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Preface 

The purpose of this thesis is to apply moving-bank multiple model adaptive 

estimation and control (MMAE/MMAC) algorithms to the SPICE-4 space structure 

located at Phillips Laboratory, Kirtland AFB, NM. This research follows the work of 

Captain Greg Schiller who began the research with the SPICE-4 model. The primary 

design tools utilize Kaiman filtering and LQG control. When uncertainties exist in the 

system model, a bank of filters increases the robustness of the LQG control. The moving 

bank limits the number of active filters in the parameter space, thus lessens the 

computational loading. The parameter space in this effort is three-dimensional, allowing 

for independent variation of the uncertain undamped natural frequencies of the bending 

modes of the SPICE-4 structure. Many techniques are investigated for moving the bank 

as well as for providing the control inputs. Results of this thesis indicate that the 

MMAE/MMAC algorithms are highly effective in quelling unwanted vibrations in the 

SPICE structure in the face of parameter variations. 

There are many people without whom this thesis would not have been possible. 

First and foremost, I wish to thank my advisor, Dr. Peter Maybeck, for his guidance, 

suggestions, motivation and encouragement. I also wish to thank my committee members, 

Lt Colonel Riggins and Dr. Liebst, for their time and suggestions. I also wish to thank my 

fellow guidance and control students who have helped me through some rough times over 

the past few months. A special thank you goes to my predecessors, Capt Greg Schiller for 

sending disks, tapes, and other information from Kirtland AFB, and Capt Jim Fitch, for his 

help with the FORTRAN coding and in getting me started. Finally, I wish to thank my 

parents and brothers for their support, and my wife, Ann, for her patience, understanding, 

and love. 
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Abstract 

A moving bank multiple model adaptive estimator/controller (MMAE/MMAC) 

based on linear system, quadratic cost, and Gaussian noise (LQG) assumptions is used to 

quell unwanted vibrations in a large flexible space structure. The structure, known as the 

SPace Integrated Controls Experiment, or SPICE, exists at Phillips Laboratory, Kirtland 

AFB, NM. The structure consists of a large platform and a smaller platform connected by 

a tripod of flexible legs. The purpose of the control system is to maintain a very precise 

line-of-sight vector through the center of the spacecraft. Kaiman filtering, used to 

estimate the position and velocity of the bending modes of the structure, and LQG control 

techniques are the primary design tools used in the MMAE/MMAC algorithms. 

Implementing a parallel bank of filters increases robustness when uncertainties exist in the 

system model, here specifically allowing adaptation to uncertain and changing undamped 

natural frequencies of the bending modes of the structure. A moving bank is utilized to 

reduce the computational loading. The MMAE/MMAC design provides an excellent 

method of estimating undamped natural frequency variations and quelling vibrations in the 

structure. The MMAE/MMAC was able to track numerous parameter changes and jumps 

while providing adequate control for the structure. 
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CONTROL OF A LARGE SPACE STRUCTURE USING 

MULTIPLE MODEL ADAPTIVE ESTIMATION AND 

CONTROL TECHNIQUES 

I. Introduction 

Kaiman filtering has proven to be effective in estimating the states of a system with 

a known linear dynamics model driven by white, Gaussian noise. However, the dynamics 

model for a system is rarely known precisely. System parameters can vary over a range of 

values, typically due to temperature effects, aging or fatigue in the system, or even 

structural failure. For example, the uncertain parameters for a second order system might 

be the damping ratio and the undamped natural frequency. An optimal filter and controller 

is tuned to this set of parameters, yet, a small deviation from their nominal value may 

cause inappropriate or unstable control from a system based on a nonadaptive Kaiman 

filter. Thus, a single Kaiman filter/controller is often not robust enough to control the 

system adequately. 

Multiple Model Adaptive Estimation (MMAE) is a technique that can overcome 

the effects of parameter uncertainty [21:131]. In the MMAE method, multiple Kaiman 

filter models are generated, each based on a different assumed value of the uncertain 

parameters. Since the parameters typically vary over a range of continuous values, a finite 

set of parameter values must be selected as a result of discretizing the parameter space 

over the range of possible values. The multiple filters are then set up in a parallel bank. 

The state estimate of each filter is probabilistically weighted based on the probability that 

the filter-assumed parameter value is correct. The probability weights are determined by 
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Figure 1 -1.  Multiple Model Adaptive Estimator [21:132] 

the history of the measurement values and the residuals (the difference between actual 

measurements and best predictions of their values generated by the filter before the 

measurements are actually available) of each of the filters in the bank. Thus the filter 

based on the correct parameter value will have the highest associated probability. The 

sum of the individual probabilities will be equal to one, and the weighted outputs are 

summed to generate the overall adaptive state estimate. A diagram of the MMAE is 

presented in Figure 1-1. As illustrated, measurements of the outputs of the system, 
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z, are fed into each Kaiman filter (each based on the assumed parameter value, ak for 

k=l,2,...,K) which then outputs a state estimate, xk, and residual, rk. The residual rk is 

the difference between the actual measurement, z, and the Kaiman filter's best prediction 

of the measurement, based on the assumption that the correct value of the parameter 

vector is ak. A probability weighting factor is generated for each filter state estimate as 

determined by a hypothesis conditional probability computation [21:130] applied to its 

residual and the residuals of the other filters. The probability weighting factors are 

multiplied by the appropriate state estimates. The MMAE state estimate is the resulting 

sum of all these products, which is a probability weighted average. 

If the range of possible parameter values is very large, this technique would require 

a large number of Kaiman filters, which would be computationally burdensome. By 

utilizing only a subset of Kaiman filters in the parameter space, the computational load 

would be reduced. The concept of the moving bank involves using filters defined for only 

a subset of the full parameter space. At any one time only a small portion of the total 

number of filters will be on-line and actively estimating the system states. This subset of 

filters would attempt to surround the current parameter estimate in the parameter space, 

and is able to move around within the parameter space as the parameter values vary. This 

will be illustrated later in Section 1.2.3. This idea is based on the assumption that the 

probabilities associated with the filters that are closest to the actual parameter value 

should be predominant, and the probabilities of the filters not included in this subset 

should be negligible. Bank movement is accomplished by dynamically redeclaring which 

set of filters will be active, based on the properties of the residuals of the active filters. In 

this manner, the moving bank should be able to track the parameter estimate and thus 

maintain its validity. 
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The number of states for each Kaiman filter must be reduced to aid further in 

reducing the computational burden. Tradeoffs between performance and computational 

loading must be analyzed when reducing the number of states of the system models. Also, 

proper tuning of the filters must be implemented to ensure adequate adaptation. Adding 

pseudonoise to the system models may compensate for the inadequacies in the reduced- 

order models, however, it may also inhibit the determination of which filter represents the 

true parameter value. 

Once an adaptive state estimate is determined, it is used to generate the 

appropriate control to be input to the system. The controllers used in this research will be 

based on a Linear system model, with a Quadratic cost control criterion, driven by white 

Gaussian noises (LQG). A separate LQG controller will be developed and cascaded 

behind each Kaiman filter in the MMAE. Thus, each controller output can be 

probabilistically weighted and then summed to form the optimal control to be input back 

into the system. The Multiple Model Adaptive Controller (MMAC) design is depicted in 

Figure 1-2. The LQG controller gain -G* associated with each parameter value ük is 

cascaded with the output state estimate from each associated filter and appropriately 

weighted (as discussed previously). The probability-weighted sum of all the weighted 

controls uk from each individual LQG controller forms the final control which is input to 

the system. Additionally, each of the individual filters is provided knowledge of the final 

control as fed to the real world system (although this is not explicitly shown in Figure 1-2 

in order to keep the diagram from becoming unnecessarily complicated). 
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Figure 1-2.  Multiple Model Adaptive Controller 

This thesis will utilize a moving-bank MMAE and LQG-based MMAC controller 

to control a large flexible space structure (SPace Integrated Controls Experiment, or 

SPICE), with the primary goal being to quell unwanted vibrations induced in the structure. 

Figure 1-3 displays a simple rendering of the physical structure located at Phillips 

Laboratory, Kirtland AFB, NM. This work follows directly from work accomplished by 

Schiller [31]. In Schiller's work, the undamped natural frequencies were allowed to vary 

in concert with one another using a single multiplicative constant on all the undamped 
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Figure 1-3: SPICE Space Structure 

natural frequencies. In this work, the first three modes (corresponding to the lowest 

frequency modes in each of three directions: two translational and one torsional) will have 

one multiplicative constant, the second three modes will have another constant multiplier, 

and the rest of the modes will have yet another multiplier. This configuration is more 

realistic in that it allows for the independent variation of the undamped natural frequencies 
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of the system. Thus the parameter space for this effort becomes three-dimensional versus 

one-dimensional for Schiller's work. 

1.1 Notation 

Notation used in this thesis will attempt to maintain consistency with [20]. 

Deterministic and stochastic processes alike will be indicated by the roman typeface. 

Vectors will be displayed in bold-faced type, x, whereas scalars will be normal type, x. 

Matrices will be displayed in upper case, X. A particular realization of a variable will be 

displayed in italics, x. 

1.2 Background 

The purpose of this section is to introduce the four main areas of concern involved 

with this research. These four include: (1) the system model, (2) Multiple Model Adaptive 

Estimation (MMAE), (3) Moving-Bank MMAE, and (4) Moving-Bank Multiple Model 

Adaptive Controller (MMAC). The ideas will be presented here in a general sense. The 

specific problem for this research will be more fully developed in Chapters 2 and 3. 

1.2.1   System Model 

A full description of the SPICE-4 system model will be presented in Chapter 3. 

This system model is the same version that was used for Schiller's research [31]. 

Physically, the structure consists of a large platform which holds a deformable mirror 

assembly at the base, and a smaller platform and mirror assembly at the top. The two 

platforms are connected by a tripod of three legs. In the space environment, the three 

tripod legs will vibrate, causing the two mirror assemblies to be out of alignment, 

particularly when the vehicle is commanded to slew to accomplish pointing. This out-of- 

alignment condition is undesirable, thus the unwanted vibrations must be quelled. There 

are various accelerometers and actuators located throughout the structure. Successive 
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integrations of the outputs of the accelerometers measure velocity and position while the 

actuators generate the control inputs used to quell the vibrations of the structure. The 

control inputs are based on the accurate estimation of the undamped natural frequency of 

the bending modes of the structure. 

The models for the SPICE-4 structure were developed at Phillips Laboratory by 

applying a finite element analysis in the determination of the mass and stiffness matrices. 

Chapter 3 will provide a discussion relating the mass and stiffness matrices to the damping 

ratios (Q and natural frequencies (C0n) of all modeled bending modes. These last two 

parameters were initially considered to be unknown and formed the basis for the uncertain 

system model requiring numerous Kaiman filters. However, Gustafson [7] showed that 

the damping ratio parameter does not have any appreciable effect on the adaptation 

process, thus it was not used for the work by Schiller [31] and will not be used for this 

research. 

1.2.2   Multiple Model Adaptive Estimation 

Multiple model adaptive estimation has proven to be effective in estimating the 

states for a system which contains uncertain parameters. If there are uncertain parameters, 

a (a vector composed of scalar parameters such as £ and coft), the state model cannot be 

determined exactly. These parameters can be thought to fill a space defined by all the 

possible values the parameter vector may take (afc for k = 1,2 ... K). A separate Kaiman 

filter must be generated for each parameter value in the space.  The parameter space will 

most likely have a continuous range, thus, the continuous space must be purposefully 

discretized to keep the number of filters realizable. Since one filter is necessary for each 

discretized value, the total number of filters corresponds directly to the number of chosen 

values in the space. 
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As an example, let the two uncertain parameters of a system be the undamped 

natural frequency and the damping ratio, a = (£, con )T that are allowed to vary, each with 

10 possible discrete values. Thus there are one hundred possible combinations of these 

parameters and the resulting parameter space is a two-dimensional 10x10 space, requiring 

100 filters (K=100) as illustrated by Figure 1-4. If instead there were three uncertain 

parameters, the number of filters required jumps to 1,000. It is easy to see how the 

number of filters grows dramatically as the parameter space grows in size and as more 

uncertain parameters are added. 

Within this full bank of Kaiman filters, the output state estimate, xk, from each 

filter is based on the parameter value, 2tk, used in its respective system model. The state 

estimate from the filter using the parameter value closest to the true value should be 

determined to be the most correct.  The estimation algorithm uses information from the 

residual, rk, of each filter to determine which filter is most correct. The filter with the 

smallest residual (relative to the filter-computed residual standard deviation) is most likely 

Parameter a 
l 
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Figure 1-4.  Full-Bank MMAE 
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the filter with the model based on the true parameter values, whereas the magnitudes of 

residuals from other filters should be relatively larger [21:133].  The residuals are used to 

produce a conditional probability to determine a weighting factor for the corresponding 

state estimate. This probability is the probability that the discrete parameter value used in 

the filter's system model is closest to the true parameter, conditioned on the history of 

measurements observed until the current time. Consequently, the highest conditional 

probability should be assigned to the most correct filter (smallest residual), and lower 

relative conditional probabilities assigned to the other filters [21:133]. There are four 

different methods for determining the final state estimate: (1) the Bayesian form (alluded 

to in Figure 1-1), (2) Maximum A Posteriori (MAP), (3) the Bayesian form with a 

Maximum Entropy with Identity Covariance (ME/I) density computation, and (4) the 

MAP form with the ME/I density computation. These methods will be presented in 

Chapter 2. 

1.2.3   Moving-Bank MMAE 

In problems in which there are a large number of discretized parameter points, and 

thus a large number of Kaiman filters, there is a need to reduce the computational burden 

created by this large bank of filters in order to attain on-line applicability. The concept of 

the moving-bank MMAE was introduced in order to alleviate this problem. In the 

previous example, a 2-dimensional bank of 100 filters was introduced and is illustrated in 

Figure 1-4. It would be computationally infeasible to consider having all these filters 

active at once, thus, it is necessary to maintain a smaller subset of filters active at any 

time. Since the variable parameters (£ and C0n) can assume only one point or position in 

the two-dimensional parameter space at any time, a smaller bank of filters is used to 

estimate and surround the parameter value. For a two-dimensional parameter 
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space, nine active filters are typically used so that the actual parameter point would be 

surrounded by filters on all sides. The nine active filters are based on the fact that the 

filters based on parameter values nearest the actual parameter point would have the 

smallest residuals (best state estimates) and those based on values farther away would 

have larger residuals (relatively poorer state estimates). The filters based on parameter 

values that are farther away can be taken off-line without impacting the final state estimate 

appreciably, since their probability values, pk, are negligible. Only the filters based upon 

closer point values would be active, which would result in the reduction of the 

computational load. 

As the true parameters vary over time throughout the parameter space, the smaller 

subset of active filters must move with the true parameter. The computed estimate of the 

true parameter value must remain centered within the bank. As the parameters vary, the 

filters on the side farthest from the drifting point would be deactivated and ones nearest 

the new position would be activated. This smaller bank would then "move" by dynamic 

activation and deactivation of the filters, attempting to maintain itself centered about the 

true parameter point. This concept is depicted in Figure 1-5. In this case, the parameter 

position drifted diagonally, requiring that two sides be deactivated and redeclared. This 

figure also illustrates what will be referred to as a fine discretization, where the active 

filters' parameter points are adjacent to each other (at the finest level of discretization used 

for model generation). 

A coarse discretization of the moving bank would be required in the initial 

parameter acquisition phase or if the true parameter value jumped by a large discrete 

amount. In these instances, the true parameter value is located outside the bounds of the 
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Figure 1-5.  Moving Bank MMAE Fine Discretization 

finely discretized bank, thus all filters in the bank will have large residuals. When this 

occurs, the bank becomes configured in a coarse discretization by activating the Kaiman 

filters associated with the widest possible positions along the edges of the parameter 

space. This is illustrated in Figure 1-6. Once a parameter value is acquired, the bank can 

again be finely discretized to refine the estimate further. 

In this research, three uncertain parameters will be addressed. As described 

previously, the first parameter will be the scalar multiplier on the undamped natural 

frequencies of the first three bending modes of the SPICE-4 system. The second 

parameter will be the multiplier on the second group of three undamped natural 

frequencies, and the third parameter will be the scalar multiplier on the remaining 

frequencies. The resulting parameter space becomes three dimensional. 
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Figure 1-6.  Moving Bank MMAE Coarse Discretization 

There are 5 methods for deciding to expand, contract, move, or not move the 

bank. These decision making techniques, which will be discussed fully in Chapter 2, are: 

(1) Residual Monitoring, (2) Parameter Position Estimate Monitoring, (3) Parameter 

Position and "Velocity" Estimate Monitoring, (4) Probability Monitoring, and (5) 

Parameter Estimation Error Covariance Monitoring [26]. 

1.2.4   Moving-Bank MMAC 

For the controllers used in this research, LQG regulators will be implemented since 

the desire to quell unwanted vibrations is equivalent to driving the system (bending mode) 

states to zero. Rigid body states are not included in the development of the controller 

since the purpose is to quell unwanted vibration in the structure, not the rigid-body 

motion. For this type of controller, the assumptions are that the system is adequately 
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modeled as linear, the cost is of a quadratic form, and the noise inputs are Gaussian 

[22:19]. 

The stochastic controllers developed for this research are based on the certainty 

equivalence property [22:17]. That is, the optimal controller gains are formed using the 

optimal LQ deterministic full-state feedback controller with the actual states of the system 

replaced by the state estimates from a Kaiman filter. For the multiple model adaptive 

controller application, a separate LQG controller is formed from the state estimates of 

each Kaiman filter in the bank as depicted in Figure 1-2. Using such a structure for a 

controller when there are uncertain parameter values is a form of "assumed certainty 

equivalence" [22:253]. Thus, each LQG controller is based on one discretized parameter 

position, as in the MMAE filters. A steady-state constant-gain control law can be used if 

the initial transients in the Kaiman filter gains and the final transients in the optimal 

controller gains are assumed to be negligible. For this to be true, the control interval must 

be long compared to the two transient times. 

There are many different ways for combining the MMAE and LQG controller. 

These are: (1) MMAC Control, (2) "Modified" MMAC Control, (3) MAP versus 

Bayesian MMAC Control, (4) Single Fixed-Gain Control, (5) Single Changeable-Gain 

Control, and (6) "Modified" Single Changeable-Gain Control. The methods differ in the 

way the state estimates are used or in the way the final control output is formed. The pure 

MMAC methods are referred to as Bayesian because their outputs are probabilistically 

weighted using a conditional probability calculation. The maximum a posteriori, or MAP 

method of MMAC does not form a probability weighted average; instead it simply utilizes 

the controller based on the single elemental filter with the highest probability calculation. 

All of these methods will be presented in more detail in Chapter 2. 
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1.3      Past Research 

Research on the topic of moving bank multiple model adaptive estimation and 

control techniques has been ongoing at the Air Force Institute of Technology for many 

years.  Research was initiated by Hentz in 1984 [9,26]. He was able to show that a 

moving-bank MMAE performed as well as a full-bank MMAE on a problem involving a 

single bending mode, but with a resulting order of magnitude less computational load [9]. 

Hentz began development of the algorithms and thresholds to move, expand and contract 

the bank, and began exploration of many of the controller design approaches discussed in 

the previous section. 

Filios [2] used ambiguity function analysis in the performance evaluation and in 

determining the appropriate threshold levels for moving and contracting the bank. 

Unfortunately, he did not achieve very good results, partially due to the fact that the 

simple application he chose did not have a strong need for adaptive control [2:93]. 

Karnick [10,11] was the first to apply the techniques to a physical two-bay truss 

structure. The rectangularly shaped structure was designed to emulate an appendage, 

similar to a solar panel, which would then be attached to a much larger space structure. 

The entire truss and hub could be rotated in a planar motion, which resulted in undesired 

vibrations which needed to be quelled through adaptive control techniques. Karnick used 

a 6-state truth model and 6-state filter model. His results showed that the moving-bank 

MMAE was not able to identify the uncertain parameters, although it was sometimes able 

to provide accurate state estimates [10:93]. He found that the moving bank wandered 

throughout the parameter space and never provided a consistent parameter estimate. This 

problem was due to the sensors being too imprecise. Finally, due to the problems 

encountered, his results indicated that a coarsely discretized full-bank MMAE could 

perform as well as a finely discretized moving-bank MMAE [10:92]. 
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Lashlee [13,14] continued the work of Karnick, focusing on the tuning aspects of 

the filter design. He found that, with a well-tuned filter, the uncertain parameters could be 

estimated accurately. He also showed that too much measurement noise can have an 

adverse effect on distinguishing between correct and incorrect models, and he 

demonstrated that the parameter space discretization process plays an important role in 

determining the parameter estimates accurately. As a result, Lashlee was able to show a 

greater performance potential for the moving-bank MMAE [13:199]. 

Van Der Werken [35] used the same two-bay truss as Karnick and Lashlee, but he 

expanded the truth model to 24 states. He conducted a performance analysis between the 

24-state truth model and the 6-state filter model, and he examined the degradation caused 

by the order reduction between the two models. His results showed poor performance of 

the MMAE and MMAC for the reduced-order models. Thus, he concluded that the 

unmodeled states adversely impacted the ability of the moving bank to provide accurate 

parameter estimates [35:14] 

Schore [27,32] continued Van Der Werken's work by examining some of the 

difficulties previously encountered. To determine which unmodeled states were causing 

the degradation, he compared the truth and filter model estimates of the true shape of the 

structure rather than its individual bending mode coordinates. He found that the reduced- 

order filter model should not degrade the MMAE and MMAC performance. After 

correcting some software problems, Schore demonstrated that the reduced-order MMAC 

controller was able to control the structure adequately despite unmodeled effects. 

Moyle [29] concentrated on improving the estimator and controller algorithms, 

and further refined the Kaiman filter and controller tuning parameters. These efforts 

resulted in significant improvements in performance. Moyle examined many different 

control techniques but had the best success with the Maximum Entropy with Identity 
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(ME/I) covariance, parameter position monitoring, and modified MMAC combination (all 

explained in Chapter 2) [29].   He also demonstrated that, contrary to the results obtained 

by Sheldon [33], packing the assumed parameter discrete values more densely at higher 

frequencies for the parameter discretization had no effect in improving controller 

performance [29]. 

Gustaf son [7,8] was the first to implement MMAE and MMAC techniques to the 

SPICE space structure. He used the SPICE version 2 (SPICE-2) system model as the 

truth model, which consisted of 194 states. Gustafson developed reduced-order 

controllers using both internally balanced reduction and modal reduction; however, both 

types of reduced-order systems did not perform very well. His full order controller was 

able to provide stabilizing control over the range of parameter values, however, the 

control was not able to meet the RMS line of sight error specifications levied by Phillips 

Laboratory. Gustafson felt that the problem was not in the MMAC process, but was due 

to improper actuators and imprecise measurement devices on the structure [7]. Gustafson 

also determined that the controller was insensitive to damping ratio changes, and this 

parameter was deleted as an uncertain parameter without a loss of performance. Thus, his 

parameter discretization method resulted in a 1x7, one-dimensional parameter space, with 

the undamped natural frequency C0n as the only changing parameter. 

Fitch [3] continued work on the SPICE-2 model. He implemented a purposeful 

dither into the structure to enhance parameter identification. Sine wave, square wave, and 

wideband noise dither signals were all shown to enhance parameter identification 

significantly. He also more finely discretized the parameter space for the SPICE-2 model, 

and showed very good parameter tracking, even without dither enhancements [3]. 

Schiller [31] concentrated on applying a moving-bank MMAE/MMAC to the 

SPICE-4 structure. SPICE-4 was updated from SPICE-2 in that more test data was used 
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to validate the updated model for the structure, and the addition of actual sensors and 

actuators was implemented in the system models [16,31] • He developed several 

reduced-order models based on both the modal reduction and modal cost reduction 

techniques [31,34]. He discretized the parameter space more finely and over a larger total 

range than did Gustafson, resulting in 21 possible natural frequency values. Many 

different MMAE/MMAC implementations were tested, against multiple truth assumptions, 

with effective estimation and control provided by each technique. 

1.4     Problem Statement 

This thesis concentrates on applying a moving-bank MMAE/MMAC to the 

SPICE-4 space structure. The actual system models will be developed in Chapter 3. 

Previous work had always assumed that all of the undamped natural frequencies of the 

bending modes varied in concert with each other. That is, that there was a single scalar 

multiplier on all of the undamped natural frequencies [31]. For this thesis, the undamped 

natural frequencies will be partitioned into three groups. The first group will consist of 

the first three undamped natural frequencies of the bending modes of the structure, and 

will have one scalar multiplier. The second group will consist of the next three undamped 

natural frequencies, and will have another scalar multiplier. The remainder of the 

frequencies will have their own scalar multiplier. Thus the undamped natural frequencies 

of the three groups of bending modes will be allowed to move independently of each 

other.  The three separate scalar multipliers will be the three uncertain parameters in the 

system model, so the resulting parameter space will be three-dimensional. 

1-18 



1.5 Scope 

The focus of this research will be to apply moving bank MMAE/MMAC 

techniques to suppress unwanted vibrations in the SPICE-4 space structure. Since this 

research is a continuation of Schiller's work [31], the existing SPICE-4 models will be 

used, including the 294-state truth model and the various modal and modal cost reduced- 

order models developed by Schiller. The Kaiman filter and controller tunings developed 

by Schiller will also be used for this effort, except where modifications are necessary. As 

explained above, the three uncertain parameters will allow the groups of undamped natural 

frequencies of the structural bending modes to move independently of each other. The 

discretized parameter space will be modified to allow a three dimensional full bank of size 

7x3x7. (Early investigation showed that the parameter for the second group of 

frequencies did not require more than 3 discrete values. Thus, the moving bank, a 3x3x3 

set of 27 filters, will only "move" in two of the three directions of parameter space.) 

Kaiman filters and controllers will be developed, and the MMAE/MMAC algorithms 

modified to allow for the three dimensions. Performance evaluations will be conducted to 

show that the controller can adequately estimate the three uncertain parameters. 

1.6 Approach 

Since this effort is a continuation of Schiller's work, the truth model and the 

reduced-order models for the SPICE-4 system already exist and will be used. The Kaiman 

filter and controller tunings developed last year will also be used for this effort. The 

development and testing of the three dimensional MMAE/MMAC for the total structure 

will consist of the following steps: (1) discretization of the parameter space, (2) 

development of the Bayesian MM AE, (3) development of the moving-bank algorithm, (4) 

development of the stochastic controller, and (5) performance evaluation. 
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Discretization of the parameter space. In Schiller's work, the parameter space 

was 1x21, with 21 scalar multipliers of natural frequency, G)n.  Additionally, this 

multiplier was applied to all of the flexible bending modes' frequencies simultaneously. 

For this research, it will be necessary to determine the size of the three-dimensional 

parameter space.  The actual size of the complete parameter space is arbitrary, but based 

on physical insight and the need to keep the size reasonable, a parameter space of 7x3x7 

was chosen. To accomplish the discretization, one parameter (scalar multiplier) is varied 

by discrete step sizes in one direction and successive Monte Carlo runs made until the 

Kaiman filter becomes unstable (or until performance degrades unacceptably in some other 

respect). This procedure is repeated for each of the six directions (plus and minus in each 

dimension). Once a discretization level is determined for each direction, the remainder of 

the parameter space is completed by linearly changing the parameter values by the same 

amount until the parameter space is complete. 

Bayesian MMAE development. Kaiman filters for the truth and reduced-order 

model will be developed for each discretized parameter value in the parameter space. 

Both the ME/I and the ME/A methods for determining the probability weighting factors 

will be examined, and a lower bound for the probabilities will be implemented to avoid the 

"lock-out" condition. These ideas will be presented in detail in Section 2.3.2. 

Development of the moving-bank algorithm. Algorithms from previous research 

will need to be changed to incorporate the increased dimension of the parameter space. 

Previous work indicates that the best method for the moving-bank algorithm is the 

parameter position method [31]. Residual monitoring and probability monitoring will also 

be reexamined. Methods and thresholds for contracting and expanding the bank will need 

to be examined due to the increased dimensions of the parameter space. Performance 
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analysis will be conducted for the cases of constant, slowly varying, and jump parameter 

changes. 

Development of the stochastic controller. LQG techniques will be implemented in 

the design of the controller. Weighting matrix values developed by Schiller [31] will be 

used for this effort. Past research also indicated that the cross weighting matrix between 

states and controls could be set to zero with no appreciable impact [7]. The objectives of 

the controller are to achieve tight control of the bending modes without consistently 

saturating the actuators.  Possible controller implementation techniques will be re- 

examined. These include MMAC, modified MMAC, MAP, and others, as discussed in 

Section 2.6. 

Performance evaluation. Performance of the MMAE/MMAC will be evaluated 

via Monte Carlo analysis. The primary objective is for the tracking error to meet the 

specification of less than one |i-radian rms. The secondary objective is determining the 

accuracy of the state estimate, x, and the uncertain parameter estimate, ä. 

1.7      Summary 

A general introduction to the concepts and operation of MMAE, moving-bank 

MMAE, and MMAC has been given in this chapter. A simple two-dimensional example 

demonstrated the basics of these concepts, yet the simple example can be easily extended 

to the complex SPICE-4 structure. A summary of the previous research on these topics 

has been presented. The chapter ended with a statement of the problem, the scope of the 

research, and the general methodology to be followed in attaining the solutions. 

The remainder of this text is organized as follows. Chapter 2 will discuss the 

Kaiman filter and LQG controller algorithms, as well as the MMAE/MMAC and the 

moving-bank decision making algorithms. Chapter 3 will introduce and develop the 
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system model for the actual total structure. Chapter 4 will discuss the software required 

and subsequent simulations necessary to investigate the system performance.  Chapter 5 

will present the results from this research, after which Chapter 6 will provide conclusions 

and recommendations for future research. 
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//. Background 

2.1    Introduction 

This chapter presents a basic development of the Kaiman filter, the MMAE, the 

moving-bank MMAE, and the LQG controller algorithms. The various methods of 

implementing the MMAE and MMAC will be addressed. Also, a basic discussion of the 

mathematical modeling techniques, coordinate forms, and order reduction used in this 

thesis will be given. A more rigorous development of many of the subjects discussed in 

this chapter can be found [20,21,22,23,24]. A quick review of notation usage in Section 

1.1 may be advantageous before reading this chapter. 

2.2 Kaiman Filter 

A Kaiman filter is used to estimate the uncertain states of a system. It is an "optimal 

recursive data processing algorithm" that can be shown to be optimal by essentially any 

standard [20], based on the assumptions that the system under consideration is adequately 

modeled as continuous and linear with white, Gaussian dynamics driving noise. 

Additionally, the measurement model is assumed to have linear sample-data 

measurements, corrupted by white, Gaussian discrete-time noise. The linear stochastic 

differential equation upon which the Kaiman filter is based is: 

x(t) = F(t)x(t) + B(f )u(f) + G(f )w(0 (2.1) 

where x(-) represents an n-dimensional state vector, u(-) is an r-dimensional 

deterministic control input vector, and w(-) is an ^-dimensional white Gaussian noise 

vector. F(-) is an n-by-n dimensional system dynamics matrix, B(-) is an n-by-r 

dimensional deterministic input matrix, and G(-) is an n-by-s dimensional noise input 

matrix. 

2-1 



The white, Gaussian driving noise statistics are given by: 

E{w(t)} = 0 (2.2) 

E{w(t)w(f f} = Q(f)8(f - f) (2.3) 

where Q(f) is an s-by-s dimensional positive semi-definite matrix that indicates the 

strength of the dynamics driving noise. 8() is the Dirac delta function. 

Based on the assumptions stated previously, the state vector, x(-), is a Gauss-Markov 

process and can be completely described by its mean, covariance, and covariance kernel. 

Initial conditions for both the mean and covariance must be determined to solve the above 

differential equation.. The initial mean, x0, and covariance, P0, are given by: 

E{x(t0)} = x0 (2.4) 

E{[x(t0)-x0][x(t0)-x0]T} = P0 (2.5) 

The initial mean is a best guess at the initial state vector, while the initial covariance 

describes a level of confidence in the estimate of x0, or an indicator of the spread of the 

density function for possible initial values. 

Since the Kaiman filter algorithms will be implemented on a digital computer, a 

discretized version of the state space models is required. Instead of discretizing the filter 

equations, an equivalent discrete time system model should be developed from which a 

discrete-time filter will be built. This avoids using Riccati differential equation integrations 

and approximations [20:261]. The discretized system model upon which the Kaiman filter 

is based is given by: 

x(r,) = 0(ti9ti_J)x(ti_J) + Bd(ti_Mh-i) + Gd(ti.1)wd(ti_1) (2.6) 
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where O(v), the state transition matrix, is the solution to: 

Q(t,ti_1) = F(t)®(t,ti_1) (2.7) 

with the initial condition: 

<!>(ti_1,ti_1) = I (2.8) 

Laplace transform techniques can be used to generate the solution based on a time 

invariant F-matrix as follows: 

<D(^W) = Ofe -fw) = ^{[^I-F]-1} (2.9) 

If u(-) is held constant, as by a zero order hold, over one sample period, the deterministic 

matrix Bdft_;) of Equation (2.6) is given by: 

B«('w) = f <*>ft,x)B(x)dx (2.10) 

The statistics of the discrete-time white Gaussian system dynamics driving noise are given 

by: 

E{wd(ti_])} = 0 (2.11) 

£{wrfft_;)wd(f;)T} = Qdft,;)5(/_7W (2.12) 

where 5(,_i); is the Kronecker delta function. Qd(-) is given by: 

Q*('w) = JP 0(r!,x)G(T)Q(T)GT(x)0Tft,xMT (2.13) 
H-l 

where Equation (2.6) is modified such that Gd = I if Equation (2.13) is used to evaluate 

Sampled data measurements are obtained by the discrete-time measurement update 

model: 

zft) = Hft)xft) + vft) (2.14) 
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where z(-) is an m-dimensional discrete-time measurement vector, H(-), is an ra-by-n 

dimensional observation matrix, and v(-) is an m-dimensional noise vector representing 

measurement noise. This noise vector is modeled by white, Gaussian noise with statistics 

given by: 

E{v(ti)} = 0 (2.15) 

E{y(tiMtj)
T} = mi)Sij (2.16) 

where R(f,-) is an m-by-m dimensional, positive definite symmetric matrix and 8,-, is the 

Kronecker delta function. The fact that R(^) is positive definite indicates that all 

measurements are corrupted with noise. Additionally, this model generation assumes that 

x0, w(-), and v(-) are independent and thus, equivalently, uncorrelated due to the 

Gaussian assumptions [20:205]. 

After the discrete-time system models are developed, the Kaiman filter proceeds 

through its estimation sequence which includes alternating propagation and update cycles. 

In the propagation segment, the state estimate after the most recent measurement update 

at time, t*_lt is propagated forward to just prior to the next measurement update time, tj. 

The superscript'-' denotes the state just prior to a measurement update whereas a'+' 

denotes the state after a measurement is incorporated. The propagation equations are 

given by: 

i(fp = 0(f.,f._i)xa!
+_;)+B,(r._i)u(rjW) (2.17) 

no=Oft.^^pcd^ft.^^+G.^JQ,^^/^) (2.i8) 

When measurement data is received by the filter, the update segment consists of 

incorporating that data to form the best state estimate at time, t*. The update equations 

are given by: 

K(rI) = P(rr)HT(ri)[H(r!.)P(rr)HT(?,) + R(fI)]"1 (2.19) 
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x(tn=x(tn+K(ti)[z(ti)-H(ti)x(tn] (2.20 

P(f,+) = P(f,-)-K(f,)H(f,)P(0 (2.21) 

where z(-) is the measurement to be incorporated at time tt.  The residual, or innovation, 

is defined as the difference between the current measurement and the Kaiman filter's best 

estimate of that measurement prior to its occurrence, based on the entire time history of 

the measurements. The residual equation is given by: 

r(ti) = z(ti)-miMO (2.22) 

where r(-) is seen to equal the bracketed term in Equation (2.20) [20:228]. This residual, 

weighted by the Kaiman filter gain, is used as an error correction factor to the previous 

state estimate, and is summed with the previous estimate to form an updated best estimate. 

The residual is known to be zero-mean, white, and Gaussian, with a covariance equal to 

the bracketed term in Equation (2.19) [20:229]. 

Assigning values to the initial state estimate, state covariance, dynamics noise strength, 

and measurement noise covariance is called tuning. The strength of the dynamic driving 

noise indicates how accurately the filter models the true dynamics of the system. 

Measurement noise indicates how much uncertainty is in the measurement values, due to 

either physical noise in the sensor or modeling imperfections. The filter should be tuned to 

attain the best performance in estimating the states of the system. To attain proper tuning, 

the filter-predicted state statistics should be roughly equal to the true statistics as output 

from the performance analysis based on the truth model. 

Based on the assumption that the described system is time invariant with stationary 

noises, there are several simplifications that can be made to minimize the computational 

loading of implementing the filter. The typical Kaiman filter response goes through an 

initial transient stage, followed by a steady-state stage [20:224]. If performance 

degradation is minimal, and if the initial transient stage is short compared to the total time 
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of interest, then a steady-state constant-gain Kaiman filter can be implemented. In this 

case, the values for K(^), P0,~), and P(r,+) in the previous equations can be taken to 

steady state and precomputed for all time. With the stationary noise assumption and a 

fixed sample rate, constant values for the Bd(f,.), and Qd(tt) matrices respectively need 

only be precomputed once. Additionally, the measurement noise covariance matrix, 

R(X), will be assumed constant. 

The development of the specific SPICE-4 system model matrices and vectors, x(-), 

F(-), <D(v), Bd(-), u(-), Qd0, Gd(-), z(-), H(-), and v(-) wül be discussed in Chapter 

3. 

2.3    MMAE 

The actual MMAE algorithm is based on the properties of Bayesian conditional 

probability densities. The basic concept of the MMAE was introduced in Chapter 1, but it 

will be amplified in this section. A more rigorous discussion of the subject can be found 

[21:129-139]. 

2.3.1   Bayesian Formulation 

A Kaiman filter is most effective in state estimation when the system model is precisely 

known. However, precise knowledge of the system model rarely occurs and uncertainties 

in these models may affect any or all of the system model matrices. In the SPICE-4 

model, the uncertain parameter is assumed to affect the state transition matrix. This 

uncertain parameter, a, may cause a subsequent loss of precision in the state estimation. 

As discussed in Chapter 1, a may be defined over a continuous range; thus an infinite 

number of Kaiman fillers would be required in the MMAE, each based on a specific 

realization a = a in this range. Thus, the continuous range must be discretized such that 

the parameter a will take on a reasonable set of representative values a;,a2, ,aK, 

where K is the total number of Kaiman filters. For the example system described in 
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Chapter 1, the parameter space was 2-dimensional, with 10 discrete values for each scalar 

parameter, resulting in 100 Kaiman filters. The actual discretization process will be 

discussed in Chapter 4. 

Since the basic Kaiman filter is developed from the Bayesian conditional probability 

density of the state, x, conditioned on the measurement history, Z (where 1iti) = 

= \zT {tx)\z
T {t2)\- • •:zr(£.)]rfrom Equation (2.14)), a Bayesian estimator in the case of 

uncertain states and parameters would add a to the left of the conditioning argument as 

follows, where the equality is derived from Bayes' rule: 

f^m^M^i) = /«ftWSI«, z.-)W«lzi) (2-23) 

This equation is useful in that both quantities on the right hand side are known. The first 

quantity is the Gaussian density function totally defined by the outputs x(?+) and P(?f) of 

the Kaiman filter generated under the hypothesis that a assumes a specific realization a 

(i.e. a = a). The second term can be described by the following equation [21:131]: 

K 

I 
k=l 

/a,zft)(oc|Z,) = XAfeWa-a,) (2.24) 

where pk(tt) is the hypothesis conditional probability (sometimes referred to as a 

weighting factor) that was introduced in Chapter 1, where pk(t{) = 

prob(a = aft|Z(f!) = Z,-). This probability is recursively determined by: 

„ ft\-     •£ft)kzft-J)(
z« I ak > zi-i) Pk (.fa) 

where the first term in the numerator is the probability density function of the current 

measurement, conditioned on the particular assumed parameter value and the observed 

past measurement history. This density function is evaluated as [21:132]: 
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/zft)|a,Zft_;)\
Zi\ak> ^i-l) ~ Texp{-} 

(2*)2 Mop 

{-} = {-W(ti)^k
1(ti)rk(ti)} (2.26) 

where 

rk(ti)=[x(ti)-nk(tink(tn] 

and 

Ak(r/) = [HJl(rI.)Pik(rr)Hj(rl) + RJk(ri)] 

and xt(?,~), PA(?r)» Hk (*,•)> and RjtOj) are quantities in the &-th Kaiman filter, which is 

based on the assumption that a = at, and m is the number of states in the state vector. 

Since the second term in the numerator of Equation (2.25) is the previous value of the 

hypothesis conditional probability, this equation constitutes an iterative solution. The 

denominator is the sum of the numerator terms from all K filters at time tt. This can be 

considered a scaling factor that ensures the sum of all the individual conditional 

probabilities will equal one. 

The resulting state estimate, conditioned on the entire measurement history, from the 

preceding development is given by [21:131]: 

x(tn = E{x(»,)|Z(r,) = Z,.} 

= & 

K 

lfxiti)^tifiW^i)pM d\ 

k=l 
(2.27) 
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where xk(tf) is the state estimate produced by the k-th Kaiman filter, based on the 

parameter ak, and /?*(*,-) is the probabilistic weighting factor, or the hypothesis 

conditional probability. The individual weighted state estimates are summed to create a 

weighted average final state estimate. This multiple model filter structure was depicted in 

Figure 1-1. 

The conditional covariance development is similar in structure to Equation (2.27) as 

seen by the following equation [21:131]: 

Ptf) = £{[x(0-^)][x(0-x(C)]T|za) = Z,l 

K 

I 
k=l 
XA(^){p,(^)+[x,(^)-xo;)][x,(r;)-x(?;)]

T  (2.28) 

where Pk (zf) is the state error covariance from the Kaiman filter based on the parameter 

value, ak. Unlike the individual Pt(*f) values, the P(#) cannot be precomputed because 

it is dependent on the measurement history through xk(t*), x(*f), and/^ (/,•). 

Fortunately, this does not inhibit on-line application. 

The statistics for the uncertain parameter a must be determined in order to evaluate 

the performance of the MMAE, but are not necessary in determining the state estimates. 

The conditional mean is given by the following [21:132]: 

a(ti) = E{a(ti)\Z(ti) = Zi} 

= I>/alZft)(a|Z,)da 

= i*kpM (2.29) 
k=J 

The corresponding covariance indicates the level of precision in the estimate of the 

parameter [21:133]: 
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Ps = 4a - Ä(Ola " Ä(0]r|Zft) = Z J 

I 
k=l 

= lh "»(Ola* -&to]rA('i) (2-30) 

2.3.2   Performance Evaluation and Enhancements 

The preceding Bayesian multiple model adaptive estimator formulation has a few 

inherent problems. This section will address these problems specifically, discuss potential 

solutions, and introduce alternate methods for computing the final state estimate. 

The first concern to be addressed relates to the relative sizes of the filter residuals. 

The residuals of the parallel bank of Kaiman filters ultimately determine how well the 

MMAE will perform. The residuals of each of the elemental filters provide an indication 

of filter performance. The filter based on the most correct parameter value, ük, should 

have the smallest residual magnitude (scaled relative to the filter-computed residual 

covariance, Ak). In this case, Equation (2.26) would provide the corresponding highest 

conditional density value and Equation (2.25) would subsequently provide the largest 

probability value for this "best" filter. However, if all the quadratic terms in the 

exponential portion of Equation (2.26) from each of the active filters are of the same 

relative magnitude, then the filter with the smallest |At(*,-)| term will have the largest 

probability assigned to it. This is not the proper criterion for determining probabilistic 

weights, thus this particular filter may not be appropriately weighted. Since the sum of all 

probability weights must be one, the remaining filters will also have erroneous weights, 

and the resulting final state estimate will be degraded. 
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To overcome this drawback of the straightforward Bayesian approach, the Afe(f,) 

term in the conditional density function is replaced by an identity matrix which may be 

scaled by some constant. The resulting density function is thus given by: 

/ztt)|a,z&_i)(
zila*>Z!-i) =        —    -exp{} 

{■} = {-W(ti)*rk(ti)} (2.31) 

This method, termed the Maximum Entropy with Identity covariance (ME/I) method, 

attempts to account for the possibly erroneous affects of the |Afc(f,-)| term in the pre- 

multiplier and the exponentiated quadratic, as well as for an incorrectly evaluated Akvalue 

due to model uncertainties. It assumes that the residuals follow a "maximally non- 

committed residual distribution" [33:24]. This method ensures that the residual with the 

lowest (absolute vs. relative) magnitude will be given the highest probability weighting 

factor. 

Another proposal to remedying this situation is to rely solely on the exponential term 

in the conditional probability function (Equation (2.26)). This is accomplished by 

removing the term preceding the exponential in Equation (2.26). This removes the so- 

called "beta-dominance" effect of the |Afc(f,-)| in the premultiplier [28:473]. The result 

would no longer be a proper density function, however, due to the scaling effect in the 

denominator of Equation (2.25), the computed probabilities would still sum to one 

[28:473]. 

The second drawback to the Bayesian MMAE method lies in the iterative 

implementation of Equation (2.25). If the conditional probability of any elemental filter, 

pk (ti), become zero at any time, it will remain at zero from that time forth.   Thus, the 

MMAE would ignore that filter even if the elemental filter based parameter value, afc, 
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were to match the real value closely at a later time, because its contribution to the 

weighted average would be zero. This condition is termed "lockout". To prevent such a 

situation from occurring, a lower bound is artificially imposed upon the probability 

calculation. This eliminates the possibility of the probability ever going to zero. A 

threshold, pmin, is determined such that if the computed hypothesis conditional 

probability, pk(tt), should fall below this lower bound, then pk(tt) is set to a minimum 

value. The value is set so as not to bias the state estimate computation significantly, and 

the remaining probabilities are rescaled to maintain the summation equal to one. 

Two methods can be applied in the evaluation of the final state estimate.  The first 

method is the pure Bayesian MMAEform described in the preceding developments. The 

second method is the Maximum A Posteriori (MAP) method which makes the assumption 

that the filter state estimate with the highest probability pk will be used solely as the final 

state estimate. This method does not provide for a "blending" of estimates from each of 

the elemental filters, as would the probability-weighted average estimate computations of 

Equations (2.27) and (2.29). Either of these two methods can be used with either the 

Maximum Entropy with Identity covariance (ME/I) density computation, or with the 

"beta-dominance" term stripped away as described above, as well as with the full 

computations of Equation (2.26). 

2.4    Moving-Bank MMAE Development 

In the full-bank MMAE developed above, one Kaiman filter is required for each of K 

discrete parameter values. The computational load for all of these filters is quite 

demanding. A technique for alleviating this problem is to implement a moving bank of 

filters. The moving bank algorithm activates only a subset, J, of the total number of filters, 

K, where J<K at any one time. The moving bank will attempt to surround the parameter 

estimate, thus the bank must move, expand, and contract as the true parameter changes 

within the parameter space. Additionally, as the bank moves through the parameter space, 
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the Kaiman filters need to be dynamically activated and deactivated. This section 

discusses the techniques for moving the bank, expanding the bank, contracting the bank, 

and initializing new filters. 

2.4.1   Moving the Bank 

The moving-bank MMAE is based upon the subset of/filters which surround the best 

estimate of the uncertain parameter, ä. When a parameter variation occurs, the bank is 

moved in the direction of the new parameter estimate. This move can be accomplished in 

a finely discretized manner should the parameter drift slightly (as depicted previously in 

Figure 1-5) or in a coarsely discretized manner should the parameter make a large discrete 

jump (as depicted previously in Figure 1-6). There are 4 methods for implementing the 

move logic. These methods are: (1) Residual Monitoring, (2) Parameter Position Estimate 

Monitoring, (3) Parameter Position and "Velocity" Estimate Monitoring, and (4) 

Probability Monitoring [26]. It is necessary to determine the specific bank movement 

threshold values empirically for each method, which is analogous to filter "tuning". 

2.4.1.1  Residual Monitoring 

The residual monitoring method uses the likelihood quotient, Lj (*,-), which is defined 

as: 

Lj(ti) = rJ(ti)Aj(tiy
1rj(ti) (2.32) 

The likelihood quotient has the same form as the exponential term in Equation (2.26). 

The decision to move the bank is based on the value of this scalar quadratic function 

which is calculated for each of the J filters in the bank at each sample time. If the true 

parameter value lies outside the moving bank, large residual values will result for all the 

active filters, which will result in a large likelihood quotient for these filters. The smaller 
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the value of L, (^), the closer the filter-estimated parameter is to the true parameter. If all 

the filter's quotients are above a given threshold value, it indicates that the true parameter 

is no longer surrounded by the small moving bank. The bank is then moved in the 

direction of the filter with the smallest likelihood quotient. Past research has shown that 

determining the move threshold is critical for acceptable performance [9:61]. A threshold 

value that is too high results in move logic that is too slow in responding to parameter 

changes. A threshold value that is too low results in erratic movement of the bank 

throughout the parameter space, thus failing to maintain a proper estimate of the true 

parameter. Since Ly (tt) is a function of only the one most recent sample of measurement 

residual r • (tt), rather than a history of recent residuals, a single large measurement noise 

sample can adversely affect the performance of the residual monitoring method by causing 

unnecessary movement of the bank [26]. 

2.4.1.2  Parameter Position Estimate Monitoring 

The parameter position estimate monitoring method attempts to keep the moving bank 

centered over the current estimate of the true parameter position determined by the 

MMAE, using Equation (2.29). The current estimate of the parameter's position is 

compared with the location of the center of the moving bank. If the difference is above a 

set threshold, then the bank is moved in order to re-center the bank over the currently 

estimated position. Unlike the previous method, this technique is not based solely on the 

most recent measurement value; it is based on the parameter estimate which is a function 

of the entire measurement history. As a result, this method does not suffer from the 

erratic behavior due to single large measurement noise samples [26]. When the true 

parameter moves to the edge or corner of the parameter space, the center of the bank 

cannot be centered on the parameter estimate without the bank exceeding the limits of the 

parameter space. Thus, the move logic must be altered slightly to account for this 
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possibility by placing the edge of the moving bank at the limits of the parameter space in 

these situations. 

2.4.1.3 Parameter Position and "Velocity " Estimate Monitoring 

Similar to the previous technique, this method attempts to estimate the position and 

"velocity" of the drifting parameter. The velocity estimate is then used to predict the 

location of the parameter position at the next measurement sample time. The velocity is 

determined by comparing the history of parameter position estimates over one sample 

period or several and dividing by the appropriate time increment. If the predicted position 

exceeds a threshold as compared to the current center of the moving bank, the bank is 

moved in the direction of the velocity vector. Previous research discovered that this 

technique resulted in no improvement in the estimation of the parameter, yet did exhibit a 

destabilizing effect on the bank's position [9:62]. Thus, this method will not be pursued in 

this effort. 

2.4.1.4 Probability Monitoring 

This method combines the properties of the residual monitoring method and the 

parameter position estimate monitoring methods in an attempt to center the bank over the 

estimated position based on the conditional probabilities as determined in Equation (2.25). 

The pk{tt) with the highest value corresponds to the filter based on the parameter value 

closest to the true parameter value. If this probability is larger than a pre-determined 

threshold, the bank will move in the direction of the filter with the highest probability. As 

in position monitoring, this technique is dependent on the history of measurements and is 

not as susceptible to single large measurement noise samples as is the residual monitoring 

technique. 

2-15 



2.4.2   Expanding the Bank 

When the true parameter position is not encompassed within the moving bank of 

filters, the bank has a more difficult time determining what the appropriate direction for 

movement is. It is then necessary to expand the bank to a coarse discretization that covers 

the entire parameter space, so that the true parameter becomes encompassed by the bank. 

This situation could occur in two scenarios: during initial acquisition and when the true 

parameter makes a discrete jump to a new location. The bank may be originally 

configured in a coarse discretization for the initial acquisition or expanded from a fine to a 

coarse discretization for a jump change. Hentz determined that there was substantial 

improvement in parameter estimation when the bank was initialized to a coarse 

discretization [26]. Once the acquisition cycle yields an estimate of the parameter 

position, the bank can be contracted to a fine discretization, and centered on the parameter 

estimate. 

Expanding the bank requires the use of the residual monitoring technique since the 

other techniques rely on ä, which is confined within the finely discretized bank by the 

computation of Equation (2.29), with summation only over the currently active parameter 

points. The decision to expand the bank is based upon the likelihood quotient, similar to 

the residual monitoring move logic discussed in Section 2.4.1.1. An expansion threshold 

is set (higher than the move threshold) such that if this value is exceeded by all the filters, 

then this indicates the parameter position has made a much larger jump. None of the 

current filters will have a viable hypothesized parameter value, hence an expansion to a 

coarse level of discretization is appropriate. As in the move method, the same problems 

exist for the expansion logic. Specifically, the method is dependent on only the single 

most recent measurement value, and thus is susceptible to a single large sample of 

measurement noise. This may cause the bank to expand unnecessarily. The expansion 

threshold is determined through trial and error and is very important to the proper 
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operation of the MMAE. Hentz found that if the expansion threshold was set too high, 

the response time was too slow. Likewise, if the threshold was set too low, the bank 

would expand unnecessarily [9:69]. 

2.4.3   Contracting the Bank 

Contraction of the discretized bank will be appropriate once an accurate estimate of 

the uncertain parameter is obtained following either initial acquisition or previous 

expansion due to a jump parameter change. The bank is contracted to surround the true 

parameter with a fine configuration based on a technique called the Parameter Estimation 

Error Covariance Monitoring method. When the variance of the scalar parameter 

estimate (as determined in Equation (2.30)) falls below a set threshold, the bank can be 

contracted down to a fine configuration about the parameter estimate. Depending upon 

the size of the parameter space, this contraction can occur in one large step or multiple 

steps. As with the move and expansion logic, determination of the correct contraction 

threshold is critical to the MMAE performance. It is desirable to have the contraction 

occur quickly to enhance the parameter estimation, but Hentz found that if the threshold 

was set too high, contraction would occur before a good parameter estimate was 

obtained. Likewise, setting the threshold too low delayed proper contraction [9:69]. 

If the parameter space is greater than one dimensional, a problem occurs with the 

above procedure. In the problem at hand, a three-dimensional parameter space is used. A 

scalar threshold value can only be compared to some scalar measure of size associated 

with a three-by-three covariance matrix, Pä. Hentz compared the largest diagonal element 

in the matrix with the threshold, whereas Filios had better results by requiring both 

diagonal elements to be below the threshold [2,9]. Unfortunately, this method has 

tradeoffs since the appropriate threshold for each diagonal element might be different. 

Better performance may be gained by allowing separate decisions in each of the parameter 
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Space directions, which may lead to rectangular bank shapes as well as square. This is the 

method that will be implemented here. 

Karnick [10] proposed an alternative method. His technique monitored the probability 

of an entire side of the bank as defined in the following equation: 

If this probability fell below the threshold, that particular side was contracted towards the 

parameter estimate. Likewise, if the probability of a side should rise above another 

threshold, then the other sides were contracted towards the parameter estimate [10:29]. 

Another variation monitored all four sides such that if the sum of these probabilities fell 

below a threshold, the bank was contracted. This method corresponds to the idea that the 

larger the probability, the closer the side is to the true parameter value. 

2.4.4   Initialization of New Elemental Filters 

Whenever the bank moves, expands, or contracts, new elemental filters will be 

activated. These newly activated filters must undergo an initialization process. First, <I>, 

Bd, Gd, H, A, D, K, P(ff) and P(f+) for the filter and G*c for the controller (to be 

discussed in the next section) must be modified to correspond to the new parameter value. 

The matrix, D, is a direct feedthrough matrix that results from the reduced order model 

development and will be discussed in Chapter 3. These matrices are updated from 

information stored in memory that corresponds to the new parameter value for the filters 

that now comprise the bank. The new filters also must have an appropriate state estimate, 

x ■(*,-), and probability weight, Pj(tt), which must be initialized. The state estimate, 

Xj(tt), is set equal to the current adaptive state estimate, x(tt). There are several 

methods proposed to initialize pj (?,), but the most widely used method involves 

redistributing the values last obtained from the deactivated filters equally among the newly 

2-18 



activated filters. Another method reinitializes all the current filters (changed and 

unchanged) to an equivalent probability weighting (all pj values = UK). This proved to 

converge to a parameter estimate too slowly [9,26]. However, if the bank expands or 

contracts, setting all values equal may be the most appropriate despite the slowness, since 

the old values may no longer be valid. A note to remember is that the sum of the new 

probability weights in all cases must add to one.  Other, more complicated methods of 

distributing the probabilities have been examined [9:29], however, they were not found to 

be any more effective and thus will not be pursued for this research. 

2.5   Stochastic Controller Development 

Linear (system model), quadratic (cost function), Gaussian (noise model) techniques 

will be the main controller development tools for this research. It was stated in Chapter 1 

that this thesis will use an LQG controller. For this type of controller, the quadratic cost 

function to be minimized can be given as: 

J = E 
^[xT(ti)X(tMti)+nHti)V(tiMti)+2xT(ti)S(tiMti)] 
i=0 

+ 2X   (tN+l)Xfx(tN+1) 

(2.34) 

where the resulting output of the controller is the optimal control function, u* [22:73]. 

This equation can be restated as: 

J = E 
N     ( 

i=0    i u(f,) 

X(f,)   Sfo)" 
ST(f;)     Ufo). 

+ 2X   (tN+l)Xfx(tN+1) 
JJ 

(2.35) 

where: 
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/ = scalar cost to be minimized 

x(fj) = «-dimensional state vector 

X(^) = n x «-dimensional state weighting matrix 

Xf = nx n-dimensional final state weighting matrix 

u(?j) = r-dimensional control input vector 

U(f;) = rx r-dimensional control weighting matrix 

S(tt) = n x r-dimensional cross-weighting matrix 

tN = last time a control is applied (held constant to next sample period) 

tN+} = final time 

X(^)and Xf are weighting matrices that are real, symmetric and positive semi-definite, 

which allows for a zero cost to be placed on states that have negligible impact on desired 

performance. V(tt) is real, symmetric and positive definite, thus assuring that there are 

no zero eigenvalues, in order to preclude allowing infinite power to be commanded 

through any of the actuators. The cross weighting matrix S(fj) is chosen so that the 

augmented matrix in Equation (2.35) is positive semi-definite, which ensures that a cost- 

minimizing controller solution exists. 

For the purposes of this discussion, the weighting matrices are assumed to be diagonal. 

The values in the cost weighting matrices, X(r,)and X/,reflect the relative importance of 

maintaining the state estimates near zero. Larger terms indicate higher emphasis on 

minimizing the corresponding state. Similarly, the diagonal terms of the control weighting 

matrix, U(f,-), reflect the level of control energy or power that is to be used. Larger terms 

indicate smaller levels of control power are to be commanded through the corresponding 

actuators. 

For the quadratic cost defined in Equation (2.35), the optimal discrete linear feedback 

control law is [22:16]: 

u*(ti) = -G*c(ti)Z(ti+) (2.36) 
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where G*(f,) is determined by solving a backward Riccati difference equation and 

x(f.+)is the state estimate from the Kaiman filter. 

A steady-state constant-gain control law can be obtained if the initial transients in the 

Kaiman filter and the final transients in the controller gain are assumed to have minimal 

impact on the system performance over the total time of interest. For time-invariant 

systems and constant weighting matrices (i.e., X, U, and S are not functions of time in 

Equation (2.35)), steady-state, constant-gain controllers can be generated by ignoring the 

final transient, notationally by letting the upper limit, N, go to infinity and dropping the last 

term in Equation (2.35). In this case, the optimal discrete linear feedback control law is 

[22:243]: 

u*(ti) = -G*cx(ti
+) (2.37) 

where x(f.+) is now the state estimate from the constant-gain, steady-state Kaiman filter. 

The constant-gain steady state control law is as given by Equation (2.37), with [22:242]: 

G; = [U + BlKcB,]_1[BjKcO + ST] (2.38) 

where K* is determined by solving the steady-state Riccati equation: 

Kc = X + <DTKcO - [BJKCO> + ST]T[U + BjKcBd]
-1[BjKc3> + ST]    (2.39) 

These assumptions reduce the quadratic cost function to: 

J = £{Si[xTÖi)Xx(r<)+uT(ri)Uu(r<) + 2xTöi)Suft)]} (2-40) 

Previous research results indicated that the cross weighting matrix, S, had a negligible 

magnitude, and it was neglected with no appreciable performance impact [13]. This is the 

form of control law to be used in this thesis. 
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2.6   MMAC 

The LQG controller MMAC design is similar to the MMAE development, and was 

depicted in Figure 1-2. One LQG controller as described in the previous section will be 

developed for each Kaiman filter in the bank. The controller gain , — Gc, is cascaded 

with the Kaiman filter, however, there are many methods in which the final control is 

implemented. As introduced in Chapter 1, there are six methods for combining the 

MMAE and LQG controller. These are: (1) MMAC Control, (2) "Modified" MMAC 

Control, (3) MAP versus Bayesian MMAC Control, (4) Single Fixed-Gain Control, (5) 

Single Changeable-Gain Control, and (6) "Modified" Single Changeable-Gain Control. 

2.6.1 MMAC Control 

The pure MMAC control method is shown in Figure 1-2.  The final optimal control 

output is determined in much the same manner as is the Bayesian form of the optimal state 

estimate in the MMAE. Each controller output is appropriately weighted-based on the 

filter conditional probability, pk (tt), and summed with the others to create a weighted- 

average final controller output. Note that each controller gain is based on the assumed 

parameter value for that filter model. 

2.6.2 "Modified" MMAC Control 

The modified MMAC control method ignores inputs from filter/controllers assumed to 

have relatively poor state estimates by monitoring the conditional probabilities, pk (tt). 

After each of the ^control vectors, Uk, (see Figure 1-2) is formed, the associated 

conditional probabilities, pk (tt), are compared to a set threshold. If the probability of any 

filter falls below this threshold, its corresponding control output is not included in the final 

summed controller gain. However, the probabilities for the other controllers must be 

rescaled to sum to one. Care must be taken in setting this threshold; it must be set higher 

than the artificial lower bound which was added to the conditional probabilities to keep 
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them from ever going to zero. By applying another threshold on the conditional 

probabilities, higher than the previously mentioned lower bound, filters at the lower bound 

or in the gap between the two bounds will be effectively eliminated from the MMAC 

control calculation. The intent is to remove contributions to the MMAC output that are 

derived from elemental LQG controllers based on wrong hypothesized parameter values, 

since these would likely be inappropriate or even destabilizing control contributions. 

2.6.3 MAP verses Bayesian MMAC Control 

This method, which corresponds to the MAP estimation described in Section 2.3.2, 

states that the elemental LQG controller with the largest computed conditional probability 

will be declared the controller to be used at the current time. Again, this method doesn't 

allow for "blending" of the controllers. 

2.6.4 Single Fixed-Gain Control 

This method determines the control gain based on the nominal parameter values. This 

is assumed to be acceptable since the full-state feedback controller is inherently robust 

[9:40]. Figure 2-1 illustrates this design. In this figure, ZOH refers to zero-order-hold, 

where the control input is held constant over the entire sample period until a new control 

input is determined. Likewise, T refers to the discrete time sampler period. The control 

law is given by: 

u(ti) = -G:[Kom]x(t;) (2.41) 

where the state estimate is the only input and the gain is pre-computed. Determination of 

anom is not a trivial task in a real system, however, the controller parameters must be 

selected such that the controller provides regulation for any true system parameter value 

[9:40]. 
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Figure 2-1.   Single Fixed-Gain Controller 

2.6.5   Single Changeable-Gain Control 

This method is similar to the last in that it uses the state estimate as output from the 

MMAE, however, the controller gain is determined from the parameter estimate as output 

from the MMAE. This allows for a changing value for a(^)and is illustrated in Figure 2- 

2. The governing control law is as follows: 

u(ti) = -G:{kti)]x(t;) (2.42) 

where the gain is determined as a function of the parameter position estimates. These 

gains can be precomputed for each of the K parameter values and stored in a look-up table 

which is accessed each time a new value of a(^) is generated by the MMAE algorithm. 

Interpolation can be used to compute actual controller gains from such a look-up table 

[9:38]. 
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Figure 2-2.   Single Changeable-Gain Controller 

2.<J.<J    "Modified" Single Changeable-Gain Control 

Similar to the previous method, the modified single changeable-gain technique also 

uses a state estimate and a parameter estimate to determine the control input. The 

parameter estimate continues to come from the moving bank MMAE, however, the state 

estimate comes from a separate Kaiman filter which is not part of the moving bank of 

filters, ä(^) from the MMAE is provided to the single separate Kaiman filter/controller in 

which the system model and controller gain is based on the estimated parameter position. 

This type of control can be useful if a(f,-) lies between discretized values ak. Figure 2-3 

illustrates this technique. For the previous method x(?-+) in Figure 2-2 will be produced 

by weighted-average blending of a number of elemental filter outputs xit(?!
+), none of 

which are based on the "correct" parameter value, whereas x(?-+) of Figure 2-3 would be 

produced by a single Kaiman filler explicitly based on that correct parameter value. 

Thus, discretization effects should cause less state estimation degradation in this type of 

controller than in the form depicted in Figure 2-2. This combination should reduce the 
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Figure 2-3.  Modified Single Changeable-Gain Controller 

probability that the control input is generated from filters and/or controllers that assume 

too small a value for the undamped natural frequency of the system [7:1-17]. Past 

research has shown that underestimating this value for the important bending modes will 

readily lead to system instabilities [33]. 

2.7 Mathematical Modeling Methods 

A system model for a physical structure is usually determined from finite element 

analysis and testing. This results in the mass, damping and stiffness matrices which are 

used in the physical coordinate system. Unfortunately, this coordinate system results in 

highly coupled equations which are not readily comprehended. This section will provide a 

brief presentation of the physical coordinate form and then discuss the transformation into 

a more desirable modal form. State order reduction is typically desired for on-line 

filter/controller implementations due to the excessive computational burden imposed by 

high dimensioned systems. Consequently, two techniques for accomplishing state order 
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reduction will be presented. These are the modal reduction, and the modal cost reduction 

techniques. Additionally, the internally balanced reduction technique has been examined in 

the past, but the poor results obtained with this method do not warrant any further 

consideration [31]. 

2.7.1   Physical Coordinate Form 

The dynamics of a structure's flexible body modes are described by the following 

standard second-order differential equation [10:40, 36:1769]: 

Mf(0 + Cr(0 + Kr(r) = F7(u,r) + F2(f) (2.43) 

where: 

• r(t) = «-dimensional vector representing the structure's physical position 

• M = n-by-n constant mass matrix 

• C = n-by-n constant damping matrix 

• K = n-by-n constant stiffness matrix 

• Fj(u, t) = r-dimensional deterministic control inputs 

• F2 (t) = r-dimensional disturbances and unmodeled control inputs 

F2 (?) can be modeled as white Gaussian noises.  Under the assumption that these 

disturbances enter through linear, time-invariant matrices, then Equation (2.43) becomes 

[10:40,36:1769]: 

Mr (t) + Cr(?) + Kr(t) = -bu(t) - gw(?) (2.44) 

where: 

• u(?) = r-dimensional vector actuator inputs 
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• b = n-by-r control input matrix identifying position and relationships between 

actuators and controlled variables 

• w(f) = ^-dimensional vector of white Gaussian noises representing the 

dynamics driving noise 

• g = n-by-s noise input matrix identifying position and relationship between the 

dynamics driving noise and the controlled variables 

Equation (2.44) can be transformed into the following state space form [10:40, 1:63]: 

x(f) = Fx(f) + Bu(0 + Gw(0 (2.45) 

which is the same form as the stochastic differential equation described by Equation (2.1) 

in Section 2.2.   Thus, the state vector representation from Equation (2.44) of a general 

structure is given by: 

x(r) = 
m 
r(t) J2nxl 

(2.46) 

and the form of the constant system matrices is [7:3-20,10:41]: 

F = 
-M-'C -M-XKM 

2nx2n 

(2.47) 

B = 
0 »xr       J2nxr 

(2.48) 

G = "M-^ 

2nxr 

(2.49) 

For the state vector described in Equation (2.46), the description of discrete-time 

measurements of position and velocity is given by [7:3-20,10:41]: 
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z(t() 
Hv     0 
0    H„ 

x(f;)f + v(f(.) (2.50) 
mx2n 

where: 

• m = number of measurements 

• v(*i) = m-dimensional measurement uncertainty modeled as a discrete-time 

white Gaussian noise of covariance R(?,) 

• H   = (m/2)-by-n position measurement matrix in physical coordinates 

• Hv = (m/2)-by-n velocity measurement matrix in physical coordinates 

It is assumed that an equal number of position and velocity measurements are available, 

however, the actual measurement matrix may vary as a function of the measurements 

available. This will not affect the structure of the system matrices of Equations (2.47) 

through (2.49). 

2.7.2   Modal Coordinate Form 

The physical coordinate form described above has the disadvantage that the system 

equations are highly coupled, thus the important characteristics of the system are difficult 

to identify. Transforming the equations to modal form decouples the modes and makes 

the identification process simpler.  In this research, the damping matrix, C, is assumed to 

be a linear combination of the mass and stiffness matrices [36:1769]: 

C = ocM + ßK (2.51) 

However, the calculation of a and ß is not necessary when transforming to the modal 

coordinate form, as will be seen.  Given the new modal coordinate vector f, the 

relationship between the modal and physical forms is described by [36:1769]: 

r = Tf (2.52) 
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where T is a n-by-n transformation matrix determined from the system eigenvectors 

calculated from [36:1769]: 

(2.53) 

where the values for co that satisfy this equation are referred to as the natural or modal 

frequencies. Since the damping matrix C does not appear in this equation, the previous 

statement that the parameters in Equation (2.51) are not required is shown to be true. 

Now, using the transformation Equation (2.52) to operate on the original system 

Equation (2.45), the resulting state space equation is given by [17:5]: 

x(r) = ES(f) + Bu(0 + Gw(0 (2.54) 

where the transformed state vector from Equation (2.46) is now defined as [17:5]: 

*(*) = 
r(0 (2.55) 

2nxl 

and the transformed matrices from Equation (2.45) as applied to Equation (2.44) are 

defined as [7,17:5]: 

F = 
T lM icr   _T _1M_1Kr 

I                     0 

B = 
0 

= G 
2nxr 

G = 
~-TlM- 

0 
g" 

- 2nx2n 

(2.56) 

(2.57) 

(2.58) 
2nxr 

Since the transformation matrix is developed from the system eigenvectors which are 

orthogonal, the modal form results in independent equations. This fact plus the following 

relationships: 
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-j-1M-1cr = [-2^co!] 

- T'M'KT = [-00?] 

allows the dynamics matrix to be written as follows: 

(2.59) 

(2.60) 

F = ■[-2CA]   [-co/]' 
I 0 

(2.61) 
2nx2n 

where the upper partitions are now block diagonal in terms of the undamped natural 

frequency and the damping ratio of the i-th mode. The transformed measurement 

equation from Equation (2.50) may be written as [7]: 

z(t) = 
HT     0 

0 H,r x(Or+v(o (2.62) 
mxln 

Thus, the modal form, unlike the physical form, provides a decoupled set of system 

equations which allow ready access to the individual modes of the system (in terms of the 

natural frequency and damping ratio). The modal form provides more insight to the 

physical structure in applicable large order systems. However, the method cannot be used 

if the plant matrices are time varying [7]. 

2.7.3   Modal Reduction Technique 

The modal reduction technique is one way to reduce the number of states in the 

system model such that on-line applicability can be attained. In modal reduction, the 

higher frequency modes are eliminated from the system model. The elimination of high 

frequency modes comes from the assumption that, at the higher frequencies, the structure 

reaches steady state in a negligibly small amount of time. Also, due to the physical shape 

of the SPICE structure, the lower frequency modes should dominate the response of the 

system. This section will discuss the modal reduction procedure. 
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From Equation (2.45), the continuous state-space system model can be partitioned as 

follows [10:52,12:124]: 

x(f) = 
*2(f) ^21     ^22 

Xj(t) 

x2(0 
+ 

B7 
u(0 + 

G; 
w(r) (2.63) 

where the system is driven by deterministic controls, u(f), and zero-mean, white Gaussian 

noise w(r) of strength Q(t). The upper partition, Xj(t), corresponds to the low 

frequency modes to be maintained, and the lower partition, x2(t), corresponds to the high 

frequency modes to be removed. 

Assuming instantaneous steady state (x2(f) = 0), the x2(t) modes can be eliminated 

with negligible impact to the overall performance of the system. The lower partition 

differential equation is set to zero as follows [10:52, 12:124]: 

x2 (0 = F2ix, (0 + F22x2 (t) + B2u(0 + G2 w(0 = 0 (2.64) 

Since F2; and F22 are square matrices and F^1 is assumed to exist, x2 (t) can now be 

written in terms of Xj(t) and system inputs [10:52, 12:123]: 

x2(0 = -F2-2
1[F2;x7(0 + B2u(0 + G2w(0] (2.65) 

Substituting Equations (2.64) and (2.65) into Equation (2.63) results in [10:52, 12:124]: 

ij(t) = [Fn - F12F^F21]x ^t) + [B, - F12F22%]u(t) 

+[G1-F12F22
1G2]w(t) (2.66) 

Since this research will use a digital implementation, the discrete-time version of this 

procedure is derived in a similar fashion [7:3-24]. The equivalent discrete-time model of 

Equation (2.63) is as follows: 

x(f,-+/) = 
x2(ti+i) 

<5>n   <Di2 

®21     ®22 

Xi('«)" 

x2(f,) 
+ dl 

d2 
u(r,-) + 

Gd2 
wrf(f,.)  (2.67) 
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With the same steady state assumption as applied to the discrete time case, 

(x2 (ti+1) = x2 {ti)), the resulting representation of the higher order modes is given as 

follows: 

<D2,Xi(*,.) + [<X>22 - I]x2(*,-) + Bd2u(ti) + Gd2wd(tt) = 0 (2.68) 

*2(ti) = -[®22 -lT1[^21x](ti) + ^ä2^(ti) + Gd2wd(ti)] (2.69) 

The continuous state-space equation can be discretized easily by assuming a first order 

approximation as follows: 

<D22 = I + F22Af (2.70) 

<P2i=F2A (2-71) 

Bd2=B2At (2.72) 

Gd2 = G2At (2.73) 

Qd = Q/At (2.74) 

This last equation comes from the first order approximation, Gd2Q.J^d2 — G2QG2 At 

and Gd2 =G2At. 

Substituting the Equations (2.70) through (2.74) into Equation (2.69) results in: 

MO = -[*22AtY1[F21Atx1(ti) + B2Atu(ti) + G2Atwd(ti)] (2.75) 

where wd(/j) has covariance Qd = Q / At. Simplifying the previous equation results 

in: 

*2(ti) = -'Pl2[^2i^i(ti) + B2u(ti) + G2wd(ti)] (2.76) 

This equation is similar to the previous continuous time version, Equation (2.65), except 

W is replaced with wd, a discrete-time white Gaussian noise. Then, substituting Equation 

(2.76) into the discrete time measurement equation: 
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zftHH,    H2] 
x2(f2) 

+ v(t) (2.77) 

and expanding, yields: 

z(f,) = [H, - H.F^FJX^.)" H^B^fe) + G2w,(f,)] + v(f,)      (2.78) 

which results in a direct feedthrough term (the second term) created by the order 

reduction [10:52, 12:124]. 

The determination of the break point between the desired low frequency modes and 

the unwanted high frequency modes is determined by the computational loading 

restrictions and from physical insight. This is accomplished by examining a list of the 

modal frequencies and determining the natural breaks in the groupings. The preserved 

low frequency modes form the basis of the reduced-order model, which still retains some 

information from the eliminated higher frequency modes. 

Once a break point for the order reduction is determined, the system dynamics matrix, 

presented in Equation (2.61) is partitioned as follows to illustrate the modal form further 

[7:3-26,10:53, 12:124]: 

F = 

[-2C;co;]   [-col] 
I 0 
0 
0 

0 
0 

0 
0 

0 
0 

[-2C2co2]   [-co*] 
I 0 

(2.79) 

The low frequency modes to be maintained are represented in the upper left quadrant, and 

the higher frequency modes to be eliminated are represented in the lower right quadrant. 

These two quadrants correspond to the Fi7 and F22 partitions in Equation (2.63). The 

off-diagonal blocks, Fi2 and F2;, are zero. Substituting this information into Equations 

(2.66) and (2.78) yields [10:53, 12:124]: 
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Z](t) = FnXj(t) + B1u(t) + G1vvr(t) = Frx1(t) + Bru(t) + Grwr(t)      (2.80) 

z(ri) = H;x;(f,)-H2F2-2
1[B2u(f!) + G2wrf(f,)] + vr(0 

= nrx1(ti)-^(ti) + Dwwd(ti) + Yr(ti) (2-81) 

where the subscript r denotes "reduced-order." As can be seen through this development, 

the direct feedthrough terms, Du and Dw, allow direct measurement of the effects of 

control inputs, u(f,-)> and system dynamics driving noise, wd (t{), by the reduced order 

models. 

2.7.4   Component Cost Modal Reduction Technique 

Skelton and Yousuff [34] developed a method for order reduction called the 

Component Cost Analysis (CCA) technique. This method suggests that the performance 

of a dynamic system subject to white noise disturbances can be evaluated in terms of a 

performance metric, V.  This scalar value could represent the total system energy. The 

method determines what fraction of the overall system performance metric V is due to 

each component of the system. By identifying the individual cost associated with each 

state, it is possible to consider order reduction based on eliminating those states that have 

the least impact to the overall cost. A complete description of this technique can be found 

in Skelton and Yousuff [34]. This method of order reduction was used by Schiller [31] 

however, it will not be used in this research. 

2.8  Summary 

This chapter presented the fundamental concepts that are the building blocks of this 

research. The underlying assumptions for the entire development are: (1) the system is 

modeled by linear, time-invariant models driven by white, Gaussian noises, (2) LQG 

controller weighting matrices for state estimates and control inputs are assumed constant, 
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and cross weighting matrices are deemed negligible and are eliminated, and (3) steady- 

state Kaiman filter and LQG controller gains are employed. 

First, the basics of the Kaiman filter were presented, followed by the development of 

the Bayesian MMAE, including the concept of a moving bank. The moving-bank MMAE 

discussion included methods for moving, expanding and contracting the bank. Next, the 

stochastic LQG controller development was provided with the subsequent application to 

the MMAC. The various methods of implementing the MMAE and the MMAC were 

described. The two coordinate forms used in this research were discussed, as was the 

method of transforming between the two systems. Finally, two methods for state order 

reduction were presented. Chapter 3 will proceed with a description of the SPICE-4 

system structure model to be used for this research. 
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///.    System Development 

3.1 Introduction 

This chapter presents a more thorough description of the SPICE-4 system model 

than was given in Chapter 1. This model was originally developed by Schiller [31]. First, 

a brief physical description of the structure is provided, followed by a description of the 

mathematical models used to simulate the structure and its inputs. Finally, the truth model 

and subsequent reduced-order design model are discussed. 

3.2 SPICE Structure 

The structural model used for this research is version 4 of the SPace Integrated 

Controls Experiment (SPICE). The actual structure is located at Phillips Laboratory, 

Rutland AFB, New Mexico. SPICE has currently been revised up to version 7, but the 

system models were not available at the time this research was initiated.  The SPICE 

structure must be able to be rotated or slewed perpendicular to the LOS axis by an active 

rigid body control system. Once slewed, the flexible body modes must be quelled to 

within a predetermined specification along the LOS axis to maintain the capability of 

precision pointing along the line of sight (LOS) axis (See Figure 3-1). This thesis will 

focus on quelling the flexible body vibrations and ignores rigid body motion effects. 

3.2.1   Physical Structure Description 

The SPICE structure is divided into three major structural sections as depicted in 

Figure 3-1. The hexagonal base, or Bulkhead, forms the support for the entire structure 

and is 6.19 meters in diameter. The Primary Mirror (PM) Assembly is mounted on top of 

the bulkhead. Three legs (tripod) connect the bulkhead to the Secondary Mirror (SM) 

Assembly, which is 1.32 meters in diameter.  The overall height of the structure is 8.14 
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Figure 3-1.   SPICE Structure [15:111-14] 

meters.   The Z-axis corresponds to the LOS axis and the Y axis points out the tripod leg 

number one. Each of the PMAs has its own local coordinate frame [31:3-2]. 

Alignment of the secondary mirror assembly and the Bulkhead is the primary 

concern of this research. Reduction of the linear and angular displacement between the 

two assemblies is the purpose of the control system. An exaggerated example of the 

SPICE structure exhibiting this misalignment due to its flexible bending modes is 
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illustrated in Figure 3-2. Note that for the purposes of this research, a purely torsional 

displacement about the line of sight, or Z-axis, will not alter the alignment of the bulkhead 

and secondary mirror assemblies. 

3.2.2   Actuators and Sensors 

Actuators provide the control force necessary to quell the structural vibrations, 

*x 

Figure 3-2.  Flexible SPICE Structure 
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based on various sensor measurements. Sensor and actuator placement is an important 

part of the control system design [17:345]. The specific actuator utilized is referred to as 

a proof mass actuator (PMA). The PMA has a mass that is electro-magnetically moved to 

inhibit any bending motion of the structure at the location of the PMA. The dynamics of 

the PMA can be thought of as a simple spring-mass system [6:899]. A total of 18 PMAs 

are mounted on the structure. There are 6 PMAs located such that there is one at each of 

the hexagonal corners of the bulkhead pointing in the Z direction.  The tripod legs house 

the remaining 12 PMAs, with each leg having two sets of PMAs mounted along the local 

orthogonal (one axis of which is aligned with the tripod leg) coordinate axis and located 

approximately one third and two thirds up the length of the leg respectively. 

Various sensors provide measurement information for the control system. 

Specifically, three different types of sensors are being used. First, there are a total of 54 

accelerometers separated into 18 sets of 3 (one set per PMA) which measure the bending 

motion of the structure. Each set contains 2 high frequency Wilcoxin accelerometers and 

1 low frequency Sundestrand accelerometer. A high frequency accelerometer is physically 

mounted on each PMA proof mass, while the remaining two accelerometers are located on 

the physical structure at the point of attachment and along the reference axis of each 

PMA. The second type of sensor is the Linear Variable Differential Transformer (LVDT), 

which provides a differential position measurement of the PMA proof mass with respect to 

the structure. The third type of sensors are the elements of the Optical Scoring System 

(OSS) which uses lasers to provide line of sight (LOS) measurements between the two 

mirror assemblies. 

3.2.3 Disturbances 

Two different types of disturbances can affect the physical structure.  First, two 

highly correlated disturbances can enter each tripod leg at the attachment to the bulkhead. 

The second type of disturbance, one per leg, enters each tripod leg at the SM Assembly. 

3-4 



These input points are chosen due to the ease of entering oscillations at these locations 

during on-ground testing. 

3.3      System Mathematical Model Description 

A mathematical model of the components of the SPICE-4 system will be 

presented. The overall system model in block diagram form is shown in Figure 3-3. The 
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Figure 3-3.   System Model High Level Block Diagram 
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actual full system model is composed of an extremely high number of states (-1000). The 

complete model is presented to provide insight and understanding of the actual physical 

system. In Figure 3-3, the PMA fcmd (force command) refers to the control inputs to the 

PMAs from the combined feedback loops. The PMA LAC (low authority control) 

damping refers to simple rate feedback for the structure, which introduces a moderate 

amount of damping to an otherwise very lightly damped structure [37:170], whereas the 

PMA local damping refers to localized damping for the PMAs. The individual parts of the 

overall system model will be further broken down and analyzed, thus providing a clearer 

understanding of the system components illustrated in Figure 3-3. Due to the extremely 

large number of states, the full system model cannot be used as a "truth" model because of 

computer limitations. In Section 3.4, the actual truth system model (reduced-order) will 

be presented with all the underlying assumptions and justifications. 

3.3.1   Disturbances 

The shaping filters of the noise models for all nine disturbance inputs to the 

structure are of the form of a fourth-order bandpass filter, with the only differences being 

gain changes for the correlated noises. This is depicted in Figure 3-4 (in this figure and 

subsequent figures, the numbers under the arrows specify the dimensions of the vector 

quantity). The driving noise for the shaping filter consists of six scalar white noises with 

equivalent statistics (denoted as the vector w„ in Figure 3-4). The noise strengths are 

such that the structure achieves a 100 micro-radian open loop RMS LOS error. The form 

of the state equation is given by [31:3-8]: 

xn(0 = Fnxn(0 + G„w„(0 (3.1) 

where: 

• xn (t) =     24-state vector representing the disturbance states 

• Fn = 24-by-24 constant fundamental dynamics matrix 
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G, 24-by-6 constant noise input matrix 

• wn (t) =     6-by-l unit-strength zero-mean white Gaussian noise vector 

and the corresponding output equation is: 

n(0 = CBxB(0 

where: 

• n(t) = 9-by-l output colored noise vector 

• C„ = 9-by-24 constant matrix 

This filter contributes 24 states to the overall system model. 

The output vector is defined as: 
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3.3.2   Structure 

The structure model refers to the dynamics of the flexible bending modes of the 

system and of the active control generated by the PMAs. The full-order flexible body 

consists of over 180 modes (n~180), with natural frequencies ranging from 7 to 150 Hz. 

This adds over 360 states to the overall system model since a position and a velocity state 

is inherent in the description of each mode.  The system models for the PMAs are 

incorporated into the structure block simply by augmentation. Since the PMAs are 

essentially spring-mass systems, they can be modeled as simple second-order systems, 

each with a damping ratio of -0.01 and natural frequency of ~5 Hz. This adds 36 states 

to the overall system model [31:3-10]. 

The system models were provided in the modal coordinate form; thus, no 

transformation from a physical representation was necessary (as discussed in Section 

2.7.2).   The structure block can be represented by the following state equation: 

i5(f) = F,x,(r) + Bsufcmd(t) + G,n(r) (3.4) 

where: 

• xs(t) = (36 +2«)-state vector representing the flexible body and PMA modes 

• Fs = (36+2n)-by-(36+2n) constant structure plant matrix 

• Bs = (36+2n)-by-36 constant control input matrix 

• Gs = (36+2«)-by-9 constant noise input matrix 

• n(f) = defined in Equations (3.2) and (3.3) 

• ufimd = 36-by-l PMA force commands vector 

• n = number of modes representing the structure 

The actual structure of the dynamics matrix F, is of the block diagonal form illustrated in 

Equation (2.79), where the corresponding state vector has the velocity states ordered first 

and the position states second, x (t) is shown on the following page: 
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x,(0 = 

where: 

PMA 1 velocity 

PMA 18 velocity 

First bending mode velocity 

nth bending mode velocity 
PMA 1 position 

PMA 18 position 
First bending mode position 

nth bending mode position 

The associated output equation is as follows: 

Inructif) = C,x,(f) + D,„u/cwrf(0 + Dmn(0 

• y struct (0 = 98-by-l structure output response vector 

" xi 

X18 

X18+l 

X18+n 
X18+n+l 

X18+n+18 

X36+n+l 

X36+2n 

• Cs = 98-by-(36+2n) constant matrix 

• Dsu =98-by-36 deterministic control input direct feedthrough matrix 

• DOT = 98-by-9 noise direct feedthrough matrix 

The output vector is defined as: 

(3.5) 

(3.6) 
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(3.7) 

The X and Y Line of Sight outputs result from a transformation of the outputs of 

the optical scoring sensor or OSS outputs. The OSS outputs are position measurements 

of the displacement of the primary mirror assembly with respect to the secondary mirror 

assembly, as measured by a laser/sensor pair. The structural acceleration outputs relate 

the acceleration of the structure at the point of attachment of the PMAs. The PMA 

acceleration outputs relate the acceleration of the actual proof mass within each PMA. 

The differential position outputs relate the position of the proof mass relative to the 

structure at the point of attachment [31:3-12]. 

3.3.3   Measurement Devices 

There are four different types of measurement devices included on the SPICE-4 

structure. These include Wilcoxin high frequency accelerometers, Sundestrand low 

frequency accelerometers, LVDTs, and optical scoring sensors. Each type of sensor has 

its own system model. 
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3.3.3.1 Wilcoxin Accelerometers 

The high frequency Wilcoxin accelerometer can be modeled by a second-order 

high-pass filter with correlated sensor noise as illustrated in Figure 3-5. The colored 

sensor noise is modeled with a high-pass third-order shaping filter. The state space 

representation is given by: 

vWacc (t) = 
xty 
M 

wa 

0 
0 

x„ 
xty 
ait) 

+ 
B. 

0 y«c(f)+ 
o 

wWacc(t) (3.8) 

where: 

• xwa(t) = 36-state vector representing the accelerometer response 

• xnwa(t) = 54-state vector representing the time-correlated accelerometer noise 

• F^j = 36-by-36 constant accelerometer plant matrix 

• Fnwa = 54-by-54 constant accelerometer noise shaping filter system matrix 

• Bwa = 36-by-18 constant matrix 

• Gnwa = 54-by-18 constant matrix 

• yacc = defined by the appropriate partition of Equation (3.7), (see below) 

• wwacc = 18-by-l unit-strength white Gaussian noise vector 

^Wacc        f 

accelerometer noise 

WWacc .086s2+ 98.032s + 612.547 

s3+ 6383.71s2+ 1.05e7s + 9.92e8 
(high pass noise shaping filter) 

18 

- + 

18 

$ acc 

Wilcoxin accelerometer 

s2 

\s      Vj V              18 s2+ 17.769s +157.914 
(high pass filter) 

18 

Figure 3-5.  Wilcoxin Accelerometer Model 
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The corresponding measurement equation is given as: 

ZWacc(h) — L"vra      "nwaj + [Vywa]yacc(ti) (3.9) 

where: 

• H^ = 18-by-36 constant accelerometer measurement matrix 

• Unwa = 18-by-54 constant accelerometer noise measurement matrix 

• Dywa= 18-by-18 constant feedthrough matrix 

• yaCc = defined by the appropriate partition of Equation (3.7), (see below) 

Since there are actually two sets of Wilcoxin accelerometers (located on the PMA and 

structure respectively), each represented by a separate model of the form given by 

Equations (3.8) and (3.9), the separate accelerometer input terms for the 18-dimensional 

yacc vector are gained by extracting the appropriate set of components from Equation 

(3.7) (terms y63 through y80 for the PMA accelerometers and terms y45 through y62 for 

the structure accelerometers, respectively) [31:3-14]. 

3.3.3.2  Sundestrand Accelerometers 

The low frequency Sundestrand accelerometer is appropriately modeled by a 

second-order low-pass filter as illustrated in Figure 3-6. The colored sensor noise is 

modeled with a second-order low-pass shaping filter. The state space representation is 

given by: 

Sacc (t) = 
_Xnsa w_ 

= 
"F sa 

0 
0 " 

F nsa_ _XosaW_ 
+ 

0 y«c(0+ 
0 " 

_     nsa_ 

wSacAt)   (3.10) 

where: 
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• xsa(t) = 36-state vector representing the accelerometer response 

• xn*a(0 = 36-state vector representing the time-correlated accelerometer noise 

• Fsa = 36-by-36 constant accelerometer plant matrix 

• F^ = 36-by-36 constant accelerometer noise shaping filter system matrix 

• Bsa = 36-by-18 constant matrix 

• ^nsa = 36-by-18 constant matrix 

• yacc ~ defined by Equation (3.7) 

• wsacc = 18-by-l unit-strength white Gaussian noise vector 

The corresponding measurement equation is given as: 

XSaccVi) ~ ["sa      "nsaJ (3.11) 

t'Sacc         f 

accelerometer noise 

Sacc 0.038s+ 1.19 

18 

■y 

s2+1891s+ 1.18e4 
(low pass noise shaping filter) 

18 

''ace 

Sundestrand accelerometer 

9.87e6 

'l8      U \>             18 s2+ 4442.212s +9.87e6 
(low pass filter) 

18 

Figure 3-6.  Sundestrand Accelerometer Model 
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where: 

• Hsa = 18-by-36 constant accelerometer measurement matrix 

• H^ = 18-by-36 constant accelerometer noise measurement matrix 

The accelerometer input vector terms for yacc are gained by extracting the appropriate 

components from Equation (3.7) (terms y45 through y62) [31:3-15]. 

3.3.3.3 LVDTs 

The LVDT is modeled by a second-order low-pass filter as illustrated in Figure 3- 

7. The colored sensor noise is modeled with a second-order low-pass shaping filter. The 

state space representation is given by: 

^LVDT (0 = 
'F. LVDT 

0      F, 
0 

nLVDT 

'■LVDT 

vnLVDT 

(0' 
(0 

+ B LVDT 

0 y^(0+ 
o 

1 nLVDT. 
WrW(0 (3.12) 

where: 

• X
LVDT(0 

= 36-state vector representing the LVDT response 

• xnzy£>r(0 = 36-state vector representing the time-correlated LVDT noise 

^•LVDT       f 

LVDT noise 

w 0.038s+ 1.19 

18 

- + 

s2+1891s+ 1.18e4 
(low pass noise shaping filter) 

18 

LVDT 

9.87e6 

"l8       U V              18 s
2+4442.212s+ 9.87e6 

(low pass filter) 
18 

Figure 3-7.  LVDT Model 
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• FLVDT = 36-by-36 constant LVDT plant matrix 

• ^nLVDT = 36-by-36 constant LVDT noise shaping filter system matrix 

• BLVDT = 36-by-18 constant matrix 

• GnLVDT = 36-by-18 constant matrix 

• y^y = defined by Equation (3.7) 

• W
LVDT 

= 18-by-l unit-strength white Gaussian noise vector 

The corresponding measurement equation is given as: 

ZLVDT ih) = ["-LVDT      "i lnLVDT. 

XLVDT\h) 
XnLVDT\h). 

(3.13) 

where: 

• HIVDr = 18-by-36 constant LVDT measurement matrix 

• HnLVDT = 18-by-36 constant LVDT noise measurement matrix 

The LVDT input vector terms for y^ are gained by extracting the appropriate 

components from Equation (3.7) (terms y81 through y98) [31:3-16]. 

3.3.3.4 Optical Scoring Sensors 

The OSS model is simply colored sensor noise which is modeled with a fourth- 

order band-pass shaping filter. The state space representation for the model depicted in 

Figure 3-8 is given by: 

*noss(t) = [KossKoss(t) + [GnOSS]woss(t) (3.14) 

where: 

• xnoss(t)= 72-state vector representing the time correlated OSS noise 

• Fn055 = 72-by-72 constant OSS noise plant matrix 

• Gmoss = 72-by-18 constant matrix 

• w05S = 18-by-l unit-strength white Gaussian noise vector 
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^oss 

OSS noise 

9.87e6 .03s2 
W ™oss 

18 

r 

<^- s2+ 4442.212s + 9.87e6 
(low pass filter) 

s2+ 4.442s + 9.87 
(high pass filter) 

18 

OSS transformation matrix 

V T 
PMA-OSS 

^oss 

18 U \)%             18 42 

Figure 3-8.   OSS Model 

The 42 sensor outputs are transformed from the sensor axes to correspond to the 18 PMA 

nodes via a coordinate frame transformation, TPMA_oss. Thus the form of the 

measurement equation is as follows: 

^OSS^i) = \_™-OSS\XnOSS "*" L    J PMA-OSS \J OSS >c (3.15) 

where: 

• H05S = 18-by-72 constant matrix 

• Tpm_oss = 18-by-42 constant OSS Transformation matrix 

The OSS input vector terms for yoss are gained by extracting the appropriate components 

from Equation (3.7) (terms y3 through y44) [31:3-17]. 

3.3.4   Feedback Loops and Control Inputs 

The three-tiered feedback loop structure was illustrated in Figure 3-3. The first 

tier, PMA local damping force, provides for localized damping feedback for the PMAs. 

The second tier, PMA Low Authority Control (LAC), provides simple rate feedback for 

the entire structure. The third tier is the MMAC design which provides feedback for 

attaining the desired performance specifications.  Note that only the outputs of the 
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structure accelerometers and OSS are used by the MMAC loop. The PMA local damping 

and PMA LAC controllers are comprised of numerous integrators, differentiators, and 

filters which add an additional 216 states to the truth model. The PMA force command 

input block is modeled as two consecutive second order filters with a fourth order additive 

colored noise. A more complete illustration with all the appropriate models is provided in 

Figure 3-9 [31:3-18]. 

3.4  Truth Model Selection 

The total full-order truth model consists of (690+2n) states. Driving noise 

contributes 24 states; structural bending modes and PMAs contribute (36+2n) states. The 

Wilcoxin accelerometers constitute 108 states, while the Sundestrand accelerometers 

contribute 72 states to the truth model. The LVDTs and the OSS sensors each contribute 

72 states. PMA input noise is comprised of 144 additional states. Finally, the tiered 

feedback structure contributes 180 states, 72 for PMA local damping, and 108 for the 

PMA low authority controller. 

This extremely large number of states presents a significant problem of 

computational burden in the controller development. Thus, reducing the total number of 

states in the truth model becomes necessary. However, the reduced truth model must still 

maintain a true representation of the physical structure. There are several assumptions 

made in performing the truth model reduction. First, the flexible bending modes are 

truncated at natural frequencies greater than 100 Hz. Second, the measurement devices 

are modeled as providing perfect measurements with additive white sensor noise. Third, 

any low-pass filter with a break frequency beyond the frequency range under consideration 

can be eliminated. Finally, noise inputs on the first two feedback loops and on the PMA 

control inputs will be eliminated. Justifications for each of these methods are addressed in 

the following section [31:3-20]. 
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PMA noise 

9.87e6 

s2+ 4442.212s + 9.87e6 
(low pass shaping filter) 

.03s2 w 
PMA 

s2+ 4.442s + 9.87 
(high pass shaping filter) 

18 

M 
9.87e6 

s 2+444.2s +9.87e4 
(low pass) 

9.87e6 

s2+444.2s +9.87e4 
(low pass) 

18 and 

(structure) 

18 

* and 

(PMA) 

PMA Local Damping 

307 «-O 
18 

90.9s 3144.6 z 
s +90.9 

(differentiator) 
s +3144.6 

(low pass) 
18 

1 

s + 94.25 
(low pass) 

s + 1.257 
(high pass) 

«q> Wacc 
"+ 18 

PMA LAC 

18 
800 s2+1.77s+1.579 

(integrator) 
a 

s2+444.2s +9.87e4 
(high pass) 

'Wacc 

18 

18 
MMAC 

444.2s +9.87e4 

s
2+444.2s +9.87e4 

(low pass) 

Sacc 

18 

OSS 

18 

Figure 3-9.  Feedback Loops and Control Inputs Model 

3.4.1   Truth Model Simplifications 

Truncation of the system model bending modes at 100 Hz will eliminate 86 flexible 

body modes, or 172 states, resulting in 216 bending mode states in the truth model. The 
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underlying assumption is that any mode at higher frequencies will be essentially 

instantaneously quelled thus having no effect on the system. Moreover, the amplitude 

associated with these modes are significantly dominated by the amplitudes of low 

frequency mode effects. A similar assumption was made by Gustafson in his work with 

the SPICE-2 model [7]. The resulting frequency range (5 -100 Hz) forms the total 

frequency range of interest to be considered in this research. 

A large number of overall system states are contributed by the sensor, noise, and 

feedback loop models. Many of these models can be eliminated based on the assumption 

that all measurements have additive white noise. This assumption is justified as follows. 

In the MMAC feedback, three sensors are utilized: the Sundestrand 

accelerometer, the Wilcoxin accelerometer, and the OSS. Viewed together, the 

combination of the high frequency Wilcoxin accelerometer and the low frequency 

Sundestrand model can be treated as a unity gain bandpass over the entire frequency range 

of interest. Thus, they can be thought of as providing "perfect" (though noise-corrupted) 

measurements of acceleration (i.e., having a flat Bode amplitude ratio plot for the transfer 

function from true to sensed acceleration) since both cut-off frequencies are outside the 

range of interest. There is no attenuation in the frequency range of interest. Thus the 

states associated with these accelerometers can be eliminated. This same situation applies 

to the colored noise added to each of these respective sensors. The Sundestrand noise is 

shaped by a low-pass filter and the Wilcoxin noise is shaped by a high-pass filter. Thus 

their replacement by white noise is justified for the same reasons as above. The additional 

filters in this loop are no longer necessary and thus they are eliminated. The colored OSS 

sensor noise is formed by a band-pass filter where the high and low break frequencies are 

outside the frequency range of interest, and thus this noise can be treated as white. 

In the physical system, measurements of acceleration and position are provided. 

These must be integrated and differentiated respectively to gain the required rate feedback. 
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However, in the mathematical representation, direct "velocity measurements" can be 

obtained for each of the sensor outputs. Therefore, the integrators and differentiators are 

no longer necessary and their states can be eliminated from the system model. 

The two sequential low-pass filters on the input of the PMA force commands both 

have break frequencies well beyond the frequency range of interest. Thus, they are 

unneeded and are removed from the system model. 

Finally, the noise inputs on the first two feedback loops and the PMA force 

commands (not including the disturbance noise inputs and the sensor noise on the inputs 

to the MMAC) are assumed to have negligible impact on the system performance since the 

disturbance noises are of much higher magnitude. Thus, these are eliminated for simplicity 

[31:3-22]. 

3.4.2   Truth Model 

The final version of the truth model with 294 total states is shown in Figure 3-10. The 

disturbance input models have not been altered. The structure state equation remains 

unchanged except that the number of flexible bending modes has been reduced to 108 

(n=108) by ehminating high frequency bending modes. The new associated output 

equation is given by: 

y struct«) = CsXs(0 (3-16) 

where: 

• ystruct«)= 56-by-l structure output response vector 

• Cs = 56-by-(36+2n) constant matrix 
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Structure 

Disturbances 

w_ 
Bulkhead/SM 

Fstruct 
$ 1 * 

FPMA 

PMA 

Flexible 
Body 

X,Y LOS 
 ► 

PMA local damping 

307 

PMA LAC damping 

800 

1 

0.016s + 1 
MMAC 

Figure 3-10.   Truth Model Block Diagram 

The DJMand Dsn terms from Equation (3.6) have been eliminated since the "velocity 

measurements" do not involve feedthrough terms. The output vector is now defined as: 
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y = 

yi X Line of Sight 

y2 Y Line of Sight 

y3 
Transformed OSS 1 

y20 
Transformed OSS 18 

y2i = Structure velocity 1 

y38 
Structure velocity 18 

y39 

y56 

PMA velocity 1 

PMA velocity 18 

(3.17) 

where outputs y63_8o from Equation (3.7) have been eliminated. The velocity 

measurements for the PMA local damping loop are obtained by subtracting outputs y39_56 

from outputs y2o-s8 respectively. Also, the transformation matrix for the OSS LOS 

sensors was incorporated into the output portion of the structure block, thus reducing the 

42 individual sensor outputs to the 18 outputs to the MMAC block [31:3-26]. 

The addition of the first-order low-pass filter on the control inputs from the 

MMAC block produces a 10 Hz rolloff on the MMAC loop which is needed for stability 

robustness [30,31:3-26].  The state equation is given by: 

where: 

xf(t) = Ffxf(t) + BfuMMAC(t) 

x.f(t) = 18-state vector representing the filter states 

Ff = 18-by-18 constant filter plant matrix 

Bf = 18-by-18 constant matrix 

uMMAC(t) = 18-by-l MMAC control vector 

(3.18) 
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No dynamics driving noise is necessary for this filter since it is implemented digitally and 

the states are known exactly. The corresponding output equation is: 

fMMAc(t) = Cfxf(t) (3.19) 

where: 

• fMMAc(t) = 18-by-l output control vector 

• Cf = 18-by-l8 constant matrix 

The output vector is defined as: 

VMMAC 

J18 

Filtered MMAC control to PMA1 

Filtered MMAC control to PMA18 

(3.20) 

where tMmc *s men combined with the other feedback loop inputs to form the total input 

fcmd to the structure block. 

The complete open loop system model is formed by augmenting all the individual 

components together. The augmented state equation is given by: 

*«(') = F^x^CO + B^u^W + G^wW (3.21) 

where the augmented system matrices are given by: 

F   = 
F. n(24x24) 0 (24x18) 

"(18x24) 

*rs**-n(36+2nx24) 

F f(18xJ8) 

™s*-'f(36+2nxl8) 

(24x36+2n) 

(18x36+2n) 

L s(36+2n x36+2n) ]?8+2n x78+2n 

(3.22) 

B   = 
0 (24x18) 

'f (18x18!) B 

lQ(36+2nxl8)_\78+2nxl8 

(3.23) 
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G   = 0 

ln(24x6) 

\l8x6) 

0 (36+2nx6) 

(3.24) 

78+2nx6 

and w(f) is still a white Gaussian noise vector with Qt = the identity matrix. The 

augmented state vector is given by: 

x«(0 = 

1st disturbance state 

24th disturbance state 
1st MMAC filter state 

18th MMAC filter state 

PMA 1 velocity 

PMA 18 velocity 
1st bending mode velocity 

nth bending mode velocity 
PMA 1 position 

PMA 18 position 
1st bending mode position 

nth bending mode position 

The associated augmented output equation is given by: 

y«(0 = cflsxa,(r) 

where the augmented output matrix is given by: 

^as = [0(56x24)     "(56x18)     ^s(56x36+2n) 

'Xl    " 

X24 

X25 

| 

X42 

X43 

X60 
X61 

= 

X168 

X169 

X186 

X187 

X294_ 

(3.25) 

(3.26) 

] (3.27) 
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and the output vector is still defined by Equation (3.17). 

The PMA local damping and PMA LAC loops are simply formed by 

measurement feedback defined by the following: 

ZPMAldamp\ti) = \}-(18xl8)     ~\l8xl8)\S' as(21-38,39-56) \h ) 

ZLAC\ti) = ['•(18x18) \y^(2i-JS)Mj) 

(3.28) 

(3.29) 

where the subscripted numbers for y^ (here and in subsequent equations) refer to the 

appropriate partitions from Equation (3.17). As mentioned is Section 3.4.1, no additional 

noise is added to these loops [31:3-28]. 

The measurements input to the MMAC design are defined by the following 

equation: 

\l8xl8) 
'MMACinput (0 = 

zoss\h) 
ZSvel\h). 

lU8xl8) 

0      I, ya,(3-38)(^) + V(^W)       (3.30) 

Substituting the appropriate partitions of Equation (3.27) into Equation (3.30) results in 

the format consistent with the Kaiman filter measurement presentation given in Chapter 2: 

■"MMACinput (h) 
''OSS 

JSvel 

(ft)' 

(0 
H 

H 
Cas(3-20) 

Cas(21-38) 
Xas(ti) + V(ti)(36xl) (3.31) 

where: 

• xMMACinput = 36-by-l measurement output vector 

• HCay(3_20) = 18-by-36+2n constant measurement matrix 

• H-cor(2i-38) ~ 18-by-36+2n constant measurement matrix 

• v(/j)= 36-by-l white measurement noise vector 

The individual matrices for the complete truth model can be found in [31]. 
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3.5      Reduced-Order Filter Models 

The primary area investigated for the order reduction efforts was the number of 

flexible body modes retained. Schiller [31] developed several reduced-order models based 

on both the modal reduction and the modal cost reduction techniques described in Chapter 

2, with the goal of the reduction being to alleviate the computational loading. 

For the modal reduction technique, three reduced-order models were developed. 

Table 3-1 lists the first 30 modes of the flexible body portion of the structure model. 

Several groupings were observed in the natural frequencies which provide the ideal 

locations to perform the modal reduction process. The three reduced-order models 

retained 12,18, and 26 flexible body modes. Bode plots for the truth model and the three 

individual filter models were compared to show the good correspondence between all the 

filter plots and the truth plots at the lower frequencies. 

For the modal cost reduction technique, four reduced-order models were 

developed. Table 3-2 contains the first largest 30 component cost values with the 

corresponding mode numbers. Once again, several natural grouping were observed 

(separated by relatively large gaps in the sequence). Three reduced-order models were 

developed, where the resulting number of flexible body modes was 10,15, and 20, 

respectively. Additionally, a 26-mode model was subsequently created to allow direct 

comparison with the 26-mode model using the modal reduction technique. Note that the 

three lowest frequency modes are at the top of the modal cost table. This indicates that 

the lowest frequency modes are dominant in the structure's dynamic response. Bode plots 

for the modal cost filter models were compared to the truth model. Similar to the modal 

case, there is a good match between the reduced-order system model plots and the truth 

model plots at the lower frequencies. 

The complete Bode plot comparisons as well as the filter model matrices for the 

26-mode modal and modal cost reduced models can be found in the appendices to Schiller 
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[31]. Since Schiller had the most success with the 26-mode modally reduced models, they 

will be implemented for use in this research. 

3.6    Summary 

This chapter presented the models for the SPICE-4 structure used in this research. 

This included a physical description of the structure and each of its subsystems as well as a 

development of the full system mathematical models. Justification was provided for the 

development of a "reduced" truth model which consisted of 294 states and 108 flexible 

bending modes. The reduced-order filter models were described as containing 130 states 

and 26 flexible bending modes. 

The following chapter will discuss the software and performance analysis used to 

simulate and evaluate the MMAE/MMAC for the SPICE-4 structure. 
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Mode Eigenvalue Damping Ratio Natural Frequency (Hz) 

1 -0.22±43.29j 0.0102 6.889 

2 -0.10±49.00j 0.0045 7.800 

3 -0.11 +49.40J 0.0047 7.8622 

4 -0.31 +98.03J 0.0064 15.601 

5 -0.33 ± 101.60J 0.0066 16.172 

6 -0.47 ± 106.85J 0.0088 17.007 

7 -0.35 ± 121.52J 0.0058 19.342 

8 -0.91 ± 124.65J 0.0146 19.840 

9 -0.56 + 130.94J 0.0086 20.839 

10 -0.37 ± 138.53J 0.0054 22.047 

11 -1.24+151.69J 0.0164 24.144 

12 -0.57±152.13j 0.0076 24.214 

13 -1.39± 199.83J 0.0140 31.805 

14 -1.45±207.39j 0.0140 33.008 

15 -1.49 + 213.79J 0.0140 34.027 

16 -1.53 + 219.70J 0.0140 34.967 

17 -1.55±222.66j 0.0140 35.439 

18 -1.58±226.63j 0.0140 36.071 

19 -1.92±275.24j 0.0140 43.807 

20 -1.99±285.58j 0.0140 45.453 

21 -2.01 ± 288.01J 0.0140 45.840 

22 -2.09 ± 298.92J 0.0140 47.576 

23 -2.16 + 309.46J 0.0140 49.254 

24 -2.18±312.05j 0.0140 49.666 

25 -2.19±313.34j 0.0140 49.871 

26 -2.21 ±316.51j 0.0140 50.376 

27 -2.25 ± 322.17j 0.0140 51.276 

28 -2.28 ± 326.76J 0.0140 52.007 

29 -2.31 ±331.21j 0.0140 52.714 

30 -2.56 ± 366.25J 0.0140 58.292 

Table 3-1. Modal Eigenvalues and Natural Frequencies of the First 30 Modes 
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Component 
Cost (xlO-8) 

Mode Component 
Cost (xlO-8) 

Mode Component 
Cost (xlO-8) 

Mode 

0.348758 3 0.004097 7 0.001411 22 

0.344947 2 0.003547 26 0.001166 35 

0.031164 1 0.003536 24 0.001089 39 

0.027831 4 0.003502 28 0.000880 34 

0.012824 12 0.003343 23 0.000485 29 

0.008589 8 0.002837 21 0.000434 30 

0.006154 5 0.002753 6 0.000266 74 

0.005481 9 0.002652 11 0.000264 70 

0.005147 20 0.002610 25 0.000262 13 

0.004712 27 0.002578 10 0.000256 99 

Table 3-2. Top 30 Component Cost Values and Associated Modes 
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IV.     Simulation 

4.1 Introduction 

This chapter will discuss the computer simulations and software which are used to 

analyze the performance of the multiple model adaptive estimator and controller as they 

are applied to the SPICE-4 system model. Monte Carlo analysis will be the method of 

gathering statistical information about the process. Simulations will be performed using 

software developed in previous research [2,3,7,9,10,13,29,31,32,35] but modified to meet 

the specific goals of this effort. The discretization of the parameter space will also be 

addressed in this chapter. 

4.2 Monte Carlo Analysis 

In order to obtain statistics of the MMAE/MMAC performance, a Monte Carlo 

analysis is performed. The simulation software will produce multiple-run sample statistics 

of the estimator and controller performance. The data of interest are estimation errors for 

the filter performance, line of sight errors for the controller performance, and parameter 

estimation errors (as important though secondary in nature) in both cases. A covariance 

analysis cannot be performed for this problem due to the adaptive nature of the 

MMAE/MMAC technique, which precludes analytical evaluation of second moments of 

the errors of interest [20:329]. 

As presented in Chapter 3, the main emphasis for this research will be to analyze 

an MMAE/MMAC algorithm (based on a 130-state reduced-order filter model) against a 

294-state SPICE-4 truth model. The truth model contains all 108 flexible bending modes 

of the structure, whereas the filter design model contains only 26 bending modes. This 

filter model choice was based on the results of Schiller [31] who found that this modally 

reduced model performed best in the one-dimensional parameter space. 
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Figure 4-1.   (a) Estimator Simulation, and (b) Controller Simulation [32] 

The simulations can be broken into two parts: estimator analysis and controller 

analysis, as depicted in Figure 4-1. Figure 4-la shows the estimator analysis and Figure 4- 

lb shows the controller analysis. The variables shown in Figure 4-1 are as follows: 

• x, (tt) = the truth model states 

• xf(tt) = filter estimates of the system states 
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• a, (*,-) = the uncertain parameter vector implemented in the truth model 

• sifiti) — filter estimates of the uncertain parameter vector 

• ea {tt) = the error in the parameter estimate defined as: ea (t{) = a, (tt )-&f (?,■) 

• ex(tt) = the error in the system estimate 

The following sections will present the error vector formulation and the error vector 

statistics. 

4.2.1   Error Vector Formulation 

The main purpose of the controller is to quell vibrations in the SPICE-4 structure 

such that the line of sight (LOS) vector through the center of the structure is maintained 

precisely. Therefore, the X and Y axis line of sight (LOS) deviations will determine the 

performance of the reduced-order model based filter and controller algorithms. The error 

vector for filter performance evaluation is determined by subtracting the X and Y axis 

LOS values as generated by the filter from the corresponding truth model calculated 

values (Figure 4-1(a)). The equation to determine this error vector is given by: 

ex(ti) = CMti)-lcfxfj(ti)-pj(ti) (4.1) 
j=i 

where Ct and C/. are the output matrices used to determine the X and Y LOS deviations 

for the truth model and filter model respectively. The summation in Equation (4.1) is 

formed using the conditional probabilities in the MMAE implementation as presented in 

Chapter 2, where the subscript/represents filter and the index; indicates which of the 

moving bank filter's weighted estimates are being summed. The specific form of the error 

vector is given by: 

*M = 
eX2iSi) 

X - axis LOS position error 
Y - axis LOS position error 

(4.2) 
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In Figure 4-1(b), the MM AC controller is implemented for closed loop estimation 

and control. The purpose of the controller is to drive the vibrations of the structure to 

zero, or in other words, regulate the position deviations. Thus, performance of the 

controller is indicated from an analysis of the actual X and Y-axis LOS deviations. This 

error vector is given by: 

e;(f,) = CAfe) (4.3) 

where e^(f,) is the vector of truth model LOS deviations. 

4.2.2   Error Vector Statistics 

Since the process is assumed to be Gaussian for this effort, the mean and 

covariance of the estimation error and LOS deviations are the main statistics used to 

determine performance. The mean is calculated by [13:74,35:67]: 

E{ex(ti)}~Mex(ti) = jteX[(ti) (4.4) 

where L is the number of Monte Carlo runs made and e^ (tt) is the value of the error 

signal during the /m simulation at run time t[. The covariance of the mean error signal is 

calculated by [20:130]: 

P* (ti) = E^eM-E{ex(ti)}][eAti)-E{ex(ti)}]^ 

« YTXI k, foK <'*)} " T~[M^ <'<>Ml <*'> (45) 

The statistics for the parameter estimation errors, ea(fj), and the LOS deviations, e^ (*,■), 

are obtained by using the above equations with the appropriate variables substituted. The 

statistics will be based on a ten-run Monte Carlo analysis, with each run having a duration 

of ten seconds. A ten-run analysis was chosen to keep the simulation times reasonable 

while producing sample statistics that reflect the true underlying statistics adequately. 
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The temporal average of the line of sight errors is useful for quantifying the 

controller performance in a compact manner. This value is calculated by the following: 

*»=i X>K<'PMl<'P + P.M,   forp=lan<i2 (4.6) 
V j=i-N+l 

where e^ is the temporal average of the ptn component of e^ or e'x and N is the number 

of sample periods [7]. For this research, the temporal average will be calculated based on 

the last five seconds of the run duration. 

4.3       Simulation Software 

The software algorithms for the moving-bank MMAE/MMAC were developed and 

modified over the years in the previous thesis research [2,3,7,9,10,13,29,31,32,35]. The 

software will again be modified to meet the goals of this research. This software, which is 

resident on the Sun workstations, is broken into three separate computer program groups: 

(1) preprocessor, (2) processor, and (3) post-processor. Each of these program groups 

will be discussed individually in the following sections. 

4.3.1   Preprocessor 

Inherited Preprocessor. The previous preprocessor was separated into three 

separate routines which implemented a MATRIXx portion [18], a MATLAB portion [19], 

and a FORTRAN portion [5]. The MATRIXx code generated the truth and filter models 

for each point in the parameter space (this was the form of the models provided by the 

Phillips Laboratory). The MATRIXx truth and filter models were then reformatted to be 

compatible with MATLAB (the preferred software tool for this research for elemental 

filter or controller analysis and synthesis). The models were discretized, then the steady- 

state Kaiman filter gains and the steady-state LQG regulator gains were calculated in 

MATLAB. Additionally, the calculation of the filter state covariance and residual 

covariance was performed in MATLAB. Finally, the MATLAB code stored the 
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information in a form compatible with the FORTRAN code for setting up files for actual 

Monte Carlo performance evaluations of the MMAE/MMAC algorithms. The remaining 

FORTRAN code was left with the task of reading the information from the MATLAB 

output and storing it in a form compatible with the processor code. 

Current Preprocessor. There were a few minor changes made to the 

preprocessor programs. First, the MATRIXx and MATLAB routines both had to be 

modified to accommodate the increased number of positions in the parameter space. Also, 

the FORTRAN portion of the preprocessor was changed to allow the read and write 

functions to be done in an "unformatted" format, thereby significantly reducing the time 

required to read data. This also reduced the memory requirements for the filter/controllers 

corresponding to the 147 points in the parameter space which were taxing the limits of the 

memory allocated for this project. 

4.3.2   Processor 

Inherited Processor: The previous processor code (FORTRAN) simulated a 

moving-bank estimator/controller for the SPICE-4 structure with one uncertain parameter 

via Monte Carlo analysis. The FORTRAN code first read in information from data files 

which contained variables for the specific models used. The data from the preprocessor 

was read into the respective truth and filter bank matrices. Then the processor began the 

Monte Carlo loops by propagating the truth model and then the bank of filters. 

Measurements were taken from the truth model to be used in the update portion of the 

filter models. The respective filter probabilities were calculated and the decisions to move, 

contract, or expand the bank were made. The processor code included subroutines to 

implement the residual monitoring, probability monitoring, and the parameter position 

estimate monitoring methods for dictating the bank movement, as discussed in Section 

2.4. Likewise, there were subroutines to implement MMAC, modified MMAC, MAP, and 

single changeable-gain control, as discussed in Section 2.5. The code was written to 

4-6 



accommodate bank expansion and contraction. The white Gaussian noise vectors used in 

both the dynamics driving noise and measurement noise generation were produced by a 

random number generator. 

Current Processor: The FORTRAN portion of the processor code was changed 

to allow reading of data in an "unformatted" format, as explained above. The other major 

change to the processor involved increasing the parameter space and moving bank 

dimensions. In previous research, Gustafson [7] implemented a two-dimensional 

parameter space. This code was available for use, and was modified to add a third 

dimension. In most cases, this simply involved the addition of a third loop into the logic 

[4]. 

4.3.3   Post-Processor 

Inherited Post-Processor: This FORTRAN code read data from the processor 

and generated the sample statistics (the mean and covariance) of the estimation position 

errors, the true LOS deviations with control applied, and the uncertain parameter 

estimation errors. The output generated by the post-processor was compatible with a 

separate plotting routine. 

Current Post-Processor: A few minor formatting changes were made to the 

previous post-processor code and no major discrepancies were noted. The output 

generated was compatible with MATLAB plotting routines and was used for all the plots 

generated in the remaining chapters. 

4.4      Analysis Plan 

The main goal of this research is the effective estimation of the uncertain flexible 

bending modes, and control of the LOS deviations of the SPICE-4 structure, while 

allowing the parameters describing the flexible bending modes to vary independently. The 

flexible modes will be partitioned into three groups, the first group consisting of the first 
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three bending mode frequencies, the second group consisting of the next three frequencies, 

and the final group containing the remaining flexible bending mode frequencies. Each 

group of frequencies will have a separate scalar multiplier, thus resulting in a three- 

dimensional parameter space. This independent variation of the flexible bending modes is 

more representative of what happens in the "real world" than a single multiplier on all 

mode frequencies. 

The 26-mode reduced-order SPICE-4 model was used by Schiller in developing 

his filters. Since the models used for this effort are the same, filter and controller tuning is 

not a concern [25,30]. The specific levels of dynamic driving noise and measurement 

noise are the same as for Schiller's research, as are the controller weighting matrices. For 

a complete development of these tuning parameters, see Schiller, Chapter 4 [31]. 

Prior to exploring the issues associated with the three-dimensional parameter 

space, the one-dimensional parameter space results obtained by Schiller [31] were 

reproduced in order to verify the system models and validate the software. The next two 

sections of this chapter will address the three-dimensional parameter space discretization 

and the parameter identification and control. 

4.4.1   Sensitivity Analysis 

As discussed in Section 3.6, the natural frequencies of the flexible bending modes 

of the structure form the basis of the uncertain parameter space. The actual discrete 

parameter points in the space are determined by performing a sensitivity analysis.  This is 

accomplished by varying the scalar multiplier of the individual groups of the natural 

frequencies within the flexible bending modes in the truth model in one direction at a time 

until the closed loop system with the single filter/controller (based on the nominal value) in 

the loop becomes unstable. A discrete parameter value is declared just prior to this point 

(0.5 % rollback), where the difference from the nominal value is denoted as 8a);. Note 

that this parameterization method will result in the widest possible spread between each 
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point without any two points being so far apart as to produce unstable closed loop 

control. 

Based on physical insights and the desire to keep the size of the problem 

reasonable, the full parameter space was chosen as 7x3x7, with the middle dimension 

limited to three discretization levels due to the insensitivity of the controller to the less 

dominant second group of bending modes. The sensitivity analysis was first performed in 

the direction of the second group of frequencies, with the other parameters left at nominal. 

This results in three discrete values for the second group of frequencies. Thus, the three- 

dimensional parameter discretization problem reduces to three separate planar 

discretizations. 

Next, while keeping the second group of frequencies at nominal, a sensitivity 

analysis is again performed while varying the first and third groups of frequencies 

individually in both directions. The procedure is then repeated for the cases where both 

the first and third groups are allowed to vary together within the plane in each of four 

directions, thus creating a 3x3 "box" around the nominal value. To fill out the remainer of 

the parameter space in that plane, a new "nominal" is declared at the previous 

discretization points, and the sensitivity analysis is performed again in each of those 

directions, and the process is repeated until the entire space is filled. However, previous 

research [31] has shown that simply applying the same percentage change in each 

direction is an adequate way to fill out the remainder of the space; thus, this approach will 

be taken here. 

Figure 4.2 illustrates this procedure in one dimension, where the size of the space 

and number of points is arbitrary and based on the results of the sensitivity analysis.  In 

using this method, note that increasing the parameter results in a space determined where 

the filter is underestimating the natural frequencies.   Similarly, decreasing the parameter 

from nominal results in a space determined where the filter is overestimating the natural 
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frequencies. For this problem, the parameter space was chosen as 7x3x7. For the first 

and third groups of bending modes, the space is discretized between the range of minus 4 

to plus 8 percent from nominal with seven discrete values. The second group is limited to 

three levels, originally between minus 7.5 and plus 17 percent of nominal. Problems with 

this discretization level (to be discussed in Chapter 5) necessitated changes which limited 

the range of the second group also to minus 4 to plus 8 percent of nominal. 
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Figure 4-2. Parameter Discretization Procedure 

4.4.2   Parameter Identification and Control 

After the parameter space is fully discretized, simulations will be run to determine 

the effectiveness of the moving-bank MMAE/MMAC in identifying the true parameter 

and controlling the structure. Preliminary simulations indicated that the MMAE could 

indeed track a moving parameter with small state estimation errors while being run open- 

loop. Based on these results and on past research [31], all of the final simulations for this 

effort will be run closed-loop. The MMAE and the MMAC will be evaluated together 
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during closed-loop simulations. The moving bank will be a 3x3x3 cube in the 7x3x7 

parameter space. In order to determine this capability, many simulations will be run in 

which the true parameter value will be positioned or moved in various fashions.  These 

simulations will be similar to those run by Schiller [31]. First, in order to set a baseline of 

performance, the true parameter (the truth-model-based parameter value) will be set at the 

nominal value. Additionally, the moving bank of filters will be centered at this nominal 

value. Hence, the moving bank will be artificially informed initially of the true parameter 

value.  Next, the true parameter value will be allowed to vary slowly over a period of 

time, which would simulate possible temperature variations or long term fatigue effects. 

The third type of simulation will center the filter bank on the true parameter initially, then 

allow the true parameter to make large discrete jumps to a new location. This condition 

simulates a situation that could occur during a structural failure. This type of offset 

scenario could also occur during an initial acquisition phase when the control system is 

first activated. These variations and jumps will be made in various directions throughout 

the parameter space. 

4.5      Summary 

This chapter has presented the performance analyses, software, and simulation 

plans involved with this research. The Monte Carlo analysis method was introduced, as 

well as the error vector formulation and the performance evaluation criteria. A brief 

discussion of the simulation software and the changes necessary to that software were 

provided. The chapter concluded with a discussion of the simulation analysis plan for 

evaluating the effectiveness of the MMAE/MMAC in estimating uncertain parameters and 

quelling unwanted vibrations. 

Chapter 5 will present the results obtained from the parameter discretization 

'   efforts and the moving-bank MMAE/MMAC performance analysis. 
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V Results 

5.1      Introduction 

The primary purpose of this thesis is the design and performance evaluation of an 

adaptive control system that will quell the vibrations induced in the SPICE-4 structure. 

The undamped natural frequencies of the bending modes are assumed to be uncertain 

parameters present in the dynamics of the system. The frequencies are partitioned into 

three groups which are then allowed to vary independently of each other. It is assumed 

that a non-adaptive controller does not have enough inherent robustness to variations in 

the parameters, and thus cannot be implemented [17]. The concept of a multiple model 

adaptive estimator/controller is presented to provide the required quelling of the structure 

despite the uncertainties in the system. 

The reduced-order design model used for this research was Schiller's modally- 

reduced, 26-mode model which contained 130 states [31]. This design model was chosen 

due to its proven effectiveness in parameter estimation and control of LOS deviations. 

Schiller found that the one dimensional MMAE/MMAC resulted in RMS LOS deviations 

of 0.682 micro-radians along the X-axis, and 1.012 micro-radians along the Y-axis for an 

artificially informed bank (the bank is centered on the true parameter value which is not 

allowed to vary) [31:5-6]. These results were verified in this research and will be 

discussed later. It should be noted that the numerical accuracy problems encountered by 

Schiller [31:5-9] in discretizing his parameter space with this model were not encountered 

in this effort. 

This chapter will discuss first the discretization of the three-dimensional parameter 

space and the problems encountered in that process. Next a comparison of the straight- 

forward Bayesian vs. ME/I techniques will be provided. Determination of appropriate 
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threshold values will follow, and finally the performance of the MMAE/MMAC as it goes 

through many different parameter variation and jump scenarios. 

5.2     Discretization of Parameter Space 

Use of the sensitivity analysis method of discretizing the three-dimensional 

parameter space as described in Section 4.7 resulted in a severe problem. Recall that the 

first step in the discretization process was to vary only the second group of undamped 

natural frequencies. This group of frequencies has such a small effect on the overall 

control of the structure that it took a rather large deviation from nominal to cause the 

structure to go unstable. This discretization process led to a parameter variation of minus 

7.5 to plus 17 percent of nominal with only three discretization levels for this specific 

parameter. The remainder of the parameter space was filled out in accordance with the 

procedure described in Section 4.7. Since the first and third groups exhibited stronger 

effects on control, their relative spacing in the parameter space was much smaller. 

Preliminary testing was then accomplished. 

The moving-bank MMAE was found to perform well in open-loop simulations 

under variations in the first and third groups of frequencies. Expansion and contraction 

thresholds were determined by examining the likelihood quotients (recall Equation (2.32)) 

for all the filters during jumps across the parameter space in the direction of the first and 

third parameters. However, a problem arose whenever there was movement of the second 

group of frequencies. Because the discretization levels in this dimension were so severe, 

whenever there was movement in that dimension, the likelihood quotients for all the filters 

became large, indicating that none of the currently implemented filters had a viable model 

of vehicle bending characteristics. A simple move of one parameter position in this 

direction caused the likelihood quotients to be larger than a full six-position jump in the 

other two dimensions. Thus, whenever the parameter for the second group of frequencies 
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changed, the bank unnecessarily expanded regardless of any other movements. This type 

of expansion was totally unacceptable. 

Therefore, a decision was made to rediscretize the parameter space while limiting 

the variation in the second group of frequencies to minus four to plus eight percent of 

nominal (same as the other dimensions). Again the discretization was limited to three 

levels. This resulted in a 7x3x7 three-dimensional parameter space with variations in all 

directions limited to minus four to plus eight percent of nominal. This discretization level 

resulted in markedly improved performance, as will be shown in detail in Section 5.6. 

5.3      Bayesian Vs. ME/I Performance 

Previous research has shown mixed results in comparing full (straightforward) 

Bayesian versus ME/I density computations in determining the parameter and state 

estimates. Gustafson [7] found that the ME/I method worked best on the SPICE-2 

model, whereas Schiller [31] noted that the full Bayesian approach was more effective. 

Due to these conflicting results, these two methods, as well as removal of the beta- 

dominance term (as discussed in Section 2.3.2), were tested in this effort. 

Preliminary testing of the full Bayesian method against a constant (and initially 

matched) or moving true parameter value demonstrated excellent results. The ME/I 

method was implemented by replacing the residual covariance matrix, Ak, in the 

probability density function for the current measurement with an identity matrix. Recall 

Equations (2.26) and (2.31). This replacement caused a problem in the density 

calculation due to the very small absolute size of the residuals. The quadratic term 

[r^Iifc] in Equation (2.31)) was so small that the resulting exponential approached "1" for 

each of the individual filters in the bank (e.g., e"00001 = 0.99999). This resulted in the 

inability to differentiate between correct and incorrect filters since all filters had basically 

the same scaled probability. Therefore, the parameter estimate never changed. 
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In order to alleviate this problem, the identity matrix in the density calculations is 

scaled in each filter by the same scalar value. This allows for a greater variation in the 

density calculation by providing exponentials that are more usable. To determine the best 

performance with this method, the scaling factor was allowed to vary. A scaling factor of 

500,000 was determined to be best by trial and error. However, while the probabilities 

were now able to change, the parameter estimate with the ME/I method was not as 

effective as in the pure Bayesian method that retained Ak in Equation (2.26). The best 

ME/I method still exhibited an extremely sluggish response time to true parameter 

changes, and also had a very erratic response during tracking. 

The poor results of the ME/I method are most likely due to the lack of proper 

scaling of the residuals. The two types of measurements, position and velocity, have an 

order of magnitude discrepancy in accuracy. Thus the resulting residuals have varying 

orders of magnitude. The position measurements are relatively more accurate, thus have 

smaller residual values. These small residual values can be obscured by the higher 

magnitude velocity residuals in the equally scaled quadratic. Having different scale factors 

for different residual types might have some success, but having too many scale factors is 

counteractive to the determination of the smallest absolute residuals. This approach has 

been attempted previously [7], but it resulted in limited sucess. 

5.4      Bayesian MMAE/MMAC Performance 

This section presents the results obtained from the MMAE/MMAC design method. 

Several techniques discussed in Section 2.3 through Section 2.6 were used to move the 

bank and implement control to the structure. Of the four methods for moving the filter 

bank, only three methods were implemented. Comparisons of residual monitoring, 

probability monitoring, and parameter position monitoring were carried out through the 

MMAE/MMAC analysis. Parameter position and velocity estimate monitoring was not 

performed due to poor results of earlier applications of this method [9,26]. 
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In implementing the MMAC portion of the design, several techniques discussed in 

Section 2.6 were utilized. These control methods include: MMAC, modified MMAC, 

MAP, and modified single changeable gain methods. The MMAC method blends the 

control inputs from each of the active filter/controllers based on their probability weights. 

Modified MMAC also provides a blending of control inputs from each of the filters; 

however, it institutes a lower bound on the probabilities which precludes the blending of 

filter/controllers whose probability falls below this threshold. The MAP method declares 

the filter/controller with the highest probability as the one to provide all of the control 

input. The modified single changeable gain method uses the parameter estimate from the 

MMAE, interpolates the controller gain from the four closest filter/controllers based on 

that parameter estimate, and cascades that with the state estimate to form the control 

inputs. Fixed gain and single changeable gain methods were not implemented due to the 

excellent results achieved with the above methods. 

Simulations conducted for this research consisted of a comparison of each 

combination of the bank movement and control methods, carried out over a variety of 

different parameter movement and jump scenarios, as discussed in Section 4.4.5. Initial 

results indicated that the open-loop MMAE could track a varying true parameter. Thus, 

for the final runs, both the MMAE and MMAC will be evaluated during closed-loop 

simulations. Each simulation consisted of a ten-run Monte Carlo analysis with a ten- 

second simulation time (except where noted). The controller is turned on half a second 

into the simulation for all runs to allow the estimator time to develop an accurate state and 

parameter estimate. 

5.5      Threshold Determination 

Prior to any simulations being run, a variety of thresholds needed to be determined. 

These included probability limits, bank movement thresholds, expansion thresholds and 

contraction thresholds. Recall from Section 2.3.2 that a lower bound is necessary on the 
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probability weights to prevent the lockout condition from occurring. Due to the large 

number of filters in this effort, the resulting lower probability limit is very small. There is a 

tradeoff in setting this limit. Too high a limit will result in erroneous weights given to 

incorrect filters/controllers. Too low a limit results in the inability of the probability to 

change in a timely manner in response to real parameter changes, due to the iterative 

nature of the calculation in Equation (2.25). By trial and error, the best value for this 

lower probability limit was determined to be 0.001. 

The probability limit for inclusion in the modified MMAC calculation was chosen 

to be 0.1. Any filter/controller whose probability is below this threshold is not included in 

the control calculations. This precludes erroneous control from being input to the system. 

This threshold must be higher than the artificial lower bound on the probabilities pk(tt). 

The value for this threshold was determined by trial and error. The threshold value was 

varied to determine which value produced the smallest line-of-sight errors during a 

simulation in which the estimator tracked the true parameter. A value of 0.1 resulted in 

the smallest rms errors. 

Bank movement thresholds must be determined for each of the three move types. 

Since they are each based on different hypotheses for movement, they will all have 

different thresholds. In each case there is a tradeoff between trackability (variation of the 

parameter estimate around the true value in an unchanging true parameter condition), and 

response time (how quickly the parameter estimate can adapt to a true parameter change). 

Setting the move threshold too low would result in unnecessary move decisions, whereas 

setting the threshold too high would result in slow or no response to actual parameter 

changes. 

For the parameter position monitoring technique, the move threshold is based on 

the difference between the bank center and the parameter position estimate. Since it is 

only necessary to move the bank when the parameter estimate is more than half way to a 
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different parameter position, the move threshold for this method is set to 0.5. If this 

threshold is exceeded, the bank is moved in the direction of the new parameter estimate. 

In the probability monitoring technique, the move threshold basis is the magnitude of the 

conditional probabilities. If the conditional probability of the filter with the highest 

probabiltiy value exceeds the threshold, then a decision is made to move the bank in the 

direction of this filter. Due to the large number of filters in this effort, the probability 

"move" threshold had to be significantly reduced from previous efforts. By trial and error, 

the probability monitoring "move" threshold was determined to be 0.1. This allowed 

quick bank movement once the probabilities started to floe between the filters. For the 

residual monitoring technique, the move logic is based on the value of the likelihood 

quotient, L, for each filter (recall Section 2.4.2). If the threshold value is exceeded by all 

the filters in the bank, then a decision is made to move the bank in the direction of the 

filter with the smallest L. Again by trial and error, the move threshold for this technique 

was determined to be 11.0. 

The bank expansion threshold was determined based on the likelihood quotients as 

well. The expansion threshold must be set higher than the residual monitoring "move" 

threshold. If the likelihood quotient for all the filters exceeds the expansion threshold, the 

bank is expanded so that the filters are relocated at their widest possible locations in the 

parameter space. The size of the likelihood quotient indicates that the true parameter 

position is not in the vicinity of the current filter bank. The threshold level was determined 

by trial and error to be 50. A tradeoff had to be made between setting the threshold too 

high which did not allow proper expansion of the bank, and setting the threshold too low 

which resulted in unnecessary expansions. Due to the small relative size of the parameter 

space, the final value of 50 allowed expansion only when the true parameter was at least 

four (fine discretization level) parameter positions from the bank center. 
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After the bank has expanded, contraction takes place when the variance of the 

parameter position estimate falls below a set threshold. Since the bank expands in two of 

the three parameter space directions, two contraction thresholds are used, one for each of 

the expansion directions of the parameter space. This allowed for the possibility of 

rectangular block as well as cubic filter banks. Both contraction thresholds were set to 

1.5, but since the third group of frequencies was generally easier to estimate, the third 

direction usually contracted first. In both parameter directions, the contraction thresholds 

were both set very high, which resulted in quick contractions, typically within 5 sample 

periods after an expansion had occurred. 

The expansion/contraction logic was designed to have the bank expand to its 

widest positions, given a large change in the true parameter position. In this way the true 

parameter position would be guaranteed to be encompassed within the bank and could be 

estimated. The bank would then contract around that value. It was anticipated that the 

expanded bank could estimate the true parameter position somewhere in between the 

discrete parameter points of the expanded bank. However, as implemented here, it could 

not. In an expanded state, all probability flowed into the filter that was closest to the true 

position, and blending of the estimates was not achieved. Thus, the contraction logic 

consistently placed the center filter at one of the expanded filter bank's discrete parameter 

locations. Schiller [31] noticed the same effect in his research. Because of the greater 

relative size of his parameter space, different levels of contraction (coarse, intermediate, 

and fine) were necessary. Due to the smaller size of the parameter space in this effort, the 

contracted bank was never more than one position away from the true value, and the bank 

move logic was then implemented. 

The software was reviewed, but no errors could be found that would cause this 

situation to occur. Thus, the contraction thresholds were set high, which allowed the bank 

to contract quickly, then move according to the move logic. The contraction logic usually 
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made the correct decision to center the bank on the filter closest to the true parameter. 

Occasionally, a wrong decision was made, but the bank invariably either moved to the 

correct location, or expanded again until a correct decision was made. 

5.6     Results 

As stated previously, each combination of move method and control method was 

tested against a variety of true parameter move and jump scenarios. A move scenario 

occurs when the true parameter value is allowed to vary by only one parameter position at 

a time, whereas a jump scenario occurs when the true parameter moves six parameter 

positions at any one time across the parameter space. First, a filter bank that was initially 

artificially informed of the parameter value was matched to an unchanging true parameter. 

Next, the individual parameters (the first group of frequencies is designated a{, the 

second group a2, and the third group a3) were allowed to vary individually. Then two 

parameters were allowed to vary simultaneously. Finally, two random runs were 

conducted which show the ability of the bank to track while all three parameters are 

moving simultaneously, as well as to demonstrate the ability of the bank to estimate a true 

parameter that is at the edge of the parameter space. Jump simulations were conducted in 

a similar manner, first with individual parameter jumps, then two parameters jumping 

simultaneously, and finally with all three parameters jumping together. Results from all 

these simulations are plotted in the Appendix. In evaluating the different controller types, 

it was noted that, with the modified single changeable gain method the estimator had a 

tendency to lose lock on the true parameter value. This only happened when both a2 and 

a3 were simultaneously decreasing. The code was reviewed, but no errors could be found 

that would cause this to happen. However, it may be due to the specific gain interpolation 

method used in the algorithm. The algorithm first estimated the a2 position, and then 

used a linear combination of the controller gains of the four closest filters/controllers in 

that plane to determine the control input. Thus a poor estimate in the a2 direction would 
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cause inappropriate control in the structure, which may have caused the bank to lose lock 

on the parameter value. However, in some cases, "inappropriate" control might make a 

parameter more identifiable. For this reason, the modified single changeable gain method 

was determined to be unacceptable. Perhaps a better method would have been to combine 

the closest eight filters in a 2x2x2 cube around the current estimate to provide the control 

inputs. This would reduce the susceptibility to noise in the fl2 direction. 

For the other three control methods, the LOS deviations did not depend 

significantly on the method being applied. In fact, in most cases the actual LOS errors 

were the same to the third significant figure for any control method. The modified 

MMAC method did exhibit a slight improvement over the other two methods. This is to 

be expected, since the modified MMAC is a combination of the Bayesian MMAC and the 

MAP MMAC methods. During a time of changing parameters, the modified MMAC will 

allow a blending of control inputs similar to the Bayesian MMAC, but during tracking 

phase, all control will come from one controller since the other controller's probabilities 

will most likely fall below the threshold for inclusion in the control input. Therefore, the 

plots shown in the Appendix are only those for the modified MMAC results, although 

both the Bayesian MMAC and MAP methods also exhibited excellent (virtually identical) 

results. 

In evaluating the different move methods, the probability monitoring and 

parameter position monitoring methods exhibit a clear advantage over the residual 

monitoring technique. In residual monitoring the move decision is based only on the latest 

residual value, not the entire past history. Thus, this method is plagued by single large 

noise samples causing unnecessary move decisions. In the probability and parameter 

position monitoring methods, the move logic is based not only on the current 

measurements, but also on the past history of measurements. Thus, single large residual 

samples do not have such an adverse effect, which results in better overall performance. 
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Schiller [31] found that the parameter position monitoring method was more erratic than 

the probability monitoring method. However, an error was discovered in his code which 

caused the bank to move twice as far as intended, thus his implementation of this method 

exhibited an oscillatory movement about the true parameter value. Once this code was 

corrected, the probability monitoring method and the parameter position estimate method 

were seen to be almost identical. 

For each of the simulations run, the results are shown in the Appendix. The plots 

are grouped into sets of five for each simulation type. The first three plots in each group 

exhibit the parameter identification results with each of the three move types with 

modified MMAC control. The fourth plot in each group represents the MMAE estimation 

errors, while the fifth plot shows the MMAC rms line-of-sight errors. These last two sets 

of error plots result from the parameter position estimate move method and the modified 

MMAC control method; however, all move methods exhibited virtually identical results. 

5.6.1   Initially Matched Filter 

Initially matched filter simulations were run such that the bank was initially 

centered on an unmoving nominal true parameter. Figures A-l through A-3 exhibit the 

actual parameter estimation plots for each of the three move methods. It is noted that, for 

the parameter position and probability methods, the estimate identically matches the true 

value after a short transient period. Figure A-l shows the mean ± la values, while 

Figures A-2 and A-3 exhibit just the mean value of the parameter estimates. In all cases, 

the ± la values are very small. Thus, except for a few sample cases, it was decided not to 

include ± la plots because the la values were very small for all but the short transient 

period following a true parameter move, and the addition of the extra lines would cause 

undue clutter to the plots. 
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"Move" Logic: Residual Probability Parameter Position 

Initially Matched Filter X = 0.707 ^irad 

Y = 1.039 Lirad 

X = 0.682 |irad 

Y = 1.012 jiiad 

X = 0.682 urad 

Y = 1.012 ^trad 

Table 5-1. Initially Matched Filter Temporally Averaged RMS LOS Errors 

Figure A-4 presents the X and Y axis estimation errors. Figure A-5 shows 

representative X and Y axis LOS deviations, i.e., performance of the controlled variables 

of interest. Notice the effect of turning the controller on after an initial half second 

without MMAC control. Temporal averages, taken over the last 8 seconds of the 

simulation for the three different move types, are presented in Table 5-1. These results are 

consistent with Schiller's results [31]. 

5.6.2   Parameter Variations (Moves) 

As the true parameters were allowed to move slowly throughout the parameter 

space, each move method accomplished an adequate job of estimating the parameter and 

controlling the structure. Again, the results are partitioned into groups of five for each 

simulation. The first three plots show the parameter identification performance for each 

move method, followed by the estimation and line-of-sight errors for the parameter 

position estimate method. As expected, the parameter position estimate method and the 

probability monitoring method were slightly better than residual monitoring. Again, the 

estimation errors and LOS deviations are nearly identical for all cases. Figures A-6 

through A-30 depict the results of the simulations in which one parameter is moving at a 

time. Notice that the a2 and the fl3 estimates have no trouble in tracking the true 

parameter movements. For the a2 direction, the extreme levels of discretization makes it 

easy to determine which residuals are good or bad, thus making it easy to track this 

parameter. For the az direction, the ease of tracking is due to the multitude of 
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information contained in the large group of modes at various frequencies. The estimator 

had a harder time in the C^ direction due to the small number of modal frequencies in that 

group and the tight level of discretization in that direction. Also note that the estimator 

had a harder time tracking when the ax parameter was decreasing than when it was 

increasing.  See Figures A-l 1 through A-13.  Although the lowest frequency modes 

effect the most control on the structure, this relatively poor tracking performance does not 

have a debilitating effect on the stability and control of the structure. When the estimator 

overestimates the true parameter value, the controller can continue to quell bending 

oscillations in the structure rather well. However, when the estimator underestimates the 

true parameter value, the LOS deviations exhibit degraded control of the structure. This 

is consistent with the performance observed in discretizing the parameter space and 

developing the LQG controller for each discrete point value. The degradation for such a 

nonadaptive controller that underestimates the undamped natural frequencies is much 

worse than if it overestimates them. For the case when a^ is decreasing the simulation 

time between true parameter jumps was doubled to ensure that the estimate did converge 

to the true value, and it did. 

Figures A-31 through A-50 show simulations when a^ and a3 were allowed to 

vary simultaneously in a variety of different directions throughout the parameter space. 

Figures A-51 through A-60 show C^ and a3 moving when a2 was not at its nominal 

value. Figures A-61 through A-70 exhibit the results of the 20-second "random" runs in 

which the three parameters were all allowed to move simultaneously. In these runs the 

true parameter value was also allowed to move to the edge of the parameter space. 

Notice that the Oy estimates tended to lose track at the very end of the first random move 

simulation. As seen in Figure A-65, this does not have a destabilizing effect on the 

structure due to the fact that the estimator is overestimating the true parameter. In the 

second random move simulation, the X and Y LOS deviations are significantly degraded, 
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"Move" Logic: Residual Probability Parameter Position 

dy moving up X = 0.749 |irad 

Y = 1.100 |irad 

X 

Y 

= 0.736 |irad 

= 1.071 juad 

X 

Y 

= 0.736 ixrad 

= 1.071 urad 

C^ moving down X = 0.720 urad 

Y = 1.052 urad 

X 

Y 

= 0.716 urad 

= 1.041 urad 

X 

Y 

= 0.716 juad 

= 1.041 |irad 

a2 moving X = 0.723 |irad 

Y = 1.060 juad 

X 

Y 

= 0.698 urad 

= 1.019 ^trad 

X 

Y 

= 0.695 ^irad 

= 1.017 urad 

a3 moving up X = 0.701 ixrad 

Y = 1.008 |irad 

X 

Y 

= 0.668 urad 

= 0.980 urad 

X 

Y 

= 0.668 urad 

= 0.980 |irad 

«3 moving down X = 0.719 urad 

Y = 1.079 tirad 

X 

Y 

= 0.698 |irad 

= 1.055 |irad 

X 

Y 

= 0.698 Lirad 

= 1.053 juad 

flj and a3 moving up X = 0.707 jirad 

Y = 1.033 |irad 

X 

Y 

= 0.710 urad 

= 1.026 |irad 

X 

Y 

= 0.710 (irad 

= 1.026 urad 

Oj and a, moving down X = 0.723 |irad 

Y = 1.084 urad 

X 

Y 

= 0.707 ixrad 

= 1.060 urad 

X 

Y 

= 0.704 ^trad 

= 1.058 urad 

(\ moving up/a3 

moving down 

X = 0.756 ixrad 

Y = 1.112 urad 

X 

Y 

= 0.744 |irad 

= 1.102 urad 

X 

Y 

= 0.745 urad 

= 1.103 urad 

dy moving down/a3 

moving up 

X = 0.700 urad 

Y = 1.020 |irad 

X 

Y 

= 0.674 |irad 

= 0.985 urad 

X 

Y 

= 0.671 jirad 

= 0.980 |irad 

a2 = 1, ö, and a3 

moving up 

X = 0.700 |irad 

Y = 1.013 urad 

X 

Y 

= 0.698 urad 

= 1.017 urad 

X 

Y 

= 0.698 urad 

= 1.016 urad 

a2=3>,ai and a2 

moving up 

X = 0.697 jirad 

Y = 1.009 urad 

X 

Y 

= 0.698 |irad 

= 1.008 |irad 

X 

Y 

= 0.700 (irad 

= 1.010 urad 

Random Run #1 X = 0.688 urad 

Y = 1.024 urad 

X 

Y 

= 0.673 ixrad 

= 1.007 ^trad 

X 

Y 

= 0.671 prad 

= 1.005 urad 

Random Run #2 X = 1.962 prad 

Y = 2.653 |irad 

X 

Y 

= 0.903 |irad 

= 1.234 iirad 

X 

Y 

= 0.795 (irad 

= 1.179 mad 

Table 5-2. Pai •ameter Variation Tem 
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as seen from Table 5-2. This occurs due to the fact that the estimator is underestimating 

the ax parameter for significant amounts of time. As stated previously, underestimation of 

the parameter values tends to have a serious degrading effect on control. Table 5-2 

summarizes the X and Y axis rms LOS errors, temporally averaged over the last 8 seconds 

of the simulation for each of these simulations, indicating the ability of the MMAC to 

control the structure. The X axis LOS errors always fall well within the specified one 

micro-radian, whereas the Y axis errors do exceed the specification by a few percentage 

points during parameter movement. The parameter position and probability monitoring 

move methods exhibit somewhat smaller errors than the residual monitoring method. 

5.6.3   Parameter Jumps 

As the true parameters were allowed to jump from one edge of the parameter 

space to the other, the moving bank MMAE/MMAC provided adequate tracking of the 

parameters and controlling of the structure. Figures A-71 through A-85 show parameter 

identification plots as well as estimation and LOS errors when one parameter at a time is 

allowed to jump. Notice in Figures A-71 through A-73 that, when parameter a^ jumped, 

the bank did not expand and contract, but simply stayed at the finest discretization level 

(smallest bank size) and slid across the parameter space to the true value. As described in 

Section 5.1, movements in the a2 direction force a lower limit onto the expansion 

threshold to preclude bank expansion during true parameter movement in that direction. 

Therefore, the expansion threshold could not be lowered so that the bank would expand in 

this case. However, this slow movement across the parameter space does not seriously 

inhibit the controller, as seen from Figure A-75 and the values in Table 5-3. Table 5-3 

presents the X and Y axis rms LOS errors temporally averaged over the last 8 seconds of 

each of the jump simulations. In every other case of parameter jumps, the bank did 

expand and contract (except for the case of a jump in a2 where expansion or movement is 

not warranted) as desired. 
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"Move" Logic: Residual Probability Parameter Position 

Cl^ jumps X = 0.790 |irad 

Y = 1.077 jirad 

X = 0.732 |irad 

Y = 1.059 [trad 

X = 0.732 ^irad 

Y = 1.059 |irad 

a2 jumps X = 0.699 jirad 

Y = 1.028 jirad 

X = 0.694 |irad 

Y = 1.025 jirad 

X = 0.692 |irad 

Y = 1.025 ^trad 

a3 jumps X = 0.718 |irad 

Y = 1.094 |irad 

X = 0.712 |irad 

Y = 1.092 ^rad 

X =0.711 jirad 

Y = 1.089 juad 

ax and a, jumps (same 
direction) 

X = 0.733 jirad 

Y = 1.116 |irad 

X = 0.729 |irad 

Y = 1.108 niad 

X = 0.729 |irad 

Y = 1.108 Miad 

(\ and a3jumps 
(opposite direction) 

X = 1.975 urad 

Y = 4.010 |irad 

X = 2.173 jirad 

Y = 3.924 |irad 

X = 2.037 (irad 

Y = 2.991 ^irad 

All three jump 

(\ and a3 opposite 

X = 0.941 |irad 

Y = 1.447 jirad 

X =0.916 jirad 

Y = 1.336 [irad 

X = 0.928 Lirad 

Y = 1.342 |irad 

All three jump 

a, and a3same 

X = 0.729 jirad 

Y = 1.115 |a.rad 

X = 0.724 |irad 

Y = 1.113 |J.rad 

X = 0.720 |irad 

Y =   1.112 jirad 

Table 5-3. Parameter Jumps Temporally Averaged RMS LOS Errors 

For a decreasing jump in the a3 direction (see Figures A-81 through A-83), the 

estimate does not converge back to the true value. This is not seen as a terrible problem, 

as adequate control is still input to the structure, as seen from Figure A-85. Again, this is 

due to the fact that the controller does a better job when the estimator overestimates the 

true parameter value than when it underestimates the value.  Figure A-81 also shows an 

example of the the mean ±la plots. Notice that, even during a time of bank expansion, 

the ±la values are very small, which indicates that the results are very consistent from 

run to run. Although this consistent bias is of concern, the estimator is overestimating, 
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versus underestimating, the parameter, and the LOS performance degradation is not 

significant. 

Figures A-86 through A-95 show simulations when (\ and az jump 

simultaneously. When the parameters jump in the same direction, no problems are 

detected. However, when the jumps are in opposite directions, the estimator exhibits 

some difficulty in parameter estimation. Although the MMAE eventually does converge 

to the true values, the relatively long period of underestimation of the more predominant 

ax modes causes the beginnings of instability to be evident in the X and Y LOS deviation 

plots (see Figures A-94 and A-95). The large LOS errors do settle out as the estimator 

converges on the true parameter value. 

Finally, Figures A-96 through A-105 show the ability of the algorithm to track 

three simultaneous parameter jumps. Notice that, when ax and a3 jump in opposite 

directions (Figures A-96 through A-98), the MMAE does not have the previously seen 

estimation problem when a2 is moving as well. Also, notice that, when the three 

parameters all jump in the same direction (Figures A-101 through A-103), the d^ estimate 

takes a long time to track to a positive jump. This does not seem to affect the control of 

the structure as indicated by Figure A-105 and the values in Table 5-3. This is a strange 

observation since underestimation of the true parameter value usually has an adverse effect 

on control. This does not appear to be the case for this instance. 

In each of the jump simulations presented in Table 5-3, the X axis rms LOS errors 

are within the specified one micro-radian. The Y axis rms errors are only a few 

percentage points above the specification. This difference between axes is due to the 

geometry of the X and Y axes relative to the location of the three legs of the tripod 

structure connecting the two assemblies in Figure 1-3. The only exception to this is when 

(\ and a3 jump in opposite directions. Only then does the MMAE/MMAC exhibit any 
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kind of destabilizing control. As previously noted, the parameter position and probability 

move methods exhibit slightly lower errors than the residual monitoring technique. 

5.7     Summary 

This chapter presented the results of this research. The chapter began with a 

discussion of the parameter space discretization. The extreme levels of discretization in 

the second group of frequencies necessitated altering the parameter discretization method 

to limit the parameter bounds to minus four to plus eight percent of nominal in all 

directions. In the MMAE formulation, the Bayesian form of the probability density 

function calculation given by Equation (2.26) performed much better than the ME/I 

formulation given by Equation (2.31). 

Choosing the appropriate threshold values was shown to be an important design 

step. Setting thresholds too high inhibited bank movement or expansion, while setting 

thresholds too low resulted in unnecessary expansion or movement. Thresholds were 

determined by trial and error, and tradeoffs were necessary to obtain the best performance. 

All three bank movement techniques dispalyed excellent parameter tracking 

characteristics. Residual monitoring was slightly more erratic than the other two, as was 

expected. The estimator had no trouble in tracking a2 and a3 , but exhibited some 

sluggishness in the C^ estimate (associated with the lowest frequency bending modes). 

This is due to the small number of modes present in this grouping, and the small level of 

discretization between points in this direction of the parameter space. 

Three of the four control techniques proved to be acceptable. The modified single 

changeable gain method was abandoned after the estimates lost lock in a few isolated 

cases. Of the three remaining methods, the modified MMAC was slightly better than the 

Bayesian MMAC and MAP MMAC methods at reducing the LOS deviations. The 

controller did perform better when the estimator overestimated, versus underestimated, 
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the true parameter value. When the estimator underestimated the parameter, some 

substantial degradation of control was exhibited. 
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VI      Conclusions and Recommendations 

6.1 Introduction 

The focus of this research has been to apply moving-bank multiple model adaptive 

estimation and control (MMAE/MMAC) algorithms to quell undesirable vibrations in the 

SPICE-4 space structure. The necessity for adaptive control was based on concerns that 

unadaptive controller designs do not demonstrate enough inherent robustness to be 

effective in the presence of uncertain parameters in the system model [16].  In this 

application, there were three uncertain parameters. The undamped natural frequencies of 

the flexible body modes of the physical structure were split into three groupings. The first 

grouping contained the three lowest frequency modes, the second grouping contained the 

next three lowest frequency modes, and the third grouping contained the remaining 

flexible body modes. The uncertain parameters were the three scalar multipliers for the 

frequencies of each of these groups. Thus the groups of frequencies were allowed to vary 

independently of each other. The SPICE-4 truth and reduced-order filter models were 

developed by Schiller in previous research [31]. It was decided to use the 26-mode, 

modally reduced filter model based on its success in Schiller's research. The parameter 

space was discretized in three dimensions, and the inherited simulation software was 

modified to accommodate the three dimensional parameter space. The ability of a moving 

bank of filter/controllers to estimate the uncertain parameter accurately and apply control 

effectively was examined as the true parameter wandered and jumped throughout the 

parameter space. 

6.2 Conclusions 

The moving-bank MMAE/ MMAC design method is extremely effective in 

quelling unwanted vibrations in the SPICE-4 structure even during periods of large 

parameter variations.  Discretization of the parameter space was determined to be a key 
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design procedure in the three dimensional space. Since the different groupings have 

differing effects on the control of the structure, applying the sensitivity analysis method 

resulted in large variations of the discretization levels, especially in the direction of the less 

sensitive second group of undamped natural frequencies. Therefore, because the residuals 

were so large in all elemental filters with an incorrectly assumed value for the parameter in 

that direction, the likelihood quotients would become distorted any time there was 

movement of the true parameter in that direction. This would cause undue expansion of 

the filter bank and unnecessary degradation of the parameter estimate. When the 

parameter space was rediscretized to limit the amount of variation in the direction of the 

second group, this unnecessary expansion no longer occurred, and estimation and control 

perfromance improved markedly. This seems to indicate that the best way to discterize 

the three dimensional space is to allow only the same percentage change between discrete 

parameter points in all directions. 

Of the two formulations in the residual probability density function used for 

computing the hypothesis probability weights, the full-scale Bayesian form resulted in 

much better parameter position estimate than the Maximum Entropy with Identity residual 

covariance method (ME/I).  Although all of the three move logic techniques investigated 

were very effective at parameter identification, the residual monitoring method was not 

quite as good due to the tendency to be impacted by single large measurement noise 

samples. The parameter position estimate and probability monitoring techniques were 

seen to be virtually identical. In any case, the determination of the bank movement and 

expansion thresholds was of utmost importance. Choosing thresholds too low resulted in 

unnecessary bank movement or expansion, and choosing thresholds too high caused the 

bank not to move or expand when it was warranted. 

Of the four control methods implemented, the modified single changeable gain 

method exhibited some difficulties in maintaining good parameter estimates in a few 
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isolated instances. The other three methods resulted in nearly indistinguishable 

performance characteristics, with the modified MMAC method providing slightly better 

control of the line-of-sight errors. During times of parameter tracking, the one micro- 

radian specification on the LOS deviations was exceeded only in the Y-axis direction, and 

only by about one percent. (The X and Y characteristics differ due to the tripod 

geometery of the legs of the SPICE-4 structure.) The X-axis LOS errors were well within 

the specification.  During times of parameter moves and jumps, the X-axis LOS errors 

were still within specification except in the case where a, and Oj make jumps in opposite 

directions, but the Y-axis LOS errors fell outside the specified value in most instances, 

getting as large as 3 micro-radians in the case of C^ and CLZ jumping in opposite directions. 

Once the short transition period after a parameter move was expired, the Y-axis LOS 

error once again resided on the specification.   An important point to note is that the 

controller is more effective at quelling the LOS errors when the estimator overestimates, 

versus underestimates, the true parameter value. 

These results indicate that the MMAE/MMAC algorithms will provide highly 

effective control for the SPICE-4 structure, even with large parameter variations. The 

following section presents areas of future research. 

6.3      Recommendations 

This research demonstrated the effectiveness of the three dimensional moving-bank 

MMAE/MMAC algorithms as applied to the SPICE-4 structure. Recommendations for 

future research are: 

1. Explore the effects of dither inputs to the SPICE-4 system model to enhance 

parameter identification. Investigate both open-loop dithering to enhance the 

initial parameter identification at onset of control being applied, and possibly 

closed-loop dither applied continuously or intermittently to enhance parameter 

identifiability and control performance while in closed-loop control operation. 
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2. Investigate possible alternatives in grouping the different frequencies such that 

all groupings have more equal effects on the control of the structure. 

3. Apply the modal-cost order reduction technique to determine which groupings 

of frequencies will have the most impact on control, and compare the results using 

the modal order reduction employed in this research. 

4. Try a parameter space discretization in which the moving bank will be allowed 

to move in all three dimensions rather than just two. 

5. Investigate further the reasons why an expanded bank sometimes cannot 

provide a correct estimate when the true parameter value is between the expanded 

bank's filter locations. 

6. Utilize the latest version of the SPICE models if they are available from the 

Phillips Laboratory, or possibly implement the moving-bank MMAE/MMAC on a 

new and different structure. 

7. Investigate the possibility of implementing a simple windowing procedure for 

the residual monitoring technique in which the most recent N measurement 

samples are utilized in the move logic vice the single most recent measurement 

sample. This may decrease parameter estimation variation without a large increase 

in the response time. 
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Appendix:      MMAE/MMAC Performance Results 

This appendix presents all the plot results for the MMAE/MMAC analysis in 

Section 5.6.   The plots in this appendix represent a very good representative sample of all 

the actual simulations conducted for this section. For each type of parameter move or 

jump, the following plots are separated into groups of five. For each simulation run, 

parameter identification plots are shown for each of the three move methods with the 

modified MMAC control implemented (one of four actually investigated, but the one 

providing the best performance). Next, X and Y axis estimation errors are shown, 

followed by the X and Y axis LOS errors. The error plots were virtually identical for all 

three move methods, thus only the parameter position estimate method is shown, again 

with the modified MMAC control. 

Although there is no legend associated with each of the parameter identification 

plots, it should be fairly evident that the true parameter is indicated by the straight or 

piece-wise constant lines and the parameter estimate (mean value obtained from a ten-run 

Monte Carlo analysis) is indicated by the wavering lines. Except for a few sample cases, it 

was decided not to include mean ± la plots because the la values were very small for all 

but the short transient period following a true parameter move, and the addition of the 

extra lines would cause undue clutter to the plots. In the cases where the la plots are 

shown, the ±la values are indicated by dashed lines. Likewise, on the estimation and 

LOS error plots, solid lines indicate the mean error from the ten-run Monte Carlo analysis, 

while the ±la values are indicated with dashed lines. 
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Figure A-1.  Initially Matched Filter Using Parameter Position Monitoring 
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Figure A-2.  Initially Matched Filter Using Probability Monitoring 
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Figure A-3.  Initially Matched Filter Using Residual Monitoring 
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Figure A-4.  Initially Matched Filter Estimation Errors 
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Figure A-5.  Initially Matched Filter LOS Errors 
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Figure A-26. a3 Moving Down Using Parameter Position Monitoring 
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Figure A-27. a3 Moving Down Using Probability Monitoring 

A-28 



a1 Estimate 

4 5 6 
Time (seconds) 

10 

a2 Estimate 

4 5 6 7 
Time (seconds) 

a3 Estimate 

3 4 5 6 
Time (seconds) 
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Figure A-33. at and a3 Moving Up Using Residual Monitoring 

A-34 



x10 X Estimation Error (a) 

4 5 6 7 
Time (seconds) 

x10 Y Estimation Error (b) 

4 5 6 
Time (seconds) 

10 
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Figure A-41.   a1 Moving Up/a3 Moving Down Using Parameter Position Monitoring 
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Figure A-42.   a1 Moving Up/a5 Moving Down Using Probability Monitoring 
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Figure A-46.   a2 Moving Down/a3 Moving Up Using Parameter Position Monitoring 
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A-55 



x10 X-Axis LOS Error   (a) 

4 5 6 
Time (seconds) 

x10~ Y-Axis LOS Error  (b) 

4 5 6 
Time (seconds) 

10 

Figure A-55.   al and a3 Moving Up {a2 = 1) LOS Errors 
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Figure A-56.   ai and a3 Moving Up (a2 = 3) Using Parameter Position Monitoring 
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Figure A-61. Random Movement #1 Using Parameter Position Monitoring 
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Figure A-62.   Random Movement #1 Using Probability Monitoring 
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Figure A-63.   Random Movement #1 Using Residual Monitoring 
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