Predicting Protein Structure

Using Parallel Genetic Algorithms

THESIS
Gieorge H. Gates. Jr.
Captain. United States Air Force

| AFIT/GCS/ENG/94D-03

!

for public rzizmie and sale; 13
distribunon is uniiminsd

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
e A R e R————

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/94D-03

“Accesion For T
e e S W
NTIS CRA&I A 5
DT TAB S
Unannounced U]
Justfication
By Predicting Protein Structure
Distribution/ 7T . . .
_w°fj’ml/m o Using Parallel Genetic Algorithms
Availab
T han
Dist s THESIS
i : George H. Gates, Jr.
A } [! Captain, United States Air Force
AP A R .
AFIT/GCS/ENG/94D-03
This document has been cmpru;;\,i
for public rsleass and sale; itg
distribution iz uniimited, _ -

Approved for public release; distribution unlimited

AFIT/GCS/ENG/94D-03

Predicting Protein Structure

Using Parallel Genetic Algorithms

THESIS

Presented to the Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science

George H. Gates, Jr., B.S.

Captain, United States Air Force

13 December 1994

Approved for public release; distribution unlimited

Table of Contents

Page

Acknowledgements e ii
List of Figures o o i e vii
List of Tables o . i e e e e e e b
Abstract L e e e xi
I Introduction o o i i e e e e e e e e 1-1
1.1 Algorithmic Complexity oL 1-1

1.2 Genetic Algorithms o o e 1-3

1.3 The Protein Folding Problem 1-3

1.4 Problem Statement 1-4

1.5 Scope of Investigation and Rationale 1-5

1.6 Methodology e 1-7

1.7 Summary o e e e e e e e e 1-8

II. Genetic Algorithm (GA) Literature Review 2-1
2.1 Brief History of Evolutionary Algorithms 2-2

2.2 Simple Genetic Algorithm (SGA). 2-4

2.2.1 Simple Genetic Algorithm Operators 2-5

2.2.2 Simple Genetic Algorithm Parameters 2-7

2.2.3 Mathematical Theory of How (Why) Simple GAs Work . . . 2-7

2.3 Messy Genetic Algorithm (mGA). 2-9

2.3.1 Messy Genetic Algorithm Operators 2-9

2.3.2 Messy Genetic Algorithm Parameters 2-10

2.3.3 Mathematical Theory of How (Why) Messy GAs Work . . . 2-11

iii

Page

2.4 Fast Messy Genetic Algorithm (fmGA) 2-12
2.4.1 Fast Messy Genetic Algorithm Operators 2-12

2.4.2 Fast Messy Genetic Algorithm Parameters. 2-13

2.4.3 Mathematical Theory of How (Why) Fast Messy GAs Work . 2-13

2.5 Parallel Genetic Algorithms oL 2-14
2.5.1 Decomposition Techniques. 2-14

2.5.2 Island and Neighborhood Model 2-15

2.6 Summaryo h e e e e e e e e e e e 2-16
ITII. The Protein Folding Problem Literature Review 3-1
3.1 Introduction to Proteins and Associated Terminology 3-1
3.2 Experimental Tertiary Structure Determination 3-3
3.3 Tertiary Structure Prediction (PFP) 3-5
3.3.1 Classical Prediction Methods 3-5

3.3.2 Other Prediction Methods 3-7

3.4 SUMIMATY . & v v v v i e e e e e e e e e e e e e e e e e e e 3-7
IV. Genetic Algorithm (GA) Design and Implementation 4-1
4.1 GA High-Level Design oo v vt v oo 4-2
4.1.1 Simple Genetic Algorithm 4-3

4.1.2 Messy Genetic Algorithm 4-7

4.1.3 Fast Messy Genetic Algorithm 4-7

4.2 GA Low-Level Design and Implementation 4-14
4.2.1 Simple Genetic Algorithm 4-14

4.2.2 Messy and Fast Messy Genetic Algorithms 4-16

4.3 Genetic Algorithm Fitness Functions for Energy Minimization 4-16
4.3.1 Previous Energy Model Designs 4-17

4.3.2 Energy Model Design Enhancements 4-18

iv

4.3.3 Implementation Details

4.4 SUMINATY .« ¢« v v v o v e e e e e e e e e e e e
V. Genetic Algorithm Experiment Designs,
5.1 Test Molecule. i
5.2 Energy Model Validation

5.3 Simple Genetic Algorithm Parameters for Protein Energy Minimization
5.3.1 Problems with Conservative Theoretical Population Sizing . .
5.3.2 Comparison with Other Empirical Results
533 TestDesignt

5.4 Comparison of SGAs and fmGAs for the Protein Folding Problem . .

5.4.1 Parallel Communication Strategies

5.4.2 Test Design i i i e

5.5 SUMIMATY . .+ .+« ¢ o it e e e e e e e e e e e e e

VI. Experimental Results and Analysis
6.1 Energy Model Validation

6.2 Simple Genetic Algorithm Parameters for Protein Energy Minimization

6.3 Evaluation of SGAs and fmGAs for the Protein Folding Problem . . .

6.3.1 Parallel Simple GAs,

6.3.2 ParallelfmGAs

6.4 SUMINATY v v it e

VII. Conclusions and Future Directions e e e e e e e
7.1 Conclusions o v ittt e e e e e e e e e

7.2 Future Research Recommendations

7.3 Summary o e e e e e e e e e e e e e e e e

5-1
5-1
5-1
5-3
5-3
5-5

5-5

7-1
7-1
7-2

7-4

Appendix A.

Building Block Filtering Schedule Test Data

Al Emergy Values e e

A.2 Sample Building Blocks 0oL

Appendix B.

A.2.1 Original Schedule.

A.2.2 Constant 80% Schedule

Bl Code e e e

B.2 Output e e

Appendix C.

Protein Visualization and Comparison

C.1 Translation Process for Energy Comparison and Local Minimization .

C.2 Printing Protein Conformations

..

..

vi

B-1
B-1
B-1

List of Figures

Figure Page
1.1. AFIT’s Genetic Algorithm Toolkit (Current Status) 1-6
2.1. Simple Genetic Algorithm Data Structures and Terminology 2-4
2.2. Single-Point Crossover i e e e 2-5
2.3. Bitwise Mutation e e e 2-5
2.4. Roulette Wheel Selection o 2-6
2.5. Psuedo Algorithm for Simple GAso .. 2-6
2.6. Psuedo Algorithm for Messy GAs 2-11
2.7. Psuedo Algorithm for Fast Messy GAs 2-13
3.1. A Three Amino Acid Protein 3-2
3.2. ProteinBond Length L o L 3-4
3.3. Protein Bond Angle e 3-4
3.4. Protein Dihedral Angle e 3-4
4.1. UNITY Description of a Simple Genetic Algorithzﬁ 4-5
4.2. UNITY Description of SGA Inmitialization. 4-5
4.3. UNITY Description of Roulette-Wheel Selection 4-6
4.4. TUNITY Description of Single Point Crossover 4-6
4.5. UNITY Description of Bitwise Mutation 4-6
4.6. UNITY Description of a Messy Genetic Algorithm 4-8
4.7. UNITY Description of Partially Enumerative Initialization 4-9
4.8. UNITY Description of mGA Tournament Selection 4-10
4.9. UNITY Description of Cut and Splice 4-11
4.10. UNITY Description of Splice i i i it i e i e 4-11
4.11. UNITY Descriptionof Cut o oo oL, 4-12

vii

Figure

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

5.1.
5.2.

5.3.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

6.14.
6.15.
6.16.

6.17.

UNITY Description of a Fast Messy Genetic Algorithm
UNITY Description of Probabilistically Complete Initialization
UNITY Description of fmGA Tournament Selection
Incorrect Dependent Dihedral Angle Rotation
Correct Dependent Dihedral Angle Rotation

Dihedral Angle Periodicity L o o o o

Extended Conformation of [Met]-enkephalin
Parameter Settings for Parallel SGA 0.

Parameter Settings for Parallel fmGA,

GA Minimized Conformation of [Met]-enkephalin
Superimposed Conformations of [Met]-enkephalin (View #1)
Superimposed Conformations of [Met]-enkephalin (View #2)
Mean Online Performance (Population Size =10)
Mean Online Performance (Population Size =20)
Mean Online Performance (Population Size =30)
Mean Online Performance (Population Size =50)
Mean Online Performance (Population Size =100)
Mean Online Performance (Population Size = 200)
Parallel SGA Average Minimum Energy (Global Population Size Fixed at 640)
Parallel SGA Average Execution Time (Global Population Size Fixed at 640)
Parallel SGA Speedup (Global Population Size Fixed at 640)
Parallel SGA Average Minimum Energy (Subpopulation Size Fixed at 20) . . .
Parallel SGA Average Execution Time (Subpopulation Size Fixed at 20)
Parallel SGA Speedup (Subpopulation Size Fixed at 20)
Parallel SGA Efficiency (Subpopulation Size Fixed at 20).

Parallel fmGA Average Minimum Energy (Subpopulation Size Fixed at 32)

viii

Page
4-13
4-14
4-15
4-19
4-19

4-20

5-2
5-9

5-12

6-3

6-4

6-7
6-8
6-8

6-9

6-10
6-10
6-11
6-12
6-13
6-13
6-14
6-15

6-15

Figure Page
6.18. Parallel fmGA Average Execution Time (Subpopulation Size Fixed at 32) . . . 6-16
6.19. Parallel fmGA Speedup (Subpopulation Size Fixed at 32) 6-17

6.20. Parallel fmGA Average Minimum Energy (Global Population Size Fixed at 4096) 6-17
6.21. Parallel fmGA Average Execution Time (Global Population Size Fixed at 4096) 6-18

6.22. Parallel fmGA Speedup (Global Population Size Fixed at 4096) 6-19

ix

Table

1.1.

3.1.

3.2.

4.1.

4.2

4.3.

5.1.

5.2.

5.3.

5.4.

5.5.

6.1.
6.2.
6.3.
6.4.
6.5.

6.6.

Al

List of Tables

Size of Problems Solvablein One Hour

Enumeration Time of a 1.3 X 103° Search Space at One Solution per Clock Cycle

Time Complexity of Energy Minimization Methods

Available Genetic Algorithm Implementations
AFIT Applications and Associated Hardware/Software Platforms

Energy Component Comparison,

Dihedral Angles for Accepted Energy Minimum [Met]-enkephalin

Theoretical Population Size Required for Optimal Solution Convergence of [Met]-
enkephalin L e e e e

Comparison of Empirically Determined GA Parameter Settings
Parallel SGA Communication Parameter Settings

Average Energy for Alternate Building Block Filtering Schedules

Energy Component Comparison, [Met]-enkephalin Native Conformation

Energy Component Comparison, [Met}-enkephalin Near-Optimal Conformation
Energy Component Comparison, [Met]-enkephalin Random Conformation
Energy Component Comparison, [Met]-enkephalin GA Best Found Conformation
Dihedral Angle Comparison, [Met]-enkephalin GA Best Found Conformation . .

Best Online Pool e e e e e e e

3-6

4-1

4-2

5-4
5-5
5-8

5-10

6-1

6-2

AFIT/GCS/ENG/94D-03

Abstract

The protein folding problem is a Grand Challenge problem in biochemistry. The challenge is to
reliably predict the natural three-dimensional structure of a polypeptide given only the arrangement
of its constituent atoms. Energy minimization is a classical method used to predict the natural
conformation of such molecules. This study enhances an energy model implementation that is

integrated with genetic algorithms to minimize polypeptide energy and predict natural structure.

Genetic algorithms (GAs) are robust, semi-optimal search techniques modeled after evolution
theories. The most commonly used simple genetic algorithms (SGAs) consist of three genetic
operators: crossover, mutation, and selection. The operators manipulate populations of strings
that represent solutions to specific domain problems. Deceptive problems limit the effectiveness of
SGAs and their convergence is extremely dependent on several GA parameters. Fast messy GAs
(fmGAs) are variants of messy GAS that reduce the exponential time complexity to polynomial.
All of these genetic algorithm variations can be parallelized with several parallel communication
strategies influencing their computational performance. This investigation evaluates the merits of

parallel SGAs and fmGAs for minimizing the potential energy of a pentapeptide, [Met]-enkephalin.

AFIT’s energy model is compared to a similar model in a commercial package called QUANTA.
Differences between the two models are identified and resolved to enhance GAs’ abilities to correctly

fold molecules. The steps required to unify the behavior of the two implementations is presented.

The effectiveness of SGAs while minimizing the potential energy of [Met]-enkephalin is shown
to be highly dependent on the choice of population size and mutation rate. It is also demonstrated
that choosing parameters from the guidelines proposed by Schaffer’s work cause SGAs to realize

their near-optimal performance on this particular real-world application.

Parallel SGAs, using appropriate parameters, are capable of finding near-optimal conforma-
tions of [Met]-enkephalin. Parallel fmGAS should ultimately be able to find better solutions in less
time. The experiments performed in this investigation are designed to determine the limitations
of parallel SGAs and fmGAs applied to polypeptide energy minimization. The results from these

experiments are used to identify research directions critical to increasing the maturity of fmGAs.

Predicting Protein Structure

Using Parallel Genetic Algorithms

1. Introduction

Since the beginning of the Information Age, computers have been applied to problems that
need to be solved quickly and accurately. In the past, when these problems couldn’t be solved
fast enough by the current technology, new hardware devices were developed that could meet the
processing requirements. However, with the impending introduction of TeraFLOP computers’, we

are currently approaching the physical limits of electronic computing devices (17:1-2).

Recent research efforts have turned toward creating general search/optimization algorithms
designed to attack these difficult problems (34:2-6)(26). There are two areas we are pursuing at
the Air Force Institute of Technology (AFIT); parallel computing and semi-optimal algorithms.
Parallel computing is a field that tries to describe how problem solutions should be decomposed
so computations can be accomplished on many processors simultaneously (54:2-3). Semi-optimal
algorithms are being explored as a means to obtain good solutions to intractable problems (20, 62).
We combine these disciplines using parallel genetic algorithms to solve a variety of complex problems

(65, 3, 72, 61).

One problem that AFIT is particularly interested in is the protein folding problem. The
protein folding problem is an intractable problem contained in a class known as Grand Challenge
problems (9). The challenge is to find a method of predicting the 3-dimensional structure of a
protein given its defining sequence of amino-acids. An enumerative search of the entire solution
space for even the smallest proteins would consume more time than the estimated age of the universe

on today’s supercomputers!
1.1 Algorithmic Complezity

For large problems, the efficiency of an algorithm depends more on its algorithmic complexity

than on the speed of the particular machine on which it’s executed. Optimization problems involve

1A computer that can process one trillion floating point operations per second

1-1

an explicit or implicit search of the entire solution space to guarantee the best solution is found

(73:7-8). However, the execution time for such a search typically grows exponentially with respect
to the size of the given problem. This growth severely limits our ability to solve practical problems
of any significant size. Table 1.1 compares the sizes of problems that could be solved by using
either faster computers or better algorithms. The table illustrates why solutions with polynomial

time complexity are preferred over exponential solutions.

Table 1.1 Size of Problems Solvable in One Hour (assuming one evaluation per clock cycle)

Hardware Algorithmic Problem Size
Capability Complexity Solved (n)
GigaFLOP | Exponential (2") 41
TeraFLOP | Exponential (27) 51
GigaFLOP | Polynomial (n?) 1,897,366
TeraFLOP | Polynomial (n?) 60,000,000

As we approach the physical limits of single processor computers, our attention has turned to
parallel computer architectures for increased performance. Many architectures exist which exploit
different parallelization schemes. The two primary architectures are single instruction stream, mul-
tiple data stream (SIMD) and multiple instruction stream, multiple data stream (MIMD) (54:16-17).
The single program, multiple data (SPMD) parallel programming model is often implemented on a
MIMD architecture (54:528). Another class of parallel computer architecture involves distributed
computing on existing networks of workstations. Each of these architectures has benefits and lim-
itations with respect to particular applications, communication and dependencies between tasks,

and data and task distributions.

Contemporary paralle]l computers have from two to one thousand processors, and plans are
being drawn for architectures with more than one million nodes (83). The major stumbling block in
applying parallel computing has been our inability to conceptualize parallel approaches to problem
solving. We tend to think and solve problems sequentially, but the sequential solutions to problems
rarely transform into quality parallel solutions (54). A few algorithms can be easily parallelized
using simple data or control decomposition techniques (60). However, overhead costs, in the forms
of task scheduling, task management, synchronization, and load balancing, limit the performance

of those programs. Existing parallel program design languages include UNITY (7), Communicating

1-2

Sequential Processes (CSP) (47), and Petri-Nets (74). Each method proposes a unique way to treat

parallelism as an additional level of abstraction in the program design process.

Parallel performance is typically measured by execution time compared to sequential algo-
rithms. Parallel solutions are said to be scalable if additional processors can be used efficiently,
and thus reduce the overall execution time (54:6). The goal of parallel algorithm design is to either

reduce the time complexity of an algorithm or create an algorithm that is (infinitely) scalable.

1.2 Genetic Algorithms

Genetic algorithms (GAs) are a relatively new class of semi-optimal search/optimization al-
gorithms that exhibit the desired traits listed previously (48)(34:1-2). The execution time of a
genetic algorithm is typically dominated by the calculation of a fitness function. This function is

problem dependent, but is usually of polynomial time complexity.

Genetic algorithms work on populations of solutions called strings. Simple GAs perform
three basic operations on strings in the population: selection, crossover, and mutation (34). The
algorithm steps through these three operations repeatedly until some stopping criteria are met.
The execution of a single GA iteration is called a generation. Because GAs are loosely based on
natural evolution, many of the terms associated with natural evolution are used interchangeably

with terms created specifically for genetic algorithms (55).

GAs are easily parallelized because the simplest approach is a SPMD model which puts
multiple copies of the same program on each processor and selects the best solution after all

processors have finished.

1.3 The Protein Folding Problem

Polypeptides (proteins) are defined by their sequence of amino-acids, or primary structure (6).
The function(s) of a protein is determined by its 3-dimensional shape, or tertiary structure (58).
Current experimental techniques are an effective means to decode the primary structure of a protein.
However, the cost associated with the experimental determination of an arbitrary protein’s tertiary

structure is currently prohibitive. Without a breakthrough in physical experimental techniques or

1-3

some other currently unknown field, reliable tertiary structure prediction remains as the only viable

protein structure identification alternative.

Nuclear magnetic resonance (NMR) spectography and X-ray crystallography are the two
experimental techniques for determining the 3-dimensional structure of a protein. However, both
approaches can expend more than two years of laboratory effort to find the tertiary structure of a
single protein (58). To reduce the gap between the number of known protein sequences and tertiary
structures (the difference is now two orders of magnitude and growing (58)), we need to be able to

reliably predict the tertiary structure of proteins in a reasonable amount of time.

There are two classical techniques for predicting the tertiary structure of proteins: energy
minimization and molecular dynamics. Energy minimization methods use a potential energy func-
tion to evaluate the stability of a protein conformation (57). Applied to problems with n atoms,
the time complexity of a force-field energy model is O(n?), while an exact model is O(n®) (58).
Since n > 1000 is the norm, energy minimization techniques typically use the less computationally
intensive force-field models. The topology of the energy landscape contains many local minima
which, combined with the huge size of the conformational search space, precludes the use of clas-
sical optimization techniques. The probabilistic nature of genetic algorithms can be exploited to
escape local minima in an effort to find the global optimum.

Molecular dynamics attempts to simulate the protein folding process. However, the time

1% sec) to accurately

steps required for this simulation are on the order of one femtosecond (10~
account for thermal oscillations of the protein. Using current supercomputer technology, only a few
hundred picoseconds (107! sec) of the folding process can be simulated, while the actual folding
process may span more than half a second. In addition, the forces used for the simulation are

typically calculated using the force fields described above (58:5-7).

1.4 Problem Statement

AFIT’s Genetic Algorithm Toolkit contains general implementations of several serial and
parallel genetic algorithms (20, 62) and evaluation functions for several domain specific problems

(3, 72, 61) (See Figure 1.1). The goal of this investigation is to evaluate the performance of these

1-4

GAs as they’re applied to the protein folding problem. Specifically, we use genetic algorithms to
search for low-energy conformations of [Met]-enkephalin and try to answer the following questions:
. Which genetic algorithm finds the best solutions and why?
. What are the performance issues and tradeoffs associated with parallel GAs?

1
2
3. How do the parameter settings for GAs affect their performance?
4

. Are these techniques generally applicable to the protein folding problem?

1.5 Scope of Investigation and Rationale

There are three major objectives of this investigation. First, we must validate the energy
function used to search for minimum energy protein conformations. Validation is in the form of
comparison with a proprietary implementation of the same energy model. Then, we want to estab-
lish sets of parameters that cause a simple genetic algorithm to produce low-energy conformations
of the polypeptide [Met]-enkephalin. Finally, we’ll compare the performance of two different genetic
algorithms and their parallel implementations. The attainment of these objectives will provide a

basis on which to recommend future research directions.

Two important assumptions also limit the scope of this research:

e The GAs in AFIT’s Genetic Algorithm Toolkit work correctly.
e The CHARMm energy model implemented by QUANTA is correct.

Additionally, it’s assumed that a reader is familiar with basic concepts associated with computer

science, discrete mathematics, and statistics as an aid to understanding Chapters IV through VI.

In terms of the protein folding problem, the goal of this research is to determine if genetic
algorithms can effectively predict the tertiary structure of proteins within an acceptable amount
of time, using serial or parallel computation. However, we do not expect GAs using energy min-
imization to be capable of folding arbitrarily large proteins (> 200 residues). The intended uses
of energy minimization GAs include: determining the tertiary structure of small proteins (< 100
amino acids) and non-linear optical (NLO) polypeptides; folding the interesting portions of large
proteins that have not been resolved experimentally (loop regions for example); and identifying

promising, locally optimal structures as input for other optimization techniques.

1-5

Genetic

Algorithm

Parallel Implementation
(Sawyer)

Communication Strategies
(Merkle)

(Brinkman)

Protein Folding Problem
Initial Energy Model Energy Model Refinement

Protein Folding Problem

(Gates)

Messy
Genetic
Algorithm

Premature Fast Messy

Convergence Genetic
Strategies Algorithm
(Dymek)

Initial Implementation
GA-hard Problems
(Dymek)

Combinatoric Optimization
Data Distribution Strategies

(Merkle)

Initial Implementation

Parallel Implementation
(Merkle)

Additional Parallelization
Protein Folding Problem

(Gates)

Permutation
Genetic
Algorithm

Figure 1.1 AFIT’s Genetic Algorithm Toolkit (Current Status)

1-6

Solving the protein folding problem implies the ability to reliably predict the tertiary structure
of any protein once given the primary structure of that protein. Knowing the function of the various
proteins present in our own bodies could lead to many new medical and scientific breakthroughs:

e Preventing or curing disease

o Repairing genetic disorders or birth defects

o Developing disease or pest resistant strains of plants

The solution of the protein folding problem is also significant because it could provide insight
into its complementary problem, which is: given a particular function we desire a protein to perform,
what is the primary sequence of a protein that will fold into a tertiary structure that will perform
that function? The solution of this complementary problem would allow biochemists to design new
polypeptides with a single, specific purpose. It would then be technically possible to develop new

drugs with little or no side effects.

The application of genetic algorithms to the protein folding problem also provides us with
empirical evidence we can use to evaluate their applicability to other practical problems. We
are particularly interested in establishing the factors that enhance or limit a GA’s capability to
perform a robust search and provide near-optimal solutions for a wide variety of problems. Thus,
any theoretical or practical knowledge gained from this research could be beneficial to many other

domains that contain a search or optimization problem as a major component.

1.6 Methodology

The original energy model implemented at AFIT (3) is enhanced to account for the relation-
ships between an independently variable dihedral angle and all other dihedral angles defined by the
same first three atoms. This new structural model is integrated with a simple genetic algorithm.
Parametric tests are executed to establish a "good” parameter set for the simple genetic algorithm
search process. The energy model is then integrated with a parallel simple genetic algorithm, a
fast messy genetic algorithm, and a parallel fast messy genetic algorithm. The performance of
these four probabilistic search algorithms is then compared using the enhanced energy model and

parameters from the empirically determined best parameter set.

1-7

1.7 Summary

Performance gains from computational hardware advances are unlikely to have a significant
impact on our ability to solve large, complex optimization problems. These irregular problems
require the use of suitable semi-optimal algorithms that may trade some amount of solution quality
for substantially reduced execution times. Scalable algorithms are also preferred so we can take
full advantage of emerging parallel computer architectures to further reduce execution time and/or
solve larger problems. This thesis effort evaluates the performance and scalability of one class
of semi-optimal algorithms (GAs) applied to a particular irregular problem (the protein folding

problem).

This chapter introduced the general research problem, described the main elements of our
approach, and rationalized the need to expend the research effort on genetic algorithms and the
protein folding problem. Chapter II expands on the current genetic algorithm and parallel pro-
cessing literature relevant to this work. Chapter III summarizes the knowledge pertinent to the
protein folding problem and analyzes the problem space. Chapter IV discusses the design and
implementation of genetic algorithms and a force-field energy model. Chapter V outlines the ex-
perimental design used to evaluate the performance of genetic algorithms for the protein folding
problem. Chapter VI presents and analyzes the experimental data. Finally, Chapter VII draws

conclusions from this investigation and highlights promising areas for future research.

1-8

II. Genetic Algorithm (GA) Literature Review

This chapter is an introductory discussion of genetic algorithms (GAs). Section 2.1 provides
a historical context for evolutionary algorithms. Sections 2.2 through 2.4 present the theory and
mechanics of simple GAs (SGAs), messy GAs (mGAs), and fast messy GAs (fmGAs) respectively.

Finally, Section 2.5 describes techniques used to parallelize genetic algorithms.

Genetic algorithms (GAs) are a stochastic search/optimization technique loosely based on
natural evolution and the Darwinian concept of “Survival of the Fittest” (34:1)(49). A generalized
genetic algorithm consists of a population of encoded solutions that are manipulated by a set of
operators and evaluated by some fitness function that determines which solutions survive into the

next generation.

For our purposes, search and optimization techniques fall into two broad categories: de-
terministic (a combination of calculus-based and enumerative) and stochastic (random) methods
(34:2). Greedy algorithms, calculus-based methods, and tree/graph search techniques are all ex-
amples of deterministic approaches (2). These methods have been successfully used to solve a wide
variety of problems. However, there is an even greater number of problems that are discontinuous,
multi-modal, or NP-complete where deterministic methods fail miserably (34:3-6)(30, 26). The
main stumbling block for deterministic methods is their requirement for some amount of problem
specific knowledge to direct or limit the search. For example:

1. Greedy algorithms assume optimal sub-solutions are always part of the optimal solution
(2:80)(52)

2. Calculus-based methods require continuity (56:167)

3. Tree/graph search techniques need problem specific heuristics/decision algorithms to limit
the search space (30, 73)

A partial list of problem characteristics that can make deterministic search techniques unsuitable
for a particular problem includes: multi-modal and/or discontinuous solution spaces, exponential
search spaces (NP-complete problems), and limited domain knowledge (no heuristics). Problems

that exhibit one or more of these characteristics are called irregular (55).

Stochastic search and optimization approaches (simulated annealing, evolutionary strategies,
evolutionary programming, genetic algorithms, monte-carlo techniques) have been developed that

supplement deterministic techniques (66, 34). The single requirement for stochastic methods is a

2-1

function that assigns fitness values to possible solutions. Although these methods cannot guarantee

the optimum solution, in general they can provide good solutions to a wide range of problems that

may be irregular and/or exponentially too large for deterministic methods (34:6-7)(52).

This chapter reviews the current literature on genetic algorithms starting with a short his-
torical perspective of evolutionary algorithms in section 2.1. Sections 2.2, 2.3, and 2.4 discuss the
rationale and mechanics of simple GAs, messy GAs, and fast messy GAs respectively. Finally,

section 2.5 summarizes the current state of parallel genetic algorithms.

2.1 Brief History of Evolutionary Algorithms

Evolutionary models based on natural selection and genetic theory started appearing during
the late 1950s and early 1960s. The first working models were computer simulations of genetic
and biological systems. The idea of using algorithms that model natural evolution as search and
optimization techniques began in the late 1960s and 1970s (34:89-104). A class of methods called
evolutionary algorithms (EAs) is composed of three main categories of investigation based on that
early work: Evolutionary Programming (EP), Genetic Algorithms (GAs), and Evolutionstrategie
(Evolution Strategies, ESs) (34:104-106)(1, 13). However, this taxonomy is not universally ac-
cepted. Many authors categorize only EP and ESs as Evolutionary Algorithms, and put GAs in a
separate category by themselves (27:24). Even though simulated annealing (SA) is based on ther-
modynamics, it’s often associated with evolutionary algorithms because it uses a mutation operator

(81:17).

Fogel, Owens, and Walsh were the first to propose the technique known as evolutionary
programming. Evolutionary programming tries to generate artificial intelligences by an evolutionary
process that allows the survival of organisms that respond appropriately to a given environment. It
has been applied to problems such as sequential symbol prediction and process control. EP usually
operates on the components of abstractions such as finite state machines or programming languages
(1, 26, 28).

Evolution strategies is an algorithm conceived by Ingo Rechenberg and Hans-Paul Schwefel
at the Technical University of Berlin while they were searching for optimal airfoil shapes. The

original formulation consisted of a one-member population that was operated on by mutation only.

2-2

The representation consisted of a pair of real-valued vectors (V = (x,c)) where the first vector, x,
represents a solution and the second vector, o, is a vector of standard deviations. The mutation

operator creates a new individual using a normal distribution with zero mean as follows:

x'*tt =x'+ N(0,0) (2.1)

Various refinements have been made to this original design including population sizes greater than

one, recombination operators, and dynamic changes to the vector ¢ (66:128-132)(1).

John Holland’s work on adaptive systems is recognized as the fundamental beginning of
genetic algorithms. Previous researchers had used computers to simulate evolutionary systems,
and Fraser even tried to optimize a phenotype function, but nobody before Holland recognized the
role that nature’s evolutionary process could play in search and optimization (34). The embarkation
point for all GA research is Holland’s “Adaptation in Natural and Artificial Systems” (48) which
established the mathematical basis for GAs, including the then unnamed Schema Theorem or
Fundamental Theorem of Genetic Algorithms, and generalized schemes for reproduction, crossover,

mutation, and inversion (34:89-92).

Three other names have come to be synonymous with GA research: Kenneth A. De Jong,
David E. Goldberg, and John J. Grefenstette. De Jong’s dissertation (14) put Holland’s theory
to the test and introduced GA infrastructure that is still in use today (a suite of test functions
and performance measures). Although his dissertation focused on function optimization, most of
his work to date concerns his broader interest in machine learning (79, 15, 16). Goldberg began
by applying genetic algorithms to machine learning and optimization problems. His most recent
efforts include work on optimal GA population sizes and alternate GA paradigms (messy GAs
and fast messy GAs) to combat deceptive problems (34:387-389)(38, 36). Grefenstette is probably
best known for his genetic algorithm implementation, GENESIS, which has been used as a basic
GA workbench by many researchers (44). He has also worked on optimal GA parameter sets and

machine learning using genetic algorithms (42, 46, 43, 45).

2-3

Locus

(Position)
1 234 56 7 8 910
1]{ol1]1]1]/1]0]0l1]0} -- Chromosome (String)
1{0/1]/0[0]/0]|1]|1[1{0] -- Chromosome (String)
0/|0]111]1{111]10]0]0
0|110/0]1]0]1]1]1]1
- Ool1)1j0f{0]l1]0[0]|1!0 o
Population olalil1lo[1l1]0l0l0 o
1/0/]0]j]0}Oj3]1]1]111 ®
1/0{1]11]10]0]01}11]1011
0/0/1|11/]0/1]10]1]111]0
o{o[1f0) 1/ o{1) 1] 0][0] -- Chromosome (String)

.

Allele (Value) =0
Allele (Value) =1

Figure 2.1 Simple Genetic Algorithm Data Structures and Terminology

2.2 Simple Genetic Algorithm (SGA)

Simple genetic algorithms are based on theories of natural genetics and therefore share some of
the same terminology. Figure 2.1 illustrates the following terms. A string or chromosome contains
genes that encode a solution to a particular problem. Each gene has a locus and allele associated
with it. The locus, or position of a gene generally determines its meaning. A gene expresses only
one value or allele at a time from a set of values that are allowed for that gene. A bag of strings is
called a population. A genetic algorithm evolves populations toward better solutions of the encoded

problem.

Most SGA implementations use strictly binary encodings of the problem parameters, usually
in a form such that z,,;, corresponds to a string of all 0’s, z,,,, corresponds to a string of all 1’s
and there is a linear mapping of all values between z,,;, and z,,,.. Some problems may benefit
from the use of gray code parameter encoding (34:101). In gray code, the encoding of successive
integers differ by a single bit (54:40). Higher cardinality encodings have also been investigated for
certain other problems, most notably combinatoric problems (82, 70). The problem encoding is a

very important design decision in the formulation of a genetic algorithm to solve a specific problem.

2-4

CROSSOVER

POINT
PARENT #1 l0|0|1|0|1|1 1‘0I1|1| MUTATION
: POINT

PARENT #2 |0|1]1|1|0I1 OIIIIIOI

= wevr fofolsfoluilafolu]s]
ouon [oToTiTo i i 1o iTiTo] ovmr [ofo[1To[1[o[1To 1]1]
amowe [0]1]1]1]of1f1]0]1]1]
Figure 2.2 Single-Point Crossover Figure 2.3 Bitwise Mutation

2.2.1 Simple Genetic Algorithm Operators. The three standard operators associated with
simple genetic algorithms are selection, crossover, and mutation (66:21,56)(34:10)(81). Above-
average individuals of a population are selected to become members of the next generation more
often than below-average individuals. Crossover recombines pieces of solutions to test different
combinations of existing solutions. In the absence of other operators, selection and crossover will
eventually force a population of solutions to converge to a single solution (34:14)(40). Mutation is
an operator designed to encourage diversity in a population so that convergence occurs more slowly

and more of the solution space can be explored.

Figures 2.2 and 2.3 illustrate the function of single-point crossover and bitwise mutation
respectively on binary encoded strings that are ten bits long. Crossover operates on two strings,
called the parents, to create two new strings, called the children. After two parents and a crossover
point have been arbitrarily chosen, the bits after the crossover point are exchanged to create the
children. Mutation is a unary operator that takes one string as input, arbitrarily chooses a bit
position within the string, and changes the bit in that position to the opposite value. Many
other crossover and mutation operators are possible, and indeed necessary, to exhibit different

recombination characteristics and operate on alternate encodings (82, 88).

Figure 2.4 represents the operation of a proportional selection operator, called roulette-wheel
selection, on two different populations of four strings each. Each string in the population is assigned

a portion of the wheel proportional to the ratio of its fitness and the population average fitness.

String | Fitness String | Fitness
S1 12 S1 20
S2 12 S2 10
S1 S2 S1
S3 12 S3 5
S4 12 S4 5
mean 12 mean 10
4
S4 S3 S S2
S3

Figure 2.4 Roulette Wheel Selection

1. randomly generate initial population
2. evaluate fitness of all population members
for i = 1 to the maximum number of generations
3. perform selection
4. perform crossover
5. perform mutation
6. evaluate fitness of all population members

end loop

Figure 2.5 Psuedo Algorithm for Simple GAs

In the first case where the fitnesses are equal, each string is given an equal share of the wheel (it
is equi-likely that any of the four strings will be selected into the next generation). In the second
example, S1 is twice as likely to be selected into the next generation as 52, which is twice as likely
to be selected into the next generation as either 53 or S4. As with crossover and mutation, many
other selection operators are possible, each with its own characteristic effect on convergence. Rank-
based and tournament are notable selection operators, and the elitist strategy is a modification that

can be used with any selection operator (81, 34, 87).

The three operators (crossover, mutation, and selection) and an evaluation function are as-

sembled according to the psuedo algorithm shown in Figure 2.5 to create a simple genetic algorithm.

2-6

2.2.2 Simple Genetic Algorithm Parameters. The most difficult part of genetic algorithms
is selecting a parameter set that will generate the best performance (efficiency and effectiveness).
Efficiency is a measure of the computer resources (cpu time, memory) required to obtain a solution.
Effectiveness relates the solution quality of various algorithms. Both measures are relative to the

specific problem being tackled and tradeoffs can be made between the two.

Some interrelated SGA parameters include: population size, crossover probability, and mu-
tation probability. Theoretical analysis and empirical studies have been accomplished to formulate
estimates of what each of these parameters should be to encourage a robust search that terminates
with a near-optimal solution (35, 77). While these two particular studies seem at odds with each
other, their conclusions are based on entirely different measurements of GA progress. Schaffer’s
empirical study is aimed at maximizing on-line performance or progress toward optimal solutions
(efficiency) without regard for the final solution. Goldberg’s theoretical work makes conservative
choices to establish confidence levels for the optimality of a final solution (effectiveness) and ignores

the astronomical resource costs required to achieve it!

Many relationships have been observed between parameter settings and performance. In-
creasing the population size generally improves the final solution, however the increase in execution
time becomes prohibitive (14, 33). Population size has been shown to exhibit an inverse relationship
with mutation rate and, to a lesser extent, crossover rate (77:55). Although there is no evidence
so far of any correlation between crossover and mutation probabilities it is generally accepted that
using crossover without mutation is insufficient for a robust search (52, 78, 23). However, it has
been postulated (especially from the other branches of evolutionary algorithms) that mutation is
the only necessary operator (27, 78). Other researchers are examining the effects of changing pa-
rameter settings during GA execution, either on some predefined schedule or possibly by monitoring

GA metrics during the run (11, 25).

2.2.3 Mathematical Theory of How (Why) Simple GAs Work. Schemata are templates
that define sets of strings with the same values at certain string positions and are represented using
an additional don’t care symbol (*) (34:19,29). For example, the schema *101 represents the set of
strings {0101, 1101} and the schema 1*0*01 defines the set {100001, 100101, 110001, 110101}. The

defining length (6(H)) and order (o H)) are two values associated with a particular schema H. The

2-7

defining length of a schema is a measure of the distance between the first and last fixed positions.
The order of a schema is the number of positions with fixed values. Using the sample schemata

from above §(x101) =4 -2 =2, 0(%101) =3, 6(1*0%01) =6 —1=5,and o(1%0x01) = 4.

The Schema Theorem, represented by

m(Hat+1)2m(H7t)'——_ 1~pcl —O(H)pm ’ (2'2)

-1

establishes a lower bound on the number of representatives schema H will have in the next gener-
ation (m(H,t+ 1)) based on the:

1. number of representatives in the current generation (m(H,t)),

2. fitness of schema H vs the population average fitness (f_(;_i_)),

3. string length, defining length, and probability that schema H will be destroyed by crossover
(p-5%), and

4. order and probability that schema H will be destroyed by mutation (o(H)p,,).

Although it would appear that genetic algorithms operate only on the specific strings in a
population, it has been shown that many of the 2' schemata in each string are processed simultane-
ously (implicit parallelism (48:71-72)(34:40)). The Fundamental Theorem of Genetic Algorithms
(Schema Theorem) states that all schemata will receive representation in the next generation pro-
portional to the ratio of their fitness to the average fitness of the population. This representation
is reduced by the amount of disruption that crossover and mutation can cause to a schema. More

succinctly,

short, low-order, above-average schemata receive exponentially increasing trials in sub-
sequent generations (34:33).

2.2.3.1 Complezity Analysis. Using the standard SGA operators, the time com-
plexity of selection, crossover, and mutation are generally O(nl) where n is the population size and
[is the string length. Given a fixed number of generations, SGA execution time is O(nl) (18).
However, the time complexity of the fitness function for real-world problems (expressed as some
function of the string length and problem space parameters) usually dominates the time to execute
the genetic algorithm control sequence (67), therefore great care should be taken in its analysis and

design.

2-8

It is easy to see that the space complexity of a simple genetic algorithm is also O(nl) because
the population of solutions has to be stored. However, the space complexity can also be affected
by the data structure requirements of specific problems. For example, a function that relies on a
lookup table to evaluate solutions will require more space. If that space is related to the problem
size in a way that make the lookup table grow faster than the population size and string length,

then the problem space requirements dominate the space complexity of the entire algorithm.

2.8 Messy Genetic Algorithm (mGA)

Genetic algorithms are designed to take advantage of the building block theory (48, 34, 29).
The main idea is that small pieces of a solution which exhibit above average performance are
combined to create larger pieces of above average quality, which are themselves recombined into

larger pieces, and so forth.

Simple genetic algorithms suffer from the fact that the “pieces” that form the building blocks
must be put next to each other explicitly in the fixed encoding or else they are more likely to
be disrupted by crossover. This problem is magnified when competing schemata (schemata with
different values at similar defining positions) define locally optimal solutions. Deception occurs
when a locally optimal building blocks are selected instead of globally optimal ones. Messy genetic
algorithms (mGAs) were designed to deal with these problems by encoding the string position
(locus) along with its value (allele). This gives a messy genetic algorithm the ability to search
for the “true” building blocks of the problem and create tighter linkage for those genes than a
fixed position encoding would allow (39). The mGA encoding scheme also allows under-specified
and over-specified strings to exist in the population. Under-specified strings don’t have an allele
defined for every locus and are evaluated with the aid of a locally optimal competitive template that
supplies values for the unspecified genes. Over-specified strings contain multiple alleles specified
at the same locus and are processed in a left-to-right fashion which sets the gene to the value
encountered first. The desire to create and manipulate superior building blocks is the motivation

behind messy genetic algorithms (39, 37, 38).

2.8.1 Messy Genetic Algorithm Operators. Messy GAs use variations of the same genetic

operators used by simple GAs. In the few implementations of mGAs that exist (38, 39, 37, 62),

2-9

tournament selection has been used instead of proportional or rank-based selection because of its
desirable performance characteristics (38:50)(35, 24). The tournament selection operator also has
a thresholding mechanism added to it which ensures that strings have a number of positions in
common before competition is allowed (37:424-427). Crossover is replaced by a combined cut-and-
splice operator that works on variable length strings. As the names suggest, cut divides a string into
two smaller pieces and splice concatenates two strings to form a single, longer string. A mutation
operator that can change a gene’s value or its position has been described but unused in any mGA

implementations (39:504).

Messy GAs employ a different initialization strategy compared to SGAs. The main processing
loop of an mGA is composed of primordial and juztapositional phases. During partially enumerative
initialization (PEI), exactly one copy of each possible building block of the specified size (k) is
generated. Thus, the initial population size for a messy GA is generally quite large (2* (})) (39:420).
The primordial phase serves two basic purposes: enrich the population with above average building
blocks and reduce the population to a size that can be efficiently and effectively processed by
the juxtapositional phase. Tournament selection, the only active operator during the primordial
phase, fills the population with above average building blocks, then periodically the population
size is halved. No additional fitness evaluations are required during the primordial phase. The
juxtapositional phase is most similar to the main processing loop of a simple GA (39:506). Cut-and-
splice and any other genetic operators are applied, fitness evaluations are performed on the newly
created strings, and tournament selection bolsters the next generation with highly fit solutions. A

psuedo algorithm for messy GAs is shown in Figure 2.6.

2.8.2 Messy Genetic Algorithm Parameters. The major parameter settings associated
with messy GAs are population size, cut-and-splice probabilities, and a schedule for reducing the
population size. Initial population size can be calculated once the string length and block size
have been determined. String length is simply a function of the encoding used, but block size is
a problem dependent quantity that may be difficult to estimate. The final population size at the
end of the primordial phase is even less quantifiable! The splice probability is consistently set to
1.0 with the following rationale: the primordial phase ends with a population of optimal building

blocks which should only require assembly to form a complete string that is a near-optimal solution

2-10

1. perform partially enumerative initialization
evaluate fitness of all population members
2. for i = 1 to the maximum number of primordial generations
perform tournament selection
if (a suitable number of generations have transpired) then
reduce the population size
end if
end loop
3. for i = 1 to the maximum number of juxtapositional generations
perform cut-and-splice
perform other operators (currently not used)
evaluate fitness of all population members
perform tournament selection
end loop

Figure 2.6 Psuedo Algorithm for Messy GAs

(38:25). The chosen cut probability is scaled by the current length of a string so that longer strings
are more likely to be cut than shorter strings. The schedule for reducing population size during the
primordial phase typically allows for two or three generations of enrichment followed by cutting the
population in half (39:505). No theoretical or empirical work has been accomplished to provide any
guidance for final primordial population size, cut probability, or population reduction schedules for

messy GAs.

2.3.8 Mathematical Theory of How (Why) Messy GAs Wortk. The Schema Theorem
(Equation 2.2) is directly applicable to messy genetic algorithms. The rationale for messy genetic
algorithms follows from the theorem’s interpretation: “short, low-order, above-average schemata, re-
ceive exponentially increasing trials in subsequent generations.” If the building blocks of a problem
aren’t encoded as short, low-order schemata then crossover and mutation will disrupt the formation

of those building blocks.

For problems using a fixed encoding, where the identification of building blocks is prohibitive
or impossible, Goldberg has calculated the normalized expected defining length (1%)1‘) for k-sized
building blocks (Equation 2.3). The normalized expected defining length is a measure of the mean

length of the schemata that make up the building blocks of a randomly encoded problem. The

2-11

interpretation is that an arbitrary encoding is highly unlikely to establish tight linkage for the
building blocks of a problem (39:498-499).

() _ k-
T+1- k41 (2:3)

Eond
—

el
ot

Messy genetic algorithms take advantage of the Schema Theorem by searching for both the
defining positions and gene values of the building blocks using PEI and the primordial phase. Then
the juxtapositional phase of the messy GA starts with “short, low-order, above-average” schemata

that are also “short, low-order, above-average” building blocks!

2.3.3.1 Complezity Analysis. Because of the partially enumerative initialization
(PEI), the time complexity of messy GAs is O({¥). This compares unfavorably with the rest of the
algorithm which is only O(llog!) (37:420-422). Space complexity remains unchanged from simple
genetic algorithms. However, the constant term is generally larger and the population size (n) is
much larger! As is the case with simple genetic algorithms, the time complexity of the evaluation

function usually dominates that of the control sequence.

2./ Fast Messy Genetic Algorithm (fmGA)

The advantage messy GAs have over simple GAs is the ability to create tightly linked building
blocks for the optimization of deceptive problems. The disadvantage associated with this better
processing is the time complexity of the initialization phase which dominates the mGA algorithm
(37:422). Fast messy GAs are a messy GA variant designed to reduce the complexity of the

initialization phase, and thus the overall algorithm time and space complexity (36:59).

2.4.1 Fast Messy Genetic Algorithm Operators. PEI and the selection-only primordial
phase of mGAs are replaced by probabilisitically complete initialization (PCI) and a primordial
phase consisting of selection and building block filtering (BBF) in fmGAs. PCI and BBF are an
alternate means of providing the juxtapositional phase with highly fit building blocks (36:59-61).

PCI is used to create an initial population whose size is equivalent to the population size at

the end of the primordial phase of mGAs. The length of these strings is typically set to [— k. The

2-12

1. perform probabilistically complete initialization
evaluate fitness of all population members
2. for i = 1 to the maximum number of primordial generations

perform tournament selection
if (a building block filtering event is scheduled) then
perform building block filtering
evaluate fitness of all population members
end if
end loop
3. for i = 1 to the maximum number of juxtapositional generations
perform cut-and-splice
perform other operators (currently not used)
evaluate fitness of all population members
perform tournament selection
end loop

Figure 2.7 Psuedo Algorithm for Fast Messy GAs

primordial phase then alternately performs several tournament selection generations to build up
copies of highly fit strings followed by BBF to reduce the string length toward the building block
size (k). Building block filtering is a simple process that randomly deletes several genes from a
string. The juxtapositional phase is the same as in mGAs. A psuedo algorithm for fast messy GAs

is shown in Figure 2.7.

2.4.2 Fast Messy Genetic Algorithm Parameters. Fast messy GAs need a building block
filtering and thresholding schedule instead of the population size reduction schedule required by
mGAs. Goldberg provides formulas for deriving schedules (36:60-61), but the formulas contain
additional parameters and no guidance is given for choosing their values. The remainder of mGA

parameters are used by fmGAs as well.

2.4.8 Mathematical Theory of How (Why) Fast Messy GAs Work. Fast messy GAs are
governed by the Schema Theorem (Equation 2.2) just like mGAs. The difference relates to how
the population of “good” building blocks is created for processing by the juxtapositional phase.

Goldberg performs a detailed analysis to show that a much smaller initial population of long strings

2-13

(PCI) can be manipulated (through BBF) to create a population of “good” building blocks just as
effectively as PEI and the primordial phase of mGAs (36:60-61).

2.4.3.1 Complezity Analysis. Reducing the overall time complexity of the algorithm
is the main reason for switching from mGAs to fmGAs. PCI and BBF result in a time complexity
of O(llogl) for initialization and the primordial phase combined (36:61). Thus, the design goal
has been met—fmGAs exhibit better efficiency than mGAs (O(llogl) vs O(I*)) and preserve their
effectiveness. Space complexity for fnGAs remains unchanged from SGAs and mGAs (O(nl)) and
populations can be sized much smaller than mGAs. Again, the time and space complexities of the

evaluation function usually dominate those of the control sequence.

2.5 Parallel Genetic Algorithms

There are two major concerns when parallelizing any algorithm: is the parallel algorithm
correct and is it faster than the serial version? Correctness is an issue because we have even greater
difficulty verifying parallel algorithms than we have for sequential programs (59). Given that the
parallel algorithm is correct, speedup is the primary goal of parallelization (7). A tradeoff analysis
is generally required to determine if the estimated benefits warrant the expenditure of resources
to parallelize an algorithm. There is evidence to suggest that parallelizing genetic algorithms s

worthwhile and should be examined further (19, 84, 75, 80, 41).

2.5.1 Decomposition Techniques. Data and control decomposition are alternate means of
dividing a problem into portions that can be worked on simultaneously. In general, data decomposed
algorithms perform the same operations of subsets of the input (data parallelism) and control
decomposed algorithms perform different operations on the total input (60). In either case the
results are recombined in some fashion to obtain the final result(s). Genetic algorithms are easily
parallelized because they are highly data decomposable (although control decomposition is not
impossible, especially as the complexity of operators and evaluation functions grow). Parallelizing
GAs using data decomposition can be as simple as running multiple copies of the same program
on different processors, each starting with a different random number seed, and then choosing the

best result from all runs. Data parallelization techniques are also amenable to static load balancing

2-14

because their computation and communication patterns are regular (22, 60). This does not imply
that all processors are searching in equally promising portions of the search space. Thus, some
efficiency may be lost to subpopulations that are searching similar solution neighborhoods or stuck
in local optima. Two models, which lie at opposite ends of a granularity spectrum, have been
proposed for parallel genetic algorithms—the island model (course-grained) and the neighborhood
model (fine-grained) (18, 41). These models are designed to improve the simplistic parallel approach

by sharing near-optimal results with some portion of the global population.

2.5.2 Island and Neighborhood Model. The island model is an extension of the simplistic
approach where the total population is divided into subpopulations which are distributed among
the processors. The subpopulations evolve in parallel, however at certain time intervals a migration
occurs where solutions are communicated between processors (18:10). Migration rates, migration
selection strategies, and migration patterns are additional parameters with associated design deci-
sions that must be defined for the parallel genetic algorithm. Near-linear speedup is expected and
has been observed for island model parallel genetic algorithms (3:60)(84, 5). The time complexity
of island model GAs is (’)('—;}), where p is the number of processors, n is the population size, and
p < n (18). As p — n, the resulting small subpopulation size increases the ratio of commmunica-
tion time to compute time and the speedup becomes much less than linear. Island model GAs are

typically used on course-grained or multiple-instruction-multiple-data (MIMD) architectures (52).

The neighborhood model splits the population up spatially in a two- or three-dimensional
grid. This grid and the definition of a neighborhood limits the interaction of individuals in the
population. Typically, a single string is assigned to each processor, therefore crossover and selection
must be modified because their operation is distributed across more than one processor. Although
their convergence characteristics have been observed to be better than the Island Model (18:24),
neighborhood model parallel genetic algorithms don’t exhibit speedup because they assume n =
p, therefore no speedup can be obtained because more/fewer processors are not allowed. The
neighborhood model is most often compared to the simple GA for time complexity analysis (O(s +
) vs O(nl) where s is the neighborhood size) (18:24). Neighborhood model GAs are generally

implemented on fine-grained or single-instruction-multiple-data (SIMD) architectures (18).

2-15

2.6 Summary

Genetic algorithms are semi-optimal search/optimization techniques capable of finding “good”
solutions to problems that are intractable for deterministic methods. Many theories and conjectures
have been proposed based on both mathematical analysis and toy problem experimentation with
genetic algoirthms, their control structure, and different genetic operators. Genetic algorithms
have been applied to some relatively small real-world problems with good results. The question
is, can the theory and empirical evidence stand up to a large-scale, real-world application? The
next chapter provides the background for a specific application of genetic algorithms to a difficult

problem in biochemistry.

2-16

III. The Protein Folding Problem Literature Review

This chapter provides the background required to understand the mechanics and ramifications
of the protein folding problem. Section 3.1 defines terminology in the biochemistry domain. Section
3.2 describes the expensive experimental techniques used to determine the structure of proteins.
Finally, Section 3.3 examines various models used to predict the structure of polypeptides and

proteins.

The protein folding problem (PFP) has been recognized as a National Grand Challenge
problem in biochemistry and high-performance computing (10). The challenge is to find a method
to predict the three-dimensional topology of a protein based on the sequence of its components. A
solution, which would provide knowledge about the function(s) of individual proteins, is also the
first step toward solving the inverse folding problem (IPFP) (6, 58). The inverse folding problem
is to determine a sequence (possibly more than one) that will fold to a specified three-dimensional

structure.

The difference between the two problems is best characterized by the ability a solution to
either would provide: a PFP solution would enable the evaluation of many proteins in a search for
one with a specific property or function; an IPFP solution would provide a mechanism to design
a protein with specified characteristics (6:25-26). Possible applications include: pharmaceuticals
with few or no side effects; energy conversion and storage capabilities (similar to photosynthesis);
biological and chemical catalysts and regulators; angstrom scale information storage; and possible

optical /chemical shielding from harmful radiation sources (6:25)(58:5)(71).

3.1 Introduction to Proteins and Associated Terminology

Proteins (polypeptides) are linear sequences of the 20 naturally occurring amino acids. Each
amino acid consists primarily of three common backbone atoms (a nitrogen and two carbons
[N-C,—C,]) and a distinct combination of atoms and covalent bonds, called the side-chain (S;),
connected to the C, carbon atom. A particular protein is defined by a unique amino acid sequence
known as the primary structure of the protein (6:24)(58:2)(57:49). Figure 3.1 depicts a generic

protein composed of three amino acids. The primary structures of approximately 50,000 proteins

3-1

Figure 3.1 A Three Amino Acid Protein

are currently known and this number is expected to double every year, due largely to the Human

Genome Project and the ease with which sequences are experimentally determined (58:5)(69).

There are a number of features that subsequences of proteins exhibit regularly. a-helices and
(-sheets are two common examples of local features that are called the secondary structure of a
protein (6:24). Secondary structures are used primarily as a means of classifying the local geometric
arrangement of proteins and some researchers are investigating the utility of predicting secondary

structure as the first step of tertiary structure prediction (57:50).

The three-dimensional structure of a protein is the major determinant of its function. This
three-dimensional shape is called the tertiary structure or conformation of the protein. Proteins
assume their native conformation, which is unique and compact, in their natural biological envi-
ronment (typically in aqueous solution, at neutral pH and 20-40° C)(6, 58). A protein in its native
conformation is only slightly more stable than the various conformations with marginally higher
energies. This single fact is responsible for the major difficulty of the protein folding problem

(6:24-25)(58:2-4)(57:50).

3-2

Table 3.1 Enumeration Time of a 1.3 x 103° Search Space at One Solution per Clock Cycle

Computer Speed | Execution Time (years)
1 GigaFLOP ~ 41 trillion
1 TeraFLOP ~ 41 billion
1 PetaFLOP ~ 41 million

The position of all atoms in a protein can be determined given the position of one atom, the
bond length of each covalently bonded pair of atoms, the bond angle formed by each triplet of bonded
atoms, and the dihedral angle formed by each bonded group of four atoms (see Figures 3.2 - 3.4).
Given this set of parameters, every protein has 3n — 6 degrees of freedom where n is the number of

atoms. However, the bonds and bond angles are relatively rigid, therefore the independent dihedral

~ angles are left as the only dominant factor to determine the tertiary structure of a protein and the

degrees of freedom are reduced by a factor of approximately 2/3 (6:26)(57:50). Each amino acid

contains a ¢, 1, and w dihedral angle and zero or more x; dihedral angles as shown in Figure 3.1.

If we discretize the domain of the dihedral angles so that there are d possible values, then
the size of the search space is given by d" where N is the number of independently variable
dihedral angles. Given a very coarse 20° discretization of the 0 — 360° dihedral angle domain
and a small protein with 24 independently variable dihedral angles, the search space contains
182 ~ 1.3 X 10%° conformations. Table 3.1 shows the time required to enumerate the search space
on current and envisioned high performance computers (under the optimistic assumption of one
evaluation per clock cycle)(83:7)! (Giga-, Tera-, and Peta-FLOP computers can perform 10°,10!2,
and 10'° floating point operations per second respectively.) Therefore, if we hope to find the single
native conformation of a protein, we must have access to efficient search algorithms that severely

prune the search space.

3.2 Ezperimental Tertiary Structure Determination

In comparison with the number of known protein sequences, the number of known native con-
formations is extremely small (approximately 400). The tertiary structures of these proteins have
been determined experimentally using either X-ray crystallography or nuclear-magnetic-resonance
(NMR) spectroscopy. These techniques are inadequate for the task because they take one to two

years to obtain results for a single protein (6:25)(58:5).

3-3

}— Bond Length — O

Figure 3.2 Protein Bond Length

Bond Angle

Figure 3.3 Protein Bond Angle

Figure 3.4 Protein Dihedral Angle

3.3 Tertiary Structure Prediction (PFP)

To reduce the gap between the number of known protein sequences and native conformations,
we need to be able to reliably predict the tertiary structure of proteins in a reasonable amount of
time. FEzact versions of the classical methods discussed next are theoretically capable of finding
the native tertiary structure of any protein. In practice, the computational cost of the calculations
prohibits the use of these exact methods. The classical methods that are computationally viable
are typically relaxed formulations that ignore the high-order interaction terms. The applicability

of the other prediction methods discussed below is severely limited.

3.8.1 Classical Prediction Methods. Molecular dynamics is a technique that attempts to
simulate the protein folding process. The protein is treated as an N-body simulation and Newton’s
motion equations are solved to determine the location of all the atoms at discrete points in time.
Molecular dynamics faces two major difficulties in its attempt to fold proteins. First, the number
of atoms that must be simulated is very large:

1. Small proteins contain hundreds of atoms.

2. Larger proteins can be composed of several ten-thousands of atoms.

3. Thousands of atoms must be added to simulate the surrounding solution.

Second, the thermal oscillations of bonded atoms have a period between 10~1*—10"13 seconds.
Simulation time steps in the femtosecond (10~!® sec) range are required to accurately account for
these harmonics. These two factors have limited molecular dynamics simulations to less than a
few nanoseconds (107° sec), even on today’s fastest supercomputers. That time-frame is ten orders
of magnitude too short to simulate the folding process of most proteins (6:27)(58:6-7). Using
an eztended-atom representation is one method that can greatly reduce the impact of these two
problems. The extended-atom representation combines hydrogen atoms with the heavier atoms
they are bonded to. This representation generally halves the number of “atoms” in the problem

and allows the size of the simulation time steps to be increased (4:189).

The energy minimization approach assumes that proteins, like other physical systems, assume
that state which minimizes total energy in the system (however, this assumption is not universally
accepted (51)). There are three types of energy minimization methods that differ by their time

complexity and the accuracy of their calculations. Ab initio methods calculate the energy exactly.

3-5

Table 3.2 Time Complexity of Energy Minimization Methods

Energy Calculation Time Time Estimate
Method Complexity for n = 1000
ab initio O(n®) 11.5 days

semi-empirical | O(n*) ~ O(n®) | 17 min - 1 sec
force-field O(n?) 1 msec

Semi-empirical methods eliminate the non-dominating interaction integrals from the calculation.
Force-field methods simply account for the pairwise interactions between atoms with an appropriate
parameterization that implicitly accounts for multi-particle interactions (58:6). Table 3.2 compares
the time complexity of these three energy minimization models and gives example execution times
for a moderately sized protein (n = 1000) assuming the individual component calculations take one

nanosecond (107° sec).

CHARMM, AMBER, and ECEPP are three example of force field energy models that are
based on Equation 3.1 (57). K., Ke,,, Ko, Teqy Ocqs Mujri> YTijhi, Aij, and B;; are empirical
constants supplied as input. B, A, D, and N represent respectively the sets of: bonded atoms,
atoms forming bond angles, atoms forming dihedral angles, and non-bonded atoms. All atoms
with more than three bonds separating them are considered non-bonded. All three models use
the non-bonded term explicitly. ECEPP only calculates bonded and bond angle terms around
disulfide bridges and dihedral terms for the independently variable dihedral angles. CHARMM
implements Equation 3.1 “almost” verbatim with additional constraints on the range over which
terms are computed. AMBER adds a partial non-bonded calculation to the dihedral term plus an
extra term to handle polar hydrogen non-bonded interactions with nitrogen and oxygen (Equation

3.2) (57:50-53)(4:190-193).

E = Y K, (rij—re)’

(i.§)€B

+ Z I(@ijk(eijk’_@eq)z
(.4, k)EA

+ Z Ko [1+ cos(niju®ijr — 7iju)] (3.1)
(.3, k1)ED

s [(A_)_ (B_)+_q_<1_]
(i,j)EN Tij Tij 47('57‘,']'

3-6

3.3.2 Other Prediction Methods. Structure prediction by homology attempts to align the

sequence of a protein with an unknown tertiary structure with one whose native conformation is
known (58). It has been observed that if the sequences are similar, then the conformations are
nearly identical. An extension of homology, called sequence-structure alignment, builds a partial
monotonic mapping directly from the sequence of the unknown protein to the known tertiary
structure of the similar protein. The differences between the two structures are usually surface
characteristics built upon the same core structure. Both of these methods are severely limited by
our tiny database of currently known protein structures. They are also incapable of predicting the

native conformation of proteins with novel structures (58:7-9).

E = Z Ery(rij = meg)* + Z Ko, (01 — 0.)°
(:,5)€B (5,j, k)EA
+ Z [K<1>.~,-H [1+ Cos(nijqu)ijkz - ‘erjkz)]
(i,§.k,1)ED
AN (Ba\® | g
* <T_u> B (TT:) + 4dmery (3-2)
12 6
. [(ﬂ) - (Bs)'s qiq,-]
(i)EN Tij Tij dTer;;
Ci; Dy
- 3 %0y
Gaen LT T

Simplification techniques are used as methods to reduce the conformational search space to
a size that will yield to today’s algorithmic search strategies (6). Lattice models reduce three-
dimensional space to a structured grid, where atoms can only be placed on the grid points. The
grid is designed to accommodate the typical connections observed in real proteins. Further simpli-
fications have been obtained by reducing or eliminating the explicit representation of side-chains

(58:9-10).

8.4 Summary

The determination of the tertiary structure of proteins is a major challenge in biochemistry.

Experimental techniques are considered accurate but time consuming, and are incapable of keeping

3-7

pace with the number of protein sequences being discovered. Prediction techniques are hampered
by the size of the conformational search space and the time complexity of calculating energy or
solving motion equations. However, classical prediction methods, combined with novel search and
optimization algorithms, show great potential for both a solution to the protein folding problem
and a better understanding of the underlying behavior and operation of biological systems. This
thesis effort considers the application of genetic algorithms using energy minimization as one such

combination for solving the protein folding problem.

3-8

IV. Genetic Algorithm (GA) Design and Implementation

Many genetic algorithm designs and implementations exist. Holland established mathematical
specifications for families of GAs based on reproductive plans and three genetic operators (crossover,
mutation, and inversion) in his original work (48). De Jong implemented a subset of one of those
families based on classes of reproductive plans (14). Typically, designs are functionally decomposed
to facilitate the construction of GA workbenches. These workbenches are used to study the behavior
of many GA operators. Object-oriented designs also exist, and lend themselves to the examination
of representation issues and production systems. Table 4.1 lists a few of the implementations that

are widely used along with some of their major characteristics.

All of our GA work at AFIT is either directly or indirectly based on the Genesis software
package. What follows is a list of the major factors influencing the original and continuing decision
to use Genesis as the general GA software platform at AFIT:

1. GA code must be easily portable to multiple serial and parallel hardware platforms.

2. The GA must contain an I/O interface that provides simple parameter input and meaningful
progress and convergence output.

3. Our requirements are for a GA workbench to examine the effects of operators and control
structures on function optimization and combinatoric search.

4. Our access to Genesis predates access to all other software packages.

Item 1 is the most restrictive, limiting our choices to C and Fortran implementations. Although
the original analyses and selection motives have been lost in revisions of the Compendium of
Parallel Programs for the Intel iPSC Computers (55), we can hypothesize that Item 4 was a

major determinant. Table 4.2 summarizes the software implementations, hardware platforms, and

Table 4.1 Available Genetic Algorithm Implementations
| Implementation] Characteristics

Genesis (44) binary alphabet, functionally decomposed

good modularity, written in C

command line interface, functional design

OO0GA (12) real-valued and combinatoric representations and operators
written in Lisp, object-oriented design

Splicer (NASA) | binary and combinatoric representations and operators
written in C, X-Windows interface, functional design

4-1

Table 4.2 AFIT Applications and Associated Hardware/Software Platforms (20, 62, 3, 72, 61)

Hypercube
Sparc Workstation (iPSC/2 or iPSC/860) Paragon

Genesis Premature convergence! | Premature convergence
(SGA) Communication strategies!

Mission routing? Mission routing?

Protein folding? Protein folding?
messy GA | Premature convergence! | Premature convergence!

Population distribution®

fast mGA | Protein folding® Protein folding?

associated examinations/applications of genetic algorithms at AFIT. (Theoretical investigations

are labeled 1 and applications are labeled 2.)

4.1 GA High-Level Design

The objective of a good preliminary design is to capture the essence of what needs to be
accomplished without regard for specific data structures, control flow, or computer architecture.
Several paradigms have been proposed specifically for the specification and design of parallel algo-
rithms, including CSP (47), petri-nets (74), and UNITY (7). While these methods can be shown
to be equivalent, their expressive powers lie in different dimensions. CSP and petri-nets lend them-
selves more to the specification of control flow interactions. We choose to use UNITY as our design

language because it’s better suited to specifying data parallelism at high abstraction levels.

UNITY (Unbounded Nondeterministic Iterative Transformations) is a parallel program spec-
ification and design language that separates the description of what should be done from when,
where, and how. A UNITY program (design) describes what assignments need to take place, but a
mapping to a specific architecture answers the other three questions (7:8-11). A UNITY program
attempts to express the maximum parallelism possible using only assignment statements separated
by either parallel bars (||) or a box ([]). (The parallel bars connect assignments that must take place
simultaneously. A box separates assignment statements that must be executed at different times.)
A time complexity analysis of this maximally parallel design provides a benchmark to evaluate the

time complexity realized by various implementations.

4-2

Assertions of the form {p} s {q} are used in UNITY to indicate that the execution of statement
s from a state where predicate p is true results in a transition to a state where predicate ¢ is true
(7:40). With the addition of universal and existential quantifiers, and because of the lack of control
flow within UNITY programs, this first order predicate logic is sufficient to prove UNITY programs
correct. Then the assertions are properties associated with the entire program rather than predicates
attached to individual pieces of an algorithm. These properties are classified as either safety or
progress properties that define respectively the legal states and the advancement mechanism(s) of

an algorithm.

Program development through UNITY proceeds by translating a specification into a high-
level design which is then repeatedly refined until sufficient detail is available for implementation.
The proof of correctness for an entire program is built as each refinement is proven correct with

respect to its parent design.

We have access to specifications (48, 39, 36) and implementations (44, 62, 65) of simple,
messy, and fast messy GAs, however the respective designs are either unavailable or inconsistent
with the available software products. This section elaborates high-level UNITY designs for the
three GAs, discusses mappings to serial and parallel architectures, and establishes their design

time complexities.

With a few minor exceptions, the following notational conventions are observed in these
genetic algorithm UNITY designs. Capitalized tokens are either boolean flags or input parameters
and can be identified by their context-—flags are on the left side of assignment statements and
parameters are on the right. Thus, the two can be distinguished from their context. Variables are

in italics and programming constructs are in regular text.

4.1.1 Simple Genetic Algorithm. Figure 4.1 reflects the top-level design of what a simple
genetic algorithm should accomplish with the minimum set of constraints on when, where, and how
it should be done. Detailed descriptions of what the individual components do are shown in Figures
4.2 through 4.5 for initialization, selection, crossover, and mutation. The design for evaluation has
been omitted because it is problem dependent. Assuming a fixed number of generations, the high-

level control is O(1). Noting that all the GA operators are specified using the parallel bars (||)

4-3

exclusively with no synchronization variables, we can conclude that each operator is also O(1) given

enough processors.

The following properties are evident from the SGA specification. The invariant is derived from
the initial state for gen and monotonically incrementing gen in the third assignment statement.
The fixed point states that M AX_GEN S generations will be completed then processing will stop.

To show progress we note that if the program is not at a fixed point, then gen must increase.

invariant

0<gen < MAX.GENS+1
FP =

(gen = MAX GENS+1AINITASELECT A-EVALA~CROSS A-MUTATE)
progress

- FP Agen=2+— gen=z+1

All that is required to map the design to a sequential architecture is a specific ordering for all
assignment statements (a control structure). At the top level, a sequence similar to the one shown
back in Figure 2.5 is sufficient. Mapping the lower level designs requires the use of looping control
structures and sequences of assignments to implement the quantified and enumerated assignment

statements respectively (7:24).

Mappings to parallel architectures require additional design decisions. Most important are the
parallel decomposition technique and the granularity of the architecture. However, our high-level

design is flexible enough to be mapped to any combination of choices.

A coarse-grained, data-decomposition mapping implements an island model parallel genetic
algorithm. For this mapping, regular portions of the assignment statements that are quantified by
the population size are allocated to processors so that each processor performs all the assignment
operations on a subset of the global population. Internally, each processor contains a serial mapping.
Any communication of solutions between processors can be modeled here as a change in the mapping

of sets of assignment statements to different processors.

The UNITY design can also be modeled using a master/slave mapping to implement control
decomposition. This approach has been considered in cases where the fitness evaluations take
significantly longer than the application of the genetic operators. In this configuration, the genetic
operator assignment statements might be mapped to the master processor while the statements

that evaluate fitness are distributed to the slaves for computation in parallel. An additional design

4-4

Program SGA
declare
type SGA_string is record {
genes : array[STRING_LENGTH] of 0..1
fitness real }
type Population is list of SGA_string
old_pop : Population
new.pop : Population

gen : integer
initially

INIT = false

EVAL = false

CROSS = true

MUTATE = true

SELECT = false

gen =0
assign

(INIT := true /*Generate an initial population*/

if (RINIT))

il
(EV AL := true [] old_pop := new_pop /* Evaluate the population*/

if (0 < gen < MAX_GENS AINIT ACROSS A MUTATE))
I

(gen, SELECT, CROSS, MUTATE, EVAL :=
gen + 1, true, false, false, false ~ /*Select a new population*/
if(0 < gen < MAX GENSAEVALA-SELECT))
|
(CROSS :=true /*Perform crossover*/
if (0 < gen < MAX_GENS A SELECT A ~CROSS))
|

(MUTATE := true /*Perform mutation*/
if (0 < gen < MAX_GENS A SELECT A~MUTATE))

end

Figure 4.1 UNITY Description of a Simple Genetic Algorithm

Function Initialize
assign
(li:0<i< POPSIZE :: [*For each member of the population*/
(l7:0<j< STRING_.LENGTH :: /[*Initialize every bit of the string*/
new_popl[i].geneslj] := Randint(0,1))) /*to a random value*/
end

Figure 4.2 UNITY Description of SGA Initialization

4-5

Function Select
always
(IIi:0<i< POPSIZE ::

curnulative[i] := (+7 : 0 < j < i :: old-pop[j].fitness)) /*Relative selection prob. accumulator*/

assign
(ll1:0<i< POPSIZE ::
new_pop[i] := old_pop[j] /*Roulette wheel selection*/
if (cumulative[j — 1] < Random(0, cumulative[POP_SIZE — 1]) < cumulative[j]))
end

Figure 4.3 UNITY Description of Roulette-Wheel Selection

Function Cross
assign
(lli: 0 <i< POP_SIZEAeven(i) :
(37 : 7 = Randint(0, STRING_.LENGTH — 2) :: [*Selected crossover point¥*/
new_pop[i].genes, new_pop[i + 1].genes := /*Create 2 children from*/
/*Parent #1 head and Parent #2 tail*/
concat(new_pop[i].genes(0..j], new pop(i + 1].genes[j + 1..STRING_LENGTH - 1)),
/*Parent #2 head and Parent #1 tail*/
concat(new_popl[i + 1].genes|0..5], new_poplt].genes[j + 1..STRING_.LENGTH — 1))
if (Random(0, 1) < CROSSOV ER_PROBABILITY)))
end

Figure 4.4 UNITY Description of Single Point Crossover

Function M utate
assign
(li:0<i< POPSIZE ::
(7 :0<j<STRING_LENGTH ::
new_pop[i].genes(j] := (new_pop[i].genes[j] + 1)mod2 /*Change a bit*/
if (Random(0, 1) < MUTATION _PROBABILITY)))
end

Figure 4.5 UNITY Description of Bitwise Mutation

4-6

decision determines whether complete evaluations are assigned to processors or component terms

are distributed.

4.1.2 Messy Genetic Algorithm. Figure 4.6 reflects the top-level design of what a messy
genetic algorithm should accomplish. Detailed descriptions of what the individual components do
are shown in Figures 4.7 through 4.11 for PEI, tournament selection, cut, and splice. The design for
evaluation has been omitted because it is problem dependent. Assuming a fixed number of genera-
tions, the high-level control is O(1). PEI is also O(1) given enough processors due to the exclusive
use of parallel bars (}]). Tournament selection and cut-and-splice however, are O(POP_SIZE) be-
cause the specification calls for selection without replacement and constant population size during
cut-and-splice. Given that population size has been shown to be proportional to string length (35),

we conclude that these two operators are O(I).

The following properties, similar to the simple GA’s, are evident from the mGA specification.
The invariant is derived from the initial state for gen and monotonically incrementing gen in
the second assignment statement. The fixed point states that M AX_GENS generations will be
completed then processing will stop. To show progress we note that if the program is not at a fixed

point, then gen must increase.

invariant

0<gen < MAX GENS+1
FP =

(9en = MAX GENS+1ANINITATOURNAMENT A-CUT_AND_SPLICE)
progress

- FP Agen=zxz— gen=2zx+1
Mappings to serial and parallel architectures based on decomposition techniques and granu-
larity are similar to SGA mappings. A serial mapping would result in an algorithm that resembles
the one shown before in Figure 2.6. It’s also possible to map PEI, the primordial phase, and the
juxtapositional phase independently so that each would be implemented differently. This piecewise

mapping creates more design choices for data distribution and communication strategies for mGAs.

4.1.8 Fast Messy Genetic Algorithm. Figure 4.12 reflects the top-level design of what a
fast messy genetic algorithm should accomplish. Detailed descriptions of what PCI and tournament

selection do are shown in Figures 4.13 and 4.14. Cut-and-splice remains the same as in a messy

4-7

Program MGA
declare
type M GA_string is record {
alleles : array[STRING_LENGTH - EXTENSION] of integer range CARDIN ALITY
loci : array[STRING_LENGTH - EXTENSION] of integer range STRING_.LENGTH
fitness : real }
type Population is list of M GA_string
old_pop : Population
new._pop : Population

always
C = CARDINALITY
k = BLOCK_SIZE
{ =STRING_LENGTH
POPSIZE =C* < Ii')
initially
INIT = false
CUT_AND_SPLICE = false
TOURNAMENT = false
gen =0
curr_pop_size = POP.SIZFE
assign
(INIT := true /*Generate all building blocks—PET*/
if (=INIT))
(TOURNAMENT, gen := (9en = PRIMORDIAL_.GENS), gen + 1 /*Primordial*/

if (0 < gen < PRIMORDIAL.GENSAINIT A ~TOURNAMENT)) /*Phase*/
I
(CUT_AND_SPLICE, TOURNAMENT := true, false
if (PRIMORDIAL.GENS < gen < MAX_GENSA /*Juxtapositional*/
TOURNAMENT A-CUT_AND_SPLICE))
H
(TOURNAMENT,CUT_AND_SPLICE, gen := true, false, gen + 1
if (PRIMORDIAL GENS < gen < MAX_GENSA /*Phase*/
CUT_AND_SPLICEAN-TOURNAMENT))
end

Figure 4.6 UNITY Description of a Messy Genetic Algorithm

4-8

Function PEI

declare

type BB is array[k] of integer range C

building blocks : array[C*] of BB
always

(li:0<i<Cr

I 0<j<k:
building blocks[i][j] = i mod j)) /*All C¥ values for k-size building blocks*/

combinations = list z|z € P({0,1,...,i~1})A|e|=k /*I choose k combinations*/

assign

(||z':ogz'<(,’c

(lj:0<i<Cks
new_pop|(i - C*) + j).loci, new_pop[(i - C¥) + j).alleles :=
combinations|i], building blocks[j])) ~ /*Create initial population*/

(EV AL := true [] old_pop := new_pop) /*Evaluate initial population*/
end

Figure 4.7 UNITY Description of Partially Enumerative Initialization

GA. The design for evaluation has been omitted because it is problem dependent. Assuming a
fixed number of generations, the high-level control is O(1). PCI and the primordial phase are now
O(l) because the building blocks can be generated from a much smaller initial population using
tournament selection and building block filtering. Tournament selection and cut-and-splice are
still O(POP_SIZE) for the same reasons as their messy GA counterparts. After applying the
POP_SIZE 1 transformation, all operators are O(l).

The following properties, similar to the mGA’s, are evident from the fmGA specification. The
invariant is derived from the initial state for gen and monotonically incrementing gen in the second
assignment statement. The fixed point states that M AX _GENS generations will be completed
then processing will stop. To show progress we note that if the program is not at a fixed point,

then gen must increase.

invariant

0<gen < MAX GENS+1
FP =

(9en = MAX GENS+ 1AINITATOURNAMENT A ~CUT_AND_SPLICE)
progress

~FP Agen=z— gen=z+1

4-9

Function Tournament_Selection

always
A = |old_popli].alleles|
0;; = |2
compatible;; = |cand;.loci N cand;.loci| > 6;;
comp; =({minj:i<j<i+n; Ai<j<currpop.size A compatible;; = true: j))
initially
curr =0
newandex =10
sequencer =0
Nsh = SHUFFLES
assign

. — CUrr_pop.size * - s %k
(curr_pop_size ‘= gpprerion racTor | Reduce the population size®/

if (0 < gen < PRIMORDIAL.GENS A gen mod REDUCTION _RATE = 0))
[

{ ([J¢:0< i< currpop_size ::
(37 : j = Randint(, curr_pop_size — 1) :
old_popli], old_pop[j], sequencer := old_pop[j), old_popl[i], 1
if (sequencer = 0))) /*Permute the population order*/

((new_pop[new_indez], old_pop[curr + 1}, old_pop[compcyr, |, new index, curr :=
old_pop[eurr], old_pop[eomp yrr], old_pop[curr + 1}, new_index + 1, curr + 2
/*Choose a string into the next generation based on its fitness and length*/
if (compeyrr < curr + ngpA
(old_pop[curr].fitness betterthan old_pop[compeyrr]. fitnessv
(old_pop[curr]. fitness = old_pop[compeurr]. fitness A Acurr < Acompeu,r))) ~
old_pop[comp yrr], old_pop[compcyry], old_poplcurr + 1], newindez + 1, curr + 2
if (compoyrr < curr 4 ngpA
(old_pop[compcyry]. fitness betterthan old_pop[curr]. fitnessV
(old_poplcomp urr). fitness = old_pop[curr]. fitness A Acomp..,, < Acurr))) ~
old_pop[curr], old_pop[curr + 1], old_pop[compeyrr], newindex + 1, curr + 1
if (compeyrr > curr + n;p))
if (new_index < curr_pop_size A sequencer = 1))
1
(sequencer :=0 /*Permute population again*/
if (new_index < curr_pop.size A curr > curr_pop_size))
I

{old_pop := new_pop
if (new_index = curr_pop_size)))

end

Figure 4.8 TUNITY Description of mGA Tournament Selection

4-10

Function Cut_and_Splice
declare
cut list : list of MGASTRING
initially
new_index
sequencer
curr
cuT
SPLICE
assign
(i:0 < i< currpop_size ::
(37 : j = Randint(¢, curr_pop.size — 1) ::
old_popli], old_pop[j], sequencer := old_pop{j], old_pop[i], 1
if (sequencer = 0))) /*Permute the population order*/

alse

0
0
0
f
true

I
(CUT,SPLICE, curr, sequencer :=

true, false,curr, sequencer /*Perform a cut operation*/
if ("CUT ASPLICE A curr < POP_SIZE A sequencer = 1) ~
false, true,curr 4 2, sequencer /*Perform a splice operation*/
if (CUT A-SPLICE Acurr < POP_SIZE A sequencer = 1) ~
CUT,SPLICE,0,0 /*Permute population again*/
if (curr > POP_SIZE))
end

Figure 4.9 UNITY Description of Cut and Splice

Function Splice
initially
cut_indez = head
assign
(new_population[new_index].allele, new_population[new_indez).loci, cut index :=
/*Copy single string if only one string left or splice probability not met*/
cut list[cut_indez].allele, cut list[cut_index].loci, cut indez + 1
if (cut_indez = tail ~ 1V Random(0,1)> P;) ~
/*Splice two strings together otherwise*/
concat(cut list{cut index].allele, cut list[cut indez + 1].allele),
concat(cut list{cut index].loci, cut list[cut index + 1].loci), cut index + 2
otherwise)
end

Figure 4.10 UNITY Description of Splice

4-11

Function Cut
always
A = |old_popli].alleles|
assign
((3j:j=Randint(0,); —2) = /*Cut first mate & save pieces, based on cut probability*/
cut list[head).loct, cut list[head].alleles, cut list[tail].loci, cut_list[tail].alleles :=
old_popl[i].loci[0..5], old_pop[i].alleles(0..57,
old_popl[i].loci[j + 1..A; — 1], old_pop[i].alleles[j + 1..}; — 1]
if (Random(0,1) < P.A;) ~
old_popl[i].loci, old_pop[i].alleles, null, null
otherwise)

(37 : j = Randint(0, Aj4+1 — 2) = /*Cut second mate & save pieces, based on cut probability*/

cut listtail — 1].loct, cut list[tail — 1].alleles, cut list[head + 1].loci, cut dist[head + 1].alleles :=

old_pop[i + 1].loci[0..5], old_pop[i + 1].alleles[0..5],

old_pop[i + 1].doci[j + 1..Ai41 — 1], old_pop[i + 1].alleles[j + 1..A;+1 — 1]
if (Random(0,1) < PeAiy1) ~

old_pop[i 4+ 1].loci, old_pop[i + 1].alleles, null, null
otherwise})

(total_strings := /*Tally the final number of string segments*/
4 if (cut listlhead + 1].loci = cut list[tail].loci = null) ~
2 if (cutlist[head + 1].loci # null A cut_arrayftail].loci # null) ~
3 otherwise)
end

Figure 4.11 TUNITY Description of Cut

Program FMGA
declare
type MGA_string is record {
alleles : array[STRING_LENGTH - EXTENSION] of integer range CARDINALITY
loci : array[STRING.LENGTH - EXTENSION] of integer range STRING_LENGTH
fitness real }
type BBF _schedule is record {

gen : integer
A : integer
0 : integer }

type Population is list of MGA_string
old_.pop . Population
new.pop : Population

always
C = CARDINALITY
k = BLOCK_SIZE
l = STRING_LENGTH
Na = N,
L \F
o= ()
pop-size = ng-ny
initially
INIT = false
CUTAND_SPLICE = false
TOURNAMENT = false
gen =0
assign

(INIT := true if (=INIT)) /*Generate initial population*/

I

(TOURNAMENT, gen := (yen = PRIMORDIAL_.GENS),gen +1 /*Primordial*/
if (0 < gen < PRIMORDIAL GENSAINIT A-TOURNAMENT)) [*Phase*/

I

(CUTAND_SPLICE,TOURNAMENT := true, false
if (PRIMORDIAL.GENS < gen < MAX_GENSA /*Juxtapositional*/
TOURNAMENT A-CUT_-AND_SPLICE))
Il
(TOURNAMENT,CUT_AND_SPLICE, gen := true, false, gen + 1
if (PRIMORDIAL.GENS < gen < MAX GENSA /*Phase*/
CUT_AND.SPLICEA # TOURNAMENT))
end

Figure 4.12 UNITY Description of a Fast Messy Genetic Algorithm

4-13

Function PCI

declare

loci_array : array[l] of integer
initially

(lli:0<i< !

loci_arrayli] = 1)
(li:0<i< POPSIZE ::
GENERATED; = false)
assign
(|li: 0 < ¢ < popsize =
(07:0<j<i—k=
(3z : z = Randint(j,!— 1) = /*Randomly generate loci and alleles*/
new_popli].loci[j], new popl[i].alleles(j], loci_array[j], loci_array(z], GENERATED; :=
loci_array[z],Randint(0, C — 1), loci_array(z], loci-array(j], true
if (~GENERATED;)))

(EV AL := true [] old_pop := new_pop /*Evaluate the new population*/
if ((Ai:0 < i< POPSIZE :: GENERATED;)))
end

Figure 4.13 UNITY Description of Probabilistically Complete Initialization

Mappings to serial and parallel architectures based on decomposition technique and granu-
larity are similar to mGA mappings. A serial mapping would result in an algorithm that resembles
the one shown in Figure 2.7. PCI, the primordial phase, and the juxtapositional phase can again
be independently mapped so that each would be implemented differently. The same options for

data distribution and communication strategies apply from mGAs.

4.2 GA Low-Level Design and Implementation

Specific data and control structures are the items to be addressed during low-level design and
implementation. The following sections describe these major components of each genetic algorithm.
In each case, the flexibility of the target language (‘C’) has been used to full advantage. This is
especially evident in the initial use of pointers and dynamic memory allocation to accommodate
run-time specification of data structure sizes, but subsequent access of those data structures using

array notation.

4.2.1 Simple Genetic Algorithm. The control structure used by Genesis is a direct in-

stantiation of the algorithm presented in Figure 2.5. The high-level design (Figure 4.1) is mapped

4-14

Function Tournament_Selection
always
i = |old_popl[i].alleles|
compatible;; = |cand;.loci N cand;.loci| > 6;;
comp; = ((min j : i < j < i+ n4 Ai < j < pop_size A compatible;; = true: j))
initially
curr
new_indez
sequencer
Nsh
next_filter
assign
((ll#:0<1i< popsize :
(07 : 0 < j < schedule[next_filter].A — schedule[next_filter — 1].A ::
(3z : 2 = Randint(0, A;) =
(ly:z<y< A [*Perform BBF*/
old_popl[i].locily — 1], old_pop[i].allelesly — 1] :=
old_popl[i].loci[y], old_pop[i].alleles[y]))))
if (gen = schedule[next_filter].gen))

HUFFLES

wannn
== =]

((0i:0<i< pop-size :
(37 : 7 = Randint(, pop_size — 1) :: /*Permute the population order*/
old_popli], old_pop[j], sequencer := old_pop|j], old_pop[i], 1
if (sequencer = 0)))
I
{ (new.-pop[new_index], old_pop[curr + 1], old_pop[comp yrr|, newindez, curr :=
old_pop|curr], old_pop[compcyrr], old_pop[curr + 1], newindez + 1, curr + 2
/*Choose a string into the next generation based on its fitness and length*/
if (compeurr < curr + ngpA
(old_pop[curr].fitness betterthan old_pop[comp yysr]. fitnessv
(old_popleurr]. fitness = old_pop[compcurs]. fitness A Acurr < Acompenrs))) ~
old_pop{compcurr], old_pop[compeyyr], old_pop[curr 4+ 1], new sndez + 1, curr 4 2
if (comp; < curr + ngpA
(old_pop[compeyrr).fitness betterthan old_pop[curr]. fitnessV
(old_pop[compcyr-]. fitness = old_pop[curr]. fitness A Acomp,u,r < Acurr))) ~
old_pop[curr], old_pop[curr + 1], old_pop[compcyrr], new indez + 1, curr + 1
if (compeurr > curr + ng))
if (new_index < pop_size A sequencer = 1))

(sequencer := 0 if (new_index < pop.size A curr > pop_size)) /*¥Permute population again*/

I
{old_pop := new_pop if (new_index = pop_size)))
end

Figure 4.14 UNITY Description of fmGA Tournament Selection

4-15

to a sequence of statement enclosed inside a loop from 0 to the maximum number of generations.

The string data structure contains both the genes and a location to store the fitness.

typedef struct {

char *Gene;

double Perf;

int Needs_evaluation;
} STRUCTURE;

Two populations are dynamically allocated during initialization, one to hold the current population
and one accept the new strings created by the recombination operators. The dual access modes that
‘C’ provides enable the programmer to optimize specific operations. Direct access to individuals
in the population is available through the array-indexing mode. A newly created population can
be moved to the old population by swapping the pointers to each population. One of these two

operations would be significantly slower if only one access mode were available.

4.2.2 Messy and Fast Messy Genetic Algorithms. The control structures for the mGA
and fmGA are direct instantiations of their respective algorithms presented in Figures 2.6 and 2.7.
Their high-level designs (Figures 4.6 and 4.12) are mapped in the same fashion as the simple GA.

The string data structure is modified to store the additional locus information.

typedef struct {
int *locus;
char *allele;
double fitness;
} mgastring;
The population data structures are implemented exactly like the simple GA population with all

the associated benefits.

4.8 Genetic Algorithm Fitness Functions for Energy Minimization

A major objective in any research effort is to be able to compare results to previous research.
In order to make these comparisons, the current effort must provide accurate results and the
relationships between compared works must be understood. This section discusses the accuracy of
our energy model/fitness function. Appendix C contains details on the relationship between data
files and procedures for comparing results obtained from the two different energy models used in

previous research (68, 3).

4-16

The design and implementation of a fitness function is critical to the successful application
of genetic algorithms to a problem domain. For most complex problems of interest, the majority
of the total execution time is spent evaluating the quality of solutions. Thus it is imperative that
the detailed design and implementation are as efficient as possible. In the research environment
however, some inefficiency may be tolerated to take advantage of other software characteristics. In
particular, we prefer to remain isolated from machine dependent math libraries in the interest of

enhancing portability.

4.8.1 Previous Energy Model Designs. Two energy model implementations are available
for our use with genetic algorithms: ECEPP and CHARMm. A description of the ECEPP design
and implementation is given in (21). There are several drawbacks to using ECEPP as a general
energy model. The greatest hindrance is the limited size (= 50 amino acids) and types of proteins
that it can accommodate (21). The configuration management complexity of this implementation
is also very high because we have to interface C and Fortran code, and portability is poor because

ECEPP requires special math libraries that aren’t widely available on all AFIT computer systems.

The design specification for CHARMm is given in Brooks (4), however the only implemen-
tation is proprietary (QUANTA (8)) so AFIT designed and implemented its own software for use
with genetic algorithms (3). Because it’s the only force field energy model capable of modeling
general organic molecules, the CHARMm energy model is essential to the Air Force’s research of
non-linear optical (NLO) materials. The design specifies list and array data structures that are
suitably efficient for the highly sequential, read-only access required by the majority of the program.
Our design is: scalable over all protein sizes (within machine limits) and types, written in C for

simple integration with our GAs, and requires nothing more than standard C header files.

ECEPP and CHARMm are both force-field energy models so we expect their time complexity
to be O(n?), where n is the number of atoms in the protein, because force-field models account
for all pairwise interactions between atoms (57, 58). Our CHARMm implementation uses lists of
the pairwise interactions and constant time calculations of the energy components to realize the

minimum time complexity of the design. The ECEPP implementation is also O(n?) (21).

4-17

Table 4.3 Energy Component Comparison

Previous QUANTA
Implementation | Implementation Values

Component (kcal/mol) (kcal/mol)
Bond (p) 12.380 12.374
Bond Angle (6) 6.189 6.183
Dihedral Angle (&) 202.479 8.204
Lennard-Jones -45.133 -15.014
Electrostatic -0.267 -40.973
Total 175.649 -29.225

4.3.2 FEnergy Model Design Enhancements. The model created by (3) was roughly 90%
accurate as an implementation of the CHARMm energy minimization function and data structures.
Table 4.3 compares the individual energy components from this model with the values obtained
from QUANTA for a specific conformation of [Met]-enkephalin. The design enhancements discussed
in the following paragraphs have been implemented to eliminate the discrepancies between the two

implementations.

Since the bond lengths and bond angles are being held fixed, we’d expect no differences
between the two CHARMm implementations for those energy terms. The differences shown are
less than one tenth of one percent and are at least three orders of magnitude smaller than the
relative error of the other terms. The dihedral angle energy is the greatest source of error, followed
by the Lennard-Jones potential and electrostatic terms. A technical review of this CHARMm
energy model design and implementation uncovered several deficiencies that have been resolved as

part of this effort.

1. There are actually three classes of dihedral angles—fixed, independent, and dependent. De-
pendent dihedral angles weren’t handled in the original design. Any rotation of an indepen-
dent dihedral angle without a corresponding rotation of its dependent dihedral angles (Figure
4.15) results in a higher energy value for the system. Figure 4.16 illustrates how the molecules
should react to a rotation of the independent dihedral angle.

2. QUANTA treats the two atoms at the ends of a group defining a dihedral angle as a special
case, non-bonded interaction. The energy contribution of this 7-4 non-bonded interaction
is calculated as one-half of the normal non-bonded energy value between non-bonded atom
pairs.

3. Dihedral angles were encoded assuming a range of —7 to 7, however they were then mistakenly
decoded in the range of 0 to 27.

4-18

Stationary

Figure 4.15 Incorrect Dependent Dihedral Figure 4.16 Correct Dependent Dihedral
Angle Rotation: Dependent Angle Rotation: Dependent
atom (1) remains stationary atom (1) rotates in unison
while independent atom (2) with the rotation of indepen-
rotates. dent atom (2).

4. The dihedral energy term should include a parameter for the periodicity of the angle. Together,
the periodicity (n) and v (see Equation 3.1) define the number of minimum energy dihedral
angles and their values (see Figure 4.17). Only periodicities of n = 1, 2, 3, 4, and 6 are
allowed, although a single dihedral angle might have more than one periodicity associated
with it.

5. A units conversion factor of &~ 332.0 was missing from the electrostatic energy calculation.
This factor represents a relative dielectric constant of one (€. = 1).

4.3.8 Implementation Details. Our C implementation of the CHARMm energy model
reflects the previously noted priority of portability over efficiency during this research phase. While
highly optimized matrix-matrix and matrix-vector operations are available in various math libraries
(50, 53), they weren’t incorporated. Instead C versions were written to enhance machine portability.
This has paid dividends in the ease with which both the GA and energy function code has been
ported from SPARCstations to Silicon Graphics and IBM PCs as well as the iPSC/2, iPSC/860,

and Paragon parallel computing platforms.

Certain minor inefficiencies have been introduced by the modifications required to validate
the energy model. These inefficiencies are either one-time costs incurred during data structure
initialization or a small number of recurring costs during the energy calculation. In either case, the

code is documented to identify the source of the inefficiency and any known possible solutions to

4-19

TT/2

%

3n/2

0

T

-0
27/3
\
-
7
/
41t/3
21/3 /3
n==6
41t/3 5m/3

/3

5n/3

Figure 4.17 Dihedral Angle Periodicity

4-20

the problem. No modifications have resulted in an increase in the overall time complexity of the

energy function which has been shown consistent with the O(n?) prediction from the design (31).

Item 1 on the deficiencies list is the most difficult modification to implement. It requires
the addition of two fields to the ATOM TY PE data structure and additional initialization code.
Each dihedral angle must identify an independent dihedral angle that it’s dependent on and the
angular value of that relationship. Correcting this item won’t change any of the energy terms shown
in Table 4.3, however, this change is critical to correctly calculating the coordinates of atoms in
the protein due to rotations of the independent dihedral angles during GA processing. Without
this change, the genetic algorithm would attempt to minimize the difference between population

members and the input rather than optimize the conformation!

Item 2 requires an additional pairwise interaction list to process the 1-4 non-bonded inter-
actions. The creation of this list can be easily inserted into the section that generates the other
interaction lists and processing the list requires only one additional call to the function that calcu-
lates non-bonded interaction energies. The only difference between these non-bonded interactions
and all the others on the NON_BON DED list is the fact that the results for 1-4 non-bonded inter-
actions are scaled by one half. This modification will change the values returned for the electrostatic

and Lennard-Jones energy terms.

Items 3, 4 and 5 from the deficiencies list are simple, one-line changes represented by trans-

formations 4.1 through 4.3.

dihedral - (1 + cos(dihed_angle — 7)) = dihedral - (14 cos((n - dihed_angle) — 7)) (4.1)
(3607)temp

atom[i].dihed_angle = (T80 5) = atom[i].dihed angle = ((27;31#) - (4.2)
(atom]i].chg)(atom[j].chg) N (atom|t}.chg)(atom[j].chg)propconst (4.3)
7 : T)

The first two changes should correct the dihedral energy term. If the last modification were made in
isolation the electrostatic energy term would still be incorrect (—0.267 x 332 = —88.644 % —40.973).
This change combined with the resolution of deficiency 2 should correct both the electrostatic and

Lennard-Jones potential.

4-21

The energy values obtained from the original energy model didn’t exhibit any correlation with
the values obtained from QUANTA for identical protein structures. A strong correlation between

the two implementations is the goal we seek to obtain with these energy model enhancements.

4.4 Summary

Software reuse is a major design decision for genetic algorithm implementations at AFIT.
Effort is expended on design recapture using UNITY to aid in the understanding of that software.
The designs presented in this chapter have been created using a top-down design methodology
based on the existing ‘C’ code. The performance of computer programs is judged by their effi-
ciency and effectiveness. This chapter also developed and compared the calculated efficiencies of
implementations with the design-predicted efficiencies for the major components of three genetic
algorithms. The effectiveness of the CHARMm energy implementation is examined and a plan
to improve its accuracy is designed. The next chapter describes the test setup to measure these

performance characteristics.

4-22

V. Genetic Algorithm Fzperiment Designs

While examples can’t be used to prove anything, experiments serve a very important purpose
in many areas of investigation! An experiment may provide support for our belief in a hypothesis
and/or a better understanding of the theory behind the conjecture. Used correctly, experiments are
also effective tools for disproving theories (counter-examples) and suggesting alternate hypotheses.
The experiments in this investigation are designed to be of the support type. The results are used

to identify areas of the problerh domain that require additional research.

Section 5.1 identifies the specific protein used as a bench-mark test. Section 5.2 defines the
process used to validate the effects of energy model enhancements. Sections 5.3 and 5.4 describe ex-
periments that use the test molecule and enchanced energy model to evaluate simple GA parameter

sets and compare the performance of several genetic algorithms.

5.1 Test Molecule

Figure 5.1 is a representation of an extended conformation of our test molecule, [Met]-
enkephalin. [Met]-enkephalin is a very small pentapeptide defined by the five-amino-acid se-
quence Tyr-Gly-Gly-Phe-Met. This molecule was chosen because its native conformation is known
and other researchers have attempted to predict its tertiary structure using energy minimization
(68, 85,57, 3). Using neutral NH; and -COOH groups as terminators at the a-amino and e-carboxyl
ends respectively, there are 24 independently variable dihedral angles that influence the tertiary
structure of [Met]-enkephalin. These dihedral angles are labeled along their center bonds in Fig-
ure 5.1. Table 5.1 shows the values of these dihedrals for the accepted energy minimum. The
energy values in ECEPP and QUANTA for this conformation are -14.593 and -29.225 kcal/mol

respectively.

5.2 Energy Model Validation

Validation of our energy model consists of comparing the energy values produced by our
implementation with those from QUANTA (see Appendix C for a description of the comparison
process). Although no known verification of their model has been accomplished, this investigation

assumes QUANTA’s implementation is correct. Three conformations of {Met]-enkephalin are used

5-1

5-2

Figure 5.1 Extended Conformation of [Met]-enkephalin

Table 5.1 Dihedral Angles for Accepted Energy Minimum [Met]-enkephalin

Dihedral Angle (degrees)
Residue | ¢ ¢ w x1 X2 X3 Xa
Tyr -86 156 -177 -173 79 166
Gly -154 83 169
Gly 84 T4 170
Phe -137 19 -174 59 -85
Met -164 160 -180 53 175 -180 -59

as comparison cases: the accepted global energy minimum described in section 5.1 above, a semi-
optimal conformation found by a short simple genetic algorithm run, and a randomly generated
conformation. These test conformations represent a wide range in the conformational search space.

An attempt is made to explain discrepancies discovered during these comparisons.

5.8 Simple Genetic Algorithm Parameters for Protein Energy Minimization

This section describes some preliminary findings using theoretical population sizing formu-
las and their inapplicability to the problem at hand. These findings provide justification for the
repetition of a previous experiment, using our energy minimization function in place of the orig-
inal functions. The results from these experiments are used to guide parameter set selection for
the experiments described in Section 5.4 and to explain some results from this investigation and

Brinkman’s (3).

5.3.1 Problems with Conservative Theoretical Population Sizing. Goldberg et.al. analyze
the population sizing problem in (35). The formula they derive is based on conservative assumptions
and is therefore an upper bound for choosing a population size. GAs using the calculated population
size should converge somewhere between O(llogl) and O(I*log®l) function evaluations depending
on the selection scheme used. Goldberg’s formula, without considering additional terms to account

for noisy operators, is

n=2c (MM) X" (5.1)

where

n is the calculated population size,

5-3

Table 5.2 Theoretical Population Size Required for Optimal Solution Convergence of [Met]-

enkephalin
Variance Calculation Parameters Population
Assumption | [k x ¢ d o2 Size

Worst Case {240 5 2 6 0.1 1.65x 102 | 2.98 x 10%°
Measured 240 5 2 6 0.1 9.20x 10'¥ | 1.66x 10%
Best Case 240 5 2 6 0.1 8.95x107* | 1.62x 10~%

c is a parameterized constant of the confidence factor you want to enforce (a),

o2 (m — 1) is an estimate of the variance of the average order-k schema (m = 1/k),
d is the signal difference we wish to detect,

x is the cardinality of the encoding alphabet, and

k is the estimated order of deception in the problem.

Table 5.2 summarizes population size values using this model for a genetic algorithm minimizing
the energy of [Met]-enkephalin based on the following, conservative assumptions (more realistic
assumptions would only increase the calculated population size!).

1% sampling error is allowed (a = 0.01, ¢ = 6),

the signal difference we wish to detect is d = 0.1,

the estimated order of deception in the problem is k£ = 5,

the maximum energy is fiae & 757 - 10°,

the minimum energy is f.;, = 0, and

three variance estimations:
. — R 2
o Worst case variance—o?2,,, = M)—

e Measured variance over 40,000 random conformations—a?,, ~ 10'°

2

1 2 —_— fma:c— min
o Best case variance Orms — 2

Obviously, the best case calculation doesn’t help us because it tells us we don’t need a
population at all! The other two cases don’t provide a useful result either. The calculation time for
one conformation of [Met}]-enkephalin has been measured at approximately 167 msec at the fastest.
At this rate it would take more than one million times the age of the universe just to evaluate the
initial population!

No theoretical work to date can provide a useful population size estimate for the simple

genetic algorithm approach to protein folding. Also, nobody has even attempted to establish any

5-4

Table 5.3 Comparison of Empirically Determined GA Parameter Settings

Author Population Size | Crossover Rate | Mutation Rate
Schaffer 20 - 30 0.75 - 0.95 0.005 - 0.01
De Jong 50 - 100 0.60 0.00
Grefenstette 30 0.95 0.01

theory behind the choice of good crossover and mutation rates. Therefore, we must currently fall

back on empirical methods for the identification of good parameter sets.

5.8.2 Comparison with Other Empirical Results. The most comprehensive empirical
analysis of parameter settings was accomplished by Schaffer et.al. in (77). They used a set of
ten test functions, including De Jong’s five-function test suite. The objective of the study was
to identify ranges of population size, crossover rates, and mutation rates that would exhibit good
online performance over the range of test functions. They also evaluated the effects of one- and
two-point crossover and found that the latter was always at least as good as the former. Table 5.3

lists the parameters suggested by Schaffer along with the ones proposed earlier by De Jong (14)
and Grefenstette (42).

These results, especially for population size, suggest some alternate interpretations for ob-
servations made previously in (3, 65). In both cases, better solution quality was obtained with
larger processor counts, however, the global population size was kept constant during these inves-
tigations. The better solutions may have been observed because the processor sub-population sizes

were reduced to values that foster better GA performance.

5.8.3 Test Design. The following experiments are designed to test the hypothesis that

the best parameter settings for our problem are inside the range specified by Schaffer (77:55). With
the exception of using two-point crossover exclusively and regular binary encoding instead of gray
code, all controls are set exactly as in that study (77:53). A complete factorial design for the 420
remaining parameter combinations is performed, and ten repetitions with different random number

seeds are run for each combination.

Since the simple GA has been incapable of finding the accepted global optimum, our definition
of “doing well” needs to be different than Schaffer’s. We choose the following definition to closely

approximate his original: at least 10% (42) of the cells in the design locate a value within 10

5-5

kcal/mol of the best known solution (-35.1155 kcal/mol) at least 50% of the time (5 out of 10
repetitions) (77:54). We were also unable to obtain a reference describing the mechanics of the
Tukey B test used by Schaffer, so instead we use the Kruskal-Wallis test to identify the members
of the best online pool. Test cells (parameter combinations) belong to the best online pool if their

performance cannot be statistically distinguished from the best performing cell.

5.4 Comparison of SGAs and fmGAs for the Protein Folding Problem

The investigation so far has been mostly preparatory work to enable a comparison of the
performance of genetic algorithms while minimizing the energy of [Met]-enkephalin. But first, we
must justify the decision to exclude the standard messy GA from our final comparisons. Recall that
the initial population size for binary mGAs is 2 (}) where [is the string length and k is the block
size. With a block size of £k = 5, which is a rough estimate for our problem, the initial population
size is 2°(%3°) > 2 billion. This population would require more than 1,000 years to evaluate on a
sequential machine and more than four years using the largest parallel machine to which we have
access! Thus we must discard messy GAs because they are too computationally expensive to be

applied to the protein folding problem.

Now that the scope of our research approach has been defined, we must decide on criteria
to judge the performance of the remaining two genetic algorithms. Ultimately, the lowest energy
conformation found or the conformation that most nearly resembles the accepted conformation must
weigh heavily in our conclusions. However, we must also look at the possibilities for improvement
in the algorithms themselves. Simple genetic algorithms have been studied for more than 20 years,
and their vulnerability to deception and premature convergence is well-documented even if it isn’t
fully understood (24, 46, 34, 39). In contrast, messy and fast messy GAs are less than five years
old and the papers introducing them are the only theoretical treatments available (39, 37, 38, 36).
Forthcoming research by Goldberg and Merkle, as well as this investigation should expose some of

the theoretical and practical knowledge required for fmGAs to consistently outperform SGAs!

There are a host of other comparisons that can be made to further distinguish differences
between the algorithms if the algorithms are judged nearly equivalent by the primary criteria. We

have chosen measures of efficiency for this task for two reasons. First, we want solutions within

5-6

an acceptable amount of turn-around time so that the programs have room to scale up to bigger
problems. Second, we want to measure how efficiently the resources (processors) we allocate to
the problem are used. The quantitative comparisons to be made between the different algorithms

include:

e Lowest Average Energy—averaged over 10 independent runs

o Average Execution Time—averaged over 10 independent runs
o Speedup—average serial execution time divided by average parallel execution time (§ = %)
e Efficiency—speedup divided by the number of processors (E = f)

5.4.1 Parallel Communication Strategies. AFIT’s parallel simple genetic algorithm is
implemented on the iPSC/2 and iPSC/860 hypercubes (76). The implementations use four param-
eters to control communication between processors. One defines the configuration of processors that
solutions will be shared with (immigration range): 0 — all other processors, 1 — nearest neighbors
in the hypercube, 2 — next processor in node order. The second controls how often solutions are
shared: Epoch = # of generations between migrations. The third parameter determines how many
solutions are sent: 1 — the current best is sent, 2 — the current best is sent if it’s better than the
solution sent previously, 3 — a percentage of the population is sent. The final parameter specifies

the percentage to be shared (immigration rate) if option 2 of the third parameter is chosen.

AFIT’s parallel fast messy genetic algorithm is implemented on the Paragon (64). Three
communication strategies are available in this implementation. The first option (independent,
I) allows each processor to run its fmGA to completion, then each sends its best solution to a
node 0 for identification of the overall best. For the second option (combined, C) each processor
sends its building blocks to node 0 at the end of the primordial phase, then node 0 processes the
global population as a combined juxtapositional phase, while each of the other nodes execute the
juxtapositional phase with their smaller subpopulations. The combined strategy ends with node
0 again collecting the best solution from each processor and identifying the best solution found.
Finally, the communication strategy implemented for this investigation performs a global exchange
of building blocks at the end of the primordial phase (global combine, G). Then every processor

executes an independent juxtapositional phase on a copy of the global population.

5-7

Table 5.4 Parallel SGA Communication Parameter Settings

Immigration Epoch Immigration
Strategy Range Length Rate
Global All Processors 10 Generations | New Best Only
Neighbor | Hypercube Neighbors | 10 Generations | New Best Only
Ring Next In Order 10 Generations | New Best Only

5.4.2 Test Design. The sequential SGA and fmGA are evaluated as baselines for the
performance of the parallel versions. Each algorithm is executed ten times starting with a different

random number seed so we can calculate significant statistical averages of the quantitative metrics.

A fully factorial test design for parallel SGAs creates a large number of combinations that’s
dependent on the number of epoch sizes (|e|) and the number of immigration rates (|i|) we choose

to examine. The number of test cases is given by

3x3xlel x|, (5.2)

where even small values of |e] and |i] involve more than 50 different combinations. Because it’s
not the goal of this research to evaluate the performance of these combinations but to evaluate
comparable simple and fast messy GAs, we choose a small subset of communication strategies that
are similar to the available fmGA strategies. The three communication strategies chosen and their
associated parameters are listed in Table 5.4. Two population strategies are also tested. The first
keeps the global population size constant (640) so that the number of members in a subpopulation
decreases as the number of processors increases. The second strategy fixes the subpopulation size
at 20 members so that the global population size grows as the number of processors increases. Ten
iterations of each strategy, using different random seeds, are run on hypercubes of dimension 2-5.
Figure 5.2 represents a general input file for the parallel SGA. Values separated by commas indicate

the values that each parameter may assume in the experimental runs.

We must pause here to contemplate the choice of parameters for the fast messy GA. Since
identifying good parameters for the fmGA isn’t a goal of this effort and there are no treatments of the
subject other than in Goldberg’s introduction of the algorithm (36), many of the same parameter

values are used without modification. The splice probability is set to 1.0 because the operation

5-8

Population Size = 640,320,160,80,40

Structure Length = 240
Crossover Rate = 0.75
Mutation Rate = 0.002
Generation Gap =1.0
Scaling Window =1
Structures Saved/Node = 2

Max Gens w/o Eval = 10
Epoch Size = 10
A1l soln eval flag =0
Solution sharing flag = 2
Comm mode (0,1,2) 0,1,2
Dump flag =0
Elitist strategy =1
Traceflag =0
Global Select flag =0
Immigration rate =1
Naturalist flag =0

Figure 5.2 Parameter Settings for Parallel SGA

of messy GAs in general is predicated on the primordial phase ending with all the building blocks
necessary to create an optimal solution. The cut probability is scaled linearly by current string
length and is chosen such that strings at the fully specified length have a 50% chance of being cut
and strings that are twice the fully specified length will always be cut.

Two important observations were made during the course of this investigation. First, while
viewing some debugging output during the parallelization of the code, we noticed that each proces-
sor was sending multiple copies of only one or two building blocks into the global juxtapositional
phase. This was inconsistent with the intent of the primordial phase. It was discovered to be
the result of a poor building block filtering schedule which allowed aggressive competition between
dissimilar building blocks. Although not an exhaustive test, three alternate schedules were pro-
posed and tested against the original schedule. All three new schedules consisted of string-length
reductions based on Goldberg’s theory (36:60-61). The associated thresholding values chosen were:

1. 50% initial similarity, linearly increasing to 100% similarity at the last BBF episode
2. 50% initial similarity, linearly increasing to 80% similarity at the last BBF episode

3. constant 80% similarity enforced throughout the primordial phase

Table 5.5 Average Energy for Alternate Building Block Filtering Schedules
| Schedule | Energy (kcal/mol) |

Original -14.5832
50% - 100% -15.3590
50% - 80% -17.5489
80% -17.7322

Table 5.5 compares the average energy of all test runs for each new schedule -and the original.
(Individual test data is presented in Appendix A along with a sample output showing the building

blocks from a typical run.) Based on this small test, the constant 80% schedule was chosen for the

remainder of the investigation.

The second observation involves Goldberg’s population sizing equation and the fmGA’s use of
tournament selection, as pointed out by Merkle (35, 63). The major difficulty with using population
sizes calculated by Equation 5..1 for the protein folding problem is that the variance of all possible
conformational energies is so large. However, we claim that since tournament selection is a direct
competition selection operator, we can perform any order-preserving transformation on the fitness
values without changing the outcome of a fmGA run. If this order-preserving transformation also
reduces the variance of the fitness function, this would imply that the population size required
to make correct selection decisions is smaller than estimated by the original application of the
formula. Repeated applications of the order-preserving transformation should reach a “fixed point”
that would be the true population size required by the fmGA. The transformation we choose to
apply is logs(z + 1.0), where z is the value being transformed (fitness function maximum and signal
difference value). Appendix B contains the short ‘C’ program used to carry out the transformations
and the output that indicates convergence to a population size of 4,512 after 58 iterations. We opt
for a slightly smaller maximum population size of 4,096 so we can be sure of the exact subpopulation
size when multiple processors are used and keep execution times within reasonable limits. While
this choice may limit the effectiveness of the algorithm, we are only concerned with evaluating the

expected future worth of research in this area, not a final measurement of their best performance.

The parallel fmGA is exercised in the three different configurations described in Section 5.4.1.

Ten iterations of each strategy, using different random seeds, are run on meshes that are powers of

5-10

two from 2 thru 7. Figure 5.3 represents a general input file for the parallel fmGA. Values separated

by commas indicate the values that each parameter may assume in the experimental runs.

5.5 Summary

The test designs outlined in this chapter support the three major goals of this investigation:
validate an enhanced CHARMm energy model, identify parameter sets that enable a simple GA to
perform its best on our energy minimization problem, and compare the performance of simple and
fast messy GAs, both serial and parallel. The results from these experiments should provide general
insights into our energy model and the behavior of genetic algorithms attempting to optimize a

real-world problem. The next chapter presents and analyzes the results of these experiments.

5-11

Random Seed
Experiments

String Length =
=5

Block Size (1 - String_Length)

Genic Alphabet =
=0

Shuffle Number (>1)

Cut Probability =

Splice Probability =
Primordial_Generations =
Total_Generations =
Overflow (>1.0) =

n_a =

flags =

Cut_gen Str_len Threshold

0 235 118
5 189 99
10 151 81
15 122 67
20 98 56
25 78 46
30 63 38
35 50 31
40 41 26
45 33 21
50 26 17
55 21 14
60 17 12
65 14 10
70 11 8
75 9 7
80 7 5
85 6 5
90 5 4

1340988495
10
240

01

0.002

1.0

95

107

1.6
58,116,231,461,922,1844,3687
I,C,G

Figure 5.3 Parameter Settings for Parallel fmGA

5-12

VI. Experimental Results and Analysis

This chapter contains the results obtained from the experiments defined previously in Chapter
V. The data is analyzed to identify possible cause and effect relationships and the statistical
significance of tho.se relationships. In many cases, an average is calculated using quantities from
multiple experiments in a test class. These averages are used to characterize the behavior of the
algorithms because of their nondeterministic nature. The average execution time and average
solution quality are better indications of general performance than individual data points. The
Kruskal-Wallis test is used to compare the different test classes. This test accounts for the sample
variances implicitly in the calculation of the statistic. The sections in this chapter parallel the last

three sections of Chapter V for ease of reference.

6.1 FEnergy Model Validation

Tables 6.1 through 6.3 compare the energy values obtained from the three energy models
for the accepted energy minimum conformation, a near-optimal conformation, and a random con-
formation respectively (Section 5.2). AFIT’s old energy model was modified to correctly encode
and decode the independent variables to obtain the energy values shown in the tables. While the
energy values from the new energy model don’t exactly match the accepted QUANTA values, there
is now a definite correlation between the respective values. This correlation was noticeably absent

between the old energy model and QUANTA.

Analyzing the differences shown in the tables, we notice that our enhanced energy model

values are always lower than the accepted values. Although there is some error in the bond, bond

Table 6.1 Energy Component Comparison, [Met]-enkephalin Native Conformation

Previous QUANTA New
Energy Implementation Values Implementation
Component (kcal/mol) (kcal/mol) (kcal/mol)
Bond (p) 12.380 12.374 12.380
Bond Angle () 6.187 6.183 6.189
Dihedral Angle (¢) 202.480 8.204 8.203
Lennard-Jones -45.118 -15.014 -20.201
Electrostatic -0.267 -40.973 -40.091
Total 175.662 -29.225 -33.520

6-1

Table 6.2 Energy Component Comparison, [Met]-enkephalin Near-Optimal Conformation
Previous QUANTA New
Energy Implementation Values Implementation
Component (kcal/mol) (kcal/mol) (kcal/mol)
Bond (p) 12.381 12.311 12.380
Bond Angle (8) 2491.940 6.210 6.189
Dihedral Angle (¢) 200.453 6.731 6.731
Lennard-Jones 2.266e+-09 -13.112 -17.066
Electrostatic -0.236 -38.066 -38.086
Total 2.266e+4-09 -25.927 -29.851

Table 6.3 Energy Component Comparison, [Met]-enkephalin Random Conformation

Previous QUANTA New
Energy Implementation Values Implementation
Component (kcal/mol) (kcal/mol) (kcal/mol)
Bond (p) 12.378 12.378 12.380
Bond Angle (6) 1535.251 6.198 6.189
Dihedral Angle (¢) 199.082 42.816 42.817
Lennard-Jones 2980447.172 70.090 38.090
Electrostatic -0.252 -29.409 -29.361
Total 2982193.631 102.075 70.116

angle, and dihedral angle energy terms, the differences are at least two orders of magnitude smaller
than the overall error, and thus are currently a minor concern. However, the error can be accounted
for by observing that the binary encoding scheme used by our algorithms is a source of round-off

error (Section 2.2).

The major source of error is in the non-bonded interaction energy term and more specifically,
in the Lennard-Jones potential (Equation 3.1). After numerous communcations with the QUANTA
technical support staff, we’ve determined a possible source of the difference. CHARMm has recently
been changed to use E,,;,, and R,,;, directly from the parameter file to calculate the Lennard-Jones
potential. In contrast, we use these values to calculate the intermediate parameters A and B used
in Equation 3.1 as described by Brooks et. al. (4). These parameters can be a major source of

error since they are calculated by finding the 6th and 12th roots of numbers that are less than one!

Figure 6.1 represents the best conformation found by any of the four genetic algorithms.
The energy terms calculated by AFIT’s energy model and QUANTA are compared in Table 6.4.

Figures 6.2 and 6.3 show the best GA conformation superimposed on the accepted minimum energy

6-2

Figure 6.1 GA Minimized Conformation of [Met]-enkephalin

conformation of [Met]-enkephalin. The first view shows a very good match between the molecules.
The second view is rotated approximately 90° from the first. Although the various dotted lines
connecting similar atoms in the two conformations appear to indicate a poor match, their relatively
parallel orientation, along with the first view, indicates a possible mirror image conformation. Table
6.5 compares the 24 independent dihedral angles of the GA solution with those of the accepted
conformation. Interestingly, the shorter, internal amino acid dihedral angles are closer to their
correct values than the longer residue dihedral angles on the ends of the molecule. This could be a
result of the error in the non-bonded energy terms which would tend to exert its influence on the

extremities of a molecule.

6.2 Simple Genetic Algorithm Parameters for Protein Energy Minimization

Table 6.6 lists the 23 members of the best online pool beginning with the parameter set that
exhibits the best average online performance. The members of the pool were identified using the
Kruskal-Wallis test (86:544-546). The statistic, calculated from the raw sample data, is h = 31.691.

This value is less than the critical value of the Chi-square distribution at the o < .05 significance

6-3

Table 6.4 Energy Component Comparison, [Met]-enkephalin GA Best Found Conformation

QUANTA New
Energy Values Implementation
Component (kcal/mol) (kcal/mol)
Bond (p) 12.443 12.380
Bond Angle (6) 6.200 6.189
Dihedral Angle (¢) 9.359 7.786
Lennard-Jones -15.592 -20.383
Electrostatic -40.602 -42.335
Total -28.191 -36.362

Figure 6.2 Superimposed Conformations of [Met]-enkephalin (View #1)

6-4

KR v gy

2 IND IR Wy g e 08 g e

IO 0 0 o1 00 1

Figure 6.3 Superimposed Conformations of [Met]-enkephalin (View #2)

Table 6.5 Dihedral Angle Comparison, [Met]-enkephalin GA Best Found Conformation

Dihedral Angle (degrees)

Residue ¢ | v | w [X | X | X | X
Tyr

GA -62.9 | 140.3 | -179.3 | -180.0 69.3 | -62.6
Accepted | -86.11| 156.1 | -176.8 | -172.6 78.8 | 165.9

Gly

GA -150.8 | 80.2 | 170.9

Accepted | -154.3 | 83.7 | 168.8

Gly

GA 78.8 | -84.4 | 177.2

Accepted 83.7 | -73.8 | -170.2

Phe

GA -103.7 | -10.9 | -179.3 443 | -93.9

Accepted | -137.1 19.3 | -174.0 58.7 | -85.4

Met

GA -784 | 69.6 9.5 -57.34-173.7 90.0 | -173.3
Accepted | -163.5 | 160.3 | -179.7 52.7 | 175.1 | -180.0 | -58.4

6-5

Table 6.6 Best Online Pool

Mean

Population Crossover Mutation Online
Size Rate Rate Performance
10 0.75 0.005 0.014678
10 0.85 0.005 0.014678
10 0.95 0.005 0.014920
20 0.95 0.002 0.015697
20 0.65 0.002 0.015831
20 0.75 0.002 0.017045
10 0.55 0.005 0.017276
10 0.65 0.005 0.017276
20 0.85 0.002 0.017567
20 0.35 0.002 0.017919
30 0.15 0.002 0.018720
20 0.25 0.005 0.019704
20 0.45 0.002 0.020177
10 0.15 0.005 0.021270
10 0.25 0.005 0.021270
20 0.55 0.002 0.021707
30 0.05 0.002 0.022144
20 0.55 0.005 0.022557
10 0.05 0.005 0.022617
20 0.15 0.002 0.022739
10 0.35 0.005 0.023407
10 0.45 0.005 0.023407
20 0.25 0.002 0.023686

level with 22 degrees of freedom. Thus we accept the null hypothesis and conclude that these 23

parameter settings exhibit the same online performance!

Figures 6.4 through 6.9 show the average online performance for all 420 parameter set combinations.
The diamonds in the graphs mark the locations of the members of the best online pool. The results
show relationships between population size, mutation rates, and crossover rates similar to those
reported by Schaffer (77:54-59). Included in these relationships is a very strong correlation between
population size and mutation rate. Alternately, there is no evidence of any relationship between

population size and crossover probability.

As discussed by Dymek (20), premature convergence is a major problem for genetic algo-

rithms. The graphs in Figures 6.4 through 6.6 show pictorially that premature convergence is

6-6

Population size = 10

Mutation Rate Crossover Rate

Figure 6.4 Mean Online Performance (Population Size = 10)

highly likely when the mutation rate is set too low for the chosen population size. Every point in
the graphs that represents a normalized mean online performance near 1.0 also represents a GA
execution that prematurely converged. On the other side of the best online pool, as the mutation
rate increases, the GAs perform successively more random searches. Searches using these param-
eters are less likely to exhibit good online performance because they aren’t focused on exploiting

the good solutions already found.

6.8 FEwvaluation of SGAs and fmGAs for the Protein Folding Problem

6.3.1 Parallel Simple GAs. Figure 6.10 shows average solution quality improving as the
number of processors is increased and the global population size remains fixed at 640 using the
parallel SGA. This result is expected based on the previous findings that small populations (in this
case subpopulations) exhibit better online performance than large populations! Analysis of the raw
data indicates the results from the three communcation strategies are statistically the same at the

a < .05 significance level (32).

6-7

Population size = 20

Normalized Mean Online Performaefica

Mutation Rate Crossover Rate

Figure 6.5 Mean Online Performance (Population Size = 20)

Population size = 30

Normalized Mean Online Performance

Mutation Rate Crossover Rate

Figure 6.6 Mean Online Performance (Population Size = 30)

6-8

Population size = 50

Normalized Mean Online Performance

1
0.8
0.6
0.4

0.2

0

Mutation Rate Crossover Rate

Figure 6.7 Mean Online Performance (Population Size = 50)

Population size = 100

Normalized Mean Online Performance

1
0.8
0.6
0.4
0.2

0

Mutation Rate

Crossover Rate

Figure 6.8 Mean Online Performance (Population Size = 100)

6-9

Population size = 200

Normalized Mean Online Performance

Energy (kcal/mof)

-35

1
0.8
0.6
0.4

0.2

0

Mutation Rate Crossover Rate

Figure 6.9 Mean Online Performance (Population Size = 200)

L) T ¥ L)
QGlobal Communcation —-e—
Nearest Neighbor Communication —+---
Ring Communication -g8--- =

~~~~~~~~

~—

4
Number of Processors

Figure 6.10 Parallel SGA Average Minimum Energy (Global Population Size Fixed at 640)

6-10




5100 T T T T

Global Communication —e—
Nearest Neighbor Communication —+--
5000 Ring Communication -&--

4900
4800 -

4700

4600 |-

Execution Time (sec)

4500 [ b
4400 | =
4300 | h -

4200 F "-t

4100 . 1 1 L
1

4
Number of Processors

Figure 6.11 Parallel SGA Average Execution Time (Global Population Size Fixed at 640)

Figure 6.11 plots the average execution times associated with the solutions from Figure 6.10.
Given that there is no statistical difference in solution quality between the three communication
strategies, the strategy of choice is ring communication because of its significantly lower execution

times!

Figure 6.12 shows the calculated speedup based on the observed average execution times. If
the same amount of work is being performed, the observed superlinear speedup should be impossible!
An analysis of our parallel SGA can explain this phenomenon although the output that could
validate this hypothesis cannot be obtained from the current implementation. First, the number
of generations is the primary halting condition for the parallel SGA. Second, the fitness of each
string is retained so that it doesn’t need to be recomputed if a string remains unchanged from
one generation to the next. Combining these observations with the results from Section 6.2 and
Merkle’s MS thesis (62:110-114), the smaller subpopulations used with more processors tend to
converge faster. Faster convergence results in fewer fitness evaluation calculations, and thus less

work is performed.

6-11




100 T T T T ]
Global Communication —o— -

Nearest Neighbor Communication ~+-- 4
Ring Communication -B--- 4

Linear Speedup - |

Speedup
o
T

1 | 3

-

4
Number of Processors

Figure 6.12 Parallel SGA Speedup (Global Population Size Fixed at 640)

Figure 6.13 shows average solution quality improving as the number of processors is increased
and the subpopulation size remains fixed at 20 using the parallel SGA. The results support the
conclusion that parallel SGAs using these solution sharing strategies are capable of finding sig-
nificantly better solutions than independently executed SGAs. Again, the results from the three

communcation strategies are statistically indistinguishable at the a < .05 significance level (32).

Figure 6.14 plots the average execution times associated with the solutions from Figure 6.13.
Since there is no statistical difference in solution quality between the three communication strate-
gies, the ring communication is again the strategy of choice because of its significantly lower exe-

cution times.

Strictly speaking, we can’t calculate speedup for this execution time data because we are
effectively doubling the amount of work each time we double the number of processors. However, we
can calculate an upper bound on the scaled speedup (54:144). To do this we simply divide the parallel
execution time by the relative size of the workload before using the normal speedup calculation.

Figure 6.15 shows the calculated scaled speedup based on the observed average execution times. All

6-12




-24 T T T

Energy (kcal/mol)
N
w
T

L 1

&
»

Global Communication -e—
Nearest Neighbor Communication —+-
Ring Communication -B--- ]

1 2 4 8
Number of Processors

16 32

Figure 6.13 Parallel SGA Average Minimum Energy (Subpopulation Size Fixed at 20)

4600 T T T

4500

4400

4300

4200

4100

4000

Execution Time (sec)

3900

3800

3700

Nearest Neighbor Communication —+-- %

1
Global Communication -e—-

Ring Communication -8:
2

3600
1

4 8
Number of Processors

16 32

Figure 6.14 Parallel SGA Average Execution Time (Subpopulation Size Fixed at 20)

6-13




100 T T r r .
Global Communication -e— -
Nearest Neighbor Communication ~+-- 4
Ring Communication -8--- J
Linear Speedup -~ ]
3
g 10 -
o
]
1 1 1 J 1
1 2 16 32

4
Number of Processors

Figure 6.15 Parallel SGA Speedup (Subpopulation Size Fixed at 20)

three communication strategies exhibit near-linear speedup with the ring communication strategy

performing slightly better than global and nearest neighbor communication strategies.

From Figures 6.10 and 6.13 we see that the fixed subpopulation parallel SGA always finds
better solutions than the fixed global population parallel SGA. Figures 6.11 and 6.14 also show
that the fixed subpopulation parallel SGA always finds the solution faster too! Based on the scaled
speedup shown in Figure 6.15, the efficiency of the fixed subpopulation parallel SGA is plotted in
Figure 6.16.

6.3.2 Parallel fmGAs. Figure 6.17 shows average solution quality generally improving
as the number of processors is increased and the subpopulation size remains fixed at 32 using the
parallel fmGA (32). Since no other parameters are changing, these results support the conclusion
that parallel fmGAs obtain better results with larger population sizes. This conclusion supports
Goldberg’s population sizing calculations for fmGAs (35) and the order-preserving transformation

of that calculation discussed in Section 5.4.2.

6-14




] L] ] ]

Global Communication —e—
Nearest Neighbor Communication —+--
Ring Communication -B---
0.85 |
09 |
)
2
L
8
=
i
0.85 |
0.8
075 1 1 1 1.
1 2 4 16 32
Number of Processors
Figure 6.16 Parallel SGA Efficiency (Subpopulation Size Fixed at 20)
-4 & T T T T T
"""""""""""" :, Independent Juxtapositional Phase -e—
---------- -« Combined Juxtopositional Phase —+--
6 I LY Global Combined Juxtapositional Phase -8--- 7
8 |
10 b
5 12t
E
8
< -14
2
>
(1
\0 -16
18 |
.20 +
22 |
s ¥
24 1 1 ] 1 1 ]n» """"
1 2 4 8 16 32 64 128

Figure 6.17

Number of Processors

Parallel fmGA Average Minimum Energy (Subpopulation Size Fixed at 32)

6-15




10000 r T T T T T T
1 Independent Juxtapositional Phase -e—
Combined Juxtopositional Phase -+-:*4
Giobal Combined Juxtapositional Phase/-’pf-‘ !
7
s
v),
t/"
e
o el
& ~
E -
- 1000 -
5 - A
3 -
£ - ~
w i -
gl
z/
4'/8/
-
“’/_,,ar/
» © > © o -
1 oo 1 1 L 1 L 1
1 2 4 8 16 32 64 128

Number of Processors

Figure 6.18 Parallel fmGA Average Execution Time (Subpopulation Size Fixed at 32)

Figure 6.18 plots the average execution times associated with the solutions from Figure 6.17.
No communcation strategy can be chosen as the best from this experiment because the independent
juxtapositional phase strategy exhibits the best execution time performance, but it cannot generally
finds superior solutions. The other two strategies show a very limited ability to find better solutions,

however the significantly longer execution times prohibit their practical use.

Using a fixed subpopulation size we have to use the scaled speedup calculation again be-
cause our workload is linearly proportional to the number of processors. Figure 6.19 shows the
calculated scaled speedup based on the observed average execution times. Only the independent

juxtapositional phase strategy exhibits near-linear speedup.

Figure 6.20 shows average solution quality which is statistically indestinguishable up through
eight processors. From 16 processors up through 128, the global combined juxtapositional phase
consistently outperforms the other two communication strategies (32). The energy values are
consistantly better than those shown in Figure 6.17. These results support the conclusion that

parallel fmGAs obtain better results with larger population sizes.

6-16




Speedup

Energy (kcal/mol)

1000 [

100

10

T ¥ ] 1 o
Independent Juxtapositional Phase —e—

Combined Juxtopositional Phase -+--- 1

Global Combined Juxtapositional Phase -B-- 1

Linear Speedup - .

8 16 32 64 128
Number of Processors

Figure 6.19 Parallel fmGA Speedup (Subpopulation Size Fixed at 32)

T T i T
Independent Juxtapositional Phase -e—
Combined Juxtopositional Phase -+-
Global Combined Juxtapositional Phase -B---

8 32 64 128
Number of Processors

Figure 6.20 Parallel fmGA Average Minimum Energy (Global Population Size Fixed at 4096)

6-17




100000 m T Y T - T T - -
! independent Juxtapositional Phase —e— ]
s Combined Juxtopositional Phase -+-- 1
Global Combined Juxtapositional Phase -8-- 1
10000 |
= !
Q
K2R
p°)
E
'—
=4
S
]
g
i
1000
100 1 ] L H L L
1 2 4 8 16 32 64 128

Number of Processors

Figure 6.21 Parallel fmGA Average Execution Time (Global Population Size Fixed at 4096)

Figure 6.21 plots the average execution times associated with the solutions from Figure 6.20.
Although the global combined juxtapositional phase strategy finds much better solutions than the
other two strategies for large numbers of processors, the execution time is an order of magnitude

larger than the independent juxtapositional phase strategy.

Figure 6.22 shows the calculated speedup based on the observed average execution times.
Again, if the same amount of work is being performed, the observed superlinear speedup should be
impossible. An analysis of our parallel fmGA can explain this behavior. There is a parameter called
shuffle number in the fmGA that determines how many members of the population are compared
to find compatible strings for competition during tournament selection. By default, this parameter
is set to force a search through the entire population (n) which would make the execution time for
one generation O(n?). Thus, when the subpopulation size is halved, the execution time of this part

of the algorithm is quartered and the exhibited superlinear speedup is observed.

6-18




1000 C T T T T T T 9
[ independent Juxtapositional Phase —o—
Combined Juxtopositional Phase -+-- 1
Global Combined Juxtapositional Phase -H::
Linear Speed i 1
100 ,,,--“"_.
a 4
=
©
b
o
[72)
10
. 1 1 ] 1 [ 1
1 2 8 16 32 64 128
Number of Processors
Figure 6.22 Parallel fmGA Speedup (Global Population Size Fixed at 4096)
6.4 Summary

Chapter I proposes three main objectives for this investigation. This chapter presents the

empirical results from the experiments designed in Chapter V to meet those objectives. The

accuracy of the enhanced energy model is analyzed and possible sources of error identified. The

effects of parameter set choices are observed and found to corroborate previous empirical results.

Finally, the performance of simple and fast messy GAs is compared using several efficiency and

effectiveness metrics.

6-19




VII. Conclusions and Future Directions

Based on the literature review, design, implementation, and experimental work discussed
previously as well as general observations throughout this research effort, the major conclusions
and recommendations for future research are presented. The conclusions are drawn from the work
accomplished to meet the three primary objectives of this investigation: validate AFIT’s energy

model, identify good SGA parameters, and compare SGA and fmGA performance.

7.1 Conclusions

Our energy model is now more reliable as a tool to minimize the potential energy of polypep-
tides. The bonded, bond angle, and dihedral angle energy terms are now in agreement with the
values calculated by QUANTA. Although the non-bonded energy term values aren’t the same as
QUANTA’s, the relative order of energy values is maintained by the new model. Near the ac-
cepted minimum, the energy model tends to underestimate the non-bonded energy contribution by

approximately four kcal/mol. This is a vast improvement over AFIT’s original energy model (3).

The parameter settings that enable the SGA to perform the best optimization of [Met]-
enkephalin’s energy potential fall within the ranges observed by Schaffer for general function opti-
mization (77). From these results we can be fairly confident that we’ve observed the SGA’s “best”
search performance on this optimization problem. The results also confirm that choosing parame-
ters (population size, mutation rate, crossover rate) within the ranges specified by Schaffer (10-30,
0.005-0.1, 0.65-0.95) is a good starting point. SGA online performance has been shown to be

extremely sensitive to the combined choice of population size and mutation rate (see Section 6.2).

Currently, the genetic algorithm of choice for minimizing the energy of polypeptides should be
the parallel SGA using a small, constant subpopulation size and the ring communication strategy.
Using parameters from the best online pool, this GA exhibits good scaled speedup (Figure 6.15) and
efficiency (Figure 6.16) and finds better solutions than any of the other algorithm/communication
strategy/parameter combinations (Figure 6.13). However, the fmGA cannot be eliminated from
consideration by this single, preliminary application. The parallel fmGA with a constant global

population size actually exhibited decent performance considering:

7-1




e It is currently unknown what constitutes a good building block filtering schedule
e It is unclear how to estimate the deception associated with specific problem domains
e Our competitive template isn’t optimal at the k — 1 block size

e The communications algorithms are inefficiently implemented because of the current data
structures

Many of the low-level routines are inefficiently implemented

7.2 Future Research Recommendations

Many possibilities exist for future research in protein structure prediction using genetic al-
gorithms. This section presents some of those possibilities that would logically follow from this
investigation. The recommendations fall into three general categories: continued refinement of
AFTIT’s energy model, leading edge research of fast messy GAs, and identification and evaluation

of alternative optimization approaches.

The non-linear error in the non-bonded energy term of AFIT’s energy model needs to be
isolated and corrected. The remaining differences cannot be resolved from the QUANTA docu-
mentation or the CHARMm paper by Brooks et. al. (8, 4). This will require close contact with
the people at Harvard University responsible for the CHARMm energy model. As the differences
between the two models becomes smaller, it is increasingly likely that errors may be found in either
implementation. Thus the collaboration may result in a better energy model for all interested

parties.

Based on the strong correlation between the two energy model implementations, AFIT’s
energy model is now “robust enough” to attempt minimizing the energy of larger polypeptides. This
work should provide additional insight into the performance and scalability of genetic algorithms

applied to the protein folding problem in general.

There are many research areas that must be addressed to bring the level of maturity of fast
messy GAs up to par with SGAs. An investigation of building block filtering (BBF) schedules
should be the top priority. The identification of good BBF schedules is necessary to ensure that
the primordial phase performs its intended function. The efficient operation of the juxtapositional
phase is dependent on the quality and quantity of highly fit building blocks it receives from the

primordial phase (see Section 2.4).

7-2




Although it has not been used in any work to date, the original fmGA design also specifies
an outer loop that can be used to step through building block sizes from 1 to a specified maximum
block size. During iteration z + 1 the order-z optimal solution from the previous iteration is used as

the competitive template. The performance associated with this outer loop needs to be evaluated.

Modifying building block filtering to be a stochastic operation might be another viable al-
ternative to the previously described iterative method. In the spirit of GA search, the stochastic
method is expected to simultaneously search for the correct linkage and alleles like the current
fmGA as well as the building block sizes. It is speculated that this approach may be more efficient
than the iterative method and it could possibly eliminate the need to choose a maximum expected

level of deception for every problem instance.

Several hybridization techniques may also increase the efficiency and effectiveness of genetic
algorithms in general. Examples of these combined approaches may include:
e Using local minimization as an additional genetic operator

o Integrating deterministic and/or stochastic optimization techniques as cooperative agents

e Pipelining several techniques based on their abilities to find/refine solutions

Performance comparisons need to be made between the current binary encoding scheme ap-
proaches and higher cardinality implementations. That investigation should include real-valued
GAs and other evolutionary algorithms that have their basis in real-valued parameter optimization

(evolutionary strategies and evolutionary programming).

In addition to the identified topics for future research, the following work is suggested as ideas
for course projects. The parallel SGA code needs to be redesigned and implemented for clarity to
enhance our configuration control capability. The current implementation is tightly coupled with
the problem domain and exhibits very low cohesion and little modularity (76). The parallel SGA
code should also be ported to the Intel Paragon and other massively parallel computer architectures
to enable larger scalability investigations and because our access to Intel hypercubes is quickly
diminishing.

There is a lot of optimization work that needs to be accomplished if these algorithms are
to be used on larger proteins. Several data structures need to be changed to efficiently use the

global system routines on the Paragon. More efficient communication can also be realized with

7-3




data structure improvements. In general the GA string data structures need to be allocated in
contiguous memory so they can be quickly communicated as a unit. Other possible enhancements
include using the system math libraries for matrix and vector operations and in-lining the functions

that are evaluated repeatedly (evaluation function, overlay function, thresholding function).

7.3 Summary

This chapter summarizes the general conclusions that can be drawn from this investigation.
These conclusions are used to highlight critical areas of future research related to protein struc-
ture prediction and genetic algorithms. Overall, this thesis documents the successes and failures
associated with: enhancing the accuracy of AFIT’s energy minimization model; identifying param-
eter settings that encourage good SGA online performance; and evaluating the performance and

maturity of serial/parallel, simple/fast messy GAs.

7-4




Appendiz A. Building Block Filtering Schedule Test Data

Section 5.4.2 describes a small experiment designed to find a better building block filtering

schedule. This appendix reports the raw data gathered from those experiments.

A.1 Energy Values

Table A.1 shows the energy values obtained from five runs of each building block filtering

schedule.

Table A.1 Raw Energy Values from Alternate Building Block Filtering Schedules

Trial
Schedule #1 | #2 | #3 | #4 | #5
Original | -14.5832 | -14.5832 | -14.5832 | -14.5832 | -14.5832
50% - 100% | -15.4414 | -15.9923 | -15.4414 | -15.4414 | -14.4784
50% - 80% -16.3489 | -16.4705 | -16.3489 | -18.8422 | -19.7338
80% -17.9176 | -17.9176 | -17.9176 | -17.9176 | -16.9906

A.2 Sample Building Blocks

The two following sections show the building blocks that are created during the primordial
phase using the original building block filtering schedule and the selected constant 80% schedule
respectively. The lack of a diverse population of building blocks explains the poor performance of

the juxtapositional phase using the original schedule. This schedule only generates three unique

building blocks out of a population of 64.

The juxtapositional phase is observed to perform useful processing when it receives a diverse

population like that provided by the constant 80% schedule. This schedule generates 64 unique

building blocks out of a population of 64.

A.2.1 Original Schedule.

A-1




_______ 3 U S
102.835

_____________________________________________________________ 0

e 0 e 0 e e e e e 1__

_____________________________________________________________________ S S ——
88.2178

A.2.2 Constant 80% Schedule.




50.5035

-1.58977

A-3




- - ————— oy - ————— —— - ———— > = s " " - ———————— -~ = = ——— - = - - ———————

- o ——————— " T = ——— S T —— = s - = = e S = = - - -

- - - ——— - . ———— - -

——— o ———————— - —————— " " " = ——— e T " " " - ——————————— - " " - - - -
- — - - = - ———— " o ——— A = = —— - - —— - - " T - o ———— " " - r - ————————

-—— - ———

- ———— - ——— - — ———— s " v " ma - —— T - - —————— ————

- n - ——————— - - -

" —————— - ——— " " - ————— " " T ——————— " - ————————— — —————
—— - - —————— - — ———— -~ = = —————— ———— 4 - - - - 7 o - —————————

- ——— o ——————— - = T o= o - ————— " - ——————

- o ———————— " - ————— " _ Y= ——————— o T - " "> e = ———————— — — — ————— - " - " ~— - "

- - —————— - =+ "t ———————— " " - = - ———— — ——————————— o = =

- — — - ———— - — - - ———— - - ——— = ———— ——————— —————————— = -

- —— - O ———— - —— . P = W = = = ————— T = = = ———— T - ———— - ————— = = ——— -

——— - — - " ——— "  — ———— " T " - — —————— ——————————— ———————— " = -

- - - o ——— - > " ———— " " - - ——— —— ———————— = ———— - " " s - ———

A-4




- - —————— — o ————— -~ — —————— " > > 7 = " " - —————— - - T - ————— " - - ————— - - o ———
- ——— - ———— - ————— - " " T — > " = = ———— " = - " o - ———— - ——

- ——— - ———— - ————— " " - - ——— " ————— ] "  ———— —— —— " Y ———— -
- v ——— - T — - ——— " o ————— " = - —————— - ——————
- " - ? = e " ——— ———— " s - - "a . o ————
- - ——— - ———— " 0+ o —— - " T = —— T = T o = ——— - - D W W= - ————
- ———— - - - ———— - —————— > " o ——— L - - - — - ——— - - - = - —
- — " ——— ——— e o - ——— ot Y = ———— " " = ——— " S " ——————— - = " o= - —————
————— " = ————— " - . s T~ - - 2 = s - ————— - - ——————— ——— T - —
- - " ——— " —————— - - ———— - >~ —
- - —— - ———————— " . ————— — - —————————— " - ———— == - ———— 0 7 o =
- - — ——— -~ ——————— " ————————— " " " ——————— T —— - > &% s T " T ——— —————————— - -
————— - - T —————— " - - ————— - - " = ————— " TS W W A T = T - ———— - - T - - - - - -

- ——— - - ——— - " - V= " " " W - - ——————————— = — = —— - ———— -

- —— — o - ———— - — -~ ———— " o T - ———— - B S W = A" - . - —— ——— = = = = - =

- ———— ——— . > - — —————— - > o Y o ——— - - - o - > - - - ——

o ————— > o T — o= " T o . - - . —————— ——— ——————— —— = == — = - ———— -

—— — - > - ————— - > - ————— . " - - ———————— - TR = = ————————— ——————————= - = = =

A-5




- — - —— - ————— " " -~ ———— L = —— - AP - A - n -

U
________________________________________________________________ 1
0 e L e
_______ O O U
_________________________________________________ L e
__________ 0 e e
_____________ L e
_________ 3 S
_____________________________________ L e
8 P 1
_________________ Y e
___________ O U ¢
¢ ) S O e e
____________________ d 0 e e
________________________________________________________________ 1
_________________ 0 S SN SRR
_______________ B
_____________ 0 e
_______ O e e ___0O_
_____ L e
______________________ O U ¢ SN |
_____ Y
_______ U UY: UV
_______ Y e
_________________________ Y e
______________ 0 e
D O 0 e e
_____________ 0 e

A-6




———— = —— " Am = " ———— ——— - o " " . T —-— ——— —_ ——— . = —————

—— e Am - Y = o= - —— - ——— " - ———

————— - ———— - ——————— = - - -

- - —— - - —— " - - —— -

- ————— - - —— - - ————— - -

- ——— " ———— = ———— - — ————— et = = — " = - " ——————— - - -

- . - ———— A ———— - T ———— T = ——— - ———— " > - —— - - —————— -

- — - - ————

- - - ——— " > o ——— -

- —— - —————— 1o ————

———— - ————— - ——— T ———— > - —— - = ——— " - = Y - " T = " ———— A - o~ - ———

- ————— — ————— . ——— > T+ = ————— " - " ———

- —— . —— - ————— - ————— - -

- — o —— - - - ——— . 7, i T ——————— O T —— " " ——————— = -

—————— - ————— = ———— " "= —————

-0.815294

—— o ——— —— - > - —— —

A-T




Appendiz B. Population Sizing Order-Preserving Transformation

This appendix shows the code and output used to transform the population size calculations
to account for tournament selection. See section 5.4.2 for a discussion of the rationale for this
transformation.

B.1 Code

#include <stdio.h>
#tinclude <math.h>

main()

{

double fmax 5625000000050.0;
double d = 0.1;

double termc 18048.0;

double n;

int i;

extern double log2();

n = termc * fmax * fmax / d / 4 / 4;
printf("Trans %d: fmax = %e, d = %e, Pop size = e\n",0,fmax,d,n);
for(i=1;i<101;i++)

{

fmax = log2(fmax + 1.0);

d = log2(d + 1.0);

n = termc * fmax * fmax / d / 4 / 4;

printf("Trans %d: fmax = %e, d = %e, Pop size = Ye\n",i,fmax,d,n);

3

}

B.2  Qutput

Trans O0: fmax = 5.625000e+12, d = 1.000000e-01, Pop size = 1.427625e+31
Trans 1: fmax = 4.235499e+01, d 1.375035e-01, Pop size = 4.281053e+08
Trans 2: fmax = 5.438126e+00, d = 1.858710e-01, Pop size = 3.862285e+06
Trans 3: fmax = 2.686641e+00, d = 2.459471e-01, Pop size = 5.383998e+05
Trans 4: fmax = 1.882307e+00, d = 3.172428e-01, Pop size = 1.588424e+05
Trans 5: fmax = 1.527224e+00, d 3.975213e-01, Pop size = 6.659685e+04
Trans 6: fmax = 1.337554e+00, d = 4.828703e-01, Pop size = 3.462027e+04
Trans 7: fmax = 1.224999e+00, d 5.683924e-01, Pop size = 2.095773e+04
Trans 8: fmax = 1.153805e+00, d 6.492866e-01, Pop size = 1.424823e+04
Trans 9: fmax = 1.106888e+00, d = 7.218421e-01, Pop size = 1.060942e+04

Trans 10: fmax = 1.075113e+00, d = 7.839528e-01, Pop size = 8.485897e+03

B-1




Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans
Trans

11:
12:
13:
14:
15:
16:
17:
i8:
19:
20:
21:
22:
23:
24:
25:
26:
27+
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47
48:
49:
50:
51:
52:
53:

54:
55:

fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax

fmax =

fmax
fmax
fmax
fmax
fmax
fmax
fmax
fmax

fmax =

fmax

fmax =

fmax

[ o O T T T S S e e N T e T T T

-

O O I U O T

.053190e+00,
.037867e+00,
.027060e+00,
.019389e+00,
.013919e+00,
.010005e+00,
.007199e+00,
.005184e+00,
.003735e+00,
.002691e+00,
.001940e+00,
.001399e+00,
.001009e+00,
.000727e+00,
.000525e+00,
.000378e+00,
.000273e+00,
.000197e+00,
.000142e+00,
.000102e+00,
.000074e+00,
.000053e+00,
.000038e+00,
.000028e+00,
.000020e+00,
.000014e+00,
.000010e+00,
.000008e+00,
.000005e+00,
.000004e+00,
.000003e+00,
.000002e+00,
.000001e+00,
.000001e+00,
.000001e+00,
.000001e+00,
.000000e+00,
.000000e+00,
.000000e+00,
.000000e+00,
.000000e+00,
.000000e+00,
.000000e+00,
.000000e+00,
.000000e+00,

2 A Q0 A AR AR QA A A QAL A QO A QR QLALLM QA

W W W W W W W W W WL W IWIWIWHIWWWIWIWIWIWIWIWIWIWIWIOIWIWOIWIWIWWWIWIWETWOWOoe oo

.350775e-01,
.758410e-01,
.075375e-01,
.317114e-01,
.498796e-01,
.633850e-01,
.733431e-01,
.806418e-01,
.859680e-01,
.898424e-01,
.926542¢-01,
.946913e-01,
.961655e-01,
.972314e-01,
.980015e-01,
.985576e-01,
.989592e-01,
.992490e-01,
.994582e-01,
.996091e-01,
.997180e-01,
.997966e-01,
.998532e-01,
.998941e-01,
.999236e-01,
.999449e-01,
.999603e-01,
.999713e-01,
.999793e-01,
.999851e-01,
.999892e-01,
.999922e-01,
.999944e-01,
.999960e-01,
.999971e-01,
.999979e-01,
.999985e~01,
.999989e-01,
.999992e-01,
.999994e-01,
.999996e-01,
.999997e-01,
.999998e-01,
.999998e-01,
.999999e-01,

B-2

Pop
Pop
Pop
Pop

Pop

size

size =
size =
size =
size =

size

size =

size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size
size

size =

size

size =
size =

size
size
size
size

o I R T S Ll T T T R T R S et Y Y I T T T T Y S S B S B O I o B

.176772e+03
.335811e+03
.778719e+403
.401147e+03
.140889e+03
.959258e+03
.831345e+03
.740666e+03
.676072e+03
.629900e+03
.596812e+403
.573057e+03
.555980e+03
.543692e+03
.534844e+03
.528469e+03
.523875e+03
.520564e+03
.518176e+03
.516455e+03
.515213e+03
.514318e+03
.513672e+03
.513206e+03
.512870e+03
.512627e+03
.512453e+03
.512326e+03
.512235e+03
.512170e+03
.512123e+03
.512088e+03
.512064e+03
.512046e+03
.512033e+03
.512024e+03
.512017e+03
.512012e+403
.512009e+03
.512006e+03
.512005e+03
.512003e+03
.512002e+03
.512002e+03
.512001e+03




Trans 56: fmax = 1.000000e+00, d = 9.999999e-01, Pop size = 4.512001e+03
Trans 57: fmax = 1.000000e+00, 4 9.999999e-01, Pop size = 4.512001e+03
Trans 58: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 59: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 60: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 61: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 62: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 63: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 64: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 65: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 66: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 67: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 68: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 69: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 70: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 71: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 72: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 73: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 74: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4,512000e+03
Trans 75: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 76: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 77: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 78: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 79: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 80: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 81: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 82: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 83: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 84: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 85: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 86: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 87: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 88: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 89: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 90: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 91: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 92: fmax = 1.000000e+00, 4 = 1.000000e+00, Pop size = 4.512000e+03
Trans 93: fmax = 1.000000e+00, 4 = 1.000000e+00, Pop size = 4.512000e+03
Trans 94: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 95: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 96: fmax = 1.000000e+00, d = 1.000000e+00, Pop size = 4.512000e+03
Trans 97: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 98: fmax = 1.000000e+00, d 1.000000e+00, Pop size = 4.512000e+03
Trans 99: fmax = 1.000000e+00, 4 = 1.000000e+00, Pop size = 4.512000e+03
Trans 100: fmax = 1.000000e+00, 4 = 1.000000e+00, Pop size = 4.512000e+03

B-3




Appendiz C. Protein Visualization and Comparison

This appendix describes the complex process and software tools used to visualize and compare
protein conformations. The objective is to document these procedures so that there is a smaller
learning curve for follow-on students and researchers. All references made to QUANTA and Cerius
in this document are limited to the specific configurations on a Silicon Graphics workstation called

Curie at the Materials Laboratory at Wright-Patterson AFB.

C.1 Translation Process for Energy Comparison and Local Minimization

The following process is used to import the PDB file output produced by the genetic algo-

rithms into QUANTA for comparison with other molecules and local energy minimization.

e Execute the command “cerius2” at the command line to run Cerius.

e Select File— Load Model to load a molecule.

— Change the file format to PDB.
— Load the PDB file that was the output from the genetic algorithm.

e Select Build— Edit Bonds to calculate the bonds of the molecule. (NOTE: Check to make
sure these bonds are correct. They are produced by distance calculations which may produce
a few erroneous bonds.)

e Select File— Save Model to save the molecule.

— Change the file format to PDB.
— Overwrite the PDB file.
e Exit Cerius.
o Execute the command “quanta” at the command line to run QUANTA.
e Put QUANTA in RTF mode by selecting CHARMm— CHARMm Mode— RTF.
o Select File— Import to load the PDB file created earlier.
o Select Edit— Molecular Editor to edit the bonding properties.

— Select Change Bond and change all the C-O bonds to double bonds.
— Select Edit Bonds— Aromatize and aromatize all the aromatic carbon rings.

e Select Ezit Edit Bonds and then Save and Fxit.

— Ensure an RTF file is generated and the Gusteiger Method of charge distribution is
selected when prompted for the save options.

C-1




QUANTA can now calculate the CHARMm energy of the molecule. Select CHARMm Energy
from the Modeling Menu to obtain the energy value. Select CHARMm Minimization to locally

minimize the energy of the molecule.

C.2 Printing Protein Conformations

Two types of prints were prepared during the course of this work: black and white figures
and color prints. The tools used to create these pictures include: QUANTA, snapshot, tops,
gammawarp, and lp. To complete either of the visualizations, start QUANTA and load the desired
protein. Also, type “snapshot” at the Unix command line and place its icon where it will be

accessible.

The process to make encapsulated post script files for inclusion in a Latex document is as

follows:

e In QUANTA, change the display to black and white by holding the right mouse button down
while selecting Preferences— Color Definitions— Black and White.

¢ Using snapshot, outline the area of the screen to be included in the picture.
e Set a unique image filename in snapshot (usually filename.snp).
e Save the image using snapshot.

e Use the command “tops filename.snp -eps >filename.eps” to translate the image file to en-
capsulated postscript.

The process to print color pictures is as follows:

o If the current QUANTA display isn’t already in its original colors, hold the right mouse
button down and select Preferences— Color Definitions— Reset All.

e Change the background color to gray:

— Select Preferences— Color Definitions— Menu Colors

— Select Background of Viewing Area and press OK.

— Set the hue to 0.0, the saturation to 0.2, and the intensity to 0.2 then press OK.
o Using snapshot, outline the area of the screen to be included in the picture.
e Set a unique image filename in snapshot (usually filename.snp).
e Save the image using snapshot.

¢ Use the command “gammawarp filename.snp filename.gw 0.2” to modify the colors for print-
ing (you can experiment with the number to get the desired color effect).

C-2




e Use the command “tops filename.snp -RGB > filename.rgh” to translate the image file to
color postscript.

e Print the filename.rgb file using the command “lp filename.rgb”.

C-3




Vita

Captain George H. Gates, Jr. enlisted in the United States Air Force in December of 1982. He
was first assigned to the 1916 Communications Squadron at Pease AFB, NH, as a communications-
computer systems maintenance technician. Capt Gates was accepted to the Air Force Education
and Commissioning Program in 1987, earned his bachelor’s degree in Computer Science and Math-
ematics from Wright State University in 1989, and was commissioned through Officer Training
School in April of 1990. He was then assigned to the 50** Space Systems Squadron at Falcon AFB,
CO, where he was responsible for the maintenance and administration of all system and applica-
tion software for the 50** Space Wing Command Post. Capt Gates left Space Command in 1993
to attend AFIT. He has subsequently been assigned to the Electromagnetic Materials Division of

Wright Laboratory where he will apply his education to similar research projects.

Permanent address: 108 Dupont Way
WPAFB, OH 45433
(513) 254-8917

VITA-1




10.

11.

12.

13.

14.

15.

16.

Bibliography

. Bick, Thomas and others. “Evolutionary Programming and Evolution Strategies: Similarities

and Differences.” The Second Annual Conference on Fvolutionary Programming. 11-22. San
Diego CA: Evolutionary Programming Society, 1993.

Brassard, Gilles and Paul Bratley. Algorithmics Theory & Practice. Englewood Cliffs, New
Jersey 07632: Prentice Hall, Inc., 1988.

Brinkman, Donald J. Genetic Algorithms and Their Application to the Protein Folding Prob-
lem. MS thesis, AFIT/GCE/ENG/93D-02, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1993.

Brooks, Bernard R., et al. “CHARMM: A Program for Macromolecular Energy, Minimization,
and Dynamics Calculations,” Journal of Computational Chemistry, 4(2):187-217 (1983).

Cahoon, J. P., et al. “A Multi-population Genetic Algorithm for Solving the K-Partition
Problem on Hyper-cubes.” Proceedings of the Fourth International Conference on Genetic
Algorithms, edited by Richard K. Belew and Lashon B. Booker. 244-248. San Mateo, CA:
Morgan Kaufmann Publishers, July 1991.

Chan, Hue Sun and Ken A. Dill. “The Protein Folding Problem,” Physics Today, 24-32
(February 1993).

. Chandy, K. Mani and Jayadev Misra. Parallel Program Design. Reading, MA: Addison-Wesley

Publishing Company, August 1988.

. CHARMm. CHARMm User’s Guide.

Committee on Physical, Mathematical, and Engineering Sciences. Grand Challenges: High
Performance Computing and Communications. Technical Report, 1800 G Street NW, Wash-
ington, D.C. 20550: NSF/CISE, 1991.

Committee on Physical, Mathematical, and Engineering Sciences. Grand Challenges 1993:
High Performance Computing and Communications. Office of Science and Technology Policy,
1992.

Davis, Lawrence. “Adapting Operator Probabilities in Genetic Algorithms.” International
Conference on Genetic Algorithms. 61-76. 1989.

Davis, Lawrence, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

De Jong, Kenneth and William Spears. “On the State of Evolutionary Computation.” Pro-
ceedings of the Fifth Interantional Conference on Genetic Algorithms, edited by Setphanie
Forrest. 618-623. San Mateo, CA 94403: Morgan Kaufmann Publishers, Inc., July 1993.

De Jong, Kenneth A. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD dissertation, University of Michigan, 1975.

De Jong, Kenneth A. “Adaptive System Design: A Genetic Approach,” IEEE Transactions
on Systems, Man and Cybernetics, 10(9) (September 1980).

De Jong, Kenneth A. “On Using Genetic Algoriths to Search Program Spaces.” Genetic Algo-
rithms and their Applications: Proceedings of the Second Internation Conference on Genetic
Algorithms. 210-216. Hillsdale, NJ 07642: Lawrence Erlbaum Associates, Publishers, 1987.

BIB-1




17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

DeCegama, Angel L. The Technology of Parallel Processing, Parallel Processing Architectures
and VLSI Hardware, Volume I. Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1989.

Dorigo, Marco and Vittorio Maniezzo. “Parallel Genetic Algorithms: Introduction and
Overview of Current Research,” Parallel Genetic Algorithms, 5-35 (1993).

Duncan, Bruce S. “Parallel Evolutionary Programming.” The Second Annual Conference on
FEvolutionary Programming. 202-208. San Diego, CA 92121: Evolutionary Programming
Society, 1993.

Dymek, Andrew. An Ezamination of Hypercube Implementations of Genetic Algorithms. MS
thesis, AFIT/GCE/ENG/92M-02, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1992.

ECEPP/2. ECEPP/2.

El-Rewini, Hesham, et al. Task Scheduling in Parallel and Distributed Systems. Prentice Hall
Series in Innovative Technology, Englewood Cliffs, NJ 07632: Prentice Hall, 1994.

Eshelman, Larry J., et al. “Biases in the Crossover Landscape.” Proceedings of the Third
International Conference on Genetic Algorithms, edited by J. David Schaffer. 10-19. San
Mateo, CA: Morgan Kaufmann Publishers, Inc., June 1989.

Eshelman, Larry J. and J. David Schaffer. “Preventing Premature Convergence in Genetic Al-
gorithms by Preventing Incest.” Proceedings of the Fourth International Conference on Genetic
Algorithms. 115-122. San Mateo, CA: Morgan Kaufman Publishers, 1991.

Fogarty, Terence C. “Varying the Probability of Mutation in the Genetic Algorithm.” Inter-
national Conference on Genetic Algorithms. 104-109. 1989.

Fogel, David B. “Simulated Evolution: A 30-Year Perspective,” IEEFE—ACSSC (1990).
Fogel, David B. “On the Philosophical Differences between Evolutionary Algorithms and
Genetic Algorithms.” The Second Annual Conference on Evolutionary Programming. 23-29.
San Diego CA: Evolutionary Programming Society, 1993.

Fogel, Lawrence J. “The Future of Evolutionary Programming,” IEEE—ACSSC, 1036-1038
(1990).

Forrest, Stephanie and Melanie Mitchell. “Relative Building-Block Fitness and the Building-
Block Hypothesis.” Foundations of Genetic Algorithms 2. Morgan Kaufmann Publishers, Inc.,
1993.

Garey, Michael R. and David S. Johnson. Computers and Intractability—A Guide to the
Theory of NP-Completeness. San Francisco, CA: W. H. Freeman and Company, 1979.

Gates, Jr., George H. “Combinatoric Algorithm (NP-Complete) Design Project, The Protein
Folding Problem.” CSCE 686 Advanced Algorithm Design, June 1994.

Gates, Jr., George H., “Raw Data in Support of Thesis.” In /usr/genetic/Data/ghg.dat direc-
tory on Thor, December 1994.

Goldberg, David E. Optimal Initial Population Size for Binary-coded Genetic Algorithms.
Technical Report TCGA Report Number 850001, University of Alabama, Alabama 35486:
The Clearing House for Genetic Algorithms, Department of Engineering Mechanics, November
1985.

BIB-2




34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.
50.

Goldberg, David E. Genetic Algorithms in Search, Optimization & Machine Learning. Read-
ing, MA: Addison-Wesley Publishing Company, Inc., 1989. Reprinted with corrections.

Goldberg, David E., et al. Genetic Algorithms, Noise, and the Sizing of Populations, chapter 6,
333-362. Complex Systems Publications, Inc., 1992.

Goldberg, David E., et al. “Rapid, Accurate Optimization of Difficult Problems Using Fast
Messy Genetic Algorithms.” Proceedings of the Fifth International Conference on Genetic Al-
gorithms, edited by Stephanie Forrest. 56-64. San Mateo, CA: Morgan Kaufmann Publishers,
July 1993.

Goldberg, David E., et al. “Messy Genetic Algorithms Revisited: Studies in Mixed Size and
Scale.” Complez Systems. 415-444. 1990.

Goldberg, David E., et al. “Don’t Worry, Be Messy.” International Conference on Genetic
Algorithms. 24-30. 1991.

Goldberg, David E., et al. “Messy Genetic Algorithms: Motivation, Analysis, and First Re-
sults.” Complex Systems. 493-530. 1989.

Goldberg, David E. and Jon Richardson. “Genetic Algorithms with Sharing for Multimodal
Function Optimization.” Proceedings of the Second International Conference on Genetic Al-
gorithms. 41-49. San Mateo CA: Morgan Kaufmann Publishers, Inc., 1993.

Gordon, V. Scott and Darrell Whitley. “Serial and Parallel Genetic Algorithms as Function
Optimizers.” Proceedings of the Fifth International Conference on Genetic Algorithms, edited
by Stephanie Forrest. 177-183. San Mateo, CA: Morgan Kaufmann Publishers, Inc., July
1993.

Grefenstette, J. J. “Optimization of Control Parameters for Genetic Algorithms,” IEEE Trans-
actions on Systems, Man & Cybernetics, 122-128 (1986).

Grefenstette, John J. “Learning by Analogy in Genetic Classifier Systems.” Proceedings of the
Third International Conference on Genetic Algorithms, edited by J. David Schaffer. 291-297.
San Mateo, CA: Morgan Kaufmann Publishers, Inc., June 1989.

Grefenstette, John J. A User’s Guide to Genesis 5.0. Technical Report, Nashville, TN:
Vanderbuilt University, 1990.

Grefenstette, John J. “Lamarckian Learning in Multi-agent Environments.” Proceedings of
the Fourth International Conference on Genetic Algorithms, edited by Richard K. Belew and
Lashon B. Booker. 303-310. San Mateo, CA: Morgan Kaufmann Publishers, July 1991.

Grefenstette, John J. Deception Considered Harmful. Foundations of Genetic Algorithms 2,
Morgan Kaufmann, 1992.

Hoare, C. A. R. Communicating Sequential Processes. London: Prentice-Hall International,
1984.

Holland, John H. Adaptation in Natural and Artificial Systems. Ann Arbor: The University
of Michigan Press, 1975.

Holland, John H. “Genetic Algorithms,” Scientific American, 267(1):66-72 (July 1992).
Intel. iPSC/860 Basic Math Library User’s Guide, April 1991.

BIB-3




51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.
64.

65.

66.

67.

Jaenicke, R. “Protein Folding: Local Structures, Domains, Subunits, and Assemblies,” Bio-
chemistry, 80:3147-3161 (1991).

Kronsjo, Lydia and Dean Shumsheruddin, editors. Advances in Parallel Algorithms. New
York: Halsted Press, 1992.

Kuck & Associates. CLASSPACK Basic Math Library/C User’s Guide (Release 1.3 Edition).
Champaign, IL 61820, November 1993.

Kumar, Vipin, et al. Introduction to Parallel Computing. The Benjamin/Cummings Publish-
ing Company, Inc., 1994.

Lamont, Gary B., et al. “Evolutionary Algorithms.” Compendium of Parallel Programs for
the Intel iPSC Computers, Volume V.

Larson, Roland E. and Robert P. Hostetler. Calculus with Analytic Geometry (3rd Edition).
Lexington, MA: D.C. Heath and Company, 1986.

LeGrand, Scott M. and Kenneth M. Merz Jr. “The Application of the Genetic Algorithm
to the Minimization of Potential Energy Functions,” Journal of Global Optimization, 49-66
(1993).

Lengauer, Thomas. “Algorithmic Research Problems in Molecular Bioinformatics,” Arbeitspa-
piere der GMD 748 (May 1993).

Levi, Shem-Tov and Ashok K Agrwala. Real Time System Design. McGraw-Hill Computer
Science Series, New York: McGraw-Hill Publishing Company, 1990.

Lewis, Ted G. and Hesham El-Rewini. Introduction to Parallel Computing. Englewood Cliffs,
NJ: Prentice Hall, 1992.

Martin, IV, Robert C. A Gain Scheduling Optimization Method using Genetic Algorithms.
MS thesis, AFIT/GAE/ENG/94D-, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1994.

Merkle, Laurence D. Generalization and Parallelization of Messy Genetic Algorithms and
Communication in Parallel Genetic Algorithms. MS thesis, AFIT/GCE/ENG/92D-08, School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December
1992.

Merkle, Laurence D. Personal Conversation, October 1994.

Merkle, Laurence D. and George H. Gates, Jr., “Paragon Implementation of a Parallel Fast
Messy Genetic Algorithm.” In “/usr/genetic/Toolkit/Messy/ParFast” directory on Thor, June
1994.

Merkle, Laurence D., Gates Jr., George H., Lamont, Gary B., and Pachter, Ruth. “Application
of the Parallel Fast Messy Genetic Algorithm to the Protein Folding Problem.” Proceedings of
the Intel Supercomputer Users Group 1994 Annual North America Users Conference edited
by JoAnne Wold. 189-195. June 1994.

Michalewicz, Zbigniew. Genetic Algorithms + Data Structures = FEwvolution Programs.
Springer-Verlag, 1992.

Mihlenbein, H., et al. “The Parallel Genetic Algorithm as Fucntion Optimizer,” Paralle
Computing, 17(7):619-632 (1991).

BIB-4




68.

69.

70.

71.
72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Nayeem, Akbar and others. “A comparative Study of the Simulated-Annealing and Monte
Carlo-with-Minimization Approaches to the Minimum-Energy Structures of Polypeptides:
[Met]-Enkephalin,” Journal of Computational Chemistry, 12(5):594-605 (1991).

Office of Technology Assessment. Mapping Our Genes—The Genome Projects: How Big, How
Fast?. Technical Report No. OTA-BA-373, U. S. Government Printing Office, Washington,
D.C.: U. S. Congress, 1988.

Olsan, James B. Genetic Algorithms Applied to a Mission Routing Problem. MS The-
sis, AFIT/GCE/ENG/93-12, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1993.

Pachter, Ruth, et al. “Smart Structures and Materials,” SPIE Proceedings 1 (1993).

Parish, Donald A. A Genetic Algorithm Approach to Automating Satellite Range Scheduling.
MS thesis, AFIT/GOR/ENS/94M-10, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, 1993.

Pearl, Judea. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Read-
ing, MA: Addison-Wesley Publishing Company, 1984.

Peterson, James Lyle. Petri Net Theory and the Modeling of Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

Pettey, Chrisila C. and Michael R. Leuze. “A Theoretical Investigation of a Parallel Genetic
Algorithm.” Proceedings of the Third International Conference on Genetic Algorithms. 398
405. San Mateo, CA: Morgan Kaufmann Publishers, Inc., June 1989.

Sawyer, George A., et al., “Hypercube Implementation of a Parallel Simple Genetic Algo-
rithm.” In “/usr/genetic/Toolkit/PSGA” directory on Thor, April 1994.

Schaffer, J. David, et al. “A Study of Control Parameters Affecting Online Performance of
Genetic Algorithms for Function Optimization.” Third International Conference on Genetic
Algorithms. 51-60. 1989.

Schaffer, J. David and Larry J. Eshelman. “On Crossover as an Evolutionarily Viable Strat-
egy.” Proceedings of the Fourth International Conference on Genetic Algorithms, edited by
Richard K. Belew and Lashon B. Booker. 61-68. San Mateo, CA: Morganr Kaufmann Pub-
lishers, July 1991.

Spears, William M. and Kenneth A. De Jong. “Using Genetic Algorithms for Supervised
Concept Learning,” IEEE-CH, 29(15):335-341 (July 1990).

Spiessens, Piet and Bernard Manderick. “A Massively Parallel Genetic Algorithm: Imple-
mentation and First Results.” Proceedings of the Fourth International Conference on Genetic
Algorithms, edited by Richard K. Belew and Lashon B. Booker. 279-285. San Mateo, CA:
Morgan Kaufmann Publishers, 1991.

Srinivas, M. and Lalit M. Patnaik. “Genetic Algorithms: A Survey,” COMPUTER, 27(6):17-
26 (June 1994).

Starkweather, T., et al. “A Comparison of Genetic Sequencing Operators.” Proceedings of
the Fourth International Conference on Genetic Algorithms, edited by Richard K. Belew and
Lashon B. Booker. 69-76. San Mateo, CA: Morgan Kaufmann Publishers, July 1991.

BIB-5




83.

84.

85.

86.

87.

88.

Sterling, Thomas, et al. Enabling Technologies for Peta(FL)OPS Computing. Technical Re-
port CCSF-45, California Institute of Technology, July 1994.

Tanese, Reiko. “Parallel Genetic Algorithms for a Hypercube.” Genetic Algorithms and Their
Applications: Proceedings of the Second International Conference on Genetic Algorithms,
edited by John J. Grefenstette. 177-183. Hillsdale, NJ: Lawrence Erlbaum Associates, Pub-
lishers, July 1987.

von Freyberg, Berthold and Werner Braun. “Efficient Search for All Low Energy Confor-
mations of Polypeptides by Monte Carlo Methods,” Journal of Computational Chemistry,
12(9):1065-1076 (1991).

Walpole, Ronald E. and Raymond H. Myers. Probability and Statistics for Engineers and
Scientists (Third Edition). 866 Third Avenue, New York, NY 10022: MacMillan Publishing
Company, 1985.

Whitley, Darrel. “The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allo-
cation of Reproductive Trials is Best.” International Conference on Genetic Algorithms. 1989.

Whitley, Darrell, et al. “Scheduling Problems and Traveling Salesmen: The Genetic Edge
Recombination Operator.” Proceedings of the Fourth International Conference on Genetic Al-
gorithms, edited by Richard K. Belew and Lashon B. Booker. 133-140. San Mateo, CA:
Morgan Kaufmann Publishers, July 1991.

BIB-6




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE_ AND DATES COVERED
13 Dec 94 Master’s Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Predicting Protein Structure Using Parallel Genetic Algorithms

6. AUTHOR(S)
George H. Gates, Jr., Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERSO;(.MING ORGANIZATION
ir Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

A1r orce 1nsticute o echnno. ogy AFIT/GCS/ENG/94D-O3

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

Wright Laboratory (AFMC) AGENCY REPORT NUMBER

Materials Directorate
Wright-Patterson AFB, OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
The protein folding problem is a biochemistry Grand Challenge problem. The challenge is to reliably predict natural

three-dimensional structures of polypeptides. Genetic algorithms (GAs) are robust, semi-optimal search techniques
modeling natural evolutionary processes. Fast messy GAs (fmGAs) are variants of messy GAs that reduce the
exponential time complexity to polynomial. This investigation evaluates the merits of parallel SGAs and fmGAs for
minimizing the potential energy of a pentapeptide, [Met]-enkephalin.

AFIT’s energy model is compared to a similar model in a commercial package called QUANTA. Differences between
the two models are identified and resolved to enhance GAs’ abilities to correctly fold molecules. The steps required
to unify the behavior of the two implementations is presented.

The effectiveness of SGAs while minimizing the potential energy of [Met]-enkephalin is shown to be highly dependent
on the choice of population size and mutation rate. It is also demonstrated that choosing parameters from the
Schaffer’s proposed guidelines cause SGAs to realize near-optimal performance on this particular application.
Parallel SGAs are capable of finding near-optimal conformations of [Met]-enkephalin. Parallel fmGAS should ulti-
mately find better solutions in less time. The experiments performed in this investigation determine limitations of
parallel SGAs and fmGAs applied to polypeptide energy minimization.

14. SUBJECT TERMS 15. NUMBER OF PAGES
ParallelProcessing, Genetic Algorithms, Protein Folding Problem 120

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED ‘UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 . Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102




