
ANALYSIS OF INSTABILITY GROWTH AND
COLLISIONLESS RELAXATION IN THERMIONIC

Cl CONVERTERS USING I-D PIC SIMULATIONS

THESIS

CDC> Bret B. Kreh, Lieutenant, USAF

CNJ AFIT/GAP/EN P/94 D-06

&ppaOvd fm Pw" I~S%9

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio



AFIT/GAP/ENP/94D-06

ANALYSIS OF INSTABILITY GROWTH AND
COLLISIONLESS RELAXATION IN THERMIONIC

CONVERTERS USING 1-D PIC SIMULATIONS

THESIS

Bret B. Kreh, Lieutenant, USAF

AFIT/GAP/ENP/94D-06

Approved for public release; distribution unlimited



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government

Accession For

NTIS GRAMI
DTIC TAB 0
Unannounced 5
JIAStiflCatio2

By

Dist.4utrLon/___

Availability Coes

Avail and/or

Dist speolal,1! J



AFIT/GAP/ENP/94D-06

ANALYSIS OF INSTABILITY GROWTH AND COLLISIONLESS RELAXATION

IN THERMIONIC CONVERTERS USING l-D PIC SIMULATIONS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Bret B. Kreh, B.S.

Lieutenant, USAF

December 1994

Approved for public release; distribution unlimited



Preface

Thermionic converters are a reliable and promising source of power for space-

based systems. If these devices are to be used in the future, we must understand how they

work and why they behave the way they do. Without a detailed understanding of the

processes in the devices, there can be no true optimization.

In an effort to expand this knowledge, I endeavored to explore the rate of

collisionless relaxation in determining the operating characteristics of theses devices. I

was able to show that these phenomena, manifested in the form of velocity space

instabilities, grow fast enough in a simplified system to be an important factor and

competitive with collisional effects. If these instabilities are to be better quantified,

parameterized, and geometric limitations incorporated, more work must be done.

I would like to acknowledge the help and guidance provided to me by my advisor,

Dr. Bailey. His willingness to help me understand the problem, although it sometimes

meant staying late, is a credit to him. I am also grateful to Capt. Nichols for his patience

in answering my questions and providing help with the simulation code, even as he was

working on his dissertation.

Finally, I would like to thank all my friends in the Physics department for putting

up with my frustrated ramblings. I am grateful to all who lent a sympathetic ear to my

complaints. I wish the best of luck to them all in their futuie endeavors.
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Abstract

This work investigates the role that the beam-plasma instability may play in a

thermionic converter. The traditional assumption of collisionally dominated relaxation is

questioned, and the beam-plasma instability is proposed as a possible dominant relaxation

mechanism. Theory is developed to describe the beam-plasma instability in the cold-

plasma approximation, and the theory is tested with two common Particle-in-Cell (PIC)

simulation codes.

The theory is first confirmed using an unbounded plasma PIC simulation

employing periodic boundary conditions, ES. The theoretically predicted growth rates

are on the order of the plasma frequencies, and ES 1 simulations verify these predictions

within the order of 1%. For typical conditions encountered in thermionic converters, the

resulting growth period is on the order of 7xl0-11 seconds.

The bounded plasma simulation PDPl was used to evaluate the influence of finite

geometry and the electrode boundaries. For this bounded plasma, a two-stream

interaction was supported and resulted in nearly complete thermalization in approximately

5x10 -10 seconds. Since the electron-electron collision rate of 109 Hz and the electron

atom collision rate of 107 Hz are significantly slower than the rate of development of these

instabilities, the instabilities appear to be an important relaxation mechanism.
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ANALYSIS OF INSTABILITY GROWTH AND COLLISIONLESS RELAXATION IN
THERMIONIC CONVERTERS USING 1-D PIC SIMULATIONS

I. Introduction

As we continue to push into space, the need for compact and lightweight power

sources becomes ever more pressing. Devices that convert heat to electrical energy by

means of thermionic emission have been proposed to fill this need (9:94). Though by no

means the only reason to explore the physics of thermionic devices, such an application

raises an interest in the behavior and optimization of this power conversion method.

With the increased interest in thermionic devices comes the need to understand the

mechanisms of their operation. Numerical models have been developed, but fall short of

predicting some important details of device behavior. Improving the predictive

capabilities of the models will enhance the understanding of the devices, and allow for

greatly improved designs.

With this goal in mind, this work is a study of the plasma dynamics in thermionic

converters. The focus is on interactions which may play an important role in the behavior

of the device at the optimum power point. Specifically, the beam-plasma instability is

investigated as a possible major contributor to the thermalization of the injection stream in

a converter, and hence a determining factor in device characterization. The plasma fluid

equations are used to discuss, analyze, and establish instability growth rates for conditions

representative of the saturated and obstructed regimes of a thermionic converter. The

analytical growth rates are compared to those observed in computer simulation

experiments using ES 1, electrostatic 1-dimensional code, a one-dimensional particle-in-
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cell (PIC) code with periodic boundary conditions (14:1-20). PDP1, plasma device planar

1-dimensional bounded electrostatic code, is used to investigate the effects of bounding

the plasma (15:1-31). These results are summarized and interpreted in terms of existing

conditions in the ignited mode of a thermionic converter.

Chapter II will establish the background for this research project, providing a brief

description of thermionic converters. The behavior of a plasma in these devices is

explored. Chapter III contains a derivation of the equations describing the instabilities

considered in this work. In Chapter IV, the PIC approach is described, along with an

overview of the ESI and PDP1 codes. PIC simulations are then used to verify the

analytically established instability growth rates of Chapter III. In Chapter V, the

implications of these equations are explored for a real device. The growth rates for the

instabilities are compared to the collision rates, and the relative importance is discussed.

Finally, some recommendations for further study are proposed.
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IT Background

Thermionic converters are power conversion devices. They convert thermal

energy to electrical energy by means of thermionic emission. One of the advantages of

thermionic converters is that they can operate at relatively high temperatures on both the

cathode and the anode (1:4). In the space environment, radiative cooling is the only

method of heat rejection available, and the radiated power per unit area is proportional to

T4. Consequently, as the temperature of the radiator increases, the area needed to radiate

the same amount of power is drastically reduced. As the area is reduced, the weight of the

system can be reduced. Given the high temperature operating characteristics of

thermionic converters, thermionic based power systems can be made smaller and lighter

than other power systems.

Thermionic converters consist of a cathode (or emitter),with a work function pc,

anode (or collector), with a work function OA, and an external circuit as seen in Figure 1.

The cathode is heated to a high temperature, typically 1700 K, while the anode, a short

External circuit +V load

dp¢ Vacuum or Plasma )A

Cathode Anode
T1  T > T2  T2

Figure 1: Thermionic Converter Configuration

distance away, is kept at a lower temperature, in the range of 1000 K. The electrons

emitted from the cathode have the potential energy equivalent to the work function of the

cathode, typically made of tungsten with a work function of around 5 eV (1:34). Since
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the anode typically has a lower work function than the cathode, there is a net accelerating

potential for the electrons as shown in Figure 2 (10:7). In order to extract the power from

Distance

anode
work

Potential function 4A)c A
cathode

work load
function voltage

Figure 2: Potential for a Thermionic Converter
with an External Load.

the converter, a load is placed in the external circuit. The voltage developed across this

load will be referred to as the load voltage.

To understand the behavior of thermionic devices, it is easiest to start with the

concept of the ideal diode. In the ideal diode, so long as the sum of the load voltage and

the anode work function does not exceed that of the cathode work function, there is

nothing to prevent all of the electrons emitted from crossing the gap. The current across

the device is therefore equal to the cathode emission current given by Richardson's

equation (8:148):

= -7mekB 2q2. eqePc kT (1)

where kB is Boltzmann's constant, h is Planck's constant, 4)c is the cathode work function,

T is the cathode temperature, and me and qe are the electron charge and mass respectively.

Because this current depends only on the temperature and work function of the cathode, it

remains constant for all voltages satisfying the restriction: Vload < k -  A.

When the sum of the anode work function and the load voltage does exceed the

cathode work function, the electrons must lose kinetic energy to cross the gap. The

number crossing the gap and therefore contributing to the current depends on the form of
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the electron distribution function upon emission. In a thermionic device, the emitted

electrons can be approximately characterized by a half-Maxwellian distribution with a

temperature equal to that of the cathode (4:6). This means that as the load voltage is

increased beyond the difference between the cathode and anode work functions, the

number of electrons with sufficient kinetic energy to cross the gap decreases

exponentially, and thus the current across the device does as well.

Reality is not as simple as the ideal diode. When the space between the anode and

the cathode is in vacuum, the emitted electrons, in the process of crossing the

interelectrode gap, form a space charge which impedes the current flow. To minimize this

effect, the electrode separation can be made very small or, alternatively, the space can be

filled with a positive ion source, neutralizing the space charge. If the space charge effect

is to be minimized by changing the interelectrode space, consistent with the Langmuir-

Childs equation, the spacing must be on the order of a few microns. Since manufacturing

and maintaining at tolerance a spacing this narrow between two large, heated surfaces is

very difficult, the most commonly used converters use a plasma to neutralize the space

charge (1:5-6).

Ionization of a gas, introduced into the interelectrode space provides a positive ion

source to help counter the negative space charge from the emitted electrons. Cesium is

most commonly used because of its low ionization potential (1:6). In a plasma diode,

there are two mechanisms for ionization: surface and volume ionization. The work

function of the cathode is higher than the ionization potential of cesium, and thus when an

atom contacts the hot cathode, it is ionized. This is known as surface ionization. Volume

ionization proceeds via electron impact in the bulk region and dominates at the high

plasma densities and temperatures. Because cesium has a low ionization potential, the

threshold for dominance of volumetric ionization is lower in cesium than it is for other

gases. Therefore, volume ionization onsets at lower energies for cesium than for other

gases in a thermionic device.
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Neutralizing the space charge is not the only benefit cesium provides in a

thermionic device. Cesium also bonds to the surface of the cathode and lowers the

cathode's effective work function, increasing the emission current (1:11,30-33). Thus the

addition of cesium into the device helps to increase the current both by neutralizing the

space charge and by increasing the emission current.

With the addition of the plasma, however, the device becomes more difficult to

characterize. For a cesium diode, there are two modes of operation: unignited or

diffusion mode, and the ignited mode. The ignited mode can be divided into two regimes,

saturated and obstructed, with the boundary identified as the transition point (Figure 3).

First, a quick overview of these regimes will be given, with a more detailed description to

be given later.

J, am p/cm"2

Ideal Diode

Saturated
Transition

Ignited Mod Ignition

Unignit d (Diffusion) mode

%ad volts Vload +A> 
0

Figure 3: J-V curves showing the modes of operation for a
plasma diode(load voltage increasing to the left) (11:1194)
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If the device is operated with a fairly high load voltage, it will be in the unignited

mode, as depicted in the lower curve of Figure 3. The unignited, or diffusion, mode has a

very low current, typically on the order of 10 mA/cm2, which remains relatively constant

with voltage. However, at a high enough load voltage, the electrons emitted form the

cathode are prevented form crossing the device, and the current is zero. Throughout the

remaining range of operating voltages the current is virtually unaffected.

When the load voltage is reduced below the ignition point, which may require an

applied voltage, there is an abrupt jump in the amount of current flowing, as identified by

the vertical arrow in Figure 3. The new, high current mode is the ignited mode. The high

current regime existing at relatively low load voltages in the ignited mode is the saturated

regime. In the saturated regime, nearly all of the electrons emitted at the cathode make it

across the device. Losses in the plasma can reduce the current below that predicted for

the ideal diode. However, the current in the saturated regime can exceed that predicted

for the ideal diode when a large enough electric field forms just outside the cathode. This

accelerating electric field effectively lowers the work function of the cathode and enhances

emission in what is known as the Schottky effect. When this increase is larger than the

losses in the plasma, the current will exceed that predicted for the ideal diode.

If we move down the J-V characteristic curve toward the higher load voltages,

meaning a reduction in the total potential across the device, the curve passes through the

"knee" or transition point, and the current then begins to drop much more rapidly with

increasing load voltage. This behavior is reminiscent of the exponential decrease in the

ideal diode and is known as the obstructed regime. The accepted explanation for the loss

in current is that a potential barrier forms just in front of the cathode (10:16-19), reflecting

the majority of emitted electrons back to the cathode.

Now that the general description of the regimes on the J-V curve has been given,

the behavior in these regimes can be explored in a little more depth. The unignited

(diffusion) mode is characterized by a relatively low and nearly constant current. In this

7



mode, the electrons have insufficient energy to ionize the atoms and thus surface

ionization is the sole source of positive ions. These ions are then drawn into the device by

the combined effects of the space charge and diffusion. In the diffusion mode, the

interelectrode potential remains virtually level except for a narrow sheath near the anode

and a small sheath near the cathode, with a potential drop on the order of the cathode

temperature, as shown by the dash-dot line in Figure 4. The associated weak electric field

and the low surface ionization rate result in the low currents characteristic of this mode.

Even with a reduction of the load voltage, and thus an increase in the potential

across the device, large potential gradients do not arise in the bulk region of the device. A

large potential difference in the bulk region of the plasma would prevent the ions from

making it across the device. A negative space charge would then develop between the

furthest point the ions reached and the collector, but this would draw the ions further

across the device. Eventually, the potential will be too steep for a significant space charge

to develop, and the majority of the potential drop will be in the sheath near the anode. So,

in the diffusion mode, the potential remains relatively flat except for a narrow region just

outside the anode known as the anode sheath.

Potential

l cathode sheath

anode~haith

cathode distance anode

Figure 4: Potential for the Diffusion Mode (dash-dot), Ignition
transition (dotted), and Ignited Mode(solid).
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With a sufficient potential across the device, the anode sheath is high enough and

steep enough to give the electrons entering it the energy required to ionize the gas. When

the voltage reaches the point of ignition on Figure 3, the local rate of ion production in the

sheath exceeds the rate at which the ions are convectively removed. As the positive ions

accumulate near the anode, they raise the potential in this region and push the accelerating

potential further into the device toward the cathode. This "wave" of volumetric ionization

progresses across the gap, as shown by the dotted lines, and continues until the convective

loss of the ions to the electrodes is just balanced by the creation of new ions. The

potential configuration at the end of this transition to the ignited mode is depicted in

Figure 4 with a solid line.

The potential profile illustrated in Figure 4 with the solid line is characteristic of

the saturated regime. In this regime, the device can be divided into three basic regions.

The region near the cathode where the potential rises steeply is referred to as the cathode

sheath. This region is a few Debye lengths wide for a typical converter in the saturated

mode, approximately 3x10 -5 m (10:68). The relatively flat portion in the potential

occupying the majority of the device is known as the plasma or bulk region. Here, the

ions have created a quasi-neutral, weak field region. Continuity of current implies a small

net drift in this region. Because of the larger density in the plasma region, the drift

velocity of the plasma is negligible compared to the velocity of the emitted beam of

electrons accelerated through the cathode sheath. A second sheath region in the vicinity of

the anode is formed to preserve the neutrality of the plasma and maintain continuity of

current flow. This anode sheath is also on the order of a Debye length in width with a fall

voltage of the order of the plasma electron temperature.

The character of the potential is altered with higher load voltages. With sufficient

load voltage, the device enters into the obstructed mode. The true nature of this mode is

not well understood, and this may lead to many of the predictive failures of the numerical

models (10:15-19). The currently accepted explanation for the drop in current in the
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obstructed mode is that a potential barrier forms just outside the cathode (1:298,333-335).

This potential barrier reduces the current by blocking the slower electrons from entering

into the plasma. Because the most energetic electrons can cross the barrier and the net

energy gained in the cathode sheath remains approximately the same, the rate of

volumetric ionization can still be sustained for a range of load voltages in the obstructed

regime. However, as the load voltage is further increased, the barrier in front of the

cathode also increases. When this barrier becomes large enough, so few electrons traverse

the sheath and enter the plasma that it is no longer possible to sustain the volumetric

ionization, and the plasma collapses back into the diffusion mode.

The power produced by a thermionic device is dependent on supplying both large

current and a large load voltage. Since larger load voltages lead to lower currents, it is

important to find an optimal operating regime. Because the current is so low in the

diffusion mode, operation in this mode is not very efficient. In the ignited mode, the

saturated regime has the largest current, but this current is sustained only at low load

voltages. In contrast, the obstructed regime voltages are higher, but current diminishes

rapidly with increasing voltage. As a result, the optimal power output is found between

the obstructed and saturated regimes, at the transition point as labeled in Figure 3 (10:15).

To more accurately characterize device operation at the optimal power point, the

sheath structure and plasma behavior must be understood. In pursuit of this goal, there

are two general theoretical approaches to formulating the equations describing the

behavior of a plasma in a thermionic converter. The microscopic, or kinetic, method

requires the solution of the Boltzmann equation directly, and can be quite complex. The

macroscopic, or fluid, description offers a more simplified view of the plasma. Both of

these methods have their strengths and weaknesses.

The microscopic approach emphasizes the discrete nature of the plasma. The

plasma is described by the position and velocity of individual particles. This method can
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accurately capture most of the behaviors of the plasma in a thermionic converter, but can

also be cumbersome and computationally intensive.

To simplify this picture, the plasma will often be described in terms of the

macroscopic quantities such as charge and particle densities, mean velocities and energies,

rather than with the individual particle locations and velocities. Moments of the kinetic

equation produce a set of equations, the hydrodynamic or fluid equations, in these

macroscopic quantities. This simplification facilitate analysis while sacrificing the

generality of approach. The accuracy of the results is much more sensitive to the

assumptions made in deriving them, specifically local equilibrium with the electric field and

the assumed form of the distribution function.

In Figure 5, the interelectrode potential in the ignited mode of a thermionic

converter is re-introduced, with the purpose of identifying the characteristic form of the

electron velocity distribution at the cathode surface (A), after acceleration in the cathode

sheath (B), and in the bulk plasma region (C). Electrons are emitted from the cathode

with a thermal distribution equivalent to the cathode temperature, typically 1700 K. They

are then accelerated through the cathode sheath of approximately 1 V. Approximating the

B C

A B C
Figure 5: A) Emission Electron Distribution, B) Emitted Beam

After Acceleration Through Cathode Sheath,
and C) Bulk Plasma Electron Distribution.

11



emission electron velocity distribution as a half-Maxwellian, (A), the electrons leave the

cathode with an average drift velocity of 2.0xl0 5 m/sec. The acceleration through the 1

V cathode sheath adds a drift velocity of 5.9x10 5 m/sec. Combining the average drift

from the half-Maxwellian thermal distribution and the added drift velocity from the 1 V

acceleration, the emission electrons have an average drift velocity of about 7.9x 15 m/sec

as they enter the bulk region of the plasma. For a typical converter, the plasma density is

around 5x101 9 m-3 and the plasma electron temperature is 2400K The electron-electron

and electron-ion collision frequencies for these plasma conditions are on the order of 109

Hz and 107 Hz, respectively, with electron-neutral collisions even less frequent (10:20).

These conditions translate to a mean free path on the order of 7.9x10 "4 m for electron-

electron collisions, and 7.9x 10-2 m for electron-ion collisions. However, the typical

converter has an interelectrode spacing on the order of 5xl0-4 m. The mean free path for

electron-electron collisions is of the same order as the device dimension, and the electron-

ion mean free path is two orders of magnitude higher. Considering these characteristic

lengths, it is difficult to attribute the thermalization of the electron beam, (B) to (C) in

Figure 5, to either electron-neutral or Coulomb collisions. However, collisionless

interactions may account for the relaxation of the emitted beam to the thermal distribution

associated with the plasma region. This project is the study of these collisionless

relaxation mechanisms, which may dominate or augment the collisional relaxation.

The collisionless interaction most likely to play a significant role in a thermionic

converter is the beam-plasma instability. The beam-plasma instability arises from an

exchange of energy between an energetic beam of electrons, like the emission electrons

exiting the cathode sheath, and a quiescent plasma, similar to that found in the bulk plasma

region of the converter. As a brief introduction to the physics of the beam-plasma

interaction, Seshadri used a semi-quantitative argument to describe this exchange of

energy, and this argument will be closely followed here (13:135-140). Consider a plasma
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where the ions are so heavy as to be immobile. In this plasma, the electric field is slightly

perturbed by a longitudinal wave of the form E(x,t)=F~sin(kx-0t).

If the coordinate system is redefined to be traveling at the phase velocity of the

wave. The wave will therefore appear stationary and can be described by E(x)=Eosin kx.

Without loss of generality, E is assumed to be positive. Now, since the wave is

stationary in this reference frame, a scalar potential can be defined, and is found to be:
O~)-Eo [ cos kx] (2)

and the potential energy is:
(D(x) E [I- [- cos kx] (3)

k

where the integration constant is set such that the minimum potential is zero. The

potential given by Equation (3) is a periodic set of potential wells with a height of 2qeE/k,

as illustrated by Figure 6. Both the plasma and the beam are assumed to initially have a

uniform velocity distribution, independent of position.

2qA
k

x

Figure 6: Periodic Distribution of the Potential Energy
in the Wave Frame.

Those electrons traveling in the stationary frame at the phase velocity of the wave

are stationary in the wave frame and see a constant potential, thereby remaining unaffected

by the wave. However, if the electron is traveling faster than the phase velocity, it will

13



move across the potential. Suppose an electron is traveling at slightly faster than the

wave, and starts at the bottom of one of the potential wells. This electron has a velocity in

the wave-frame of v-vph, where v is the velocity of the electron and Vph is the phase

velocity of the wave, both in the stationary frame. Therefore the electron has an energy of

E=me(v-vph) 2. If this energy is greater than the height of the potential, 2qeE/k, than it will

continue across the wave with the same average velocity, but with a sinusoidal variation in

its velocity. However, if the electron's energy is less than the height of the potential, it

will be trapped inside the potential well. This trapped electron will oscillate inside the

well, with a net velocity of zero in the wave frame. Effectively, the electron has given its

energy to the wave.

Now, consider an electron traveling slower than the wave, also at the bottom of a

potential well. If the energy, E=me(v-vph) 2, is larger than the potential height, this

electron will continue to travel across the wave with no net loss in velocity, but a with a

sinusoidal perturbation. However, if the energy of the electron is smaller than the

potential height, it will again be trapped. This electron will now travel with an average

velocity equal to the phase velocity of the wave, and has, therefore, gained energy from

the wave.

From this semi-quantitative argument, it can be seen that a longitudinal oscillation

in the electric field in a plasma will perturb the velocities of the electrons. Those electrons

with velocities sufficiently different from the phase velocity of the wave will be perturbed,

but continue to travel with their original average velocity. Electrons with velocities near

the phase velocity of the wave, however, are more strongly affected, and can become

trapped. This trapping leads to an exchange in energy between the wave and the electron.

The alterations in the velocity also lead to "bunching," or local changes in the number

density of the electrons. This bunching takes on the same sinusoidal character as the

velocity perturbation causing it. A more detailed, mathematical development of the

interaction follows in Chapter HI.
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III. Theory

In the previous chapter, the basic physics of a thermionic converter was explored.

The interelectrode potential and electron velocity distributions for the ignited mode were

introduced. The efficiency of a collisionally based thermalization process was called into

question and the collisionless beam-plasma interaction was suggested as a possible major

contributor to the thermalization of the emission beam. In this chapter, the equations

describing the basis of this interaction will be derived. The validation, via computer

simulation, of the theory developed here will be performed in Chapter IV.

We begin by deriving the fluid equations. These equations will be used to describe

the general class of collisionless interactions known as the two-stream interaction. The

implications of the two-stream interaction will be explored, with the symmetric two-

stream interaction used as an example. The general equations for the two-stream will be

modified to give the equations for the beam-plasma interaction. The beam-plasma

interaction will be considered first for beam and plasma of equal densities, and then the

effect of a higher plasma density, weak beam, will be considered.

As was noted in Chapter II, there are two approaches to deriving the equations of

motion for a plasma. The first method, the kinetic approach, concentrates on the

microscopic quantities of the plasma, and involves a direct solution of the Boltzmann

transport equation. Here, to simplify the calculation, we use the second method, the fluid

equations. The plasma is treated as a number of inter-penetrating fluids. For instance, the

plasma ions are one fluid, the plasma electrons are another, and the beam electrons are a

third. The equations of motion for these fluids, known as the fluid equations, are

expressed in terms of the macroscopic quantities of the fluids such as density, particle flux,

and current density. These quantities are derived from the single particle distribution

function (5:82).
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For a more complete development of the fluid approach, see chapters three

through five in Krall and Trivelpiece (5:78-286). A brief summary will be given here. The

fluid equations are derived from the velocity moments of the Boltzmann equation. By

integrating this equation over all velocity space, one obtains the continuity equation:
_ (n a ) )+ V.(nava) = 0 (4)

where n, is the number density of species a and v a is the velocity of species a.

Integrating the product of the kinetic equation and the momentum of a particle of species

a, results in the momentum transfer equation:

nama(-±v a.V)va naqa(E- va xB )-v.-Vp- I mV f a  dv (5)M ' -v '~ a u q ( + c )"- -V a f t IC

Where E is the electric field, ma and qO are the mass and charge of a particle of species a,

I are the off-diagonal elements of the pressure tensor, p. are the diagonal elements of the

pressure tensor of species ct, and -- is the effective collision rate. Invoking the "cold

plasma" approximation and neglecting the contribution of collisions and magnetic field,

the momentum transfer equation simplifies to:

nama(-L + va *V)v a :nqA E (6)

The continuity and momentum transfer equations will be used with a first order

perturbation analysis to derive the equations for cold plasma oscillation, and then the class

of collisionless interactions known as a two-stream interaction. The beam-plasma

interaction is a sub-class of this type of interaction. The two-stream interaction uses two

drifting beams of particles with different velocities and possibly different masses, density,

and charge. The general equations describing the two-stream interaction will be derived

first and later refined to specifically address the beam-plasma interaction.

First, consider two species, c and P, which may have different number densities,

charge, velocities and mass. The electric field is perturbed slightly such that there are small

oscillations about a steady state solution, Etot=Eo+ Eei(kx-(Ot) • As demonstrated in
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chapter HI, this perturbation in the electric field causes a similar perturbation in the number

density and velocities for the species. The total number density and the velocities for

species ax can then be represented by:

natotna+naleikxicot (7)

vatotVa+Val eikx-i ot (8)

where na and va are the steady state number density and velocity, respectively, and %,

and v(l are the perturbed amplitudes. A similar pair of equations can be written for

species f3.

Substituting these perturbed forms for n and v, the continuity equations for the a

and 03 species become:

-iona 1 + i k(nav a 1 +na lVa) = 0 (9)

-ico nfl1 + i k(nfvfl +n p Ilvfl)= 0 (10)

By again using the perturbed number density and velocity equations, the momentum

transfer equations are:

-icovaI +ikvava I= qa E (11)
ma

-icovpl +tllcv/Jv,1 = qfl E (12)

where ma and mup are the mass per particle for species a and 03, respectively. Note that

these equations, and thus the perturbations, are coupled via the electric field. Now,

solving the continuity equations for n.I and npl1:

nal =knaval (13)
(kva - CO)

= knfiv#l (14)
(kvfi - W)

and solving the momentum transfer equations, Equations (9) and (10), for val and vp 1:
Vl qaE (15)

Val = mai(kva - 1)
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qaEVal (16)
mai(kva - CO)

the perturbed amplitudes for both the number densities and velocities can be expressed in

terms of the steady-state values of each and the perturbation amplitude of the electric

field. By inserting these equations into Gauss's law:

ikE =-4ff(qana +qg8np) (17)

one obtains the relation:

i(knaEq2) i(knpEq(
ikE =-7 . .....a + 8(18)

(k -co) 2 ma ( v- CO)2m I
Eliminating ikE from both sides of the equation, and using the definition of the plasma

2freuecyao = 47c nqthe dispersion equation is found to be:

2 2
1 opa 2CO P,8 2 0 (19)

(co-kva) 2  (cO-kvfl) 2

where op, and op are the plasma frequencies for species cc and 13, respectively. This

expression is simplified when normalized by )Pa:

1- = ( 7)2 0 (20)(Ova)2 (6Vq)2

where - -o, Va kva kv , and Opa
o0pa C0 pa COpa C Pa

frequency of species a.

One of the fundamental plasma characteristics predicted by these equations are the

cold plasma, or Langmuir, oscillations. Consider the case where species a is the electron

"cloud" of a plasma, and species 3 is the neutralizing ions, both with no net drift. The

mass of the ions is so much greater than that of the electrons, that the ion mass can be

approximated as infinite. Since the square of the plasma frequency is inversely dependent

on the mass, coW2fl 0. Thus, the dispersion equation reduces to:
1

1 -2 0 (21)
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with the solution = lor, in other words, co= ± op This solution has no dependence

on k. So, this oscillation is non-propagating, and therefore independent of wavelength. If

o, the temporal frequency of the oscillation, is plotted against k, the wavenumber, the

dispersion curves will be those in Figure 7.

cop

k

Figure 7: Dispersion Diagram for Cold

Plasma Oscillations

If this plasma were drifting at a velocity v, this picture is altered somewhat. In the

frame of the drifting plasma, the electrons are still oscillating atop(. In the stationary

frame, however, there is a Doppler shift of the oscillation. Figure 8 shows the oscillation

for drifting plasmas where the plasma is drifting at v (solid), 2v (dashed), and -v (dotted).

The slope of the lines are the drift velocity of the electrons.

k'v IN.. kv

wit Velciie v' oid,2vdshd, /-/ote)

f / I.. . .....

Figure 8: Cold Plasma Oscillations for Drifting Plasmas
with Velocities v(solid), 2v(dashed), and -v(dotted).

From the independent, single fluid behavior, the next step is to examine the

interaction of two fluids. The general form of the dispersion equation, Equation (20)
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derived above, is for the two-stream interaction. The most straightforward two-stream

interaction is the symmetric case where the two streams are composed of equal densities

of electrons and the beams velocities are equal in magnitude, but opposite in direction, the

dispersion equation becomes:

1 1
2 0 (22)

((+V) Vw)2

where 6 = , with the solution:
0)ip

o)= +V- 2 +1+ 4-V 2 +1 (23)
k'v

where V = - and v is the speed of the electrons.
Op

If the real portion of the solutions are plotted versus V, the dispersion diagram

will be that of Figure 9. The solid lines represent the solutions to the dispersion relation,

while the dashed lines are the independent cold plasma oscillations for the drifting beams.

As long as V is sufficiently far from the intersection points of the independent dispersion

curves, the behavior of the coupled fluids is close to that of the independent beams.

However, as V approaches the intersection points, the coupling becomes stronger, and

the behavior of beams deviate considerably from the independent oscillations.

-4

Figure 9: Dispersion Relation for Symmetric Two-Stream
Interaction Compared to Drifting Cold Plasma Oscillations.
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When V < v/2-, two of the solutions become complex. These complex solutions

result in an exponential growth in the electric field. The growth rate can be found for

different values of V by plotting the imaginary portion of the solutions versus V, as in

Figure 10. In Figure 10, both complex solutions are included, for both positive and

negative V. Since these solutions are symmetric, all of the necessary information about

the instability growth is contained in the first quadrant.

0.4

.2

-2 -2 2

-0.4

Figure 10: Imaginary Portion of Solutions to the Symmetric
Two-Stream Dispersion Relation.

These solutions are a function of the velocity of the beams for fixed vahes of k.

To examine the behavior of the system with the equations above, it is necessary to

determine which values of k are appropriate. Through a method known as Fourier

analysis, a perturbation in the system can be represented as an infinite series of plane-

waves of various amplitudes. The set of plane waves used in a Fourier analysis have

wavelengths which are an integral number of a fundamental wavelength for the system.

These wavelengths are known as the modes of the system. For periodic boundary

conditions, there must be an integer number of wavelengths, X, in the repeat length, L.

Therefore, the allowed modes are such that:

= L (24)

N
where N is an integer, which results in:

N
kN = 21r- (25)

L
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where kN is the wave number of the Nth mode. So, for the symmetric two-stream case,

the Nth mode will be unstable if

< v(26)
N

The cutoff point for each mode is therefore inversely proportional to the mode number.

When solving the dispersion relation for various modes, a family of curves

such as in Figure 11 can be generated. The curves give the imaginary portion of co

0.5.

05A-

0.3- /\

0.2 0 /

Figure 11: Imaginary portion of 7 vs. normalized velocity,,
for modes 1-3, from right to left

scaled by (op, as a function of the normalized velocity. When this value is multiplied by(Op,

it gives the growth rate for each mode at the given normalized velocities, i'. For a

normalized velocity of 1, for example, a growth in mode 1 of 0. 48 6&O results, but all

other modes would be stable. A normalized velocity of-E would result in mode two
4

growing at the fastest rate, 0.5 (oh, while modelIgrows at 0.368 c) and mode 3 grows at

0.310 co ,. To recover the velocities appropriate for these numbers, multiply the

(27r
normalized velocity by LP, for the boundary conditions used in this analysis, k, = .

, L
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The same kind of examination can be performed with more realistic nunbers.

Suppose the beams consist of electrons with a total velocity equivalent to the drift of a

1700 K, half-Maxwellian electrons accelerated through a IV potential, traveling in

opposite directions, with number densities of 5x10 17 m73 . For these conditions, a

simplification of those present in a thermionic converter, the modes with the highest

growth rates are 9 and 10. Because the curves for each mode are so tightly packed in this

area, a large number of modes will have nearly equal growth rates, as shown in Figure 12

and Table 1. A small change in conditions will result in a different mode achieving the

highest growth rate.

0.5

0.4

0.3

0.2

0.1

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Figure 12: Modes 4-13(right to left) for Two-Stream
Instability, y=l

Table 1: Growth Rates for Modes 4-13 for the
Two-Stream Instability with y=l

Mode Growth rate Mode Growth Rate

4 0.329765 op 9 0.499519 cp

5 0.387623 cop 10 0.496458 op

6 0.433607 cp 11 0.479232 op

7 0.467652 op 12 0.445363 p

8 0.489705 cop 13 0.389816 lop
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The two-stream interaction can be useful as a tool to understand the changes in

behavior when two species are allowed to couple. However, the interaction of most

interest for thermionic converters is that of the beam-plasma interaction. This interaction

can be thought of a limiting case of two-stream interaction where one stream is no longer

drifting. By substituting vp=O into the general dispersion relation of Equation (20), the

dispersion relation for the beam-plasma interaction is found to be:
2

2 2=0 (27)

where the quantities are now normalized by the plasma frequency of the beam. When the

beam and the plasma are made up of similar particles with the same densities, i.e. y=l, the

solution of the dispersion relation is found to be:

+1 2 ++4 +1 (28)
2

and thus the plasma is stable for all i > -. It is interesting to note that both the cutoff

value, and the value of V for maximum growth in the beam-plasma instability are exactly

twice that of the symmetric two-stream case examined earlier. Since the relative velocity

in the two-stream case is 2v, but it is only v for the beam-plasma interaction, one can

conclude that it is only the relative velocities of the interacting species that is important.

If the solutions to the dispersion relation given by Equation (28) are plotted versus

and compared to the independent plasma behavior, there are many similarities to the

symmetric two-stream case. Figure 13 shows that the coupled solutions (solid) again

behave much like the independent cases (dashed) when V is sufficiently far from the

intersection points of the independent dispersion curves, and that the coupling drives the

behavior away from the independent behavior as V nears the intersection points. One

major difference from the symmetric two-stream case does show up. The complex

solutions are no longer purely imaginary. The solid line crossing diagonally through the

origin is the real portion of the complex solutions. The real portion in the complex

soultion indicates that the wave is now propagating as well as exponentially growing.
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However, the growth can still be studied by examining the imaginary portion of versus

V in the first quadrant.

- . -7.5

Figure 13: Dispersion Relation Solutions for Beam-Plasma Interaction,
y=l, Compared to Independent Cold Plasma Oscillations.

When the beam and plasma consist of equal densities of electrons, with the beam

drifting at 7.91x105 mis, equivalent to the average drift of a 1700 K half-Maxwellian

beam accelerated through a 1 V potential, the highest growth modes are N=18 and 19.

Mode numbers this high mean that the growth curves will be very close together, as

shown in Figure 14 and Table 2. These modes are more tightly packed than the fastest

0.5

o)

0.4

0.3

0.2

0.1

0.05 0.1 0.15 0.2

Figure 14: Modes 13-22(right to left ) for Beam-Plasma, y=l
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modes for the two-stream instability. Therefore, the determination of which mode has the

maximum growth rate for the beam-plasma instability will be even more sensitive to

changes in conditions than was the case in the two-stream.

Table 2: Growth Rate for Modes 13-22 for
Beam-Plasma Interaction with y- 1

Mode Growth Rate Mode Growth Rate

13 0.452122o cp 18 0.4999519 cop

14 0.467652 op 19 0.499658 cop

15 0.480186 cop 20 0.496458 cop

16 0.489705 cOp 21 0.489733 op

17 0.49617 op 22 0.479232 (op

When we consider the beam plasma interaction in a thermionic converter, the

number densities of the beam and the plasma are not equal. In a real device, the beam

tends to be "weak", or significantly less dense than the plasma. Therefore, the assumption

that y=l is not a valid one, and the effects resulting from this weakening of the beam must

be examined. The when y is treated as a variable, the solution to the dispersion equation

becomes difficult to interpret. It is, therefore, difficult to examine the functional

dependence of the dispersion relation on y directly. Instead, it is possible to calculate

solutions for a range of y. A surface plot, like the plot for mode 1 in Figure 15, of the

dependence of the imaginary portion of o on i and y can be made for each mode.

With these surface plots, it is possible to see the general trends as y is increased

from the symmetric value of 1, and the beam weakens. As can be seen in Figure 15, as the

beam weakens, the range of normalized velocities for which there is growth increases.

The maximum growth rate also increases, as does the V at which this maximum occurs.

As shown by Figure 16, for y=7.07 (solid line), typical of the beam-plasma electron

densities in a real converter, the peak reaches a value of about 1.2 cop for mode 1 at a

normalized velocity of about 7.8. However, remember that the growth rate is
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proportional to the plasma frequency of the beam. If the increase iny is due to a reduction

in the beam density, the plasma frequency of the beam is reduced, and therefore the

growth rate is reduced.

a20

0.5

0

0 10

12V5

0.6
0.2

Figure 15: Dispersion surface, for beam-plasma interaction.
Wpa

ranges from 0 to 10, and o ranges from 0 to 20.

1.2

0.0

0.6

0.4 / -

0.2

2 4 6 8 10

Figure 16: Dispersion curve for beam-plasma interaction
for y--l (dashed), and for y'=7.07 (solid).
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Now that we have examined the general effects of changing y, we can calculate the

growth rates for conditions more consistent with a real converter. To do this the beam

velocity is kept at 7.9x10 5 m/sec, but the plasma density is now increased to 5x10 19 M73,

consistent with a thermionic converter in the ignited mode (10:20). This "weak-beam"

condition has a noticeable effect on the growth rates. With these new conditions, the

highest growth rate now occurs at mode 81. The growth rates for modes 76-85 are given

in Table 3 below. In this case, y is increased to 7.07, and the beam density was not altered

from that used in the other calculations in this chapter. Therefore, these growth rates are

normalized by the same numbers as those used earlier, and thus the normalized values can

be compared directly. So, as is shown in Table 3, the growth rates calculated here are

more than twice as fast as those calculated for the equal density case.

Table 3: Growth Rate for Modes 76-85 for
Beam-Plasma Interaction with y=7.07

Mode Growth Rate Mode Growth Rate

76 1.1783 9 (Op 81 1.19159 o)p

77 1.18348 oCp 82 1.190 39 (Op

78 1.18738 o(p 83 1.18782 %op

79 1.19005 (op 84 1.18384 op

80 1.19147 o)p 85 1.17147 cop

These calculations allow us to estimate the rate at which the energy of the beam is

transferred to the plasma. However, before these rates can be compared to those for

collisional relaxation, the theory must be confirmed to be a realistic representation of the

behavior of a plasma in a thermionic converter. In Chapter IV, the theory developed here

will be verified using several numerical simulations of plasma dynamics.
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IV Comparison with Simulations

Chapter III established the equations describing the behavior of the two-stream

and beam-plasma instabilities. These equations were cast in terms of normalized variables

which allow the equations to be applied to a variety of situations with relative ease. The

growth rates were calculated first for the symmetric two-stream interaction, and then the

beam-plasma interaction. For the beam-plasma interaction, the growth rates were

calculated for both the equal density and weak-beam conditions. In this chapter, the

analytical results from the previous chapter will be compared to the results of numerical

simulations. The basic principles of the numerical simulation will be introduced, and the

specific programs used in this project will be briefly discussed. The programs will then be

used to verify the predictions made by the fluid theory developed in Chapter II.

It is possible to return to first principles and use Newton's laws and electro-

dynamics to perfectly model the plasma and diode. This requires tracking every particle in

the system and calculating all the forces acting within it. Since typical plasma densities for

these devices are around 1019 ions/m3 with a volume on the order of 10-6 m3 , there are

roughly 1013 particles to track for just the charged species. At best, this is a difficult and

time consuming task. With current computer technology, it is not reasonable to attempt

such a solution.

Since it is not possible to directly calculate the motion of each individual particle, it

is necessary to make some approximations. The particle-in-cell (PIC) or cloud-in-cell

(CIC) technique is commonly used. Instead of tracking all of the particles in the plasma,

large super-particles are formed, representing of many particles. These super-particles are

then used to approximate the behavior of the collection of particles they represent.

The space of the diode is divided by a grid into discrete, evenly spaced pieces,

known as cells. The position of each super-particle is calculated, and the mass and charge
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are weighted to this grid based on the particle position. This weighting is used to calculate

the electric field, and the force on each super-particle is determined. Then the particle is

moved according to the forces calculated. If collisions are to be simulated, Monte Carlo

methods are used to determine if there is a collision and what effect it has on the particles

involved (2:11-12,255-256).

PIC codes have been proven to be useful ways to study the behavior of plasma

diodes (6:495,7:253,121052). Although the representation of particles as super-particles

and the division of the diode spacing into discrete cells introduce error, this error can be

minimized with the proper restrictions on the cell size and time steps. In order to resolve

the electric field, the cell size must be less than the Debye length for the device. The cells

may need to be smaller if the phenomenon to be studied takes place on a smaller scale.

To minimize the error from the discrete time steps, two factors must be

considered. The first is that only a small fraction of the particles will cross more than one

cell each step. Without this condition, a particle could cross an extremum in the electric

field without being affected by it. The second factor to be considered is the time scale of

the phenomenon to be studied. For instance, in a large device, although the cell transit

time may be relatively long, to resolve plasma oscillations, the time step is constrained to

values of the order of the plasma period.

A final consideration is the number of particles per cell. It is a good idea to have a

large number of particles per cell. This will reduce the noise created when a particle

crosses from one cell to the next. However, having a large number of particles per cell

can lead to problems if the device is large compared to the cell size, and can slow the

calculations considerably.

ES1 and PDPl are the PIC codes that are used in this study. For a more detailed

description of ES1 and the principles of PIC simulations, see the ESI reference manual

and Birdsall's text (2:1-452,14:1-20). A brief description will be given here. The version

of ES1 used was XESl for use in the OpenWindows environment. ES1 is a simulation of
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an infinite one-dimensional plasma, using periodic boundary conditions. With periodic

boundaries, when a particle exits one side, a particle of the same species is injected with

identical velocity from the opposite side.

The initial conditions and particle definitions are provided to the program via input

decks. These input decks are ASCII files which the user provides to the program. A

sample deck is provided in Appendix A, with a short description of the meaning of each

input parameter. For ES 1, all of the species-specific parameters are normalized with

respect to each other. The specific normalizations are not important, just that they be

consistent.

The ES1 environment allows the user to display various diagnostic windows. The

diagnostic most important to this study is the electrostatic energy as a function of time.

The electrostatic energy diagnostic displays the total as well as the energy density

associated with the individual modes found using Fast Fourier Transforms of the

electrostatic energy. The number of modes displayed is specified by the user in the input

deck (see Appendix A). The code was modified to provide an ASCII output file

containing the values for each mode. This output file can then be manipulated to provide

the data needed for comparisons.

The other simulation program used was PDP1. PDPl is a bounded, one-

dimensional plasma simulation including an external circuit. The basic PIC methods are

identical to those of ES1. Interested readers are referred to the PDP1 reference manual

and the copy of the source code (15:1-31).

Like ES1, the user provides the program with the specifics for each run through an

ASCII input deck. The input deck for PDP1 is, however, considerably different from the

one used for ES1. A sample input deck and a brief description of the parameters is given

in Appendix B. The parameters used in PDP1 are not normalized, and are in terms of SI

units. This makes simulation of an actual device easier than for ES 1, and makes the

interpretation of the input deck more straightforward.
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PDP1 also provides a variety of diagnostic windows. Unfortunately, none of the

diagnostics available allow a numerical comparison to the theory in chapter 1H. The

phase-space plot is the most useful diagnostic of those provided. With the help of Capt.

Nichols, a diagnostic was added for the electrostatic energy as a function of position. The

noise in this diagnostic for reasonable runs makes this diagnostic only valuable for

qualitative analysis of the system.

The next step is to use these simulations to verify the instability predictions arising

from the linearized perturbation analysis in Chapter 1I. Comparisons will be made with

both convenient normalized numbers, and then with the parameters characteristic of real

thermionic devices. Since ES 1 is a periodic simulation, it should support the theory

developed in Chapter I very strongly. To test this agreement, ES1 was run for various

cases designed to validate the theory. The electrostatic energy mode diagnostics were

observed and the data recorded.

In ESI, Fast Fourier Transforms (FFTs) are performed to determine the spectral

distribution of energy in the electrostatic field. The growth rates are found by observing

the field energy for each mode. Because the field energy is proportional to the square of

the electric field, the growth in the field energy is proportional to the square of the growth

in the electric field. Therefore, the field energy growth is proportional to e2 ,it and the

growth rate for each mode can be found from the slope of the linear region on the semi-

log plot. The code is run and an ASCII dump file is created with the time histories of all

of the modes. This file is read into MathematicaTM and a linear fit is made. Figure 17 is

an example of the fit to one of the modes, in this case mode 1 growth for a symmetric

two-stream interaction.

For the symmetric electron-electron two-stream interaction, the location of the

transition from a stable to unstable system agreed to within nine decimal places. Runs

were made just above and below the cutoff of N V2, and the changes observed. When

the normalized velocity was above the cutoff, the beams were slightly disturbed, but
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Figure 17: Fit to data for mode l growth in ESI
with , = 0.8660

maintained their overall structure (Figure 18). When the normalized velocity was lowered

below the cutoff, nearly complete thermalization of the beams occurred (Figure 19). Both

Figure 18 and 19 are snapshots of the screen during a run of ESl.

With confirmation that the theory correctly predicts the stability threshold for the

numerical simulation, the growth rates for the instability were tested. Runs were made at

strategic points along the curves of the first three modes. The locations were chosen to

be: 2 velocities for mode 1 growth alone, the velocity for maximum growth in mode 1, a

velocity with mode 1 dominant but mode 2 growing, the velocity for maximum growth in

mode 2, and a velocity with mode 3 as the dominant mode. The input deck for ESI has

its variables defined as normalized parameters similar to the o and i' used in the

derivations above making a comparison of normalized values easy. However, a problem

arose from the method ESI uses to perturb the system. ESI stimulates one mode with a

small, sinusoidal perturbation, with a magnitude of 0.0001 of the energy of the injected

beams for these runs. When this mode was the sole mode growing, the agreement was

within a few percent for that mode. The growth rates for the other modes, however, were

extremely noisy and very different from those predicted by the theory.
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To address this problem, a routine was created to stimulate all of the modes

simultaneously. Because the emission from a heated plate will be uneven, the density and

velocity distributions will not be identical at all times. The routine simulates these

fluctuations with small, sinusoidal perturbations to the density of the particles. Since the

fluctuations are likely to be white noise and thus have a significant amplitudes for a large

frequency spectrum, it is not unreasonable to stimulate a large number of modes.

When the code was run with this routine in place, the growth observed in all

modes is now consistent with theory. Figure 20 is a contrast of the mode data

ln( QI t/Op t/Op L

-5 0 5 10 15 20
-10 -10

-15
-20 -12

-25 -14
-30

a) b)
Figure 20: Mode 3 data for two-stream interaction with i=1,

y=l and a) only mode 1 stimulated, and b) modes 1-3 stimulated.

with and without the multi-mode stimulation in the logarithm of electrostatic energy

density of mode 3 is displayed as a function of time, expressed in terms of plasma periods.

Specifically Figure 20a shows the mode 3 data when the normalized velocity was 1 and

only mode I was stimulated. In Figure 20b, the normalized velocity was again 1, but this

time the first three modes were stimulated. Since there is no growth expected in mode 3,

the data from the multi-mode stimulation agrees much more strongly with the predictions

from the theory. Because the multi-mode stimulation is physically justifiable, the results

from runs made with the routine in place can be considered to be an accurate

representation of a real system.
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The subsequent data runs were all made with the multi-mode stimulation routine in

place. Figure 21 compares the growth rate values obtained from the simulation fits to the

values predicted by theory. All of these values agreed to within 1% of the theoretical

values. The error is easily accounted for in uncertainty in which region to use for the fit.
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V
Figure 21: Instability growth rate obtained from fit of simulation

data (dots) compared to analytical curves for
two-stream interaction, y=l, modes 1-3.

By changing which portion of the curve was used for the fit, the slope can change

dramatically in some cases. The fits giving the data shown above were made using what

appeared to be the most linear sections of the data output curves.

The beam-plasma theory was also compared to results obtained from ES 1. The

growth rates predicted for the beam-plasma instability are given by Equations (27) and

(28). A series of runs were performed at evenly spaced normalized velocities with the

beam and the plasma both assumed to be electrons and to have the same number density.

Table 4 shows the growth rate values obtained for these values and those predicted by

theory.

The agreement between simulation and theory for the normalized values allows

greater confidence in the growth rates calculated for conditions consistent with thermionic

converter operation. Runs were made with numbers consistent with those found in
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Table 4: Fit, predicted values and relative error for beam
plasma interaction, y- 1

Mode Fit value Theory % error

2.2545 1 0.443572 op 0.442306 (op 0.2

2.2545 2 * 0 *

2.2545 3 * 0 *

1.414 1 0.482314 co 0.481692 cop 0.13

1.414 2 * 0.0141892 cop

1.414 3 * 0 *

1.00 1 0.4 05 84 4 o )p 0.4 052 3 3 (Op 0.15

1.00 2 0.484729 1op 0.4858 6 8 (op 0.23

1.00 3 * 0 *

0.8660 1 0. 3 6 702 6 cop 0. 3 6 7 12 7 o)p 0.03

0.8660 2 0. 5 032 2 2 (op 0.5 (op 0.64

0.8660 3 0.309831 p 0.3105 cop 0.22

0.5774 1 0. 2 6 52 34 cop 0.267166 cop 0.73

0.5774 2 0.4 4 08 89 cop 0.440692 cop 0.05

0.5774 3 0.504536 (op 0.5 (op 0.91

* data was too noisy for a reasonable fit.

thermionic converters and compared with those predicted by theory. First, the growth

rates will be investigated for a case where the beam and plasma densities are equal. Then

the plasma density will be increased to a more realistic value to establish the growth rate

for a thermionic converter operating in the saturated regime.

For the equal density case, or y=l, the runs were made with cold beams with a

velocity of 7.9x10 5 m/sec, consistent with the drift velocity imparted by a IV acceleration

and a half-Maxwellian velocity distribution with a 1700K temperature. The beam and the

plasma had number densities of 1018 m73 . The individual modes grew as predicted by
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theory. The fits matched the growth rates for all the modes checked to less than 1%

(Table 5). However, the density of electrons in the beam is not normally equal to that in

the plasma. To make any judgment about the accuracy of the theory for a real converter,

the weak-beam case must also be tested.

Table 5: Growth Rates for Electron-Electron Beam-Plasma,
y=1, modes 13-22

Mode Fit Theory % Error

13 0.450258 p 0.452122 pOp 0.40

14 0.4 6 9 3 53 O 0.467652 co 0.36

15 0.479282 cop 0.480186 cop 0.19
16 0.486137 cOp 0.489705 (Op 0.72

17 0.496789 cop 0.49617 cop 0.12

18 0.501321 cOp 0.499519 (Op 0.36

19 0.497869o p 0.499658 cOp 0.35

20 0. 4 9 59 3 2 (Op 0. 4 9 6 4 58(Op 0.11

21 0.487706 (Op 0.489733 1Op 0.41

22 0.475588 Op 0.479232 (Op 0.76

For the weak-beam case, the beam was still considered to have a velocity of

7.94x10 5 m/sec and a density of 1018 m "3, but now the plasma density was set to

5x10 19 m73, corresponding to a y=7.07, as might be seen in a thermionic converter in the

saturated regime (10:20). Again, the modes grew as predicted, to within 1% of the

growth rates calculated from the theory (Table 6).

This confirmation of the unbounded theory for conditions approximating those

found in a thermionic converter is not sufficient to answer the original question. In order

to determine if the beam-plasma instability plays an important role in a real device, it is

necessary to more closely simulate a thermionic converter. This first step in this

refinement requires addressing the bounded nature of the plasma in order to evaluate the
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Table 6: Growth Rates for Electron-Electron Beam-Plasma,
y=7.07, modes 76-85

Mode Fit Theory % Error

76 1.17711o) p 1.17839 lop 0.11

77 1.18037o p 1.18 34 8 o p 0.26

78 1.19341 lop 1.18738 cop 0.51

79 1.19461 op 1.19005 op 0.38

80 1.19503 o.p 1.19147 op 0.30

81 1.19521 (op 1.19159o cp 0.30

82 1.19401 (op 1.190 39 lop 0.30

83 1.18437 op 1.18782 cop 0.29

84 1.18126 op 1.18384o p 0.22

85 1.17434 (op 1.1784 (op 0.34

role of geometric constraints on instability growth. The PDP1 code, unlike ES1, simulates

a bounded plasma including the electrical circuit. Unfortunately, PDP1 lacks a diagnostic

for the electrostatic energy as a function of position. Without this numerical data, the

evaluation and characterization of instability growth can only be made in a qualitative

manner.

PDP1 was run for an electron-electron two-stream instability with the same

7.9x10 5 m/sec drift velocity used with for the other runs. The finite electrode gap of

3x10-5 m was introduced as a geometric constraint. Both electrodes were maintained at

the same potential, approximating the weak field condition existing in the bulk plasma.

Both beam and plasma distributions were simulated as "cold." Under these conditions, the

beam reversed direction in about 5x10 "10 seconds, and was significantly thermalized in less

than 10-9 seconds, as demonstrated by the snapshots of the screens in Figures 22 and 23.

This confirmed that the instability grew to a significant degree in a short period of time,

with instability growth uninhibited by the geometric constraint.
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V Discussion and Conclusions

This study was directed towards an understanding of plasma dynamic processes in

a thermionic converter. As was discussed in Chapter II, thermionic converters, currently

employed in space power systems, typically operate in the ignited mode, where volumetric

ionization is the dominant source of ions in the system. The ions counter the space

charge, and form a characteristic potential which can be broken down into three distinct

regions. The regions of most interest in this study are the accelerating cathode sheath and

the quasi-neutral bulk plasma region. The cathode sheath is typically on the order of 1 V

and approximately 3x10"5 m wide for a thermionic emission current from a 1700 K

cathode of approximately 105 amps/m2 . The interelectrode gap is on the order of

3x10- 4 m. After being accelerated through the IV potential in the sheath, the injection

stream of thermionically emitted electrons has an average velocity of 7.9xIO5 m/sec.

Through the continuity of current, this results in a beam number density of approximately

1018 m73 at the cathode sheath-plasma interface. The plasma is typically more dense than

the beam, with a plasma density on the order of 5x1019 m-3, and a temperature of about

0.3 eV. For these typical system values, the collision frequencies for electron-electron

collisions and electron-ion collisions are about 109 and 107 Hz, respectively (10:20). The

electron-neutral collisions are even less frequent and, for the time scales involved in this

study, are negligible. The mean-free-path for the electron-electron collisions is on the

order of 7.9x10"4 m, on the same scale as the interelectrode spacing. Yet when the fluid

equations are used by Baksht and others, the collisions are considered to be frequent

enough to thermalize the injected stream of electrons in a distance somewhat longer than

the cathode sheath (B:84,193-197). It is apparent that this assumption is questionable at

best.
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If the collisions are not thermalizing the beam, there must be some other

interaction causing this thermalization. In this project, collisionless relaxation via the

beam-plasma interaction was studied as a possible mechanism. In Chapter 1II, a linear

perturbation analysis was used in conjunction with the fluid equations. The equations

were solved for simplified conditions, and the dispersion relation established. With

periodic boundary conditions, and the cold plasma approximation, the growth rates were

predicted to be on the order of the plasma frequency of the beam for conditions

representative of a thermionic converter in the saturated regime. The PIC simulations ES 1

and PDP 1 were used for verification of these predictions.

The results from ES 1 strongly supported the theory for the periodic, cold plasma

approximation, with errors on the order of a percent or less. The beam-plasma interaction

between the injected stream of electrons and the electrons in the bulk region of the plasma

was examined for conditions representative of thermionic converter in the saturated

regime. The beam was taken to have a density of 1018 m73, resulting in a plasma

frequency of 1.78x10 11. Since the growth rates were predicted to be on the order of the

plasma frequency of the beam, this results in a growth period of about 7x10-1 1 sec.

Because the growth period for the instability is at least two orders of magnitude faster

than the most rapid collisions, the beam-plasma instability can dominate the thermalization

of the injection stream. However, these results are for a simplified view of the system,

which neglects geometric constraints and the thermal aspects of both the beam and

plasma.

To truly determine whether this instability makes a significant contribution to the

thermalization, a more realistic view of the system must be taken. The "obvious"

approach would seem to be to run a PIC simulation with all of the real parameters in

place. However, a full simulation is not a realistic possibility, and would be of dubious

value in examining and parameterizing the physics involved. The size of the time steps in

a PIC simulation of a thermionic converter is limited by the plasma frequency and the time
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for the fast-moving electrons to cross a cell, leading to time steps of picoseconds or less

for a converter in the ignited mode. However, the ions are so much heavier than the

electrons that even the most energetic ions are moving at velocities many orders of

magnitude slower than the electrons. The run times that would be necessary to allow the

ions to reach a steady state within the device would be unreasonably long. In addition to

the time constraints, the addition of the full thermal character of the beam and electron

plasma can make observing the relaxation behavior of the beam difficult.

The two major aspects that must be examined are the geometric constraints and

the thermal nature of the distributions. If the plasma is bounded, the growth may be

limited by the transit time of the beam through the interelectrode gap. However, for the

conditions in a ignited converter, the transit time is still at least an order of magnitude

longer than the growth period for the instability. So, within the limit of the electron transit

time, a significant amount of growth can still occur. As a quick test to see if the addition

of the boundaries would significantly alter the instability growth, runs were made for with

the bounded code PDP1.

The PDPl runs did confirm that the simplified converter conditions are unstable.

These simplified conditions addressed the issue of geometric constraints while retaining

the approximation of cold beams of electrons injected from the boundaries at a velocity of

7.9x10 5 m/sec, equivalent to the drift of a 1700K half-Maxwellian accelerated through a

one volt potential. Both boundaries were assumed to be at 0 V to approximate the quasi-

neutral bulk plasma region. Under these conditions, the beams were significantly

thermalized in less than 10"9 seconds. Since this is again shorter than the collision times,

it is likely that the electron-electron beam-plasma instability plays an important role in

thermalizing the injected electrons in the bounded converter plasma.

Setting aside the implications of the bounded nature of the plasma, we now

consider the influence of the thermal nature of the distributions on instability growth. The

cold plasma approximation does have a significant effect on the growth predicted for the
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beam-plasma instability, and must be investigated. With the cold-plasma approximation in

place, there is no lower velocity bound for instability growth. In other words, once the

velocity is below the stability cutoff for mode 1, the instability will always be growing.

The addition of the thermal distributions will have the most significant impact

when the energy in the beam is on the order of the thermal energy in the plasma. As the

beam energy is reduced, it becomes more and more difficult to distinguish the beam from

the plasma. The efficiency of the energy transfer from the beam to the plasma is thereby

reduced, and this will provide a lower velocity bound for the instability growth. In an

ignited converter, the plasma temperature is approximately 0.2 to 0.3 eV. As the cathode

fall voltage approaches this value, the beam-plasma instability will become less effective at

thermalizing the injected stream. The cutoff value for the cathode fall would then be on

the order of 0. 5V, which places it within the obstructed regime.

With this approximate lower bound, the regions in which the beam-plasma

instability can play a role can be defined. The upper bound for the instability growth is

approximately that calculated for the cutoff for mode 1. This means that the electrons

would have to be traveling with an average velocity on the order of 2xl07 m/sec.

Electrons moving at such a velocity would have an energy of 3000 eV, requiring a cathode

fall of 3000V. This potential value is well beyond anything that can be developed in a

thermionic converter, and therefore the upper bound on velocity is not limiting in

thermionic converter relaxation. A lower bound is encountered as the cathode fall is

reduced and the beam merges into the thermal distribution of the plasma electrons, the

instability growth will be reduced, and finally become insignificant. These conditions will

arise in the obstructed regime. Another factor that must be considered in the obstructed

regime is the reduction in the number density of electrons in the beam. As the number of

electrons capable of crossing the obstruction just in front of the cathode is reduced, the

number density in the beam falls off, and, as pointed out in Chapter IV, the growth rate of

the instability is reduced.
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The beam-plasma interaction therefore plays a role in the thermalization of the

injection beam through out the entire saturated regime, and most of the obstructed regime.

The effectiveness of the beam-plasma relaxation will diminish and eventually terminate in

the obstructed regime. A detailed investigation of the changes in the beam-plasma

relaxation due to thermal effects would be a logical follow-up to the current investigation.

However, these effects do not appear to be limiting in the saturated regime. Since

thermionic converters are typically run at the transition point between the obstructed and

saturated regimes, the beam-plasma interaction can dominate the relaxation for most

thermionic converters. Therefore, any model of a thermionic converter can not ignore the

beam-plasma relaxation mechanism. Because the fluid approaches generally require the

assumption of collisionally dominated relaxation, they are inappropriate for describing this

relaxation process. In the PIC method, there are no assumptions made about what

mechanism is causing the relaxation, and therefore PIC are capable of describing this

relaxation. However, using a PIC simulation to model the entire device will result in the

run time problems described earlier. To avoid this, a hybrid approach of a PIC simulation

of the sheath region mated to a fluid description of the bulk region would be useful. By

using the PIC method in the sheath, the collisionless relaxation processes can be modeled.

Once the beam has thermalized and entered the bulk region of the device, the

approximations made in deriving the collisional fluid equations become justifiable. In the

bulk region, the assumption of the Maxwellian velocity distribution is now a good

assumption, and therefore the plasma behavior will be well modeled by the fluid approach.

The fluid approach greatly simplifies the equations of motion and reduces the

computational load. With the hybrid code, the accuracy of the model will be improved

over the fluid approach and the computational cost will be greatly reduced compared to a

full PIC simulation.
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Appendix A: Definition of Quantities in the ES1 Input Deck

A sample ESI input deck is provided at the end of this appendix.

Definition of quantities in the ESI input deck (2:3 1-33):

nsp: The number of species to be used in the simulation

1: The length of the system. See the explanation for v.

dt: Size of time steps, in units of 2-.
Cp

nt: Maximum number of time steps. Not used in this version ofES1

mmax: The maximum number of displayed Fourier modes for the electrostatic
energy.

I/a: Ratio of length to emitter area. Not used.

ng: The number of grid points to be used in the simulation.

iw: Weighting to be used, see Birdsall section 2-6: "Particle and Force
Weighting" (2:19-22)

2 for first order weighting, used for PIC calculations

epsi: Epsilon for the system, in units of o.

al, a2: Compensation and smoothing factors, respectively. A zero indicates

neither is active.

EO, wO: External electric field and driving frequency, respectively.

For the individual species, the user must define the following:

n: Effectively the number of superparticles to be used for this species.

nv2: Exponent for quiet start.

nlg: The number of sub-groups to be give the same velocity distribution.

mode: When the original code is run, this allows the program to perturb an
individual mode. With the added multi-mode stimulation routine, this
number is not used.
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wp: The plasma frequency for the species. This quantity can be normalized in
any way the user wishes, so long as it is consistent throughout the input
deck.

wc: Cyclotron frequency. Only used for adding a magnetic field.

qm: Charge to mass ratio. Like the plasma frequency, this can be normalized
in any fashion, so long as it is consistent for the input deck.

vtl: Gives a Gaussian velocity distribution centered on vO. Normalized by the
same method as vO.

vt2: Same as vtl, except is give a "quiet start."

v: Drift velocity in the x-direction. This quantity is normalized. It is
possible to use the same normalization as was used in this paper:

vO = V v- This is the normalization used for all of the ESI runs.

When vO is defined this way, the value for 1 given in the input deck is then

normalized by k, where k= 2ff with L equal to the real length of the
L

system.

xl: Magnitude of the perturbation in x. Used as: xlcos(2nrMode/l +).

vl: Magnitude of the perturbation in v. Used as: vlsin(2tMode/l+Ov).

thetax, thetav: Ox and OV respectively.
1

The charge of the system is found by: q -
n epsi qm

The mass is then calculated by q, where n,epsi, 1, and qm are the quantities defined
qm

above.
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BEAM PLASMA INSTABILITY

A cool electron beam is drifting through a cold unperturbed plasma. The
small temperature of the beam avoids the non-physical cold beam
instability, so the only phenomenon is the growth of the physical beam
plasma instability.

nsp --------.-.-1----- dt ------- nt ---- mmax ---- 1/a
2 6.283185307 0.05 1000 100 0
ng ---- iw ---- epsi-------.al ---- a2 ---- EO ---- wO
1024 2 1.00 0.00 0.00 0 0

SPECIES 1: Cool Electron Beam

n ---- nv2---nlg---mode
2048 0 1 0
wp ---- wc ---- qm ---- vtl ---- vt2---vO
1.0 0.00 -1.00 5E-4 0.00 0.0934
xl ---- vl---thetax--thetav
0.00001 0.00 0.00 0.00

SPECIES 2: Cold Electron Plasma

n ---- nv2---nlg---mode
2048 0 1 0
wp ---- wc --- qm ---- vtl----vt2---vO
7.07 0.00 -1.00 0.00 0.00 0.00
xl ---- vl---thetax--thetav
0.00001 0.00 0.00 0.00
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Appendix B: Definition of Quantities in the PDP1 Input Deck

A sample PDP input deck is given at the end of this appendix.

The quantities defined here are those are necessary to understand the input decks used in

this project. For a full description, the reader is directed to the PDP1 reference manual

(15:20-27)

nsp: The number of species in the simulation.

nc: The number of cells in the simulation.

nc2p: The number of real particles per superparticle.

dt: The time step, in seconds.

length: The length of the interelectrode gap, in meters.

area: The area of the electrodes, in square meters.

epsilonr: Permittivity for the system, normalized to &o.

B: Magnetic field strength, in Tesla.

PSI: Angle (with respect to x) of the magnetic field lines.

rhoback: Background charge density, in Coloumbs per cubic meter.

backj: Background current density, in Amps per square meter.

dde: Sinusoidal perturbation of charge density

extR, extC, Resistance (in Ohms), capacitance (in Farads), and inductance (in
extL: Henries) of the external circuit.

dcramped: 1 means the voltage or current is to be ramped, 0 means no ramping.

source: A v means a fixed-voltage source, and an i means a fixed-current source.

dc: Dc voltage(Volts) or current(Amps) for the system

ramp: Rate at which to ramp up the current or voltage in the system.

ac: Magnitude of the external alternating current.
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fI0: Driving frequency for the external ac current.

thetaO: Phase of driving frequency.

secondary: Turns secondary emission on (1) or off(2).

Ecollisional, Turns collisions on (1) or off(2) for electrons and ions, respectively
i collisional:

reflux: Turns reflections from the wall on (1) or off(2).

nfft: number of Fast Fourier Transforms to be performed. Caused the program
to lock up when used.

seec: Secondary emission coefficient

ion species: Defines the species to be used in ion collisions.

Gpressure, Gtemp: Gas pressure and temperature.

The collision parameters were not used in this project. They are used to define a

cross-section with an initial linear ramp to a maximum, a plateau at that maximum, and

then an exponential decay (15:24-25).

For the individual species:(all units are SI)

q: Charge of species, in Coulombs

m: Mass of species, m kilograms

jOL, jOR: The injection current density from the left and right electrodes, respectively

initn: The initial number density for this species.

vxOL, vxOR: Left and right drift velocities, respectively.

vxtL, vxtR: Thermal velocity to the left and right.

vcL, vcR: Cuts off all lower velocities to the left and right

vperpt: Thermal velocity for the y and z directions

nbin, Ebin, Used in energy diagnostic at the right wall
Emax:

vperpO: Drift velocity for y and z.
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2 stream(LN SI UNITS)

2 500 1e9 le-12 0.0003 0.004 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0

-dcramped--source--dc[VIAmp]--ramp[(VIAmp)/s] --- ac[VIAmp] --- ft0Hz]--thetao[D]-
0 v 0.0 0.0 0.0 0.0e7 0.0

--secondary ---- e -collisional ---- i collisional ---- reflux --- nfft--
0 0 0 0 0

--seec(electrons) --- seec(ions) --- ion species ---- Gpressure[Torr] --- GTemp[eV]---
0.0 0.0 2 3e-2 0.026

ELECTRON-NEUTRAL COLLISIONAL PARAMETERS --

-- esa~/2 1- elegOe]--esny[eV] --- elsengy2[eV]-
1.2e-19 0.0 0.0 20.0

-- eta~A]--etegOe]-- xeg e]--etny[V -
7.0e-21 11.55 30.0 100.0

-- inaxm2 1- ioeg0e]--inn [eV] --- ionengy2[eV] ---
3.0e-20 15.76 30.0 100.0

ION-NEUTRAL COLLISIONAL PARAMETERS --

-- crxm2-bhg~ANA/]---actm2-bctm\NA/1-
2.Oe-19 0.Oe-19 1.8e-19 0.Oe-19

SPECIES 1

-- []--- -Kl--jLApm2 - 0RApm\]-- nt[\3-
-1.602e-19 9.11e-31 1.27215e5 1.27215e5 2e18

7.94e5 7.94e5 5e4 5e4 0.0 0.0

--- vperptllmls] --- vperp0[mls] --- nbin ---- Emin[eV] ---- Emax[eV]
0.0 0.0 50 0 200
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SPECIES 2

1.602e-19 2.206 0.0 0.0 2e18

--vxOL[m/s] --- vx0R[m/s] --- vxtL[m/ls]--- vxtR[nils]--vxcL[ms]--vxcR[Mls]-
0 0.0 0.0 0.0 0.0 0.0

--- vperpt[m/l]--- vperpO[nil--- nbin ---- Emin[eV] ---- Emax[eV]

0.0 0.0 50 0 200
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This work investigates the role that the beam-plasma instability may play in a thermionic, converter. The
traditional assumption of collisionally dominated relaxation is questioned, and the beam-plasma instability
is proposed as a possible dominant relaxation mechanism. Theory is developed to describe the beamn-
plasma instability in the cold-plasma approximation, and the theory is tested with two common Particle-in-
Cell (PIC) simulation codes. The theory is first confirmed using an unbounded plasma PIC simulation
employing periodic boundary conditions, ESL. The theoretically predicted growth rates are on the order of
the plasma frequencies, and ES I simulations verifyi these predictions within the order of I%. For typical
conditions encountered in thermionic converters, the resulting growth period is on the order of 7x101

seconds. The bounded plasma simulation PDP was used to evaluate the infuence of finite geometiy and
the electrode boundaries. For this bounded plasma , a two-stream interaction was supported and resulted
in nearly complete thermalization in approximately 5x10-1 0 seconds. Since the electron-electron collision
rate of 109 Elz and the electron atom collision rate of 107 Hz are significantly slower than the rate of
development of these instabilities, the instabilities appear to be an important relaxation mechanism._
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