
* -..395

■^

•r"-

3
IA

CVJ
CXI

A Gain Scheduling Optimization Method

Using Genetic Algorithms

THESIS
Robert C. Martin. IV
Second Lieutencnt

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

Approved hr public release;

AFIT/GAE/ENY/94D-3

A Gain Scheduling Optimization Method

Using Genetic Algorithms

THESIS
Robert C. Martin, IV
Second Lieutenent

AFTT/GAE/ENY/94D-3

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy

or position of the Department of Defense or the U. S. Government.

fÄccesion For

*

.___J

'M.

or

AFIT/GAE/ENY/94D-3

A Gain Scheduling Optimization Method

Using Genetic Algorithms

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Ah- University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Robert C. Martin, IV, B.S.

Second Lieutenent

December 1994

Approved for public release; distribution unlimited

Acknowledgements

I would like thank my advisor LtCol Stuart Kramer. He accepted me as a thesis student

even though he was unfamiliar with genetic algorithms. I am very greatful for the support and

advice from my committee, Dr Brett Ridgely and Dr Gary Lamont. I would also like to thank

Jim Buffington and Lt Bill Reigelsperger for their advise and assistance in acquiring nonlinear

flight simulation data.

I would like to say thank you to my parents who made me possible. Thank you very

much for your love and support throughout everything that I have undertaken.

Finally, I would like to dedicate this thesis to Dr Jane Uva, M.D., M.P.H. She has been

very supportive and understanding throughout the past year.

Robert C. Martin, IV

11

Table of Contents

Page

Acknowledgements ii

List of Figures vi

List of Tables x

List of Symbols xi

List of Abbreviations xii

Abstract xiii

I. Introduction 1-1

1.1 Background 1-1

1.2 Purpose 1-2

1.3 Scope of Research 1-3

1.4 Objectives 1-3

1.5 Preview 1-3

n. Gain Scheduling 2-1

2.1 Rational for Gain Scheduling 2-1

2.2 Gain Scheduling Process 2-2

2.3 Gain Scheduling Design 2-3

2.4 Optimization Approach 2-4

IE. Genetic Algorithms 3-1

3.1 Classical Optimization 3-1

3.2 GAs: The Inner Workings 3-5

iii

Page

3.2.1 Exploration 3-6

3.2.2 Exploitation 3-7

3.3 Schemata 3-9

3.3.1 Survival of the Fittest 3-10

3.4 Improvements on the Simple GA 3-12

3.4.1 Crossover Operator 3-13

3.4.2 Mutation Operator 3-14

3.4.3 Messy Genetic Algorithms 3-16

3.5 Software Review 3-16

3.5.1 Algorithm Specific 3-16

3.5.2 General Purpose Toolkits 3-17

3.6 Implementation 3-17

3.6.1 Software Selection 3-17

IV. Sample Control Example 4-1

4.1 Problem Statement and Analysis 4-1

4.2 Fixed Interval Results 4-2

4.2.1 Parameter Study 4-3

4.3 Variable Interval Results 4-4

4.4 Variable Number of Intervals Results 4-8

4.5 Linear Interpolation 4-10

4.6 Summary 4-11

V Flight Envelope Design Example 5-1

5.1 Equations of Motion 5-1

5.2 Controller Design 5-4

5.3 Relative Error 5-7

5.4 Optimization Results 5-9

IV

Page

5.4.1 Overview 5-9

5.4.2 Baseline Design Results 5-11

5.4.3 Case I 5-16

5.4.4 Case II 5-16

5.4.5 Casein 5-19

5.4.6 Case IV 5-31

5.4.7 CaseV 5-37

5.4.8 Case VI 5-40

5.4.9 CaseVn 5-43

5.4.10 CaseVm 5-49

5.4.11 Summary of Results 5-52

5.4.12 Design Validation 5-52

VI. General Design Process 6-1

6.1 Gain Scheduling Design 6-1

6.2 Conclusions 6-2

6.3 Future Research 6-3

Appendix A. F-18 Design Flight Conditions A-l

Appendix B. Computer Codes B-l

B.l Example Problem Code B-l

B.2 F-18 Example Code B-5

Bibliography BIB-1

Vita VITA-1

List of Figures
Figure Page

3.1. Mutation 3-6

3.2. Crossover 3-7

3.3. Reproduction Roulette Wheel 3-9

3.4. Order and Defining Length 3-10

3.5. Schema Surviving Crossover 3-11

3.6. Two Point Crossover 3-13

3.7. Uniform Crossover 3-14

4.1. Example System Block Diagram 4-2

4.2. Exhaustive Interval Optimization 4-3

4.3. Parameter Study Results 4-6

4.4. Variable Interval vs. Fixed Interval Pole Placement Error 4-7

4.5. Locus of Roots of the Closed Loop System 4-8

4.6. Time Response for Various Values of Scheduled Variable 4-9

4.7. Locus of Roots of the Closed Loop System 4-12

5.1. F-18 Aircraft 5-2

5.2. Outer Control Loop 5-4

5.3. Inner Equalization Loop 5-4

5.4. F-18 Flight Envelope 5-5

5.5. Inner Loop Controller 5-6

5.6. Baseline Schedule of Design Parameters 5-7

5.7. F-18 Flight Envelope 5-10

5.8. Case 0: qc to a Open-Loop Dynamics 5-12

5.9. Case 0: qc to q Open-Loop Dynamics 5-12

VI

Figure Page

5.10. CaseO: qc to a Closed-Loop Dynamics 5-13

5.11. CaseO: qc to q Closed-Loop Dynamics 5-14

5.12. CaseO: Relative Error 5-14

5.13. CaseO: Time Response for a Step Input 5-15

5.14. CaseO: Controller Parameter Schedule 5-15

5.15. Case I: qc to a Closed-Loop Dynamics 5-17

5.16. Case I: qc to q Closed-Loop Dynamics 5-17

5.17. Case I: Relative Error 5-18

5.18. Case I: Time Response for a Step Input 5-18

5.19. Case I: Controller Parameter Schedule 5-19

5.20. Case II: qc to ex Closed-Loop Dynamics 5-20

5.21. Case II: qc to q Closed-Loop Dynamics 5-20

5.22. Case II: Relative Error 5-21

5.23. Case II: Time Response for a Step Input 5-21

5.24. Case II: Controller Parameter Schedule 5-22

5.25. Case Ilia: qc to a Closed-Loop Dynamics 5-23

5.26. Case nia: qc to q Closed-Loop Dynamics 5-23

5.27. Case HIa: Relative Error 5-24

5.28. Case Ilia: Time Response for a Step Input 5-24

5.29. Case IHa: Controller Parameter Schedule 5-25

5.30. Case Hlb: qc to a Closed-Loop Dynamics 5-26

5.31. Caseinb: qc to q Closed-Loop Dynamics 5-26

5.32. Case 111b: Relative Error 5-27

5.33. Case nib: Time Response for a Step Input 5-27

5.34. Case Hlb: Controller Parameter Schedule 5-28

5.35. Case Hie: qc to a Closed-Loop Dynamics 5-28

5.36. Case fflc: qc to q Closed-Loop Dynamics 5-29

Vll

Figure Page

5.37. Case IHc: Relative Error 5-29

5.38. Case IIIc: Time Response for a Step Input 5-30

5.39. Case IIIc: Controller Parameter Schedule 5-30

5.40. Casellld: qc to a Closed-Loop Dynamics 5-31

5.41. Casellld: qc to q Closed-Loop Dynamics 5-32

5.42. Case Hid: Relative Error 5-32

5.43. Case nid: Time Response for a Step Input 5-33

5.44. Case Hid: Controller Parameter Schedule 5-33

5.45. Case IVa: qc to a Closed-Loop Dynamics 5-34

5.46. Case IVa: qc to q Closed-Loop Dynamics 5-35

5.47. Case IVa: Relative Error 5-35

5.48. Case IVa: Time Response for a Step Input 5-36

5.49. Case IVa: Controller Parameter Schedule 5-36

5.50. Case IVb: qc to a Closed-Loop Dynamics 5-37

5.51. CaserVb: qc to q Closed-Loop Dynamics 5-38

5.52. Case rvb: Relative Error 5-38

5.53. Case IVb: Time Response for a Step Input 5-39

5.54. Case IVb: Controller Parameter Schedule 5-39

5.55. Case V: qc to a Closed-Loop Dynamics 5-41

5.56. Case V: qc to q Closed-Loop Dynamics 5-41

5.57. Case V: Relative Error 5-42

5.58. Case V: Time Response for a Step Input 5-42

5.59. Case V: Controller Parameter Schedule 5-43

5.60. Case VI: qc to a Closed-Loop Dynamics 5-44

5.61. Case VI: qc to q Closed-Loop Dynamics 5-44

5.62. Case VI: Relative Error 5-45

5.63. Case VI: Time Response for a Step Input 5-45

vm

Figure Page

5.64. Case VI: Controller Parameter Schedule 5-46

5.65. Case VII: qc to a Closed-Loop Dynamics 5-46

5.66. Case VII: qc to q Closed-Loop Dynamics 5-47

5.67. Case VII: Relative Error 5-47

5.68. Case VII: Time Response for a Step Input 5-48

5.69. Case VII: Controller Parameter Schedule 5-48

5.70. Case VIII: qc to a Closed-Loop Dynamics 5-49

5.71. Case VIH: qc to q Closed-Loop Dynamics 5-50

5.72. Case VIE: Relative Error 5-50

5.73. Case VIII: Time Response for a Step Input 5-51

5.74. Case Vni: Controller Parameter Schedule 5-51

5.75. Central Controller Variations 5-53

5.76. F-18 Flight Envelope 5-54

5.77. Baseline Relative Error Validation 5-55

5.78. Baseline Time Response Validation 5-55

5.79. Optimial Schedule Relative Error Validation 5-56

5.80. Optimal Schedule Time Response Validation 5-56

IX

List of Tables

Table Page

3.1. Reproduction Example 3-8

4.1. Fixed Interval Results 4-3

4.2. Parameter Study Results 4-5

4.3. Variable Interval Results 4-5

4.4. Variable Number of Intervals Optimization Results 4-10

4.5. Linear Scheduling Results 4-12

5.1. Optimization Summary 5-11

5.2. Comparison of Optimization Results 5-53

A.l. Longitudinal Flight Conditions For Optimization A-l

A.2. Longitudinal Flight Conditions For Evaluation A-2

List of Symbols

Symbol Page

S Schema 3-12

a Angle of Attack 5-3

q Perturbed pitch rate 5-3

6e Elevator Deflection 5-3

SPTV Pitch Thrust Vectoring 5-3

Z Longitudinal Stability Derivative 5-3

M Longitudinal Stability Derivative 5-3

Aiong Longitudinal Plant Matrix 5-3

Biong Longitudinal Input Matrix 5-3

Ciong Longitudinal Output Matrix 5-3

P0 Central Controller 5-4

K0ut Outer Loop Controller 5-4

q Dynamic Pressure 5-6

XI

List of Abbreviations
Abbreviation Page

GAs Genetic Algorithms 1-2

LTI Linear Time Invariant 2-2

PID Proportional-Integral-Derivative 2-2

LFTs Linear Fractional Transforms 2-3

LMI Linear Matrix Inequalities 2-3

LPV Linear Parameter Varying 2-3

AFIT Air Force Institute of Technology 3-17

SISO Single Input Single Output 4-1

BFGSBroydon-Fletcher-Goldfarb-Shanno 4-2

SQP Sequential Quadratic Programming 4-4

Xll

AFIT/GAE/ENY/94D-3

Abstract

Gain scheduling, the traditional method of providing adaptive control to a nonlinear

system, has long been an ad hoc design process. Until recently, little theoretical guidance

directed this practioners' art. For this reason, a systematic study of this design process and its

potential for optimization has never been accomplished. Additionally, the nonlinearities and

the large search space involved in gain scheduling also precluded such an optimization study.

Traditionally, the gain scheduling process has been some variation of a linear interpolation

between discrete design points. By using powerful non-traditional optimization tools such as

genetic algorithms there are ways of improving this design process.

This thesis utilizes the power of genetic algorithms to optimally design a gain sched-

ule. First, a design methodology is validated on a simple pole placement problem, then

demonstrated for an F-18 Super-maneuverable Fighter. From this experience, a general gain

scheduling design process is developed and presented.

xin

A Gain Scheduling Optimization Method

Using Genetic Algorithms

/. Introduction

1.1 Background

Control design and optimization is based upon many assumptions that simplify a real

world control problem to a mathematically manageable model. After designing a controller

for a simplified model, it is implemented on the real world problem. Consequently, because

of the simplifications in model reduction, there are difficulties in implementing the controller

and commanding a desired response throughout the entire operating envelope of the system.

One method of overcoming these difficulties is gain scheduling. Gain scheduling is a method

of changing the controller depending upon the operating condition. There are four basic steps

in designing a gain schedule [30]:

1. Select a family of constant operating point plants,

2. Design a controller for each plant in family,

3. Design a method of scheduling the controllers such that performance is
maintained at each design point, and

4. Check non-local performance of the scheduled controller by simulation.

Typically, gain scheduling is some form of linear interpolation between the controllers designed

at discrete operating points. There are two major concerns in gain scheduling. The primary

concern is that the scheduled controller maintains stability throughout the operating envelope

[43 5 46, 45, 44]. The secondary concern is that acceptable performance is also maintained

throughout the operating envelope. In designing a gain schedule, there are many design

variables the control designer must choose [41]:

• The variable to schedule the controller,

1-1

• The number of members in the family of plants,

• The members in the family of constant operating point plants,

• The method of scheduling the controller,

• The number of discrete points within the scheduling variable range for linear
interpolation, and

• The distance between each chosen discrete point in the scheduling variable
range.

In numerically optimizing a gain schedule design, only the last two of these design variables

are alterables. Unfortunately, traditional calculus-based optimization methods become numer-

ically inaccurate and fail to find an optimal solution when trying to simultaneously optimize

these variables. One method of overcoming this difficulty is to set one variable and optimize

the other, however, this procedure is time consuming and inefficient when there are means of

optimizing these variables simultaneously. Another significant difficulty is that the number

of the design variables is a function of one of the variables. For instance, if three intervals of

the scheduling variable are selected for optimization, then there are not as many variables to

optimize as if eight intervals are selected. Additionally, the nonlinearities of the system and the

high dimensionality of the problem makes this problem very difficult for traditional calculus-

based deterministic search algorithms [27, 32, 35]. Since, genetic algorithms can overcome

these difficulties they are used to simultaneously optimize these variables [27, 32, 35].

Genetic algorithms (GAs) have found global optima in problems with both nonlinearities

and high dimensionality where calculus-based methods have fallen into local optimum, such as

aircraft structural parameter design [9] and various control optimizations [27,32,35,38,39].

For these reasons, GAs are used as an optimization tool in this investigation.

1.2 Purpose

The purpose of this research effort is to:

• Demonstrate that gain scheduled controllers can be optimized using GAs,

• Illustrate the feasibility gain scheduling optimization process on a full en-
velope aircraft flight control example, and

• Present a general gain schedule design method.

1-2

1.3 Scope of Research

The first basic step in gain scheduling, selection of operating points, is a procedure that

relies on common sense and engineering judgement, consequentially, it is not reviewed in this

research effort. Similarly, the second basic step, controller design, is independent of the gain

scheduling design process, consequentially, it also is not considered in this research work [30].

Conversely, the third step, controller scheduling, can be optimized with respect to a specified

objective. Therefore, this research effort is limited to optimizing this procedure. Finally, the

fourth basic step, non-local performance validation, merely verified the global performance

of the designed controller. Additionally, this research does not focus on improvements in the

computation efficiency of the GA optimization algorithm or the objective function calculation.

This effort is concerned with the optimization results and justifying the approach.

1.4 Objectives

The specific objectives of this research are:

• Find a readily available, easy to use genetic algorithm platform that is
compatible with a common computer-aided control design tool,

• Formulate an appropriate method for gain schedule optimization while
considering alternatives,

• Validate the gain scheduling GA optimization process on a simple, repre-
sentative control problem,

• Demonstrate the GA optimization process on a full envelope flight control
example, and

• Compile the lessons learned into a concise design optimization procedure
using GAs.

1.5 Preview

The next two chapters provide a brief summary of recent published work concerning gain

scheduling and genetic algorithms. Chapter II summarizes developments in the theoretical

aspects of gain scheduling. Chapter III presents some recent GA applications in the field

of aircraft controls and briefly explains how GAs work. Additionally, some modifications

1-3

and improvements on the simple GA are discussed, and finally a brief GA software platform

review is presented. Chapter IV presents a simple control problem to validate the use of GAs

in gain schedule optimization. Chapter V presents information for an F-18 gain scheduled

controller designed in [4] and the results of various optimizations of this gain schedule.

Chapter VI presents a general gain scheduling optimization design process developed from

the experience of this research effort, summarizes the results of this research work, and

provides recommendations for future research.

1-4

//. Gain Scheduling

This chapter presents a review of gain scheduling and how it has been achieved in

the past. By understanding the methods involved in scheduling a controller throughout an

operating envelope, it becomes clearer how this proven technique can be improved. Section

2.1 provides an explanation of why gain scheduling is used. Next, section 2.2 describes

the traditional methods of gain scheduling which are improved upon in this research effort.

Concluding this chapter, section 2.3 explains how a gain schedule is "optimized" in this

investigation.

2.1 Rational for Gain Scheduling

Many real world systems are nonlinear. Also, their dynamics may change as a function

of the system's operating condition. There are two basic approaches to designing a controller

for these systems. The preferred way is to design a controller that is robust enough to maintain

stability and desired performance throughout the entire operating regime. There are several

techniques for designing robust controllers including H^ and /«-synthesis [14,15]. This can

be accomplished for some problems as demonstrated by Shamma and Cloutier in designing

a missile autopilot [47]. Unfortunately, this is not always possible. The second approach is

to change a linear controller as the plant dynamics change. Hence, the controller parameters

(typically gains) are scheduled as a function of system's operating condition. Gain scheduling

has proven to be a very successful method of implementing a global controller from a set of

linearized controllers [45].

There are some significant advantages to gain scheduling as pointed out by Rugh [41].

The main advantage is that linear design techniques can be utilized. When designing linear

controllers a control designer has a wealth of computational tools, performance measures,

experience, and knowledge to draw from to guide the design process. Another advantage is

that a gain scheduled controller has the potential to respond rapidly to changing operating

conditions whereas more modern techniques require more real time computation. However,

2-1

there are some difficulties involved in the design process [41]. The major difficulty is the

selection of the scheduling procedure, the process by which the scheduling variables are

changed. Another difficulty is in the selection of the scheduling variable. Fortunately, a

couple "rules of thumb" have emerged to help overcome this second difficulty. First, schedule

on a variable that captures the nonlinearities of the system, and second, schedule on a variable

that varies slowly. However recent work by Shamma has shown that these rules actually have

a rigorous mathematical justification [43,46,45,44].

2.2 Gain Scheduling Process

Following is a typical method for designing a gain schedule [44].

1. Select several operating points covering the range of the plant dynamics.

2. Construct a linear time invariant (LTI) approximation to the plant and design
a linear controller.

3. Interpolate the controller parameters between the operating points in order
to determine control parameters for operating points between the selected
design operating points.

To interpolate the controller parameters simple curve fitting techniques are used [41, 43].

However, there are no guarantees of stability or robustness without numerous simulations

or theoretical analysis. An idealized gain schedule is defined as a gain schedule that has a

controller designed at every operating point within the operating envelope [41]. Obviously, for

any large number of operating points the idealized gain schedule is impractical. Nonetheless,

approximations to this idealized gain schedule can be done where the resulting controller is

selected by a table-look up method.

Fortunately, several methods and theorems have been published to analyze the system

for global stability [29,43,46,45,44]. Unfortunately, these methods are based on scheduling

simple controllers such as proportional-integral-derivative PID controllers and full state feed

back gain matrices. These methods do not directly address the complexities of modern

controller designs such as H2, H^, and \i synthesis.

2-2

Recent works have been focusing on scheduling these modern controllers [6,5,18,37].

These works use a method of linear fractional transforms (LFTs) to approach to problem of

gain scheduling. The scheduling variable is included as an exogenous signal to be tracked or as

a disturbance to be rejected. A bounded controller space is solved via linear matrix inequality

(LMI) equations. Using this method, a controller for a linear parameter varying (LPV) plant

is linear parameter varying itself. The resulting controller is thereby self scheduled.

2.3 Gain Scheduling Design

The traditional approach to gain scheduling is selected because of its wide use and

acceptance. The goal of the design is to directly optimize the controller with respect to an

objective function over the operating range of the system. This is different than optimizing a

controller at a specific operating point and then finding a linear fit of the controllers over the

operating range. Ideally the control designer would like to design a controller that responds

exactly the same regardless of the operating condition. A gain scheduled controller of this

type would be an optimal gain scheduled controller defined as follows:

Definition 1 (Optimal Gain Scheduled Controller) An optimal gain scheduled controller

provides a uniform response throughout the operating envelope.

The optimality of a gain schedule can be measured by comparing a desired closed loop response

to an actual response at a specific operating point. The desired response can be defined in

either the time or frequency domain. The objective of the design optimization is to minimize

the deviation between the actual response and the desired response at various points in the

operating envelope. In other words, the gain scheduling error is minimized. Following are

definitions to clarify the difference between tracking error and the gain scheduled error that is

minimized in this investigation.

Definition 2 (Controller Tracking Error) The difference between the commanded input and

the closed loop output response at one specific operating point.

2-3

Definition 3 (Gain Scheduling Error) The difference between the closed loop response of

the central controller and a non central controller.

Definition 4 (Central Controller) The controller selected at a specific operating point as

having the desired response. The closed loop response of this controller is used in calculating

the gain scheduling error.

Therefore, the specific goal of the gain schedule design optimization is to minimize the

gain scheduling error in the closed loop response throughout the operating envelope. The

central controller can be a set of desired eigenvalues, a set of dominant closed loop poles, or

a controller designed at a specific operating point [4]. The example optimization discussed

in chapter IV selects a set of dominant closed loop poles to be the central controller, and in

chapter V the central controller is a controller defined at a specific operating point. Each

optimization performed demonstrates how the gain scheduling error can be minimized.

To clarify the difference the scheduling variable and the scheduled variable, they are

defined as follows:

Definition 5 (Scheduling Variable) The variable(s) that is representative of the changes in

the plant dynamics and is a measurable signal.

Definition 6 (Scheduled Variable) The variable(s) that are changed as a function of the

scheduling variable, thereby changing the controller as a function of the operating point.

2.4 Optimization Approach

The first step is to discretize the scheduling variable range by breaking it into N

intervals. At first the number of intervals are constrained to a arbitrary number. Additionally,

the size of the intervals are also constrained, for simplicity all constrained interval sizes will

be equal. Next, through some preliminary analysis the scheduled variables are bounded

by their minimum and maximum values over the scheduling variable range. After defining

an appropriate objective function, the gain scheduling error is minimized by scheduling the

2-4

controller parameters as piecewise constant or piecewise linear functions of the scheduling

variable. For each interval, the scheduled variables are allowed to vary independently between

their minimum and maximum bounds. Further optimization unconstrain the size of the

intervals and the number of intervals used to discretize the scheduling variable.

2-5

///. Genetic Algorithms

Genetic Algorithms (GAs) are an optimization method based on Darwin's theory of

"Survival of the Fittest.". GAs were first developed by Holland in 1975 [25]. Since then

they have been extensively expanded by DeJong [11,12], Goldberg [20,21,22], Grefenstette

[23] and many others. GAs differ from classical methods of optimization in many ways. The

next section describes these differences. The following two sections briefly explain how and

why GAs work. Some improvements on these simple GAs are presented in section 3.4. A

review of GA software is presented in section 3.5. Section 3.6 concludes this chapter with an

explanation of the implementation of the GA.

3.1 Classical Optimization

Classical methods of optimization fall into three categories: calculus-based, enumera-

tive, and random. Consider a general optimization problem statement [50]:

Minimize: F(X) the objective function

Subject to:

<7j(X) < 0 j = l,ra inequality constraints

hk(X) = 0 k = 1,1 equality constraints

X|- < X; < X" i = l,n side constraints

x2

where X = <

X„

> the design variables

(3.1)

(3.2)

(3.3)

(3.4)

3-1

Calculus based methods optimize this given problem by satisfying three Kuhn-Tucker condi-

tions [50]. The Kuhn-Tucker conditions are (X* is the optimal design vector):

1. X* is feasible

2.Aiflfi(X*) = 0 i = l,m Ai>0

3. VF(X*)+^AiV^(X*) + X>fc+raV/^(X*) = 0
3 = 1 k=l

Xj > 0 Afc+m unrestricted

" SF{X)/6Xi

SF(X)/6X2

6F(X)/SX3

8F(X)/6Xn

(3.5)

(3.6)

(3.7)

where VF(X) = (3.8)

Both the power and the drawback of calculus-based methods becomes apparent in the third

Kuhn-Tucker condition, Eq (3.7). The gradient of both the objective function and the con-

straints must be evaluated to determine the direction the search will proceed. For a function

where these gradients do not have analytical solutions, they must be evaluated by a finite-

difference method [50]. Additionally, for the calculus-based algorithm to determine whether

the optimum that it has found is a maximum or minimum, it must evaluate the Hessian matrix

of second derivatives (Eq (3.9)).

H =

S2F(X)
sx'l

S2F(X)
5Xl 6X2

S2F(X)
8X\ SXn

S2F(X)
SX2SX1

S2F(X) .
sn

S2F(X)
5X2 SXn

62F(X)
SXnSXi

S2F(X)
SXnSX2

S2F(X)
sxi

(3.9)

Even though calculus-based methods can be very efficient, they "break down" when the

objective function or its gradient is not continuous or "well behaved". Moreover, the solution

is dependent upon the initial conditions given to the algorithm. For a given function, a

3-2

calculus-based algorithm is guaranteed to find the nearest local extremum if it is exists. The

solution is a local minimum if the Hessian matrix is positive definite at the solution point [50].

Unfortunately, the solution found may still not be the global minimum.

Enumerative techniques were developed to guarantee that the global minimum was

found by exhaustively searching all points in the design space. Unfortunately, as the number

of design variables increases the number of possible solutions increases exponentially. This

is the "curse of dimensionality." Obviously for problems with a large number of design

variables, the enumerative technique is inefficient.

Random methods were designed to increase the efficiency of the enumerative methods

by randomly evaluating points in the search space. Since only random points in the solution

space are evaluated there is no guarantee of finding the global optimum, therefore the algorithm

continues until a large percentage of the search space has been evaluated. Again, as the number

of design variables increases the number of possible solutions increases at a greater rate. Since

random methods lack efficiency, they are not expected to obtain good results [27]. GAs provide

an approach that overcomes these difficulties.

GAs differ from traditional optimization techniques in four basic ways: 1) they code

the parameter set instead of the parameters themselves, 2) they search a population of points

instead of a single point in the solution space, 3) they do not require an initial guess of the

solution, and 4) they use probabilistic transition rules instead of deterministic transition rules.

GAs are a zero order optimization method that does not depend on the behavior of the objective

function. Consequently, they have provided robust optimization over a wide range of problems

[3,27,32]. Some problems that have been optimized using GAs are shipping scheduling [34],

dynamic control [32], control optimization [35, 27], floor plan area optimization [40], and

investment market timing strategies [7]. Traditional and genetic optimization techniques were

compared for efficiency and accuracy in an aircraft parameter design optimization [9]. In

the study the authors performed an extensive comparison of calculus, enumerative, random,

genetic, and simulated annealing algorithms. GAs and Simulated Annealing[26] were the

only two methods to find the global optimum out of the fifteen algorithms tried.

3-3

Additionally advantages of GAs are: 1) they do not require the derivative of the function

to exist, 2) they can handle objective functions with penalty functions without difficulty, unlike

a calculus-based method that must transform the objective function into a more manageable

form [27], 3) as the dimension of the problem grows the computation time for the GA grows

in a linear fashion, whereas calculus-based methods grow at least quadratically [34, 35], 4)

they are not dependent on the shape of the solution space for finding an optimum, and 5) the

optimum found by the GA is more likely to be the global optimum value for the objective

function since the solution is not dependent upon the initial condition given to the algorithm.

However, there are a couple of disadvantages to GAs. First, GAs are a naturally parallel

algorithm that are typically run on a serial machine [32]. This observation was also made by

Goldberg [20]:

"In a world where serial algorithms are usually made parallel through countless
tricks and contortions, it is no small irony that genetic algorithms are made serial
through equally unnatural tricks and turns."

The inefficiency of serial computation significantly increases the computation time of the

GA. Additionally, parallel GAs require fewer function evaluations than the best alternative

algorithms [32]. Another disadvantage of GAs is that they are robust methods for searching

the solution space to find the area in which the global optimum occurs, but they are inefficient

at obtaining a solution where high precision is desired. The following paragraph reviews some

literature that compares GAs and traditional calculus-based algorithms.

A GA was compared to Powell's conjugate search direction for two control system

optimization problems [27]. The first problem was a linear quadratic regulator problem for

a lateral autopilot which was solved via the algebraic Riccati equation [19] for the exact

answer. Both the GA and Powell's method found the exact solution. A significant difference

was that Powell's method required an order of magnitude more function evaluations. A

second comparison was performed on a wind shear problem where the objective was to find

a controller that minimized the deviation in the velocity and flight path of an aircraft due to a

wind burst. The GA was able to find the exact solution, but Powell's method was dependent

3-4

upon the initial conditions and unable to find the global optimum. Similar experiments were

performed by Michalewicz [34], who drew the following conclusions on the effectiveness of

GAs applied to optimal control: 1) the objective function need not be continuous over the

search space for GAs to find an optimum; 2) GAs give intermediate information while the

problem is being solved so that when a desired degree of accuracy is reached computation

can be halted, whereas other packaged optimization methods do not return a result until the

optimization is complete; and 3) GAs grow linearly with the size of the problem. GAs are not

the best optimization method for all problems, but for problems with high dimensionality and

nonlinearities, GAs do have an advantage.

3.2 GAs: The Inner Workings

GAs explore and exploit various solutions by manipulating building blocks called

schemata. GAs explore different possible solutions, and exploit the best solutions through

the implementation of three genetic operators-mutation, crossover, and reproduction. GAs

evolve a population of solutions from generation to generation through these genetic operators

to an optimal solution.

GAs can either minimize or maximize a given objective function. Any minimization

problem can be transformed into an equivalent maximization problem through the mapping

depicted in Eq (3.10).

Qmax = Jmin \J.1V)

Therefore, for simplicity all problems in this chapter will be considered maximization prob-

lems.

GAs encode the parameter range of the design variable and map it to a binary string

of a specified length. For example, a binary string of length seven has a minimum value,

0000000, which is mapped to the minimum value of the design variable, xmin. The maximum

value of the string, 1111111, is mapped to the maximum value of the design variable, xmax.

Between these two extremes there is a linear mapping of the string values to the parameter

3-5

values. For a function of more than one variable, the strings representing each variable are

concatenated together to form one chromosome. For example, a function with two design

variables, with each having a string length of seven would form a chromosome of length

fourteen, 00000001111111.

The following two sections will explain how the GA explores and exploits solutions

through genetic operators.

3.2.1 Exploration. The main operator responsible for exploration of the search

space is mutation. The mutation operator is controlled by a user specified probability, pm • This

probability is the chance that each bit in the chromosome string is mutated to its complement

value of 0 or 1. For each bit in the population, a random number between zero and one is

generated. If the random number is less than pm, that bit is mutated. For example, suppose that

a chromosome has the form shown in Fig. 3.1(a). If the fourth bit is chosen for mutation, the

chromosome is changed to the new chromosome shown in Fig. 3.1(b). This new chromosome

represents a new possible solution.

1011010110

(a)
1010010110

(b)

Figure 3.1 Mutation

The frequency of mutation for a specified probability, pm, is dependent on the string

length, m, of the chromosome. Eq (3.11) describes the expected number of mutations per

generation.

E[# of mutations] = n x m x pm (3.11)

where n = the population size, m = the string length, and pm = the user specified
mutation probability.

For a string length m = 100 and pm = 0.01, the expected number of mutations per string is

1. For a string length m — 50, then expected number of mutations is only 1 per every two

3-6

01110110110
10101101100
(a) Parents

01110101100
10101110110
(b) Offspring

Figure 3.2 Crossover

strings in the population. Consequently, for a population size of n = 20, a string length of

m = 50, and pm = 0.01, the expected number of mutations per generation is 10. Typically,

values of pm range from 0.01 to 0.001 [23]. For values of pm > 0.05, the GA approaches a

random search method.

3.2.2 Exploitation. Two genetic operators are responsible for exploitation of

good solutions, crossover and reproduction. The following two sections will describe these

operators in more detail.

3.2.2.1 Crossover. The crossover operator acts on two solution strings si-

multaneously by swapping information included in each string. The probability that crossover

occurs, Pc, is set by the user. Once two strings are chosen for crossover, a position between

the bits is randomly chosen with a uniform distribution. Suppose that the two strings shown

in Fig. 3.2(a) are chosen for crossover, and that the position between the fifth and sixth bit

is randomly selected as the crossover point. At the crossover point the strings are cut. The

partial strings are swapped, thereby forming the two new strings shown in Fig. 3.2(b).

Crossover, unlike mutation, is independent of the string length, but is still a function of

the population size. Eq (3.12) describes the expected number of crossovers per generation.

E[# of strings selected for crossover] = n x pc (3.12)

For a population size of n = 50, and pc = 0.6, the expected number of strings selected for

crossover would be 30. Typically, values for pc range from 0.6 to 0.9 [23].

3-7

Table 3.1 Reproduction Example
string fitness value f 1 ftot
01101001
10010010
01011011
10110110

28.6
16.4
23.7

9.8

0.36
0.21
0.30
0.13

78.5 1.00

3.2.2.2 Reproduction. The reproduction operator acts on the population only

after both the mutation and crossover operators have been implemented. The reproduction

operator reproduces each solution with a probability proportional to the fitness value of each

string. The strings with above average fitness values are reproduced at higher rates than strings

with below average fitness values. Consequently, poor solutions die out of the population. By

not eliminating the worst solutions immediately, the population remains diverse and therefore

does not converge prematurely to a local optimum.

Consider a population of size n = 4 shown in Table 3.1. Each string is evaluated

using an objective function to find the respective fitness of each string. The total sum of all

the fitness values is 78.5. Each string has a chance of being selected for the next generation

proportional to its fitness value, /, divided by the total fitness value of the population, ftot.

Therefore, the probability that a string is selected for the next generation is:

P(selection for next generation) = J_
ftot

(3.13)

The sum of these probabilities totals 100 per cent. Reproduction takes place by giving each

string a space on a roulette wheel proportional to its relative fitness, f I ftot (See Fig. 3.3).

The roulette wheel is spun four times to select the individuals for the next generation.

This concludes the basics of a GA. The next section will explain how these genetic

operators work together to find an optimal solution to a given objective function.

3-8

Figure 3.3 Reproduction Roulette Wheel

33 Schemata

Schemata1 are a representation of a set of binary strings used in the theoretical structure

of GAs. To understand schemata, a "don't care" symbol' *' is introduced. A schema of length

eight, So = {**101011}, would represent any string of the same length that had Is and Os in

the same positions as the schema itself. A schema with r "don't care" symbols has 2r strings

matching that schema. Every schema matches 2r strings, where r is the number of "don't

care" symbols in the schema. Thus, the following strings would match schema S0.

(00101011), (01101011), (10101011), (11101011)

Conversely, each string of length m is matched by 2m schemata. For example, the string

(10110) is matched by the following 25 schema:

(10110)

(*0110)

(1*110)

(**110)

(10*10)

1Note: Schemata is the plural of schema.

3-9

There are two main characteristics used to define schema, order and defining length.

Order, denoted by o(S), is the number of Is and Os specified in the schema. It defines the

specialty of the schema. A high order schema is more specific than a low order schema. A

schema of high order is more likely to be disrupted by mutation than a low order schema. The

order of two schemata are shown in Fig. 3.4.

The defining length, denoted by 8(S), of a schema is the distance between the first

and last fixed positions. The defining length quantifies the compactness of a schema. The

minimum defining length is zero for a single specified position, and the maximum defining

length for a string of length ra is (ra -1). Defining length is a determining factor in a schema

surviving crossover, with compact schemata more likely to survive. The defining length of

two schemata are also shown in Fig. 3.4.

S0={***11***} o(50) = 2 8(S0) = 5-4 = 1
S1=={*10**1*1} o(5i)=4 £(S1) = 8-2 = 6

Figure 3.4 Order and Defining Length

3.3.1 Survival of the Fittest. For a population of strings with length m, there are

a total of 3m possible schema. With a population of size n, there will only be 2m to n x 2m

schemata represented, with some more fit than others. The fitness of a schema is determined

by the average fitness of the strings matching schema S. Let N(S,t) represent the number of

strings in generation t that match schema S. Then the following equation calculates the fitness

of a schema S in generation t.

N(S,t) ,

From this relation the expected number of strings in the next generation, t + 1, can be

determined for a population with given average fitness (favg = ftot/n).

E[N(S,t + l)} = N(S,t)eVal{S^ (3.15)
Javg

3-10

A schema with an above average fitness will receive an increasing number of strings in the

subsequent generations as shown in Eq (3.15). This increase is exponential for a schema with

a consistently above average fitness [25,34].

However, the genetic operators, crossover and mutation, can destroy a schema and

therefore reduce this growth rate of the schema. Consequently the probability of crossover

destroying a schema is:

- - xpc (3.16)
ra — 1

Therefore the probability of survival is:

Ps = l- ^\ x Pc (3.17)
m — 1

However, there is a chance that even if crossover occurs within the defining length of a schema,

the schema will survive. For an example of this see Fig. 3.5. Therefore, the probability of

survival is slightly larger:

Ps>l- -^r x Pc (3.18)
m — 1

,S0={***11***)
011111011
110111100
(a) Parents
011111100
110111011

(b) Offspring

Figure 3.5 Schema Surviving Crossover

The probability that a schema survives mutation depends on its specialty:

Ps = (l-j,mf)«l-Pmx0(5) forpm<l (3.19)

3-11

Combining the effects of crossover and mutation, Eq (3.15) becomes:

E[N{S,t + l)]>N{S,t)
eva l(S,t)

/< avg

1 8^ (Q\ 1 ~ Pc 7 - PmO(S)
m — 1

(3.20)

To demonstrate how this growth works consider the following schema:

m = 21

6(S) = 5-3 = 2

o(S) = 3

N(S,t) = 4

eval(S,t) = 20

Javg — J-^

Pc = 0.6

Pm = 0.001

E[N(S,t + 1)] > 4.0 x 1.667 x 0.938 w 6

For a below average schema the number of strings in subsequent generations would

decrease in a similar manner. The following theorem describes the concept given quantitatively

in Eq (3.20). This theorem is known as the fundamental theorem of GAs [34].

Theorem 1 (Schema Theorem) Short, low-order, above average schemata receive exponen-

tially increasing trials in subsequent generations of a genetic algorithm.

3.4 Improvements on the Simple GA

Several modifications have been proposed to improve the performance of the simple

GA (sGA). One of the simplest ways of improving the precision of the GA is to use a floating

point representation of the design variables instead of mapping them to binary strings. Two

different research efforts have found that the use of floating point genes has increased the

speed, precision and the accuracy of the GA [10,34].

3-12

There are two main qualities of the GA that have proven it to be a robust optimization

method for a wide range of practical problems: its power to explore new solutions, and the

ability to exploit the best solutions it has found. The user has control over these parameters by

selecting the crossover probability, pc, and the mutation probability, pm. For improved results

the user might want to vary these parameters over the computation time of the algorithm. The

following two sections discuss some of the ways that crossover and mutation operators may

be varied or adaptively changed. The third section 3.4.3 discusses the advantages of using a

messy GA (mGA) instead of a sGA.

3.4.1 Crossover Operator. One simple way of changing the crossover operator is

to vary the number of points at which crossover can occur. By allowing multi-point crossover

to occur, some schemata with long defining lengths can be preserved which would otherwise

be destroyed with single point crossover. For example, two point crossover would randomly

select two points along the length of the chromosome for crossover (See Fig. 3.6). Then the

portion of the string between the two crossover points are swapped between the two parents

to produce two new offspring.

011101101101110111
101011011001011010

(a) Parents
011101011001110111
101011101101011010

(b) Offspring

Figure 3.6 Two Point Crossover

Further generalization of this concept can lead to the idea of uniform crossover. Uniform

crossover decides with probability, pc, which bit positions of the first parent will be exchanged

with the second parent. This is similar to the mutation operator in the sense that each bit has a

chance to be crossed with another bit from the second parent. For an example of this type of

crossover, see Fig. 3.7 (pm = 0.5).

3-13

1001100110
0110101011
(a) Parents

1100100110
0011101011

(b) Offspring

Figure 3.7 Uniform Crossover

Another innovative way of changing the crossover operator is to change the probability

that crossover occurs as a function of the average and best fitness of the population [48]. This

operator is shown in Eq (3.21).

Pc = Klyjmax /)l\jmax Javg) lOr/ ^ Javg

Pc = h for/' < favg (3.21)

where /' is the largest fitness value of the two parents selected for crossover,
fmax is the largest fitness value of the population, and favg is the average fitness
value of the population.

The parameters h and k2 are scaling parameters that can be chosen arbitrarily. The authors

of [48] chose h = 1.0 and k2 = 1.0. With this crossover operator each individual in the

population has a different crossover probability depending on its fitness value. Individuals with

above average fitness values have a higher crossover probability than those with below average

fitness. The probability of crossover is 0.0 for individuals with fitness values equal to fmax.

Davis [10] presented another method of adaptive crossover where the crossover probability is

dependent upon the fitness of the offspring produced. The greater the offspring's fitness, the

greater the probability that crossover will occur at that bit location.

3.4.2 Mutation Operator. The choice of pm is critical in the performance of the GA

[11]. Two ways of adaptively changing the mutation operator are presented. Both have shown

to provide increased performance in the GA in a sampling of test problems [34,48]. The first

method changes pm as a function of the current generation number and the total number of

3-14

generations. This mutation operator was designed as a floating point mutation operator, but

it can be transformed into a binary operator with an appropriate mapping [34]. This mutation

operator is shown in Eq (3.22).

A(i,y) = y(l-r<1-*/T>6) (3.22)

where T is the maximum number of generations, t is the current generation
number, r is a random number G [0,1], b is a system parameter determining the
degree of dependence on iteration number (a value of 5 is used for experimental
results), and y is the value of the gene being mutated.

The effect of this operator is that when the GA begins, there is a high probability of mutation.

This maintains the diversity of the population searching for new solutions. As the GA nears

completion, t —> T, mutation is decreased allowing crossover to become dominant and

converge to an optimal solution.

Another published adaptive mutation operator changes the mutation probability depend-

ing on an individual's fitness value instead of the generation number [48]. Eq (3.23) defines

the proposed mutation operator.

Pm — ">3\jmax J)/ \Jmax Javgj *OX J ^ Javg

Pm = U for / < favg (3.23)

where / is the fitness of the individual, fmax is the maximum fitness in the
population, and favg is the average fitness of the population.

The values of k3 and k4 can be chosen by the user; the authors of [48] chose values of 0.5 for

both. Individuals with above average fitness have lower mutation probabilities than individuals

with below average fitness. The mutation probability is 0.0 for individuals with fitness equal

to fmax- Individuals with below average fitness are totally disrupted. The combined effect of

this mutation operator and the adaptive crossover in Eq (3.21) is to preserve individuals with

the best fitness and to completely disrupt individuals with the worst fitness.

3-15

3.4.3 Messy Genetic Algorithms. Messy GAs (mGAs) were originally developed

by Goldberg [21, 22] to overcome the problem of the sGA converging to local optima. As

mentioned in section 3.3, for a string length, m, there are 3m different possible schemata.

Unfortunately, for a population of size n, only 2m to n2m schemata are represented. This

problem is overcome by mGAs. The algorithm is divided into two phases. The first phase is

known as a tournament and the second phase is similar to traditional GAs. The tournament

generates a large number of schemata of various sizes and then reduces this population of

schemata down to a manageable size for the second phase. The second phase takes the reduced

population and uses genetic operators splice, cut, and mutation to achieve an optimal solution.

The operators splice and cut replace the crossover operator. See [21, 34] for a description

of the splice and cut operators. Goldberg states that the mGA was able to find the optimal

solution to a difficult problem, where the sGA only found the optimal solution 25 per cent of

the time [21]. Developments and improvements of the mGA have been accomplished here at

AFIT [33,16].

3.5 Software Review

This section provides a survey of available software that was considered for this thesis.

For a complete review of existing software available, the reader is referred to [17]. The GA

software available can be divided into three main categories: application specific, algorithm

specific, and general purpose toolkits. There are no application specific software available for

this research topic. The next two sections will discuss software that was investigated in the

two remaining categories.

3.5.1 Algorithm Specific. For algorithm specific software a source code is provided

and the user is able to make alterations to the code. Typically the code is in a higher level

language like 'C' and the user interfaces are rudimentary. The following is a list of the software

that was reviewed:

3-16

GENESIS (GENEtic Search Implementations System) was written by John Grefenstette and

has been under development since 1981. The source code is in 'C and allows for a high

degree of modifiability with large amount of statistical information. It was primarily

developed for work in a scientific environment.

GAUCSD (Genetic Algorithm University of California San Diego) was written by Nicol

Schraudolph. It is based on GENESIS version 4.5, but it provides a higher level

of abstraction for defining the evaluation function. It allows direct use of most 'C

functions and it has parallel capabilities.

3.5.2 General Purpose Toolkits. These software systems provide toolkits of ac-

cessories that can be used interchangeably. The toolkits include different graphics interface

and a library of genetic operators. The software is designed to have a user friendly inter-

face. The library of genetic operators enables the user to experiment with different operator

combinations. Following is a list of the software reviewed.

SPLICER was developed by Software Technology Branch of Information Systems Direc-

torate at NASA/Fohnson Space center with support from MITRE Corporation. It has a

modular architecture that works using Xwindows. It was programmed in 'C and has

graphics output capabilities.

GAME (Genetic Algorithm Manipulation Environment) is an algorithm used by a large

majority of the European community. It is designed for parallel capabilities in the

'C++' programming language.

3.6 Implementation

3.6.1 Software Selection. GENESIS was selected as the software package to use

for this thesis for a couple of reasons. First, it is a readily available public domain software.

Second, work has been accomplished here at the Air Force Institute of Technology (AFIT)

that has modified the basic GENESIS code into a mGA [33, 16]. With these improvements

any work accomplished in this thesis could easily be implemented with the modified codes to

3-17

improve the computation time. The goal of the implementation is to make it simple to take a

controller design and optimize it with as little additional work as possible. For this reason the

evaluation of the objective function will be accomplished in the Matlab© environment. This

is convenient since Matlab© has a large amount of controller evaluation routines already

programmed. GENESIS is coded in 'C. To link the two together, Matlab® is used as a

computational engine. The GA sends a vector of the design variables to Matlab® and a user

written m-file calculates the objective function and passes the scalar value back to GENESIS.

A number of the GENESIS files were modified to facilitate this passing of variables

between programs. The modifications required to run Matlab® as a computational engine

are documented in the Matlab© user's manual [31]. Both the evaluation files, the 'C code

and the m-file, are listed in Appendix B.

3-18

IV. Sample Control Example

This chapter presents a simple control problem for which a gain schedule is designed

and optimized using GAs. The results of this design clearly demonstrate that the gain schedule

design process can be optimized. Further, for comparison, the gain schedule is optimized with

calculus based algorithms and GAs. Since, this is a simple optimization problem, the calculus

based methods do show good results, but they are useless on the full optimization problem

shown in section 4.4. The problem is defined in section 4.1 and the optimization results are

presented in sections 4.2,4.3,4.4, and 4.5.

4.1 Problem Statement and Analysis

The sample problem considered is a SISO third-order linear parameter varying plant

with proportional feedback shown in Fig. 4.1. The scheduling variable c e (0,10) determines

the plant dynamics. The range of c is divided into several intervals Ii,i = l...n, and a gain,

h, is selected for each. The controller gain is simply the gain corresponding to the interval

the current value of c is in. The objective is to find the set of gains that minimize the average

deviation of the actual dominant closed loop poles from desired dominant pole locations over

the entire range of c. For efficiency, the objective function was approximated by evaluating

the deviation at 500 equally spaced values of c and adding them together. The desired pole

locations are —2 ± 2j. Therefore, the objective function is:

500

J1=Y^ {max [Re(A,-)] + 2}2 + {max [Im(A,-)] - 2}2 (4.1)

where A; are the closed loop poles of the system at a given value of c.

There are four increasingly difficult variations on this basic problem. First, the number of

intervals and their sizes are chosen and the gains for each interval are found. Results of this

optimization are in section 4.2. Second, only the number of intervals is chosen and the interval

size and gains are optimized. These results are in section 4.3. Third, all three parameters, the

4-1

number of intervals, the size of each interval, and the gain for each interval, are optimized.

Results for this are in section 4.4. Finally, the gains are allowed to be a linear function of the

scheduling variable and the coefficients of the function are optimized. These results are in

section 4.5.

In summary, the interval size and number can be specified where the gain of each interval

is a design variable, or just the number of intervals can be specified and both the interval

endpoints and gains are design variables, or the number of intervals and their respective

endpoints and gains can be design variables and trade off complexity (number of intervals)

for accuracy of the closed loop poles.

FHD- s3+10A(24+c)s+6c

Plant

<^

Figure 4.1 Example System Block Diagram

4.2 Fixed Interval Results

Initially, five equal intervals are chosen, (0,2), [2,4), [4,6), [6,8), and [8,10), and the

optimal gains for each interval are found. This optimization is done using a simple GA with

the following parameters, pc = 0.95, pm = 0.01, popsize = 50. Each design variable had a

gene of length 14 for a precision of two decimal places. This resulted in a total string length

of 100. For comparison, the same optimization is done with a Broydon-Fletcher-Goldfarb-

Shanno (BFGS) Quasi-Newton method with a mixed quadratic and cubic line search method.

There are five design variables to be optimized, the gain for each interval, h, i = 1... 5 .

The results of both the GA and the BFGS method are shown in Table 4.1. A mapping of the

4-2

Table 4.1 Fixed Interval Results
GA BFGS

Iterations 182 15
Function Evals 8323 128
Interval 1 Gain 31.61 31.61
Interval 2 Gain 22.12 22.12
Interval 3 Gain 13.02 13.02
Interval 4 Gain 4.40 4.41
Interval 5 Gain -3.62 -3.59
Obj. Function 91.20 91.20

Interval 4 Optimization

J 600

-100 -80 -60 -40 -20 0 20 40 60 80 100
Gain Range

Figure 4.2 Exhaustive Interval Optimization

solution space of one of the intervals is shown in Fig. 4.2. For each fixed interval the solution

is very similar, with one global optimum and one local optimum.

The GA required a significantly greater number of function evaluations than the BFGS

method. However, this was expected since the objective function is smooth and the derivative

is well-behaved for this example. Using a GA at this level is clearly overkill, but it is necessary

to verify that the expected results are obtained.

4.2.1 Parameter Study. A restricted experimental study was performed to find

the best combination of GA control parameters, pc and pm. Twelve different combinations

of these parameters were tried. Each experiment had a population size of 50 and was run

4-3

for 10,000 function evaluations. Each experiment was performed ten times with a different

initial population. The results of each experiment are listed in Table 4.2. Since GAs are not

efficient at obtaining a solution with high precision, each experiment measured the number

of generations and function evaluations required for the GA to converge to within 1 per cent

of the optimal solution. Fig. 4.3 shows the average values and their respective standard

deviations for each experiment.

A number of interesting trends are prevalent from these graphs. First, as the crossover

probability is reduced, the number of function evaluations per generation decreases. This is a

result of the GA only evaluating the individuals of the population that are new. The second

interesting trend is that experiment number 1 had the lowest number standard deviation for

both the number of generations and the number of function evaluations, 7.71 and 365 respec-

tively. However, the next smallest standard deviation values, 13.01 and 561, respectively, are

significantly higher. Additionally, these values are not from the same experiment. Since the

parameter combination of experiment number 1 showed the greatest degree of consistency

in converging to a solution, these parameters are used in the remainder of the optimization

processes.

4 3 Variable Interval Results

The same design problem is now repeated with the interval end points as additional

design variables. There are now a total of nine design variables. For comparison, the same

problem is optimized using a sequential quadratic programming (SQP) method. For both the

GA and the SQP method the interval end points are constrained to be within the range of

(0,10) and the gains are constrained to be within the range of (-50,50). The results from

these optimizations are shown in Table 4.3.

In Table 4.3, the first column of the SQP category shows the results of the SQP

optimization when given the same initial condition as the fixed interval optimization. The SQP

method stalled at one solution point for numerous iterations trying to find the correct direction

to proceed. In addition, when evaluating the derivative of the function, the derivative matrix

4-4

fable 4.2 Parameter Study Results

Trial No. Pc Pm

Average
Number of
Generation

Average
Number of
Function

Evaluations

Average No.
Function

Evaluations
per Generation

1 0.95 0.010 47.40 2227 46.97
2 0.85 0.010 64.40 2764 42.99
3 0.75 0.010 53.70 2186 40.83
4 0.65 0.010 60.70 2202 36.36
5 0.95 0.005 55.40 2558 46.37
6 0.85 0.005 56.70 2356 41.78
7 0.75 0.005 65.20 2510 38.86
8 0.65 0.005 67.10 2244 33.68
9 0.95 0.001 46.20 2108 45.76
10 0.85 0.001 122.10 4565 38.48
11 0.75 0.001 46.00 1684 36.96
12 0.65 0.001 116.40 3384 29.94

Table 4.3 Variable Int erval Res ults
GA SQP

Iterations 704 109 47
Function Evals 39000 1802 821
Endpoint 1 2.18 0.37 1.94
Endpoint 2 4.36 0.40 3.88
Endpoint 3 6.16 4.43 5.81
Endpoint 4 8.02 5.10 7.74
Interval 1 Gain 31.10 35.33 31.74
Interval 2 Gain 21.01 -11.67 22.59
Interval 3 Gain 11.86 25.83 13.69
Interval 4 Gain 4.04 13.77 5.34
Interval 5 Gain -3.63 3.72 -3.02
Obj. Value 90.58 132.41 90.54

4-5

Trial No

(a) Generations

.§ 3000

'1*1

 ■"■ 1 1 I

6
Trial No

(b) Function E :val uat ion 3

45 r*i i-3E-i i-i-i

40
c

-5-
[-5-1

|-i-i

r*i
1^1 rh r-m

Bül
pt-i

<D

T:30 h ■

a

n?5 .

520 '

Hit •
if

10 -

5 ■

6
Trial No

(c) Functions Evaluations per Generation

Figure 4.3 Parameter Study Results

4-6

Fixed Interval v. Variable Interval Distance to Desired Poles
0.7

0.6;

0.5-

%0.4-

0.3-

0.2-

0.1

1 ' ' —i 1 1 1 1— ~~i

:
 Fixed Interval, Sum=91.20
 GA Variable Interval, Sum=90.58

 SQP Variable Interval, Sum=90.54
-

>?. -5

': A:- •

i

V V > ^*^?>^l'

-
//

2 3 4 5 6 7
Scheduled Variable, c

9 10

Figure 4.4 Variable Interval vs. Fixed Interval Pole Placement Error

became ill conditioned and nearly singular. The resulting solution of this SQP optimization

is a local minimum. The SQP method was restarted with the fixed interval optimal solution

as its initial conditions. Although the same numerical difficulties were encountered again, the

SQP algorithms did eventually find an optimal solution. However, the numerical inaccuracies

encountered during the optimization make the validity of the solution questionable. The GA

did not have these problems because it is not dependent upon the local behavior of the objective

function or its derivative.

The second derivative of the objective function was evaluated to gain insight into the

shape of the solution space. Since an analytical derivative is not practical, a second order

finite difference was used to calculate the diagonal elements of the Hessian. At the optimal

values of the fixed interval solution found from the BFGS method, the diagonal elements are

[-6 x 107 -3 x 107 -1.5 x 107 -1.5 x 107 0 0 0 0 0]. The first four terms are the

derivatives with respect to the interval end points, and the last five terms are the derivatives

with respect to the gains of each interval. From these results we conclude that the solution

space is a long, steep n-dimensional trough.

4-7

Figure 4.5 Locus of Roots of the Closed Loop System

Fig. 4.4 shows how the pole placement error varies with c for both the variable interval

solutions and the fixed interval solutions. Since the objective of the optimization is to minimize

the distance from the desired dominant closed-loop pole locations, the time response of the

system at various values of the scheduled variable should be very similar. Fig. 4.5 shows

a root locus of the closed loop system as c varies from (0... 10). Fig. 4.6 shows the step

response for different values of the scheduled variable from (0... 10) in increments of 0.5.

As expected, the time response in terms of overshoot, rise time, and settling time are all quite

similar.1

4.4 Variable Number of Intervals Results

For this optimization the objective function is changed to penalize the number of

intervals. The parameters of the sample problem are the same as those for the variable interval

case in section 4.3, except that the number of intervals is allowed to vary between two and

nine. For this example, the number of design variables varies. If there are only two intervals,

there are three design variables (one interval end point, and two controller gains). Similarly, if

there are nine intervals, there are seventeen design variables. Hence, if N intervals are chosen,

there are 2N-1 design variables. Two different objective functions are used to observe the

xThe steady state error shown could be corrected with a PI controller.

4-8

0.035

0.03

0.025

S 0.015

0.01

0.005

Figure 4.6 Time Response for Various Values of Scheduled Variable

effects of the penalty functions; Eq (4.2) uses a quadratic penalty function, and Eq (4.3) uses

a linear penalty function.

500

J2 = £ {max [Re(A,-)] + 2}2 + {max [Im(A0] - 2}2 + (N - l)2 (4.2)
i=l

500

J3 = J2 (max IM^i)} + 2}2 + {max [Im(A0] - 2}2 + (TV - 1) (4.3)
8 = 1

where A4 is the closed loop poles of the system at a given value of c.

Both equations were optimized using the GA with the same parameters presented in

section 4.2. The results of these optimizations are shown in Table 4.4. A calculus based

algorithm was not able to optimize this problem because of the varying number of design

variables.

These results show that the initial arbitrary use of five intervals is too large given these

objective functions. Of course, this result depends on the relative weighting between the

two parts of the objective. A more general objective function would include a multiplicative

4-9

Table 4.4 Variable Number of Intervals Optimization Results
h h

Iterations 603 853
Function Evals 18100 27520
of Intervals 4 4
Endpoint 1 2.01 2.24
Endpoint 2 4.31 4.57
Endpoint 3 6.86 7.11
Interval 1 Gain 31.60 31.33
Interval 2 Gain 21.50 20.64
Interval 3 Gain 10.68 9.86
Interval 4 Gain -0.89 -1.51
Obj. Function 105.3 98.6

weighting term in the penalty function. It is interesting to note that there was not a significant

increase in computation time to do this analysis and optimization of the number of intervals.

4.5 Linear Interpolation

Since the trend in the optimized gains is linear, a final optimization is accomplished.

The controller gain is chosen to be a linear function of the scheduling variable c.

K = a\c-\- a0 (4.4)

The coefficients of the linear function, ai and a2, are the design variables. The BFGS calculus

method used in section 4.2 was also used here. The GA parameters are pc = 0.95, pm = .001,

and popsize = 50. Table 4.5 compares the results of the GA and the BFGS method. A plot of

the root locus is shown in Fig. 4.7. Since, this is a simple system, the gain varies linearly with

the scheduling variable c. Because of this direct relation the calculus based method quickly

finds the optimal set of coefficients. The probabilistic nature of the GA requires more function

evaluations to hone in on the optimal solution.

4-10

4.6 Summary

This work has shown some distinct advantages to using a GA for gain schedule opti-

mization. For the simple fixed interval case, the GA reached the same solution as a calculus

based method. However, when the interval size was allowed to vary the calculus based

method stalled and its result was dependent on the initial conditions. More importantly, the

GA allowed further trade-offs between the basic objective function and the number of intervals

with practically no increase in computational effort. Considering these key points, the GA

definitely shows promise for application to real world gain scheduling problems.

4-11

Table 4.5 Linear Scheduling Results
GA BFGS

Iterations
Function Evals

a0

48
1954

-4.350
34.946

7
38

-4.377
35.1139

Obj. Function 82.31 82.30

Figure 4.7 Locus of Roots of the Closed Loop System

4-12

V. Flight Envelope Design Example

The previous chapter demonstrated the applicability of gain scheduling optimization on

a simple SISO system. Now, an optimization of a real world system is completed. A full

envelope controller for an F-18 Supermanueverable fighter in Fig. 5.1 was designed in [4]

using a simple gain scheduling technique of linear interpolation. This chapter optimizes this

gain schedule using the methods in Chapter IV. First, the linearized equations of motion are

derived in section 5.1. Next, the form of the controller and the gain schedule developed in [4]

are presented in section 5.2 as a baseline for optimization. Afterwards, a measure of relative

error is presented and the optimization function is developed in section 5.3.

5.1 Equations of Motion

The nonlinear equations of motion of an aircraft are shown in Eq (5.1) and Eq (5.2). Eq

(5.1) describes the forces along the aircraft body axes, and Eq (5.2) describes the rotational

forces about the same axes.

Fx = m(Ü + WQ-VR + g sin 0)

Fy = m{V + UR-WP-gcos6sm$) (5.1)

Fz = m(W +VP-UQ- cos 9cos $)

L = PIX + RIXZ + QR{IZ - Iy) - PQIXZ

M = QIy + PR(IX - Iz) - R?IXZ + P2IXZ (5.2)

N = RIZ + PIXZ + PQ(Iy - Iz) + QRIXZ

Fx, Fy, and Fz are the external forces and L, M, and N, are the external moments.
U, V, W are the translational velocities along the X, Y, and Z body axes directions
respectively. P, Q, and R are the rotational velocities about the X, Y, and Z axes,
respectively. Ix,Iy, Iz, and Ixz are the moments of inertia, g is gravity, and m is
the aircraft mass.

5-1

Figure 5.1 F-18 Aircraft

Since these forces and moments are in the body axis system, Eq (5.3) relates the aircraft

orientation to the Earth through the Euler angles 0, 4>, and *.

0 = Q cos $ - R sin $

$ = P + Q tan 0 sin $ + R tan 0 cos $

• R cos $ O sin $ * = — +
cos 0 COS0

(5.3)

where 0 is the pitch angle, $ is the roll angle, and \I> is the yaw angle.

These nonlinear equations are linearized assuming the following:

• The aircraft is a rigid body,

• The aircraft mass is constant,

• The aircraft is trimmed to an equilibrium condition such that all accelera-
tions are zero,

• The aircraft is in straight and level flight,

• The aircraft dynamics can be decoupled into longitudinal and lateral/directional
components,

• The linear and rotational velocities, and the external forces and moments
can be considered perturbed from equilibrium values,

5-2

• The product of small perturbed values are small and negligible, and

• The angles between the the equilibrium and the disturbed value are consid-
ered small.

Additionally, since the short period mode dominates the aircraft response to pilot inputs,

the longitudinal equations are simplified as shown in Eq (5.4). Further explanation of these

assumptions and simplifications can be found in [4,8].

a

q

Za Zq

Mn Ma

a

q
+

MSe M6pTV OpTV

(5.4)

where a is the angle of attack, q is the linearized pitch rate, Se is the elevator
deflection, SPTV is the pitch thrust vectoring, Z and M are longitudinal stability
derivatives.

Through the use of a nonlinear control selector, developed in [4], the thrust vectoring

commands are only used when the aerodynamic forces are not sufficient to complete the com-

manded maneuver. Furthermore, the use of the control selector enables the commanded inputs

to be transformed into generalized command inputs: pitch acceleration, pc, yaw acceleration,

qc, and roll acceleration, r*c.

From this mapping, the longitudinal linear design model is that shown in Eq (5.5).

a

q

a

<1

--A. long

C, long

where Biong

a

<1

a

q

~f~ -Dlongqc

^long —

0

1

Along J^long

^long 0

Ci ong

1 0

0 1

(5.5)

(5.6)

where Aiong is the longitudinal plant matrix, B\ong is the longitudinal input matrix,
and Ciong is the longitudinal output matrix.

5-3

out p T

Figure 5.2 Outer Control Loop

Figure 5.3 Inner Equalization Loop

5.2 Controller Design

The control of the F-18 longitudinal dynamics is decomposed into an inner and outer

loop (See Fig. 5.3 and Fig. 5.2). The objective of the inner loop is to equalize the closed

loop frequency response over the flight envelope so that the outer loop controller does not

need to be scheduled. Therefore, this investigation focuses on the inner loop controller. The

original design selected twelve flight conditions, shown in Fig. 5.4, at which to design an

inner loop controller. At each design point a minimal H^ controller was designed [52]. Then,

using engineering judgement, a central controller was selected as Mach 0.95 and an altitude

of 20000 feet. The closed inner loop of this central controller, P0, is used to design the outer

loop controller, Kout.

5-4

xlO*
5r-

4.5-

4-

3.5-

3-

Altitude
(ft) 2.5 ■

2-

1.5-

1

0.5-

0-

x - longitudinal model flight condition
o - lateral/directional model flight condition

= 1000 psf

0.4 0.6 0.8

Mach Number

1.2

Figure 5.4 F-18 Flight Envelope

5-5

The inner loop controller, shown in Fig. 5.5, has three parameters that are scheduled

with dynamic pressure, q.

Keq =
F-GN

-N

Kf - GM

-M

where F = [-40] Kf = [1 1] G = [.0247]

N = N(q) M=[Ml(q) M2(q)} (5.7)

The parameters N and M are scheduled as a linear function of dynamic pressure. The schedules

for these parameters are shown in Eq (5.8) and graphically in Fig. 5.6.

N(q) = -0.312^ + 461

M1(q) = -0.058^ + 50.5

M2{q) = -0.006g + 8.11

(5.8)

Figure 5.5 Inner Loop Controller

5-6

The schedules were developed by plotting the H^ scheduled controller parameters as

a function of dynamic pressure. A linear fit of the parameters was performed using a least

square error method. These controller schedules are the baseline design for comparison with

the 'optimized' schedules. The goal of the optimization is to improve this schedule in terms

of relative error, which is described in the next section.

400-

:300-

200 ■

100
100 200 300 400 500 600 700 800 900 1000

60-

40-

S20-

0-

100 200 300 400 500 600 700 800 900 1000

8

6
CM

24

2

 -L____l III! 1 1

i i i i i i i i i

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.6 Baseline Schedule of Design Parameters

5.3 Relative Error

Relative error, defined by Eq (5.9), is used to measure the equalization of the closed

inner-loop.

Am = (P - Po)Pc
-i (5.9)

P0 is the closed inner loop used for outer loop controller design, and P is a closed
inner loop at another flight condition.

Safonov and Chiang's Robustness Theorem [42] provides a weak sufficient condition for

stability using relative error. The authors in [4] succinctly stated this sufficient condition.

If a(Am) < 1 for a; < UJT, then the closed loop system will be stable provided
that the control bandwidth, u>&, is less than tor.

5-7

Therefore, any outer loop controller designed for P0 will be stable for any inner loop plant,

P, provided the relative error, ATO, is sufficiently small.

A summary of the proof was presented in [4] and is reproduced here for completeness.

Consider the system with equalized plant, P, outer loop controller, KoU and rela-
tive error, Am. The bandwidth of the control system is defined as the frequency
range where the loop transfer function is big. That is:

a{PKol) > 1 Vu; < tob (5.10)

A sufficient condition for stability is

ä{Am)ä(PKol(I + PKoiY1) < 1 (5.H)

It follows from Eq (5.11) that for u < tot,,

ä(PKol{I + PKoly
x)n\ (5.12)

So, for frequencies where the loop transfer function gain is big, a sufficient
condition for stability is

ä(Äm) < 1 (5.13)

Relative error is a frequency domain measure of the differences between closed loop

system responses at various flight conditions. The main goal of the inner-loop of this design

is to achieve a relative error less than one for all flight conditions. The logical optimization

objective is to minimize this error for all flight conditions and thereby achieve a more equalized

inner-loop. Therefore, the objective function for this optimization is

n

mm inJ = 5>(Ämj) (5.14)

where Am is defined in Eq (5.9), and n is the number of flight conditions to be
evaluated. l

The flight conditions used in evaluating the objective function are the original twelve used for

design in [4] plus an additional eight flight conditions chosen to more uniformly represent the

xFor n flight conditions there are only (n - 1) nonzero relative errors.

5-8

flight envelope as a function of dynamic pressure. The original twelve flight conditions are

shown in Fig. 5.4. All of these flight conditions and their plant matrices are listed in Appendix

A. The goal of this optimization is that by reducing the relative error of the inner loop the

time response of the system will become more uniform throughout the operating envelope.

5.4 Optimization Results

This section presents the optimization results of the F-18 longitudinal inner equaliza-

tion loop controller. Multiple optimizations were performed with various alterations on the

basic objective function given in Eq (5.14). The first section provides on overview of the

optimization cases considered and the respective sections in which the results are presented.

Next, section 5.4.11 compares and summarizes the optimization results, and section 5.4.12

demonstrates the responses of off design flight conditions using the optimized gain schedule.

5.4.1 Overview. The optimization process is performed with a family of twenty

flight conditions representing the flight envelope shown in Fig. 5.7. The linearized plants are

listed in Appendix A. The optimization results are based on four objective functions

20

mmJ1 = J2^mi) (5-15)

Note: Since the relative error is a measure of relative difference, one of the
relative error values is zero.

20

minJ2 = 5>(ÄTn,.) + /(JV) (5.16)

where f{N) is a functional weighting on the number of intervals.
20

minJ3 = l>(Ämi) + et-(t) (5.17)

where ei(t) is the error between the time response of the chosen central flight
condition and the time response of the flight condition i.

5-9

4.5

4

x10
i i i t

3.5 q=50 psf / q=100 / 0^200//

3 / x / /

£2.5
x /

/ jT-

A
lti

tu
de

/ x /
/ X / -

1.5 / X / x / X/ -X >/
/x ^/ / /

1 /x / ' x/ /**•//

0.5

i

/ / x/

/1 / i / i / i / A /
///}p\§w

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mach Number

Figure 5.7 F-18 Flight Envelope

20 l
max J4 =]T ä(Ämj) + r-ei(t) (5.18)

Eight optimization cases are considered and are summarized in Table 5.1. A brief

explanation of each optimization is presented in the following list:

Case I The scheduled variables are piecewise constant functions of the scheduling variable.

Four intervals of the scheduling variable were arbitrary chosen to be of equal size:

(0,250], (250,500], (500,750], (750,1000). h is the objective function. The central

flight condition, P0, was chosen as Mach 0.95 and an altitude of 20,000 feet [4].

Case II This case is the same as Case I except that the size of the interval is allowed to vary

to reduce the objective function further.

Case III This case is the same as Case II except that the number of intervals is also a design

variable. J2 is the objective function.

5-10

Case Objective Function Results Section
0 Baseline 5.4.2
I h 5.4.3
II h 5.4.4
in h 5.4.5
IV h 5.4.6
V h 5.4.7
VI h 5.4.8
vn h 5.4.9
vm J4 5.4.10

Table 5.1 Optimization Summary

Case IV This case is the same as Case III except the central flight condition*is allowed to

vary within the family of plants to further reduce the objective function, J2.

Case V This case uses objective function J3. The central flight condition, the number of

intervals, and the size of each interval are allowed to vary.

Case VI For this case the scheduling variables are piecewise linear functions of dynamic

pressure. The objective function of the optimization is J\. The central flight condition,

number of intervals, and the size of the intervals are allowed to vary.

Case VII This case is the same as Case VI except that the objective function is J3.

Case VIII This case is the same as Case VI except that the objective function is J4.

5.4.2 Baseline Design Results. The baseline design developed in [4], was not

optimized. Relative error was only used as a weak sufficient condition for stability of the

controller throughout the flight envelope. The scheduling variables were chosen as described

in section 5.2. The open loop frequency responses of the inner loop are shown in Fig. 5.8 and

Fig. 5.9. The flight condition with the lowest dynamic pressure has the highest low frequency

gain of all the flight conditions. The general trend is that as the dynamic pressure increases

the low frequency gain decreases.

5-11

10
w (rad/sec)

Figure 5.8 Case 0: qc to a Open-Loop Dynamics

10'

10"

to >

10

10"
10" 10" 10"

w (rad/sec)
10' 10'

Figure 5.9 Case 0: qc to q Open-Loop Dynamics

5-12

10"
w (rad/sec)

Figure 5.10 Case 0: qc to a Closed-Loop Dynamics

The closed loop dynamics of the inner loop are shown in Fig. 5.10 and Fig. 5.11. The

two most important graphs for demonstrating the optimization results are Fig. 5.12 and Fig.

5.13. These graphs depict the relative error of the closed inner equalization loop and the time

response to a step pitch acceleration command of the closed outer loop, respectively. Note that

the time response has two distinct groupings. This is because there are actually two outer-loop

controllers, one for low dynamic pressure (q < 200 psf) and one for high dynamic pressure

(q < 200 psf). This is a consequence of two desired pitch responses in different regions of the

flight envelope. At higher velocities, the pilot likes to feel a faster time response. Also note

that the relative error for most flight conditions has a maximum singular value around 0.4 to

0.5.

The baseline schedules of the parameters N and M are shown in Fig. 5.14. The five

graphs, Fig. 5.10, Fig. 5.11, Fig. 5.12, Fig. 5.13, and Fig. 5.14 are the baseline for

comparison with the optimization results.

The values of the objective functions are J\ = 6.37, J3 = 23.24, and JA = 9.74.

5-13

10"
w (rad/sec)

Figure 5.11 Case 0: qc to q Closed-Loop Dynamics

10"
w (rad/sec)

Figure 5.12 Case 0: Relative Error

5-14

1.2

0.8
a>
-a
3

Q.
E0.6 <

0.4

0.2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.13 Case 0: Time Response for a Step Input

400-

:300-

200-

100
100 200 300 400 500 600 700 800 900 1000

60-

40-

;20-

0-

100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.14 Case 0: Controller Parameter Schedule

5-15

5.4.3 Case I. The design variables of the GA optimization are the scheduled

parameters defined in Eq (5.8). The schedules are evaluated at «/min = 0 and <zmax = 1000

to obtain the minimum and maximum values of the parameters N and M. For a first look at

optimizing these parameters, the range of the scheduling variable, q, is arbitrarily divided into

four intervals, (0,250], (250,500], (500,750], and (750,1000). The scheduled parameters are

chosen to be piecewise constant values of dynamic pressure in each interval. The parameters

N and M are optimized for each interval to minimize objective function J\. There are twelve

design variables to optimize.

The optimized objective function value is 3.09, half of the baseline relative error. The

closed inner-loop responses are shown in Fig. 5.15 and Fig. 5.16. The relative error and time

responses are shown in Fig. 5.17 and Fig. 5.18. The resulting scheduled variables are shown

in Fig. 5.19.

As a result of the reduction in relative error, the overshoot in the time response has

decreased for most of the flight conditions. However, for three flight conditions the overshoot

increased over the baseline. This can also be seen in the relative error graph, Fig. 5.17,

where three relative errors are increased over the baseline and the remaining relative errors are

reduced. Additionally, the closed inner-loop pitch response is more uniform than the baseline

design.

5.4.4 Case II. For this optimization the interval size is allowed to vary. The number

of intervals is still constrained to be four. Now the number of design variables is fifteen, three

interval endpoints and twelve scheduled variable values. Each interval endpoint is allowed to

vary between 0 and 1000 psf.

The objective function value is 2.51 which is less than Case I. The closed inner-loop

responses are shown in Fig. 5.20 and Fig. 5.21. The relative error and time responses are

shown in Fig. 5.22 and Fig. 5.23. The resulting scheduled variables are shown in Fig. 5.24.

5-16

10 10 10" 10'
w (rad/sec)

10'

Figure 5.15 Case I: qc to a Closed-Loop Dynamics

10
w (rad/sec)

Figure 5.16 Case I: qc to q Closed-Loop Dynamics

5-17

10

10 :

<8 >
<S10"2

10 r

10
10" 10" 10"

w (rad/sec)
10 10'

Figure 5.17 Case I: Relative Error

1.2-

1 -

0.8-

73

Q.
E0.6- <

0.4

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.18 Case I: Time Response for a Step Input

5-18

400

300

 1 !™ ! 1 1 ! ! I I

.

1

200
i 1 100

(

60

1 1 1 ;

) 100 200 300 400 500 600 700 800 900 1000

! ! ! l i ! !

40

ä 20

=

! i i i 0 I i i !
(

8

6

) 100 200 300 400 500 600 700 800 900 1000

! 1 ! 1 ! 1 ! 1 !

= CM

2

=

i l l l 1 1 1 l L

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.19 Case I: Controller Parameter Schedule

As in Case I, the time response of two flight conditions have overshoots larger than

the baseline. The significance of this optimization is that the relative error is decreased by

allowing the interval size to vary.

5.4.5 Case HI. For this optimization the number of intervals is allowed to vary

between (2..9). Additionally, the interval endpoints are allowed to vary between (0..1000).

Therefore the number of design variables varies between (8.36). Four different penalty

functions on the number of intervals are optimized.

i)fi(N) = N

b)f2(N) = N2

c)fs(N) = N/9

d)/4(JV) = (7V/9)2

The results of each of these optimizations are in the following subsections.

5.4.5.1 Case Ilia. Two intervals are chosen as with an objective function

value of 5.24. The closed inner-loop responses are shown in Fig. 5.25 and Fig. 5.26. The

5-19

10"
w (rad/sec)

Figure 5.20 Case II: qc to a Closed-Loop Dynamics

10
w (rad/sec)

Figure 5.21 Case II: qc to q Closed-Loop Dynamics

5-20

10v

10 -r-

>
(3 10"

10^

10
10" 10 10"

w (rad/sec)
10' 10'

Figure 5.22 Case II: Relative Error

1.2-

1 -

0.8
(D

Q.
E0.6 <

0.4

0.2

\

' wi

Y l

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.23 Case II: Time Response for a Step Input

5-21

400-

Z300-

200-

100-
100 200 300 400 500 600 700 800 900 1000

60

40
!20

100 200 300 400 500 600 700 800 900 1000

- : .;--■■' : : ' :l : ;]

8

6
CM

^4

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.24 Case II: Controller Parameter Schedule

relative error and time responses are shown in Fig. 5.27 and Fig. 5.28 and the resulting

scheduled variables are shown in Fig. 5.29.

The time responses show a significant improvement in overshoot when compared with

Cases I and H However, there are still three time responses with overshoots larger than the

baseline. The rise time and settling time are consistent with variations in the flight condition.

The relative error is about the same value as Case I when the penalty function value is

subtracted off. The significant finding is that the same minimization of relative error can be

achieved with half the intervals. Therefore, the same improvements in the equalization of the

inner-loop can be achieved with half the complexity.

5.4.5.2 Case IIIb. Two intervals are again chosen as optimal with an objective

function value of 7.23. The closed inner-loop responses are shown in Fig. 5.30 and Fig. 5.31.

The relative error and time responses are shown in Fig. 5.32 and Fig. 5.33 and the resulting

scheduled variables are shown in Fig. 5.34.

5-22

10"
w (rad/sec)

Figure 5.25 Case ma: qc to a Closed-Loop Dynamics

10"
w (rad/sec)

Figure 5.26 Case Ilia: qc to q Closed-Loop Dynamics

5-23

10
w (rad/sec)

Figure 5.27 Case ma: Relative Error

1.2-

0.8

T3

Q.
E0.6 <

0.4

0.2

.
I I 1 I "

y i i

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.28 Case Ilia: Time Response for a Step Input

5-24

400

Z300

200 k

100
0 100 200 300 400 500 600 700 800 900 1000

60

40

:20

0 100 200 300 400 500 600 700 800 900 1000

8

6
CM

! I ! ! ! III!

>4

2
i i i i i i i i i

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.29 Case Ilia: Controller Parameter Schedule

There is little to no difference in the closed loop responses, the relative error, and the

time responses between this case and Case Ilia. The only difference is a small change in the

scheduled parameter N. The parameters Ml and M2 are even the same for these two cases.

This seems to indicate that the parameter N is not very significant in the scheduling process.

5.4.5.3 Case lllc. Two intervals are again chosen with an objective function

value of 3.45. The closed inner-loop responses are shown in Fig. 5.35 and Fig. 5.36. The

relative error and time responses are shown in Fig. 5.37 and Fig. 5.38 and the resulting

scheduled variables are shown in Fig. 5.39.

For this case the closed loop responses, the relative error, the time responses, and the

scheduling variables N, Ml and M2 all show the same trends as Case Dia. Again, N is slightly

different.

5.4.5.4 Case Hid. Here, three intervals are chosen with and objective function

value of 3.24. Since the penalty for the number of intervals is the least for this optimization, a

5-25

10
w (rad/sec)

Figure 5.30 Case mb: qc to a Closed-Loop Dynamics

10

10 -

10 L

10"
10"' 10" 10"

w (rad/sec)
10 10'

Figure 5.31 Case mb: qc to q Closed-Loop Dynamics

5-26

10"
w (rad/sec)

Figure 5.32 Case Ob: Relative Error

1.2

0.8-

■o

E0.6-

0.4

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.33 Case Illb: Time Response for a Step Input

5-27

400

Z300

200

100
0 100 200 300 400 500 600 700 800 900 1000

60

40

^20

0

■4-

2-

100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.34 Case mb: Controller Parameter Schedule

10"
w (rad/sec)

Figure 5.35 Case Kc: qc to a Closed-Loop Dynamics

5-28

10"

10"

$

10"

10"
10" 10" 10"

w (rad/sec)
10 10'

Figure 5.36 Case Hie: qc to q Closed-Loop Dynamics

10" r

10"

CO >
cB 10"2

10"":

10
10" 10" 10"

w (rad/sec)
10 10'

Figure 5.37 Case IIIc: Relative Error

5-29

1.2

0.8
CD

■o

Q.
E0.6 <

0.4

0.2

1/ / .!^»^B9g§BSwMM"SBaS^^^s:g—-— BBBSBBBBSBSBgsncB

0.5 1 1.5 2 2.5 3
Time (sec)

3.5 4.5

Figure 5.38 Case EIc: Time Response for a Step Input

400

:300

200

100
100 200 300 400 500 600 700 800 900 1000

60

40

§20

100 200 300 400 500 600 700 800 900 1000

8 - -i i i i !

6
CM

^4

2 1 1 ! i i i

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.39 Case Hie: Controller Parameter Schedule

5-30

10
w (rad/sec)

Figure 5.40 Case Hid: qc to a Closed-Loop Dynamics

larger number of intervals is selected. The closed inner-loop responses are shown in Fig. 5.40

and Fig. 5.41. The relative error and time responses are shown in Fig. 5.42 and Fig. 5.43 and

the resulting scheduled variables are shown in Fig. 5.44.

The only significant difference between this case and Cases Ilia, b, and c is the time

response. The time response resulting from this optimization is comparable to the time

response of Case I. The time responses for this case are slightly worse than Cases Ilia, b, and

c.

5.4.6 Case IV. For this optimization, the central flight condition which was chosen

by engineering judgement for the baseline design is allowed to vary. The number of design

variables is increased by one; the number of design variable now varies between 9 and 37.

Additionally, two different penalty functions on the number of intervals are optimized.

a)/i(iV) = 0

b) /2(JV) = ivyioo

The results of each optimization are in the following subsections.

5-31

10

10-

3

10"

10"
10"' 10" 10" 10'

w (rad/sec)
10'

Figure 5.41 Case Hid: qc to q Closed-Loop Dynamics

10"

10 =:

I

10

10
10" 10 10"

w (rad/sec)
10' 10

Figure 5.42 Case Hid: Relative Error

5-32

1.2

1 -

0.8

■o

Q.
E0.6 <

0.4

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.43 Case lud: Time Response for a Step Input

400

:300

200

100
100 200 300 400 500 600 700 800 900 1000

60

40

! 20

8

6
CM

^4

100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.44 Case IHd: Controller Parameter Schedule

5-33

10
w (rad/sec)

Figure 5.45 Case IVa: qc to a Closed-Loop Dynamics

5.4.6.1 Case IVa. Five intervals are chosen with an objective function value

of 2.07. This can be reduced to four intervals to eliminate the 'spike' in the schedule. The

closed inner-loop responses are shown in Fig. 5.45 and Fig. 5.46. The relative error and

time responses are shown in Fig. 5.47 and Fig. 5.48 and the resulting scheduled variables are

shown in Fig. 5.49.

The most significant result of this optimization is that the relative error is reduced by

allowing the central flight condition to vary. Note that the worst relative error has a value of

0.32 and the best relative error has a value of 0.0001. Additionally, even though there was

no penalty on the number of intervals, the maximum allowable number of intervals was not

optimal. The closed loop responses and the time responses are slightly better than those in

Casem.

5.4.6.2 Case IVb. Here, seven intervals are chosen with an objective function

value of 2.26. However, this can be reduced to six by eliminating the 'spike' in the schedules.

The closed inner-loop responses are shown in Fig. 5.50 and Fig. 5.51. The relative error and

5-34

10"
w (rad/sec)

Figure 5.46 Case IVa: qc to q Closed-Loop Dynamics

10

(3 10"

10

10
10" 10 10"

w (rad/sec)
10 10'

Figure 5.47 Case IVa: Relative Error

5-35

1.2

0.8
CD
■a

Q.

E0.6r <

0.4

0.2-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.48 Case IVa: Time Response for a Step Input

400

:300

200

100

in
100 200 300 400 500 600 700 800 900 1000

60

40

20

!!!!<!!! !

! ! ! ! ! J ! ! !
I 1 1 1 1 I 1 1 1

100 200 300 400 500 600 700 800 900 1000

l l_

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.49 Case IVa: Controller Parameter Schedule

5-36

10
w (rad/sec)

Figure 5.50 Case IVb: qc to a Closed-Loop Dynamics

time responses are shown in Fig. 5.52 and Fig. 5.53 and the resulting scheduled variables are

shown in Fig. 5.54. The objective function value is 2.26 with seven intervals.

The results of this optimization are similar to those in Case IVa. The significant

difference is in the time response. For the flight conditions evaluated, the time response for

all flight conditions was very nearly uniform even though the resulting objective function is

not the smallest found so far. This seems to indicate that there is not as close a correlation

between the closed loop frequency response and the closed loop time response as previously

thought.

5.4.7 Case V. Since there is an indication that the closed loop frequency response

error and the closed loop time response are not directly related, this optimization directly

optimizes both objectives. The time domain error is measured as the difference between the

central controller's time response and the time response at all the other flight conditions. Time

time response if evaluated for 5.0 seconds at increments of 0.1 seconds to determine the time

5-37

10"
w (rad/sec)

Figure 5.51 Case IVb: qc to q Closed-Loop Dynamics

10" r

10

tS 10"

10

10
10" 10 10"

w (rad/sec)
10 10'

Figure 5.52 Case IVb: Relative Error

5-38

1.2

1 -

0.8

TO

Q.
E0.6h <

0.4

0.2-

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.53 Case IVb: Time Response for a Step Input

400-

:300

200

100

' ' I ! I ! ! | i ; i

 ! \ ! f :1 ; i i i
■ :• : ' ^ t :. ,:

i i i i i i i i i

100 200 300 400 500 600 700 800 900 1000

60

40

;20-

0-

100 200 300 400 500 600 700 800 900 1000

;i;;;;r;;:r;;;;'r::r".^

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.54 Case IVb: Controller Parameter Schedule

5-39

error (See Eq (5.19)).

50

<t) = £ W(*) - yo(t) t = 0,0.1,0.2, • • •, 5 (5.19)
3=1

where j/0(0 is the time response of the closed outer-loop at the central flight
condition and yj(t) is the time response of the closed outer loop at a different
flight condition.

The number of design variables is the same as in Case IV.

Five intervals are chosen with an objective function value of 14.22. The closed inner-

loop responses are shown in Fig. 5.55 and Fig. 5.56. The relative error and time responses

are shown in Fig. 5.57 and Fig. 5.58 and the resulting scheduled variables are shown in Fig.

5.59.

The closed loop frequency responses are similar to those of the previous cases. The

relative error is reduced from the baseline but is not near the minimum relative error value

found so far. However, the time response is very closely uniform for all of the flight conditions.

5.4.8 Case VI. This optimization duplicates Case IV except that the scheduled

variables are now piecewise linear functions of the scheduling variable. The number of design

variables is increased by three, since an addition set of scheduled variables is needed for a

linear fit The number of design variables now varies between 12 and 40.

Three intervals are chosen with an objective function value of 1.98, the lowest of all

cases. The closed inner-loop responses are shown in Fig. 5.60 and Fig. 5.61. The relative

error and time responses are shown in Fig. 5.62 and Fig. 5.63 and the resulting scheduled

variables are shown in Fig. 5.64.

The significant difference between this case and the previous cases is that the minimum

relative error was found sooner with fewer function evaluations. This case also found the

smallest relative error of all the optimization cases. The result of this minimal relative error is

evident in Fig. 5.60 and Fig. 5.61 where there is a tight grouping of the closed loop response.

5-40

10"
w (rad/sec)

Figure 5.55 Case V: qc to a Closed-Loop Dynamics

10"
w (rad/sec)

Figure 5.56 Case V: qc to q Closed-Loop Dynamics

5-41

10

10"

a >
CÖ10"

10 -

10
10" 10 10"

w (rad/sec)
10 10'

Figure 5.57 Case V: Relative Error

1.2

0.8

T3

O-
E0.6 <

0.4

0.2

(

- 1

" 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.58 Case V: Time Response for a Step Input

5-42

400-

:300-

200;

100- _j i

-i r

100 200 300 400 500 600 700 800 900 1000

60

40

I 20

0

100 200 300 400 500 600 700 800 900 1000

8

6

^4

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.59 Case V: Controller Parameter Schedule

Since the schedule is better, piecewise linear versus piecewise constant, the optimization

results are better than the previous cases.

5.4.9 Case VII. This optimization duplicates Case V for piecewise linear scheduled

variables. The number of design variables now varies between 12 and 40.

Two intervals are chosen as optimal with no penalty function on the number of intervals.

The objective function value is 12.25, which is less than Case V results. The closed inner-loop

responses are shown in Fig. 5.65 and Fig. 5.66. The relative error and time responses are

shown in Fig. 5.67 and Fig. 5.68 and the resulting scheduled variables are shown in Fig. 5.69.

The closed loop frequency responses and the relative error results are similar to those

in Case V, but the time response is not quite as uniform as the time response in Case V. This

might seem odd since the value of the objective function is less than that of Case V. This is

because each of these cases is using a different central controller.

5-43

10
w (rad/sec)

Figure 5.60 Case VI: qc to a Closed-Loop Dynamics

10"

10"

I

10"

10"
10"' 10" 10"

w (rad/sec)
10 10

Figure 5.61 Case VI: qc to q Closed-Loop Dynamics

5-44

10

10 -

5
«10"2

10

10
10" 10" 10"

w (rad/sec)
10' 10'

Figure 5.62 Case VI: Relative Error

1.2

0.8-
o
13

Q.
E0.6 <

0.4

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.63 Case VI: Time Response for a Step Input

5-45

400-

2 300-

200-

100
100 200 300 400 500 600 700 800 900 1000

60-

40-

^20-

100 200 300 400 500 600 700 800 900 1000

8

6
CM

^4

2

 ■ ! ! ! 1 !

-^^^•^■^

' i i i i i i

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.64 Case VI: Controller Parameter Schedule

10
w (rad/sec)

Figure 5.65 Case VII: qc to a Closed-Loop Dynamics

5-46

10 10 10u 10
w (rad/sec)

10'

Figure 5.66 Case VII: qc to q Closed-Loop Dynamics

10
w (rad/sec)

Figure 5.67 Case VII: Relative Error

5-47

1.2

0.8

CL
E0.6 <

0.4

0.2-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.68 Case VII: Time Response for a Step Input

400

:300h

200

100
100 200 300 400 500 600 700 800 900 1000

60-

40 :

; 20 ■

0-

OJ

^4

100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.69 Case VII: Controller Parameter Schedule

5-48

10
w (rad/sec)

Figure 5.70 Case VIII: qc to a Closed-Loop Dynamics

5.4.10 Case VIII. For this optimization, objective function J4 is used to more

equally weight the time domain error and the frequency domain error. The design variables

are the same as in Case VE. Since the relative error is less in magnitude than the time domain

error, the time domain error is scaled smaller. Whereas, objective function J3 placed an

emphasis on the time domain error.

Two intervals are again chosen as optimal with no penalty on the number of intervals.

The objective function value is 5.16. The closed inner-loop responses are shown in Fig. 5.70

and Fig. 5.71. The relative error and time responses are shown in Fig. 5.72 and Fig. 5.73 and

the resulting scheduled variables are shown in Fig. 5.74.

The time response is almost uniform over the operating envelope for the points evaluated.

Additionally, the closed loop responses are very uniform for frequencies greater than 5 radians

per second. Furthermore, the control parameter schedules are very simple with only two

intervals and piecewise linear function of dynamic pressure. Therefore, this optimization is

selected as the best. This schedule is validated in section 5.4.12.

5-49

10"
w (rad/sec)

Figure 5.71 Case VIE: qc to q Closed-Loop Dynamics

10" r

10"

ra >
fe10"2

10

10"
10" 10 10"

w (rad/sec)
10' 10'

Figure 5.72 Case VHI: Relative Error

5-50

1.2

0.8
CD

■D
3

Ö.
E0.6 <

0.4

0.2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.73 Case VEH: Time Response for a Step Input

400-

Z300-

200 F-

100
100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000
Dynamic Pressure

Figure 5.74 Case VIII: Controller Parameter Schedule

5-51

5.4.11 Summary of Results. A summary of the optimization results are shown

in Table 5.2. For each case the values of all four objective functions are calculated where

possible for comparison. The best result for each objective function is emphasized. No

single optimization is able to optimize more than one objective simultaneously. Each case

demonstrates that the gain schedule can be optimized with respect to the specified objective

function. By changing the objective function to meet the desired goal, an optimal gain schedule

is achievable.

Every single optimization case tried is able to improve on the baseline design. The

resulting optimization has a more consistent time response for the flight conditions evaluated.

Additionally, another benefit of the optimization is that the time response was improved in

terms of overshoot for most cases.

From these optimizations, a few important facts become evident. First, the closed loop

response of the system can be made more uniform across the operating envelope. Second, the

most effective gain schedule optimization results when the control parameters are scheduled

as piecewise linear functions of the scheduling variable. Additionally, the number and size of

the scheduling variable intervals are allowed to vary as design variables. Furthermore, when

using a central controller for computation of gain scheduling error, the selection of which

controller is central can be an effective design variable in reducing the calculated error.

To see how the central controller varied with the optimization cases see Fig. 5.75. The

'x' marks the central controller selected for the baseline design using engineering judgment.

The 'o's' mark the central controllers selected by the optimization. The next section uses the

best optimized schedule, Case VIE, and validates the schedule using operating points not in

the original design set.

5.4.12 Design Validation. To validate the optimal gain schedule designed in the

previous section, six more flight conditions are selected across the flight envelope. These are

shown with 'o's' in Fig. 5.76. These operating points are specifically selected to be near

the corners of the operating envelope. The relative error and time response of these points

5-52

Table 5.2 Comparison of Optimization Results
Case h h h h N f(N) Po

0 6.37 23.24 9.74 M.95h20
I 3.09* 21.89 6.85 4 M.95h20
n 2.51* 22.62 6.53 4 M.95h20

nia 3.24 5.24* 20.80 6.75 2 N M.95h20
nib 3.23 7.23* 21.16 6.81 2 N2 M.95h20
nie 3.22 3.45* 21.12 6.80 2 N/9 M.95h20
md 3.13 3.24* 23.07 7.11 3 (JV/9)2 M.95h20
IVa 2.07 2.07* 26.82 7.02 5 M.4h22
IVb 2.19 2.26* 16.56 5.06 7 N/100 M.5hl0
V 4.09 14.22* 6.22 5 M.6h2
VI 1.98* 19.42 5.47 3 M.7hl8.5
vn 4.15 12.65* 5.85 2 M.6h2
vni 2.44 16.05 5.16* 2 M.6hl5

denotes tl lie obje< ;tive fun< :tion use< i
Note: the bold numbers are the minimum for each objective function

4.5
.x10

4-

3.5-

0,2.5
T3

1.5

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mach No.

Figure 5.75 Central Controller Variations

5-53

4.5

4

x104

i i i

3.5 - q=50 psf / q=100 / q=200//

3 - / x ,/ ./-

£2.5 . x / y/ >/_

<D
■a

1 2
/ x /

o / S X >/-

1.5 / o / / X , x / X/ JC /

1 /x / ' •*/ /*■/ 9

0.5

i h

/ */

' i / A /
//\//^=1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mach Number

Figure 5.76 F-18 Flight Envelope

using the baseline schedule are shown in Fig. 5.77 and Fig. 5.78. The relative error and time

response of these points using the optimized schedule are shown in Fig. 5.79 and Fig. 5.80.

The purpose of this step is to complete the gain scheduling design process for the

optimally selected schedules. By inspecting the relative error graphs, Fig. 5.77 and Fig.

5.79, all the relative errors are less than one therefore stability is maintained. The difference

is that for the baseline schedule the relative error for these six flight conditions is 2.87,

whereas, for the optimal schedule the relative error is only 1.1. For both schedules, the

time responses have acceptable characteristics. However, with a lower relative error of

the optimally scheduled controller, it is easier to design an outer-loop controller to provide

robust performance throughout the operating envelope. From the lessons learned in these

optimizations, a general design procedure is developed in the next chapter.

5-54

10
w (rad/sec)

Figure 5.77 Baseline Relative Error Validation

1.2

0.8-

■a

"5.
E0.6h <

0.4

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.78 Baseline Time Response Validation

5-55

10
w (rad/sec)

Figure 5.79 Optimial Schedule Relative Error Validation

1.2

0.8

a.
E0.6 <

0.4

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 5.80 Optimal Schedule Time Response Validation

5-56

VI. General Design Process

A great deal of experience was gained in designing and optimizing the gain schedules

presented in chapters IV and V. From this experience a systematic gain scheduling method

has been developed. The next section presents this formal design process.

6.1 Gain Scheduling Design

There are many aspects of the system to consider when designing a controller for a

real world system. Traditionally, the method of implementing the designed controller is not

considered until the final stages of the design process. Ideally, the designed controller should

be robust enough to not require gain scheduling, but more often than not some scheduling is

required. The design method presented here differs fundamentally from most design methods

in that the scheduling of the controller is considered at the beginning of the design process.

There are four steps in the design process and are as follows:

I. Control Problem Definition First the control designer must select the scheduling variable

based on criteria provided in [41,30,43,46]. The system should be evaluated to avoid

selecting a poor scheduling variable as outlined in [43, 46]. Second, the family of

plants is chosen to represent the extrema of the operating envelope and to sufficiently

represent the areas between these extrema. The plants should represent the plant

dynamics accurately. Additionally, for areas of the operating envelope where the plant

dynamics change rapidly, additional plants should be chosen.

II. Controller Design Next select a general form of the desired controller. After defining the

form of the controller, determine the number of controller parameters, nscp, that are to

be scheduled. For some controllers all of the parameters are scheduled, such as a full

state feedback gain matrix. In other controllers, such as the one in Chapter V, only some

of the controller parameters vary. Once the scheduled parameters are identified, design

a controller at the extrema of the scheduling variable to meet the requirements of the

6-1

system. This provides upper and lower bound of the scheduled variables, although the

control designer can extend these bounds to increase the search space. By bounding the

parameters the control designer is able to define the space of the optimal gain schedule

controller.

III. Gain Schedule Optimization Next the gain schedule is optimized using GAs. The

scheduling variable is decomposed into n intervals with each interval having an arbitrary

size. The scheduled parameters are bound by the designs performed in Step II and

allowed to vary linearly in each interval. The number of intervals is chosen to vary within

a selected range, n € (nmin,nmax). Additionally, the central flight condition is allowed

to vary within the family of plants chosen in Step I. For the optimization, the number of

design variables varies between (nmin + nmi„ x nscp), and(nmax + nmax x nscp). An

objective function is then defined that measures the gain scheduling error of the family

of plants. Now, a GA can be used to optimize the objective function with the design

variables described.

IV. Analyze Results Finally, select a family of plants not included in the family of Step I.

Simulate the closed loop response of the system with the scheduled controller to insure

that the system requirements are achieved.

6.2 Conclusions

The objectives set forth in Chapter I were achieved. First, a simple GA was found

that could be implemented with a common computer-aided control design software package.

This enables the designer to quickly and efficiently analyze and optimize a gain scheduled

controller. Second, a method of evaluating and measuring the effectiveness of a gain schedule

design was developed. This evaluation measure allowed for the comparison of various gain

schedules. Next, using the gain schedule measurement, a simple gain scheduling problem

was optimized to validate the use of GAs as an optimization tool. Then, the gain scheduling

optimization method was used to evaluate a gain schedule designed for an F-18 fighter aircraft.

It is shown in Chapter V that the gain schedule originally developed could be optimized and

6-2

the resulting time response of the system was improved. Finally, the lessons learned from this

research were compiled into a formal design method for designing a gain scheduled controller.

6.3 Future Research

Future research efforts could focus on improving the computational efficiency of the

genetic algorithm. Additionally, the precision of the GA could be improved by using a floating

point chromosome and a variable mutation operator. These improvements focus on the GA

itself. The basic approach employed in this effort is to decompose the gain schedule into a

piecewise function of the scheduling variable. Future work could analyze the direct implement

ion and optimization of a polynomial scheduling function. Further research is also needed in

the area of determining global stability and performance for a scheduled controller.

6-3

Appendix A. F-18 Design Flight Conditions

Following are the flight conditions and their respective plant matricies that were used

in the evaluation of the gain scheduled controller.

Table A.l Longitudinal Flight Conditions For Optimization
Mach Number Altitude (ft) tf(psf) a (deg)

0.3 26000 47.4 25.2

0.5 40000 68.5 16.8

0.4 22000 100.1 8.7
0.6 30000 158.4 5.2
0.4 6000 189.9 6.0
0.5 10000 255.0 3.5
0.6 15000 301.1 2.9
0.7 18500 355.0 2.4
0.7 14000 426.4 2.6
0.6 2000 496.0 1.8
0.8 14000 557.0 1.4
0.8 12000 603.0 1.9
0.95 20000 614.4 1.6
0.8 10000 652.0 1.7
0.9 14000 705.0 1.2
0.8 5000 789.1 1.5
0.9 10000 825.2 1.4
0.85 5000 890.8 1.4
0.95 9000 956.0 0.9
0.9 5000 998.7 1.3

Following are the short period longitudinal dynamic plant matricies. The general form

of the longitudinal short period dynamics is shown in Eq (A.l).

r -| r ■]

a
—-ft-long

a

m ? _ q
"long Qc (A.1)

(A.2)

A-l

Tab: e A.2 Longitudinal Flight Conditions For Evaluation
Mach Number

0.98
0.99
0.5
0.3
0.2
0.8

Altitude (ft)

40000
10000
20000
15000
1000
1000

g(psf)

263.3
998.5
170.1
75.3
57.2
914.6

a (deg)

3.1
1.0
5.2
12.2
20.8
1.0

The notation with the A and B matricies denotes the flight condition. For example,

Am3h26 denotes the A matrix at Mach 0.3 and altitude 26000 feet.

Am3h26
long

Am5h40
long

Am6h30
(0713

Am4h22 _
long

Am4h6
long

Am7hl4 _
long

AmShW _
long

Am6hl5
•™-long

-0.2296 0.9931

0.02436 -0.2046

-0.2423 0.9964

-2.342 -0.1737

-0.5088 0.994

-1.131 -0.2804

-0.4285 0.9916

-0.7473 -0.3123

-0.8018 0.9847

-1.521 -0.5944

-1.175 0.9871

-8.458 -0.8776

-0.8930 0.9852

-4.1582 -0.6873

-0.9181 0.9872

-6.2419 -0.6920

nm3h26 _
long

Dm5/i40
long

Dm6/i30
long

Dm4h22
long

p>m4h6
long

Dro7W4
long

E>m5hW
long

Dm6/il5
long

-0.04034 -0.01145

-1.73 -0.517

-0.0416 -0.01141

-2.595 -0.8161

-0.09277 -0.01787

-6.573 -1.525

-0.0813 -0.0145

-4.0770 -0.7978

-0.1508 -0.02776

-7.926 -1.751

-0.194 -0.04349

-19.29 -3.803

-0.1626 -0.0261

-10.6454 -2.0318

-0.1599 -0.0265

-12.5295 -2.4169

A-2

Am7hl8.5 _
long

Am6h2
long

Am8hl4
long

Am8h\2
long

Am95h20 _
long

Am8hW
long

Am9h\4
long

Am8h5
■"-long

Am9hW
long

Am85h5
long

Am95h9
long

-0.9920

-7.8450

0.9888

-0.7525

-1.4710 0.9808

-11.5022 -1.0846

-1.4406 0.9868

-14.2709 -1.0645

-1.562 0.9862

-14.94 -1.132

-1.905 0.9895

-33.88 -0.9872

-1.675 0.9853

-16.16 -1.212

-2.1163 0.9872

-32.6459 -1.1826

-1.994 0.9828

-19.44 -1.427

-2.452 0.9856

-38.61 -1.34

-2.328 0.9831

-30.44 -1.493

-2.8375 0.9855

-51.8325 -1.4037

Dm7/il8.5
long

jDm6h2
long

Dm8/il4 _
long

-0.1652 -0.0274

-16.1838 -2.8619

-0.2419 -0.0417

-21.5227 -3.9738

-0.2154 -0.0379

-24.3921 -4.5141

Dm8hl2 _
*-^long

r>m95h20
nlong

TDm8hW
long

-.2316 -.04349

-26.48 -5.323

-0.1867 -0.03287

-27.22 -4.573

-0.2449

-28.34

-0.04649

-5.742

Dm9M4 _
long

-0.2450

-32.6358

-0.0426

-5.7862

lDm8h5
long

Dm9/il0 _
long

Dm85h5
long

-0.2852

-33.44

-0.05567

-6.931

-0.2757 -0.05226

-37.36 -7.247

-0.3012 -0.05866

-38.43 -7.815

p>m95h9 __
long

-0.2863 -0.0454

-42.9285 -6.6039

Am9h5 _
long

-2.911 0.9835

-46.47 -1.553
B 77l9/l5

-0.3161 -0.06231

-43.65 -8.752

The following flight conditions are those used to evaluate the optimal gain schedule.

A-3

Am98h40 _
Along —

Am99hl0
long

Am5h20 _
long

Am3hl5
long

Amlhl _
long

Am8hl __
long

-0.7055

-17.5821

0.9949

-0.4583

-2.6317 0.9860

-76.1833 -1.3868

-0.6199 0.9900

-1.8909 -0.4433

-0.3664 0.9887

0.0321 -0.3425

-0.3678 0.9843

0.3351 -0.3022

-2.2679 0.9803

-22.8644 -1.6265

Dm98/i40
Dlong

Dm99/il0
long

om5/i20
long

Dm3/il5
long

T3m2h\
long

OrnShl
long

-0.0918 -0.0122

-13.0772 -1.6363

-0.2783 -0.0390

-44.1706 -5.8898

-0.1149 -0.0186

-7.1405 -1.3628

-0.0698 -0.0134

-2.7177 -0.5925

-0.0719 -0.0146

-1.9761 -0.4288

-0.3193 -0.0586

-37.6778 -7.4086

A-4

Appendix B. Computer Codes

B.l Example Problem Code

Following is the Matlab® code that was used to evaluate the objective function for
the sample control problem in chapter IV. There are four m-files shown. The are the fixed
interval objective function, the variable interval size objective function, the variable interval
number and size objective function, and the linear schedule objective function, respectively.

%** file fixint.m ****

function [f]=fixint (k) ;

% This function is an evaluation routine run from genesis to
% evaluate the distance from the closed loop poles of a system
% with a given gain to the desired closed loop poles over
% a range of a varying parameter c.
% The variable k is a vector of gains for each interval.

% Define plant transfer function in form l/(s+a) (s"2 + bs + c)
% Controller k is proportional

a=6;b=4;

% The characteristic equation of the closed loop system is

% sA3 + (a+ b) sA2 + (ab+c) s + ac + k

total=0;

interval=[0 2 4 6 8 10];

for i=l:5
for c = interval(i):0.02:interval(i+1)

r = roots ([1, (a+b), (a*b+c), (a*c+k(i))])';
temp = (max(imag(r)) - 2)"2 + (max(real(r)) + 2)~2;
total = total + temp;

end

end

f=total;

return

B-l

I*** end of file ****

I*** file varint.m ****

function [f]=varint(k);

% This function is an evaluation routine run from genesis to
% evaluate the distance from the closed loop poles of a

% system with a given gain to the desired closed loop
% poles over a range of a varying parameter c.

% The variable k is a vector of gains for each interval

% and the four interval break points.

% Define plant transfer function in form l/(s+a) (s"2 + bs + c)

% Controller k is proportional

a=6;b=4;

% The characteristic equation of the closed loop system is

% sA3 + (a+ b) sA2 + (ab+c) s + ac + k

total=0;

% sort the interval break points k(l)-k(4) in order from

% lowest to highest

for 1=1:3
for i= 1:3
if k(i)>k(i+l)

temp = k(i);
k(i) = k(i+l);
k(i+l)=temp;

end

end

end

interval=[0 k(l:4) 10];

for i=l:5
for c = interval(i):0.02:interval(i+1)

r = roots([l, (a+b), (a*b+c), (a*c+k(4+i))])' ;
temp = (max(imag(r)) - 2)"2 + (max(real(r)) + 2)"2;
total = total + temp;

B-2

end
end

f=total;

return

I*** end of file ****

I** file varintn.m ****

function [f]=varintn(k);

% This function is an evaluation routine run from genesis
% to evaluate the distance from the closed loop poles of
% a system with a given gain to the desired closed loop
% poles over a range of a varying parameter c.
% The variable k is a vector of gains for each interval
% and the four interval break points. The first element

% of k is the number of intervals (2:8), the next eight

% elements are the break points (0:10), and the final

% nine elements are the gains for each interval (-50:50)

% Define plant transfer function form l/(s+a) (sA2 + bs + c)

% Controller k is proportional

a=6;b=4;

% The characteristic equation of the closed loop system is

% s~3 + (a+ b) sÄ2 + (ab+c) s + ac + k

total=0;

% sort the interval break points k(l)-k(4) in order from

% lowest to highest

int=[0 k(2:k(l)) 10];

s=length(int);

for 1=1:3

for i= 1:3
if k(i)>k(i+l)
temp = k(i);

B-3

k(i) = k(i+l);
k(i+l)=temp;

end

end

end

interval=[0 k(l:4) 10];

for i=l:k(l)
for c = interval(i):0.02:interval(i+1)

r = roots ([1, (a+b), (a*b+c), (a*c+k(9+i))])';
temp = (max(imag(r)) - 2)"2 + (max(real(r)) + 2) "2;

total = total + temp;

end
end

f=total;

return

%*** Qxid of file ****

%*************************************** file sampcoef.m ****

function [f]=sampcoef(k);

% This function is an evaluation routine run from genesis
% to evaluate the distance from the closed loop poles of
% a system with a given gain to the desired closed loop

% poles over a range of a varying parameter c.
% The variable k is a vector of the coefficients of a
% polynomial function of the scheduling variable c.

% Define plant transfer function form l/(s+a) (s"2 + bs + c)

% Controller k is proportional

a=6;b=4;

% The characteristic equation of the closed loop system is

% s~3 + (a+ b) s~2 + (ab+c) s + ac + k

total=0;

B-4

for c = 0:0.02:10
k=polyval(coef,c) ;
r = roots([1, (a+b), (a*b+c), (a*c+k)])';
temp = (max(imag(r)) - 2)'2 + (max(real (r)) + 2)A2;
total = total + temp;
end

end

f=total;

return

%*** end of file ****

B.2 F-18 Example Code

The Matlab© code for the F-18 example varies for each optimization example. First,
the 'C code that calls the Matlab© engine is presented. Next the code for evaluating the
baseline design is presented. Next, for simplicity the code for only Cases I, II, V and VII are
presented.

%*** file relerr.c ****
♦include "extern/include/engine.h"
♦include <stdio.h>
♦include <stdlib.h>
♦include <string.h>
♦include "global.h"

double eval(str, length, vect, genes)
char str[]; /* string representation */

int length; /* length of bit string */
double vect[]; /* floating point representation */

int genes; /* number of elements in vect */

{
Matrix *v, *d;

register int i;
double sum, *Dreal;

sum = 0.0;

/* printf("here");

printf("%g\n",*vect); */

B-5

v = mxCreateFull(1,genes,REAL);
memcpy(mxGetPr(v),vect,genes*sizeof(double));

mxSetName(v,"V");

engPutMatrix(epl, v) ;

engEvalString(epl,"d=relerr(V)");

d = engGetMatrix(epl,"d");

Dreal = mxGetPr(d);
/* printf("%g\n",*Dreal); */

mxFreeMatrix(v);

mxFreeMatrix(d);

return (*Dreal);

}
%*** end of file ****

%*** file relbase.m ****

% This program calculates the open and closed loop dynamics of the F-18

% short period longitudinal dynamics and the Relative error of the closed

% inner loop for the chosen central flight condition.

clear numtemp dentemp

clear nump denp

F = -40; Kf = [1 1]; G = .0247;

% Vector of dynamic pressure for 20 flight conditions
% (Original 12+8 more off design)

q=[47.4 68.5 100.1 158.4 189.9 255.0 301.1 355.0 426.4 496.0 557.0 ...

603.0 614.4 652.0 705.0 789.1 825.2 890.8 956.0 998.7]

% Calculate the scheduled parameters of the inner loop controller

N=-.312*q+461
Ml=-.058*q+50.5

M2=-.006*q+8.11

B-6

% Calculate the inner loop controller state space form

1=1;
for i=l:20
Akeq(i)=F-G*N(i);

Bkeq(i,:)=Kf-G*[Ml(i) M2(i)];
Ckeq(i)=-N(i);
Dkeq(i,:)=-[Ml(i) M2(i)];

end

% The central controller is chosen to be the Am95h20

Akcen=Akeq(13);
Bkcen=Bkeq(13,:);

Ckcen=Ckeq(13);
Dkcen=Dkeq(13,:);

% Input the dynamics at the 20 flight conditons

Am3h26=
Am5h40=
Am4h22=

Am6h30=
Am4h6=[-.8018

Am5hl0=
Am6hl5=
Am7hl8 5=[-.9920 .9888;-7.8450 -.7525]; %Am7hl8_5 *8

Am7hl4=
Am6h2=[-1.4710
Am8hl4=

Am8hl2=

Am8hl0=
Am9hl4=

-.2296 .9931;.02436 -.2046];
-.2423 .9964;-2.342 -.1737];

-.4285 .9916;-.7473 -.3123];

-.5088 .994/-1.131 -.2804];
9847;-1.521 -.5944];

■.8930 .9852;-4.1582 -.6873]
.9181 .9872;-6.2419 -.6920]

%Am4h22

%Am5hl0
%Am6hl5

*3

*6
*7

-1.175 9871;-8.458 -.8776];
9808/-11.5022 -1.0846]; %Am6h2
.9872;-32.6459 -1.1826]; %Am8hl4

9862;-14.94 -1.132];

Am95h20=[-1.905 .9895;-33.88 -.9872];

9853;-16.16 -1.212];
•9872;-32.6459 -1.1826]

-2.1163
-1.562 .

-1.675 .
-2.1163

Am8h5=[-1.994 .9828/-19.44 -1.427];

Am9hl0=[-2.452 .9856;-38.61 -1.34];
Am95h9=[-2.8375 . 9855;-51.8325 -1.4037]

Am85h5=[-2.328 .9831;-30.44 -1.493];
Am9h5=[-2.911 .9835;-46.47 -1.553];

Acen=[-1.905 .9895;-33.88 -.9872];

C=[l 0;0 1];

%Am9hl4

*10
*11

*15

%Am95h9 *19

B-7

D=[0;0];
Blong=[0;l];

% The elevator actuator dynamics

numelev=[1/82. 9*2 2*.068/82.9 1];

denelev=conv([1/36.4*2 2*.41/36.4 1],[1/105.3*2 2*.59/105.3 1]

[aact,bact,cact,dact]=tf2ss(numelev,denelev);

%break
% Combine the actuator dynamics in the plant

[Apla,Bpla,Cpla,Dpla]=series(aact,bact,cact

[Ap2a,Bp2a,Cp2a,Dp2a]=series(aact,bact,cact
[Ap3a,Bp3a,Cp3a,Dp3a]=series(aact,bact,cact

[Ap4a,Bp4a,Cp4a,Dp4a]=series(aact,bact,cact
[Ap5a,Bp5a,Cp5a,Dp5a]=series(aact,bact,cact
[Ap6a,Bp6a,Cp6a,Dp6a]=series(aact,bact,cact

[Ap7a,Bp7a,Cp7a,Dp7a]=series(aact,bact,cact

[Ap8a,Bp8a,Cp8a,Dp8a]=series(aact,bact,cact
[Ap9a,Bp9a,Cp9a,Dp9a]=series(aact,bact,cact

[Apl0a,Bpl0a,Cpl0a,Dpl0a
[Aplla,Bplla,Cplla,Dplla
[Apl2a,Bpl2a,Cpl2a,Dpl2a

[Apl3a,Bpl3a,Cpl3a,Dpl3a
[Apl4a,Bpl4a,Cpl4a,Dpl4a
[Apl5a,Bpl5a,Cpl5a,Dpl5a
[Apl6a,Bpl6a,Cpl6a,Dpl6a
[Apl7a,Bpl7a,Cpl7a,Dpl7a

[Apl8a,Bpl8a,Cpl8a,Dpl8a
[Apl9a,Bpl9a,Cpl9a,Dpl9a
[Ap20a,Bp20a,Cp20a,Dp20a

=series
=series
=series

=series
=series
=series
=series
=series

=series
=series
=series

(aact,bact,
(aact,bact,
(aact,bact,

(aact,bact,
(aact,bact,
(aact,bact,
(aact,bact,
(aact,bact,

(aact,bact,
(aact,bact,
(aact,bact,

[Ap0a,Bp0a,Cp0a,Dp0a]=series(aact,bact,cact

,dact,Am3h26,Blong,C,D)

,dact,Am5h40,Blong,C,D)
,dact,Am4h22,Blong,C,D)
,dact,Am6h30,Blong,C,D)

,dact,Am4h6,Blong,C,D);
,dact,Am5hlO,Blong,C,D);
,dact,Am6hl5,Blong,C,D);

,dact,Am7hl8_5,Blong,C,D);
,dact,Am7hl4,Blong,C,D);
cact,dact,Am6h2,Blong,C,D);
cact,dact,Am8hl4,Blong,C,D);
cact,dact,Am8hl2,Blong,C,D);

cact,dact,Am95h20,Blong,C,D);
cact,dact/Am8hlO,Blong,C,D);
cact,dact,Am9hl4,Blong,C,D);

cact,dact,Am8h5,Blong,C,D);
cact,dact,Am9hlO,Blong,C,D)

cact,dact,Am85h5,Blong,C,D)
cact,dact,Am95h9,Blong,C,D)
cact,dact,Am9h5,Blong,C,D);
,dact,Acen,Blong,C,D);

% Close the inner loop with the corresponding controller

[Apl,Bpl,Cpl,Dpi]=feedback(Apia,Bpla,Cpla,Dpla,...

Akeq(l),Bkeq(l,:),Ckeq(l),Dkeq(l,:),1);
[Ap2,Bp2,Cp2,Dp2]=feedback(Ap2a,Bp2a,Cp2a,Dp2a,...
Akeq(2),Bkeq(2,:),Ckeq(2),Dkeq(2, :) ,1) ;

[Ap3,Bp3,Cp3,Dp3]=feedback(Ap3a,Bp3a,Cp3a,Dp3a,...

Akeq(3),Bkeq(3,:),Ckeq(3),Dkeq(3,:),1);
[Ap4,Bp4,Cp4,Dp4]=feedback(Ap4a,Bp4a,Cp4a,Dp4a,...

B-8

Akeq(4),Bkeq(4,:),Ckeq(4),Dkeq(4, :),1);
[Ap5,Bp5,Cp5,Dp5]=feedback(Ap5a,Bp5a,Cp5a,Dp5a,

Akeq(5),Bkeq(5,:),Ckeq(5),Dkeq(5, :),1);

[Ap6,Bp6,Cp6,Dp6]=feedback(Ap6a,Bp6a,Cp6a,Dp6a,

Akeq(6),Bkeq(6,:),Ckeq(6),Dkeq(6, :),1);

[Ap7,Bp7,Cp7,Dp7]=feedback(Ap7a,Bp7a,Cp7a,Dp7a,
Akeq(7),Bkeq(7,:),Ckeq(7),Dkeq(7, :),1);
[Ap8,Bp8,Cp8,Dp83=feedback(Ap8a,Bp8a,Cp8a,Dp8a,

Akeq(8),Bkeq(8,:),Ckeq(8),Dkeq(8,:),1);
[Ap9,Bp9,Cp9,Dp9]=feedback(Ap9a,Bp9a,Cp9a,Dp9a,
Akeq(9),Bkeq(9,:),Ckeq(9),Dkeq(9, :) ,1) ;
[AplO,BplO,CplO,DplO]=feedback(AplOa,BplOa,CplOa,DplOa,

Akeq(10),Bkeq(10,:),Ckeq(10),Dkeq(10,:),1);
[Apll,Bpll,Cpll,Dpll]=feedback(Aplla,Bplla,Cplla,Dplla,

Akeq(ll),Bkeq(ll,:),Ckeq(ll) ,Dkeq(ll, :),1);
[Apl2,Bpl2,Cpl2,Dpl2]=feedback(Apl2a,Bpl2a,Cpl2a,Dpl2a,

Akeq(12),Bkeq(12,:),Ckeq(12),Dkeq(12, :),1);
[Apl3,Bpl3,Cpl3,Dpl3]=feedback(Apl3a,Bpl3a,Cpl3a,Dpl3a,

Akeq(13),Bkeq(13,:),Ckeq(13),Dkeq(13, :),1);
[Apl4,Bpl4,Cpl4,Dpl4]=feedback(Apl4a,Bpl4a,Cpl4a,Dpl4a,

Akeq(14),Bkeq(14,:),Ckeq(14),Dkeq(14, :),1);
[Apl5,Bpl5,Cpl5,Dpl5]=feedback(Apl5a,Bpl5a,Cpl5a,Dpl5a,

Akeq(15),Bkeq(15,:),Ckeq(15),Dkeq(15,:),1);
[Apl6,Bpl6,Cpl6,Dpl6]=feedback(Apl6a,Bpl6a,Cpl6a,Dpl6a,

Akeq(16),Bkeq(16,:),Ckeq(16),Dkeq(16, :),1);
[Apl7,Bpl7,Cpl7,Dpl7]=feedback(Apl7a,Bpl7a,Cpl7a,Dpl7a,

Akeq(17),Bkeq(17,:),Ckeq(17),Dkeq(17, :),1);
[Apl8,Bpl8,Cpl8,Dpl8]=feedback(Apl8a,Bpl8a,Cpl8a,Dpl8a,

Akeq(18),Bkeq(18,:),Ckeq(18),Dkeq(18, :),1);
[Apl9,Bpl9,Cpl9,Dpl9]=feedback(Apl9a,Bpl9a,Cpl9a,Dpl9a,

Akeq(19),Bkeq(19,:),Ckeq(19) ,Dkeq(19, :),1);
[Ap20,Bp20,Cp20,Dp20]=feedback(Ap20a,Bp20a,Cp20a,Dp20a,

Akeq(20),Bkeq(20,:),Ckeq(20),Dkeq(20, :),1);
[ApO,BpO,CpO,DpO]=feedback(ApOa,BpOa,CpOa,DpOa,...

Akcen,Bkcen,Ckcen,Dkcen,1);

[Apl,Bpl,Cpl,Dpi]=feedback(Am3h2 6, Blong, C, D,.

Akeq(l),Bkeq(l,:),Ckeq(l),Dkeq(l, :) ,1) ;
[Ap2,Bp2,Cp2,Dp2]=feedback(Am5h40,Blong,C,D,.

Akeq(2),Bkeq(2,:),Ckeq(2),Dkeq(2, :),1);

[Ap3,Bp3,Cp3,Dp3]=feedback(Am4h22, Blong,C, D,.

Akeq(3),Bkeq(3,:),Ckeq(3),Dkeq(3, :) ,1) ;

B-9

[Ap4,Bp4,Cp4,Dp4]=feedback(Am6h30,Blong,C,D,...

Akeq(4),Bkeq(4,:),Ckeq(4),Dkeq(4,:),1);
[Ap5,Bp5,Cp5,Dp5]=feedback(Am4h6,Blong,C,D,...

Akeq(5),Bkeq(5,:),Ckeq(5),Dkeq(5, :) ,1) ;
[Ap6,Bp6,Cp6,Dp6]=feedback(Am5hl0,Blong,C,D,...

Akeq(6),Bkeq(6,:),Ckeq(6),Dkeq(6,:),1) ;
[Ap7,Bp7,Cp7,Dp7]=feedback(Am6hl5,Blong,C,D,...

Akeq(7),Bkeq(7,:) ,Ckeq(7),Dkeq(7, :) ,1) ;
[Ap8,Bp8,Cp8,Dp8]=feedback(Am7hl8_5,Blong,C,D,...

Akeq(8),Bkeq(8,:),Ckeq(8),Dkeq(8, :),1);
[Ap9,Bp9,Cp9,Dp9]=feedback(Am7hl4,Blong,C,D, ...

Akeq(9) ,Bkeq(9, :) ,Ckeq(9) ,Dkeq(9, :), 1) ;
[AplO,BplO,CplO,DplO]=feedback(Am6h2,Blong,C,D,...

Akeq(10),Bkeq(10,:),Ckeq(10),Dkeq(10,:),1);
[Apll,Bpll,Cpll,Dpll]=feedback(Am8hl4,Blong,C,D, ...

Akeq(ll),Bkeq(ll,:),Ckeq(ll),Dkeq(ll, :),1);
[Apl2,Bpl2,Cpl2,Dpl2]=feedback(Am8hl2,Blong,C,D,...

Akeq(12),Bkeq(12,:),Ckeq(12),Dkeq(12, :),1);
[Apl3,Bpl3,Cpl3,Dpl3]=feedback(Am95h20,Blong,C,D/ ..

Akeq(13),Bkeq(13,:),Ckeq(13),Dkeq(13, :),1);
[Apl4,Bpl4,Cpl4,Dpl4]=feedback(Am8hlO,Blong,C,D,

Akeq(14),Bkeq(14,:),Ckeq(14),Dkeq(14, :),1);
[Apl5,Bpl5,Cpl5,Dpl5]=feedback(Am9hl4,Blong,C,D,

Akeq(15),Bkeq(15,:),Ckeq(15),Dkeq(15, :), 1) ;
[Apl6,Bpl6,Cpl6,Dpl6]=feedback(Am8h5,Blong,C,D, .

Akeq(16),Bkeq(16,:)fCkeq(16),Dkeq(16,:),1);
[Apl7,Bpl7,Cpl7,Dpl7]=feedback(Am9hlO,Blong,C,D,

Akeq(17),Bkeq(17,:),Ckeq(17),Dkeq(17,:),1);
[Apl8,Bpl8,Cpl8,Dpl8]=feedback(Am85h5,Blong,C,D,

Akeq(18),Bkeq(18,:),Ckeq(18),Dkeq(18,:),1);
[Apl9,Bpl9,Cpl9,Dpl9]=feedback(Am95h9,Blong,C,D,

Akeq(19),Bkeq(19,:),Ckeq(19),Dkeq(19,:),1);
[Ap20,Bp20,Cp20,Dp20]=feedback(Am9h5,Blong,C,D, .

Akeq(20),Bkeq(20,:),Ckeq(20),Dkeq(20, :),1);
[ApO,BpO,CpO,DpO]=feedback(Acen,Blong,C,D, ...

Akcen,Bkcen,Ckcen,Dkcen,l);

w=logspace(-2,2,200);

C1=C(1,:);D1=0;

C2=C(2,:);D2=0;

% Compute open loop dynamics Pitch acceleration to angle of attack

B-10

[svlol

[sv2ol

[sv3ol

[sv4ol

[sv5ol

[sv6ol

[sv7ol
[sv8ol
[sv9ol
[svlOol

[svllol

[svl2ol
[svl3ol
[svl4ol
[svl5ol
[svl6ol
[svl7ol

[svl8ol
[svl9ol

[sv20ol

=sigma(Am3h26,Blong,Cl,Dl,w);

=sigma(Am5h40,Blong,Cl,Dl,w);

=sigma(Am4h22,Blong,Cl,Dl,w);

=sigma(Am6h30,Blong,Cl,Dl,w);

=sigma(Am4h6,Blong,Cl,Dl,w);

=sigma(Am5hlO,Blong,Cl,Dl,w);

=sigma(Am6hl5,Blong,Cl,Dl,w);
=sigma(Am7hl8_5,Blong,Cl,Dl,w) ;

=sigma(Am7hl4,Blong,Cl,Dl,w);
]=sigma(Am6h2,Blong,C1,D1,w);
]=sigma(Am8hl4,Blong,Cl,Dl,w);

]=sigma(Am8hl2,Blong,Cl,Dl,w);
]=sigma(Am95h20,Blong,Cl,Dl,w);
J=sigma(Am8hlO,Blong,Cl,Dl,w);
]=sigma(Am9hl4,Blong,Cl,Dl,w);
]=sigma(Äm8h5,Blong,Cl,Dl,w);
]=sigma(Am9hlO,Blong,Cl,Dl,w);

]=sigma(Am85h5,Blong,Cl,Dl,w);
]=sigma(Am95h9,Blong,Cl,Dl,w);
]=sigma(Am9h5,Blong,Cl,Dl,w);

% Compute open loop dynamics Pitch acceleration to pitch rate

[svlo2]=sigma(Am3h26,Blong,C2,D2, w);
[sv2o2]=sigma(Am5h40,Blong,C2,D2,w);
[sv3o2]=sigma(Äm4h22,Blong,C2,D2,w);
[sv4o2]=sigma(Am6h30,Blong,C2,D2,w);
[sv5o2]=sigma(Am4h6,Blong,C2,D2,w);

[sv6o2]=sigma(Am5hl0,Blong,C2,D2,w);
[sv7o2]=sigma(Am6hl5,Blong,C2,D2,w);
[sv8o2]=sigma(Am7hl8_5,Blong,C2,D2,w);

[sv9o2]=sigma(Äm7hl4,Blong,C2,D2,w);

[svl0o2]=sigma(Am6h2,Blong,C2,D2,w);

[svllo2]=sigma(Am8hl4,Blong,C2, D2, w) ;
[svl2o2]=sigma(Am8hl2,Blong,C2,D2,w),•

[svl3o2]=sigma(Am95h20,Blong,C2,D2,w);

[svl4o2]=sigma(Am8hl0,Blong,C2,D2, w) ;
[svl5o2]=sigma(Am9hl4,Blong,C2,D2,w);

[svl6o2]=sigma(Am8h5,Blong,C2,D2,w);

[svl7o2]=sigma(Am9hlO,Blong,C2,D2,w);

[svl8o2]=sigma(Am85h5,Blong,C2,D2, w);

B-ll

[svl9o2]=sigma(Am95h9,Blong,C2,D2,w);
[sv20o2]=sigma(Am9h5,Blong,C2,D2,w);

% Closed loop singular value analysis (pitch acceleration to pitch rate)

[svlp2

[sv2p2

[sv3p2

[sv4p2
[sv5p2
[sv6p2

[sv7p2

[sv8p2
[sv9p2
[svl0p2
[svllp2
[svl2p2
[svl3p2

[svl4p2
[svl5p2
[svl6p2
[svl7p2
[svl8p2
[svl9p2
[sv20p2

:sigma(Apl,Bpl,Cpl (2,
:sigma(Ap2,Bp2,Cp2 (2,
:sigma(Ap3,Bp3,Cp3 (2,
:sigma(Ap4,Bp4,Cp4(2,
:sigma(Ap5,Bp5,Cp5 (2,
:sigma (Ap6,Bp6,Cp6 (2,
:sigma(Ap7,Bp7,Cp7 (2,

:sigma(Ap8,Bp8,Cp8(2,

:sigma(Ap9,Bp9,Cp9(2,

=sigma(AplO,BplO,CplO
=sigma(Apll,Bpll,Cpll
=sigma(Apl2,Bpl2,Cpl2
=sigma(Apl3,Bpl3,Cpl3
=sigma(Apl4,Bpl4,Cpl4

=sigma(Apl5,Bpl5,Cpl5
=sigma(Apl6,Bpl6,Cpl6
=sigma(Apl7,Bpl7,Cpl7
=sigma(Apl8,Bpl8,Cpl8

=sigma(Apl9,Bpl9,Cpl9
=sigma(Ap20,Bp20,Cp20

),Dpl(2,) / w) ;

),Dp2(2,), w) ;
),Dp3(2,) / w) ;
),Dp4(2,), w) ;

),Dp5(2,) / w) ;

),Dp6(2,) / w) ;

),Dp7(2,) , w) ;
),Dp8(2,) , w) ;

),Dp9(2,) , w) ;

(2,),DplO(2, : ,w)

(2,),Dpll(2, : ,w)

(2,),Dpl2(2,: ,w)

(2,),Dpl3(2, : ,w)

(2,),Dpl4(2,: ,w)

(2,),Dpl5(2, : ,w)

(2,),Dpl6(2, : ,w)

(2,),DP17(2,: ,w)

(2,),Dpl8(2, : ,w)

(2,),Dpl9(2, : ,w)

(2,),Dp20(2, : ,w)

Reduce the closed loop system to SISO (pitch acceleration to angle of attack)

Cpl=Cpl(l,:)
Cp2=Cp2(l,:)
Cp3=Cp3(l, :)

Cp4=Cp4(l,:)
Cp5=Cp5(l, :)

Cp6=Cp6(l, :)
CP7=Cp7(l,:)

Cp8=Cp8(l, :)
Cp9=Cp9(l,:)
CplO=CplO(l,

Cpll=Cpll(l,
Cpl2=Cpl2(l,

Cpl3=Cpl3(l,

Cpl4=Cpl4(l,

Dpl=Dpl(l,:)
Dp2=Dp2(l,:)

Dp3=Dp3(l,:)
Dp4=Dp4(l, :)

Dp5=Dp5(l,:)

Dp6=Dp6(l,:)

Dp7=Dp7(l,:)

Dp8=Dp8(l, :)
Dp9=Dp9(l,:)
);DplO=DplO(l,
);Dpll=Dpll(l,

);DP12=Dpl2(l,

);Dpl3=Dpl3(l,
);Dpl4=Dpl4(l,

B-12

Cpl5=Cpl5(l,

Cpl6=Cpl6(l,

Cpl7=Cpl7(l,

Cpl8=Cpl8(l,

Cpl9=Cpl9(l,

Cp20=Cp20(l,

Dpl5=Dpl5(l,

Dpl6=Dpl6(l,

Dpl7=Dpl7(l,

Dpl8=Dpl8(l,

Dpl9=Dpl9(l,

Dp20=Dp20(l,

CpO=CpO(l,:);DpO=DpO(l,:);

% Closed loop singular value analysis (pitch acceleration to angle of attack)

[svlp]

[sv2p]

[sv3p]

[sv4p]

[sv5p]

[sv6p]

[sv7p]

[sv8p]

[sv9p]

[svlOp

[svllp

[svl2p

[svl3p

[svl4p

[svl5p

[svl6p

[svl7p

[svl8p

[svl9p

[sv20p

=sigma(Apl,Bpl,Cpl,Dpl,w)
:sigma (Ap2, Bp2, Cp2, Dp2, w)
:sigma (Ap3, Bp3, Cp3, Dp3, w)

:sigma(Ap4,Bp4,Cp4,Dp4,w)
:sigma(Ap5,Bp5,Cp5,Dp5,w)
:sigma(Ap6,Bp6,Cp6,Dp6,w)
:sigma(Ap7,Bp7,Cp7,Dp7,w)

^sigma(Ap8,Bp8,Cp8,Dp8,w)

:sigma(Ap9,Bp9,Cp9,Dp9,w)

=sigma(AplO,BplO,CplO,DplO,w)

=sigma(Apll,Bpll,Cpll,Dpll,w)

=sigma(Apl2,Bpl2,Cpl2,Dpl2,w)

=sigma(Apl3,Bpl3,Cpl3,Dpl3,w)

=sigma(Apl4,Bpl4,Cpl4,Dpl4,w)

=sigma(Apl5,Bpl5,Cpl5,Dpl5,w)

=sigma(Apl6,Bpl6,Cpl6,Dpl6,w)

=sigma(Apl7,Bpl7,Cpl7,Dpl7,w)

=sigma(Apl8,Bpl8,Cpl8,Dpl8,w)

=sigma(Apl9,Bpl9,Cpl9/Dpl9,w)

==sigma(Ap20,Bp20,Cp20,Dp20,w)

Convert state space to transfer function for computation of relative error

[nump(1,

[nump(2,

[nump(3,

[nump(4,

[nump(5,

[nump(6,

[nump(7,

[nump(8,

[nump(9,

, denp (1,

,denp(2,

, denp(3,

, denp(4,

, denp(5,

, denp(6,

,denp(7,

, denp(8,

,denp(9,

=ss2tf

=ss2tf

=ss2tf

=ss2tf

=ss2tf

=ss2tf

=ss2tf

=ss2tf

=ss2tf

(Apl,Bpl,

(AP2,Bp2,

(AP3,Bp3,

(Ap4,Bp4,

(Ap5,Bp5,

(Ap6,Bp6,

(Ap7,Bp7,

(Ap8,Bp8,

(Ap9,Bp9,

Cpl,Dpl)

Cp2,Dp2)

Cp3,Dp3)

Cp4,Dp4)

Cp5,Dp5)

Cp6,Dp6)

Cp7,Dp7)

Cp8,Dp8)

Cp9,Dp9)

B-13

[numpCLO, :) ,denp(10, :)]=ss2tf (AplO,BplO,CplO,DplO)
[nump(ll,:),denp(ll,:)]=ss2tf(Apll,Bpll,Cpll,Dpll)
[nump(12,:),denp(12,:)]=ss2tf(Apl2,Bpl2,Cpl2,Dpl2)
[nump(13,:),denp(13,:)]=ss2tf(Apl3,Bpl3,Cpl3,Dpl3)
[nump(14/:),denp(14,:)]=ss2tf(Apl4,Bpl4,Cpl4,Dpl4)
[nump(15,:),denp(15,:)]=ss2tf(Apl5,Bpl5,Cpl5,Dpl5)
[nump(16, :),denp(16, :)]=ss2tf(Apl6,Bpl6,Cpl6,Dpl6)
[nump(17,:),denp(17,:)]=ss2tf(Apl7,Bpl7,Cpl7,Dpl7)
[nump(18,:),denp(18,:)]=ss2tf(Apl8,Bpl8,Cpl8,Dpl8)
[nump(19, :),denp(19, :)]=ss2tf (Apl9,Bpl9,Cpl9,Dpl9)
[nump(20,:),denp(20,:)]=ss2tf(Ap20,Bp20,Cp20,Dp20)
[nump0,denp0]=ss2tf(ApO,BpO,CpO,DpO);

% Reduce the transfer fuction to essential parts (chop off added zeros)
nump=nump(:,3:4)
nump0=nump0(3:4)

numpO=nump(13,:);denpO=denp(13,:);

% Compute Relative Error (Po-P)PoA-l

for i=l:20

numtemp(i,:)=conv(nump(i,:),denpO)-conv(numpO,denp(i,:));

dentemp(i,:)=conv(denp(i,:),nump0);

end

% Convert back to state space for singular value analysis

[al,bl,cl,dl =t f2 ss(numtemp(1,),dentemp(l,))
[a2,b2,c2,d2 =tf2ss(numtemp(2,),dentemp(2,))
[a3,b3,c3,d3 =tf2ss(numtemp(3,),dentemp(3,))
[a4,b4,c4,d4 =tf2ss(numtemp(4,),dentemp(4,))
[a5,b5,c5,d5 =tf2ss(numtemp(5,),dentemp(5,))
[a6,b6,c6,d6 =tf2ss(numtemp(6,),dentemp(6,))
[a7,b7,c7,d7 =tf2ss(numtemp(7,),dentemp(7,))
[a8,b8,c8,d8 =tf2ss(numtemp(8,),dentemp(8,))
[a9,b9,c9,d9 =tf2ss(numtemp(9,) ,dentemp(9,))
[al0,bl0,cl0 dl0]=tf2ss(numtemj 3(10,),dentemp(10,))
[all,bll,cll dll]=tf2ss(numtemj 3(11,),dentemp(ll,))
[al2,bl2,cl2 dl2]=tf2ss(numtemj >(12,),dentemp(12,))
[al3,bl3,cl3 dl3]=tf2ss(numtemj 3(13,),denten ap(! L3,))

B-14

[al4,bl4,cl4,dl4]

[al5,bl5,cl5,dl5]

[al6,bl6,cl6,dl6]

[al7,bl7,cl7,dl7]

[al8,bl8,cl8,dl8]

[al9,bl9,cl9,dl9]

[a20,b20,c20,d20]

=tf2ss(numtemp(15,

=tf2ss(numtemp(15,

=tf2ss(numtemp(16,

=tf2ss(numtemp(17,

=tf2ss(numtemp(18,

=tf2ss(numtemp(19,

=tf2ss(numtemp(20,

,dentemp(15,

,dentemp(15,

,dentemp(16,

,dentemp(17,

,dentemp(18,

,dentemp(19,

,dentemp(20,

% Singular value analysis

(svl

[sv2

[sv3

[sv4

[sv5

[sv6

[sv7

tsv8

[sv9

[svlO

[svll

[svl2

[svl3

[svl4

[svl5

[svl 6

[svl7

[svl8

[svl 9

[sv20

:sigma

■sigma
:sigma
:sigma
:sigma
:sigma

sigma
:sigma

sigma

=sigma

=sigma

=sigma

=sigma

=sigma

=sigma

=sigma

=sigma

=sigma

=sigma

=sigma

(al,bl,cl,

(a2,b2,c2,

(a3,b3,c3,

(a4,b4,c4,

(a5,b5,c5,

(a6,b6,c6,

(a7,b7,c7,

(a8,b8,c8,

(a9,b9,c9,

(alO,blO,

(all,bll,

(al2,bl2,

(al3,bl3,

(al4,bl4,

(al5,bl5,

(al6,bl6,

(al7,bl7,

(al8,bl8,

(al9,bl9,

(a20,b20,

dl,w)

d2,w)

d3,w)

d4,w)

d5,w)

d6,w)

d7,w)

d8,w)

d9,w)

clO,dlO,w)

cll,dll,w)

cl2,dl2,w)

cl3,dl3,w)

cl4,dl4,w)

cl5,dl5,w)

cl6,dl6,w)

cl7,dl7,w)

cl8,dl8,w)

cl9,dl9,w)

c20,d20,w)

J=max(svl)+max(sv2)+max(sv3)+max(sv4)+max(sv5)+max(sv6)+max(sv7)+max(sv8)+.

max (sv9)+max(svl0)+max(svll)+max(svl2)+max(svl3)+max(svl4)+max(svl5)+. . .

max(svl6)+max(svl7)+max(svl8)+max(svl9)+max(sv2 0)

toe

figure (1)
loglog (w, svl, w, sv2, w, sv3, w, sv4, w, sv5, w, sv6, w, sv7, w, sv8, w, sv9, w, svlO, w, svl 1,
W,svl2,w,svl3,w,svl4,w,svl5,w,svl6,w,svl7,w,svl8,w,svl9,w,sv20)

%title('Baseline Closed Inner Loop Relative Error')

xlabel('w (rad/sec)')

B-15

ylabel('Singular Value')

axis([.01 100 .0001 1])

print -deps relbase

figure (2)
loglog (w, svlp, w, sv2p, w, sv3p, w, sv4p, w, sv5p, w, sv6p, w, sv7p, w, sv8p, w, sv9p,. ..

w, svlOp, w, svllp,w,svl2p,w,svl3p,w,svl4p,w,svl5p,w,svl6p,w,svl7p,w,svl8p,.

w,svl9p,w,sv20p)
xlabel('w (rad/sec)')
ylabel('Singular Value')
%title('Pitch Acceleration to Angle of Attack Closed Inner-Loop Dynamics')

axis([.01 100 .0001 .1])

print -deps basecla

figure (3)
loglog(w,svlol,w,sv2ol,w, sv3ol,w, sv4ol,w,sv5ol,w,sv6ol,w,sv7ol,w,sv8ol,..

w,sv9ol,w,svl0ol,w,svllol,w,svl2ol,w,svl3ol,w,svl4ol,w,svl5ol,w,svl6ol,..

w,svl7ol,w,svl8ol,w,svl9ol,w,sv20ol)

xlabel('w (rad/sec)')
ylabel(' Singular Value')
%title('Pitch Acceleration to Angle of Attack Open Inner-Loop Dynamics')

print -deps olalpha

figure (4)
loglog(w,svlo2,w,sv2o2,w,sv3o2,w,sv4o2,w,sv5o2,w,sv6o2,w,sv7o2,w,sv8o2,..
w, sv9o2,w,svl0o2,w,svllo2,w,svl2o2,w, svl3o2,w, svl4o2,w, svl5o2, w, svl6o2, . .

w,svl7o2,w,svl8o2,w,svl9o2,w,sv20o2)

xlabel('w (rad/sec)')

ylabel('Singular Value')
%title('Pitch Acceleration to Pitch Rate Open Inner-Loop Dynamics')

print -deps olpitch

figure (5)
loglog(w,svlp2,w,sv2p2,w,sv3p2,w,sv4p2,w,sv5p2,w,sv6p2,w,sv7p2,w,sv8p2,..
w,sv9p2,w, Svl0p2,w,svllp2,w,svl2p2,w, svl3p2,w, Svl4p2,w,svl5p2,w,svl6p2,..

w,svl7p2,w,svl8p2,w,svl9p2,w,sv20p2)

xlabel('w (rad/sec)')

ylabel(' Singular Value')
%title('Pitch Acceleration to Pitch Rate Closed Inner-Loop Dynamics')

axis([.01 100 .001 1])
print -deps baseclp

B-16

% Load the outer loop controller

longout

% Combine the outer loop controller and the Closed inner loop

[Aool,Bool,Cool,Dool]=series(Akoutlow,Bkoutlow,Ckoutlow,Dkoutlow,...

Apl,Bpl,Cpl,Dpl);
[Aoo2,Boo2,Coo2,Doo2]=series(Akoutlow,Bkoutlow,Ckoutlow,Dkoutlow,...

Ap2,Bp2,Cp2,Dp2);
[Aoo3,Boo3,Coo3,Doo3]=series(Akoutlow,Bkoutlow,Ckoutlow,Dkoutlow, .. .

Ap3,Bp3,Cp3,Dp3);
[Aoo4,Boo4,Coo4,Doo4]=series(Akoutlow,Bkoutlow,Ckoutlow,Dkoutlow,...

Ap4,Bp4,Cp4,Dp4);
[Aoo5,Boo5,Coo5,Doo5]=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,...

Ap5,Bp5,Cp5,Dp5);
[Aoo6,Boo6,Coo6,Doo6]=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,...

Ap6,Bp6,Cp6,Dp6) ;
[Aoo7,Boo7,Coo7,Doo7]=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,...

Ap7,Bp7,Cp7,Dp7);
[Aoo8,Boo8,Coo8,Doo8]=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,...

Ap8,Bp8,Cp8,Dp8);
[Aoo9,Boo9,Coo9,Doo9]=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,...

Ap9,Bp9,Cp9,Dp9) ;
[AoolO,BoolO,CoolO,DoolO
AplO,BplO,CplO,DplO);
[Aooll,Booll,Cooll,Dooll
Apll,Bpll,Cpll,Dpll);
[Aool2,Bool2,Cool2,Dool2

Apl2,Bpl2,Cpl2,Dpl2);
[Aool3,Bool3,Cool3,Dool3
Apl3,Bpl3,Cpl3,Dpl3);
[Aool4,Bool4,Cool4,Dool4

Apl4,Bpl4,Cpl4,Dpl4);

[Aool5,Bool5,Cool5,Dool5

Apl5,Bpl5,Cpl5,Dpl5);
[Aool6,Bool 6,Cool 6,Dool6
Apl6,Bpl6,Cpl6,Dpl6);
[Aool7,Bool7,Cool7,Dool7

Apl7,Bpl7,Cpl7,Dpl7);

[Aool8,Bool8,Cool8,Dool8

Apl8,Bpl8,Cpl8,Dpl8);
[Aool9,Bool9,Cool9,Dool9

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,

B-17

Apl9,Bpl9,Cpl9,Dpl9);
[Aoo20,Boo20,Coo20,Doo20]=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,

Ap20,Bp20,Cp20,Dp20);

% Close the outer loop with negative feedback

[Aol,Bol,Col,Dol

[Ao2,Bo2,Co2,Do2

[Ao3,Bo3,Co3,Do3
[Ao4,Bo4,Co4,Do4
[Ao5,Bo5,Co5,Do5

[Ao6,Bo6,Co6,Do6
[Ao7,Bo7,Co7,Do7

[Ao8,Bo8,Co8,Do8

[Ao9,Bo9,Co9,Do9
[AolO,BolO,ColO,DolO
[Aoll,Boll,Coll,Doll
[Aol2,Bol2,Col2,Dol2

[Aol3,Bol3,Col3,Dol3
[Aol4,Bol4,Col4,Dol4

[Aol5,Bol5,Col5,Dol5
[Aol6,Bol6,Col6,Dol6
[Aol7,Bol7,Col7,Dol7

[Aol8,Bol8,Col8,Dol8
[Aol9,Bol9,Col9,Dol9
[Ao20,Bo20,Co20,Do20

=cloop(Aool,Bool

=cloop(Aoo2,Boo2
=cloop(Aoo3,Boo3
=cloop(Aoo4,Boo4
=cloop(Aoo5,Boo5

=cloop(A006, B006

=cloop(Aoo7,Boo7
=cloop(Aoo8,Boo8

=cloop(Aoo9,Boo9
]=cloop(AoolO

]=cloop(Aooll
]=cloop(Aool2

]=cloop(Aool3
]=cloop(Aool4

]=cloop(Aool5
]=cloop(A00I6
]=cloop(Aool7

]=cloop(Aool8

]=cloop(Aool9
]=cloop(Aoo20

Cool,Dool,-

Coo2,Dool,-
Coo3,Doo3,-
Coo4,Doo4,-

Coo5,Doo5,-

Coo6,Doo6,-
Coo7,Doo7,-

Coo8,Doo8,-
Coo9,Doo9,-

BoolO,CoolO
Booll,Cooll
Bool2,Cool2

Bool3,Cool3
Bool4,Cool4
Bool5,Cool5
Bool6,Cool6
Bool7,Cool7

Bool8,Cool8

Bool9,Cool9
Boo20,Coo20

1)

1)
1)
1)
1)

1)

1)
1)
1)
,DoolO
,Dooll
,Dool2

,Dool3
,Dool4

,Dool5
,Dool6
,Dool7

,Dool8
,Dool9
,Doo20

-1)
-1)
-1)

-1)
-1)
-1)
-1)
-1)

-1)
-1)
-1)

Get step response of closed outer loop

t=0:.l
[yl,xl

[y2,x2
[y3,x3

[y4,x4

[y5,x5

[y6,x6
[y7,x7

[y8,x8
[y9,x9

5;
=step(Aol,Bol,Col,Dol,l,t)
=step(Ao2,Bo2,Co2,Do2,l,t)
=step(Ao3,Bo3,Co3,Do3,l,t)

=step(Ao4,Bo4,Co4,Do4,l,t)

=step(Ao5,Bo5,Co5,Do5,l,t)
=step(Ao6,Bo6,Co6,Do6,l,t)

=step(Ao7,Bo7,Co7,Do7,1,t)
=step(Ao8,Bo8,Co8,Do8,l,t)

=step(Ao9,Bo9,Co9,Do9,l,t)
[ylO,xlO]=step(AolO,BolO,ColO,DolO,l,t)

[yll,xll]=step(Aoll,Boll,Coll,Doll,l,t)
[yl2,xl2]=step(Aol2,Bol2,Col2,Dol2,l,t)

[yl3,xl3]=step(Aol3,Bol3,Col3,Dol3,l,t)

B-18

[yl4,xl4]=step(Aol4,Bol4,Col4,Dol4,l,t);
[yl5,xl5]=step(Aol5,Bol5,Col5,Dol5,l,t);
[yl6,xl6]=step(Aol6,Bol6,Col6,Dol6,l,t);
[yl7,xl7]=step(Aol7,Bol7,Col7,Dol7,l,t);
[yl8,xl8]=step(Aol8,Bol8,Col8,Dol8,l,t);
[y19,xl9]=step(Aol9,Bol9,Col9,Dol9,l,t);
[y20,x20]=step(Ao20,Bo20,Co20,Do20,l,t);
e=sum(abs(sum([(yl-yl3),(yl-yl3),(y2-yl3),(y3-yl3),(y4-yl3),(y5-yl3),(y6-yl3),(y7-
(y8-yl3),(y9-yl3),(yl0-yl3),(yll-yl3),(yl2-yl3),(yl4-yl3),(yl5-yl3)
(yl6-yl3),(yl7-yl3),(yl8-yl3),(yl9-yl3),(y20-yl3)])))
figure (6)
Plot(t,yl,t,y2,t,y3/t,y4,t/y5/t,y6,t,y7,t,y8,t,y9,t,yl0,t/yll,t,yl2,...

t,yl3/t,yl4,t,yl5,t,yl6,t,yl7,t,yl8,t,yl9,t,y20)
xlabel('Time (sec)')
ylabel('Amplitude')
grid
axis([0 5 0 1.3])
print -deps timebase
%*** end of file ****

%*** fi]_e relerr.m ****

function j=relerr(k)

% This function will take the given minimal order Hinf
% controller Keq and calculate the relative error to the

% chosen central controller

clear numtemp dentemp nump denp

SV=[];j=0;
F = -40; Kf = [1 1]; G = .0247;

1=1;
for i=l:4
Akeq(i)=F-G*k(l);
Bkeq(i,:)=Kf-G*[k(l+l) k(l+2)];
Ckeq(i)=-k(l);
Dkeq(i,:)=-[k(l+l) k(l+2)];

1=1+3;

end

Akcen=Akeq(3);
Bkcen=Bkeq(3,:);

B-19

Ckcen=Ckeq(3);
Dkcen=Dkeq(3,:);

% Input the dynamics at the 20 flight conditions

numSYS=20;

Along=[47.4,0;[-.2296 .

68.5,0;[-.2423 .9964;-2

100.1,0
158.4,0
189.9,0
255.0,0

301.1,0

355.0,0
426.4,0
496.0,0
557.0,0
603.0,0

614.4,0

652.0,0
705.0,0

789.1,0
825.2,0
890.8,0
956.0,0
998.7,0
inf,0];
C=[l 0;0 1];

D=[0;0];
Blong=[0;l];

-.4285 .9916;-
-.5088 .994;-!
-.8018 .9847;-
-.8930 .9852;-

-.9181 .9872;-
-.9920 .9888;-
-1.175 .9871;-

-1.4710 .9808;
-2.1163 .9872;
-1.562 .9862;-

905 .9895;-

675 .9853;-
-2.1163 .9872;

-1.994 .9828;-
-2.452 .9856;-

-2.328 .9831;-
-2.8375 .9855;
-2.911 .9835;-

9931;.02436 -.2046];

.342 -.1737]; %Am5h40

.7473 -.3123]

.131 ■
1.521
4.1582 -.6873]

6.2419 -.6920]
7.8450 -.7525]
8.458 -.8776]; %Am7hl4
-11.5022 -1.0846]; %Am6h2
-32.6459-1.1826]; %Am8hl4

%Am3h26

%Am4h22
.2804]; %Am6h30
-.5944]; %Am4h6

%Am5hl0

%Äm6hl5
%Am7hl8

*3

*6
*7

*8

-1
-1

14.94 -1.132]
33.88 -.9872]
16.16 -1.212]

%Am8hl2;

%Am95h20;

%Am8hlO;
-32.6459 -1.1826]; %Äm9hl4

19.44 -1.427]; %Am8h5;
38.61 -1.34]; %Am9hlO;

30.44 -1.493] %Am85h5;
-51.8325 -1.4037]; %Am95h9
46.47 -1.553]; %Am9h5;

*10
*11

*15

*19

w=logspace(-2,2,50) ;
int=[250 500 750 1000];

r=l;i=l;count=l;
for i = 1:4
while Along(r,1) < int(i)

[Ap,Bp,Cp,Dp]=feedback(Along(r+l:r+2,:),Blong,C,D,Akeq(i) , .

Bkeq(i,:),Ckeq(i),Dkeq(i,:) ,1);
[nump(count,:),denp(count,:)]=ss2tf(Ap,Bp,Cp(1,:),Dp(l,:));
[svcla]=sigma(Ap,Bp,Cp(l,:),Dp(1,:),w);
SVcla=[SVcla;svcla];
[svclp]=sigma(Ap,Bp,Cp(2,:),Dp(2,:),w);

B-20

SVclp=[SVclp;svclp];
r=r+3;

count=count+l;

end;

i=i+l;

end;

% Reduce the transfer function to essential parts

% (chop off added zeros)
nump=nump(:,3:4)
numpO=nump(13,:)

denp0=denp(13,:)

% Compute Relative Error (Po-P)Po'-l

for z=l:20
numtemp=conv(nump(z,:),denpO)-conv(numpO,denp(z,:));

dentemp=conv(denp(z,:),numpO);
[a,b,c,d]=tf2ss(numtemp,dentemp);

[sv]=sigma(a,b,c,d,w) ;

SV=[SV;sv];
j=j+max(sv);

end

return
%*** end of file ****

%*** file relend.m ****

function j=relend(k)

% This function will take the given minimal order Hinf

% controller Keq and calculate the relative error to the

% chosen central controller

numtemp=[];dentemp=[];numSYS=0;Ap=[];Bp=[];Cp=[];Dp=[];j=[0];

n=45;
F = -40; Kf = [1 1]; G = .0247;

1=4;
for i=l:4

Akeq(i)=F-G*k(l);

B-21

Bkeq(i, :)=Kf-G*[k(l+l) k(l+2)];

Ckeq(i)=-k(l);

Dkeqfi,:)=-[k(l+l) k(l+2)];

1=1+3;

end

% Following are the flight conditions used in the

% evaluation of relative error.

A=[47.4,0;
68.5,0;[-.
100.1,0

158.4,0
189.9,0

255.0,0
301.1,0
355.0,0
426.4,0

496.0,0
557.0,0
603.0,0
614.4,0
652.0,0

705.0,0
789.1,0
825.2,0
890.8,0
956.0,0

998.7,0
inf,0];

[-.2296 .9931
.2423 .9964;-2

-.4285 .9916;-

-.5088 .994;-l

-.8018 .9847;-
-.8930 .9852;-
-.9181 .9872;-

-.9920 .9888;-
-1.175 .9871;-

-1.4710 .9808;
-2.1163 .9872;
-1.562 .9862;-
-1.905 .9895;-
-1.675 .9853;-
-2.1163 .9872;
-1.994 .9828;-
-2.452 .9856;-
-2.328 .9831;-

-2.8375 .9855;
-2.911 .9835;-

,-.02436 -.204
.342 -.1737];

.7473 -.3123]

.131 -.2804] ;
1.521 -.5944]

4.1582 -.6873
6.2419 -.6920
7.8450 -.7525
8.458 -.8776]
-11.5022 -1.0

-32.6459 -1.1
14.94 -1.132]

33.88 -.9872]
16.16 -1.212]

-32.6459 -1.1
19.44 -1.427]

38.61 -1.34];
30.44 -1.493]
-51.8325 -1.4

46.47 -1.553]

6]; %Am3h26

%Am5h40
; %Am4h22

%Am6h30
; %Am4h6

]; %Am5hl0
]; %Am6hl5
]; %Am7hl8_5
; %Am7hl4

846]; %Am6h2
826]; %Am8hl4
%Am8hl2;
%Am95h20;
%Am8hlO;

826] ; %Mi9hl4
; %Am8h5;
%Am9hlO;
%Am85h5;
037]; %Am95h9

; %Am9h5;

C=[l 0;0 1];

D=[0;0];
Blong=[0;l];

% note i = interval number

int=[k(l:3) 1000];
s=length(int);

for 1=1:(s-1)
for i= 1:(s-1)

B-22

if int(i)>int(i+1)
temp = int(i);

int(i) = int(i+1);

int(i+l)=temp;

end

end

end

r=l;i=l;
while i <= 4
while A(r,1)< int(i)

numSYS=numSYS+l;
[Ap,Bp,Cp,Dp]=feedback(A(r+l:r+2,:),Blong,C,D, ...

Akeq(i),Bkeq(i,:),Ckeq(i),Dkeq(i,:),1);
[nump(numSYS,:),denp(numSYS,:)]=ss2tf(Ap,Bp,Cp(1,:),Dp(l,:));

r=r+3;
end;

i=i+l;

end;

w=logspace(-2,2,n);

numpO=nump(13,:);
denpO=denp(13,:);

for z=l:numSYS
numtemp=conv(nump(z,:),denpO)-conv(numpO, denp (z, :)) ;

dentemp=conv(denp(z,:),numpO);
numtemp=numtemp(:,3:7) ;
dentemp=dentemp(:, 3:7) ;

[a,b,c,d]=tf2ss(numtemp,dentemp);
[sv]=sigma(a,b,c,d,w) ;
j=j+max(sv);

end

return
%*** en(j of file ****

%*** fiie relnum.m ****

function j=relnum(k)

B-23

% This function will take the given minimal order Hinf
% controller Keq and calculate the relative error to

% the chosen central controller

numtemp=[];dentemp=[];numSYS=0; j=[0] ;

n=45;

F = -40; Kf = [1 1]; G = .0247;

% Calculate the controller for each interval

% Note i = interval number

1=10;
for i=l:k(l)
Akeq(i)=F-G*k(l);
Bkeq(i,:)=Kf-G*[k(l+l) k(l+2}];
Ckeq(i)=-k(l);
Dkeq(i,:)=-[k(l+l) k(l+2)];

1=1+3;

end

% Following are the flight conditions used in the evaluation

% of relative error.

A=[47.4,0;
68.5,0; [-.
100.1,0
158.4,0

189.9,0
255.0,0
301.1,0
355.0,0
426.4,0

496.0,0
557.0,0

603.0,0
614.4,0
652.0,0

705.0,0

789.1,0

825.2,0

890.8,0

[-.2296 .9931
.2423 .9964;-2
-.4285 .9916;-
-.5088 .994;-l
-.8018 .9847;-
-.8930 .9852;-
-.9181 .9872;-

-.9920 .9888;-
-1.175 .9871;-

-1.4710 .9808;
-2.1163 .9872;
-1.562 .9862;-

-1.905 .9895;-
-1.675 .9853;-

-2.1163 .9872;

-1.994 .9828;-

-2.452 .9856;-

-2.328 .9831;-

,-.02436 -.204
.342 -.1737];
.7473 -.3123]
.131 -.2804];

1.521 -.5944]
4.1582 -.6873

6.2419 -.6920
7.8450 -.7525
8.458 -.8776]

-11.5022 -1.0

-32.6459 -1.1
14.94 -1.132]

33.88 -.9872]
16.16 -1.212]

-32.6459 -1.1
19.44 -1.427]

38.61 -1.34];
30.44 -1.493]

6]; %Am3h26

%Am5h40
; %Am4h22

%Am6h30

; %Am4h6
]; %Am5hl0
]; %Am6hl5

]; %Am7hl8_5
; %Am7hl4

846]; %Am6h2

826]; %Am8hl4
%Am8hl2;

%Am95h20;
%Am8hlO;

826]; %Am9hl4

; %Am8h5;

%Am9hlO;
%Am85h5;

B-24

956.0,0;[-2.8375 . 9855;-51.8325 -1.4037]; %Am95h9

998.7,0;[-2.911 .9835;-46.47 -1.553] ; %Am9h5;

inf,0];

C=[l 0;0 1];

D=[0;0];
Blong=[0;l];

% Sort the interval break points from lowest to highest

int=[k(2:k(l)),1000];

s=length(int);

for 1=1:(s-1)
for i= 1:(s-1)
if int(i)>int(i+l)
temp = int (i) ;
int(i) = int(i+l);

int(i+1)=temp;
end

end
end

% Check the dynamic pressure of the flight condition and
% close the inner loop with the appropriate controller

% for the interval.
% Then convert from state space to transfer function form.

r=l;i=l;
while i <= k(l)
while A(r,l)< int(i)
numSYS=numSYS+l;
[Ap,Bp,Cp,Dp]=feedback(A(r+l:r+2,:),Blong,C,D, ..

Akeq(i),Bkeq(i,:),Ckeq(i),Dkeq(i, :) ,1) ;
[nump(numSYS,:),denp(numSYS,:)]=ss2tf(Ap,Bp,Cp(l,:),Dp(l,:));

r=r+3;
end;
i=i+l;

end;

% Select the central controller and calculate the relative error

w=logspace(-2,2,n);

B-25

numpO=nump(k (37), :);
denpO=denp(k(37),:);

for z=l:numSYS
numtemp=conv(nump(z,:),denpO)-conv(numpO,denp(z, :)

dentemp=conv(denp(z,:),numpO);

numtemp=numtemp(:, 3:7);

dentemp=dentemp(:, 3:7) ;
[a,b,c,d]=tf2ss(numtemp,dentemp);
[sv]=sigma(a,b,c,d,w);
j=j+max(sv);

end

D=D

return
%*** end of file ****

%*************************************** file relinter.m ****

function j=relinter(k)

% This function will take the given minimal order Hinf
% controller Keq and calculate the relative error to

% the chosen central controller

e=[];numSYS=0;j=[0];

n=45;
F = -40; Kf = [1 1]; G = .0247;

% Following are the flight conditions used in the

% evaluation of relative error.

A=[47.4,0;[-.2296 .9931;.02436 -.2046]; %Am3h26
68.5,0;[-.2423 .9964;-2.342 -.1737]; %Am5h40

100.1,0
158.4,0

189.9,0

255.0,0

301.1,0
355.0,0

426.4,0

[-.4285 .9916;-.7473 -.3123]; %Am4h22
[-.5088 .994;-l.131 -.2804]; %Am6h30

[-.8018 .9847;-!.521 -.5944]; %Am4h6

[-.8930 .9852;-4.1582 -.6873]

[-.9181 .9872;-6.2419 -.6920]

[-.9920 .9888;-7.8450 -.7525]

%Am5hl0

%Am6hl5
%Am7hl8 5

[-1.175 .9871;-8.458 -.8776]; %Am7hl4

B-26

496.0,0 [-1 4710 .9808 •-11.5022 -1.08463; %Am6h2
557.0,0 [-2 1163 .9872 •-32.6459 -1.1826]; %Am8hl4

603.0,0 [-1 562 9862;- -14.94 -1.132]; %Am8hl2;

614.4,0 [-1 905 9895;- -33.88 -.9872]; %Am95h20;

652.0,0 [-1 675 9853;- -16.16 -1.212]; %Am8hlO;

705.0,0 [-2 1163 .9872 •-32.6459 -1.1826]; %Am9hl4

789.1,0 [-1 994 9828;- -19.44 -1.427]; %Am8h5;

825.2,0 [-2 452 9856;- -38.61 -1.34]; %Am9hlO;

890.8,0 [-2 328 9831;- -30.44 -1.493] %Am85h5;

956.0,0 [-2 8375 .9855 •-51.8325 -1.4037]; %Am95h9
998.7,0 [-2 911 9835;- -46.47 -1.553]; %Am9h5;

inf,0];

C=[l 0;C l];
D=[0;0],
Blong=[();1],

% Sort the interval break points from lowest to highest

int=[45,k(2:k(l)),1000];

s=length(int);

for 1=1:(s-1)

for i= 1:(s-1)
if int(i)>int(i+1)
temp = int(i);
int(i) = int(i+1) ;
int(i+1)=temp;

end

end
end

% Check the dynamic pressure of the flight condition to

% determine which interval endpoints to use. Calculate

% the corresponding values of N and M.
% Form the controller Keq, close the inner loop and
% convert to transfer function form for the relative error

% calculation.

ni=10;mli=20;m2i=30;

r=l;i=l;
while i <= k(l)

B-27

while A(r,l)< int(i+l)
numSYS=numSYS+l;

N=k(ni) + (k(ni+1)-k(ni))*((A(r,1)-int(i))/(int(i+1)-int(i))) ;

Ml=k(mli)+(k(mli+1)-k(mli))*((A(r,1)-int(i))/(int(i+1)-int(i)));

M2=k(m2i) + (k(m2i+l)-k(m2i))*((A(r,1)-int(i))/(int(i+1)-int(i))) ;

Akeq=F-G*N;

Bkeq=Kf-G*[Ml M2];

Ckeq=-N;
Dkeq=-[M1 M2];
[Ap,Bp,Cp,Dp]=feedback(A(r+l:r+2,:),Blong,C,D, ...

Akeq,Bkeq,Ckeq,Dkeq,1);
[nump(numSYS,:),denp(numSYS,:)]=ss2tf(Ap,Bp,Cp(l,:) ,Dp(l, :)) ;

r=r+3;

end;
i=i+l;ni=ni+l;mli=mli+l;m2i=m2i+l;

end;

% Select the central controller and calculate the relative error

w=logspace(-2,2,n) ;

nump=nump(:, 3:4);

numpO=nump(k(40),:);
denp0=denp(k(40),:);

for z=l:numSYS
numtemp=conv(nump(z,:),denp0)-conv(numpO,denp(z,:));

dentemp=conv(denp(z,:),numpO);
[a,b,c,d]=tf2ss(numtemp,dentemp) ;

[sv]=sigma(a,b,c,d,w);

j=j+max(sv);

end

% Close the outer loop and calculate the step response

longout % a file containing the outer loop controller

for z=l:5
[nums(z, :),dens(z,:)]=series(numoutlow,denoutlow,...

nump(z,:),denp(z,:));
[numcl(z,:),dencl(z,:)]=cloop(nums(z,:),dens(z, :) ,-1);

end
for z=6:numSYS

B-28

[nums(z,:),dens(z,:)]=series(numouthigh,denouthigh, ...
nump(z, :) ,denp(z, :)) /

[numcl(z,:),dencl(z,:)]=cloop(nums(z,:),dens(z,:),-1);
end

t=0:.l:5;

for z=l:numSYS
[y,x]=step(numcl(z,:),dencl(z, :), t) ;
Y=[Y,y];X=[X,x];

end

% Calculate the error of the step response

for z=l:numSYS
e(:,z)=Y(:,z)-Y(:,k(40));

end
e=sum(abs(sum(e)));

j=j+e

return
%*** end of file ****

%** file longout.m ****

% Outer loop longitudinal controller

Kouthigh=1.1995e2;
zouthigh=[-2.418e3,-5.4039+7.25721,-5.4039-7.25721]';
pouthigh=[-7.1836el+4.0476eli,-7.1836el-4.0476eli,-7.2319e-2,-2.0509el]';

Koutlow=1.2951e2;
zoutlow=[-6.0168e2,-3.8407+6.25071,-3.8407-6.25071]' ;
poutlow=[-5.9135el+5.1963eli,-5.9135el-5.1963eli,-3.6321e-2,-6.6426]';

[numouthigh,denouthigh]=zp2tf(zouthigh,pouthigh,Kouthigh);

[numoutlow,denoutlow]=zp2tf(zoutlow,poutlow,Koutlow);
[Akoutlow,Bkoutlow,Ckoutlow,Dkoutlow]=zp2ss(zoutlow,poutlow,Koutlow);

[Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh]=zp2ss(zouthigh,pouthigh,Kouthigh);

%*** end of file ****

B-29

Bibliography

1. Proceedings of the 1992 IEEE Conference on Decision and Control, Dec 1992.

2. Proc. IEEE National Aerospace and Electronics Conference, May 1994.

3. Proceedings of the First IEEE Conference on Evolutionary Computation, June 1994.

4. Flight Dynamics Branch, Flight Control Division. An Introduction to Multivariable
Flight Control System Design. Technical Report WL-TR-92-3110. 1992.

5. Apkarian, Pierre and Pascal Gahinet. "A Convex Characterization of Gain Scheduled
Hoc Controllers." Submitted to IEEE Transactions on Automatic Control.

6. Apkarian, Pierre, et al. "Self Scheduled H^ Control of Linear Parameter-Varying
Systems: A Design Example." Submitted to Automatica.

7. Bauer. Genetic Algorithms and Investment Strategies. New York: John Wiley and Sons,
1994.

8. Blakelock, John. Automatic Control of Aircraft and Missiles, 2nd Ed.. John Wiley and
Sons, Inc., 1991.

9. Bramlette and Cusin. "A Comparative Evaluation of Search Methods Applied to Para-
metric Design," Proceedings of the Third International Conference on Genetic Algo-
rithms, 213-218 (1989).

10. Davis, L., editor. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold,
1991.

11. Dejong,K. A. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD
dissertation, University of Michigan, 1975.

12. Dejong, K. A. "Adaptive System Design: a Genetic Approach," IEEE Transactions on
Systems, Man, and Cybernetics, i0(9):566-574 (Sept 1980).

13. Department of Defense. Military Standard - Flying Qualities of Piloted Aircraft. Tech-
nical Report MIL-STD-1797A. 30 Jan 1990.

14. Doyle, J.C. "Structured Uncertainty in Control System Design," Proceedings of the 24th
IEEE Conference on Decision and Control (December 1985).

15. Doyle, J.C, et al. Feedback Control Theory. New York: Macmillian Publishing
Company, 1992.

16. Dymec, Andrew. Design and Implementation of Parallel Genetic Algorithms for Solving
Large Scale Optimization Problems. MS thesis, Air Force Institute of Technology,
Wright-Patterson AFB OH, March 1992.

17. Filho, Jose L. Ribeiro, et al. "Genetic Algorithms: A Survey," In Computer [49].

18. Gahinet, Pascal, et al. "Parameter-Dependent Lyapunov Functions for Real Parametric
Uncertainty." Submitted to IEEE Transactions on Automatic Control.

BIB-1

19. Gelb, Arthur, editor. Applied Optimal Estimation. Cambridge, Massachusettes: M.I.T.
Press, 1992.

20. Goldberg, David. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison Wesley, 1989.

21. Goldberg, David. "Messy Genetic Algorithms: Motivations, Analysis And First Re-
sults," Complex Systems, 3:493-530 (1989).

22. Goldberg, David. "Messy Genetic algorithms revisited: Studies in mixed size and scale,"
Complex Systems, 4:415-444 (1990).

23. Grefenstette, John. "Optimization of Control Parameters for Genetic Algorithms," IEEE
Transactions on Systems, Man, and Cybernetics, SMC-16(1):122-128 (Jan/Feb 1986).

24. Guo, Di and Wilson J. Rugh. "An Approach to Gain Scheduling on Fast Variables." In
Proceedings of the 1992 IEEE Conference on Decision and Control [1].

25. Holland, John. Adaptation in Natural and Artificial Systems. PhD dissertation, Univer-
sity of Michigan, 1975.

26. Kirkpatrick, S., et al. "Optimization by Simulated Annealing," Science, 220(4598):671-
681 (May 1983).

27. Krishnakumar, K. and D. Goldberg. "Control System Optimization Using Genetic
Algorithms," Journal of Guidance, Control, and Dynamics, 75(3):735-739 (May-June
1992).

28. Lawrence, Douglas. "On A Nonlinear Observer With Pseudo-Linearized Error Dynam-
ics." In Proceedings of the 1992 IEEE Conference on Decision and Control [1].

29. Lawrence, Douglas A. and Wilson J. Rugh. "On a Stability Theorem for Nonlinear Sys-
tems with Slowly-Varying Inputs," IEEE Trans, on Automatic Control, AC-35(7):860-
864 (1990).

30. Lawrence, Douglas A. and Wilson J. Rugh. "Gain Scheduling Dynamic Linear Con-
trollers for a Nonlinear Plant." Proceedings of the 32nd IEEE Conference on Decision
and Control. 1024-1029. 1993.

31. Mathworks. Matlab©User's Manual. Mathworks, 1993.

32. McGregor, D.R., et al. "Adaptive Control of a Dynamic System Using Genetic-Based
Methods," Proceedings of the 1992 IEEE Symposium on Intelligent Control

33. Merkle, Laurence D. Parallelization and Analysis of Standard and Messy Genetic
Algorithms. MS thesis, Air Force Institute of Technology, Wright-Patterson AFB OH,
December 1992.

34. Michalewicz, Zbigniew. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, 1992.

35. Michalewicz, Zbigniew, et al. "A Modified Genetic Algorithm of Optimal Control
Problems," Computers, Mathematics, and Applications, 23(12):83-94 (1992).

BIB-2

36. Ortega, R. "New techniques to improve perfomance of simple control loops," Low Cost
Automation 1992, Techniques, Components and Instruments, and Applications. Selected
papers from the 3rdIFAC Symposium, 1-6 (Sept 1992).

37. Packard, Andy. "Gain Scheduling via Linear Fractional Transformations," Systems and
Control Letters, 22:79-92 (Feb 1994).

38. Porter, B. and D.L. Hicks. "Genetic Robustification of Digital Model-Following Flight
Control Systems." In Proc. IEEE National Aerospace and Electronics Conference [2],

39. Porter, B. and D.L. Hicks. "Perfomance Measures in the Genetic design of Digital Model-
Following Flight Control Systems." In Proc. IEEE National Aerospace and Electronics
Conference [2].

40. Reorda, Matteo Sonza and M. Rebaudengo. "A Genetic Algorithm for Floor Plan
Area Optimization." In Proceedings of the First IEEE Conference on Evolutionary
Computation [3].

41. Rugh, Wilson. "Analytical Framework for Gain Scheduling," IEEE Control Systems,
79-84 (1991).

42. Safonov,M.G. and R. Y.Chiang. "Model Reduction for Robust Control: A Schur Relative
Error Method," International Journal of Adaptive Control and Signal Processing, 2:259-
272 (1988).

43. Shamma, Jeff. Analysis and Design of Gain Scheduled Control Systems. Ph.D. disserta-
tion, Massachusetts Institute of Technology, 1988.

44. Shamma, Jeff and Mike Athans. "Analysis of Gain Scheduled Control for Nonlinear
Plants," IEEE Trans, on Automatic Control, 5J(8):898-907 (August 1990).

45. Shamma, Jeff and Mike Athans. "Guaranteed Properties of Gain Scheduled Control for
Linear Parameter-varying Plants," Automatica, 27(3):559-564 (1991).

46. Shamma, Jeff and Mike Athans. "Gain Scheduling: Potential Hazards and Possible
Remedies," IEEE Control Systems Magazine, 72(3):101-107 (June 1992).

47. Shamma, Jeff and James Cloutier. "Gain Scheduled Missile Auto Pilot Design Using
Linear Parameter Varying Transformations," Journal of Guidance, Control, and Dynam-
ics, 76(2):256-263 (Mar-Apr 1993).

48. Srinivas, M. and L. M. Patnaik. "Adaptive Probabilities of Crossover and Mutation in
Genetic Algorithms," IEEE Transactions on Systems, Man, and Cybernetics, 24(4):656-
667 (Apr 1994).

49. Srinivas, M. and Lalit M. Patnaik. "Genetic Algorithms: A Survey," Computer, 27(6)
(June 1994).

50. Vanderplaats, Garret. Numerical Optimization Techniques for Engineering Design.
McGraw-Hill, Inc., 1984.

51. White, et al. "Missile autopilot design using gain scheduling techniques," Proceedings
of the 26th Southeastern Symposium on System Theory, 606-610 (Mar 1994).

BIB-3

52. Yeh, H.H., et al. "Robust Control Design with Real Parameter Uncertainties." Proc.
1992 American Control Conference. June 1992.

BIB-4

Vita

Robert C. Martin IV was born in Akron, OH. He recieved a B.S. in aeronautical

engineering from the University of Cincinnati in 1993. After recieving an officer commission

in the US Air Force, he attended the Air Force Institute of Technology where he will complete

a M.S degree in aeronuatical engineering in Dec. 1994.

Permanent address: 809A Patterson Rd
Dayton, Ohio 45419

VITA-1

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

- Public report™ burden tor -.His collection of information is estimated to average 1 hour Der response, including the time tor reviewing instructions searching existing data sources
•■ aa?herinq°nd maintaining the data needed, and completing and rev.ewina the collection of information. Send comments regarding tnis burden estimate or any othe aspect:o1 this
: c^o£?,™or^ormation incluainc sucgest ons for reducing this ourden. fo Washington Headauarters Services. Directorate tor Intormation Ocerations and Reports 1215 Jefferson

Davis wT"hwavS™e '204 Arling-on VA 22202-4302 and to the Office of Management and 3udget. Paperwork Reauction Pro) ;ct (0704-0188). vVasmngton. DC 20503.

1. AG?NCY USE ONLY (Leave blank) I 2. REPORT DATE
December 1994

3. REPORT TYPS AN-) DATES COVERED
Master's Thesis

a. TITLE AMD SUBTITLE
A GAIN SCHEDULING OPTIMIZATION METHOD USING GENETIC

FUNDING .MUMBESS

ALGORITHMS

6. AUTHOR(S)
Robert C. Martin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology, WPAFB OH 45433-6583

3. PERFORMING ORGANIZATION
REPORT ?JUMSES

AFIT/GAE/ENY/94D-3

5PQ?!SOR!?-!G/.MONITORING AGENCY NAME(S) AMD ADDRESS(£S) 10. SPONSORING /-MONITORING
AGENCY U9QXT NUMBER

VI. 5UP?LEiV!~NTA3Y -NOTES

-i-;-. -\:-Ti:i3i >~'p:M / V'/AiLA3!L!TY 5TATEMEM ä

Distribution Unlimited

A'2ST?.A.CT (Miyinunn 200 words)
Gain scheduling, the traditional method of providing adaptive control to a nonlinear system, has long been
an ad hoc design process. Until recently, little theoretical guidance directed this practioners' art. For this
reason, a systematic study of this design process and its potential for optimization has never been accomplished.
Additionally, the nonlinearities and the large search space involved in gain scheduling also precluded such an
optimization study. Traditionally, the gain scheduling process has been some variation of a linear interpolation
between discrete design points. By using powerful non-traditional optimization tools such as genetic algorithms
there are ways of improving this design process.
This thesis utilizes the power of genetic algorithms to optimally design a gain schedule. First, a design method-
ology is validated on a simple pole placement problem, then demonstrated for an F-18 Super-maneuverable
Fighter. From this experience, a general gain scheduling design process is developed and presented.

14. SUBJECT TERMS
Scheduling, Flight Control Systems, Algorithms

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
152

16. PRICE CODE

20. LIMITATION OF A8STRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

