuous systems. Continuous 1-2 optimization is discussed in the next

section.
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2.8. Continuous H2 Optimization

The goal of H2 optimization is to find the internally stabilizing controller which

minimizes the energy of the system output to a white Gaussian noise input. The

continuous time development is shown here, and the discrete time version is shown in the

next section.

Consider the standard H2 problem in Figure 2.5, where w is a zero-mean white

Gaussian noise input with unit intensity and z is the controlled output.

W ]P - Z

U y

K

Figure 2.5. H2 problem

Given this setup, the H 2 optimization objective can be written as

inf Izwl-(2.47)
K stabihizing T". 112

If T, is written as

Tzw= A2 IBwCw, (2.48)

then the two-norm of Tw can be expressed as

jTw (s)[2 = tr[QCTC•], (2.49)

where Q is the positive semidefinite solution to the Lyapunov equation

A2Q+QAT +BIB T =0. (2.50)
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P can also be written in terms of state-space matrices as,

P= zDz D } .(2.51)
C y Dyw DyU_

The following assumptions are now made on the state-space elements of P(s):

i) D, =0

ii) DyU= 0

iii) (A, Bu) is stabilizable and (Cy, A) is detectable
T ~T =

iv) DTD, =I and DyDw =

v) A - jcoI B. has full column rank for all (oC z D ,'u

vi) [A yj w has full row rank for all co

Assumption i) is required in order to ensure that T,, will have a finite two-norm.

Assumption ii) is not required, but it simplifies the problem. Assumption iii) is required

for a stabilizing compensator to exist. Assumption iv) ensures that DTD. and DywDT

have full rank which keeps the problem from being singular. This assumption can be

relaxed to just full rank requirements on DTDu and D DyT through scaling. Finally,

assumptions v) and vi) are required for the existence of stabilizing solutions to the

algebraic Riccati equations used in the H-2 solution.

The unique controller which minimizes (2.47) is given by

where

Aj = A- KfCY -BUKc (2.53)

2-19



K= BTX+DTCý (2.54)

Kf = YCT + BwDTy (2.55)

X and Y are the real, unique, symmetric, positive semidefinite solutions to the algebraic

Riccati equations
(A_- BD T Cz)TX+ X(A -BDT C -XBTX + ^T7 (.6_ u = z _ B B X z C ( 2 .5 6 )

T C T C _y CTy + T"

(A-BwD yCy) T Y+Y(A-BwDyw Y Bw~w =0, (2.57)

where

Cz = (I-DzDT)Cz (2.58)

and

A~w =Bw(I - DyT Dw) (2.59)

The minimum two-norm which corresponds to K2 opt (s) is denoted as a.

2.9. Discrete H 2 Optimization

While the goal of H2 optimization does not change in the discrete time case, there

are some distinct differences between the discrete and continuous time solutions. The

purpose of this section is to highlight these differences.

T,(z) can also be expressed in terms of the state-space matrices in (2.48). The

two-norm of Tzw in discrete time is given by

IITw (z)112 = tr[DzDzT +CZQCT], (2.60)

where Q is positive semidefinite solution to the discrete Lyapunov equation

A 2QAT +BwBT =-Q. (2.61)

Given the state-space description of P(z) in (2.51), let

c TZ rQT S-TC Dj ]=ST R (2.62)
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and

[ BwT D T] (2.63)

DW]1W =W ST R

The following assumptions are now made on the state-space elements of the plant, P(z),

using the above definitions:

i) (A, B,) is stabilizable and (Cy, A) is detectable

ii) Rf, R0 >0

iii) DTCZ = 0 and BwDyw =0

Assumption i) is required in order for a stabilizing compensator to exist. Assumption ii)

ensures the existence of stabilizing solutions to the discrete algebraic Riccati equations.

Assumption iii) is a standard assumption which is not required but simplifies the

derivation.

The unique discrete H2 optimal compensator is given by

K~ov A (z) A AKfCy- B.KcK Cy AKf- BuKvKf
K [AKoC(zKfCfY fK K f-T - (2.64)

fy K; -KrK'

where

Kc = (R: + B XBU)- (ST + B TXA) (2.65)

K-f = (yC+ ST)(CyYCy t Rf +CySf +SfCy). (2.66)

X and Y are the real, unique, symmetric, positive semidefinite solutions to the discrete

algebraic Riccati equations

ATXA + - (A TXBu + S)(R + B T )'(BTXA +ST) = X (2.67)

AYAT + Qf - (AYCT + ST)(Rf + CyYCT)-I (CyYA T + S) = Y. (2.68)

Notice from (2.52) and (2.64) that Dk equals zero in the continuous time case but

it is not equal to zero in the discrete time case. This fact is specifically pointed out

because many references in the control literature incorrectly state that Dk equals zero in
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the discrete solution. In fact, assuming that Dk equals zero generally results in a sub-

optimal solution.

2.10. Chapter Summary

This chapter developed some essential background theory which will be required in

Chapters 3-5. The theory on L1 and continuous H2 optimization will be important in

Chapter 4, where mixed H2fL1 optimization for continuous systems is discussed. Discrete

H2 optimization theory is used in Chapter 5 to develop a mixed H2/11 optimization method

for discrete systems. The next chapter discusses using tj optimization to solve tracking

problems.
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III. Using 91 Optimization

3.1. Chapter Overview

This chapter focuses on using 11 optimization to solve tracking problems. Section

3.2 describes some changes that had to be made to the 1, optimization software prior to

conducting most of the work in this chapter. Section 3.3 discusses 1, optimization on a

conceptual level, and brings up an important relationship between the unit pulse and step

responses. Unweighted and weighted sensitivity minimization are discussed in Section

3.4. Sections 3.5-3.7 cover different constraints that can be added to the 11 optimization

problem to handle several tracking issues. The last section in this chapter discusses the

use of 11 optimization for model matching problems.

Throughout the chapter, a Single Input Single Output (SISO) longitudinal model

of the AFTI F-16, shown in detail in Appendix A, is used to illustrate various tracking

design issues. The tracking problem described in this chapter is defined as the ability to

accurately command a 1g normal acceleration of the aircraft. The stabilator is the only

control surface considered in the model, and it is limited to ± 25 degrees deflection angle

and ±60 degrees/sec deflection rate. In Section 3.8 a model matching design is

completed for this system and also for a Multiple Input Multiple Output (MIMO) system

involving a missile. The objective of the missile problem is stated in Section 3.8 and a

detailed description of this system is given in Appendix B.

All simulations in this chapter are done with sampled-data systems (i.e. discrete

controllers with continuous system models). Step inputs, applied one second after

simulations are started, are used to evaluate tracking performance. Plots of the control

rate are based on finite difference calculations over the discretization period of the system.
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3.2. 1, Optimization Software

MATLABTM software used to perform 11 optimization was first written by Diaz-

Bobillo in 1991-92. This research code was used to run the examples in the book, Control

of Uncertain Systems: A Linear Programming Approach, written by Dahleh and Diaz-

Bobillo ([DDB94]). A copy of the software and a preprint of the book were used to

conduct the research in this thesis.

After running several examples with Diaz-Bobillo's software, it became apparent

that certain "bugs" existed. The first error occurred with certain simple one-block

systems. While the main routine always displays a lower and upper bound to the one-

norm for all systems, the two bounds should be the same for one-block systems since they

can be solved exactly. Due to numerical differences in the ways the upper and lower

bounds are calculated, the two bounds are never exactly the same. However, for several

one-block systems there were wide disparities between the two values. The problem was

traced to a routine which rounded off the unstable zero frequencies of U and V. The

amount of round-off affected the interpolation conditions given in (2.41) and thus the

norm calculations. This problem was corrected by eliminating the round-off algorithm

altogether.

The second problem encountered with Diaz-Bobillo's code was that it did not

directly ensure the required existence of a left inverse of U and a right inverse of V. It

appears that Diaz-Bobillo attempted to address this issue by changing the discrete system

to continuous time through a bilinear transformation. In many cases, this action leads to a

system where D,, has full column rank and D3r has full row rank, which ensures that U has

a left inverse and V has a right inverse. Unfortunately, these conditions must be met for a

discrete time system, not a continuous one, and a bilinear transformation back to discrete

time recreates the rank defect problem. Diaz-Bobillo's method to handle this issue is to

replace the original discrete D matrix with the continuous D matrix. However, this results
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in a new discrete system which can be significantly different than the original discrete

system.

This problem was solved by simply forcing the user to input discrete systems

where Dmu has full column rank and Dyr has full row rank. Effectively, these requirements

ensure that all control usage is penalized and that no measurements are perfect. These

conditions are also standard requirements for the state-space solution of H_ problems

presented in [DGKF89]. With this change, several transformations back and forth from

continuous to discrete time were eliminated in Diaz-Bobillo's code. This proved to be a

major overhaul of the computer code, however, since many parts of the old routine

depended on the continuous time version of the original discrete system. Among other

changes, new routines had to be developed to perform Youla parameterizations and stable

projections of discrete systems.

Since much of the code had to be rewritten to incorporate the above changes,

other simple modifications were also included to make the routine more user-friendly and

efficient. As a result, the main routine is now a function file instead of a series of scripts,

which frees up additional memory in the MATLABTM workspace for the user. Data

structures used in the p.-Analysis and Synthesis Toolbox, which are more efficient and

easier to use, were also incorporated. All the modifications to the original software were

sent back to researchers at the Massachusetts Institute of Technology (MIT) who are

preparing the f, optimization software for commercial release.

3.3. Understanding f Optimization

In order to answer the question of how best to use 41 optimization, it is important to

first understand what 4, optimization is trying to accomplish. The formal mathematical

definition given in Chapter 2 is not important here; rather, a simple conceptual idea of how

the method works is sufficient. By definition, 1 optimization attempts to minimize the

absolute sum of a system's sampled pulse response. Conceptually, this optimization
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method works by pushing down on the pulse response from all sides. In other words,

both peak-to-peak gains and long pulse responses are penalized since both tend to increase

the absolute sum.

Since the primary interest in this chapter is how best to use 11 optimization for

tracking problems, it is instructive to examine the unit pulse and step responses of a simple

discrete system. Consider the continuous system,

H(s) 1  (3.1)

which discretized at 1/3 Hz using a ZOH is equivalent to

H(z)[ 1  . (3.2)

The sampled unit pulse response of this system is shown in Figure 3.1.
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Figure 3.1. Pulse response of a discrete system
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The one-norm of this system can be calculated by inspection. The total sum of samples 1-

4 in Figure 3.1 appears to be approximately 1. Indeed, the one-norm for this system is 1.

The unit step response of the system in (3.2) is shown in Figure 3.2.

0.9

0.8

0.7

0.6

a,'a0.5
E

0.4

0.3

0.2

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
No. of Samples

Figure 3.2. Step response of a discrete system

Notice the distinct relationship between the unit pulse response and the unit step response.

If r is the sampled unit step response and h is the sampled unit pulse response, then

k

r(kT) = h(j) for k = 1,2,..., (3.3)
j=l

where T is the sample period. This relationship implies that the faster the pulse response

decays to zero, the quicker the step response reaches its steady-state value. Since •1

optimization penalizes long pulse responses, it logically also penalizes slow unit step

responses. This fact and the general relationship between the unit pulse and unit step

responses are particularly important in using L1 optimization for tracking problems.
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3.4. Weighted and Unweighted Sensitivity Minimization

The goal of most tracking problems is to minimize the error between the

commanded input and the system output. This type of problem can be posed as a

sensitivity minimization problem, such as the one depicted in Figure 3.3.

m

r

Figure 3.3. t, sensitivity block diagram

For the AFTI F-16 problem, the exogenous input, r, is an unknown commanded normal

acceleration input with maximum magnitude less than or equal to one, and the controlled

output, m, is the weighted error between the commanded acceleration and the actual

aircraft acceleration. K is the unknown compensator, and a state-space description of the

unweighted plant, G, is given in Appendix A.

For now, W, is set to 1 and 11 optimization is performed on the above system.

Since a weighted sensitivity problem places no penalty on control usage, a small penalty,

g = le- 5, is added to Du to ensure the left inverse of U exists. The optimal closed-loop

system has a one-norm of 2.07 and the controller is 4th order. The system response to a

lg step in normal acceleration is shown in Figure 3.4. The "jags" in the response are a

product of the sampled-data simulation. As the sample rate increases these "jags" become

less apparent.

Notice that the step response is extremely fast. This is mainly due to the fact that

there was only a small penalty placed on control usage. However, as discussed in the
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previous section, unconstrained t1 optimization tends to produce very quick step

responses. Plots of control usage and rate of control usage are shown in Figures 3.5 and

3.6.
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Figure 3.4. Unweighted sensitivity step response
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Figure 3.5. Unweighted sensitivity control usage
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Figure 3.6. Unweighted sensitivity control rate

The control usage does not violate the maximum deflection limits, but it is quite large for

only a lg change in normal acceleration. Since the system is linear, it is easy to see that

the maximum deflection limit would be violated for a commanded 2g change in normal

acceleration. The control rate violates the maximum allowable rate limitation, even for a

very small command. The controller found above would be undesirable for two reasons:

first, the system tracks with a steady-state error; second, the level of performance shown

in Figure 3.4 is unattainable by the AFII F-16 due to limitations in the stabilator rate of

deflection.

The first problem can be handled in two different ways. One option is to place a

gain on the input to the system to ensure the closed-loop DC gain equals one. Another

alternative is to weight the sensitivity more heavily at low frequency. This method is

preferred since it can eliminate steady-state error problems to additional low frequency

commands.

To demonstrate the second method, consider the following weighting:

s+10
W" = S+10(3.4)s + 0.0001
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This particular weighting represents the inverse of the desired sensitivity function and is

very similar to the one used by Luke ([Luk93]) in an H. based design for the AFTI F-16.

The optimal 91 norm for the system using this weighting is 2.25 and the compensator is 5th

order. A plot of the system response to a lg step in normal acceleration is shown in

Figure 3.7.

1.4

1.2

0

"• 0.8

0.6

z
0.4

0
0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

Figure 3.7. Weighted sensitivity step response

This weighting has clearly eliminated the problem of a steady-state error to a step input,

but the system response is still extremely fast. Examination of the control usage and rate

of control usage for this weighting, shown in Figures 3.8 and 3.9, reveals that the problem

with the stabilator deflection rate still exists. In fact, this problem is worse than before.

Before discussing how to handle the problem of excessive control deflection and

rates of deflection, it is important to discuss some objectives the tracking solution should

achieve. The following list represents some typical factors which may be important:

i) minimum error to low frequency commands

ii) no violations of control defection and rate limitations
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iii) zero steady-state error to low frequency commands

iv) minimum overshoot and undershoot

v) the quickest response possible given the above.

Item i) indicates that sensitivity minimization is the proper objective function for 11

optimization, but items ii)-iv) indicate that it must be done with certain constraints. Item

v) is inherently built into 11 optimization for most problems. To demonstrate how items i)-

v) can be achieved without frequency weights on the sensitivity function, W, is set equal to

one in the following sections.

The next section tackles item ii). It covers three different approaches for adding

control deflection and rate constraints to the error minimization problem.

3.5. Control Deflection and Rate Limitations

The previous section was concerned with solving the one-block problem

inf 11S111, (3.5)K stabilizing

where S is the sensitivity function. This section is concerned with the general two-block

problem

S
inf , (3.6)

K tbilizing WKS

where Wc is a weighting on the control usage. The added block in (3.6) can be used to

ensure that control deflection or rate limitations are not violated.

Since the control rate limitations were violated in the last section, only rate

constraints are added in this section. It turns out that once the control rate is properly

constrained for the AFTI F- 16, the control deflection limitations are not a problem. The

ideas presented below easily extend to penalizing control deflections alone or to both

control rates and deflections.
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In order to change the second block of (3.6) to a penalty on control rate instead of

control usage, an appropriate weight must be chosen for Wc. Clearly the weighting must

be chosen so that it effectively takes the derivative of the control signal. This problem is

best handled directly in the z-domain with

z- 1
W, (z) = Z1 (3.7)

Tz

where T is the sample period. This weighting function, known as the backward Euler

transformation, calculates a finite different gradient between discrete pulses. Since the

weighting is in the z domain, the continuous system must be discretized before this weight

can be augmented to the problem.

The first approach to solving the rate-constrained tracking problem is to multiply

each block in the two block problem by a desired level of performance. For example, if

the one-norm of the first block is desired to be less than y and the maximum control

deflection rate is Urmxa then the problem becomes

1

inf
K stbilizing _1 WCKS. (3.8)

Urmx

If the resulting one-norm of this system is less than 1, then both levels of performance are

achieved. This follows from the previous assumption that the maximum magnitude of the

exogenous input is less than or equal to one. If the goal is to find a solution which has the

minimum achievable y without violating the maximum control rate, this is not the best

approach because (3.8) would have to be solved iteratively for y until the resulting system

one-norm is exactly one.

A better approach is to solve the following problem:

inf 11
K b'lizg 1 (3.9)

subject to IIW0KSII1 < Urm.
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Recall for multi-block problems that the one-norm of the system is the maximum absolute

row sum. In (3.8), the maximum absolute row sum had to be less than one to ensure the

one norm of the entire system was also less than one. In (3.9), the individual row sums

are separated, with one being minimized while the other is constrained. The current

version of the f software developed by the author allows the user to specify different

constraint levels for each controlled output in a multi-block column problem.

Problem (3.9) was solved for the AFTI F-16 with control rate limitations of 200

deg/sec, 100 deg/sec, and 60 deg/sec. A plot of the system unit step response for all three

constraint levels is shown in Figure 3.10,
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

Figure 3.10. Unweighted sensitivity step responses with 11 constraints on the control rate

The slowest response with the largest steady-state error corresponds to the actual

stabilator deflection rate limitation of 60 deg/sec. The responses to the other two

constraint levels are shown for comparison. This type of plot can also be used for design

purposes since it is easy for the designer to see how much performance can be gained if
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faster control actuators are obtained. Plots of the control deflections and rates are shown

in Figures 3.11 and 3.12, respectively.
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Figure 3.11. Unweighted sensitivity control usage with 11 constraints on the control rate
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Figure 3.12. Unweighted sensitivity control rates with ( constraints on the control rate
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Notice from Figure 3.12 that the control rates are well within their respective 4, constraints

for a unit step input. The 41 constraints will actually ensure that the control rate limitations

will not be violated for any input with a maximum magnitude less than or equal to one. In

this particular example, the 41 constraints are very conservative for a unit step input.

The one-norm of the objective and the compensator orders are shown in Table 3.1

for each constraint level.

controller
constraint one-norm order

200 deg/sec 2.63 35

100 deg/sec 2.88 38

60 deg/sec 3.17 43

Table 3.1. Comparison of different f, constraints on control rate

The order of the 4 optimal compensators is directly related to the support length of the

pulse response; i.e., the number of time steps it takes the pulse response to decay to zero.

In fact, if the 4, optimization software did not perform a balanced model reduction on the

compensator, this relationship would be almost one-to-one. Recall that the support length

of the pulse response is related to the time it takes the step response to reach steady-state.

This explains why the controllers found using the above approach have such high orders.

The previous two approaches imposed 1 constraints on the control rate. This

means that the constraint limitation imposed will not be exceeded for any input into the

system bounded in magnitude by one. Another possibility is to ensure that the constraint

is not exceeded for a single class of input like the step command. Unlike the 41 constraints,

these L= types of constraints can only be used on a finite horizon. In other words, they can

only be imposed over the support length of the solution. In many cases, however,

imposing these constraints over the first few time steps is sufficient.
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To understand how a constraint on the step response of the system can be imposed

in 1, optimization, recall the relationship in (3.3) between the unit pulse and unit step

response. The step response at any particular time step is nothing more than the sum of

the pulse response at that time step plus all previous time steps. Therefore, in terms of the

pulse response at each time step, these constraints can be imposed with very simple

Toeplitz matrices, with ones below the main diagonal and zeros above, such as

<1Ur x (3.10)

Notice that these constraints can easily be augmented to the interpolation conditions in

(2.41).

The new problem with the augmented step input constraints becomes

inf IfSIII
K subiizing (3.11)

subject to IlwuKSwllf -• ur,

where wf is a unit step. A plot of the AFTI F-16 normal acceleration step response for

control rate constraint levels of 200 deg/sec, 100 deg/sec and 60 deg/sec is shown in

Figure 3.13.

Again, the slowest response with the largest steady-state error corresponds to a

constraint of 60 deg/sec. Notice that the step responses to this type of constraint are

much quicker and have less steady-state error than the ii constraints. Control deflections

are shown in Figure 3.14 and control rates are shown in Figure 3.15.

The one-norm of the objective and the compensator orders are shown in Table 3.2

for each constraint level. With this approach, quicker settling times also lead to lower

order controllers.
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Figure 3.13. Unweighted sensitivity step responses with � constraints on the control rate
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Figure 3.15. Unweighted sensitivity control rates with I_ constraints on the control rate

controller
constraint one-norm order

200 deg/sec 2.16 9

100 deg/sec 2.28 13

60 deg/sec 2.43 19

Table 3.2. Comparison of different 1_ constraints on control rate

While all the step responses in this section meet some constraint level on the

control rate, none of them has zero steady-state error. This issue is addressed in the next

section.

3.6. Steady-State Error and Time-Varying Exponential Weights

Zero steady-state error to a step input can be enforced with an added equality

constraint to the f, optimization problem. Recall from (3.3) that the final value of the step

response is simply the summation of the unit pulse response over its entire support length.
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Therefore, zero steady-state error to a unit step input is guaranteed if the sum of the

sampled unit pulse response equals zero. This is not an absolute summation like the norm

calculation; it is simply a summation of the pulse response at each time step. The added

equality constraint takes the form

[1 1 ... 1] l 0. (3.12)

L1(N)J

This constraint was added to the problem presented in (3.11), with the control rate

constraint equal to 60 deg/sec. The resulting solution has an objective one-norm of 3.00

and the compensator is 44th order. The system response to a lg normal acceleration step

input is shown in Figure 3.16 and the control rate is shown in Figure 3.17.
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Figure 3.16. Unweighted sensitivity step response with steady-state error and 1_ control

rate constraints
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Figure 3.17. Unweighted sensitivity control rate with steady-state error and L control rate

constraints

Clearly, zero steady-state error is achieved, but the limit on control rate is not met at the

nearly discontinuous jump just after two seconds. Notice that the response in Figure 3.16

is exactly the same as its counterpart in Figure 3.13 up until this jump. This happened

because the steady-state error equality constraint was not imposed until the very last time

step in the support length. In this system, imposing the constraint any earlier results in a

larger one-norm, which the optimization rejects.

This problem can be overcome with time-varying exponential weights on the norm

calculation. Consider multiplying each sampled pulse response by aýT, where k is the

sample index, T is the sample period and a > 1. Since this weight gets larger as k gets

larger, it effectively penalizes late errors over early ones.

The system above was rerun with a time-varying exponential weight added to the

norm calculation. With a = 1.1, the objective one-norm was 3.59 and the controller was

26th order. A plot of the system response to a step input is shown in Figure 3.18 and the

control rate is shown in Figure 3.19.
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Figure 3.18. Unweighted sensitivity step response with steady-state error/L control rate

constraints and time-varying exponential weights
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Adding the exponential weights increased the one-norm as expected. The weighting also

decreased the settling time and thus the controller order.

The step response at this point now meets all the criteria established in Section 3.4,

except the overshoot issue. This problem is discussed in the next section.

3.7. Overshoot and Undershoot Limitations

Problems with excessive overshoot and undershoot in the step response can be

handled in exactly the same manner as excessive control deflections and rate violations.

To demonstrate this concept, a very small reduction is done on the overshoot for the

system response shown in Figure 3.18. Theoretically, the overshoot can be reduced to any

desired level at the expense of a slower response. However, it was extremely difficult to

find a solution for the problem presented with the current f, optimization software. The

multi-block problem contains so many constraints and delays that calculation attempts

alone are extremely expensive in terms of computer time. Further, the linear programming

routine in the software has difficulty solving very large systems of equations, possibly due

to scaling problems. Both of these issues are currently being addressed by researchers at

MIT.

The system response in Figure 3.18 has an overshoot of about 80%. An 1_ type

constraint on the overshoot was added to the problem to ensure that the overshoot would

be less than 70% to a step input. The resulting solution had an objective one-norm of 3.40

and the controller was 28th order. A plot of the step response with the added constraint is

shown in Figure 3.20.

This step response is still less than ideal; however, all the tools to shape and

constrain the response are now available. As the •1 optimization software becomes more

reliable and efficient, a designer should be able to use all the techniques presented up to

this point to find a compensator which meets all of his or her tracking requirements.

Unfortunately, this compensator will probably be extremely high order and therefore
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impractical to use. The next section on model matching offers one way to use 91

optimization and still produce controllers at or about the order of the original discrete

system.
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Figure 3.20. Unweighted sensitivity with control rate/steady-state error/overshoot

constraints and time-varying exponential weights

3.8. Model Matching

Using f, optimization to solve multi-block systems generally produces high order

controllers, especially when additional constraints are imposed on the system. One way to

counter this problem is to solve a one-block system instead. Since these systems can be

solved exactly, without delay augmentation, the resulting controllers tend to be much

smaller (usually about the order of the unweighted plant). An added benefit to using one-

block systems is that they can be solved much faster and more reliably than multi-block

systems with the current 11 optimization software.

In many cases, the constraints discussed in the previous sections can not be

imposed with one-block systems. Therefore, a one-block system must be chosen that
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incorporates as many of the design criteria required for good tracking as possible. One

way to accomplish this objective is to model match the design problem to a system which

has the desired tracking characteristics.

Two examples of model-matching designs are presented in this section. The first

example involves the SISO AFTI F-16 problem that has been discussed throughout this

chapter. The second example involves a MIMO missile problem. A small penalty on

control usage, similar to the one discussed in Section 3.4, was added to each example to

make the resulting 11 problem nonsingular.

3.8.1. SISO Example

Consider the closed-loop model matching system shown in Figure 3.21, where H is

the ideal closed-loop model given in continuous time by

4
H(s) = 4(3.13)

s+4

Figure 3.21. Closed-loop model matching diagram

This particular closed-loop model was chosen because its step response is relatively quick,

has no overshoot, and no steady-state error. A plot of the step response of this model is

shown in Figure 3.22.
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The one-norm of the solution to this design problem is 0.37 and the compensator

is 5th order. A plot of the AFrI F-16 step response to a commanded lg normal

acceleration change is shown in Figure 3.23.
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Figure 3.22. Ideal model step response
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Figure 3.23. SISO model matching, step response
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The step response of the solution is approximately 0.37 g's larger than the step response

of the ideal model at steady-state. To make the system response match the ideal model's

response, the commanded normal acceleration has to be multiplied by a gain. This gain is

the reciprocal of the DC gain of the discrete closed-loop transfer function,

K(z)G(z) (3.14)

1 + K(z)G(z) (

For this problem, the gain equals 0.73.

Notice that with this particular approach there is no direct way to ensure the above

solution will not violate control deflection and rate limitations. In this problem, the

control rate limits were violated in the first few time steps. However, the closed-loop

system still performs well if the step input is first passed through a continuous prefilter

equal to

10
F(s) = 10 (3.15)

and a rate limiter is added to the control signal. With the added prefilter, the system

actually sees an input which is similar to the response in Figure 3.22 (just slightly faster),

instead of a discontinuous step input. The new input is actually a more realistic

representation of a pilot command.

The system was tested with the prefilter, gain adjustments on the input, and a

control rate limiter set at ±60 deg/sec. The response is shown in Figure 3.24. This

response has no overshoot, no steady-state error and was achieved with a 5th order

controller and a small gain on the input.

Plots of the sensitivity and complementary sensitivity for the resulting closed-loop

system are shown in Figures 3.25 and 3.26. The vector gain margins (VGM) and phase

margins (VPM) of this system are

-11.4 dB < VGM • 10.4 dB VPM = ±42.90.
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Figure 3.26. SISO model matching, complementary sensitivity

3.8.2. MIMO Example

This model matching example is done on the 3 input, 3 output missile system

described in Appendix B. The goal of this design problem is to command normal or

lateral acceleration while keeping the roll-rate of the missile as small as possible. When

commanding normal acceleration, it is also desired to minimize the lateral acceleration and

vice versa when commanding lateral acceleration.

An open-loop model matching design is used to solve this problem, as shown in

Figure 3.27.

H m

r

Figure 3.27. Open-loop model matching diagram
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In this problem, the ideal open-loop model is given in continuous time by

10 0 0

s+0.001

H(s)= 0 10 0 (3.15)
s + 0.001

0 0 10

Ss+ 0.001

This model was chosen with diagonal elements only in order to decouple the normal

acceleration, lateral acceleration and roll-rate responses. The value 10 in the numerators

was chosen to determine the speed of the responses. Poles were placed at -0.001 in each

transfer function to provide near integral action, and ensure very little steady-state error.

The one-norm of the solution to this problem is 1.009 and the controller is Ilth

order. To avoid control rate violations, the system was tested with rate limiters set at the

maximum allowable rate, 750 degrees/second. The control deflection limits (38 degrees)

were not violated in any case. The system responses to a lOg normal acceleration step

input (applied at 0.5 seconds) are shown in Figures 3.30 and 3.31. The system responses

to a 5g lateral acceleration step input are shown in Figures 3.32 and 3.33. Closed-loop

sensitivity and complementary sensitivity plots are shown in Figures 3.28 and 3.29,

respectively. The vector gain margins (VGM) and phase margins (VPM) of this system

are

-74.0 dB < VGM < 11.2 dB VPM = ±60.00.

Notice that the open-loop model match in this example eliminates the need for the

DC gain adjustment used in the SISO example. This approach, however, lead to an

unstable system in the AFTI F-16 problem once rate limiters were added to the simulation

model. While neither model matching method is guaranteed to produce an acceptable

controller, both offer easy design alternatives to the methods presented in Sections 3.4-

3.7.
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3.9. Chapter Summary

This chapter presented methods of using tj optimization to solve tracking

problems. Several constraints that could be added to the standard 11 problem to handle

control deflection and rate limitations, zero steady-state error requirements, and overshoot

limitations were discussed. Unfortunately, the constrained 91 optimization problem often

produced high order controllers. To counter this problem, two different model matching

techniques were presented which can produce acceptable tracking results with lower order

controllers.

The next design issue to be considered is system noise performance, which is best

handled with H2 optimization. To achieve both tracking and noise performance, one might

suggest using a mix of H2 and 1, optimization techniques. Indeed, this is a viable approach.

Mixed HI-IL1 optimization for continuous time systems is discuss in Chapter 4 and mixed

12/t1 optimization for discrete time systems is discussed in Chapter 5. In both cases, the

order of the resulting compensator is chosen by the designer which eliminates the problem

of optimal solutions with excessively large compensator orders.
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IV. Mixed HI2/L, Optimization

4.1. Chapter Overview

This chapter develops a fixed-order, mixed H-jL 1 optimization method to design

controllers for continuous systems. Section 4.2 discusses the general mixed H2/L1

optimization problem. In Section 4.3, analytical derivatives for the H2 portion of the

problem are derived. Two methods of numerically approximating the L1 norm of a

transfer function are presented in Section 4.4. Analytical gradients for the L1 portion of

the problem and a stability constraint are discussed in Section 4.5. Section 4.6 covers the

computer implementation of the H2/L1 problem. The last section in the chapter

demonstrates IH2/L optimization using a continuous version of the AFTI F-16 longitudinal

model.

4.2. The Mixed H2/L, Problem

The mixed HI-L1 design problem is depicted in Figure 4.1.

W Z

r Pm

U y

Figure 4.1. Mixed HAIL1 problem

In general, it is assumed that there is no relationship between w and r, or z and m.

The goal of mixed FI-/L optimization is to find a stabilizing controller which

satisfies
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infg ITz 11 subject to 1T.111 •! v, (4.1)K stabilizing

where

Tmr (] 4.3)

and v is a user specified constraint level on the L1 norm of T"".

The state-space of P is found by augmenting the stable weights of the H- problem

and the L1 problem to the original system. Typically, the orders of the individual H2 and

L1 problems are less than the order of P. The state-space equations of the H2 and L1

problems can be written as

k2 =A 2x 2 + Bww + B. 2u

z = C'x 2 + Dww+ Du
y=C y2 x 2 + Dy~w + Dyuu (4.4)

kX =Aix1 +Brr+Bu lU

m = CmXi + Drr + Dmuu

y = CY1 x1 + Dyr + Dy u, (4.5)

where x2 is the state vector for the underlying H2 problem, and x, is the state vector of the

underlying LI problem. The following assumptions are now made on the state-space

elements in (4.4) and (4.5):

i) Dz,=O

ii) DYU= 0

iii) (A2, Ba) is stabilizable and (Cy, A2) is detectable

iv) DTDz. and DwD have full rank

v) [A 2 C D B has full column rank for all co
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vi) A 2  Dj has full row rank for all co

vii) (A1, Bux) is stabilizable and (Cy1, A1) is detectable

Reasons for assumptions i)-vi) were given in Section 2.8. Assumption vii) is required to

ensure the L1 problem has a solution.

The controller state-space equations are

xk =Akxk+ Bky

u= Ckxk +DkY. (4.6)

Using (4.4) and (4.6), the closed-loop state-space equations for T_ can be written as
i2= (A 2 + Bu2DkCy2 )X 2 + Bu2Ckxc+ (B, + B.2DkDyw)w

k =BkCy 2 x2 +Akxk +BkDyWw

z = (Cz +DzmDkCy 2 )X2 + DzCkxk +DmDkDyww. (4.7)

Notice that D2 UDkDyw in (4.7) must be zero to ensure the resulting two-norm of Tw is

finite. This fact and assumption iv) imply that Dk must be zero. Therefore, a strictly

proper controller, K, can be assumed without any loss of generality. With this additional

assumption, the state-space equations for the mixed H2/Lj problem can be written as

i2 =A 2x2 + Bww
Z= CzX2

xl = AIx1 +Brr

m= CmxI + Dmrr, (4.8)

where

X2 = X2 (4.9)
1xk]

x, = xi(4.10)
1Xk]

A= A2 Bu2Ck (4.11)
-BkCy2 Ak
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A 1 Al BuiCk] (4.12)A1=BkCy1 AkI

B_ [~ (4.13)

Br B,[B ' (4.14)Br= [BkD•

Cz,= [Cz DmCk] (4.15)

Cm= [Cm DmuCk] (4.16)

Dmr = Dmr. (4.17)

The following definitions are used to discuss the solution to the mixed H2/L 1 problem:
inf Tzw 2

K admissible

V inf IITmrjIj
- K admissible

K2 pt the unique K that makes IITZW 112 =

K1 - a K that makes 1T. 1 = v

(- IfTs, 2 when K = K10

- IITT 11 when K = K2,t

Kmi =the global minimum solution to the H 2 / L, problem for some v

cc* -IT TzI12 when K = Kmis

v-iIT j1 when K = Kmi (4.18)

Admissible controllers must be stabilizing and have a fixed, user-specified order.

A solution to the FI-IL 1 problem must satisfy the Kuhn-Tucker necessary

conditions:

i) K, must be feasible, i.e. stabilize Tzw and T.

ii) VIITw 112 + XIVIjTmr1i =0' XI 0

iii) ), (IITmrIII - V) = 0, - 0
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where X• is a Lagrange multiplier associated with the one-norm constraint. Condition i) is

simply a feasibility condition. Condition ii) states that the gradient of the objective must

be balanced by the scaled gradient of the constraint. The last condition states that if the

constraint is not satisfied exactly, then X, must be zero. Conditions ii) and iii) together

imply that an optimal solution (if it exists) must lie on the constraint boundary when

v _ v < V. If v _> v, then the unique solution is K2 opt By definition, v can not be chosen

less than v.

When v < v _<•V, W is a monotonically decreasing function of v. An illustration of

a possible IIAL1 solution curve is shown in Figure 4.2.

a .. ....................a .. ..........

V V V
V

Figure 4.2. Mixed J2 L1 solution boundary

A sequential quadratic programming (SQP) algorithm is used to solve the I-L 1

problem numerically. The objective (f) and the constraints (g) are given by

f(C) = ; 2 ITzw 1

g1 (c) = ;I (IITmr.71 - V)

4-5max(ReQX (A 2  (4.19)

4-5



where c is a vectorized compensator, q's are scaling parameters, and Xi (') is the it

eigenvalue of (-). The stability constraint, gs, is added to the problem to keep the SQP

algorithm from getting lost in the unstable region. While this constraint should be posed

as a strict inequality constraint, equality must also be allowed to incorporate it into the

SQP algorithm. Modal form is assumed for the controller, K, to minimize the number of

design variables in c. While this approach disallows repeated eigenvalues in the controller,

it has been shown to be sufficient in practice.

The SQP algorithm requires gradients for the objective function and each of the

constraints. Analytical gradients for the objective function are derived in the next section.

4.3. Gradients of the Two-Norm

Recall from Section 2.8 that the two-norm squared of Tw is given by

IITzw 1 = tr[QCzCz], (4.20)

where Q is the positive semidefinite solution to the Lyapunov equation

A2Q+QA2 T+BwB T =0. (4.21)

If the constraint on Q in (4.21) is written in an equivalent form,

tr[(A 2Q+ QA2T + BwBT)X] = 0 for all X, (4.22)

then

2T • = tr[QCTCZ]+ tr[(A 2Q + QA T +BwB w)X] for all X. (4.23)

To simplify the notation, let J equal the two-norm squared of T, Notice from (4.23) that

J is an explicit function of the design variables and the matrices, X and Q. However, the

partial derivative of J with respect to X is simply the left side of (4.21) and, therefore, it is

always equal to zero. Further, it can be shown that

aJ = A TX+ XA2 +CTCZ, (4.24)

4 -2 6
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which is a Lyapunov equation. Since X is arbitrary, let X be the positive semidefinite

solution to the Lyapunov equation

A2X + XA 2 + CTCZ =0. (4.25)

This choice of X is guaranteed to exist since A2 must be stable. With this choice, the

partial of J with respect to Q is also zero, and the only remaining derivatives to be

calculated are the partials of J with respect to the design variables (i.e. Ak, Bk and Ck).

If Q is given by

[Q11  Q12  (4.26)

Q LQ12 Q22j

and X is given by

X=[xT12 Xj (4.27)

then these derivatives are

aJ = 2[XT2 Q 1 2 +X2 2 Q22]
BAk
a 2XT QCT + X2 QT CT + XT B TOT

a3J = 2[B12QII y•2[ 22 12yT2,DYW+ 2kYD

= 2[BX + B 2 X 12Q22 + DCzQ12 + DDzCkQ22]. (4.28)

The complete method for finding the partial derivatives of J with respect to the

vectorized compensator, c, is as follows:

i) Solve the Lyapunov equations in (4.21) and (4.25) for Q and X respectively

ii) Compute the partial derivatives in (4.28)

iii) Rearrange (4.28) to express the gradient with respect to the vector of design

variables, c, as a vector,
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_ ) aT ... k J) T ...* ( {j)T  ¢ )T 1T (4.29)

where the individual vectors in parentheses are the columns of the partial derivative

matrices, nk is the order of the compensator, and ny is the number of measurements. The

next section discusses two numerical methods of approximating the L, norm of T'r.

4.4. Calculating the L1 norm

As mentioned in Section 2.7, there is no known way of analytically computing the

L1 norm of a continuous system. Many of the current approaches to the problem involve

discretizing the continuous system with the forward Euler rule, and computing the f, norm

of the resulting discrete system. These methods, however, prove to be impractical in

many cases. This section presents two numerical approaches which attack the problem

directly, and avoid the complications associated with forward Euler transformation.

The L1 norm of a continuous, SISO system is given by

11T-111 = fICme A tBIdt+ID.,I. (4.30)
0

If A1 is stable, then eAIt approaches zero as t approaches infinity, and (4.30) can be

approximated by truncating the integral at some point in time, tN, which can be computed

from the eigenvalues of A1. The remaining question is how best to evaluate the truncated

integral.

The first approach to this problem is to eliminate the absolute value sign inside the

integral by determining where the impulse response is positive and negative. This can be

done by discretizing the continuous system with a ZOH, and finding the pulse response of

the resulting discrete system. Since the ZOH transformation preserves the values of the

continuous impulse response at the sample points, the discrete pulse response can be used
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to find approximate locations where the continuous impulse response is zero. These

approximate locations are then refined to any degree of accuracy by using a nonlinear

root-solver on the continuous function, CmeAltBr. Once the zero locations of the impulse

response are known, the absolute value sign can be removed by breaking the integral in

(4.30) into a series of integrations. Further, if A1 is invertible (i.e. A1 has no zero

eigenvalues), then

t2

f C,e A tBr dt = CmA~l[eAlt2 -eAltl -2I]Br. (4.31)
ti

Thus, each integral in the series can be determined exactly. When A1 does have

eigenvalues at the origin, the system is unstable and the one-norm is infinite.

The key to this method rests on determining the zero locations of the continuous

impulse response. If zero locations are missed in the discretization step due to high

frequency dynamics, then the one-norm will be inaccurate. In addition, most nonlinear

root-solvers are only capable of finding the closest root to a given initial guess. This

implies that the approximate root locations must be fairly precise, i.e. the discretization

sample period must be fairly small. Using a small sample period to estimate the impulse

response of systems with fast and slow dynamics can be expensive in terms of computer

time. These issues make the above method impractical to use in a computer algorithm

which must handle a wide range of problems. However, this method does offer an

alternative way to calculate the one-norm for specific examples, and can be used to check

another method.

The second approach to approximating the truncated integral is more robust but

less accurate. In this method, the continuous system is discretized with a ZOH

transformation using a small sample period. The truncated integral is then approximated

with a trapezoidal integration of the discrete pulse response. As the sample period

decreases, the approximation improves. If H2/L1 optimization is performed near L,
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optimal, where tN is small, this method works well at approximating the one-norm of a

system without requiring an unreasonable number of samples. However, finding a starting

point near L, optimal can be difficult. Currently, the most reliable method of finding an

adequate starting point is to use a solution from fixed-order HJH12 optimization ([Wal94])

near H_ optimal (see [Rid92] for an excellent discussion of H optimization).

The L1 norm for MIMO systems is calculated from the maximum row sum of SISO

transfer function norms. However, discontinuous gradients can occur when the maximum

row sum occurs over more than one row. To counter this problem, each row sum is

constrained as a separate Multiple Input Single Output (MISO) transfer function. This

effectively adds more constraints to the H2/L1 optimization problem, but most of the

additional constraints are not active at any specific design point. If an optimization

algorithm is used which only calls for gradients of the active constraints, then these

additional constraints have little impact on the overall performance of the H2/L1 algorithm.

The next section discusses how to calculate the gradients associated with the L1 norm.

4.5. Gradients of the One-Norm

This section derives the gradients of the one-norm with respect to the design

variables in the matrices Ak, Bk, and Ck. Since all of these matrices appear in A, [see

(4.12)], the first problem considered is how to compute the partial of eAlt with respect to

any element of A,. This is the most difficult issue in calculating the gradients of the one-

norm with respect to the design variables. Contributions to the one-norm gradients from

the other closed-loop state-space matrices, which are considerably simpler to find, are

discussed thereafter. In solving the first problem, it will also become clear how to

calculate the gradient of the added stability constraint in (4.19).

If A. is a non-defective matrix (A1 can be diagonalized), then the partial of eAlt

with respect to any element of A1 is given by
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aeAlt [ eR[ReAt R1] eAt R-I +R AR-1 +ReAt R-(4.32)
aaii 0ait a aii aaii aa ii

where R is the right eigenvector matrix of A1 and A is a diagonal matrix consisting of the

eigenvalues of A1. The partial of eAt with respect to aij can be computed easily from

aeAt - aeA k i (4.33)
-ýaij .=k•i aa ij

provided that the partial derivative of each eigenvalue is known with respect to aij.

Likewise, the partial derivative of R-' with respect to aij can be easily computed from

R-' =__R-1 aR R -1, (4.34)

aaii aii

provided that the partial derivative of the right eigenvector matrix with respect to aij is

known.

The partials of an eigenvalue and eigenvector with respect to aij can be computed

from the standard eigenvalue problem if the nj eigenvalues of A, are distinct. The

derivations of these two derivatives involve both the left and right eigenvectors of A1, and

are described in detail in [Ne176]. Letting

Dal

the solutions are given by

11i LiAIRj (4.35)

nI
R'= XckRk +C R1 = Vi +cjRj, (4.36)

k=1

where

L• [Rj)'- AIRj]
ck= X , i #k (4.37)
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ci Re(RM 2 Ri -1R i (4.38)

and

R'MRi = 1. (4.39)

The symbol, (.)H, denotes the complex conjugate transpose of (.), and L is the left

eigenvector matrix. R, and Li refer to the ith eigenvector of R and L, respectively. Note

that A' is simply a n, x n1 matrix of zeros with a one in the (ij) element. The real part of

(4.35) provides a method of computing the gradients of the stability constraint in (4.19) if

ki is the maximum eigenvalue of A,.

The partial of eAlt with respect to aij can be completely determined from (4.33)-

(4.39). Using this information, the partial derivative of the one-norm with respect to A1

can be found element-by-element from

°•lTmr iii =e~

A -sgn(CmeA1B,)C A B,dt, (4.40)aAli~i 0 aii

where sgn (.) is 1, -1, or 0 depending on the sign of (-). The partial derivatives with

respect to the other closed-loop matrices are given by

D Tmr =1_ -sgn(C. eATIB,)[( e A,)Tc ]dt (4.41)

aIIT.mr1 - e Jsgn(CeAB )[BB T(eA t)T]dt (4.42)

aiIT.II1 -sgn(Dmr). (4.43)

amr

From these expressions, the partials of the one-norm with respect to Ak, Bk, and Ck can be

expressed as
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___T_ F -- ITmr I (4.44)

z.11 -- 'k, + SDm (4.45)
apBl q= 1 L n,+i,n,+j p=L q=1 .rn,+p,q

D11Tpk.C11 nn, +~ I~ 1 5A p jlql gin (4,.4+)
a i.j p1q1T 1 p,nl+q p=q1ac

The partial of the one-norm of T. with respect to c can be formed from the columns of

matrices in (4.44)-(4.46) as described in Section 4.3.

The integrals in (4.40)-(4.43) are approximated in the same manner as the integral

in the one-norm calculation. The upper limit of integration is changed to tN, and

trapezoidal integration is performed over discrete points from the continuous function.

The same discretization period is used for the norm calculation and the gradients, which

allows the sign factor required in (4.40)-(4.43) to be computed from the data gathered in

evaluating the one-norm.

As mentioned in the previous section, separate MISO gradients are calculated for

each row of a MIMO system. This ensures that continuous gradient information is

available regardless of where the maximum row sum occurs.

Recall that development of R' and V' require that the eigenvalues of A, be

distinct. Clearly this condition can be violated while performing II2L,1 optimization. The

current algorithm switches to finite difference calculations for gradient information if this

occurs. Research is still being conducted to develop ways to handle an A, matrix with

repeated eigenvalues.
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4.6. Computer Implementation

The Hz/L1 optimization problem is currently implemented using the MATLABTM

SQP routine, constr.m. Separate subroutines for each norm, constraint and gradient

calculation are called from this routine. Unfortunately, this routine currently requires all

gradient information regardless of whether or not a constraint is active. FORTRANTM

shells can be written to allow the MATLABTM subroutines to interface with IMSLTM

optimization routines, which eliminate this problem. Section 4.7 demonstrates the -JL 1

optimization algorithm on a design problem for the AFTI F- 16.

4.7. H2/L1 Design Example

A longitudinal controller design for the AFTI F-16, shown in detail in Appendix A,

is used to demonstrate the J1AL optimization method. The primary objective of the H2

portion of the problem is to minimize the effect of wind disturbances and measurement

noise. The L, portion of the problem is designed to improve tracking performance.

4.7.1. The H2 Problem

The H2 problem for the AFTI F-16, taken from [Luk93], is to find an internally

stabilizing controller which minimizes the response of the normal acceleration and

weighted control to the wind disturbances and measurement noise. A block diagram of

the H 2 problem is shown in Figure 4.3.
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Zi W 7Z2 W2

Figure 4.3. F-16 H2 diagram

The control weight, p, equals 10 and the state weighting matrix, H, equals the

system C matrix. The wind disturbance, w1, is modeled as a white Gaussian noise (WGN)

with 5.0 x 10-4 rad2-sec intensity, and F is the column of A corresponding to the angle-of-

attack state, x. The measurement noise, w2, is modeled as a WGN with 1.6 x 10-5 gE-sec

intensity and wm equals 1. Weighted control power, z1, and normal acceleration, z2, are

the controlled outputs. The plant state-space matrices are given in Appendix A and the

resulting H2 matrices are given in Appendix C.

4.7.2. The L1 Problem

The L, problem, depicted in Figure 4.4, is a weighted sensitivity minimization

design. Ws is the inverse of the desired sensitivity, and is given by

s+10
Ws = S+10(4.47)

Ss+0.0001

A plot of the desired sensitivity is shown in Figure 4.5. The matrices for the L1 problem

are also given in Appendix C.
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Figure 4.4. F-16 L1 diagram
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Figure 4.5. F- 16 desired sensitivity
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4.7.3. H2/L1 Results

A plot of the n 2/L1 solution curve for a 61 order compensator is shown in Figure

4.6.

3.5. ..

a -

3I

2.5

2 2

1.5

1 a
- I-

VV

Figure 4.6. F-16 II2/L1 solution curve

Notice that the plot only depicts mixed solutions near L1 optimal. A complete

solution curve would extend much further along the horizontal axis, and asymptotically

approach the dashed line, labeled a. Values for several of the solution points, depicted as

circles in Figure 4.6, are given in Table 4.1.

The points are numbered from left to right in Figure 4.6. Point number 24

represents the H2 optimal solution, which is not depicted in Figure 4.6. The points in

Table 4.1 are referred to as the design points for the remainder of this section.

Plots of the sensitivity and complementary sensitivity for the design points are

shown in Figures 4.7 and 4.8.
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point # • v

1 3.23 3.40

5 2.40 3.96

9 2.07 4.36

15 1.67 5.02

21 1.50 5.66

24 0.86 97,190

Table 4.1. F- 16 solution points

Ovdecreasing

0,-40-

" -60-

-80-

-100

0 10," 10-2 10' 10, 10'
Frequency (radians/second)

Figure 4.7. F-16 sensitivity
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Figure 4.8. F- 16 complementary sensitivity

In each plot, one curve is dramatically different than the others. This curve corresponds to

design point 24, the H2 solution.

The vector gain and phase margins for the design points are shown in Table 4.2.

point # lower VGM (dB) upper VGM (dB) VPM (deg)

1 -7.77 5.42 34.4

5 -10.3 5.42 40.7

9 -9.12 6.10 37.9

15 -7.88 8.02 35.1

21 -7.50 8.11 35.3

24 -7.82 8.80 37.1

Table 4.2. F-16 vector gain and phase margins

Notice that the stability margins do not consistently improve as v is decreased. However,

the margins are acceptable at all of the design points.
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The open-loop GK plot is shown in Figure 4.9.

100

42

v decreasing

-50

-1010_ 10- 10-2 100 102 1 0

Frequency (radians/second)

Figure 4.9. F-16 open-loop GK

The shaded area on the left side of Figure 4.9 represents a performance and

disturbance rejection barrier. The shaded area on the right side of Figure 4.9 represents a

sensor noise and unmodeled dynamics barrier. Descriptions of both barriers were taken

from [RB86], which also contains an excellent discussion of desired GK shapes.

Notice that the mixed design points, all relatively near L1 optimal, miss the barrier

on the left, but pass within the barrier on the right. A design which meets both barriers

could be found by a mixed solution closer to I-12 optimal. Alternatively, the mixed I-J1~~

optimization design could be redone with the weighting

s + 0.0001

on the L1 problem, instead of the weighting in (4.47). This new weighting should provide

acceptable GK loop shapes for mixed 1-I/L 1 solutions near L1 optimal, without decreasing

the bandwidth of the system below the frequency of average pilot commands.
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The loop shapes from the design points imply that high frequency noise will be

more prevalent than low frequency noise in system responses. Systems obtained from

these design points should also track low frequency commands well. Both of these facts

can be seen in the step responses presented below.

Figure 4.10 shows the F-16 responses, without noise, to a commanded lg step

input for the different designs. Notice that the H2 solution tracks with a steady-state error

while the mixed designs do not. Step responses with noise for design points 1, 9, 15 and

24 are shown in Figures 4.11-4.14, respectively. As expected, the systems with lower v

values contain more high frequency noise than those closer to the H2 optimal design. The

most important item to note from Figures 4.11-4.14 is that the tracking performance of

the AFTI F-16 can be greatly improved using mixed HFL 1 designs, with very little increase

on the amount of noise in the system response.

v decreasing

1.5

0.5-

z

Time (seconds)

Figure 4.10. F-16 step responses without noise
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Figure 4. 11. F- 16 step response with noise, design point 1
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Figure 4.12. F- 16 step response with noise, design point 9
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Figure 4.13. F-16 step response with noise, design point 15

1.5

C)

- 0.5

0z

-0.51
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

Figure 4.14. F-16 step response with noise, design point 24

Design point 15 was chosen as the best mixed I- 2/L1 design based on stability

margins, loop shape and step responses. This particular design will be compared to the

best discrete H2j/1 design in the next chapter. The control usage for this particular design

point is shown in Figure 4.15.
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Figure 4.15. F-16 control usage with noise, design point 15

The same control deflection and rate problems noted in Section 3.4 (for the same

W.) are also evident in Figure 4.15. The current HA/L1 methodology could, however, be

extended to include L1 control deflection and rate constraints. This should be a topic of

further research.

4.8. Chapter Summary

This chapter presented a newly developed numerical approach to I-L 1

optimization for continuous systems. This method was tested on a realistic example, and

the results show the benefit of mixing H2 and L, design problems. The controllers

obtained in this mixed design approach, however, must still be discretized before they can

be used on an actual aircraft. Unfortunately, the performance of the aircraft with the

discretized controller can be significantly different than the results obtained with the

continuous controller. An alternative, and potentially better design approach is to use

mixed H2/41 optimization to directly obtain a discrete controller. This method is presented

in Chapter 5.
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V. Mixed H2 /,1 Optimization

5.1. Chapter Overview

This chapter develops a fixed-order, mixed 112/11 optimization method to design

controllers for discrete systems. The chapter is organized in the same manner as Chapter

4 to highlight the similarities and differences between mixed H2/1, optimization for discrete

systems and mixed H-jL1 optimization for continuous systems. Section 5.2 covers the

mixed H2/g1 optimization problem. Section 5.3 discusses analytical gradients for the H2

portion of the problem. Methods of numerically approximating the 1, norm and its

gradient are presented in Sections 5.4 and 5.5, respectively. Computer implementation

issues associated with 1-1/21/ optimization are discussed in Section 5.6. In Section 5.7, the

112/11 optimization method is demonstrated on the discrete version of the AFTI F-16

longitudinal model, and the results are compared to the H-/L 1 results obtained in Chapter

4.

5.2. The Mixed H2/A, Problem

Much of the mixed H2/Lj optimization problem development presented in Section

4.2 also applies to the mixed 112/ 11 optimization problem. The purpose of this section is to

simply point out the differences between the two methods.

The system in Figure 4.1, where the inputs and outputs are now sequences,

represents the standard mixed H2/1, problem. The goal of 1-1/ 11 optimization is stated in

(4.1)-(4.3) and the individual H2 and tj problems can be expressed in terms of the state-

space systems given in (4.4) and (4.5).

The following assumptions are made on the state-space elements in (4.4) and (4.5)

using the definitions given in (2.61) and (2.62):

i) (A2, Bu2) is stabilizable and (Cr, A) is detectable

ii) RP, Rc >0
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iii) DzTC" = 0 and BwDyT =0

iv) (A1, B.1) is stabilizable and (Cyl, A1) is detectable

See Section 2.9 for the reasons for assumptions i)-iii). Assumption iv) is required to

ensure the 4, problem has a solution.

The controller state-space is given by (4.6), and the closed-loop state-space

equations for Tzw are given by (4.7). Unlike the continuous H2 problem, a finite 2-norm

for Tzw can be attained when Dzw is non-zero in the discrete H2 problem. Thus, a strictly

proper controller cannot be assumed in the mixed H2/91 optimization problem. Given this

fact, the state-space equations for the mixed H2/f1 problem are:

X2 = A 2X 2 + B w

z= Czx 2 +Dzw

l = Ax 1 +Brr

m= CmXi + Dmr, (5.1)

where

X2 = (5.2)
1Xk]

x = [ (5.3)
xk]

-A2+B,2DkCy2 BU2Ck (5.4)
A2 L BkCy2  Ak (

Al + BUlDkCyl BulCk (5.5)

A1 BkCYl Ak (

BW [Bw + Bu2DkDyw (5.6)Bw = BkDyw (56

Br ] B kDy (5.7)
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CZ [Cz + D_,DkCy 2 DZUCk] (5.8)

Cm [Cm + DmuDkCy1 DmuCk] (5.9)

DZ,, [DzD k Dyw +zw] (5.10)

Dmr [DmuD kD, +D,] (5.11)

The definitions in (4.18) are used to discuss solutions to the mixed H12/t problem, which

must satisfy the Kuhn-Tucker necessary conditions given in Section 4.2. An illustration

of a possible H2/11 solution curve is shown in Figure 4.2.

The H2/4 problem, like the HI2/L 1 problem, is solved numerically using a SQP

algorithm. The objective (f) and the constraints (g) are given by

f(c) = ;2 IT1w12
g1 (c) = ;i (1T. III - v)

g (c) = ;{max(I[Xi (A) 2)-1}. (5.12)

The only difference between the equations in (5.12) and their continuous equivalents in

(4.19) is in the stability constraint. Recall that a discrete system in the z-domain is stable if

and only if its closed-loop eigenvalues lie inside the open unit disk.

Modal form is also assumed for the controller, K, in the H2/11 optimization

problem, in order to minimize the number of design variables in c. A block-Jordan form

or fully populated state-space could be used to allow for repeated eigenvalues in the

controller.

In order to use the SQP algorithm to numerically solve the H2/11 problem, gradients

must be found for the objective function and each of the constraints. Analytical gradients

for the stability constraint can be easily derived from (4.35). Gradients for one- and two-

norms are presented in Sections 5.5 and 5.3, respectively.
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5.3. Gradients of the Two-Norm

Recall from Section 2.9 that the two-norm squared of Tz,, is given by

S= tDZwDT + CQCT], (5.13)

where Q is the positive semidefinite solution to the Lyapunov equation

A2QA T+BwBT =Q. (5.14)

If the constraint on Q in (5.14) is written in an equivalent form,

tr[(A 2QA2T +BwBTw - Q)X] = 0 for all X, (5.15)

then

W 2wlI:= tr[DwD~ w + QCT] ± tr[(ATQAT + _BwB - Q)X] for all X. (5.16)

To simplify the notation, let J equal the two-norm squared of Tw. Notice from (5.16)

that J is a function of the design variables and the matrices X and Q. However,

-X A2 QA +BwBW -Q=0. (5.17)

Further, it can be shown that

S= AT XA 2 +CCz -X, (5.18)0Q 2

which is a Lyapunov equation. Since X is arbitrary, let X be the positive semidefinite

solution to the Lyapunov equation

A2XA 2 + Z- x =0. (5.19)

With this choice of X, (5.18) is equal to zero. This choice of X will always exist since A 2

must be stable. The only remaining derivatives to be calculated are the partials of J with

respect to the design variables. If Q and X are given by (4.26) and (4.27), respectively,

then these derivatives are

-- = 2[XT2A2Q12 + XT B 2CkQ 22 + X 22 BkCy2Q12 + X 22AkQ 22
aAk (5.20)

X1T2 BU2DkCy2Ql 2]
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XT____ jX T QTT QIyC

aBk 2[X 2A 2Q1 1Cy 2 + X12B.212y2 + X 22 BkCy2 QllCT2+X A T T +_XT BwD T +X22BkD ,D T
22kQ2Cy2 w yw

±XT AC 
T + XT T

+X12B 2DkCy2QICy2 +1X2Bu2DkDywDyw] (5.21)

D8J T T T X
_ - 2[Du CzQ12 + DzuDzCkQ22 +Bu2 1nA 2Q12Ck

T xT XT

Bu2 XlIBU2CkQ 22 + Bu2 XI2 BkCy 2Q2 + Bu2X2AkQ22

+DT DT+ ýc 12 B2 12A
+DLDzDu Cy,2Q 12 + B u2XnBU2DkCY2 Ql2] (5.22)

DJ _2[DD 'w yw + u D •D yw yw zu ly2
T C CT T QT CT T T+DzuDzDk Cy2 Q 11Cy 2 +DZUDzuCkQ1 2Cy 2 +BuE2 XIA 2 Q 1 Cly2

T XCT T QT CT

±Bu 2XllBuEDk Cy2Q1 Cy2 +Bu 2 XllBu2 CkCy2 Q12 Cy2
+BT 2lB y2QCT2B T XA T T +BTX T

B EXlEBkCY2 Ql Cy 2 + Bu2 Xl 2 AkQ12Cy 2 + B 12X 1BwDyW

+BT2 XllBu 2 Dk D TwD +B T BD D T
yw (5.23)

These equations are much more complicated than the derivatives for the continuous time

case, because Dk • 0.

The complete method for finding the partial derivatives of J with respect to the

vectorized compensator, c, is as follows:

i) Solve the Lyapunov equations in (5.14) and (5.19) for Q and X, respectively

ii) Compute the partial derivatives in (5.20)-(5.23)

iii) Rearrange (5.20)-(5.23) to form the gradient with respect to the vector of

design variables, c, as a vector

•)J =I( •)J IT'"( oJ_) ( J • T -( J )T ( J T " J T
aj :T)T :IT)T a )T. a)T a)T

-ac LOAk ý ,Ak nk (,aBk) ,B ny aC) ,C).

aj )T ... (,DkaJ)T ]T (5.24)

The next section discusses a new numerical method of approximating the 11 norm of T,.
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5.4. Calculating the tj norm

The 11 norm of a discrete SISO system is given by

IITmr 1= CmAkBr +IDmrI. (5.25)
k=0

If A1 is stable, then A,' approaches zero as k approaches infinity, and (5.25) can be

approximated by truncating the infinite series at some index, N, which can be computed

from the eigenvalues of A1. The truncated series can then be evaluated on a computer

with a simple loop, where k is the loop index. With each pass through the loop, the

absolute value of CmAkBr is calculated and added to the cumulative sum of the previous

passes. The final sum is added to the absolute value of D.r to produce the one-norm of

T=. This approach is used in the MATLABTM one-norm calculation routine created by

Jacques for fixed-order, mixed-norm optimization ([JR94]). The method is extremely

reliable, but can be slow if N is large.

The one-norm calculation can be computed considerably faster, however, by taking

advantage of the built-in MATLABTM function, ltitr.m. This function rapidly calculates the

vector, (ABr)T, at each k. The resulting N x nr matrix can be multiplied by C. to

produce an N x 1 vector, where the kt' element equals CmAkBr. The absolute sum of

this vector can easily be calculated and added to the absolute value of Dr to produce the

one-norm of T,.

The 11 norm for MIMO systems is calculated from the maximum row sum of SISO

transfer functions. To perform this calculation using this author's method, a loop is

wrapped around the ltitr.m function to cycle through each column of B,.

Algorithms based on both methods were tested on a SUNTM SPARC 20 computer

to compare efficiencies. The benchmark problem was a SISO 12tJ order closed-loop

system with 2 exogenous inputs, 2 controlled outputs, and 20 design variables in the

compensator (51h order compensator). N was set to 5,000. The first method took 3.5

seconds to evaluate the one-norm and the second method took 0.95 seconds (all
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performance times refer to cpu time). The second method also calculated the sign of

CmAkBr for each column of Br and index k, which can be used to dramatically improve

the speed of the t1 gradient calculations. In some parts of the H2/t1 algorithm this

computation can be removed, and the resulting norm calculation routine is even faster.

For example, in Section 5.7, an N of 2 million is required to produce an accurate estimate

of the one-norm for the AFTI F-16 problem at H2 optimal. This computation was

completed in under 4 minutes on a SUNTM SPARC 20 computer.

5.5. Gradients of the One-Norm

The analytical gradients of the one-norm with respect to the design variables and

an improved method of calculating these gradients are discussed in this section. The

partial derivatives of the one-norm of Tr with respect to the closed-loop state-space can

be expressed as

8 IInr I [sgn(lC•k "1AkjTrj T jCT T Tk-j-1-Z sgn(C.Ak, B)Y,(A) CB (A,) I (5.26)
I k=O j=(5-2

IITi' L sgn(CmA Br)[(A ) CT] (5.27)
aBr k=O

aIIT'2 L - g(.AkB)BT( ~ (5.28)
aCm k=O

iT ill = sgn(D ). (5.29)
DDmr

From these expressions, the gradients with respect to the compensator state-space

matrices can be expressed as

aIITmri - -j]]Tm. I (5.30)

aA,,,j =I A1 I,5i,.-j
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nk n, ~n,, n,T /-alTmll'- • C~ [FaTmrl'] + • D [aIlm~ =1,aLe., 1 . n. /3 p q 1 8 r 1/ pJ (5.31)
c,, p=l q=1 L inr nl+p,q

.D 1 nr n B , + [. D .I (5.32)
p 1 Vj,q U1l ppn+q Y, I q 5.2

OIITJ[1 - ,B. lC rjq llIT~ll, 1 +X'B 1 DyjF [allTmrI,]
ci,j p=1L q 1  pq p=1 

q=1 'I I,]
F,•.- _aIT 1FIT=1B., % a_ T + ul, Dm,%.| • (3)

+DOm•ecjq pC" =1 q=1 L--m ~

+=1 1 Dm.~CIjq )Cm, p+ 11D . pý D Y'jq [)DmJq* (5.33)p=1 q=1 11 p,q l~

The partial of the one-norm of Tm with respect to c can be formed from the columns of

the matrices in (5.30)-(5.33) as described in Section 5.3.

Like the one-norm calculation, the infinite summations in (5.26)-(5.29) are

truncated at N, and can be calculated with a series of loops. This is the method used in

the one-norm gradient routines created by Jacques for fixed-order, mixed-norm

optimization ([JR94]). However, large N values in this gradient routine are more costly

in terms of computer time than in Jacques' one-norm calculation routine.

Computation time can be minimized by using some of the techniques presented in

Section 4.5 to compute the L, norm for continuous systems. If A1 is a non-defective

matrix, then partial of Ak with respect to any element of A, is given by

L- = [pk-]R =-AkR-+ R -A R-+ RAk (5.34)Daij aaij R akR1 aii aaii aaii

Expressions for most of the partial derivatives on the right side of (5.34) were given in

Section 4.5. The only new derivative to be calculated is the partial of Ak with respect to

aij, which is given by

ak _ aAý -aaij i= axi aaij 5.5
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Thus, the partial derivative of the one-norm with respect to A, can be found element-by-

element from

STmr1 N k

S- - sgn(CmA Br)Cm '1 Ba . (5.36)aAli~j k--0 Daij

Recall that the sign of CmA"Br for all k is known from the new method of doing

the one-norm calculation. Therefore, the only information required to evaluate (5.36) is

the n1 x n1 diagonal matrix, Ak, at each index k. However, since only the main diagonal

of this matrix changes, a 1 x nj vector of the diagonal elements at each k provides

sufficient information to reconstruct Ak. These vectors can be computed rapidly using

ltitr.m. The resulting N x n1 matrix only needs to be calculated once in the gradient

routine regardless of the number of inputs and outputs in the system. Further, once this

matrix is calculated, the remaining one-norm derivatives in (5.27)-(5.33) can be quickly

evaluated.

One-norm gradients for MIMO systems are calculated for each output by summing

the gradients of the individual SISO transfer functions between the output and the

separate inputs. As mention in Section 4.5, this approach ensures that continuous gradient

information is available regardless of where the maximum row sum occurs.

Both methods of calculating the one-norm gradients were tested on the benchmark

problem described in the last section. The first method took 28.2 hours to complete one 1

gradient calculation on a SUNTM SPARC 20 computer. The second method took 5.03

seconds. It should be noted that the first method works relatively fast for systems where

N is small. However, larger N values are required for systems with both fast and slow

dynamics. For example, the AFTI F-16 design problem presented in Section 5.7 required

N values of at least 5,000.

The new approach to the one-norm gradient calculation requires that the

eigenvalues of A, be distinct. If this condition is violated, the gradient routine switches to
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finite difference calculations based on the new approach of computing the 41 norm. While

less accurate than the old method of computing the gradients of the one-norm, the finite

difference calculations are still considerably faster.

5.6. Computer Implementation

The author's i1 norm and gradient routines were added to the fixed-order, mixed-

norm optimization algorithm created by Jacques ([JR94]). This algorithm is capable of

running several different types of discrete optimization problems with different SQP

routines. Section 5.7 demonstrates the H2/11 portion of the algorithm using the

MATLABTM SQP routine, constr.m.

5.7. H2/1t Design Example

The -•//1 optimization method is demonstrated on a discrete version of the H2/Lj

design problem presented in Section 4.7. The state-space matrices for the discrete F-16

plant are given in Appendix A. The discrete state-space matrices for the IH2 and 41 sub-

problems are shown in Appendix C.

5.7.1. H211, Results

A plot of the H2/11 solution curve for a 5th order compensator is shown in Figure

5.1. Values for several of the solution points are shown in Table 5.1. Point number 17

represents the discrete H2 optimal solution, which is not depicted in Figure 5.1. The

points in Table 5.1 are referred to as the discrete design points for the remainder of this

section.
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Figure 5. 1. F- 16 H2/41 solution curve

point # a V

1 0.44 2.24

4 0.33 2.60

7 0.25 3.00

11 0.23 3.40

14 0.22 3.80

17 0.14 46,672

Table 5.1. F- 16 solution points for H2/11 design
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Plots of the sensitivity and complementary sensitivity for the discrete design points

are shown in Figures 5.2 and 5.3.

20

vv decreasing

0--20-
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Figure 5.2. F-16 sensitivity from discrete design

10,,

vdecreasing

~10-

-15

-20 -6 10- , 1I -210 100 102

Frequency (radians/second)

Figure 5.3. F-16 complementary sensitivity from discrete design

The distinctively different curve in each plot corresponds to the I-2 solution.
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The vector gain and phase margins for the discrete design points are shown in

Table 5.2.

point # lower VGM (dB) upper VGM (dB) VPM (deg)

1 -11.2 4.73 42.4

4 -12.6 6.70 45.0

7 -9.80 9.73 39.5

11 -8.01 10.8 41.7

14 -7.61 9.97 39.9

17 -10.5 11.4 42.9

Table 5.2. F-16 vector gain and phase margins from discrete design

Notice that the stability margins do not consistently improve as v decreases, but do remain

acceptable for all the discrete design points.

The open-loop GK plot is shown in Figure 5.4

100

........... .....ii~iii ;;ii ii' i ......
................. ?i:i::::i:• ..

. ...............

50

- 6 -40 0 '10 10. 10. 10. 10.

Frequency (radians/second)

Figure 5.4. F-16 open-ioop GK from discrete design
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Notice that the mixed designs miss the performance and disturbance rejection

barrier. The sensor noise and unmodeled dynamics barrier is not depicted since digital

aliasing would cause it to be violated. An anti-aliasing filter (basically a low-pass filter)

can be added to the system to produce any amount of high frequency roll-off.

Figure 5.5 shows the F-16 responses, without noise, to a commanded ig step input

for the different designs. Notice that the mixed designs track with no steady-state error.

Step responses with noise for discrete design points 1, 7, 14 and 17 are shown in Figures

5.6-5.9. These plots demonstrate that tracking performance can be greatly improved

using mixed H2/I1 designs with very little increase of noise in the system response. High

frequency noise is not as prevalent in these plots as it was in the continuous simulations

due to the sampling of the discrete controller.

2
v decreasing

0.5

0

0

C05 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

Figure 5.5. F- 16 step responses without noise, from discrete design
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Figure 5.6. F-16 step response with noise, discrete design point 1
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Figure 5.7. F- 16 step response with noise, discrete design point 7
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Figure 5.8. F-16 step response with noise, discrete design point 14
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Figure 5.9. F-16 step response with noise, discrete design point 17
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Discrete design point 7 is chosen as the best mixed 112/g1 design based on stability

margins, loop shape and step responses. The control usage for this particular discrete

design point is shown in Figure 5.10. Discrete design point 7 is compared to the best

HI-IL1 results from Chapter 4 in the next section.

8
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4

S2

g o

-- 2-

-- 4

-8-

10

_0 0.5 1 1.5 2 2 5 3 3.5 4 4.5
Time (seconds)

Figure 5. 10. F- 16 control usage with noise, discrete design point 7

5.7.2. Comparing H21L, to H2/1,

It is impossible to pick an equivalent point from the mixed HAL solutions and the

mixed I-I/11 solutions for direct comparison. However, some general conclusions can be

drawn about the two methods. To illustrate the points in this section, the AFTI F-16 is

tested with the best I-IA, controller discretized at 30Hz using a ZOH. The step response

and control usage are shown in Figures 5. 11 and 5.12, respectively.
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Figure 5.11. F-16 step response with noise, discretized controller from H-/L1 design point
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Figure 5.12. F-16 control usage with noise, discretized controller from HA,/L1 design

point 15
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Notice that the discretized controller does not produce the same level of

performance as it did prior to discretization (see Figures 4.13 and 4.15). The system with

the discretized controller has larger responses to noise.

The responses in Figures 5.11 and 5.12 are similar to the responses for the best

H2/I1 controller (Figures 5.7 and 5.10) in terms of peak values, peak times and settling

times. This suggests that comparable designs could be done with either method.

However, the HA/L1 controller is 6th order and the H2/11 controller is 5th order. If

compensator orders are chosen to be the size of the H2 plant in either design, then H-/L1

optimization will always produce a higher order compensator. This is due to the

additional dynamics that must added to the continuous design to represent the time delay

that will occur when the controller is discretized (see Appendix A).

The Pad6 approximations used to represent the time delay in the H-L 1 design can

cause additional problems. First, they make the continuous system nonminimum phase.

This can be seen in the HILA step responses in Figure 4.10, where all initially respond in

the opposite direction of the commanded normal acceleration. Since the actual aircraft

model is minimum phase without the Pad6 approximations, these plots can be misleading.

Second, large order Pad6 approximations are required to accurately represent a time

delay, which can lead to higher order controllers in an HA,/L1 design. If a lower order Pad6

approximation is used, care must taken to discretize the continuous controller at a slightly

faster period than the delay time represented by the approximation. Discretizing the

controller at a period equal to the delay time represented by the approximation can lead to

an unstable closed-loop system. In light of the issues covered above, it can be concluded

that digital controller designs are better accomplished with H2/1, optimization.

5.8. Chapter Summary

This chapter presented a numerical approach to H2/t, optimization for discrete

systems. New and efficient methods of approximating the one-norm and its gradients
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were also presented. The I-2/t, algorithm was tested on a realistic problem which showed

the benefits of this mixed-norm design approach. Comparisons of systems with discrete

H-21 controllers and discretized HjL1 controllers showed that adequate digital controllers

are better obtained with HJ/t optimization. Chapter 6 summarizes the results in this thesis

and presents recommendations for further research.
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VI. Conclusions and Recommendations

6.1. Summary

This thesis explored the use of t, optimization for flight controller designs.

Methods of using 4, optimization were developed to handle "hard" magnitude constraints,

such as control deflection limitations, control rate limitations and overshoot restrictions

which are difficult to incorporate into other optimization methods. These constraints were

added to the standard free-order f, optimization problem and demonstrated on a realistic

flight control design with mixed success. The 41 optimization algorithm worked well for

small systems with one or two constraints, but had difficulty handling very large systems

of equations with multiple constraints. The constrained 4 optimization problem also had

the tendency to produce compensators with unreasonably large orders. To counter this

problem, two model matching techniques were presented based on one block systems.

These one block problems were solved quickly and accurately with the current 91

optimization software, and acceptable tracking results were produced for SISO and

MIMO systems with controller orders less than or equal to the weighted plant.

H2 optimization was mixed with 4 optimization to produce systems with good

noise performance and tracking characteristics. This method was done first in continuous

time with fixed-order H2/Lj optimization. New numerical approaches of calculating the L,

norm and its gradient were developed and incorporated into the HI-/L algorithm which

avoid many of the complications associated with previous methods dependent on the

forward Euler transformation. The HAL1 algorithm was tested on a SISO system and the

results showed the benefits of a mixed design over a pure -2 or L1 design. This method

had the added benefit that the compensator order is completely chosen by the designer.

Fixed-order H2/4, optimization was then used to design discrete systems. New

numerical approaches of calculating the 41 norm and its gradient were presented which

offered dramatic improvements in terms of computational efficiency, and essentially
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extended the utility of the existing n 2/t1 algorithm to a wider class of problems. The H2/11

algorithm was tested on a realistic SISO system that could not have been solved prior to

the improvement in the algorithm. The results showed that a good blend of tracking and

noise performance was easy to obtain with mixed 112/f1 optimization. Like the HIL 1

method, the size of the controller in H2/11 optimization is chosen by the designer.

Two different methods of digital controller designs were examined in the context

of HA/L1 optimization and H2/I, optimization. The first method involved completing a

satisfactory H2/L1 design and discretizing the resulting controller. In the second method,

the discrete controller was obtained directly with H2/11 optimization. Comparisons of the

two approaches showed that comparable designs could be done with either method, but

the HI-2/ approach would generally produce a smaller order controller due to the additional

dynamics required in the H ,L1 problem to approximate a time delay. Since the H2 /t1

algorithm is also quicker and more accurate than the HA,/L1 algorithm, it can be concluded

that fixed-order digital controller design is best done with I-2/I, optimization.

Of all the methods presented in this thesis, fixed-order H2/11 optimization offers the

most promise for successful designs of small order digital flight controllers that produce

systems with good noise and tracking performance. However, research still needs to be

done on free-order 112/t, optimization to determine the amount of performance lost in

fixed-order H-2/1 optimization by setting the size of the controller a priori. Additional

research topics are discussed in the next section.

6.2. Recommendations for Future Research

While this thesis has contributed to a better understanding of how tj and mixed

12/41 optimization can be applied, more research needs to be done in these two areas.

First, the 4j optimization algorithm needs to be improved to allow it to handle large

systems with multiple constraints. This could probably be accomplished with an improved

linear programming algorithm and appropriate scaling of the design variables. Additional
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improvements are required to increase the speed of the 11 algorithm, and to simplify the

way constraints are augmented to a standard 91 design problem. Further research in 11

frequency constraints (not discussed in this thesis) should also be conducted.

Second, many of the "hard" constraints incorporated into 1, optimization should be

incorporated into H2/11 optimization. This should not be difficult to do given the present

structure of the H2II, algorithm. The added capabilities, however, will greatly improve the

utility of the t, portion of the H2/-1 algorithm.

Third, the H2Ai algorithm requires several modifications before it can be reliably

used on wide range of problems. Research needs to be done to allow the analytical 9,

gradients to handle systems with repeated eigenvalues. The current version of the

software relies on finite difference calculations in this case. Repeated eigenvalues are also

not permitted in the resulting H2/11 controller. This problem could be fixed by allowing a

Jordan form for the controller instead of restricting it to modal form. Further, scaling

problems in first and second order derivatives in the MATLABTM SQP routine, constr.m,

restrict the ability of the Hl2/1 algorithm to quickly generate a complete design curve (such

as the one depicted in Figure 5.1). While the IMSLTM SQP routine alleviates some of

these problems, it is commercial software and thus can not be modified to suit specific

requirements.

Finally, further research is needed on mixed H2/If/H, optimization for discrete

systems. The H_ portion of the problem could be used to improve stability margins with

sensitivity minimization. This capability was not possible with 91 sensitivity minimization.

The 91 portion of the problem could then be used to handle the "hard" magnitude

constraints of the system. Work is currently underway in this area.
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Appendix A. SISO AFTI F-16 Model

The AFTI F-16 model for normal acceleration command following is shown in

Figure A. 1. The continuous system consists of a 4 state model of the aircraft's

longitudinal dynamics (WP), a first order actuator (W.) and a first order Pad6

approximation of a 0.05 second time delay (W). The time delay model is not required in

the discrete version of the system.

W.

w w

Wp
S............................................ 

!

Figure A. 1. F- 16 model block diagram

The four states in the longitudinal model are forward speed (u in ft/sec), angle of

attack (a in radians), pitch angle (0 in radians), and pitch rate (q in radians/sec). The

input to Wp is the stabilator deflection (8, in radians) and the output is the normal

acceleration (n, in g's). WP is given by[ -8.000e-5 -1.491e+0 -1.300e-3 9.960e-la -1.880e-1

0.000e +0 0.000e +0 0.000e +0 1.000e +0//0 0.000e +0

-3.600e- 4 9.753e + 0 2.900e- 4 -9.600e - 1-jLq L-1.904e + 1
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lull
n7= [1.500e- 3 35264e + 1 2.720e- 2 -3.340e - 1 + [-4.366e + 0]8e.

-q_

The input to Wa is the commanded stabilator deflection (85c in radians) and the

output is the stabilator deflection. Wa is given by

kXa = [-2.000e + l]Xa + [2.000e + li8a

8e = [1.000e +O]xa +[0.000e]+ 0]e.

The input to Wt is normal acceleration and the output is the delayed normal

acceleration (nzd in g's ). Wt is given by

kt = [-4.000e + 1]xt + [1.000e + O]nz

nzd = [8.000e + 1]xt + [-1.000e + O]nz.

The continuous aircraft plant, Go, equals WaWpWt. Gc is given by

Gc =LA, Bc]

where

-1.485e - 2 3.738e + 1 -3.220e + 1 -1.794e + 1 2.140e- 3 0.000e + 0

-8.000e- 5 -1.49le + 0 -1.300e - 3 9.960e- 1 -1.880e - 1 O.000e + 0

0.000e + 0 0.000e + 0 0.000e + 0 1.000e + 0 0.000e + 0 0.000e + 0
-3.600e - 4 9.753e + 0 2.900e - 4 -9.600e - 1 -1.904e + 1 0.000e + 0

0.000e + 0 0.000e + 0 0.000e + 0 0.000e + 0 -2.000e + 1 0.000e + 0

1.500e- 3 3.526e + 1 2.720e - 2 -3.340e - 1 -4.366e + 0 -4.000e + 0
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0.000e + 0

0.000e + 0

0.000e + 0
C, 0.000e + 0

2.000e + 1

0.OO00e +0O

Cr =[-1-500e -3 -3.526e +1 -2.720e --2 3.340e-l1 4.366e +0 8.000e +1]

D= [0.000e + 0] .

The discrete aircraft plant, Gd, equals WaWP discretized at 30Hz using a ZOH. Gd

is given by

Gd=[Ad B:]

where

9.995e - 1 l.121e + 0 -l.073e+ 0 -5.870e - 1 1.489e - 1

-2.800e - 6 9.567e - 1 -4.072e - 5 3.193e - 2 -1.276e - 2

Ad =-2.028e - 7 5.278e - 3 1.000e + 0 3.286e - 2 -8.494e - 3

-1.225e - 5 3.1 27e - 1 9.198e - 6 9.737e - 1 -4.568e - 1

0.000e +0 0.000e +0 0.000e +0 0.000e +0 5.134e -l1

3.494e - 2

-3.623e - 3

Bd =-1.992e -3

-1.700e - 1

4.866e - 1

Cd =[1.500e -3 3.526e +1 2.720e -2 -3.340e -1 -4.366e +0]

Dd= [0.000e + 0].

The truth model used in simulations includes a Von Karman wind model (W,) for

the wind noise, and a high-pass filter (Win) for the measurement noise. W,, is given by
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w --[-6.700e +O]x, + [1.870e- 3]w1

1 =[1.000e+O]x,.

where w1 is a unit strength white Gaussian noise, and ýj is the wind noise. Wm is given by

Xm -- [-1.000e + 1]Xm + [4.000e - 4]W+2

ý2 = [1.000e + 0]xm + [4.000e- 4]w 2.

where w2 is a unit strength white Gaussian noise, and 42 is the measurement noise. The

wind noise enters the aircraft plant as an angle of attack perturbation. F, in Figure A. 1,

equals the second column of the A matrix in the longitudinal model.
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Appendix B. MIMO Missile Model

The 3 input, 3 output missile model (taken from [Bro9l] and [Luk93]) for normal

and lateral acceleration command following is shown in Figure B.1. The system consists

of a 5 state model of the missile's lateral and longitudinal dynamics (WP), and a 3 state

model of the actuator dynamics (Wa).

K W" W

Figure B. 1. Missile model block diagram

The 5 states in WP are angle of attack (cc in radians), sideslip angle (P3 in radians),

roll rate (p radians/sec), pitch rate (q radians/sec), and yaw rate (r radians/sec). The inputs

to WP are the control fin deflections (8p, 8q, 8, in radians) and the outputs are the roll rate,

lateral acceleration (ny in ft/sec2), and normal acceleration (n. in ft/sec2). WP is given by

"at -9.844e - 1 -9.234e - 2 0.000e + 0 1.000e + 0 0.000e + 0 a

f3 -9.234e - 2 -9.844e- 1 0.000e + 0 0.000e + 0 -1.000e + 0 P3

1 = -2.674e + 2 2.674e + 2 -1-595e + 0 0.000e + 0 0.000e + 0 p

l -1.946e + 2 -6.967e- 1 0.000e + 0 -1550e + 0 0.000e + 0 q

i 6.967e - 1 1.946e + 2 0.000e + 0 0.000e + 0 -1550e + 0 r

-2.186e - 3 3.261e- 1 -1.135e- 3

-6.189e-4 1.566e-3 -3.188e-1 8P

+ 1.140e + 4 -6550e + 1 -1.070e + 1 8q

-2.736e + 0 3.211e+ 2 1.451e- 1 8,

-3.045e - 1 1.410e+0 3.149e + 2
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1 0.oooe +0 o.oooe +0 l.OOOe +0 0.o00e +0 0.o00e +0

ny =-2.062e + 2 -2.198e + 3 0.O00e +0 0.O00e + 0 O.O00e + p
n L-2.198e + 3 -2.062e + 2 0.o00e +0 0.o00e + 0 q.000e + q

r

0.000e +0 0.O00e +0 0.O00e + 0O

0.O00e +0 0.O00e +0 0.O00e + 0 [6P

+ 0.000e + 0 0.000e + 0 0.000e + 0[5q

-1.368e +0 3.496e +0 -7.119e + 2 [8,

-4.876e + 0 7.282e + 2 -2535e + 0

The inputs to W. are the commanded fin deflections (PC, 8qC, 8 in radians) and

the outputs are the actual fin deflections. Wa is given by

. 1 -4.oooe + 0oooe +0 0.00e+0e + 1
'(a= 0.000e+0 -4.000e+2 0.00e+00+ Xa 2

La3  [ 0.000e + 0 0.000e + 0 -4.000e + 2j[Xa 3 I
[1.O00e +0 0.O00e +0 0.O00e + 01[PC1

+ 0.O00e + 0 1.000e +0 0.O00e + 0o//•
O.O00e +0 0.O00e + 0 1.000e + OjL0- j

[ 1F4.000e + 2 0.000e + 0 0.OO0e +OlFxa,
q _= 0.000e+0 4.000e+2 0.000e+0 x, 2

+. 0.000e + 0 0.000e + 0 4.000e + 2Jx 3 j

.000e+0 0.000e+0 0.000e+0_ _/8
LO.OO.e+ O o+ ~oe+ o l a rc

The discrete aircraft plant, Gd, equals WaWp discretized at 100Hz using a ZOH. Gd

is given by

F Ad 
Bd

G=LCd Ddj
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where

1.832e- 2 0.000e + 0 0.000e + 0 0.000e + 0

0.000e + 0 1.832e- 2 0.000e + 0 0.000e + 0

0.000e + 0 0.000e + 0 1.832e- 2 0.000e + 0

-2.250e- 2 2.708e + 0 1.12le- 3 9.806e- 1
Ad 1.679e- 3 -1.015e-2 -2.655e+0 -9.428e-4

1.105e + 4 -6.682e + 1 -1.360e + 1 -2.632e + 0
-2.634e + 0 3.09 le + 2 1.492e - 1 -1.916e + 0

-2.945e - 1 1.369e + 0 3.032e + 2 5.950e - 3

0.000e + 0 0.000e + 0 0.000e + 0 0.000e + 0-

0.000e + 0 0.000e + 0 0.000e + 0 0.000e + 0
0.000e + 0 0.000e + 0 0.000e + 0 0.000e + 0

-9.428e - 4 0.000e + 0 9.842e- 3 4.663e - 6

9.806e- 1 0.000e + 0 -4.663e- 6 -9.842e - 3
2.632e + 0 9.842e- 1 -1.317e- 2 -1.317e- 2

-5.950e + 0 0.000e + 0 9.750e - 1 3.130e - 5
1.916e + 0 0.000e + 0 3.130e- 5 9.750e- 1

2.4542e - 3 0.000e + 0 0.000e + 0-

0.000e + 0 2.4542e - 3 0.000e + 0

0.000e + 0 0.000e + 0 2.4542e - 3
-1.009e - 4 1.236e - 2 -5.034e - 7

= 4.790e- 6 -3.539e - 5 -1.21 le- 2

8.54 le + 1 -5.013e - 1 -9.025e - 2

-2.045e - 2 2.400e + 0 1.1 17e - 3
-2.282e - 3 1.058e - 2 2.354e + 0
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F 0.000e + 0 0.OOe + 0 0.000e + 0 0.000e + 0 ..

Cd = -5.474e + 2 1.398e + 3 -2.848e + 5 -2.062e + 2

!-1.950e+3 2.913e+5 -1.014e+ 3 -2.1979e+ 3

0.000e + 0 1.000e + 0 0.000e + 0 0.000e + 0

-2.198e + 3 0.000e + 0 0.000e + 0 0.000e + 0

-2.062e + 2 0.000e + 0 0.000e + 0 0.000e + 0-

0.O00e +0 0.O00e +0 0.O00e + 0-

0.000e + 0 0.000e + 0 0.000e + 0

Dd = 0.000e + 0 0.000e + 0 0.000e + 0

0.000e + 0 0.000e + 0 0.000e + 0

0.000e + 0 0.000e + 0 0.000e + 0
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Appendix C. Matrices for 1121L, and H2/f1 Subproblems

The matrices for the continuous H2 problem are:

-1.485e - 2 3.738e +1I -3.220e + 1 -1.794e + 1 2.140e - 3 0.000e + 0

-8.000e -5 -1.491e+O -1.300e -3 9.960e -1 -1.880e -1 0.000e+ 0

0.000e + 0 0.000e + 0 0.000e + 0 1.000e + 0 0.000e + 0 0.000e + 0
A2 -3.600e - 4 9.753e + 0 2.900e - 4 -9.600e - 1 -1.904e + 1 0.000e + 0

0.000e + 0 0.000e + 0 0.000e + 0 0.000e + 0 -2.000e + 1 0.000e + 0

1.500e - 3 3.5 26e +1I 2.720e - 2 -3.340e -1I -4.3 66e + 0 -4.000e +1-

8.3 59e - 1 0.000e + 0 0.000e + 0

-3.3 34e - 2 0.000e + 0 0.000e + 0

0.000e + 0 0.000e + 0 0.000e + 0
Bw 2.181le -1 0.000e +0 B.2=- 0.000e+ 0

0.000e + 0 0.000e + 0 2.000e + 1

LO.000e + 0 0.000e +0O 0.OO00e +0O

C F -1.500e - 3 -3.526e +1I -2.720e - 2 3.340e -1I 4.366e + 0 8.000e + 11
= 0.000e + 0 0.000e + 0 0.000e + 0 0.000e + 0 0.000e + 0 0.000e + 0J

C,= [ -1.500e - 3 -3-526e + 1 -2.720e - 2 3.340e -1I 4.366e + 0 8.000e + 1]

L_ 0.00e + 0 0.000e +01 FO.=O[O00e + 01
-[0.000e +0 0.000e+O -0L 1.000e +1]

D yw= [0.000e + 0 4.000e - 3] D Y,= [0.000e + 0]
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The matrices for the L1 problem are

-1.485e - 2 3.738e + 1 -3.220e + 1

-8.000e- 5 -1.491e + 0 -1.300e- 3

0.000e + 0 0.000e + 0 0.000e +0 ...

A 1 - -3.600e- 4 9.753e + 0 2.900e- 4

0.000e + 0 0.000e + 0 0.000e +0 ...

1.500e - 3 3.526e + 1 2.720e -2 ...

-1.500e- 3 -3-526e + 1 -2.720e- 2 ...
-1.794e + 1 2.140e - 3 0.000e + 0 0.000e + 0

9.960e - 1 -1.880e - 1 0.000e + 0 0.000e + 0

1.000e + 0 0.000e + 0 0.000e + 0 0.000e + 0

-9.600e - 1 -1.904e + 1 0.000e + 0 0.000e + 0

0.000e + 0 -2.000e + 1 0.000e + 0 0.000e + 0

-3.340e - 1 -4.366e + 0 -4.000e + 1 0.000e + 0

3.340e - 1 4.366e + 0 8.000e + 1 -1.000e - 4

"0.000e + 0" 0.000e +0

0.000e + 0 0.000e + 0

0.000e + 0 0.000e + 0

B= 0.000e + 0 B,1 = 0.000e + 0

0.000e + 0 2.000e + 1

0.000e + 0 0.000e + 0
1.000e + 0 0.000e + 0

Cm = [-1500e-3 -3.526e +1 -2.720e -2

3.340e-1 4.366e + 0 8.000e +1 1.000e +1]

Cl= [-1500e-3 -3526e + 1 -2.720e- 2

3.340e- 1 4.366e + 0 8.000e + 1 0.000e + 0]

D, = [1.000e+0] Dmu = [0.000e+0]

D y = [1.000e +0] D y = [0.000e +O0]
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The state-space matrices for the discrete H~2 problem are

9.995 le -1I 1.121e + 0 -1.073e + 0 -5.870e -1I 1.489e - 1

-2.800e - 6 9.567e -1I -4.072e - 5 3.1 93e - 2 -1.276e - 2

A2 =-2.028e -7 5.278e - 3 1.000e + 0 3.286e - 2 -8.494e - 3

-1.225e - 5 3.127e - 1 9.198e - 6 9.737e - 1 -4.568e - 1

0.000e + 0 0.000e + 0 0.000e + 0 0.000e + 0 0.000e +0-

2.506e - 2 0.000e + 0 3.494e - 2

-9.686e - 4 0.000e + 0 -3.623e - 3

B,,= 1.1 80e -4 0.000e+O0 B. 2 =-1.992e -3

6.991le - 3 0.000e + 0 -1.699e - 1

0.000e + 0 0.000e + 0- 4.865e -1_

L =-1.500e -3 -3.564e +1 -2.720e -2 3.340e - 1 4.366e +01
0 .000e+O0 0.000e+O0 0.000e+O0 0.000e+O0 0.000e +0J

y= [-1.500e -3 -3.564e +1 -2.720e - 2 3.340e -1I 4.366e + 0]

[ 0.000e + 0 0.OO0e + 01D [0.000e + 01
Lo.000e+o0 0.000e +j0L 1.oooe + 11

D Y= [0.000e + 0 4.000e - 3] = , [0.000e + 0]
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The matrices for the 4, problem are

9.995 le- 1 1.121e+O -1.073e + 0 -5.870e- 1 1.489e- 1 0.000e + 0-

-2.800e- 6 9567e- 1 -4.072e- 5 3.193e- 2 -1.276e- 2 0.000e + 0

-2.028e- 7 5.278e - 3 1.000e + 0 3.286e- 2 -8.494e - 3 0.000e + 0
A, -1.225e - 5 3.127e - 1 9.198e - 6 9.737e- 1 -4.568e - 1 0.000e + 0

0.000e + 0 0.000e + 0 0.000e + 0 0.000e + 0 5.134e - 1 0.000e + 0

-4.805e- 5 -1.147e + 0 -8.555e - 4 -8.030e - 3 1.098e- 1 1.000e + 0

0.000e + 0 3.494e - 2-

0.000e + 0 -3.623e- 3

0.000e + 0 -1.992e- 3Br =Bu=0.000e + 0 -1.699e - 1

0.000e + 0 4.865e - 1

3.333e - 2 3.994e - 2

Cm=[-1.500e-3 -3.564e+1 -2.720e-2 3.340e-1 4.366e+0 1.000e + 1]

C= [-1.500e- 3 -3.564e + 1 -2.720e - 2 3.340e - 1 4.366e + 0 0.000e + 0]

D , = [1.000e + 0] Dmu = [0.000e + 0]

D = [1.000e+0] D = [0.000e+0]
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