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Abstract

The existence of the mode crossing condition is detected and analyzed in the

Active Control of Space Structures Model 4 (ACOSS4). The condition is studied for its

contribution to the inability of previous algorithms to successfully optimize the structure

and converge to a feasible solution. A new algorithm is developed to detect and correct

for mode crossings. The existence of the mode crossing condition is verified in ACOSS4

and found not to have appreciably affected the solution. The structure is then successfully

optimized using new analytic methods based on modal expansion. An unrelated error in

the optimization algorithm previously used is verified and corrected, thereby equipping the

optimization algorithm with a second analytic method for eigenvector differentiation based

on Nelson's Method. The second structure is the Control of Flexible Structures (COFS).

The COFS structure is successfully reproduced and an initial eigenanalysis completed.
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ANALYSIS OF MODAL BEHAVIOR AT
FREQUENCY CROSS-OVER

I. Introduction

As large, deployable space structures became feasible in the latter half of the 1970's,

structural and control engineers began to turn their attention to the problem of controlling

the dynamics of these structures. The sizing constraints imposed by launch vehicles on

spin-stabilized satellites, together with the lack of precision afforded by the crude attitude

control systems inherent to those platforms, led to the development of computer-

controlled, 3-axis stabilized vehicles. Because 3-axis stabilized vehicles generally rotate

relative to their target (usually the earth) and not the sun, they require large areas

dedicated to solar cells which rotate to maintain normality to the sun at all times. These

solar cells are typically mounted on solar panels -- large flexible appendages connected to

the main body of the vehicle by yokes or struts.

Forces from a variety of sources act upon these spacecraft continually. Such forces

arise from internal sources, such as thruster activity, internal mechanical movement (e.g.

gimbaled antennae, so-called 'Whisk broom sensors", etc.), as well as from external

forces, such as solar pressure (which causes the majority of attitude deviations in the

geosynchronous belt). These forces induce vibrations into these structures which in turn
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affect the pointing accuracy of sensor suites and other sensitive payload equipment having

little tolerance for such error. The undesirable flexible behavior of these systems can be

minimized by employing means to dampen these vibrations. Depending on the payload

requirements, the complexity of these control systems range from purely passive means

(e.g. spin or gravity gradient stabilization, inclusion of visco-elastic material, etc.) to active

means. These latter methods employ attitude control computers to execute control laws

which in turn command actuators (e.g. reaction wheels, active structures, etc.) to dampen

vibrations and thus inhibit the magnitude of attitude excursions [Liebst, 1994].

Vibrations naturally arise in all structures, but more so in space structures.

Structures slated for operation in space are extremely flexible and inherently of closely-

coupled, low frequency design. Low frequencies arise indirectly as a result of launch costs

-- the cost of payload deployment demands light-weight, load-bearing structures to

support payloads. Frequency is proportional to the square root of the ratio of stiffness to

mass. The only source of stiffness is the light-weight (and therefore flexible) support

structure. However, both the payload (where most of the total mass is typically

concentrated) and the support structure contribute to the mass and thus the mass term in

the denominator grows more rapidly than does the stiffhess term in the numerator. In

addition, as beams grow in size, stiffness typically decreases while mass increases

proportionally to length. Both factors drive frequencies down.

Finally, the typical space structure is modeled (mathematically) as a truss. Trusses

have three degrees of freedom for every pin-connected joint. Each degree of freedom in

turn is associated with one natural frequency and one natural mode. Trusses are joint-
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dominated structures and thus even small designs (modeled as discrete structures) have

many natural modes. (Again, this discussion assumes a discrete model of the structure --

continuous models have an infinite number of natural frequencies and natural modes

because they have an infinite number of degrees of freedom. This thesis will address only

discretized structural models.) The number of natural modes coupled with the structure's

inherent low frequency bandwidth result in the structure exhibiting high modal density as

well as a general lack of stiffness.

As a result of the high modal density, some natural frequencies may be repeated, or

may be numerically so close as to appear to be repeated to the system identification

equipment monitoring the structure's attitude. Whether or not the frequencies are exactly

repeated or just nearly repeated, their associated natural modes in most cases are distinct.

Distinct eigenvectors create an insurmountable problem for a active control laws, which

may apply actuator forces to dampen the wrong mode due to their inability to distinguish

closely spaced natural frequencies.

Consider the following example of an n-degree of freedom cantilevered beam

equipped with position and velocity sensors and actuators to control its natural modes.

The natural frequencies and modes have previously been identified as listed in Figure 1-1

and used to build the feedback matrices which control the actuators. The beam is excited

at 0.145 hz. Environmental factors have slightly perturbed the cross-sectional area of the

beam, so that the feedback matrices no longer exactly represent the required feedback.

Thus the actuators generate a force to control 1st Torsion although the beam has actually
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deformed into a bending mode along the z-axis. The mode of course remains uncontrolled

and the entire system may eventually become unstable.

Y y

x x

),1=0.11 hz X2=0.14 hz X3=0.145 hz

Mode 1 Mode 2 Mode 3
1st BX IT Ist BZ

Figure 1-1: : Effect of Closely Spaced Frequencies on Modal Control

Low stiffness and its associated narrow frequency range cause problems in iterative

structural design as well. At each iteration, the optimization program must complete at

least a partial set of normal mode analyses, resulting in a vector of eigenvalues, the

structure's natural frequencies, and an eigenmatrix, a column-wise set of eigenvectors,

each of which is a natural mode and which initially has a 1-1 correspondence with the set

of eigenvalues. These programs typically order the eigenvalues by magnitude (with X,

being the smallest non-zero value) and the initial mode ordering is inherently carried along.

At each iteration, adjacent frequencies (which may differ only by mere fractions of a

hertz), may switch their order.

Consider the same problem of the cantilever beam in Figure 1-1 from a design

perspective. Let the natural frequencies and modes listed above correspond to those from
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the first iteration of a normal mode analysis. Figure 1-2 shows the results of the second

design iteration where some properties of the beam have just been perturbed during an

optimization scheme. After completing Iteration 2, 1st Torsion becomes associated with

the third highest frequency, a frequency formerly associated with 1 st bending deformation

along the z-axis. An algorithm simulating the control response, does not detect the

decrease in modal shape its response should have induced, and reconfigures the search to

try a new direction. This action may eventually lead to non-convergence.

Iteration 2
y y

x x

1=0.12 hz kX2=0.16 hz k3=0.17 hz

Mode 1 Mode 2 Mode 3
1st BX IT 1st BZ

Figure 1-2: Results of Iteration 2

This design problem (as well as others) arises as a result of having combined the two

key optimization problems -- the minimization of structural weight and the minimization of

the control energy -- energy required primarily as a result of the flexibility induced by the

former. In the past, structures were designed independently of the control system which

would ultimately contain its behavior. The structure was designed and optimized, and its

design passed to the control engineers who would then design an optimum controller

based on that design. Results were satisfactory, but not truly optimum. With new
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methods and more powerful computing platforms available, structural and control

engineers soon realized the benefits of interdisciplinary design.

This optimization problem is commonly referred to as the integrated structural

design and controlproblem and its solution has been aggressively pursued during this last

decade. In the context of the mode crossing condition during the integrated design

process, frequency cross-over results in the analytical solutions exhibiting two undesirable

behaviors: 1) eigenvectors are non-unique, and 2) differentiating the non-unique

eigenvectors analytically becomes difficult and costly, even if the issue of discontinuity can

be addressed.

These problems have been observed in structures designed as test beds for active

control algorithms. ACOSS4 (Active Control of Space Structures) is one such structure

designed as an analytical tool to study the integrated structural design and control

problem. The ACOSS4 structure is a tetrahedron modeled with actuators in each of the

two legs at each of the three apexes of its triangular base. During optimization runs

initiated by independent design teams in separate studies, the ACOSS4 model would not

converge to a solution to the integrated problem. A similar convergence problem

occurred with the Control of Flexible Structures (COFS) model, a three-dimensional truss

comprised of 54 triangular bays, originally designed for shuttle deployment. Each bay

consists of one strong and two weak longerons to promote close coupling of the

frequency modes. Although COFS is an example of the structural design problem only, it

has more degrees of freedom and is a more realistic model than ACOSS4. During the
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optimization process, COFS engineers continued to use the analytical derivatives, but

were unable to converge to a feasible solution.

Much of the literature on this subject of integrated design is dedicated to the

simultaneous structural design in the presence of damping forces. Liebst, for example,

minimized the performance index of a modified Linear Quadratic Regulator (LQR) in

simultaneously designing active and passive dampers while minimizing the control energy

required for these same damping sources. [Liebst, 1993: 1]. Likewise, Grandhi employed

multivariable control techniques in using LQRs to optimize structures with behavior

constraints imposed on the closed loop problem in the presence of damping. [Grandhi,

1988: 860]. Canfield used multiobjective optimization techniques to solve the integrated

structural design and control problem. He sought to optimize vibration control as well as

account for aeroelastic tailoring requirements but did not employ a control method

involving passive damping forces [Canfield, 1992, 3]. Like Grandhi, Canfield used

ACOSS4 as a test bed for the program he authored. This program, FRAME, could not

converge to a feasible solution when forced to use analytical derivatives of eigenvectors to

determine an optimum search direction. It did, however, converge to the optimum

solution when reprogrammed to use finite difference derivatives for the same purpose.

The problems described above may be the result of the mode crossing condition

occurring in the integrated structural design and control problem. These, and other

problems associated with mode swaps can be prevented by re-ordering the modes before

the modal matrix is used in subsequent calculations. Such can be done manually through
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the finite element program IDEAS Master SeriesTM. IDEAS requires visual detection of

the mode swaps, and then assists the user in manually realigning the modal matrix

[IDEAS, 1990: 39-5]. Algorithms to detect and correct for mode swaps autonomously,

however, have only recently been applied. These methods range from computationally-

intensive perturbation methods, to efficient (but less robust) methods rooted in the basic

properties of eigenvectors.

This research effort was designed to study the reason Canfield's solution based on

analytical derivatives would not converge in the ACOSS4 model. It was believed the

analytical solution failed to converge due the mode swapping condition, i.e. when the

optimizer was faced with a mode swap, the mode shapes became discontinuous, and the

optimizer could not re-establish a correct trajectory toward the optimum solution

thereafter. It was also conjectured that this same phenomena prevented the COFS

structure from successful optimization as well. To ensure the circumstances associated

with modal crossings existed in these structures, an extensive literature survey was

conducted to examine the problems associated with repeated or near repeated frequencies,

which, as noted above, is a frequently cited cause of these mode crossings.

This thesis is divided into five chapters. Chapter 1 introduces the integrated

structural design and control problem and its relation to the mode swapping condition.

Chapter 2 is a summary of the literature survey completed in order to determine if 1) the

subject structures were candidates for the mode crossing condition, and 2) if they were

candidates, what means were currently in use in the field to locate and correct the

condition. Chapter 3 is a summary of the mathematical theory behind the mode swapping
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condition and of finite element modeling techniques. It includes a review of Nelson's

method, a standard method in computing eigenvector derivatives, to determine its

suitability to the integrated structural design and control problem. The ACOSS4 and

COFS design programs are also summarized. Chapter 4 highlights the major results of

this research effort and explains the reasoning behind the course of action taken in solving

the problem. Chapter 5 contains conclusions drawn from this study and possible follow on

research areas. Finally, the appendices have been tailored to contain only the most critical

data, to include complete NASTRAN files portable to a variety of finite element software

packages. Throughout the document titles of non-commercial programs are highlighted in

capital letters in a bold italic font, subroutines are in capital letters and in an italic font, and

program variables are in italics.

In summary, the goal of this research was to use proven numerical optimization to

accomplish the integrated design on the ACOSS4 model with analytic derivatives. In the

end, that goal was achieved, resulting in a solution calculated in 1/10 the time required for

the previous approach using finite difference derivatives. In addition, the mode crossing

condition was to be investigated as the cause of previous optimization failures.

Over the course of the research, it was determined that the mode swapping condition

did not exist in the structure and that the original hypothesis that its existence had caused

the original optimization failure was incorrect. A great deal of valuable material was

developed in the process of arriving at that conclusion and is now available to the

community. One key contribution was the development of a new, more efficient

automated mode tracking algorithm based on cross-orthogonality checks. A mode
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characterization scheme for visual identification of ACOSS4 modes was created where

none had existed previously. A complete ACOSS4 optimization history is likewise now

available. In addition, when frequency crossover was shown not to be the cause of the

convergence failure, the existing analytic method for eigenvector differentiation based on

Nelson's Method was replaced with one based on modal expansion. This new method not

only resulted in convergence to the optimum design, it also highlighted the error in the

original coding of Nelson's Method. This error was identified and corrected, thereby re-

equipping FRAME with its original code intact and at the same time providing FRAME

with a secondary analytic method for sensitivity analysis. Finally, although the COFS

structure could not be completely optimized, the community was provided with an

updated finite element model of the structure and complete an initial eigenanalysis on the

+1400 element design.
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II. Literature Review

2.1 Overview

Five main subject areas were studied from the current literature. The first main

section of this chapter describes the first of the two models optimized in this study, the

Active Control of Space Structures model (ACOSS4). Section 2.3 summarizes results on

the integrated problem in literature associated with ACOSS4 and describes the results

from other optimization studies. The next two sections are set up similarly for the Control

of Flight Structures (COFS) model. The chapter concludes with an examination of three

mode tracking algorithms currently in use in the field and laboratory. This last section is

discussed more thoroughly, as it references more current publications and is more

applicable to this particular thesis.

2.2 ACOSS4 Physical Model

ACOSS 4 (Active Control of Space Structures 4), is a mathematical model designed

by Draper Labs for its research in the field of vibration control of large flexible spacecraft.

The model was intentionally designed to have closely-spaced natural frequencies. Such a

design challenges the abilities of new control algorithms to correctly distinguish, and

subsequently control, the correct modes associated with each frequency. ACOSS 4 is

simple in design, having only twelve degrees of freedom, but complex enough to provide

several closely-coupled modes having the characteristics of various simple modes (e.g. 1 st
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Bending, 1st Torsion, etc.) The structure is a theoretical model only. Draper chose this

design as it has under 20 modes yet still shares the same shape and characteristics of radar

and optical mounting configurations where controlling the motion of the apex (Node 1) is

the prime concern.

The nominal ACOSS 4 is a truss constructed of twelve hollow rods with various

(circular) cross-sectional areas as shown in Figure 2-1. These twelve areas comprise the

set of structural design variables for the standard optimization problem. Six rods form a

tetrahedron and comprise the main body of the model. The triangular base is supported by

two rods at each of three vertices which form the base. Each of the six legs is pinned at

ground level. The structure is statically indeterminate and has 12 independent modes.

The base and all three faces of the main body are equilateral triangles. [Strunce, 1980:1-3]

In the integrated structural design and control problem, each of the bipods are equipped

with actuators capable of generating axial forces, and co-located sensors returning

position and velocity data. Parameters associated with these actuators comprise the set of

control design variables. The finite element model is described in Appendix E. 1 and the

corresponding NASTRAN file is included in Appendix E.2.

2.3 ACOSS4 Optimization History

ACOSS4 was designed as a testbed and as such is a standard model used in testing

new integrated problems. Source material was abundant. The design of the nominal

structure is readily available from a wide variety of sources. All literature reviewed
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stressed the enormous benefits achievable when the structure and its control system are

designed simultaneously rather than separately as done in the past.

0E2

E3 E1l.-.......... A=DV1

E4 T E9E

E7 E9

Figure 2-1: ACOSS4

In 1988, Grandhi employed ACOSS4 to test the accuracy of three different integrated

optimization packages, IDESIGN, NEWSUMT-A, and VMCON. Weight was the

objective function, the performance index of the LQR was also minimized, and the closed

loop poles of the eigenvalues and damping parameters were both constrained. The design

variable vector consisted of the twelve cross-sectional areas and the three programs

iterated the design of an LQR using constant gain feedback. Grandhi's approach was to

first determine the nominal design weight and the structure's natural frequencies and

modes. These latter two values were used to assemble the plant and input matrices of the

standard state space representation of the equations of motion. Closed loop eigenvalues
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and damping ratios were determined and their sensitivities computed with the solution of

the algebraic Lyapunov equations. These sensitivities were input into the three programs

and the structure optimized. Constraints were as follows:

1. 61 = 1.341

2. 62 >_15
3. ý1 = ý2 =- ý3 -- 4 = 0.1093

where _i is the damping parameter. The nominal weight was 43.69 units. Each of the

three algorithms tested took an unreasonable amount of iterations to converge upon the

optimum solution, if they converged at all. DESIGN converged to a weight of 26 after

110 iterations, NEWSUMT-A converged to a weight of 25 after 80 iterations, and

VMCON failed to converge to any solution. [Grandhi, 1989:142]

In 1988, Khot studied two different approaches to the integrated problem. In the first

approach, he defined structural weight as the objective function while constraining the two

lower frequencies and the damping parameters as shown above. His controller too is an

LQR using constant gain feedback. (The second approach defined the Frobenius norm as

the objective function and will not be discussed.) Khot was able to achieve an optimized

weight of 20.75 units in only 22 iterations, using NEWSUMT-A. [Khot, 1988: 359]

Oz and Khot optimized the ACOSS4 structure under a variety of constraint

conditions, including equality and inequality constraints on the lower structural

frequencies. Although their paper did not state the iteration history of the optimization

process, weight reductions on the order of 350-400% were achieved when the efficiency

of a structure-control system was also constrained. The FEM in this study was reduced so
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only the lower eight modes were studied. They concluded that if structure-control

interaction efficiencies were higher than 60%, and the truncated frequencies greater than 1

rad/sec, the results from the reduced model would compare favorably with those obtained

from optimizing the full model, while providing marked decreases in computational time.

Canfield applied Independent Modal Space Control (IMSC) to the ACOSS4 problem

in his dissertation on the integrated structural design and control problem. In IMSC, or

so-called natural control, the closed loop equations retain the independence

characteristics of the open loop equations. [Canfield, 1992, 35] Canfield first minimized

the structure independently of any control minimization and showed that the

characteristics of natural control prevented modal gains from significantly changing,

commenting that any increases in the gains could be attributed to new modal shapes.

Canfield then solved the integrated problem using an LQR (again with constant feedback)

controlling six actuators in the bipods of the ACOSS4 structure in the presence of unit

disturbances in the x and y directions, respectively, to evaluate typical actuator forces.

He obtained the true optimum (minimized) weight of 14.69 units, and noted eigenvector

sensitivity played a key role.

One key feature of Canfield's research was the closed form expression for all

derivatives with respect to control design variables (modal gains). Finite difference

perturbation methods were employed to calculate eigenvector sensitivities. These

sensitivities were required in the semi-analytic derivatives with respect to the design

variables and used to determine optimum search directions. Canfield's initial solution did

incorporate Nelson's method, the state-of-the-art method for determining eigenvector

Literature Review 2-5



sensitivities. This method, however, fails in the presence of repeated or near repeated

frequencies. Ojalvo and Mills-Curran both have provided methods to extend Nelson's

Method to the case of repeated eigenvalues, but these extensions were not incorporated

into Canfield's solution. Using sensitivities based on finite difference perturbation

methods did burden the computational resources, as this methods requires (n+1) finite

element analyses. Here, n is the number of design variables, which number eighteen in

Canfield's formulation (twelve cross-sectional areas and six control gains.) The

analytical methods of eigenvector differentiation (Nelson's method, modal expansion, etc.)

require only one FEM analysis.

Canfield resorted to finite difference methods when the optimizer failed to converge

to a feasible solution based on sensitivities calculated with Nelson's method. This initial

optimization may have failed due to the presence of repeated frequencies occurring as the

structure was perturbed during the optimization process. This can lead to the mode

crossing condition as discussed in the introduction. Nevertheless, Canfield's multi-

objective optimization method did return a global minimum of 16.92 units when the

objective function was defined as minimized weight. [Canfield, 1992: 89]

2.4 COFS Physical Model

Unlike the simple 12-element mathematical model afforded by ACOSS, (which if ever

actually built could provide somewhat accurate results through ground based testing), the

sheer complexity and size of COFS makes such testing difficult and provides unreliable
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results, mostly due to the inability to prevent or, in the absence of prevention, account for

the effects of gravity.

In response to the myriad of problems associated with ground testing [Hanks,

1984:13-15], NASA Langley concluded that the most accurate method to validate

analytical results was to perform an on-orbit test of a deployable space structure. NASA

designed a structure similar in design to most space trusses that was light enough to be

carried aloft in one shuttle mission, which could be deployed, tested, and retracted by the

shuttle crew, and one whose physical characteristics and configuration could be altered

during testing to offer the broadest spectrum of test data. In addition, the structure was

required to maintain cantilever end conditions, have a near-zero thermal expansion

coefficient and integrate with the Space Technology Experiments Program (STEP)

platform, a platform offering generic electronic and testing equipment for payloads

deployed from the Shuttle cargo bay. These test results could then be compared to those

generated by the analytical (finite-element) models, and model deficiencies could be

corrected. The result was the Mast Flight System, the main feature of which is the

Deployable Mast Subsystem, also known simply as the Mast, the MAST, or COFS. This

thesis will use the latter nomenclature. The mast was to be built by the Astro Aerospace

Corporation based in California. An artist rendering of the COFS structure fully deployed

is shown in Figure 2-2.

COFS is a statically indeterminate, truss-dominated space structure comprised of 54

individual "bays" having the cross-section of an equilateral triangle 1.4 meters in diameter.

Each bay is 1.124 meters high. The structure's main component is a simple 2-bay element
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(shown in Figure 2-3) replicated 27 times in the z-direction, for a total height of 60.7

meters. (For ease of reference, one bay of the 2-bay element is designated the 'A'-bay, the

other the 'B' bay -- thus there are 27 A-bays alternating with 27 B-bays.) The truss is

stowed in a package just over 2 meters high in the shuttle bay directly integrated with the

STEP platform. Sensor suites are located on platforms at Bays 24 and 38, and actuators

are located at Bays 12, 30, 44, and 54. A large tip mass contains the Parameter

Modification Device (PMD) located on top of Bay 54. The PMD sits symmetrically on

top of the structure, but its cross section is significantly larger than the 1.4 meter

triangular cross section of the main structure.

Each bay is composed of three longitudinal members (longerons) to provide bending

stiffness, three diagonals to provide torsional and shear stiffhess, and three transverse

members to stabilize the longerons. All members are made of graphite epoxy tubes having

various elastic moduli all of an order of magnitude of 100*109 N/m2. All dimensions for

the nominal design are provided in Appendix E.2. That appendix, as well as the

information to follow, was compiled from the works by Colladay, Horta, and Talcott.

Longerons: Of the three longerons, one is designated the strong longeron and faces

sternward (the artist rendering does show the incorrect orientation) along the centerline of

the orbiter. The strong longeron is so named as it has a larger cross sectional area than

the weaker longerons. COFS design engineers used different cross-sectional areas to

ensure the nominal design had closely spaced, non-repeated lower structural modes. The

two weak longerons are located at the other two vertices of the triangle. To ease

packaging and deploying the truss, all longerons have nearly equal outside diameters with
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inner radii differing by over 40%. The

O• strong and weak longerons in the first bay

of the 2-bay element are identical to those

BB Weak in the second bay. The inner radius of the
Weak Longeron

Longeron strong longeron (Rs) and the inner radiusDiagonals

of the weak longerons (R,) are the first
Longeron P

two design variables (of a total of four) in

the optimization algorithm.

SBatten B Battens: All three battens have equal

Figure 2-3: COFS 2-Bay Element cross sectional areas in one bay and are

designed to provide longitudinal stability. The battens in Bay A are continuous members

and fit into titanium hinges at the vertices. The battens in Bay B are hinged at the

midpoint to provide for packaging and re-stowing. Upon deployment, these hinges lock

into place and unlock themselves during retraction with the introduction of compressive

forces. The battens contribute no design variables.

Diagonals: All three diagonals have equal cross-sectional areas in each bay and are

designed to provide torsional and shear stiffness. Diagonals alternate in Bay A and Bay B

meaning that the endpoints of the diagonals pass through the same corner hinge at the

batten line. All six diagonals in the 2-bay element are non-continuous members, being

hinged at the midpoint for purposes of stowing and deployment. The outer radius (R.)

and the inner radius (Ri) of the diagonals provide the last two design variables in the

optimization algorithm.
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The centerlines of two adjacent battens from one bay, two corresponding longerons

from a two bay element and two alternating diagonals from a two-bay element all pass

through a common point at the vertex. All six elements are connected through a titanium

end fitting at each vertex.

Tip Remote Station: The tip remote station (TRS) is the primary sensor/actuator

suite housed in a package on top of Bay 54. It consists of four actuators (two along the x-

axis and two along the y-axis). Each set can be commanded in phase to impart linear

forces, or out-of-phase to generate torques about the z-axis. (See Figure. 2-4) The four

actuators can be used simultaneously to provide a range of forces and torques. The

actuators are standard Linear Direct Current Motors (LDCM) generating up to 30

Newtons of force with a peak-to-peak range of 32 centimeters. The tip station also

houses two linear accelerometers (one for the x-axis, one of the y-axis) and one rotational

accelerometer to measure z-axis torsion.

ti++ y force

+ z torqu

Figure 2-4: Tip Remote Station Layout and Operation
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Secondary Actuator Suites: There are secondary actuator suites located at bays 12,

30 and 44. The equipment is attached to rigid platforms at the batten plane. Each

platform holds two LDCM actuators (one for the x-axis, one for the y-axis) a co-located

linear accelerometer for each actuator, and one rotational accelerometer. The primary

function of the secondary actuators is to control bending modes in the x and y axes. Used

in conjunction with the primary actuators in the TRS, the secondary actuators can provide

insight into broadband excitation and control methods. [Colladay, 1986:11]

Secondary Sensor Suites: There are secondary sensor suites located at Bays 24 and

38. Each suite consists of three accelerometers (one x-axis, one y-axis, and the only z-axis

accelerometers on the truss), and one rotational accelerometer. Since no actuators are

present, these suites were included to provide researchers with insight into the non-

minimum phase characteristics associated with non-co-located actuator/sensor pairs.

Parameter Modification Device: The parameter modification device (PMD)

consists of four 20-kg masses guided along four independent linear tracks by pinion drive

motors. These large masses can be independently displaced to offset the center of mass

and/or to alter the torsional moment of inertia. It is housed in a single squat cylinder

along with the TRS actuators and is bolted to the top of Bay 54.

Table 2-1 summarizes the location of all sensors and actuators.
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Table 2-1: Summary of Actuator and Sensor Locations

ACTUATORS SENSORS
BAY +X LDCM +Y LDCM +X Acc. +Y Acc. +Z Acc. Ang Acc. Rate Gyro
TRS 2 2 1 1 1 1 3
.44 1 1 1 1 1 1 0
38 0 0 1 1 0 1 0
30 1 1 1 1 1 1 0
24 0 0 1 1 1 1 0
12 1 1 1 1 0 1 0

2.5 COFS Optimization History

Recall, COFS, like ACOSS4, was designed as a testbed for space structure control

algorithms. Thus there were several inherent operational constraints which had to be

satisfied to ensure the structure would provide the opportunity to test the nuances of the

subject control algorithms. Since COFS would be deployed in space, however, its weight

still required minimization. In addition, because it was deployed from the shuttle, there

were other physical (dimensional constraints), as well as frequency constraints to prevent

interference with shuttle operation. These inequality constraints are listed below, and the

corresponding optimization problem posed in Equation 2-1. These constraints hold for all

literature reviewed, except where noted:

Objective Function : Minimize Mass
Design Variables : Inner Radii of Strong and Weak Longerons

Inner and Outer Radii of Diagonal
1st Constraint : 1st Natural frequency no less than 0.18hz
2nd Constraint 1st Torsion frequency within 1% of 2nd Bending frequency
3rd Constraint : 1st Natural Frequency of Diagonal no less than 0.15hz
4th Constraint : Radius of strong longeron at least 0.25 mm larger than that of

weak longeron
5th Constraint Diagonal has wall thickness of at least 0.56 nun
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F(X) =total mass =:: lNinimum (2 - la)

X(dv) =[R,, R, R1  R,, ]T (2 - lb)

S22

92 Torsion Bending - 1% •ý0 (2 - Id)
A22Tors.ion

A22

g 3  (0.1 5hz)•0(-e

g4 = 0.254mm -(R. -Rs)•Oý (21- f)

g5 =0.56.m- (R 0 - Rj1 )• (2- Ig)

In 1986, Talcott and Colladay independently found the non-optimized structure's

lower ten frequencies and modes to be as shown in Table 2-2. Talcott' s results included

the mass of the DRA and orbiter, as did Colladay's model. In the model used, all LDCMs

are locked and the PMD configured to induce maximum inertia. Results are reported to

the same number of significant digits as reported in the literature. Note the differences in

the frequencies after mode 3. Although the difference between Colladay' s and Talcott' s

results continue to grow with increasing mode number, a 1-1 correspondence with the

mode shapes is maintained throughout.

Table 2-2: Comparison of COFS Natural Frequencies and Modes

______ Talcott [Talcott, 1986: 2601 [Colladay, 1986: 311 [Horta, 1986: 519]
____ Non-O timized Non-O timized 9ptimized

Mode# Freg (liz) Mode Shape Freg (liz) Mode Shape Freg (liz) Mode Shape
1 0.1813 IBAX 0.21 IB-X 0.1888 BYX

3 1.2276 2B-Y 1.78 2B-Y 1.291 2B-X(Y
... 7 4B ýi. 2BX.....

5 1.3004 IT 2.18 IT 1.339 2B-Y(X)

7 3.6584 3B-X 6.07 3B-X 3.831 3B-Y(X)

9 6.0100 14B-Y 11.15 4B-Y 6.713 4B-X(Y
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Horta, et. al, completed one of the initial optimization studies of the COFS structure.

He used a model of COFS built with the FEM package Engineering Analysis Language

(EAL) and optimized the structure using the package CONMIN which uses constrained

function minimization techniques to minimize weight while maintaining modal coupling

[Horta, et al, 1986:519]. Like Collady and Horta, the FEM includes the DRA and the

orbiter mass properties. Results are included in Table 2-2, above. (Note, Horta used a

reference frame different than the first two, i.e. his x- and y-axes are interchanged when

compared to the others. Reference with respect to a standard reference frame is included

in parenthesis). Horta's results are very similar to those reported by Talcott, the only

difference being the reversal of mode shapes 4 and 5 (1st Torsion and 2nd Bending in the

(common) x-plane. Unfortunately Horta did not report the mode shapes of his baseline

model and thus we cannot determine if a mode swap between modes 4 and 5 occurred.

Walsh optimized the COFS model in her paper describing an algorithm to design a

large space structure having closely spaced frequencies. The same FEM is used. Walsh

employs EAL to compute analytical eigenvalues and eigenvectors for the mass-normalized

optimization problem, as well as the analytical eigenvalue derivatives. CONMIN requires

these derivatives and the derivatives of the objective and constraint functions as well to

determine a proper search direction. The latter derivatives are computed through piece-

wise linear approximation methods using a 1st order Taylor series approximation and

constrained with move limits. Walsh noted mode switches occurred at iterations 9, 13,

and 20 but states this is rectified during a full analysis. (She does not state if the mode

swaps simply did not occur in the full analysis, or whether the mode switching was
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autonomously or manually rectified.) Nevertheless, Walsh concluded after 25 iterations

that no feasible design exists which can satisfy the constraints listed in Equation 2-1 by

merely varying the set of design variables provided. She additionally stated that more

design freedom is required to solve the optimization problem. (It is interesting to note that

CONMIN can supply its own eigenvalue derivatives through finite difference perturbation

methods, similar to Canfield's secondary approach. Walsh instead had EAL compute

them analytically. It would be interesting to study the optimization results had CONMIN

used its own FD derivatives.) [Walsh, 1987: 5]

In their study of multiobjective optimization in the face of both equality and inequality

frequency constraints, Grandhi and Venkayya used a different optimization algorithm than

that used in the previous studies cited above. The optimization algorithm was based on an

optimality criterion. This criterion uses a scaling procedure to determine the constraint

boundary. The study used a different finite element model and optimization problem as

well. COFS was modeled as a truss rather than as a space frame, the orbiter and DRA

were removed from the structure, and a cantilever end condition was added. In addition,

all elements were initially the same cross sectional area, eliminating the need for the strong

and weak designations. (This additional symmetry promotes repeated frequencies as

verified by the results.) The original optimization problem was replaced with the

following
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F(X) = total mass =:> Minimum (2- 2a)

X = [RL, RB, RD, RL1 RB1 RD6] (2 - 2b)

g ( =1 I = 0 (2- 2c)
(0.18hz)

2

g2 = RL -Od.in _ 0 (2- 2d)

where

RL, radius of the ith longeron

RDJ radius of the kth batten

RB, radius of the ith diagonal

There are a total of 489 design variables -- i.e. the cross-sectional areas of all battens,

longerons, and diagonals are design variables. (Recall, the nominal COFS model has only

4 design variables). The initial cross-sectional area of all 489 elements was 1.0 in2 .

Optimization results are shown in Table 2-3 for the first four frequencies. Final results

correspond to the design after 20 iterations. Note that the initial symmetry does cause the

lower frequencies to repeat, although the eigenvectors are distinct. This result could lead

to a control problem as explained in Chapter I. The study reports that the two lower

frequencies no longer repeat by the end of the optimization. We contend that the two

lower frequencies in the optimized design may be numerically distinct, but would be

indistinguishable in a real-world operational system. Note that this optimization problem

results in very similar lower frequencies despite the use of 489 design variables. The mode

shapes, however, are re-ordered. The paper also concludes that mode switching caused

"abrupt" changes in the variable distribution which led to several oscillatory cycles before

convergence [Grandhi, 1989:15-17]. The study used no mode swapping algorithm.
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Table 2-3: Optimization Results from Grandhi's Formulation

Parameter Nominal Final Mode
Weight (bs) 1407.42 258.35 n/a
1st Freq (hz) 0.2058 0.1800 1B-X
2nd Freg (hz) 0.2058 0.1802 2B-X
3rd Freg (hz) 1.4570 1.1068 IT
I4th Freq z) 1 1.4570 1.1221 not reported

2.6 Mode Tracking Algorithms

As mentioned in the introduction, only recently has the structures community

dedicated the necessary time and resources to develop efficient mode tracking algorithms.

Three separate mode tracking algorithms were reviewed and the potential for

incorporation into this research effort assessed. The following summarizes each of these

three efforts.

2.6.1 Higher Order Perturbation Method

The most robust automated method thus far appears to be the Higher Order

Perturbation Method (HOEP) initially developed by Eldred in 1992. The basis of HOEP

lies in the notion that the modes -- the eigenvectors -- are merely mathematical identities

which can be monitored by tracking the perturbation in all structural parameters. Baseline

eigenvectors are established at the initial design parameters. As these parameters are

modified through some iterative process, the former eigenvectors are mathematically

correlated with the current modes, and the "eigenpairs" [Eldred, 1992:1870] then tracked.

The method is considered to be a forward analysis method and is based on a ..

Literature Review 2-18



perturbation expansion of the eigenproblem." [Eldred, 1994: 1] The method tracks the

effect these perturbations have on the eigenpairs through subsequent iterations.

The HOEP method has several advantages over the methods based on the cross-

orthogonality checks to follow, and one serious disadvantage.

1) This method is more robust than the following methods, as it truly tracks the

mathematical effects of perturbations on the structure rather than basing modal tracking

on an "after-the-fact" correlation.

2) The method allows the user to monitor only the constrained eigenpairs, vice

requiring the algorithm to correlate all the modes.

3) Large perturbations of the design space and optimization problems using large

move limits can still be effectively tracked with HOEP. These large perturbations can take

the form of the total annihilation of a beam element in large space truss, or simply starting

an iterative design process with a very non-optimum design. Other methods allow only

small perturbations and small move limits.

HOEP's major disadvantage is that, besides requiring a massive programming effort

to implement, it requires additional CPU time, even when only select eigenpairs are

tracked. In his second paper on the HOEP method, Eldred compared HOEP to Gibson's

cross-orthogonality check (CORC) and noted in models requiring small perturbations,

CORC was up to 23% faster than HOEP and just as accurate. He also showed that other

models with larger move limits do not however, fare so well under CORC, and may have

corruption coefficients of up to 100%. These cross-orthogonality checks, however do

warrant strong consideration, as describe below.
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2.6.2 Cross- Orthogonality Checks

The Automated Structural Optimization System (ASTROS) is a design and

optimization software package written for Wright Laboratories and used in the analysis of

finite element models [Neil, et al, 1990:1021]. In 1992 under contract for the Air Force,

Gibson authored an extension to the software to detect and correct for mode swaps which

could occur during the optimization process. [Gibson, 1992: i]. Gibson bases his method

on the notion that not only is every mode from a mass-orthonormalized matrix

orthonormal to every other mode from that matrix, but every mode is also relatively

orthonormal to every other mode in subsequent iterations of that matrix. This holds only

if the design changes between iterations are small. The CORC matrix is computed as

follows:

CORC = [El(]"') [M]y [0]" (2- 3)

where D("-1) is modal matrix from the previous iteration, and MW and Vi are the mass

orthogonalized mass matrix and the modal matrix, respectively, from the current iteration.

The individual elements of the CORC matrix indicate the degree to which the

modes in the current matrix align with the modes from the previous iteration. Systems

that are relatively orthonormal will have some non-zero off-diagonal terms, but these

terms will be much smaller in magnitude than the diagonal terms; i.e. the system is said to

be "diagonally dominant" [Gibson, 1992:6]. The row number, i, of the largest element in

each individual column of a diagonally dominant matrix should therefore correspond to the

column number, j, of the previous mode.
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Systems that are not orthonormal may have some off-diagonal terms that are larger

than the terms on the diagonal. If the row number and column number differ, it is the row

number which indicates the mode swap that occurred between the i1h and jth modes, i.e. the

jth mode from the previous iteration is now the ith mode. For example, a CORC matrix

whose 2nd column is [.77 .11 .5 If indicates that in this iteration, Mode 2 is mostly

comprised of the same behavior as is Mode 1 from the previous iteration. It also indicates

that it is also influenced by Mode 3 of the previous iteration, and is negligibly affected by

Mode 2. The column can be normalized to determine strict percentages of modal

influence but this is rarely necessary in well-behaved problems.

A complete flowchart of Gibson's Method (including a numerical example) is

included in Appendix E. In general terms, Gibson's method works as follows. A vector is

built with a 1-1 correspondence with the modes of the previous iteration. Since the modes

in the last iteration are considered to be sequentially ordered, that vector is just a sequence

of numbers the same length as the order of the problem. The CORC matrix is computed as

shown above. Each column is processed individually. It is sorted and the row of the

element having the largest absolute value is noted. This row number (actually the

potential matching mode), is then compared to the element of the sequential vector

residing in the same column as the column being processed in the current iteration. The

mode is recorded in a tracking vector. If the mode just defined has already been assigned,

that column is re-processed, now basing the modal assignment on the element with the

next largest magnitude.
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This method is computationally very efficient when compared to HOEP. It does have

two major drawbacks however, as noted below:

1) Because each mode is processed individually, the direction in which the modes

are analyzed is critical. Once a column (an eigenvector) has been processed, its mode is

permanently assigned, regardless of other eigenvectors in the matrix. Thus it is possible

that in processing the modes in one direction, say from column 1 to column 'n', the

algorithm will detect no mode swaps. However, in processing the modes from 'n' down

to 1, several mode swaps could be detected. (See the numerical example in Appendix

D.1)

2) Modes between iterations only remain relatively orthogonal if the

perturbations between modes are very small. Thus, this method does not work for large

perturbations in the design space.

Gibson's method does have two advantages over HOEP:

1) The method is computationally much faster than HOEP and give results just as

accurate as HOEP when move limits are small.

2) This method allows the emergence of new modes not originally detected in the

baseline iteration. (This, however, can have mixed results if CORC is trying to correlate

an entirely new mode with a set of former modes.) For this reason, Eldred suggests the

use of a "correlation coefficient", the ratio of the two largest elements in a column, which

warn the user of this occurrence when that ratio is greater than 0.5. [Eldred, 1992: 5]
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In addition, others have used cross-orthogonality checks for the same purpose, lending

validity to the method in general.

Ting, in his 1993 paper on an automated mode tracking strategy, developed a

modified version of the PAREDYM FEM package. That package is primarily used for

large scale finite element models. He demonstrated his method on a model of a Sikorsky

Black Hawk helicopter where he showed his method effectively reduced mode shape

errors in two lower structural modes from several hundred percent to just under 17%.

[Ting, 1994: 975]

Like Gibson's, Ting used a cross-orthogonality check of the same form as Eq. 2-3.

However, Ting went one step further by introducing a technique to partition the matrix,

extracting only those modes warranting consideration -- a valuable procedure when

dealing with large scale models and in line with the general thinking that it is the lower

modes which best characterize the nature of a model. This technique also has the

advantage of just monitoring constrained eigenpairs, as does the HOEP method.

Ting first calculated a matrix of Modal Assurance Coefficients (MAC) as follows:

[MAc],/ = [ofk-1],,[Mk][0k]J

Note this is just the CORC matrix in Gibson's Method. Each row is then normalized by

the absolute value of the largest term in that particular row, and any term less than one

(which is every term except the largest value) is zeroed. This new matrix [p]k is called the

Boolean operator and becomes the identity matrix of rank j for a diagonally dominant

matrix. The Boolean operator then post-multiplies the current eigenvector matrix which

effectively permutes the individual eigenvectors. (The paper makes no mention of using
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the operator to also permute the eigenvalues as well, so we must assume this is also done.)

This operator can be reduced and modified to extract only certain eigenvectors for analysis

as well.

In the case of strongly coupled modes, Ting's procedure used small perturbation

techniques to first locate the coupled modes and their locations in the eigenmatrix. Ting

believed these modes can not be effectively tracked and should therefore be ignored

during that iteration. The procedure removes these modes from consideration during that

iteration by replacing them with the corresponding modes from the previous iteration

(assuming these could be tracked in that iteration). The actual modes are returned only

after a subsequent iteration shows they have been decoupled.

Although Ting achieved substantial gains using this procedure, we found this method

to have several major drawbacks when considered for a general problem:

1) Like Gibson's method, because the entire matrix is not considered as a whole, it

will suffer from the same ordering problem; i.e. it may detect mode swaps using one

sequence, but detect no such swaps if the sequence is changed.

2) No mention is made as to the route taken when a subsequent mode has its

largest element on the same row as a previous row.

3) Ignoring strongly coupled modes could lead to losing all knowledge of these

modes during subsequent iterations. If the modes remain coupled, neglecting them only

prevents subsequent correlation when their characterization is most critical.

4) The method only works for optimization techniques using small perturbations.
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Despite the drawbacks noted above, Gibson's method was used initially to determine

the mode swaps in the ACOSS4 problem. A cross-orthogonality check was much simpler

to program than was the HOEP method. The time savings afforded by a simpler

programming task would be critical if it turned out that a mode swap did not occur, (or if

one did occur, had had a negligible effect on the result), as it would allow time to pursue

other solutions. In addition, some of Gibson's drawbacks could be eliminated with

additional programming steps. These advantages were noted as good reasons to use

CORC instead of HOEP [Eldred, 1994:10-11], although that particular reference does go

on to state that using a hybrid approach -- using CORC when the problem is well-behaved

but autonomously switching to HOEP if it became unruly -- is the best algorithm.
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III. Mathematical Theory

3.1 Overview

The following chapter is an overview of the mathematical foundation upon which this

thesis is based. Section 3.2 contains the background of the finite element process as it is

applied to this thesis. It is somewhat more thorough than would normally be expected,

but its detail was required due to the reprogramming effort necessitated by our initial (and

inconclusive) thesis results, as will be seen in Chapter 4. Section 3.3 introduces the

eigenvalue problem to include a summary of the problems caused by repeated eigenvalues.

It includes a discussion of the physical manifestation of an eigenvector. Section 3.4

describes the four methods by which eigenvalue and eigenvector derivatives were calcu-

lated for this research effort. The last section is an overview of basic optimization princi-

ples as they pertain to this thesis.

3.2 Finite Element Formulation

The equations of motion governing a system can by determined by several means.

The two most common methods are through the application of classical dynamics (which

requires free-body diagrams and Newton's second law) -- the other through Lagrange's

equations which is based on principles of variational calculus. One serious drawback of
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the former is the need to determine forces at each point where forces and moments act,

even though they may be internal to the structure and will cancel out each other when the

system's equations of motion are determined. The latter approach enables the derivation

of finite element equations directly in terms of the nodal displacements. If internal forces

are desired, they are available as a post-processing step in finite element analysis once the

displacements have been found.

Craig presents a derivation based on Hamilton's principle [Craig, 1991: 243-257]

which when supplemented with material from Meirovitch [Meirovitch, 1970:72-76] is

complete. He first finds the local stiffness and mass matrices in a truss structure. This

formulation can be used in conjunction with the method of assumed modes. The method

is an extension of virtual displacement principles which uses an admissible function (a

function which satisfies all geometric boundary conditions and provides the required

number of continuous derivatives) to approximate the deformation of a continuous

system. [Craig, 1981: 252] The displacement is a function of position and time and is the

product of a the shape function, VI(x), and a time-dependent generalized coordinate u(t).

Deflections in n-degree systems are approximated by the sum of the products

n
u(X,t 0 ( oi (X)Ui (t) (3-1)

i=1

The assumed modes method forms the basis for finite element theory as well, where

the mode shapes describe the deflections of the individual finite elements. These elements

are the discretized portions of the structure. In the two structures studied, the elements

are actually the entire length of a beam or rod, or a large mass placed at a node. Nonethe-
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less, the deflections can be modeled as the sum of only two products of the form given by

Eq. 3-1, with stiffness and mass computed from

L

kij =f EA (p'i(x)kpo'j(x)dx (3-2.a)
0

LM ij =f par i (x) ýo j (x) dx (3 -2. b)

0

ACOSS4 is a truss, while the COFS is a space frame. A truss is a pin-connected

structure comprised of axial members, and as such, its individual members have no bend-

ing deformation, unlike a frame. The COFS structure is comprised of beam elements.

Each element of the individual structures was considered a finite element and no further

discritization of individual elements was necessary. To find an element's local stiffness

and mass matrices, a local coordinate system is employed to find the deflection as shown

in Figure 3-1 [Craig, 1981: 397].

ul(t) U(t) u2(t)S-€; x

L

Figure 3-1: Local Coordinate System for Axial Element

The deflection is then simply the sum of the two products

u(x,t) :OW J +o(~1(t) 2(x)u2(t) (3- 3)

where

(p(X) =I xL and qo2 (x) =
L L
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Substituting these modes shapes into Eqs. 3-2, the elemental (i.e. local) stiffness and mass

matrices are found to be

k= AE[1 1] m = pAL [21 ] (3-4.a-b)L 1 6L- 1 "=-

In the derivations to follow, matrices are denoted by bold uppercase letters. Determining

the global stiffness and mass matrices is tedious, and best left to automated procedures. In

general, the global stiffness and mass matrices are determined in a 4-step process. Con-

sider the stiffness matrix. First, the local stiffness matrix is found using Eq. 3-4.a. That

matrix is then rotated into the global coordinate system using the coordinate transforma-

tion matrix T (defined below), and the partitions of the transformed matrix placed into the

corresponding locations in the global stiffness matrix. The last step involves reducing the

global stiffness matrix as required.

This process is demonstrated for ACOSS4 which consists of 12 elements connected

through 10 nodes. Consider element 3, which is connected between nodes 2 and 4. Each

node has 3 associated degrees of freedom, thus the overall stiffness matrix will be 30x30.

1) Determine the local stiffness matrix

k3= A3E3 [ .](3-5)
2) Determine the direction cosines and build transformation matrix T

h er 0 0 (3-6)
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and transform the local stiffness matrix, k3, into global coordinates:

S3 = Tk3TT (3-7)

k is now a 6x6 matrix comprised of 4 partitioned 3x3 matrices. The partitioned matrices

on the diagonal represent the contribution to stiffness at the nodes while the off-diagonals

represent stiffness coupling between the two nodes

[ k 3  k -1 I (3-8)
3L21 k'22

where each k. is a 3x3 matrix relating the stiffness term at that local node or between the

local nodes. In this example, /k13, is the stiffness term of element 3 at node 2, while

2•2 is the stiffness term of element 3 between nodes 2 and 4.

The global stiffness matrix, K, is then constructed of individual partitions of these

local 3x3 matrices. It is built by substituting the corresponding partitions from P 3, as

shown below. Note the local stiffness matrix ',, which represents the stiffness between

nodes 2 and 4 resident in row 2 and column 4 of the global matrix (where each global

element is a 3x3 local matrix.)

- I .- I .. I -I "
r-- ------ ---- T------T---
I 3 I , I
"I 11 I I 12 I

------ t--t -----

. . ^ 3 jl,, 3 , . .
Il 21 .. 22I i I I

• .I I . . ] - " I "

The global mass matrix is constructed in an analogous fashion. Both global matrices

can then be reduced by eliminating those rows and columns where all elements of both
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vectors are identically zero. The finite element software program, IDEAS"m [IDEAS,

1990:35-2] was used to construct these matrices. The program uses a graphical interface,

where the operator places nodes in a 3-dimensional grid, and interconnects the nodes with

various element types (e.g. axial, beam, mass, etc.) The internal software then generates

the corresponding mass and stiffness matrices and reduces them as appropriate. These

matrices are used in subsequent calculations, to include the determination of eigenvalues

and their associated mode shapes.

Partial derivatives of the local stiffness and mass matrices (Eqs. 3-4.a and b, respec-

tively), taken with respect to the element's area (the design variables in both ACOSS4 and

COFS) are simply

k'= [ 11 1] m'=ýL[2 2] (3-10.a-b)

The partial derivatives of the global stiffness and mass matrices are then formulated using

an analogous 4-step process, but with Eqs. 3-10 replacing Eqs. 3-4. This procedure was

actually completed manually for several ACOSS4 elements (augmented with MATLAB

code written by the author) while investigating some suspect procedures in the original

FRAME code [Canfield, 1992]. Finally, a similar 4-step procedure can be followed for

beam elements [Craig, 1981:385-392].
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3.3 The Eigenvalue Problem

In deriving the system's equations of motion Craig uses Hamilton's principle [Craig,

1981: 243-255] to show equations of motion for an unforced, undamped, n-degree system

to be

m1 Iil I + ki uI1 = 0 (3-11)

m 2 2 a22 + k 22u 2 2 =0

mnni•nn+ knnunn 0

These n equations are then simplified, and the resulting equations, in matrix form are

MU+KU=0 (3-12)

where

M=j K= k' and U=[:i "-. C]

This is the equation of a simple harmonic oscillator, one solution of which is

u = U sin(cot - a) (3-13)

Substituting this solution into Eq. 3 -12 yields the well - known eigenvalue problem

(K- o 2M)U :0 (3-14)

Linear algebra shows the solution of this equation to be non-trivial only if the determinant

of the coefficient matrix is identically 0, or

det(K- C 2M) = 0 (3-15)
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Upon expansion, the solution of Eq. 3-15 yields n natural frequencies, Th, (02, . . . (On.

These values can then be individually substituted into Eq. 3-12 to yield the individual

eigenvectors Ur. These eigenvectors, or natural modes, are not unique -- they can be

scaled by any positive or negative constant and still satisfy Eq. 3-14

Or = CrUr (3-16)

and Eq. 3 -14 becomes

[K- ALM]•= 0 (3-17)

The ability to scale by any arbitrary coefficient allows the mode to be normalized --

scaled in such a manner that all the elements of a particular eigenvector ýr, have a unique

value. Defining the generalized mass,

Mr = r"mOr =-1 (3-18)

mass normalizes the rh eigenvector. Although other scaling algorithms are commonly

used, the structures herein were mass normalized. One other key feature of eigenvectors

is that of orthogonality. That is, each eigenvector is orthogonal to every other eigenvector

[Craig, 1981: 303]. This property is the result of the linear independence of the set of

eigenvectors.

Determining the mode shape, the shape the structure assumes when excited at one of

its natural frequencies, is critical to structural analysis in all engineering designs. In many

cases, an engineer may have to prevent a structure from assuming a particular shape when

excited at certain natural frequencies. For example, engineers designing computer disc
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drives may have to prevent certain mode shapes from occurring to ensure some frequency

does not deform the platter into a shape which would drive the disk into the head.

Mode shapes are computed by a variety of methods. One of the most efficient

methods, and the method used by both FRAME and IDEAS [SDRC, 1990: E-10-12], is

simultaneous vector iteration (SVI). A full derivation can be found in the above reference.

Basically, each iteration consists of an inverse power step followed by a subspace or-

thogonalization:

T = K- 1M4)kI (3 - 19. a)

(Dk = TA (3 - 19. b)

where A is a diagonal matrix of the eigenvalues and T is a vector of length n. Eqs. 3-19

are iterated until

' T KAA = T MWA1 % (3-20)

at which time they yield the natural eigenvalues and eigenvectors.

Once the eigenvalues are determined, one sometimes finds a frequency is repeated.

This occurs predominantly in structures exhibiting some type of symmetry. If a frequency

is repeated , or nearly repeated, yet is associated with a unique eigenvector, a structure

excited at that frequency can describe two totally distinct mode shapes. (Note: there

currently exists no standard for determining when two adjacent frequencies are close

enough to be considered repeated. Craig [Craig, 1981: 304] implies it could be as close as

1%, while [Bernard and Bronowicki, 1994: 1500] use 5% as their criterion, a percentage
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considered high for space structure analysis). Control actuators using feedback sensors

which report the frequency, may then induce forces to contain one mode when another is

actually present, exacerbating the control problem. Repeated eigenvalues also cause

numerous mathematical difficulties. Consider Eq. 3-17 as an example. It is the eigenvalue

problem and by definition singular, with rank = n-1. Section 3.4.4 will show that Nelson

was able to solve the matrix equation (with rank n-i) by condensing the matrix and thus

eliminating the one singularity. [Nelson, 1976: 1202-4]. However, his very same tech-

nique fails in the presence of repeated eigenvalues (which drive the rank lower).

An eigenvector represents the physical displacement an element undergoes when

that element is excited at the vector's corresponding natural frequency. Each element of

the eigenvector in turn describes the physical displacement of one degree of freedom of

that element. In fact, natural modes are in one sense, simply one discrete sample of a

vibration. A vibration is a time-variant phenomena -- it is simply the time history of the set

of displacements of the structure's degrees of freedom. That time history unfolds over a

period governed by the natural frequency and the structure deforms into a shape corre-

sponding to that natural frequency. That deformation then repeats.

Engineers have designed a unique nomenclature to describe the modes as they occur

in structures. Some modes are simple -- that is, they consist entirely of one type of

motion. More complex modes may consist of the superposition of multiple, simple modes.

No such standard naming convention exists for 3-dimensional objects. Attempts to

analogize modes occurring in 3-dimensional objects with those occurring in two-

dimensional objects is possible for simple structures at its lower frequencies. Identification
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of higher modes, however, which tend to consist of coupled motions and occur in multiple

planes, soon becomes unique to each structure. Such a naming convention was deter-

mined for ACOSS4. (Section 4.3)

Some of the more common mode modal shapes for two dimensional structures are

described below where the diameter of the rod is considered much smaller than the length.

Although any undergraduate text in structural mechanics could serve as a reference here,

mode identification is a major component of this research effort. Thus the mode shapes

are reproduced here where they can better serve as a proper reference for the 3-

dimensional mode identification to follow.

Bending motion refers to cantilevered motion, where at least one node exists. (Note:

A node is a point which is stationary under excitation. It does not have the same meaning

as the term node in finite element nomenclature which refers to the point at which two

elements are connected and is therefore more accurately termed a joint.) Bending modes

are numbered ordinally by the number of nodes which occur during the deformation.

These modes are also given a designation indicating the plane into which they deflect. The

y Y z

x --- x y
z X z - I x _

1st XY Bending 2nd XY Bending 3rd YZ Bending

(1-XY or iX) (2-XY or 2X) (3-YZ ro 3Y)

Figure 3-2: Bending Modes
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designation can be a plane designation, or if the plane is known by default, one letter can

serve as the reference. The eigenvectors for the figures above could be vectors of length

5, where the mode corresponding to 1st Bending would be [0 .1 .28 .52 .7 9 ]T. The next

two bending modes could have vectors [0 .1 .3 .1 O]T and [0 -1 0 +1 0 ]T. Other common

modes are axial modes (compression and extension) and torsional modes, shown in Figure

3-3:

1st Extension

2nd Compression 1st Torsion 2nd Torsion

Fi2ure 3-3: Axial and Torsional Modes

Finally, these eigenvectors, which are assumed to have been mass-orthogonalized in

accordance with Eq. 3-18, can be placed columnwise into a single matrix. This matrix is

then termed the modal matrix given as

ID=[01 02 ... 0,] (3-21)

It can be shown that the modal matrix spans the entire subspace. [Fox and Kapoor, 1968:

2426 ] Using the definition of the modal matrix along with Eq. 3-18, one can mass

orthogonalize the system of equations to find the modal mass matrix

M = cITm (ID (3-22)
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This equation is the basis for the cross-orthogonality checks reviewed in Section 2.6.2 and

the mode-swapping routine developed in Chapter 4. Note that the modal mass matrix is

diagonal as a result of the linear independence of the eigenvectors. Using Eq. 3-22,

consider the kth iteration in an optimization problem which results in a mass matrix mk and

a modal matrix Dk Replace the first modal matrix in Eq. 3-22 by a slightly perturbed

modal matrix

Mk =[•_]TMkDk (3-23)

where

Oil 012 O1n

S21

andI On2 n

011 +611 012 +61- 2 . n . -n + -CIn
and 0"=[21 +812 022 +622 ... 0n+ 62n

Ln1 + 6f 1n n2 +6n2 +Onn + 6n

Equation 3-23 should still result in a diagonally dominant matrix if all elements of the

perturbation matrix, F, are very small in relation to the elements of (D. This can be seen if

one takes the limit as the matrix of perturbations approaches the null matrix

lim 06 -- (Dn (3-24)

which is a diagonal matrix in accordance with Eq. 3-19. The cross-orthogonality checks

consider the modal matrix from the previous iteration to be a slightly perturbed version of

the current modal matrix, i.e. (DE = Dk-1. Note that this method is highly dependent on
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the adjacent iterations being only slightly perturbed versions of one another. Optimization

routines which allow large deviations between iterations violate this fundamental principle

and thus will not work.

In computing the CORC matrix of an optimization problem, one must decide which

mass matrix to use in the computation. Averaging, or using a weighted sum of the two

mass matrices may be an appropriate choice. This was not, however, an issue in the

ACOSS4 problem because the non-structural mass was several orders of magnitude

greater than the structural mass used in Eq. 3-23.

3.4 Eigensolution Sensitivity

Sensitivity in systems indicates the degree to which the solution changes upon intro-

duction of small perturbations. Very sensitive systems will undergo large changes when

their design parameters are varied only slightly, while the parameters of insensitive systems

can undergo major changes with little effect on the final output. Sensitivity therefore

indicates how well an analytical model will work in the real world where non-linearities

and noise could cause overly sensitive systems to fail. Sensitivity to modifications induced

by an optimization algorithm can be determined using derivatives taken with respect to

design variables (e.g. length, area, moduli, etc.). [Ojalvo, 1986:1-3] One common

method is to determine the gradients of the eigenvectors with respect to some system

parameter. There are several methods to determine these eigenvector derivatives. The

following briefly outlines three complete methods and one hybrid method used for sensi-
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tivity analysis in this thesis. The finite difference approximation and two related hybrid

approaches based on semi-analytical derivatives is first presented. The two analytical

methods, modal expansion and Nelson's Method, then follow.

3.4.1 Finite Difference Approximation

One method to determine eigenvector derivatives is by finite difference approxima-

tion. This method uses difference equations vice differential equations, perturbing one

design variable at each iteration to find the corresponding change in the eigenvector

do i A 12.n(3-25)

dki Aki

Once the change in the eigenvector due to the perturbation in the ith variable is

calculated, the kt design variable is reset to its initial value and then the next design

variable perturbed. This operation continues until each design variable has been perturbed

separately. The individual effects of the perturbations on the eigenvector are then com-

bined to determine the eigenvector gradient.

There are several drawbacks to this method. First and foremost, it requires a finite

element re-analysis for each design variable (as well as one for the initial analysis.) For

example, the ACOSS4 structure has eighteen design variables -- twelve cross-sectional

areas and six control gains. An optimizer programmed to use finite difference derivatives

thus must analyze nineteen different finite element models -- one initial analysis and one

additional analysis for each design variable. This strains computer resources for all but

simple models.
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In addition, the use of IMSL routines [IMSL, 1991: 1110-16] to determine finite

difference gradients restricts the analyst. End-users have no vehicle available to change

the method, or even the parameters by which IMSL's finite difference routines compute

the gradients. This restriction prevents using optimal finite difference step sizes; in fact

the user has no control over the step size, a critical component to the solution, at all.

IMSL bases step size on the machine precision and comes with a warning of "possible

poor performance" [IMSL, 1991: 1118]. If the design is highly sensitive, a large step will

invalidate the fundamental concept of the finite difference method -- that it can approxi-

mate the tangent to a function by a secant division. Alternatively taking too small a step

may leave a function stepping at a rate comparable to the level of noise in the system

inducing oscillations in a non-feasible sector of the design space. In addition, even non-

optimal step sizes introduced into highly sensitive problems could result in irrecoverable

path deviations. Finally, users are unable to monitor the progress of the difference opera-

tion as it occurs because all computations are imbedded within the proprietary code.

Although computationally intensive, these difference approximations do provide accurate

eigenvector derivatives when provided the appropriate step size.

3.4.2 Semi-Analytic Methods

One hybrid approach to sensitivity analysis incorporates elements of both analytic

differentiation and finite differencing. The form of the partial derivative equation for a

constraint g, (e.g. actuator forces, constraint forces, quadratic performance index, etc.) in

the integrated structural design and control problem is
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Og 0

ex f + j--(3-26)
. x_ 0

where x, is a design variable in the control formulation (e.g. an actuator gain) and x, is a

structural design variable (e.g. a cross-sectional area.)

The equation in this form can be comprised of elements from two independent

formulations -- one analytic and one finite difference. If the first term is differentiated

analytically, and the second term replaced with its finite difference counterpart, Eq. (3-23)

becomes

Ag/

19g 0 Ax,

x+ 
(3-27)

• x _ 0

This is the Semi-Analytic-Constraint version or SAC. Likewise, if the second term is

computed via the chain rule, and the second factor replaced with its finite difference

counterpart

19 0 + 1 (3 - 28a)

0

and
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0g g Ax(

-9+ (3 - 28b)

tXc 0

where * is defined as an inner product Z Z Og 90ij
i j ' 9ij 'Xk

then the formulation is termed a Semi-Analytic Differentiation operation. These semi-

analytic methods were used as investigative tools to distinguish which terms were in error.

Section 3.4.3 Modal Expansion Method

Bernard and Bronowicki recently extended an analytical method put forth by Fox

and Kapoor in 1968 to calculate derivatives of eigenvectors based on the modal expansion

theorem. Their method allows determination of eigenvector sensitivity in the cases of

repeated eigenvalues as well as in the case of repeated eigenvalue derivatives. Recall that

the eigenvectors of a mass normalized n x n modal matrix are orthogonal to each other,

thus they are all linearly independent. [Strang, 1988: 80-83] Fox and Kapoor showed

that because these vectors also span the vector space, they form a basis and thus any n-

dimensional vector can be represented by the linear combination of the vectors of that

basis -- to include the derivatives of the eigenvectors. The full derivation can be found in

the paper by Fox and Kapoor [Fox and Kapoor, 1968:2426-29], and is extended as noted

above by Bernard and Bronowicki [Bernard and Bronowicki, 1994: 1500-1506].

The modal expansion theorem states

n

'i = ciib (3-29)
T=1
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Taking the derivative of the eigenvalue problem in Eq. 3-17 with respect to a design

variable, xk,, denoted as - (.)- ( )', yields
IOXk

[K-2,M]'q, + [K- AM]Oi =0 (3-30)

Premultiplying by ýiT and noting the symmetry of K and M in Eq. 3-17 yields

ir[K'-AiM'-..'iM] 1 =0 (3-31)

Finally, the mass-orthogonality condition (Eq. 3-18), can be used in conjunction with Eq.

3-31 to find an expression for the partial derivative of the eigenvalue

Ai i[ ' iM ]O, (3- 32)

Expressions for the constant cij are now required to find the partial derivative of the

eigenvector with respect to an element area. Substituting Eq. 3-29 into Eq. 3-30 and

premultiplying by OT for j # i, one finds

OTr[K'-AiM'] OiciJ = Ai when i j (3-33)

To find cij for i=j, the mass normalization equation (Eq. 3-22) is differentiated with respect

to the kh design variable resulting in

-OTM'oi
Cii --- 2 (3 -34)

This formulation was used to determine the eigenvector derivatives which led to the

discovery of the original error in the implementation of Nelson's method in FRAME
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[Canfield, 1992], as explained in Section 4.9. The complete ForTran 77 code implement-

ing modal expansion is included in Appendix F.3.

Section 3.4.4 Nelson's Method (with Extensions)

Nelson's method is the preferred approach for gradient evaluation when not all

eigenvectors are available (as in the case of large systems) and when eigenvalues are

distinct. In 1976, Nelson proved that computation of the eigenvalue and eigenvectors

derivatives could be simplified by overcoming the inherent singularity in the eigenvalue

problem. Nelson's solution consists of a homogeneous and particular solution. [Nelson,

1976:1201-3].

Expanding Eq. 3-30 and rearranging yields

1K-A~ i,=1/ tM±+21 M' - K']b1  (3-35)

While Eq. 3-32 provides the jth eigenvalue derivative, Eq. 3-35 cannot be solved directly

for the eigenvector derivative -- by definition, its matrix coefficient is singular and thus

cannot be inverted. Further manipulation is required. Nelson writes the eigenvector

derivative as a sum of a particular and a homogeneous solution

0b' = V + c (3-36)

Nelson next assumes all eigenvalues are unique (i.e. the rank of M is n-1). The row and

column where the singularity exists are eliminated and the corresponding component of V

zeroed. The resulting equation is just a nonsingular linear matrix equation which can be

solved for V
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first be determined before the eigenvalue derivative can be computed. This requirement is

apparent when the two equations for the eigenvalue derivative (Eq. 3-32) are viewed

together

T= b[K'qj -A2M5 10]q5 1  (3-39.a.-b.)

and

) 2 =j+1 = [K' j+ - + ]j+1

Note that the derivatives are ambiguous, because either eigenvector can be used in

these equations. The correct eigenvector to use in each case is a linear combination of the

two original eigenvectors

q5, ci] and ýj,= (D~[c] (3 -40a. -b.)

where D - [0i j+1]. All that is required now is the determination of the vector constants.

Substituting Eq. 3 - 40a. into Eq. 3 - 31 and simplifying yields

(D (K - A inM)' Du + (DT (K - AjM)c•',I = 0 (3-41)

where .t is a vector representing [a b]T or [c d]T in Eqs. 3-40. To simplify, recall that

(K-XjM)4 = 0. Expand the derivative, noting that )TMD = [I] to find

[DT (K'- Ai M=( _ýjDT OI

or
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which is just a new eigenvalue problem. [Mill-Curran, 1988: 867-9] Once the constant

vectors are determined, the correct eigenvector satisfying Eq. 3-35 can be determined.

While this approach does not work for systems with rigid body modes, such modes in the

structures studied were not computed and thus the approach is valid. This approach was

studied and outlined for insertion into FRAME when it appeared a mode swap (Section

4.5) had indeed been the cause of the original failure of the solution equipped with analyti-

cal derivatives.

3.5 Non-Linear Optimization Theory

The basic goal of an optimization problem is to find some extremum of a given

design. In the context of the integrated structural design and control problem, that

extremum is usually multidisciplinary -- for example, solving for minimum weight while at

the simultaneously expending the minimum control energy. The design parameter to be

minimized is termed the objective function. The objective function is minimized by

numerically iterating a set of design parameters according to some computational algo-

rithm until the design goal is reached. The algorithm minimizes the objective function in

strict adherence to a number of design constraints. Equality constraints require that a

function of the design variables match a specified value exactly, while inequality con-

straints place an upper (or lower) bound on a function of the design variables. Side

constraints restrict the design variable directly. The algorithm need not meet all con-
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straints at each iteration but must do so on the final iteration before a design is considered

feasible. [Vanderplaats, 1984:1-10]. The mathematical equivalence is shown in Table 3-1:

Table 3-1: Optimization Formulation

Action Nomenclature Mathematical Expres- Range Equation
sion

Minimize Objective Function: F(X) (3-43a)
by iterating on Design Vector X=[X1, X2,... X.] i = 1 ... n (3-43b)
According to:

1) Inequality Constraints g,(X) • 0 i = 1 ... (3-43c)
or m
g,(X) Ž0

2) Equality Constraints h.(X)=0 i = 1 ... j (3-43d)

3) Side Constraints XL <X <XU i 1... k (3-43e)

Using ACOSS4 as an example, the objective function is to minimize mass. The

design vector is the set comprised of cross sectional areas and actuator gains and thus has

a length of eighteen. It has an equality constraint, forcing the lowest frequency to be

1.341 rad/sec, and an inequality constraint restricting the second lowest frequency to

values less than 1.5 rad/sec. In addition, there are constraints on the actuators as well as

on the Quadratic Performance Index.

A program iterates the set of design variables according to an algorithm which

computes a search path. This search path is constructed in two phases. A search direction

must first be found, and then the step size in that direction determined [Vanderplaats,

1984: 10-11]. FRAME uses a line search algorithm
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Xq = Xq-1 + a*S' (3-44)

where

q iteration number

a* -step size

S search direction

The optimizer uses eigenvalue derivatives and eigenvector gradients (Section 3.4) to

determine S and oc*. The new vector S is scaled by the step size and the result added to

the old search vector Xq-1. The largest step size allowed in this implementation is unity.

The optimizer is particularly susceptible to repeated frequencies because it requires an

initial direction in which to search. Specifically, the mode swapping condition, or passing

through a repeated frequency, causes two problems:

1) During the line search, modes may become associated with the wrong control

gains. The control force generated by the solution to the integrated problem may then be

applied to the wrong mode, exacerbating the control problem.

2) The gradients may become discontinuous thereby corrupting the approximation to

the Hessian. NCONG and NCONF [IMSL, 1991:1096-97, 1103-06] are the IMSL sub-

routines used to solve a general non-linear programming problem using analytical or finite

difference derivatives respectively. Both routines are based on a sequential (or successive)

quadratic programming algorithm. SQP requires the problem functions (the eigenvector

derivatives here) be continuously differentiable. The method finds a search direction

based on solving a subproblem using a quadratic objective. Constraints are reformulated

as linear. The optimization subproblem becomes
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Minimize: Q(S) = F(X) + VF(X) * S + -SrBS (3-45)

2

Here, S is the design vector, and B is the approximation to the Hessian matrix of the

Lagrangian. [Vanderplaats, 1984: 195-197]. (Lagrangian multipliers were used as

weighting factors to augment the objective function with the constraint functions. A full

derivation can be found in the preceding reference.) Eq. 3-45 is used to find the search

direction. IMSL [IMSL, 1991:1104] initially assumes a unit step size and updates the

design vector X. The new design vector is used in a subsequent eigenanalysis, the con-

straints are again determined, and a new step size, ct*, is determined using a quadratic

extrapolation. The key point in this summary is that the Hessian is updated by the con-

straint gradients which in turn are based on eigenvector derivatives. If these derivatives

become misaligned due to a mode swap, the Hessian will not be updated correctly, and the

search direction will be corrupted. This corruption is carried along on every subsequent

iteration. If it happens early enough in the iteration history (where its effects will be

greater), or its effects are not minimized over the next several iterations, the optimizer

may be unable to recover. This problem is explained graphically in Figure 3-4.

The figure shows the ambiguity hampering the optimizer upon checking for a gradient

at the point where the modes cross. At this point, the eigenvalues are equal. If the

optimizer had been iterating along the ?12 trajectory when a mode swap occurs, and then

instead continues along the original X, trajectory as a result of the ambiguity, the optimizer

sees a discontinuity in the gradient -- a cusp occurring at the mode crossing. Even if the

optimizer can continue through the discontinuity, it will now update the Hessian approxi-

mation with disassociated eigenvector derivatives and the search direction will lose its
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integrity. If the optimizer can re-establish the correct trajectory, this one deviation may

not be enough to prevent eventual convergence (See Section 4.8.1). This is particularly

true if the Hessian is corrupted late in the iterative process, where the impact will not be as

significant as if it had occurred earlier in the process. However, if the optimizer never re-

establishes the correct trajectory in subsequent iterations, the solution will not converge.

AX

Figure 3-4: Effect of Modal Crossing During Optimization
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IV. Results

4.1 Overview

This chapter details the results of the research effort. The goal of the research is first

re-presented. Section 4.2 then explains how the initial research path, that of investigating the

mode swapping condition, was logically chosen over other paths. Section 4.3 details the

initial mode characterization of the primary structure being researched, ACOSS4. Sections

4.4, 4.5, and 4.6 use that work to determine qualitatively and quantitatively that the mode

swapping condition exists. A new algorithm to detect and neutralize the mode swapping

condition is presented in Section 4.7 and its superiority over existing methods proven by

example. Because the results of the mode swapping condition are shown to be inconclusive,

additional methods of sensitivity analysis are presented in Sections 4.8-4.11. The issue of

mode swapping is then re-addressed in Section 4.12. The last section reports the results of

the attempt to optimize the second structure, COFS-I, using the corrected analytic methods.

As mentioned previously, while researching multiobjective optimization as a method for

solving the integrated structural design and control problem, Canfield experienced some

difficulty in using analytic derivatives of eigenvectors (computed using Nelson's Method) to

determine optimum search directions for ACOSS4. Specifically, using these derivatives

resulted in non-convergence and the optimization problem could not be solved as originally

intended. The optimizer did converge to the correct solution when equipped with derivatives
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computed by finite difference methods. Feeling the original non-convergence (using the

analytic derivatives) was a result of modes switching their order during the optimization

process, Canfield retained his original data runs for investigation at a later time. The goal of

this present research was to determine the validity of his hypothesis. If the mode swapping

condition was indeed found to have caused the problem, its effects were to be neutralized. If

the condition was not present, or was present but not the cause of the problem, additional

research would be conducted to determine the actual cause and possibly neutralize it.

4.2 Formulation of the Problem

Canfield's methodology and original data runs were first reviewed to determine the best

research path. It was concluded from this review that the original solution may have failed as

a result of four possible problems:

1) The numerical accuracy of the eigensolver could not correctly distinguish the modes
of closely spaced (nearly repeated) frequencies during the optimization.

2) The mixed use of single and double precision calculations may have affected the
accuracy of the analytic derivatives.

3) A mode swap occurred and corrupted the optimization solution.

4) Two modes may not have actually swapped places, but one may have transformed
into a mode completely distinct from anything in previous iterations and this mode was
therefore untrackable.

The possibilities that each of these problems could individually be the cause of the

failure was discussed. A preliminary review showed that any one of these four possibilities
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would consume the bulk of the allotted research time -- thus the most likely cause of the

original problem had to first be determined to ensure the highest probability of success. The

effort required to investigate each of these possible causes was outlined and balanced with the

likelihood that each was individually the cause.

1) Numerical Accuracy of the Eigensolver: As detailed in Chapter 1, space structures

are characterized by high modal density. Many of the frequencies may be only fractions of a

hertz away from two or three neighboring frequencies yet all of them will correspond to

different mode shapes -- vibration modes the control engineer is trying to actively suppress.

The eigensolver used was from the IMSL library, a comprehensive assortment of ForTran 77

routines used for mathematical applications [IMSL, 1991]. The eigensolver's computations

were done in 32-bit (double) precision, which should have provided the necessary discretion

even for this problem. It was determined that if the eigensolver was at fault, it was an indirect

correlation only -- i.e. it may have failed as a result of being fed an inaccurate three-

dimensional model. The possibility of such an input error was determined to be slim.

2) Mixed Precision: The high modal density inherent to these structures demands a

much higher level of precision. The FRAME [Canfield, 1992] code used consists of over

13,000 lines of code comprising more than 130 separate sub-routines ranging from simple

dynamic memory allocation routines to more sophisticated routines to determine the effects of

wind gusts on aeroelasticity models. Many routines use single precision matrices. Other

routines parameterize these same matrices as input and output vectors. Due to subsequent

calculations with double-precision matrices, these single precision routines must first be
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converted into double precision numbers. In some cases, the subsequent calculations must

then be re-converted for compatibility.

These conversions introduce some error into the calculations -- error which could be

enough to corrupt the eigenvector derivatives (computed in single precision) of adjacent

modes (computed in double precision). While this problem is well understood, fixing it would

have required phenomenal effort since virtually all 130 subroutines would be affected --

subroutines which the author had little experience with, the result of which would be what

was deemed an unhealthy involvement level by the thesis advisor. More importantly, the

likelihood that this was the main cause of the problem was determined to be slim.

3&4) Modal Transformation or Modal Swaps: Determining that the solution based

on analytic derivatives failed to converge was due to either a modal transformation or a modal

swap required virtually the same type of investigation and the same level of effort. Only the

eventual solution was different. (Note: This thesis defines modal transformation as the case

where an entirely new mode suddenly appears in the iteration history). Literature on the

subject was reviewed and the small differences in the design variables between the unsuccess-

ful run and the successful run over several iterations studied. It was surmised that the most

likely cause of the unsuccessful run was due to a modal swap early on in the optimization

process (i.e. within the first six iterations). Unfortunately, a mathematical proof showing the

modes did indeed swap would certainly take the bulk of the allotted research time.

Proving the analytic breakdown was a result of 1) or 2) vice 3) or 4) would result in

totally different solutions, only one of which could be completed in the time allotted. Because

it was believed that the most probable cause was the modal swap, it was determined that
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proving or disproving this should first be done. Our sponsors in the Flight Dynamics Direc-

torate at Wright Laboratories were consulted and it was decided that prudence dictated the

modal swap should first be proven visually using FEM models. If the modal swap could be

proven visually, using the allotted research time to then mathematically prove the mode

swapping condition existed would be justified. At that point, additional mode tracking code

could be written and implemented into FRAME, the ACOSS4 model re-run, and optimal

convergence (hopefully) achieved. This approach combined the best of both worlds -- the

most probable cause would be investigated first, and most importantly, by first verifying the

modal swap visually instead of plowing head-on into a difficult, time-consuming mathematical

solution, time to pursue fixes consistent with the first two hypothesis would still be available if

no mode swap could be identified visually.

4.3 Development

The IDEAS Master SeriesTM software [SDRC, 1990] resident on the Silicon Graphics

Workstations was used to verify the modal swap visually. This FEM software proved critical

to this type of identification. Visually identifying the modes required a five step process:

1) A thorough understanding of mode-identification theory detailed in Chapter 3
including the creation of a naming convention which was both robust and acceptable to the
structures community,

2) Building the nominal ACOSS4 FEM and matching the results in literature,

3) Building the FEMs at each subsequent iteration,

4) Identifying the modes of each iteration using the naming convention from Step 1,
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5) Determining if a mode swap occurred by assimilating the results of Step 4.

Some difficulty in creating a robust naming convention for structural modes in a three-

dimensional model was experienced. While the naming convention for one dimensional

models is well-known and well understood in the structures community, a naming convention

for multi-dimensional structures, which must account for activity in multiple planes is not so

generally accepted. Completing Step 2) before Step 1 was therefore necessary to get a feel

for an acceptable naming convention.

4.3.1 ACOSS4 Finite Element Model

The nominal ACOSS model was built using the finite element data in Appendix A. 1.

Resulting natural frequencies and mode shapes are included in Table 4-1. These results agreed

to the original results published by Draper Labs to four significant digits (only four significant

digits were provided) [Strunce, 1980:7]. The modal shapes computed also agreed with those

provided by the Draper Labs. This effort confirmed an accurate model had been built.

Table 4-1: ACOSS4 Nominal Design Results

Mode Number Mode Name Frequency

1 1st Bending (Out-of-Plane) 0.2135874
2 1st Bending (In-Plane) 0.2649485
3 1st Rocking (In-Plane) 0.4600698
4 2nd Bending (Out-of-Plane) 0.4706857
5 2nd Rocking (In-Plane) 0.5408387
6 1st Torsion 0.6691620
7 1st Shearing (Out-of-Plane) 0.7419893
8 1st Shearing (In-Plane) 0.7568212
9 1st Compression (In-Plane) 1.359087
10 1st Compression (Out-of-Plane) 1.472268
11 1st Extension + 1st Torsion 1.636868
12 1st Breathing 2.053906
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4.3.2 Output Display

Two techniques were employed to accurately characterize the mode shapes. The first

technique used IDEAS' built-in capability to animate modes. This was critical to those less-

experienced in mode identification and provided the determining factor in identifying many of

the coupled modes. The second technique used multiple view ports of the ACOSS4 structure

during its deformation. Using multiple views allowed a better representation of a three-

dimensional structure in two dimensions. In addition, using multiple views allowed the

researchers to focus on a particular characteristics of motion (e.g. out-of-plane motion, in

plane motion, etc.) by using different viewing angles to alternately emphasize and de-

emphasize these characteristics.

9O

2 2
Fi2ure 4-1: ACOSS4 Nominal Design

Because the nominal ACOSS4 has one strong member in the upper tetrahedron, it

provided a convenient reference point. The nominal ACOSS4 structure is repeated in Figure
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4-1. Plots of the nominal ACOSS4 structure shown in Figure 4-10 required only three

viewports due to the structure's inherent symmetry, (i.e. a fourth view provided no additional

information.) Motion perpendicular to the strong member was termed out-of plane motion,

and motion parallel to the beam was termed in-plane motion.

The top view provided the most information to independently characterize the modes

and was therefore allocated the larger viewport on the left for the nominal design. The plot in

the top right comer of the diagram is the front view and was used to highlight out-of-plane

motion. The plot in the bottom left comer is the side view and is used to highlight in-plane

motion. This ability to emphasize and de-emphasize is clearly shown in Figure 4-10d. This

view shows pure out-of-plane bending motion -- this purity comes again from the symmetry of

the nominal design. The second view clearly indicates a large out-of-plane component while

the third view (the in-plane view) shows little deformation at all and provides no useful

information for characterization.

For subsequent iterations where significant modal coupling could have caused ambigu-

ity in mode identification, a fourth view was added. This view effectively rotated the structure

so that its plane of motion was coincident with the plane of the paper. The rotation scheme to

obtain the view was dependent on the whether the motion was predominantly in-plane or out-

of-plane as detailed in Figure 4-2. The axes listed are the screen axes -- not the structure's

axes. The angle cc is the angle between the strong member and the line of apses (a line drawn

between the nominal and displaced apexes). This view provided additional insight into the

most prominent mode shapes of significantly coupled modes.
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X=00 X=270'
TOP Y=0 0  FRONT Y=600

VIEW Z=150' VIEEW Z=00

X=900  I
SIDE Y=300  DIRECT loxl<450 : 90, (30-a), 180

PHASE: IN Node 4 (T<-) & Apex(T-+) IaIl>45 0 : 270, [60-comp(ct)], 0

:U:Node 4 (n-) & Apex(ý4-*) ______________________

fimue 4-2: View An2le Geometry

In Figure 4-3, the six bipods, the boundary conditions and the lumped masses have been

removed for clarity. The medium solid lines represent the undeformed structure in that

Out-of-Plane Motion

strongFRONT VIEW
270, 60, 0

strong

Out-of-Plane Motion

DIRECT VIEW
In Plane Motion

SIDE VIEW strong
Z/ 90, 30, 180

strong

Figure 4-3: ACOSS4 Planar Motion
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particular view and the dashed lines show the deformed structure just as they would appear in

actual plot from IDEAS.

4.3.3 Definitions

The modal shapes next had to be defined such that they met the following criteria:

a) Be analogous to the standard beam modal shape deformations accepted in the
structures community for one dimensional objects (e.g. beams, rods),

b) Provide the necessary fidelity to correctly distinguish the modes from one another,

c) Be robust enough to ensure no mode could fit more than one description (and

therefore have more than definition).

Through trial and error, the following definitions were developed:

Axial Motion: Translational motion in the z-direction where an imaginary perpendicu-

lar line connecting the apex to the centroid of the triangular base would exhibit axial motion.

...... ....

H>h

T h

Figure 4-4: Axial Mode Equivalence
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This includes motion where the entire truss moves as a rigid body in the z-direction, or where

the apex moves slightly more or slightly less than the centroid (Figure 4-4 ). (Note: the

deformed structures in the figures were drawn slightly more narrow or slightly offset to ensure

the deformed and undeformed structures were distinguishable).

1 st Bending: 1st Bending is defined as motion perpendicular to the z-direction where an

imaginary line connecting the apex to the centroid of the triangular base would exhibit 1 st

bending motion (i.e. perpendicular line deviating slightly from one node). The three-

dimensional nature of the structure requires the bending plane also be specified. See Figure 4-

5 below.

Out-of-Plane ....D ........ .... ......

I TOP VIEW

-or-

cx<45\

In-Plane

TOP VIEW

Figure 4-5: 1st Bendin2 Motion Equivalence
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2 d Bending: 2nd Bending is defined as motion perpendicular to the z-direction where

an imaginary line connecting the apex to the centroid of the triangular base would exhibit 2nd

bending motion (i.e. shallow sine wave connecting two nodes). Again, the dimensionality of

the structure requires the bending plane be specified. See Figure 4-6 below.

2nd Bending

-or- 
Z

.... ... . . .. .. ............. 
. ...... . .. . .. . .. . .. .. .. .. . .. .

Figure 4-6: : 2nd Bending Mode Equivalence

1 st Torsion: 1st Torsional is defined as motion in the z-direction where an imaginary

line connecting the apex to the centroid of the triangular base would exhibit 1st Torsional

motion (twisting motion), as shown below.

...... ......

.............. ..\ .......

-or-

............. .. ..:~ • -
. ,

.......~~ ..........

Figure 4-7: Torsional Mode Equivalence
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Phase Motion: Structures may have two distinct coupled modes which are comprised

of exactly the same two uncoupled modes. The coupled modes are completely distinct due

the nature of the coupling of the equivalent modes. Figure 4-8 shows two distinct coupled

modes in a 2-dimensional element comprised of exactly the same two singular modes (1st

Axial and 1st Bending). These two new coupled modes were defined as 1st Rocking. In-

phase rocking was defined to be the superposition of 1st axial motion in the +z direction with

1t bending when the tip deflects in the +x direction (to the reader's right). Out-of-phase was

defined as the superposition of 1st axial motion in the -z direction with the same bending

motion (tips deflection to the right). When the complete motion of the apex is traced out, the

rocking motion which gives this mode its name, is clearly apparent in the last column. Rock-

ing motion in the subject structure is apparent in Figure 4-10. c and 10. e.

ACOSS4, even as a symmetric object, exhibited phase motion as well. First bending

and 1st axial motion appeared coupled in two separate cases and in an analogous fashion as

shown in Figure 4-8. Unfortunately, defining the phase for the three-dimensional structure

proved much more difficult than for the one-dimensional beam. Alternately using either the

apex or Node 4 (the lower left point on the structure in the viewports in Figure 4-9), as the

single reference point led to ambiguity in later mode characterization. Instead, both reference

points, the apex and Node 4, were needed to completely define the phase with no ambiguity.

The view port for phase determination was also designated as the side view (Frame 3). For

ACOSS4, the definitions of Phase are shown in Figure 4-9. The only modes to exhibit phase

behavior were "rocking" modes, as described below:
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1st Rocking (In-Plane) I1st Axial in phase with 1 st In-Plane Bending
2nd Rocking (In-Plane): 1st Rocking out ofphase with 1 st In-Plane Bending
1 st Rocking (Out-of Plane): I1st Axial In-Phase with 1 st Out-of-Plane Bending

___________________________IN-PHASE

lost Axial Ist Bending:Right Coupled Mode: MAX ...... COMPLETE MOTION (In-Phase)

I st Axial 1st Bending Left Coupled Mode: MIN

OUT-OF-PHASE MOTION

lsl st Bending:Right Coupled Mode: MIN COMPLETE MOTION (Out-of-Phase)

1st Axial Ist Bending:Left Coupled Mode: MAX

Figure 4-8: One-Dimensional Analogy to Rocking Motion
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The nodes at Node 4 and the apex have been emphasized in the following figure for clarity.

IN-PHASE

............

OUT-OF-PHASE

S" ' i:i .................... .............. ......: ........ .......... ................ .. .

Figure 4-9: Phase Characteristics of Rocking Motion

Because the ACOSS4 model employs only six actuators (one actuator in each of the six

bipod legs), which control only the lower six modes, modal crossings in only the first seven

modes were investigated. Modal swaps contained completely within the six higher modes

(Modes 7-12), would not affect the optimizer since these modes were not controlled. Modal

swaps between the lower six and the higher six modes were considered unlikely, (with the

possible exception of a mode swap between a controlled mode (Mode 6) and an uncontrolled

mode (Mode 7), and were therefore not investigated.
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The complete finite element model of the ACOSS4 truss is included in Appendix A. 1.

Determining the number of natural frequencies (and therefore the number of nodes) for a truss

is found using the following equation from [Meirovitch, 1970:47]:

n = 3N - c (4-1)

where

n = total # of resulting DOFs

N = # DOFs of each node

c = total # of constraints

ACOSS4 has 10 nodes. Six of these nodes are clamped and thus have three constraints

each. Substituting these values into Eq. 4-1 produces

n DoE * 10nodes - [6nodes * 3 constraints

node node

Thus, ACOSS4 has 12 degrees of freedom and therefore 12 natural frequencies and 12 natural

modes. All 12 eigenvalues and eigenvectors are included in Table 4-1 for completeness,

although only the first 7 modes were investigated. Plots of the modal deformations are shown

in Figures 4-10.a-g. and the remaining modes included in Appendix B. The methodology for

mode identification was followed as described above for the first seven iterations and the

mode identities included in Table 4-2. The mode characterization process used in identifying

the first seven modes of both the nominal design and of the first iteration are included in detail

for completeness. In all cases of mode identification, the mode was characterized by the

majority of the motion present in the modal deformation.
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4.4 ACOSS4 Mode Characterization

4.4.1 Nominal Model

Several nuances of the display were also transferred to the hardcopy plots and must

first be explained. The first two result from having a video driver that was not 100% com-

patible with the software. First, the lumped masses grew by several orders of magnitude for

plotting and would have appeared as large (3/8") squares. Thus, the lumped masses have

been hidden to prevent obscuring the primary motion. Secondly, many of the deformed lines

of the eigenvectors are plotted as curved. These lines would not actually be curved, since

pinned truss members only permit axial deformation. Finally, note that the displacements have

been purposely magnified to span 20% of the screen in order to highlight the deformed

motion.

Mode 1 (1st Out-Of-Plane Bending): The top view during animation shows pure

Out-of-Plane motion. There is little deviation at the nodes where the bipods are connected

(Nodes 2-4). As mentioned previously, there is no motion apparent in the side view indicating

no in-plane motion. (See Fig. 4-10a).

Mode 2 (1st In-Plane Bending): Again, the top view during animation and in the

static view included in the first panel of Figure 4-10.b show pure in-plane motion. The

structure deforms perfectly parallel to the strong upright which serves as the reference. The

front view indicates no out-of-plane motion, while the side view indicates pure In-Plane

bending. (See Fig. 4-1Ob).

Results 4-17



Mode 3 (1st In-Plane Rocking): This is the first coupled mode. The front view shows

some significant axial deformation completely perpendicular to the base of the structure, and

2nd Bending is apparent in the third panel. The in plane motion is clearly shown in the top

and side views. Note how even in the front view one can see the base of the structure swing-

ing as if the tetrahedron was connected to a hinge at the apex. Note how as the base swings

out, Element 5 (E5) remains perfectly parallel to the original structure and nodes 3 and 4 have

symmetric displacements. The phase motion which distinguished this rocking motion from

that in Mode 5 is not very apparent in the nominal case, again due to symmetry. However,

one notices that in the side view, the apex is moving up and to the right while Node 4 is

moving up and to the left, i.e. in phase. (See Fig. 4-10c).

Mode 4 (2nd Out-of-Plane Bending): Viewing Modes 3 and 4 in sequence one might

be tempted to identify this mode as a rocking motion as well, where the rocking occurs 1200

from the rocking plane in Mode 3. However, what prevents this mode from being labeled as a

rocking motion is the total lack of 1st axial deformation missing from the front view. The

compression in member E3 characterizes this as 2nd Bending. (See Fig. 4-10d).

Mode 5 (2nd In-Plane Rocking): This is the second coupled mode. Axial motion is

apparent in the front view and 2nd Bending is noted from the top view, especially apparent

due to the compression in the two weak uprights, Elements 2 and 3. From the side view

(Panel 3), it is clear that the apex is moving up and to the left while Node 4 is moving up and

to the right characterizing the axial motion as out of phase with the bending motion. The

effect of symmetry in the bipod legs is still apparent causing the deformed structure to move

parallel to the base of the tetrahedron during the rocking motion. (See Fig. 4-10e).
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Mode 6 (Torsion): The effect of symmetry is most clearly demonstrated in Mode 6.

The structure appears to be rotating perfectly (i.e. no precession of the apex) about an axis

through the apex and which is perpendicular to the tetrahedral base. Nodes 2, 3 and 4 con-

necting the bipod legs to the tetrahedron describe perfect lines with no deviation apparent

during the motion. Neither planar motion nor phase motion can be detected in the front and

side views. (See Fig. 4-1Of).

Mode 7 (1st Out-of-Plane Shearing): This motion initially appeared to be another

rocking motion but the absence of a clear axial component made that definition imprecise. By

animating the displacements and rotating through several angles, it was apparent that the

structure was being sheared -- i.e. it appeared that opposing forces were acting tangential to

the out-of-plane surface, alternately increasing and decreasing the angles at the vertices. (See

Fig. 4-10g).
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Characterization of the nominal modes lent confidence to the mode definitions. The

seven modes in the next six iterations were then characterized. This required that six addi-

tional FEMs be built, using the cross-sectional areas output from the (failed) optimization

solution based on analytic derivatives [Canfield, 1992]. Characterization of all of the lower

seven modes in several of the initial iterations was necessary for visual identification of a mode

swap. Results of the analysis for the first four iterations are included in Table 4-2. Mode

characterizations for Iteration 1 are included in detail to emphasize the significant modal

coupling which occurs in just the first iteration. The results of the subsequent mode charac-

terizations are summarized in Tables 4-2 and 4-3.

Whereas the natural frequencies for the nominal ACOSS4 structure are well docu-

mented in the literature (and therefore verifiable), the accuracy of the finite element models

built for subsequent iterations was verified by comparing the models' lower two constrained

frequencies to those from the original optimization history. The frequency constraints were

formed as

g=l- (4-2)
Aallow

wher A ( rad ~2
where A. = sc Algebraic manipulation will show this becomessece)"

(O hz = (4

23r
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which was the form used in the verification process. The first two frequencies for each

iteration were validated in this manner. Characterization of the first seven modes of the first

iteration follow.

Table 4-2: ACOSS4 Nominal Frequency Distribution

Mode#/It # 0 1 2 3 4 5 6
Frequen ey Distribution (in hz)

1 0.2135874 0.1813903 0.1808355 0.1822452 0.1849712 0.1877405 0.1894244
2 0.2649485 0.1939295 0.1953476 0.2011477 0.2068810 0.2123655 0.2165920
3 0.4600698 0.3067506 0.2945747 0.2911318 0.2888258 0.2887076 0.2920095
4 0.4706857 0.3428443 0.3683392 0.3896224 0.4029963 0.4034913 0.3951084
5 0.5408387 0.4616504 0.4518428 0.4555888 0.4578784 0.4645500 0.4494889
6 0.6691620 0.4947067 0.4912449 0.5143530 0.5340067 0.5550178 0.5770200
7 0.7419893 0.5812024 0.6305590 0.6773335 0.7055712 0.7007192 0.6942277

4.4.2 ACOSS4 Iteration 1

Mode 1: (1st Out-of-Plane Bending): This mode is similar to the nominal design but

some differences are immediately apparent. Whereas in the nominal design the deformed base

remained parallel to the actual base, here the deformed base is no longer parallel. There is

now a non-negligible in-plane bending component as well, apparent in the side view, although

it is not nearly as significant as the out-of-plane component. (See Fig. 4-11 a).

Mode 2 (1st In-Plane Bending): Again, the mode is similar to Mode 2 of the nominal

design but with some significant differences. Whereas in the nominal design, the bending

motion apparent in the strong upright (element El) remained perfectly parallel to undeformed

model, the deformed upright in this iteration does not. This motion contributes to the small

out-of-plane component noticeable in the front view. Also, there is a shifting motion, a
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translational motion in the x-direction of the tetrahedron, apparent in the side view. (See Fig.

4-1 lb).

Mode 3 (1st In-Plane Rocking - In-Phase): Axial motion is apparent in the front view

but of diminished contribution in comparison to the nominal case. While remaining essentially

parallel to the undeformed structure, the base in the deformed model (during the rocking

motion) now has some motion out-of-plane noticeable in the top view. Axial and bending

motions are in phase with each other. (See Fig. 4-11 c).

Mode 4 (2nd Out-of-Plane Bending): Coupled motion is very apparent. The majority

of this motion is indeed 2nd Bending as evidenced by the compression in Element E3. Still,

no axial motion is evident preventing characterization as a rocking motion as in Modes 3 and

5. However, there is a significant torsion component clearly demonstrated in the top view.

(See Fig. 4-l1 d).

Mode 5 (1st In-Plane Rocking - Out-of-Phase): Little axial motion is apparent but

there is some contribution. Some torsion is evident but not nearly at the level in the previous

mode. The 2nd Bending motion is apparent in element E2. The phase is difficult to distin-

guish here, but using a strict interpretation of the definition, axial motion was determined to

be out-of-phase with the bending component. (See Fig. 4-l1 e).

Mode 6 (1st Torsion): This motion is very similar to the nominal design, however

some rocking motion is evident in the front view. Note the corruption of the pure torsion

evident in the nominal design. The imaginary axis around which the tetrahedron was rotating

in the nominal design is now precessing during the motion. Also, Nodes 2,3, and 4 no longer

describe perfect lines during the rotation but deviate unsymmetrically. (See Fig. 4-1 If).
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Mode 7 (1st Out-of-Plane Shearing): This motion is very similar to the motion in the

nominal design but a small axial component is present. The swinging motion apparent in the

nominal design is greatly diminished and the shearing motion more defined. (See Fig. 4-1 1g).

The next five iterations were characterized in a similar manner. As the coupling

between modes became more significant, the need to apply the characterization algorithm to

the majority of the deformed motion became more clear. Extreme care was taken, however,

to ensure in characterizing these modes, an entirely new mode was not negligently dismissed

by defining it in terms of a previous mode in the interest of conformity; the emergence of an

entirely new mode could have been the source of the optimizer's failure to converge.

.To determine if there was a mode swap between iterations, the frequencies for each of

the seven modes for the first seven iterations, where the nominal case (Iteration 0 in the
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FRAME analysis) is represented as Iteration 1 in the ensuing plots. This plot is included in

Figure 4-12. The 'column' of data points above each iteration number correspond to the

seven different frequencies for each mode at each iteration. Each plot was analyzed and the

mode characterization algorithm rigorously employed. Identifying each mode by its ordinal

frequency allowed the points to be connected as shown. Results are shown in Table 4-3.

From Figure 4-12, one can see that no mode swaps between iterations were found; each mode

retained a 1-1 correspondence with its ordinal frequency throughout the iteration history.

ACOSS Frequerrnies;Amalytical Deriuatiues

8A

0.2

S I I I I I

a 4 5 6 7
Iterati olm Number

Figure 4-12: ACOSS4 Natural Frequency History
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Table 4-3: ACOSS4 Mode Characterization usin2 Analytic Derivatives

MODE Nominal IT I IT 2 1IT 3 IT4 IT 5 IT 6
Char. MP P b M P 1 M P I M P M P M P 0 . M P

1 IBO IB o IB 0 1B 0 l 7B 0 1B 0 IlB 0
2 1B I i B I I B I lB I I B I 1B I I B I
3 IR I I IR I I IR I I IR I I iR I I IR I I IR I I

4 2B 2B o0 2B 0 2B 0 2B 0 2B 0 2B 0
5 2R I 0 2R I 0 2R I 0 2R I 0 2R I 0 2R I 0 2R I 0

6 IT ý jIIT IT T IT iiT.....
7 0S ISo I is i s

4.5 Mode Characterization for Finite Difference Solution

Although no mode swaps were detected, it was decided not to immediately revert to

one of the first two hypothesis, feeling it would be prudent to first determine visually where

the modes deviated between the unsuccessful solution based on analytic derivatives and the

successful solution based on the finite difference derivatives. Six new FEMs were built using

the cross sectional areas from the original data runs when FRAME had been equipped with

finite difference derivatives. The same mode characterization algorithm was then applied to

the finite element solutions. The nominal solution was the same for the solution based on

analytic derivatives as was Iteration 1. Close scrutiny of Modes 3 and 4 of Iteration 2,

however, were not as expected, as detailed below. The frequency iteration history is shown in

Table 4-4. Plots have been excluded (except as noted below) in the interest of brevity.

Table 4-4: ACOSS4 FD Frequency History

Mode#/It # 0 1 2 3 4 5 6
Frequency Distribution (in hz)

1 0.2135874 0.2053558 0.1656328 0.1705601 0.1748678 0.1864965 0.1919765
2 0.2649485 0.2451654 0.2063847 0.2103761 0.2141715 0.2251522 0.2293247
3 0.4600698 0.3836274 0.2956890 0.3014011 0.3066098 0.3245196 0.3343967
4 0.4706857 0.4175960 0.3448448 0.3559204 0.3682598 0.3905437 0.3957293
5 0.5408387 0.4907984 0.3736763 0.3892873 0.4864272 0.4482020 0.4687221
6 0.6691620 0.5617776 0.4942248 0.5028366 0.5170048 0.5493836 0.5608690
7 0.7419893 0.6325130 0.6554744 0.6595717 0.6692428 0.6906056 0.6939048

Results 4-31



4.5.1 Iteration 1

Mode 3 (1st In-Plane Rocking): Axial motion is perceptible in the front view. 2nd

In-Plane bending is seen in the top view with the compression of the weak uprights, members

E2 and E3. During deformation, the rocking motion describes an arc almost parallel to the

strong upright -- very little out-of-plane motion. The side view shows the apex moving down

and to the readers left while node 4 is moving down and to the right indicating the bending

and axial motions are in phase. This characterization matches that of the nominal design. (See

Figure 4-13a.)

Mode 4 (2nd Out-of-Plane Bending): There is significant out-of-plane motion with

correspondingly little in-plane motion as seen in mode 3. No axial motion is at all apparent.

Slight torsion is detectable. This motion too was characterized as the same motion as in the

nominal design. (See Figure 4-13b.)

4.5.2 Iteration 2

Mode 3 (2nd Out-of-Plane Bending): There is negligible axial motion in the front,

side and direct views. The front view shows negligible in-plane motion. Note the large out-

of-plane motion apparent in the top view, which also shows compression of member E2

indicative of 2nd Bending. As the axial motion is no longer present, no phase characterization

need be applied. (See Fig. 4-14a.)

Mode 4 (1st In-Plane Rocking): There is noticeable axial motion present in the front

and direct views. 2nd Bending is noticeable in compression of members E2 and E3. Although

strict interpretation of definitions identifies this as in-plane motion, one can see similar magni-
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tudes of in-plane and out-of plane motion in the front and side views, respectively. This

motion does not strictly occur in-plane. The apex is deforming down and to the left while

node 4 is deforming downward and to the right indicating axial motion is in phase with the

significant 2nd bending component. Rocking motion is very apparent in animation. (See Fig.

4-14b.)

Figure 4-13a: Iteration 1/FD Mode 3 (lst In-Plane Rockins!)
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Figure 4-14b: Iteration 2/FD Mode 4 (1st In-Plane Rocking)

Although there was some concern that the planar motion in Mode 4 of Iteration 2 did

not clearly indicate a preference for in-plane motion, there was no mistaking 1) the absence of

axial motion in Iteration 2, mode 3; 2) the switch from almost completely in-plane motion in

Iteration I to almost completely out-of-plane motion in the subsequent iteration; and 3) the

phase carry-over between Iteration 1: Mode 3 and Iteration 2: Mode 4. Thus it was clear that

a mode swap in the finite difference solution had occurred. Note the location of the third

eigenvalue to that of the fourth eigenvalue at the onset of the nominal design -- they are the

closest two frequencies on the chart. Modes 3 and 4 were connected to show the general

flow of the iterations.
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The results of the finite difference iterations were plotted in the same fashion as those

for the analytic methods as shown in Figure 4-15, although not all lines have been included for

clarity. These plots were then superimposed with the identical plots from the analytic deriva-

tive solution and the finite difference solution to determine trends. Notice the continuing

divergence of the Mode 3 frequencies between the analytic and finite difference solutions.

Table 4-5

ACOSS4 Mode Characterization using FD Derivatives

MODE Nominal IT1 IT 2 IT 3 IT4 ITS5 I T6
Char. M P M P M P M P M P M P M P

1 B 0 0 0B 0B 0B 0 1B 0

2 1B TlBI I B I lB I 1B I lB I

3 =BIN 1IB0~l2 I I 2B 0 2B 0 2B o
4 2B 0 2B J L 40 ~I I 1R I I~ iR I I IR I I IR II

5 2R I 0 2R 1 0 2B 0 2R 1 0 2R 1 0 2R 1 0 2R 1 0

6 TT T IT IT iT : IT IT

7 i 10 is o 1 is 0 I1 s i is I is 0 I is 0
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Recall, the original premise was that the optimizer, when using analytic derivatives in

calculating the eigenvector gradients could not recover from a mode swap - literally applying

at least two elements with reactive actuator control forces to which they did not correspond.

There were no mode swap found in the analytic solution. This mode swap seemingly had to

occur for the solution to converge to the correct feasible solution. However, the optimizer,

when supplied with finite difference gradients, did allow the critical mode swap and the

correct solution could be calculated. Clearly this development warranted additional investiga-

tion and the next plot was completed to determine if there was a connection.

The eigenvalues, together with the eigenvalues from the solution based on analytic

derivatives, were plotted along with the objective function, F(X), i.e. the minimized weight of

the ACOSS4 structure. This plot is shown in Figure 4-16. Note that the mode swap occurs

in Modes 3 and 4 in the finite difference solution (solid lines) just as it seems to home in on

the eventual correct solution. The solution based on analytic derivatives (dashed lines) at the

same juncture seems to get on, and then follow an incorrect path. So that the magnitude of

the constraint forces were not neglected by narrow-mindedly concentrating only on the

activity of the objective function, the magnitudes of the three highest constraint forces were

also analyzed (Figures 4-17 and 4-17b). These have been plotted with the objective function

against iteration. Since the objective function is several orders of magnitude higher than the

constraint forces, the constraint forces have been separately plotted in Figures 4-18a and 4-

18b for clarity.
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As the reason was uncertain as to why the finite difference solution allowed a mode

swap which apparently led to the correct solution, and why the analytic solution did not allow

the critical mode swap, some preliminary checks of the first two possible hypothesis -- those

concerning the accuracy of the eigensolver -- were investigated.

4.6 Eigensolver Accuracy

Access to the IMSL routines which perform the eigenanalysis was not an option.

Therefore, the subroutine in FRAME directly involved with calculating the eigenvectors

themselves was modified to print out the mass-normalized matrix [cIbq]T[M]q[cI]q if two

parameters were both exceeded. The first parameter was the condition number of the matrix,

a parameter which measured a matrix's sensitivity to data errors (or perturbations) [Strang,

1988:364]. (It should be noted that there is an error in the IMSL code of subroutine DGPISP

which results in an incorrect condition number when DGPISP is sent multiple vectors. INMSL

has been notified, but the error is not widely known. The correct condition number was

calculated using an alternate subroutine.)

The second parameter, DELTA was a tolerance. The off-diagonals of a perfectly mass-

orthonormalized matrix should all be zero, meaning the eigenvectors are perfectly orthonor-

mal. Those matrices not exactly orthonormal will have non-zero off-diagonal elements.

DELTA was the tolerance to which these off-diagonals terms were compared -- any elements

greater than DELTA forced the subroutine to output the entire matrix.
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Several of the matrices output from FRAME were analyzed and the following discus-

sion applied to all. The diagonal terms were seven orders of magnitude higher than those

terms on the off-diagonals as expected but some of the off-diagonals warranted suspicion.

While most of the off-diagonals were on the order of 10"2 and 10-', six terms were an order of

magnitude higher. The elements on the off-diagonals indicate the accuracy with which

eigenvectors are calculated; the largest ones, those warranting note, are highlighted in the

following discussion. (Note: as the matrix is symmetric, the row and column numbers in the

following can be interchanged).

Element [9,10], at a magnitude of 0.101, indicated Modes 9 and 10 did not meet the

orthogonality criteria precisely and thus were not "as orthogonal" as the majority of other

terms in the matrix. These frequencies were also adjacent, meaning they were close enough to

be repeated frequencies, since the eigensolver sorts the frequencies by magnitude. This could

have indicated one of the problems caused by repeated frequencies as discussed in Chapter 2.

However, these modes were both higher modes. The higher modes were not controlled in the

ACOSS4 problem, and could not therefore have been the source of the problem. The next

off-diagonal term warranting investigation was element [11,4] = 0.105, which indicated

Modes 11 and 4 were not completely orthogonal. This could have indicated a problem since

Mode 4 was a lower mode and was controlled. However, there were six frequencies between

the two -- since the eigensolver sorts by magnitude there is virtually no chance these modes

were adjacent, and therefore no chance they were repeated modes. This same argument was

applied to the last relatively large off-diagonal term, element [10,6], at a magnitude of 0.120,
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which indicated an orthogonality problem between Modes 6 and 10, but which too would not

have affected the solution.

After applying this same reasoning to other mass-orthogonalized matrices output from

the modified routine, it was clear that the source of the problem experienced while using

analytic derivatives was not due to the numerical accuracy of the software or hardware, nor

was it the result of mixed precision matrix operations. Therefore, the first two of the four

original possibilities were abandoned. Because the only major difference between the two

solutions was the visual verification of a mode swap in the finite difference solution, it was

decided that this phenomena was the key to determining the reason the finite difference

solution worked when the solution based on analytic derivatives did not. Efforts were there-

fore channeled into pursuing a quantitative -- a mathematical -- method to verify what had

been verified qualitatively.

4.7 Mode Tracking Routines

4.7.1 Gibson's Cross-Orthogonality Check

As described in Chapter 2, the most applicable mode tracking algorithm for the

ACOSS4 and COFS problem appeared to be Gibson's Cross Orthogonality Check (CORC)

[Gibson, 1992: 2]. To reiterate, this method is based on the fact that not only is every mode

from a mass-orthonormalized matrix orthonormal to every other mode from that matrix, but

every mode is also relatively orthogonal to every other mode in subsequent iterations of that

matrix (assuming those iterations correspond to small changes in the design vector).
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As explained in Section 2.6, the individual elements of the CORC matrix indicate the

degree to which the modes in the current matrix align with the modes from the previous

iteration. Systems that are relatively orthogonal will have some non-zero off-diagonal terms,

but these terms will be much smaller in magnitude than the diagonal terms. The row number,

i, of the largest element in each individual column of a diagonally dominant matrix should

therefore correspond to the column number, j, of the previous mode. If the row number and

column number differ, it is the row number which indicates the mode swap that occurred

between mode i and modej.

Steps must then be taken to interchange the ith and jth columns. A subroutine incorpo-

rating this method of first identifying and then completing the mode swap was written by the

author. The method processes each column individually and uses only the magnitude of the

individual elements. Consider the jth column. The method is comprised of four steps:

1) The jth column of the matrix is sorted in descending order along with a permutation
vector representing the original order of that column. The first element of the permutation
vector is the original row of the largest element.

2) That row is stored in the jt slot of a tracking vector.

3) If that row has been previously assigned, the routine repeats Step 2 now using the
next element (which represents the original position of the next largest element in the original
column), until a row is found that has not yet been assigned.

4) Once steps 1-4 have been performed on all columns, the tracking vector is com-
pared to a sequential vector. If the two vectors are not identical, a mode swap has occurred,
as flagged by the tracking vector [Gibson, 1992:6].
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A flow chart is included in Appendix E.2 and the actual ForTran 77 code in Appendix F. 1.

Because this method processes each row individually, the mode tracking algorithm is highly

dependent on order. A numerical example best demonstrates this handicap.

Consider a system with only three degrees of freedom and assume the resulting CORC

matrix is

-0.7767 0.0936 -0.02301

CORC= 0.5126 -0.8585 0.9893 | (4-4)

0.1115 0.6295 0.0143]

Steps 1 - 3 will eventually result in the following index vectors:

indexV1 = 2 indexV2 = indexV3  [ (4-5)

In processing the first two columns, the routine outputs what one would expect for a diago-

nally dominant matrix, i.e. the largest elements are on the diagonal. Thus, the largest element

in the first column of the CORC matrix was in row 1 and as expected the row and column

match. Similarly, the largest element in the second column was in the second row and again

the row and column match. Modes 1 and 2 have now been permanently assigned. The

routine is now forced to process the third and last column. The largest number appears in the

second row, but that mode has already been assigned. The next largest number appears in the

first column, but that mode too has been assigned. Therefore the mode is assigned to the

Mode 3, with a correlation factor of less than 2% versus the 100% correlation expected in a

perfectly mass-orthonormal matrix. The order of the modes is [1 2 3]. This matches the
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results of the previous optimization, and thus no mode swap is indicated, although one has

occurred between Modes 2 and 3.

Processed in reverse order from column 3 to column 1 results in the same index vectors

as shown above. However, the routine is forced to assign the row number of its largest

element, resident in row 2, to the same mode as the column being processed, Mode 3. In

processing the second column, the routine is forced to eliminate its first choice, which has

already been assigned, in lieu of Mode 3. Row 1 is assigned as Mode 1 and the routine

outputs a CTRKR of [1 3 2], which, when compared to the previous iteration's mode

ordering of [1 2 3] correctly identifies the mode swap that did occur.

The routine was implemented in FRAME as described in above. Since the ACOSS4

problem has twelve DOF, the matrix product CORC is a 12x12 matrix. The following is a

partition of the CORC matrix consisting of the first 6 rows and 6 columns. The remaining

partitions of the matrix do not contain any terms that affect the following discussion.

1 2 3 4 5 6

"1 -0.7663 0.5193 -0.2440 0.2586 -0.0091 -. 0993

2 0.3542 0.79513 0.3507 -0.1957 -0.2400 0.1069

3 0.0452 0.0101 0.5496 0.7203 0.3634 0.1425

4 -0.4005 -.0727 0.3350 -0.5298 0.3634 0.5390

5 0.2744 0.2875 -0.3656 -0.1113 0.8043 -0.1427

6 -0.1792 -0.0519 -0.4880 -0.2674 0.1289 -0.79518

The routine will find the largest elements in rows 1-3 to be on the diagonal as expected

for a diagonally dominant matrix. Upon applying the algorithm to column 4, however, the

largest element again is found in row 3 -- Mode 3. Mode 3 has already been assigned, how-
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ever, and the routine is forced to find the next highest element, -0.5298, and assign it to Mode

.4. Modes 5 and 6 are assigned as expected. Again, the elements of the CORC matrix repre-

sent the degree to which the current mode is influenced by the previous mode. Mode 4 is

strongly correlated with Mode 3 (0.72), while Mode 3 is only loosely correlated with Mode 3

(0.54) Thus, Gibson's method missed the mode swap which had been verified visually. The

program was therefore set back on its original course, and resulted in the same solution -- the

program failed to converge to a feasible solution. However, in processing the 6x6 partition in

reverse order, the routine does locate the mode swap. With the Gibson flaw referenced in

[Eldred, 1994: 5] experienced, it was clear a more robust cross-orthogonality check which

was not dependent on the order the columns were traversed had to be built.

4.7.2 Modified Cross-Orthogonality Check

As clearly evidenced from the sample problem and the actual results, Gibson's algo-

rithm suffers because it is forced to analyze only one vector at a time while ignoring other

critical data. Thus, a more robust CORC algorithm was needed to consider the entire matrix

at one time, vice column by column. This new algorithm is designed to search the matrix for

its largest element, assigning its row to a tracking vector just as was done in the previous

method. Because that column will not provide another mode, the entire column is zeroed.

Also, because that mode can not be assigned again, that row is likewise zeroed. This process

continues until all mode are assigned. A flowchart of the routine is included in Appendix E.3.

The actual ForTran 77 code is included in Appendix F.2.
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One other check also seemed appropriate. Recall, a single eigenvector is uniquely

determined except for an arbitrary scaling factor. Any eigenvector can be scaled by a constant

or can be multiplied by -1. Scaling was not an issue in this problem, as the problem was mass-

orthonormalized. However, between iterations, modes may have been scaled by a factor of

-1. To ensure this was not an issue with the optimizer, a block was included to determine if

the corresponding eigenvectors had opposite algebraic signs. The CORC matrix is a product

of three matrices, one of which (the mass matrix) is always positive. Therefore, after calculat-

ing CORC, a negative element will indicate that the eigenvectors may have switched sign.

Since the modes between iterations are different, however, not all the signs may have

changed. Thus, it is necessary to base the sign change on the most critical element of that

matrix, that element which establishes modal correspondence. For example, in the 3x3 matrix

of Eq. 4-4,

0.7767 0.0936 -0.02301

CORC= 0.5126 -0.8585 0.9893

0.1115 0.6295 0.0143

there was a mode swap between modes 2 and 3. CORC2,3 is 0.9893, which is positive --

therefore the eigenvectors of each iteration had the same sign (whether they were both

negative or both positive). Likewise, there was no mode swap between the first two modes,

nor between the second two modes as verified by CORC1,1 and CORC3,2 respectively, which

are both positive. Had the value of CORC3,2 been -0.6295, the entire second column of the

current eigenvector (i.e. Mode 2) would have been multiplied by -1.
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The MCORC routine was then implemented in FRAME and the program re-run.

When it was confronted with the same 12x12 CORC matrix, the routine found the six largest

elements assigned to the partitioned diagonally dominant matrix in the lower left quarter of the

CORC matrix. Thus, Modes 7-12 were immediately assigned. The routine was now passed

the following matrix:

C=,,', C1,2J

where C1,2, C 2,1, and C 2 ,2 , are 6x6 matrices of zeroes. C 1,2 is the same as in Eq. 4-6. The

algorithm next correlates Modes 5 and 6, then Modes 1 and 2. Finally, the modes with the

weakest correlation, Modes 3 and 4, are processed and the mode swap observed (visually)

earlier, is correctly identified. This example is included in detail in Appendix E.5.

This algorithm, because it is designed to consider the entire matrix each time, does not

suffer from the ordering problem as does Gibson's. In addition, this algorithm is more effi-

cient than is Gibson's. It is based on searching a matrix, vice sorting one, which in most

cases is faster. Also, because it zeros out entire columns and rows in each assignment, it

reduces the number of potential re-assignments due the structure of inequality checks.

Unfortunately, this code fails when presented with an infeasible structure, which results

in a singular matrix. To avoid the confusion this would cause the user, additional code was

built into MCORC to gracefully exit the MCORC subroutine and instead run the mode track-

ing algorithm designed by Gibson (described above) if certain validity tests fail. The program

does alert the user of the input error, and that the mode tracking routines were switched.
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MCORC was designed to assign modes to a CORC matrix with a rank defect of one using the

process of elimination. Although MCORC is still executed rather than switching to Gibson's

method (GIBSON), the user is alerted to the error so the structure can be corrected. The

validity tests are described in Appendix E4 which includes a flowchart of the routine. This

improved mode tracking algorithm was incorporated into FRAME, and the program executed

with the hopes of convergence. Again, the program failed to converge at nearly the same

point as it had originally.

4.8 Regroup: Formulation of Contingency Strategy

A summary of results thus far is appropriate to introduce the subsequent strategy, for

which had not been originally planned. The original premise of this research was to deter-

mine the reason the integrated structural design and control problem failed to converge to a

feasible solution when using analytic derivatives of eigenvectors to determine the search

direction. The strongest hypothesis at the time was that a mode swap had occurred during the

optimization and had corrupted the search direction to the point that it could not recover.

A mode swap between Modes 3 and 4 was observed visually and that same swap

confirmed mathematically using a cross-orthogonality check. The mode swap occurred when

the optimizer had been based on a search direction which in turn was based on finite difference

derivatives of the eigenvectors. No such swap was seen when the optimizer was equipped

with analytic derivatives. Because the swap occurred during the former approach, and the

former approached converged successfully, it appeared to be the key to the problem.
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The incorporation of the mode tracking algorithm in the optimization loop did not alter

the results significantly. Figures 4-17, 4-18, and 4-19 indicate the divergence of the analytic

solution had to occur between iterations 1 and 2. As explained in Section 3.5, finding the

correct search path from

Xq = X~q-1) + a*Sq (3 -45)

requires two things: 1) the correct direction, and 2) the correct step size. The program was

run using analytic derivatives and finite difference derivatives of eigenvectors. We noted that

between iterations 1 and 2 in the finite difference solution the optimizer took a unit step,

which is desirable. However, the solution based on analytic derivatives took a step size of

only 0.1643. This appeared to be a significant part of the problem and it was decided to more

closely examine the behavior of the optimizer between iterations. The code in FRAME was

modified to display results between iterations when equipped with analytic derivatives, the

mode tracking algorithm was de-activated, and new FEMs of the resulting models were

constructed. (This same procedure could not be applied to the finite difference routine, as the

differencing routine is proprietary and thus can not be modified in such a way that the correct

modal matrix can be retrieved.) The iteration number was defined as 1.1 where the decimal

denotes the additional step required after the nominal (unit) step size failed. In the interest of

conciseness, only the significant plots are included in Figures 4-19a-c. These can be com-

pared to Figures 4-10c-e. Modes 1, 2, 3 and 7 closely matched those from Iteration 1, but

each now had a small component of torsion. A brief analysis follows:
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4.8.1 Iteration 1.1

Mode 4 (1st Torsion): A mode swap between Mode 6 of Iteration 1.0 and this interim

solution is clearly evident. Mode 4 now has a significant axial component. This motion

resembles the motion one would describe when screwing the lid off a can whose thread has a

large pitch angle. (See Figure 4-19a.)

Mode 5 (2nd Out-of-Plane Bending): There is some axial motion but not as signifi-

cant as in Mode 6. This motion most clearly resembles Mode 4 of Iteration 1.0. (See Figure

4-19b.)

Mode 6 (2nd In-Plane Rocking): There is a significant axial component present. 2nd

Bending motion is apparent in Element E3. Some torsion is evident but it is not as significant

as that in Mode 4. (See Figure 4-19c.)

I ,

i I I \

Figure 4-19a: Iteration 1.I/Analytic Mode 4 (1st Torsion)
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FRAME was then run using analytic derivatives. The mode tracking algorithm was left

on, but modified so that no action would be taken once the mode swap was detected (i.e. the

modes and eigenvalues were not permuted). Just as was done visually, the algorithm mathe-

matically detected the same mode rotation of Modes 4, 5 and 6 between iterations 1 and 2.

The ordering had gone from 1234567 to 1236457 when the optimizer had taken a full step of

1. It was unclear at this point whether or not the mode rotation had caused the optimizer to

back off from a step size of 1. The end result was that the optimizer took a step size of only

0.1644, and while this small step did not cause a mode swap, it did cause the algorithm to

head off in a new search direction from which it could never recover.

As had been suspected, mode swapping was indeed a problem between iterations 1 and

2 in the solution based on analytic derivatives. However, its effects appeared minimal, and it

was determined that a mode swap was not the cause of the non-convergence problem in the

solution based on analytic derivatives. The following was also concluded:

1) There existed a more complex error in the manner in which the analytic derivatives

of the eigenvectors were calculated and,

2) While the finite difference result did experience a mode swap, the algorithm recov-

ered and was still able to converge to a feasible solution. Graphically, one could imagine the

problem (if reduced to a two variable space) to be as shown in Figure 4-20. The dashed line

represents a possible route to the optimum solution which the finite difference solution could

have taken if it had the benefit of mode tracking.
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Figure 4-20: Graphical Representation of Hypothesis in 912

Two causes of the failure now seemed possible:

1) There could be some unforeseen error in Nelson's Method which makes it inappro-

priate for the problem. (As explained in Chapter 3, the analytic derivatives of the eigenvectors

are calculated using Nelson's Method.)

2) There could be an error in the FRAME code.

To determine which solution was most likely, another program which also used Nel-

son's Method to calculate the eigenvector derivatives was required as a reference. If the

derivatives of this program compared more closely to the analytic derivatives computed from

FRAME, this would point to an error in Nelson's Method, since it was considered improbable

that two programmers, working independently, would make the same coding error. However,

if those same derivatives compared more closely to the finite difference derivatives, an error in

the original coding of FRAME would be the more likely problem.
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The finite element program ASTROS was made available from our sponsors at Wright

Laboratories and served as the reference. The finite element model of ACOSS4 was con-

verted into a NASTRAN model compatible with ASTROS. ASTROS computed and output

the eigenvector derivatives, included in Appendix C.3. (A preliminary review of the ASTROS

data indicated major differences. Upon closer examination, an error was found in the output

subroutine of the ASTROS code. This error was noted and reported to our sponsors.)

Likewise, FRAME was configured to alternately run with finite difference and analytic

eigenvector derivatives, and the output assembled into tables. A reduced set of derivatives

corresponding to only the first six modes for Iteration 0 are included in Appendices C. 1 and

C.2.

These results were then loaded into a statistical analysis package written in MATLAB

by the author specifically for this purpose. The program is included in Appendix G. The raw

data from the program was then compiled and the results included in Appendix C.6. In both

cases, the program took the finite difference results to be the actual solution, and the AS-

TROS and FRAME solutions individually taken as what would be considered the experimen-

tal solutions.

A matrix of the finite difference eigenvector derivatives was subtracted from the

corresponding matrix of eigenvector derivatives calculated by ASTROS and by FRAME.

Relative percentages were calculated using elementary statistics, and the mean and standard

deviations of that relative matrix computed. Since the above difference operations were

carried out in absolute value, and therefore did not account for sign, the signs of the eigenvec-

tors were also analyzed. A cursory review of FRAME's eigenvector derivatives seemed to
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indicate they differed from the FD derivatives by a factor of 2. Therefore, a sub-routine was

written to determine how many elements in the matrix based on FRAME were within 25%

and 50% of those elements in the FD matrix.

The results indicated there was no correlation between the analytic derivatives from

FRAME and the correct eigenvectors calculated by finite difference methods. There was,

however, a strong correlation between the derivative matrix computed by ASTROS and the

FD matrix. The individual elements of the modal matrices, after accounting for sign, were off

an average of only 1.3%. Also, of the 864 terms, the ASTROS derivatives differed in sign

from the FD only 3 times (one term in Mode 4 and two terms in Mode 6). The presence of

the strict zeros in the finite difference terms and the absence of the same in the other two

modal matrices could not be explained.

4.9 Semi-Analytic Methods

Knowing the sensitivity computations were in error, but unsure of the location, the

multiplicity, and the magnitude of the error(s), semi-analytic methods were employed. As

noted in Section 3.4.2, the form of the semi-analytic differential equations, Eqs. 3-27-28

'Og 0 + I_--- l-(3-27)

I Il
Rl4x - 0
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can be used to help determine single point errors in code where derivatives are computed in

separate subroutines. In addition, if an error could not be found, this hybrid approach offered

some of the advantages of analytic computation (e.g. nominal increase in speed and flexibility,

etc. ) as well as a supposed guarantee of success (since the finite difference approach had

converged previously).

Two approaches were used. Semi-analytic constraint (SAC) derivatives (Eq. 3-27)

were processed through the VAX independently of the author to test the feasibility of the

approach. The solution converged with a slight decrease in computational time. Since the

second term in Eq. 3-27 (used in the SAC approach) was comprised of the finite difference

derivatives (and known to be accurate from the previous section), and the ag/aX terms were

correct (the solution converged), the ag/lxoN terms also had to be correct. The author then

constructed a similar routine (SEMPHI) using semi-analytic derivatives. The purpose was to

distinguish in which term of the chain rule the error resided. This method also provided

convergence to the correct solution but was a full 33% slower than the strict finite difference

approach and required almost twice as many iterations. Looking ahead to Figure 4-23, one

can detect no wild oscillation present which might account for the additional iterations; rather,

the optimizer appeared to approach the solution extremely cautiously. This could be a
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manifestation of the non-optimal finite difference perturbation size, constraining the finite

difference solution which is further hampered by the hybrid approach.

One last confusing aspect was that the solution based on SEMPHI had to have mode

tracking enabled in order to converge. The alternate solution satisfied the original constraints

set by FRAME and in that sense did arrive at the correct solution, but it failed to meet addi-

tional constraints imposed by IMSL within the required number of five steps per line search,

and in that sense ultimately failed. A review of the output corresponding to the feasible

solution could determine no direct link between the mode tracking and the success of the

solution. Successful convergence seemed to indicate that the first term in the chain rule,

ag/aD, was correct and that the error lay in the second term, c34/Nxs. This observation was

consistent with the ASTROS comparisons of iad3lx,. In the end, the solution was deemed

unacceptable and the search for alternate means of analytic sensitivity analysis continued.

4.10 Expansion Theorem

The results from the hybrid approach using SEMPHI were non-spectacular. They did,

however, strengthen the conviction that the eigenvector derivatives were probably in error,

and that abandoning the original hypothesis on mode swapping had been a valid decision. A

cursory review of the affected code, spread amongst some six separate subroutines, clearly

indicated that there existed little chance the error could be found through mere scrutiny. Re-

writing the code from scratch was considered. However, the data had thus far, (as had an

expanded literature review), showed the ACOSS4 to be a deceptively simplistic structure and
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could be extremely sensitive at times. Hence the possibility that Nelson's Method was coded

correctly, but still providing inaccurate eigenvectors due to interaction with other facets of the

FRAME code, had not yet been totally eliminated.

A different analytic approach was next introduced in order to meet the goal of equip-

ping FRAME with a solution based on analytic derivatives. The modal expansion algorithm

was selected as an alternative to Nelson's Method. As explained in Section 3.4.3, the modal

expansion method would only work if the complete modal matrix could be found. The

method was therefore appropriate for ACOSS4, but not so for COFS which had 435 columns

in its a modal matrix.

Using the derivation included in Section 3.4.3, the ForTran 77 program EXPNSN

(Appendix F.3) was written and integrated into the FRAME program. A flag was added to

FRAME to allow the user to choose the method by which eigenvector derivatives would be

computed. The program was run on the ACOSS4 model using IMSL routines to compute the

eigenvalues and eigenvectors. The original subroutine DKMDVP was retained to compute the

term

[K'-1 M']qO

which is required by both Nelson's Method and the modal expansion method. The program

failed to converge to a feasible solution, failing at the 39th iteration due to its inability to find

a feasible search direction within the required number of five steps per line search. The mode

swapping phenomena was again considered, and mode tracking was turned back on. This

new solution failed to converge with mode tracking incorporated -- this time randomly
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oscillating before failing in only five iterations. Mode tracking had seemingly made the design

history far worse.

The new eigenvector derivatives were input into the statistics package used previously.

Results are included in Appendix C.6. It was readily apparent that these derivatives differed

from the finite difference derivatives by a consistent error of 50% -- i.e. they were consistently

half the expected value. (Mode 6 was only 30% in error but this low figure was attributed to

the large number of zeros returned from the finite difference routine and which had biased the

results). In addition, there was only one sign difference error (out of 832 comparisons)

between the results computed by EXPNSN and those computed through finite difference. It

certainly appeared there was a missing factor of 2. As a test, the eigenvector derivatives were

scaled by a factor of 2 upon exiting the EXPNSN subroutine. The program was run, and

converged in only thirteen iterations with little oscillation. The literature was again consulted

and the EXPNSN code meticulously scrutinized for the missing factor, to no avail.

Recall there was no correlation between the eigenvector derivatives based on Nelson's

Method yet the derivatives from EXPNSN were highly correlated. This difference did make it

appear that there was no common link between the two failures. However, in comparing

modal expansion and Nelson's Method, it was determined that the factor of 2 was apparent in

EXPNSN because the routine is based on iterative summation; therefore a renegade factor of 2

could readily be factored by distributive law. This is not true in Nelson's approach as it is

based on the sum of a homogeneous and a particular solution (Section 3.4.4), where a com-

mon factor would not be readily apparent.
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The only routines common to both GRDPHI (where Nelson's Method is implemented)

and EXPNSN were the IMSL routines used to calculate the eigenvalues and eigenvectors, and

DKMDVP. The latter routine was tested first. The original scaling was applied to the output

of DKMDVP rather than to that of EXPNSN. The iteration history was identical -- the

program converged in only thirteen iterations. FRAME was then re-configured to execute

GRDPHI vice EXPNSN using the doctored DKMDVP subroutine. Again, the iteration history

was nearly identical. It was concluded that the error had to be in DKMDVP.

The DKMDVP code was carefully reviewed; the error was corrected and the worka-

round scaling removed. FRAME was re-executed using EXPNSN and GRDPHI alternately to

calculate the eigenvector derivatives. Every corresponding result from the two iteration

histories was identical to the number of significant digits reported. The results are shown in

Appendix D.3. Comparisons of the results from the original code and the corrected code

using modal expansion and Nelson's Method are plotted in Figures 4-21.

4.11 Comparison of Methodologies

Finally, the iteration histories from the four methods which had successfully converged

were compared. The plot is shown in Figure 4-23. Determining the total CPU time expended

was simply a matter of recording results from a timing file inherent to FRAME. Unfortu

nately, the CPU times provided were not consistent over multiple runs. To minimize any error

this inconsistency would generate, the timing results from multiple runs were averaged.
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The original finite difference run had required 20.7 CPU seconds, converging in 22

iterations. The objective function was consistent with that of the two analytic runs to four

significant digits. That the finite difference solution required nine additional iterations than the

analytic results was attributed to two factors. The first was the mode swap which was verified

visually and mathematically. The Hessian matrix, being comprised of results from only two

iterations at the time of the mode swap, was initially corrupted. Subsequent iterations,

however, provided the Hessian the opportunity to recover. The iteration history was also

impacted by the inflexibility of the IMSL finite difference routines -- specifically the inability

to provide the routines with an optimal step size. There is some evidence to justify this

assertion. The step size is based on the machine precision [IMSL, 1991: 1118]. When the

optimization routine was run on the VAX, the solution converged in only 19 iterations. When

the identical routine was run on the SPARC 20, convergence required 22 iterations -- three

additional iterations solely due to the difference in machine precision.

The hybrid approach using SEMPHI took 30.47 CPU seconds to converge over 40

iterations. No clear reason why this solution should require more iterations than its finite

difference counterpart could be determined. That the routine would only converge with mode

tracking in place was also a mystery. Little time was devoted to studying these peculiarities,

as the results were not useable.

The approach using eigenvector derivatives calculated by modal expansion required

only 13 iterations and converged in 4.12 CPU seconds. The resulting objective function and

design vector were consistent with all results based on Nelson's Method to eight significant

digits. Such precision was unexpected. (The programs were even verified to ensure the
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correct routines were being called.) With mode tracking de-activated, the solution converged

in 4.11 seconds; the 0.01 difference was considered inconclusive. The numerical solutions

with and without mode tracking were identical.

The solution based on Nelson's Method converged in only 2.65 seconds and likewise

required 13 iterations. This time was reduced to 2.62 seconds with mode tracking disabled.

Numerical results were identical with and without mode tracking activated.

Finally, both the modal expansion method and Nelson's method were tested alterna-

tively with MCORC and CORC to determine if there were any differences. CORC required

slightly more time than did MCORC with both sensitivity routines, but these difference were

considered inconclusive due to the requirement to average CPU times. Superiority will have

to be determined with a much larger finite element model.

The results cited above together with the final (optimized) frequencies are included in

Appendix D.3 and D.4, respectively.

4.12 Mode Swapping Condition Analyzed

With FRAME equipped with an accurate method for determining eigenvector deriva-

tives, the effect of mode tracking could now be analyzed. FRAME was configured to operate

with mode tracking enabled and use eigenvector derivatives computed by Nelson's Method.

Nelson's method was chosen over modal expansion as it was the faster and more flexible

method.
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Table 4-6 is a summary of the action the mode tracking logic took in optimizing

ACOSS4. The table reports data on the number of mode swaps which were tracked by both

MCORC and Gibson's CORC method, with only MCORC performing the permutations

required. Critical data from the optimizer -- the number of steps the optimizer required along

a search vector, and the size of the step (oa) taken along that vector, is also included. If an

iteration required more than one step, the results of each step are included but de-emphasized

with smaller text and a dashed border. The total number of mode swaps detected by the

independent mode trackers is reported in the corresponding row. The nature of the mode

swap as detected by MCORC is listed in the column corresponding to that iteration. If the

column of numbers under an iteration in not sequential, a mode swap was detected upon

completion of that iteration. For example, if the element in the 7th row (denoted as MODE 7)

of column 3 is a 10, this indicates that at the end of iteration 3, there was a mode swap --

Mode 10 is now more correlated with Mode 7 from the previous iteration. Finally, the table

also reports the number of sign reversals (the number of eigenvectors scaled by a factor of -1

since the previous iteration). If a mode had a sign reversal since the last iteration, that element

is shaded.

For example, in Iteration 2, there were no mode swaps detected by either mode swap-

ping routine. However, there were a total of four sign reversals. These occurred in Modes 1,

4, 6, and 9. The optimizer required only one search, and that search provided the optimizer

with the maximum step size of 1. One the other hand, the fourth iteration required two steps.

There were a total of four mode swaps -- Modes 8 and 9 swapped places as did Modes 10 and

11, and six sign reversals. The optimizer took a step a size of only 0.4129 in proceeding to
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Iteration 5. The following details the mode tracking history and the conclusions drawn from

the subsequent analysis.

Iterations 1 & 2:

From the data in Appendix D.2, one sees that the modes in Iteration 1 are highly

correlated with those of Iteration 0, as indicated by high correlation factors ranging from 0.85

(Mode 7) to 0.9999 (Mode 12). Likewise, the modes resulting from Iteration 2 are strongly

correlated with those of Iteration 1, with the strongest association seen in the higher, uncon-

trolled modes. Note that Iteration 2 is the first of a series of sign reversal in Modes 1, 4, and 6

which occur in every subsequent iteration. No conclusion could be drawn to explain this

behavior except that of pure randomness.

Iteration 3

Table 4-6 indicates this iteration resulted in 11 mode swaps. Upon closer examination,

however, one sees that in taking the full (maximum) unit step, the optimizer produced a

degenerate solution -- a solution with members having cross sectional areas of less than 0.01

units and 4 orders of magnitude smaller than their initial values. MCORC reported these as

mode swaps in its attempt to blindly correlate one set of modes with a set that bore absolutely

no resemblance to it. Thus MCORC failed when not properly constrained to small move

limits. The optimizer then calculated a new search direction with a step size of only 0.1. Note

that it was the optimizer which reset itself, it was not reset due to the mode swapping logic.
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Iteration 4

Iteration 4 likewise required two steps, it's final step being only 0.4139. This second

step was not required as the result of a degenerate solution (as in Iteration 3) but due instead

to the normal activity of the optimizer. Iteration 4.1 resulted in four mode swaps. Because

these swaps occurred in the higher modes, they did not affect the optimization. The optimizer

still considered the solution viable and continued. In other words, MCORC did not detect the

mode swap and thus force the optimizer to complete another search due to the mode swap --

it merely acted on the data it received from the optimizer. MCORC then permuted the

resulting modal matrix. Extracting the applicable rows and columns from Appendix D.2, one

sees MCORC did correctly detect the mode swap which actually occurred.

8 9 10 11
-- 4 ----------------------------
8 0.0578 0.8879 0.0051 0.3679

CORC8 :ix8 :11 = 9 -0.9131 0.1293 0.1940 -0.1164

o10 -0.0531 -0.3214 0.6211 0.6838

11 0.2547 0.2292 0.7530 -0.5372

However, the mode swaps occurred in the higher, uncontrolled modes, and thus did not affect

the optimizer. This was the first of a sequence of the same mode swaps which occurred

between the same modes.
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Iteration 5

The optimizer again backed off from taking a full step and found a step size of 0.2813

on its second search attempt. MCORC detected the same mode swaps (8-9, 10-11). This had

the net effect of returning the modes to their original, sequential configuration.

Iteration 6

Iteration 6 required only one search and returned a unit step size. Note that in the

previous three iterations, where the step size was less than the maximum, Figure 4-23 indi-

cates the optimizer was recovering, having sunk below the true solution. This iteration

marked the return to a more confident solution, with the optimizer taking full steps until final

convergence. Note that the same mode swap occurred.

Iterations 7-13

Iterations 7 through 13 were non-spectacular. The optimizer slowly tweaked the

solution from there on out. Note that at no time during these remaining seven iterations did

the objective function differ from the optimum solution by more than 0.02%. The constraint

forces occurring were equally non-significant with little interchange between constraint

violations. The same mode swap occurred on every iteration, the net result being that the

modes completed in the same order in which they originally had begun at Iteration 0. No

conclusion could be drawn from this activity. The net result of the sign reversal logic was that

only one mode, Mode 9, ended scaled by -1. Many sign reversals did occur, as noted by the
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amount of shading evident in Table 4-6; however, each subsequent reversal negated the

effects of the previous sign activity.

From these results, it was clear the mode swapping which did occur had no effect on

the eventual solution. The sign reversal routine was equally insignificant. The latter result is

due to the location of the mode swaps -- since all swaps occurred in the higher, uncontrolled

modes, they did not corrupt the Hessian and thus did not affect SQP's (Section 3.5) ability to

determine the best search vector. It was overwhelmingly evident that the original inability of

the optimizer to converge to a feasible solution when equipped with analytic derivatives, was

due to a logic error in the associated routine and that mode swapping played no part.

4.13 COFS Finite Element Model

4.13.1 Background

As with the ACOSS model, the first goal was to build an exact replica of the nominal

COFS design found in the literature. This proved to be a somewhat daunting task as much of

the most complete data sets were found in older literature published before the COFS model

had fully evolved into what the community now defines as the "nominal" design. For example,

Colladay's paper [Colladay, 1986] while very complete, used a 58-bay COFS model, whereas

Horta's model [Horta, 1986:517-23], while using the nominal 54-bay model, listed different

mass properties for the cluster hinges located at alternate vertices of the 2-bay design. In

addition, some of the data sets did not list the complete set of both material and physical
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properties (which would have forced the use of data from two different references to fill in the

gaps and thus lead to possible compromises in accuracy). Finally, some of the data did not

report all significant digits, which might have led to rounding errors not acceptable in a model

where natural frequencies differ from one another by only fractions of a hertz.

The most complete set of data was determined to be from Walsh [Walsh, 1987:7]

because it could be cross-referenced with a hard-copy of the input file [Walsh, 1985] used in

the finite element program EAL. This input file, the most valuable source, was unpublished

and written in the native EAL syntax. The program EAL is no longer widely used in the

structures community, nor could any published references to its syntax be found (not even in

anthologies of modem finite element programs). Finally, the EAL database is not readily

transportable to other finite element platforms. Prudence demanded all current data be

compiled into one comprehensive document. In addition, a portable FEM of COFS, one that

had an intuitive construction sequence and which could be transferred to a number of modem

FEM platforms, was to be built.

The EAL program had been run in May 1987 by Horta, et al for a separate study. The

corresponding input file was also available on disk but, as mentioned above, was not readily

upconverted to any other finite element language. Two options by which to build the model

were available. One option was to build a translator program. This program would read the

EAL file into a dummy text file as ASCII text. It would then convert each EAL input line into

the corresponding NASTRAN line, and write the new syntax into a NASTRAN ASCII file.

This file could then be loaded into IDEAS. IDEAS could then convert it into an acceptable

format.
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The second option was to build the FEM model directly into IDEAS, just as had been

done for ACOSS4. The latter option was chosen for two reasons. The first was the difficulty

in obtaining an EAL reference document. Learning the syntax by intuition was not an option -

- some of its syntax was even a mystery to an expert in commercial finite element programs.

The second, primary, reason was that building the structure in IDEAS would serve mainly as a

learning tool in mastering IDEAS. This experience would be critical to mode identification

(as seen above with ACOSS) and in running subsequent optimizing schemes on COFS. By

cross-referencing the two sources from Walsh, and using the papers by Hanks, Talcott, Horta,

and Colladay as model checks, it was clear a model could be built to the required accuracy

necessary for this type of analysis. The model construction scheme is included in Appendix

A.3. The +70 page hardcopy file of the corresponding NASTRAN file was excluded due to

its sheer bulk and limited utility in that form.

4.13.2 Finite Element Results

Several different configurations of the finite element model were examined in an

attempt to attain as close a match as possible to those in the literature. Unfortunately, differ-

ences between the input file used in the original research, and the corresponding model

configuration reported in that literature could not be reconciled. For example, the literature

reported that plates were used to model sensor and actuator bays, and that actuator masses (it

was assumed that the author was referring to both the primary and the secondary actuators),

were set to zero. In addition, the model supposedly existed in a free-free condition. How-

ever, the input file showed all actuators to include their prescribed mass, the platforms to be
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replaced with rigid bars, and the DRA's three connection points to be clamped. In addition,

some changes had to be made in order to be compatible with the FRAME program, with

which we hoped to eventually optimize COFS. The most noticeable difference was the

removal of the orbiter stick model and the substitution of rigid elements with beam elements.

(The surrogate members were provided with an unrealistically high modulus of elasticity and

shear modulus in order to make them behave like a rigid element.)

Table 4-7: Finite Element Model Comparisons

EAL FEM IDEAS Model
Mode Frequency (Hz) Mode Shape Frequency (Hz) Mode Shape

1 0.1888 IBY 0.1537334 IBY
2 0.2414 1BX 0.1613817 1BX
3 1.291 2BX 1.249438 IT
4 1.338 IT 1.374686 2BY
5 1.339 2BY 1.437559 2BX
6 3.686 3BX 1.738279 Orbiter Bending Mode
7 3.831 3BY 2.405682 Orbiter Rotation Mode
8 4.303 2T 4.059728 4BY
9 6.713 4BX 4.22252 4BX
10 6.946 4BY 4.783581 2T

The magnitudes of the frequencies in the two models are the within an acceptable

tolerance given the construction differences mentioned above. In addition, the frequencies

generally follow the same grouping and the two adjacent frequencies with the least separation

in the EAL model are also extremely close in the IDEAS model. The most striking difference

is the replacement of the 3rd bending modes in the IDEAS model with the defunct orbiter

modes. Finally, note the mode rotations between the two models, corresponding to the

different frequencies. This is a manifestation of the mode swapping condition from a non-
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optimization perspective -- small differences in frequencies between models correspond to

different mode shapes.

As this IDEAS model was incompatible with the FRAME program, a new model was

built. The lower vertices of the DRA remained constrained, the orbiter stick model was

removed, and the rigid elements replaced as noted above. The new frequencies were found to

actually more closely mirror the results in literature, confirming speculation that the model in

literature was not accurately reported. Again, the model produced values which were com-

patible with the main purpose of the model -- that of eventually optimizing the structure.

Table 4-8 reports the natural frequencies and modes of the model intended for optimization.

Table 4-8: Finite Element Model Comparisons

EAL FEM IDEAS Model
Mode Frequency (Hz) Mode Shape Frequency (Hz) Mode Shape

1 0.1888 IBY 0.1537336 IBY
2 0.2414 lBX 0.1613818 1BX
3 1.291 2BX 1.249422 IT
4 1.338 IT 1.374683 2BY
5 1.339 2BY 1.437555 2BX
6 3.686 3BX 4.059638 3BY
7 3.831 3BY 4.222431 3BX
8 4.303 2T 4.783452 2T
9 6.713 4BX 7.40866 4BY
10 6.946 4BY 7.66077 4BX

Again, there is some mode rotation between Modes 3, 4, and 5 due to their minimal

separation. Consider for a moment that is a real-world deployed space system. One can

readily see how differences of only hundredths of a hertz could lead to actuators trying to

control, say the first torsional mode, when the structure has actually undergone second

bending in the y-axis. This is the problem of mode swapping from a real-world perspective, as
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originally introduced in Chapter 1, and the impetus for the COFS project -- to build a testbed

with closely spaced frequencies to be used to check the fidelity of new control systems. Plots

of the lower ten natural modes are included in Appendix H.

4.13.3 COFS Optimization

Transferring the COFS data deck from IDEAS to FRAME which would perform the

optimization, proved to be much more difficult than originally foreseen. The process was

tedious, and required the following steps:

1) Replace all rigid elements with beam elements. In addition, remove the orbiter, the
model of which cannot be interpreted by FRAME. Ensure the model still retains acceptable
levels of equivalence with the nominal COFS design from literature;

2) Convert the IDEAS data deck into a NASTRAN file;

3) Replace the CBAR and PBAR cards with CROD and PROD cards and modify some
data entries on the latter cards;

4) FRAME's numbering scheme is inherent -- i.e. Node 1 is the first node in the data
deck, Node 2 the second, etc. Members are numbered the same way. To translate the IDEAS
numbering scheme successfully into an input format compatible with FRAME, the modified
NASTRAN deck was run through CADS [Les, Manual, 1985], a translation program again
provided by our sponsors at Wright Laboratories. CADS was to translate the 435 nodes into
sequentially numbered grid points as required by FRAME. In addition, because CADS
ignores lumped masses, the lumped masses after translation would lose their 1-1 correspon-
dence with the respective nodes. Thus, the lumped masses had to first be converted into other
elements (CONRODs were used) to force CADS to renumber them;

5) Replace any other element types CADS may have neglected in its translation;

6) Modify the resulting data deck to a final format compatible with FRAME.
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Steps 1-4 were completed. Unfortunately, CADS is limited to the number of nodes it

can process and the COFS FEM far exceeded that limit. A modified version of CADS (with a

larger limit) is currently being pursued by Wright Labs. Optimization, however, cannot be

completed until that effort is completed.
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V. Conclusion

The main goal of this research was to effect a successful optimization of an

integrated structural and control design problem based on analytic derivatives. The first

step was to determine if the existence of the mode crossing condition had prevented

convergence of the integrated problem, ACOSS4. The problem had failed to converge

when the corresponding optimization algorithm had been partially based on analytic

derivatives of eigenvectors. It was believed that the solution failed because of the

nonuniqueness of eigenvector gradients associated with at least two (nearly) repeated

frequencies. The further possibility of the problem of frequency cross-over that

accompanies the swapping of closely spaced modes was also suspected of exacerbating

the failure to converge. The current literature on the problems associated with repeated

frequencies and the mode crossing condition seemed to fit the description of the original

problem.

While the primary goal of the thesis was accomplished, the original hypothesis

proved to be incorrect. No mode swaps were found by visual or mathematical inspection

of the ACOSS4 design history when the optimizer was equipped with analytical

derivatives. A new mode characterization scheme for 3-dimensional structures was

created where none had previously existed. All 12 nominal modes of ACOSS4 were

characterized. In addition, this mode characterization scheme was applied to over 100

other modes from 14 distinct models and shown to be sound with little resulting

ambiguity. The optimization history of the ACOSS4 was identified and recorded.

Conclusion 5-1



A mode swap was found (by visual inspection) to have occurred between Iterations

1 and 2 when the optimizer was equipped with eigenvector derivatives calculated by finite

difference methods. Mode 3 (1st In-Plane Rocking) swapped its order with Mode 4 (2nd

Out-Of-Plane Bending) when the 3rd frequency became larger than the 4th frequency upon

completion of Iteration 2. This mode swap could not be confirmed quantitatively using

automated mode swapping routines based on cross-orthogonality checks run in the

nominal direction (checking Modes 1 through 12 in that order). The suspect mode-

swapping routine originally used was CORC, as presented by Gibson. This method was

shown to be highly dependent on order and therefore unreliable.

A new mode swapping routine, MCORC (for modified cross-orthogonality check),

was created which initially appears to be more robust than the current cross-orthogonality

checks in the literature, as it processes the CORC matrix in an order such that the

strongest modes are correlated first. The method should be more efficient as well, as it

depends on searching rather than sorting a matrix. MCORC did verify quantitatively the

3-4 mode swap which had been verified visually. In addition, MCORC was used to verify

that a mode swap had occurred as a result of a unit step size between Iterations 2 and 3

during the run with analytic derivatives. This mode swap was also verified by visual

inspection. The optimizer, however, rejected the unit step; its subsequent choice of step

size did not result in a mode swap. It was determined that the optimizer backed off from

the unit step size by its own volition -- not as a result of the mode swap.

The mode swap that had occurred in the finite difference run appears to be a result

of the high sensitivity of the ACOSS4 problem. The finite difference solution required
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60% more iterations than did a subsequent analytical routine and 10 times more CPU time.

The finite difference solution was hampered by two unrelated phenomena. The first is the

non-optimal design variable perturbation size used by the IMSL finite difference routine

[IMSL, 1991: 1118]. The perturbation size is dependent on machine precision, and so

sensitive that 3 additional iterations were required on a SPARC 20 than on the VAX due

only to the differences in the platforms' respective precision. The second cause was the

mode swap that did occur at the onset of the finite difference iteration history. The search

direction appears to have been initially corrupted by the mode swap but eventually did

recover. This second hypothesis is belied by the failure of a solution based on semi-

analytic derivatives to converge when mode swapping was deactivated.

The solution based on semi-analytic derivatives was the only way to test the effect of

mode tracking, as the proprietary optimizer did not allow access to its finite difference

calculations. Unfortunately, small changes to the finite differencing were enough to

prevent the mode swap from being observed again. Nevertheless, the semi-analytic

approach was crucial in narrowing down the error that was corrected in the analytic

derivatives.

A mode swap did not cause the original solution to fail to converge. Eigenvector

sign reversal similarly had no effect. Rather, an error was found in the element sensitivity

formulation in the portion of code comprising Nelson's Method for determination of

eigenvector derivatives. The error was found when the correct implementation of modal

expansion failed, forcing closer scrutiny of the two failures. The original coding of

Nelson's method was corrected, thereby equipping FRAME with two analytic methods
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for sensitivity determination. No differences between the solution based on Nelson's

method and the solution based on modal expansion could be found to the 8th significant

digit. The solution based on Nelson's method, however, was clearly more efficient than

the solution based on modal expansion providing the identical results in half the time.

Moreover, the achievement of the primary research goal -- the solution based on analytic

derivatives -- was a full order of magnitude more efficient than the original finite

difference solution.

The existence of the mode swapping condition in the COFS structure could not be

verified due to the unexpected demands required when the original mode swapping

hypothesis proved to be incorrect. However, a new finite element model of the COFS was

built and an initial eigenanalysis shown to match the results in literature to the required

degree of accuracy. Unlike previous finite element models of the structure, this new

model, comprised of over 1900 individual components, is transportable to a number of

software platforms, and has an intuitive, systematic numbering scheme.

In summary, the major accomplishments of this thesis are:

1) Implementation of a new analytical method (the primary goal) for eigenvector
sensitivity analysis based on modal expansion,

2) Correction of the original optimization code based on Nelson's method,
essentially equipping FRAME with two analytical methods for sensitivity analysis, where
none had existed previously,

3) Development of a new, more robust mode tracking algorithm,

4) Determination that the mode swapping condition did not cause the failure of the
original optimization problem,
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5) Development of a new mode characterization algorithm for non-planar structures,

6) Creation of a finite element model of COFS along with completion of an initial
eigenanalysis.

Recommendations

There are several recommendations for further study:

1) First and foremost, the nominal COFS model should be optimized using
analytical methods and the mode-swapping condition investigated with the mode tracking
code. If the mode swaps can be reproduced identically to those in the study by Walsh
[Walsh, 1987: 5], their full impact can now be analyzed. More importantly, it can be
determined if the mode swapping condition resulted in the original failure of the problem
to converge to a feasible solution using only the nominal four design variables. Some
work will be required to transform the NASTRAN deck into an input file which is
compatible with FRAME.

2) The analytical solution suffered from repetitive mode swaps which
ultimately did not affect the solution as they were associated with uncontrolled modes.
The mode tracking code could be modified to check for mode swaps amongst only the
controlled modes. Such an enhancement may be critical in large models where an
eigenanalysis may be too costly to perform on other than the set of controlled modes.

3) Eldred [Eldred, 1994:5] suggests CORC be used with corruption indices to
determine the validity of the cross-orthogonality check. This corruption index is simply
the ratio of the 2nd largest element in one column to the largest element of that column
and is determined for every column of the modal matrix. If this ratio is greater than 0.5,
Eldred suggests the check may be invalid. The code in Appendix F. 1 can easily be
equipped with such a validity check.

4) To determine if MCORC is truly superior to CORC, a different structure
(one where mode swaps are known to occur) should be optimized using the two routines.
Eldred [Eldred, 1994: 7] showed that CORC nearly failed when faced with a mode swap
which had occurred during the optimization of an intermediate complexity wing (ICW)
using ASTROS. A finite element model of the same ICW is available and needs only to be
translated into an input file compatible with FRAME.

5) The 489-element COFS model implemented by Grandhi [Grandhi and
Venkayya, 1988: 18] was found to suffer from some oscillation due to repetitive mode
swaps. This finite element model is available and likewise can be translated into a format
compatible with FRAME. Once the model is restructured, the mode tracking code can be
used to determine if such an algorithm can better contain the oscillations.
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6) It was conjectured that the additional iterations required in the finite
difference solution was a result of two problems: 1) the non-optimum step size used by
IMSL, and 2) the mode swap which occurred between iterations 1 and 2. Because the
IMSL code is proprietary, further investigation into the mode swap hypothesis was not
possible at the time. For those interested, it may be possible to either obtain a copy of that
code or reproduce it, thereby providing the opportunity to include additional output lines
which could provide insight into the true effect of the mode swap.

7) It is not clear how large the separation between eigenvalues can be before
they are considered repeated. As mentioned in Chapter 4, Bernard and Bronowicki
suggest it may be as large as 5%. Investigating the maximum separation may be useful to
the structures community for working with the integrated structural design and control
problem.
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Appendix A
Finite Element Models

A.1 ACOSS4

The basic elements of the ACOSS4

structure were two types of rods. The upper

half of the structure is a tetrahedron. The
El

base of the tetrahedron is an equilateral
(G) .:---E5

E12 E4 /E9 o triangle comprised of rods having an initial

cross-sectional area one order of magnitude

5 ,/ Qlarger than that of the smaller elements. Two

Figure A-i: ACOSS4 of the uprights of the tetrahedron have the smaller cross

sectional areas, and the third element has the larger area. All units are dimensionless and

consistent. Six bipods comprise the lower half of the structure with two rods supporting

the base at each of the three vertices. The bipods are likewise modeled as rods and all

initially have the smaller cross sectional area.

The element types correspond to the element numbering scheme (i.e. Element 5 is

"Beam" Type 5 in IDEAS). See Table A. 1-2. All twelve elements are rods, are made of

generic isotropic steel, and have a modulus of elasticity of 1. In addition, each of the

twelve rods is afforded its own element type to expedite independent design iterations and

the magnitudes referenced are initial values only.

It was thought that the small size of the model would eliminate the need to designate

an independent color for each of the design variables as was done in modeling COFS.
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Thus, the larger rods were all designated green and the eight smaller rods were designated

as yellow. However some ambiguity could have been avoided if all the uprights had been

different colors. In addition, if Elements 8, 10 and 11 had been given a different color

than their counterpart bipods (Elements 7, 9 and 12, respectively), some confusion could

have been avoided in determining plane designations.

The six bipod legs are clamped as is the apex. Each of the four vertices includes a

lumped mass of 20000 mass units, modeled in IDEAS as blue.

Table A-i: Node Geometry

Node X Y Z Lumped Mass
1 0.0 0.0 10.165 2.0*106

2 -5.0 -2.8870 2.0 2.0*106

3 5.0 -2.8870 2.0 2.0*106

4 0.0 5.7735 2.0 2.0* 106

5 -6.0 -1.1547 0.0 0.0
6 -4.0 -4.6188 0.0 0.0
7 4.0 -4.6188 0.0 0.0
8 6.0 -1.1547 0.0 0.0
9 -2.0 5.7735 0.0 0.0
10 2.0 5.7735 0.0 0.0

Table A-2: Member Geometry/Connections

Member From Node To Node Area
1 1 2 10
2 2 3 10
3 2 4 10
4 3 4 10
5 1 3 1
6 1 4 1
7 5 2 1

8 6 2 1
9 7 3 1
10 8 3 1
11 9 4 1
12 10 4 1
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A.2 ACOSS4 NASTRAN Bulk Data

BEGIN BULK
GRID 1 0 0.00000 0.00000 10.1650 0
GRID 2 0-5.00000-2.88700 2.00000 0
GRID 3 0 5.00000-2.88700 2.00000 0
GRID 4 0 0.00000 5.77350 2.00000 0
GRID 5 0-6.00000-1.15470 0.00000 0
GRID 6 0-4.00000-4.61880 0.00000 0
GRID 7 0 4.00000-4.61880 0.00000 0
GRID 8 0 6.00000-1.15470 0.00000 0
GRID 9 0-2.00000 5.77350 0.00000 0
GRID 10 0 2.00000 5.77350 0.00000 0
SEQGP 1 7 2 8 3 3 4 1
SEQGP 5 9 6 10 7 4 8 6
SEQGP 9 2 10 5
CROD 1 1 1 2
CROD 2 1 2 3
CROD 3 1 2 4
CROD 4 1 3 4
CROD 5 5 1 3
CROD 6 5 4 1
CROD 7 5 5 2
CROD 8 5 6 2
CROD 9 5 3 7
CROD 10 5 3 8
CROD 11 5 9 4
CROD 12 5 4 10
CONM2 13 3 0 2.OOE+6 0.00000 0.00000 0.00000 +EA 13
+EA 13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
CONM2 14 2 0 2.OOE+6 0.00000 0.00000 0.00000 +EA 14
+EA 14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
CONM2 15 4 0 2.OOE+6 0.00000 0.00000 0.00000 +EA 15
+EA 15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
CONM2 16 1 0 2.OOE+6 0.00000 0.00000 0.00000 +EA 16
+EA 16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
MAT1 2 1.OOE+8 1.00000 0.29000 0.10000 6.50E-6 +MA 2
+MA 2 100000. 100000. 9862.56
PROD 1 2 10.0000 2.40E+6 0.00000 0.00000
PROD 5 2 1.00000 2.40E+6 0.00000 0.00000
PARAM AUTOSPC YES
PARAM POST -2
ENDDATA
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A.3 COFS Finite Element Model

The basic building block of the model is the two-bay structure. The bottom bay

(i.e. the bay closest to the shuttle) is labeled the 'A' bay, and the top bay the 'B' bay.

While many of the parts in the B-bay are the same as those in the A-bay (e.g. longerons,

cluster hinges, etc.), it was necessary to keep all the elements in the bay distinct to

maintain the numbering scheme with respect for those elements present in only one of the

bays -- thus necessitating the 'A' and 'B' bay designations.

Once the 2-bay element was completed, it was simply replicated 27 times. To

ensure this replication was ordered, each node and each element in each bay were given a

separate identifier. The identifiers are spaced at intervals of 100. This allows us to simply

set an interval of one when replicating the 2-bay structure, and all corresponding elements

will be one digit apart, with no cross-overs. For example, all strong longerons in 'A' bays

are numbered between 101 and 127. There are no other elements in this first "century" so

there are no cross-overs. Each subset of elements is therefore in its own century. Take

the cluster hinges on the B-bay batten plane as an example. They are numbered between

2801 and 2827 (2801, 2802, 2803 . . .2827). The first two digits, '25' designate that

element as a cluster hinge on the 'B' batten planes. The last two digits, say '27' designate

this element as the hinge on the 27th B-bay batten plane.
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0 Now, take the first four bays

on the bottom of the COFS structure.

The first strong longeron is in the 'A'Bay B'
"Weak bay, and has an identifier of 101. The

Weak• L~ongeron

DLongeron n strong longeron in the 'B' bay isS•"•- • / Diagonl

identified as 401. The structure then
Strong

Longeron ( D repeats. Bay 3 is an A-bay and has a

Bay A BaoAba
strong longeron numbered 102, while

Batten

Bate Bay 4's strong longeron is 402.

Figure A-2: COFS 2-Bay Element Following this pattern, Bay 53's

strong longeron is simply 127, and the top-most

bay, Bay 54, has a strong longeron labeled as 427. Again, each of the 48 elements in the

basic 2-bay structure is in its own century. Also note that many of the elements appear in

subsets of 3; this pattern is a direct result of COFS triangular cross-section.

This numbering scheme presented two anomalies which we will mention for

completeness. First, note that we did not start the elements at an even interval of 100, but

at an [even interval + 1], i.e. 101. This was done since those last two digits designate the

sequence number, and we did not want there to be a 'zeroth' (0th) element. The second

anomaly is a result of the COFS being a 'closed' structure -- that is, there are battens

running along the very bottom, as well as battens running across the very top. Therefore,

there is one more set of battens for the A bays than the B-bays, even though the structure

has the same number of A-bays as it does B-bays.
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Also note, one error was made in designating centuries necessitating the elimination

of centuries 1000, 1100, and 1200. This was done to keep all the battens in the 'B' bays

together. Finally, the node numbering scheme and the element numbering scheme share

some of the same numerical designations. This presented no problems in replicating the

structure, since we replicated nodes first, and then elements, but it can be somewhat

confusing if one does not acknowledge the alpha-designator ('N' for node, 'E" for element)

when perusing the computer model.

The other COFS elements -- the actuators, sensors, and PMD masses, were added

after the model was replicated. The stiff panels, on which the actuators and sensors are

mounted were not included as plates as the literature suggested, but instead the sensors

and actuators were attached using rigid beam elements. The sensor masses were small

enough that they could be included as lumped masses at the vertices of the structure, while

the actuators and PMD masses required additional nodes on which to attach the lumped

masses. Actuator nodes were attached at the center of the bay. Cabling also had to be

included. Like the sensor masses, the cabling was of such small mass that it could be

distributed at each vertex as lumped masses. Having multiple lumped masses at one node

presents one difficulty in IDEAS -- one can only see the last lumped mass added although

in terms of the model, all other masses are still present.

We created the basic node structure by studying the input file [Walsh: 1985] and

identifying sets of triangular patterns. One glaring inconsistency in most of the literature is

Finite Element Models A-6



Table A-3: COFS Nodal Geometry

NODE X Y Z

Main Vertices the orientation of the diagonals in the 'A' and 'B'
101 24.6140 0.0 11.952
201 23.5640 0.606 11.952301 23.5640 -0.606 11.952 bays. None of the literature is consistent, and some

Diagonal Midspan Points
401 23.5640 0.0 12.514 documents actually contradict themselves. To
501 24.0890 0.303 12.514
601 24.0890 -0.303 12.514

Batten Midspan Points determine if the diagonals in the A-bay run up-
701 24.0890 0.0 13.076
801 23.5640 0.303 13.076 from-left-to-right or up-from-right-to-left (as
901 24.0890 -.303 13.076

Actuator Nodes viewed from the front of the any of the A-bays), we
1001 23.9620 0.0 25.440
1101 23.9620 0.0 45.672
1201 23.9620 0.0 61.408 graphed some of the data points from the input file

LDCM Nodes
1301 23.9140 0.4600 72.848 referenced above. We determined the orientation
1401 24.3470 0.0 72.848
1501 23.9140 -0.4600 72.848
1601 23.4540 0.0 72.848 was that of the former, that is the diagonals run up-

PMD Nodes
1701 23.2140 0.000 72.848 from-left-to-right in the A-bays (and therefore up
1801 23.9140 -0.700 72.848
1901 23.3895 0.175 72.848
2001 24.0890 -0.525 72.848 right-to-left in the B-bays.)

Tip Mass
2101 23.914 0.0 72.848 Three nodes were required for the basic

cross section (one node at each vertex), and replicated at a Z-station 1.124 meters (the

height of one bay element) above the first set. Three nodes were required to identify the

hinge location at the midspan of each diagonal, and three nodes were required to identify

the midpoint of each mid-span batten, which is also hinged. The latter nodes were

incremented by 2 to maintain the numbering scheme necessary for simple replication.

These 9 nodes were then replicated 27 times at a constant interval of 1.124 meters in the

'z' direction. Node assignments are included in Table A-3 where the coordinates

correspond to a right hand coordinate system, +x is parallel to the shuttle's roll axis, +z is

Finite Element Models A-7



up and node locations are all in meters. (Note, the diagonals and Batten B elements are

not continuous members, being connected through a hinge. Because the hinge is a lumped

mass, and because a lumped mass requires a node, the diagonals and battens were

modeled as two separate beam elements.)

All structural elements were modeled as beams with hollow, circular cross-sections.

We required 4 such beam elements, defined in the parameter table as 'STRONG

LONGERON', 'WEAK LONGERON', 'DIAGONAL' and 'BATTEN'. Recall, the strong

longeron and weak longerons have diameters corresponding to optimization parameters

(Rs and R, respectively), while the diagonal's inner and outer diameters (Ri and Ro) are

both optimization parameters. Because the diagonals are connected with locked hinges at

midspan, each diagonal is modeled as two symmetric tubes connected at midspan. The

elements are coded for ease of reference.

Table A-4: COFS Element Properties

ELEMENT Outer Inner Thicknes Area Elasticity Shear Color
Diameter Diameter s (m2 ) Modulus Modulus
(m) (m) (m) (N/m2*elO) (N/m 2 *e9)

Strong Long. 0.0220 0.0104 0.0116 0.03644 13.25 49.700 red
Weak Long. 0.0229 0.0147 0.0082 0.02580 13.88 52.063 pink
Batten 0.0140 0.0114 0.0026 0.00819 12.80 48.012 dk. green
Diagonal 0.0191 0.0179 0.0012 0.00377 11.07 41.523 white
Rigid Beams 0.00208 - - - 1000 30000 It. blue

DRA 0.00208 - - - - - yellow

The battens at mid-bay (defined as Batten B) are also hinged and therefore modeled

as two identical beams connected at mid-span. Diagonals are identified in Table A-6 using

a 2-digit mnemonic. The first digit identifies the face and the second the half of the beam

element of the 2-beam sequence (e.g. Diagonal A12 is the upper half of the diagonal on
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the first face of Bay A. Cluster hinges, batten hinges, and diagonal hinges are modeled as

lumped masses with appropriate magnitudes.

Once the truss structure was replicated, distributed cabling and sensor masses were

included as lumped masses. Nodes for the actuators at Bays 12,30, 44 and the TRS were

added, and lumped masses placed there. Nodes were added for the PMD as well, and

nodes placed corresponding to the four 20-kg masses being in their neutral positions.

Elements for the sensors, actuators, and PMD masses are numbered so that the third and

fourth digits correspond to the actual bay at which they are located. For example, taking

element 10242, the '10' identifies it as a sensor mass, the '24' identifies it as the sensor

mass at Bay 24, and the 2 identifies it as the mass at the vertex of the second longeron.

Each distinct element was color-coded for ease of identification in later iterations. All

data is included in Table A-6.

The Deployment/Retraction Assembly was modeled as a truss comprised of

elements as indicated in Table A-4. The 84 individual masses comprising the gearing and

machinery were modeled as lumped masses and placed at the six vertices. (See Fig. A-4).

The lower vertices were clamped, and are the only boundary conditions used in the

optimization model. The DRA is connected to the midpoint of the orbiter cargo bay by

rigid members.
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Table A-5: Lumped Masses

Name Mass (kg) Color

Cluster Hinge A 0.907200 Magenta Only the Orbiter and PMD have
Cluster Hinge B 0.907200 Lt Magenta inertia properties.

Batten Hinge 0.520000 Blue

Diagonal Hinge 0.300000 Yellow columnwise in Table A-5 are listed as
Cable Mass 0.072727 Orange
Sensor Mass 3.430000 Gold Orange I.x, Iyy, and Izz. Because the
Actuator Mass 18.80000 Red
Tip Mass* 72.900000 Yellow corresponding NASTRAN input deck

6.45
6.45 was over 70 pages in length, it has
12.9

PMD 20.000000 Magenta been excluded from the appendix.
Fixed LDCMs 8.256000 Dark Blue
DRA Elements see bulk Magenta

Orbiter* 92388.6 White
1.203e+6
9.190e+6
9.580e+6 I

Beam Elements 0 Lt Blue

PMD

T51lBays

COFS

• CM

Figure A-3: Complete Finite Element Model
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Table A-6: Element Identifiers

Element Label Init # Tot
Strong Long. A Li 101 27
1st Weak Long. A L2 201 27
2nd Weak Long. A L3 301 27
Strong Long. B L4 401 27
lst Weak Long. B L5 501 27 structure
2nd Weak Long. B L6 601 27 repeats....................Batten Al BAI 701 28.
Batten Al BA2 801 28Batten A2 BA2 801 28 :!:

Batten A3 BA3 901* 28 DB12
Diagonal All DA11 1301 27 DB32

Diagonal A12 DA12 1401 27
Diagonal A21 DA21 1501 27 DB22

Diagonal A22 DA22 1601 27 BAY B DHB3 DHB1 DHB2 L5
Diagonal A32 DA31 1701 27
Diagonal A33 DA32 1801 27 /Diagonal B11 D131 18101 27 D 3Diagonal Bll DB11 1901 27 L6 L4 821

Diagonal B12 DB12 2001 27
Diagonal B21 DB21 2101 27 B1 H1B1 HDiaona B2 Q4 BB12 BHBI BB11 CJ.H.S

Diagonal B22 DB22 2201 27 CM3
Diagonal B32 DB31 2301 27 B3 BB3 BB2 BB22
Diagonal B33 DB32 2401 BHB2

Cluster Hinge Al CHAI 2501 28 DA1 2
Cluster Hinge A2 CHA2 2601 28
Cluster Hinge A3 CHA3 2701 28 DA22
Cluster Hinge B1 CHBI 2801 27 DA33 DHA1 L2
Cluster Hinge B2 CHB2 2901 27 BAY A DH

Cluster inge B3 C-B3 3001 27DHA2
Diag. Hinge Al DHA1 3101 27/

Diag. Hinge A2 DHA2 3201 27 0 DA32
Diag. inge A3 DHA3 3301 27DA

Diag. Hinge B1 DHB1 3401 27BDiag. Hinge B2 DHB2 3501 27 CR.A3..i BA3 iC •HA

Diag. Hinge B3 DHB3 3601 27 structur
Batten Hinge B1 BHB1 3701 27 repeats BA2 . BA l B
Batten Hinge B2 BHB32 3801 27 %
Batten Hinge B3 BHB3 3901 27

Batten Bit BB1 4001 27
Batten B12 BB12 4101 27 Figure A-4: Element Identifiers
Batten B21 BB21 4201 27
Batten B22 BB22 4301 27
Batten B31 BB31 4401 27
Batten B32 BB32 4501 27
Cable Mass Al CMAI 4601 28
Cable Mass A2 CMA2 4701 28
Cable Mass A3 CMA3 4801 28
Cable Mass B1 CMB1 4901 27
Cable Mass B2 CMB2 5001 27
Cable Mass B3 CMB3 5101 27
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Table A-5: Element Identifiers (Cont.) coFs LumpedstMases

Element Label Init # Tot

Sensor Mass 24-1 SM241 10241 1
Sensor Mass 24-2 SM242 10242 1
Sensor Mass 24-3 SM243 10243 1
Sensor Mass 38-1 SM381 11381 1
Sensor Mass 38-2 SM382 11382 1
Sensor Mass 38-3 SM383 11383 1 -2 meters
Actuator Mass 12 AM121 12121 3
Actuator Mass 30 AM301 13301 3
Actuator Mass 44 AM441 14441 3
Rigid Elements RE 80000 20
Par. Mod. Device PMD 20001 4
Tip Mass TP 54001 4
Orbiter 0 200000 15
DRA D 400000 87 12 Distinct

Lumped Masses
Shuttle

Figure A-5: DRA

A.4 COFS NASTRAN DECK

The +60 page NASTRAN deck has been excluded in the interest of space.
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Appendix B

Modal Deformations of ACOSS4 FEM

DESIGN: Nominal

Derivatives Used: Analytic

Mode 8: 1st Shearing (In-Plane)

Mode 9: 1st In-Plane Compression In-Phase w/lst Axial

Mode 10: 1st In-Plane Compression In-Phase w/lst Torsion

Mode 11: 1st Extension (In-Plane)

Mode 12: 1st Breathing

Higher-Order Modes B-1
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Appendix C

The following tables show the results of the sensitivity analyses for iteration 0 for

all six controlled modes using four methods of sensitivity analysis. Results from subse-

quent iterations have been excluded in the interest of space. The mode derivatives from

the original formulation using Nelson's Method are also included for completeness. A

separate set of tables for the semi-analytic derivatives is not included as the derivatives are

the same as those in the finite difference table. The tables show the derivatives of the

modes with respect to the 12 design variables horizontally across the table; while the de-

rivatives with respect to the 12 degrees of freedom read down the table. For example, the

element in row 3, column 5 of Mode 1 represents the partial derivative of Mode 1 with

respect to the fifth design variable (the cross sectional area of Element 5) with respect to

the third degree of freedom, or,

a 031
a X 5

In addition, the first four columns of the matrix of ASTROS eigenvector deriva-

tives were scaled by a factor of 0.1 to account for scaling done in the formulation of the

original program by ASTROS.

C.1: Mode Derivatives as computed from Original Formulation of Nelson's Method

C.2: Mode Derivatives as computed from Finite Difference Formulation

C.3: Mode Derivatives as computed from ASTROS (Nelson's Method)

C.4: Mode Derivatives as computed from Modal Expansion

C.5: Mode Derivatives as computed from Corrected Formulation of Nelson's Method

Eigenvector Derivatives C-1
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Appendix D

D.I: Nodal Displacement Vectors: The final coordinates of the displacements at the four
unpinned nodes (nodes 1-4) as calculated by Nelson's Method, Modal Expansion, and
Finite Difference

D.2: Mode Tracking Results: Results computed from FRAME as equipped with
Nelson's Method and MCORC.

D.3: Final Design Variables: Final Design Variables and parameter comparisons as
computed by Nelson's Method, Modal Expansion, Finite Difference, and Semi-Analytic
Methods.

D.4: Final natural frequencies: Final frequecies as computed by Nelson's Method,
Modal Expansion, Finite Difference, and Semi-Analytic Methods.

Appendix D - Data D-1
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Table D-3

Final Design Variables & Performance Indices

Nelson's Method Modal Expansion Finite Difference Semi-Analytical

Total Iterations 13 13 19 40
Final Mass 16.921516 16.921516 16.921535 16.921576

CPU Time (see) 2.66/2.60/2.60 4.10/4.16/4.11 N/A 29.93/30.40/29.87
w/MCORC 2.62 4.12 30.07

CPU Time (see) 2.64/2.60/2.71 4.51/4.48/4.53 N/A 29.80/31.21/31.20
w/CORC 2.65 4.50 30.74

CPU Time(sec) 2.73/2.52/2.63 4.27/4.07/3.99 20.70 N/A
w/o MDTRKG 2.62 4.11 1 1

Area 1 0.30892541e+01 0.30892541e+01 0.30881789e+01 0.30788636e+01
Area 2 0.25096672e+01 0.25096672e+01 0.25096164e+01 0.25082769e+01
Area 3 0.17667323e+01 0.17667323e+01 0.17640684e+01 0.17723612e+01
Area 4 0.31764767e+01 0.31764767e+01 0.31771979e+01 0.31729827e+01
Area 5 0.23284152e+01 0.23284152e+01 0.23302929e+01 0.23325105e+01
Area 6 0.22477653e+01 0.22477653e+01 0.22467837e+01 0.22508605e+01
Area 7 0.62014741e+00 0.62014741e+00 0.62103188e+00 0.62081271e+00
Area 8 0.94880247e+00 0.94880247e+00 0.94796419e+00 0.95081973e+00
Area 9 0.87466598e+00 0.87466598e+00 0.87386447e+00 0.87527764e+00
Area 10 0.10496428e+01 0.10496428e+01 0.10492880e+01 0.10507542e+01

Area 11 0.62419724e+00 0.62419724e+00 0.62355286e+00 0.62587976e+00
Area 12 0.22572575e+01 0.22572575e+01 0.22667665e+01 0.22600608e+01
Gain 11 0.40259999e+00 0.40259999e+00 0.40259999e+00 0.40259999e+00
Gain 12 0.10417568e+00 0.10417568e+00 0.10396373e+00 0.10421369e+00
Gain 13 0.14694263e+00 0.14694263e+00 0.14689459e+00 0.14650612e+00
Gain 14 0.15802240e+00 0.15802240e+00 0.16020583e+00 0.26840001e+00
Gain 15 0.26840001e+00 0.26840001e+00 0.26840001e+00 0.15823942e+00
Gain 16 0.26840001e+00 0.26840001e+00 0.26840001e+00 0.26840001e+00

Constraint 1 0.49521145e-02 0.49521145e-02 0.45971065e-02 0.67654764e-02
Constraint 2 -0.11357029e-05 -0.11357029e-05 -0. 14049945e-05 -0.64751048e-05
Constraint 3 -0.36152937e-06 -0.36152937e-06 -0.37764241e-05 -0.25302725e-04
Constraint 4 0.52055937e+00 0.52055937e+00 0.52021211e+00 0.52216810e+00

Constraint 5 0.70980957e-06 0.70980957e-06 -0.49920700e-05 0.22125470e-04
Constraint 6 -0.16661738e-05 -0.16661738e-05 -0.96335907e-05 0.21539165e-04
Constraint 7 0.30283993e-01 0.30283993e-01 0.31436592e-01 0.29456856e-01
Constraint 8 -0.3744981 le-05 -0.3744981 le-05 0.15987511e-05 -0.53746877e-04
Constraint 9 0.27212971e+00 0.27212971e+00 0.27066684e+00 0.27244985e+00

Constraint 10 0.56927092e-05 0.56927092e-05 0.43177524e-05 0.81438920e-07
Constraint 11 -0.96850449e-07 -0.96850449e-07 -0.16186649e-05 0.44102639e-04
Constraint 12 0.39976221e+00 0.39976221e+00 0.39806980e+00 0.40069133e+00
Constraint 13 0.21027813e-05 0.21027813e-05 0.37553596e-06 0.19431579e-05
Constraint 14 0.20025045e+00 0.20025045e+00 0.19516227e+00 0.1977166 le+00
Constraint 15 -0.26375346e-04 -0.26375346e-04 -0. 11327343e-04 -0.90949470e-06
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Table D-4

Final Frequency Comparison

Nelson's Method Modal Expansion Finite Difference Semi-Analytic
MODE Frequency (hz) Frequency (hz) Frequency (hz) Frequency (hz)

1 0.2139277 0.2139277 0.2138897 0.2141207
2 0.2545999 0.2545999 0.2545997 0.2545992
3 0.4066455 0.4066455 0.4065966 0.4069065
4 0.4465441 0.4465441 0.4464045 0.5171821
5 0.5168197 0.5168197 0.5168045 0.4468667
6 0.6468926 0.6468926 0.6468151 0.6472891
7 0.7240045 0.7240045 0.7238836 0.7247891
8 0.8907723 0.8907723 0.8365525 0.8909553
9 0.8367811 0.8367811 0.8905662 0.8371138
10 1.1142572 1.1142572 0.9526950 0.9521853
11 0.9526105 0.9526105 1.1156629 1.1145569
12 1.1645244 1.1645244 1.1646685 1.1645293
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Appendix E

Algorithm Flowcharts

E.1 Mode Tracking Flowchart

E.2 Flowchart of Gibson's Method (CORC)

E.3 Flowchart of Modified CORC

E.4 Flowchart of MCORC's Extended Validity Tests

E.5 Numerical Example of MCORC
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E.1 Mode Tracking Algorithm

DEGMAT=F MODE TRACKING
CSWAP =F

MCSWAP=F ALGORITHM
SA=F (MDTRKG)

2
CHECK = 1,2,..., #Cols-1, #Cols

MCHECK -'CHECK

3

CORC=[1D]^(n-l)T*[M] ~n* [OAn

MCORC=CORC

4No 10-----------
USEMTH=B------ ` TK

OR CORC ...........

SEMTH=Ml

FiueES1 oeTakn lwhr

Flowcharts.......E-2 .



E.2 Gibson's Method (CORC)

The MDTRKG algorithm provides CORC with the mass-orthonormalized matrix,
CORC, and a vector CCHECK, which is just the order of the modes in the previous
iteration. As the modes in the previous iteration are assumed to be in the correct order,
the elements in CCHECK are sequential.

Steps 1&2: The loop counter is set to process each and every column of CORC
individually and the kth column is selected.

Step 3: An ordering vector (indexV) is initialized to represent the original order of the
column of numbers. At the outset indexV and CCHECK are equal. If after the mode
tracking algorithm is complete, these vectors are not equal, the ordering of the elements in
indexVwill indicate the mode swap that occurred.

Steps 4&5: IMSL routines as well as other routines written by the author are used to sort
the column in descending order by the magnitude of the absolute value of the elements.
The original order of the column is also sorted to track the subsequent permutation and
stored as indexV. Thus the row number (assigned to 'large') of the largest element will be
in the first slot of indexV, the next largest in the second slot, etc. This row number is the
mode which should match the current column number (k) being processed.

Steps 6&7: Initialization of variables used to determine if the mode has already been
assigned is processed. "kc" is a boolean, (short for "keep checking"), which forces the
routine to look in the next slot of indexV if the mode has already been assigned.

Steps 9-12: Since the index of the largest number is the first number in indexV, it is
assumed to correspond to the column currently being processed. It is therefore assigned
to that mode, which is tracked in CTRKR.

Steps 13-15: The previous elements of CTRKR are then checked to determine if that
mode had already been assigned. If so, the routine is forced to advance down to the next
element in indexV, which corresponds to the next largest element. This process continues
until all elements are assigned, and all columns processed.

The main subroutine, MCTRKG, then checks CTRKR against the mode order from the
previous iteration, held in CCHECK. If a mode swap is indicated, an IMSL routine is
used to permute both the eigenvectors matrix and eigenvalues vector.
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k-loop Se ute Select ktb Column

GIBSON'S METHO
3 (CORC)

indexV=1,2,. #C !ol-.1, #Col

Sort IendeVing
IndexVAcein

(Asc'ing) Order

5 IndexV in

Revers index Descending
Revese idexVOrder

6
i=O

kc=TRUE

KC 7 NL

Loopc=TRUE? REoR

.............. Y e

9
Inc(i)

Fidteidxlarge represet h ne
Findthe ndex10 *of the largest element in the

of the next lreindexV(i) original column vector
largest elem ent ............................

Advance Dow nx 11
_j CTRKR(k)=large
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E.3 Modified CORC

Steps 1&2: The main MDTRKG routine calls MCORC. Each element of the tracking
vector MCTRKR, which is analogous to CTRKR in Gibson's method, is assigned to -1.
This assignment will later serve as a flag indicating at least one mode is still unassigned.
As in most search algorithms, the largest element is assumed to be the first element of the
matrix, residing in slot [ 1,1].

Step 3: The matrix is searched for the largest element and its address.

Steps 4-7: If the row returned has already been assigned to a mode, a flag (DUPLCT) is
set. That element is then set to a value of zero, so it will not be found again on the
subsequent search for the largest number. DUPLCTthen serves to set a shared flag to
force the algorithm to repeat. These steps are included only as a safety check in case the
matrix has multiple numerical O's -- it should not normally be executed.

Step 11: This is the path executed if the row output from Step 3 has not been assigned to
a mode. The row indicates the mode while the column indicates where that mode falls
into place as compared to a perfectly diagonally dominant matrix. If the row and column
are the same, the largest element lies on the diagonal. Each column must assign one and
only one mode. To ensure that column will not be searched again, every element in the
column is set to zero. Also, because that mode has already been assigned, no other
element in the row of that matrix can represent a mode. Therefore, the row is also zeroed.
This additional step makes the routine more efficient, since it reduces the number of
potential re-assignments based on the inequality check in Step 3.

Steps 8-10: The algorithm interrogates MCTRKR to ensure all modes have been assigned.
A flag is set if there are unassigned modes, otherwise, the algorithm returns to the main
sub-routine, MDTRKG.

In MDTRKG, MCTRKR is compared to a sequential vector of numbers. If there is not a
1-1 correspondence between these two vectors, MCTRKR indicates at least one mode
swap has occurred, and the eval vector and evec matrix are permuted.
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1
MAIN MCORC

COR

(MAIN)

ell 2
.......... hicol=1

f KC hirow=1.............
Loop Irgnum=CORC2(ll)
............ MCTRKR(1,2 .... #Cols)=-l

C=FALSE

3
Sea ch .................

hirowCO C2 ----------------- bicol i
for 1W.

Largest ................

Value

4
hirow No

already assigned in
CTRKR9

Ye
4 

s

5
DUPLCT=TRUE

Zero entire column corresponding to hicol
UPLCT=TRUE9 Zero entire row corresponding to hirow

COUNTA=O
Yes

7
Zero entire row

corresponding to hirow

I-

8 N o - -- -- - ........... .. .. .........
All modes 10 KC......................
assigned in KC=TRUE Loop

CT 
...........

Yes

9
UTURN

Figure E-3: MCORC Flowchart
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E.4 MCORC Extended Validity Tests

Steps 1-2: The validity tests are entered and counters are initialized. DEGMA T is a
counter which will report that the matrix has a rank defect greater than 1.

Step 3, 14: If all elements are zero, the program is immediately aborted.

Step 4: If the matrix is still being interrogated and the matrix has not yet been determined
to be defective, the validity tests continue.

Steps 5-6: A counter is incremented every time the matrix is searched. The counter is
reinitialized only when a mode has been assigned in Step 11 of the main MCORC logic. If
the matrix has been searched more times than the number of elements, no mode will be
assigned except through the process of elimination.

Steps 7-8: The MCTRKR vector is interrogated to determine the number of modes
unassigned and the location of the last unassigned mode.

Steps 9-11, 15: If only one mode remains unassigned, it is determined through a process
of elimination and the remaining unassigned mode is assigned to the mode returned from
the previous step. If more than one mode remains unassigned, the matrix has a rank
defect greater than one, and the MCORC routine is aborted.
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MCTRR(1,2..,#ols) = -1
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E.5 Numerical Example

The following example demonstrates MCORC's methodology in detecting the 3-4 mode
swap between Iterations 1 and 2 when FRAME was equipped with finite difference
derivatives. Modes 7-12 were immediately assigned and the remaining active partition is
as follows:

1 2 3 4 5 6

1- -0.7663 0.5193 -0.2440 0.2586 -0.0091 -. 0993

2 0.3542 0.79513 0.3507 -0.1957 -0.2400 0.1069

3 0.0452 0.0101 0.5496 0.7203 0.3634 0.1425

4 -0.4005 -. 0727 0.3350 -0.5298 0.3634 0.5390

5 0.2744 0.2875 -0.3656 -0.1113 0.8043 -0.1427

6 -0.1792 -0.0519 -0.4880 -0.2674 0.1289 -0.79518

ýJ Modes 5 and 6 are assigned

"-0.7663 0.5193 -0.2440 0.2586 0 0

0.3542 0.79513 0.3507 -0.1957 0 0

0.0452 0.0101 0.5496 0.7203 0 0

-0.4005 -. 0727 0.3350 -0.5298 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Ji Modes l&2 are assigned

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0.5496 0.7203 0 0

0 0 0.3350 -0.5298 0 0

0 0 0 0 0 0

0 0 0 0 0 0

9'n 's Mode 4 correlates more

strongly with 0(-')'s Mode 3

"0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0.3350 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Finally, Mode 3 is assigned to Mode 4

Flowcharts E-9



Appendix F

ForTran 77 Programs

F.1 MDTRKG: This subroutine is called from MODES and uses Gibson's method
(CORC) and an improved version (MCORC) to check for mode swaps. MCORC is called
from within MDTRKG while CORC is resident within this main subroutine. Both mode
swapping methods are always executed but the results of MCORC are used by default.
The user may request a particular method be used. If the user inputs a faulty design which
leads to CORC being a singular matrix, MCORC may not complete nominally. Therefore,
a warning message is displayed and the routine automatically defaults to CORC. If a
mode swap is detected, IMSL routines are used to permute the eigenvalue and modal
matrices. MDTRKG is a passive routine only, and cannot effect the main optimization
routine. If a mode swap is detected and the search returned is feasible, MDTRKG will
permute the matrices and return them to the optimization routine.

F.2 MCORC: This subroutine is called by MDTRKG and checks the CORC matrix for
mode swaps. The routine does not sort as is done in Gibson's methodology but instead
actively searches the matrix for the largest elements and assigns them to the corresponding
mode by building a permutation vector. If that vector does not have a 1-1 correspondence
with a sequential tracking vector, a mode swap has occurred and the eigenvalue and modal
matrices are subsequently permuted according to that permutation vector.

F.3 EXPNSN: This subroutine uses the expansion method to determine eigenvector
sensitivity. It is called by SNSTVT, which has been modified to allow the user to pick by
which method eigenvector sensitivity is to be computed. The routine assumes all
eigenvectors have been calculated, but does not require all eigenvectors be controlled.
This subroutine must call DKMDVP to determine the term (K' - XM').

ForTran Programs F-1



SUBROUTINE MDTRKG(nrows,ncols,currmu,oldvec,temp,evec,eval)
C
C Called from modes.f
C
C This is 72 columns!!
C -----------------------------------------------------
C
C nrows #of rows =neq
C ncols # of cols = neval
C curnnu MA nUAn; passed as DCOR(MU)
C oldvec eigemnatrix of last iteration; passed as DCOR(P2OLDV)
C indexV :The vector of indices of CORC
C evec The eigenmatrix of the current iteration, i.e. U of MU
C eval [evallstiffnesslmassl
C cswap Logical; tells Gibson's CORC routine found a mode swap
C mcswap Logical; tells MCORC routine found a mode swap
C (m)check Used as a basis to determine if trackers found swap
C corc(O),2,3) phiA (n-1)T*MAn*phiA n; need 3 copies since both CORC
C and MCORC corrupt original as they track modes and
C one copy needed for sign check
C (m)ctrkr Vector to track mode swaps in MCORC and CORC
C degmat BOOLEAN, tells you if MCORC found degenerate matrix
C Used to switch to CORC if req'd
C
C

INTEGER MAXTRM
PARAMETER (MAXTRM=-20)

C
LOGICAL kc, cswap, mcswap, swap, degmat
EXTERNAL PN2MEM

C
INTEGER i~j,k,CSP,large,indexV(MAkXTRM), temp(MAXTRM), PN2M[EM,

+ check(MAXTRM), mdswap(MAXTRM), rnctrkr(MAXTRM),
+ mcheck(MAXTRMv), ipermu(M[AXTRMv), mctotl,ctotl,revsin

REAL*8 currmu(nrows,ncols), oldvec(nrows,ncols),
+ corc(M[AXTRM,MAX1TRM), corc2(M[AXTRM,M[AXTRM),
+ corc3(MAXTRM,MAXTRM)l,evec(nrows,ncols),eval(ncols,3)

C
C
C--INCLUDE CORE--------------------------------------------

INTEGER MEMDIM\, INT, RSP, RDP, CDP, KOR
PARAMETER (M[EMDIM\ = 512 000)
PARAMETER ( INT=0, RSP=l, RDP=2, CDP=4)
REAL COR( MEMDLM)
COM[PLEX CCOR( MEMDM[ / 2)
DOUBLE PRECISION DCOR(NMEMDIM / 2)
COMPLEX* 16 ZCOR( MEMDIM / 4)
EQUIVALENCE (KOR, COP, DCOR, CCOR, ZCOR)
COMMON /MvEMORY/ KOR( MEMDIM)
SAVE /MEMORY/

C
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C ** INITIALIZATION **

C
CALL MARK('MDTRKG begin')
cswap = .FALSE.
mcswap = .FALSE.
swap = .FALSE.
ctotl = 0
mctotl = 0
DO 30 i=l,ncols

check(i) = i
mcheck(i) = 1

30 CONTINUE
C
C
C ** Multiply the transpose of oldvec * mu using
C DMXTYF(NRA,NCA,A,LDA,NRB,NCB,B,LDB,NRC,NCC,C,LDC) (pg 1195) **

C
• WRITE(*,*)'Just before AATB, oldvec is'

* CALL DWRRRN('EVEC=>DCOR(P2OLDV)',nrows,ncols,
* + oldvec,nrows,0)

C
CALL DMXTYF(nrows, ncols, oldvec, nrows, nrows, ncols,

+ currmu, nrows, nrows, ncols, corc, MAXTRM)
CALL DWRRRN('uA(n-1)T*MAn*u From corcy',nrows,ncols,corc,MAXTRM,O)

C
CALL DCRGRG(nrows,corc,MAXTRM,corc2,MAXTRM)
CALL DCRGRG(nrows,corc,MAXTRM,corc3,MAXTRM)

C
C DSVRBP(N, RA, RB, IPERM) (pg. 1286) sorts by ascending order by 11 and
C returns permutation vector.
C NOTE: Don't need corc again so just re-assign as corc.
C NOTE: DSVRGP sorts in ASC order so need to reverse vector using revvec
C NOTE: Need to initalize indexV
C
C RUN MCORC first since more robust.
C

CALL MCORC(nrows,ncols,corc2,mctrkr,mcheck,MAXTRM,degmat)
DO 40 i=l,ncols

IF (mctrkr(i) .NE. check(i)) THEN
mctotl = mctotl+l
mcswap = .TRUE.

ENDIF
40 CONTINUE
C
C ** CORC **
C
C This for loop will examine each col of C (found by CORC) independently
C and sort in ASCENDING order. Then revvec will reverse order.
C

DO 50 k=l, ncols
C

DO 51 i=l, nrows
indexV(i) = i

51 CONTINUE
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CALL DSVRBP(nrows,corc(1,k),corc(1,k), indexV)
C

CALL REVVEC(nrows, indexV)
C
C The index represents the magnitudes
C of the original col. The first row should contain
C the original index of the highest magnitude. All subsequent
C elements also sorted so just keep stepping down the colmn.
C kc = keepgoing -- a boolean that says you tried to assign a
C subsequent mode to a mode that had previously been assigned
C

i=0
kc =.TRUE.
DO WHILE (kc)

i=i+l
IF (i .GT. nrows) THEN

kc = .FALSE.
ELSE

large=indexV(i)
temp(k) = large
kc = FALSE.
DO 70 j=l,k-1

IF (large .EQ. tempo)) THEN
kc = .TRUE.

ENDIF
70 CONTINUE

ENDIF
END DO

50 CONTINUE
C
C
C Now check for mode swaps by comparing check to temp;
C store results in mdswap => -1 is no swap,
C otherwise it swapped mode
C

DO 100 k=l,ncols
IF (temp(k) .EQ. check(k)) THEN

mdswap(k) = -I
ELSE

ctotl = ctotl+l
cswap = .TRUE.
mdswap(k) = temp(k)
CSP = PN2MEM('CSPVEC')

ENDIF
100 CONTINUE
C

IF (degmat) THEN
swap = cswap
WRITE(*,*)'Switching to CORC'
DO 160, i=l,ncols

ipennu(i) = temp(i)
160 CONTINUE
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ELSE
swap = mcswap
WRITE(*,*)'Using MCORC'
DO 170, i=l,ncols

ipermu(i) = mctrkr(i)
170 CONTINUE

ENDIF
C

WRITE(*,*)'mcswap =',mcswap
WRITE(*,*)'cswap = ',cswap
IF (mcswap OR. cswap) THEN

WRITE(*,*)'Mode Swap detected'
WRITE(*,*)'MCORC CORC'
DO 180 i=l,ncols

WRITE(*,*)mctrkr(i),' ',temp(i)
180 CONTINUE

WRITE(*,*)'MC# = ',mctotl,' C# = ',ctotl
WRITE(*,*)'CSP =',CSP

DO 200 j=CSP,CSP-1+12
WRITE(*,*)COR(j)

200 CONTINUE
C

ELSE
WRITE(*,*)'No mode swap detected'

ENDIF
C
C If MCORC (not CORC!) caught a modeswap, mcswap will be true and only then
C will a permutation of both evec and the (ncol,3) eval be permutated.
C Use DPERMA(nra,nca,a,lda,ipermu,ipath,aper,ldaper) (pg. 1276)
C Here a and aper are the same, i.e. evec and the permutated evec
C ipath is I for rows (for eval), 2 for cols (for evec)
C
C
C The following five lines are an interim convenient way to
C test Gibson against MCORC
C
* swap = cswap
* WRITE(*,*)'Trying only CORC'
* DO 183, i=l,ncols
* ipermu(i) = temp(i)
*183 CONTINUE

IF (swap) THEN

C ** permutate columns of evec **

CALL DPERMA(nrows,ncols,evec,nrows,ipermu,2,evec,nrows)
C
C ** permutate rows of eval **

CALL DPERMA(ncols,3,eval,ncols,ipermu, 1,eval,ncols)
ELSE

WRITE(*,*)'No mode swap detected'
ENDIF
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C CHECK evec sign
C

revsin=O0
DO 300 j=1, ucols

IF (corc3 (checkoj), ipermnuo)) .LT. 0) THEN
WRITE(*,*)'sign change in evec 'j
revsin--revsin+l
DO 3 10 i= 1, nrows

evec(i~j) = -evec(i~j)
310 CONTINUJE

ENDIF
300 CONTINUJE

WRITE(*, *)'revsin = ',revsin
C
C

CALL MARK('MDTRKG END-)
RETURN
END
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SUBROUTINE MCORC(nrows,ncols,corc2,mctrkr,mcheck,
+ MAXTRM, degmat)

C
C This is 72 columns:
C----------------------------------------------------
C This subroutine is a modified version of the CORC routine
C created by Gibson for the x-orthogonality check. This method,
C unlike the original CORC, is not order dependent and therefore
C more likely to detect a mode swap.
C
C This routine computes corc2=phi^(n-1)T*M^n*phi^n and searches
C the resulting matrix for its largest entry. It returns the
C corresponding row and column. The row of the largest entry
C corresponds to the mode. The algorithm places that row number
C into the same column of mctrk as the column returned. If
C there have been no mode swaps, the row and column number will
C be the same. Since that mode has now been designated, there is
C no reason to check that column anymore. Also, that mode can not be
C assigned again. Therefore, the routine zeros out that row and
C column.
C
C Inaccurate models may create degenerate matrices, (those with at
C least one col of O's). Because we actively zero out cols, this
C could lead to the alg. continuing to search a matrix of all O's.
C We filter out this contingency in three separate tests.
C 1) If the matrix we read in is all O's we immediately abort.
C 2) If we can track all but one column, we use the process of
C elimination to designate that last mode.
C 3) If we are left with more than one column of zeros, we
C gracefully abort.
C
C ** VARIABLES
C hirow/col row/col of the element with the largest magnitude
C lrgnum Magnitude of largest element
C MAXTRM : dummy var from corc; largest possible model size
C mctrkr : vector which tracks the mode swaps using MCORC
C If no swaps, each ith element of mctrkr will be i
C counta : Ensures no more searches than there are elements
C slot : The last slot in mctrkr to be filled by process
C of elimination
C used : A vector which tracks which modes have been used;
C Like the 'Used Letter Board" on Wheel of Fortune
C duplct : BOOLEAN that tells you the mode you want is taken
C kc keep checking; tells you mctrkr not yet filled
C mcheck The full used-letter board you'll reduce
C degmat BOOLEAN tells you if you had a corrupted matrix
C (i.e. more than one col of all zeros)
C **

C
C
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INTEGER MAXTRM
REAL*8 corc2(MAXTRM,MAXTRM), lrgnum
INTEGER ij,nrows,ncols, hicol, hirow, mctrkr(ncols),

+ mcheck(ncols), counta, nelmnt,used,slot
LOGICAL kc, duplct, degmat

C
C ** INITIALIZATION **

used = 0
degmat = .FALSE.
counta = 0
nelmnt = nrows*ncols
kc=.TRUE.

C
C ** Check for matrix of all zeros **

C
DO 10 i=l,nrows

DO 20, j=l,ncols
IF (corc2(ij) .NE. 0) THEN

kc = .FALSE.
ENDIF

20 CONTINUE
10 CONTINUE
C

IF (kc) THEN
degmat = .TRUE.
WRITE(*,*)'DEGENERATE MATRIX - all Os.'
WRITE(*,*)'MCORC will not work.'
GO TO 1000

ENDIF
C
* CALL DWRRRN('corc2 in boblng',nrows,ncols,corc2,MAXTRM,0)

DO 100j=l, ncols
mctrkr(j) = -1

100 CONTINUE
C

kc= .TRUE.
C

DO WHILE ((kc) .AND..NOT. (degmat))
counta = counta+1

* WRITE(*,*)'counta = ',counta
C
C ** Following IF should only be run if mctrkr not filled AND
C you've re-searched every element of the remaining matrix **

C
IF (counta .GT. nelmnt) THEN

DO 120 j=l,ncols
IF (mctrkr(j) .EQ. -1) THEN

used = used + 1
C ** Find slot that's not filled yet **

slot = j
* WRITE(*,*)'slot = ',slot

ENDIF
120 CONTINUE
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C
C ** ensure only I remaining slot to fill in mctrkr **

C ** Create the full used-letter board to pick from **

C
IF (used .EQ. 1) THEN

WRITE(*,*)'In bv, bv = ',used
DO 140 i=l,ncols

DO 150 j=l,ncols
C
C ** Find the slot that's not filled
C w/ a legal "letter" from board **
C

IF (mctrkr(i) .EQ. mcheck(j)) THEN
mcheck(j) = -2

ENDIF
150 CONTINME
140 CONTINUE
* X.JWRITE(*,*)'mctrkr ='
* DO 155 i=l,ncols
* WRITE(*,*)'mctrkr(',i,') =',i
*155 CONTINUE
* DO 156 i=l,ncols
* WRITE(*,*)'mcheck(',i,') =',i
*156 CONTINUE
C
C ** Put the remaining mode into
C the one unused slot **

C
DO 160 i=l,ncols

IF (mcheck(i) .NE. -2) THEN
mctrkr(slot) = i

ENDIF
160 CONTINUE

WRITE(*,*)'Had 1 column of zeros remaining'
WRITE(*,*)'Put Mode ',mctrkr(slot),

+ ' into slot ',slot, ' of mctrkr'
GOTO 1000

C
C ** more than one column of zeros **

C
ELSE

degmat =.TRUE.
WRITE(*,*)'DEGENERATE MATRIX - all Os.'
WRITpE(*,*)'MCORC will not work.'
GO TO 1000

ENDIF
ENDIF

C
C
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C ** Back to real tracking logic, above just tests for bad data **
C

hicol=1
hirow=1
lrgnum = DABS(corC2(hirow,hicol))

* VWRITE(*,*)'lrgnum just assigned to ',lrgnum
* WRITE(*,*)'ist assignment'
* WRITE(*,*)'hicol= ',hicol,' hi row= ',hirow,'
* + large = ',lrgnum
* WRITE(*,*)
* WRITE(*,*)'Just to check, corc2(1,1) =

* + ',DABS(corc2(1,1))
* WRITE(*,*)'AND Just to check, corc2(12,12) =',

* + DABS(corc2(12,12))

C
kc =.FALSE.
DO 200 i=l,nrows

DO 300 j=l,ncols
IF (DABS(corc2(ij)) .GT. lrgnum) THEN

lrgnum = DABS(corc2(ij))
hicol = j
hirow = i

* WRITE(*,*)'In Search:'
* WRITE(*,*)'hicol =',hicol,' hirow ',

* + hirow,' large = ',lrgnum

ENDIF
300 CONTINUE
200 CONTINUE
C
* WRITE(*,*)'mctrkr b4 eq -1 check'
* DO 255 i=l,ncols
* WRITE(*,*)mctrkr(i)

255 CONTINUE
duplct = .FALSE.
DO 280 i=l,ncols

C
C ** If mode taken, try again **

IF (hirow .EQ. mctrkr(i)) THEN
duplct =.TRUE.

ENDIF
C
280 CONTINUE

IF (duplct) THEN
C ** zero the element **

corc2(hirow,hicol) = 0
kc = .TRUE.

ELSE
mctrkr(hicol) = hirow
counta = 0

C ** zero the column **

DO 250 i=l, nrows
corc2(i,hicol) = 0

250 CONTINUE
ENDIF
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C
* CALL DWRRRN(corc2 in dup check',nrows,ncols,
* + corc2,MAXTRM,0)
* WRITE(*,*)'mctrkr'
* DO 258 i=l,ncols

* WRITE(*,*)mctrkr(i)
*258 CONTINUE

C
C ** Following asks if mctrkr is filled yet **

DO 400 j=1, ncols
IF (mctrkro) EQ. -1) THEN

kc =.TRUE.
ENDIF

400 CONTINUE
END DO

C
1000 CONTINUE
* WRITE(*,*)' FINAL mctrkr'
* DO 2000 i=l,ncols
* WRITE(*,*)mctrkr(i)

2000 CONTINUE
C

RETURN
END
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*DECK EXPNSN
* Last Modified: 12-Oct-94

SUBROUTINE EXPNSN (NRE, STIFF, LDK, KCOD, MASS, LDM, MCOD, PHIR,
+ NP, PHIG, NEQ, EIG, DEIG, NDP, MASNRM, DT,
+ KSTAR, FSTAR, V, MAPR2G, KEEP, STORE, F,
+ DPHIR, DPHI)

C

C The EXPNSN subroutine calculates eigenvector sensitivity
C according to Modal Expansion

C
C--INPUT
C
C NRE ...... Number of Reduced system Equations
C NEQ ...... Number of global system Equations
C STIFF .... Stiffness (symmetric banded) matrix, K
C LDK ...... Leading Dimension of K
C KCOD ..... Codiagonals in K
C MASS ..... Mass (symmetric banded) matrix, M
C LDM ...... Leading Dimension of M
C MCOD ..... Codiagonals in M
C PHIR ..... Matrix of eigenvectors (stored columnwise), Reduced DoFs
C P1HG ..... Matrix of eigenvectors, Global (unreduced) DoFs
C NP ....... Number of eigenvectors
C EIG ...... Eigenvectors
C DEIG ..... Eigenvector Gradient
C NDP ...... Number of Design Parameters
C DT ....... Derivative of generalized mass
C MASNRM... Mass orthonormalization (or max elem norm)
C MAPR2G... Map of Reduced to Global DoFs
C KEEP ..... Store DPHIR
C STORE .... Store F
C

INTEGER NRE, NEQ, LDK, KCOD, LDM, MCOD, NP, NDP, MAPR2G(NEQ)
LOGICAL MASNRM, KEEP, STORE
DOUBLE PRECISION STIFF(LDK,NRE), MASS(LDM,NRE), PHIR(NRE,NP),

+ PHIG(NEQNP), EIG( NP ), DEIG( NDP, NP),
+ DT(NDP,NP)

C
INTEGER ij,k
DOUBLE PRECISION NUM, DEN ,c(6,12)

C
C-OUTPUT
C
C KSTAR .... LHS matrix multiplier, K - EIG*M
C FSTAR ... RHS load vector, [DEIG*M - (K'-EIG*M') ]*PHIR
C V ........ Vector portion of DPHI due to other modes
C F ........ [LAMBDA'*M - (K'-LAMBDA*M')]*PHI
C DPHIJR .... Gradients of PHI in reduced coordinates
C DPHI ..... Gradients of PHI in global coordinates
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C
DOUBLE PRECISION KSTAR(NRE,*), FSTAR(NEQ,4), V(NEQ),

+ F(NRE,NP,NDP),
+ DPHIR(NRE,NP,NDP), DPHI(NEQ,NP,NDP)

C
C--Global variables
C
* INCLUDE '(CORE)'
C--INCLUDE CORE ---------------------------------------------------------

INTEGER MEMDIM, INT, RSP, RDP, KOR
PARAMETER ( MEMDIM = 512 000)
PARAMETER ( INT=0, RSP=1, RDP=2)
REAL COR(MEMDIM)
DOUBLE PRECISION DCOR( MEMDIM / 2)
EQUIVALENCE (KOR, COR, DCOR)
COMMON IMEMORY/ KOR( MEMDIM)
SAVE /MEMORY/

C-------------------------------------
C
C--Local variables
C
C C ........ Constant multiplier for current eigenvector
C I ........ Ith Design variable
C J ........ Jth eigenvector
C K ........ Max element of PHIj
C L ........ Equation Line # for reduction
C M ........ Loop index for design parameters of current element
C N ........ Nth section property for current element
C LDKS ..... Leading Dimension of KS
C NSP ...... Number of Section Properties for current element
C (if NSP<0, current element properties are not designed)
C PTDMP.... PHIjAT * M' * PHIj
C

INTEGER NSP
DOUBLE PRECISION PTDMP(4), init

C
C Pointers
C
C CSPT ..... CSP Table
C KS ....... KSTAR in Real Band storage mode
C IPVT ..... Pivot info to solve linear system as non-symmetric
C

INTEGER CSPT
C
C--External functions
C

DOUBLE PRECISION DDOT
INTEGER IDAMAX, IDAMIN, LK8MEM, PN2MEM
EXTERNAL IDAMAX, IDAMIN, LK8MEM, PN2MEM, DDOT, DVCAL
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C
C--BEGIN
C

CALL MARK('EXPNSN BEGIN')

CSPT = PN2MEM( 'CSPTBL')
init = 0.0

C
C
C i: outer loop counter for 6 controlled evecs
C k: middle loop counter which runs thru 12 evecs
C j: inner loop counter acting as a summer to scale evecs
C and add them in a running sum
C At the end of the j loop I will have ONE 30xl DPHI(i)/DA(k)
C At the end of the k loop I will have a 30x12 matrix with
C 1-12 k columns and 30 DOFS in the rows
C
C Fi is needed to pull the 1st column out of the 30x4 FSTAR

DO 100 i = 1, NP
DO 200 k=l, NDP

C *initialize runsum vector PROD*
CALL DSET(NEQ,init,DPHI(1,i,k), 1)
CALL DSET(NREinit,DPHIR(1,i,k), 1)

C
DO 300 j=1, NRE

C *DKMDVP rtns latter half of numerator,
C Fi = (K'-lambda(i)*M')*PHI(i) for i<>j
C or the phi(j)AT*M'*phi(j) if i=j*
C

CALL DKMDVP(k,CSPT,EIG(i),PI{IG(1,i),NEQ,NSP,FSTAR,PTDMP)

IF (i .NE. j) THEN
C

NUM = DDOT(NEQ,PHIG(1,j), 1,FSTAR, 1)
DEN - EIG(i) - EIG(j)
c(ij) = NUM/DEN

ELSE
c(ij) = -0.5*PTDMP(1)

ENDIF
C *Now have my c(ij) if i=j or i<>j
C Now dot it into PHI(j) and add
C it to running sum*
C

CALL DAXPY(NEQ,c(ij),PHIG(lj), 1,DPHI(1,i,k), 1)

C * Now do the same for reduced set*
CALL DAXPY(NRE,c(ij),PHIR(1,j), 1,DPHIR(l,i,k), 1)

300 CONTINUE
C
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C * At this point I have one vector each
C for the globals and the reduced set.
C That vector is derivative of PHI(i)
C wrt A single area*
C * The DPHI and DPHIR 3-D arrays are
C set up (NEQ,NP,NDP) or (NRE,NP,NDP)
C They are 30 (or 12) long, 6 wide, and
C 12 deep, or 30 by ibyk.
C

• CALL DCOPY(NEQ,PRODG, 1,DPHI(1,i,k), 1)

C * Now do the same for the reduced set
* CALL DCOPY(NRE,PRODR, 1,DPHIR(1,i,k), 1)

200 CONTINUE
100 CONTINUE

• DO 1000 i=1,6
• DO 2000 k=1l,12
* DO 3000 j=1,12
• HOLD(j,k) = DPHIR(j,i,k)
*3000 CONTINUE
*2000 CONTINUE
• WRITE(*,*)'MODE =',i

•* CALL DWRRRN('DPHI,dof/DA(k)', 12,12,HOLD, 12,0)
* 1000 CONTINUE

C
CALL MARK('EXPNSN END')
RETURN
END
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Appendix G

MATLAB Programs

STATS: This MATLAB subroutine is used to correlate the various eigenvector
derivatives. The derivative matrices are converted to text using an outside program and
loaded sequentially. Each mode is processed individually. In all runs, the finite difference
derivatives are taken as the primary true solution and the derivatives returned from
ASTROS taken as the secondary true solution. All analytical derivatives -- the original
and corrected derivatives from FRAME's implementation of Nelson's Method and the
derivatives calculated by modal expansion -- are compared to the true solutions by
manipulating the input names. Statistics are applied to each individual element and include
straight differences, relative differences, mean and standard deviation. In addition, the
routine determines sign correlation between the derivatives (where a '0' is assumed as
neither positive or negative). It also determines if the derivatives being tested fall within
25% and 50% respectively, of the true finite difference solution.

Note: Several other plotting and test programs (programs used to test logic before being
converted to ForTran 77), were written but were deemed of little utility to the thesis user.
These programs are available from the author, or from Capt R. Canfield at the AFIT
School of Engineering.
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STATS.m

if prmode=='p'
print

elseif prmode='pg'
print -dps cnstrnt2

else
pause

end

for modenumber-1 :6

if modenumber-
load fdl .txt
load ancl.txt
load astl.txt
fd=fd 1;)
ana--anc 1;
ast~astl;

elseif modenumber-2
load fd2.txt
load anc2.txt
load ast2.txt
fd=fd2;
ana7anc2;
ast=ast2;

elseif modenumber-3
load fd3 .txt
load anc3 .txt
load ast3.txt
fd=fd3;-
ana7-anc3;
ast=ast3;

elseif modenumber-4
load fd4.txt
load anc4.txt
load ast4.txt
fd=fd4;
ana--anc4;
ast=ast4;,
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elseif modenumber--5
load fd5 .txt
load anc5.txt
load ast5 .txt
fd=fd 5 -
ana-anc5;
ast~ast5;

else modenumber-6
load fd6.txt
load anc6.txt
load ast6.txt
fd=fd6;
ana7anc6;
ast~ast6,*

end;

% BEGIN entire logic for each modal data set

disp('MODE is')
modenumber
disp(' ')
disp(' ')

disp('Multiplying ASTROS OUTPUT by 0. 10 for Scaling')
disp('')
disp('Scaling all matrices by 10e6 to liberate digits')

ast=ast* 1000000
ana--ana* 1000000
fd= fd * 1000000

disp('MODE is')
modenumber
disp('')
disp(' ')

absfd~abs(fd);-
absast~abs(ast);
absana--abs(ana),;
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notal13 0;
notanaandast =0;

notastandfd = 0;
notanaandfd =0;

ananpoteqto-ast-and fd =0;-

numanazeros0O;
numastzeros0;-
numfdzeros =0;-

for i=1: 12
for j=1: 12
if ana(i~j) < 0

signana(i~j) = 200;-
elseif ana(i~j) > 0

signana(i~j) 100;Y
else

signana(i~j) =300;

numanazeros =numanazeros+1;

end

if ast(i~j) < 0
signast(i~j) 20;-

elseif ast(i~j) > 0
signast(i,j) =10;-

else
signast(i~j) =30;

numastzeros = numastzeros+1;,
end

if fd(i~j) < 0
signfd(i~j) = 2;

elseif fd(i~j) > 0
signfd(ij) = 1;

else
signfd(i~j) = 3;

numfdzeros = numfdzeros±1;
end

signcomp(i~j) = signana(i~j)+signast(i~j)+sigflfd(iji),

end;,
end;
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for i-1: 12
for j=1: 12
if ((signana(i~j)/1 00) -(signast(i~j)/1 0))

if ((signana(i~j)/1 00) signfd(i~j))
if ((signast(i~j)/1 0) signfd(i~j))

nota113 = notall3+1;
end

end
end
if ((signana(i~j)/1 00) -~ (signast(i~j)/ 10))

notanaandast = notanaandast+1;
end
if ((signana(i~j)/1 00) ý-signfd(i~j))

notanaandfd =notanaandfd + 1;
end
if ((signast(i~j)/1 0) ~-=signfd(i~j))

notastandfd notastandfd + 1;
end
if ((signana(i~j)/1 00) ý-(signast(i~j)/1 0))
if ((signana(i~j)I1 00) signfd(i~j))

if ((signast(i~j)/ 10) signfd(i~j))
ana -noteqto ast and-fd = ana~noteqto_ast_and_fd+ 1;

end
end

end
end;

end;,

astmninusfd =ast-fd;

anaminusfd =ana-fd;

astmninusfddivfd ((ast-fd).Ifd)* 100;
anaminusfddivfd ((ana-fd). /fd) *100;

disp('ASTROS - FD')
astminusfd

disp('MODE is')
modenumber
disp(' ')
disp('')
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disp(' '

disp('Max/INlin Difference btwn ASTROS and FD - made IINF=O')

temp=abs(astminusfd(:.));
for i= 1: size(temp)
if ((temp(i) == Inf) I (temp(i) == -Irf))

temp(i)=O,;
end

end

maxastm =max(temp)

minastm =min(temp)

disp(hlOO*(ASTROS - FD)/FD')
astminusfddivfd
disp(QMaxlNfin Relative Percentage btwn ASTROS and FD')

temp=abs(astminusfddivfd(:));
for i= 1: size(temp)
if ((temp(i) == Inf) I (temp(i) ==-Inf))

temp(i)=O,;
end

end
maxastr =max(temp)

minastr min(temp)
disp(' ')

temp=astminusfddivfd(:);
for i= 1: size(temp)

if ((temp(i) ==Inf) I (temp(i) ==-Inf))

temp(i) = 0;
end

end

mean -astr = mean(temp)
std-astr = std(temp)

disp('MODE is')
modenumber
disp('')
disp(' ')
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disp(''
disp('ANALYTJCAL - FD')
anamninusfd
disp(' ')
disp('MaxlMin Difference btwn ANALYTICAL and FD')

temnp=abs(anaminusfd(:));-
for i= 1: size(temp)
if ((temnp(i) =- In) I (temnp(i) ==-Inf))

temp(i)=O;
end

end
maxanam = max(temp)
mninanam = min(temp)

disp('MODE is')
modenumber
disp('')
disp(' ')

disp(ulOO*(ANAL - FD)/FD')
anamninusfdldivfdl
disp('Maxlfin Relative Percentage btwn ANAL and FD')

temnp=abs(anamninusfddivfd(:));,
for i= 1: size(temnp)
if ((temp(i) ==In) I (temnp(i) ==-Inf))

temp(i)=O;
end

end
maxanar =max(temp)

minanar =min(temp)

disp('')

temnp=anamninusfddivfd(:);
for i=1: size(temp)

if ((temnp(i) == Inf) I (temnp(i) ==-Inf))

temnp(i) =0;

end
end

mean anar =mean(temp)

std-anar = std(temp)

disp('MODE is')
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modenumber
disp('')
disp(' ')

disp(" )
disp(' Sign Comparison')
disp('')
disp('ANA is in 100s Column; AST in 10s Col; FD in Is Col')
disp('3 :Zero; 2:Negative; 1 :Positive')
signcomp

disp('All 3 signs are different:')
notall3
disp('The sign of ANAL and ASTROS is different')
notanaandast
disp('The sign of ANAL and FD is different')
notanaandfd
disp('The sign of ASTROS and FD is different')
notastandfd
disp('The sign of ANAL is different when the sign of)
disp('ASTROS and FD is the same')
ana -noteqto-ast-and-fd
disp(' ')
disp('Number of analytical zeros')
numanazeros
disp(' ')
disp(' ')
disp('Number of ASTROS zeros')
numastzeros
disp(' ')
disp(' ')
disp('Number of FD zeros')
numfdzeros
disp(' ')
disp('MODE is')
modenumber
disp(' ')
disp(' ')

% Check for analytical correlation

anatimes2 = ana*2;
a--abs(anatimes2);
low =abs(fd)*O.75;
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hi =abs(fd)*1.25;
numhits -0;
for i=1: 12
for j=1: 12

if ((a(i~j) >= low(i~j)) I(a(i~j) <= hi(i~j)))
c(i,j) = '0';
numnhits = numnhits+ I

else
c(i,j) =X

end
end

end
disp(' ')
disp('0 => anal*2 is within 25% of FD; X: it is not')
C

disp('Number hits in range '

numnhits

% Check if correlated within 50%

low = abs(fd)* 0.5;
hi =abs(fd) *1. 5
nurnhits=O;
for i=1: 12

for j=1:12
if ((a(i~j) >= low(i~j)) I (a(i~j) <= hi(i~j)))

c(i~j) = '0';
numnhits =numnhits+l;

else
c(i,j) =X

end
end

end

disp(' )
disp('0 => anal*2 is within 50% of FD; X it is not')
c
disp('Numnber hits in range )

numnhits

disp(' ')
disp(' ')
end; % the modeswap, loop
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Appendix H

H.1 Plots of first ten modes of COFS model as designed for eventual input to FRAME.
Orbiter stick model has been removed but DRA remains. All lumped masses are active
and the plates are modeled as very stiff beams. Defunct modes are replaced with 3rd
bending modes as one would expect.

H-i: 1st Bending in YZ Plane

H-2: 1st Bending in XZ Plane

H-3: 1 st Torsion (some breathing due to rigid beams)

H-4: 2nd Bending in YZ Plane

H-5: 2nd Bending in XZ Plane

H-6: 3rd Bending in YZ Plane

H-7: 3rd Bending in XZ Plane

H-8: 2nd Torsion (significantly more breathing than in IT)

H-9: 4th Bending in YZ Plane

H-10: 4th Bending in XZ Plane
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Figure H-1: COFS Mode 1 (1st YZ Bending)

Figure H-2: COFS Mode 2 (1st XZ Bending)
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Figure H-3: COFS Mode 3 (1st Torsion)

Figure H-4: COFS Mode 4 (2nd YZ Bending)
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Figure H-5: COFS Mode 5 (2nd XZ Bending)

4-fr

Figure H-6: COFS Mode 6 (3rd YZ Bending)
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Fiizure H-7: COPS Mode 7 (Ord XZ Bending)

Figure H-8: COPS Mode 8 (2nd Torsion)
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4*ý

Figure H-9: COPS Mode 9 (4th YZ Bending)
4r4

-spy

Figure H-10: COFS Mode 10 (4th XZ Bending)

COFS Modes H-6



Biblio2raphy

1. Bernard, Michael L. and Allen J. Bronowicki. "Modal Expansion Method for
Eigensensitivity with Repeated Roots," AIAA Journal, Vol. 32, No. 7:1500-1506
(July 1994).

2. Canfield, Robert A. Associate Professor of Aerospace Engineering, Air Force
Institute of Technology, Wright-Patterson AFB, Ohio. Personal Lecture on Semi-
Analytic Derivatives, 10 Jul 1994.

3. Canfield, Robert A. Integrated Structural Design, Vibration Control, and
Aeroelastic Tailoring by Multiobjective Optimization. PhD Dissertation. Virginia
Polytechnic Institute and State University, Blacksburg, Virginia, 1992.

4. Colladay, Raymond S. Office of Aeronautics & Space Technology Notice: Control
of Flexible Structures (COFS) Technology Program. Washington D.C.: National
Aeronautics and Space Administration, 1986.

5. Craig Jr., Roy R. Structual Dynamics: An Introduction to Computer Methods.
New York: John Wiley and Sons, 1981.

6. Dailey, R. Lane. "Eigenvector Derivatives with Repeated Eigenvalues," AIAA
Journal, Vol. 27, No. 4: 486-491, Apr 1989.

7. Eldred, M. S., V.B. Venkayya, and W.J. Anderson. "Mode Tracking Issues in
Structural Optimization," unpublished technical paper, University of Michigan, July
1994.

8. Eldred, M.S., P.B. Lerner, and W.J. Anderson. "Higher Order Eigenpair
Pertubations," AIAA Journal, Vol. 30, No. 7:1870-1876 (July 1992).

9. Fox, R.L. and M. P. Kapoor. "Rates of Change of Eigenvalues and Eigenvectors,"
AIAA Journal, Vol. 6, No. 12: 2426-2429 (December 1968).

10. Gibson, Warren C. ASTROS-ID: Software for System Identification Using
Mathematical Progamming. Contract C-F33615-90-C-321 1. Flight Dynamics
Directorate, Wright Laboratory, Wright Patterson AFB, September 1992.

11. Grandhi, R.V. and V.B. Venkayya. "Structural Optimization with Frequency
Constraints," AIAA Journal, Vol. 26, No. 7: 858-866 (July 1988).

Bibliography b-1



12. Grandhi, Ramana V. "Structural and Control Optimization of Space Structures,"
Computers and Structures, Vol. 31, No. 2:139-150 (1989).

13. Hanks, B. R. "Control of Flexible Structures (COFS) Flight Experiment
Background and Description," Large Space Antenna Systems Technology 1984.
893-902. December 1984.

14. Horta, Lucas G., Joanne L. Walsh, and Garnett C. Horner, "Analysis and
Simulation of the MAST (COFS-I Flight Hardware)," First NASA/DoD
Control/Structures Technology Conference. 515-532. November 1986.

15. IMSL, Inc. (1991). IMSL Math/Library ForTran Subroutines for Mathematical
Applications. IMSL Problem-Solving Software Systems, Houston.

16. Khot, N.S. "An Integrated Approach to the Minimum Weight and Optimum
Design of Space Structures," Large Space Structures: Dynamics and Control. 355-
363. New York: Springer-Verlag, 1988.

17. Less Michael C. and Susan Manual. CADS - A Computer Aided Design System
Volume II - User's Guide. El Segunda: Rockwell International Inc., 1985.

18. Liebst, Bradley S. "Simultaneous Optimization of Structural Damping and Active
Control." Department of Aeronautics and Astronautics, Air Force Institute of
Technology, Wright-Patterson AFB.

19. Liebst, Bradley S. Lecture, MECH 722, Control of Flexible Spacecraft. School of
Engineering, Air Force Institute of Technology, Wright-Patterson AFB OH, Spring
Quarter 1994.

20. Meirovitch, Leonard. Methods of Analytical Dynamics. New York: McGraw-Hill,
1970.

21. Mills-Curran, William C. "Calculation of Eigenvector Derivatives for Structures
with Repeated Frequencies," AIAA Journal, Vol. 26, No. 7: 867-871 (Jul 1988).

22. Neil, D.J, E. H. Johnson, and R. Canfield. "ASTROS - A Multidisciplinary
Automated Structural Design Tool," Journal of Aircraft, Vol. 27, No. 12: 1021-
1027 (Dec 1990).

23. Nelson, Richard B. "Simplified Calculation of Eigenvector Derivatives," AIAA
Journal, Vol. 14, No. 9:1201-1205 (Sep 1976).

Bibliography b-2



24. Ojalvo, I.U. "Gradients for Large Structural Models with Repeated Frequencies,"
Aerospace Technology Conference and Exposition, Society of Automotive
Engineers. 1-8. Pennsylvania: Society of Automobile Engineers, Inc., 1986.

25. Oz, H., and Khot, N.S., "Structure-Control System Optimization with Fundamental
Efficiency Constraint," Proceedings of of the 8th VPI&SU Symposium. 159-169.

Virginia: Virginia Polytechnic Institute and State University, 1992.

26. Strang, Gilbert. Linear Algebra and Its Applications (Third Edition). Fort Worth:
Harcourt Brace Jovanivich College Publishers, 1988.

27. Structural Dynamics Research Corporation (1990). I-DEAS System Dynamics
AnalysisTM User's Guide. SDRC Software Products Marketing Division, Milford.

28. Strunce, Robert R. ACOSS4 (Active Control of Space Structures) Theory
Appendix. Contract F30602-78-C-0268. NewYork: The Charles Stark Draper
Laboratory, Inc., June 1980.

29. Talcott, Ronald C. and John W. Shipley. "Description of the MAST Flight
System," NASA/DoD Control Structures Interaction Technology 1986. 253-263.
November 1986.

30. Ting, T. "An Automated Mode Tracking Strategy," AIAA-93-1414-CP: 970-976.

31. Vanderplaats, Garret N. Numerical Optimization Techniques for Engineering
Design. New York: Mc-Graw Hill, Inc., 1984.

32. Walsh, Joanne L. "60 Meter Flight Truss. EAL Input Stack and Output File for

COFS1 Model." (Program Output). May 1985.

33. Walsh, Joanne L. "Optimization Procedures to Control the Coupling of Vibration
Modes in Flexible Space Structures," AIAAIASME/ASCE/AHS 28th Structures,
Structural Dynamics and Materials Conference. 1-29. Virginia: Langley Research
Center, April 1987.

Bibliography b-3



Vita

Robert Costa Jr. was born on 3 February 1965 in South Dartmouth,

Massachusetts. Bob earned a regular commission through the AFROTC program at

Boston University in 1987, where he received his Bachelor of Science Degree in

Aeronautical Engineering. He declined an invitation to pursue his Master's Degree on a

teaching fellowship at BU, and instead entered active duty as a 2nd Lieutenant at Falcon

AFB in Jan 88.

Bob's first assignment was as an operations requirements officer for 2d Space

Wing (now the 50th Operations Group) where he prioritized resources for

AFSPACECOM's satellite tracking network. He then transferred to the 3rd Space

Operations Squadron at Falcon where he served as a crew commander for the Defense

Satellite Communications System Phase III (DSCS III) satellite program. Bob also served

as the lead DSCS III vehicle engineer and as Chief, DSCS III Evaluations. After 5 1/2

years, he left Falcon AFB to pursue a Master of Science Degree in Astronautical

Engineering at the Air Force Institute of Technology at Wright-Patterson AFB.

Bob married Miss Kimberly A. Pelletier of Caribou, Maine in January 1992. They

have no children.

V-1


