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Abstract 

Software engineering tools and techniques were applied to design and 

implement an application that reduces lag typically present in virtual 

environment displays. The application was a Multiple Model Adaptive 

Estimator (MMAE), composed of three Kaiman filters, that predicted head 

orientation one sample period into the future. The environment rendering 

software used these predictions to generate the environment display. Each of 

the filters in the MMAE was designed for a different assumed head motion 

type (benign, moderate, or heavy), which allowed the MMAE to adapt to 

changes in head movement characteristics. 

The use of Ada 9X as an implementation language for a virtual 

environment applications was also investigated. Ada 9X provides object- 

oriented features for design and development, and it also offers software 

engineering support that makes it preferable to C or C++ for the application 

developed. 

Two significant results were produced. The first is a performance 

baseline for the MMAE that can be used as a benchmark for future research 

in this area. The other is a performance-based comparison of equivalent Ada 

9X and C++ graphics applications in which Ada 9X performance was 

practically identical to C++. This second result is somewhat surprising, and 

should be investigated further. 
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MULTIPLE MODEL ADAPTIVE ESTIMATION AND HEAD 
MOTION TRACKING IN A VIRTUAL ENVIRONMENT: 

AN ENGINEERING APPROACH 

I       Introduction 

Virtual environments allow participants - most commonly with the aid 

of head-mounted display (HMD) equipment, position sensors, and perhaps a 

data glove - to interact with computer-mediated and maintained 

environments that can represent, among other things, models or simulations 

of actual environments. It is believed that this spontaneous form of human- 

computer interaction will have tremendous benefits. There have already 

been applications developed to aid in scientific visualization, medical 

imaging, and training for high-risk tasks such as flying an airplane or 

working in otherwise hostile environments such as on the ocean floor or the 

surface of another planet. 

There are, however, still several barriers to overcome before virtual 

environments can fulfill their potential. Current state-of-the-art in graphics 

technology is insufficient to allow real-time generation and display of photo- 

realistic images; therefore virtual environments are still in the "cartoon" 

stage of display realism and lack sufficient auxiliary 3D cues such as shading 

and shadows. Frame rates are also a problem. A frame rate of 60 Hz (sixty 

hertz, or sixty screen updates per second) is very good, but can usually only 

be maintained for the simplest environments; even a modest increase in 

scene complexity can drive the frame rate to a much less realistic (and 
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therefore much less usable) 10 Hz. Finally, virtual environment displays 

tend to lag behind the movements of the participant. This also detracts from 

the realism and usability of the environment, and has been suggested as a 

cause for motion sickness observed in virtual environment participants. 

The focus of this research has been to apply software engineering tools 

and techniques to develop an application that reduces the lag typically 

present in virtual environment displays, and thereby to increase the utility of 

these environments for training and research. In order to achieve this, a 

Multiple-Model Adaptive Estimator (MMAE) composed of three Kaiman 

filters was used to predict the orientation of a virtual environment 

participant's head. This prediction was passed on to the software that 

generated the environment display, which used it to build the next scene 

shown to the participant. Each of the filters in the MMAE was designed for a 

different type of head motion (benign, slow movements; moderate, normal 

movements; and rapid movements such as in a re-acquisition task) thus 

allowing the MMAE to adapt to changes in the characteristics of the 

participant's head movement patterns. The research approach was validated 

by two studies. The first was a performance study in which subjects taken 

from AFIT faculty and students were asked to follow the movements of a ball 

(3D sphere) in a virtual environment that incorporated the MMAE-based 

approach, as well as a single Kaiman filter predictor and no predictor. The 

other study was a language comparison between two implementations of the 

software; one in C++ and the other in Ada 9X. 

7.7    Problem Mo tiva tion 

The fundamental idea behind the three-dimensional display is to 
present the user with a perspective image which changes as he 
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moves. The retinal image of the real objects which we see is, after 
all, only two-dimensional. Thus if we can place suitable 
two-dimensional images on the observer's retinas, we can create 
the illusion that he is seeing a three-dimensional object. 
Although stereo presentation is important to the 
three-dimensional illusion, it is less important than the change 
that takes place in the image when the observer moves his head. 
The image presented by the three-dimensional display must 
change in exactly the way that the image of a real object would 
change for similar motions of the user's head. 
[Sutherland68:757] 

In his book Virtual Reality, Howard Rheingold states that virtual 

environments have two defining characteristics. The first is immersion: the 

feeling that you (the participant) are actually present in the environment. 

The other is navigation: the ability to move about in and interact with the 

environment [Rheingold91:112-113]. 

The combination of these two qualities makes virtual environments a 

promise-laden research and application field. Rheingold reports that 

researchers at the University of North Carolina have worked for several 

years on a virtual environment application that allows participants to explore 

molecular forces and create new molecules by interacting with models of 

various atoms [Rheingold91:26-29]. A related piece of ongoing research 

reported by Chung is attempting to develop a virtual application that allows 

doctors to see the path a radiotherapy beam will take as it passes through the 

body, as well as what tissues it will affect. This will allow a doctor to 

determine a beam position and direction that will maximize effect on 

cancerous tissue while minimizing risk to healthy tissue [Chung92:193]. 

Simulation has been and continues to be a major player in virtual 

environment technology. Simulators have proven to be a cost-effective 

training medium that allows individuals in high-risk occupations to gain 

experience without the risk to life or property associated with using actual 
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equipment. Simulators are used to train, among others: pilots, air traffic 

controllers, and professional race car drivers [Ellis91:325-326]. Scientific 

visualization is another growing area for virtual environments. Scientists are 

using satellite photography data to create surface models of distant planets 

that can be explored through virtual environment applications [Ellis91:328- 

329]. Communications and teleoperations have also benefited from the 

growth of this technology [Ellis91:331-333]. 

The United States Air Force and the Department of Defense also 

maintain an active interest in virtual environments. This interest stems 

mainly from the simulator technology used to train pilots, but extends into 

other related fields as well. The Ada Joint Project Office (AJPO) sponsors a 

great deal of research into the use of the Ada language for virtual 

environments. This thesis is an example of that sponsorship. The Virtual 

Environments Interface Laboratory (VEIL) at Armstrong Laboratories 

(Wright-Patterson AFB, OH), is dedicated to the study and development of 

applications for virtual environments. AFIT also contributes to the growing 

body of research in this field. Distributed simulation, synthetic battle 

bridges, satellite modelers, and virtual cockpits all explore the possibilities of 

this field. 

Virtual environments are a step up from current screen-based display 

techniques, just as current screen-based techniques were a step up from 

text-based input/output (I/O) displays. The introduction of the desktop 

metaphor in the 1980s allowed a user to interact with his/her computer in a 

more natural way. Instead of being expected to memorize arcane commands 

and myriad options, the user could use a graphically-based input device (a 

mouse) to identify and execute desired commands. The screen, which until 
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this time had been little more than a text-based I/O device, became a more 

familiar (and less threatening) graphical user interface (GUI); in this case a 

desk top on which symbols (or icons) representing documents and other 

objects or actions could be placed, manipulated, or discarded [Ellis91:321- 

322]. 

Now, with virtual environments, the participant can have a virtual 

desktop with virtual documents, etcetera, that he/she can manipulate with 

his/her hands. Again, the driving motivation is to make the interaction more 

natural for the participant. Virtual environments thus represent a blending 

of the strengths of the computer and the participant. The ability of the 

computer to manipulate vast amounts of data rapidly and accurately and 

present it in a graphical format is being coupled with the natural abilities of 

the participant to analyze, interpret, and manipulate that data. In the words 

of Arthur, Booth, and Ware: 

The underlying motivation in virtual reality is to realistically 
present 3D worlds to a user so that he or she perceives and 
interacts with them naturally, thus borrowing from built-in 
human abilities that evolved from our normal dealings with the 
3D world that surrounds us every day. [Arthur93:240] 

The key to this collaboration is the spontaneity and perceived realism of the 

interaction. If humans are to immerse themselves in virtual worlds and use 

eyes and hands as the means of interaction, then these worlds must provide 

feedback that is appropriate, expected, and perhaps most importantly, 

delivered in real-time. 

Meeting this feedback requirement is one of the major challenges in 

designing virtual environments, but it is certainly not the only one. Perhaps 

the most immediate problem with virtual environments is cost. Although 

decreasing steadily as technology and acceptance of this medium improves, it 

-5- 



is still prohibitively expensive for individuals or even small businesses to take 

advantage of virtual environments. One or possibly two (one for each eye 

image) high-performance workstations are required to maintain them 

[Arthur93:243]. 

Another problem is stereoscopic eye strain. HMDs must be precisely 

aligned to the participant's interocular distance (the separation of the eyes) or 

the participant will experience severe eye fatigue from extended use. A 

related problem is that current HMDs are fairly bulky and heavy, and 

prolonged use can cause neck fatigue [Ellis91:337]. 

Feedback concerns, however, are the focus of the majority of current 

research. An example of a feedback issue is auxiliary 3D cues such as 

shadows and shading of objects [Arthur93:244]. These additional cues add to 

the immersive quality of the virtual environment display by helping the 

participant to determine the relative distance between objects, and other 

display characteristics. However, techniques for providing these cues are 

currently prohibitively expensive from a computation standpoint 

[Foley90:866-873]; using them can drive display performance (as measured 

by presentation rate) below the usability threshold. 

Problems encountered in the area of spatial display limitations 

(resolution and field of view) speak directly to the need for appropriate 

feedback to the participant. In immersive virtual environments, the images 

shown to each eye are commonly displayed on Liquid Crystal Displays (LCDs) 

that use wide-angle optics to give the participant the necessary peripheral 

cues. The resolution of these LCDs is typically quite coarse, with a relatively 

small number of pixels available for display, and the images generated by the 

computer must typically be stretched in order to cover all of the display 
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surface available [Arthur93:243]. These factors combine to produce images 

which are unnatural and blocky. Further, current virtual environments have 

trouble accommodating the participant's ability to focus selectively, or fixate, 

at a given distance. Normal vision allows humans to set their focus at a 

specific distance in order to view an object of interest. Objects at this 

distance are seen sharply, while objects nearer or farther away are blurred. 

Attempts have been made to monitor the focal length of the participant 

[Ellis91:337] and adjust the environment display accordingly, but widespread 

use of this technology is still some time off. 

Another feedback problem is temporal display artifacts (lag and low 

frame rate) [Arthur93:244]. Lag refers to the perceived delay between control 

events to a system and the system's response (either by display or other 

activity) to those events. Frame rate refers to the ability of the application 

software to generate and display new scenes for the participant. 

Lag is especially important in virtual environments because any lag in 

the display of the environment directly affects the participant's feeling of 

immersion [Arthur93, Friedmann92, Liang91]. Shaw states that a virtual 

environment must be able to display a new image in less than one hundred 

milliseconds in order to be considered responsive [Shaw93:292]. Lag has also 

been linked, at least qualitatively, to occurrences of motion sickness in virtual 

environment participants. In an article for the Canadian Journal of 

Physiology and Pharmacology, Oman reports that most researchers now 

regard seasickness, car sickness, airsickness, flight simulator sickness, and 

other forms as different examples of the same syndrome [Oman90:295]. He 

also reports on Reason's neural mismatch hypothesis, which he feels is 

perhaps the best known of the current theories on motion sickness: 
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Reason argued that the brain probably evaluates incoming 
sensory signals for consistency by computing the component of 
sensory signals that is new and unexpected, given knowledge of 
ongoing movement commands. The brain is postulated to 
maintain a "neural store"'.. .that are continuously updated based 
on experience interacting with the physical environment. As a 
body movement is commanded, the CNS (Central Nervous 
System) is assumed to fetch from the neural store the associated 
normally anticipated sensory input....Actual sensory input and 
retrieved sensory memory traces are continuously subtractively 
compared. The difference is a "sensory conflict" signal. The 
specific stimulus for motion sickness...was proportional to the 
number and magnitude of sensory conflict signals. [Oman90:296] 

Arthur, Booth, and Ware state that lag is probably a more important 

factor than low frame rate where 3D task performance is concerned. 

Regression modeling of experimental data they obtained showed that lag 

accounted for more data variance than low frame rate [Arthur93:261]. 

However, lag and frame rate are not independent; a low or fluctuating frame 

rate contributes to perceived lag in virtual environment displays 

[Arthur93:244]. Bryson and Fisher assert that applications with a low frame 

rate will have poor interactivity regardless of how quickly data is taken from 

external data sources [Bryson90:105]. 

1.2    Problem Statement 

Lag is a problem that limits the usability of immersive virtual 

environments by inhibiting their ability to provide a realistic experience for 

participants. As an example, a study by Kozak, Hancock, Arthur, and 

Chrysler showed no evidence for transfer of training from a virtual 

environment to a real-world task [Kozak93:777]. The authors, however, felt 

that this could be attributed to the current state of virtual environment 

display technology, and that making the environment display and context 
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more realistic would improve training usefulness [Kozak93:782-783]. One 

method of making environment displays more realistic is to minimize and/or 

eliminate the lag associated with image generation and display. In this way, 

the environment can be made to show the participant a scene appropriate to 

his/her head position and orientation in approximately real-time, thereby 

eliminating one of the current barriers to widespread use of this technology. 

The characteristics of this problem are twofold, encompassing both 

hardware and software concerns. On the hardware side, current hardware is 

unable to provide position and orientation information at a rate that will 

allow the environment display to be updated in real-time or even near-real- 

time. On the software side, current software techniques are not advanced 

enough to perform the calculations necessary to generate a scene of anything 

more than trivial complexity and still maintain the frame rate necessary to 

effect immersion for the participant. 

1.3    Problem Discussion 

"The lag problem, for example,...comes across in popular articles 
as an artifact of today's systems that will probably be solved by 
some chip one day soon. It isn't that easy." [Henry Fuchs, quoted 
inRheingold91:34] 

Traditionally, lag (or latency) has been generally defined as the 

amount of time between the application of a control event to a system, and 

the system's response to that event [Arthur93:241; Liang91:19; 

Bryson90:98]. In the case of virtual environments, this may be translated to 

mean the time delay between a participant changing his/her head position 

and/or orientation (the control event), and the environment displaying a 

scene appropriate for that change (the response). But this is not the only 

possible translation. 
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Bryson and Fisher divide lag into two types: transmission lag and 

position lag. Transmission lag is a time delay equal to the time to get data 

from an external source to the application plus the time needed to update and 

display the scene [Bryson90:105]. Position lag is a spatial lag that is induced 

by transmission lag and the velocity of the controller [Bryson90:100]. Bryson 

and Fisher feel that transmission and position lag are the only important lags 

in an application; if they are minimized, then the effects of other (unnamed) 

sources of lag in the system will be negligible [Bryson90:100]. Friedman, 

Starner, and Pentland take a slightly different approach. They identify three 

major causes of "problems in synchronization of user motion, rendering, and 

sound" [Friedman92:57] in their application. These are noise in the sensor 

measurements, length of the processing pipeline, and unexpected 

interruptions [Friedman92:57]. This research will use elements from both of 

these sources to define lag. 

Lap Definition. Display lag is denned as the time delay between a 

virtual environment participant changing his/her head orientation, and the 

display of a scene appropriate for that change; this is also the "human 

perceptible" lag in the display. If a display is done in real-time (such that the 

participant cannot perceive any lag), then the display lag is zero. Display lag 

has three major components: transport delay, image update delay, and 

unexpected delay. Each of these is discussed below. 

Transport Delay. Currently, head position and orientation data are 

measured by a magnetic tracking device such as a Polhemus 3SPACE tracker 

or an Ascension Bird system. In order to provide data, the tracker has to 

generate and sense magnetic fields; perform calculations to determine the 

sensor location; and transmit the results to the rendering software, usually 
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across a serial communications line [Bryson90:105; Liang91:19]. The time 

required for this process to complete is the transport delay. 

Transport delay is largely a hardware-based problem, but solving it 

may take more than faster hardware. Bryson and Fisher point out that, with 

current double-buffered approaches to graphics display, "the graphics will 

always be at least one frame behind the controller" [Bryson90:105]. This lag 

is independent of any transport delay; it is instead due to the time required 

to generate and display the frame corresponding to the incoming data. 

Image Update Delay. Another cause of display lag is the number of 

operations required to generate a new display for the participant. Once the 

data from the controller arrives, the rendering software will typically perform 

a large number of calculations in order to build a new scene to be displayed 

and load it into video memory. We will call the time required to perform this 

operation image update delay. 

Image update delay is both a hardware- and software-based problem. 

Scene calculations typically involve a tremendous number of matrix 

operations to translate, rotate, and scale environment objects. At the 

University of North Carolina, special processors for these matrix operations 

(and other computation-intensive steps) have been used to decrease image 

update lag [Azuma94:section 3]. 

Software solutions typically fall into one of two approaches. The first 

approach involves "guaranteeing" a minimum frame rate by managing the 

complexity of the scene being displayed. Frame rate is monitored during 

application execution, and if it falls below a predetermined threshold, the 

scene complexity is reduced to allow faster rendering. One way to reduce 

complexity is to alter the display format (for example, using wireframe 
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renderings instead of solid figures). Another is to reduce the amount of data 

that needs to be processed. Ellis notes that applications that use the Exos 

hand (an input device similar to the data glove) often turn off a number of the 

joints [Ellis91:332]. This idea could be extended - an application could 

selectively omit non-critical objects in a virtual environment display in order 

to preserve frame rate. Similarly, the application could render objects in the 

center of the image at full detail, while rendering objects on the periphery of 

the image with less detail [Ellis91:337]. 

The other category involves structuring the application software to 

minimize software overhead. This is especially true for operating system 

overhead, although this more properly falls under unexpected delays, 

discussed below. Azuma and Bishop [Azuma94] report that they used this 

approach: 

Special care was taken to use fast communication paths and 
low-overhead operating systems. Interprocessor communication 
is through shared memory, across Bit3 bus extenders, or through 
the 640 MByte I sec ring network within Pixel-Planes5. UNIX is 
avoided except for initial setup and non-time-critical tasks, like 
reading buttons. [Azuma94:section 3] 

Another area for overhead reduction is in data complexity management. New 

data structures such as the octree are helping to reduce the storage and time 

needed to process virtual environments [Foley90:550-555]. 

Unexpected Delay. The final source of display lag is   unexpected 

delays such as network contention or operating system activity. Though 

usually infrequent, these are also unpredictable, and can have serious 

negative impacts on virtual environment displays. One of the more common 

problems encountered with unexpected delays is missed frames. 
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Most virtual environments seek to display images at a constant rate; 

thus each image, or frame, is allotted an equal amount of time for generation 

and display. In double-buffered systems, two areas of memory, or buffers, are 

used so that one frame can be built while another is being displayed. 

Overrun occurs when the calculations involved in generating a frame take 

longer than the time allotted for that frame [Performer92:7-2]. The 

Performer software used in the AFIT graphics lab offers the following three 

alternatives for dealing with this problem: 

• Deny it. The application software will simply display frames whenever 

they are ready, regardless of how long it takes to generate them. 

Frame rate is not fixed ; there are no constraints placed on how long 

the system has to generate a frame, nor is there any notion of a 

minimum time the frame must be displayed. Performer calls this 

Free-Running mode [Peformer92:7-4]. 

• Display it. The application will accept the overrun and display the 

frame for a period of time equal to the normal frame rate. Performer 
calls this Floating-Phase mode because the display phase can "float", 
becoming out of normal phase if overrun occurs [Performer92:7-4]. 

• Drop it. The application will reject any frame that has an overrun, and 
instead continue to display the current frame. At the end of the next 
period, if a new frame is ready, it will be displayed; if two frames have 

been generated (the one that wasn't ready before, and a new one), the 
intermediate frame will be ignored and the most current frame 
displayed. The length of time a particular frame is displayed will 

always be an integer multiple of the normal frame period. Performer 

calls this Phase-Locked mode [Performer92:7-5]. Please note that this 
strategy may result in some frames never being displayed; these are 
referred to as skipped or dropped frames [Performer92:7-5]. 
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Figure 1: Floating-Phase Versus Phase-Locked Mode 
[Performer92:7-3] 

The relationship between floating-phase and phase-locked modes is 

shown in Figure 1. In this figure, the screen refresh rate (shown by the 

dashed vertical lines labeled 0, 1, 2) is sixty Hertz while the frame rate 

(shown by the solid vertical lines) is twenty Hertz. Note that, under normal 

circumstances, a new frame will be displayed every third screen refresh, at 

the refreshes labeled 0 in the figure. 

An overrun is shown on the top left of the figure; generating the frame 

has taken longer than the l/20th of a second dictated by the frame rate. The 

center line in Figure 1 shows what will happen in Floating-Phase mode. The 

overrun will be accepted, and the new frame will be displayed for the normal 

amount of time (l/20th of a second in this example). Because this frame is 

displayed late (at screen refresh 1 instead of screen refresh 0), and because it 

will be displayed for the normal time, subsequent frames will also be 
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displayed in the same out-of-phase manner; the phase of the display 

therefore "floats". Note that if additional overruns occur, it is possible that 

the display will eventually become in-phase again. 

In Phase-Locked mode, frames may only be displayed at frame 

boundaries (the solid lines in the figure). Under this mode, the new frame is 

not ready at the frame boundary (screen refresh 0; the solid lines in the 

figure), so the frame currently being displayed is displayed again. When the 

next frame boundary is reached, the new frame is displayed if it is now ready 

(which, in our example, it is). Note that it is possible that two frames are 

generated. If this occurs, then the most recent frame is displayed and the 

intermediate frame is dropped. 

1.4    Goals and Objectives 

Virtual environments appeal to a broad range of potential users and 

applications, so a correspondingly broad cross-section of disciplines is 

represented by researchers. This diversity inevitably leads to a large number 

of viewpoints about what is important in a given project. The goals and 

objectives for this research are no exception; however, the main emphasis of 

this research is on engineering a solution to the real-world problem of visual 

display lag. With this in mind, the following are the prioritized goals and 

objectives of this research: 

•   Use appropriate software engineering and software architecture skills to 
design the software necessary to this research. Specifically, design and 

implement concrete MMAE and Kaiman filter objects for use in 

predicting head orientation. In line with current software reuse 

initiatives, the MMAE and Kaiman filter should be implemented such 

that later initiatives may reuse the existing design and software base 
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developed in this research. This will allow future researchers to 
leverage their productivity. 

• Examine the appropriateness of enhancing the engineering of the 

software with an Ada 9X implementation.   By doing parallel C++ and 

Ada 9X implementations, this research demonstrates the feasibility of 

using Ada 9X with existing C and/or C++ software bases. It also 
permits performance comparisons of equivalent applications with and 
without Ada code. Comparable performance by well-engineered Ada 
code makes a strong argument for applying software engineering tools 

and techniques in the virtual environment domain. 

• Compare the performance of the MMAE to Polhemus-only and single 

Kaiman filter applications. The ultimate test of any engineering 

process is the product that it produces. Testing and timing studies 

during implementation, as well as the performance study, will provide 

data that will characterize the performance of the MMAE by itself and 
compared to other means of tracking. There are two benchmarks of 
interest in this area. The first is to determine the benefit of prediction 
versus no prediction in head motion tracking; the second is to compare 
adaptive and non-adaptive tracking strategies. The second benchmark 
is of interest because others [Maybeck94b; Friedman91] have already 
considered such designs, and the need for adaptivity is seen in 

performance from these designs. These benchmarks will also serve to 
validate this application, and provide a performance baseline against 

which future research efforts may be measured. 

US   Research Approach 

The first step in any research effort is to identify the current state of 

the art, gather the necessary background information, and scope the problem 

to be researched. In this case, background information from a large number 

of areas had to be gathered, and a good deal of time was spent pursuing 
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reference sources and scoping. Also, an existing software MMAE developed 

by previous AFIT students [0'Connor92] was studied and enhanced; this 

provided insight into and experience with the technical aspects of the 

problem, and aided in software requirements definition. Problems 

encountered with the prototype, and decisions concerning it, were recorded as 

Software Problem Reports (SPRs) in order to preserve the experience gained. 

These SPRs are located in Appendix A of this document. 

Once a sufficient knowledge foundation was available, a final 

architectural and software design for the overall software system was 

developed. The Rumbaugh Object Modeling Technique (OMT) [Rumbaugh91] 

was used to identify the static relationships and high-level dynamic behavior 

of the various components, and in general to encapsulate the decision process. 

The initial design was then transformed into working code. Most of the 

graphics software at AFIT uses C or C++ as its implementation language, as 

does the Performer rendering and display software; C++ was therefore a 

reasonable language choice for the initial implementation. However, Ada 

provides excellent support for software engineering goals, and the new 

version (currently designated Ada 9X) provides the necessary support for 

object-oriented design and implementation. Also, this application is 

computationally-intensive, and provides a good comparison of the processing 

ability of the languages. Therefore, both C++ and Ada 9X versions of the 

application were developed. 

Two studies were then accomplished to validate the research approach. 

The first involved comparing the C++ and Ada implementations of the 

software. For this study, performance in terms of maximum frame rate and 

time required for operations was compared. The other study was a 
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performance study of the MMAE software. Subjects taken from the students 

and faculty at AFIT were asked to "follow the bouncing ball" by tracking the 

movements of a 3D sphere in a virtual environment. Tracking mode was one 

of the manipulated variables in the study. Data was collected for MMAE 

prediction, single Kaiman filter prediction, and no-prediction (the Polhemus 

data was used as is) tracking modes. This data was then compared to 

determine if any performance gain can be realized from using prediction 

(versus no prediction), or from using adaptive predictors (versus non-adaptive 

predictors like the Kaiman filters). 

The final stage of this research was to perform an analysis of the data 

collected and process used, determine possible directions for future research, 

and document the research process. 

1.6   Method of Analysis 

In order to assess the effectiveness of the engineering used in this 

research, the following analysis methods were used: 

Performance Study. A performance study was conducted to assess 

how well the MMAE predicted head orientation compared to both a simple 

Kaiman filter predictor and no predictor. Subjects were asked to track the 

motion of a ball in a virtual environment. Each performed several trials; 

each trial required a different type of head motion to keep the ball centered in 

the participant's field of view. The results of the test were used to determine 

the effectiveness of the MMAE in predicting the orientation of the subject's 

head, and (indirectly) the quality in terms of realism of the virtual display. 

Trend Analysis. Data collected during both the implementation and 

testing phase of development, and during the performance study, were 
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analyzed to determine how much, if any, improvement was noted with the 

MMAE predictor developed in this research. 

Language Comparison. Finally, the implementations were compared 

for adherence to software engineering practices and goals. The applications 

were also measured by performance criteria such as frame rate, time required 

to do a Polhemus read, and executable size. 

7.7    Research Environment 

Immersive virtual environments are by nature equipment-intensive, 

and the environment used in this research is no exception. Fortunately, 

much of the support infrastructure (in terms of both hardware and software) 

needed for this research was already in place at AFIT or nearby. 

Computer Support. The graphics lab provided Silicon Graphics 

Incorporated (SGI) workstations with the necessary development 

environments (C++ and Ada 9X) and graphics support (Performer library 

[Performer92]) to develop the environment used in this research. Two 

workstations were used during the research. The first was an SGI 4D with a 

40 MHz operating speed running under the IRIX 4 operating system. The 

other was an SGI Reality Engine2 running under IRIX 5.2. The ball used in 

the virtual environment performance study was modeled with Software 

Systems' MultiGen modeling software [MultiGen94]. SGI's Performer 

software [Performer92] was used to generate and display the environment. 

Magnetic Tracker. Armstrong Laboratory provided a Polhemus 

3SPACE tracker [Polhemus90] for use in this research. An illustration of the 

3SPACE unit is provided as Figure 2. The Polhemus 3SPACE tracker uses 

three orthogonal magnetic coils in order to sense the position and orientation 
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of a source element that can be manipulated by the participant. The sensor 

accuracy is greatest when the sensor is between four and twenty-eight inches 

from the source, although separations of up to sixty inches are possible at 

reduced accuracy. The tracker has a static accuracy of 0.5 degrees Root Mean 

Square (RMS) and an angular resolution of 0.1 degrees. The maximum 

output rate of the unit is 60 Hz and can be across either a serial (RS-232) or 

parallel (RS-488) communications line [Polhemus90:7-2,7-3]. The manual 

warns that "large metallic objects, such as desks or cabinets, located near the 

sources or sensors may adversely affect the performance of the system" 

[Polhemus90:7-3]. During the application performance study, the sensor was 

attached to the Head-Mounted Display unit described below. 

Sensor 3 

Sensor 1 
Sensor 4 

Figure 2: Polhemus 3SPACE Magnetic Tracker 
[Polhemus90:l-6] 
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Head-Mounted Display (HMD). Initial research used a prototype 

HMD developed at AFIT. While this was acceptable for prototyping work, the 

weight and general bulkiness of this HMD, combined with its coarse 

resolution and small field of view, made it unacceptable for the actual 

performance studies. Instead, a less bulky and more optically pleasing PT-01 

Head-Mounted Display [PT01] was used. An illustration of the PT-01 is 

included as Figure 3. 

The PT-01 HMD uses a 420x230 pixel Color Active Matrix Liquid 

Crystal Display (AMLCD) to show images. The video output format used by 

the PT-01 is NTSC/RS-170, which is supported by the workstations in the 

AFIT Graphics lab. The unit allows the participant to adjust the interocular 

distance of the display between fifty-seven and seventy-two millimeters, and 

is also eyeglasses-compatible [PT-01]. The PT-01 supports stereoscopic 3D 

Figure 3: PT-01 Head Mounted Display 
(adapted from figure in [PT-01]) 
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imaging and also has audio inputs, but these capabilities were not exploited 

in this research. 

1.8    Document Overview 

The rest of this thesis is laid out as follows: 

• Chapter 2 is devoted to the large amount of background information 
gathered during the literature search and thesis scoping process. 

• Chapter 3 details the software engineering process used to design and 

develop the software used in this research, and it provides insight into 

the rationale used in making various design decisions. 

• Chapter 4 discusses the design and implementation of the studies used 

to validate this research, and presents an analysis of the data 

collected. 

• Finally, Chapter 5 suggests directions for future research in this area. 
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II       Background 

The purpose of this chapter is to present historical perspectives and 

the current state of the art in the various fields, and to identify the specific 

approaches and techniques used in this research. The reader is encouraged 

to read completely only those sections that deal with unfamiliar topics; in the 

others, reading only the subsections on specific approaches used in this 

research should suffice for background. 

2.7    Virtual Environments 

Contrary to popular opinion, virtual environments are not a new 

technology; rather, current applications are the most recent step in the 

evolution of a technology that can trace its beginnings back several decades. 

The term virtual environment itself, however, is a fairly recent development. 

Ellis states that it seems preferable to other attempts at naming this 

technology (i.e., virtual reality, artificial reality, and cyberspace) because it is 

"linguistically conservative, relating to well-established terms like virtual 

image" [Ellis94:17]. He goes on to state that virtual environments can be 

defined as "interactive virtual image displays enhanced by special processing 

and by non-visual display modalities, ..., to convince users that they are 

immersed in a synthetic space." [Ellis94:17] 

Historical Development and Discussion. Ivan Sutherland, who is 

generally accepted as the father of Virtual Reality (VR), built his first 

head-mounted display in the late 1960s. His landmark 1968 paper, "A 

Head-Mounted Three Dimensional Display", has proven to be a launching 

pad for subsequent developments in the field. Sutherland, however, was not 
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the first man to try to "surround the user with three-dimensional 

information." [Sutherland68:757] More than ten years previously, an 

inventor and entrepreneur named Morton Heilig combined sight, sound, 

touch, and smell into an experience he called Sensorama. His prototype was 

given a patent in 1962, and then he spent several years attempting 

unsuccessfully to sell his idea to the entertainment industry [Rheingold91: 

49-60]. So it was Sutherland who succeeded in creating a virtual 

environment, and his success encouraged others, first in the field of computer 

science, and later in fields as diverse as medicine, psychology, and 

entertainment, to become involved in the development of this technology. 

Of course, not everyone who worked in the field agreed with 

Sutherland's method of achieving immersion. In the 1970s, Myron Krueger 

developed METAPLAY, an outgrowth of an earlier experiment called 

GLOWFLOW. METAPLAY was an interactive environment that used a 

wall-sized projection screen as its display medium. Participants inside the 

METAPLAY room were monitored by cameras placed behind the projection 

screen, and could see their own image on the screen. Pressure sensitive 

plates placed on the floor were concealed under a polyethylene sheet. 

Interaction between the participants and the environment was controlled by 

a facilitator in a nearby control center. Krueger described his creation as an 

experiment in interaction; he was interested in exploring the effects of such 

environments on human behavior [Rheingold91:117-120]. 

Krueger's work was along the same lines as another group exploring 

virtual environments that didn't require the separation from the real world of 

Sutherland's HMD. At the Massachusetts Institute of Technology (MIT), a 

group of pioneers under the direction of Nicholas Negroponte and Richard 
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Bolt were exploring a concept they dubbed a Media Room: a room with 

wall-sized screens and stand-alone monitors that allowed participants to 

interact with virtual environments. In the 1970s and early 1980s they 

developed a demonstration called "Put That There" that allowed a participant 

to use voice commands and a pointing device to interact with various 

environment objects displayed on the walls of the room [Rheingold91:95-97]. 

The 1980s also saw the appearance of another interaction option in 

virtual environments. Between the two extremes of Sutherland's immersive, 

equipment-laden environment and the minimal equipment environment of 

the media room, there emerged another alternative: augmented reality. This 

form of virtual environment used almost the same equipment as an 

immersive environment; the main exception was a see-through HMD that 

allowed virtual images to be overlaid on the physical world so that both were 

seen by the participant concurrently [Azuma94: section 1]. Arthur, Booth, 

and Ware report that one of the first of these systems was developed by Scott 

Fisher in 1982. His system allowed a user to view pre-made images stored on 

videodisk [Arthur93:245]. However, similar systems had been developed 

much earlier than 1982 for military applications. This type of virtual 

environment would eventually lead to applications such as Chung's 

aforementioned radiotherapy beam targeting application [Chung92]. 

Recent virtual environments research at AFIT has focused primarily 

on distributed simulation applications that allow more realistic simulations 

by allowing players from physically separated locations to interact in the 

simulation. Applications developed in this area include an F-15E cockpit 

simulator [Diaz94], a satellite modeler [Vandeburgh94], a commander's battle 
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bridge [Kestermann94; Rohrer94], and an air combat debriefing tool for the 

Air Force's Red Flag exercise [Fortner94]. 

Key Concents. Much of the terminology used in describing various 

aspects of virtual environments is carried over from the graphics arena. 

While this is eminently reasonable, it has resulted in some ambiguity of 

terms. This section will briefly discuss several key concepts used in virtual 

environments as they apply to this research: refresh rate versus frame rate, 

viewing frustum, and degrees of freedom. 

The number of times per second that a picture is redrawn on the 

display surface is called the refresh rate of the display, and is controlled by 

the display hardware. Arthur points out that a high refresh rate (on the 

order of sixty Hertz) is necessary to produce persistence of vision 

[Arthur93:241]. By contrast, frame rate is the number of times per second 

that a scene is updated by the application software. Frame rates as low as 

ten Hertz are sufficient to produce the illusion of smooth motion 

[Arthur93:241]. 

In order to generate a scene, the display software needs to know how 

much of the environment it should present. This is determined by the 

viewing frustum, an example of which is shown in Figure 4. 

The viewing frustum is a truncated pyramid defined by the 

intersections of the near and far clipping planes with an infinite viewing 

volume denned by the horizontal and vertical field-of-view (FOV) and an 

aspect ratio [Performer92:4-6]. 

Essentially, the viewing volume is an infinitely long pyramid with its 

apex at a point in space called the center of projection [Foley90:230]. The 

distance between opposing sides of the pyramid, measured in degrees, is the 
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Figure 4: A Typical Viewing Frustum with 

Visual Frame of Reference Parameters 
[adapted from Performer92:4-6] 

field-of-view. Aspect ratio is determined by converting the horizontal and 

vertical FOV measures to pixels (X and Y, respectively, in Figure 4) and then 

dividing Y by X. Because the view volume is infinite, we truncate the 

pyramid with two parallel planes and use the result as our viewing frustum. 

The plane closer to the viewer's position (the eyepoint in Figure 4) is the near 

clipping plane; the one further away is the far clipping plane 

[Performer92:4-6,4-7]. When rendering a scene, any object or portion of object 

that is within the viewing frustum is rendered; anything outside the viewing 

frustum is ignored, or clipped. 

The final concept is degrees of freedom (DOF), which denotes the ability 

of the participant to alter visual aspects of the display he/she is seeing. Zero 

DOF indicates that the viewer is stationary, and can look in only a single 

direction. If the viewer can move only in a single, straight line (say forward 
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or backward) but not change the direction of view, then he/she has a single 

DOF. Most current virtual environments offer the participant six DOF; the 

ability to alter view position (three DOF) as well as view orientation (another 

three DOF) [Azuma94; Liang91]. 

Thesis Approach. The virtual environment used in this research was 

an immersive environment generated by an SGI workstation, and viewed 

through a PT-01 HMD [PT01]. The participant's location within the 

environment (viewpoint) was fixed; however, a Polhemus 3SPACE magnetic 

tracker attached to the HMD allowed the participant to change view direction 

freely (three DOF) by measuring head orientation (head position was not 

considered in this research). The environment itself was comprised of the 

following: 

• Two planes; a green (ground) plane below, and a blue (sky) plane 
above. The ground plane had a cross-hatch texture applied to it to 

provide motion cues for the participant. The blue plane had no 
features, and was provided by Performer through the pfESky 
command. The viewing frustum was defined such that the planes 

appeared to intersect and form a horizon line. The overall effect was of 

hovering slightly above the ground and looking toward the horizon. 

• A small crosshair symbol that was placed at the center of the display 
window. This symbol was either white or black depending on whether 

or not ball motion was enabled. 

• Two balls (one red and the other blue) created with the MultiGen 
modeling software [MultiGen94]. The balls were the only non- 
stationary elements of the environment. 

• A light source placed directly beneath the participant's location in the 

scene. The light source was used to give the ball 3D highlights when it 
moved. 
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An illustration of the environment is shown in Figure 5. 

The environment used in this research is designed to be a minimal 

environment that will provide the elements necessary to perform the studies. 

This is in line with the goal of providing a performance baseline for future 

research. By using this minimal environment, the effects of using more 

complex (and therefore more computationally expensive) environments, such 

as a flight simulator, can be more accurately analyzed. 

The environment was rendered through the Performer software. This 

software was chosen for three reasons. First, it is the most commonly used 

rendering software for graphics work at AFIT, and so was a reasonable choice 

for compatibility reasons. Second, Performer offers the ability to get 

real-time statistics on its performance in terms of frame rate and CPU 

utilization, and these were needed for performance analysis. Finally, Ada 

bindings exist that allow Performer to be used from Ada applications, thus 

allowing the development of an Ada implementation of the application. 

Sky Plane 

Crosshairs 

Horizon Line 

Figure 5: Thesis Virtual Environment 
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Z.2    Kaiman Filters 

Kaiman filters provide a means to estimate state variables that are not 

otherwise available in a system. Kaiman filters can also, under the right 

assumptions, be used to predict the future state of a system. These 

properties make the Kaiman filter desirable for tracking, monitoring, and 

control systems, and much research has been done on Kaiman filter 

applications both in the field and at AFIT [Maybeck94b, Friedman92, 

Chang84]. 

The discussion that follows presents a high-level overview of the 

predictor/corrector model and Kaiman filters, focusing on intuitive and 

physical representations. It is not a rigorous mathematical development, 

although formulae will be introduced as appropriate. Most of the material for 

this discussion is taken from [Maybeck94a] and the first chapter of 

[Maybeck79]. 

The Predictor/Corrector Model. Perhaps the best way to introduce 

this topic is with an example. Let us assume that you (a somewhat 

inexperienced sailor) are on a cruise. You wake up in the middle of the night 

and discover that your navigation equipment is no longer working. You 

immediately take a reading with a sextant to estimate your distance from 

shore (for sake of simplicity, we will restrict ourselves to a one-dimensional 

distance function, as, in the eastward direction). You estimate that you are 

100 miles from shore. 

You know that the sextant readings will not be completely accurate; 

errors in the sextant mechanics, atmospheric disturbances, and lack of 

experience will all affect its accuracy. Further, the readings are just as likely 

to be too far east as too far west. Therefore, we can characterize the 
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probability distribution of your reading as gaussian, centered about a mean, 

(i, of the reading (100 miles), and with a standard deviation, a, that is 

dependent on your ability and environmental disturbances. Since you are an 

inexperienced sailor, you reason that the possibility of your estimate being 

wrong is fairly large, and that a is therefore somewhat large on this basis 

alone. 

Using this reading as a basis, you sail for some known time at a 

"constant" velocity u (plus an error term w, modeled as a white gaussian 

noise, which accounts for ocean currents or other perturbations,) and then 

take another reading. As you sail, the probability distribution for your 

estimate moves according to your motion model (constant velocity u); but it 

also "spreads out" (the variance increases) because as you travel you become 

less certain of your exact position (due to the error term w). Just before you 

take a new measurement, the probability density will have a mean and 

variance given by the following formulae: 

]ip = [i + u * At 

G2
p=G2 + c2

v*At 

where the subscript p denotes propagated or predicted;  <s2w is the strength of 

the white Gaussian noise w (the height of the power spectral density curve - 

this describes the power per unit frequency of the noise); (i and a are the 

mean and variance, respectively, of your original reading, and At is the 

amount of time that has elapsed. Intuitively, the new mean value is the 

initial mean value plus the velocity at which you travel multiplied by the 

amount of time that has elapsed. Similarly, the variance is the initial 

variance plus the strength of the error term multiplied by the amount of time 
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that has elapsed. Also, since this prediction is based on a gaussian 

distribution, it will also be a gaussian distribution. 

When you take the new reading, you can use its probability 

distribution and the probability distribution of the prediction to generate a 

combined distribution. This combined distribution will have a mean and 

variance given by: 

f^C _2   .    _2 ZD ~"~ 2    .        9. Z 

-L--L JL 

where the subscript c denotes combined or corrected; the subscript p denotes 

a value for the prediction; and no subscript denotes a value for the new 

reading. 

This is the predictor/corrector model. At each time tt, you generate a 

prediction of your state at time ti+1 using your current prediction model; then 

at time ti+1 you take an actual measurement and use it to make corrections to 

your prediction model. At time t0, you have the choice of either using an 

actual measurement to start the cycle (as was the case in this example), or 

using an assumed initial distribution. 

Kaiman Filter Basics. With the predictor/corrector model as 

background, we begin this discussion with a system that is driven by known 

control inputs and monitored by measuring devices that provide information 

about the system state by measuring the values of some linear combinations 

of system variables that are corrupted by measurement noise. The state 

information produced by these measuring devices cannot be exact; there are 

qualitative and quantitative errors in the system that corrupt the accuracy of 
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the measurements. Qualitative errors occur because both the system and the 

measuring devices themselves have error sources. Quantitative errors occur 

because in all but the most trivial systems the measuring devices cannot 

access all the system variables, and so cannot produce complete state 

information. This situation is shown in the left half of Figure 6. 
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Figure 6: A Typical Kaiman Filter Application 

To compensate for errors and lack of information, we add a Kaiman 

filter to our system, as shown in the right half of Figure 6. The filter takes as 

its inputs the observed (noise-corrupted and incomplete) measurements from 

the system measuring devices and uses them to generate an optimal estimate 

of the actual system state. It then propagates that estimate forward in time 

until the next measurements are available, when it repeats the process to 

produce another, updated estimate, and the cycle begins again. 
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In order to produce its estimates, a Kaiman filter maintains state 

information in a number of vectors and matrices. These are briefly described 

below: 

• x is the estimate produced by the Kaiman filter. Typically, both an x~ 

(the predicted estimate) and x+ (the corrected estimate) are 

maintained. 

• P is the filter-computed state estimate error covariance. Again, both a 
P~ from the prediction cycle and a P+ from the correction cycle are 
maintained. 

• Q is the modeled dynamics noise strength 

• R is the modeled measurement noise covariance 

• O (Phi) is the modeled state transition matrix 

• B is the modeled control input matrix 

• G is the modeled dynamics noise input matrix 

• H is the modeled measurement matrix 

The x vector and P matrix are updated during the predictor/corrector 

cycle according to the formulae given below. During the prediction cycle, the 

following propagations are made: 

x(t;) = M(tt1) + Bu{ti_1) (1) 

Pfc^GPfc^ + GQG1, (2) 

where x(t[) is the x~ estimate for time tt, u is a control input vector for the 

Kaiman filter, and the other symbols are as defined above. When the actual 

measurement data arrives, the correction cycle performs the following 

updates: 
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xft^xfä + KMlzM-Hxfc)] (3) 

P(t?) = P(t;)-K(ti)HP(t-) (4) 

where K(tt) is the optimal gain matrix for time tt. It denotes the relative 

weight used in the filter correction step, and is calculated as shown in 

Equation (5), below: 

K{ti) = P(t[)HT[HP(t[)HT+R (5) 

The other symbols are as defined previously. 

To simplify the design and implementation of Kaiman filters, we make 

several assumptions about the system environment: 

• the dynamics of the system and the measuring devices can be 

adequately modeled by linear functions. 

• the system noises (error sources) and measurement corruption noises 
are both white and gaussian with zero mean. 

• we can identify an initial condition for the state probability density 
function. 

These assumptions may at first seem too restrictive to make a Kaiman filter 

practical, but closer examination shows that this is not the case. 

The first assumption (linear characteristics) is justifiable for practical, 

historical reasons. A linear model is not only simpler to implement, but is 

often adequate to model system behavior. If the model has some nonlinear 

characteristics, engineers will usually use a linear approximation with linear 

perturbation techniques such as Taylor series truncated to first order terms 

about a nominal operating condition. 

-35- 



The second assumption indicates that noise sources are white and gaussian. 

White noise often confuses people. Essentially, "white" means that the noise 

value is not correlated in time; or in other words, knowing the value of the 

noise at time (t^), or even at all times (^_j,^_2,^_3,...,t0), tells you nothing 

about what the value will be at time tt. Whiteness also implies that the noise 

has equal power per unit frequency (or power spectral density value) at all 

frequencies, which results in a noise with infinite power. Since this cannot 

exist in nature, this seems to destroy the usefulness of this assumption. 

However, any system has a system bandpass: that finite range of frequencies 

to which it will respond. Since this system bandpass is finite, we can 

approximate white noise by a power spectral density (PSD) value that is 

constant over a band of frequencies equal to (or slightly wider than) the 

system bandpass, and that decreases to zero outside the system bandpass. 

This approximated white noise has the desirable property that it has a finite 

power and therefore can exist in nature; we call it wideband noise. Figure 7 

shows the relationship between bandpass, wideband noise, and white noise. 

From the point of view of the system's response, the wideband noise and true 

white noise are identical. Therefore, we can treat the wideband noise as 

white noise in our system noise model, which makes the noise model math 

more tractable. Also, we can again run the (fictitious) white noise through a 

linear system model called a shaping filter to produce noise with different 

power spectral density values at different frequencies, thus enabling the 

generation of a wide range of noise functions. Augmenting the shaping filter 

model to the original linear model yields an overall model in the form of a 

linear system driven by white noise. 
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Figure 7: Bandpass, Wideband Noise, and White Noise 

Whereas white describes the time correlation characteristics (or lack 

thereof) of a noise, gaussian describes its amplitude characteristics. A 

gaussian noise has the property that, at any given time, the probability 

density function of the noise has a gaussian shape. This can be justified 

physically by remembering that overall system noise is typically a summation 

of many small error sources; the Central Limit Theorem indicates that this 

summation is more and more gaussian as the number of sources increases. 

In fact, it can be shown that, for as few as three uniformly distributed (very 

nongaussian) variables, the probability distribution of the summation is 

approximately gaussian. Thus, it seems reasonable to assume that the noise 

in our system also follows this gaussian nature. 

Gaussian distributions also have the desirable property of remaining 

gaussian when propagated by linear systems. Thus, the conditional density 

for the system state vector, conditioned on observed measurements, remains 

gaussian at all times. Also, gaussian distributions can be completely 
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characterized by a mean \i and a variance cr2; this means that the filter can 

propagate all the information available to the current time by computing 

these two values each cycle. 

The final reason for using gaussian distributions explains why 

Maybeck describes Kaiman filters as "optimal, recursive, data processing 

algorithms" [Maybeck79:4]. Many different criteria exist for the word 

optimal, and this leads to different optimal estimates: the mode, or value 

with the greatest probability; the mean, or "center of mass" value; the 

median, that value such that half of the probability is to one side of it and the 

other half to the other; the midrange, or average of the smallest possible x 

value and the highest; and there are others. All of these definitions are 

equally valid, and for gaussian distributions all are the same value: the 

center of the distribution. So by any reasonable criteria, a Kaiman filter 

working under the assumptions above will produce the optimal estimate of 

the system state. 

The third assumption asserts that we incorporate into our filter any 

knowledge we have of initial system conditions. This allows the filter to 

generate an initial probability density distribution and initiate the 

prediction/correction cycle. 

Kaiman Filter Variations. There are a variety of Kaiman filter 

models available for the system designer. Chang and Tabaczynski have 

written a survey article on the design and analysis of Kaiman filters in which 

they describe several models useful in target tracking. The following 

discussion summarizes their article [Chang84:99-101]. 

Kaiman filter approaches are differentiated by how they answer the 

following two questions: 
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• What is the assumed dynamics model for the target? 

• How is K, the filter gain, computed? 

The first question asks us to make an assumption about the type of 

motion that the filter will be expected to track. The two possibilities offered 

are Constant Velocity (CV) or Constant Acceleration (CA) models. CV models 

use a six-element state vector (three position variables and three velocity 

variables in a 3D problem) while CA models use a nine-element state vector 

(three positions, three velocities, and three accelerations). CA models (nine- 

element state vectors) are viewed as more appropriate for tracking a 

maneuvering target. 

The second question relates to how the filter gain (K) is computed. As 

mentioned previously, K is a weight applied during the filter correction cycle. 

If K is very small, then the filter becomes insensitive to incoming 

measurements; if K is very large, then the filter tends to ignore past 

measurements. Four approaches to dealing with filter gain computation are 

presented: The extended Kaiman filter (EKF); the finite memory filter; the 

fading memory filter; and the constant gain filter (CGF). 

The extended Kaiman filter (EKF) calculates the gain using Equation 

(5) above, but allows for nonlinear dynamics or measurement models to be 

employed in filter design. The finite memory filter calculates gain based only 

on the n most recent data points. The fading memory filter uses all 

measurements, but weights the result in favor of more recent measurements. 

This type of filter is also referred to as an aging filter. The final alternative is 

the constant gain filter (CGF). This approach is used when it is not possible 

or desirable to compute the filter gain in real time. Instead of computing a 

new gain each cycle, either a set of pre-computed gains or a single constant 
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gain is used. This method is the least expensive computationally (no gain 

computation is required). 

Chang and Tabaczynski feel that EKF filters offer a good compromise 

between computational cost and filter performance for many applications. 

Constant Gain filters were seen as a viable alternative to the computationally 

more expensive extended Kaiman filter if the performance degradation 

incurred could be tolerated. The other two approaches were not seen as 

viable alternatives due to computational costs incurred without 

corresponding performance gains. It should be noted that their evaluation 

considered only single-filter designs, and not MMAEs at all. 

Thesis Approach. This research uses a nine-state model, but 

represents acceleration as a first-order Gauss-Markov process rather than 

employing the more simplistic constant acceleration proposed by Chang and 

Tabaczynski [Chang84]. Each of the elemental filters used is a constant gain 

filter (CGF) in order to take advantage of the low computational cost (in 

terms of both number of computations performed and time required). 

2.3    Multiple-Model Adaptive Estimators (MMAEs) 

A Kaiman filter alone is not sufficient to deal with the lag problem. 

This is because a single Kaiman filter cannot accommodate all the possible 

types of head motion that a typical virtual environment participant will 

exhibit. Recall that a Kaiman filter is designed for a specific system 

operating condition. If we design a Kaiman filter to generate head 

orientation estimates under the assumption that the participant is making 

only slow, benign head movements, we can expect that filter performance will 

be degraded if the participant moves his/her head in a manner different from 

-40- 



the hypothesis (rapidly, for example). We would therefore like to enhance our 

Kaiman filter to account for this possibility, and produce a system that will 

not only generate optimal head orientation estimates, but react appropriately 

to changes in the participant's head motion characteristics. One approach to 

achieving this is through the use of a Multiple Model Adaptive Estimator 

(MMAE). 

MMAE Basics. An illustration of an MMAE is shown in Figure 8. An 

MMAE uses K Kaiman filters running in parallel, each of which is designed 

for a different hypothesized condition. In the case of head motion tracking, 

we might use three filters: one for benign, slow motion; one for moderate 

motion; and one for very rapid motion (more correctly a reacquisition motion, 

such as might occur when trying to keep track of more than one target in an 

environment). 

Kaiman Filter #1 

Kaiman Filter #2 

Kaiman Filter #3 m 

3S)- 

;=B8>-*4 
P2 A 

r® 
p3 

Hypothesis 
Conditional Probability 

Computation 

Figure 8: Multiple Model Adaptive Estimator 
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Since each of the Kaiman filters in the MMAE will produce a state 

estimate, we need either a selection scheme to determine which is the best 

estimate, or a blending scheme to allow for in-between cases 

[Friedman92:60]. 

In the case of the selection scheme, each filter in the MMAE produces a 

state estimate, xk, and a residual, rk (1 < k < K), which is the difference 

between the actual measurement z at time ti and the filter-predicted 

measurement (from the fcth filter) before that actual measurement arrives. 

These residuals become inputs to a Hypothesis Conditional Probability 

Computation engine, which assigns a probability weight, ph, to each filter 

based on the current residual and the previous weight. The probability 

weight pk produced is the conditional probability that the associated Kaiman 

filter has the correct hypothesis about the real world, conditioned on all 

measurements observed to that time. The filter with the smallest residual 

relative to that filter's computed residual covariance (and therefore the 

largest probability weight) is selected as the best-fit hypothesis and the state 

estimate from that filter becomes the MMAE estimate [Friedman92:61]. This 

is known as the maximum a posteriori, or MAP, version of the MMAE 

algorithm. To relate this to Figure 8, above, the filter with the greatest pk 

weight as determined by the Hypothesis Conditional Probability 

Computation would be assigned a weight of 1.0; the other filters would be 

assigned a weight of 0.0 (this will be modified slightly due to concern for "zero 

lock-on", to be discussed later in this section). 

The blending scheme works similarly except that the probability 

weights, once produced, are multiplied as-is by the appropriate filter estimate 

and the results summed to produce a final, optimal system state estimate as 
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a probability-weighted average of all the individual filter state estimates. 

Thus, a conditional mean estimate is produced rather than a conditional 

mode (as in the MAP form); this is often called the Bayesian version of the 

MMAE algorithm. Intuitively, the filter with the correct hypothesis should 

consistently produce the smallest residuals (relative to the corresponding 

filter-computed residual covariance). This causes the probability weight for 

that filter to grow closer to one, while the weightings for the other filters grow 

closer to zero. Thus, the final state estimate is weighted most heavily 

towards the estimate produced by the filter with the correct hypothesis. The 

formulae are given below: 

n(t\-   ^)hz('-i)\Zi\ük' Z'-i) * P* fc-i) (6) 
PkVij-   K . 

where fz,t\\a z,t. )(zt \ak,Z._;) is a probability density function defined by 

fz{tl)\a,z{tJ
z^Zi-i) = ^ rexp{-|rf(^)A-J(^)rfe(^)} (7) 

{2%)2\Ak{ti)\2 

and the residual r^) and filter-computed residual covariance Ak(ti) are: 

r*fe)=*,-ff*M**('r) (8) 

Mti) = Bk(tt)Pk (tr )HI {h )+Rh(ti) (9) 

There are several practical concerns in MMAE design relevant to this 

research. One of these is the number of independent filters in the system. 

While it is theoretically possible to design an MMAE with a Kaiman filter for 

every possible hypothesized system condition, it is not usually practical (or 

possible) to implement such a system. Therefore, it is incumbent upon the 
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designer to consider carefully the hypothesized system conditions when 

designing an MMAE. Appropriate discretization of the parameter space is 

essential to MMAE performance. Overly fine discretization (too large a 

choice of if) is computationally burdensome and can generate difficulties in 

discerning the difference in properties of residuals in different filters. Too 

coarse a discretization can yield the condition in which no filters have an 

assumed parameter value close enough to the true value to produce good 

estimation or small residuals. 

Another concern is huge residuals. When a filter has a wrong 

hypothesis, we expect that the residual values for that filter will become very 

large, possibly too large for the computer system to represent. When this 

happens, the filter is said to be divergent. To prevent this, the MMAE 

monitors these residuals and, if any becomes too large, the appropriate filter 

is re-initialized with the current estimate x (emanating from the right side of 

Figure 8, once the effect of the divergent filter is removed). 

A last concern is zero lock-on. Zero lock-on occurs when the probability 

weighting associated with a particular filter is allowed to go to zero, as due to 

huge residuals in a divergent filter. When this occurs, the weighting for that 

filter as computed by the iterative computation of Equation (6) will "lock-on" 

and remain at zero. This will result in outputs from that filter being ignored, 

even if the associated hypothesis should later become correct due to a change 

in the real world environment. There are several methods for dealing with 

this problem. One is to tune all filters to prevent initially incorrect niters 

from drifting too far from the true state. This has the associated drawback of 

causing all filters to look alike and be weighted essentially equally, 

incapacitating the adaptation process. Another common method is to enforce 
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an ad-hoc lower bound on the probability weightings, thereby preventing any 

filter from reaching a zero probability weighting. 

Thesis Approach. For this research, a computationally tractable 

three-filter MMAE was chosen. The first filter was designed for slow, benign 

head movements; the second for moderate head movements; and the third 

for rapid movements such as occur in a target re-acquisition. The MMAE 

checked each filter after every measurement correction to ensure that the 

residuals for that filter had not become too large. If this occurred, the filter 

was re-started using the current MMAE estimate. Also, a lower probability 

bound of approximately 0.01 was enforced to prevent zero lock-on. 

2.4   Software Architectures 

With the advent of Software and Systems Engineering, the focus of 

producing software systems has moved somewhat away from data structures 

and algorithms and turned to the organization of the various components 

that comprise the overall system - the software architecture. There are 

tremendous benefits to be gained by more optimal arrangement of system 

components, more standard interfaces between components, and more 

effective means of describing and analyzing system components. 

Historical Development. The history of software development has 

been marked by a desire on the part of practitioners to increase the level of 

abstraction; to move farther from the details of the hardware that they work 

with. In the 1950s, programming was done in machine language, and 

programs and data had to be explicitly placed in the computer's memory. 

Programmers soon realized, however, that certain sequences of instructions 

were being used and re-used quite frequently, and that replacing them with 
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simple, easy-to-remember character codes would reduce programming time 

and errors. This led to the first abstraction: substitution of mnemonic codes 

for sequences of machine instructions. This trend toward higher level 

abstractions continued with the development of more abstract programming 

languages to represent the new concepts and ideas being developed and make 

them simple for the programmer to use. 

Today, we have again pushed the level of abstraction at which we work 

upward with the advent of software architectures and domains. In a draft 

version of Air Force Pamphlet 63-115, a software architecture is defined as "a 

top-level description of a software design defined early in the system's fife 

cycle". It goes on to list the key component of a software architecture: 

• Components. These are the building blocks of the system. They may 

be partitioned according to algorithmic functions, reusable 
components, associated objects, or any appropriate scheme. 

• Relationships. These are the connections between components, and 
define the data and control interfaces both between the components 

themselves, and possibly between the software system and the outside 
world. These relationships should also allow for analysis of the 

architecture to determine such things as critical timing paths and 

throughput attributes. 

• Style. These are the guidelines and principles to be used in 

implementing the relationships defined above, and also any constraints 
which must be recognized. [USAF93:4-41,4-42] 

There are many benefits to designing a system around an existing 

software architecture. First, and perhaps most important, is the time savings 

involved. Designing new systems as variations of similar existing systems 

(and reusing the existing architecture and design information) greatly 
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reduces the required design time. Second, reusing an architecture also allows 

the designer to reuse the knowledge and experience of the original designer. 

Finally, a good software architecture allows the designer, developer, and 

potential customers to visualize complex systems and relationships in a more 

natural, intuitive fashion. 

General Architectural Styles. David Garlan and Mary Shaw have 

described many current architectural styles such as filters and pipes; data 

abstraction and Object-Oriented organization; event-based, implicit 

invocation; layered systems; repositories; interpreters; and heterogeneous 

systems that are combinations of the aforementioned styles [Garlan93:4-13]. 

Except where noted otherwise, the material for the following discussion is 

based on material from their article. 

In pipe and filter systems, each component, or filter, takes in a set of 

well-ordered inputs, does some local transformation on them, and 

incrementally produces a set of well-ordered outputs. The connectors 

between filters are called pipes. The filters in a pipe and filter system are 

constrained to work in a vacuum, without knowledge of what their input or 

output sources are. This architectural style is often used in compiler and 

distributed system design. 

Data abstraction and Object-Oriented (00) organization groups system 

entities and their allowable operations together as objects. Objects 

communicate and interact with each other through function and procedure 

invocations. As with the pipe and filter systems above, each object in this 

style should be independent, neither required to have information about any 

other object in the system, nor required to request needed information for 

determination of its own state from any other object in the system. 
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Event-Based systems move away from the more traditional styles 

defined above. Instead of waiting passively for an outside entity to request a 

service, agents in an event-based system broadcast (or announce) the 

occurrence of an event. When this happens, all other agents in the system 

that have declared an interest in that event are notified. Agents declare an 

interest in a particular event by having a procedure or function call for that 

event that is invoked by the system manager when the event occurs. Thus, 

the event broadcast implicitly invokes the corresponding procedure or 

function calls. Note that an agent cannot guarantee the order in which other 

agents will respond to an event, or know when they finish responding. This 

style is commonly used in packet-switched networks, user interfaces that 

separate data presentation and data management, and some programming 

environments. 

Layered systems are hierarchical systems in which each layer provides 

more (and usually more abstract) services than the layer beneath it. Usually, 

each layer is accessible only by the layers surrounding it in the hierarchy. 

Protocols define interaction between layers. This style of architecture is most 

commonly used in defining communications systems (such as the 

International Standards Organization Open Systems Interconnect, ISO OSI, 

model). 

A repository can be broken up into two components: a central data 

store that maintains the current state of the repository; and one or more 

independent components that operate on the central data store. One common 

example of a repository is a blackboard architecture in which the blackboard 

is a shared common data base that is accessed and updated by independent 

knowledge sources containing application-dependent information. Blackboard 
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Systems have been used to implement speech and pattern recognition 

systems. 

A Table-driven Interpreter is a virtual machine implemented as 

software. Interpreters take a pseudo-program as input, and produce an 

execution of the program as output. As an example, the BASIC language is 

usually an interpreted language. Programs written in BASIC are not 

generally compiled into an executable; rather they are interpreted by a 

BASIC execution engine, and the results returned to the user. Interpreters 

are commonly used to overcome differences between the user's expectations of 

a system, and the actual abilities of the hardware. 

One other architectural style mentioned by Garlan and Shaw is the 

domain-specific architecture. Domain-specific architectures seek to define a 

generic reference framework for a specific software domain (such as command 

and control or database management systems) that can then be specialized 

for specific system instances [Garlan93:13]. Much recent work has focused on 

defining software domains and developing architectures for them. Don 

Batory and Sean O'Malley, however, have developed a domain-independent 

architectural meta-model. Their meta-model allows complex system 

architectures to be built up from low-level components belonging to one or 

more realms. Members of a realm have the same interface; thus members of 

a realm are plug-compatible [Batory91:2-3]. 

Much recent work in this area has been done at AFIT. Mark Snyder 

developed ObjectSim, an object-oriented simulation architecture that allows 

graphics applications to create and manipulate scenes [Snyder93]. Snyder's 

work is being continued and expanded by Jordan Kayloe, who is translating 

the ObjectSim code into Ada 9X and also expanding its capabilities 
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[Kayloe94]. Work also continues to bring software engineering and Ada 9X 

into the graphics research domain at AFIT. 

The Obiect Modeling Tp.chnioue (OMT). OMT is an object-oriented 

approach to the analysis and design of software systems that was developed 

by Dr. James Rumbaugh and his colleagues at the General Electric Research 

and Development Center. OMT focuses on identifying elements of the system 

(called objects) and denning their behaviors and the relationships between 

them. This is in contrast to more traditional functional decomposition 

techniques that focus on specifying and decomposing system functionality 

[Rumbaugh91:6]. OMT is a very rich modeling technique that covers many 

aspects of software specification and design. However, this introduction will 

focus on those aspects of OMT that are used in this research. 

One of the models available in OMT is the Rumbaugh diagram. This 

model shows the objects in a system, as well as their relationship to other 

system objects. A simple Rumbaugh diagram is shown in Figure 9. Objects 

in a Rumbaugh diagram are enclosed in boxes. These boxes may optionally 

Shape 

Line Drawing Closed Shape 

Ellipse Polygon 

Vertices 

Figure 9: Rumbaugh Diagram for a Shape Class 
[Adapted from Rumbaugh91:44] 
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have three subdivisions: one for each of object name, object attributes 

(usually state variables), and object operations (allowable operations on the 

object). Object can also be related to other objects, and OMT provides two 

relationships. The first, represented by a triangle, is the inheritance 

relationship (also known as the "is-a" relationship). An object connected 

underneath another object by this relationship inherits all the attributes and 

operations of the higher-level object. An example of this relationship in 

Figure 9 is the relationship between Shape and Closed Shape. Another way 

of viewing this is by specialization/generalization; we say that Closed Shape 

is a specialization of Shape, or conversely that Shape is a generalization of 

Closed Shape. The same can be said of Shape and Line Drawing. In terms of 

class relationships, Shape is a super-class, and Line Drawing and Closed 

Shape are sub-classes of Shape. 

The other pre-defined relationship in Rumbaugh diagrams is the 

aggregation relationship, denoted by a diamond symbol. This relationship 

indicates that an object includes, or is made up of, other objects. This is 

demonstrated in Figure 9 by the relationship between Polygon and Point. A 

Polygon object includes Point objects in its definition; hence the relationship. 

Aggregation relationships can also have multiplicity balls that denote the 

cardinality of the relationship. An open circle indicates zero or more 

instances of the contained object (the contained object is optional) while a 

filled circle indicates one or more instances. Additionally, a number or range 

of numbers (such as 2+ for "at least two", or 1..4 for "one to four, inclusive") 

may be used to be more specific about the multiplicity. 

Other relationships are denoted by a simple line (with possible 

multiplicity balls) between two objects. When this general relationship 
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symbol is used, a label that describes the relationship is usually added to the 

symbol. An example of a labeled relationship is shown between Polygon and 

Point in Figure 9. In this case, the relationship is that a point is a vertex of 

the polygon that contains it. Please note that labels can be added to the pre- 

defined relationships as well. 

Thesis Approach. An object-oriented architectural approach was 

selected for this thesis work. Object-oriented design and programming 

techniques are used both at AFIT and abroad, and offer the designer many 

advantages. Object-oriented techniques help the designer to focus on the 

problem domain, thus producing systems that are "based on the underlying 

framework of the application domain itself, rather than the ad-hoc functional 

requirements of a single problem" [Rumbaugh91:6]. Focus on the domain 

leads to designs that are more amenable to later requirements changes; not 

as prone to the massive ripple effects of requirements changes noted in 

systems designed through functional decomposition. 

A graphically-based modeling technique was desired for doing the 

system design work. Graphical representations are often simpler to 

understand that corresponding text-based descriptions, and also often convey 

information in a way that is more intuitive. The Object Modeling Technique 

(OMT) is such a graphical tool, and its rich notation and modeling power are 

more than adequate for this research. 

2.5    Summary 

In order to do this research, a large amount of background information 

was needed. This information came from the virtual environments, Kaiman 

filter, MMAE, and software architectures areas. 
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Virtual environments are not a new concept, but rather the most 

recent step in a continuing development that started in the 1960s with Ivan 

Sutherland. During the 1970s and into the 1980s, research split into several 

different areas, but it is now beginning to reconverge as technologies 

developed in one area meld with technologies from other areas. 

Kaiman filters have also been around for quite a while, and have been 

used successfully in tracking-related applications. There are many different 

types of Kaiman filter, each of which offers the designer a different set of 

abilities and constraints. Chang and Tabacynski's survey article indicates 

that the best overall filter design is the Extended Kaiman Filter, or EKF. 

They feel it strikes a good balance between computational load and filter 

performance. The Constant Gain Filter is also seen as a good choice. It offers 

lower computational load and somewhat poorer overall performance, but it is 

still a good filter design. 

MMAEs seek to enhance Kaiman filter design by using two or more 

filters in parallel to adapt to changes in the characteristics of the task being 

performed. In terms of this research, MMAEs allow a predictor to adapt to 

changes in the head movement patterns of a virtual environment participant. 

Two MMAE designs were discussed; the Maximum A Posteriori, or MAP, 

design; and the Bayesian design. The MAP design selects the filter with the 

best prediction (as determined by the filter residual, or difference between 

the filter prediction and the actual measured data) and uses that filter's 

output as the MMAE output. The Bayesian design weights each filter 

according to its residuals, then multiplies the filter estimate by its associated 

weight and sums the results to produce an estimate that is a weighted mean 

of the filter outputs. 
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Finally, software architectures seek to describe systems as a collection 

of well-defined components. This is a relatively young field, and much 

research is currently underway to identify various architectures and domains 

of similar applications. Several current architectural styles were mentioned 

including object-oriented design, which seeks to model a system as a 

collection of independent but interacting objects. Each of these objects has its 

own state and behavior. This particular architecture/design style is the style 

that was used in this research. 
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Ill      Software Design and Implementation 

The purpose of this chapter is to provide the reader with the thought 

process used and decisions made during the design and implementation of 

the software. Good documentation of the requirements and design process is 

vital to the software engineering process. Good documentation not only 

facilitates discussion between the original designer and the user, but also 

provides a means for subsequent designers and implementors to make 

similarly informed decisions about modifications and/or extensions to the 

system. 

Unless otherwise noted, the software engineering definition of the 

word state is used throughout this chapter. In software engineering, state is 

defined in reference to object behavior. In the words of Rumbaugh: 

A state is an abstraction of the attribute values and links of an 
object. Sets of values are grouped together into a state according 
to properties that affect the gross behavior of the object. 
[Rumbaugh91:87] 

Essentially, a state represents a set of possible variable values for which the 

response of the object to stimuli (such as method calls from other objects) is 

identical. This definition makes it possible to discuss object behavior at a 

qualitative level; the detail of quantifying variable values is abstracted away. 

This also reduces the number of object states, thus simplifying graphical 

representations. 

Commonly, an object includes variables for the express purpose of 

identifying the object's state. These are referred to in this document as state 

variables. An example of this is the FOGMA_Filter class, which includes the 

state variables filterjnitialized and filter_divergent. The values of these 
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variables have a direct role in determining the state of the FOGMA_Filter 

object. 

3.1    Prototype Work 

In order to gain a better understanding of the technical aspects of the 

application to be developed, a similar existing virtual environment 

application called redflag was studied and enhanced. Redflag, which was 

developed by Major Michael Gardner [Gardner93], used position and 

orientation data collected from actual aircraft during training exercises to 

generate a virtual environment that allowed a participant to replay the 

mission. A Polhemus Isotrak sensor attached to an HMD worn by the 

participant allowed the view into the environment to change as the 

participant changed head orientation. A prototype software MMAE had been 

added to this software by captains Doug Blake and Bill O'Connor 

[0'Connor92]. 

Initial testing by the author showed that the application did not meet 

performance expectations. Subsequent analysis uncovered serious problems 

that needed to be addressed before the software could be used. A partial 

listing of these software problems, and the actions taken to correct them, is 

contained in Appendix A of this document. Generally, the problems fall into 

three main software engineering areas: 

•   Object Encapsulation. The prototype code did not encapsulate the 

various objects it used. Instead, a more ad-hoc method of adding code 

where it was most convenient seems to have been used. As an 
example, matrix operations, Kaiman filter operations (for three filters), 

and MMAE operations were all implemented in a single monolithic 
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object. This made isolation and/or correction of errors very difficult 
and time-consuming. 

• Testing Strategy. Several of the errors discovered in the prototype 

code were related to bad values (either nonsense values or values that 

were outside the prescribed range for the variable) being assigned to 

critical state variables. In most instances, these errors were readily 
apparent when the values of these variables were printed on a routine 
basis. The conclusion here is that proper testing techniques for these 

variables, and the algorithms used to update them, were not used. 

Also, these errors were not detected because the code did not contain 

range checks for input values. 

• Unwise re-use. The prototype software re-used several objects from 
earlier work as though they were library objects. However, these 

objects did not have stable behavior. Therefore, the behavior of the 

prototype software was also unstable. 

3.2    System Requirements and Constraints 

In order to use the software developed in this research as a basis for 

further work, it was necessary to define the requirements and constraints 

under which the software is expected to operate. This will allow future 

designers to make informed decisions concerning the ability or inability of 

this software to meet their needs. 

In defining the requirements for this software, the author relied on 

both his own experience with the prototype code and the requirements 

developed by Shaw [Shaw93] for a virtual environment application. The 

requirements and constraints are discussed below. 

Frame Rate. The system must operate at a reliable minimum of 10 Hz 

(ten frames shown to the participant per second). Shaw points out that the 
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pivotal requirements for virtual environment applications are high frame 

rate and low system lag [Shaw93:291-292]. He also states that systems with 

frame rates less than ten Hertz are not considered responsive [Shaw93:292]. 

Also, most current applications in the AFIT graphics laboratory run at 

between 12 and 15 Hz, so 10 Hertz seems a reasonable choice for this 

research. 

Performance Data. The system must provide the designer with a 

method to gather data that will allow analysis of system performance. This 

will allow the designer and developer to characterize the overall system 

performance, and to develop metrics for comparing various implementations. 

Shaw points out that currently available performance measures are 

not always helpful. Many allow measurement of CPU time, but not actual 

time; and actual time is also of interest when designing a virtual 

environment (a process that is waiting for I/O is just as bad as one that is 

taking too long to do a computation) [Shaw93:292]. However, some measure 

of performance is desirable, and CPU time can serve as an indicator even 

though it may not be all-inclusive. This situation is somewhat analogous to 

the argument that lines of code (LOC) measures, while not a true measure of 

software quality, can be an indicator of aspects of software quality. 

Object Encapsulation. The objects in the system must be 

encapsulated so that change in the implementation of a particular system 

object do not necessitate corresponding change in other system objects (the 

"ripple effect"). This also supports the notion of plug-compatible components 

by enforcing high cohesion within objects and loose coupling between objects. 

Also, testing, debugging, and enhancing the software will be made easier. 
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Portability. The software developed for this research must be 

portable. Historically, AFIT has undergone an upgrade to the computer 

systems (either in the computer platforms themselves, or in software support 

packages and libraries) approximately every two years; this has invariably 

led to problems with platform- or support-specific software in the application 

base. Such dependencies are not inherently undesirable; indeed, often the 

rationale for choosing one platform or support package over another is that it 

provides features (not present in the other) that are advantageous to the 

work at hand. However, these dependencies should be kept to a minimum 

and clearly identified so that portability impacts can be properly determined. 

Readability and Understandabilitv. These are always concerns for 

the software engineer, but in this case they are even more paramount. It is 

unlikely that follow-on research will be done by software engineers; more 

likely, this line of research will be continued by electrical engineers. Since no 

assumptions can be made about the level of software engineering experience 

on the part of these researchers, and since this research is to form a 

foundation for them to build upon, it is very important that this software be 

designed and implemented in as intuitive a fashion as possible. This will 

allow future researchers to leverage their productivity by reusing the design 

and implementation knowledge and experience embodied by this research. 

One of the methods used to improve readability and understandability 

within the software was a set of naming conventions. Essentially, constants 

used within the software are in all capitals to make them easily recognizable 

(example, PATH_SIZE). Since there is no way to distinguish individual 

words, underscores are used to separate words in compound names. Type 

names and function names all begin with a capital letter, and also capitalize 
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the first letter of each word in compound names (example, FilterWeight). 

Variables are done in all lower case letters (example, viewpoint). There is an 

exception to this convention; abbreviations (example, MMAE) are typed in all 

caps regardless of what is being named. Also, matrices are named with a 

capital letter (example, Xc) to follow mathematical convention. 

3.3    System (Architectural) Design 

In order to meet the requirements and constraints, the application 

needed to interact with several external entities. These interactions were 

captured using the Rumbaugh Object Modeling Technique (OMT) 

[Rumbaugh91], and are presented as Figure 10. 

Essentially, the application needs to interact with: a tracker, which in 

the case of this research communicates across an RS-232 (serial) 

communications port; and two display devices (the screen, and a Head- 

Mounted Display unit, or HMD). 

The application was then broken down into a class diagram, also 

modeled with OMT. This diagram is shown as Figure 11. Class details 

shown in the figure are discussed later in this chapter. 

System 

9 1 1 
Tracker Application Display 

? V 
RS-232 
Port 

Screen            HMD 

Figure 10: System-Level Architecture 
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In Figure 11, MMAE and Kalman_Filter are abstract classes; they are 

the foundation for a group of related classes. This research provided only one 

such related class for each, shown in Figure 12. 

The ThreeSpace class is the interface to the Polhemus 3SPACE 

magnetic tracker. The name is taken from Polhemus 3SPACE magnetic 

tracker, and was chosen to highlight that this is not intended to be a general 

purpose class. This is discussed in more detail in a later section. The 

renderer class needs are met by the Performer [Performer90] rendering 

library. 

MMAE and Kalman_Filter were implemented as abstract classes for 

two reasons. First and foremost, this approach encapsulates those data 

structures and operations that are common to any such class 

implementations. This provides future developers with a template from 

which to develop other concrete implementations. 

Secondly, any class derived from the abstract class is automatically 

considered to be of the same type as the base class, and will inherit all of its 

data structures and method definitions. In other words, the First-Order 

Gauss-Markov acceleration filter class, FOGMA_Filter, is considered to be of 

type Kalman_Filter, and will inherit all of the data structures and method 

definitions in Kalman_Filter; this is also true for any other class derived 

from Kalman_Filter. This property of the derived classes supports Batory 

and O'Malley's idea of plug-compatible realms of software components 

[Batory91]. A realm contains a number of components, each of which 

presents the same interface to the external world. As long as that interface 

requirement is met, then software components from the same realm can, with 
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some limitations, be interchanged without affecting the operation of the 

calling software. 

3.4    GenMatrix Class 

MMAEs and Kaiman filters are inherently dependent on matrices and 

vectors. Both MMAEs and Kaiman filters use matrices and vectors to 

maintain state information. Further, state changes normally involve a large 

number of matrix operations. While these operations could be performed on 

an array (or set of arrays), the intimate relationship between MMAE 

behavior and matrix operations made development of a separate matrix class 

that localized and encapsulated the matrix operations an appropriate and 

obvious choice. Unfortunately, the existing matrix classes at AFIT were 

designed for graphics applications, and could support only square matrices of 

dimensionality three or four. Therefore, a general matrix class, GenMatrix, 

was developed to support the matrix operations needed for the thesis 

software. 

GenMatrix implements a matrix as a dynamically allocated two- 

dimensional array; the dimensions of the array are provided by the client 

program when the matrix is instantiated. The matrix elements are stored as 

floating point numbers. It would have been possible to implement GenMatrix 

in such a way that any numeric type could be used as a matrix element, but 

this was not done. Recall that one of the requirements for this research was 

readability and understandability of the code. Implementing GenMatrix for a 

generic element type would be more complex (and therefore less readable and 

maintainable) than the float version. Also, floating point representations are 
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appropriate for a wide range of applications, including those defined in this 

research. 

GenMatrix supports most of the commonly used matrix operations 

(addition, subtraction, multiplication, determinant, inverse, and transpose), 

as well as methods to add or multiply each matrix element by a constant. 

GenMatrix also includes methods to clear the matrix (set all matrix elements 

to 0.0), return the matrix dimensionality (the number of rows or columns), set 

or return the value of an individual matrix element, and print the matrix 

elements. 

GenMatrix operations, to the maximum extent possible, verify matrix 

compatibility before performing the operation. As an example, the multiply 

method verifies that the matrices have the same inner dimension (if A is an 

m x n matrix, then B must be n x p in order to multiply A by B). If the matrix 

dimensions are not compatible for the operation requested, then the operation 

is not done. How the calling procedure is notified of this decision is 

dependent on the implementation, and is discussed later in this chapter. 

3.5    Kaiman Filter Design 

With the GenMatrix class complete, the next class developed was 

FOGMAJFilter. As mentioned previously, FOGMA_Filter was designed as a 

derived sub-class of Kalman_Filter. Kalman_Filter defines the minimal, 

common interface for any Kaiman filter implementation, and includes the 

following methods: 

•   Initialize - Initializes the filter. 
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• Update - Updates the state of the filter for an actual measurement, Z, 
which is an input to the method. 

• Propagate - Generates and returns a prediction of the filter state one 

sample period into the future. 

• Restart - Resets a filter that has become divergent to a known state. 

• Initialized - Indicates whether or not the filter has been successfully 

initialized. 

• Divergent - Indicates whether or not the filter is currently divergent. 

In addition to the methods described above, two state variables, 

filter_initialized and filter_divergent, are included in the Kalman_Filter class 

definition. 

The behavior of Kalman_Filter is as follows. When instantiated, the 

Kalman_Filter object is in the Uninitialized state, and will accept only an 

Initialize or Initialized method invocation (Initialized will indicate that the 

filter is not initialized). When Initialize is invoked, the object is initialized, 

and it transitions to the Operational state. In this state, the object will 

accept and respond to method invocations as long as it is not divergent. If it 

should become divergent, it transitions to the Divergent state. In this state, 

it will accept only a Restart or Divergent method invocation (Divergent will 

indicate that the filter is divergent). When Restart is invoked, the filter will 

reset and then transition back to the Operational state. A diagram of this 

behavior is included as Figure 13. Note that in the figure, Method Call 

indicates an invocation of any of Propagate, Update, Initialized, or Divergent. 

It is used as a shorthand notation to keep the diagram from becoming 

cluttered. 
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1 / filterjnitialized = FALSE 

Initialize () 

Method Call 

[~filter_divergent] 

i 
Uninitialized / filter_initialized = TRUE; 

filter_divergent = FALSE 

Operational 

Restart () 

/ filter_divergent = FALSE 

Divergent 
Method Call 

[filter_divergent] 

Figure 13: Behavior Diagram for Kalman_Filter Class 

FOGMA Filter Software Design. FOGMA_Filter models a Kaiman 

filter that uses a First-Order Gauss Markov acceleration (FOGMA) dynamics 

model to generate its predictions. The most important method added to 

FOGMA_Filter is Project (as in "to throw ahead"). This method allows the 

filter to generate a prediction (or projection) of its state n sample periods into 

the future, where n is an integer greater than or equal to two. Project was 

added to the FOGMA_Filter design because the prototype code indicated a 

need for it. In the prototype code, the time required to read data from the 

Polhemus Isotrak was equal to the time needed to generate a frame for 

display (l/10th of a second). Therefore, a prediction of two sample periods 

into the future (to overcome both the lag in the data read and the lag in frame 

generation) seemed necessary. 
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The other methods added to FOGMA_Filter all provide the client with 

visibility to the various state variables. Methods are included to return the 

following values: 

• RAR (the likelihood quotient). This is an indication of the confidence 

level of the filter estimate. The formula for RAR is given below: 

RAR = ^A^r 

where r is the residual vector (the difference between the filter 
predicted measurement and the actual measurement for the same 

time) defined as 

r = z - Hx[t[j 

and A is the filter-computed covariance for the residual defined by 

A = HP(t;)HT+R 

The equations for r and A actually appear earlier in this document as 

part of Equations (3) and (5), respectively. 

• RR (the ME/I likelihood quotient). This is similar to RAR, defined 

above. The formula is 

RR = rTr 

where r is as defined above. The difference between RAR and RR is 
that RAR is scaled by the A term whereas RR is not. 

• x~, x+, P~, P+, as defined in Section 2.2. 

• K (the filter gain). The gain is an optimal weighting value used as a 

correction to the filter. Very large gain values indicate high relative 
weight on incoming measurements, and low relative weight on the 

filter output. 
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• the current residual vector (the difference between the predicted filter 
state, and the actual data value for the same sample period); the 

formula for this is shown above. 

Two additional points are worth mentioning. First, the filters used in 

this research were tuned under the assumption that inputs (in the form of 

actual measurements) are constrained to be in the range [-1.0, 1.0]. This is 

because the Polhemus 3SPACE magnetic tracker returns directional cosines, 

which are always in that range. If, however, a different input source is 

desired, the filters will have to be re-tuned for the new input ranges. 

The second point concerns values for filter initialization. In order that 

the filter's operating characteristics might be changed without having to 

recompile the code, the values needed for initialization were stored as ASCII 

text files. These files are read in by the filter initialization method, and 

contain the following values in the order specified: 

• H, R, P~, x~, as defined in Section 2.2. 

• a (sigma), the standard deviation of the head acceleration assumed by 

the filter. 

• z (tau), the correlation time of the head acceleration assumed by the 

filter. 

• T, the sample period (the inverse of the sample rate, or number of 

times per second that the filter is to generate a prediction). 

• RAR_Limit (the minimum RAR value at which the filter is considered 

to be divergent). 

FOGMA Filter Technical Design. The First-Order Gauss-Markov 

acceleration (FOGMA) model was chosen because it is simple, linear, and has 
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been used successfully in many tracking environments. It also has desirable 

properties in terms of on-line computational load. A Kaiman filter normally 

requires initial values for eight variables (x~, P~, Q, R, $, B, G, and H) in 

order to initialize (these variables are described in Section 2.2). The FOGMA 

model allows the values of O, Q, and P~ to be pre-computed off-line if 

suitable values can be determined for the standard deviation c and the 

correlation time x for the head motion acceleration assumed by each of the 

filters. 

The particular implementation used in this research also had another 

desirable property. The filters do not expect or allow for any control inputs 

from the participant; therefore, we can set B [the control input matrix in 

Equation (1)] to zero and G [the modeled dynamics noise input matrix in 

Equation (2)] to the identity matrix. This in turn allows the prediction 

equations defined in Section 2.2 [Equations (1) and (2)] to be simplified. 

Since B = 0, the second term in Equation (1) can be eliminated; further, since 

G = I, it can be eliminated from Equation (2). The resulting equations are 

shown below, and were implemented in the FOGMA_Filter: 

x(*f) = «*(£,) (10) 

p(t[)=^p(tt_1y+Q (ID 

All terms in Equations (10) and (11) are as denned previously. The correction 

equations cannot be further simplified, so remain as defined in Section 2.2, 

Equations (3) and (4). The Project method uses Equation (10), but takes the 

current $ and multiplies it by itself n-1 times (remembering n is an integer 

input greater than or equal to two) before multiplying the result by the 
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current (this is appropriate in the case of a time-invariant model with 

constant $)• 

H, R, x~, and T were identical for all three filters. The measurement 

matrix H is shown below. It was determined from the fact that only position 

measurements (indicated by the 1 entries in the first three columns) are 

available, and the fact that x~ is comprised of three position values, three 

velocity values, and three acceleration values (in that order): 

H = 
10000000 0 
010000000 
001000000 

The measurement noise covariance R was determined through trial and error 

because the Polhemus 3SPACE User's Manual [Polhemus90] does not provide 

any direct values for sensor noise characteristics. This omission is 

understandable since noise values are dependent on environmental 

conditions. In fact, Steve Bryson describes Polhemus sensor noise as 

"significant, very noisy at distances of greater than 45 to 50 inches", and 

"very sensitive to location" [Bryson92:254]. Experimentation in the AFIT 

graphics laboratory showed acceptable filter performance at assumed noise 

variance levels of 0.01 with approximately three feet separating the source 

and sensor. This value was used in the R matrix, resulting in the following: 

R 
0.01 0 0 

0 0.01 0 
0        0     0.01 

It seemed reasonable to assume that the participant would initially be 

looking straight ahead into the virtual environment, and that his/her head 

would (at least initially) be still. In other words, the initial velocity and 

acceleration components of the x~ vector would be zero, and the position 
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components would indicate "straight ahead". In the case of the thesis 

environment, "straight ahead" is defined by a right-hand coordinate system 

with the participant looking along the positive Y-axis, the positive X-axis to 

the right, and the positive Z-axis straight up. The equivalent directional 

cosine values are (0, 1, 0). This leads to the initial value for x~ shown below: 

0 
1 
0 
0 

x = 0 
0 
0 
0 
0 

Finally, the sample period, T, for the filters was set at l/10th of a second (0.1 

seconds) to correspond to the frame rate (10 Hz) used in the application. 

<£, Q, and P~ were determined for each filter based on that filter's a 

and x values,  a is the standard deviation of the head motion acceleration 

assumed by the filter; it represents the bandwidth to which the filter will 

respond,  x is the correlation time of the head motion acceleration assumed 

by the filter; it indicates how long a given head motion acceleration persist in 

time and is inversely proportional to the assumed bandwidth of the 

acceleration process. The formulae for the elements of <£ and Q were based 

on the work of Tobin [Tobin86]. The formula for the <J> matrix is as follows: 

0> = 

1 0 0 T 0 0 u 0 0 
0 1 0 0 T 0 0 fl5 0 
0 0 1 0 0 T 0 0 fit 
0 0 0 1 0 0 135 0 0 
0 0 0 0 1 0 0 135 0 
0 0 0 0 0 1 0 0 135 

0 0 0 0 0 0 155 0 0 
0 0 0 0 0 0 0 I 55 0 
0 0 0 0 0 0 0 0 155 
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where 

flS = X 

fas = T 

T-x 1-exp f-T\\ 
\ i )) 

1 - exp 

/&- = exp 
( -T\ 

(13) 

(14) 

(15) 

and T is the sample period. Equations (13) through (15) are from Tobin's 

work [Tobin86:52]. 

Similarly, the Q matrix is also based on Tobin's work, and is defined by 
"q21 0 0 q13 0 0 qls 0 0 ' 

0 qn 0 0 q13 0 0 q15 0 
0 0 qn 0 0 q13 0 0 q15 

q13 0 0 q33 0 0 q35 0 0 
Q=    0 q13 0 0 q33 0 0 q35 0 

0 0 q13 0 0 q33 0 0 q35 
qJB 0 0 q35 0 0 q55 0 0 
0 qls 0 0 q35 0 0 q55 0 
0 0 q15 0 0 q35 0 0 q55 

where 

Qn = <*' 2\2jll_2x2T2-4 x3T * exp(-%)] + 2x3T - x4 exp("2%) + x4       (16) 

Ql3=G   • 

xT2 + 2[x2T * exp("%)] + x3 - 2x3 exp("%) -2x2T + 

[x3exp(-2%) 

q15 = c2{-2xT*exp(-yz) + x2 -x2exp(~2T/x 

q33 = <52{2xT-3x2 +4x2 exp(-%)-T* exp(-2% 

q35 =a2{t-2xexp(-%) + Texp(-2%)} 

(17) 

(18) 

(19) 

(20) 
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fe=^{l-exp(-2%)} (2D 

Again, the formulae are taken from Tobin's work [Tobin86:53-54]. 

The final initialization matrix, P~, was generated as the appropriate 

steady state solution to Equations (1), (4), and (5) from the given 4>, H, Q, 

and R matrices using Matlab [MatLab90]. An example code segment is 

included below: 

Phi  =   [Appropriate Phi matrix] 
I   =   [10000000   0 

010000000 
00100000 0, 
00010000 0, 
00001000 0, 
00000100 0, 
00000010 0, 
000000010 
00000000 1] 

H = [100000000; 
010000000; 
00100000   0] 

Q  =   [Apvropriate  Q matrix] 
R  =   [   0.01   0 0; 

0 0.01   0; 
0 0 0.01] 

[K,   Pm,   Pp,   E]   =  dlqe   (Phi,   I,   H,   Q,   R) 
save KF.out  K Pm Pp  -ascii 

The discrete linear quadratic estimator (dlqej function provides a Kaiman 

filter based solution for a given <X>, G, H, Q, and R. It returns the steady state 

P~, P+, and K matrices. In our case, G = I (the identity matrix), so a 9x9 

identity matrix is used in the code segment. 

The $ and Q matrices were generated by the filter as part of the 

initialization process. However, since the P~ matrix was generated by 

Matlab, it was read in as part of the filter data file. 
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3.6    MMAE Design 

Similar to FOGMA_Filter (and for the same reasons), FOGMA_MMAE 

was implemented as a derived sub-class of the abstract class MMAE, which 

defines the minimal data structures and methods for any MMAE application. 

MMAE defines the following methods: 

• Initialize - Initializes the MMAE. 

• Correct - Updates the MMAE state for an actual measurement, Z, 

which is an input to the method. 

• Predict - Generates and returns a prediction of the MMAE state one 

sample period into the future. 

Additionally, the state variable MMAE_mode is defined. Please note that no 

Initialized or Divergent method is defined for the MMAE class. 

The behavior of the MMAE class is also similar to that of the 

KalmanJFilter class. When instantiated, the MMAE object is in the 

Uninitialized state, and will only respond to an Initialize method invocation. 

When Initialize is invoked, the MMAE initializes and transitions to the 

Operational state. While in this state, method invocations will be accepted 

and processed as long as at least one filter in the MMAE is not divergent. If 

all filters within the MMAE become divergent at the same time, then the 

MMAE transitions to the Divergent state. This state is more a notational 

convenience for the diagrams than an actual state, because the MMAE 

cannot return to the Operational state; it will immediately transition from 

the Divergent state to the Dead state. The Divergent state simply allows an 

opportunity to print a warning message or take clean-up actions. The 

behavior diagram is shown as Figure 14: 
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1 
Uninitialized 

/ MMAE_mode = UNINITIALIZED 

Initialize () 

Method Call 

[~ All filters divergent] 

i 
I MMAE_mode = ADAPTIVE 

Operational 

Divergent 

Method Call 

[All filters divergent] 

Figure 14: Behavior Diagram for MMAE Class 

Here, Method Call indicates an invocation of Predict or Correct. 

FOGMA MMAE Software Design. FOGMAJV1MAE models an MMAE 

that comprises up to ten FOGMA_Filters. Objects of this class are 

instantiated with a number of niters, and a lower bound for the probability 

value associated with a particular filter (as discussed in Section 2.3). 

FOGMA_MMAE extends the MMAE class by including several new 

methods, and new behavior. Essentially, it was necessary to allow the 

MMAE to operate as though it had only a single filter in order to study the 

performance of the individual filters and to tune each of them (tuning a filter 

involves adjusting its a and x values for best filter performance). To 

implement this, a new method, SingleFilterMode, was added. This method 

takes an integer input n in the range [0, K], where K is the number of filters 

in the MMAE. If n = 0, then the MMAE will use the outputs from all filters 

in its calculations. If n > 0, then the MMAE will only use the outputs from 

filter n for its calculations. This modification required a complementary 
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I / MMAE_mode = UNINITIALIZED 

Uninitialized ♦KsH Divergent 

Initialize 

/ MMAE_mode = ADAPTIVE 

Method Call 

[All filters divergent] 

Method Call 

[All filters divergent] 

SingleFilterMode (m) 

[m>0] 

/ MMAE_mode = m 

SingleFilterMode (m) 

[m = 0] 

MMAE_mode = ADAPTIVE 

Single Filter 

Method Call 

[~ All filters divergent] 

Method Call 

[~ All filters divergent] 

Figure 15: Behavior Diagram for FOGMA_MMAE Class 

change in the behavior diagram for the class. The new behavior diagram is 

shown in Figure 15:Note that the figure contains more than one Dead state. 

This was done to keep the diagram from becoming too cluttered. 

Accommodating a Single Filter mode also required changing the way 

that estimates (X values) are calculated. As explained previously, the 

MMAE normally generates a probability weight for each filter based on all 

filters' residual values (the difference between the filter-predicted values and 

the actual data values for the same time). These probability weights are then 

multiplied by the filter estimates, and the results summed to produce a final 
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estimate for the MMAE. However, in Single Filter mode, this behavior is not 

desired. Instead, the probability weight for that filter should be set to one, 

while all other filters should get probability weights of zero. This same 

philosophy carries over to the FilterWeight method, which returns the 

current probability weight for a particular filter. 

In addition to SingleFilterMode and FilterWeight, several other 

methods are included. There is an Extend method that mirrors the Project 

method of FOGMA_Filter; it allows the MMAE to generate a prediction of its 

state more than one sample period into the future by using the current $ and 

probability weights as constants. There are also mirror methods for all of the 

methods to retrieve the value of various state variables. The difference is 

that FOGMA_MMAE prepends each method name with Filter 

(FilterXHatMinus, FilterXHatPlus, and so on), and requires the client to 

specify the filter (in the range [1, K\) for which values should be returned. 

FOGMA MMAE Technical design. Three filters were used in the 

application. Filter #1 was designed under the hypothesis that the participant 

is making benign head movements. An example of a benign movement is a 

person in an automobile tracking the path of the car directly ahead. The 

motion of the car is (normally) fairly predictable, and not subject to sudden 

changes in direction or speed. Filter #2 used the hypothesis that the 

participant was looking around, tracking a moderately to harshly moving 

single target. Continuing with the driving example, this type of motion might 

be exhibited by a driver trying to follow the motion of a car that has 

encountered a patch of ice on the road, and is now swerving back and forth 

somewhat wildly. This motion was classified as moderate. Filter #3 used the 

hypothesis that the participant was making large, rapid swings of the head, 
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such as occur in a reacquisition task. An example is when a driver hears a 

horn from behind, and did not know a car was there, so quickly turns to find 

out where the car is. The various values for o and z are shown in Table 1: 

Filter sigma tau 

1 (Benign) 
2 (Moderate) 

3 (Heavy) 

0.06 
1.0 
5.0 

1.0 
0.2 

0.05 
Table 1: Sigma and Tau Values for MMAE Filters 

Initial values for these variables were taken from the prototype code. Then 

the filter performance was examined by the researchers. To do this, a 

researcher would hold the Polhemus 3SPACE sensor and make movements of 

the appropriate type. The individual filter outputs and the interplay between 

filters would then be examined, and adjustments to the c and x values made 

if needed. This trial and error process was repeated until satisfactory filter 

performance was achieved. 

3.7    ThreeSpace Class 

The final class object developed was a ThreeSpace class that provided 

an interface between the application and the Polhemus 3SPACE magnetic 

tracker that provided the head orientation estimates. This code was largely 

based on an existing Fastrak class developed by Capt Mark Gerken 

[Gerken91] and later modified by LtCol Philip Amburn. This existing 

interface was deemed unsuitable for use without modification for the 

following reasons: 
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• The code read more information than was needed for the application, 
and did not provide a means to specify what information should be 

read. 

• The read time was unacceptably long (on the order of one hundred 

milliseconds). 

• Testing showed that it would not properly support the Polhemus 
3SPACE tracker provided by Armstrong Laboratories. 

In order to correct these problems, a new class, ThreeSpace, was 

developed. However, since the goal of this research was to develop an 

MMAE, not a ThreeSpace, an engineering decision was made not to attempt 

to make this a general class. The resulting design is, therefore, very specific 

to the needs of the application and the requirements of the 3SPACE tracker, 

and contains many hard-coded assumptions (such as the port number to 

which the 3SPACE is attached, and the baud rate of the port). The 

ThreeSpace class supports only one method, Get_COS, that reads the cosine 

values from the Polhemus 3SPACE magnetic tracker. 

3.8    C++ Implementation 

Because most of the graphics applications at AFIT use C++ as the 

implementation language, and because the Performer [Performer90] software 

library is written in C, the first version of the application was developed in 

C++. C++ offers many advantages to the developer. It is a very terse 

language; it doesn't require the developer to learn a great deal of syntax. It 

is also a very good prototyping language. Most importantly to this research, 

it is an object-oriented language, and includes support for class constructors 

and destructors, polymorphism, and inheritance. 
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During the C++ implementation, several new problems with the 

prototype code were uncovered, as well as some flaws in the original design. 

Since these discoveries and work-arounds also form part of the overall design 

decision process, they are included in this section. The various comments are 

divided up according to the object to which they apply. 

GenMatrix Class. The initial version of GenMatrix had only one class 

constructor that initialized all GenMatrix elements to zero upon allocation. 

This was very useful since C++ does not clear memory on allocation. 

However, this caused later compilation problems when the FOGMA_Filter 

class attempted to declare members of type GenMatrix. This problem could 

be avoided by making the members in question pointers to type GenMatrix, 

but this was an unsatisfactory solution for two reasons: 

• it required changing all the code in the FOGMA_Filter class to 

dereference the pointers before invoking any methods in GenMatrix; 
this made the FOGMA_Filter class code much less readable. 

• it flew in the face of being able to use user-defined types as though they 

are native types, which is one of the goals of the C++ language. 

After several days of struggling with the problem, the solution was 

found in the following passage from Stroustrup's book [Stroustrup91] that 

explained a ctor initializer. 

"An object of class M can be a member of a class X only if (1) M 
does not have a constructor, or (2) M has a default constructor, or 
(3) X has a constructor and if every constructor of class X 
specifies a ctor-initializer ... for that member." [Stroustrup91: 
579] 

A ctor initializer is a special form of constructor that invokes other class 

constructors. After reading the passage, the GenMatrix class was changed to 

have a default constructor that does nothing, and the constructor for the 
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FOGMA_Filter class was changed to be a ctor initializer. This solved the 

compilation problems, and allowed the FOGMA_Filter code to use members 

of type GenMatrix. 

To complement the new (null) default constructor, an Initialize method 

was added to the GenMatrix class. Functionally, a (null) GenMatrix 

declaration followed by an Initialize method invocation is equivalent to a 

(non-null) GenMatrix declaration alone. While this is somewhat redundant, 

it has the advantage of allowing the declaration of dynamically-sized arrays 

of GenMatrix objects. This does introduce the potential for uninitialized 

GenMatrix variables, however, if a user does not remember to invoke the 

Initialize method. 

Another problem with GenMatrix occurred when trying to overload the 

brackets ([ ]) operator used to reference an individual matrix element.   Two 

arguments (row and column offset) were needed, but the brackets operator 

will accept only zero or one argument(s). The author was not experienced 

enough in C++ to know how to use a recursive call and still perform adequate 

bounds checking on the inputs, so he developed a work-around. An Elt 

method that can be used on either side of an assignment statement was 

written to replace the brackets operator. This is not as elegant as a recursive 

brackets operator, but it is satisfactory and also provides some contextual 

indication of when a variable of type GenMatrix is used. 

The GenMatrix class does not, in general, return status values to the 

calling program. Instead, if an operation cannot be completed due to bad 

input values or other conditions, an appropriate message is printed and 

program execution is halted via the Exit command. This is not an optimal 

engineering solution to the problem, since a subordinate object is making 
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decisions about program continuation for higher level objects, but it is the 

most reasonable course for two reasons: 

• If the values sent to an operation do not allow the operation to be 

accomplished (for example, when trying to take the determinant of a 

singular matrix), then the results ofthat operation would be 
undefined. Returning a value that is not in any defined state was not 
seen as a viable implementation strategy. 

• C++ does support exception handling through the Throw/Catch and 

Assert language extensions. Unfortunately, neither of these extensions 

is supported by the version of C++ used to implement the software. 

Therefore, there was no reasonable way to use exceptions to indicate 
when operations were unable to complete. 

FOGMA MMAE Class. Two modifications of the prototype design were 

made for this class. The first modification involved altering the constructor 

for the class to include a lower probability bound for the MMAE filters. This 

allows the user to determine what bound to use, and sets the same bound for 

all MMAE filters (using a single bound across all niters is standard practice 

in MMAE design). 

The second modification was to rewrite the Correct, Predict, and 

Extend methods to take advantage of the parallelism of their execution. 

Essentially, all three methods call the appropriate FOGMA_Filter method to 

update the estimate variable (or a temporary copy in the case of Extend), and 

then generate a best estimate based on the current value of estimate and 

weight, taking into account whether or not the MMAE is currently in single 

filter mode. Taking advantage of this parallelism led to the redesign of these 

methods and the creation of a private method, WeightedEstimate, that 

encapsulates the code used to calculate the MMAE estimate. 
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ThreeSpace Class. Several versions of this class were implemented 

in C++ in order to find the best alternative among the design possibilities. 

The first version of the software decreased the size of the data record sent by 

the Polhemus by removing unneeded data fields. The Fastrak code returned 

the full set of nine direction cosines (three values for each of the three 

direction axes), as well as the 3D position of the sensor relative to the 

Polhemus source, even though the prototype code only used a subset of the 

cosine data, and totally ignored the position data. For the thesis code, only 

three cosine values were needed (the three X-Direction cosines), so the 

ThreeSpace class was designed to return only those. The result was an 

approximate doubling of the number of reads per second possible. Then the 

baud rate of the connection between the host computer and the Polhemus was 

doubled (from 9600 baud to 19200 baud) without changing any other system 

parameter. This resulted in a further increase in reads per second possible. 

Finally, the data format being sent from the Polhemus was changed from 

ASCII text to binary data; this again reduced the size of the data record 

being sent by the Polhemus, and also again increased the number of reads 

possible per second. A table showing the various configurations and the time 

required in milliseconds to perform a single read is shown in Table 2. 

Version Record Size 

(bytes) 

Format Baud Rate Read Time 

(milliseconds) 

Prototype 92 ASCII 9600 100 

First 26 ASCII 9600 50 

Second 26 ASCII 19200 38 

Third 11 Binary 19200 27 

Table 2: Read Times for Various Software Configurations Under IRIX 4 
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Note that the figures in Table 2 were taken with the software running on an 

SGI 4D platform operating under the IRIX4 operating system. Also, in order 

to make the binary read work, it was necessary to change the port 

configuration used by the software. 

One would think from Table 2 that the binary read is the best choice, 

especially when the goal of keeping the read time as short as possible is taken 

into account. However, this is not the case. The ASCII reads all achieve 

100% reliability; in other words, a good data record is returned each time the 

Polhemus is requested to send a data record. The binary format read could 

only achieve an approximate 60% reliability, and resulted in a visual display 

that jumped erratically due to bad data being returned. This drop in 

reliability may be due to the relative speeds of the processor and the 

Polhemus across the serial communications line; an exact reason was not 

established. However, the ASCII read at 19200 baud (Second version in 

Table 2) was chosen for the implementation since it had the lowest time per 

read that still maintained 100% reliability. 

Main Application (pfdisplav). In order to achieve the desired visual 

effects (highlights on the balls, display of filter information and crosshairs), it 

was necessary to change the structure of the main application. Specifically, it 

was necessary to write call-back routines that were invoked by Performer, 

and that used shared data. The important point about this from a software 

engineering standpoint is to highlight the close coupling between the main 

application and the Performer library. The main application is structured in 

the way demanded by the Performer software, and if it should become 

desirable in the future to move away from Performer, then the main 

application will have to be rewritten to suit whatever software is used. 
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Also, the C++ implementation was developed under the IRIX 4 

operating system. At the time of this writing, only one SGI platform in the 

graphics lab at AFIT supports IRIX 4; the rest have been upgraded to IRIX 

5.2. These compatibility of these operating systems is limited, and the C++ 

software will have to be modified in order to port it to the new operating 

system. 

3.9   Ada Implementation 

Implementing the application in Ada 9X involved working under two 

constraints. The first was a desire to make the Ada 9X application as 

structurally comparable to the C++ already developed as possible. The 

motivation for this was to make comparisons between the two versions as 

unbiased as possible. However, meeting this goal was more difficult than 

anticipated, since C++ and Ada 9X implement object-oriented features in 

different ways. Several design changes were needed in order to translate the 

C++ into Ada 9X. 

The most obvious of these changes is the use of Ada package 

specifications in place of C++ header files. The fundamental Ada unit is the 

package, and Ada objects are most naturally defined as packages. The 

interface to the outside world is defined by the package specification, while 

the implementation of the object behavior is hidden in the package body. It is 

worth noting that Ada package specifications and C++ header files are not 

completely analogous; package specifications are more tightly coupled to 

their respective bodies than header files to their respective implementation. 

Another change involved type declarations. C++ allows you to define 

an object and then use the name ofthat object as a type name when declaring 
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other variables. Ada 9X takes a somewhat different approach. You declare a 

type within a package specification that is then available for outside objects 

to use in declarations. 

The final design change points out the difference in philosophies 

between C++ and Ada 9X. C++ takes the viewpoint that user-defined classes 

should be able to behave in the same manner as native language types. To 

achieve this, almost everything in C++ is overloadable. This means that the 

developer has tremendous latitude in defining object behavior. However, it 

also places a great deal of responsibility on the developer to be thorough in 

designing new classes. Ada 9X has a somewhat different philosophy on user- 

defined types. The user is free to overload certain operations, but others are 

reserved for the language. While this may at first seem restrictive, it can 

actually decrease the workload on the designer, because the responsibility to 

provide definitions for reserved operations falls on the language developers. 

An example of these philosophical differences can be seen in the 

implementation of the GenMatrix class. The C++ version contains methods 

for assignment, retrieval of individual elements, setting of individual 

elements, and other methods that do not appear in the Ada 9X 

implementation of the class. The reason for this discrepancy is that Ada 9X 

provides definitions of these methods that are generic enough to 

accommodate the GenMatrix class without requiring new definitions. 

The second constraint was imposed by the compiler selected for the 

implementation. SGI provided a set of Ada bindings for Performer 

[Performer90] that allow Ada 9X to make the Performer calls necessary to 

generate the virtual environment used in the research. These bindings were 

compiled with the GNAT Ada 9X compiler; therefore, the same compiler was 
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used to compile the thesis software. The GNAT compiler is currently fairly 

immature, and does not yet fully support all language structures of Ada 9X. 

An example of one of these unsupported features is generics. The original 

design of the MMAE class called for it to be implemented as a generic. The 

reason a generic was chosen was that the number of niters used by the 

MMAE is not known at compile time. Implementation as a generic allowed 

the number to be passed to the object when it was instantiated. 

Unfortunately, the GNAT compiler had trouble compiling the generic 

properly, and the result was that the generic worked perfectly in one 

executable, but did not work at all in another. Finally, the MMAE class was 

re-designed to avoid use of generics. 

Even working under these constraints, the Ada 9X implementation 

offers some advantages. Ada 9X allows the developer to constrain the ranges 

of the various elements with type definitions, thus precluding the need to 

check ranges of input variables. Such a feature in C++ may have helped the 

prototype developers to catch the initialization errors in their code. Ada 9X 

also supports the boolean type, thus avoiding the less elegant C++ integer 

implementation with TRUE and FALSE explicitly defined as integer 1 and 0, 

respectively. Perhaps the greatest advantage of Ada 9X, however, is its 

ability to define and handle exceptions. Exceptions allow the developer to 

differentiate between what is normal processing, and what is not. When 

combined with the strong type checking noted above, Ada 9X offers the 

developer a powerful method for ensuring program correctness. Also, by 

using exceptions, the decision of whether or not to terminate program 

execution can be left to the highest level object in the system. This is in 

direct contrast to the C++ implementation of this software, which has lower 
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level objects causing program termination because they have no way to 

inform the calling program that they cannot complete an operation. 

3.10 Summary 

In the ideal design and implementation environment, all aspects of the 

design would be equally important, and all aspects of the implementation 

would be meticulously validated and verified. However, software 

engineering, like other types of engineering, is not an ideal environment; 

trade-offs and compromises are inevitable. Software engineering allows the 

user to determine the importance of various aspects of the design and 

implementation, thus producing systems tailored to his/her needs. Put 

another way, the engineering process allows trade-offs to be made once the 

sensitivities of the system in question are identified. The role of the software 

engineer in this process is to ensure that, when trade-offs are made, they are 

made in an appropriate, informed manner. This philosophy was applied to 

the design and implementation of the thesis software. The prototype 

software provided a foundation from which to develop new requirements and 

designs. Those requirements then became the driving factor in subsequent 

design decisions. 

Two versions of the thesis software were developed; one in C++, and 

one in Ada 9X. Although both of these languages are object-oriented, each of 

them has its own philosophy on how object features should be implemented. 

These differences in philosophy resulted in two noticeably different 

implementations, each with different strengths and liabilities. C++ offers the 

ability to integrate user-defined types almost seamlessly into the native 

language. This, combined with the ability to overload virtually any language 
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construct, results in a tremendous ability on the part of the developer to 

identify and define object behavior. This freedom, however, comes with a 

responsibility to thoroughly understand the consequences of the behaviors 

defined. C++ performs type conversions without informing the user in order 

to make operations compatible. The results of these conversions is not 

always well-defined. It is therefore the responsibility of the C++ practitioner 

to understand the environment, and ensure well-defined, reliable behavior. 

Ada 9X does not allow the developer the same freedoms as C++. It does offer 

many other amenities however. Strong type checking and the ability to 

constrain variables to specific values combine to foster a development 

atmosphere that prevents errors instead of responding to them. The ability 

to raise exceptions allows the developer to separate the normal processing of 

the system from the exceptional. However, Ada 9X does not yet have the 

mature compilers necessary for large-scale, commercial development. 
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IV     Data Collection and Analysis 

This chapter describes the various experiments performed in order to 

validate the application and the software engineering process. The 

application was validated both by testing performed during implementation, 

and by a performance study. The software engineering aspects of the 

research were studied and the C++ and Ada 9X implementations of the 

software were compared. 

4.7    Implementation Testing 

Testing during the implementation phase fell under three main areas. 

The first was the traditional unit-level testing that stresses the software in 

order to identify, isolate, and correct any coding errors or unstable behaviors. 

The next form of test was a filter tuning test. These tests studied the 

behavior of the Kaiman filter objects both individually and together. The 

final form of test was a performance test that allowed the behavior of the 

Kaiman filters and the MMAE to be baselined. 

Test Programs. During implementation, several test programs were 

developed to ensure the proper functioning of the system objects. The first of 

these, filter Jest, allowed testing of the FOGMA_Filter object. The user 

indicated which filter (corresponding to an assumed benign, moderate, or 

heavy head motion acceleration) to test, and also which path file (containing 

simulated Polhemus data) to use as input data. The program read in the 

path file and normalized the data values so that they approximated angular 

cosine data read from the Polhemus. The appropriate filter was then 

initialized, and the simulated Polhemus input used to drive the filter. 
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Program output could be directed to either the screen or an output file. A 

sample output of this program is included in Appendix B of this document. 

The next program was mmaejest. This program performed essentially 

the same function as filter.test, but used the MMAE object. The user could 

specify which path file to use as simulated input. Test output could be 

directed either to the screen or to a data file. Additionally, the user could 

select to have some outputs directed to a chart file. The chart file used a 

comma-separated, ASCII text format to allow the results to be ported to a 

spreadsheet, chart, or word processing program. A sample output of this 

program (not including the chart file output) is included in Appendix B of this 

document. 

The final program was square_wave. This program also tested the 

MMAE object, but allowed the user to specify an angular displacement (in 

degrees) and a duration (in frames, where one frame is equal to one tenth of a 

second) to use as the input generator for the test. Similar to mmae_test, 

above, the user could opt to have an ASCII text output file created. The main 

purpose of these test programs was to aid in identification, isolation, and 

correction of any errors in the software; however, they also became a useful 

tool for characterizing the performance of both the individual filters, and the 

MMAE. Systematic data could be collected with these programs much more 

reliably and repeatably than with actual Polhemus data collected from 

human subjects. 

Filter Tuning. During initial coding of the filter software, each filter 

was tested with the filter_test program and an appropriate data set. Test 

outputs were examined for correctness (no mathematical errors in the 

formulae used to generate the outputs) and also for validity (reasonable 
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output values relative to the input values). Once the individual filters were 

running satisfactorily, the MMAE software was written, and the mmae_test 

program was used to check correctness and validity of the MMAE outputs. 

Once the MMAE was operational, the filters were tuned. Because no 

baselines existed, an empirical, trial and error method based on observed 

filter performance was used to tune the filters. 

The first attempt at filter tuning looked at performance across all 

filters. With the MMAE running, a researcher used the Polhemus to 

generate an appropriate motion type (benign, moderate, or heavy), and the 

MMAE outputs (in terms of RAR values as denned in Section 3.5) and 

individual filter weights) were examined to see if they matched the input 

motion (the probability weight for the appropriate filter being assigned 0.98 

or something reasonably close to that). Then, the motion type would be 

changed (from benign to moderate motion, for example), and the interplay 

between the filters examined. The goal of tuning in this fashion was to 

ensure that the correct filter was chosen for the motion type exhibited, and 

that when the motion characteristics changed, that the probability weight 

shifted to the new correct filter. If this was not the case, then the o and x 

values for the filters were adjusted, and the new configuration re-tested. This 

cycle was repeated until a tuning that provided satisfactory performance was 

found. 

Individual filter performances were then examined. The MMAE was 

run in single filter mode, and the performance of the individual filters 

assessed in terms of overshoot and sluggishness. Again, if a filter's 

performance was not acceptable (too much overshoot observed, or too sluggish 

a return to a fixed position when motion was stopped) then the o and x 

-92- 



values for the filter were adjusted, and the filter re-tested. Eventually, a 

tuning that provided satisfactory performance for both the MMAE and the 

individual filters was reached. This tuning was used to generate baseline 

performance data. 

Pp.rfnrmanfp Characteristics. Filter RAR values (again, as defined 

in Section 3.5) are critical to the performance of the MMAE. RAR value 

indicates an inverse level of confidence in the filter prediction; the larger the 

RAR value, the less likely it is that the filter prediction is correct. The filters 

in this research tend to start losing confidence (and therefore giving up 

probability) at RAR values greater than approximately 4.0. Figure 16 shows 

the RAR values for each of the filters at angular displacements of zero 

through ninety degrees. 

■Filter! Filter2      Filter3 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

Angular Displacement (Degrees) 

Figure 16: RAR Values for Angular Displacements through Ninety Degrees 
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The RAR value is also used to determine when a filter is considered divergent 

(when its predictions have become so unreliable that a filter restart is 

necessary). Based on Figure 16 and several iterations of trial and error, each 

of the filters was assigned a limiting RAR value. These values, and the 

equivalent angular displacement in degrees, are shown in Table 3: 

Filter RAR Limit Angular Displacement 

1 (Benign) 

2 (Moderate) 
3 (Heavy) 

22.0 

33.0 
38.0 

30 

45 
60 

Table 3: RAR Limits and Associated Angular Displacements 

After RAR values, the next performance characteristic to be examined 

was filter probability weights. The filters were tested under each of the 

motion types, and probability weights for each filter recorded and examined. 

Figures 16 through 18 show the probability weights associated with each 

filter under each of the motion types used in this research. The graphs 

provide insight into the behavior of the niters. The benign filter (filter #1) 

will absorb and retain as much probability as possible, as demonstrated by 

Figure 17 and the left side of Figure 18. The moderate filter (filter #2) will 

absorb probability if able, but does not retain it as filter #1. Instead, it will 

usually release its probability after a short time. This is demonstrated in 

Figure 18. The heavy filter (filter #3) will absorb probability if able, but will 

almost immediately release it again, as demonstrated in Figure 19. Note in 

Figure 19 that the moderate filter (filter #2) almost never gets any probability 

weight. The heavy filter absorbs it very quickly at the onset of heavy motion, 

and then the benign filter takes it all back with almost none going through 

the moderate filter. These filter behaviors are consistent with observed head 
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Figure 17: Probability Weights for Benign Motion Data Set 
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Figure 18: Probability Weights for Simulated Moderate Motion 

-95- 



■Filterl — Filter2      Filter3 

111 in 

Time (0.1 sec) 

Figure 19: Probability Weights for Simulated Heavy Motion 

motion patterns in humans. Head motion seems mainly composed of small 

(benign) movements, occasionally punctuated by sudden bursts of activity 

(moderate or heavy motion); however, these bursts do not normally persist 

for any length of time. Therefore, the benign filter (filter #1) is expected to be 

the dominant filter most of the time, with occasional interactions from the 

other filters. This characterization, however, does not preclude the moderate 

or heavy filters from absorbing and retaining all the available probability if 

the situation (as determined by the current head movement characteristics) 

warrants. As can be seen in Figure 18, in cases of prolonged moderate 

motion, the moderate filter will eventually absorb all the probability and 

retain it as long as the situation warrants. The same is true of the heavy 

filter; but these are not considered the normal cases. 
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The next performance characteristic examined was a measurement of 

the MMAE prediction error expressed as the distance between the actual 

data (represented as a point in 3-Space), and the MMAE prediction 

(represented the same way) for the same time. Figures 20 through 22 show 

prediction error for the corrected (zero sample periods ahead), predicted (one 

sample period ahead), and extended (two sample periods ahead) MMAE 

outputs. Note that the Predicted and Extended outputs have been offset so 

that the time index is correct for all three lines. Prediction error values are 

as one would intuitively expect. The corrected (zero sample period ahead) 

line shows the least error, with predictions at one and two sample periods 

ahead becoming increasingly error prone. However, because of the adaptive 

nature of the MMAE, prediction error diminishes over time. This is also 

• Corrected "" Predicted       Extended 
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Figure 20: MMAE Prediction Error for Benign Motion Data Set 

-97- 



■ Corrected ~~ Predicted       Extended 

0.45 -r 

0.4 -- 

0.35 

0.3 

0.25 

0.2 

o   0.15 

W      0.1 

0.05 

0 

0) 
•a 
3 
#■* 

"c 
S) 
CO 

S 

I I II II II I I I I I I I I 

Time (0.1 sec) 

Figure 21: MMAE Prediction Error for Simulated Moderate Motion 
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Figure 22: MMAE Prediction Error for Simulated Heavy Motion 
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intuitive; the longer the participant displays consistent motion, the easier it 

is for the MMAE to predict that motion. Note that Figure 20 was generated 

with a benign data set, while Figures 21 and 22 were generated through the 

square_wave program. This is why Figures 21 and 22 are cyclic. The 

square_wave program, however, is preferred since the results are repeatable. 

The last performance graph compares the X-direction values (only) for 

an input square wave (again generated with the square_wave program) to the 

corrected, predicted, and extended MMAE output values. In the graph, Path 

is the path traced by the X-direction values from the square wave. The graph 

is shown as Figure 23. 
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Figure 23: Comparison of X-direction Output Values 
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4.2    Performance Study 

Once the MMAE performance was baselined, a performance study was 

conducted to provide a comparison of performance with actual subjects. The 

study was a within subjects study that used AFIT students and faculty for 

subjects. Eighteen subjects (sixteen male and two female) participated in the 

study. The task used for the study was an acquisition/tracking task in which 

subjects were asked to keep a crosshair centered on a moving 3D sphere in 

the virtual environment. This task was unofficially dubbed "follow the 

bouncing ball" by the author. 

The independent variable manipulated in the study was tracking 

mode. Three different tracking modes (adaptive mode in which the MMAE 

was used to predict the orientation of the subject's head; single-filter mode in 

which a single Kaiman filter was used to do the orientation prediction; and 

Polhemus-only mode in which no prediction was done) were used by each 

subject to perform the same task. Each subject was given seven thirty-second 

trials for each tracking mode; two benign trials, two moderate trials, and 

three mixed trials. 

In the benign trial, the subject was asked to track the motion of a red 

ball that was constrained to stay within the subject's initial field of view 

(approximately forty-five degrees horizontal and thirty-five degrees vertical). 

The ball motion was very slow and generally followed long lines and arcs. 

This motion was designed to accentuate the performance of filter #1 (benign). 

The moderate trial was essentially the same as the benign trial with the 

exception that the ball motion was different. In the moderate trial, the ball 

still stayed generally within the subject's initial field of view, but made very 

short, quick movements. 
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In the mixed trial, two balls (one red and the other blue) were used. 

The red ball was positioned on the subject's left while the blue ball was on the 

subject's right in the virtual environment. Both balls were constrained to 

stay within separate areas of the virtual environment; neither ball was 

visible to the subject when the trial started. In the mixed trial, the crosshair 

had a box around it that would be either red or blue. Subjects were asked to 

find the ball of the same color as the box as quickly as possible and then to 

track that ball. The color of the box was changed either once or twice during 

the trial, and the box itself did not become visible until the trial started. The 

mixed trial was used to simulate a re-acquisition task, and thus to generate 

filter #3 (heavy) motion, among periods of tracking that would require use of 

filters #1 (benign) and #2 (moderate). 

A Latin Square method with respect to the tracking mode was used to 

remove learning bias on the part of the subjects. The square defines the 

order in which the tracking modes were presented to the subjects. The 

square used is shown in Table 4: 

Condition Order o: F Tracking Modes Presented 

1 MMAE Single Filter Polhemus Only 

2 Single Filter Polhemus Only MMAE 

3 Polhemus Only MMAE Single Filter 

4 MMAE Polhemus Only Single Filter 

5 Single Filter MMAE Polhemus Only 

6 Polhemus Only Single Filter MMAE 
Table 4: Latin Square for Tracking Mode 

Three subjects per condition were tested. Twenty-one data sets were 

generated so that no subject used a particular data set more than once during 
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testing in order to further reduce the possibility of learning effects. For 

Single Filter tracking mode, filter #2 was used for head orientation 

prediction. This is the filter originally designed for moderate head motion; it 

was felt that this filter would provide the best performance across all motion 

types. 

Ten data items were collected during the performance study. Data 

item values were collected each frame, and written to a data file in ASCII 

format after the trial was completed. The data items collected are listed 

below. 

Ball Color - The color of the ball to be tracked. 

Red Path - The 3-space position of the red ball. 

Blue Path - The 3-space position of the blue ball. 

Z - The Polhemus input. 

Corrected X - The MMAE corrected output. 

Predicted X - The MMAE predicted output. 

Extended X - The MMAE extended output. 

RAR Value - The likelihood quotient (RAR) value for each of the 

MMAE filters. 

RR Value - The ME/I likelihood quotient (RR) value for each of the 
MMAE filters. This value is similar to the RAR value. 

Probability Weights - The probability weights for each MMAE filter. 

Ball Color is a single integer (1 for red; 2 for blue); the other data items all 

require three output values (X-, Y-, and Z-direction values; or outputs for 

each of the three filters). Since the trials were thirty seconds in length, and 
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the frame rate of the display was set at 10 Hz, three hundred samples per 

trial were collected. 

Two methods of analysis were then applied to the data. The first 

method examined the prediction error of the MMAE and Single Filter 

tracking modes. Prediction error looks at the absolute difference between the 

(MMAE or Single Filter) predicted values for a time period, and the actual 

Polhemus values returned at that time period. Three data sets were 

examined for each of the three tracking modes. In order to do comparisons 

for the Polhemus, a simulated prediction error was defined. Essentially, 

under normal operation, the Polhemus data used to generate a display frame 

is one frame old when the frame is displayed (this is, in fact, one of the 

contributors to overall display lag). Therefore, simulated prediction error for 

the Polhemus was defined as the difference between consecutive Polhemus 

directional values. Simulated Polhemus prediction error was compared to the 

actual errors in the MMAE and single Kaiman filter predictions for one 

sample period ahead. A plot of the error in the MMAE for the Benignl data 

set is shown in Figure 24. The complete set of plots is included as Appendix 

D to this document. 

Error analysis did not use the actual ball position as a basis of 

comparison even though ball position is considered the "true" position data 

for a given sample period. This is because this study was not designed to 

collect information concerning error with respect to the actual ball position, 

but rather with respect to the Polhemus-indicated position. As an illustration 

of this point, consider Figure 25, which shows a plot of the actual path of the 

ball used in the performance study versus the Polhemus and MMAE outputs. 
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Figure 24: MMAE Prediction Error, X-direction, Benignl Data Set 
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Figure 25: X-direction Comparison of Ball, Polhemus, and Predicted Values 
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Notice that the MMAE (prediction) line has a close correspondence to the 

Polhemus line. Correspondence between either the Polhemus or the MMAE 

lines and the actual path of the ball is much harder to identify, but it is fairly 

certain that a correspondence exists. It may be of some value to examine this 

correspondence, and see if there is a statistically significant difference 

between the correspondence of the Polhemus and the MMAE (and possibly 

the Single Filter as well) to the actual ball path. 

It was expected that the performance study would produce the 

following results. Under benign motion, all three tracking modes (MMAE, 

single Kaiman filter, and Polhemus Only) would appear about equal, with 

Polhemus Only being slightly better. Head motion in this condition is 

commonly so slow and predictable that the Polhemus alone is sufficient to 

provide a realistic display. Therefore, the MMAE was not expected to provide 

any advantage. Under moderate motion, it was expected that the MMAE 

would offer some advantage over the other two tracking modes. The 

Polhemus would not be able to keep up with the movement of the 

participant's head as well as the MMAE due to the adaptive nature of the 

latter. This same logic lead to the expectation that the MMAE would 

outperform the Polhemus in mixed motion during the reacquisitions. 

Analysis of the error graphs seemed to show some trends across the 

different motion types, but these trends were not always what was expected. 

Under both benign and moderate motion, the Polhemus seemed to exhibit the 

smallest error values. Single Filter mode formed a middle ground, and 

MMAE mode seemed to have the largest errors. Under mixed motion, 

however, the MMAE did seem to outperform both the other tracking modes. 

The errors associated with the MMAE outputs show a much faster 

-105 



convergence toward zero immediately after a reacquisition task (see plots in 

Appendix D). 

A statistical analysis was done to determine if the trends noted in the 

prediction error analysis could be demonstrated statistically. The measure 

used for this analysis was sample mean and standard deviation of prediction 

error across all subjects for the same motion type (benign, moderate, mixed) 

and filter type (MMAE, Single Filter, or Polhemus Only). The formulae for 

sample mean (X) and sample standard deviation (S) are shown below. 

'71     fXi 

y2 

*=xy% 

s = 
'=■ \2 

n-l 

where n is the number of samples used. Sample means and standard 

deviations for prediction error of the MMAE, the single Kaiman filter, and 

the Polhemus (this was again a simulated prediction error) were generated 

for each data set across all subjects. The results were partitioned into a table 

by tracking type and filter type. Finally, the values within each table block 

were again averaged to produce the results shown in Tables 5 and 6. In the 

tables, MMAE is MMAE tracking mode; SF is single Kaiman filter tracking 

mode; and POL is Polhemus Only tracking mode. 

MMAE SF POL 

BENIGN 0.0375 0.0210 0.0074 

MODERATE 0.0979 0.0807 0.0440 

MIXED 0.0726 0.0584 0.0286 

Table 5: Sample Mean (X) Values 
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MMAE SF POL 

BENIGN 0.0295 0.0166 0.0081 

MODERATE 0.0595 0.0519 0.0348 

MIXED 0.0592 0.0577 0.0387 

Table 6: Sample Standard Deviation (S) Values 

Note that in order to consolidate the data in this fashion, it was necessary to 

average across all samples. The results are therefore temporal values (across 

the entire data sets). 

These results are easier to see in graphical format, so two graphs were 

prepared from Table 5. The first (Figure 26) treats tracking type as the 

parameter. Although it appears that there is a significant difference between 

the lines portrayed, in fact the sample standard deviations are so large that 

all the lines are statistically equivalent (based on visual inspection). The 

same conclusion is reached for the second plot (Figure 27), which treats 

motion type as the parameter. Again based on visual inspection, no 

statistically significant difference between the tracking types is noted. 

The overall conclusion to be drawn from the analyses is that the 

performance study did not produce any statistically significant results; at 

least, not at the level of analysis done. There are many possible reasons for 

this. One of the most probable is that the study, as performed, lacked the 

experimental power to show any differences between the conditions. The 

tracking task used in the study is extremely difficult. Referring again to 

Figure 25, the low correlation between the path of the Polhemus (and the 

MMAE) and the path of the ball indicates that, overall, the subjects had a 

great deal of difficulty with the task. This in turn could mean that the 

number of subjects and trials used was insufficient to identify any 

-107- 



■MMAE ■POL 

0.1   -r 

0) 
3 
B 
> 

0.09 ■- 

0.08 ■■ 

0.07 -- 
C 
(0 
d) 

0.06 •- 

0.05 ■■ 

0) 
Q. 
E 
(0 

CO 

0.04 |p 

0.03 I 
0.02 i 

0.01 4 

0 X 
BENIGN MODERATE 

Motion Type 

MIXED 

Figure 26: Plot of Sample Means with Tracking Type as the Parameter 

■BENIGN ■MODERATE ■MIXED 

MMAE POL 

Figure 27: Plot of Sample Means with Motion Type as the Parameter 

-108- 



performance differences. Another possible cause is using the Polhemus data 

as a basis for comparison. This data, although it was treated as "true" head 

location, is actually subject to the considerable noise in the environment of 

the AFIT graphics laboratory. A final possibility is that there is some 

information to be gained from the data, but that more detailed analysis of the 

individual data sets will be necessary to find it. 

4.3    Language/Performance Comparison 

One of the goals of this research was to compare an Ada 9X 

implementation of this software to a C++ implementation. To meet this goal, 

two versions of the software (Ada 9X and C++) were developed. The two 

versions were then compared both by the methods described in the previous 

section, and also by comparing operational (performance) characteristics and 

design characteristics. 

Implementation Comparison. Since the application was developed 

first in C++, the Ada 9X implementation was much easier. Instead of having 

to examine test outputs for correctness, they could be directly compared to 

the already existing outputs from the C++ implementation. This provided 

both a verification of the Ada 9X implementation, and an extra validation of 

the C++ implementation. 

As with the C++ implementation, sample outputs from test runs of the 

Ada 9X implementation are included in Appendix B of this document. Note 

that the outputs are not exactly identical across the implementations. While 

they are largely identical, there is some variability in the filter outputs. This 

was attributed to differences in floating point number representation and/or 

differences in library mathematics functions such as square root or exponent. 
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Performance Comparison. Recently, graphics intensive software 

applications have used C and C++ as the implementation language. This has 

led to the gradual development of a large software base for graphics 

applications written in C, which has in turn produced a great deal of inertia 

toward the continued use of C++ as an application language. While this is 

understandable, many of the factors that drove that language decision have 

changed in recent years, and it may be time to re-examine those decisions in 

light of those changes. 

Ada 9X, although still relatively immature, has much to offer to virtual 

environment applications. Two of the more immediately obvious benefits are 

strong typing and exception handling. These two combine to make Ada 9X a 

highly reliable language. The developer can constrain the ranges of variables 

to the exact real-world values needed for the application, and range 

constraints are checked automatically by the run-time environment. This 

allows the developer a high level of confidence that the application variable 

contain valid values. Exception handling has two important benefits. First, 

it separates normal processing from exceptional, or abnormal, processing. 

This makes the code more readable, since exceptions are not interspersed 

with normal operations. Secondly, it allows a called routine to raise an 

exception to the calling routine, thus placing responsibility for dealing with 

the exception where it belongs—at the higher (and potentially highest) level 

routine in the application. 

There are essentially two common arguments against using Ada as an 

implementation language. The first of these is that Ada is not object- 

oriented, so cannot be used for object-oriented programming. While this was 
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true for Ada 83, the revised Ada 9X is a fully object-oriented language, and 

can provide the support necessary for object-oriented development. 

The second argument is that applications developed in Ada simply run 

too slowly; the performance degradation is too great to make the language a 

viable choice. One of the goals of this research was to provide a comparison of 

equivalent, computationally intensive applications to see what that 

performance degradation actually is, if one exists at all. 

To conduct the comparison, the Ada and C++ versions of the 

application were compiled and executed on an SGI Reality Engine^ platform 

running under the IRIX 5.2 operating system. The data collected from the 

test runs is summarized in Table 7. 

C++ C++ Ada9X 

IRIX4 IRIX 5.2 IRIX5.2 

3SPACE read time (msec) 38 17 17 

3SPACE read reliability (percent) 100% 100% 100% 

MMAE cycle time (msec) 27 9-23** 20 

Filter cycle time (msec) 8 4 7 

Frame Rate (Hz) 20 30 30 

Executable Size (bytes) N/A 413,356 819,056 
This value was observed to have large variability in tr 
obtained, so the range is reported here 

Le measurement , values 

Table 7: C++/Ada 9X Performance Comparison Data 

Data gathered from test runs of the thesis software under IRIX 4 are 

included in the table for completeness. 

Polhemus read times and reliability measures were determined with 

the TS_time (ThreeSpace time) program, which performs 1000 successful 

Polhemus reads. Since it is possible that a given read will not be successful 

(the data is not ready when the Polhemus is read), TS_time reports how 
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many read attempts had to be made in order to achieve 1000 successful 

reads, and also how long it took (in seconds) to accomplish those reads. A 

sample size of 1000 was used so that the output of the program could be 

translated directly into milliseconds (msec) per read. TS_time was run at 

least ten times for each of the implementations. The data shows that, under 

IRIX 5.2, both C++ and Ada 9X read data from the 3SPACE at approximately 

60 Hz with 100% reliability. This is the maximum output rate of the 

Polhemus 3SPACE magnetic tracker used in this research, so no 

determination of speed above this maximum could be made. 

The MMAE cycle time was determined with the mmae_time program, 

which performs 1000 iterations of the same three calls. First Correct is called 

with a (constant) Z value, then Predict, and finally Project is called for a 

projection two sample periods ahead. mmae_time reports the number of 

seconds required to do the cycle 1000 times. The data in Table 7 represent 

the mean value from ten executions of the test program. The C++ version 

showed a great deal of variability in the cycle time; values from a low of nine 

to a high of twenty-three were noted during testing. Therefore, the range is 

reported in the table. 

Filter cycle time was determined with the filter_time program, which 

is conceptually similar to mmae_time, above. 1000 iterations of the filter 

routines (Update, Propagate, and Project) are performed, and the time 

required in seconds is reported. Again, the data in Table 7 represent the 

mean often program executions. Here, there was very little variability noted 

in the figures obtained. Results indicate that the C++ implementation 

executed slightly faster than the Ada 9X implementation. 
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Frame rate was determined by modifying the pfdisplay application to 

use Free-Running mode and a desired frame rate of 60 Hz. In Free-Running 

mode, frames are rendered as quickly as they are produced (therefore frame 

rate is maximized). The precise choice of frame rate is not that critical; 

Performer will use whatever frame rate it can. However, 60 Hz is the typical 

goal frame rate for graphics applications, so it was used. The actual frame 

rate for the application was noted by having Performer display channel 

statistics during program execution. These statistics give real-time 

indications of application performance in terms of frame rate and time spent 

in the various processes (application time, render time, etc.). In all trials, the 

window size used for the display was equal to the screen size available 

(1280x1024 pixels). Also, the applications were verified to have an 

application time (computation time) greater than the draw time (display 

render time), thus eliminating the possibility that the frame was driven 

solely by how long it took to render the scene. The values reported in Table 7 

represent modal values (the values most commonly seen), since some frame 

rate variability was noted. 

The final row, executable size, was taken from a directory listing of the 

executables. The C++ executable is approximately one half the size in bytes 

of the Ada 9X executable. This could be due to the immaturity of the Ada 9X 

compiler used. 

The table is somewhat surprising. It was expected that the Ada 9X 

implementation would not be able to generate performance equal to the C++ 

implementation; the Ada 9X compiler is immature, and the Ada 9X software 

had extra layers of interface from the Performer bindings. However, the 

frame rates for both applications are identical (with some variability in the 

frame rate; however, this variability was noted in both applications). Also, 
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current graphics applications in the AFIT graphics laboratory run at 

approximately 12 to 15 Hz, which can easily be met by either 

implementation. The overall conclusion is that, based only on this data, Ada 

9X implementations appear to have the same performance capabilities (in 

terms of frame rate) as C++ implementations. 

The other comparison performed was a design-based comparison. The 

metric used for this comparison was Weighted Methods per Class (WMC) 

developed by Chidamber and Kemerer [Chidamber91]. This metric measures 

the complexity of a class by the sum of the static complexities of the class 

members. The formula for this is given below. 

WMC = ^Ct 
t=7 

where Q is the static complexity of each method within the class. Chidamber 

and Kemerer did not offer a preferred method for determining static 

complexity, so McCabe's Complexity Metric [McCabe89] was used. The 

results are summarized in Table 8. 

Class 

C++ Ada9X 

#Methods WMC #Methods WMC 

GenMatrix 
FOGMA.Filter 

FOGMA_MMAE 

ThreeSpace 

22 

18 

18 
3 

72 

44 

64 
7 

13 

16 
15 

3 

58 
49 

61 

5 

Totals 61 187 47 173 
Table 8: Results of WMC Calculations for Implementation Classes 

Note that since the abstract classes (MMAE, Kalman_Filter) do not have 

implementations (only specifications), they are not included in the table. 
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McCabe states that the complexity of a unit should be kept under ten 

[McCabe89]; complexities greater than ten usually indicate software that 

needs to be redesigned to reduce its complexity. Both of these 

implementations are well below this threshold; the overall average 

complexity is 3.1 for the C++ implementation and 3.7 for the Ada 9X 

implementation. 

Overall, the table indicates that the two implementations are very 

similar. This was the expected result, because the Ada 9X was purposely 

implemented to be as structurally similar to the C++ as possible. McCabe's 

Complexity Metric [McCabe89] is essentially a structurally-based complexity 

measure, so the similarly structured implementations should have similar 

complexities as measured by McCabe's. It is likely that re-implementing the 

Ada 9X design to take better advantage of the software engineering principles 

embodied in the language would significantly reduce the complexity measure 

for the Ada 9X implementation. As an illustration of this point, consider the 

following. The Ada 9X implementation did not use constrained ranges for 

variables since these are not available in C++. If the constraints were used, 

then many bounds checks could be eliminated from the Ada 9X 

implementation (they would be handled by the run-time environment 

automatically). Since McCabe's complexity measure relates directly to 

decision points in the methods (such as deciding whether or not a value is 

within the prescribed range), moving these bounds checks out of the method 

would have a direct impact on the complexity measure. 
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4.4    Summary 

This chapter presented results and analysis of the studies conducted to 

validate this research. Essentially, the studies used fall into three broad 

categories: studies done during implementation of the software; studies done 

to provide a characterization of the MMAE performance in comparison to 

other tracking modes (Single Filter, Polhemus Only); and studies done to 

provide a comparison of the implementation languages (C++ and Ada 9X). 

Studies done during implementation had three main objectives. The 

first objective was to verify proper functioning of the software. To this end, 

several test programs were developed that allowed the system objects to be 

individually tested and studied. The second objective was to tune the 

individual filters. This was accomplished through a trial and error process in 

which a researcher would generate an appropriate motion type with the 

Polhemus and then observe the response of the MMAE. If the MMAE 

response did not meet expectations, then adjustments to the individual filter 

c and x values were made. This process was continued until a satisfactory 

MMAE tuning was achieved. The third and final objective was to establish a 

performance baseline for the MMAE. This was achieved through the use of 

the previously mentioned test programs and prepared data sets for the 

various types of motion used in the research. The data from these tests was 

used to establish a performance baseline for future researchers. 

In order to characterize the performance of the MMAE in comparison 

to other tracking modes, a performance study involving AFIT faculty and 

students as subjects was conducted. The task used during the study was an 

acquisition/tracking task in which subjects were asked to follow the motion of 

a 3D sphere in a virtual environment. Ten different data items were collected 
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during the study, and the resulting data sample analyzed for any trends. The 

raw data suggests that the Polhemus may be the best overall choice in 

tracking mode; however, this observation cannot be shown statistically, and 

it is more likely that the study format was not sufficiently sensitive to detect 

differences between the tracking modes. 

The implementation language comparison had two objectives. The 

first involved comparing the performance of two equivalent applications, one 

developed in C++ and the other in Ada 9X. Two implementations were done, 

and then compared under several criteria. Other than executable size (in 

which the C++ had the clear advantage) the implementations provided 

virtually identical performance. The discrepancy in executable size was 

attributed to compiler immaturity on the part of the Ada 9X compiler. 

The other objective was to provide a measure of design quality. This 

was provided by a comparison of Weighted Methods per Class, a metric 

developed by Chidamber and Kemerer [Chidamber92]. This metric assigns a 

weight to each class in an object-oriented design according to the number and 

complexity of methods within the class. Method complexity was calculated 

according to McCabe's Complexity Metric [McCabe89]. The results showed 

that the two implementations have about equal complexity, and that both are 

well within the low complexity range as specified by McCabe [McCabe89]. 

This was the expected result; the Ada 9X implementation purposely tried to 

mimic the structure of the C++ implementation, so a complexity measure 

based on structure (such as McCabe's) should report the implementations 

roughly equal. The Ada 9X implementation could be altered to take better 

advantage of the software engineering principles embodied by the language, 
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and this could have a significant impact on the complexity measure of the 

resulting implementation. 
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V      Conclusions and Recommendations 

The focus of this research has been to apply software engineering tools 

and techniques to develop an application that reduces the lag typically 

present in virtual environment displays. The application developed was a 

Multiple Model Adaptive Estimator (MMAE) composed of three Kaiman 

filters that predicted the orientation of a participant's head one sample period 

into the future. The prediction was used by the environment rendering 

software to generate the image shown to the participant. The period used for 

the MMAE prediction was equal to the time required to compute and render 

the next frame for the environment display. Assuming perfect prediction, 

this approach would allow the computer to generate and display a virtual 

environment with zero lag (therefore in real-time); the frame shown to the 

participant would be appropriate to his/her current head orientation at the 

time the frame was displayed. 

Each of the filters in the MMAE was designed for a different type of 

head motion (benign, slow movements; moderate, normal movements; and 

rapid, jerky movements), thus allowing the MMAE to adapt to changes in 

head movement characteristics. Each filter in the MMAE produced a 

predicted orientation and a probability value that the hypothesis used in 

designing the filter was the best hypothesis about the participant's head 

motion for that prediction. The MMAE used the probability outputs to assign 

probability weightings to each filter's output. These weightings reflected the 

probability that the hypothesis used in a particular filter was correct for the 

observed behavior. The MMAE estimate was then computed as a probability 

weighted average of the individual filter outputs. 
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The focus of the software engineering aspect of this research was to 

investigate the appropriateness of Ada 9X as a software engineering tool and 

implementation language for a virtual environment application. Recently, C 

and C++ have been the implementation languages of choice for these 

applications. However, Ada 9X provides all the object-oriented features 

necessary for design and development, and also offers engineering 

advantages that might make it more attractive in the future. Strong typing 

and the ability to use exceptions to separate normal processing from 

exception handling are examples of the engineering support provided by Ada 

9X. 

The research approach was validated by two studies. The first was a 

comparison of C++ and Ada 9X implementations of the application software. 

The performance of the application in terms of maximum allowable frame 

rate and time required for individual components to execute was compared. 

Also, the extent to which the implementations support software engineering 

principles was also compared. The other was a performance study of the 

application. Subjects taken from AFIT faculty and staff were asked to follow 

the movements of a ball (3D sphere) in a virtual environment. Several 

methods of tracking the subjects' head movements were compared: Polhemus 

only tracking (i.e., without any prediction); single Kaiman filter based 

tracking (i.e., a predictive filter with no adaptive capability); and MMAE 

tracking. The purpose of the study was to validate the approach taken in 

designing and implementing the MMAE , and to provide a performance 

baseline against which to measure future research efforts. 

Several results were generated by the studies. Data collected during 

implementation of the software was used to establish a performance baseline 
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for the MMAE developed in this research. This will give future researchers 

in this area a benchmark against which to measure their own efforts. The 

performance study data indicated a possible advantage for the MMAE under 

the assumption of moderate motion, but this observation could not be shown 

to be statistically valid. More, and more explicit, research is needed in this 

area to provide a valid, definitive characterization of the ability of the MMAE 

compared to other tracking modes. Finally, the language study had the 

surprising result that Ada 9X appears to perform just as well as an 

equivalent C++ implementation under IRIX 5.2. This result is very 

surprising because of the immaturity of the Ada 9X compiler, and the extra 

interface software required to develop the Ada 9X implementation. This 

result, combined with Ada 9X's strong support of software engineering 

practices and principles, makes an argument for the use of Ada 9X as an 

implementation language for graphics-intensive applications. 

Although much work has been done to this point, and some 

observations and conclusions made, there are still many discoveries waiting 

in this field of research. The following paragraphs present recommendations 

for further research in this area. They are based on experience and insight 

gained during the course of this research, and are divided into software 

engineering, Kaiman filter/MMAE, and performance areas. 

5.1    Software Engineering Recommendations 

There are many opportunities for further research in the software 

engineering and implementation area; only a few are presented here. 

•   Re-examine the Ada 9X implementation in light of (anticipated) 

compiler improvements. The GNAT compiler used in this research is 
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currently very immature, and this was one of the constraints that 
drove the Ada 9X design. It is hoped that the compiler will become 

much more stable and mature in the near future, and it would then be 

appropriate to reexamine the Ada 9X design and implementation in 

light of the increased capabilities of the compiler. 

• Continue to use the Ada 9X implementation as the basis for future 
research efforts. The operating system under which this thesis work 
was done is due to be upgraded, and it will be necessary to upgrade the 
C++ software to make it compatible with the new operating system if it 
is desired to use the C++ implementation for future research. By 

contrast, the Ada 9X implementation offers virtually identical 

performance, and is already fully operational under IRIX 5.2. 

• Decouple the Polhemus interface from the main application. One of 
the known problems with Kaiman filters and MMAEs is their tendency 

to overshoot target motion. While this can be minimized through 

proper tuning of the individual filters, it cannot be entirely eliminated. 

However, it may be possible to minimize the impact of overshoot 
through oversampling of the MMAE. If the MMAE is sampled and 
updated at a rate greater than the actual display update rate used (2 

or 3 times as often, for example) then it may be possible to get through 

the overshoot period before the display is updated. This, at least in 
theory, could provide the participant with the appearance of a much 
better prediction model. One method of achieving this oversampling is 
to remove the Polhemus and MMAE objects from the main application, 
and make them a separate, independently executing process. The 
Polhemus could provide information to the MMAE as rapidly as 
possible, and the MMAE could place the results in a shared memory 
block for the renderer to take whenever it was ready. 

• Enhance the display characteristics of the virtual environment. Two 
possible enhancements are: to include roll cues in the display, and to 

modify the display (and appropriate outputs) so that filter weights are 
shown as zero in Polhemus Only mode. Roll was not included in the 

head motion for this research because calculating roll required reading 
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extra information from the Polhemus, and the resulting increase in 
read time was unacceptable. However, the read time decreased 

dramatically when the software was executed under IRIX 5.2, and 

reading the extra information became a possibility. The realism of the 

display will be greatly enhanced if roll cues are provided. The other 

enhancement (outputting filter weights of zero in Polhemus Only 

mode) will make it easier for the researcher and the participant to 
differentiate between Polhemus Only and MMAE modes (currently, the 
filter weight outputs for these modes are identical). This would be of 
tremendous benefit when analyzing data from performance studies. 
The researcher could have a reasonable assurance that the correct 
MMAE mode was used simply by examining the filter weight outputs. 

5.2    Kaiman filter / MMAE Recommendations 

The MMAE developed in this research was a necessary first step into 

the field; a stepping-off point for further research. The recommendations 

below outline some of the possibilities in this area. 

• Refine the MMAE developed in this research. Because this is the first 

research in this area done at AFIT, one of the goals of this research 
was to provide a performance baseline against which to compare future 
applications. However, the performance baseline developed can just as 
effectively be used to improve the performance of this application. It 

seems reasonable to fine tune this application to the greatest extent 
possible in order to provide the best possible basis for further work. 

• Explore other models. The First Order Gauss Markov acceleration 

model used in this research may not be the best dynamics model for 
head motion. A logical direction for future research is therefore to 
explore other models such as First Order Gauss Markov Velocity 

models. On a related note, it is possible that the Constant Gain Filter 

is also not the best choice. This research had the luxury of using a 
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fixed frame rate, which also made the filters used in this research 
viable. However, other graphics research applications at AFIT do not 

use a fixed frame rate; instead, the renderer is asked to provide the 

maximum frame rate possible for the scene being rendered. The result 

is that frame rates can vary wildly during program execution. Kaiman 

filters that do not require a fixed time interval for doing predictions 
may provide more accurate and useful predictions in these situations, 

and should be explored. 

Compare the MMAE to other predictor models. The MMAE developed 

in this research is only one approach to solving the head prediction and 

lag problems. MIT researchers have developed an MMAE based on 
different designs (velocity-based dynamics models within a maximum a 
posteriori MMAE) that is used with their virtual drum set application 
[Friedman92]. It is reasonable to believe that there is much to be 
learned from doing a fair comparison of these approaches. 

5.3    Performance Study Recommendations 

The final area for recommendations is the area of human performance. 

This area was not treated in any great depth in this research, but is certain 

to become much more important in future research. The ultimate test of an 

engineering process is the product that it produces. When that product is a 

tool such as the MMAE developed in this research, it must eventually be 

measured by its ability or inability to improve the performance of a task. The 

product of this research is no different; it will have to be measured by its 

ability or inability to provide a participant with a more realistic virtual 

experience. In keeping with these observations, the following 

recommendations are made: 
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Characterize MMAE performance in terms of enhancing the ability of a 
human to perform a task. The studies done in this research provide a 

good basis for analyzing and improving the performance of the MMAE 

as a head movement predictor; however, it is desirable to measure the 

benefit, if any, to be gained from the MMAE in terms of task 

performance in virtual environment. 

Design experiments that measure the ability of the human to perform 
a task, not just the ability of the MMAE to predict head motion. An 
example of such a task is to have a ball appear at a random location in 

the virtual environment, and then begin moving in some (possibly 

pseudo-random) manner. In order to successfully complete the trial, 

the subject must find the ball as quickly as possible, and then 

successfully track it for a set amount of time (one second for example). 
Collect data on how long it takes the subject to successfully complete 
the trial. Use different tracking modes in the trials. These types of 
tasks allow the benefit of using the MMAE versus some other form of 

tracking/prediction strategy to be measured and analyzed. 

In a related note to the one above, use more real-world tasks to 
perform the human performance studies. Research is always best 
when it is applied to real-world problems with real-world constraints. 
Select experiments that not only give good indications of the MMAE 

performance, but that also closely mimic real-world applications of this 
research. 

5.4    The Final Word 

The final recommendation does not fall into any of the categories 

denned above. This line of research involves several different areas of study 

and expertise, and the potential for fruitful research in each of these areas is 

enormous. However, the investment in time and energy to gain sufficient 

background in each of these areas is also enormous. In order to minimize the 
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time necessary to gain sufficient background knowledge to do this research, it 

seems reasonable to work in teams rather than as individuals. This will 

allow the teams to increase their productivity by using the experience of the 

team members. 

Initial research efforts can be done in teams of two (one electrical 

engineering student to handle the technical end of the MMAE design and 

implementation, and one software engineering student to handle the software 

design and implementation). Each of the students can write an individual 

thesis document to meet AFIT graduation requirements. Later, if the line of 

research proves as fruitful as it promises to be, and if other issues (such as 

performance issues) are ready to be explored, other students can be added to 

the team. Again, the potential of this line of research is enormous; certainly 

big enough to allow exploration in teams. 
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Appendix A: 
Prototype Software Problem Reports 

The following is a listing of various problems encountered in the 

prototype software, and the actions taken (if any) to correct them. This 

listing is provided for two reasons. First and foremost, these problem reports 

provide visibility to the factors that drove design decisions for the thesis 
software. The insight and experience gained from modifying and using the 
prototype software was instrumental in determining how to design and 
implement the thesis software. Second, these reports serve to underscore the 

importance of thorough software design and testing strategies. It is 

reasonable to assume that the original implementers of this software did not 
intend these problems to be present in the final product; therefore, we can 

conclude that whatever design and testing strategy they employed did not 

uncover these problems. 
Each of the entries below contains the date the problem was first 

reported, the person or persons who discovered it, a general description of the 

problem, and a list of actions taken to isolate and correct the problem. The 
problem reports are listed in chronological order by discovery date. 

DATE 1 January 1994 

FINDER      Russell 
PROBLEM The niters in the MMAE produce nonsense values; residual 

values are HUGE. 

ACTIONS 
• 15 February 1994. Changed cnt value (minimum number of filter 

cycles before restart may occur) from 15 to 10 to allow faster restart of 
divergent filters. No noticeable effect on performance. 

• 22 February 1994. Removed lower bound check on exponentiation in 
calculation of f-value. No noticeable effect on performance. 

• 24 February 1994. Added code to zero PMAT1, PMAT2, and PMAT3 
before initialization. Necessary because 1) C++ does not clear memory 
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at allocation, and 2) not all matrix elements are given a value at 
initialization. This corrected the residual and divergence problems. 

• 25 February 1994. Re-tuned filters. 

• Addendum. The prototype code did not have a separate matrix object; 

instead, matrix operations were defined inside the code for the Kaiman 

filter. 

DATE 1 January 1994 
FINDER      Russell 
PROBLEM The probabilities for the individual filters sum to more than 1.0. 

ACTIONS 
• 22 February 1994. Rewrote code which enforces lower probability 

bound of 0.01. Original code did not correctly handle the case where 

two of the three filters needed to be adjusted. 

DATE 28 February 1994 

FINDER      Amburn 
PROBLEM The box in the center of the display needs to be changed to 

crosshairs. 

ACTIONS 
• 28 February 1994. Changed box to crosshairs. 

DATE 31 March 1994 
FINDER      Maybeck 
PROBLEM The renderer is not sensitive enough to accommodate small 

changes in head orientation, resulting in coarse movement. 

ACTIONS 

• 31 March 1994. Removed the EPSILON value check in the renderer 
(the view direction into the scene was not changed until the orientation 
values changed by at least EPSELON). This resulted in acceptable 
movement characteristics. 

DATE 31 March 1994 
FINDER      Amburn, Maybeck 
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PROBLEM The aircraft in the environment appear to undergo shearing 
when they make clearing turns. They become very difficult to 

follow when this occurs. 

ACTIONS 
9   31 March 1994. Believe the problem is in the orientation vectors for 

the aircraft contained in the data file. Investigating methods to 

guarantee orthogonal orientation vectors. 

• Addendum. The problem was indeed in the data files. No fix to this 
problem was ever implemented. 

DATE 31 March 1994 

FINDER      Russell 
PROBLEM The renderer inverts up and down when the viewer is at or 

beyond ninety degrees from initial forward direction. 

ACTIONS 

• 31 March 1994. Investigated Polhemus orientation to assure we are in 

the active hemisphere of the Polhemus. 

• 30 April 1994. Rewrote read_Adjusted_Fastrak method to return 

readings in row-major ordering (instead of column-major); verified 
right-hand coordinate system. This resulted in acceptable 

performance. 

• Addendum. read_Adjusted_Fastrak is a method in a library object for 

interfacing with a Polhemus. In order to make this fix, it was 

necessary to first copy the library code to a local directory, then modify 
the local copy. 

DATE 31 March 1994 
FINDER      Maybeck 

PROBLEM The status information in the display undergoes a color intensity 
shift (white to gray to black) depending on the color of the 
terrain behind it. 
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ACTIONS 
• 4 March 1994. Changed information display color to black. This 

eliminates the intensity shift (black has no intensity). Cause of 

original intensity shift is still unknown. 

• Addendum. The cause for the original intensity shift was never 

isolated. 

DATE 31 March 1994 
FINDER      Maybeck 
PROBLEM We need to be able to isolate the filters so that only one of them 

is running (single filter mode). This will aid in filter tuning. 

ACTIONS 
• 8 April 1994. Added MMAE_Mode variable to allow for three modes 

of operation: polhemus mode, single filter mode, and adaptive filter 
mode. Added 'm' option to checklnput routine to allow the mode of 

operation to change dynamically. 

• 6 May 1994. Added dummy probabilities to MultModels method. 
These probabilities allow the MMAE to simulate single filter mode 
without incurring the performance degradation associated with 
actually shutting down filters. 

• Addendum. The prototype code did not have separate Kaiman filter 
and MMAE objects; instead, a single Kaiman filter object was coded 

the encompassed the behavior of both. This single object had duplicate 

variables so that it could simulate three Kaiman filter objects, as well 
as code to handle necessary MMAE functions. Because of this, it was 
very difficult to isolate problems with and/or make modifications to 

either the filters or the MMAE. 

DATE 31 March 1994 

FINDER      Maybeck 

PROBLEM The data currently collected by the simulation is not sufficient. 
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ACTIONS 
• 22 April 1994. Added individual filter outputs, sim_time, big, and 

little to the output data. Made necessary adjustments to routines. 

• 26 April 1994. Added VHP and VPN to output data. 

• 28 April 1994. Added cycle_start and cycle_end to output data. 

• Addendum. Adding these output variables involved changes to 
approximately six routines in several different objects, including the 
use of shared memory. The effort required to make these changes is 
directly related to the coupling between objects in the prototype code. 

DATE 20 April 1994 

FINDER      Russell, Maybeck 
PROBLEM In follow mode, the participant's distance behind the aircraft is 

not fixed, but is a function of the aircraft's velocity. 

ACTIONS 
• Addendum. No actions were taken on this problem. 
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Appendix B: 
Test Program Sample Outputs 

This appendix contains output listings for the filter_test and 

mmae_test programs in both implementation languages (C++ and Ada 9X). 

The benign filter was used for both of the filter_test executions, as was the 
BenignO data set. The mmae_test output was generated with the BenignO 

data set. 

Filter-Test Output — C++ Implementation 

INITIALIZING FOGMA FILTER . . . 

Filter successfully initialized 

READING PATH FILE . . . 

Path file ../PATHS/benignO.xyz read and normalized 

BEGINNING SIMULATION LOOP . . . 

***** Time = 1 ***** 

Updating for Z = [ -0.0597   0.9910  -0.1196 ](T) 

Updated X = [ -0.0108   0.9984  -0.0217 ](T) 
LQuot ()  = 1.467929 
MQuot ()  = 0.017940 
f = 22.557404 

Propagating one sample period ahead 

Propagated X = [ -0.0119   0.9982  -0.0239 ] (T) 

Projecting two sample periods ahead 

Projected X = [ -0.0131  0.9980  -0.0262 ] (T) 
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***** Tims = 2 ***** 

Updating for Z = [ -0.0597   0.9909  -0.1206 ](T) 

Updated X = [ -0.0206   0.9969  -0.0415 ](T) 
LQuot ()  = 0.954828 
MQuot ()  = 0.011669 
f        = 29.154612 

Propagating one sample period ahead 

Propagated X = [ -0.0226   0.9966  -0.0456 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0247   0.9963  -0.0498 ](T) 

***** Time = 3 ***** 

Updating for Z = [ -0.0596   0.9908  -0.1213 ] (T) 

Updated X = [ -0.0294   0.9955  -0.0593 ](T) 
LQuot ()  = 0.584525 
MQuot ()  = 0.007144 
f        = 35.084595 

Propagating one sample period ahead 

Propagated X = [ -0.0321   0.9951  -0.0649 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0350   0.9947  -0.0707 ](T) 

Updating for Z = [ -0.0592   0.9908  -0.1220 ] (T) 

Updated X = [ -0.0371   0.9943  -0.0753 ](T) 
LQuot () = 0.328595 
MQuot () = 0.004016 
f = 39.873981 
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Propagating one sample period ahead 

Propagated X = [ -0.0404   0.9938  -0.0821 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0438   0.9933  -0.0890 ] (T) 

***** Time = 5 ***** 

Updating for Z = [ -0.0589   0.9907  -0.1228 ](T) 

Updated X = [ -0.0438   0.9932  -0.0895 ](T) 
LQuot () = 0.164408 
MQuot () = 0.002 009 
f = 43.285347 

Propagating one sample period ahead 

Propagated X = [ -0.0475   0.9927  -0.0972 ] (T) 

Projecting two sample periods ahead 

Projected X = [ -0.0514   0.9921  -0.1050 ](T) 

***** Time = 6 ***** 

Updating for Z = [ -0.0586   0.9906  -0.1235 ](T) 

Updated X = [ -0.0495   0.9923  -0.1020 ] (T) 
LQuot () = 0.067255 
MQuot () = 0.000822 
f = 45.439762 

Propagating one sample period ahead 

Propagated X = [ -0.0536   0.9916  -0.1103 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0577   0.9910  -0.1188 ](T) 
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***** Time = 7 ***** 

Updating for Z = [ -0.0582   0.9906  -0.1236 ](T) 

Updated X = [ -0.0544   0.9915  -0.1127 ](T) 
LQuot ()  = 0.016174 
MQuot ()  = 0.000198 
f        = 46.615192 

Propagating one sample period ahead 

Propagated X = [ -0.0586   0.9908  -0.1215 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0629   0.9901  -0.1304 ](T) 

***** Time = 8 ***** 

Updating for Z = [ -0.0581   0.9907  -0.1231 ](T) 

Updated X = [ -0.0585   0.9908  -0.1218 ](T) 
LQuot ()  = 0.000232 
MQuot ()  = 0.000003 
f        = 46.988255 

Propagating one sample period ahead 

Propagated X = [ -0.0628   0.9901  -0.1307 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0672   0.9894  -0.1398 ](T) 

***** Time = 9 ***** 

Updating for Z = [ -0.0577   0.9908  -0.1223 ](T) 

Updated X = [ -0.0619   0.9902  -0.1292 ](T) 
LQuot () = 0.008071 
MQuot () = 0.000099 
f = 46.804520 

-135- 



Propagating one sample period ahead 

Propagated X = [ -0.0661   0.9896  -0.1381 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0704   0.9889  -0.1472 ](T) 

***** Time = 10 ***** 

Updating for Z = [ -0.0572   0.9910  -0.1207 ](T) 

Updated X = [ -0.0645   0.9898  -0.1350 ](T) 
LQuot ()  = 0.031605 
MQuot ()  = 0.000386 
f        = 46.257156 

Propagating one sample period ahead 

Propagated X = [ -0.0687   0.9892  -0.1437 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0728   0.9885  -0.1526 ](T) 

Filter-Test Output — Ada 9Xlmplementation 

INITIALIZING FOGMA FILTER . . . 

Filter successfully initialized 

READING PATH FILE ... 

Path file ../THESIS-C/PATHS/benignO.xyz read and normalized 

BEGINNING SIMULATION LOOP . . . 

***** Time =  1 ***** 

Updating for Z = [ -0.0597   0.9910  -0.1196 ](T) 

Updated X = [ -0.0108   0.9984  -0.0217 ](T) 
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LQuot () = 1.467929 
MQuot () = 0.017940 
f =  22.557405 

Propagating one sample period ahead 

Propagated X = [ -0.0119   0.9982  -0.0239 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0131   0.9980  -0.0262 ](T) 

***** Time =  2 ***** 

Updating for Z = [ -0.0597   0.9909  -0.1206 ](T) 

Updated X = [ -0.0206   0.9969  -0.0415 ](T) 
LQuot ()  = 0.954828 
MQuot ()  = 0.011669 
f        = 29.154610 

Propagating one sample period ahead 

Propagated X = [ -0.0226   0.9966  -0.0456 ] (T) 

Projecting two sample periods ahead 

Projected X = [ -0.0247   0.9963  -0.0498 ](T) 

***** Time =  3 ***** 

Updating for Z = [ -0.0596   0.9908  -0.1213 ](T) 

Updated X = [ -0.0294   0.9955  -0.0593 ](T) 
LQuot ()  = 0.584525 
MQuot ()  = 0.007144 
f        = 35.084595 

Propagating one sample period ahead 

Propagated X = [ -0.0321   0.9951  -0.0649 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0350   0.9947  -0.0707 ](T) 

-137- 



***** Tims =   4 ***** 

Updating for Z = [ -0.0592   0.9908  -0.1220 ] (T) 

Updated X = [ -0.0371   0.9943  -0.0753 ] (T) 
LQuot ()  =   0.328595 
MQuot 0  =   0.004016 
f = 39.873985 

Propagating one sample period ahead 

Propagated X = [ -0.0404   0.9938  -0.0821 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0438   0.9933  -0.0890 ] (T) 

***** Time =   5 ***** 

Updating for Z = [ -0.0589   0.9907  -0.1228 ](T) 

Updated X = [ -0.0438   0.9932  -0.0895 ](T) 
LQuot ()  = 0.1644 08 
MQuot ()  = 0.002 009 
f        = 43.285347 

Propagating one sample period ahead 

Propagated X = [ -0.0475   0.9927  -0.0972 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0514   0.9921  -0.1050 ](T) 

***** Time =  6 ***** 

Updating for Z = [ -0.0586   0.9906  -0.1235 ](T) 

Updated X = [ -0.0495   0.9923  -0.1020 ] (T) 
LQuot () = 0.067255 
MQuot () = 0.000822 
f = 45.439770 
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Propagating one sample period ahead 

Propagated X = [ -0.0536   0.9916  -0.1103 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0577   0.9910  -0.1188 ](T) 

***** Time =   7 * * * * * 

Updating for Z = [ -0.0582   0.9906  -0.1236 ](T) 

Updated X = [ -0.0544   0.9915  -0.1127 ](T) 
LQuot ()  = 0.016174 
MQuot ()  = 0.000198 
f        = 46.615185 

Propagating one sample period ahead 

Propagated X = [ -0.0586   0.9908  -0.1215 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0629   0.9901  -0.1304 ] (T) 

***** Time =   8 ***** 

Updating for Z = [ -0.0581   0.9907  -0.1231 ](T) 

Updated X = [ -0.0585   0.9908  -0.1218 ](T) 
LQuot () = 0.000232 
MQuot () = 0.000003 
f = 46.988251 

Propagating one sample period ahead 

Propagated X = [ -0.0628   0.9901  -0.1307 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0672   0.9894  -0.1398 ](T) 

***** Time =   9 ***** 
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Updating for Z = [ -0.0577   0.9908  -0.1223 ](T) 

Updated X = [ -0.0619   0.9902  -0.1292 ] (T) 
LQuot ()  = 0.008071 
MQuot ()  = 0.000099 
f        = 46.804520 

Propagating one sample period ahead 

Propagated X = [ -0.0661   0.9896  -0.1381 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0704   0.9889  -0.1472 ] (T) 

***** Time =  10 ***** 

Updating for Z = [ -0.0572   0.9910  -0.1207 ](T) 

Updated X = [ -0.0645   0.9898  -0.1350 ](T) 
LQuot ()  = 0.031605 
MQuot ()  = 0.000386 
f        = 46.257153 

Propagating one sample period ahead 

Propagated X = [ -0.0687   0.9892  -0.1437 ](T) 

Projecting two sample periods ahead 

Projected X = [ -0.0728   0.9885  -0.1526 ](T) 

MMAE-Test Output ~ C++ Implementation 

INITIALIZING MMAE . . . 

MMAE successfully initialized 

READING PATH FILE . . . 

Path file ../PATHS/benignO.xyz read and normalized 

BEGINNING SIMULATION LOOP . . . 

-140- 



***** Time = 1 ***** 

Correcting for Z = [ -0.0597   0.9910  -0.1196 ] (T) 

Xp residual       RAR RR 

-0.0108 -0.0597 
Filter   1    0.9984 -0.0090       1.4679      0.0179 

-0.0217 -0.1196 

-0.0265 -0.0597 
Filter  2    0.9960 -0.0090       0.9969      0.0179 

-0.0531 -0.1196 

-0.0373 -0.0597 
Filter  3    0.9944 -0.0090       0.6730     0.0179 

-0.0747 -0.1196 

Corrected X = [ -0.0216   0.9968  -0.0433 ](T) 

Predicting one sample period ahead 

Filter 1 Xm = [ -0.0119 0.9982 -0.0239 ](T) pkl = 0.46 
Filter 2 Xm = [ -0.0345 0.9948 -0.0691 ](T) pk2 = 0.33 
Filter 3 Xm = [ -0.0553   0.9917  -0.1108 ](T)   pk3 = 0.21 

Predicted X = [ -0.0285   0.9957  -0.0572 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0356   0.9946  -0.0714 ](T) 

***** Time = 2 ***** 

Correcting for Z = [ -0.0597   0.9909  -0.1206 ](T) 

Xp        residual       RAR        RR 

-0.0206      -0.0478 
Filter   1    0.9969      -0.0073       0.9548      0.0117 

-0.0415      -0.0966 

-0.0457       -0.0252 
Filter  2    0.9931      -0.0039       0.1835      0.0033 

-0.0920      -0.0515 

-0.0580      -0.0044 
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Filter   3    0.9912       -0.0008        0.0043      0.0001 
-0.1169       -0.0098 

Corrected X = [ -0.0334   0.9949  -0.0673 ](T) 

Predicting one sample period ahead 

Filter 1 Xm = [ -0.0226   0.9966  -0.0456 ](T)   pkl = 0.55 
Filter 2 Xm = [ -0.0574   0.9913  -0.1155 ](T)   pk2 = 0.32 
Filter 3 Xm - [ -0.0776   0.9882  -0.1564 ](T)   pk3 = 0.13 

Predicted X = [ -0.0408   0.9938  -0.0822 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0483   0.9927  -0.0973 ](T) 

*****  Time = 3 ***** 

Correcting f or Z = [ -0 0596   0.9908 -0 .1213 ](T) 

Xp residual RAR RR 

Filter  1 
-0.0294 
0.9955 

-0.0593 

-0.0370 
-0.0058 
-0.0758 

0.5845 0 0071 

Filter  2 
-0.0584 
0.9911 

-0.1181 

-0.0023 
-0.0005 
-0.0058 

0.0022 0 0000 

Filter   3 
-0.0664 
0.9898 

-0.1345 

0.0180 
0.0026 
0.0351 

0.0585 0 .0016 

Corrected X = [ -0.0399 0.9939  -0. 0807 ] (T) 

Predicting one sample period ahead 

Filter 1 Xm = [ -0.0321 0.9951 -0.0649 ](T) pkl = 0.65 
Filter 2 Xm = [ -0.0708 0.9892 -0.1432 ](T) pk2 = 0.29 
Filter 3 Xm = [ -0.0806   0.9876  -0.1635 ](T)   pk3 = 0.06 

Predicted X = [ -0.0461   0.9930  -0.0933 ] (T) 

Extending two sample periods ahead 
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Extended X - [ -0.0524 0.9920  -0.1061 ](T) 

***** Time = 4 ***** 

Correcting for Z = [ -0.0592   0.9908  -0.1220 ](T) 

Xp residual       RAR         RR 

-0.0371 -0.0271 
Filter   1    0.9943 -0.0043       0.3286      0.0040 

-0.0753 -0.0571 

-0.0656 0.0115 
Filter   2    0.9899 0.0016       0.0324      0.0006 

-0.1338 0.0212 

-0.0672 0.0213 
Filter  3    0.9896 0.0031       0.0820      0.0022 

-0.1376 0.0415 

Corrected X = [ -0.0440 0.9932  -0.0895 ] (T) 

Predicting one sample period ahead 

Filter 1 Xm = [ -0.0404 0.9938  -0.0821 ](T)   pkl = 0.76 
Filter 2 Xm = [ -0.0767 0.9882  -0.1566 ](T)   pk2 = 0.22 
Filter 3 Xm = [ -0.0749 0.9883  -0.1540 ](T)   pk3 = 0.02 

Predicted X = [ -0.0491 0.9925  -0.0999 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0543 0.9916  -0.1105 ] (T) 

***** Time = 5 ***** 

Correcting for Z = [ -0.0589   0.9907  -0.1228 ] (T) 

Xp        residual       RAR        RR 

-0.0438      -0.0186 
Filter   1    0.9932       -0.0031       0.1644      0.0020 

-0.0895      -0.0407 

-0.0688       0.0178 
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Filter   2    0.9893 0.0025       0.0814      0.0015 
-0.1416 0.0338 

-0.0649 0.0160 
Filter  3   0.9898 0.0023       0.0463     0.0012 

-0.1345 0.0312 

Corrected X = [ -0.0475 0.9926  -0.0972 ] (T) 

Predicting one sample period ahead 

Filter 1 Xm = [ -0.0475   0.9927  -0.0972 ](T)   pkl = 0.85 
Filter 2 Xm = [ -0.0776   0.9879  -0.1600 ](T)   pk2 = 0.14 
Filter 3 Xm = [ -0.0677   0.9893  -0.1413 ](T)   pk3 = 0.01 

Predicted X = [ -0.0519   0.9919  -0.1064 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0565   0.9912  -0.1158 ](T) 

***** Time = 6 ***** 

Correcting for Z = [ -0.0586   0.9906  -0.1235 ](T) 

Xp        residual       RAR RR 

-0.0495      -0.0111 
Filter   1    0.9923       -0.0020       0.0673      0.0008 

-0.1020       -0.0263 

-0.0692       0.0190 
Filter   2    0.9891       0.0027       0.0943      0.0017 

-0.1438       0.0365 

-0.0620       0.0091 
Filter   3    0.9901       0.0013        0.0150      0.0004 

-0.1302        0.0177 

Corrected X = [ -0.0513   0.9920  -0.1057 ] (T) 

Predicting one sample period ahead 

Filter 1 Xm = [ -0.0536 0.9916 -0.1103 ](T) pkl = 0.91 
Filter 2 Xm = [ -0.0754 0.9881 -0.1573 ](T) pk2 = 0.08 
Filter 3 Xm = [ -0.0620   0.9900  -0.1315 ](T)   pk3 = 0.01 
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Predicted X = [ -0.0555   0.9913  -0.1144 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0597   0.9907  -0.1233 ](T) 

***** Time = 7 ***** 

Correcting for Z = [ -0.0582   0.9906  -0.1236 ] (T) 

Xp        residual       RAR RR 

-0.0544      -0.0046 
Filter   1    0.9915      -0.0010       0.0162      0.0002 

-0.1127       -0.0132 

-0.0677        0.0172 
Filter  2    0.9892        0.0026       0.0799      0.0014 

-0.1423       0.0337 

-0.0596       0.0038 
Filter  3    0.9904       0.0006       0.0029      0.0001 

-0.1265       0.0079 

Corrected X = [ -0.0551   0.9913  -0.1142 ](T) 

Predicting one sample period ahead 

Filter 1 Xm = [ -0.0586 0.9908 -0.1215 ](T) pkl = 0.94 
Filter 2 Xm = [ -0.0715 0.9885 -0.1510 ](T) pk2 = 0.05 
Filter 3 Xm = [ -0.0584   0.9905  -0.1253 ](T)   pk3 = 0.01 

Predicted X = [ -0.0592   0.9907  -0.1229 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0634   0.9900  -0.1317 ] (T) 

***** Time = 8 ***** 

Correcting for Z = [ -0.0581   0.9907  -0.1231 ](T) 

Xp        residual       RAR RR 

-0.0585       0.0005 

-145- 



Filter   1    0.9908 -0.0001       0.0002      0.0000 
-0.1218 -0.0016 

-0.0656 0.0134 
Filter  2   0.9895 0.0022       0.0534     0.0010 

-0.1386 0.0279 

-0.0582 0.0003 
Filter   3    0.9906 0.0002       0.0002      0.0000 

-0.1239 0.0022 

Corrected X =   [   -0.0587   0.9907  -0.1222 ](T) 

Predicting one sample period ahead 

Filter 1 Xm = [ -0.0628 0.9901 -0.1307 ](T) pkl = 0.96 
Filter 2 Xm = [ -0.0673 0.9891 -0.1432 ](T) pk2 = 0.03 
Filter 3 Xm = [ -0.0569   0.9908  -0.1220 ](T)   pk3 = 0.01 

Predicted X = [ -0.0629   0.9901  -0.1310 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0671   0.9894  -0.1398 ](T) 

Correcting i :or Z = [ -0. 0577   0.990* I     -0 .1223 ] 

Xp residual RAR 

-0.0619 0.0051 
Filter 1 0.9902 

-0.1292 

-0.0630 

0.0007 
0.0085 

0.0096 

0.0081 

Filter 2 0.9899 
-0.1339 

-0.0574 

0.0017 
0.0209 

-0.0008 

0.0296 

Filter 3 0.9908 
-0.1222 

0.0001 
-0.0002 

0.0000 

Corrected X = [ -0.0619 0.9902  -0 1292 1 (T) 

:T) 

RR 

0.0001 

0.0005 

0.0000 

Predicting one sample period ahead 
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Filter 1 Xm = [ -0.0661 0.9896 -0.1381 ](T) pkl = 0.98 
Filter 2 Xm = [ -0.0633 0.9898 -0.1353 ](T) pk2 = 0.01 
Filter 3 Xm = [ -0.0563 0.9910 -0.1203 ](T) pk3 = 0.01 

Predicted X = [ -0.0660 0.9896 -0.1379 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0702   0.9889  -0.1468 ](T) 

***** Time = 10 ***** 

Correcting for Z = [ -0.0572   0.9910  -0.1207 ](T) 

Xp        residual       RAR        RR 

-0.0645       0.0089 
Filter   1    0.9898       0.0015       0.0316      0.0004 

-0.1350       0.0174 

-0.0606       0.0061 
Filter  2    0.9903        0.0012       0.0140      0.0003 

-0.1288       0.0146 

-0.0569       -0.0009 
Filter  3    0.9910       0.0001       0.0000      0.0000 

-0.1205      -0.0004 

Corrected X = [ -0.0644   0.9898  -0.1348 ](T) 

Predicting one sample period ahead 

Filter 1 Xm = [ -0.0687 0.9892 -0.1437 ](T) pkl = 0.98 
Filter 2 Xm = [ -0.0599 0.9904 -0.1279 ](T) pk2 = 0.01 
Filter 3 Xm = [ -0.0561   0.9912  -0.1188 ](T)   pk3 = 0.01 

Predicted X = [ -0.0684   0.9892  -0.1433 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0725   0.9886  -0.1519 ](T) 

MMAE-Test Output — Ada 9X Implementation 

INITIALIZING MMAE . . . 
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Initializing Filter 1 
Initializing Filter 2 
Initializing Filter 3 
MMAE successfully initialized 

READING PATH FILE . . . 

Path file ../THESIS-C/PATHS/benignO.xyz read and normalized 

BEGINNING SIMULATION LOOP . . . 

***** Time =   1 ***** 

Correcting for Z = [ -0.0597   0.9910  -0.1196 ] (T) 

Xp        residual       RAR RR 

-0.0108      -0.0597 
Filter  1    0.9984     -0.0090      1.4679      0.0179 

-0.0217      -0.1196 

-0.0265      -0.0597 
Filter   2     0.9960      -0.0090      0.9969       0.0179 

-0.0531      -0.1196 

-0.0373      -0.0597 
Filter  3     0.9944      -0.0090      0.6730       0.0179 

-0.0747      -0.1196 

Corrected X = [ -0.0216   0.9968  -0.0433 ] (T) 

Predicting one sample period ahead 

Filter 1 = [ -0.0119 0.9982 -0.0239 ](T) pkl = 0.46 
Filter 2 = [ -0.0345 0.9948 -0.0691 ](T) pk2 = 0.33 
Filter 3 = [ -0.0553   0.9917  -0.1108 ](T)   pk3 = 0.21 

Predicted X = [ -0.0285   0.9957  -0.0572 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0356   0.9946  -0.0714 ] (T) 

***** Time =  2 ***** 
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Correcting for Z = [ -0 0597   0.9909 -0.1206 ](T) 

Xp residual RAR 

-0.0206 -0.0478 
Filter  1 0.9969 -0.0073 0.9548 

-0.0415 -0.0966 

-0.0457 -0.0252 
Filter  2 0.9931 -0.0039 0.1835 

-0.0920 -0.0515 

-0.0580 -0.0044 
Filter  3 0.9912 -0.0008 0.0043 

-0.1169 -0.0098 

Corrected X = = [ -0.0334 0.9949  -0. 0673 ](T) 

RR 

0.0117 

0.0033 

0.0001 

Predicting one sample period ahead 

Filter 1 = [ -0.0226 0.9966 -0.0456 ](T) pkl = 0.55 
Filter 2 = [ -0.0574 0.9913 -0.1155 ](T) pk2 = 0.32 
Filter 3 = [ -0.0776   0.9882  -0.1564 ](T)   pk3 = 0.13 

Predicted X = [ -0.0408   0.9938  -0.0822 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0483   0.9927  -0.0973 ](T) 

***** Time =   3 ***** 

Correcting for Z = [ -0.0596   0.9908  -0.1213 ](T) 

Xp        residual       RAR RR 

-0.0294      -0.0370 
Filter   1     0.9955      -0.0058      0.5845       0.0071 

-0.0593      -0.0758 

-0.0584      -0.0023 
Filter  2     0.9911      -0.0005      0.0022       0.0000 

-0.1181      -0.0058 

-0.0664      0.0180 
Filter   3     0.9898      0.0026      0.0585       0.0016 

-0.1345      0.0351 

-149- 



Corrected X = [ -0.0399   0.9939  -0.0807 ](T) 

Predicting one sample period ahead 

Filter 1 = [ -0.0321 0.9951 -0.0649 ](T) pkl = 0.65 
Filter 2 = [ -0.0708 0.9892 -0.1432 ](T) pk2 - 0.29 
Filter 3 = [ -0.0806   0.9876  -0.1635 ](T)   pk3 = 0.06 

Predicted X = [ -0.0461   0.9930  -0.0933 ] (T) 

Extending two sample periods ahead 

Extended X = [ -0.0524   0.9920  -0.1061 ](T) 

***** Time =  4 ***** 

Correcting for Z = [ -0.0592   0.9908  -0.1220 ](T) 

Xp        residual       RAR RR 

-0.0371      -0.0271 
Filter   1     0.9943      -0.0043      0.3286      0.0040 

-0.0753      -0.0571 

-0.0656      0.0115 
Filter  2     0.9899       0.0016      0.0324       0.0006 

-0.1338      0.0212 

-0.0672       0.0213 
Filter  3     0.9896      0.0031      0.0820       0.0022 

-0.1376      0.0415 

Corrected X = [ -0.0440   0.9932  -0.0895 ](T) 

Predicting one sample period ahead 

Filter 1 = [ -0.0404 0.9938 -0.0821 ](T) pkl = 0.76 
Filter 2 = [ -0.0767 0.9882 -0.1566 ](T) pk2 = 0.22 
Filter 3 = [ -0.0749   0.9883  -0.1540 ](T)   pk3 = 0.02 

Predicted X = [ -0.0491   0.9925  -0.0999 ] (T) 

Extending two sample periods ahead 

Extended X = [ -0.0543   0.9916  -0.1105 ](T) 
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***** Tiiue =   5 * * * * * 

Correcting for Z = [ -0.0589   0.9907  -0.1228 ](T) 

Xp residual       RAR        RR 

-0.0438 -0.0186 
Filter   1     0.9932 -0.0031      0.1644      0.0020 

-0.0895 -0.0407 

-0.0688 0.0178 
Filter  2     0.9893 0.0025      0.0814       0.0015 

-0.1416 0.0338 

-0.0649 0.0160 
Filter   3     0.9898 0.0023      0.0463       0.0012 

-0.1345 0.0312 

Corrected X = [ -0.0475 0.9926  -0.0972 ] (T) 

Predicting one sample period ahead 

Filter 1 = [ -0.0475 0.9927 -0.0972 ](T) pkl = 0.85 
Filter 2 = [ -0.0776 0.9879 -0.1600 ](T) pk2 = 0.14 
Filter 3 = [ -0.0677   0.9893  -0.1413 ](T)   pk3 = 0.01 

Predicted X = [ -0.0519   0.9919  -0.1064 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0565   0.9912  -0.1158 ](T) 

***** Time =  6 ***** 

Correcting for Z = [ -0.0586   0.9906  -0.1235 ](T) 

Xp        residual       RAR RR 

-0.0495      -0.0111 
Filter   1     0.9923      -0.0020      0.0673       0.0008 

-0.1020      -0.0263 

-0.0692       0.0190 
Filter  2     0.9891      0.0027      0.0943       0.0017 

-0.1438      0.0365 
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0 9916 -0 1103 ] (T) pkl = 0 91 
0 9881 -0 1573 ] (T) pk2 = 0 08 
0 9900 -0 1315 ] (T) pk3 = 0 01 

-0.0620 0.0091 
Filter   3     0.9901 0.0013       0.0150       0.0004 

-0.1302 0.0177 

Corrected X = [ -0.0513 0.9920  -0.1057 ](T) 

Predicting one sample period ahead 

Filter 1 = [ -0.0536 
Filter 2 = [ -0.0754 
Filter 3 = [ -0.0620 

Predicted X = [ -0.0555   0.9913  -0.1144 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0597   0.9907  -0.1233 ](T) 

***** Time =  "y * * * * * 

Correcting for Z = [ -0.0582   0.9906  -0.1236 ] (T) 

Xp        residual       RAR RR 

-0.0544      -0.0046 
Filter   1     0.9915      -0.0010      0.0162       0.0002 

-0.1127      -0.0132 

-0.0677       0.0172 
Filter  2     0.9892       0.0026      0.0799       0.0014 

-0.1423       0.0337 

-0.0596      0.0038 
Filter  3     0.9904      0.0006      0.0029       0.0001 

-0.1265      0.0079 

Corrected X = [ -0.0551   0.9913  -0.1142 ](T) 

Predicting one sample period ahead 

Filter 1 = [ -0.0586 0.9908 -0.1215 ](T) pkl = 0.94 
Filter 2 = [ -0.0715 0.9885 -0.1510 ](T) pk2 = 0.05 
Filter 3 = [ -0.0584   0.9905  -0.1253 ](T)   pk3 = 0.01 

Predicted X = [ -0.0592   0.9907  -0.1229 ](T) 
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Extending two sample periods ahead 

Extended X = [ -0.0634 0.9900  -0.1317 ](T) 

***** Time =   8 ***** 

Correcting for Z = [ -0.0581   0.9907  -0.1231 ](T) 

Xp residual       RAR         RR 

-0.0585 0.0005 
Filter  1     0.9908 -0.0001      0.0002       0.0000 

-0.1218 -0.0016 

-0.0656 0.0134 
Filter  2     0.9895 0.0022      0.0534       0.0010 

-0.1386 0.0279 

-0.0582 0.0003 
Filter  3     0.9906 0.0002      0.0002       0.0000 

-0.1239 0.0022 

Corrected X = [ -0.0587 0.9907  -0.1222 ](T) 

Predicting one sample period ahead 

Filter 1 = [ -0.0628 0.9901 -0.1307 ](T) pkl = 0.96 
Filter 2 = [ -0.0673 0.9891 -0.1432 ](T) pk2 = 0.03 
Filter 3 = [ -0.0569   0.9908  -0.1220 ](T)   pk3 = 0.01 

Predicted X = [ -0.0629   0.9901  -0.1310 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0671   0.9894  -0.1398 ](T) 

* * * * * Time =   9 ***** 

Correcting for Z = [ -0.0577   0.9908  -0.1223 ](T) 

Xp        residual       RAR RR 

-0.0619      0.0051 
Filter  1    0.9902      0.0007      0.0081      0.0001 

-0.1292       0.0085 
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-0.0630 0.0096 
Filter   2     0.9899 0.0017       0.0296       0.0005 

-0.1339 0.0209 

-0.0574 -0.0008 
Filter  3    0.9908 0.0001      0.0000      0.0000 

-0.1222 -0.0002 

Corrected X = [ -0.0619 0.9902  -0.1292 ](T) 

Predicting one sample period ahead 

Filter 1 = [ -0.0661 0.9896 -0.1381 ](T) pkl = 0.98 
Filter 2 = [ -0.0633 0.9898 -0.1353 ](T) pk2 = 0.01 
Filter 3 = [ -0.0563   0.9910  -0.1203 ](T)   pk3 = 0.01 

Predicted X = [ -0.0660   0.9896  -0.1379 ](T) 

Extending two sample periods ahead 

Extended X = [ -0.0702   0.9889  -0.1468 ](T) 

***** Time =  10 ***** 

Correcting for Z = [ -0.0572   0.9910  -0.1207 ] (T) 

Xp        residual       RAR RR 

-0.0645      0.0089 
Filter   1     0.9898      0.0015      0.0316       0.0004 

-0.1350      0.0174 

-0.0606      0.0061 
Filter   2     0.9903       0.0012      0.0140       0.0003 

-0.1288      0.0146 

-0.0569      -0.0009 
Filter   3     0.9910       0.0001      0.0000       0.0000 

-0.1205      -0.0004 

Corrected X = [ -0.0644   0.9898  -0.1348 ](T) 

Predicting one sample period ahead 

Filter 1 = [ -0.0687 0.9892 -0.1437 ](T) pkl = 0.98 
Filter 2 = [ -0.0599 0.9904 -0.1279 ](T) pk2 = 0.01 
Filter 3 = [ -0.0561   0.9912  -0.1188 ](T)   pk3 = 0.01 
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Predicted X = [ -0.0684   0.9892  -0.1433 ](T) 

Extending two sample periods ahead 

Extended X =   [   -0.0725   0.9886  -0.1519 ](T) 

-155- 



Appendix C: 

Performance Study Instructions 

PURPOSE 

This study is designed to compare the effectiveness of Polhemus tracking, 

single filter (non-adaptive) tracking, and adaptive Kaiman filter tracking in a 

virtual environment. Specifically, the data collected will be used to determine if 

adaptive Kaiman filtering offers any advantage over the other modes in reducing 

display lag. This is a theoretical research project, and is NOT a preliminary step in 

any USAF program. Further, the data collected in this experiment will not be used 

to evaluate individual performance. 

FORMAT 

This study will be conducted in the following manner. First, you will be given 

an overview of both the software and hardware to be used. Next, you will be given 

an opportunity to familiarize yourself with both the equipment and the virtual 

environment. You will then be asked to perform a series of trials. The objective of 

these trials is to keep a crosshair centered on a moving ball by changing your head 

orientation; in other words, follow the bouncing ball. 

TRAINING 

[Show the subject the Polhemus 3SPACE Tracker] This is the Polhemus 

3SPACE Magnetic Tracker, or Polhemus for short. [Show the subject the source 

element] It uses three orthogonal magnetic coils located inside this source unit that 
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are independently pulsed and picked up by the sensor attached to the PT-01 HMD. 

This is how your head orientation is monitored. 

[Show the subject the PT-01 HMD] This is the PT-01 Head Mounted Display 

Unit or HMD for short. It is similar to looking through a pair of binoculars. [Show 

the subject the underside of the housing with the adjustment levers] These levers 

allow you to adjust the interocular distance (the distance between the eyes) and the 

focus for each eye image. [Show the subject the various position adjustment knobs] 

The HMD housing can be adjusted in, out, up, and down for comfort, and the head 

band can also be tightened and/or loosened. Go ahead and put the HMD on, making 

certain it is adjusted comfortably. [Allow the subject to try on the HMD. Help 

him/her adjust it "comfortably" onto his/her head. Load up the benignO data set 

and set the tracking mode appropriately for this subject] You should be able to see a 

green ground plane with a cross-hatch texture on it. This texture has no 

significance to the experiment except that it provides you with motion cues when 

you turn your head. You should also see a blue sky, a black crosshair in the middle 

of the screen, and a red ball somewhere near the crosshair. [Make certain the 

subject can see all this] 

Each trial will be conducted in the same way. In order to start a trial, you 

simply hit the space bar. When you do, the crosshair in the center of the screen will 

turn white, indicating that the trial has started. Also, a box will appear around the 

crosshair. It will be either red or blue. Whatever color the box is, find the ball of 

the same color as quickly as you can and track its movement. This is what it will 

look like [Hit the space bar to start the trial] 

Three types of trial will be used. The first type, which you are currently 

looking at, is benign motion. The ball makes very slow movements. [Let the subject 

finish the trial; load up the moderateO data set] The second type is moderate 

movement. The ball makes very short, but very quick movements. I am not 
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expecting that you will be able to follow moderate motion perfectly; just do the best 

that you can. [Let the subject watch the moderate trial; load up the mixedO data 

set]. Also, for these two trials you may center the crosshair in the ball before you 

begin the trial if you like. 

The final trial is a mixed trial. If you look to your left, you will see the red 

ball; if you look to your right, the blue ball. These balls will move about in the 

general area they are currently in, but the red ball will always be to your left, and 

the blue ball to your right. Remember, whatever the color of the box around the 

cursor is, find that ball AS QUICKLY AS YOU CAN and track it. If the box around 

the cursor should change color, find the other ball AS QUICKLY AS YOU CAN and 

track it. Since the initial color of the box around the cursor is random, I suggest you 

start by simply picking a point roughly between the two balls. This task roughly 

analogous to being in trail behind a friendly aircraft, and watching for enemy 

aircraft. You need to keep track of both as much as possible. [Let the subject view 

the mixed trial]. 

The experiment will be conducted as follows. You will do seven trials (two 

benign, two moderate, and three mixed) for a particular tracking mode. Then we 

will change the tracking mode and do the same seven trials (two benign, two 

moderate, and three mixed) again. Then we will switch tracking modes one more 

time and do the same seven trials again. Each of the trials is approximately thirty 

seconds in length, and you start each by hitting the space bar. 

Trials 

[Do the trials as prescribed by the data sheet. Be certain to tell the subject 

what type of trial he I she is doing, and also which tracking mode he I she is using. Be 

certain to use the appropriate tracking mode!!!] 
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Debrief 

[When the trials are complete, ask the subject if he/she noted any differences 

between the various tracking modes. Also, ask if one seemed any easier or harder 

than the others.] 
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Appendix D: 

Mean +/- 1 Sigma Plots 

This appendix contains mean +/- sigma plots for selected data sets (Benignl, 

Moderate!., and Mixedl) from the data collected during the performance study. 

Only the middle ten seconds of data from a thirty-second data sample was plotted in 

these graphs due to space constraints. The graphs are arranged so that X- and Z- 

direction graphs for the same condition are on the same page. 

In order to have something against which to compare prediction value, a 

simulated Polhemus error was defined as the difference between the Polhemus 

values at time t and the Polhemus values at time t+1; this definition accounts for 

the fact that under normal conditions, Polhemus data is one frame old when it is 

used to render a scene. 

The graphs were generated by caluculating the absolute error value 

expressed as the difference between the predicted (or simulated predicted in the 

case of Polhemus Only mode) value, and the appropriate Polhemus input value, 

such that the result was always positive. These absolute errors were calculated for 

each subject and each sample period in the data set. The mean and standard 

deviation of these errors across all subjects for each sample period was calculated 

and used to produce the graphs in this appendix. Note that the graphs depicted are 

not for the same subjects in all conditions. The experiment was not designed such 

that a particular subject did all data sets in all tracking modes. However, in all 

cases, the graphs represent data for six subjects. 
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