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AFIT/GEO/ENG/94D-03

Abstract

This research delves into the area of image enhancement for the visually impaired.

Binocular macular degeneration, a visual impairment, affects many Americans; since this

condition could not be corrected with conventional glasses, the literature suggested using an

enhancement system which used a pre-emphasis algorithm to enhance the input image for

output to the observer. The work of Dr. Eli Peli, a pioneer in the field of image enhancement,

is examined and reproduced. Since his work concentrated mainly on frequency analysis of

images, the bulk of this research involves using discrete wavelet analysis to augment that work.

A biorthogonal wavelet set is used to enhance images. That same wavelet set is used to provide

a simulation of a person's perception of an image based upon that person's contrast sensitivity

function. The wavelet enhancement follows Dr. Peli's method of enhancement using a

modified pre-emphasis filter. The wavelet enhancement results are similar to that technique,

with the most notable difference being that wavelet enhancements tend to accentuate the

horizontal and vertical details of the image more than the spatial frequency concentric filter

techniques outlined by Peli and others. The perception simulations use wavelet analysis and

are based on the work accomplished by Peli concerning "local band-limited contrast," with

the frequency analysis of that work giving way to a wavelet analysis; the results here are

significantly different than those results seen in the Peli simulation. A method to enhance

images based on suprathreshold characteristics of the observer is outlined. Methods in the past

have concentrated on contrast threshold analysis, so the suprathreshold method of enhancement

is the next logical step. A method for optimizing localized image enhancement is presented.

This method has been used to increase the resolution for pilots viewing virtual environments

and could take advantage of the existing retinal tracking hardware and software already in

existence to better enhance images for the visually impaired.
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Image Perception Wavelet Simulation and Enhancement for the Visually

Impaired

I. Introduction

This research focused on enhancing images for persons suffering from binocular macular

degeneration, or loss of vision in the foveal area of both eyes. The macula lutea contains the

highest concentration of cones (nerve endings giving rise to color vision) on the retina; the

fovea lies at the center of the macula lutea where the lens focuses incoming light, and a

person's visual acuity is directly correlated to the condition of the cells in this area. Persons

suffering from central scotoma (darkness in the center of the eye) due to cell damage can have

difficulty reading text and recognizing faces. Different degrees of macular damage require

different visual enhancement techniques so people with low vision due to central scotoma can

regain some of their original visual ability.

Conventional glasses are most useful if a person's visual impairment is due to aberrations

of the lens of the eye; therefore, if people suffering from central scotoma are to be helped, a

different method of correction must be made available. Johns-Hopkins is currently testing a

new device known as the Low Vision Enhancement System (LVES, pronounced Elvis) which

consists of a pair of binocular cameras, a single magnifying camera, and two overlapping LCD

screens to present a virtual, enhanced world to a low-vision patient in the hopes that computer

digital enhancement may improve the patient's ability to recognize faces and read text.

The largest part of this thesis effort concentrated on helping the visually impaired with

two new approaches, both using a biorthogonal wavelet set. First, the wavelet decomposition

detail coefficients were manipulated based on a viewer's contrast sensitivity function in order

to gain insight into what is actually perceived by a patient when viewing an image. The choice

of wavelets as a human perception diagnostic tool followed from the work of Wang (35) in
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which he modeled human auditory perception using a wavelet basis set. The premise that

human corticle cells exhibit some of the characteristics of a wavelet processor is supported

by the work of Jones and Palmer (13) concerning modelling of simple receptive fields in the

cortex of cats. Second, the effects of boosting certain detail coefficients in a given image were

explored in the hope that this manipulation could be beneficial to a low-vision viewer.

A new method using suprathreshold characteristics of a patient for enhancement was

also outlined as was using only the information in an image in the area of interest to the

observer for enhancement.

1.1 Background

Image enhancement for the visually impaired has been studied since 1984 when Dr.

Eli Peli (26) conjectured that digital techniques could be used to improve face recognition

ability. His subsequent research explored ways to enhance facial images using digital image

processing, and he used frequency analysis as his primary tool for image manipulation.

Wavelets have been used extensively as a method of extracting information contained in

images (4, 14, 17, 18, 29). Wavelet decompositions are analogous to (but should not be

confused with) frequency filter analysis and their implementation during image processing

parallels the analysis done by Peli concerning both image enhancement and human perception

of images.

1.2 Problem Statement

Investigate frequency and wavelet analysis in conjunction with tested individual per-

ception parameters to simulate the view of an image to a person with macular degeneration

and to enhance images to be presented to persons with low vision due to binocular macular

degeneration.
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1.3 Research Questions

Does wavelet analysis lend itself to a better understanding of how people with visual

defects perceive images? Can discrete wavelet analysis be used for effective image enhance-

ment?

1.4 Standards

Dr. Eli Peli pioneered the idea of using digital image processing to enhance images for

viewers with visual defects (26). He conjectured these enhancements would allow low-vision

viewers to more readily discriminate details about their visual environment, and that in turn

would improve their ability to recognize faces. He also provided the concept of "band-limited

contrast" which described the contrast in a given image locally and allowed experimenters

to simulate what a person with measured visual parameters might observe when looking at

an image. He observed the effects of various enhancement techniques (outlined in Chapter

II) and initiated testing of two techniques (adaptive filtering and adaptive thresholding) on

patients with low vision. He and others attempted to tune the image enhancement for a specific

patient by using the contrast sensitivity function of that patient as the guide for enhancement.

Their enhancements were applied to the entire image.

1.5 Scope

This research first investigates and reproduces the simulation of image perception based

on Frequency analysis presented by Peli (23, 19). With those simulations reproduced, the

discrete wavelet transform is used in an analogous manner to simulate human perception.

Images are enhanced using techniques established by Peli (26, 22, 20, 24, 21, 7) and Law-

ton (15) and then compared to images enhanced using discrete wavelet analysis to parallel the

aforementioned work by direct manipulation of the decomposition detail coefficients rather

than the manipulation of the spatial frequency spectrum. After analyzing this information, a

method of enhancement based on measured suprathreshold characteristics of an observer is

3



suggested. Finally, recommendations are made on the use of a retinal tracking device now

available for enhancement.

1.6 Methodology

Since this thesis was the first at AFIT to be concerned with image enhancement for

the visually impaired, the first step was to discover what work had been done in that area.

A literature search revealed the bulk of the research belonged to Dr. Eli Peli of the Eye

Research Institute. First, his visual degradation models simulating central scotoma (19)

were reproduced. Second, with these human perception simulations duplicated, Peli's face

enhancement techniques (26, 22, 20, 24, 21, 7) and Lawton's letter enhancement techniques

(15) (as applied to faces) were reproduced. Third, using Peli's work as a foundation, a new

model was developed using a biorthogonal wavelet set to simulate image perception of a

person with a given contrast sensitivity function. Fourth, that same biorthogonal wavelet set

was used to enhance images based on a given person's visual perception. Fifth, a method was

devised to enhance an image using information based on not only measured contrast threshold

characteristics of an observer (as was done in the past), but also on measured suprathreshold

characteristics of the patient combined with the rms contrast of the image being enhanced.

Sixth, a scheme for enhancing only the area where the patient is looking using a retinal tracking

device is outlined. Wavelets have never been used in the context of benefiting persons suffering

from low vision. The bulk of this research explored the value of wavelets as enhancement

tools, and also the validity of using wavelet analysis to simulate a person's vision based on

that person's measured contrast threshold perception characteristics.

1.7 Overview of Thesis

Chapter 2 provides a background of digital image enhancement methods and results to

date, as well as a review of practical application of wavelet analysis of images. Chapter 3 covers

various methodologies used to enhance images and simulate visual perception. Chapter 4

4



discusses the results of these previous experiments. Chapter 5 presents concluding arguments

and work which could be done to further the research in this area.
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H. Literature Review

2.1 Introduction

In 1972, Stockham investigated some of the mechanics of how visual information is

processed in humans (32). In that paper, he explored how the human visual system (HVS)

processes visual information and pointed out that our view of the world is not the actual world,

but instead a simulation seemingly designed to maximize the amount of useful information

about the scene being viewed. Ginsburg's 1978 dissertation concentrated on explaining the

HVS in terms of filtering characteristics alone (8). There, he conjectured that the HVS could

be modelled as octave bandwidth spatial filters with varying orientations. If, in fact, the HVS

does behave as a filter bank, then measurement of the frequency response of the system would

be the natural first step in any subsequent analysis of human perception.

Jones and Palmer demonstrated that invasive types of measurements are feasible when

analyzing cats (12), but invasive techniques are not usually possible with human subjects.

Contrast sensitivity measurements describe the minimum contrasts necessary for a tested

subject to perceive a set of given spatial frequencies. These measurements allow us (the

experimenters) to non-invasively glimpse what may be perceived by another person. Since this

Thesis concerns itself with image enhancement for low-vision patients suffering from binocular

macular degeneration, knowledge about how these people perceive their environment could

be used to make their world more recognizable. Although presenting the world through an

electronic headset would not be the same as seeing with perfect eyes, Stockham already pointed

out that natural human visual perception is in fact the output of a complex system which uses,

at a minimum, compression and edge enhancement (32); therefore, added processing is not as

unnatural as it may at first appear.

To set the stage for an explanation of this research, a simple overview of the human

visual system is presented in the next section.
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2.2 Human Visual System

A diagram of the human eye is shown in figure 1. Light enters through the cornea and

DIAGPAM OF EYE

ho ot layer

Figure 1. Human eye (30).

pupil, gets focused by the lens, traverses the vitreous humor, and finally strikes the retina.

The area of the retina containing the highest concentration of cones is known as the macula

lutea, at the center of which is a pit known as the fovea where the lens of the eye normally

converges the incoming light. The relationship between the fovea and the macula lutea is

shown in figure 2. The retina is composed of many layers of preprocessing cells, the last layer

being the actual nerve endings. The multi-layer structure of the retina is shown in figure 3.

Upon receiving the signal, the photo-receptor cells send the signal through the optic nerve

to the area of the brain responsible for visual processing. The optical pathway is shown in

figure 4.

This research concentrates on enhancing images so that they are more recognizable for

people who have damage in the area of the macula lutea.
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j Fovea

Figure 2. Relationship between macula lutea and fovea.

RECEPTOR CELLS

* AMACRINE CELLS

GANGLION CELLS

OUTPUT (NEURAL IhAAGE) FBR

Figure 3. Structure of the retina(36).
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Sgeniculate
nucleus
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Optic radiation -

LEFT HEMISPHERE

Primary visual con"e

Figure 4. Optical pathway (39).

2.3 Artificial Viewing Environment

For any enhancement techniques to be practical in day-to-day applications of face

recognition, a device must be employed which allows the user to have a clear view of the

algorithm output. The obvious solution is for the subject to carry an enhancement system

with at least three main components: an input camera, an enhancement computer, and an

output screen or screens. One such device, the Low Vision Enhancement System (LVES,

pronounced "Elvis") is currently being employed by Johns-Hopkins University. Figure 5

displays this device. It consists of three input cameras, two for binocular vision and one for

magnification, and two miniature LCD output screens for the subject to view. Images are input

by the cameras through-an algorithm to be pre-processed in the hope that the subject will be

able to more easily discern his environment.

In his 1992 paper concerning limitations of enhancement systems (21), Peli pointed

out that since artificial displays have a finite dynamic range, if certain frequency components

were amplified and then added back into the image these higher intensity values could exceed

9



.~ ... .i .

Figure 5. Low Vision Enhancement System (LVES) used as the input and output of an
enhancement system.

the dynamic range of the display. This fact, perhaps considered a limitation, has been used

to advantage in some of Peli's enhancement techniques. If the image was simply scaled to

compensate, a signal amplitude loss occurred at all frequencies.

Also, if a display was utilized in a head-mounted device and robbed the patient of

peripheral vision, vestibular problems could occur as a result of the magnification function

associated with such a device (21). One solution to this could be to use a headset display that

lay above the subject's normal field of view, one that could be referenced at will and would

not block the subjects peripheral cues.

2.4 Measurement of Contrast Sensitivity

A subject's visual contrast threshold at a specific spatial frequency is the measure of the

minimum contrast necessary for that subject to perceive a sinusoidal grating at that frequency.

The contrast sensitivity curve is the inverse of this contrast threshold curve, and is a measure

of how sensitive or receptive the subjects visual system is to a given frequency at threshold

contrast.

10



Contrast in digital, gray-scale images is used to describe the relationships between pixel

values in that image. The standard measure of contrast for a sinusoidal grating, an example

of which is shown in figure 6, is

Lmax - Lmin
C -Lmax + Lmin' <C_ 1

where Lmax is the maximum pixel value of the sinusoid and Lmin is the minimum pixel value

of the sinusoid, usually oscillating about some mean, DC level.

Figure 6. Left: sinusoidal grating with contrast C=-l, Right: cross section of sinusoidal
grating.

The Fourier spectrum of this stimulus was determined by three factors: the DC value

of the stimulus (usually discarded by the experimenter since the area of interest was in the AC

frequency spectrum), the frequency of the sinusoid (which transforms to a delta function at the

frequency of interest), and the type of boundary surrounding the sinusoid (which determines

what the frequency domain delta function will be convolved with). If a sinusoidal grating with

frequency 8 cycles per image were surrounded by a background with intensity at the DC value

of the grating, and the sinusoid's boundaries were formed by straight lines in the form of a

box around the stimulus, the resulting frequency response would be as shown in figure 7. This

indicates that the measurement of the response of the subject to this stimulus sheds light on the

processing of the non-zero areas in the graph on the right in figure 7. To concentrate the area

of interest more to the frequencies around 8 cycles per image, a sinusoid modulated by a two

11



x 10'
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fICyes per image 0 0

Cyces per image

Figure 7. Left: boxed sinusoidal grating with contrast C=1. Right: closeup of frequency
spectrum to include the area of interest, here 8 cycles per image.

dimensional Gaussian rather than a two dimensional rect function is sometimes used (25, 3).

The result of this operation is shown in figure 8.

2.4.1 The staircase-method in psychophysics. When looking for a psychometric

threshold, such as the minimum amplitude of a sinusoidal grating at a specific spatial frequency

so that the grating is seen by a subject, Cornsweet argued that the staircase-method provides a

powerful and efficient estimation tool (6). For the above example, a subject would be presented

with a grating and respond with a positive or negative as to whether the stimulus was seen.

If the answer was positive, the contrast of the sinusoid would be lowered; if the answer was

negative, the contrast would be increased. In the ideal case, a subject's responses would

simply oscillate about the threshold amplitude as shown in figure 9, and the threshold level

would be estimated to lie between the points of the first reversal. Comsweet points out that

in actual experiments a subject's responses were not independent of one another and results

obtained when trying to determine a visual threshold using the staircase method would more

closely match those shown in figure 10. He said the actual threshold was usually estimated as

12
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Figure 8. Left: sinusoidal grating with contrast C= 1 modulated by a two dimensional Gaus-
sian function. Right: closeup of frequency spectrum to include the area of interest,
once again 8 cycles per image.

the intensity level above which 50% of the responses were "yes" and below which 50% of the

responses were "no".

The experimenter had control over four parameters when using the staircase-method:

the initial amplitude or contrast, the step-sizes between subsequent trials, how many trials

until the test was terminated, and modifications of step-size if warranted. The first few

trials of a test such as this were necessary to establish the approximate range in which the

threshold lay; therefore, the initial amplitude or contrast was chosen as closely as possible to

the estimated threshold so that as few trials were made as necessary. The step-size between

trials was ideally chosen to approximate sensory perception intervals that occur in nature.

How many trials used depended on the experimenter's preference since a dichotomy existed

between expediency (low number of trials) and accuracy (high number of trials). As the test

progressed, the experimenter could alter step sizes in a heuristic fashion (see the next section

concerning parameter estimation by sequential testing) to home in on the actual threshold

being estimated.

13
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Figure 9. Ideal results of using the staircase-method to determine visual contrast thresh-
old (6).
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Figure 10. Typical results of using the staircase-method to determine visual contrast thresh-
old (6).
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One of the problems with this method as pointed out by Cornsweet was that if the

answers at each trial consisted of a simple yes/no answer, a subject could essentially "close

their eyes" as the testing proceeded and "game" the test (whether or not they realized they

were doing it) so that the results would be unreliable. He conjectured that the double-staircase

method offered a way to circumvent this problem. The first trial presented a testing level on

one side of the estimated threshold while the second trial presented a testing level on the other

side. See figure 11. Every other trial, then, belonged to a distinct set of two trials occurring

simultaneously. To add another dimension, the test could randomly decide to which set a trial

belonged as the test commenced as in figure 12. Cornsweet argued that the subject must then

be responding to the actual stimuli and not guessing.

* No* Staircas A

yo- N@s. Staircase A
LO

"No" Staircase B
X-, "Yees Staircase 8

Z -1

AAAAAAAAAAAAAAAAAAAAAAAAA
BB 88888 88888 88 B B 8888

TRIALS

Figure 11. Possible results of using the double staircase method to determine threshold (6).

2.4.2 Parameter Estimation by Sequential Testing (PEST). Taylor expanded upon

the staircase-method by providing a set of rules based on the Wald sequential likelihood-ratio

test (34) as to when the testing level should be changed and the magnitude of that change (33).

The PEST algorithm was to be an adaptive method of testing for a psychometric function in that

the step size and number of trials would not depend exclusively on predetermined parameters,

but would instead depend on previous trials in the same experiment. Taylor pointed out that

15
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Figure 12. Possible results of using the random double staircase method to determine thresh-
old (6).

the number of times to test at a current level was bounded by how many correct responses

were expected at that level,

E[N(C)] = Pt x T ± W. (2)

N(C) was the total number of correct responses after each change in testing level, E[...] was

the expected value operator, and W was a constant determined heuristically based on how

powerful the test was to be. The deviation limit, W, determined the power versus speed

dichotomy of the algorithm. Large W resulted in many trials and estimates very close to the

actual threshold level, while small W caused rapid testing at the expense of accuracy. Pt

was the target probability; this target probability was the ratio of the estimated number of

correct responses to the number of trials at that particular testing level. For example, the

experimenter could say he felt getting 5 out of 6 responses correct would indicate that the

subject could, in fact, discriminate a horizontal grating from a vertical grating in a measure

of contrast sensitivity. He would then set Pt = 5/6 or .8333. The value chosen for Pt did not

16



effect the validity of the final estimate of the threshold level, but it did effect the number of

trials necessary to arrive at that estimate.

In the context of testing for a contrast threshold curve for a given frequency, grating

contrast of the next trial was based on preceding trials. Taylor's rules were outlined as follows:

e When the above boundary rule indicated a reversal of direction; for example, the

contrast stopped going up and on the next step went down; the contrast step size was halved.

* When the boundary rule indicated the second step to be in the same direction as the

first, the second step size was the same as the first.

* The size of the fourth, fifth, sixth, and so on, step in the same direction were double

the preceding step size.

* The step size of the third successive step in the same direction depended on the last

reversal preceding the current step direction series; if the step size preceding that reversal was

double its preceding step, this step size was the same as the second step size; if the step size

preceding that reversal was not double its preceding step, this step size was double the second

step size.

The PEST terminated when a step was called for that equalled the experimenter's chosen

minimum step size. The estimated value of the contrast threshold level being sought was then

the next level called for after the last test. No testing occurred at that level. Methods have

since been outlined by Pentland (28, 16) which minimize the number of trials necessary to

obtain a given threshold measurement using PEST.

Peli generated contrast threshold curves for several subjects (19). These are shown in

figure 13 and were generated using the PEST algorithm (33, 28) and sinusoidal Gabor patches

(as shown in figure 8) at frequencies of 2, 4, 8, 16, and 32 cycles per image (cpi).

2.5 Measurement of Suprathreshold Characteristics

Cannon demonstrated that visual perception contrast curves generated by measuring

contrast above threshold (suprathreshold) characteristics of an observer were not simply
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Figure 13. Various measured threshold curves of persons, the curve used for simulation
purposes was the one corresponding to 20/136 vision (24)

contrast threshold curves shifted upward (2). He showed that as the overall contrast was

increased for all spatial-frequency sinusoidal gratings, the amount of contrast necessary to

make two spatial frequencies look as though they had the same contrast approached the same

value. Figure 14 displays what these curves look like in normal individuals. For example;

using one of the curves from figure 14, a sinusoidal grating varying at 4 cycles per deg (cpd)

was displayed at a contrast of 0.010 and another grating varying at 16 cycles per deg was

displayed simultaneously at some initial, different, contrast. The 16 cpd grating was adjusted

by the subject until that subject perceived the two contrasts to be equal. On this particular

curve, the actual contrast of the 16 cpd grating was around 0.020. The subject perceived the

two contrasts to be equal even though the actual contrast of the 16 cpd grating was twice as

high as the 4 cpd grating. At threshold, the subject perceived the 4 cpd grating at an actual

threshold contrast and the 16 cpd grating at a different actual threshold contrast. As the 4 cpd

grating contrast was increased, the perceptible difference between the 16 cpd actual contrast

and the 4 cpd actual contrast decreased. This eventually led to a minimum contrast at which

the actual contrasts of different spatial frequencies with the same contrast were perceived to

be the same.
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Figure 14. Example of suprathreshold curves in individuals with normal vision (2)
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The method employed by Cannon to measure contrast suprathreshold characteristics of

a subject was more straightforward than was the measurement of contrast threshold charac-

teristics. The subject was presented a grating at a reference spatial frequency. Other spatial

frequencies were presented and contrast matched by the subject to this reference frequency.

The contrast of the reference frequency was increased for each set of tests until a flat curve

was obtained.

2.6 Simulation of What a Person With a Given Threshold Curve Sees When Looking at an

Image

To simulate how the human visual system processes information contained in an image,

Peli proposed a nonlinear model using the concept of local band-limited contrast (19). This

model generated a simulation of what a person with a given threshold curve saw when looking

at an image. Figure 15 displays the 128x128 image presented to the observer in this example

Figure 15. Original Image (size 128 x 128)

simulation. The dimensions of the image in this figure are 1.257 inches square. If the reader

holds the figure 1.5 feet from the eyes, the image subtends 4 degrees of arc; one cpd of the

image is four cpi.

The first step in the simulation was to break the image into its constituent band-pass

filtered components, much as Ginsburg conjectured the brain does (8). There were four images

associated with each of the five spatial frequency contrast threshold responses obtained with

the contrast sensitivity testing: four images associated with 2 cpi, four with 4 cpi, four with

8 cpi, four with 16 cpi, and four with 32 cpi. The first image generated was obtained by
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filtering the original image's frequency spectrum with a concentric log-cosine filter of the

form:

Gi(r) = 1/2[1 + cos(7rlog 2r - 7ri)],i = 0, 1, 2,... (3)

Plots of the band-pass filters centered at 2, 4, 8, 16, and 32 cpi are shown on the left in figure 16,

and the related low-pass filters designed to capture the energy under their corresponding band-

pass filter are shown on the right of that same figure. The text in the plot indicates where the

center frequency of the band-pass filter lay and where the related low-pass filter became zero.

Each band-pass filter was centered at 2i cpi and was one octave wide. Using 16 cpi as an

06' 20o 40 60 0 20 40 60
2 6

0 20 40 60 0 20 40 60

•.0.5 center-8cp i 0.5

0 20 40 60 0 20 40 60
050. / center. 1cit2 0' 6 0.5! 20 4 0
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Figure 16. Cross-section log-cosine filters necessary for Peli's simulation.

example, the filter G4 was centered at 16 cpi and spanned from 8 to 32 cpi, with the amplitude

of the filter at half maximum at frequencies of 12 and 24 cpi (thus, the octave bandwidth).

For the simulation, the image generated by band pass filtering (center frequency 16 cpi) the

original image is shown on the left in figure 17 and was point-by-point divided by the image
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shown on the right in figure 17 which was generated by low-pass filtering the original image

by the corresponding low-pass filter. The resulting image from this division was defined by

Figure 17. Left: image band-pass filtered with center of filter at 16 cycles per image (DC
value of 128 added for image perception). Right: corresponding low-pass-filtered
image.

Peli as a "local band-limited contrast image," and each pixel value in each image was in fact a

contrast in that band (in this case, 16 cpi) at that location. A local band-limited contrast image

was generated for 2, 4, 8, 16, and 32 cycles per image. The pixel values, or contrasts, in each

contrast image were compared to the threshold value measured in the contrast sensitivity test

corresponding to the appropriate frequency. For example, if the contrast threshold of a subject

at 16 cycles per image was .55, then each pixel value in the contrast image corresponding to 16

cycles per image, as in the above example, were compared to .55. If the pixel value was less

than .55, the pixel value at that location in the image generated by the 16 cpi band-pass filter

(left image in figure 17) was set to zero since the contrast at that location in that frequency

band was below the observable threshold of the subject. If the pixel value was greater than or

equal to .55, the value at that location in the bpf image was left alone. The images obtained

by this process were called threshold images, and were added together along with the lowest

frequency component to complete the simulation. Peli reasoned that this resulting image

was representative of what a person with that particular threshold response would see when

looking at figure 15. The threshold values used by Peli for his initial simulations were obtained

from a subject with 20/136 vision shown on the graph in figure 13. Here, that same curve

was used; the image produced is shown in figure 18 and represented what that low-vision

observer perceived when looking at the original image. The Matlab code used to accomplish
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this simulation is shown in Appendix A. To assure that the simulation was accurate for a

person with normal vision, the curve representing normal vision in figure 13 was used in

the simulation. The resulting picture was as shown in figure 19. Notice that while the high

frequencies have been attenuated, the face is still recognizable (assuming, of course, that the

reader has "normal" vision).

Figure 18. The image on the right is a simulation of what a person with the curve correspond-
ing to 20/136 visual acuity shown in figure 13 on page 18 sees when looking at
image on left.

Figure 19. The image on the right is a simulation of what a person with the curve corre-
sponding normal visual acuity shown in figure 13 on page 18 sees when looking
at image on left.

2.7 Digital Enhancement

Peli and Peli first introduced the concept of using digital image processing to enhance

images presented to patients suffering from visual degradation in 1984 (26). The initial model

of a person's visual loss they used was the contrast sensitivity function (CSF) which was the

inverse of the contrast threshold curve which represented the minimum contrast, or amplitude,

necessary for a person to resolve whether sinusoidal intensity gratings at various frequencies
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were horizontally or vertically oriented. They measured the CSF in various patients and used

them to calculate individual visual degradation transfer functions (VDTF), which were the ratio

of the CSF of the patients with cataractous vision to the CSF of persons with normal vision.

Peli decided that using the VDTF as an inverse filter produced too much "salt and pepper"

noise due to the amplification of the higher frequencies attenuated by a degraded visual system.

He instead conjectured that adaptive image enhancement (27) (see below) may be better for

enhancement. Although no testing was done in 1984 to see the effects of these enhancements

on patients, the effects of inverse filter enhancement as viewed through simulated cataractous

conditions were studied. In their paper on computerized image enhancement (22), Peli

and others addressed: contrast manipulation, spatial filtering, and pseudocolor recoding. In

her paper on attempts to improve reading rates in the visually impaired, Lawton discussed

using the contrast sensitivity function as a compensation filter (15). Peli once again tackled

enhancement using a pre-emphasis filter concept (21) in his 1992 paper on limitations of image

enhancement.

2.7.1 Contrast Manipulation. Contrast manipulation involved using the dynamic

range of a display device to redistribute the contrast information in such a way so that it was

more useful to the observer. Two types of contrast manipulation were "histogram equalization

and hyperbolization", and "thresholding". Histogram equalization forced the image's gray

scale values to yield a flat histogram. The image on the right in figure 20 is the histogram

equalized version of the low contrast image on the left in the same figure. Peli pointed out,

though, that histogram equalization could sometimes cause a loss of information since bright

Figure 20. Result of histogram equalization on a low contrast image.
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regions in the original image may become very bright after equalization. Hyperbolization

forced the values into a hyperbolic shaped histogram and had less of the brightening effect of

histogram equalization. Thresholding, used in many applications for segmenting information

in an image, yielded the outline of the person in the original image and preserved much of

the information as shown in the left image in figure 21. The middle image of figure 21 is

the result of passing the image through the previous simulation of what a person with 20/136

vision sees when looking at the image on the left. Adaptive thresholding (24) involved

4rw

Figure 21. Left: Result of thresholding in original image. Middle: Simulation of what a
person with the curve corresponding to 20/136 visual acuity shown in figure 13
on page 18 sees when looking at image on left. Right: Simulation of what that
same person sees when looking at the original, un-enhanced image.

dividing an image into non-overlapping sections. Each section was evaluated to determine its

appropriate threshold and every pixel in the image was then thresholded based on threshold

values interpolated between the sections. Peli stated one drawback to this method was that

some patients complained that thresholding as an enhancement technique caused the resulting

image to look "cartoonish."

2.7.2 Spatial Filtering. Image enhancement by spatial filtering would optimally

amplify those spatial frequencies most attenuated by the visual system of the afflicted patient.

At the time of this thesis, Peli was investigating the use of the VDTF in an inverse filter

enhancement technique (21). He mentioned a number of enhancements which would boost

the high frequency information in an image. High-pass image filtering techniques included:

unsharp masking, extremum sharpening, and adaptive filtering. Unsharp masking subtracted

a low-pass version of the image from the original. Extremum sharpening passed a spatial
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mask over the original image; the points inside this mask were assigned the maximum or

minimum pixel value in the window, depending on which value the current pixel was closest

to. Adaptive image enhancement involved low-pass filtering the original image, subtracting

this lpf image from the original image, and adding this new image (which contained high

frequency information) to the original. The effects of this technique are shown in figure 22;

on the left of this figure is the enhanced image, while in the middle is the enhanced image as

Figure 22. Left: Result of Adaptive filtering original image. Middle: Simulation of what a
person with the curve corresponding to 20/136 visual acuity shown in figure 13
on page 18 sees when looking at image on left. Right: Simulation of what that
same person sees when looking at the original, unenhanced image.

seen by the low vision observer with visual acuity of 20/136 shown in figure 13. Comparing

the image in the middle to the unenhanced perceived image on the right, notice that many

of the facial characteristics have been recovered and that the enhanced image may be more

recognizable to the low vision patient. Adaptive filtering was the same as adaptive image

enhancement.

Peli tested adaptive image enhancement and adaptive thresholding in 1991 on patients

suffering from low vision (24). He used parametric estimation by sequential testing (PEST)

(28, 16) to minimize the number of measurements necessary to determine each patient's CSF.

These enhancement techniques were not tuned for a specific patient's CSF, but were tuned to

enhance the frequencies above 4 cycles per image which were most useful for face recognition.

The results of the testing indicated that 39 out of 46 patients tested had better facial recognition

ability when viewing the enhanced faces than when viewing the un-enhanced faces.
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2.7.3 Pseudocolor Recoding. Images could be enhanced using pseudocolor re-

coding, which would take advantage of the extra information contained in the "hues" of the

image. Subjects, though, would need to be retrained to the new color representations. Also,

damage of the macula lutea implies damage near the fovea, the area containing the highest

concentration of the cones which detect color. Therefore, this technique would probably prove

itself less than optimal for improving recognition ability in those suffering from low-vision

due to macular degeneration.

2.7.4 Compensation Filters. In her 1988 paper (15), Lawton described her attempt

at improving word recognition in three low-vision patients using compensation filters based

directly on each individual patient's CSF normalized to a normal viewer's CSF She used

this normalized CSF (NCSF) essentially as an inverse filter, directly correlating the amount

of gain at a particular frequency to the inverse of the NCSF at that spatial frequency. The

compensation filter used was of the form,

NCSF ,__ (4)
NCSF 2 + 

(4)
Gain2

where Gain determined how much of a tradeoff there was to be between amplification of high

frequency noise and a noise-free image. In her experiment, only letters were enhanced, not

faces. Testing of this technique revealed that enhancing the words with the compensation filters

allowed recognition that would have required a 27-70% magnification of the un-enhanced

word.

The left image in the figure 23 was obtained by using a compensation filter generated

from the two curves in figure 13 on page 18, one representing normal vision and one represent-

ing the vision of the person with 20/136 visual acuity. The NCSF was the normal threshold

curve point-by-point divided by the low-vision curve. The gain in equation 4 was set at 1000,

which caused the compensation filter to behave as an inverse filter. To avoid divide-by-zero
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Figure 23. Left: Result of applying compensation filter on original image. Middle: Simula-
tion of what a person with the curve corresponding to 20/136 visual acuity shown
in figure 13 on page 18 sees when looking at image on left. Right: Simulation of
what that same person sees when looking at the original, unenhanced image.

problems, frequencies above 32 cpi were set to zero during the filter generating process. A

cross section of the compensation filter used for enhancement is shown in figure 24. The
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Figure 24. Cross section of compensation filter used for enhancement.

resulting enhanced image was histogram equalized so that the pixel values would lie between

0 and 500. This resulted in saturation of some of the pixels since the picture was displayed

with a dynamic range between 0 and 255.

In 1994, Fine and others attempted to reproduce the results obtained by Lawton in her

experiment concerning improved reading rates in the visually impaired (7). Although they

could not reproduce her results precisely, they were able to find a significant increase in the
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reading rates of individuals viewing enhanced text. Fine used letters similar in appearance to

Lawton's. Conjecturing that Lawton's enhancement technique may have enlarged the letters,

they set up a test to find out if larger letters would lead to the same increase in reading

rate as Lawton's technique. It was seen that simply enlarging the letters did not lead to the

same increase in reading rate, thereby arguing the possible usefulness of using the normalized

contrast sensitivity function as an inverse filter.

2.7.5 Modified Pre-Emphasis Model. Peli's most recent image enhancement

endeavor involved using a band-emphasis filter to boost frequencies most useful for face

recognition in a given subject (21). The image was first low-pass filtered to remove all

frequencies unusable by the subject. An emphasis filter was built to boost the highest frequency

seen by the subject, while leaving untouched the frequencies below that highest frequency.

The amount to boost the high frequency was determined by the ratio of the subject's contrast

threshold to a normal contrast threshold at that frequency. Peli left the lower frequencies

untouched for aesthetic reasons since those frequencies kept the enhanced image from looking

like a line-drawing. The filter used is shown in figure 25. It was also pointed out that some
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Figure 25. Pre-emphasis filter used for enhancement.

saturation of the pixel values in the resulting enhanced image allowed more information to

be displayed than if straight histogram equalization to the full dynamic range of the display
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was used. As an example, if the frequencies of the original image are multiplied by the

pre-emphasis filter shown in figure 25 and then histogram equalized to stretch the pixel values

between 0 and 800, the left image in figure 26 is the result. That image is the enhanced image

Figure 26. Left: Result of applying pre-emphasis filter on original image. Middle: Simula-
tion of what a person with the curve corresponding to 20/136 visual acuity shown
in figure 13 on page 18 sees when looking at image on left. Right: Simulation of
what that same person sees when looking at the original, unenhanced image.

presented to the subject, while the image in the middle is the simulated image perceived by a

person with 20/136 vision shown in the threshold curve of figure 13. Once again, notice that

the middle image may be more recognizable than the un-enhanced perceived image on the

right.

2.8 Wavelets

The previously mentioned enhancement techniques represent a large and useful arsenal

in the fight to restore recognition abilities in those with low-vision. The most promising of the

above rely on direct manipulation of an image's spatial frequency spectrum. Some theories

involving the way mammalian brains process auditory (35) and visual (12, 13) information

suggest that human perception can be modelled with wavelet analysis. The significance of

discrete wavelet analysis compared to discrete Fourier analysis lies in the decomposition and

reconstruction process inherent to wavelet analysis. Here, it is seen that discrete wavelet

analysis can be used as a tool for image enhancement and for simulating human perception of

an image using a particular contrast sensitivity function.
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In his paper on contrast in complex images, Peli mentioned image analysis and syn-

thesis schemes using his log cosine implementation to determine band-limited contrast (24).

One analysis scheme that has not been used, one that may more closely represent visual

processing, is wavelet analysis. Discrete wavelet coefficient sets can be thought of as images

that have been filtered in the frequency domain with filters having cutoffs at powers of two

and bandwidths of one octave. This section explains discrete wavelet implementation from a

non-mathematically rigorous, very practical standpoint. For a more mathematically intense

analysis of two dimensional wavelet theory, an excellent overview is presented in the paper

by Mallat (18) and in the Masters Thesis by Laing (14) (A note concerning the Laing Thesis;

in figures 36 and 38, both explaining the mechanics of wavelet reconstruction, the upsampling

occurs after convolution. This is incorrect, although it is explained correctly in his text; the

convolution must occur after the upsampling, thus maintaining the reconstruction as the mirror

operation of the decomposition).

To decompose an image using the standard discrete wavelet transform (DWT), two

one-dimensional vectors are necessary: a vector representing the scaling function and a

vector representing the wavelet function. The vector representing the scaling function is

usually denoted as h and has a frequency response displaying low-pass characteristics. The

vector representing the wavelet function is usually denoted as g and has a frequency response

displaying high-pass characteristics. h and g form an orthogonal basis set.

With simple orthogonal wavelets, a single vector is given for the scaling function. The

wavelet coefficients vector is generated from the scaling coefficients using the relationship,

g(n) = -l-1 x h(1 - n). (5)

Now that these two vectors are available, the actual image decomposition is accomplished by

using the mirrors of these two vectors; that is, h(x) = h(-x) and j(x) = g(-x) are the

vectors that are actually used in the decomposition operation shown in figure 28.
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The wavelet set used in this research was the biorthogonal wavelet set used by the

FBI for image compression of fingerprint data (10, 37, 17). This set was chosen because the

decomposition functions were symmetric about zero, which meant that manipulations of the

detail coefficients would not cause distortion of the reconstructed image (as may be expe-

rienced using other compactly supported, non-symmetric wavelet sets). Using biorthogonal

wavelets required a slightly different approach than that for orthogonal wavelets sets outlined

in Laing's thesis. With a biorthogonal wavelet set, two vectors (used for decomposition) are

initially given. One vector given represents the scaling function to use for decomposing an

image (h) and the other vector given represents the wavelet function used for decomposition

(p). The biorthogonal vectors shown in tables 1 and 2 were the ones used by the FBI for

fingerprint encoding and were obtained from the Thesis by MacDonald (17). The waveforms

corresponding to these vectors, used for decomposition, and their relationship are shown in

figure 27. Notice that figure 27 seems to indicate that non-zero values for the scaling and

Table 1. Coefficients for the scaling function used in the forward wavelet decomposition (h)
Position Approximate Value

h0  +0.85269867900940
h±1  +0.37740285561265
h±2  -0.11062440441842

h± 3  -0.023849465019380
h±4  +0.037828455506995

Table 2. Coefficients for the wavelet function used in the forward wavelet decomposition @)
Position Approximate Value

g- 1  +0.78848561640566

9-2,0 -0.41809227322221
9-3,1 -0.040689417609558
9-4,2 +0.064538882628938

wavelet functions occur only at positive indices. This is an artifact of using Matlab for the

analysis. The scaling function (h) is symmetric about zero, and the wavelet function (j) is

symmetric about minus one. Figure 28 shows the decomposition process for an image.

Decomposing an N x N image involved implementing the following steps:
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Figure 27. Decomposition scale function (h) is on the left, decomposition wavelet function
(ý) is in the middle, while their relationship is shown on the right.

1. Generate a column coefficient set by convolving the columns of the image with j;

generate another column coefficient set by convolving the columns of the image with

h. The convolution of the first column in the image with the scale function is defined as

N

Columni * h = E Columnmhim, (6)
m=1

This convolution is circular; that is to say that when the vector encounters the image's

edge, it wraps around to the other side of the image.

2. Downsample the columns of each of these coefficient sets by keeping every other row.

The size of each image matrix is now N/2 x N.

3. Generate two coefficient sets by convolving the rows of each of the two downsampled

column coefficient sets with ý; generate two more coefficient sets by convolving the

rows of each of the two downsampled column coefficient sets with h.

4. Downsample the rows of each of these coefficient sets by keeping every other column.

The sizes of each of the four new matrices is now N/2 x N/2.

The detail coefficients obtained during a wavelet decomposition can be thought of in

the frequency domain as multiplying the high frequency components of the original image by

a one-octave-wide band-pass filter (5). The cutoffs of this bpf are always a power of two when
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Figure 28. Decomposition flow chart to obtain first level of decomposition
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the original matrix has dimensions that are powers of two. For example, the image shown

in figure 15 is of size 128 x 128. The detail coefficients obtained by decomposing the image

into its first level are band-pass filtered by a filter centered at 48 cycles per image with cutoff

frequencies of 32 and 64 cpi (octave). See figure 29.
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Cycl.s per image Cycles per Image

Figure 29. Left: Wavelet high-pass filter centered at 48 cpi, Right: Scale low-pass filter

associated with the hpf on left

Applying the previous steps to the original image (defined as the zeroth level approxima-

tion coefficient set) yielded the first level of decomposition coefficients. To obtain additional

levels of decomposition, the resulting approximation image was treated as the image and

decomposed. If the image shown in figure 15 on page 20 was passed through the algorithm

outlined in figure 28, each decomposition level would produce an approximation image related

to the other approximation images as shown in figure 30.

The waveforms used for reconstruction (h and g) were calculated from their decom-

position counterparts (j and h) using equation 5; that is j was used to generate h and h was

used to generate g. These new waveforms were used for reconstruction and their relationship

is shown in figure 31.

Reconstruction of the original image was the mirror operation of decomposition. Fig-

ure 32 shows the process of reconstructing an image after wavelet decomposition. The exact

steps to follow for reconstruction of an image decomposed down to an N x N matrix are:
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Figure 30. The relationships between the approximation images at each of the seven levels
of decomposition of the original image (largest image above). Each of the above
images would serve as the input image in the algorithm of figure 28. These
images were all histogram equalized for presentation purposes.

36



0.5- 0.5- 0.5-

0 0 0 4

-0.5 -0.5 -0.5 .

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Figure 31. Reconstruction scale function (h) is on the left, reconstruction wavelet function
() is in the middle, while their relationship is shown on the right.
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Figure 32. Reconstruction of an image after a single level of decomposition
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1. Upsample the rows of each of these coefficient sets by inserting a zeros column between

every column. The sizes of each new matrix is now N x 2N.

2. Convolve the rows of the Approximation and Horizontal coefficient set with h and the

rows of the Vertical and Diagonal coefficient with 9.

3. Add convolved Approximation image and Vertical details image point-by-point. Add

convolved Horizontal details image and Diagonal details image point-by-point.

4. Upsample the columns of each of these coefficient sets by inserting a zeros row between

every row.

5. Generate a column coefficient set by convolving the columns of the Approxima-

tion/Vertical information image with g; generate another column coefficient set by

convolving the columns of the Horizontal/Diagonal information image with h.

6. Add these two remaining matrices point-by-point. The size of the matrix is now

2N x 2N.

The resulting image after the above operation became the approximation image for the next

higher level of decomposition, and was combined in an identical way with the detail coefficients

at the next higher level. For example, if the original image was decomposed down to

the third level, reconstruction would first involve performing figure 32 on the set of four

matrices representing the third level of decomposition. The output image of that operation

would then become the approximation image for the three matrices representing the second

level detail coefficients (horizontal, vertical, and diagonal) of decomposition and figure 32

would be performed on those four sets. The output of that operation would become the first

level approximation and combined with the first level details to produce the original image.

Appendix C shows the specific Matlab code used to implement this biorthogonal wavelet set

for two dimensional images.
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2.9 Headset

The headset intended to be the output for image enhancement for this thesis was the

PT-01; a display system which could be raised just above the line of sight and not obstruct

peripheral vision, or lowered to cover the eyes completely. It contained two active matrix

420x230 pixel screens. Each pixel was an RGB unit containing triads of three cells and

occupying less than 3.2 arc minutes in size. Using the square area of 230x230 pixels located

in the center of the displays, the total area would correspond to 12.3x12.3 degrees of arc.

Therefore, one cycle per degree equaled 12.3 cycles per image. See figure 33.

230 pixels=1 2.3 degrees

S~one e< 3.2 arc sec
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Figure 33. Active matrix LCD used in headset.

2.10 Summary

Millions of people suffer from low vision due to macular degeneration. Knowledge of

a low vision observers visual characteristics could perhaps be used to enhance that person's

view of the world so that face recognition could be improved. Peli had good success with

improving the recognition abilities of low vision patients using adaptive thresholding and

adaptive filtering; he also provided a simulation which could give those with normal vision
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an insight into what a person with a less than optimum contrast threshold response sees when

looking at a given image. Lawton and Fine demonstrated that compensation filters used to

enhance words improved the word recognition rate in low vision observers. The discrete

wavelet transform (DWT) was seen to break an image into different resolution information

while preserving location information.

The next chapter outlines some new wavelet techniques concerning optimal image

enhancement for the visually impaired and a new wavelet human perception simulation.
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III. Methodology

The research area outlined here was new to AFIT. This chapter presents wavelet analysis

methods that will be compared to Peli's work concerning simulations of visual perception given

a particular contrast threshold curve. It also presents image enhancement methods that use a

given set of individual contrast perception curves to influence frequency analysis and wavelet

analysis. A new method using suprathreshold characteristics of a patient to enhance an image

is also presented as is an idea concerning localizing the enhancement.

3.1 Wavelets

In a practical sense, the two-dimensional Discrete Wavelet Transform (DWT) breaks

an image into a set of images corresponding to different resolution information contained in

the original image. For example, if the original image was contained in a 128x128 array, a

wavelet decomposition would generate four new images in 64x64 arrays, four in 32x32 arrays,

four in 16x16, four in 8x8, four in 4x4, four in 2x2, and four in lxl arrays. One array in each

set of four would correspond to low frequency information, and the other three arrays would

correspond to high frequency information.

The method by which an image was decomposed by the DWT lent itself readily to the

analysis performed on contrast in complex images by Peli (19). When he analyzed his image

of Cary Grant he used the log cosine filters shown in figure 16 on page 21. One of the most

useful aspects of the DWT is its ability to locate frequency information at specific locations

in the original image. Peli's band-pass filters had center frequencies at powers of two and

were one octave wide (i.e. the filter to capture the information around 16 cycles per image

was centered at 16 cpi with cutoffs at 12 and 24 cpi); analogous wavelet filters were one

octave wide with cutoff frequencies at powers of two (for example, the filter to capture the

information around 12 cpi was centered at 12 cpi with cutoffs at 8 and 16 cpi). Figures 34

and 35 display the filters of the parenthetic examples above. It is important to remember that
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the reason for the upper cutoff of the high-pass frequency response of the wavelet is that the

highest frequency is limited by the size of the image matrix.

2 2
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Figure 34. Left: High-pass log-cosine filter centered at 16 cpi, Right: Low-pass log-cosine
filter associated with the hpf on left.
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Figure 35. Left: High-pass wavelet filter centered at 12 cpi, Right: Low-pass wavelet filter
associated with the hpf on left.

Since the discrete wavelet transform used circular convolution on the rows and columns

during decomposition and reconstruction, edge effects became apparent whenever the detail

coefficients were manipulated. The solution used in this thesis was to implement an algorithm

by Cohen and do the DWT on a "mirror quad image," such as the one shown on the right in

figure 36, instead of the original image shown on the left (5). This operation did not effect
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mirrorface

Figure 36. Mirror quad image (size 256 x 256) transformation of original image. The image
on the right was the actual input into the algorithm outlined in figure 28 on
page 34.

what resolution information was contained in each of the coefficient sets. For example, for

the original 128 x 128 image, the first approximation yielded a low-pass filtered version of

the original with cutoff frequency of 32 cycles per image. Using the mirror quad operation,

the first approximation was a low-pass filtered version of the mirror quad image with cutoff

frequency of 64 cycles per mirror quad image, but this same cutoff was still 32 cycles per

original image. The decomposition approximation and detail coefficients remained in the

mirror quad format during any analysis of the information.

An important consideration after reconstruction was that the reconstructed, manipulated

final image was a reconstructed mirror quad image; this image, though, was not truly a

mirror quad image due to the various manipulations encountered between decomposition and

reconstruction. To maintain manipulated information from each quadrant of the final image,

the displayed image was an average of the quadrants of the reconstructed mirror quad image.
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3.2 Wavelet Simulations

This section outlines how the bi-orthogonal wavelet set was used to parallel the work

done by Peli concerning simulation of image perception by a subject with a given contrast

sensitivity curve (19).

The first step in the process was to generate a set of images filtered from the original

using octave-wide band-pass filters and corresponding low-pass filters which captured the

information under the band-pass filters. Wavelet decomposition levels provided the ideal

relationship in that there were coefficient sets containing detail information about the image

at different resolutions which could be compared to the approximation coefficient set at that

level. For example, the third level details (shown in figure 37) were each point-by-point

Figure 37. The first image above contains the third level vertical detail coefficients, the
second is the horizontal detail coefficient set, and the last image is the diagonal
detail coefficient set.

Figure 38. The image above is the third level decomposition approximation coefficient set.

divided by the approximation coefficients in figure 38, the end result being three contrast

images representing vertical, horizontal, and diagonal contrasts at those pixel positions at that

level of decomposition. This first step required some subtle manipulations while decomposing

44



the original image. The third level decomposition sets would appear as in figures 37 and 38

(discounting the mirror quad operation); however, it was inappropriate to use these for the

simulation due-to the shifting and downsampling imposed by the wavelet decomposition.

Referring back to figure 27, notice that the wavelet function (j) is not symmetric about the same

point as the scaling function (h). Whenever an image is being decomposed, the information

will not be shifted by the convolution with the scale function since it is symmetric about zero;

however, the convolution with the wavelet function produces a shift of the information since

the wavelet function is symmetric about the first index to the left of zero. In order to parallel

Dr. Peli's log-cosine filter analysis, each of the detail coefficient sets at each level were to

be divided by the approximation image at that level; this division would yield a "resolution

limited contrast image." Since the convolution with the wavelet function would shift the

resulting detail coefficients with respect to the rows and columns convolved with the scale

function, this shifting aspect had to be eliminated during the resolution limited contrast image

generation stage. In order to eliminate this shifting during convolution, the wavelet was forced

to center at zero. Figure 39 shows the new, modified scale and wavelet vectors used in the

wavelet simulation decomposition and figure 40 shows how the un-shifted detail coefficient

sets were generated. Compare figure 39 to figure 27 on page 33 and notice that the functions
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Figure 39. Scale function (at left) and un-shifted wavelet function (middle) used in wavelet
Simulation. Their relationship is shown in the plot on the right.)

are the same, only the indexing is different. This new wavelet decomposition set was then
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convolved with the rows and columns; this allowed the resolution limited contrast images to

be calculated with the positions of all the decomposition images correctly aligned relative to

one another.

rows

columns
,__________ - Unshifted Diagonal Details

- • Unshifted Horizontal Details

Image -- _ _

______i_- j -.j I Unshifted Vertical Details

Approximation Image

Convolve with response function AJ

Figure 40. Generation of un-shifted detail coefficients.

The result of using the algorithm of figure 40 was that the first level of decomposition

yielded four matrices that were the same size as the original image matrix, and those four

matrices were used to compute the resolution limited contrast images.

These resolution limited contrast images were compared point-by-point to the proper

threshold value (interpolated from the contrast threshold curve in figure 13 on page 18 used

for the other simulations). If the value was at or above threshold, the detail coefficient at that

location was left alone. Otherwise, if the value was below threshold, the detail coefficient

at that location was set to zero. For example, a set of resolution limited contrast images

corresponding to 12 cycles per image was generated, using the coefficient sets in the third

level decomposition (shown in figure 37 and 38) by dividing each of the three third level detail
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coefficient sets point-by-point by the third level approximation image. These three contrast

images were point-by-point compared to the value interpolated at 12 cpi from the plot for the

person with 20/136 vision shown in figure 13 on page 18 (that threshold value was .4096).

If the value at that coordinate position in the detail contrast image was below threshold, the

pixel value in the corresponding detail coefficient matrix was set to zero. This represented a

loss of detail at that coordinate position. If the value at that coordinate position in the detail

contrast image was above threshold, the value in the corresponding detail coefficient set was

left untouched.

It was at this point in the process where downsampling occurred. The critical shift that

was eliminated previously now had to be reinserted because it was vital to the reconstruction

process. This algorithm did the shifting during the downsampling process instead of during

the convolution with the wavelet function; the downsampling of any column or row convolved

with the scaling function took the even indices starting with index two, while the downsampling

of any column or row convolved with the wavelet function took the odd indices starting with

index three (the last index being index one due to circular convolution). Figure 41 shows

how the downsampling was used to implement the shifting. This preserved the information

storage aspect of the wavelet decomposition and allowed reconstruction to occur in the normal

fashion as shown in figure 32 on page 37.

This process was repeated at all resolution levels down to the smallest resolution level

with detail coefficients which had maximum resolution of 4 cycles per image (which resulted

in a 4 x 4 image after downsampling), and then reconstructed in the standard fashion of the

biorthogonal wavelet, as shown in figure 32 on page 37. Appendix D contains the Matlab

code used for these simulations.

3.3 Wavelet Enhancement

In order to maintain the flow of the work already accomplished by Dr. Peli, the first

wavelet enhancement technique explored here paralleled his modified pre-emphasis filter

enhancement technique. The pre-emphasis model boosted the highest frequencies the subject
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Figure 41. Method by which the downsampling was used to achieve the shifting normally
accomplished by the wavelet.

could see by the inverse of the normalized threshold measured at that frequency for that person.

For the wavelet case, the boosting was done to the highest detail coefficients the person would

be able to discern. In Dr. Peli's paper in which the pre-emphasis model is presented (24), the

example centered the boosting frequency at 16 cycles per image. The wavelet model presented

here boosted the frequencies centered at 12 cycles per image; this new center frequency was

determined by the nature of the discrete wavelet decomposition. Figures 37 and 38 show the

third level detail coefficients and the third level approximation coefficients. With the detail

coefficients generated down to the desired level to be boosted (here that was level three), each

detail coefficient set was multiplied by whatever the enhancement algorithm called for at each

specific resolution based on an individuals perception characteristics (here the third level detail

coefficients were multiplied by a factor of five). Each of the three detail levels (horizontal,

vertical, and diagonal) were multiplied by the same number, since the combination of the three

corresponded to a band-pass filtered image.
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3.4 Using Individual Suprathreshold Contrast Characteristics of a Patient for Enhancement

Peli's early work in digital image enhancement relied heavily on boosting frequencies

most useful for -face recognition without regard for a particular person's visual characteristics

(26, 22, 24). His and other's later experimentation on tailoring enhancement to the individual

was based on measuring contrast threshold characteristics of a patient and using that infor-

mation for enhancement (15, 19, 21, 24, 7). Rubin argued (based on testing of both young

and old observers) that the contrast sensitivity of a low vision observer may not in fact predict

recognition ability (31); here it is proposed that suprathreshold characteristics of a subject

would be more useful for image enhancement. The contrast in facial images is usually above

the threshold of normal observers. Using contrast sensitivity, which is based on contrast

threshold, for enhancement may not optimize the information in the image that the subject

can see. Suprathreshold contrast perception curves, close to threshold, tend to be shaped

the same as the threshold curve; but as the contrast increases, the relationship between the

perceived suprathreshold contrasts changes. If the suprathreshold contrast perception of the

subject was used to enhance the image instead of the threshold contrast perception, this would

more efficiently enhance those frequencies dominant in the image. The remainder of this

section describes a new method of image enhancement tailored to an individual subject using

measured normalized suprathreshold curves such as those shown in figure 14 on page 19 (2).

First, the contrast information in the image had to be determined. Since Cannon's

suprathreshold matching experiments (see figure 14 on page 19) indicated that 4 cycles

per degree was the most sensitive frequency of those normal observers measured during

that particular study, that frequency was the "reference frequency." Different measurement

techniques may yield different suprathreshold contrast curves, thereby determining the actual

reference frequency. The technique used to determine the contrast at that frequency took

advantage of the band-limited contrast concept outlined in his paper on contrast in complex

images (19). The image was band-pass filtered with Peli's log-cosine filter corresponding to

4 cpd to create the bpf image; low-pass filtered with the low-pass filter to complement that

band-pass filter (analogous to the filters shown in figure 16 on page 21), and the former image
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point-by-point divided by the latter. This operation created a reference contrast image for the

frequency most detectable to the normal observer. The global reference contrast of the image

was then determined to be the root mean square of the pixel values in the image. This global

reference contrast of the 4 cpd information in the image determined which of the suprathreshold

curves to use. For example, if figure 14 on page 19 was the set of curves generated by testing

a low-vision subject (even though these particular curves were generated using the average of

a number of normal observers), and the rms value of the reference contrast image fell closest

to .01 (as opposed to .003 or .03), the curve chosen for enhancement purposes would be the

first curve up from the threshold curve (where the contrast of 4 cpd was .01).

Now that the proper curve was chosen, the frequency manipulation to be performed was

determined by the suprathreshold curve generated by normalizing the curve for the subject to

a curve generated by a number of normal observers. This new curve was the "Normalized

Contrast Suprathreshold Curve" (NCSC). Its inverse was used as an inverse filter, much in the

same manner as what Lawton did in her experiments concerning improving reading rates in

low-vision observers (15).

3.5 Localization

Unless an observer is trying to recognize the face of a person very distant from him, the

fovea of the observer will not usually encompass the entire visage of the subject of interest.

The fovea covers approximately one to two degrees of arc in the visual field of view (1), and

for this reason people "saccade" and scan the face of interest to get the "whole picture." This

implies that, at any given time during this process, the observer is using his fovea on only a

small part of the facial image; the rest of the face is still in view, but being perceived by the

less visually acute retinal periphery. These facts lead to the problem of how best to locally

enhance a face for individualized perception.

Global manipulation of an image wastes many precious resources: the finite dynamic

range of the screen limits the possible gain of high frequencies (21); enhancement algorithms

work more slowly when processing the whole scene; and the person is already placing an
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object of interest in their area of highest visual acuity (24). Since only a certain amount of

information is being processed at a given time as an observer peers at a facial image, one

method of optimization could be to break the image into "chunks" and enhance each chunk

separately and simultaneously. The weakness with this method is that the observer may not

want to look only at predetermined discrete chunks of an image, but may want to choose

which chunks to focus upon, saccading the image and gathering information at each stopping

point. This fact implies that the optimum solution would be to enhance the image only in the

area of interest to the observer.

Retina motion trackers have been developed (11, 38) which can tell precisely where

each eye is looking at any given instant. Since persons with macular defects tend to place an

object of interest just outside the dead area of the fovea (24), if that low vision subject were

instructed to look at a point of interest corresponding to one or two degrees of arc so as to

see that point in the most optimal fashion, the motion tracker could be aligned to this new

"pseudo-retina." The enhancement of a given image would then be tied directly to what the

subject wanted enhanced (i.e. where the subject was looking).

3.6 Metric of Enhancement Effect

The intrinsic complexity and adaptability of the human visual system has caused more

than a little consternation in the image processing community. Image quality is a subjective

term that refuses to be tied down to a single set of numbers or equations which may allow

a solid metric by which image manipulation results can be evaluated. Images of the natural

world contain many frequencies and intensities for the human eye to process; add to this the

restricted field of view imposed by a headset and the limited dynamic range of the output

screens of the image enhancement system being viewed by the subject, and the problem

becomes even more difficult.

Here, one metric of enhancement effect is proposed. Although image enhancement

usefulness for any given person can only be determined experimentally, the enhancement

effect metric proposed here was based on the known edge detection properties incorporated in
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the average human visual system. First, the assumption was made that a simulation of human

visual perception based on an individual's contrast sensitivity is representative of what that

individual perceives when looking at an image. Both the Peli and wavelet simulations were

used. Second, each enhancement to be evaluated was run through that simulation. Third,

an edge detection algorithm was applied to the original image and the output images of the

simulation. Finally, the edge detected enhanced images were compared to the edge detected

original image by cross correlating the two edge-detected images; the desired result being an

image perceived by the individual that is perceived to be as close as possible to the original.

The edge detection convolution mask used was the Laplacian mask (9). This mask, shown in

figure 42, was two-dimensionally convolved with the image of interest. This resulting image

o -1 0

-1 4 -1

o -1~ 0

Figure 42. Laplacian convolution mask used for edge detection.

was a measure of the effective edges in the image.

As an example, using this metric to measure the effective edge enhancement of the

pre-emphasis filter enhancement outlined in section 2.7.5, the first step involved detecting

the edges in the original image shown on the left in figure 43. The resulting edge-detected

image is shown on the right. The image on the left in figure 44 is the pre-emphasis filter

enhanced image after being run through the Peli simulation, while the image on the right is

the edge-detected version of the image on the left. The similarity measure was computed

by performing point-by-point multiplication of the edge-detected original (on the right of

figure 43) and the edge-detected enhanced-perceived image (on the right of figure 44, then
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Figure 43. Left: original image. Right: edge-detected original image.

Figure 44. Left: edge-detected pre-emphasis filtered after-simulation image. Right: edge-
detection resultant of image on left.

summing the resulting matrix values to yield a scalar. This scalar was divided by the scalar

obtained from comparing the original to itself (autocorrelation). This operation was intended

to normalize the data between zero and one. If zero, the resulting edge analysis yielded no

similarity to the original image's edge analysis; if one, the edges were identical to the original.

Our example above yielded a correlation value of 0.1885.

3.7 Summary

A biorthogonal wavelet set was used to simulate what a person with a given contrast

sensitivity function sees when looking at an image. This same wavelet set was used to enhance

an image in a manner analogous to Peli's modified pre-emphasis filter enhancement. A new

method for image enhancement based on a subject's measured suprathreshold characteristics

was outlined. Finally, the concept was proposed that the image should be enhanced only in

the area of interest to the observer. The results of the wavelet simulation and enhancement are

presented and analyzed in the next chapter.
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IV Results

This chapter outlines the results of trying the various methods discussed in the previous

chapter.

4.1 Simulation of Macular Degeneration Using Wavelets

When using the wavelet scheme to simulate the vision of the person with the threshold

curve corresponding to acuity of 20/136, the image on the left in figure 45 was operated on

and the resulting image was as shown in the middle. The image in the middle is analogous

Figure 45. Left: Original image. Middle: Wavelet simulation of what person with threshold
curve corresponding to 20/136 visual acuity shown on page 18 sees when looking
at image on left. Right: Peli simulation of what that same person sees.

to the image created by the Peli simulation shown on the right. Notice that the wavelet

simulation indicates that less information is lost than is indicated by the Peli simulation.

This is due to the fact that the reconstruction process performed by the wavelet analysis is

different than the reconstruction process performed by Peli's analysis. In Peli's simulation,

each image corresponding to a band-pass filtered original image was manipulated; these

resulting images were then simply added together to form the image on the right. In the

wavelet simulation, each image corresponding to a detail coefficient set (horizontal, vertical,

or diagonal) was manipulated; these resulting coefficient sets were then recombined at each

level in the standard discrete wavelet reconstruction fashion; that is to say, many convolutions

were performed during the reconstruction phase that affected the final output image.
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When the curve representing normal vision in figure 13 was used with the previous

wavelet simulation on the presented image on the left in figure 46, the image shown in the

middle is the result. Notice that even less distortion is evident than the same Peli simulation

Figure 46. Left: Original image. Middle: Wavelet simulation of what person with threshold
curve representing normal vision shown on page 18 sees when looking at image
on left. Right: Peli simulation of what that same person sees.

shown on the right.

Whenever the image enhanced using adaptive filtering shown on the left in figure 47 is

passed through the wavelet simulation discussed above, the result is as shown in the middle

image. The wavelet simulation indicates that the adaptive filtering enhancement boosts the

Figure 47. Left: Image enhanced using adaptive filtering. Middle: Wavelet simulation of
what person with threshold curve corresponding to 20/136 visual acuity shown

on page 18 sees when looking at image on left. Right: Peli simulation of what
that same person sees.

information available to the low-vision observer. The image in the middle is analogous to the

image presented on the right. The wavelet simulation seems to once again indicate that less

information is lost than the Peli simulation would indicate; this being due to the reconstruction

process in the wavelet analysis.
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The result of running the image enhanced using Lawton's compensation filter from

section 2.7.4 (shown at left in figure 48) through the wavelet simulation is shown in the middle

image. Notice once again that the middle image clearly contains more information than the

Figure 48. Left: Image enhanced using compensation filtering. Middle: Wavelet simulation
of what person with threshold curve corresponding to 20/136 visual acuity shown
on page 18 sees when looking at image on left. Right: Peli simulation of what
that same person sees.

Peli simulation image on the right indicates.

When the image enhanced using the modified pre-emphasis filter (shown on the left in

figure 49) was passed through the wavelet simulation of what a person with 20/136 vision

might see when looking at that image, the result was as shown in the middle image. This

Figure 49. Left: Image enhanced using modified pre-emphasis filtering, Middle: Wavelet
simulation of what person with threshold curve corresponding to 20/136 visual
acuity shown on page 18 sees when looking at image on left. Right: Peli
simulation of what that same person sees.

image is analogous to the image shown on the right. Here, the simulated image in the middle

is virtually identical to the enhanced image on the left due to the reconstruction process.
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4.2 Wavelet Enhancement

When the third level of details were multiplied by a factor of five, and the image

reconstructed, the resulting image was as (shown on the left in figure 50), with the image in

the middle in that same figure representing what a person with 20/136 visual acuity sees when

viewing the image on the left according to the wavelet simulation. The image on the left is

Figure 50. Left: Original image enhanced by multiplying the third level detail coefficients
by five. Middle: Wavelet simulation of what person with threshold curve corre-
sponding to 20/136 visual acuity shown on page 18 sees when looking at image
on left. Right: Peli simulation of what that same person sees.

analogous to the modified pre-emphasis filter shown in figure 26 on page 30. Comparing the

images on the right of these two figures, the pre-emphasis filter seems to preserve some of the

fine details associated with the original image very well, while the wavelet enhanced version

preserves different information about the details.

Diverging slightly from the specific incarnation of Peli's modified pre-emphasis filter

outlined in his paper on image enhancement for the visually impaired (24) by multiplying the

third level coefficients by two instead of five results in the image on the left in figure 51. This

enhancement proved more subtle as can be seen in the image in the middle. The sharp edges

present in figure 50 have been reduced at the possible expense of detail.

4.3 Metric of Enhancement Effect

The use of edge detection analysis on enhancement effectiveness using the Peli sim-

ulations resulted in values as shown in table 3, while the use of edge detection analysis on

enhancement effectiveness using the wavelet simulations resulted in values as shown in ta-
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Figure 51. Left: Original image enhanced by multiplying the third level detail coefficients
by two. Middle: Wavelet simulation of what person with threshold curve corre-
sponding to 20/136 visual acuity shown on page 18 sees when looking at image
on left. Right: Peli simulation of what that same person sees.

ble 4. Both analyses clearly indicate that any of the outlined manipulations of the image boost

the edge energy being perceived by the subject beyond what was obtained with no enhance-

ment. The values calculated that were above one occurred with thresholding and adaptive

filtering; this may indicate too much edge enhancement since subjects have complained about

the thresholding technique making the image look too cartoonish. Note also that the wavelet

enhancement results were roughly the same as the modified pre-emphasis filter enhancement

results. This modified pre-emphasis filter is currently what is being used in the LVES at

Johns-Hopkins.

Enhancement Similarity
Original image 1

No enhancement 0.0092
Thresholding 0.1019

Adaptive filter 0.2003
Compensation filter (no histogram equalization) 0.0411

Compensation filter (histogram equalized) 0.1953
Pre-emphasis filter 0.1885

Wavelet enhance(gain=2) 0.0660
Wavelet enhance(gain=3) 0.0949
Wavelet enhance(gain=4) 0.0972
Wavelet enhance(gain=5) 0.1106

Table 3. Applying edge detection metric to perceived (Peli simulation) enhanced images.
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Enhancement Similarity
Original image 1

No enhancement 0.3154
Thresholding 1.4091

Adaptive filter 1.3047
Compensation filter (no histogram equalization) 0.4633

Compensation filter (histogram equalized) 0.3378
Pre-emphasis filter 0.3464

Wavelet enhance(gain=2) 0.4183
Wavelet enhance(gain=3) 0.4464
Wavelet enhance(gain=4) 0.4340
Wavelet enhance(gain=5) 0.4237

Table 4. Applying edge detection metric to perceived (wavelet simulation) enhanced images.

4.4 Summary

The result of using a biorthogonal wavelet set to simulate the perception of a person

with a given set of visual perception characteristic curves indicates that the details of an

image may not be as suppressed as the simulation proposed by Peli indicates. The new

enhancement algorithms using wavelets are seen to be comparable to the enhancements

previously explored by Peli and others. The enhancements occur primarily along the horizontal

and vertical directions, which is reasonable due to the nature of the wavelet decomposition

and reconstruction. Figure 52 displays many of the enhancement techniques and the effects

of running the images through the simulations. The next chapter discusses the implications of

the wavelet simulations and enhancements.
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Figure 52. Summary of various enhancements. The left column contains enhancements, the
middle column contains the image at the left run through the Peli simulation, the
right column contains the image at the far left run through the wavelet simulation
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V Conclusions

5.1 Analysis of Algorithms Reproduced

The previous work in the area of image interpretation and enhancement for the visually

impaired concentrated primarily on the manipulation of the Fourier spectrum. One desire

of past research has been to use the visual characteristics of the observer as a guide for

enhancement, since those visual characteristics should be able to be compared to a normal

observer's visual characteristics and the image enhanced somehow based on this knowledge.

It has been conjectured that the visual system of a subject could be understood, at least in

part, by non-invasively measuring the contrast threshold and suprathreshold characteristics of

that subject. This research reproduced Peli's perception simulation model using the contrast

threshold response of an observer to simulate the appearance of an image to that low-vision

observer. This simulation was based on filtering characteristics of the human visual system

and its inability to perceive those frequency components below threshold contrast. Various

enhancement schemes from the literature were reproduced, most of which manipulated the

Fourier spectrum of the image to make it more recognizable to the low-vision viewer. The

compensation filter used by Lawton to enhance letters (15) was used to enhance faces. This

research demonstrated it was a feasible tool for image enhancement. Peli's modified pre-

emphasis filter enhancement, which is being used in the LVES, was reproduced and seen to

also enhance the details significantly.

A practical application of the discrete wavelet transform was implemented and dis-

cussed, as was its relationship to Fourier analysis. Wavelet analysis was seen to break an

image into different global resolution information sets which could be manipulated and re-

constructed.

5.2 Analysis of Original Algorithms

Here was proposed a new simulation of human perception based on wavelet analysis.

This simulation using wavelets of what a person with a given threshold curve sees when
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looking at an image yielded different results than the analogous simulation using the log

cosine filters proposed by Peli. Most noticeable was the fact that more details were present

in the resulting wavelet simulation images than in the Peli simulation images. Using wavelet

analysis to simulate human visual perception provided a different choice for a basis set, one

that is supported by recent work concerning mammalian cortical processing (12, 13, 35).

The overriding concern with all of these simulations is that human perception is still poorly

understood. If wavelet analysis truly does model human visual perception, then the next

logical step is to determine which set of coefficients the brain uses to process that information.

The wavelet simulation implies that the various enhancement algorithms presented here are,

in fact, perceived by the subject. One test to measure the value of the wavelet simulation

would be to have a person with normal vision in one eye and low vision in the other view an

image one eye at a time and give an opinion.

Wavelets were used to provide a new image enhancement procedure by manipulating

the decomposition detail coefficients. The new metric to analyze the enhancements based

on edge similarity measures showed that, at least in the regard of edge enhancement, the

perceived wavelet enhancements were matching the original image at about the same level

as the perceived modified pre-emphasis filter enhancements proposed by Peli. The true

usefulness of the wavelet coefficients as enhancement tools can only be determined by the

testing process. The only sure statement that can be made about image enhancement for the

visually impaired, without first having a better understanding of the human visual system,

is that individual subject preferences will be the deciding factor when choosing the optimal

enhancement technique. Wavelet enhancements would provide different information to the

low-vision observer and could prove to be superior to other enhancement techniques for some

patients.

5.3 Recommendations for Follow-On Research

The most obvious area that was not developed in this research was actual testing of the

wavelet enhancement techniques. The steps necessary to do this would include:
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* Measure the output of the headset with a photometer and develop a curve so that the

non-linearity of the screens can be accounted for.

9 Develop a digital to analog conversion scheme so that the output displays of the

headset do not display Mach bands at the very low (threshold) contrast.

* Test visually impaired subjects for contrast sensitivity and contrast suprathreshold

characteristics.

• Incorporate the suprathreshold contrast enhancement scheme outlined here with both

Fourier techniques and wavelet techniques.

9 Develop software to take advantage of the oculometer which tracks retinal movement

so that just the area of the retina in the subject receives an enhanced image segment.

e Test wavelet enhancement schemes using bi-orthogonal wavelets as well as other

symmetric wavelets.
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Appendix A. Peli Simulation

The simulation of what a person with a give contrast threshold sees was accomplished

with the in-file scotoma.m:

%This function will simulate what a person with central ocotucs sees (ootputinsge) when loohing at a picture (inputiosqe)

function oitput ioage-scotoca (inputhoage, threshold)

(n, nJ-aice(inputinage);

soputimage-teal soputinage);

for n1;n;;

for J-i:n;

if ceal(iopotinage~i,jl)>211;

hn puticage(i, 3)-Ill;

elseif realinhpsthcsqe(h, (((<I;

hnputinage(i, j )1;

end

end

F-fftshift(fft2(fftshift(inpuiioge)))

load loq-cos

AI1F. 'If;

h>-F. 'Oh;

Ah3 -F . G03
AhlP.'04;

A15 F. G05;

ai-(fftshhft(hhft2(fftshift(Ai));

a2-(fftahhft~hfft2(fftshift(A2));

a3-(fftahift~ifft2(fftshift(A3))));

a4-(fftshift~ifft2(fftshift(A4))))

al-(fftshift~ifft2(fftshsft(A5))));

LI-Al;

ii.)fftshift(ifftl(fftshift(tl));

12- f ftshift(ifft2(fftshift(L2))));

tI-A2l-;

1i3-(f ftshift(ifftl(fftshift(iI))))

14-13-13;

id-)fftshift~ifft2(fftshift(L4))(1)

11-14-14;

i15(fftshhft~hfftlff~tshhft(LI));

c2-(a2) ./12;

C 3(a3) */13;
C4(a54) /14;

cl-(al)./ll;

for o-i~;n

far o-i~n;

if abs(ci(u,o) )<-threshoid(i);

fin ali(o,v)-l;

else;

flnali(u,v)-(ai(u,v));

end;

if aia(c2(a,o) )c-tireshald(2);
clail2(u,v)-I;

else;

fins 11(uv) -(a1 unv));

end;
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if abs(c3(u,vfli-threshcld(3);

finel3(u,v)-O;

else;

f~nalJ(u,v)-(a3(u,v));

end;

if sbs(n4(u,v))<-threshnld(4);

else;

flnal4ýu~v)-(a4(u,v));

end;

if abn(c5Mnv) <-threshnld(5);

final5(unv)-O;

else;

finsl5(u,vh-(a5(u,v) )
end;

end

end

outputimage ll'+finall-fina12ýfinal3#final4±fihial5);
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Appendix B. Enhancement Algorithms

This appendix contains the code used for the various not-wavelet enhancement algo-

rithms outlined in this thesis.

function ceupicture-adap-filter) picture)

picture-pad2 (picture, cerun (21));

(A,B]-oce(piiture);

I owpoass-oeroo(A,B);

onverae-l/(21-2);

for )C-11:)A-11)

for y-11:)B-11)

l owpass(o,y)-suc,(sum(picture)O-1O:x+1O,ydO0:y+lO)))*lOverse;

end
eod

highpass-5*(picture-lowpass);

for o-l:A-20

fo r y-l:B-2O
loowp anal2oy)-1uupaaasolO,'1O

hgpass2)o y)-highpass~x+lO,y-h0);

end
end

cewpicture-highpaso2+lowpaaa2;

%Thia function will apply the pre-emophasis filter to the inpotlimage.

function outputiinage-emphaala )inputhimage)

)c,,o)-nice~icputimoege);

unputimuge-real) hoputhlcage);

for i>1:m;

fur j-l:n;
if real~inputimcage~ilj))>255;

inpu ticage~i. j)-255;

elneif reul)Joputlimoge~l,j) <G:

inputizcoge) i,ij -0;
end

end
end

P-fftshift~fft2(fftshift~inpollloge)))

load log-con

AOPF. 00;

nh-P. 'G2;
A3P. -i3;
A4-P. 14;

A5-.P. '5;

a4-5')If tahift1)if 112)1Itahif t(A4 ) ) )

Ll>A0;

ll-(tftshift~ifftl(fftahift(Ll));

t2-AliLl;
1 2-(f f tshift i)f ft2)f ftshift(L2));

L3-A2>-t2;
13-)fftahlft~iffth(fftahift)13))))

14-13+13;

14.)fftshift~ifft2(fftshift)14) )))

uutputicuoge-)a4014);

uutputimage-heq~outputimage,255);
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Appendix C. Matlab Implementation of Biorthogonal Wavelets

C.] Coefficients

To decompose an image, a scaling function and a wavelet function are needed. With

the biorthogonal wavelets used in this thesis, the scaling function and wavelet function for

decomposition were defined in the file FBI.m as:

scaletilde=[O .037828455506995 -. 023849465019380...
-. 11062440441842 .37740285561265 .85269867900940...
.37740285561265 -. 11062440441842 -. 023849465019380...
.037828455506995 0];

wavelettilde=[O 0 0 .065438882628938 -. 040689417609558...
-. 41809227322221 .78858561640566 -. 41809227322221...

-. 040689417609558 .065438882628938 0];

The waveforms generated and their relationship are shown in figure 27. The extra zeros

in the definitations are for Matlab purposes, since convolution was used. In addition to the

code shown above, the following was also in the file FBI.m:

L-length(scaletilde);

for n-2:L-1;
wavelet(n-l)-((-l)-(n))*scaletilde(i-n+l);

end

wavelet(L-)-((-1)^n)3scaletilde(L-n);
wavelet L)- (-l) n)*scaletilde(L-n);

L-length(wavelet);

for n-l:L-1;
scal1e(n~l)-((-l)^(n-1))-wavelettilde(L-n+l);

end

scale(1)-((-l) n)*wavelettilde(L-n);

When executed in Matlab, the values in the vectors wavelet and scale were then:

wavelet =

Columns 1 through 7
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0.0378 0.0238 -0.1106 -0.3774 0.8527 -0.3774 -0.1106

Columns 8 through 11

0.0238 0.0378 0 0

scale =

Columns 1 through 7

0 0 -0.0654 -0.0407 0.4181 0.7886 0.4181

Columns 8 through 11

-0.0407 -0.0654 0 0

These vectors and their relationship are shown in figure 31. Once again, the added zeros

are due to Matlab implementation.

C.2 Decomposition

With suitable coefficients, decomposition was a matter of careful implementation of the

procedure outlined by Mallat (18) and Laing (14).

In the file Down2.m was the function Down2(inputface, level). The entire function

code was:

%This m-file will decompose a two dimensional image according to %
%a1llat's method on page 685 of his 1979 wavelet paper, %
%corrected by Laing, with inputs from Maj. Greg Warhola. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Variables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% FACE ..................... image to be decomposed %
% face..... ..............dummy variable so FACE will not be affected %
% LEVEL ................... how many LEVELs user wishes to decompose %
% set .................... which wavelet set to use
% taps ..................... how many Daubechies taps to use %
% scaletilde............... low frequency impulse response used for decomposition %
% wavelettilde ............. high frequency impulse response used for decomposition %
I LK ..................... Size of image at any given decomposition level %

% decompose-level .......... current level of decomposition %
% gface .................... face convolved with the column vector wavelettilde' %
% hface .................... face convolved with the column vector scaletilde' %
% gfacedown .............. downsampled gface (every other row, size L/2 x K) %
% hfacedown ................ downsampled hrace (every other row, size L/2 x K) %
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% ggface ................. gfacedown convolved with row vector wavelettilde I
% hgfce ................. hfwcedown convolved with row vector wavelettilde %

ghfce ................. gfacedown convolved with row vector scaletilde %
% hhface ................... hfacedown convolved with row vector scaletilde %
% D3 . ..................... downsampled ggface (every other column, size L/2 x K/2) %
% D2 .................... downsampled ghface (every other column, size L/2 x K/2) %

ID ..................... downsampled hgface (every other column, size L/2 x K/2) %
% A . .................... downsampled hhface (every other column, size L/2 x K/2) %
% LEVEL .................. name of file containing D3, D2_, Dl_, and AF %
B %

function Down2(FACE,LEVEL);

This line would let a specific wavelet set be used. For this research,
the FBI set was used for enhancement.

%x-input('Wavelet set to use: l)Mallat 2)FBI 3)Battle 4)Daubechies. .
x.2;
y-20;

wave which x

if n--l

Mallet;
M-length(scaletilde);
middle-ceil(M/2);
elseif x--2
FB I;
M-length(scaletilde);
middle-ceil(M/2);
el.e!f x--3
Battle;
M-length(scaletilde);
middle-ceil(M/2);
elseif x--4
% y-input('How many taps? Enter: 4 6 8 10 12 14 16 18 20...');
save whether y
Daubs;
M-length(scaletilde);
middle-ceil(M/2);
end

% The mirrorface function causes FACE to be quadrupled to minimize edge effects. The
% original image matrix can be thought of as quadrant one, quadrant two is the mirror
% image of quadrant one while quadrants three and four are the mirror image of quadrants
% one and two. This causes the image to be 2*L x 2*K in size.

IIIII1B%%%I%I%%%%%%%%%%%%%%%%%%%%%%%%%%IIBII%%IIBIBIBII%I%%%%%IIII%%I%%I%BII%I%%

face-mirrorface(FACE);
%face-FACE;
[L,:]-size(face);
M-length(wcaletilde);

middle-ceil(M/2);

decomposejlevel-l;
while decompose-level<-LEVEL
decompose level;

clear hface gface
for k-l:K;
for l-l:L;
hfeace(l,k)-O;
gfwce(l,k)-0;
for m-l:M;
BBIBBBBBBBBBBBBBBBBBBBB%BBBBBBB%BBBBBBBBBBBBBBBBBBBBBBBB%BBBBBBB%%%
B

e arg is a virtual argument for circular convolution. The following
% insures circular convolution occurs regardless of the size of the
% current matrix

arg-l-mvmiddle;
while (arg>L)((arg<-O)
if arg>L
arg-arg-L;
elseif arg<-l
arg-L+arg;
end
end
%%%BBBBBBBBBBB%%%BBBBBBBBBBBBB1BBBB1BBBBBBBBBBBBBBBBBIBBBBBBBBBB

B The following is the actual filtering of the scale and wavelet
% functions in the direction of decomposition
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hface(l,k)-hface(l,k)cface(arghk)*scaletiide~m);
gface)1, h)-gface(l,k)+face(arg,k)*wavelettilde~m);
end
end
end

clear gfscedown hfacedoiln ggface hgface ghface hhface

D ownsampling the columns

for 1-1:L/2;
gfacedown~i, )-gface(2-l,:)
hfacedown(i,:)-hface(2*1,:)
end

for 1-1:1/2;
for k-l:K;
ggfaCe(L/2,K)-O;
hgface(L/2,K)-O;
ghface(L/2,K)-O;
hhface(L/2,K)-O;

for m-l:M;

%org is a virtual argoument for circular convolution. The following
%insures circular convolution occurs regardless of the sloe of the
%current mastrix

arg-k-momiddle;
while (arg>K)I)arg<-O)
if arg>K
arg-arg-K;
elseif arg<-I
arg-K+arg;
end
end

%The following is the actual filtering with the scale snd wavelet
%functions in the direction of decomposition

hhface(l,k)-hhface(l,k)+hfacedown(l~arg)sscsletilde(m);
ghface(l,k)-ghface(l,k)+gfacedown~l,arg)*scaletilde(m);
hgface(l,k)-hgface(l,k)chfacedown(lsarg)swsvelettilde)~n);
ggface(l,k)-ggface~l,k)ogfacedown~l,arg)*wavelettilde)~n);
end
end
end

%Dowosampling the rows

for k-l:K/2;
eval(('D3_ iot2str(decompose..level) '(:,k)-ggface(:,2*k);1])
eval(('D2_' int2str(decompose level) '(:,k)-ghface):,2-k);'])
eval([Dljl intlstr(decompose..level) '(:,k)-hgface(:,2*k);'1)
eval(['A' int2str(decompose-.level) ');,k)-hhface(:,2*k);'])
end

Saving the current decomoposition level coefficients

eval(I save LEVEL_.' int2str(decompose..level) ID3-' int2str(decompose-level)
122_' int2str(decomiposejlevel) I Dl-' int2str(decompose-level) ' A_'...

iot2str~deoonpose-.levelf)j

eval(I'face-A..' iotlatr~deooipose-level)'')
L-L/2;
K-E/2;
decoiopose-level-decompose-.level+l;

end
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C.3 Reconstruction

The reconstruction code was in the file Up2.m and was:

tThis m-file will reconstruct a two dimensional image according to
%Mallat's method on page 685 of his 1979 wavelet paper,
Icorrected by Laing, with inputs from Maj. Greg Warhola.

%%%%%I%%%%%%%I%%%%%%B%%%%%%% %%% Variables %%%%%%%%%%%%%%%%%%%%B%%%%%%%%%%%%%%

% LEVEL .................... how many LEVELS were decomposed
Sset ...................... which wavelet set was used %

I tsps ..................... how many Daubechies taps were used
% scale .................... low frequency impulse response used for decomposition %
% wavelet .................. high frequency impulse response used for decomposition %
% A ....................... current image matrix to be upsampled and convolved
% L,K ...................... size of image at any given reconstruction level

Sreconstruct-level ........ current level of decomposition
SLEVEL . ................. name of file containing D3-, D2, Dl-, and A- %

D3 . ................... diagonal detail coefficients at current level %
% D2 ..................... horizontal detail coefficients at current level
% Dl ..................... vertical detail coefficients at current level %
% A ...................... approximation coefficients at current level %
% ggfacetemp............... D3 with rows upsampled and zero padded (size L x 2*k)
% hgfacetemp ............... D2 with rows upsampled and zero padded (size L x 2*k)
% ghfacetemp ............... Dlwith rows upsampled and zero padded (size L x 2-k)
% hhfacetemp ............... A with rows upsampled and zero padded (size L x 2-k)
% ggface ................... ggfscetemp convolved with the row vector wavelet %
I hgface ................. hgfscetemp convolved with the row vector scale %
% ghface ................. ghfacetemp convolved with the row vector wavelet %
% hhface ................. hhfacetemp convolved with the row vector scale %
% gfacedown .............. ggface+hgface %
% hfacedown .............. ghface+hhface %
% gfacetemp .............. gfacedown, cols upsampled (size 2*L x 2*k)
I hfacetemp ................ hfacedown, cols upsampled (size 2-L x 2*k) B
% gface .................... gfacetemp convolved with the colunm vector wavelet' %
% hface.................... hfacetemp convolved with the column vector scale'
% face ..................... resulting reconstructed image %
B B

function face-Up2(LEVEL);

For this research, x-2 was used for the FBI wavelet set.

load which

if x--l
Mallat;
gain-2;
M-length(scale);
middle-ceil(M/2);
elseif x--2
FBI;
gain-1;
M-length(scale);
middle-ceil(M/2);
elseif x--3
Battle;
galn-1;
M-length(scale);
middle-ceil(M/2);
elseif x--4
load whether
Daubs;
gain-I;
M-length(scale);
middle-ceil(M/2);
end

reconstruct-level-LEVEL;
while reconstruct-level>l
reconstruct..level;

eval(['load LEVEL_' int2str(reconstructlevel)f)

if reconstruct level--LEVEL
eval(['A-A_' int2str(reconstructlevel)';'
else
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A -face;
end

M-leogth~scale);
[L " -ize(A);
Lt2-L;
K-2. K;-

niddle-ceil(M/2);
enda-floor(M/2);

ggfaceteinp-nero sýt/2,K);
hqfacetexnp-zeroa t/2,K);
ghf acetenip- eZro s ( /2 K)
hhfsoetemp-zeros)L/2,K;

Itpsanpling the rows

for )c-l:K/2;
eval)(':ggfsceteoip( :,2*k)-D3_' int2str(reconstruct-level) '(:,h);']))
eval (' hgfaceternp( 2: ,2ýD2- int2str((reconstructje~vel) '(:,k);']))
eval(['ghfscetemip :2 k)Dl int2str reconstruct- lvel) '(:,k);']))
hhfacetenip) :,2-i)-A(: A);
end

for 1-1:1/2;
for i-tIC;
ggfsce)1I)-i:;
hg face I k)0;
gh f a c e~l,)-i;
hhface~l , )-O;

for n-i:M;

%arg is a virtual argument for circular convolution. The following
%inaurea circular convolution occurs regardleaa of the size of the
Icurrent matrix

arg-k-m~zniddle;
while (arg>K) I arg<-O)
if arg> K
arg-arg-f;
els ei f a rg<-O

srg-K~srg;
end
end

SThe following is the actual filtering of the scale and wavelet
%functions in the direction of decomposition

ggface(l,k)-ggface~l,k)+ggfacetemp(lsarg)*wavelet~in);
hgface~l,h)-hgface~l, k)+hgfscetenp(l~arg)*scale~m);
ghface(l,i)-ghface)1, k)+ghfaceteip(l, arg)*wavelet~n);
hhface(l,k)-hhfsce~l,k)+hhfacetemp~l,arg)-sacle~m);
and
end
end

gfacedswn-ggfsce+hgf ace;
hfacedown-ghface+hhf ace;

clear gfacetemp hfacetemp gf ace hface

gfaceteznpneroa(t,K);
hfacetemnp-neros(t,K);

I tipsampling the columtna

for 1-1:1/2;
gfaceteinp)2*1, ;)-gfacedown~l,:)
hfacetenp)2*1, ;)-hfacedownl:)1,
end

clear hf ace gfsce
for )c-l:K;
for 1-1:1,;
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hface(l,k)-O;
gface(l,k)-O;
for mr-:M;

% arg is a virtual argument for circular convolution. The following
% insures circular convolution occurs regardless of the size of the
I current matrix

srg-l-m+middle;
while (arg>L)I(arg<-O)
if arg>L
arg-arg-L;
elself arg<-O
srg-L+arg;
end
end

% The following is the actual filtering with the scale and wavelet
% functions in the direction of decomposition

hface(l,k)-hface(l,k)+gfacetemp(arg,k)*wavelet(m);
gface(l,k)-gface(l,k)+hfacetemp(arg,k)*scale(m);
end
end
end
face-(gface+hface)*gain;
reconstruct-level-reconstruct_level-1;
end

I This step ensures an image the same size as the original. (Remember,
the mirrorimage function was used to minimize edge effects)

face-(face(I;L/2,1:K/2)+face(L:-I:L/2+l,1:K/2)+face(1:L/2,K:-l:K/2+1)+face(L:-l:L/2+1,K:-I:K/2+1))/4;

return
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Appendix D. Wavelet Simulation Code

The Matlab code in this appendix explains how the simulation of visual perception

based on contrast sensitivity using bi-orthogonal wavelets was implemented.

I This function will create a contrast image at each level corresponding to
% measured points on the contrast threshold curve, and then use that data to
% manipulate the detail coefficients at each level. The returned image, waveface
% will be a wavelet simulation of what a person with a given contrast threshold
% sees when looking at the original image, FACE.

I

I %%U%%%BB%%%%%%%%% VARIABLES %%%%%%%%%%%%%% I%%%%%%%%%%%%%
I

I FACE .................. input image
face .................. dum•ny variable so FACE will not be changed
threshold, t .......... contrast threshold used for given person

% LEVEL ................. maximum level of decomposition, image size dependant
% L,K .............. .... size of face
% LEVEL_............... set of coefficients at current decomposition level
% D3 ................. diagonal details
% D2_.................. horizontal details
% DI_.................. vertical details
% A_................... approximation image at that level
% C, dummy .............. contrast image at that level

function waveface-scotowave(FACE,threshold,scoLEVEL);

face-FACE;
t-threshold;

(L,K)-size(face);
for 1-8:L;
for k-E:K;
if real(face(l,k))>255;
face(l,k)-255;
elseif real(face(l,k))<l;
face(l,k)-0;
end
end
end

Down2scowave(face,t,scoLEVEL);

waveface-Up2scowave(scoLEVEL);

%This m-file will decompose a two dimensional image according to
%Mallat's method on page 685 of his 1979 wavelet paper, %
%corrected by Laing, with inputs from Maj. Greg Warhola. %
B%%%%%%%BBB%%BBB%B%B%1%%%%%%%%%%%%%%%%%%%%%BBB%%%%B%%%%IBIIIBB%%%BI%%B%%%%%%%%%%IIB%%%

%%%IIBIB% BBBBBBBBB% BBBBBIIIBBB Variables %BB %% %BIBIII% %%%%%%%%%%%%%%%
% I
%5 8

% FACE ..................... image to be decomposed %
% face ..................... dummy variable so FACE will not be affected %
% scoLEVEL ................. how many LEVELs user wishes to decompose %
% set ...................... which wavelet set to use
% taps .............. ....... how many Daubechies taps to use %
% scaletilde ............... low frequency impulse response used for decomposition I
% scowavelettilde .......... high frequency impulse response used for decomposition %
SL,K ...................... size of image at any given decomposition level %

, decompose.level.......... current level of decomposition %
% gface .................... face convolved with the column vector scowavelettilde' %
% hface .................... face convolved with the column vector scaletilde' %
% gfacedown ................ downsampled gface (every other row, size L/2 x K) %
% hfacedown ................ downsampled hface (every other row, size L/2 x K) %
% ggface ................... gfacedown convolved with row vector scowavelettllde %
I hgface ................... hfacedown convolved with row vector scowavelettilde %
% ghface ................... gfacedown convolved with row vector scaletilde %
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% hhface ................... hfacedown convolved with row vector scaletilde
% D3 ..................... downsampled ggface (every other column, size L/2 X K/2) t
t D2_..................... downsampled ghface (every other column, size L/2 x K/2) %
t DI ..................... downsampled hgface (every other column, size L/2 x K/2) %
% A ..................... downsampled hhface (every other column, size L/2 x K/2) %
% scoLEVEL . .............. name of file containing scoD3_, scoD2_, scoDl, and scoA_
I %

function Down2scowave(FACE, threshold, scoLEVEL);

I This line would let a specific wavelet set be used. For this research,
the FBI set was used for simulation.

%

..- input('Wavelet set to use: l)Mallat 2)FBI 3)Battle 4)Daubechies...
x-3;
%y-20;
save which x

if x--l
Mallat;
M-length(scaletilde);
middle-ceil(M/2);
elseif x--2
FBI;
M-length(scaletilde);
middle-ceil(M/2);
elseif x--3
Battle;
M-length(scaletilde);
middle-ceil(M/2);
elseif x--4
% y-input('How many taps? Enter: 4 6 8 10 12 14 16 18 20... ';
save whether y
Daubs;
M-length(scaletilde);
middle-ceil(H/2);
end
•%IIIIIII%%BBIIII%III%%%%%%%%%%%%1%%%%%%%%%%%%II%%IIIBBIIIIIIIIII%%I%II%%%%I%II1%

I The mirrorface function causes FACE to be quadrupled to minimize edge effects. The
% original image matrix can be thought of as quadrant one, quadrant two is the mirror
% image of quadrant one while quadrants three and four are the mirror image of quadrants
% one and two. This causes the image to be 2-L x 2*K in size.

(L,K(-size(FACE);

face-mirrorface(PACE);

[L,K]-size(face);

M-length(scaletilde);

middle-ceil(M/2);

decomposejlevel-l;
while decompose-level<-scoLEVEL

clear hface gface ggface hgface ghface hhface

i-scoLEVEL-decomposelevel-1;

cpi-(21)+(2-(i-l));

if cpi > 32
for k-l:K;
for 1-1:1;
hface(l,k)-0;
for m-l:M;

I arg is a virtual argument for circular convolution. The following
insures circular convolution occurs regardless of the size of the

I current matrix

arg-l-m+middle;
while (arg>L)((arg<-0)
if arg>L
arg-arg-L;
elseif arg<-i
arg-L+arg;
end
end
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% The following is the actual filtering of the scale and wavelet
% functions in the direction of decomposition

hface(l,k)-hface(l,k)+face(arg,k)*scaletilde(m);

end
end
end
else
for k-l:K;
for 1-1:L;
hface(l,k)-O;
gface(l,k)-O;
for m-l:M;

% arg is a virtual argument for circular convolution. The following
% insures circular convolution occurs regardless of the size of the
% current matrix

arg-l-m+middle;
while (arg>L)I(arg<-O)
if arg>L
arg-arg-L;
elseif arg<-O
arg-L+arg;
end
end

% The following is the actual filtering of the scale and wavelet
% functions in the direction of decomposition

hface(l,k)-hface(l,k)+face(arg,k)*scaletilde(m);
gface(l,k)-gface(l,k)+face(arg,k)'scowavelettilde(m);
end
end
end
end
if cpi > 32
for 1-1:L;
for k-l:K;
hhface(l,k)-0;

for m-l:M;

% arg is a virtual argument for circular convolution. The following
% insures circular convolution occurs regardless of the size of the
I current matrix

%II%%%%%%%%%|%%%%%%%%%%%%1%%%%IIIIIIIIIIIIIII11%%%%%%%%%IIIII%II%%%

arg-k-m+middle;
while (arg>K) I(arg<-f)
if arg>K
arg-arg-K;
elseif arg<-O
arg-K+arg;
end
end

% The following is the actual filtering with the scale
I functions in the direction of decomposition

hhface(l,k)-hhface(l,k)+hface(l,arg)-scaletilde(m);
end
end
end
else
for 1-1:L;
for k-l:K;
ggface(l,k)-f;
hgface(l,k)-0;
ghface(lk)-O;
hhface(l,k)-g;

for m-l:M;

I arg is a virtual argument for circular convolution. The following
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%insures circular convolution occurs regardless of the nice of the
%current mnatrix

nrg-k-o~olddle;
while )srg>K) I arg<0O)
if arg>K
arg-srg-K;
elneif argc-O
arg-Kvarg;
end
end

% The following is the actual filtering with the scale and wavelet
%functions in the direction of decomposition

ghface~l,k)-ghface~l,k)+gface~l,arg)*analetildem);n
hgface~l,h)-hgface~l,k)+hface~l,arg)*scowavelettilde~m);
ggface~l,h).ggfsce~l,h)+gface~l~arg)nscowavelettilde~m);
hhface~l,h)-hhfsne~lhk)+hface~l,srg)*scsletilde~ra);
end
end
end
end
if cpi < 32
Cgh-aha~ghface./)hhfsce+.OlI0hhhll));
Chg-aha~hgface./)hhfanev.lllgh0hll));
Cgg-aha~ggface./)hhfane-.0.Ollhhghl));
[ICKC)-aize)Cgh);
for l-l:IC;
for k-hIlt;
if)Cgh~l,k) <- threshold~cpi))
ghfsce~l, 1)-I;
end
If)Chg~l,h) <- threshold~cpi))
hgface~l,h)-l;
end
if)Cgg~l,h) <- threnhald~cpl))
ggface~l,k)-3;
end
end
end
end

% Dwnasspllng the rows and columns

if cpi < 32
for 1-1:1/2;
for )c-l:K/2;
if (2-1+1<-L) & )2*h+l<-K)
eval))'acon3'1 iat2str~decornposejlevel) ')l,k)-ggface)2'l+l,2*h+l);'))
eval([scon2-' int2str~denoraposejlevel) ')l,k)-ghfsce)2*l+l,2*h);'J)
eval)('sconl_' Int2str~decompose-level) ')l,k)-hgface)2*l,2*h+l);'1)
eval))'scoh_ int2str~decompnse-level) )lI,k)-hhfsce)2*l,2*h);'])
elseif )2*l+l<-L) & )2ak+l>K)
evsl))'scoD3_' int2str~decompose-level) ')l,k)-ggface(2*l+l,l);']
evsl))'scoD2_j int2str~decorapose-level) ')l,h)-ghface)2-l+l,2*)c);'))
eval))'scnDl_' int2str~decoepase-level) ')l,l)-hgface)2*1ll);'])
evslU'IscoA'l int2str~decoepose..level) )(l,h)-hhfsce)2al,2akJ);)
elself )2*l+l>1) & )2*k+l<-K)
eval))'scol3_' lnt2str~decnmpoae-level) ')l,k)-gqfsce(1l2ah+l);'1)
evalUIsnon2_' lnt2str~deconipoae-level) ')l,k)-ghface(l,2*h);'J)
eval(['sconl_' lnt2str~decoinpose level) ')l~k)-hgface)2'l,2-h+l);'J)
eval)['scoA'l int2str~decoinpose level) ')1,k)-hhface)2*l,2-h);'))
else
evalfl'scon3..' int2str~decnmpase..level) ')l,k)-ggface~l,l);'))
evsl(I'snol2_' int2str~decompase-level) ')l,h)-ghface~l,2-k);'])
anal) 'sash'~ iot2str~densxnpose-level) )~l,h)-hgfsce)2*l,l); '])
eval(['scoA_' int2str~decompose-.level) ')l,h)-hhfsne)2*l,2*k);'])
end
end
end
else
evsl))'anoD3_j int2str~decoznposejlevel) '-neros)1/2,K/2);'])
anal) )'sccl2j' int2str~denoopose-level) '-neros(L/2,K/2);' 1)
anal) ['sco~ll' int2str~denompose level) '-oeros(L/2,K/2); '1)
for 1-1:1/2;
for k-l;K/2;
eval))'scoh_' int2slr~decooipoae level) ')l,k)-hhface)2-l,2-h);'])
end
end
end
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Saving the current decomposition level coefficients

eval)['save scoLEVEL' int2str(decompose level) ' scoD3_' int2str(decompose-level)
' scoD2_' int2str(decompnse-level) ' scoDl_' int2str(decompose-level) scoA'.
int2str(decompose_level)])

eval(['face-scoAo' int2str(decomposelevel)
1-L/2;
K-K/2;
decompose level-decompose-level+l;

end

%This m-file will reconstruct a two dimensional image according to I
%Mallat's method on page 685 of his 1979 wavelet paper, %
%corrected by Laing, with inputs from Maj. Greg Warhols. %

%%%%%%%%%%%%%%%%%%%%%%%%%•%%%%% Variables I%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% scoLEVEL .................. how many LEVELs were decomposed I
% set .................... which wavelet set was used I
% taps ................... how many Daubechies taps were used %
% scale .................. low frequency impulse response used for decomposition
% wavelet ................ high frequency impulse response used for decomposition
% A ...................... current image matrix to be upsampled and convolved %
% L,K ...................... size of image at any given reconstruction level %
% reconstruct-level ........ current level of decomposition %
% scoLEVEL . ................. name of file containing D3_, D2_, Dl, and A_ I
% D3 ..................... diagonal detail coefficients at current level %
% D2 ..................... horizontal detail coefficients at current level %
% D1 ..................... vertical detail coefficients at current level %
% A . .................... approximation coefficients at current level %
% ggfacetemp ............... D3- with rows upsampled and zero padded (size L x 2-k) %
% hgfacetemp ............... D2- with rows upsampled and zero padded (size L x 20k) %
I ghfacetemp ............... DIl with rows upsampled and zero padded (size L x 2*k) %
% hhfacetemp ............... A with rows upsampled and zero padded (size L x 2*k) %
Sggface ................... ggfacetemp convolved with the row vector wavelet %
% hgface ................... hgfacetemp convolved with the row vector scale %
% ghface ................. ghfacetemp convolved with the row vector wavelet %
% hhface ................. hhfacetemp convolved with the row vector scale %
% gfacedown .............. ggface+hgface %
% hfacedown .............. ghface+hhface %
% gfacetemp .............. gfacedown, cols upsampled (size 2*L x 2*k) %
% hfacetemp .............. hfacedown, cols upsampled (size 2*L x 2*k) I
% gface .................. gfacetemp convolved with the column vector wavelet'
% hface .................... hfacetemp convolved with the column vector scale'
% face ..................... resulting reconstructed image %
8 I

function face-Up2scowave(scoLEVEL);

% For this research, x-2 was used for the FBI wavelet set.

load which

if x--l
Mallet;
gain-2;
M-length(scale);
middle-ceil(M/2);
elseif x--2
FBI;
gain-1;
M-length(scale);
middle-ceil(M/2);
elseif x--3
Battle;
gain-1;
M-length(scale);
middle-ceil(M/2);
elseif x--4
load whether
Daubs;
gain-l;
M-length(scale);
middle-ceil(M/2);
end
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reconstruct-level-acoLEVEL;

while reconstruct-level1>0

clear hface gfsce ggfsce hgface ghface hiface

eval)(['load scolEVEL' iot2str~reconstruct level)))

if reconstruct-level--scoLEVEL
evsl(['A-scoh_' iotlstr~recooatruct level) 'I
else
A-face;
end

H-length) scale);
)L,KI-sice)A);
L-2-L;

nlddle-ceil)M/2);
eods-floor)M/2);

ggfscetenp-neroa(L/2,K);
hgfacetenp-neros(L/2,K);
ghfacetemp-oerossL/2,KI);
hhfaceteznp-neroa(L/2,K);

ItUpsaznpllng the rows

aioe~ggfaceteznp);
eval))'slne~acoDl_' intlatr~reconstrsct-level)')'I
for k11;K/2;
anal) )'ggfacetezp) ;,2*k)-acol3_j iat2str~recosntruct-level) '(:,k);'])
eval) )'hgfacetemp) ;,2*k)-acoD2_' lat2str~recnsstrsct-level) '(;,k); '])
anal) )'ghfacetexnip) ;,2*k)-aco~ll_ istlstr~reconatruct-level) '(:,k); '])
hhfscetemp); 2-k)-h) ; I);
end

for 1-1:L/2;
for k-111;
ggfsce~l,k)-O;
hgface~l,k)-l;
ghface~l,l)-l;
hhface~l,l)-O;

for m-l;M;

%arg is a virtual argument for circular convolution. The following
%insures circular convolution occurs regardless of the size of the
%current matrix

arg-k-m+middle;
while )arg>K)) (srg<-l)
if arg>K
arg-srg-K;
elseif arg<-O
arg-K+srg;
ead
end

%The following is the actual filtering of the scale sand wanvere
% functions is the direction of decomposition

ggface~l,k)-ggface~l,k)+ggfscetemp~l,srg)
5
wavelet(m);

hgface~l,k)-hgfsce(l,h)+hgfscetesp~l,arg)-scsle~m);
ghfsce~l,k)-ghface(l,k)vghfacetemp~l,arg)*wavelet(m);
hhfsce~l, l)-hhface~l, k)ihhfscetemp(l,srg)*scsle(m);
ead
end
end

gfscedowa-ggfsce+hgf ace;
hfacedown-ghfsce+hhf ace;

clear gfscetemp hfacetemnp gface hface

gfacetenp-neros)L,K);
hfacetenp-neros(L K);
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Upsampling the columns

for 1-1:L/2;
gfacetemp(2*l,:)-gfacedown(l,:);
hfacetemp(2*l,:)-hfaced6wn(l,:);
end

clear hface gface
for k-l:K;
for 1-1:L;
hfnce(l,k)-O;
gface(l,k)-O;
for m-l:M;

% arg is a virtual argument for circular convolution. The following
% insures circular convolution occurs regardless of the size of the
% current matrix

arg-l-m+middle;
while (arg>L)j(arg<-O)
if arg>L
arg-arg-L;
elseif arg<-l
arg-L+arg;
end
end

IThe following is the actual filtering with the scale and wavelet
functions in the direction of decomposition

%%%%%IIII%%I%%%IIIIIIII%II%IIIIII%Itt%%tI%III%II%III%%%III%It%

hface(l,k)-hfsce(l,k)+gfscetemp(arg,k)*wavelet(m);
gface(l,k)-gface(l,)+hf cetemp(argh)kscale(m);
end
end
end
face-(gface+hface)*gain;
reconstructlevel-reconstruct level-1;
end
II%I%III%%III••%%%%%%%%%%%I%%II••%%%IIII%1III%I%•%I%1I%III%I%%%%IIIIIII%%I%%%I%%IIII%

% This step ensures an image the same size as the original. (Remember,
% the mirrorimage function was used to minimize edge effects)

face-(face(I:L/2,1:K/2)+face(L:-l:L/2+1l1:K/2)+face(l:L/2,K:-l:K/2+1)+face(L;.lýL/2+1,K:-l:K/2+1))/4;

return
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