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Abstract 

Gain scheduling, the traditional method of providing adaptive control to a nonlinear 

system, has long been an ad hoc design process. Until recently, little theoretical guidance 

directed this practioners' art. For this reason, a systematic study of this design process and its 

potential for optimization has never been accomplished. Additionally, the nonlinearities and 

the large search space involved in gain scheduling also precluded such an optimization study. 

Traditionally, the gain scheduling process has been some variation of a linear interpolation 

between discrete design points. By using powerful non-traditional optimization tools such as 

genetic algorithms there are ways of improving this design process. 

This thesis utilizes the power of genetic algorithms to optimally design a gain sched- 

ule. First, a design methodology is validated on a simple pole placement problem, then 

demonstrated for an F-18 Super-maneuverable Fighter. From this experience, a general gain 

scheduling design process is developed and presented. 
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A Gain Scheduling Optimization Method 

Using Genetic Algorithms 

/. Introduction 

1.1   Background 

Control design and optimization is based upon many assumptions that simplify a real 

world control problem to a mathematically manageable model. After designing a controller 

for a simplified model, it is implemented on the real world problem. Consequently, because 

of the simplifications in model reduction, there are difficulties in implementing the controller 

and commanding a desired response throughout the entire operating envelope of the system. 

One method of overcoming these difficulties is gain scheduling. Gain scheduling is a method 

of changing the controller depending upon the operating condition. There are four basic steps 

in designing a gain schedule [30]: 

1. Select a family of constant operating point plants, 

2. Design a controller for each plant in family, 

3. Design a method of scheduling the controllers such that performance is 
maintained at each design point, and 

4. Check non-local performance of the scheduled controller by simulation. 

Typically, gain scheduling is some form of linear interpolation between the controllers designed 

at discrete operating points. There are two major concerns in gain scheduling. The primary 

concern is that the scheduled controller maintains stability throughout the operating envelope 

[43 5 46, 45, 44]. The secondary concern is that acceptable performance is also maintained 

throughout the operating envelope. In designing a gain schedule, there are many design 

variables the control designer must choose [41]: 

• The variable to schedule the controller, 
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• The number of members in the family of plants, 

• The members in the family of constant operating point plants, 

• The method of scheduling the controller, 

• The number of discrete points within the scheduling variable range for linear 
interpolation, and 

• The distance between each chosen discrete point in the scheduling variable 
range. 

In numerically optimizing a gain schedule design, only the last two of these design variables 

are alterables. Unfortunately, traditional calculus-based optimization methods become numer- 

ically inaccurate and fail to find an optimal solution when trying to simultaneously optimize 

these variables. One method of overcoming this difficulty is to set one variable and optimize 

the other, however, this procedure is time consuming and inefficient when there are means of 

optimizing these variables simultaneously. Another significant difficulty is that the number 

of the design variables is a function of one of the variables. For instance, if three intervals of 

the scheduling variable are selected for optimization, then there are not as many variables to 

optimize as if eight intervals are selected. Additionally, the nonlinearities of the system and the 

high dimensionality of the problem makes this problem very difficult for traditional calculus- 

based deterministic search algorithms [27, 32, 35]. Since, genetic algorithms can overcome 

these difficulties they are used to simultaneously optimize these variables [27, 32, 35]. 

Genetic algorithms (GAs) have found global optima in problems with both nonlinearities 

and high dimensionality where calculus-based methods have fallen into local optimum, such as 

aircraft structural parameter design [9] and various control optimizations [27,32,35,38,39]. 

For these reasons, GAs are used as an optimization tool in this investigation. 

1.2   Purpose 

The purpose of this research effort is to: 

• Demonstrate that gain scheduled controllers can be optimized using GAs, 

• Illustrate the feasibility gain scheduling optimization process on a full en- 
velope aircraft flight control example, and 

• Present a general gain schedule design method. 

1-2 



1.3 Scope of Research 

The first basic step in gain scheduling, selection of operating points, is a procedure that 

relies on common sense and engineering judgement, consequentially, it is not reviewed in this 

research effort. Similarly, the second basic step, controller design, is independent of the gain 

scheduling design process, consequentially, it also is not considered in this research work [30]. 

Conversely, the third step, controller scheduling, can be optimized with respect to a specified 

objective. Therefore, this research effort is limited to optimizing this procedure. Finally, the 

fourth basic step, non-local performance validation, merely verified the global performance 

of the designed controller. Additionally, this research does not focus on improvements in the 

computation efficiency of the GA optimization algorithm or the objective function calculation. 

This effort is concerned with the optimization results and justifying the approach. 

1.4 Objectives 

The specific objectives of this research are: 

• Find a readily available, easy to use genetic algorithm platform that is 
compatible with a common computer-aided control design tool, 

• Formulate an appropriate method for gain schedule optimization while 
considering alternatives, 

• Validate the gain scheduling GA optimization process on a simple, repre- 
sentative control problem, 

• Demonstrate the GA optimization process on a full envelope flight control 
example, and 

• Compile the lessons learned into a concise design optimization procedure 
using GAs. 

1.5 Preview 

The next two chapters provide a brief summary of recent published work concerning gain 

scheduling and genetic algorithms. Chapter II summarizes developments in the theoretical 

aspects of gain scheduling. Chapter III presents some recent GA applications in the field 

of aircraft controls and briefly explains how GAs work. Additionally, some modifications 
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and improvements on the simple GA are discussed, and finally a brief GA software platform 

review is presented. Chapter IV presents a simple control problem to validate the use of GAs 

in gain schedule optimization. Chapter V presents information for an F-18 gain scheduled 

controller designed in [4] and the results of various optimizations of this gain schedule. 

Chapter VI presents a general gain scheduling optimization design process developed from 

the experience of this research effort, summarizes the results of this research work, and 

provides recommendations for future research. 
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//. Gain Scheduling 

This chapter presents a review of gain scheduling and how it has been achieved in 

the past. By understanding the methods involved in scheduling a controller throughout an 

operating envelope, it becomes clearer how this proven technique can be improved. Section 

2.1 provides an explanation of why gain scheduling is used. Next, section 2.2 describes 

the traditional methods of gain scheduling which are improved upon in this research effort. 

Concluding this chapter, section 2.3 explains how a gain schedule is "optimized" in this 

investigation. 

2.1   Rational for Gain Scheduling 

Many real world systems are nonlinear. Also, their dynamics may change as a function 

of the system's operating condition. There are two basic approaches to designing a controller 

for these systems. The preferred way is to design a controller that is robust enough to maintain 

stability and desired performance throughout the entire operating regime. There are several 

techniques for designing robust controllers including H^ and /«-synthesis [14,15]. This can 

be accomplished for some problems as demonstrated by Shamma and Cloutier in designing 

a missile autopilot [47]. Unfortunately, this is not always possible. The second approach is 

to change a linear controller as the plant dynamics change. Hence, the controller parameters 

(typically gains) are scheduled as a function of system's operating condition. Gain scheduling 

has proven to be a very successful method of implementing a global controller from a set of 

linearized controllers [45]. 

There are some significant advantages to gain scheduling as pointed out by Rugh [41]. 

The main advantage is that linear design techniques can be utilized. When designing linear 

controllers a control designer has a wealth of computational tools, performance measures, 

experience, and knowledge to draw from to guide the design process. Another advantage is 

that a gain scheduled controller has the potential to respond rapidly to changing operating 

conditions whereas more modern techniques require more real time computation. However, 
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there are some difficulties involved in the design process [41]. The major difficulty is the 

selection of the scheduling procedure, the process by which the scheduling variables are 

changed. Another difficulty is in the selection of the scheduling variable. Fortunately, a 

couple "rules of thumb" have emerged to help overcome this second difficulty. First, schedule 

on a variable that captures the nonlinearities of the system, and second, schedule on a variable 

that varies slowly. However recent work by Shamma has shown that these rules actually have 

a rigorous mathematical justification [43,46,45,44]. 

2.2   Gain Scheduling Process 

Following is a typical method for designing a gain schedule [44]. 

1. Select several operating points covering the range of the plant dynamics. 

2. Construct a linear time invariant (LTI) approximation to the plant and design 
a linear controller. 

3. Interpolate the controller parameters between the operating points in order 
to determine control parameters for operating points between the selected 
design operating points. 

To interpolate the controller parameters simple curve fitting techniques are used [41, 43]. 

However, there are no guarantees of stability or robustness without numerous simulations 

or theoretical analysis. An idealized gain schedule is defined as a gain schedule that has a 

controller designed at every operating point within the operating envelope [41]. Obviously, for 

any large number of operating points the idealized gain schedule is impractical. Nonetheless, 

approximations to this idealized gain schedule can be done where the resulting controller is 

selected by a table-look up method. 

Fortunately, several methods and theorems have been published to analyze the system 

for global stability [29,43,46,45,44]. Unfortunately, these methods are based on scheduling 

simple controllers such as proportional-integral-derivative PID controllers and full state feed 

back gain matrices. These methods do not directly address the complexities of modern 

controller designs such as H2, H^, and \i synthesis. 
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Recent works have been focusing on scheduling these modern controllers [6,5,18,37]. 

These works use a method of linear fractional transforms (LFTs) to approach to problem of 

gain scheduling. The scheduling variable is included as an exogenous signal to be tracked or as 

a disturbance to be rejected. A bounded controller space is solved via linear matrix inequality 

(LMI) equations. Using this method, a controller for a linear parameter varying (LPV) plant 

is linear parameter varying itself. The resulting controller is thereby self scheduled. 

2.3   Gain Scheduling Design 

The traditional approach to gain scheduling is selected because of its wide use and 

acceptance. The goal of the design is to directly optimize the controller with respect to an 

objective function over the operating range of the system. This is different than optimizing a 

controller at a specific operating point and then finding a linear fit of the controllers over the 

operating range. Ideally the control designer would like to design a controller that responds 

exactly the same regardless of the operating condition. A gain scheduled controller of this 

type would be an optimal gain scheduled controller defined as follows: 

Definition 1 (Optimal Gain Scheduled Controller) An optimal gain scheduled controller 

provides a uniform response throughout the operating envelope. 

The optimality of a gain schedule can be measured by comparing a desired closed loop response 

to an actual response at a specific operating point. The desired response can be defined in 

either the time or frequency domain. The objective of the design optimization is to minimize 

the deviation between the actual response and the desired response at various points in the 

operating envelope. In other words, the gain scheduling error is minimized. Following are 

definitions to clarify the difference between tracking error and the gain scheduled error that is 

minimized in this investigation. 

Definition 2 (Controller Tracking Error) The difference between the commanded input and 

the closed loop output response at one specific operating point. 
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Definition 3 (Gain Scheduling Error) The difference between the closed loop response of 

the central controller and a non central controller. 

Definition 4 (Central Controller) The controller selected at a specific operating point as 

having the desired response. The closed loop response of this controller is used in calculating 

the gain scheduling error. 

Therefore, the specific goal of the gain schedule design optimization is to minimize the 

gain scheduling error in the closed loop response throughout the operating envelope. The 

central controller can be a set of desired eigenvalues, a set of dominant closed loop poles, or 

a controller designed at a specific operating point [4]. The example optimization discussed 

in chapter IV selects a set of dominant closed loop poles to be the central controller, and in 

chapter V the central controller is a controller defined at a specific operating point. Each 

optimization performed demonstrates how the gain scheduling error can be minimized. 

To clarify the difference the scheduling variable and the scheduled variable, they are 

defined as follows: 

Definition 5 (Scheduling Variable) The variable(s) that is representative of the changes in 

the plant dynamics and is a measurable signal. 

Definition 6 (Scheduled Variable) The variable(s) that are changed as a function of the 

scheduling variable, thereby changing the controller as a function of the operating point. 

2.4   Optimization Approach 

The first step is to discretize the scheduling variable range by breaking it into N 

intervals. At first the number of intervals are constrained to a arbitrary number. Additionally, 

the size of the intervals are also constrained, for simplicity all constrained interval sizes will 

be equal. Next, through some preliminary analysis the scheduled variables are bounded 

by their minimum and maximum values over the scheduling variable range. After defining 

an appropriate objective function, the gain scheduling error is minimized by scheduling the 
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controller parameters as piecewise constant or piecewise linear functions of the scheduling 

variable. For each interval, the scheduled variables are allowed to vary independently between 

their minimum and maximum bounds. Further optimization unconstrain the size of the 

intervals and the number of intervals used to discretize the scheduling variable. 
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///. Genetic Algorithms 

Genetic Algorithms (GAs) are an optimization method based on Darwin's theory of 

"Survival of the Fittest.". GAs were first developed by Holland in 1975 [25]. Since then 

they have been extensively expanded by DeJong [11,12], Goldberg [20,21,22], Grefenstette 

[23] and many others. GAs differ from classical methods of optimization in many ways. The 

next section describes these differences. The following two sections briefly explain how and 

why GAs work. Some improvements on these simple GAs are presented in section 3.4. A 

review of GA software is presented in section 3.5. Section 3.6 concludes this chapter with an 

explanation of the implementation of the GA. 

3.1    Classical Optimization 

Classical methods of optimization fall into three categories: calculus-based, enumera- 

tive, and random. Consider a general optimization problem statement [50]: 

Minimize: F(X) the objective function 

Subject to: 

<7j(X) < 0    j = l,ra inequality constraints 

hk(X) = 0     k = 1,1 equality constraints 

X|- < X; < X"     i = l,n side constraints 

x2 

where   X = < 

X„ 

> the design variables 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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Calculus based methods optimize this given problem by satisfying three Kuhn-Tucker condi- 

tions [50]. The Kuhn-Tucker conditions are (X* is the optimal design vector): 

1. X* is feasible 

2.Aiflfi(X*) = 0        i = l,m Ai>0 

3. VF(X*)+^AiV^(X*) + X>fc+raV/^(X*) = 0 
3 = 1 k=l 

Xj > 0 Afc+m unrestricted 

" SF{X)/6Xi 

SF(X)/6X2 

6F(X)/SX3 

8F(X)/6Xn 

(3.5) 

(3.6) 

(3.7) 

where       VF(X) = (3.8) 

Both the power and the drawback of calculus-based methods becomes apparent in the third 

Kuhn-Tucker condition, Eq (3.7). The gradient of both the objective function and the con- 

straints must be evaluated to determine the direction the search will proceed. For a function 

where these gradients do not have analytical solutions, they must be evaluated by a finite- 

difference method [50]. Additionally, for the calculus-based algorithm to determine whether 

the optimum that it has found is a maximum or minimum, it must evaluate the Hessian matrix 

of second derivatives (Eq (3.9)). 

H = 

S2F(X) 
sx'l 

S2F(X) 
5Xl 6X2 

S2F(X) 
8X\ SXn 

S2F(X) 
SX2SX1 

S2F(X)      . 
sn 

S2F(X) 
5X2 SXn 

62F(X) 
SXnSXi 

S2F(X) 
SXnSX2 

S2F(X) 
sxi 

(3.9) 

Even though calculus-based methods can be very efficient, they "break down" when the 

objective function or its gradient is not continuous or "well behaved". Moreover, the solution 

is dependent upon the initial conditions given to the algorithm.   For a given function, a 
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calculus-based algorithm is guaranteed to find the nearest local extremum if it is exists. The 

solution is a local minimum if the Hessian matrix is positive definite at the solution point [50]. 

Unfortunately, the solution found may still not be the global minimum. 

Enumerative techniques were developed to guarantee that the global minimum was 

found by exhaustively searching all points in the design space. Unfortunately, as the number 

of design variables increases the number of possible solutions increases exponentially. This 

is the "curse of dimensionality." Obviously for problems with a large number of design 

variables, the enumerative technique is inefficient. 

Random methods were designed to increase the efficiency of the enumerative methods 

by randomly evaluating points in the search space. Since only random points in the solution 

space are evaluated there is no guarantee of finding the global optimum, therefore the algorithm 

continues until a large percentage of the search space has been evaluated. Again, as the number 

of design variables increases the number of possible solutions increases at a greater rate. Since 

random methods lack efficiency, they are not expected to obtain good results [27]. GAs provide 

an approach that overcomes these difficulties. 

GAs differ from traditional optimization techniques in four basic ways: 1) they code 

the parameter set instead of the parameters themselves, 2) they search a population of points 

instead of a single point in the solution space, 3) they do not require an initial guess of the 

solution, and 4) they use probabilistic transition rules instead of deterministic transition rules. 

GAs are a zero order optimization method that does not depend on the behavior of the objective 

function. Consequently, they have provided robust optimization over a wide range of problems 

[3,27,32]. Some problems that have been optimized using GAs are shipping scheduling [34], 

dynamic control [32], control optimization [35, 27], floor plan area optimization [40], and 

investment market timing strategies [7]. Traditional and genetic optimization techniques were 

compared for efficiency and accuracy in an aircraft parameter design optimization [9]. In 

the study the authors performed an extensive comparison of calculus, enumerative, random, 

genetic, and simulated annealing algorithms. GAs and Simulated Annealing[26] were the 

only two methods to find the global optimum out of the fifteen algorithms tried. 
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Additionally advantages of GAs are: 1) they do not require the derivative of the function 

to exist, 2) they can handle objective functions with penalty functions without difficulty, unlike 

a calculus-based method that must transform the objective function into a more manageable 

form [27], 3) as the dimension of the problem grows the computation time for the GA grows 

in a linear fashion, whereas calculus-based methods grow at least quadratically [34, 35], 4) 

they are not dependent on the shape of the solution space for finding an optimum, and 5) the 

optimum found by the GA is more likely to be the global optimum value for the objective 

function since the solution is not dependent upon the initial condition given to the algorithm. 

However, there are a couple of disadvantages to GAs. First, GAs are a naturally parallel 

algorithm that are typically run on a serial machine [32]. This observation was also made by 

Goldberg [20]: 

"In a world where serial algorithms are usually made parallel through countless 
tricks and contortions, it is no small irony that genetic algorithms are made serial 
through equally unnatural tricks and turns." 

The inefficiency of serial computation significantly increases the computation time of the 

GA. Additionally, parallel GAs require fewer function evaluations than the best alternative 

algorithms [32]. Another disadvantage of GAs is that they are robust methods for searching 

the solution space to find the area in which the global optimum occurs, but they are inefficient 

at obtaining a solution where high precision is desired. The following paragraph reviews some 

literature that compares GAs and traditional calculus-based algorithms. 

A GA was compared to Powell's conjugate search direction for two control system 

optimization problems [27]. The first problem was a linear quadratic regulator problem for 

a lateral autopilot which was solved via the algebraic Riccati equation [19] for the exact 

answer. Both the GA and Powell's method found the exact solution. A significant difference 

was that Powell's method required an order of magnitude more function evaluations. A 

second comparison was performed on a wind shear problem where the objective was to find 

a controller that minimized the deviation in the velocity and flight path of an aircraft due to a 

wind burst. The GA was able to find the exact solution, but Powell's method was dependent 
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upon the initial conditions and unable to find the global optimum. Similar experiments were 

performed by Michalewicz [34], who drew the following conclusions on the effectiveness of 

GAs applied to optimal control: 1) the objective function need not be continuous over the 

search space for GAs to find an optimum; 2) GAs give intermediate information while the 

problem is being solved so that when a desired degree of accuracy is reached computation 

can be halted, whereas other packaged optimization methods do not return a result until the 

optimization is complete; and 3) GAs grow linearly with the size of the problem. GAs are not 

the best optimization method for all problems, but for problems with high dimensionality and 

nonlinearities, GAs do have an advantage. 

3.2   GAs: The Inner Workings 

GAs explore and exploit various solutions by manipulating building blocks called 

schemata. GAs explore different possible solutions, and exploit the best solutions through 

the implementation of three genetic operators-mutation, crossover, and reproduction. GAs 

evolve a population of solutions from generation to generation through these genetic operators 

to an optimal solution. 

GAs can either minimize or maximize a given objective function. Any minimization 

problem can be transformed into an equivalent maximization problem through the mapping 

depicted in Eq (3.10). 

Qmax =      Jmin \J.1V) 

Therefore, for simplicity all problems in this chapter will be considered maximization prob- 

lems. 

GAs encode the parameter range of the design variable and map it to a binary string 

of a specified length. For example, a binary string of length seven has a minimum value, 

0000000, which is mapped to the minimum value of the design variable, xmin. The maximum 

value of the string, 1111111, is mapped to the maximum value of the design variable, xmax. 

Between these two extremes there is a linear mapping of the string values to the parameter 
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values. For a function of more than one variable, the strings representing each variable are 

concatenated together to form one chromosome. For example, a function with two design 

variables, with each having a string length of seven would form a chromosome of length 

fourteen, 00000001111111. 

The following two sections will explain how the GA explores and exploits solutions 

through genetic operators. 

3.2.1 Exploration. The main operator responsible for exploration of the search 

space is mutation. The mutation operator is controlled by a user specified probability, pm • This 

probability is the chance that each bit in the chromosome string is mutated to its complement 

value of 0 or 1. For each bit in the population, a random number between zero and one is 

generated. If the random number is less than pm, that bit is mutated. For example, suppose that 

a chromosome has the form shown in Fig. 3.1(a). If the fourth bit is chosen for mutation, the 

chromosome is changed to the new chromosome shown in Fig. 3.1(b). This new chromosome 

represents a new possible solution. 

1011010110 

(a) 
1010010110 

(b) 

Figure 3.1    Mutation 

The frequency of mutation for a specified probability, pm, is dependent on the string 

length, m, of the chromosome. Eq (3.11) describes the expected number of mutations per 

generation. 

E[# of mutations] = n x m x pm (3.11) 

where n = the population size, m = the string length, and pm = the user specified 
mutation probability. 

For a string length m = 100 and pm = 0.01, the expected number of mutations per string is 

1. For a string length m — 50, then expected number of mutations is only 1 per every two 
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01110110110 
10101101100 
(a) Parents 

01110101100 
10101110110 
(b) Offspring 

Figure 3.2   Crossover 

strings in the population. Consequently, for a population size of n = 20, a string length of 

m = 50, and pm = 0.01, the expected number of mutations per generation is 10. Typically, 

values of pm range from 0.01 to 0.001 [23]. For values of pm > 0.05, the GA approaches a 

random search method. 

3.2.2   Exploitation. Two genetic operators are responsible for exploitation of 

good solutions, crossover and reproduction. The following two sections will describe these 

operators in more detail. 

3.2.2.1 Crossover. The crossover operator acts on two solution strings si- 

multaneously by swapping information included in each string. The probability that crossover 

occurs, Pc, is set by the user. Once two strings are chosen for crossover, a position between 

the bits is randomly chosen with a uniform distribution. Suppose that the two strings shown 

in Fig. 3.2(a) are chosen for crossover, and that the position between the fifth and sixth bit 

is randomly selected as the crossover point. At the crossover point the strings are cut. The 

partial strings are swapped, thereby forming the two new strings shown in Fig. 3.2(b). 

Crossover, unlike mutation, is independent of the string length, but is still a function of 

the population size. Eq (3.12) describes the expected number of crossovers per generation. 

E[# of strings selected for crossover] = n x pc (3.12) 

For a population size of n = 50, and pc = 0.6, the expected number of strings selected for 

crossover would be 30. Typically, values for pc range from 0.6 to 0.9 [23]. 
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Table 3.1 Reproduction Example 
string fitness value f 1 ftot 
01101001 
10010010 
01011011 
10110110 

28.6 
16.4 
23.7 

9.8 

0.36 
0.21 
0.30 
0.13 

78.5 1.00 

3.2.2.2 Reproduction. The reproduction operator acts on the population only 

after both the mutation and crossover operators have been implemented. The reproduction 

operator reproduces each solution with a probability proportional to the fitness value of each 

string. The strings with above average fitness values are reproduced at higher rates than strings 

with below average fitness values. Consequently, poor solutions die out of the population. By 

not eliminating the worst solutions immediately, the population remains diverse and therefore 

does not converge prematurely to a local optimum. 

Consider a population of size n = 4 shown in Table 3.1. Each string is evaluated 

using an objective function to find the respective fitness of each string. The total sum of all 

the fitness values is 78.5. Each string has a chance of being selected for the next generation 

proportional to its fitness value, /, divided by the total fitness value of the population, ftot. 

Therefore, the probability that a string is selected for the next generation is: 

P(selection for next generation) = J_ 
ftot 

(3.13) 

The sum of these probabilities totals 100 per cent. Reproduction takes place by giving each 

string a space on a roulette wheel proportional to its relative fitness, f I ftot (See Fig. 3.3). 

The roulette wheel is spun four times to select the individuals for the next generation. 

This concludes the basics of a GA. The next section will explain how these genetic 

operators work together to find an optimal solution to a given objective function. 
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Figure 3.3   Reproduction Roulette Wheel 

33   Schemata 

Schemata1 are a representation of a set of binary strings used in the theoretical structure 

of GAs. To understand schemata, a "don't care" symbol' *' is introduced. A schema of length 

eight, So = {**101011}, would represent any string of the same length that had Is and Os in 

the same positions as the schema itself. A schema with r "don't care" symbols has 2r strings 

matching that schema. Every schema matches 2r strings, where r is the number of "don't 

care" symbols in the schema. Thus, the following strings would match schema S0. 

(00101011), (01101011), (10101011), (11101011) 

Conversely, each string of length m is matched by 2m schemata. For example, the string 

(10110) is matched by the following 25 schema: 

(10110) 

(*0110) 

(1*110) 

(**110) 

(10*10) 

1Note: Schemata is the plural of schema. 
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There are two main characteristics used to define schema, order and defining length. 

Order, denoted by o(S), is the number of Is and Os specified in the schema. It defines the 

specialty of the schema. A high order schema is more specific than a low order schema. A 

schema of high order is more likely to be disrupted by mutation than a low order schema. The 

order of two schemata are shown in Fig. 3.4. 

The defining length, denoted by 8(S), of a schema is the distance between the first 

and last fixed positions. The defining length quantifies the compactness of a schema. The 

minimum defining length is zero for a single specified position, and the maximum defining 

length for a string of length ra is (ra -1). Defining length is a determining factor in a schema 

surviving crossover, with compact schemata more likely to survive. The defining length of 

two schemata are also shown in Fig. 3.4. 

S0={***11***}       o(50) = 2       8(S0) = 5-4 = 1 
S1=={*10**1*1}       o(5i)=4       £(S1) = 8-2 = 6 

Figure 3.4   Order and Defining Length 

3.3.1 Survival of the Fittest. For a population of strings with length m, there are 

a total of 3m possible schema. With a population of size n, there will only be 2m to n x 2m 

schemata represented, with some more fit than others. The fitness of a schema is determined 

by the average fitness of the strings matching schema S. Let N(S,t) represent the number of 

strings in generation t that match schema S. Then the following equation calculates the fitness 

of a schema S in generation t. 

N(S,t) , 

From this relation the expected number of strings in the next generation, t + 1, can be 

determined for a population with given average fitness (favg = ftot/n). 

E[N(S,t + l)} = N(S,t)eVal{S^ (3.15) 
Javg 
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A schema with an above average fitness will receive an increasing number of strings in the 

subsequent generations as shown in Eq (3.15). This increase is exponential for a schema with 

a consistently above average fitness [25,34]. 

However, the genetic operators, crossover and mutation, can destroy a schema and 

therefore reduce this growth rate of the schema. Consequently the probability of crossover 

destroying a schema is: 

-  - xpc (3.16) 
ra — 1 

Therefore the probability of survival is: 

Ps = l- ^\ x Pc (3.17) 
m — 1 

However, there is a chance that even if crossover occurs within the defining length of a schema, 

the schema will survive. For an example of this see Fig. 3.5. Therefore, the probability of 

survival is slightly larger: 

Ps>l- -^r x Pc (3.18) 
m — 1 

,S0={***11***) 
011111011 
110111100 
(a) Parents 
011111100 
110111011 

(b) Offspring 

Figure 3.5   Schema Surviving Crossover 

The probability that a schema survives mutation depends on its specialty: 

Ps = (l-j,mf)«l-Pmx0(5)     forpm<l (3.19) 

3-11 



Combining the effects of crossover and mutation, Eq (3.15) becomes: 

E[N{S,t + l)]>N{S,t) 
eva l(S,t) 

/< avg 

1             8^ (Q\ 1 ~ Pc 7 - PmO(S) 
m — 1 

(3.20) 

To demonstrate how this growth works consider the following schema: 

m = 21 

6(S) = 5-3 = 2 

o(S) = 3 

N(S,t) = 4 

eval(S,t) = 20 

Javg — J-^ 

Pc = 0.6 

Pm = 0.001 

E[N(S,t + 1)] > 4.0 x 1.667 x 0.938 w 6 

For a below average schema the number of strings in subsequent generations would 

decrease in a similar manner. The following theorem describes the concept given quantitatively 

in Eq (3.20). This theorem is known as the fundamental theorem of GAs [34]. 

Theorem 1 (Schema Theorem) Short, low-order, above average schemata receive exponen- 

tially increasing trials in subsequent generations of a genetic algorithm. 

3.4   Improvements on the Simple GA 

Several modifications have been proposed to improve the performance of the simple 

GA (sGA). One of the simplest ways of improving the precision of the GA is to use a floating 

point representation of the design variables instead of mapping them to binary strings. Two 

different research efforts have found that the use of floating point genes has increased the 

speed, precision and the accuracy of the GA [10,34]. 
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There are two main qualities of the GA that have proven it to be a robust optimization 

method for a wide range of practical problems: its power to explore new solutions, and the 

ability to exploit the best solutions it has found. The user has control over these parameters by 

selecting the crossover probability, pc, and the mutation probability, pm. For improved results 

the user might want to vary these parameters over the computation time of the algorithm. The 

following two sections discuss some of the ways that crossover and mutation operators may 

be varied or adaptively changed. The third section 3.4.3 discusses the advantages of using a 

messy GA (mGA) instead of a sGA. 

3.4.1 Crossover Operator. One simple way of changing the crossover operator is 

to vary the number of points at which crossover can occur. By allowing multi-point crossover 

to occur, some schemata with long defining lengths can be preserved which would otherwise 

be destroyed with single point crossover. For example, two point crossover would randomly 

select two points along the length of the chromosome for crossover (See Fig. 3.6). Then the 

portion of the string between the two crossover points are swapped between the two parents 

to produce two new offspring. 

011101101101110111 
101011011001011010 

(a) Parents 
011101011001110111 
101011101101011010 

(b) Offspring 

Figure 3.6   Two Point Crossover 

Further generalization of this concept can lead to the idea of uniform crossover. Uniform 

crossover decides with probability, pc, which bit positions of the first parent will be exchanged 

with the second parent. This is similar to the mutation operator in the sense that each bit has a 

chance to be crossed with another bit from the second parent. For an example of this type of 

crossover, see Fig. 3.7 (pm = 0.5). 
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1001100110 
0110101011 
(a) Parents 

1100100110 
0011101011 

(b) Offspring 

Figure 3.7   Uniform Crossover 

Another innovative way of changing the crossover operator is to change the probability 

that crossover occurs as a function of the average and best fitness of the population [48]. This 

operator is shown in Eq (3.21). 

Pc = Klyjmax       / )l\jmax       Javg)   lOr/   ^ Javg 

Pc = h for/' < favg (3.21) 

where /' is the largest fitness value of the two parents selected for crossover, 
fmax is the largest fitness value of the population, and favg is the average fitness 
value of the population. 

The parameters h and k2 are scaling parameters that can be chosen arbitrarily. The authors 

of [48] chose h = 1.0 and k2 = 1.0. With this crossover operator each individual in the 

population has a different crossover probability depending on its fitness value. Individuals with 

above average fitness values have a higher crossover probability than those with below average 

fitness. The probability of crossover is 0.0 for individuals with fitness values equal to fmax. 

Davis [10] presented another method of adaptive crossover where the crossover probability is 

dependent upon the fitness of the offspring produced. The greater the offspring's fitness, the 

greater the probability that crossover will occur at that bit location. 

3.4.2 Mutation Operator. The choice of pm is critical in the performance of the GA 

[ 11 ]. Two ways of adaptively changing the mutation operator are presented. Both have shown 

to provide increased performance in the GA in a sampling of test problems [34,48]. The first 

method changes pm as a function of the current generation number and the total number of 
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generations. This mutation operator was designed as a floating point mutation operator, but 

it can be transformed into a binary operator with an appropriate mapping [34]. This mutation 

operator is shown in Eq (3.22). 

A(i,y) = y(l-r<1-*/T>6) (3.22) 

where T is the maximum number of generations, t is the current generation 
number, r is a random number G [0,1], b is a system parameter determining the 
degree of dependence on iteration number (a value of 5 is used for experimental 
results), and y is the value of the gene being mutated. 

The effect of this operator is that when the GA begins, there is a high probability of mutation. 

This maintains the diversity of the population searching for new solutions. As the GA nears 

completion, t —> T, mutation is decreased allowing crossover to become dominant and 

converge to an optimal solution. 

Another published adaptive mutation operator changes the mutation probability depend- 

ing on an individual's fitness value instead of the generation number [48]. Eq (3.23) defines 

the proposed mutation operator. 

Pm — ">3\jmax       J )/ \Jmax       Javgj   *OX J ^ Javg 

Pm = U for / < favg (3.23) 

where / is the fitness of the individual, fmax is the maximum fitness in the 
population, and favg is the average fitness of the population. 

The values of k3 and k4 can be chosen by the user; the authors of [48] chose values of 0.5 for 

both. Individuals with above average fitness have lower mutation probabilities than individuals 

with below average fitness. The mutation probability is 0.0 for individuals with fitness equal 

to fmax- Individuals with below average fitness are totally disrupted. The combined effect of 

this mutation operator and the adaptive crossover in Eq (3.21) is to preserve individuals with 

the best fitness and to completely disrupt individuals with the worst fitness. 
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3.4.3 Messy Genetic Algorithms. Messy GAs (mGAs) were originally developed 

by Goldberg [21, 22] to overcome the problem of the sGA converging to local optima. As 

mentioned in section 3.3, for a string length, m, there are 3m different possible schemata. 

Unfortunately, for a population of size n, only 2m to n2m schemata are represented. This 

problem is overcome by mGAs. The algorithm is divided into two phases. The first phase is 

known as a tournament and the second phase is similar to traditional GAs. The tournament 

generates a large number of schemata of various sizes and then reduces this population of 

schemata down to a manageable size for the second phase. The second phase takes the reduced 

population and uses genetic operators splice, cut, and mutation to achieve an optimal solution. 

The operators splice and cut replace the crossover operator. See [21, 34] for a description 

of the splice and cut operators. Goldberg states that the mGA was able to find the optimal 

solution to a difficult problem, where the sGA only found the optimal solution 25 per cent of 

the time [21]. Developments and improvements of the mGA have been accomplished here at 

AFIT [33,16]. 

3.5   Software Review 

This section provides a survey of available software that was considered for this thesis. 

For a complete review of existing software available, the reader is referred to [17]. The GA 

software available can be divided into three main categories: application specific, algorithm 

specific, and general purpose toolkits. There are no application specific software available for 

this research topic. The next two sections will discuss software that was investigated in the 

two remaining categories. 

3.5.1 Algorithm Specific. For algorithm specific software a source code is provided 

and the user is able to make alterations to the code. Typically the code is in a higher level 

language like 'C' and the user interfaces are rudimentary. The following is a list of the software 

that was reviewed: 
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GENESIS (GENEtic Search Implementations System) was written by John Grefenstette and 

has been under development since 1981. The source code is in 'C and allows for a high 

degree of modifiability with large amount of statistical information. It was primarily 

developed for work in a scientific environment. 

GAUCSD (Genetic Algorithm University of California San Diego) was written by Nicol 

Schraudolph. It is based on GENESIS version 4.5, but it provides a higher level 

of abstraction for defining the evaluation function. It allows direct use of most 'C 

functions and it has parallel capabilities. 

3.5.2 General Purpose Toolkits. These software systems provide toolkits of ac- 

cessories that can be used interchangeably. The toolkits include different graphics interface 

and a library of genetic operators. The software is designed to have a user friendly inter- 

face. The library of genetic operators enables the user to experiment with different operator 

combinations. Following is a list of the software reviewed. 

SPLICER was developed by Software Technology Branch of Information Systems Direc- 

torate at NASA/Fohnson Space center with support from MITRE Corporation. It has a 

modular architecture that works using Xwindows. It was programmed in 'C and has 

graphics output capabilities. 

GAME (Genetic Algorithm Manipulation Environment) is an algorithm used by a large 

majority of the European community. It is designed for parallel capabilities in the 

'C++' programming language. 

3.6   Implementation 

3.6.1 Software Selection. GENESIS was selected as the software package to use 

for this thesis for a couple of reasons. First, it is a readily available public domain software. 

Second, work has been accomplished here at the Air Force Institute of Technology (AFIT) 

that has modified the basic GENESIS code into a mGA [33, 16]. With these improvements 

any work accomplished in this thesis could easily be implemented with the modified codes to 
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improve the computation time. The goal of the implementation is to make it simple to take a 

controller design and optimize it with as little additional work as possible. For this reason the 

evaluation of the objective function will be accomplished in the Matlab© environment. This 

is convenient since Matlab© has a large amount of controller evaluation routines already 

programmed. GENESIS is coded in 'C. To link the two together, Matlab® is used as a 

computational engine. The GA sends a vector of the design variables to Matlab® and a user 

written m-file calculates the objective function and passes the scalar value back to GENESIS. 

A number of the GENESIS files were modified to facilitate this passing of variables 

between programs. The modifications required to run Matlab® as a computational engine 

are documented in the Matlab© user's manual [31]. Both the evaluation files, the 'C code 

and the m-file, are listed in Appendix B. 
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IV. Sample Control Example 

This chapter presents a simple control problem for which a gain schedule is designed 

and optimized using GAs. The results of this design clearly demonstrate that the gain schedule 

design process can be optimized. Further, for comparison, the gain schedule is optimized with 

calculus based algorithms and GAs. Since, this is a simple optimization problem, the calculus 

based methods do show good results, but they are useless on the full optimization problem 

shown in section 4.4. The problem is defined in section 4.1 and the optimization results are 

presented in sections 4.2,4.3,4.4, and 4.5. 

4.1   Problem Statement and Analysis 

The sample problem considered is a SISO third-order linear parameter varying plant 

with proportional feedback shown in Fig. 4.1. The scheduling variable c e (0,10) determines 

the plant dynamics. The range of c is divided into several intervals Ii,i = l...n, and a gain, 

h, is selected for each. The controller gain is simply the gain corresponding to the interval 

the current value of c is in. The objective is to find the set of gains that minimize the average 

deviation of the actual dominant closed loop poles from desired dominant pole locations over 

the entire range of c. For efficiency, the objective function was approximated by evaluating 

the deviation at 500 equally spaced values of c and adding them together. The desired pole 

locations are —2 ± 2j. Therefore, the objective function is: 

500 

J1=Y^ {max [Re(A,-)] + 2}2 + {max [Im(A,-)] - 2}2 (4.1) 

where A; are the closed loop poles of the system at a given value of c. 

There are four increasingly difficult variations on this basic problem. First, the number of 

intervals and their sizes are chosen and the gains for each interval are found. Results of this 

optimization are in section 4.2. Second, only the number of intervals is chosen and the interval 

size and gains are optimized. These results are in section 4.3. Third, all three parameters, the 
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number of intervals, the size of each interval, and the gain for each interval, are optimized. 

Results for this are in section 4.4. Finally, the gains are allowed to be a linear function of the 

scheduling variable and the coefficients of the function are optimized. These results are in 

section 4.5. 

In summary, the interval size and number can be specified where the gain of each interval 

is a design variable, or just the number of intervals can be specified and both the interval 

endpoints and gains are design variables, or the number of intervals and their respective 

endpoints and gains can be design variables and trade off complexity (number of intervals) 

for accuracy of the closed loop poles. 

FHD- s3+10A(24+c)s+6c 

Plant 

<^ 

Figure 4.1   Example System Block Diagram 

4.2   Fixed Interval Results 

Initially, five equal intervals are chosen, (0,2), [2,4), [4,6), [6,8), and [8,10), and the 

optimal gains for each interval are found. This optimization is done using a simple GA with 

the following parameters, pc = 0.95, pm = 0.01, popsize = 50. Each design variable had a 

gene of length 14 for a precision of two decimal places. This resulted in a total string length 

of 100. For comparison, the same optimization is done with a Broydon-Fletcher-Goldfarb- 

Shanno (BFGS) Quasi-Newton method with a mixed quadratic and cubic line search method. 

There are five design variables to be optimized, the gain for each interval, h, i = 1... 5 . 

The results of both the GA and the BFGS method are shown in Table 4.1. A mapping of the 
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Table 4.1   Fixed Interval Results 
GA BFGS 

# Iterations 182 15 
# Function Evals 8323 128 
Interval 1 Gain 31.61 31.61 
Interval 2 Gain 22.12 22.12 
Interval 3 Gain 13.02 13.02 
Interval 4 Gain 4.40 4.41 
Interval 5 Gain -3.62 -3.59 
Obj. Function 91.20 91.20 

Interval 4 Optimization 

J   600 

-100      -80       -60       -40       -20 0 20 40 60 80 100 
Gain Range 

Figure 4.2   Exhaustive Interval Optimization 

solution space of one of the intervals is shown in Fig. 4.2. For each fixed interval the solution 

is very similar, with one global optimum and one local optimum. 

The GA required a significantly greater number of function evaluations than the BFGS 

method. However, this was expected since the objective function is smooth and the derivative 

is well-behaved for this example. Using a GA at this level is clearly overkill, but it is necessary 

to verify that the expected results are obtained. 

4.2.1 Parameter Study. A restricted experimental study was performed to find 

the best combination of GA control parameters, pc and pm. Twelve different combinations 

of these parameters were tried. Each experiment had a population size of 50 and was run 
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for 10,000 function evaluations. Each experiment was performed ten times with a different 

initial population. The results of each experiment are listed in Table 4.2. Since GAs are not 

efficient at obtaining a solution with high precision, each experiment measured the number 

of generations and function evaluations required for the GA to converge to within 1 per cent 

of the optimal solution. Fig. 4.3 shows the average values and their respective standard 

deviations for each experiment. 

A number of interesting trends are prevalent from these graphs. First, as the crossover 

probability is reduced, the number of function evaluations per generation decreases. This is a 

result of the GA only evaluating the individuals of the population that are new. The second 

interesting trend is that experiment number 1 had the lowest number standard deviation for 

both the number of generations and the number of function evaluations, 7.71 and 365 respec- 

tively. However, the next smallest standard deviation values, 13.01 and 561, respectively, are 

significantly higher. Additionally, these values are not from the same experiment. Since the 

parameter combination of experiment number 1 showed the greatest degree of consistency 

in converging to a solution, these parameters are used in the remainder of the optimization 

processes. 

4 3   Variable Interval Results 

The same design problem is now repeated with the interval end points as additional 

design variables. There are now a total of nine design variables. For comparison, the same 

problem is optimized using a sequential quadratic programming (SQP) method. For both the 

GA and the SQP method the interval end points are constrained to be within the range of 

(0,10) and the gains are constrained to be within the range of (-50,50). The results from 

these optimizations are shown in Table 4.3. 

In Table 4.3, the first column of the SQP category shows the results of the SQP 

optimization when given the same initial condition as the fixed interval optimization. The SQP 

method stalled at one solution point for numerous iterations trying to find the correct direction 

to proceed. In addition, when evaluating the derivative of the function, the derivative matrix 
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fable 4.2   Parameter Study Results 

Trial No. Pc Pm 

Average 
Number of 
Generation 

Average 
Number of 
Function 

Evaluations 

Average No. 
Function 

Evaluations 
per Generation 

1 0.95 0.010 47.40 2227 46.97 
2 0.85 0.010 64.40 2764 42.99 
3 0.75 0.010 53.70 2186 40.83 
4 0.65 0.010 60.70 2202 36.36 
5 0.95 0.005 55.40 2558 46.37 
6 0.85 0.005 56.70 2356 41.78 
7 0.75 0.005 65.20 2510 38.86 
8 0.65 0.005 67.10 2244 33.68 
9 0.95 0.001 46.20 2108 45.76 
10 0.85 0.001 122.10 4565 38.48 
11 0.75 0.001 46.00 1684 36.96 
12 0.65 0.001 116.40 3384 29.94 

Table 4.3   Variable Int erval Res ults 
GA SQP 

# Iterations 704 109 47 
# Function Evals 39000 1802 821 
Endpoint 1 2.18 0.37 1.94 
Endpoint 2 4.36 0.40 3.88 
Endpoint 3 6.16 4.43 5.81 
Endpoint 4 8.02 5.10 7.74 
Interval 1 Gain 31.10 35.33 31.74 
Interval 2 Gain 21.01 -11.67 22.59 
Interval 3 Gain 11.86 25.83 13.69 
Interval 4 Gain 4.04 13.77 5.34 
Interval 5 Gain -3.63 3.72 -3.02 
Obj. Value 90.58 132.41 90.54 
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Figure 4.4   Variable Interval vs. Fixed Interval Pole Placement Error 

became ill conditioned and nearly singular. The resulting solution of this SQP optimization 

is a local minimum. The SQP method was restarted with the fixed interval optimal solution 

as its initial conditions. Although the same numerical difficulties were encountered again, the 

SQP algorithms did eventually find an optimal solution. However, the numerical inaccuracies 

encountered during the optimization make the validity of the solution questionable. The GA 

did not have these problems because it is not dependent upon the local behavior of the objective 

function or its derivative. 

The second derivative of the objective function was evaluated to gain insight into the 

shape of the solution space. Since an analytical derivative is not practical, a second order 

finite difference was used to calculate the diagonal elements of the Hessian. At the optimal 

values of the fixed interval solution found from the BFGS method, the diagonal elements are 

[-6 x 107 -3 x 107 -1.5 x 107 -1.5 x 107 0 0 0 0 0]. The first four terms are the 

derivatives with respect to the interval end points, and the last five terms are the derivatives 

with respect to the gains of each interval. From these results we conclude that the solution 

space is a long, steep n-dimensional trough. 
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Figure 4.5   Locus of Roots of the Closed Loop System 

Fig. 4.4 shows how the pole placement error varies with c for both the variable interval 

solutions and the fixed interval solutions. Since the objective of the optimization is to minimize 

the distance from the desired dominant closed-loop pole locations, the time response of the 

system at various values of the scheduled variable should be very similar. Fig. 4.5 shows 

a root locus of the closed loop system as c varies from (0... 10). Fig. 4.6 shows the step 

response for different values of the scheduled variable from (0... 10) in increments of 0.5. 

As expected, the time response in terms of overshoot, rise time, and settling time are all quite 

similar.1 

4.4   Variable Number of Intervals Results 

For this optimization the objective function is changed to penalize the number of 

intervals. The parameters of the sample problem are the same as those for the variable interval 

case in section 4.3, except that the number of intervals is allowed to vary between two and 

nine. For this example, the number of design variables varies. If there are only two intervals, 

there are three design variables (one interval end point, and two controller gains). Similarly, if 

there are nine intervals, there are seventeen design variables. Hence, if N intervals are chosen, 

there are 2N-1 design variables. Two different objective functions are used to observe the 

xThe steady state error shown could be corrected with a PI controller. 
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Figure 4.6   Time Response for Various Values of Scheduled Variable 

effects of the penalty functions; Eq (4.2) uses a quadratic penalty function, and Eq (4.3) uses 

a linear penalty function. 

500 

J2 = £ {max [Re(A,-)] + 2}2 + {max [Im(A0] - 2}2 + (N - l)2 (4.2) 
i=l 

500 

J3 = J2 (max IM^i)} + 2}2 + {max [Im(A0] - 2}2 + (TV - 1) (4.3) 
8 = 1 

where A4 is the closed loop poles of the system at a given value of c. 

Both equations were optimized using the GA with the same parameters presented in 

section 4.2. The results of these optimizations are shown in Table 4.4. A calculus based 

algorithm was not able to optimize this problem because of the varying number of design 

variables. 

These results show that the initial arbitrary use of five intervals is too large given these 

objective functions. Of course, this result depends on the relative weighting between the 

two parts of the objective. A more general objective function would include a multiplicative 
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Table 4.4   Variable Number of Intervals Optimization Results 
h h 

# Iterations 603 853 
# Function Evals 18100 27520 
# of Intervals 4 4 
Endpoint 1 2.01 2.24 
Endpoint 2 4.31 4.57 
Endpoint 3 6.86 7.11 
Interval 1 Gain 31.60 31.33 
Interval 2 Gain 21.50 20.64 
Interval 3 Gain 10.68 9.86 
Interval 4 Gain -0.89 -1.51 
Obj. Function 105.3 98.6 

weighting term in the penalty function. It is interesting to note that there was not a significant 

increase in computation time to do this analysis and optimization of the number of intervals. 

4.5   Linear Interpolation 

Since the trend in the optimized gains is linear, a final optimization is accomplished. 

The controller gain is chosen to be a linear function of the scheduling variable c. 

K = a\c-\- a0 (4.4) 

The coefficients of the linear function, ai and a2, are the design variables. The BFGS calculus 

method used in section 4.2 was also used here. The GA parameters are pc = 0.95, pm = .001, 

and popsize = 50. Table 4.5 compares the results of the GA and the BFGS method. A plot of 

the root locus is shown in Fig. 4.7. Since, this is a simple system, the gain varies linearly with 

the scheduling variable c. Because of this direct relation the calculus based method quickly 

finds the optimal set of coefficients. The probabilistic nature of the GA requires more function 

evaluations to hone in on the optimal solution. 
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4.6   Summary 

This work has shown some distinct advantages to using a GA for gain schedule opti- 

mization. For the simple fixed interval case, the GA reached the same solution as a calculus 

based method. However, when the interval size was allowed to vary the calculus based 

method stalled and its result was dependent on the initial conditions. More importantly, the 

GA allowed further trade-offs between the basic objective function and the number of intervals 

with practically no increase in computational effort. Considering these key points, the GA 

definitely shows promise for application to real world gain scheduling problems. 
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Table 4.5   Linear Scheduling Results 
GA BFGS 

# Iterations 
# Function Evals 

a0 

48 
1954 

-4.350 
34.946 

7 
38 

-4.377 
35.1139 

Obj. Function 82.31 82.30 

Figure 4.7   Locus of Roots of the Closed Loop System 

4-12 



V. Flight Envelope Design Example 

The previous chapter demonstrated the applicability of gain scheduling optimization on 

a simple SISO system. Now, an optimization of a real world system is completed. A full 

envelope controller for an F-18 Supermanueverable fighter in Fig. 5.1 was designed in [4] 

using a simple gain scheduling technique of linear interpolation. This chapter optimizes this 

gain schedule using the methods in Chapter IV. First, the linearized equations of motion are 

derived in section 5.1. Next, the form of the controller and the gain schedule developed in [4] 

are presented in section 5.2 as a baseline for optimization. Afterwards, a measure of relative 

error is presented and the optimization function is developed in section 5.3. 

5.1   Equations of Motion 

The nonlinear equations of motion of an aircraft are shown in Eq (5.1) and Eq (5.2). Eq 

(5.1) describes the forces along the aircraft body axes, and Eq (5.2) describes the rotational 

forces about the same axes. 

Fx = m(Ü + WQ-VR + g sin 0) 

Fy = m{V + UR-WP-gcos6sm$) (5.1) 

Fz = m(W +VP-UQ- cos 9cos $) 

L = PIX + RIXZ + QR{IZ - Iy) - PQIXZ 

M = QIy + PR(IX - Iz) - R?IXZ + P2IXZ (5.2) 

N = RIZ + PIXZ + PQ(Iy - Iz) + QRIXZ 

Fx, Fy, and Fz are the external forces and L, M, and N, are the external moments. 
U, V, W are the translational velocities along the X, Y, and Z body axes directions 
respectively. P, Q, and R are the rotational velocities about the X, Y, and Z axes, 
respectively. Ix,Iy, Iz, and Ixz are the moments of inertia, g is gravity, and m is 
the aircraft mass. 
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Figure 5.1    F-18 Aircraft 

Since these forces and moments are in the body axis system, Eq (5.3) relates the aircraft 

orientation to the Earth through the Euler angles 0, 4>, and *. 

0 = Q cos $ - R sin $ 

$ = P + Q tan 0 sin $ + R tan 0 cos $ 

•       R cos $      O sin $ * = — + 
cos 0 COS0 

(5.3) 

where 0 is the pitch angle, $ is the roll angle, and \I> is the yaw angle. 

These nonlinear equations are linearized assuming the following: 

• The aircraft is a rigid body, 

• The aircraft mass is constant, 

• The aircraft is trimmed to an equilibrium condition such that all accelera- 
tions are zero, 

• The aircraft is in straight and level flight, 

• The aircraft dynamics can be decoupled into longitudinal and lateral/directional 
components, 

• The linear and rotational velocities, and the external forces and moments 
can be considered perturbed from equilibrium values, 
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• The product of small perturbed values are small and negligible, and 

• The angles between the the equilibrium and the disturbed value are consid- 
ered small. 

Additionally, since the short period mode dominates the aircraft response to pilot inputs, 

the longitudinal equations are simplified as shown in Eq (5.4). Further explanation of these 

assumptions and simplifications can be found in [4,8]. 

a 

q 

Za        Zq 

Mn   Ma 

a 

q 
+ 

MSe   M6pTV OpTV 

(5.4) 

where a is the angle of attack, q is the linearized pitch rate, Se is the elevator 
deflection, SPTV is the pitch thrust vectoring, Z and M are longitudinal stability 
derivatives. 

Through the use of a nonlinear control selector, developed in [4], the thrust vectoring 

commands are only used when the aerodynamic forces are not sufficient to complete the com- 

manded maneuver. Furthermore, the use of the control selector enables the commanded inputs 

to be transformed into generalized command inputs: pitch acceleration, pc, yaw acceleration, 

qc, and roll acceleration, r*c. 

From this mapping, the longitudinal linear design model is that shown in Eq (5.5). 

a 

q 

a 

<1 

--A. long 

C, long 

where Biong 

a 

<1 

a 

q 

~f~ -Dlongqc 

^long — 

0 

1 

Along J^long 

^long 0 

Ci ong 

1   0 

0   1 

(5.5) 

(5.6) 

where Aiong is the longitudinal plant matrix, B\ong is the longitudinal input matrix, 
and Ciong is the longitudinal output matrix. 
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Figure 5.2   Outer Control Loop 

Figure 5.3   Inner Equalization Loop 

5.2   Controller Design 

The control of the F-18 longitudinal dynamics is decomposed into an inner and outer 

loop (See Fig. 5.3 and Fig. 5.2). The objective of the inner loop is to equalize the closed 

loop frequency response over the flight envelope so that the outer loop controller does not 

need to be scheduled. Therefore, this investigation focuses on the inner loop controller. The 

original design selected twelve flight conditions, shown in Fig. 5.4, at which to design an 

inner loop controller. At each design point a minimal H^ controller was designed [52]. Then, 

using engineering judgement, a central controller was selected as Mach 0.95 and an altitude 

of 20000 feet. The closed inner loop of this central controller, P0, is used to design the outer 

loop controller, Kout. 
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The inner loop controller, shown in Fig. 5.5, has three parameters that are scheduled 

with dynamic pressure, q. 

Keq = 
F-GN 

-N 

Kf - GM 

-M 

where F = [-40] Kf = [ 1   1 ] G = [.0247] 

N = N(q) M=[Ml(q)    M2(q)} (5.7) 

The parameters N and M are scheduled as a linear function of dynamic pressure. The schedules 

for these parameters are shown in Eq (5.8) and graphically in Fig. 5.6. 

N(q) = -0.312^ + 461 

M1(q) = -0.058^ + 50.5 

M2{q) = -0.006g + 8.11 

(5.8) 

Figure 5.5   Inner Loop Controller 
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The schedules were developed by plotting the H^ scheduled controller parameters as 

a function of dynamic pressure. A linear fit of the parameters was performed using a least 

square error method. These controller schedules are the baseline design for comparison with 

the 'optimized' schedules. The goal of the optimization is to improve this schedule in terms 

of relative error, which is described in the next section. 
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Figure 5.6   Baseline Schedule of Design Parameters 

5.3   Relative Error 

Relative error, defined by Eq (5.9), is used to measure the equalization of the closed 

inner-loop. 

Am = (P - Po)Pc 
-i (5.9) 

P0 is the closed inner loop used for outer loop controller design, and P is a closed 
inner loop at another flight condition. 

Safonov and Chiang's Robustness Theorem [42] provides a weak sufficient condition for 

stability using relative error. The authors in [4] succinctly stated this sufficient condition. 

If a(Am) < 1 for a; < UJT, then the closed loop system will be stable provided 
that the control bandwidth, u>&, is less than tor. 
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Therefore, any outer loop controller designed for P0 will be stable for any inner loop plant, 

P, provided the relative error, ATO, is sufficiently small. 

A summary of the proof was presented in [4] and is reproduced here for completeness. 

Consider the system with equalized plant, P, outer loop controller, KoU and rela- 
tive error, Am. The bandwidth of the control system is defined as the frequency 
range where the loop transfer function is big. That is: 

a{PKol) > 1      Vu; < tob (5.10) 

A sufficient condition for stability is 

ä{Am)ä(PKol(I + PKoiY1) < 1 (5.H) 

It follows from Eq (5.11) that for u < tot,, 

ä(PKol{I + PKoly
x)n\ (5.12) 

So, for frequencies where the loop transfer function gain is big, a sufficient 
condition for stability is 

ä(Äm) < 1 (5.13) 

Relative error is a frequency domain measure of the differences between closed loop 

system responses at various flight conditions. The main goal of the inner-loop of this design 

is to achieve a relative error less than one for all flight conditions. The logical optimization 

objective is to minimize this error for all flight conditions and thereby achieve a more equalized 

inner-loop. Therefore, the objective function for this optimization is 

n 

mm inJ = 5>(Ämj) (5.14) 

where Am is defined in Eq (5.9), and n is the number of flight conditions to be 
evaluated. l 

The flight conditions used in evaluating the objective function are the original twelve used for 

design in [4] plus an additional eight flight conditions chosen to more uniformly represent the 

xFor n flight conditions there are only (n - 1) nonzero relative errors. 
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flight envelope as a function of dynamic pressure. The original twelve flight conditions are 

shown in Fig. 5.4. All of these flight conditions and their plant matrices are listed in Appendix 

A. The goal of this optimization is that by reducing the relative error of the inner loop the 

time response of the system will become more uniform throughout the operating envelope. 

5.4   Optimization Results 

This section presents the optimization results of the F-18 longitudinal inner equaliza- 

tion loop controller. Multiple optimizations were performed with various alterations on the 

basic objective function given in Eq (5.14). The first section provides on overview of the 

optimization cases considered and the respective sections in which the results are presented. 

Next, section 5.4.11 compares and summarizes the optimization results, and section 5.4.12 

demonstrates the responses of off design flight conditions using the optimized gain schedule. 

5.4.1 Overview. The optimization process is performed with a family of twenty 

flight conditions representing the flight envelope shown in Fig. 5.7. The linearized plants are 

listed in Appendix A. The optimization results are based on four objective functions 

20 

mmJ1 = J2^mi) (5-15) 

Note: Since the relative error is a measure of relative difference, one of the 
relative error values is zero. 

20 

minJ2 = 5>(ÄTn,.) + /(JV) (5.16) 

where f{N) is a functional weighting on the number of intervals. 
20 

minJ3 = l>(Ämi) + et-(t) (5.17) 

where ei(t) is the error between the time response of the chosen central flight 
condition and the time response of the flight condition i. 
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20 l 
max J4 = ]T ä(Ämj) + r-ei(t) (5.18) 

Eight optimization cases are considered and are summarized in Table 5.1.   A brief 

explanation of each optimization is presented in the following list: 

Case I The scheduled variables are piecewise constant functions of the scheduling variable. 

Four intervals of the scheduling variable were arbitrary chosen to be of equal size: 

(0,250], (250,500], (500,750], (750,1000). h is the objective function. The central 

flight condition, P0, was chosen as Mach 0.95 and an altitude of 20,000 feet [4]. 

Case II This case is the same as Case I except that the size of the interval is allowed to vary 

to reduce the objective function further. 

Case III This case is the same as Case II except that the number of intervals is also a design 

variable. J2 is the objective function. 
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Case Objective Function Results Section 
0 Baseline 5.4.2 
I h 5.4.3 
II h 5.4.4 
in h 5.4.5 
IV h 5.4.6 
V h 5.4.7 
VI h 5.4.8 
vn h 5.4.9 
vm J4 5.4.10 

Table 5.1    Optimization Summary 

Case IV This case is the same as Case III except the central flight condition*is allowed to 

vary within the family of plants to further reduce the objective function, J2. 

Case V This case uses objective function J3. The central flight condition, the number of 

intervals, and the size of each interval are allowed to vary. 

Case VI For this case the scheduling variables are piecewise linear functions of dynamic 

pressure. The objective function of the optimization is J\. The central flight condition, 

number of intervals, and the size of the intervals are allowed to vary. 

Case VII This case is the same as Case VI except that the objective function is J3. 

Case VIII This case is the same as Case VI except that the objective function is J4. 

5.4.2 Baseline Design Results. The baseline design developed in [4], was not 

optimized. Relative error was only used as a weak sufficient condition for stability of the 

controller throughout the flight envelope. The scheduling variables were chosen as described 

in section 5.2. The open loop frequency responses of the inner loop are shown in Fig. 5.8 and 

Fig. 5.9. The flight condition with the lowest dynamic pressure has the highest low frequency 

gain of all the flight conditions. The general trend is that as the dynamic pressure increases 

the low frequency gain decreases. 
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Figure 5.10   Case 0: qc to a Closed-Loop Dynamics 

The closed loop dynamics of the inner loop are shown in Fig. 5.10 and Fig. 5.11. The 

two most important graphs for demonstrating the optimization results are Fig. 5.12 and Fig. 

5.13. These graphs depict the relative error of the closed inner equalization loop and the time 

response to a step pitch acceleration command of the closed outer loop, respectively. Note that 

the time response has two distinct groupings. This is because there are actually two outer-loop 

controllers, one for low dynamic pressure (q < 200 psf) and one for high dynamic pressure 

(q < 200 psf). This is a consequence of two desired pitch responses in different regions of the 

flight envelope. At higher velocities, the pilot likes to feel a faster time response. Also note 

that the relative error for most flight conditions has a maximum singular value around 0.4 to 

0.5. 

The baseline schedules of the parameters N and M are shown in Fig. 5.14. The five 

graphs, Fig. 5.10, Fig. 5.11, Fig. 5.12, Fig. 5.13, and Fig. 5.14 are the baseline for 

comparison with the optimization results. 

The values of the objective functions are J\ = 6.37, J3 = 23.24, and JA = 9.74. 
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5.4.3 Case I. The design variables of the GA optimization are the scheduled 

parameters defined in Eq (5.8). The schedules are evaluated at «/min = 0 and <zmax = 1000 

to obtain the minimum and maximum values of the parameters N and M. For a first look at 

optimizing these parameters, the range of the scheduling variable, q, is arbitrarily divided into 

four intervals, (0,250], (250,500], (500,750], and (750,1000). The scheduled parameters are 

chosen to be piecewise constant values of dynamic pressure in each interval. The parameters 

N and M are optimized for each interval to minimize objective function J\. There are twelve 

design variables to optimize. 

The optimized objective function value is 3.09, half of the baseline relative error. The 

closed inner-loop responses are shown in Fig. 5.15 and Fig. 5.16. The relative error and time 

responses are shown in Fig. 5.17 and Fig. 5.18. The resulting scheduled variables are shown 

in Fig. 5.19. 

As a result of the reduction in relative error, the overshoot in the time response has 

decreased for most of the flight conditions. However, for three flight conditions the overshoot 

increased over the baseline. This can also be seen in the relative error graph, Fig. 5.17, 

where three relative errors are increased over the baseline and the remaining relative errors are 

reduced. Additionally, the closed inner-loop pitch response is more uniform than the baseline 

design. 

5.4.4 Case II. For this optimization the interval size is allowed to vary. The number 

of intervals is still constrained to be four. Now the number of design variables is fifteen, three 

interval endpoints and twelve scheduled variable values. Each interval endpoint is allowed to 

vary between 0 and 1000 psf. 

The objective function value is 2.51 which is less than Case I. The closed inner-loop 

responses are shown in Fig. 5.20 and Fig. 5.21. The relative error and time responses are 

shown in Fig. 5.22 and Fig. 5.23. The resulting scheduled variables are shown in Fig. 5.24. 
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Figure 5.17   Case I: Relative Error 
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Figure 5.18   Case I: Time Response for a Step Input 
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Figure 5.19   Case I: Controller Parameter Schedule 

As in Case I, the time response of two flight conditions have overshoots larger than 

the baseline. The significance of this optimization is that the relative error is decreased by 

allowing the interval size to vary. 

5.4.5 Case HI. For this optimization the number of intervals is allowed to vary 

between (2..9). Additionally, the interval endpoints are allowed to vary between (0..1000). 

Therefore the number of design variables varies between (8.36). Four different penalty 

functions on the number of intervals are optimized. 

i)fi(N) = N 

b)f2(N) = N2 

c)fs(N) = N/9 

d)/4(JV) = (7V/9)2 

The results of each of these optimizations are in the following subsections. 

5.4.5.1   Case Ilia.      Two intervals are chosen as with an objective function 

value of 5.24. The closed inner-loop responses are shown in Fig. 5.25 and Fig. 5.26. The 
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Figure 5.23   Case II: Time Response for a Step Input 
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Figure 5.24   Case II: Controller Parameter Schedule 

relative error and time responses are shown in Fig.  5.27 and Fig.  5.28 and the resulting 

scheduled variables are shown in Fig. 5.29. 

The time responses show a significant improvement in overshoot when compared with 

Cases I and H However, there are still three time responses with overshoots larger than the 

baseline. The rise time and settling time are consistent with variations in the flight condition. 

The relative error is about the same value as Case I when the penalty function value is 

subtracted off. The significant finding is that the same minimization of relative error can be 

achieved with half the intervals. Therefore, the same improvements in the equalization of the 

inner-loop can be achieved with half the complexity. 

5.4.5.2 Case IIIb. Two intervals are again chosen as optimal with an objective 

function value of 7.23. The closed inner-loop responses are shown in Fig. 5.30 and Fig. 5.31. 

The relative error and time responses are shown in Fig. 5.32 and Fig. 5.33 and the resulting 

scheduled variables are shown in Fig. 5.34. 
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Figure 5.28   Case Ilia: Time Response for a Step Input 
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Figure 5.29   Case Ilia: Controller Parameter Schedule 

There is little to no difference in the closed loop responses, the relative error, and the 

time responses between this case and Case Ilia. The only difference is a small change in the 

scheduled parameter N. The parameters Ml and M2 are even the same for these two cases. 

This seems to indicate that the parameter N is not very significant in the scheduling process. 

5.4.5.3 Case lllc. Two intervals are again chosen with an objective function 

value of 3.45. The closed inner-loop responses are shown in Fig. 5.35 and Fig. 5.36. The 

relative error and time responses are shown in Fig. 5.37 and Fig. 5.38 and the resulting 

scheduled variables are shown in Fig. 5.39. 

For this case the closed loop responses, the relative error, the time responses, and the 

scheduling variables N, Ml and M2 all show the same trends as Case Dia. Again, N is slightly 

different. 

5.4.5.4 Case Hid. Here, three intervals are chosen with and objective function 

value of 3.24. Since the penalty for the number of intervals is the least for this optimization, a 
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Figure 5.31   Case mb: qc to q Closed-Loop Dynamics 
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Figure 5.36   Case Hie: qc to q Closed-Loop Dynamics 
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Figure 5.37   Case IIIc: Relative Error 
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Figure 5.39   Case Hie: Controller Parameter Schedule 

5-30 



10 
w (rad/sec) 

Figure 5.40   Case Hid: qc to a Closed-Loop Dynamics 

larger number of intervals is selected. The closed inner-loop responses are shown in Fig. 5.40 

and Fig. 5.41. The relative error and time responses are shown in Fig. 5.42 and Fig. 5.43 and 

the resulting scheduled variables are shown in Fig. 5.44. 

The only significant difference between this case and Cases Ilia, b, and c is the time 

response. The time response resulting from this optimization is comparable to the time 

response of Case I. The time responses for this case are slightly worse than Cases Ilia, b, and 

c. 

5.4.6 Case IV. For this optimization, the central flight condition which was chosen 

by engineering judgement for the baseline design is allowed to vary. The number of design 

variables is increased by one; the number of design variable now varies between 9 and 37. 

Additionally, two different penalty functions on the number of intervals are optimized. 

a)/i(iV) = 0 

b) /2(JV) = ivyioo 

The results of each optimization are in the following subsections. 
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Figure 5.45   Case IVa: qc to a Closed-Loop Dynamics 

5.4.6.1 Case IVa. Five intervals are chosen with an objective function value 

of 2.07. This can be reduced to four intervals to eliminate the 'spike' in the schedule. The 

closed inner-loop responses are shown in Fig. 5.45 and Fig. 5.46. The relative error and 

time responses are shown in Fig. 5.47 and Fig. 5.48 and the resulting scheduled variables are 

shown in Fig. 5.49. 

The most significant result of this optimization is that the relative error is reduced by 

allowing the central flight condition to vary. Note that the worst relative error has a value of 

0.32 and the best relative error has a value of 0.0001. Additionally, even though there was 

no penalty on the number of intervals, the maximum allowable number of intervals was not 

optimal. The closed loop responses and the time responses are slightly better than those in 

Casem. 

5.4.6.2 Case IVb. Here, seven intervals are chosen with an objective function 

value of 2.26. However, this can be reduced to six by eliminating the 'spike' in the schedules. 

The closed inner-loop responses are shown in Fig. 5.50 and Fig. 5.51. The relative error and 
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Figure 5.50   Case IVb: qc to a Closed-Loop Dynamics 

time responses are shown in Fig. 5.52 and Fig. 5.53 and the resulting scheduled variables are 

shown in Fig. 5.54. The objective function value is 2.26 with seven intervals. 

The results of this optimization are similar to those in Case IVa. The significant 

difference is in the time response. For the flight conditions evaluated, the time response for 

all flight conditions was very nearly uniform even though the resulting objective function is 

not the smallest found so far. This seems to indicate that there is not as close a correlation 

between the closed loop frequency response and the closed loop time response as previously 

thought. 

5.4.7 Case V. Since there is an indication that the closed loop frequency response 

error and the closed loop time response are not directly related, this optimization directly 

optimizes both objectives. The time domain error is measured as the difference between the 

central controller's time response and the time response at all the other flight conditions. Time 

time response if evaluated for 5.0 seconds at increments of 0.1 seconds to determine the time 
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Figure 5.54   Case IVb: Controller Parameter Schedule 
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error (See Eq (5.19)). 

50 

<t) = £ W(*) - yo(t) t = 0,0.1,0.2, • • •, 5 (5.19) 
3=1 

where j/0(0 is the time response of the closed outer-loop at the central flight 
condition and yj(t) is the time response of the closed outer loop at a different 
flight condition. 

The number of design variables is the same as in Case IV. 

Five intervals are chosen with an objective function value of 14.22. The closed inner- 

loop responses are shown in Fig. 5.55 and Fig. 5.56. The relative error and time responses 

are shown in Fig. 5.57 and Fig. 5.58 and the resulting scheduled variables are shown in Fig. 

5.59. 

The closed loop frequency responses are similar to those of the previous cases. The 

relative error is reduced from the baseline but is not near the minimum relative error value 

found so far. However, the time response is very closely uniform for all of the flight conditions. 

5.4.8 Case VI. This optimization duplicates Case IV except that the scheduled 

variables are now piecewise linear functions of the scheduling variable. The number of design 

variables is increased by three, since an addition set of scheduled variables is needed for a 

linear fit The number of design variables now varies between 12 and 40. 

Three intervals are chosen with an objective function value of 1.98, the lowest of all 

cases. The closed inner-loop responses are shown in Fig. 5.60 and Fig. 5.61. The relative 

error and time responses are shown in Fig. 5.62 and Fig. 5.63 and the resulting scheduled 

variables are shown in Fig. 5.64. 

The significant difference between this case and the previous cases is that the minimum 

relative error was found sooner with fewer function evaluations. This case also found the 

smallest relative error of all the optimization cases. The result of this minimal relative error is 

evident in Fig. 5.60 and Fig. 5.61 where there is a tight grouping of the closed loop response. 
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Figure 5.58   Case V: Time Response for a Step Input 
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Figure 5.59   Case V: Controller Parameter Schedule 

Since the schedule is better, piecewise linear versus piecewise constant, the optimization 

results are better than the previous cases. 

5.4.9 Case VII. This optimization duplicates Case V for piecewise linear scheduled 

variables. The number of design variables now varies between 12 and 40. 

Two intervals are chosen as optimal with no penalty function on the number of intervals. 

The objective function value is 12.25, which is less than Case V results. The closed inner-loop 

responses are shown in Fig. 5.65 and Fig. 5.66. The relative error and time responses are 

shown in Fig. 5.67 and Fig. 5.68 and the resulting scheduled variables are shown in Fig. 5.69. 

The closed loop frequency responses and the relative error results are similar to those 

in Case V, but the time response is not quite as uniform as the time response in Case V. This 

might seem odd since the value of the objective function is less than that of Case V. This is 

because each of these cases is using a different central controller. 
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Figure 5.61   Case VI: qc to q Closed-Loop Dynamics 
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Figure 5.63   Case VI: Time Response for a Step Input 
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Figure 5.64   Case VI: Controller Parameter Schedule 
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Figure 5.68   Case VII: Time Response for a Step Input 

400 

:300h 

200 

100 
100  200  300  400  500  600  700  800  900  1000 

60- 

40 : 

; 20 ■ 

0- 

OJ 

^4 

100  200  300  400  500  600  700  800  900  1000 

0   100  200  300  400  500  600  700  800  900  1000 
Dynamic Pressure 

Figure 5.69   Case VII: Controller Parameter Schedule 
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Figure 5.70   Case VIII: qc to a Closed-Loop Dynamics 

5.4.10 Case VIII. For this optimization, objective function J4 is used to more 

equally weight the time domain error and the frequency domain error. The design variables 

are the same as in Case VE. Since the relative error is less in magnitude than the time domain 

error, the time domain error is scaled smaller. Whereas, objective function J3 placed an 

emphasis on the time domain error. 

Two intervals are again chosen as optimal with no penalty on the number of intervals. 

The objective function value is 5.16. The closed inner-loop responses are shown in Fig. 5.70 

and Fig. 5.71. The relative error and time responses are shown in Fig. 5.72 and Fig. 5.73 and 

the resulting scheduled variables are shown in Fig. 5.74. 

The time response is almost uniform over the operating envelope for the points evaluated. 

Additionally, the closed loop responses are very uniform for frequencies greater than 5 radians 

per second. Furthermore, the control parameter schedules are very simple with only two 

intervals and piecewise linear function of dynamic pressure. Therefore, this optimization is 

selected as the best. This schedule is validated in section 5.4.12. 
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Figure 5.72   Case VHI: Relative Error 
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Figure 5.73   Case VEH: Time Response for a Step Input 
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Figure 5.74   Case VIII: Controller Parameter Schedule 
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5.4.11 Summary of Results. A summary of the optimization results are shown 

in Table 5.2. For each case the values of all four objective functions are calculated where 

possible for comparison. The best result for each objective function is emphasized. No 

single optimization is able to optimize more than one objective simultaneously. Each case 

demonstrates that the gain schedule can be optimized with respect to the specified objective 

function. By changing the objective function to meet the desired goal, an optimal gain schedule 

is achievable. 

Every single optimization case tried is able to improve on the baseline design. The 

resulting optimization has a more consistent time response for the flight conditions evaluated. 

Additionally, another benefit of the optimization is that the time response was improved in 

terms of overshoot for most cases. 

From these optimizations, a few important facts become evident. First, the closed loop 

response of the system can be made more uniform across the operating envelope. Second, the 

most effective gain schedule optimization results when the control parameters are scheduled 

as piecewise linear functions of the scheduling variable. Additionally, the number and size of 

the scheduling variable intervals are allowed to vary as design variables. Furthermore, when 

using a central controller for computation of gain scheduling error, the selection of which 

controller is central can be an effective design variable in reducing the calculated error. 

To see how the central controller varied with the optimization cases see Fig. 5.75. The 

'x' marks the central controller selected for the baseline design using engineering judgment. 

The 'o's' mark the central controllers selected by the optimization. The next section uses the 

best optimized schedule, Case VIE, and validates the schedule using operating points not in 

the original design set. 

5.4.12 Design Validation. To validate the optimal gain schedule designed in the 

previous section, six more flight conditions are selected across the flight envelope. These are 

shown with 'o's' in Fig. 5.76. These operating points are specifically selected to be near 

the corners of the operating envelope. The relative error and time response of these points 
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Table 5.2   Comparison of Optimization Results 
Case h h h h N f(N) Po 

0 6.37 23.24 9.74 M.95h20 
I 3.09* 21.89 6.85 4 M.95h20 
n 2.51* 22.62 6.53 4 M.95h20 

nia 3.24 5.24* 20.80 6.75 2 N M.95h20 
nib 3.23 7.23* 21.16 6.81 2 N2 M.95h20 
nie 3.22 3.45* 21.12 6.80 2 N/9 M.95h20 
md 3.13 3.24* 23.07 7.11 3 (JV/9)2 M.95h20 
IVa 2.07 2.07* 26.82 7.02 5 M.4h22 
IVb 2.19 2.26* 16.56 5.06 7 N/100 M.5hl0 
V 4.09 14.22* 6.22 5 M.6h2 
VI 1.98* 19.42 5.47 3 M.7hl8.5 
vn 4.15 12.65* 5.85 2 M.6h2 
vni 2.44 16.05 5.16* 2 M.6hl5 

denotes tl lie obje< ;tive fun< :tion use< i 
Note: the bold numbers are the minimum for each objective function 
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Figure 5.75   Central Controller Variations 

5-53 



4.5 

4 

x104 

i i i 

3.5 - q=50 psf / q=100 / q=200// 

3 - /     x ,/               ./- 

£2.5 . x    / y/                               >/_ 

<D 
■a 

1    2 
/       x  / 

o          / S      X     >/- 

1.5 / o       / /      X     , x / X/         JC       / 

1 /x       / '   •*/ /*■/ 9 

0.5 

i h 

/         */ 

'    i /     A    / 
//\//^=1000 

0 0.1 0.2        0.3        0.4        0.5        0.6        0.7        0.8        0.9 1 
Mach Number 

Figure 5.76   F-18 Flight Envelope 

using the baseline schedule are shown in Fig. 5.77 and Fig. 5.78. The relative error and time 

response of these points using the optimized schedule are shown in Fig. 5.79 and Fig. 5.80. 

The purpose of this step is to complete the gain scheduling design process for the 

optimally selected schedules. By inspecting the relative error graphs, Fig. 5.77 and Fig. 

5.79, all the relative errors are less than one therefore stability is maintained. The difference 

is that for the baseline schedule the relative error for these six flight conditions is 2.87, 

whereas, for the optimal schedule the relative error is only 1.1. For both schedules, the 

time responses have acceptable characteristics. However, with a lower relative error of 

the optimally scheduled controller, it is easier to design an outer-loop controller to provide 

robust performance throughout the operating envelope. From the lessons learned in these 

optimizations, a general design procedure is developed in the next chapter. 
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VI. General Design Process 

A great deal of experience was gained in designing and optimizing the gain schedules 

presented in chapters IV and V. From this experience a systematic gain scheduling method 

has been developed. The next section presents this formal design process. 

6.1    Gain Scheduling Design 

There are many aspects of the system to consider when designing a controller for a 

real world system. Traditionally, the method of implementing the designed controller is not 

considered until the final stages of the design process. Ideally, the designed controller should 

be robust enough to not require gain scheduling, but more often than not some scheduling is 

required. The design method presented here differs fundamentally from most design methods 

in that the scheduling of the controller is considered at the beginning of the design process. 

There are four steps in the design process and are as follows: 

I. Control Problem Definition First the control designer must select the scheduling variable 

based on criteria provided in [41,30,43,46]. The system should be evaluated to avoid 

selecting a poor scheduling variable as outlined in [43, 46]. Second, the family of 

plants is chosen to represent the extrema of the operating envelope and to sufficiently 

represent the areas between these extrema. The plants should represent the plant 

dynamics accurately. Additionally, for areas of the operating envelope where the plant 

dynamics change rapidly, additional plants should be chosen. 

II. Controller Design Next select a general form of the desired controller. After defining the 

form of the controller, determine the number of controller parameters, nscp, that are to 

be scheduled. For some controllers all of the parameters are scheduled, such as a full 

state feedback gain matrix. In other controllers, such as the one in Chapter V, only some 

of the controller parameters vary. Once the scheduled parameters are identified, design 

a controller at the extrema of the scheduling variable to meet the requirements of the 
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system. This provides upper and lower bound of the scheduled variables, although the 

control designer can extend these bounds to increase the search space. By bounding the 

parameters the control designer is able to define the space of the optimal gain schedule 

controller. 

III. Gain Schedule Optimization Next the gain schedule is optimized using GAs.   The 

scheduling variable is decomposed into n intervals with each interval having an arbitrary 

size. The scheduled parameters are bound by the designs performed in Step II and 

allowed to vary linearly in each interval. The number of intervals is chosen to vary within 

a selected range, n € (nmin,nmax). Additionally, the central flight condition is allowed 

to vary within the family of plants chosen in Step I. For the optimization, the number of 

design variables varies between (nmin + nmi„ x nscp), and(nmax + nmax x nscp). An 

objective function is then defined that measures the gain scheduling error of the family 

of plants. Now, a GA can be used to optimize the objective function with the design 

variables described. 

IV. Analyze Results Finally, select a family of plants not included in the family of Step I. 

Simulate the closed loop response of the system with the scheduled controller to insure 

that the system requirements are achieved. 

6.2   Conclusions 

The objectives set forth in Chapter I were achieved. First, a simple GA was found 

that could be implemented with a common computer-aided control design software package. 

This enables the designer to quickly and efficiently analyze and optimize a gain scheduled 

controller. Second, a method of evaluating and measuring the effectiveness of a gain schedule 

design was developed. This evaluation measure allowed for the comparison of various gain 

schedules. Next, using the gain schedule measurement, a simple gain scheduling problem 

was optimized to validate the use of GAs as an optimization tool. Then, the gain scheduling 

optimization method was used to evaluate a gain schedule designed for an F-18 fighter aircraft. 

It is shown in Chapter V that the gain schedule originally developed could be optimized and 
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the resulting time response of the system was improved. Finally, the lessons learned from this 

research were compiled into a formal design method for designing a gain scheduled controller. 

6.3   Future Research 

Future research efforts could focus on improving the computational efficiency of the 

genetic algorithm. Additionally, the precision of the GA could be improved by using a floating 

point chromosome and a variable mutation operator. These improvements focus on the GA 

itself. The basic approach employed in this effort is to decompose the gain schedule into a 

piecewise function of the scheduling variable. Future work could analyze the direct implement 

ion and optimization of a polynomial scheduling function. Further research is also needed in 

the area of determining global stability and performance for a scheduled controller. 
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Appendix A. F-18 Design Flight Conditions 

Following are the flight conditions and their respective plant matricies that were used 

in the evaluation of the gain scheduled controller. 

Table A.l   Longitudinal Flight Conditions For Optimization 
Mach Number Altitude (ft) tf(psf) a (deg) 

0.3 26000 47.4 25.2 

0.5 40000 68.5 16.8 

0.4 22000 100.1 8.7 
0.6 30000 158.4 5.2 
0.4 6000 189.9 6.0 
0.5 10000 255.0 3.5 
0.6 15000 301.1 2.9 
0.7 18500 355.0 2.4 
0.7 14000 426.4 2.6 
0.6 2000 496.0 1.8 
0.8 14000 557.0 1.4 
0.8 12000 603.0 1.9 
0.95 20000 614.4 1.6 
0.8 10000 652.0 1.7 
0.9 14000 705.0 1.2 
0.8 5000 789.1 1.5 
0.9 10000 825.2 1.4 
0.85 5000 890.8 1.4 
0.95 9000 956.0 0.9 
0.9 5000 998.7 1.3 

Following are the short period longitudinal dynamic plant matricies. The general form 

of the longitudinal short period dynamics is shown in Eq (A.l). 

r   -| r   ■] 

a 
—-ft-long 

a 

m ? _ q 
"long Qc (A.1) 

(A.2) 
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Tab: e A.2   Longitudinal Flight Conditions For Evaluation 
Mach Number 

0.98 
0.99 
0.5 
0.3 
0.2 
0.8 

Altitude (ft) 

40000 
10000 
20000 
15000 
1000 
1000 

g(psf) 

263.3 
998.5 
170.1 
75.3 
57.2 
914.6 

a (deg) 

3.1 
1.0 
5.2 
12.2 
20.8 
1.0 

The notation with the A and B matricies denotes the flight condition. For example, 

Am3h26 denotes the A matrix at Mach 0.3 and altitude 26000 feet. 

Am3h26 
long 

Am5h40 
long 

Am6h30 
(0713 

Am4h22 _ 
long 

Am4h6 
long 

Am7hl4 _ 
long 

AmShW _ 
long 

Am6hl5   
•™-long 

-0.2296 0.9931 

0.02436 -0.2046 

-0.2423 0.9964 

-2.342 -0.1737 

-0.5088 0.994 

-1.131 -0.2804 

-0.4285 0.9916 

-0.7473 -0.3123 

-0.8018 0.9847 

-1.521 -0.5944 

-1.175 0.9871 

-8.458 -0.8776 

-0.8930 0.9852 

-4.1582 -0.6873 

-0.9181 0.9872 

-6.2419 -0.6920 

nm3h26 _ 
long 

Dm5/i40 
long 

Dm6/i30 
long 

Dm4h22 
long 

p>m4h6 
long 

Dro7W4 
long 

E>m5hW 
long 

Dm6/il5 
long 

-0.04034   -0.01145 

-1.73       -0.517 

-0.0416   -0.01141 

-2.595     -0.8161 

-0.09277   -0.01787 

-6.573       -1.525 

-0.0813   -0.0145 

-4.0770   -0.7978 

-0.1508   -0.02776 

-7.926       -1.751 

-0.194   -0.04349 

-19.29       -3.803 

-0.1626   -0.0261 

-10.6454   -2.0318 

-0.1599   -0.0265 

-12.5295   -2.4169 
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Am7hl8.5 _ 
long 

Am6h2 
long 

Am8hl4 
long 

Am8h\2 
long 

Am95h20 _ 
long 

Am8hW 
long 

Am9h\4 
long 

Am8h5 
■"-long 

Am9hW 
long 

Am85h5 
long 

Am95h9 
long 

-0.9920 

-7.8450 

0.9888 

-0.7525 

-1.4710      0.9808 

-11.5022   -1.0846 

-1.4406      0.9868 

-14.2709   -1.0645 

-1.562    0.9862 

-14.94   -1.132 

-1.905      0.9895 

-33.88   -0.9872 

-1.675    0.9853 

-16.16   -1.212 

-2.1163      0.9872 

-32.6459   -1.1826 

-1.994    0.9828 

-19.44   -1.427 

-2.452   0.9856 

-38.61    -1.34 

-2.328    0.9831 

-30.44   -1.493 

-2.8375      0.9855 

-51.8325   -1.4037 

Dm7/il8.5 
long 

jDm6h2   
long 

Dm8/il4 _ 
long 

-0.1652   -0.0274 

-16.1838   -2.8619 

-0.2419   -0.0417 

-21.5227   -3.9738 

-0.2154   -0.0379 

-24.3921   -4.5141 

Dm8hl2 _ 
*-^long 

r>m95h20 
nlong 

TDm8hW 
long 

-.2316   -.04349 

-26.48     -5.323 

-0.1867   -0.03287 

-27.22       -4.573 

-0.2449 

-28.34 

-0.04649 

-5.742 

Dm9M4 _ 
long 

-0.2450 

-32.6358 

-0.0426 

-5.7862 

lDm8h5 
long 

Dm9/il0 _ 
long 

Dm85h5 
long 

-0.2852 

-33.44 

-0.05567 

-6.931 

-0.2757 -0.05226 

-37.36 -7.247 

-0.3012 -0.05866 

-38.43 -7.815 

p>m95h9 __ 
long 

-0.2863   -0.0454 

-42.9285   -6.6039 

Am9h5 _ 
long 

-2.911    0.9835 

-46.47   -1.553 
B 77l9/l5     

-0.3161   -0.06231 

-43.65       -8.752 

The following flight conditions are those used to evaluate the optimal gain schedule. 
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Am98h40 _ 
Along        — 

Am99hl0 
long 

Am5h20 _ 
long 

Am3hl5 
long 

Amlhl _ 
long 

Am8hl __ 
long 

-0.7055 

-17.5821 

0.9949 

-0.4583 

-2.6317     0.9860 

-76.1833   -1.3868 

-0.6199      0.9900 

-1.8909   -0.4433 

-0.3664      0.9887 

0.0321   -0.3425 

-0.3678      0.9843 

0.3351   -0.3022 

-2.2679      0.9803 

-22.8644   -1.6265 

Dm98/i40 
Dlong 

Dm99/il0 
long 

om5/i20 
long 

Dm3/il5 
long 

T3m2h\ 
long 

OrnShl 
long 

-0.0918   -0.0122 

-13.0772   -1.6363 

-0.2783   -0.0390 

-44.1706   -5.8898 

-0.1149   -0.0186 

-7.1405   -1.3628 

-0.0698   -0.0134 

-2.7177   -0.5925 

-0.0719   -0.0146 

-1.9761   -0.4288 

-0.3193   -0.0586 

-37.6778   -7.4086 
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Appendix B. Computer Codes 

B.l   Example Problem Code 

Following is the Matlab® code that was used to evaluate the objective function for 
the sample control problem in chapter IV. There are four m-files shown. The are the fixed 
interval objective function, the variable interval size objective function, the variable interval 
number and size objective function, and the linear schedule objective function, respectively. 

%****************************************** file fixint.m **** 

function  [f ]=fixint (k) ; 

%    This function is an evaluation routine run from genesis to 
% evaluate the distance from the closed loop poles of a system 
% with a given gain to the desired closed loop poles over 
% a range of a varying parameter c. 
% The variable k is a vector of gains for each interval. 

% Define plant transfer function in form l/(s+a) (s"2 + bs + c) 
% Controller k is proportional 

a=6;b=4; 

% The characteristic equation of the closed loop system is 

% sA3 + (a+ b) sA2 + (ab+c) s + ac + k 

total=0; 

interval=[0 2 4 6 8 10]; 

for i=l:5 
for c = interval(i):0.02:interval(i+1) 

r = roots ([1, (a+b), (a*b+c), (a*c+k(i))])'; 
temp = (max(imag(r)) - 2)"2 +  (max(real(r)) + 2)~2; 
total = total + temp; 

end 

end 

f=total; 

return 
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I******************************************* end of file **** 

I***************************************** file varint.m **** 

function [f]=varint(k); 

% This function is an evaluation routine run from genesis to 
% evaluate the distance from the closed loop poles of a 

% system with a given gain to the desired closed loop 
% poles over a range of a varying parameter c. 

% The variable k is a vector of gains for each interval 

% and the four interval break points. 

% Define plant transfer function in form l/(s+a) (s"2 + bs + c) 

% Controller k is proportional 

a=6;b=4; 

% The characteristic equation of the closed loop system is 

% sA3 + (a+ b) sA2 + (ab+c) s + ac + k 

total=0; 

% sort the interval break points k(l)-k(4) in order from 

% lowest to highest 

for 1=1:3 
for i= 1:3 
if k(i)>k(i+l) 

temp = k(i); 
k(i) = k(i+l); 
k(i+l)=temp; 

end 

end 

end 

interval=[0 k(l:4) 10]; 

for i=l:5 
for c = interval(i):0.02:interval(i+1) 

r = roots([l, (a+b), (a*b+c),   (a*c+k(4+i))])' ; 
temp = (max(imag(r)) - 2)"2 +  (max(real(r)) + 2)"2; 
total = total + temp; 
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end 
end 

f=total; 

return 

I******************************************* end of file **** 

I**************************************** file varintn.m **** 

function [f]=varintn(k); 

% This function is an evaluation routine run from genesis 
% to evaluate the distance from the closed loop poles of 
% a system with a given gain to the desired closed loop 
% poles over a range of a varying parameter c. 
% The variable k is a vector of gains for each interval 
% and the four interval break points. The first element 

% of k is the number of intervals (2:8), the next eight 

% elements are the break points (0:10), and the final 

% nine elements are the gains for each interval (-50:50) 

% Define plant transfer function form l/(s+a) (sA2 + bs + c) 

% Controller k is proportional 

a=6;b=4; 

% The characteristic equation of the closed loop system is 

% s~3 + (a+ b) sÄ2 + (ab+c) s + ac + k 

total=0; 

% sort the interval break points k(l)-k(4) in order from 

% lowest to highest 

int=[0 k(2:k(l)) 10]; 

s=length(int); 

for 1=1:3 

for i= 1:3 
if k(i)>k(i+l) 
temp = k(i); 
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k(i) = k(i+l); 
k(i+l)=temp; 

end 

end 

end 

interval=[0 k(l:4) 10]; 

for i=l:k(l) 
for c = interval(i):0.02:interval(i+1) 

r = roots ([1, (a+b), (a*b+c), (a*c+k(9+i))])'; 
temp = (max(imag(r)) - 2)"2 + (max(real(r)) + 2) "2; 

total = total + temp; 

end 
end 

f=total; 

return 

%******************************************* Qxid of file **** 

%*************************************** file sampcoef.m **** 

function [f]=sampcoef(k); 

% This function is an evaluation routine run from genesis 
% to evaluate the distance from the closed loop poles of 
% a system with a given gain to the desired closed loop 

% poles over a range of a varying parameter c. 
% The variable k is a vector of the coefficients of a 
% polynomial function of the scheduling variable c. 

% Define plant transfer function form l/(s+a) (s"2 + bs + c) 

% Controller k is proportional 

a=6;b=4; 

% The characteristic equation of the closed loop system is 

% s~3 + (a+ b) s~2 + (ab+c) s + ac + k 

total=0; 
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for c = 0:0.02:10 
k=polyval(coef,c) ; 
r = roots([1,   (a+b),   (a*b+c),   (a*c+k)])'; 
temp = (max(imag(r)) - 2)'2 +  (max(real (r)) + 2)A2; 
total = total + temp; 
end 

end 

f=total; 

return 

%******************************************* end of file **** 

B.2   F-18 Example Code 

The Matlab© code for the F-18 example varies for each optimization example. First, 
the 'C code that calls the Matlab© engine is presented. Next the code for evaluating the 
baseline design is presented. Next, for simplicity the code for only Cases I, II, V and VII are 
presented. 

%***************************************** file relerr.c **** 
♦include    "extern/include/engine.h" 
♦include   <stdio.h> 
♦include   <stdlib.h> 
♦include   <string.h> 
♦include   "global.h" 

double eval(str, length, vect, genes) 
char str[]; /* string representation */ 

int length; /* length of bit string */ 
double vect[]; /* floating point representation */ 

int genes; /* number of elements in vect */ 

{ 
Matrix *v, *d; 

register int i; 
double sum, *Dreal; 

sum = 0.0; 

/* printf("here"); 

printf("%g\n",*vect); */ 
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v = mxCreateFull(1,genes,REAL); 
memcpy(mxGetPr(v),vect,genes*sizeof(double)); 

mxSetName(v,"V"); 

engPutMatrix(epl, v) ; 

engEvalString(epl,"d=relerr(V)"); 

d = engGetMatrix(epl,"d"); 

Dreal = mxGetPr(d); 
/* printf("%g\n",*Dreal); */ 

mxFreeMatrix(v); 

mxFreeMatrix(d); 

return (*Dreal); 

} 
%******************************************* end of file **** 

%***************************************** file relbase.m **** 

% This program calculates the open and closed loop dynamics of the F-18 

% short period longitudinal dynamics and the Relative error of the closed 

% inner loop for the chosen central flight condition. 

clear numtemp dentemp 

clear nump denp 

F = -40; Kf = [1 1]; G = .0247; 

% Vector of dynamic pressure for 20 flight conditions 
% (Original 12+8 more off design) 

q=[47.4 68.5 100.1 158.4 189.9 255.0 301.1 355.0 426.4 496.0 557.0 ... 

603.0 614.4 652.0 705.0 789.1 825.2 890.8 956.0 998.7] 

% Calculate the scheduled parameters of the inner loop controller 

N=-.312*q+461 
Ml=-.058*q+50.5 

M2=-.006*q+8.11 
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% Calculate the inner loop controller state space form 

1=1; 
for i=l:20 
Akeq(i)=F-G*N(i); 

Bkeq(i,:)=Kf-G*[Ml(i) M2(i)]; 
Ckeq(i)=-N(i); 
Dkeq(i,:)=-[Ml(i) M2(i)]; 

end 

% The central controller is chosen to be the Am95h20 

Akcen=Akeq(13); 
Bkcen=Bkeq(13,:); 

Ckcen=Ckeq(13); 
Dkcen=Dkeq(13,:); 

% Input the dynamics at the 20 flight conditons 

Am3h26= 
Am5h40= 
Am4h22= 

Am6h30= 
Am4h6=[-.8018 

Am5hl0= 
Am6hl5= 
Am7hl8 5=[-.9920 .9888;-7.8450 -.7525]; %Am7hl8_5 *8 

Am7hl4= 
Am6h2=[-1.4710 
Am8hl4= 

Am8hl2= 

Am8hl0= 
Am9hl4= 

-.2296 .9931;.02436 -.2046]; 
-.2423 .9964;-2.342 -.1737]; 

-.4285 .9916;-.7473 -.3123]; 

-.5088 .994/-1.131 -.2804]; 
9847;-1.521 -.5944]; 

■.8930 .9852;-4.1582 -.6873] 
.9181 .9872;-6.2419 -.6920] 

%Am4h22 

%Am5hl0 
%Am6hl5 

*3 

*6 
*7 

-1.175 9871;-8.458 -.8776]; 
9808/-11.5022 -1.0846]; %Am6h2 
.9872;-32.6459 -1.1826]; %Am8hl4 

9862;-14.94 -1.132]; 

Am95h20=[-1.905 .9895;-33.88 -.9872]; 

9853;-16.16 -1.212]; 
•9872;-32.6459 -1.1826] 

-2.1163 
-1.562 . 

-1.675 . 
-2.1163 

Am8h5=[-1.994 .9828/-19.44 -1.427]; 

Am9hl0=[-2.452 .9856;-38.61 -1.34]; 
Am95h9=[-2.8375 . 9855;-51.8325 -1.4037] 

Am85h5=[-2.328 .9831;-30.44 -1.493]; 
Am9h5=[-2.911 .9835;-46.47 -1.553]; 

Acen=[-1.905 .9895;-33.88 -.9872]; 

C=[l 0;0 1]; 

%Am9hl4 

*10 
*11 

*15 

%Am95h9   *19 
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D=[0;0]; 
Blong=[0;l]; 

% The elevator actuator dynamics 

numelev=[ 1/82. 9*2 2*.068/82.9 1]; 

denelev=conv([1/36.4*2 2*.41/36.4 1],[1/105.3*2 2*.59/105.3 1] 

[aact,bact,cact,dact]=tf2ss(numelev,denelev); 

%break 
% Combine the actuator dynamics in the plant 

[Apla,Bpla,Cpla,Dpla]=series(aact,bact,cact 

[Ap2a,Bp2a,Cp2a,Dp2a]=series(aact,bact,cact 
[Ap3a,Bp3a,Cp3a,Dp3a]=series(aact,bact,cact 

[Ap4a,Bp4a,Cp4a,Dp4a]=series(aact,bact,cact 
[Ap5a,Bp5a,Cp5a,Dp5a]=series(aact,bact,cact 
[Ap6a,Bp6a,Cp6a,Dp6a]=series(aact,bact,cact 

[Ap7a,Bp7a,Cp7a,Dp7a]=series(aact,bact,cact 

[Ap8a,Bp8a,Cp8a,Dp8a]=series(aact,bact,cact 
[Ap9a,Bp9a,Cp9a,Dp9a]=series(aact,bact,cact 

[Apl0a,Bpl0a,Cpl0a,Dpl0a 
[Aplla,Bplla,Cplla,Dplla 
[Apl2a,Bpl2a,Cpl2a,Dpl2a 

[Apl3a,Bpl3a,Cpl3a,Dpl3a 
[Apl4a,Bpl4a,Cpl4a,Dpl4a 
[Apl5a,Bpl5a,Cpl5a,Dpl5a 
[Apl6a,Bpl6a,Cpl6a,Dpl6a 
[Apl7a,Bpl7a,Cpl7a,Dpl7a 

[Apl8a,Bpl8a,Cpl8a,Dpl8a 
[Apl9a,Bpl9a,Cpl9a,Dpl9a 
[Ap20a,Bp20a,Cp20a,Dp20a 

=series 
=series 
=series 

=series 
=series 
=series 
=series 
=series 

=series 
=series 
=series 

(aact,bact, 
(aact,bact, 
(aact,bact, 

(aact,bact, 
(aact,bact, 
(aact,bact, 
(aact,bact, 
(aact,bact, 

(aact,bact, 
(aact,bact, 
(aact,bact, 

[Ap0a,Bp0a,Cp0a,Dp0a]=series(aact,bact,cact 

,dact,Am3h26,Blong,C,D) 

,dact,Am5h40,Blong,C,D) 
,dact,Am4h22,Blong,C,D) 
,dact,Am6h30,Blong,C,D) 

,dact,Am4h6,Blong,C,D); 
,dact,Am5hlO,Blong,C,D); 
,dact,Am6hl5,Blong,C,D); 

,dact,Am7hl8_5,Blong,C,D); 
,dact,Am7hl4,Blong,C,D); 
cact,dact,Am6h2,Blong,C,D); 
cact,dact,Am8hl4,Blong,C,D); 
cact,dact,Am8hl2,Blong,C,D); 

cact,dact,Am95h20,Blong,C,D); 
cact,dact/Am8hlO,Blong,C,D); 
cact,dact,Am9hl4,Blong,C,D); 

cact,dact,Am8h5,Blong,C,D); 
cact,dact,Am9hlO,Blong,C,D) 

cact,dact,Am85h5,Blong,C,D) 
cact,dact,Am95h9,Blong,C,D) 
cact,dact,Am9h5,Blong,C,D); 
,dact,Acen,Blong,C,D); 

% Close the inner loop with the corresponding controller 

[Apl,Bpl,Cpl,Dpi]=feedback(Apia,Bpla,Cpla,Dpla,... 

Akeq(l),Bkeq(l,:),Ckeq(l),Dkeq(l,:),1); 
[Ap2,Bp2,Cp2,Dp2]=feedback(Ap2a,Bp2a,Cp2a,Dp2a,... 
Akeq(2),Bkeq(2,:),Ckeq(2),Dkeq(2, :) ,1) ; 

[Ap3,Bp3,Cp3,Dp3]=feedback(Ap3a,Bp3a,Cp3a,Dp3a,... 

Akeq(3),Bkeq(3,:),Ckeq(3),Dkeq(3,:),1); 
[Ap4,Bp4,Cp4,Dp4]=feedback(Ap4a,Bp4a,Cp4a,Dp4a,... 
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Akeq(4),Bkeq(4,:),Ckeq(4),Dkeq(4, :),1); 
[Ap5,Bp5,Cp5,Dp5]=feedback(Ap5a,Bp5a,Cp5a,Dp5a, 

Akeq(5),Bkeq(5,:),Ckeq(5),Dkeq(5, :),1); 

[Ap6,Bp6,Cp6,Dp6]=feedback(Ap6a,Bp6a,Cp6a,Dp6a, 

Akeq(6),Bkeq(6,:),Ckeq(6),Dkeq(6, :),1); 

[Ap7,Bp7,Cp7,Dp7]=feedback(Ap7a,Bp7a,Cp7a,Dp7a, 
Akeq(7),Bkeq(7,:),Ckeq(7),Dkeq(7, :),1); 
[Ap8,Bp8,Cp8,Dp83=feedback(Ap8a,Bp8a,Cp8a,Dp8a, 

Akeq(8),Bkeq(8,:),Ckeq(8),Dkeq(8,:),1); 
[Ap9,Bp9,Cp9,Dp9]=feedback(Ap9a,Bp9a,Cp9a,Dp9a, 
Akeq(9),Bkeq(9,:),Ckeq(9),Dkeq(9, :) ,1) ; 
[AplO,BplO,CplO,DplO]=feedback(AplOa,BplOa,CplOa,DplOa, 

Akeq(10),Bkeq(10,:),Ckeq(10),Dkeq(10,:),1); 
[Apll,Bpll,Cpll,Dpll]=feedback(Aplla,Bplla,Cplla,Dplla, 

Akeq(ll),Bkeq(ll,:),Ckeq(ll) ,Dkeq(ll, :),1); 
[Apl2,Bpl2,Cpl2,Dpl2]=feedback(Apl2a,Bpl2a,Cpl2a,Dpl2a, 

Akeq(12),Bkeq(12,:),Ckeq(12),Dkeq(12, :),1); 
[Apl3,Bpl3,Cpl3,Dpl3]=feedback(Apl3a,Bpl3a,Cpl3a,Dpl3a, 

Akeq(13),Bkeq(13,:),Ckeq(13),Dkeq(13, :),1); 
[Apl4,Bpl4,Cpl4,Dpl4]=feedback(Apl4a,Bpl4a,Cpl4a,Dpl4a, 

Akeq(14),Bkeq(14,:),Ckeq(14),Dkeq(14, :),1); 
[Apl5,Bpl5,Cpl5,Dpl5]=feedback(Apl5a,Bpl5a,Cpl5a,Dpl5a, 

Akeq(15),Bkeq(15,:),Ckeq(15),Dkeq(15,:),1); 
[Apl6,Bpl6,Cpl6,Dpl6]=feedback(Apl6a,Bpl6a,Cpl6a,Dpl6a, 

Akeq(16),Bkeq(16,:),Ckeq(16),Dkeq(16, :),1); 
[Apl7,Bpl7,Cpl7,Dpl7]=feedback(Apl7a,Bpl7a,Cpl7a,Dpl7a, 

Akeq(17),Bkeq(17,:),Ckeq(17),Dkeq(17, :),1); 
[Apl8,Bpl8,Cpl8,Dpl8]=feedback(Apl8a,Bpl8a,Cpl8a,Dpl8a, 

Akeq(18),Bkeq(18,:),Ckeq(18),Dkeq(18, :),1); 
[Apl9,Bpl9,Cpl9,Dpl9]=feedback(Apl9a,Bpl9a,Cpl9a,Dpl9a, 

Akeq(19),Bkeq(19,:),Ckeq(19) ,Dkeq(19, :),1); 
[Ap20,Bp20,Cp20,Dp20]=feedback(Ap20a,Bp20a,Cp20a,Dp20a, 

Akeq(20),Bkeq(20,:),Ckeq(20),Dkeq(20, :),1); 
[ApO,BpO,CpO,DpO]=feedback(ApOa,BpOa,CpOa,DpOa,... 

Akcen,Bkcen,Ckcen,Dkcen,1); 

[Apl,Bpl,Cpl,Dpi]=feedback(Am3h2 6, Blong, C, D,. 

Akeq(l),Bkeq(l,:),Ckeq(l),Dkeq(l, :) ,1) ; 
[Ap2,Bp2,Cp2,Dp2]=feedback(Am5h40,Blong,C,D,. 

Akeq(2),Bkeq(2,:),Ckeq(2),Dkeq(2, :),1); 

[Ap3,Bp3,Cp3,Dp3]=feedback(Am4h22, Blong,C, D,. 

Akeq(3),Bkeq(3,:),Ckeq(3),Dkeq(3, :) ,1) ; 
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[Ap4,Bp4,Cp4,Dp4]=feedback(Am6h30,Blong,C,D,... 

Akeq(4),Bkeq(4,:),Ckeq(4),Dkeq(4,:),1); 
[Ap5,Bp5,Cp5,Dp5]=feedback(Am4h6,Blong,C,D,... 

Akeq(5),Bkeq(5,:),Ckeq(5),Dkeq(5, :) ,1) ; 
[Ap6,Bp6,Cp6,Dp6]=feedback(Am5hl0,Blong,C,D,... 

Akeq(6),Bkeq(6,:),Ckeq(6),Dkeq(6,:),1) ; 
[Ap7,Bp7,Cp7,Dp7]=feedback(Am6hl5,Blong,C,D,... 

Akeq(7),Bkeq(7,:) ,Ckeq(7),Dkeq(7, :) ,1) ; 
[Ap8,Bp8,Cp8,Dp8]=feedback(Am7hl8_5,Blong,C,D,... 

Akeq(8),Bkeq(8,:),Ckeq(8),Dkeq(8, :),1); 
[Ap9,Bp9,Cp9,Dp9]=feedback(Am7hl4,Blong,C,D, ... 

Akeq(9) ,Bkeq(9, :) ,Ckeq(9) ,Dkeq(9, :), 1) ; 
[AplO,BplO,CplO,DplO]=feedback(Am6h2,Blong,C,D,... 

Akeq(10),Bkeq(10,:),Ckeq(10),Dkeq(10,:),1); 
[Apll,Bpll,Cpll,Dpll]=feedback(Am8hl4,Blong,C,D, ... 

Akeq(ll),Bkeq(ll,:),Ckeq(ll),Dkeq(ll, :),1); 
[Apl2,Bpl2,Cpl2,Dpl2]=feedback(Am8hl2,Blong,C,D,... 

Akeq(12),Bkeq(12,:),Ckeq(12),Dkeq(12, :),1); 
[Apl3,Bpl3,Cpl3,Dpl3]=feedback(Am95h20,Blong,C,D/ .. 

Akeq(13),Bkeq(13,:),Ckeq(13),Dkeq(13, :),1); 
[Apl4,Bpl4,Cpl4,Dpl4]=feedback(Am8hlO,Blong,C,D, 

Akeq(14),Bkeq(14,:),Ckeq(14),Dkeq(14, :),1); 
[Apl5,Bpl5,Cpl5,Dpl5]=feedback(Am9hl4,Blong,C,D, 

Akeq(15),Bkeq(15,:),Ckeq(15),Dkeq(15, :), 1) ; 
[Apl6,Bpl6,Cpl6,Dpl6]=feedback(Am8h5,Blong,C,D, . 

Akeq(16),Bkeq(16,:)fCkeq(16),Dkeq(16,:),1); 
[Apl7,Bpl7,Cpl7,Dpl7]=feedback(Am9hlO,Blong,C,D, 

Akeq(17),Bkeq(17,:),Ckeq(17),Dkeq(17,:),1); 
[Apl8,Bpl8,Cpl8,Dpl8]=feedback(Am85h5,Blong,C,D, 

Akeq(18),Bkeq(18,:),Ckeq(18),Dkeq(18,:),1); 
[Apl9,Bpl9,Cpl9,Dpl9]=feedback(Am95h9,Blong,C,D, 

Akeq(19),Bkeq(19,:),Ckeq(19),Dkeq(19,:),1); 
[Ap20,Bp20,Cp20,Dp20]=feedback(Am9h5,Blong,C,D, . 

Akeq(20),Bkeq(20,:),Ckeq(20),Dkeq(20, :),1); 
[ApO,BpO,CpO,DpO]=feedback(Acen,Blong,C,D, ... 

Akcen,Bkcen,Ckcen,Dkcen,l); 

w=logspace(-2,2,200); 

C1=C(1,:);D1=0; 

C2=C(2,:);D2=0; 

% Compute open loop dynamics Pitch acceleration to angle of attack 

B-10 



[svlol 

[sv2ol 

[sv3ol 

[sv4ol 

[sv5ol 

[sv6ol 

[sv7ol 
[sv8ol 
[sv9ol 
[svlOol 

[svllol 

[svl2ol 
[svl3ol 
[svl4ol 
[svl5ol 
[svl6ol 
[svl7ol 

[svl8ol 
[svl9ol 

[sv20ol 

=sigma(Am3h26,Blong,Cl,Dl,w); 

=sigma(Am5h40,Blong,Cl,Dl,w); 

=sigma(Am4h22,Blong,Cl,Dl,w); 

=sigma(Am6h30,Blong,Cl,Dl,w); 

=sigma(Am4h6,Blong,Cl,Dl,w); 

=sigma(Am5hlO,Blong,Cl,Dl,w); 

=sigma(Am6hl5,Blong,Cl,Dl,w); 
=sigma(Am7hl8_5,Blong,Cl,Dl,w) ; 

=sigma(Am7hl4,Blong,Cl,Dl,w); 
]=sigma(Am6h2,Blong,C1,D1,w); 
]=sigma(Am8hl4,Blong,Cl,Dl,w); 

]=sigma(Am8hl2,Blong,Cl,Dl,w); 
]=sigma(Am95h20,Blong,Cl,Dl,w); 
J=sigma(Am8hlO,Blong,Cl,Dl,w); 
]=sigma(Am9hl4,Blong,Cl,Dl,w); 
]=sigma(Äm8h5,Blong,Cl,Dl,w); 
]=sigma(Am9hlO,Blong,Cl,Dl,w); 

]=sigma(Am85h5,Blong,Cl,Dl,w); 
]=sigma(Am95h9,Blong,Cl,Dl,w); 
]=sigma(Am9h5,Blong,Cl,Dl,w); 

% Compute open loop dynamics Pitch acceleration to pitch rate 

[svlo2]=sigma(Am3h26,Blong,C2,D2, w); 
[sv2o2]=sigma(Am5h40,Blong,C2,D2,w); 
[sv3o2]=sigma(Äm4h22,Blong,C2,D2,w); 
[sv4o2]=sigma(Am6h30,Blong,C2,D2,w); 
[sv5o2]=sigma(Am4h6,Blong,C2,D2,w); 

[sv6o2]=sigma(Am5hl0,Blong,C2,D2,w); 
[sv7o2]=sigma(Am6hl5,Blong,C2,D2,w); 
[sv8o2]=sigma(Am7hl8_5,Blong,C2,D2,w); 

[sv9o2]=sigma(Äm7hl4,Blong,C2,D2,w); 

[svl0o2]=sigma(Am6h2,Blong,C2,D2,w); 

[svllo2]=sigma(Am8hl4,Blong,C2, D2, w) ; 
[svl2o2]=sigma(Am8hl2,Blong,C2,D2,w),• 

[svl3o2]=sigma(Am95h20,Blong,C2,D2,w); 

[svl4o2]=sigma(Am8hl0,Blong,C2,D2, w) ; 
[svl5o2]=sigma(Am9hl4,Blong,C2,D2,w); 

[svl6o2]=sigma(Am8h5,Blong,C2,D2,w); 

[svl7o2]=sigma(Am9hlO,Blong,C2,D2,w); 

[svl8o2]=sigma(Am85h5,Blong,C2,D2, w); 
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[svl9o2]=sigma(Am95h9,Blong,C2,D2,w); 
[sv20o2]=sigma(Am9h5,Blong,C2,D2,w); 

% Closed loop singular value analysis (pitch acceleration to pitch rate) 

[svlp2 

[sv2p2 

[sv3p2 

[sv4p2 
[sv5p2 
[sv6p2 

[sv7p2 

[sv8p2 
[sv9p2 
[svl0p2 
[svllp2 
[svl2p2 
[svl3p2 

[svl4p2 
[svl5p2 
[svl6p2 
[svl7p2 
[svl8p2 
[svl9p2 
[sv20p2 

:sigma(Apl,Bpl,Cpl (2, 
:sigma(Ap2,Bp2,Cp2 (2, 
:sigma(Ap3,Bp3,Cp3 (2, 
:sigma(Ap4,Bp4,Cp4(2, 
:sigma(Ap5,Bp5,Cp5 (2, 
:sigma (Ap6,Bp6,Cp6 (2, 
:sigma(Ap7,Bp7,Cp7 (2, 

:sigma(Ap8,Bp8,Cp8(2, 

:sigma(Ap9,Bp9,Cp9(2, 

=sigma(AplO,BplO,CplO 
=sigma(Apll,Bpll,Cpll 
=sigma(Apl2,Bpl2,Cpl2 
=sigma(Apl3,Bpl3,Cpl3 
=sigma(Apl4,Bpl4,Cpl4 

=sigma(Apl5,Bpl5,Cpl5 
=sigma(Apl6,Bpl6,Cpl6 
=sigma(Apl7,Bpl7,Cpl7 
=sigma(Apl8,Bpl8,Cpl8 

=sigma(Apl9,Bpl9,Cpl9 
=sigma(Ap20,Bp20,Cp20 

),Dpl(2, ) / w) ; 

),Dp2(2, ), w) ; 
),Dp3(2, ) / w) ; 
),Dp4(2, ), w) ; 

),Dp5(2, ) / w) ; 

),Dp6(2, ) / w) ; 

),Dp7(2, ) , w) ; 
),Dp8(2, ) , w) ; 

),Dp9(2, ) , w) ; 

(2, ),DplO(2, : ,w) 

(2, ),Dpll(2, : ,w) 

(2, ),Dpl2(2,: ,w) 

(2, ),Dpl3(2, : ,w) 

(2, ),Dpl4(2,: ,w) 

(2, ),Dpl5(2, : ,w) 

(2, ),Dpl6(2, : ,w) 

(2, ),DP17(2,: ,w) 

(2, ),Dpl8(2, : ,w) 

(2, ),Dpl9(2, : ,w) 

(2, ),Dp20(2, : ,w) 

Reduce the closed loop system to SISO (pitch acceleration to angle of attack) 

Cpl=Cpl(l,:) 
Cp2=Cp2(l,:) 
Cp3=Cp3(l, :) 

Cp4=Cp4(l,:) 
Cp5=Cp5(l, :) 

Cp6=Cp6(l, :) 
CP7=Cp7(l,:) 

Cp8=Cp8(l, :) 
Cp9=Cp9(l,:) 
CplO=CplO(l, 

Cpll=Cpll(l, 
Cpl2=Cpl2(l, 

Cpl3=Cpl3(l, 

Cpl4=Cpl4(l, 

Dpl=Dpl(l,:) 
Dp2=Dp2(l,:) 

Dp3=Dp3(l,:) 
Dp4=Dp4(l, :) 

Dp5=Dp5(l,:) 

Dp6=Dp6(l,:) 

Dp7=Dp7(l,:) 

Dp8=Dp8(l, :) 
Dp9=Dp9(l,:) 
);DplO=DplO(l, 
);Dpll=Dpll(l, 

);DP12=Dpl2(l, 

);Dpl3=Dpl3(l, 
);Dpl4=Dpl4(l, 
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Cpl5=Cpl5(l, 

Cpl6=Cpl6(l, 

Cpl7=Cpl7(l, 

Cpl8=Cpl8(l, 

Cpl9=Cpl9(l, 

Cp20=Cp20(l, 

Dpl5=Dpl5(l, 

Dpl6=Dpl6(l, 

Dpl7=Dpl7(l, 

Dpl8=Dpl8(l, 

Dpl9=Dpl9(l, 

Dp20=Dp20(l, 

CpO=CpO(l,:);DpO=DpO(l,:); 

% Closed loop singular value analysis (pitch acceleration to angle of attack) 

[svlp] 

[sv2p] 

[sv3p] 

[sv4p] 

[sv5p] 

[sv6p] 

[sv7p] 

[sv8p] 

[sv9p] 

[svlOp 

[svllp 

[svl2p 

[svl3p 

[svl4p 

[svl5p 

[svl6p 

[svl7p 

[svl8p 

[svl9p 

[sv20p 

=sigma(Apl,Bpl,Cpl,Dpl,w) 
:sigma (Ap2, Bp2, Cp2, Dp2, w) 
:sigma (Ap3, Bp3, Cp3, Dp3, w) 

:sigma(Ap4,Bp4,Cp4,Dp4,w) 
:sigma(Ap5,Bp5,Cp5,Dp5,w) 
:sigma(Ap6,Bp6,Cp6,Dp6,w) 
:sigma(Ap7,Bp7,Cp7,Dp7,w) 

^sigma(Ap8,Bp8,Cp8,Dp8,w) 

:sigma(Ap9,Bp9,Cp9,Dp9,w) 

=sigma(AplO,BplO,CplO,DplO,w) 

=sigma(Apll,Bpll,Cpll,Dpll,w) 

=sigma(Apl2,Bpl2,Cpl2,Dpl2,w) 

=sigma(Apl3,Bpl3,Cpl3,Dpl3,w) 

=sigma(Apl4,Bpl4,Cpl4,Dpl4,w) 

=sigma(Apl5,Bpl5,Cpl5,Dpl5,w) 

=sigma(Apl6,Bpl6,Cpl6,Dpl6,w) 

=sigma(Apl7,Bpl7,Cpl7,Dpl7,w) 

=sigma(Apl8,Bpl8,Cpl8,Dpl8,w) 

=sigma(Apl9,Bpl9,Cpl9/Dpl9,w) 

==sigma(Ap20,Bp20,Cp20,Dp20,w) 

Convert state space to transfer function for computation of relative error 

[nump(1, 

[nump(2, 

[nump(3, 

[nump(4, 

[nump(5, 

[nump(6, 

[nump(7, 

[nump(8, 

[nump(9, 

, denp (1, 

,denp(2, 

, denp(3, 

, denp(4, 

, denp(5, 

, denp(6, 

,denp(7, 

, denp(8, 

,denp(9, 

=ss2tf 

=ss2tf 

=ss2tf 

=ss2tf 

=ss2tf 

=ss2tf 

=ss2tf 

=ss2tf 

=ss2tf 

(Apl,Bpl, 

(AP2,Bp2, 

(AP3,Bp3, 

(Ap4,Bp4, 

(Ap5,Bp5, 

(Ap6,Bp6, 

(Ap7,Bp7, 

(Ap8,Bp8, 

(Ap9,Bp9, 

Cpl,Dpl) 

Cp2,Dp2) 

Cp3,Dp3) 

Cp4,Dp4) 

Cp5,Dp5) 

Cp6,Dp6) 

Cp7,Dp7) 

Cp8,Dp8) 

Cp9,Dp9) 
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[numpCLO, :) ,denp(10, :) ]=ss2tf (AplO,BplO,CplO,DplO) 
[nump(ll,:),denp(ll,:)]=ss2tf(Apll,Bpll,Cpll,Dpll) 
[nump(12,:),denp(12,:)]=ss2tf(Apl2,Bpl2,Cpl2,Dpl2) 
[nump(13,:),denp(13,:)]=ss2tf(Apl3,Bpl3,Cpl3,Dpl3) 
[nump(14/:),denp(14,:)]=ss2tf(Apl4,Bpl4,Cpl4,Dpl4) 
[nump(15,:),denp(15,:)]=ss2tf(Apl5,Bpl5,Cpl5,Dpl5) 
[nump(16, :),denp(16, :)]=ss2tf(Apl6,Bpl6,Cpl6,Dpl6) 
[nump(17,:),denp(17,:)]=ss2tf(Apl7,Bpl7,Cpl7,Dpl7) 
[nump(18,:),denp(18,:)]=ss2tf(Apl8,Bpl8,Cpl8,Dpl8) 
[nump(19, :),denp(19, :) ]=ss2tf (Apl9,Bpl9,Cpl9,Dpl9) 
[nump(20,:),denp(20,:)]=ss2tf(Ap20,Bp20,Cp20,Dp20) 
[nump0,denp0]=ss2tf(ApO,BpO,CpO,DpO); 

% Reduce the transfer fuction to essential parts  (chop off added zeros) 
nump=nump(:,3:4) 
nump0=nump0(3:4) 

numpO=nump(13,:);denpO=denp(13,:); 

% Compute Relative Error (Po-P)PoA-l 

for i=l:20 

numtemp(i,:)=conv(nump(i,:),denpO)-conv(numpO,denp(i,:)); 

dentemp(i,:)=conv(denp(i,:),nump0); 

end 

% Convert back to state space for singular value analysis 

[al,bl,cl,dl =t f2 ss(numtemp(1, ),dentemp(l, )) 
[a2,b2,c2,d2 =tf2ss(numtemp(2, ),dentemp(2, )) 
[a3,b3,c3,d3 =tf2ss(numtemp(3, ),dentemp(3, )) 
[a4,b4,c4,d4 =tf2ss(numtemp(4, ),dentemp(4, )) 
[a5,b5,c5,d5 =tf2ss(numtemp(5, ),dentemp(5, )) 
[a6,b6,c6,d6 =tf2ss(numtemp(6, ),dentemp(6, )) 
[a7,b7,c7,d7 =tf2ss(numtemp(7, ),dentemp(7, )) 
[a8,b8,c8,d8 =tf2ss(numtemp(8, ),dentemp(8, )) 
[a9,b9,c9,d9 =tf2ss(numtemp(9, ) ,dentemp(9, )) 
[al0,bl0,cl0 dl0]=tf2ss(numtemj 3(10, ),dentemp(10, )) 
[all,bll,cll dll]=tf2ss(numtemj 3(11, ),dentemp(ll, )) 
[al2,bl2,cl2 dl2]=tf2ss(numtemj >(12, ),dentemp(12, )) 
[al3,bl3,cl3 dl3]=tf2ss(numtemj 3(13, ),denten ap(! L3, )) 
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[al4,bl4,cl4,dl4] 

[al5,bl5,cl5,dl5] 

[al6,bl6,cl6,dl6] 

[al7,bl7,cl7,dl7] 

[al8,bl8,cl8,dl8] 

[al9,bl9,cl9,dl9] 

[a20,b20,c20,d20] 

=tf2ss(numtemp(15, 

=tf2ss(numtemp(15, 

=tf2ss(numtemp(16, 

=tf2ss(numtemp(17, 

=tf2ss(numtemp(18, 

=tf2ss(numtemp(19, 

=tf2ss(numtemp(20, 

,dentemp(15, 

,dentemp(15, 

,dentemp(16, 

,dentemp(17, 

,dentemp(18, 

,dentemp(19, 

,dentemp(20, 

% Singular value analysis 

(svl 

[sv2 

[sv3 

[sv4 

[sv5 

[sv6 

[sv7 

tsv8 

[sv9 

[svlO 

[svll 

[svl2 

[svl3 

[svl4 

[svl5 

[svl 6 

[svl7 

[svl8 

[svl 9 

[sv20 

:sigma 

■sigma 
:sigma 
:sigma 
:sigma 
:sigma 

sigma 
:sigma 

sigma 

=sigma 

=sigma 

=sigma 

=sigma 

=sigma 

=sigma 

=sigma 

=sigma 

=sigma 

=sigma 

=sigma 

(al,bl,cl, 

(a2,b2,c2, 

(a3,b3,c3, 

(a4,b4,c4, 

(a5,b5,c5, 

(a6,b6,c6, 

(a7,b7,c7, 

(a8,b8,c8, 

(a9,b9,c9, 

(alO,blO, 

(all,bll, 

(al2,bl2, 

(al3,bl3, 

(al4,bl4, 

(al5,bl5, 

(al6,bl6, 

(al7,bl7, 

(al8,bl8, 

(al9,bl9, 

(a20,b20, 

dl,w) 

d2,w) 

d3,w) 

d4,w) 

d5,w) 

d6,w) 

d7,w) 

d8,w) 

d9,w) 

clO,dlO,w) 

cll,dll,w) 

cl2,dl2,w) 

cl3,dl3,w) 

cl4,dl4,w) 

cl5,dl5,w) 

cl6,dl6,w) 

cl7,dl7,w) 

cl8,dl8,w) 

cl9,dl9,w) 

c20,d20,w) 

J=max(svl)+max(sv2)+max(sv3)+max(sv4)+max(sv5)+max(sv6)+max(sv7)+max(sv8)+. 

max (sv9)+max(svl0)+max(svll)+max(svl2)+max(svl3)+max(svl4)+max(svl5)+. . . 

max(svl6)+max(svl7)+max(svl8)+max(svl9)+max(sv2 0) 

toe 

figure (1) 
loglog (w, svl, w, sv2, w, sv3, w, sv4, w, sv5, w, sv6, w, sv7, w, sv8, w, sv9, w, svlO, w, svl 1, 
W,svl2,w,svl3,w,svl4,w,svl5,w,svl6,w,svl7,w,svl8,w,svl9,w,sv20) 

%title('Baseline Closed Inner Loop Relative Error') 

xlabel('w (rad/sec)') 
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ylabel('Singular Value') 

axis([.01 100 .0001 1]) 

print -deps relbase 

figure (2) 
loglog (w, svlp, w, sv2p, w, sv3p, w, sv4p, w, sv5p, w, sv6p, w, sv7p, w, sv8p, w, sv9p,. .. 

w, svlOp, w, svllp,w,svl2p,w,svl3p,w,svl4p,w,svl5p,w,svl6p,w,svl7p,w,svl8p,. 

w,svl9p,w,sv20p) 
xlabel('w (rad/sec)') 
ylabel('Singular Value') 
%title('Pitch Acceleration to Angle of Attack Closed Inner-Loop Dynamics') 

axis([.01 100 .0001 .1]) 

print -deps basecla 

figure (3) 
loglog(w,svlol,w,sv2ol,w, sv3ol,w, sv4ol,w,sv5ol,w,sv6ol,w,sv7ol,w,sv8ol,.. 

w,sv9ol,w,svl0ol,w,svllol,w,svl2ol,w,svl3ol,w,svl4ol,w,svl5ol,w,svl6ol,.. 

w,svl7ol,w,svl8ol,w,svl9ol,w,sv20ol) 

xlabel('w (rad/sec)') 
ylabel(' Singular Value') 
%title('Pitch Acceleration to Angle of Attack Open Inner-Loop Dynamics') 

print -deps olalpha 

figure (4) 
loglog(w,svlo2,w,sv2o2,w,sv3o2,w,sv4o2,w,sv5o2,w,sv6o2,w,sv7o2,w,sv8o2,.. 
w, sv9o2,w,svl0o2,w,svllo2,w,svl2o2,w, svl3o2,w, svl4o2,w, svl5o2, w, svl6o2, . . 

w,svl7o2,w,svl8o2,w,svl9o2,w,sv20o2) 

xlabel('w (rad/sec)') 

ylabel('Singular Value') 
%title('Pitch Acceleration to Pitch Rate Open Inner-Loop Dynamics') 

print -deps olpitch 

figure (5) 
loglog(w,svlp2,w,sv2p2,w,sv3p2,w,sv4p2,w,sv5p2,w,sv6p2,w,sv7p2,w,sv8p2,.. 
w,sv9p2,w, Svl0p2,w,svllp2,w,svl2p2,w, svl3p2,w, Svl4p2,w,svl5p2,w,svl6p2,.. 

w,svl7p2,w,svl8p2,w,svl9p2,w,sv20p2) 

xlabel('w (rad/sec)') 

ylabel(' Singular Value') 
%title('Pitch Acceleration to Pitch Rate Closed Inner-Loop Dynamics') 

axis([.01 100 .001 1]) 
print -deps baseclp 
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% Load the outer loop controller 

longout 

% Combine the outer loop controller and the Closed inner loop 

[Aool,Bool,Cool,Dool]=series(Akoutlow,Bkoutlow,Ckoutlow,Dkoutlow,... 

Apl,Bpl,Cpl,Dpl); 
[Aoo2,Boo2,Coo2,Doo2]=series(Akoutlow,Bkoutlow,Ckoutlow,Dkoutlow,... 

Ap2,Bp2,Cp2,Dp2); 
[Aoo3,Boo3,Coo3,Doo3]=series(Akoutlow,Bkoutlow,Ckoutlow,Dkoutlow, .. . 

Ap3,Bp3,Cp3,Dp3); 
[Aoo4,Boo4,Coo4,Doo4]=series(Akoutlow,Bkoutlow,Ckoutlow,Dkoutlow,... 

Ap4,Bp4,Cp4,Dp4); 
[Aoo5,Boo5,Coo5,Doo5]=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,... 

Ap5,Bp5,Cp5,Dp5); 
[Aoo6,Boo6,Coo6,Doo6]=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,... 

Ap6,Bp6,Cp6,Dp6) ; 
[Aoo7,Boo7,Coo7,Doo7]=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,... 

Ap7,Bp7,Cp7,Dp7); 
[Aoo8,Boo8,Coo8,Doo8]=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,... 

Ap8,Bp8,Cp8,Dp8); 
[Aoo9,Boo9,Coo9,Doo9]=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh,... 

Ap9,Bp9,Cp9,Dp9) ; 
[AoolO,BoolO,CoolO,DoolO 
AplO,BplO,CplO,DplO); 
[Aooll,Booll,Cooll,Dooll 
Apll,Bpll,Cpll,Dpll); 
[Aool2,Bool2,Cool2,Dool2 

Apl2,Bpl2,Cpl2,Dpl2); 
[Aool3,Bool3,Cool3,Dool3 
Apl3,Bpl3,Cpl3,Dpl3); 
[Aool4,Bool4,Cool4,Dool4 

Apl4,Bpl4,Cpl4,Dpl4); 

[Aool5,Bool5,Cool5,Dool5 

Apl5,Bpl5,Cpl5,Dpl5); 
[Aool6,Bool 6,Cool 6,Dool6 
Apl6,Bpl6,Cpl6,Dpl6); 
[Aool7,Bool7,Cool7,Dool7 

Apl7,Bpl7,Cpl7,Dpl7); 

[Aool8,Bool8,Cool8,Dool8 

Apl8,Bpl8,Cpl8,Dpl8); 
[Aool9,Bool9,Cool9,Dool9 

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh, 

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh, 

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh, 

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh, 

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh, 

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh, 

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh, 

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh, 

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh, 

=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh, 
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Apl9,Bpl9,Cpl9,Dpl9); 
[Aoo20,Boo20,Coo20,Doo20]=series(Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh, 

Ap20,Bp20,Cp20,Dp20); 

% Close the outer loop with negative feedback 

[Aol,Bol,Col,Dol 

[Ao2,Bo2,Co2,Do2 

[Ao3,Bo3,Co3,Do3 
[Ao4,Bo4,Co4,Do4 
[Ao5,Bo5,Co5,Do5 

[Ao6,Bo6,Co6,Do6 
[Ao7,Bo7,Co7,Do7 

[Ao8,Bo8,Co8,Do8 

[Ao9,Bo9,Co9,Do9 
[AolO,BolO,ColO,DolO 
[Aoll,Boll,Coll,Doll 
[Aol2,Bol2,Col2,Dol2 

[Aol3,Bol3,Col3,Dol3 
[Aol4,Bol4,Col4,Dol4 

[Aol5,Bol5,Col5,Dol5 
[Aol6,Bol6,Col6,Dol6 
[Aol7,Bol7,Col7,Dol7 

[Aol8,Bol8,Col8,Dol8 
[Aol9,Bol9,Col9,Dol9 
[Ao20,Bo20,Co20,Do20 

=cloop(Aool,Bool 

=cloop(Aoo2,Boo2 
=cloop(Aoo3,Boo3 
=cloop(Aoo4,Boo4 
=cloop(Aoo5,Boo5 

=cloop(A006, B006 

=cloop(Aoo7,Boo7 
=cloop(Aoo8,Boo8 

=cloop(Aoo9,Boo9 
]=cloop(AoolO 

]=cloop(Aooll 
]=cloop(Aool2 

]=cloop(Aool3 
]=cloop(Aool4 

]=cloop(Aool5 
]=cloop(A00I6 
]=cloop(Aool7 

]=cloop(Aool8 

]=cloop(Aool9 
]=cloop(Aoo20 

Cool,Dool,- 

Coo2,Dool,- 
Coo3,Doo3,- 
Coo4,Doo4,- 

Coo5,Doo5,- 

Coo6,Doo6,- 
Coo7,Doo7,- 

Coo8,Doo8,- 
Coo9,Doo9,- 

BoolO,CoolO 
Booll,Cooll 
Bool2,Cool2 

Bool3,Cool3 
Bool4,Cool4 
Bool5,Cool5 
Bool6,Cool6 
Bool7,Cool7 

Bool8,Cool8 

Bool9,Cool9 
Boo20,Coo20 

1) 

1) 
1) 
1) 
1) 

1) 

1) 
1) 
1) 
,DoolO 
,Dooll 
,Dool2 

,Dool3 
,Dool4 

,Dool5 
,Dool6 
,Dool7 

,Dool8 
,Dool9 
,Doo20 

-1) 
-1) 
-1) 

-1) 
-1) 
-1) 
-1) 
-1) 

-1) 
-1) 
-1) 

Get step response of closed outer loop 

t=0:.l 
[yl,xl 

[y2,x2 
[y3,x3 

[y4,x4 

[y5,x5 

[y6,x6 
[y7,x7 

[y8,x8 
[y9,x9 

5; 
=step(Aol,Bol,Col,Dol,l,t) 
=step(Ao2,Bo2,Co2,Do2,l,t) 
=step(Ao3,Bo3,Co3,Do3,l,t) 

=step(Ao4,Bo4,Co4,Do4,l,t) 

=step(Ao5,Bo5,Co5,Do5,l,t) 
=step(Ao6,Bo6,Co6,Do6,l,t) 

=step(Ao7,Bo7,Co7,Do7,1,t) 
=step(Ao8,Bo8,Co8,Do8,l,t) 

=step(Ao9,Bo9,Co9,Do9,l,t) 
[ylO,xlO]=step(AolO,BolO,ColO,DolO,l,t) 

[yll,xll]=step(Aoll,Boll,Coll,Doll,l,t) 
[yl2,xl2]=step(Aol2,Bol2,Col2,Dol2,l,t) 

[yl3,xl3]=step(Aol3,Bol3,Col3,Dol3,l,t) 
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[yl4,xl4]=step(Aol4,Bol4,Col4,Dol4,l,t); 
[yl5,xl5]=step(Aol5,Bol5,Col5,Dol5,l,t); 
[yl6,xl6]=step(Aol6,Bol6,Col6,Dol6,l,t); 
[yl7,xl7]=step(Aol7,Bol7,Col7,Dol7,l,t); 
[yl8,xl8]=step(Aol8,Bol8,Col8,Dol8,l,t); 
[y19,xl9]=step(Aol9,Bol9,Col9,Dol9,l,t); 
[y20,x20]=step(Ao20,Bo20,Co20,Do20,l,t); 
e=sum(abs(sum([  (yl-yl3),(yl-yl3),(y2-yl3),(y3-yl3),(y4-yl3),(y5-yl3),(y6-yl3),(y7- 
(y8-yl3),(y9-yl3),(yl0-yl3),(yll-yl3),(yl2-yl3),(yl4-yl3),(yl5-yl3) 
(yl6-yl3),(yl7-yl3),(yl8-yl3),(yl9-yl3),(y20-yl3)]))) 
figure (6) 
Plot(t,yl,t,y2,t,y3/t,y4,t/y5/t,y6,t,y7,t,y8,t,y9,t,yl0,t/yll,t,yl2,... 

t,yl3/t,yl4,t,yl5,t,yl6,t,yl7,t,yl8,t,yl9,t,y20) 
xlabel('Time (sec)') 
ylabel('Amplitude') 
grid 
axis([0 5 0 1.3]) 
print -deps timebase 
%******************************************* end of file **** 

%***************************************** fi]_e relerr.m **** 

function j=relerr(k) 

% This function will take the given minimal order Hinf 
% controller Keq and calculate the relative error to the 

% chosen central controller 

clear numtemp dentemp nump denp 

SV=[];j=0; 
F = -40; Kf = [1 1]; G = .0247; 

1=1; 
for i=l:4 
Akeq(i)=F-G*k(l); 
Bkeq(i,:)=Kf-G*[k(l+l) k(l+2)]; 
Ckeq(i)=-k(l); 
Dkeq(i,:)=-[k(l+l) k(l+2)]; 

1=1+3; 

end 

Akcen=Akeq(3); 
Bkcen=Bkeq(3,:); 
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Ckcen=Ckeq(3); 
Dkcen=Dkeq(3,:); 

% Input the dynamics at the 20 flight conditions 

numSYS=20; 

Along=[47.4,0;[-.2296 . 

68.5,0;[-.2423 .9964;-2 

100.1,0 
158.4,0 
189.9,0 
255.0,0 

301.1,0 

355.0,0 
426.4,0 
496.0,0 
557.0,0 
603.0,0 

614.4,0 

652.0,0 
705.0,0 

789.1,0 
825.2,0 
890.8,0 
956.0,0 
998.7,0 
inf,0]; 
C=[l 0;0 1]; 

D=[0;0]; 
Blong=[0;l]; 

-.4285 .9916;- 
-.5088 .994;-! 
-.8018 .9847;- 
-.8930 .9852;- 

-.9181 .9872;- 
-.9920 .9888;- 
-1.175 .9871;- 

-1.4710 .9808; 
-2.1163 .9872; 
-1.562 .9862;- 

905 .9895;- 

675 .9853;- 
-2.1163 .9872; 

-1.994 .9828;- 
-2.452 .9856;- 

-2.328 .9831;- 
-2.8375 .9855; 
-2.911 .9835;- 

9931;.02436 -.2046]; 

.342 -.1737]; %Am5h40 

.7473 -.3123] 

.131 ■ 
1.521 
4.1582 -.6873] 

6.2419 -.6920] 
7.8450 -.7525] 
8.458 -.8776]; %Am7hl4 
-11.5022 -1.0846]; %Am6h2 
-32.6459-1.1826]; %Am8hl4 

%Am3h26 

%Am4h22 
.2804]; %Am6h30 
-.5944]; %Am4h6 

%Am5hl0 

%Äm6hl5 
%Am7hl8 

*3 

*6 
*7 

*8 

-1 
-1 

14.94 -1.132] 
33.88 -.9872] 
16.16 -1.212] 

%Am8hl2; 

%Am95h20; 

%Am8hlO; 
-32.6459 -1.1826]; %Äm9hl4 

19.44 -1.427]; %Am8h5; 
38.61 -1.34]; %Am9hlO; 

30.44 -1.493] %Am85h5; 
-51.8325 -1.4037]; %Am95h9 
46.47 -1.553]; %Am9h5; 

*10 
*11 

*15 

*19 

w=logspace(-2,2,50) ; 
int=[250 500 750 1000]; 

r=l;i=l;count=l; 
for i = 1:4 
while Along(r,1) < int(i) 

[Ap,Bp,Cp,Dp]=feedback(Along(r+l:r+2,:),Blong,C,D,Akeq(i) , . 

Bkeq(i,:),Ckeq(i),Dkeq(i,:) ,1); 
[nump(count,:),denp(count,:)]=ss2tf(Ap,Bp,Cp(1,:),Dp(l,:)); 
[svcla]=sigma(Ap,Bp,Cp(l,:),Dp(1,:),w); 
SVcla=[SVcla;svcla]; 
[svclp]=sigma(Ap,Bp,Cp(2,:),Dp(2,:),w); 
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SVclp=[SVclp;svclp]; 
r=r+3; 

count=count+l; 

end; 

i=i+l; 

end; 

% Reduce the transfer function to essential parts 

% (chop off added zeros) 
nump=nump(:,3:4) 
numpO=nump(13,:) 

denp0=denp(13,:) 

% Compute Relative Error (Po-P)Po'-l 

for z=l:20 
numtemp=conv(nump(z,:),denpO)-conv(numpO,denp(z,:)); 

dentemp=conv(denp(z,:),numpO); 
[a,b,c,d]=tf2ss(numtemp,dentemp); 

[sv]=sigma(a,b,c,d,w) ; 

SV=[SV;sv]; 
j=j+max(sv); 

end 

return 
%******************************************* end of file **** 

%***************************************** file relend.m **** 

function j=relend(k) 

% This function will take the given minimal order Hinf 

% controller Keq and calculate the relative error to the 

% chosen central controller 

numtemp=[];dentemp=[];numSYS=0;Ap=[];Bp=[];Cp=[];Dp=[];j=[0]; 

n=45; 
F = -40; Kf = [1 1]; G = .0247; 

1=4; 
for i=l:4 

Akeq(i)=F-G*k(l); 
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Bkeq(i, :)=Kf-G*[k(l+l) k(l+2)]; 

Ckeq(i)=-k(l); 

Dkeqfi,:)=-[k(l+l) k(l+2)]; 

1=1+3; 

end 

% Following are the flight conditions used in the 

% evaluation of relative error. 

A=[47.4,0; 
68.5,0;[-. 
100.1,0 

158.4,0 
189.9,0 

255.0,0 
301.1,0 
355.0,0 
426.4,0 

496.0,0 
557.0,0 
603.0,0 
614.4,0 
652.0,0 

705.0,0 
789.1,0 
825.2,0 
890.8,0 
956.0,0 

998.7,0 
inf,0]; 

[-.2296 .9931 
.2423 .9964;-2 

-.4285 .9916;- 

-.5088 .994;-l 

-.8018 .9847;- 
-.8930 .9852;- 
-.9181 .9872;- 

-.9920 .9888;- 
-1.175 .9871;- 

-1.4710 .9808; 
-2.1163 .9872; 
-1.562 .9862;- 
-1.905 .9895;- 
-1.675 .9853;- 
-2.1163 .9872; 
-1.994 .9828;- 
-2.452 .9856;- 
-2.328 .9831;- 

-2.8375 .9855; 
-2.911 .9835;- 

,-.02436 -.204 
.342 -.1737]; 

.7473 -.3123] 

.131 -.2804] ; 
1.521 -.5944] 

4.1582 -.6873 
6.2419 -.6920 
7.8450 -.7525 
8.458 -.8776] 
-11.5022 -1.0 

-32.6459 -1.1 
14.94 -1.132] 

33.88 -.9872] 
16.16 -1.212] 

-32.6459 -1.1 
19.44 -1.427] 

38.61 -1.34]; 
30.44 -1.493] 
-51.8325 -1.4 

46.47 -1.553] 

6];  %Am3h26 

%Am5h40 
; %Am4h22 

%Am6h30 
; %Am4h6 

]; %Am5hl0 
]; %Am6hl5 
]; %Am7hl8_5 
; %Am7hl4 

846]; %Am6h2 
826]; %Am8hl4 
%Am8hl2; 
%Am95h20; 
%Am8hlO; 

826] ; %Mi9hl4 
; %Am8h5; 
%Am9hlO; 
%Am85h5; 
037]; %Am95h9 

; %Am9h5; 

C=[l 0;0 1]; 

D=[0;0]; 
Blong=[0;l]; 

% note i = interval number 

int=[k(l:3) 1000]; 
s=length(int); 

for 1=1:(s-1) 
for i= 1:(s-1) 
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if int(i)>int(i+1) 
temp = int(i); 

int(i) = int(i+1); 

int(i+l)=temp; 

end 

end 

end 

r=l;i=l; 
while i <= 4 
while A(r,1)< int(i) 

numSYS=numSYS+l; 
[Ap,Bp,Cp,Dp]=feedback(A(r+l:r+2,:),Blong,C,D, ... 

Akeq(i),Bkeq(i,:),Ckeq(i),Dkeq(i,:),1); 
[nump(numSYS,:),denp(numSYS,:)]=ss2tf(Ap,Bp,Cp(1,:),Dp(l,:)); 

r=r+3; 
end; 

i=i+l; 

end; 

w=logspace(-2,2,n); 

numpO=nump(13,:); 
denpO=denp(13,:); 

for z=l:numSYS 
numtemp=conv(nump(z,:),denpO)-conv(numpO, denp (z, :)) ; 

dentemp=conv(denp(z,:),numpO); 
numtemp=numtemp(:,3:7) ; 
dentemp=dentemp(:, 3:7) ; 

[a,b,c,d]=tf2ss(numtemp,dentemp); 
[sv]=sigma(a,b,c,d,w) ; 
j=j+max(sv); 

end 

return 
%******************************************* en(j of file **** 

%***************************************** fiie relnum.m **** 

function j=relnum(k) 
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% This function will take the given minimal order Hinf 
% controller Keq and calculate the relative error to 

% the chosen central controller 

numtemp=[];dentemp=[];numSYS=0; j=[0] ; 

n=45; 

F = -40; Kf = [1 1]; G = .0247; 

% Calculate the controller for each interval 

% Note i = interval number 

1=10; 
for i=l:k(l) 
Akeq(i)=F-G*k(l); 
Bkeq(i,:)=Kf-G*[k(l+l) k(l+2}]; 
Ckeq(i)=-k(l); 
Dkeq(i,:)=-[k(l+l) k(l+2)]; 

1=1+3; 

end 

% Following are the flight conditions used in the evaluation 

% of relative error. 

A=[47.4,0; 
68.5,0; [-. 
100.1,0 
158.4,0 

189.9,0 
255.0,0 
301.1,0 
355.0,0 
426.4,0 

496.0,0 
557.0,0 

603.0,0 
614.4,0 
652.0,0 

705.0,0 

789.1,0 

825.2,0 

890.8,0 

[-.2296 .9931 
.2423 .9964;-2 
-.4285 .9916;- 
-.5088 .994;-l 
-.8018 .9847;- 
-.8930 .9852;- 
-.9181 .9872;- 

-.9920 .9888;- 
-1.175 .9871;- 

-1.4710 .9808; 
-2.1163 .9872; 
-1.562 .9862;- 

-1.905 .9895;- 
-1.675 .9853;- 

-2.1163 .9872; 

-1.994 .9828;- 

-2.452 .9856;- 

-2.328 .9831;- 

,-.02436 -.204 
.342 -.1737]; 
.7473 -.3123] 
.131 -.2804]; 

1.521 -.5944] 
4.1582 -.6873 

6.2419 -.6920 
7.8450 -.7525 
8.458 -.8776] 

-11.5022 -1.0 

-32.6459 -1.1 
14.94 -1.132] 

33.88 -.9872] 
16.16 -1.212] 

-32.6459 -1.1 
19.44 -1.427] 

38.61 -1.34]; 
30.44 -1.493] 

6];  %Am3h26 

%Am5h40 
; %Am4h22 

%Am6h30 

; %Am4h6 
]; %Am5hl0 
]; %Am6hl5 

]; %Am7hl8_5 
; %Am7hl4 

846]; %Am6h2 

826]; %Am8hl4 
%Am8hl2; 

%Am95h20; 
%Am8hlO; 

826]; %Am9hl4 

; %Am8h5; 

%Am9hlO; 
%Am85h5; 
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956.0,0;[-2.8375 . 9855;-51.8325 -1.4037]; %Am95h9 

998.7,0;[-2.911 .9835;-46.47 -1.553] ; %Am9h5; 

inf,0]; 

C=[l 0;0 1]; 

D=[0;0]; 
Blong=[0;l]; 

% Sort the interval break points from lowest to highest 

int=[k(2:k(l)),1000]; 

s=length(int); 

for 1=1:(s-1) 
for i= 1:(s-1) 
if int(i)>int(i+l) 
temp = int (i) ; 
int(i) = int(i+l); 

int(i+1)=temp; 
end 

end 
end 

% Check the dynamic pressure of the flight condition and 
% close the inner loop with the appropriate controller 

% for the interval. 
% Then convert from state space to transfer function form. 

r=l;i=l; 
while i <= k(l) 
while A(r,l)< int(i) 
numSYS=numSYS+l; 
[Ap,Bp,Cp,Dp]=feedback(A(r+l:r+2,:),Blong,C,D, .. 

Akeq(i),Bkeq(i,:),Ckeq(i),Dkeq(i, :) ,1) ; 
[nump(numSYS,:),denp(numSYS,:)]=ss2tf(Ap,Bp,Cp(l,:),Dp(l,:)); 

r=r+3; 
end; 
i=i+l; 

end; 

% Select the central controller and calculate the relative error 

w=logspace(-2,2,n); 
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numpO=nump(k (37), :); 
denpO=denp(k(37),:); 

for z=l:numSYS 
numtemp=conv(nump(z,:),denpO)-conv(numpO,denp(z, :) 

dentemp=conv(denp(z,:),numpO); 

numtemp=numtemp(:, 3:7); 

dentemp=dentemp(:, 3:7) ; 
[a,b,c,d]=tf2ss(numtemp,dentemp); 
[sv]=sigma(a,b,c,d,w); 
j=j+max(sv); 

end 

D=D 

return 
%******************************************* end of file **** 

%*************************************** file relinter.m **** 

function j=relinter(k) 

% This function will take the given minimal order Hinf 
% controller Keq and calculate the relative error to 

% the chosen central controller 

e=[];numSYS=0;j=[0]; 

n=45; 
F = -40; Kf = [1 1]; G = .0247; 

% Following are the flight conditions used in the 

% evaluation of relative error. 

A=[47.4,0;[-.2296 .9931;.02436 -.2046];  %Am3h26 
68.5,0;[-.2423 .9964;-2.342 -.1737]; %Am5h40 

100.1,0 
158.4,0 

189.9,0 

255.0,0 

301.1,0 
355.0,0 

426.4,0 

[-.4285 .9916;-.7473 -.3123]; %Am4h22 
[-.5088 .994;-l.131 -.2804]; %Am6h30 

[-.8018 .9847;-!.521 -.5944]; %Am4h6 

[-.8930 .9852;-4.1582 -.6873] 

[-.9181 .9872;-6.2419 -.6920] 

[-.9920 .9888;-7.8450 -.7525] 

%Am5hl0 

%Am6hl5 
%Am7hl8 5 

[-1.175 .9871;-8.458 -.8776]; %Am7hl4 
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496.0,0 [-1 4710 .9808 •-11.5022 -1.08463; %Am6h2 
557.0,0 [-2 1163 .9872 •-32.6459 -1.1826]; %Am8hl4 

603.0,0 [-1 562 9862;- -14.94 -1.132]; %Am8hl2; 

614.4,0 [-1 905 9895;- -33.88 -.9872]; %Am95h20; 

652.0,0 [-1 675 9853;- -16.16 -1.212]; %Am8hlO; 

705.0,0 [-2 1163 .9872 •-32.6459 -1.1826]; %Am9hl4 

789.1,0 [-1 994 9828;- -19.44 -1.427]; %Am8h5; 

825.2,0 [-2 452 9856;- -38.61 -1.34]; %Am9hlO; 

890.8,0 [-2 328 9831;- -30.44 -1.493] %Am85h5; 

956.0,0 [-2 8375 .9855 •-51.8325 -1.4037]; %Am95h9 
998.7,0 [-2 911 9835;- -46.47 -1.553]; %Am9h5; 

inf,0]; 

C=[l 0;C l]; 
D=[0;0], 
Blong=[( );1], 

% Sort the interval break points from lowest to highest 

int=[45,k(2:k(l)),1000]; 

s=length(int); 

for 1=1:(s-1) 

for i= 1:(s-1) 
if int(i)>int(i+1) 
temp = int(i); 
int(i) = int(i+1) ; 
int(i+1)=temp; 

end 

end 
end 

% Check the dynamic pressure of the flight condition to 

% determine which interval endpoints to use. Calculate 

% the corresponding values of N and M. 
% Form the controller Keq, close the inner loop and 
% convert to transfer function form for the relative error 

% calculation. 

ni=10;mli=20;m2i=30; 

r=l;i=l; 
while i <= k(l) 

B-27 



while A(r,l)< int(i+l) 
numSYS=numSYS+l; 

N=k(ni) + (k(ni+1)-k(ni))*((A(r,1)-int(i))/(int(i+1)-int(i))) ; 

Ml=k(mli)+(k(mli+1)-k(mli))*((A(r,1)-int(i))/(int(i+1)-int(i))); 

M2=k(m2i) + (k(m2i+l)-k(m2i))*((A(r,1)-int(i))/(int(i+1)-int(i))) ; 

Akeq=F-G*N; 

Bkeq=Kf-G*[Ml M2]; 

Ckeq=-N; 
Dkeq=-[M1 M2]; 
[Ap,Bp,Cp,Dp]=feedback(A(r+l:r+2,:),Blong,C,D, ... 

Akeq,Bkeq,Ckeq,Dkeq,1); 
[nump(numSYS,:),denp(numSYS,:)]=ss2tf(Ap,Bp,Cp(l,:) ,Dp(l, :)) ; 

r=r+3; 

end; 
i=i+l;ni=ni+l;mli=mli+l;m2i=m2i+l; 

end; 

% Select the central controller and calculate the relative error 

w=logspace(-2,2,n) ; 

nump=nump(:, 3:4); 

numpO=nump(k(40),:); 
denp0=denp(k(40),:); 

for z=l:numSYS 
numtemp=conv(nump(z,:),denp0)-conv(numpO,denp(z,:)); 

dentemp=conv(denp(z,:),numpO); 
[a,b,c,d]=tf2ss(numtemp,dentemp) ; 

[sv]=sigma(a,b,c,d,w); 

j=j+max(sv); 

end 

% Close the outer loop and calculate the step response 

longout % a file containing the outer loop controller 

for z=l:5 
[nums(z, :),dens(z,:)]=series(numoutlow,denoutlow,... 

nump(z,:),denp(z,:)); 
[numcl(z,:),dencl(z,:)]=cloop(nums(z,:),dens(z, :) ,-1); 

end 
for z=6:numSYS 
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[nums(z,:),dens(z,:)]=series(numouthigh,denouthigh, ... 
nump(z, :) ,denp(z, :)) / 

[numcl(z,:),dencl(z,:)]=cloop(nums(z,:),dens(z,:),-1); 
end 

t=0:.l:5; 

for z=l:numSYS 
[y,x]=step(numcl(z,:),dencl(z, :), t) ; 
Y=[Y,y];X=[X,x]; 

end 

% Calculate the error of the step response 

for z=l:numSYS 
e(:,z)=Y(:,z)-Y(:,k(40)); 

end 
e=sum(abs(sum(e))); 

j=j+e 

return 
%******************************************* end of file **** 

%**************************************** file longout.m **** 

% Outer loop longitudinal controller 

Kouthigh=1.1995e2; 
zouthigh=[-2.418e3,-5.4039+7.25721,-5.4039-7.25721]'; 
pouthigh=[-7.1836el+4.0476eli,-7.1836el-4.0476eli,-7.2319e-2,-2.0509el]'; 

Koutlow=1.2951e2; 
zoutlow=[-6.0168e2,-3.8407+6.25071,-3.8407-6.25071]' ; 
poutlow=[-5.9135el+5.1963eli,-5.9135el-5.1963eli,-3.6321e-2,-6.6426]'; 

[numouthigh,denouthigh]=zp2tf(zouthigh,pouthigh,Kouthigh); 

[numoutlow,denoutlow]=zp2tf(zoutlow,poutlow,Koutlow); 
[Akoutlow,Bkoutlow,Ckoutlow,Dkoutlow]=zp2ss(zoutlow,poutlow,Koutlow); 

[Akouthigh,Bkouthigh,Ckouthigh,Dkouthigh]=zp2ss(zouthigh,pouthigh,Kouthigh); 

%******************************************* end of file **** 
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