
■:. ■ ..i -.r .-;-'-;v

j*m 4^M| i.n> -W ft ~. . ; . , j ^^

M

CVJ

CVJ
CXJ

MULTIPLE MODEL ADAPTIVE ESTIMATION AND
HEAD MOTION TRACKING IN A VIRTUAL ENVIRONMENT:

AN ENGINEERING APPROACH

THESIS

James E. Russell
Captain, USAF

AFIT/GCS/ENG/94D-21

This ciocuaic-iit ü.I,
foi public ic-ijc:--.- c.
distribution i: ur.ibn

:c-;.i acorc'vüd

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/94D-21

f™T^- -, . p
i^J.\ '. \r: 11

•\ il
]['-.^ V~J L*3 i>=e3 Ü.-ä '^-^ ■'-■ **-■' C/;.: . ■• 1

!\\1 JFG 3 0 1994! ■■ hi

L::=33

1 1

MULTIPLE MODEL ADAPTIVE ESTIMATION AND
HEAD MOTION TRACKING IN A VIRTUAL ENVIRONMENT:

AN ENGINEERING APPROACH

Accesion For

NTiS CRA&I
DTIC TAB
Unannounced
Justification

D
D

By
Distribution/

Avaii3bi!ity Cod

Dist

,/H

Avaü and/i
Sp-cia!

THESIS

James E. Russell
Captain, USAF

AFIT/GCS/ENG/94D-21

,TT^r INSPECTED S,i

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not
necessarily reflect the official policy or position of the Air Force Institute of
Technology, Air University, the United States Air Force, the Department of
Defense, or the U.S. Government.

AFIT/GCS/ENG/94D-21

MULTIPLE MODEL ADAPTIVE ESTIMATION AND

HEAD MOTION TRACKING IN A VIRTUAL ENVIRONMENT:

AN ENGINEERING APPROACH

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Computer Science

with emphasis in
Software Engineering

James E. Russell, B.S.

Captain, USAF

December 1994

Approved for public release; distribution is unlimited

Acknowledgments

The word masterpiece dates back to the Middle Ages. A craftsman

(usually called a journeyman) would attach himself to an accepted master

craftsman in his field, and then spend sometimes years in intense study,

trying to absorb all of the knowledge of his teacher. When at last he was

ready, he would create a work that demonstrated his mastery of his craft;

this work was called his masterpiece. If the master accepted it, then the

journeyman became a master.

The process of generating this thesis (and getting my master's degree)

bears a strong resemblance to the craftsman's journey to master status. It

has certainly been educational, and it has (at times) seemed that it would

take years to complete. Also, I have had not one, but many masters under

which to study, as well as something not included above - comrades with

whom to strive, struggle, commiserate, and, at the last, celebrate. I would

like to take a moment to mention some (though certainly not all) of these

mentors and comrades. All of you have played parts in bringing this thesis to

fruition:

• My thesis advisor and all-around substitute for mom; LtCol Pat

Lawlis.

• My domain expert; Dr. Peter Maybeck.

• My gadfly in the staid ointment of engineering; Dr. Robert Eggleston.

• My too-soon-silent committee member, Dr. (LtCol, retired) Phil
Amburn.

• My fellow journeymen; John Vandenburg, Bob Caley, Dan Gisselquist,
and Jordan Kayloe.

— u -

I would also like to gratefully acknowledge the unquestioning love and

unending support of my heart, my life; my wife, Elaine. "Who can find a

virtuous woman? for her price is far above rubies. ... Favor is deceitful, and

beauty is vain: but a woman that feareth the Lord, she shall be praised"

[Proverbs31:10,30; KJV].

-in-

Table of Contents

Acknowledgments ii

List of Figures vii

List of Tables ix

List of Abbreviations x

xii

1

2
8
9

10
10
11
12
15
16
18
18
18
19
19
19
19
21
22

II Background 23

2.1 Virtual Environments 23
Historical Development and Discussion 23
Key Concepts 26
Thesis Approach 28

Abstract

I Introduction

1.1 Problem Motivation
1.2 Problem Statement
1.3 Problem Discussion

Lag Definition
Transport Delay
Image Update Delay
Unexpected Delay

1.4 Goals and Objectives
1.5 Research Approach
1.6 Method of Analysis

Performance Study
Trend Analysis
Language Comparison

1.7 Research Environment
Computer Support
Magnetic Tracker
Head-Mounted Display (HMD)

1.8 Document Overview

2.2 Kaiman Filters 30
The Predictor/Corrector Model 30
Kaiman Filter Basics 32
Kaiman Filter Variations 38
Thesis Approach 40

2.3 Multiple-Model Adaptive Estimators (MMAEs) 40
MMAE Basics 41
Thesis Approach 45

2.4 Software Architectures 45
Historical Development 45
General Architectural Styles 47
The Object Modeling Technique (OMT) 50
Thesis Approach 52

2.5 Summary 52

III Software Design and Implementation 55

3.1 Prototype Work 56
3.2 System Requirements and Constraints 57

Frame Rate 57
Performance Data 58
Object Encapsulation 58
Portability 59
Readability and Understandability 59

3.3 System (Architectural) Design 60
3.4 GenMatrix Class 63
3.5 Kaiman Filter Design 64

FOGMA_Filter Software Design 66
FOGMA Filter Technical Design 68

3.6 MMAE Design 74
FOGMA_MMAE Software Design 75
FOGMA_MMAE Technical design 77

3.7 ThreeSpace Class 78
3.8 C++ Implementation 79

GenMatrix Class 80
FOGMA.MMAE Class 82
ThreeSpace Class 83
Main Application (pfdisplay) 84

3.9 Ada Implementation 85
3.10 Summary 88

rV Data Collection and Analysis 90

4.1

4.2
4.3

4.4

Implementation Testing
Test Programs
Filter Timing
Performance Characteristics

Performance Study
Language/Performance Comparison

Implementation Comparison
Performance Comparison

Summary

V Conclusions and Recommendations

5.1 Software Engineering Recommendations
5.2 Kaiman filter / MMAE Recommendations
5.3 Performance Study Recommendations
5.4 The Final Word

90
90
91
93

100
109
109
110
116

119

121
123
124
125

Appendix A Prototype Software Problem Reports 127

Appendix B Test Program Sample Outputs 132

Appendix C Performance Study Instructions 156

Appendix D Mean +/- 1 Sigma Plots

Bibliography

Vita

160

173

179

List of Figures

Figure Title Page

1 Floating-Phase Versus Phase-Locked Mode 14

2 Polhemus 3SPACE Magnetic Tracker 20

3 PT-01 Head Mounted Display 21

4 A Typical Viewing Frustum with Visual Frame of
Reference Parameters 27

5 Thesis Virtual Environment 29

6 A Typical Kaiman Filter Application 33

7 Bandpass, Wideband Noise, and White Noise 37

8 Multiple Model Adaptive Estimator 41

9 Rumbaugh Diagram for a Shape Class 50

10 System-Level Architecture 60

11 Top-Level Class Diagram 61

12 Concrete Implementations for Abstract Classes 61

13 Behavior Diagram for Kalman_Filter Class 66

14 Behavior Diagram for MMAE Class 75

15 Behavior Diagram for FOGMA_MMAE Class 76

16 RAR Values for Angular Displacements through Ninety
Degrees 93

17 Probability Weights for Benign Motion Data Set 95

18 Probability Weights for Simulated Moderate Motion 95

19 Probability Weights for Simulated Heavy Motion 96

20 MMAE Prediction Error for Benign Motion Data Set 97

21 MMAE Prediction Error for Simulated Moderate Motion 98

22 MMAE Prediction Error for Simulated Heavy Motion 98

23 Comparison of X-direction Output Values 99

24 MMAE Prediction Error, X-direction, Benignl Data Set 104

25 X-direction Comparison of Ball, Polhemus, and Predicted
Values 104

26 Plot of Sample Means with Tracking Type as the
Parameter 108

- vii -

27 Plot of Sample Means with Motion Type as the
Parameter 108

- Vlll -

List of Tables

Table Title Page

1 Sigma and Tau Values for MMAE Filters 78

2 Read Times for Various Software Configurations Under
IRIX 4 83

3 RAR Limits and Associated Angular Displacements 94

4 Latin Square for Tracking Mode 101

5 Sample Mean (X) Values 106

6 Sample Standard Deviation (S) Values 107

7 C++/Ada 9X Performance Comparison Data 111

8 Results of WMC Calculations for Implementation Classes 114

-IX —

List of Abbreviations

3D

AFIT

AJPO

AMLCD

ASCII

BASIC

CA

CGF

CPU

cv
DOF

EKF

FOGMA

FOV

GNAT

GNU

GUI

ISO

HMD

Hz

I/O

LCD

MAP

MByte

Three Dimensional

Air Force Institute of Technology

Ada Joint Project Office

Active Matrix Liquid Crystal Display

American Standard Code for Information Interchange

Beginner's All-purpose Symbolic Instructional Code

Constant Acceleration

Constant gain filter

Central Processor Unit

Constant Velocity

Degrees of Freedom

Extended Kaiman filter

First-Order Gauss-Markov acceleration

Field of View

GNU New York University Ada 9X Translator

GNU's Not UNIX

Graphical User Interface

International Standards Organization

Head Mounted Display

Hertz (number of operations performed per second)

Input/Output

Liquid Crystal Display

Maximum a posteriori

MegaByte (1,000,000 Bytes)

-x-

MHz MegaHertz (millions of operations per second)

MIT Massachusetts Institute of Technology

MMAE Multiple Model Adaptive Estimator

00 Object-Oriented

OSI Open Systems Interconnect

PSD Power Spectral Density

RAR Likelihood quotient (^A^r)

RMS Root Mean Square

RR ME/I likelihood quotient (rTr)

SGI Silicon Graphics, Incorporated

OMT Object Modeling Technique [Rumbaugh91]

USAF United States Air Force

VPN View Plane Normal

VR Virtual Reality

VRP View Reference Point

xi -

Abstract

Software engineering tools and techniques were applied to design and

implement an application that reduces lag typically present in virtual

environment displays. The application was a Multiple Model Adaptive

Estimator (MMAE), composed of three Kaiman filters, that predicted head

orientation one sample period into the future. The environment rendering

software used these predictions to generate the environment display. Each of

the filters in the MMAE was designed for a different assumed head motion

type (benign, moderate, or heavy), which allowed the MMAE to adapt to

changes in head movement characteristics.

The use of Ada 9X as an implementation language for a virtual

environment applications was also investigated. Ada 9X provides object-

oriented features for design and development, and it also offers software

engineering support that makes it preferable to C or C++ for the application

developed.

Two significant results were produced. The first is a performance

baseline for the MMAE that can be used as a benchmark for future research

in this area. The other is a performance-based comparison of equivalent Ada

9X and C++ graphics applications in which Ada 9X performance was

practically identical to C++. This second result is somewhat surprising, and

should be investigated further.

xii -

MULTIPLE MODEL ADAPTIVE ESTIMATION AND HEAD
MOTION TRACKING IN A VIRTUAL ENVIRONMENT:

AN ENGINEERING APPROACH

I Introduction

Virtual environments allow participants - most commonly with the aid

of head-mounted display (HMD) equipment, position sensors, and perhaps a

data glove - to interact with computer-mediated and maintained

environments that can represent, among other things, models or simulations

of actual environments. It is believed that this spontaneous form of human-

computer interaction will have tremendous benefits. There have already

been applications developed to aid in scientific visualization, medical

imaging, and training for high-risk tasks such as flying an airplane or

working in otherwise hostile environments such as on the ocean floor or the

surface of another planet.

There are, however, still several barriers to overcome before virtual

environments can fulfill their potential. Current state-of-the-art in graphics

technology is insufficient to allow real-time generation and display of photo-

realistic images; therefore virtual environments are still in the "cartoon"

stage of display realism and lack sufficient auxiliary 3D cues such as shading

and shadows. Frame rates are also a problem. A frame rate of 60 Hz (sixty

hertz, or sixty screen updates per second) is very good, but can usually only

be maintained for the simplest environments; even a modest increase in

scene complexity can drive the frame rate to a much less realistic (and

-1-

therefore much less usable) 10 Hz. Finally, virtual environment displays

tend to lag behind the movements of the participant. This also detracts from

the realism and usability of the environment, and has been suggested as a

cause for motion sickness observed in virtual environment participants.

The focus of this research has been to apply software engineering tools

and techniques to develop an application that reduces the lag typically

present in virtual environment displays, and thereby to increase the utility of

these environments for training and research. In order to achieve this, a

Multiple-Model Adaptive Estimator (MMAE) composed of three Kaiman

filters was used to predict the orientation of a virtual environment

participant's head. This prediction was passed on to the software that

generated the environment display, which used it to build the next scene

shown to the participant. Each of the filters in the MMAE was designed for a

different type of head motion (benign, slow movements; moderate, normal

movements; and rapid movements such as in a re-acquisition task) thus

allowing the MMAE to adapt to changes in the characteristics of the

participant's head movement patterns. The research approach was validated

by two studies. The first was a performance study in which subjects taken

from AFIT faculty and students were asked to follow the movements of a ball

(3D sphere) in a virtual environment that incorporated the MMAE-based

approach, as well as a single Kaiman filter predictor and no predictor. The

other study was a language comparison between two implementations of the

software; one in C++ and the other in Ada 9X.

7.7 Problem Mo tiva tion

The fundamental idea behind the three-dimensional display is to
present the user with a perspective image which changes as he

-2-

moves. The retinal image of the real objects which we see is, after
all, only two-dimensional. Thus if we can place suitable
two-dimensional images on the observer's retinas, we can create
the illusion that he is seeing a three-dimensional object.
Although stereo presentation is important to the
three-dimensional illusion, it is less important than the change
that takes place in the image when the observer moves his head.
The image presented by the three-dimensional display must
change in exactly the way that the image of a real object would
change for similar motions of the user's head.
[Sutherland68:757]

In his book Virtual Reality, Howard Rheingold states that virtual

environments have two defining characteristics. The first is immersion: the

feeling that you (the participant) are actually present in the environment.

The other is navigation: the ability to move about in and interact with the

environment [Rheingold91:112-113].

The combination of these two qualities makes virtual environments a

promise-laden research and application field. Rheingold reports that

researchers at the University of North Carolina have worked for several

years on a virtual environment application that allows participants to explore

molecular forces and create new molecules by interacting with models of

various atoms [Rheingold91:26-29]. A related piece of ongoing research

reported by Chung is attempting to develop a virtual application that allows

doctors to see the path a radiotherapy beam will take as it passes through the

body, as well as what tissues it will affect. This will allow a doctor to

determine a beam position and direction that will maximize effect on

cancerous tissue while minimizing risk to healthy tissue [Chung92:193].

Simulation has been and continues to be a major player in virtual

environment technology. Simulators have proven to be a cost-effective

training medium that allows individuals in high-risk occupations to gain

experience without the risk to life or property associated with using actual

-3-

equipment. Simulators are used to train, among others: pilots, air traffic

controllers, and professional race car drivers [Ellis91:325-326]. Scientific

visualization is another growing area for virtual environments. Scientists are

using satellite photography data to create surface models of distant planets

that can be explored through virtual environment applications [Ellis91:328-

329]. Communications and teleoperations have also benefited from the

growth of this technology [Ellis91:331-333].

The United States Air Force and the Department of Defense also

maintain an active interest in virtual environments. This interest stems

mainly from the simulator technology used to train pilots, but extends into

other related fields as well. The Ada Joint Project Office (AJPO) sponsors a

great deal of research into the use of the Ada language for virtual

environments. This thesis is an example of that sponsorship. The Virtual

Environments Interface Laboratory (VEIL) at Armstrong Laboratories

(Wright-Patterson AFB, OH), is dedicated to the study and development of

applications for virtual environments. AFIT also contributes to the growing

body of research in this field. Distributed simulation, synthetic battle

bridges, satellite modelers, and virtual cockpits all explore the possibilities of

this field.

Virtual environments are a step up from current screen-based display

techniques, just as current screen-based techniques were a step up from

text-based input/output (I/O) displays. The introduction of the desktop

metaphor in the 1980s allowed a user to interact with his/her computer in a

more natural way. Instead of being expected to memorize arcane commands

and myriad options, the user could use a graphically-based input device (a

mouse) to identify and execute desired commands. The screen, which until

-4-

this time had been little more than a text-based I/O device, became a more

familiar (and less threatening) graphical user interface (GUI); in this case a

desk top on which symbols (or icons) representing documents and other

objects or actions could be placed, manipulated, or discarded [Ellis91:321-

322].

Now, with virtual environments, the participant can have a virtual

desktop with virtual documents, etcetera, that he/she can manipulate with

his/her hands. Again, the driving motivation is to make the interaction more

natural for the participant. Virtual environments thus represent a blending

of the strengths of the computer and the participant. The ability of the

computer to manipulate vast amounts of data rapidly and accurately and

present it in a graphical format is being coupled with the natural abilities of

the participant to analyze, interpret, and manipulate that data. In the words

of Arthur, Booth, and Ware:

The underlying motivation in virtual reality is to realistically
present 3D worlds to a user so that he or she perceives and
interacts with them naturally, thus borrowing from built-in
human abilities that evolved from our normal dealings with the
3D world that surrounds us every day. [Arthur93:240]

The key to this collaboration is the spontaneity and perceived realism of the

interaction. If humans are to immerse themselves in virtual worlds and use

eyes and hands as the means of interaction, then these worlds must provide

feedback that is appropriate, expected, and perhaps most importantly,

delivered in real-time.

Meeting this feedback requirement is one of the major challenges in

designing virtual environments, but it is certainly not the only one. Perhaps

the most immediate problem with virtual environments is cost. Although

decreasing steadily as technology and acceptance of this medium improves, it

-5-

is still prohibitively expensive for individuals or even small businesses to take

advantage of virtual environments. One or possibly two (one for each eye

image) high-performance workstations are required to maintain them

[Arthur93:243].

Another problem is stereoscopic eye strain. HMDs must be precisely

aligned to the participant's interocular distance (the separation of the eyes) or

the participant will experience severe eye fatigue from extended use. A

related problem is that current HMDs are fairly bulky and heavy, and

prolonged use can cause neck fatigue [Ellis91:337].

Feedback concerns, however, are the focus of the majority of current

research. An example of a feedback issue is auxiliary 3D cues such as

shadows and shading of objects [Arthur93:244]. These additional cues add to

the immersive quality of the virtual environment display by helping the

participant to determine the relative distance between objects, and other

display characteristics. However, techniques for providing these cues are

currently prohibitively expensive from a computation standpoint

[Foley90:866-873]; using them can drive display performance (as measured

by presentation rate) below the usability threshold.

Problems encountered in the area of spatial display limitations

(resolution and field of view) speak directly to the need for appropriate

feedback to the participant. In immersive virtual environments, the images

shown to each eye are commonly displayed on Liquid Crystal Displays (LCDs)

that use wide-angle optics to give the participant the necessary peripheral

cues. The resolution of these LCDs is typically quite coarse, with a relatively

small number of pixels available for display, and the images generated by the

computer must typically be stretched in order to cover all of the display

-6-

surface available [Arthur93:243]. These factors combine to produce images

which are unnatural and blocky. Further, current virtual environments have

trouble accommodating the participant's ability to focus selectively, or fixate,

at a given distance. Normal vision allows humans to set their focus at a

specific distance in order to view an object of interest. Objects at this

distance are seen sharply, while objects nearer or farther away are blurred.

Attempts have been made to monitor the focal length of the participant

[Ellis91:337] and adjust the environment display accordingly, but widespread

use of this technology is still some time off.

Another feedback problem is temporal display artifacts (lag and low

frame rate) [Arthur93:244]. Lag refers to the perceived delay between control

events to a system and the system's response (either by display or other

activity) to those events. Frame rate refers to the ability of the application

software to generate and display new scenes for the participant.

Lag is especially important in virtual environments because any lag in

the display of the environment directly affects the participant's feeling of

immersion [Arthur93, Friedmann92, Liang91]. Shaw states that a virtual

environment must be able to display a new image in less than one hundred

milliseconds in order to be considered responsive [Shaw93:292]. Lag has also

been linked, at least qualitatively, to occurrences of motion sickness in virtual

environment participants. In an article for the Canadian Journal of

Physiology and Pharmacology, Oman reports that most researchers now

regard seasickness, car sickness, airsickness, flight simulator sickness, and

other forms as different examples of the same syndrome [Oman90:295]. He

also reports on Reason's neural mismatch hypothesis, which he feels is

perhaps the best known of the current theories on motion sickness:

-7-

Reason argued that the brain probably evaluates incoming
sensory signals for consistency by computing the component of
sensory signals that is new and unexpected, given knowledge of
ongoing movement commands. The brain is postulated to
maintain a "neural store"'.. .that are continuously updated based
on experience interacting with the physical environment. As a
body movement is commanded, the CNS (Central Nervous
System) is assumed to fetch from the neural store the associated
normally anticipated sensory input....Actual sensory input and
retrieved sensory memory traces are continuously subtractively
compared. The difference is a "sensory conflict" signal. The
specific stimulus for motion sickness...was proportional to the
number and magnitude of sensory conflict signals. [Oman90:296]

Arthur, Booth, and Ware state that lag is probably a more important

factor than low frame rate where 3D task performance is concerned.

Regression modeling of experimental data they obtained showed that lag

accounted for more data variance than low frame rate [Arthur93:261].

However, lag and frame rate are not independent; a low or fluctuating frame

rate contributes to perceived lag in virtual environment displays

[Arthur93:244]. Bryson and Fisher assert that applications with a low frame

rate will have poor interactivity regardless of how quickly data is taken from

external data sources [Bryson90:105].

1.2 Problem Statement

Lag is a problem that limits the usability of immersive virtual

environments by inhibiting their ability to provide a realistic experience for

participants. As an example, a study by Kozak, Hancock, Arthur, and

Chrysler showed no evidence for transfer of training from a virtual

environment to a real-world task [Kozak93:777]. The authors, however, felt

that this could be attributed to the current state of virtual environment

display technology, and that making the environment display and context

-8-

more realistic would improve training usefulness [Kozak93:782-783]. One

method of making environment displays more realistic is to minimize and/or

eliminate the lag associated with image generation and display. In this way,

the environment can be made to show the participant a scene appropriate to

his/her head position and orientation in approximately real-time, thereby

eliminating one of the current barriers to widespread use of this technology.

The characteristics of this problem are twofold, encompassing both

hardware and software concerns. On the hardware side, current hardware is

unable to provide position and orientation information at a rate that will

allow the environment display to be updated in real-time or even near-real-

time. On the software side, current software techniques are not advanced

enough to perform the calculations necessary to generate a scene of anything

more than trivial complexity and still maintain the frame rate necessary to

effect immersion for the participant.

1.3 Problem Discussion

"The lag problem, for example,...comes across in popular articles
as an artifact of today's systems that will probably be solved by
some chip one day soon. It isn't that easy." [Henry Fuchs, quoted
inRheingold91:34]

Traditionally, lag (or latency) has been generally defined as the

amount of time between the application of a control event to a system, and

the system's response to that event [Arthur93:241; Liang91:19;

Bryson90:98]. In the case of virtual environments, this may be translated to

mean the time delay between a participant changing his/her head position

and/or orientation (the control event), and the environment displaying a

scene appropriate for that change (the response). But this is not the only

possible translation.

-9-

Bryson and Fisher divide lag into two types: transmission lag and

position lag. Transmission lag is a time delay equal to the time to get data

from an external source to the application plus the time needed to update and

display the scene [Bryson90:105]. Position lag is a spatial lag that is induced

by transmission lag and the velocity of the controller [Bryson90:100]. Bryson

and Fisher feel that transmission and position lag are the only important lags

in an application; if they are minimized, then the effects of other (unnamed)

sources of lag in the system will be negligible [Bryson90:100]. Friedman,

Starner, and Pentland take a slightly different approach. They identify three

major causes of "problems in synchronization of user motion, rendering, and

sound" [Friedman92:57] in their application. These are noise in the sensor

measurements, length of the processing pipeline, and unexpected

interruptions [Friedman92:57]. This research will use elements from both of

these sources to define lag.

Lap Definition. Display lag is denned as the time delay between a

virtual environment participant changing his/her head orientation, and the

display of a scene appropriate for that change; this is also the "human

perceptible" lag in the display. If a display is done in real-time (such that the

participant cannot perceive any lag), then the display lag is zero. Display lag

has three major components: transport delay, image update delay, and

unexpected delay. Each of these is discussed below.

Transport Delay. Currently, head position and orientation data are

measured by a magnetic tracking device such as a Polhemus 3SPACE tracker

or an Ascension Bird system. In order to provide data, the tracker has to

generate and sense magnetic fields; perform calculations to determine the

sensor location; and transmit the results to the rendering software, usually

-10-

across a serial communications line [Bryson90:105; Liang91:19]. The time

required for this process to complete is the transport delay.

Transport delay is largely a hardware-based problem, but solving it

may take more than faster hardware. Bryson and Fisher point out that, with

current double-buffered approaches to graphics display, "the graphics will

always be at least one frame behind the controller" [Bryson90:105]. This lag

is independent of any transport delay; it is instead due to the time required

to generate and display the frame corresponding to the incoming data.

Image Update Delay. Another cause of display lag is the number of

operations required to generate a new display for the participant. Once the

data from the controller arrives, the rendering software will typically perform

a large number of calculations in order to build a new scene to be displayed

and load it into video memory. We will call the time required to perform this

operation image update delay.

Image update delay is both a hardware- and software-based problem.

Scene calculations typically involve a tremendous number of matrix

operations to translate, rotate, and scale environment objects. At the

University of North Carolina, special processors for these matrix operations

(and other computation-intensive steps) have been used to decrease image

update lag [Azuma94:section 3].

Software solutions typically fall into one of two approaches. The first

approach involves "guaranteeing" a minimum frame rate by managing the

complexity of the scene being displayed. Frame rate is monitored during

application execution, and if it falls below a predetermined threshold, the

scene complexity is reduced to allow faster rendering. One way to reduce

complexity is to alter the display format (for example, using wireframe

-11-

renderings instead of solid figures). Another is to reduce the amount of data

that needs to be processed. Ellis notes that applications that use the Exos

hand (an input device similar to the data glove) often turn off a number of the

joints [Ellis91:332]. This idea could be extended - an application could

selectively omit non-critical objects in a virtual environment display in order

to preserve frame rate. Similarly, the application could render objects in the

center of the image at full detail, while rendering objects on the periphery of

the image with less detail [Ellis91:337].

The other category involves structuring the application software to

minimize software overhead. This is especially true for operating system

overhead, although this more properly falls under unexpected delays,

discussed below. Azuma and Bishop [Azuma94] report that they used this

approach:

Special care was taken to use fast communication paths and
low-overhead operating systems. Interprocessor communication
is through shared memory, across Bit3 bus extenders, or through
the 640 MByte I sec ring network within Pixel-Planes5. UNIX is
avoided except for initial setup and non-time-critical tasks, like
reading buttons. [Azuma94:section 3]

Another area for overhead reduction is in data complexity management. New

data structures such as the octree are helping to reduce the storage and time

needed to process virtual environments [Foley90:550-555].

Unexpected Delay. The final source of display lag is unexpected

delays such as network contention or operating system activity. Though

usually infrequent, these are also unpredictable, and can have serious

negative impacts on virtual environment displays. One of the more common

problems encountered with unexpected delays is missed frames.

-12-

Most virtual environments seek to display images at a constant rate;

thus each image, or frame, is allotted an equal amount of time for generation

and display. In double-buffered systems, two areas of memory, or buffers, are

used so that one frame can be built while another is being displayed.

Overrun occurs when the calculations involved in generating a frame take

longer than the time allotted for that frame [Performer92:7-2]. The

Performer software used in the AFIT graphics lab offers the following three

alternatives for dealing with this problem:

• Deny it. The application software will simply display frames whenever

they are ready, regardless of how long it takes to generate them.

Frame rate is not fixed ; there are no constraints placed on how long

the system has to generate a frame, nor is there any notion of a

minimum time the frame must be displayed. Performer calls this

Free-Running mode [Peformer92:7-4].

• Display it. The application will accept the overrun and display the

frame for a period of time equal to the normal frame rate. Performer
calls this Floating-Phase mode because the display phase can "float",
becoming out of normal phase if overrun occurs [Performer92:7-4].

• Drop it. The application will reject any frame that has an overrun, and
instead continue to display the current frame. At the end of the next
period, if a new frame is ready, it will be displayed; if two frames have

been generated (the one that wasn't ready before, and a new one), the
intermediate frame will be ignored and the most current frame
displayed. The length of time a particular frame is displayed will

always be an integer multiple of the normal frame period. Performer

calls this Phase-Locked mode [Performer92:7-5]. Please note that this
strategy may result in some frames never being displayed; these are
referred to as skipped or dropped frames [Performer92:7-5].

-13-

0 1 2 0 1 2 0 1 2 0

^— Floating

^— Locked

1/20th 1 /60th

Time

Figure 1: Floating-Phase Versus Phase-Locked Mode
[Performer92:7-3]

The relationship between floating-phase and phase-locked modes is

shown in Figure 1. In this figure, the screen refresh rate (shown by the

dashed vertical lines labeled 0, 1, 2) is sixty Hertz while the frame rate

(shown by the solid vertical lines) is twenty Hertz. Note that, under normal

circumstances, a new frame will be displayed every third screen refresh, at

the refreshes labeled 0 in the figure.

An overrun is shown on the top left of the figure; generating the frame

has taken longer than the l/20th of a second dictated by the frame rate. The

center line in Figure 1 shows what will happen in Floating-Phase mode. The

overrun will be accepted, and the new frame will be displayed for the normal

amount of time (l/20th of a second in this example). Because this frame is

displayed late (at screen refresh 1 instead of screen refresh 0), and because it

will be displayed for the normal time, subsequent frames will also be

-14-

displayed in the same out-of-phase manner; the phase of the display

therefore "floats". Note that if additional overruns occur, it is possible that

the display will eventually become in-phase again.

In Phase-Locked mode, frames may only be displayed at frame

boundaries (the solid lines in the figure). Under this mode, the new frame is

not ready at the frame boundary (screen refresh 0; the solid lines in the

figure), so the frame currently being displayed is displayed again. When the

next frame boundary is reached, the new frame is displayed if it is now ready

(which, in our example, it is). Note that it is possible that two frames are

generated. If this occurs, then the most recent frame is displayed and the

intermediate frame is dropped.

1.4 Goals and Objectives

Virtual environments appeal to a broad range of potential users and

applications, so a correspondingly broad cross-section of disciplines is

represented by researchers. This diversity inevitably leads to a large number

of viewpoints about what is important in a given project. The goals and

objectives for this research are no exception; however, the main emphasis of

this research is on engineering a solution to the real-world problem of visual

display lag. With this in mind, the following are the prioritized goals and

objectives of this research:

• Use appropriate software engineering and software architecture skills to
design the software necessary to this research. Specifically, design and

implement concrete MMAE and Kaiman filter objects for use in

predicting head orientation. In line with current software reuse

initiatives, the MMAE and Kaiman filter should be implemented such

that later initiatives may reuse the existing design and software base

-15-

developed in this research. This will allow future researchers to
leverage their productivity.

• Examine the appropriateness of enhancing the engineering of the

software with an Ada 9X implementation. By doing parallel C++ and

Ada 9X implementations, this research demonstrates the feasibility of

using Ada 9X with existing C and/or C++ software bases. It also
permits performance comparisons of equivalent applications with and
without Ada code. Comparable performance by well-engineered Ada
code makes a strong argument for applying software engineering tools

and techniques in the virtual environment domain.

• Compare the performance of the MMAE to Polhemus-only and single

Kaiman filter applications. The ultimate test of any engineering

process is the product that it produces. Testing and timing studies

during implementation, as well as the performance study, will provide

data that will characterize the performance of the MMAE by itself and
compared to other means of tracking. There are two benchmarks of
interest in this area. The first is to determine the benefit of prediction
versus no prediction in head motion tracking; the second is to compare
adaptive and non-adaptive tracking strategies. The second benchmark
is of interest because others [Maybeck94b; Friedman91] have already
considered such designs, and the need for adaptivity is seen in

performance from these designs. These benchmarks will also serve to
validate this application, and provide a performance baseline against

which future research efforts may be measured.

US Research Approach

The first step in any research effort is to identify the current state of

the art, gather the necessary background information, and scope the problem

to be researched. In this case, background information from a large number

of areas had to be gathered, and a good deal of time was spent pursuing

-16-

reference sources and scoping. Also, an existing software MMAE developed

by previous AFIT students [0'Connor92] was studied and enhanced; this

provided insight into and experience with the technical aspects of the

problem, and aided in software requirements definition. Problems

encountered with the prototype, and decisions concerning it, were recorded as

Software Problem Reports (SPRs) in order to preserve the experience gained.

These SPRs are located in Appendix A of this document.

Once a sufficient knowledge foundation was available, a final

architectural and software design for the overall software system was

developed. The Rumbaugh Object Modeling Technique (OMT) [Rumbaugh91]

was used to identify the static relationships and high-level dynamic behavior

of the various components, and in general to encapsulate the decision process.

The initial design was then transformed into working code. Most of the

graphics software at AFIT uses C or C++ as its implementation language, as

does the Performer rendering and display software; C++ was therefore a

reasonable language choice for the initial implementation. However, Ada

provides excellent support for software engineering goals, and the new

version (currently designated Ada 9X) provides the necessary support for

object-oriented design and implementation. Also, this application is

computationally-intensive, and provides a good comparison of the processing

ability of the languages. Therefore, both C++ and Ada 9X versions of the

application were developed.

Two studies were then accomplished to validate the research approach.

The first involved comparing the C++ and Ada implementations of the

software. For this study, performance in terms of maximum frame rate and

time required for operations was compared. The other study was a

-17-

performance study of the MMAE software. Subjects taken from the students

and faculty at AFIT were asked to "follow the bouncing ball" by tracking the

movements of a 3D sphere in a virtual environment. Tracking mode was one

of the manipulated variables in the study. Data was collected for MMAE

prediction, single Kaiman filter prediction, and no-prediction (the Polhemus

data was used as is) tracking modes. This data was then compared to

determine if any performance gain can be realized from using prediction

(versus no prediction), or from using adaptive predictors (versus non-adaptive

predictors like the Kaiman filters).

The final stage of this research was to perform an analysis of the data

collected and process used, determine possible directions for future research,

and document the research process.

1.6 Method of Analysis

In order to assess the effectiveness of the engineering used in this

research, the following analysis methods were used:

Performance Study. A performance study was conducted to assess

how well the MMAE predicted head orientation compared to both a simple

Kaiman filter predictor and no predictor. Subjects were asked to track the

motion of a ball in a virtual environment. Each performed several trials;

each trial required a different type of head motion to keep the ball centered in

the participant's field of view. The results of the test were used to determine

the effectiveness of the MMAE in predicting the orientation of the subject's

head, and (indirectly) the quality in terms of realism of the virtual display.

Trend Analysis. Data collected during both the implementation and

testing phase of development, and during the performance study, were

-18-

analyzed to determine how much, if any, improvement was noted with the

MMAE predictor developed in this research.

Language Comparison. Finally, the implementations were compared

for adherence to software engineering practices and goals. The applications

were also measured by performance criteria such as frame rate, time required

to do a Polhemus read, and executable size.

7.7 Research Environment

Immersive virtual environments are by nature equipment-intensive,

and the environment used in this research is no exception. Fortunately,

much of the support infrastructure (in terms of both hardware and software)

needed for this research was already in place at AFIT or nearby.

Computer Support. The graphics lab provided Silicon Graphics

Incorporated (SGI) workstations with the necessary development

environments (C++ and Ada 9X) and graphics support (Performer library

[Performer92]) to develop the environment used in this research. Two

workstations were used during the research. The first was an SGI 4D with a

40 MHz operating speed running under the IRIX 4 operating system. The

other was an SGI Reality Engine2 running under IRIX 5.2. The ball used in

the virtual environment performance study was modeled with Software

Systems' MultiGen modeling software [MultiGen94]. SGI's Performer

software [Performer92] was used to generate and display the environment.

Magnetic Tracker. Armstrong Laboratory provided a Polhemus

3SPACE tracker [Polhemus90] for use in this research. An illustration of the

3SPACE unit is provided as Figure 2. The Polhemus 3SPACE tracker uses

three orthogonal magnetic coils in order to sense the position and orientation

-19-

of a source element that can be manipulated by the participant. The sensor

accuracy is greatest when the sensor is between four and twenty-eight inches

from the source, although separations of up to sixty inches are possible at

reduced accuracy. The tracker has a static accuracy of 0.5 degrees Root Mean

Square (RMS) and an angular resolution of 0.1 degrees. The maximum

output rate of the unit is 60 Hz and can be across either a serial (RS-232) or

parallel (RS-488) communications line [Polhemus90:7-2,7-3]. The manual

warns that "large metallic objects, such as desks or cabinets, located near the

sources or sensors may adversely affect the performance of the system"

[Polhemus90:7-3]. During the application performance study, the sensor was

attached to the Head-Mounted Display unit described below.

Sensor 3

Sensor 1
Sensor 4

Figure 2: Polhemus 3SPACE Magnetic Tracker
[Polhemus90:l-6]

-20-

Head-Mounted Display (HMD). Initial research used a prototype

HMD developed at AFIT. While this was acceptable for prototyping work, the

weight and general bulkiness of this HMD, combined with its coarse

resolution and small field of view, made it unacceptable for the actual

performance studies. Instead, a less bulky and more optically pleasing PT-01

Head-Mounted Display [PT01] was used. An illustration of the PT-01 is

included as Figure 3.

The PT-01 HMD uses a 420x230 pixel Color Active Matrix Liquid

Crystal Display (AMLCD) to show images. The video output format used by

the PT-01 is NTSC/RS-170, which is supported by the workstations in the

AFIT Graphics lab. The unit allows the participant to adjust the interocular

distance of the display between fifty-seven and seventy-two millimeters, and

is also eyeglasses-compatible [PT-01]. The PT-01 supports stereoscopic 3D

Figure 3: PT-01 Head Mounted Display
(adapted from figure in [PT-01])

-21-

imaging and also has audio inputs, but these capabilities were not exploited

in this research.

1.8 Document Overview

The rest of this thesis is laid out as follows:

• Chapter 2 is devoted to the large amount of background information
gathered during the literature search and thesis scoping process.

• Chapter 3 details the software engineering process used to design and

develop the software used in this research, and it provides insight into

the rationale used in making various design decisions.

• Chapter 4 discusses the design and implementation of the studies used

to validate this research, and presents an analysis of the data

collected.

• Finally, Chapter 5 suggests directions for future research in this area.

-22-

II Background

The purpose of this chapter is to present historical perspectives and

the current state of the art in the various fields, and to identify the specific

approaches and techniques used in this research. The reader is encouraged

to read completely only those sections that deal with unfamiliar topics; in the

others, reading only the subsections on specific approaches used in this

research should suffice for background.

2.7 Virtual Environments

Contrary to popular opinion, virtual environments are not a new

technology; rather, current applications are the most recent step in the

evolution of a technology that can trace its beginnings back several decades.

The term virtual environment itself, however, is a fairly recent development.

Ellis states that it seems preferable to other attempts at naming this

technology (i.e., virtual reality, artificial reality, and cyberspace) because it is

"linguistically conservative, relating to well-established terms like virtual

image" [Ellis94:17]. He goes on to state that virtual environments can be

defined as "interactive virtual image displays enhanced by special processing

and by non-visual display modalities, ..., to convince users that they are

immersed in a synthetic space." [Ellis94:17]

Historical Development and Discussion. Ivan Sutherland, who is

generally accepted as the father of Virtual Reality (VR), built his first

head-mounted display in the late 1960s. His landmark 1968 paper, "A

Head-Mounted Three Dimensional Display", has proven to be a launching

pad for subsequent developments in the field. Sutherland, however, was not

-23-

the first man to try to "surround the user with three-dimensional

information." [Sutherland68:757] More than ten years previously, an

inventor and entrepreneur named Morton Heilig combined sight, sound,

touch, and smell into an experience he called Sensorama. His prototype was

given a patent in 1962, and then he spent several years attempting

unsuccessfully to sell his idea to the entertainment industry [Rheingold91:

49-60]. So it was Sutherland who succeeded in creating a virtual

environment, and his success encouraged others, first in the field of computer

science, and later in fields as diverse as medicine, psychology, and

entertainment, to become involved in the development of this technology.

Of course, not everyone who worked in the field agreed with

Sutherland's method of achieving immersion. In the 1970s, Myron Krueger

developed METAPLAY, an outgrowth of an earlier experiment called

GLOWFLOW. METAPLAY was an interactive environment that used a

wall-sized projection screen as its display medium. Participants inside the

METAPLAY room were monitored by cameras placed behind the projection

screen, and could see their own image on the screen. Pressure sensitive

plates placed on the floor were concealed under a polyethylene sheet.

Interaction between the participants and the environment was controlled by

a facilitator in a nearby control center. Krueger described his creation as an

experiment in interaction; he was interested in exploring the effects of such

environments on human behavior [Rheingold91:117-120].

Krueger's work was along the same lines as another group exploring

virtual environments that didn't require the separation from the real world of

Sutherland's HMD. At the Massachusetts Institute of Technology (MIT), a

group of pioneers under the direction of Nicholas Negroponte and Richard

-24-

Bolt were exploring a concept they dubbed a Media Room: a room with

wall-sized screens and stand-alone monitors that allowed participants to

interact with virtual environments. In the 1970s and early 1980s they

developed a demonstration called "Put That There" that allowed a participant

to use voice commands and a pointing device to interact with various

environment objects displayed on the walls of the room [Rheingold91:95-97].

The 1980s also saw the appearance of another interaction option in

virtual environments. Between the two extremes of Sutherland's immersive,

equipment-laden environment and the minimal equipment environment of

the media room, there emerged another alternative: augmented reality. This

form of virtual environment used almost the same equipment as an

immersive environment; the main exception was a see-through HMD that

allowed virtual images to be overlaid on the physical world so that both were

seen by the participant concurrently [Azuma94: section 1]. Arthur, Booth,

and Ware report that one of the first of these systems was developed by Scott

Fisher in 1982. His system allowed a user to view pre-made images stored on

videodisk [Arthur93:245]. However, similar systems had been developed

much earlier than 1982 for military applications. This type of virtual

environment would eventually lead to applications such as Chung's

aforementioned radiotherapy beam targeting application [Chung92].

Recent virtual environments research at AFIT has focused primarily

on distributed simulation applications that allow more realistic simulations

by allowing players from physically separated locations to interact in the

simulation. Applications developed in this area include an F-15E cockpit

simulator [Diaz94], a satellite modeler [Vandeburgh94], a commander's battle

-25-

bridge [Kestermann94; Rohrer94], and an air combat debriefing tool for the

Air Force's Red Flag exercise [Fortner94].

Key Concents. Much of the terminology used in describing various

aspects of virtual environments is carried over from the graphics arena.

While this is eminently reasonable, it has resulted in some ambiguity of

terms. This section will briefly discuss several key concepts used in virtual

environments as they apply to this research: refresh rate versus frame rate,

viewing frustum, and degrees of freedom.

The number of times per second that a picture is redrawn on the

display surface is called the refresh rate of the display, and is controlled by

the display hardware. Arthur points out that a high refresh rate (on the

order of sixty Hertz) is necessary to produce persistence of vision

[Arthur93:241]. By contrast, frame rate is the number of times per second

that a scene is updated by the application software. Frame rates as low as

ten Hertz are sufficient to produce the illusion of smooth motion

[Arthur93:241].

In order to generate a scene, the display software needs to know how

much of the environment it should present. This is determined by the

viewing frustum, an example of which is shown in Figure 4.

The viewing frustum is a truncated pyramid defined by the

intersections of the near and far clipping planes with an infinite viewing

volume denned by the horizontal and vertical field-of-view (FOV) and an

aspect ratio [Performer92:4-6].

Essentially, the viewing volume is an infinitely long pyramid with its

apex at a point in space called the center of projection [Foley90:230]. The

distance between opposing sides of the pyramid, measured in degrees, is the

-26-

Horizontal FOV (degrees) /

Eyepo int
^ X (pixels)

_. Line of Sight
JL

Near Clipping^-v^v

Plane
Vertical FOV (degrees) /

Y (pixels)

Aspect Ratio = = Y/X
Far Clipping ^'v'^^^^

Plane ^^*N. T
Figure 4: A Typical Viewing Frustum with

Visual Frame of Reference Parameters
[adapted from Performer92:4-6]

field-of-view. Aspect ratio is determined by converting the horizontal and

vertical FOV measures to pixels (X and Y, respectively, in Figure 4) and then

dividing Y by X. Because the view volume is infinite, we truncate the

pyramid with two parallel planes and use the result as our viewing frustum.

The plane closer to the viewer's position (the eyepoint in Figure 4) is the near

clipping plane; the one further away is the far clipping plane

[Performer92:4-6,4-7]. When rendering a scene, any object or portion of object

that is within the viewing frustum is rendered; anything outside the viewing

frustum is ignored, or clipped.

The final concept is degrees of freedom (DOF), which denotes the ability

of the participant to alter visual aspects of the display he/she is seeing. Zero

DOF indicates that the viewer is stationary, and can look in only a single

direction. If the viewer can move only in a single, straight line (say forward

-27-

or backward) but not change the direction of view, then he/she has a single

DOF. Most current virtual environments offer the participant six DOF; the

ability to alter view position (three DOF) as well as view orientation (another

three DOF) [Azuma94; Liang91].

Thesis Approach. The virtual environment used in this research was

an immersive environment generated by an SGI workstation, and viewed

through a PT-01 HMD [PT01]. The participant's location within the

environment (viewpoint) was fixed; however, a Polhemus 3SPACE magnetic

tracker attached to the HMD allowed the participant to change view direction

freely (three DOF) by measuring head orientation (head position was not

considered in this research). The environment itself was comprised of the

following:

• Two planes; a green (ground) plane below, and a blue (sky) plane
above. The ground plane had a cross-hatch texture applied to it to

provide motion cues for the participant. The blue plane had no
features, and was provided by Performer through the pfESky
command. The viewing frustum was defined such that the planes

appeared to intersect and form a horizon line. The overall effect was of

hovering slightly above the ground and looking toward the horizon.

• A small crosshair symbol that was placed at the center of the display
window. This symbol was either white or black depending on whether

or not ball motion was enabled.

• Two balls (one red and the other blue) created with the MultiGen
modeling software [MultiGen94]. The balls were the only non-
stationary elements of the environment.

• A light source placed directly beneath the participant's location in the

scene. The light source was used to give the ball 3D highlights when it
moved.

-28-

An illustration of the environment is shown in Figure 5.

The environment used in this research is designed to be a minimal

environment that will provide the elements necessary to perform the studies.

This is in line with the goal of providing a performance baseline for future

research. By using this minimal environment, the effects of using more

complex (and therefore more computationally expensive) environments, such

as a flight simulator, can be more accurately analyzed.

The environment was rendered through the Performer software. This

software was chosen for three reasons. First, it is the most commonly used

rendering software for graphics work at AFIT, and so was a reasonable choice

for compatibility reasons. Second, Performer offers the ability to get

real-time statistics on its performance in terms of frame rate and CPU

utilization, and these were needed for performance analysis. Finally, Ada

bindings exist that allow Performer to be used from Ada applications, thus

allowing the development of an Ada implementation of the application.

Sky Plane

Crosshairs

Horizon Line

Figure 5: Thesis Virtual Environment

-29-

Z.2 Kaiman Filters

Kaiman filters provide a means to estimate state variables that are not

otherwise available in a system. Kaiman filters can also, under the right

assumptions, be used to predict the future state of a system. These

properties make the Kaiman filter desirable for tracking, monitoring, and

control systems, and much research has been done on Kaiman filter

applications both in the field and at AFIT [Maybeck94b, Friedman92,

Chang84].

The discussion that follows presents a high-level overview of the

predictor/corrector model and Kaiman filters, focusing on intuitive and

physical representations. It is not a rigorous mathematical development,

although formulae will be introduced as appropriate. Most of the material for

this discussion is taken from [Maybeck94a] and the first chapter of

[Maybeck79].

The Predictor/Corrector Model. Perhaps the best way to introduce

this topic is with an example. Let us assume that you (a somewhat

inexperienced sailor) are on a cruise. You wake up in the middle of the night

and discover that your navigation equipment is no longer working. You

immediately take a reading with a sextant to estimate your distance from

shore (for sake of simplicity, we will restrict ourselves to a one-dimensional

distance function, as, in the eastward direction). You estimate that you are

100 miles from shore.

You know that the sextant readings will not be completely accurate;

errors in the sextant mechanics, atmospheric disturbances, and lack of

experience will all affect its accuracy. Further, the readings are just as likely

to be too far east as too far west. Therefore, we can characterize the

-30-

probability distribution of your reading as gaussian, centered about a mean,

(i, of the reading (100 miles), and with a standard deviation, a, that is

dependent on your ability and environmental disturbances. Since you are an

inexperienced sailor, you reason that the possibility of your estimate being

wrong is fairly large, and that a is therefore somewhat large on this basis

alone.

Using this reading as a basis, you sail for some known time at a

"constant" velocity u (plus an error term w, modeled as a white gaussian

noise, which accounts for ocean currents or other perturbations,) and then

take another reading. As you sail, the probability distribution for your

estimate moves according to your motion model (constant velocity u); but it

also "spreads out" (the variance increases) because as you travel you become

less certain of your exact position (due to the error term w). Just before you

take a new measurement, the probability density will have a mean and

variance given by the following formulae:

]ip = [i + u * At

G2
p=G2 + c2

v*At

where the subscript p denotes propagated or predicted; <s2w is the strength of

the white Gaussian noise w (the height of the power spectral density curve -

this describes the power per unit frequency of the noise); (i and a are the

mean and variance, respectively, of your original reading, and At is the

amount of time that has elapsed. Intuitively, the new mean value is the

initial mean value plus the velocity at which you travel multiplied by the

amount of time that has elapsed. Similarly, the variance is the initial

variance plus the strength of the error term multiplied by the amount of time

-31-

ü2

* 2 + \ °> 1 /T2 . „2

that has elapsed. Also, since this prediction is based on a gaussian

distribution, it will also be a gaussian distribution.

When you take the new reading, you can use its probability

distribution and the probability distribution of the prediction to generate a

combined distribution. This combined distribution will have a mean and

variance given by:

f^C _2 . _2 ZD ~"~ 2 . 9. Z

-L--L JL

where the subscript c denotes combined or corrected; the subscript p denotes

a value for the prediction; and no subscript denotes a value for the new

reading.

This is the predictor/corrector model. At each time tt, you generate a

prediction of your state at time ti+1 using your current prediction model; then

at time ti+1 you take an actual measurement and use it to make corrections to

your prediction model. At time t0, you have the choice of either using an

actual measurement to start the cycle (as was the case in this example), or

using an assumed initial distribution.

Kaiman Filter Basics. With the predictor/corrector model as

background, we begin this discussion with a system that is driven by known

control inputs and monitored by measuring devices that provide information

about the system state by measuring the values of some linear combinations

of system variables that are corrupted by measurement noise. The state

information produced by these measuring devices cannot be exact; there are

qualitative and quantitative errors in the system that corrupt the accuracy of

-32-

the measurements. Qualitative errors occur because both the system and the

measuring devices themselves have error sources. Quantitative errors occur

because in all but the most trivial systems the measuring devices cannot

access all the system variables, and so cannot produce complete state

information. This situation is shown in the left half of Figure 6.

Controls

Optimal
State
Estimate

System Error
X Sources

*- System

\

System £
(Desired,
not know

State
but

n)

i

Observed

Measuring
Devices

Measures
Kaiman
Filter

Y Measuremen
1 Error Source

t
s

Figure 6: A Typical Kaiman Filter Application

To compensate for errors and lack of information, we add a Kaiman

filter to our system, as shown in the right half of Figure 6. The filter takes as

its inputs the observed (noise-corrupted and incomplete) measurements from

the system measuring devices and uses them to generate an optimal estimate

of the actual system state. It then propagates that estimate forward in time

until the next measurements are available, when it repeats the process to

produce another, updated estimate, and the cycle begins again.

-33-

In order to produce its estimates, a Kaiman filter maintains state

information in a number of vectors and matrices. These are briefly described

below:

• x is the estimate produced by the Kaiman filter. Typically, both an x~

(the predicted estimate) and x+ (the corrected estimate) are

maintained.

• P is the filter-computed state estimate error covariance. Again, both a
P~ from the prediction cycle and a P+ from the correction cycle are
maintained.

• Q is the modeled dynamics noise strength

• R is the modeled measurement noise covariance

• O (Phi) is the modeled state transition matrix

• B is the modeled control input matrix

• G is the modeled dynamics noise input matrix

• H is the modeled measurement matrix

The x vector and P matrix are updated during the predictor/corrector

cycle according to the formulae given below. During the prediction cycle, the

following propagations are made:

x(t;) = M(tt1) + Bu{ti_1) (1)

Pfc^GPfc^ + GQG1, (2)

where x(t[) is the x~ estimate for time tt, u is a control input vector for the

Kaiman filter, and the other symbols are as defined above. When the actual

measurement data arrives, the correction cycle performs the following

updates:

-34-

xft^xfä + KMlzM-Hxfc)] (3)

P(t?) = P(t;)-K(ti)HP(t-) (4)

where K(tt) is the optimal gain matrix for time tt. It denotes the relative

weight used in the filter correction step, and is calculated as shown in

Equation (5), below:

K{ti) = P(t[)HT[HP(t[)HT+R (5)

The other symbols are as defined previously.

To simplify the design and implementation of Kaiman filters, we make

several assumptions about the system environment:

• the dynamics of the system and the measuring devices can be

adequately modeled by linear functions.

• the system noises (error sources) and measurement corruption noises
are both white and gaussian with zero mean.

• we can identify an initial condition for the state probability density
function.

These assumptions may at first seem too restrictive to make a Kaiman filter

practical, but closer examination shows that this is not the case.

The first assumption (linear characteristics) is justifiable for practical,

historical reasons. A linear model is not only simpler to implement, but is

often adequate to model system behavior. If the model has some nonlinear

characteristics, engineers will usually use a linear approximation with linear

perturbation techniques such as Taylor series truncated to first order terms

about a nominal operating condition.

-35-

The second assumption indicates that noise sources are white and gaussian.

White noise often confuses people. Essentially, "white" means that the noise

value is not correlated in time; or in other words, knowing the value of the

noise at time (t^), or even at all times (^_j,^_2,^_3,...,t0), tells you nothing

about what the value will be at time tt. Whiteness also implies that the noise

has equal power per unit frequency (or power spectral density value) at all

frequencies, which results in a noise with infinite power. Since this cannot

exist in nature, this seems to destroy the usefulness of this assumption.

However, any system has a system bandpass: that finite range of frequencies

to which it will respond. Since this system bandpass is finite, we can

approximate white noise by a power spectral density (PSD) value that is

constant over a band of frequencies equal to (or slightly wider than) the

system bandpass, and that decreases to zero outside the system bandpass.

This approximated white noise has the desirable property that it has a finite

power and therefore can exist in nature; we call it wideband noise. Figure 7

shows the relationship between bandpass, wideband noise, and white noise.

From the point of view of the system's response, the wideband noise and true

white noise are identical. Therefore, we can treat the wideband noise as

white noise in our system noise model, which makes the noise model math

more tractable. Also, we can again run the (fictitious) white noise through a

linear system model called a shaping filter to produce noise with different

power spectral density values at different frequencies, thus enabling the

generation of a wide range of noise functions. Augmenting the shaping filter

model to the original linear model yields an overall model in the form of a

linear system driven by white noise.

-36-

Bode Amplitude Ratio Plot of System Characteristics

1 PSD of / \

White Noise /

/ \ 1 PSD of

\ Wideband Noise

u VA
frequency

System Bandpass

Figure 7: Bandpass, Wideband Noise, and White Noise

Whereas white describes the time correlation characteristics (or lack

thereof) of a noise, gaussian describes its amplitude characteristics. A

gaussian noise has the property that, at any given time, the probability

density function of the noise has a gaussian shape. This can be justified

physically by remembering that overall system noise is typically a summation

of many small error sources; the Central Limit Theorem indicates that this

summation is more and more gaussian as the number of sources increases.

In fact, it can be shown that, for as few as three uniformly distributed (very

nongaussian) variables, the probability distribution of the summation is

approximately gaussian. Thus, it seems reasonable to assume that the noise

in our system also follows this gaussian nature.

Gaussian distributions also have the desirable property of remaining

gaussian when propagated by linear systems. Thus, the conditional density

for the system state vector, conditioned on observed measurements, remains

gaussian at all times. Also, gaussian distributions can be completely

-37-

characterized by a mean \i and a variance cr2; this means that the filter can

propagate all the information available to the current time by computing

these two values each cycle.

The final reason for using gaussian distributions explains why

Maybeck describes Kaiman filters as "optimal, recursive, data processing

algorithms" [Maybeck79:4]. Many different criteria exist for the word

optimal, and this leads to different optimal estimates: the mode, or value

with the greatest probability; the mean, or "center of mass" value; the

median, that value such that half of the probability is to one side of it and the

other half to the other; the midrange, or average of the smallest possible x

value and the highest; and there are others. All of these definitions are

equally valid, and for gaussian distributions all are the same value: the

center of the distribution. So by any reasonable criteria, a Kaiman filter

working under the assumptions above will produce the optimal estimate of

the system state.

The third assumption asserts that we incorporate into our filter any

knowledge we have of initial system conditions. This allows the filter to

generate an initial probability density distribution and initiate the

prediction/correction cycle.

Kaiman Filter Variations. There are a variety of Kaiman filter

models available for the system designer. Chang and Tabaczynski have

written a survey article on the design and analysis of Kaiman filters in which

they describe several models useful in target tracking. The following

discussion summarizes their article [Chang84:99-101].

Kaiman filter approaches are differentiated by how they answer the

following two questions:

-38-

• What is the assumed dynamics model for the target?

• How is K, the filter gain, computed?

The first question asks us to make an assumption about the type of

motion that the filter will be expected to track. The two possibilities offered

are Constant Velocity (CV) or Constant Acceleration (CA) models. CV models

use a six-element state vector (three position variables and three velocity

variables in a 3D problem) while CA models use a nine-element state vector

(three positions, three velocities, and three accelerations). CA models (nine-

element state vectors) are viewed as more appropriate for tracking a

maneuvering target.

The second question relates to how the filter gain (K) is computed. As

mentioned previously, K is a weight applied during the filter correction cycle.

If K is very small, then the filter becomes insensitive to incoming

measurements; if K is very large, then the filter tends to ignore past

measurements. Four approaches to dealing with filter gain computation are

presented: The extended Kaiman filter (EKF); the finite memory filter; the

fading memory filter; and the constant gain filter (CGF).

The extended Kaiman filter (EKF) calculates the gain using Equation

(5) above, but allows for nonlinear dynamics or measurement models to be

employed in filter design. The finite memory filter calculates gain based only

on the n most recent data points. The fading memory filter uses all

measurements, but weights the result in favor of more recent measurements.

This type of filter is also referred to as an aging filter. The final alternative is

the constant gain filter (CGF). This approach is used when it is not possible

or desirable to compute the filter gain in real time. Instead of computing a

new gain each cycle, either a set of pre-computed gains or a single constant

-39-

gain is used. This method is the least expensive computationally (no gain

computation is required).

Chang and Tabaczynski feel that EKF filters offer a good compromise

between computational cost and filter performance for many applications.

Constant Gain filters were seen as a viable alternative to the computationally

more expensive extended Kaiman filter if the performance degradation

incurred could be tolerated. The other two approaches were not seen as

viable alternatives due to computational costs incurred without

corresponding performance gains. It should be noted that their evaluation

considered only single-filter designs, and not MMAEs at all.

Thesis Approach. This research uses a nine-state model, but

represents acceleration as a first-order Gauss-Markov process rather than

employing the more simplistic constant acceleration proposed by Chang and

Tabaczynski [Chang84]. Each of the elemental filters used is a constant gain

filter (CGF) in order to take advantage of the low computational cost (in

terms of both number of computations performed and time required).

2.3 Multiple-Model Adaptive Estimators (MMAEs)

A Kaiman filter alone is not sufficient to deal with the lag problem.

This is because a single Kaiman filter cannot accommodate all the possible

types of head motion that a typical virtual environment participant will

exhibit. Recall that a Kaiman filter is designed for a specific system

operating condition. If we design a Kaiman filter to generate head

orientation estimates under the assumption that the participant is making

only slow, benign head movements, we can expect that filter performance will

be degraded if the participant moves his/her head in a manner different from

-40-

the hypothesis (rapidly, for example). We would therefore like to enhance our

Kaiman filter to account for this possibility, and produce a system that will

not only generate optimal head orientation estimates, but react appropriately

to changes in the participant's head motion characteristics. One approach to

achieving this is through the use of a Multiple Model Adaptive Estimator

(MMAE).

MMAE Basics. An illustration of an MMAE is shown in Figure 8. An

MMAE uses K Kaiman filters running in parallel, each of which is designed

for a different hypothesized condition. In the case of head motion tracking,

we might use three filters: one for benign, slow motion; one for moderate

motion; and one for very rapid motion (more correctly a reacquisition motion,

such as might occur when trying to keep track of more than one target in an

environment).

Kaiman Filter #1

Kaiman Filter #2

Kaiman Filter #3 m

3S)-

;=B8>-*4
P2 A

r®
p3

Hypothesis
Conditional Probability

Computation

Figure 8: Multiple Model Adaptive Estimator

-41-

Since each of the Kaiman filters in the MMAE will produce a state

estimate, we need either a selection scheme to determine which is the best

estimate, or a blending scheme to allow for in-between cases

[Friedman92:60].

In the case of the selection scheme, each filter in the MMAE produces a

state estimate, xk, and a residual, rk (1 < k < K), which is the difference

between the actual measurement z at time ti and the filter-predicted

measurement (from the fcth filter) before that actual measurement arrives.

These residuals become inputs to a Hypothesis Conditional Probability

Computation engine, which assigns a probability weight, ph, to each filter

based on the current residual and the previous weight. The probability

weight pk produced is the conditional probability that the associated Kaiman

filter has the correct hypothesis about the real world, conditioned on all

measurements observed to that time. The filter with the smallest residual

relative to that filter's computed residual covariance (and therefore the

largest probability weight) is selected as the best-fit hypothesis and the state

estimate from that filter becomes the MMAE estimate [Friedman92:61]. This

is known as the maximum a posteriori, or MAP, version of the MMAE

algorithm. To relate this to Figure 8, above, the filter with the greatest pk

weight as determined by the Hypothesis Conditional Probability

Computation would be assigned a weight of 1.0; the other filters would be

assigned a weight of 0.0 (this will be modified slightly due to concern for "zero

lock-on", to be discussed later in this section).

The blending scheme works similarly except that the probability

weights, once produced, are multiplied as-is by the appropriate filter estimate

and the results summed to produce a final, optimal system state estimate as

-42-

a probability-weighted average of all the individual filter state estimates.

Thus, a conditional mean estimate is produced rather than a conditional

mode (as in the MAP form); this is often called the Bayesian version of the

MMAE algorithm. Intuitively, the filter with the correct hypothesis should

consistently produce the smallest residuals (relative to the corresponding

filter-computed residual covariance). This causes the probability weight for

that filter to grow closer to one, while the weightings for the other filters grow

closer to zero. Thus, the final state estimate is weighted most heavily

towards the estimate produced by the filter with the correct hypothesis. The

formulae are given below:

n(t\- ^)hz('-i)\Zi\ük' Z'-i) * P* fc-i) (6)
PkVij- K .

where fz,t\\a z,t.)(zt \ak,Z._;) is a probability density function defined by

fz{tl)\a,z{tJ
z^Zi-i) = ^ rexp{-|rf(^)A-J(^)rfe(^)} (7)

{2%)2\Ak{ti)\2

and the residual r^) and filter-computed residual covariance Ak(ti) are:

r*fe)=*,-ff*M**('r) (8)

Mti) = Bk(tt)Pk (tr)HI {h)+Rh(ti) (9)

There are several practical concerns in MMAE design relevant to this

research. One of these is the number of independent filters in the system.

While it is theoretically possible to design an MMAE with a Kaiman filter for

every possible hypothesized system condition, it is not usually practical (or

possible) to implement such a system. Therefore, it is incumbent upon the

-43-

designer to consider carefully the hypothesized system conditions when

designing an MMAE. Appropriate discretization of the parameter space is

essential to MMAE performance. Overly fine discretization (too large a

choice of if) is computationally burdensome and can generate difficulties in

discerning the difference in properties of residuals in different filters. Too

coarse a discretization can yield the condition in which no filters have an

assumed parameter value close enough to the true value to produce good

estimation or small residuals.

Another concern is huge residuals. When a filter has a wrong

hypothesis, we expect that the residual values for that filter will become very

large, possibly too large for the computer system to represent. When this

happens, the filter is said to be divergent. To prevent this, the MMAE

monitors these residuals and, if any becomes too large, the appropriate filter

is re-initialized with the current estimate x (emanating from the right side of

Figure 8, once the effect of the divergent filter is removed).

A last concern is zero lock-on. Zero lock-on occurs when the probability

weighting associated with a particular filter is allowed to go to zero, as due to

huge residuals in a divergent filter. When this occurs, the weighting for that

filter as computed by the iterative computation of Equation (6) will "lock-on"

and remain at zero. This will result in outputs from that filter being ignored,

even if the associated hypothesis should later become correct due to a change

in the real world environment. There are several methods for dealing with

this problem. One is to tune all filters to prevent initially incorrect niters

from drifting too far from the true state. This has the associated drawback of

causing all filters to look alike and be weighted essentially equally,

incapacitating the adaptation process. Another common method is to enforce

-44-

an ad-hoc lower bound on the probability weightings, thereby preventing any

filter from reaching a zero probability weighting.

Thesis Approach. For this research, a computationally tractable

three-filter MMAE was chosen. The first filter was designed for slow, benign

head movements; the second for moderate head movements; and the third

for rapid movements such as occur in a target re-acquisition. The MMAE

checked each filter after every measurement correction to ensure that the

residuals for that filter had not become too large. If this occurred, the filter

was re-started using the current MMAE estimate. Also, a lower probability

bound of approximately 0.01 was enforced to prevent zero lock-on.

2.4 Software Architectures

With the advent of Software and Systems Engineering, the focus of

producing software systems has moved somewhat away from data structures

and algorithms and turned to the organization of the various components

that comprise the overall system - the software architecture. There are

tremendous benefits to be gained by more optimal arrangement of system

components, more standard interfaces between components, and more

effective means of describing and analyzing system components.

Historical Development. The history of software development has

been marked by a desire on the part of practitioners to increase the level of

abstraction; to move farther from the details of the hardware that they work

with. In the 1950s, programming was done in machine language, and

programs and data had to be explicitly placed in the computer's memory.

Programmers soon realized, however, that certain sequences of instructions

were being used and re-used quite frequently, and that replacing them with

-45-

simple, easy-to-remember character codes would reduce programming time

and errors. This led to the first abstraction: substitution of mnemonic codes

for sequences of machine instructions. This trend toward higher level

abstractions continued with the development of more abstract programming

languages to represent the new concepts and ideas being developed and make

them simple for the programmer to use.

Today, we have again pushed the level of abstraction at which we work

upward with the advent of software architectures and domains. In a draft

version of Air Force Pamphlet 63-115, a software architecture is defined as "a

top-level description of a software design defined early in the system's fife

cycle". It goes on to list the key component of a software architecture:

• Components. These are the building blocks of the system. They may

be partitioned according to algorithmic functions, reusable
components, associated objects, or any appropriate scheme.

• Relationships. These are the connections between components, and
define the data and control interfaces both between the components

themselves, and possibly between the software system and the outside
world. These relationships should also allow for analysis of the

architecture to determine such things as critical timing paths and

throughput attributes.

• Style. These are the guidelines and principles to be used in

implementing the relationships defined above, and also any constraints
which must be recognized. [USAF93:4-41,4-42]

There are many benefits to designing a system around an existing

software architecture. First, and perhaps most important, is the time savings

involved. Designing new systems as variations of similar existing systems

(and reusing the existing architecture and design information) greatly

-46-

reduces the required design time. Second, reusing an architecture also allows

the designer to reuse the knowledge and experience of the original designer.

Finally, a good software architecture allows the designer, developer, and

potential customers to visualize complex systems and relationships in a more

natural, intuitive fashion.

General Architectural Styles. David Garlan and Mary Shaw have

described many current architectural styles such as filters and pipes; data

abstraction and Object-Oriented organization; event-based, implicit

invocation; layered systems; repositories; interpreters; and heterogeneous

systems that are combinations of the aforementioned styles [Garlan93:4-13].

Except where noted otherwise, the material for the following discussion is

based on material from their article.

In pipe and filter systems, each component, or filter, takes in a set of

well-ordered inputs, does some local transformation on them, and

incrementally produces a set of well-ordered outputs. The connectors

between filters are called pipes. The filters in a pipe and filter system are

constrained to work in a vacuum, without knowledge of what their input or

output sources are. This architectural style is often used in compiler and

distributed system design.

Data abstraction and Object-Oriented (00) organization groups system

entities and their allowable operations together as objects. Objects

communicate and interact with each other through function and procedure

invocations. As with the pipe and filter systems above, each object in this

style should be independent, neither required to have information about any

other object in the system, nor required to request needed information for

determination of its own state from any other object in the system.

-47-

Event-Based systems move away from the more traditional styles

defined above. Instead of waiting passively for an outside entity to request a

service, agents in an event-based system broadcast (or announce) the

occurrence of an event. When this happens, all other agents in the system

that have declared an interest in that event are notified. Agents declare an

interest in a particular event by having a procedure or function call for that

event that is invoked by the system manager when the event occurs. Thus,

the event broadcast implicitly invokes the corresponding procedure or

function calls. Note that an agent cannot guarantee the order in which other

agents will respond to an event, or know when they finish responding. This

style is commonly used in packet-switched networks, user interfaces that

separate data presentation and data management, and some programming

environments.

Layered systems are hierarchical systems in which each layer provides

more (and usually more abstract) services than the layer beneath it. Usually,

each layer is accessible only by the layers surrounding it in the hierarchy.

Protocols define interaction between layers. This style of architecture is most

commonly used in defining communications systems (such as the

International Standards Organization Open Systems Interconnect, ISO OSI,

model).

A repository can be broken up into two components: a central data

store that maintains the current state of the repository; and one or more

independent components that operate on the central data store. One common

example of a repository is a blackboard architecture in which the blackboard

is a shared common data base that is accessed and updated by independent

knowledge sources containing application-dependent information. Blackboard

-48-

Systems have been used to implement speech and pattern recognition

systems.

A Table-driven Interpreter is a virtual machine implemented as

software. Interpreters take a pseudo-program as input, and produce an

execution of the program as output. As an example, the BASIC language is

usually an interpreted language. Programs written in BASIC are not

generally compiled into an executable; rather they are interpreted by a

BASIC execution engine, and the results returned to the user. Interpreters

are commonly used to overcome differences between the user's expectations of

a system, and the actual abilities of the hardware.

One other architectural style mentioned by Garlan and Shaw is the

domain-specific architecture. Domain-specific architectures seek to define a

generic reference framework for a specific software domain (such as command

and control or database management systems) that can then be specialized

for specific system instances [Garlan93:13]. Much recent work has focused on

defining software domains and developing architectures for them. Don

Batory and Sean O'Malley, however, have developed a domain-independent

architectural meta-model. Their meta-model allows complex system

architectures to be built up from low-level components belonging to one or

more realms. Members of a realm have the same interface; thus members of

a realm are plug-compatible [Batory91:2-3].

Much recent work in this area has been done at AFIT. Mark Snyder

developed ObjectSim, an object-oriented simulation architecture that allows

graphics applications to create and manipulate scenes [Snyder93]. Snyder's

work is being continued and expanded by Jordan Kayloe, who is translating

the ObjectSim code into Ada 9X and also expanding its capabilities

-49-

[Kayloe94]. Work also continues to bring software engineering and Ada 9X

into the graphics research domain at AFIT.

The Obiect Modeling Tp.chnioue (OMT). OMT is an object-oriented

approach to the analysis and design of software systems that was developed

by Dr. James Rumbaugh and his colleagues at the General Electric Research

and Development Center. OMT focuses on identifying elements of the system

(called objects) and denning their behaviors and the relationships between

them. This is in contrast to more traditional functional decomposition

techniques that focus on specifying and decomposing system functionality

[Rumbaugh91:6]. OMT is a very rich modeling technique that covers many

aspects of software specification and design. However, this introduction will

focus on those aspects of OMT that are used in this research.

One of the models available in OMT is the Rumbaugh diagram. This

model shows the objects in a system, as well as their relationship to other

system objects. A simple Rumbaugh diagram is shown in Figure 9. Objects

in a Rumbaugh diagram are enclosed in boxes. These boxes may optionally

Shape

Line Drawing Closed Shape

Ellipse Polygon

Vertices

Figure 9: Rumbaugh Diagram for a Shape Class
[Adapted from Rumbaugh91:44]

-50-

have three subdivisions: one for each of object name, object attributes

(usually state variables), and object operations (allowable operations on the

object). Object can also be related to other objects, and OMT provides two

relationships. The first, represented by a triangle, is the inheritance

relationship (also known as the "is-a" relationship). An object connected

underneath another object by this relationship inherits all the attributes and

operations of the higher-level object. An example of this relationship in

Figure 9 is the relationship between Shape and Closed Shape. Another way

of viewing this is by specialization/generalization; we say that Closed Shape

is a specialization of Shape, or conversely that Shape is a generalization of

Closed Shape. The same can be said of Shape and Line Drawing. In terms of

class relationships, Shape is a super-class, and Line Drawing and Closed

Shape are sub-classes of Shape.

The other pre-defined relationship in Rumbaugh diagrams is the

aggregation relationship, denoted by a diamond symbol. This relationship

indicates that an object includes, or is made up of, other objects. This is

demonstrated in Figure 9 by the relationship between Polygon and Point. A

Polygon object includes Point objects in its definition; hence the relationship.

Aggregation relationships can also have multiplicity balls that denote the

cardinality of the relationship. An open circle indicates zero or more

instances of the contained object (the contained object is optional) while a

filled circle indicates one or more instances. Additionally, a number or range

of numbers (such as 2+ for "at least two", or 1..4 for "one to four, inclusive")

may be used to be more specific about the multiplicity.

Other relationships are denoted by a simple line (with possible

multiplicity balls) between two objects. When this general relationship

-51-

symbol is used, a label that describes the relationship is usually added to the

symbol. An example of a labeled relationship is shown between Polygon and

Point in Figure 9. In this case, the relationship is that a point is a vertex of

the polygon that contains it. Please note that labels can be added to the pre-

defined relationships as well.

Thesis Approach. An object-oriented architectural approach was

selected for this thesis work. Object-oriented design and programming

techniques are used both at AFIT and abroad, and offer the designer many

advantages. Object-oriented techniques help the designer to focus on the

problem domain, thus producing systems that are "based on the underlying

framework of the application domain itself, rather than the ad-hoc functional

requirements of a single problem" [Rumbaugh91:6]. Focus on the domain

leads to designs that are more amenable to later requirements changes; not

as prone to the massive ripple effects of requirements changes noted in

systems designed through functional decomposition.

A graphically-based modeling technique was desired for doing the

system design work. Graphical representations are often simpler to

understand that corresponding text-based descriptions, and also often convey

information in a way that is more intuitive. The Object Modeling Technique

(OMT) is such a graphical tool, and its rich notation and modeling power are

more than adequate for this research.

2.5 Summary

In order to do this research, a large amount of background information

was needed. This information came from the virtual environments, Kaiman

filter, MMAE, and software architectures areas.

-52-

Virtual environments are not a new concept, but rather the most

recent step in a continuing development that started in the 1960s with Ivan

Sutherland. During the 1970s and into the 1980s, research split into several

different areas, but it is now beginning to reconverge as technologies

developed in one area meld with technologies from other areas.

Kaiman filters have also been around for quite a while, and have been

used successfully in tracking-related applications. There are many different

types of Kaiman filter, each of which offers the designer a different set of

abilities and constraints. Chang and Tabacynski's survey article indicates

that the best overall filter design is the Extended Kaiman Filter, or EKF.

They feel it strikes a good balance between computational load and filter

performance. The Constant Gain Filter is also seen as a good choice. It offers

lower computational load and somewhat poorer overall performance, but it is

still a good filter design.

MMAEs seek to enhance Kaiman filter design by using two or more

filters in parallel to adapt to changes in the characteristics of the task being

performed. In terms of this research, MMAEs allow a predictor to adapt to

changes in the head movement patterns of a virtual environment participant.

Two MMAE designs were discussed; the Maximum A Posteriori, or MAP,

design; and the Bayesian design. The MAP design selects the filter with the

best prediction (as determined by the filter residual, or difference between

the filter prediction and the actual measured data) and uses that filter's

output as the MMAE output. The Bayesian design weights each filter

according to its residuals, then multiplies the filter estimate by its associated

weight and sums the results to produce an estimate that is a weighted mean

of the filter outputs.

-53-

Finally, software architectures seek to describe systems as a collection

of well-defined components. This is a relatively young field, and much

research is currently underway to identify various architectures and domains

of similar applications. Several current architectural styles were mentioned

including object-oriented design, which seeks to model a system as a

collection of independent but interacting objects. Each of these objects has its

own state and behavior. This particular architecture/design style is the style

that was used in this research.

-54-

Ill Software Design and Implementation

The purpose of this chapter is to provide the reader with the thought

process used and decisions made during the design and implementation of

the software. Good documentation of the requirements and design process is

vital to the software engineering process. Good documentation not only

facilitates discussion between the original designer and the user, but also

provides a means for subsequent designers and implementors to make

similarly informed decisions about modifications and/or extensions to the

system.

Unless otherwise noted, the software engineering definition of the

word state is used throughout this chapter. In software engineering, state is

defined in reference to object behavior. In the words of Rumbaugh:

A state is an abstraction of the attribute values and links of an
object. Sets of values are grouped together into a state according
to properties that affect the gross behavior of the object.
[Rumbaugh91:87]

Essentially, a state represents a set of possible variable values for which the

response of the object to stimuli (such as method calls from other objects) is

identical. This definition makes it possible to discuss object behavior at a

qualitative level; the detail of quantifying variable values is abstracted away.

This also reduces the number of object states, thus simplifying graphical

representations.

Commonly, an object includes variables for the express purpose of

identifying the object's state. These are referred to in this document as state

variables. An example of this is the FOGMA_Filter class, which includes the

state variables filterjnitialized and filter_divergent. The values of these

55-

variables have a direct role in determining the state of the FOGMA_Filter

object.

3.1 Prototype Work

In order to gain a better understanding of the technical aspects of the

application to be developed, a similar existing virtual environment

application called redflag was studied and enhanced. Redflag, which was

developed by Major Michael Gardner [Gardner93], used position and

orientation data collected from actual aircraft during training exercises to

generate a virtual environment that allowed a participant to replay the

mission. A Polhemus Isotrak sensor attached to an HMD worn by the

participant allowed the view into the environment to change as the

participant changed head orientation. A prototype software MMAE had been

added to this software by captains Doug Blake and Bill O'Connor

[0'Connor92].

Initial testing by the author showed that the application did not meet

performance expectations. Subsequent analysis uncovered serious problems

that needed to be addressed before the software could be used. A partial

listing of these software problems, and the actions taken to correct them, is

contained in Appendix A of this document. Generally, the problems fall into

three main software engineering areas:

• Object Encapsulation. The prototype code did not encapsulate the

various objects it used. Instead, a more ad-hoc method of adding code

where it was most convenient seems to have been used. As an
example, matrix operations, Kaiman filter operations (for three filters),

and MMAE operations were all implemented in a single monolithic

-56-

object. This made isolation and/or correction of errors very difficult
and time-consuming.

• Testing Strategy. Several of the errors discovered in the prototype

code were related to bad values (either nonsense values or values that

were outside the prescribed range for the variable) being assigned to

critical state variables. In most instances, these errors were readily
apparent when the values of these variables were printed on a routine
basis. The conclusion here is that proper testing techniques for these

variables, and the algorithms used to update them, were not used.

Also, these errors were not detected because the code did not contain

range checks for input values.

• Unwise re-use. The prototype software re-used several objects from
earlier work as though they were library objects. However, these

objects did not have stable behavior. Therefore, the behavior of the

prototype software was also unstable.

3.2 System Requirements and Constraints

In order to use the software developed in this research as a basis for

further work, it was necessary to define the requirements and constraints

under which the software is expected to operate. This will allow future

designers to make informed decisions concerning the ability or inability of

this software to meet their needs.

In defining the requirements for this software, the author relied on

both his own experience with the prototype code and the requirements

developed by Shaw [Shaw93] for a virtual environment application. The

requirements and constraints are discussed below.

Frame Rate. The system must operate at a reliable minimum of 10 Hz

(ten frames shown to the participant per second). Shaw points out that the

57

pivotal requirements for virtual environment applications are high frame

rate and low system lag [Shaw93:291-292]. He also states that systems with

frame rates less than ten Hertz are not considered responsive [Shaw93:292].

Also, most current applications in the AFIT graphics laboratory run at

between 12 and 15 Hz, so 10 Hertz seems a reasonable choice for this

research.

Performance Data. The system must provide the designer with a

method to gather data that will allow analysis of system performance. This

will allow the designer and developer to characterize the overall system

performance, and to develop metrics for comparing various implementations.

Shaw points out that currently available performance measures are

not always helpful. Many allow measurement of CPU time, but not actual

time; and actual time is also of interest when designing a virtual

environment (a process that is waiting for I/O is just as bad as one that is

taking too long to do a computation) [Shaw93:292]. However, some measure

of performance is desirable, and CPU time can serve as an indicator even

though it may not be all-inclusive. This situation is somewhat analogous to

the argument that lines of code (LOC) measures, while not a true measure of

software quality, can be an indicator of aspects of software quality.

Object Encapsulation. The objects in the system must be

encapsulated so that change in the implementation of a particular system

object do not necessitate corresponding change in other system objects (the

"ripple effect"). This also supports the notion of plug-compatible components

by enforcing high cohesion within objects and loose coupling between objects.

Also, testing, debugging, and enhancing the software will be made easier.

-58-

Portability. The software developed for this research must be

portable. Historically, AFIT has undergone an upgrade to the computer

systems (either in the computer platforms themselves, or in software support

packages and libraries) approximately every two years; this has invariably

led to problems with platform- or support-specific software in the application

base. Such dependencies are not inherently undesirable; indeed, often the

rationale for choosing one platform or support package over another is that it

provides features (not present in the other) that are advantageous to the

work at hand. However, these dependencies should be kept to a minimum

and clearly identified so that portability impacts can be properly determined.

Readability and Understandabilitv. These are always concerns for

the software engineer, but in this case they are even more paramount. It is

unlikely that follow-on research will be done by software engineers; more

likely, this line of research will be continued by electrical engineers. Since no

assumptions can be made about the level of software engineering experience

on the part of these researchers, and since this research is to form a

foundation for them to build upon, it is very important that this software be

designed and implemented in as intuitive a fashion as possible. This will

allow future researchers to leverage their productivity by reusing the design

and implementation knowledge and experience embodied by this research.

One of the methods used to improve readability and understandability

within the software was a set of naming conventions. Essentially, constants

used within the software are in all capitals to make them easily recognizable

(example, PATH_SIZE). Since there is no way to distinguish individual

words, underscores are used to separate words in compound names. Type

names and function names all begin with a capital letter, and also capitalize

59-

the first letter of each word in compound names (example, FilterWeight).

Variables are done in all lower case letters (example, viewpoint). There is an

exception to this convention; abbreviations (example, MMAE) are typed in all

caps regardless of what is being named. Also, matrices are named with a

capital letter (example, Xc) to follow mathematical convention.

3.3 System (Architectural) Design

In order to meet the requirements and constraints, the application

needed to interact with several external entities. These interactions were

captured using the Rumbaugh Object Modeling Technique (OMT)

[Rumbaugh91], and are presented as Figure 10.

Essentially, the application needs to interact with: a tracker, which in

the case of this research communicates across an RS-232 (serial)

communications port; and two display devices (the screen, and a Head-

Mounted Display unit, or HMD).

The application was then broken down into a class diagram, also

modeled with OMT. This diagram is shown as Figure 11. Class details

shown in the figure are discussed later in this chapter.

System

9 1 1
Tracker Application Display

? V
RS-232
Port

Screen HMD

Figure 10: System-Level Architecture

-60-

pfdisplay
Uses

1 i 1

ThreeSpace MMAE Renderer

MMAE_mode

Get_COS Initialize

Correct

Predict

Uses

Uses

£,
GenMatrix

Uses

Kalman_Filter

rows

columns

base

filter_initialized

filter_divergent

Initialize

Update

Propagate

Restart

Initialized

Divergent

Addition

Subtraction

Multiplication

Determinant

Transpose

Inverse

Figure 11: Top-Level Class Diagram

Kalman_
Filter MMAE

Z \ £. p».

FOGMA_MMAE FOGMA_Filter

Figure 12: Concrete Implementations for
Abstract Classes

-61-

In Figure 11, MMAE and Kalman_Filter are abstract classes; they are

the foundation for a group of related classes. This research provided only one

such related class for each, shown in Figure 12.

The ThreeSpace class is the interface to the Polhemus 3SPACE

magnetic tracker. The name is taken from Polhemus 3SPACE magnetic

tracker, and was chosen to highlight that this is not intended to be a general

purpose class. This is discussed in more detail in a later section. The

renderer class needs are met by the Performer [Performer90] rendering

library.

MMAE and Kalman_Filter were implemented as abstract classes for

two reasons. First and foremost, this approach encapsulates those data

structures and operations that are common to any such class

implementations. This provides future developers with a template from

which to develop other concrete implementations.

Secondly, any class derived from the abstract class is automatically

considered to be of the same type as the base class, and will inherit all of its

data structures and method definitions. In other words, the First-Order

Gauss-Markov acceleration filter class, FOGMA_Filter, is considered to be of

type Kalman_Filter, and will inherit all of the data structures and method

definitions in Kalman_Filter; this is also true for any other class derived

from Kalman_Filter. This property of the derived classes supports Batory

and O'Malley's idea of plug-compatible realms of software components

[Batory91]. A realm contains a number of components, each of which

presents the same interface to the external world. As long as that interface

requirement is met, then software components from the same realm can, with

-62

some limitations, be interchanged without affecting the operation of the

calling software.

3.4 GenMatrix Class

MMAEs and Kaiman filters are inherently dependent on matrices and

vectors. Both MMAEs and Kaiman filters use matrices and vectors to

maintain state information. Further, state changes normally involve a large

number of matrix operations. While these operations could be performed on

an array (or set of arrays), the intimate relationship between MMAE

behavior and matrix operations made development of a separate matrix class

that localized and encapsulated the matrix operations an appropriate and

obvious choice. Unfortunately, the existing matrix classes at AFIT were

designed for graphics applications, and could support only square matrices of

dimensionality three or four. Therefore, a general matrix class, GenMatrix,

was developed to support the matrix operations needed for the thesis

software.

GenMatrix implements a matrix as a dynamically allocated two-

dimensional array; the dimensions of the array are provided by the client

program when the matrix is instantiated. The matrix elements are stored as

floating point numbers. It would have been possible to implement GenMatrix

in such a way that any numeric type could be used as a matrix element, but

this was not done. Recall that one of the requirements for this research was

readability and understandability of the code. Implementing GenMatrix for a

generic element type would be more complex (and therefore less readable and

maintainable) than the float version. Also, floating point representations are

63-

appropriate for a wide range of applications, including those defined in this

research.

GenMatrix supports most of the commonly used matrix operations

(addition, subtraction, multiplication, determinant, inverse, and transpose),

as well as methods to add or multiply each matrix element by a constant.

GenMatrix also includes methods to clear the matrix (set all matrix elements

to 0.0), return the matrix dimensionality (the number of rows or columns), set

or return the value of an individual matrix element, and print the matrix

elements.

GenMatrix operations, to the maximum extent possible, verify matrix

compatibility before performing the operation. As an example, the multiply

method verifies that the matrices have the same inner dimension (if A is an

m x n matrix, then B must be n x p in order to multiply A by B). If the matrix

dimensions are not compatible for the operation requested, then the operation

is not done. How the calling procedure is notified of this decision is

dependent on the implementation, and is discussed later in this chapter.

3.5 Kaiman Filter Design

With the GenMatrix class complete, the next class developed was

FOGMAJFilter. As mentioned previously, FOGMA_Filter was designed as a

derived sub-class of Kalman_Filter. Kalman_Filter defines the minimal,

common interface for any Kaiman filter implementation, and includes the

following methods:

• Initialize - Initializes the filter.

-64-

• Update - Updates the state of the filter for an actual measurement, Z,
which is an input to the method.

• Propagate - Generates and returns a prediction of the filter state one

sample period into the future.

• Restart - Resets a filter that has become divergent to a known state.

• Initialized - Indicates whether or not the filter has been successfully

initialized.

• Divergent - Indicates whether or not the filter is currently divergent.

In addition to the methods described above, two state variables,

filter_initialized and filter_divergent, are included in the Kalman_Filter class

definition.

The behavior of Kalman_Filter is as follows. When instantiated, the

Kalman_Filter object is in the Uninitialized state, and will accept only an

Initialize or Initialized method invocation (Initialized will indicate that the

filter is not initialized). When Initialize is invoked, the object is initialized,

and it transitions to the Operational state. In this state, the object will

accept and respond to method invocations as long as it is not divergent. If it

should become divergent, it transitions to the Divergent state. In this state,

it will accept only a Restart or Divergent method invocation (Divergent will

indicate that the filter is divergent). When Restart is invoked, the filter will

reset and then transition back to the Operational state. A diagram of this

behavior is included as Figure 13. Note that in the figure, Method Call

indicates an invocation of any of Propagate, Update, Initialized, or Divergent.

It is used as a shorthand notation to keep the diagram from becoming

cluttered.

-65

1 / filterjnitialized = FALSE

Initialize ()

Method Call

[~filter_divergent]

i
Uninitialized / filter_initialized = TRUE;

filter_divergent = FALSE

Operational

Restart ()

/ filter_divergent = FALSE

Divergent
Method Call

[filter_divergent]

Figure 13: Behavior Diagram for Kalman_Filter Class

FOGMA Filter Software Design. FOGMA_Filter models a Kaiman

filter that uses a First-Order Gauss Markov acceleration (FOGMA) dynamics

model to generate its predictions. The most important method added to

FOGMA_Filter is Project (as in "to throw ahead"). This method allows the

filter to generate a prediction (or projection) of its state n sample periods into

the future, where n is an integer greater than or equal to two. Project was

added to the FOGMA_Filter design because the prototype code indicated a

need for it. In the prototype code, the time required to read data from the

Polhemus Isotrak was equal to the time needed to generate a frame for

display (l/10th of a second). Therefore, a prediction of two sample periods

into the future (to overcome both the lag in the data read and the lag in frame

generation) seemed necessary.

-66-

The other methods added to FOGMA_Filter all provide the client with

visibility to the various state variables. Methods are included to return the

following values:

• RAR (the likelihood quotient). This is an indication of the confidence

level of the filter estimate. The formula for RAR is given below:

RAR = ^A^r

where r is the residual vector (the difference between the filter
predicted measurement and the actual measurement for the same

time) defined as

r = z - Hx[t[j

and A is the filter-computed covariance for the residual defined by

A = HP(t;)HT+R

The equations for r and A actually appear earlier in this document as

part of Equations (3) and (5), respectively.

• RR (the ME/I likelihood quotient). This is similar to RAR, defined

above. The formula is

RR = rTr

where r is as defined above. The difference between RAR and RR is
that RAR is scaled by the A term whereas RR is not.

• x~, x+, P~, P+, as defined in Section 2.2.

• K (the filter gain). The gain is an optimal weighting value used as a

correction to the filter. Very large gain values indicate high relative
weight on incoming measurements, and low relative weight on the

filter output.

67

• the current residual vector (the difference between the predicted filter
state, and the actual data value for the same sample period); the

formula for this is shown above.

Two additional points are worth mentioning. First, the filters used in

this research were tuned under the assumption that inputs (in the form of

actual measurements) are constrained to be in the range [-1.0, 1.0]. This is

because the Polhemus 3SPACE magnetic tracker returns directional cosines,

which are always in that range. If, however, a different input source is

desired, the filters will have to be re-tuned for the new input ranges.

The second point concerns values for filter initialization. In order that

the filter's operating characteristics might be changed without having to

recompile the code, the values needed for initialization were stored as ASCII

text files. These files are read in by the filter initialization method, and

contain the following values in the order specified:

• H, R, P~, x~, as defined in Section 2.2.

• a (sigma), the standard deviation of the head acceleration assumed by

the filter.

• z (tau), the correlation time of the head acceleration assumed by the

filter.

• T, the sample period (the inverse of the sample rate, or number of

times per second that the filter is to generate a prediction).

• RAR_Limit (the minimum RAR value at which the filter is considered

to be divergent).

FOGMA Filter Technical Design. The First-Order Gauss-Markov

acceleration (FOGMA) model was chosen because it is simple, linear, and has

-68

been used successfully in many tracking environments. It also has desirable

properties in terms of on-line computational load. A Kaiman filter normally

requires initial values for eight variables (x~, P~, Q, R, $, B, G, and H) in

order to initialize (these variables are described in Section 2.2). The FOGMA

model allows the values of O, Q, and P~ to be pre-computed off-line if

suitable values can be determined for the standard deviation c and the

correlation time x for the head motion acceleration assumed by each of the

filters.

The particular implementation used in this research also had another

desirable property. The filters do not expect or allow for any control inputs

from the participant; therefore, we can set B [the control input matrix in

Equation (1)] to zero and G [the modeled dynamics noise input matrix in

Equation (2)] to the identity matrix. This in turn allows the prediction

equations defined in Section 2.2 [Equations (1) and (2)] to be simplified.

Since B = 0, the second term in Equation (1) can be eliminated; further, since

G = I, it can be eliminated from Equation (2). The resulting equations are

shown below, and were implemented in the FOGMA_Filter:

x(*f) = «*(£,) (10)

p(t[)=^p(tt_1y+Q (ID

All terms in Equations (10) and (11) are as denned previously. The correction

equations cannot be further simplified, so remain as defined in Section 2.2,

Equations (3) and (4). The Project method uses Equation (10), but takes the

current $ and multiplies it by itself n-1 times (remembering n is an integer

input greater than or equal to two) before multiplying the result by the

-69-

current (this is appropriate in the case of a time-invariant model with

constant $)•

H, R, x~, and T were identical for all three filters. The measurement

matrix H is shown below. It was determined from the fact that only position

measurements (indicated by the 1 entries in the first three columns) are

available, and the fact that x~ is comprised of three position values, three

velocity values, and three acceleration values (in that order):

H =
10000000 0
010000000
001000000

The measurement noise covariance R was determined through trial and error

because the Polhemus 3SPACE User's Manual [Polhemus90] does not provide

any direct values for sensor noise characteristics. This omission is

understandable since noise values are dependent on environmental

conditions. In fact, Steve Bryson describes Polhemus sensor noise as

"significant, very noisy at distances of greater than 45 to 50 inches", and

"very sensitive to location" [Bryson92:254]. Experimentation in the AFIT

graphics laboratory showed acceptable filter performance at assumed noise

variance levels of 0.01 with approximately three feet separating the source

and sensor. This value was used in the R matrix, resulting in the following:

R
0.01 0 0

0 0.01 0
0 0 0.01

It seemed reasonable to assume that the participant would initially be

looking straight ahead into the virtual environment, and that his/her head

would (at least initially) be still. In other words, the initial velocity and

acceleration components of the x~ vector would be zero, and the position

70

components would indicate "straight ahead". In the case of the thesis

environment, "straight ahead" is defined by a right-hand coordinate system

with the participant looking along the positive Y-axis, the positive X-axis to

the right, and the positive Z-axis straight up. The equivalent directional

cosine values are (0, 1, 0). This leads to the initial value for x~ shown below:

0
1
0
0

x = 0
0
0
0
0

Finally, the sample period, T, for the filters was set at l/10th of a second (0.1

seconds) to correspond to the frame rate (10 Hz) used in the application.

<£, Q, and P~ were determined for each filter based on that filter's a

and x values, a is the standard deviation of the head motion acceleration

assumed by the filter; it represents the bandwidth to which the filter will

respond, x is the correlation time of the head motion acceleration assumed

by the filter; it indicates how long a given head motion acceleration persist in

time and is inversely proportional to the assumed bandwidth of the

acceleration process. The formulae for the elements of <£ and Q were based

on the work of Tobin [Tobin86]. The formula for the <J> matrix is as follows:

0> =

1 0 0 T 0 0 u 0 0
0 1 0 0 T 0 0 fl5 0
0 0 1 0 0 T 0 0 fit
0 0 0 1 0 0 135 0 0
0 0 0 0 1 0 0 135 0
0 0 0 0 0 1 0 0 135

0 0 0 0 0 0 155 0 0
0 0 0 0 0 0 0 I 55 0
0 0 0 0 0 0 0 0 155

-71

where

flS = X

fas = T

T-x 1-exp f-T\\
\ i))

1 - exp

/&- = exp
(-T\

(13)

(14)

(15)

and T is the sample period. Equations (13) through (15) are from Tobin's

work [Tobin86:52].

Similarly, the Q matrix is also based on Tobin's work, and is defined by
"q21 0 0 q13 0 0 qls 0 0 '

0 qn 0 0 q13 0 0 q15 0
0 0 qn 0 0 q13 0 0 q15

q13 0 0 q33 0 0 q35 0 0
Q= 0 q13 0 0 q33 0 0 q35 0

0 0 q13 0 0 q33 0 0 q35
qJB 0 0 q35 0 0 q55 0 0
0 qls 0 0 q35 0 0 q55 0
0 0 q15 0 0 q35 0 0 q55

where

Qn = <*' 2\2jll_2x2T2-4 x3T * exp(-%)] + 2x3T - x4 exp("2%) + x4 (16)

Ql3=G •

xT2 + 2[x2T * exp("%)] + x3 - 2x3 exp("%) -2x2T +

[x3exp(-2%)

q15 = c2{-2xT*exp(-yz) + x2 -x2exp(~2T/x

q33 = <52{2xT-3x2 +4x2 exp(-%)-T* exp(-2%

q35 =a2{t-2xexp(-%) + Texp(-2%)}

(17)

(18)

(19)

(20)

-72-

fe=^{l-exp(-2%)} (2D

Again, the formulae are taken from Tobin's work [Tobin86:53-54].

The final initialization matrix, P~, was generated as the appropriate

steady state solution to Equations (1), (4), and (5) from the given 4>, H, Q,

and R matrices using Matlab [MatLab90]. An example code segment is

included below:

Phi = [Appropriate Phi matrix]
I = [10000000 0

010000000
00100000 0,
00010000 0,
00001000 0,
00000100 0,
00000010 0,
000000010
00000000 1]

H = [100000000;
010000000;
00100000 0]

Q = [Apvropriate Q matrix]
R = [0.01 0 0;

0 0.01 0;
0 0 0.01]

[K, Pm, Pp, E] = dlqe (Phi, I, H, Q, R)
save KF.out K Pm Pp -ascii

The discrete linear quadratic estimator (dlqej function provides a Kaiman

filter based solution for a given <X>, G, H, Q, and R. It returns the steady state

P~, P+, and K matrices. In our case, G = I (the identity matrix), so a 9x9

identity matrix is used in the code segment.

The $ and Q matrices were generated by the filter as part of the

initialization process. However, since the P~ matrix was generated by

Matlab, it was read in as part of the filter data file.

73

3.6 MMAE Design

Similar to FOGMA_Filter (and for the same reasons), FOGMA_MMAE

was implemented as a derived sub-class of the abstract class MMAE, which

defines the minimal data structures and methods for any MMAE application.

MMAE defines the following methods:

• Initialize - Initializes the MMAE.

• Correct - Updates the MMAE state for an actual measurement, Z,

which is an input to the method.

• Predict - Generates and returns a prediction of the MMAE state one

sample period into the future.

Additionally, the state variable MMAE_mode is defined. Please note that no

Initialized or Divergent method is defined for the MMAE class.

The behavior of the MMAE class is also similar to that of the

KalmanJFilter class. When instantiated, the MMAE object is in the

Uninitialized state, and will only respond to an Initialize method invocation.

When Initialize is invoked, the MMAE initializes and transitions to the

Operational state. While in this state, method invocations will be accepted

and processed as long as at least one filter in the MMAE is not divergent. If

all filters within the MMAE become divergent at the same time, then the

MMAE transitions to the Divergent state. This state is more a notational

convenience for the diagrams than an actual state, because the MMAE

cannot return to the Operational state; it will immediately transition from

the Divergent state to the Dead state. The Divergent state simply allows an

opportunity to print a warning message or take clean-up actions. The

behavior diagram is shown as Figure 14:

-74

1
Uninitialized

/ MMAE_mode = UNINITIALIZED

Initialize ()

Method Call

[~ All filters divergent]

i
I MMAE_mode = ADAPTIVE

Operational

Divergent

Method Call

[All filters divergent]

Figure 14: Behavior Diagram for MMAE Class

Here, Method Call indicates an invocation of Predict or Correct.

FOGMA MMAE Software Design. FOGMAJV1MAE models an MMAE

that comprises up to ten FOGMA_Filters. Objects of this class are

instantiated with a number of niters, and a lower bound for the probability

value associated with a particular filter (as discussed in Section 2.3).

FOGMA_MMAE extends the MMAE class by including several new

methods, and new behavior. Essentially, it was necessary to allow the

MMAE to operate as though it had only a single filter in order to study the

performance of the individual filters and to tune each of them (tuning a filter

involves adjusting its a and x values for best filter performance). To

implement this, a new method, SingleFilterMode, was added. This method

takes an integer input n in the range [0, K], where K is the number of filters

in the MMAE. If n = 0, then the MMAE will use the outputs from all filters

in its calculations. If n > 0, then the MMAE will only use the outputs from

filter n for its calculations. This modification required a complementary

-75

I / MMAE_mode = UNINITIALIZED

Uninitialized ♦KsH Divergent

Initialize

/ MMAE_mode = ADAPTIVE

Method Call

[All filters divergent]

Method Call

[All filters divergent]

SingleFilterMode (m)

[m>0]

/ MMAE_mode = m

SingleFilterMode (m)

[m = 0]

MMAE_mode = ADAPTIVE

Single Filter

Method Call

[~ All filters divergent]

Method Call

[~ All filters divergent]

Figure 15: Behavior Diagram for FOGMA_MMAE Class

change in the behavior diagram for the class. The new behavior diagram is

shown in Figure 15:Note that the figure contains more than one Dead state.

This was done to keep the diagram from becoming too cluttered.

Accommodating a Single Filter mode also required changing the way

that estimates (X values) are calculated. As explained previously, the

MMAE normally generates a probability weight for each filter based on all

filters' residual values (the difference between the filter-predicted values and

the actual data values for the same time). These probability weights are then

multiplied by the filter estimates, and the results summed to produce a final

-76

estimate for the MMAE. However, in Single Filter mode, this behavior is not

desired. Instead, the probability weight for that filter should be set to one,

while all other filters should get probability weights of zero. This same

philosophy carries over to the FilterWeight method, which returns the

current probability weight for a particular filter.

In addition to SingleFilterMode and FilterWeight, several other

methods are included. There is an Extend method that mirrors the Project

method of FOGMA_Filter; it allows the MMAE to generate a prediction of its

state more than one sample period into the future by using the current $ and

probability weights as constants. There are also mirror methods for all of the

methods to retrieve the value of various state variables. The difference is

that FOGMA_MMAE prepends each method name with Filter

(FilterXHatMinus, FilterXHatPlus, and so on), and requires the client to

specify the filter (in the range [1, K\) for which values should be returned.

FOGMA MMAE Technical design. Three filters were used in the

application. Filter #1 was designed under the hypothesis that the participant

is making benign head movements. An example of a benign movement is a

person in an automobile tracking the path of the car directly ahead. The

motion of the car is (normally) fairly predictable, and not subject to sudden

changes in direction or speed. Filter #2 used the hypothesis that the

participant was looking around, tracking a moderately to harshly moving

single target. Continuing with the driving example, this type of motion might

be exhibited by a driver trying to follow the motion of a car that has

encountered a patch of ice on the road, and is now swerving back and forth

somewhat wildly. This motion was classified as moderate. Filter #3 used the

hypothesis that the participant was making large, rapid swings of the head,

-77-

such as occur in a reacquisition task. An example is when a driver hears a

horn from behind, and did not know a car was there, so quickly turns to find

out where the car is. The various values for o and z are shown in Table 1:

Filter sigma tau

1 (Benign)
2 (Moderate)

3 (Heavy)

0.06
1.0
5.0

1.0
0.2

0.05
Table 1: Sigma and Tau Values for MMAE Filters

Initial values for these variables were taken from the prototype code. Then

the filter performance was examined by the researchers. To do this, a

researcher would hold the Polhemus 3SPACE sensor and make movements of

the appropriate type. The individual filter outputs and the interplay between

filters would then be examined, and adjustments to the c and x values made

if needed. This trial and error process was repeated until satisfactory filter

performance was achieved.

3.7 ThreeSpace Class

The final class object developed was a ThreeSpace class that provided

an interface between the application and the Polhemus 3SPACE magnetic

tracker that provided the head orientation estimates. This code was largely

based on an existing Fastrak class developed by Capt Mark Gerken

[Gerken91] and later modified by LtCol Philip Amburn. This existing

interface was deemed unsuitable for use without modification for the

following reasons:

-78-

• The code read more information than was needed for the application,
and did not provide a means to specify what information should be

read.

• The read time was unacceptably long (on the order of one hundred

milliseconds).

• Testing showed that it would not properly support the Polhemus
3SPACE tracker provided by Armstrong Laboratories.

In order to correct these problems, a new class, ThreeSpace, was

developed. However, since the goal of this research was to develop an

MMAE, not a ThreeSpace, an engineering decision was made not to attempt

to make this a general class. The resulting design is, therefore, very specific

to the needs of the application and the requirements of the 3SPACE tracker,

and contains many hard-coded assumptions (such as the port number to

which the 3SPACE is attached, and the baud rate of the port). The

ThreeSpace class supports only one method, Get_COS, that reads the cosine

values from the Polhemus 3SPACE magnetic tracker.

3.8 C++ Implementation

Because most of the graphics applications at AFIT use C++ as the

implementation language, and because the Performer [Performer90] software

library is written in C, the first version of the application was developed in

C++. C++ offers many advantages to the developer. It is a very terse

language; it doesn't require the developer to learn a great deal of syntax. It

is also a very good prototyping language. Most importantly to this research,

it is an object-oriented language, and includes support for class constructors

and destructors, polymorphism, and inheritance.

79-

During the C++ implementation, several new problems with the

prototype code were uncovered, as well as some flaws in the original design.

Since these discoveries and work-arounds also form part of the overall design

decision process, they are included in this section. The various comments are

divided up according to the object to which they apply.

GenMatrix Class. The initial version of GenMatrix had only one class

constructor that initialized all GenMatrix elements to zero upon allocation.

This was very useful since C++ does not clear memory on allocation.

However, this caused later compilation problems when the FOGMA_Filter

class attempted to declare members of type GenMatrix. This problem could

be avoided by making the members in question pointers to type GenMatrix,

but this was an unsatisfactory solution for two reasons:

• it required changing all the code in the FOGMA_Filter class to

dereference the pointers before invoking any methods in GenMatrix;
this made the FOGMA_Filter class code much less readable.

• it flew in the face of being able to use user-defined types as though they

are native types, which is one of the goals of the C++ language.

After several days of struggling with the problem, the solution was

found in the following passage from Stroustrup's book [Stroustrup91] that

explained a ctor initializer.

"An object of class M can be a member of a class X only if (1) M
does not have a constructor, or (2) M has a default constructor, or
(3) X has a constructor and if every constructor of class X
specifies a ctor-initializer ... for that member." [Stroustrup91:
579]

A ctor initializer is a special form of constructor that invokes other class

constructors. After reading the passage, the GenMatrix class was changed to

have a default constructor that does nothing, and the constructor for the

-80-

FOGMA_Filter class was changed to be a ctor initializer. This solved the

compilation problems, and allowed the FOGMA_Filter code to use members

of type GenMatrix.

To complement the new (null) default constructor, an Initialize method

was added to the GenMatrix class. Functionally, a (null) GenMatrix

declaration followed by an Initialize method invocation is equivalent to a

(non-null) GenMatrix declaration alone. While this is somewhat redundant,

it has the advantage of allowing the declaration of dynamically-sized arrays

of GenMatrix objects. This does introduce the potential for uninitialized

GenMatrix variables, however, if a user does not remember to invoke the

Initialize method.

Another problem with GenMatrix occurred when trying to overload the

brackets ([]) operator used to reference an individual matrix element. Two

arguments (row and column offset) were needed, but the brackets operator

will accept only zero or one argument(s). The author was not experienced

enough in C++ to know how to use a recursive call and still perform adequate

bounds checking on the inputs, so he developed a work-around. An Elt

method that can be used on either side of an assignment statement was

written to replace the brackets operator. This is not as elegant as a recursive

brackets operator, but it is satisfactory and also provides some contextual

indication of when a variable of type GenMatrix is used.

The GenMatrix class does not, in general, return status values to the

calling program. Instead, if an operation cannot be completed due to bad

input values or other conditions, an appropriate message is printed and

program execution is halted via the Exit command. This is not an optimal

engineering solution to the problem, since a subordinate object is making

-81-

decisions about program continuation for higher level objects, but it is the

most reasonable course for two reasons:

• If the values sent to an operation do not allow the operation to be

accomplished (for example, when trying to take the determinant of a

singular matrix), then the results ofthat operation would be
undefined. Returning a value that is not in any defined state was not
seen as a viable implementation strategy.

• C++ does support exception handling through the Throw/Catch and

Assert language extensions. Unfortunately, neither of these extensions

is supported by the version of C++ used to implement the software.

Therefore, there was no reasonable way to use exceptions to indicate
when operations were unable to complete.

FOGMA MMAE Class. Two modifications of the prototype design were

made for this class. The first modification involved altering the constructor

for the class to include a lower probability bound for the MMAE filters. This

allows the user to determine what bound to use, and sets the same bound for

all MMAE filters (using a single bound across all niters is standard practice

in MMAE design).

The second modification was to rewrite the Correct, Predict, and

Extend methods to take advantage of the parallelism of their execution.

Essentially, all three methods call the appropriate FOGMA_Filter method to

update the estimate variable (or a temporary copy in the case of Extend), and

then generate a best estimate based on the current value of estimate and

weight, taking into account whether or not the MMAE is currently in single

filter mode. Taking advantage of this parallelism led to the redesign of these

methods and the creation of a private method, WeightedEstimate, that

encapsulates the code used to calculate the MMAE estimate.

-82-

ThreeSpace Class. Several versions of this class were implemented

in C++ in order to find the best alternative among the design possibilities.

The first version of the software decreased the size of the data record sent by

the Polhemus by removing unneeded data fields. The Fastrak code returned

the full set of nine direction cosines (three values for each of the three

direction axes), as well as the 3D position of the sensor relative to the

Polhemus source, even though the prototype code only used a subset of the

cosine data, and totally ignored the position data. For the thesis code, only

three cosine values were needed (the three X-Direction cosines), so the

ThreeSpace class was designed to return only those. The result was an

approximate doubling of the number of reads per second possible. Then the

baud rate of the connection between the host computer and the Polhemus was

doubled (from 9600 baud to 19200 baud) without changing any other system

parameter. This resulted in a further increase in reads per second possible.

Finally, the data format being sent from the Polhemus was changed from

ASCII text to binary data; this again reduced the size of the data record

being sent by the Polhemus, and also again increased the number of reads

possible per second. A table showing the various configurations and the time

required in milliseconds to perform a single read is shown in Table 2.

Version Record Size

(bytes)

Format Baud Rate Read Time

(milliseconds)

Prototype 92 ASCII 9600 100

First 26 ASCII 9600 50

Second 26 ASCII 19200 38

Third 11 Binary 19200 27

Table 2: Read Times for Various Software Configurations Under IRIX 4

83-

Note that the figures in Table 2 were taken with the software running on an

SGI 4D platform operating under the IRIX4 operating system. Also, in order

to make the binary read work, it was necessary to change the port

configuration used by the software.

One would think from Table 2 that the binary read is the best choice,

especially when the goal of keeping the read time as short as possible is taken

into account. However, this is not the case. The ASCII reads all achieve

100% reliability; in other words, a good data record is returned each time the

Polhemus is requested to send a data record. The binary format read could

only achieve an approximate 60% reliability, and resulted in a visual display

that jumped erratically due to bad data being returned. This drop in

reliability may be due to the relative speeds of the processor and the

Polhemus across the serial communications line; an exact reason was not

established. However, the ASCII read at 19200 baud (Second version in

Table 2) was chosen for the implementation since it had the lowest time per

read that still maintained 100% reliability.

Main Application (pfdisplav). In order to achieve the desired visual

effects (highlights on the balls, display of filter information and crosshairs), it

was necessary to change the structure of the main application. Specifically, it

was necessary to write call-back routines that were invoked by Performer,

and that used shared data. The important point about this from a software

engineering standpoint is to highlight the close coupling between the main

application and the Performer library. The main application is structured in

the way demanded by the Performer software, and if it should become

desirable in the future to move away from Performer, then the main

application will have to be rewritten to suit whatever software is used.

-84-

Also, the C++ implementation was developed under the IRIX 4

operating system. At the time of this writing, only one SGI platform in the

graphics lab at AFIT supports IRIX 4; the rest have been upgraded to IRIX

5.2. These compatibility of these operating systems is limited, and the C++

software will have to be modified in order to port it to the new operating

system.

3.9 Ada Implementation

Implementing the application in Ada 9X involved working under two

constraints. The first was a desire to make the Ada 9X application as

structurally comparable to the C++ already developed as possible. The

motivation for this was to make comparisons between the two versions as

unbiased as possible. However, meeting this goal was more difficult than

anticipated, since C++ and Ada 9X implement object-oriented features in

different ways. Several design changes were needed in order to translate the

C++ into Ada 9X.

The most obvious of these changes is the use of Ada package

specifications in place of C++ header files. The fundamental Ada unit is the

package, and Ada objects are most naturally defined as packages. The

interface to the outside world is defined by the package specification, while

the implementation of the object behavior is hidden in the package body. It is

worth noting that Ada package specifications and C++ header files are not

completely analogous; package specifications are more tightly coupled to

their respective bodies than header files to their respective implementation.

Another change involved type declarations. C++ allows you to define

an object and then use the name ofthat object as a type name when declaring

-85-

other variables. Ada 9X takes a somewhat different approach. You declare a

type within a package specification that is then available for outside objects

to use in declarations.

The final design change points out the difference in philosophies

between C++ and Ada 9X. C++ takes the viewpoint that user-defined classes

should be able to behave in the same manner as native language types. To

achieve this, almost everything in C++ is overloadable. This means that the

developer has tremendous latitude in defining object behavior. However, it

also places a great deal of responsibility on the developer to be thorough in

designing new classes. Ada 9X has a somewhat different philosophy on user-

defined types. The user is free to overload certain operations, but others are

reserved for the language. While this may at first seem restrictive, it can

actually decrease the workload on the designer, because the responsibility to

provide definitions for reserved operations falls on the language developers.

An example of these philosophical differences can be seen in the

implementation of the GenMatrix class. The C++ version contains methods

for assignment, retrieval of individual elements, setting of individual

elements, and other methods that do not appear in the Ada 9X

implementation of the class. The reason for this discrepancy is that Ada 9X

provides definitions of these methods that are generic enough to

accommodate the GenMatrix class without requiring new definitions.

The second constraint was imposed by the compiler selected for the

implementation. SGI provided a set of Ada bindings for Performer

[Performer90] that allow Ada 9X to make the Performer calls necessary to

generate the virtual environment used in the research. These bindings were

compiled with the GNAT Ada 9X compiler; therefore, the same compiler was

-86-

used to compile the thesis software. The GNAT compiler is currently fairly

immature, and does not yet fully support all language structures of Ada 9X.

An example of one of these unsupported features is generics. The original

design of the MMAE class called for it to be implemented as a generic. The

reason a generic was chosen was that the number of niters used by the

MMAE is not known at compile time. Implementation as a generic allowed

the number to be passed to the object when it was instantiated.

Unfortunately, the GNAT compiler had trouble compiling the generic

properly, and the result was that the generic worked perfectly in one

executable, but did not work at all in another. Finally, the MMAE class was

re-designed to avoid use of generics.

Even working under these constraints, the Ada 9X implementation

offers some advantages. Ada 9X allows the developer to constrain the ranges

of the various elements with type definitions, thus precluding the need to

check ranges of input variables. Such a feature in C++ may have helped the

prototype developers to catch the initialization errors in their code. Ada 9X

also supports the boolean type, thus avoiding the less elegant C++ integer

implementation with TRUE and FALSE explicitly defined as integer 1 and 0,

respectively. Perhaps the greatest advantage of Ada 9X, however, is its

ability to define and handle exceptions. Exceptions allow the developer to

differentiate between what is normal processing, and what is not. When

combined with the strong type checking noted above, Ada 9X offers the

developer a powerful method for ensuring program correctness. Also, by

using exceptions, the decision of whether or not to terminate program

execution can be left to the highest level object in the system. This is in

direct contrast to the C++ implementation of this software, which has lower

-87

level objects causing program termination because they have no way to

inform the calling program that they cannot complete an operation.

3.10 Summary

In the ideal design and implementation environment, all aspects of the

design would be equally important, and all aspects of the implementation

would be meticulously validated and verified. However, software

engineering, like other types of engineering, is not an ideal environment;

trade-offs and compromises are inevitable. Software engineering allows the

user to determine the importance of various aspects of the design and

implementation, thus producing systems tailored to his/her needs. Put

another way, the engineering process allows trade-offs to be made once the

sensitivities of the system in question are identified. The role of the software

engineer in this process is to ensure that, when trade-offs are made, they are

made in an appropriate, informed manner. This philosophy was applied to

the design and implementation of the thesis software. The prototype

software provided a foundation from which to develop new requirements and

designs. Those requirements then became the driving factor in subsequent

design decisions.

Two versions of the thesis software were developed; one in C++, and

one in Ada 9X. Although both of these languages are object-oriented, each of

them has its own philosophy on how object features should be implemented.

These differences in philosophy resulted in two noticeably different

implementations, each with different strengths and liabilities. C++ offers the

ability to integrate user-defined types almost seamlessly into the native

language. This, combined with the ability to overload virtually any language

88

construct, results in a tremendous ability on the part of the developer to

identify and define object behavior. This freedom, however, comes with a

responsibility to thoroughly understand the consequences of the behaviors

defined. C++ performs type conversions without informing the user in order

to make operations compatible. The results of these conversions is not

always well-defined. It is therefore the responsibility of the C++ practitioner

to understand the environment, and ensure well-defined, reliable behavior.

Ada 9X does not allow the developer the same freedoms as C++. It does offer

many other amenities however. Strong type checking and the ability to

constrain variables to specific values combine to foster a development

atmosphere that prevents errors instead of responding to them. The ability

to raise exceptions allows the developer to separate the normal processing of

the system from the exceptional. However, Ada 9X does not yet have the

mature compilers necessary for large-scale, commercial development.

89-

IV Data Collection and Analysis

This chapter describes the various experiments performed in order to

validate the application and the software engineering process. The

application was validated both by testing performed during implementation,

and by a performance study. The software engineering aspects of the

research were studied and the C++ and Ada 9X implementations of the

software were compared.

4.7 Implementation Testing

Testing during the implementation phase fell under three main areas.

The first was the traditional unit-level testing that stresses the software in

order to identify, isolate, and correct any coding errors or unstable behaviors.

The next form of test was a filter tuning test. These tests studied the

behavior of the Kaiman filter objects both individually and together. The

final form of test was a performance test that allowed the behavior of the

Kaiman filters and the MMAE to be baselined.

Test Programs. During implementation, several test programs were

developed to ensure the proper functioning of the system objects. The first of

these, filter Jest, allowed testing of the FOGMA_Filter object. The user

indicated which filter (corresponding to an assumed benign, moderate, or

heavy head motion acceleration) to test, and also which path file (containing

simulated Polhemus data) to use as input data. The program read in the

path file and normalized the data values so that they approximated angular

cosine data read from the Polhemus. The appropriate filter was then

initialized, and the simulated Polhemus input used to drive the filter.

-90-

Program output could be directed to either the screen or an output file. A

sample output of this program is included in Appendix B of this document.

The next program was mmaejest. This program performed essentially

the same function as filter.test, but used the MMAE object. The user could

specify which path file to use as simulated input. Test output could be

directed either to the screen or to a data file. Additionally, the user could

select to have some outputs directed to a chart file. The chart file used a

comma-separated, ASCII text format to allow the results to be ported to a

spreadsheet, chart, or word processing program. A sample output of this

program (not including the chart file output) is included in Appendix B of this

document.

The final program was square_wave. This program also tested the

MMAE object, but allowed the user to specify an angular displacement (in

degrees) and a duration (in frames, where one frame is equal to one tenth of a

second) to use as the input generator for the test. Similar to mmae_test,

above, the user could opt to have an ASCII text output file created. The main

purpose of these test programs was to aid in identification, isolation, and

correction of any errors in the software; however, they also became a useful

tool for characterizing the performance of both the individual filters, and the

MMAE. Systematic data could be collected with these programs much more

reliably and repeatably than with actual Polhemus data collected from

human subjects.

Filter Tuning. During initial coding of the filter software, each filter

was tested with the filter_test program and an appropriate data set. Test

outputs were examined for correctness (no mathematical errors in the

formulae used to generate the outputs) and also for validity (reasonable

-91

output values relative to the input values). Once the individual filters were

running satisfactorily, the MMAE software was written, and the mmae_test

program was used to check correctness and validity of the MMAE outputs.

Once the MMAE was operational, the filters were tuned. Because no

baselines existed, an empirical, trial and error method based on observed

filter performance was used to tune the filters.

The first attempt at filter tuning looked at performance across all

filters. With the MMAE running, a researcher used the Polhemus to

generate an appropriate motion type (benign, moderate, or heavy), and the

MMAE outputs (in terms of RAR values as denned in Section 3.5) and

individual filter weights) were examined to see if they matched the input

motion (the probability weight for the appropriate filter being assigned 0.98

or something reasonably close to that). Then, the motion type would be

changed (from benign to moderate motion, for example), and the interplay

between the filters examined. The goal of tuning in this fashion was to

ensure that the correct filter was chosen for the motion type exhibited, and

that when the motion characteristics changed, that the probability weight

shifted to the new correct filter. If this was not the case, then the o and x

values for the filters were adjusted, and the new configuration re-tested. This

cycle was repeated until a tuning that provided satisfactory performance was

found.

Individual filter performances were then examined. The MMAE was

run in single filter mode, and the performance of the individual filters

assessed in terms of overshoot and sluggishness. Again, if a filter's

performance was not acceptable (too much overshoot observed, or too sluggish

a return to a fixed position when motion was stopped) then the o and x

-92-

values for the filter were adjusted, and the filter re-tested. Eventually, a

tuning that provided satisfactory performance for both the MMAE and the

individual filters was reached. This tuning was used to generate baseline

performance data.

Pp.rfnrmanfp Characteristics. Filter RAR values (again, as defined

in Section 3.5) are critical to the performance of the MMAE. RAR value

indicates an inverse level of confidence in the filter prediction; the larger the

RAR value, the less likely it is that the filter prediction is correct. The filters

in this research tend to start losing confidence (and therefore giving up

probability) at RAR values greater than approximately 4.0. Figure 16 shows

the RAR values for each of the filters at angular displacements of zero

through ninety degrees.

■Filter! Filter2 Filter3

lll

Angular Displacement (Degrees)

Figure 16: RAR Values for Angular Displacements through Ninety Degrees

93-

The RAR value is also used to determine when a filter is considered divergent

(when its predictions have become so unreliable that a filter restart is

necessary). Based on Figure 16 and several iterations of trial and error, each

of the filters was assigned a limiting RAR value. These values, and the

equivalent angular displacement in degrees, are shown in Table 3:

Filter RAR Limit Angular Displacement

1 (Benign)

2 (Moderate)
3 (Heavy)

22.0

33.0
38.0

30

45
60

Table 3: RAR Limits and Associated Angular Displacements

After RAR values, the next performance characteristic to be examined

was filter probability weights. The filters were tested under each of the

motion types, and probability weights for each filter recorded and examined.

Figures 16 through 18 show the probability weights associated with each

filter under each of the motion types used in this research. The graphs

provide insight into the behavior of the niters. The benign filter (filter #1)

will absorb and retain as much probability as possible, as demonstrated by

Figure 17 and the left side of Figure 18. The moderate filter (filter #2) will

absorb probability if able, but does not retain it as filter #1. Instead, it will

usually release its probability after a short time. This is demonstrated in

Figure 18. The heavy filter (filter #3) will absorb probability if able, but will

almost immediately release it again, as demonstrated in Figure 19. Note in

Figure 19 that the moderate filter (filter #2) almost never gets any probability

weight. The heavy filter absorbs it very quickly at the onset of heavy motion,

and then the benign filter takes it all back with almost none going through

the moderate filter. These filter behaviors are consistent with observed head

94-

- Filterl Filter2 Filter3

JZ

11 rtt-rrrn 111111111111111111111111111111111111111

Time (0.1 sec)

Figure 17: Probability Weights for Benign Motion Data Set

■Filterl Filter2 Filter3

•i irfi irrt111 rfi i1

Time (0.1 sec)

Figure 18: Probability Weights for Simulated Moderate Motion

-95-

■Filterl — Filter2 Filter3

111 in

Time (0.1 sec)

Figure 19: Probability Weights for Simulated Heavy Motion

motion patterns in humans. Head motion seems mainly composed of small

(benign) movements, occasionally punctuated by sudden bursts of activity

(moderate or heavy motion); however, these bursts do not normally persist

for any length of time. Therefore, the benign filter (filter #1) is expected to be

the dominant filter most of the time, with occasional interactions from the

other filters. This characterization, however, does not preclude the moderate

or heavy filters from absorbing and retaining all the available probability if

the situation (as determined by the current head movement characteristics)

warrants. As can be seen in Figure 18, in cases of prolonged moderate

motion, the moderate filter will eventually absorb all the probability and

retain it as long as the situation warrants. The same is true of the heavy

filter; but these are not considered the normal cases.

-96

The next performance characteristic examined was a measurement of

the MMAE prediction error expressed as the distance between the actual

data (represented as a point in 3-Space), and the MMAE prediction

(represented the same way) for the same time. Figures 20 through 22 show

prediction error for the corrected (zero sample periods ahead), predicted (one

sample period ahead), and extended (two sample periods ahead) MMAE

outputs. Note that the Predicted and Extended outputs have been offset so

that the time index is correct for all three lines. Prediction error values are

as one would intuitively expect. The corrected (zero sample period ahead)

line shows the least error, with predictions at one and two sample periods

ahead becoming increasingly error prone. However, because of the adaptive

nature of the MMAE, prediction error diminishes over time. This is also

• Corrected "" Predicted Extended

II II II I II I I II I I I

Time (0.1 sec)

Figure 20: MMAE Prediction Error for Benign Motion Data Set

-97-

■ Corrected ~~ Predicted Extended

0.45 -r

0.4 --

0.35

0.3

0.25

0.2

o 0.15

W 0.1

0.05

0

0)
•a
3
#■*

"c
S)
CO

S

I I II II II I I I I I I I I

Time (0.1 sec)

Figure 21: MMAE Prediction Error for Simulated Moderate Motion

■ Corrected — — — Predicted -------- Extended

0.9 -r

0.8 ■-

•g 0.7

r o.6 +

1 0.5
0.4 +

2 0.3

"j 0.2--

0.1 ■-

0 111111 f¥H

Time (0.1 sec)

Figure 22: MMAE Prediction Error for Simulated Heavy Motion

-98-

intuitive; the longer the participant displays consistent motion, the easier it

is for the MMAE to predict that motion. Note that Figure 20 was generated

with a benign data set, while Figures 21 and 22 were generated through the

square_wave program. This is why Figures 21 and 22 are cyclic. The

square_wave program, however, is preferred since the results are repeatable.

The last performance graph compares the X-direction values (only) for

an input square wave (again generated with the square_wave program) to the

corrected, predicted, and extended MMAE output values. In the graph, Path

is the path traced by the X-direction values from the square wave. The graph

is shown as Figure 23.

WWyqvW'KW^AtX'W'""^"'"

1.2

1

0.8

0.6

0.4

0.2

0

-0.2 ■-

-0.4 ■■

-0.6 --

Path — — — Corrected ■ Predicted Extended

3 a
#■<

3
o

111II111

Time (0.1 sec)

Figure 23: Comparison of X-direction Output Values

99-

4.2 Performance Study

Once the MMAE performance was baselined, a performance study was

conducted to provide a comparison of performance with actual subjects. The

study was a within subjects study that used AFIT students and faculty for

subjects. Eighteen subjects (sixteen male and two female) participated in the

study. The task used for the study was an acquisition/tracking task in which

subjects were asked to keep a crosshair centered on a moving 3D sphere in

the virtual environment. This task was unofficially dubbed "follow the

bouncing ball" by the author.

The independent variable manipulated in the study was tracking

mode. Three different tracking modes (adaptive mode in which the MMAE

was used to predict the orientation of the subject's head; single-filter mode in

which a single Kaiman filter was used to do the orientation prediction; and

Polhemus-only mode in which no prediction was done) were used by each

subject to perform the same task. Each subject was given seven thirty-second

trials for each tracking mode; two benign trials, two moderate trials, and

three mixed trials.

In the benign trial, the subject was asked to track the motion of a red

ball that was constrained to stay within the subject's initial field of view

(approximately forty-five degrees horizontal and thirty-five degrees vertical).

The ball motion was very slow and generally followed long lines and arcs.

This motion was designed to accentuate the performance of filter #1 (benign).

The moderate trial was essentially the same as the benign trial with the

exception that the ball motion was different. In the moderate trial, the ball

still stayed generally within the subject's initial field of view, but made very

short, quick movements.

-100-

In the mixed trial, two balls (one red and the other blue) were used.

The red ball was positioned on the subject's left while the blue ball was on the

subject's right in the virtual environment. Both balls were constrained to

stay within separate areas of the virtual environment; neither ball was

visible to the subject when the trial started. In the mixed trial, the crosshair

had a box around it that would be either red or blue. Subjects were asked to

find the ball of the same color as the box as quickly as possible and then to

track that ball. The color of the box was changed either once or twice during

the trial, and the box itself did not become visible until the trial started. The

mixed trial was used to simulate a re-acquisition task, and thus to generate

filter #3 (heavy) motion, among periods of tracking that would require use of

filters #1 (benign) and #2 (moderate).

A Latin Square method with respect to the tracking mode was used to

remove learning bias on the part of the subjects. The square defines the

order in which the tracking modes were presented to the subjects. The

square used is shown in Table 4:

Condition Order o: F Tracking Modes Presented

1 MMAE Single Filter Polhemus Only

2 Single Filter Polhemus Only MMAE

3 Polhemus Only MMAE Single Filter

4 MMAE Polhemus Only Single Filter

5 Single Filter MMAE Polhemus Only

6 Polhemus Only Single Filter MMAE
Table 4: Latin Square for Tracking Mode

Three subjects per condition were tested. Twenty-one data sets were

generated so that no subject used a particular data set more than once during

-101-

testing in order to further reduce the possibility of learning effects. For

Single Filter tracking mode, filter #2 was used for head orientation

prediction. This is the filter originally designed for moderate head motion; it

was felt that this filter would provide the best performance across all motion

types.

Ten data items were collected during the performance study. Data

item values were collected each frame, and written to a data file in ASCII

format after the trial was completed. The data items collected are listed

below.

Ball Color - The color of the ball to be tracked.

Red Path - The 3-space position of the red ball.

Blue Path - The 3-space position of the blue ball.

Z - The Polhemus input.

Corrected X - The MMAE corrected output.

Predicted X - The MMAE predicted output.

Extended X - The MMAE extended output.

RAR Value - The likelihood quotient (RAR) value for each of the

MMAE filters.

RR Value - The ME/I likelihood quotient (RR) value for each of the
MMAE filters. This value is similar to the RAR value.

Probability Weights - The probability weights for each MMAE filter.

Ball Color is a single integer (1 for red; 2 for blue); the other data items all

require three output values (X-, Y-, and Z-direction values; or outputs for

each of the three filters). Since the trials were thirty seconds in length, and

-102

the frame rate of the display was set at 10 Hz, three hundred samples per

trial were collected.

Two methods of analysis were then applied to the data. The first

method examined the prediction error of the MMAE and Single Filter

tracking modes. Prediction error looks at the absolute difference between the

(MMAE or Single Filter) predicted values for a time period, and the actual

Polhemus values returned at that time period. Three data sets were

examined for each of the three tracking modes. In order to do comparisons

for the Polhemus, a simulated prediction error was defined. Essentially,

under normal operation, the Polhemus data used to generate a display frame

is one frame old when the frame is displayed (this is, in fact, one of the

contributors to overall display lag). Therefore, simulated prediction error for

the Polhemus was defined as the difference between consecutive Polhemus

directional values. Simulated Polhemus prediction error was compared to the

actual errors in the MMAE and single Kaiman filter predictions for one

sample period ahead. A plot of the error in the MMAE for the Benignl data

set is shown in Figure 24. The complete set of plots is included as Appendix

D to this document.

Error analysis did not use the actual ball position as a basis of

comparison even though ball position is considered the "true" position data

for a given sample period. This is because this study was not designed to

collect information concerning error with respect to the actual ball position,

but rather with respect to the Polhemus-indicated position. As an illustration

of this point, consider Figure 25, which shows a plot of the actual path of the

ball used in the performance study versus the Polhemus and MMAE outputs.

-103-

Time (0.1 sec)

Figure 24: MMAE Prediction Error, X-direction, Benignl Data Set

'BALL POLHEMUS PREDCTCD

-0.02 ■-

-0.04 -f

-0.06 ■-
fl>
5 -0.08 --
Co

> -0.1+
X

-0.12 ■-

-0.14 ■-

-0.16 ■-

-0.18 ■-

nun minium nun mm mm iiiiiiiiiiiiiiiiiiiimi minium nun HUM IIIIIIIIIIIIIII

z$zz<

\\ -*.

\
AN

\\
r

i

\

Time (0.1 sec)

Figure 25: X-direction Comparison of Ball, Polhemus, and Predicted Values

104-

Notice that the MMAE (prediction) line has a close correspondence to the

Polhemus line. Correspondence between either the Polhemus or the MMAE

lines and the actual path of the ball is much harder to identify, but it is fairly

certain that a correspondence exists. It may be of some value to examine this

correspondence, and see if there is a statistically significant difference

between the correspondence of the Polhemus and the MMAE (and possibly

the Single Filter as well) to the actual ball path.

It was expected that the performance study would produce the

following results. Under benign motion, all three tracking modes (MMAE,

single Kaiman filter, and Polhemus Only) would appear about equal, with

Polhemus Only being slightly better. Head motion in this condition is

commonly so slow and predictable that the Polhemus alone is sufficient to

provide a realistic display. Therefore, the MMAE was not expected to provide

any advantage. Under moderate motion, it was expected that the MMAE

would offer some advantage over the other two tracking modes. The

Polhemus would not be able to keep up with the movement of the

participant's head as well as the MMAE due to the adaptive nature of the

latter. This same logic lead to the expectation that the MMAE would

outperform the Polhemus in mixed motion during the reacquisitions.

Analysis of the error graphs seemed to show some trends across the

different motion types, but these trends were not always what was expected.

Under both benign and moderate motion, the Polhemus seemed to exhibit the

smallest error values. Single Filter mode formed a middle ground, and

MMAE mode seemed to have the largest errors. Under mixed motion,

however, the MMAE did seem to outperform both the other tracking modes.

The errors associated with the MMAE outputs show a much faster

-105

convergence toward zero immediately after a reacquisition task (see plots in

Appendix D).

A statistical analysis was done to determine if the trends noted in the

prediction error analysis could be demonstrated statistically. The measure

used for this analysis was sample mean and standard deviation of prediction

error across all subjects for the same motion type (benign, moderate, mixed)

and filter type (MMAE, Single Filter, or Polhemus Only). The formulae for

sample mean (X) and sample standard deviation (S) are shown below.

'71 fXi

y2

*=xy%

s =
'=■ \2

n-l

where n is the number of samples used. Sample means and standard

deviations for prediction error of the MMAE, the single Kaiman filter, and

the Polhemus (this was again a simulated prediction error) were generated

for each data set across all subjects. The results were partitioned into a table

by tracking type and filter type. Finally, the values within each table block

were again averaged to produce the results shown in Tables 5 and 6. In the

tables, MMAE is MMAE tracking mode; SF is single Kaiman filter tracking

mode; and POL is Polhemus Only tracking mode.

MMAE SF POL

BENIGN 0.0375 0.0210 0.0074

MODERATE 0.0979 0.0807 0.0440

MIXED 0.0726 0.0584 0.0286

Table 5: Sample Mean (X) Values

106-

MMAE SF POL

BENIGN 0.0295 0.0166 0.0081

MODERATE 0.0595 0.0519 0.0348

MIXED 0.0592 0.0577 0.0387

Table 6: Sample Standard Deviation (S) Values

Note that in order to consolidate the data in this fashion, it was necessary to

average across all samples. The results are therefore temporal values (across

the entire data sets).

These results are easier to see in graphical format, so two graphs were

prepared from Table 5. The first (Figure 26) treats tracking type as the

parameter. Although it appears that there is a significant difference between

the lines portrayed, in fact the sample standard deviations are so large that

all the lines are statistically equivalent (based on visual inspection). The

same conclusion is reached for the second plot (Figure 27), which treats

motion type as the parameter. Again based on visual inspection, no

statistically significant difference between the tracking types is noted.

The overall conclusion to be drawn from the analyses is that the

performance study did not produce any statistically significant results; at

least, not at the level of analysis done. There are many possible reasons for

this. One of the most probable is that the study, as performed, lacked the

experimental power to show any differences between the conditions. The

tracking task used in the study is extremely difficult. Referring again to

Figure 25, the low correlation between the path of the Polhemus (and the

MMAE) and the path of the ball indicates that, overall, the subjects had a

great deal of difficulty with the task. This in turn could mean that the

number of subjects and trials used was insufficient to identify any

-107-

■MMAE ■POL

0.1 -r

0)
3
B
>

0.09 ■-

0.08 ■■

0.07 --
C
(0
d)

0.06 •-

0.05 ■■

0)
Q.
E
(0

CO

0.04 |p

0.03 I
0.02 i

0.01 4

0 X
BENIGN MODERATE

Motion Type

MIXED

Figure 26: Plot of Sample Means with Tracking Type as the Parameter

■BENIGN ■MODERATE ■MIXED

MMAE POL

Figure 27: Plot of Sample Means with Motion Type as the Parameter

-108-

performance differences. Another possible cause is using the Polhemus data

as a basis for comparison. This data, although it was treated as "true" head

location, is actually subject to the considerable noise in the environment of

the AFIT graphics laboratory. A final possibility is that there is some

information to be gained from the data, but that more detailed analysis of the

individual data sets will be necessary to find it.

4.3 Language/Performance Comparison

One of the goals of this research was to compare an Ada 9X

implementation of this software to a C++ implementation. To meet this goal,

two versions of the software (Ada 9X and C++) were developed. The two

versions were then compared both by the methods described in the previous

section, and also by comparing operational (performance) characteristics and

design characteristics.

Implementation Comparison. Since the application was developed

first in C++, the Ada 9X implementation was much easier. Instead of having

to examine test outputs for correctness, they could be directly compared to

the already existing outputs from the C++ implementation. This provided

both a verification of the Ada 9X implementation, and an extra validation of

the C++ implementation.

As with the C++ implementation, sample outputs from test runs of the

Ada 9X implementation are included in Appendix B of this document. Note

that the outputs are not exactly identical across the implementations. While

they are largely identical, there is some variability in the filter outputs. This

was attributed to differences in floating point number representation and/or

differences in library mathematics functions such as square root or exponent.

-109

Performance Comparison. Recently, graphics intensive software

applications have used C and C++ as the implementation language. This has

led to the gradual development of a large software base for graphics

applications written in C, which has in turn produced a great deal of inertia

toward the continued use of C++ as an application language. While this is

understandable, many of the factors that drove that language decision have

changed in recent years, and it may be time to re-examine those decisions in

light of those changes.

Ada 9X, although still relatively immature, has much to offer to virtual

environment applications. Two of the more immediately obvious benefits are

strong typing and exception handling. These two combine to make Ada 9X a

highly reliable language. The developer can constrain the ranges of variables

to the exact real-world values needed for the application, and range

constraints are checked automatically by the run-time environment. This

allows the developer a high level of confidence that the application variable

contain valid values. Exception handling has two important benefits. First,

it separates normal processing from exceptional, or abnormal, processing.

This makes the code more readable, since exceptions are not interspersed

with normal operations. Secondly, it allows a called routine to raise an

exception to the calling routine, thus placing responsibility for dealing with

the exception where it belongs—at the higher (and potentially highest) level

routine in the application.

There are essentially two common arguments against using Ada as an

implementation language. The first of these is that Ada is not object-

oriented, so cannot be used for object-oriented programming. While this was

-110-

true for Ada 83, the revised Ada 9X is a fully object-oriented language, and

can provide the support necessary for object-oriented development.

The second argument is that applications developed in Ada simply run

too slowly; the performance degradation is too great to make the language a

viable choice. One of the goals of this research was to provide a comparison of

equivalent, computationally intensive applications to see what that

performance degradation actually is, if one exists at all.

To conduct the comparison, the Ada and C++ versions of the

application were compiled and executed on an SGI Reality Engine^ platform

running under the IRIX 5.2 operating system. The data collected from the

test runs is summarized in Table 7.

C++ C++ Ada9X

IRIX4 IRIX 5.2 IRIX5.2

3SPACE read time (msec) 38 17 17

3SPACE read reliability (percent) 100% 100% 100%

MMAE cycle time (msec) 27 9-23** 20

Filter cycle time (msec) 8 4 7

Frame Rate (Hz) 20 30 30

Executable Size (bytes) N/A 413,356 819,056
This value was observed to have large variability in tr
obtained, so the range is reported here

Le measurement , values

Table 7: C++/Ada 9X Performance Comparison Data

Data gathered from test runs of the thesis software under IRIX 4 are

included in the table for completeness.

Polhemus read times and reliability measures were determined with

the TS_time (ThreeSpace time) program, which performs 1000 successful

Polhemus reads. Since it is possible that a given read will not be successful

(the data is not ready when the Polhemus is read), TS_time reports how

111-

many read attempts had to be made in order to achieve 1000 successful

reads, and also how long it took (in seconds) to accomplish those reads. A

sample size of 1000 was used so that the output of the program could be

translated directly into milliseconds (msec) per read. TS_time was run at

least ten times for each of the implementations. The data shows that, under

IRIX 5.2, both C++ and Ada 9X read data from the 3SPACE at approximately

60 Hz with 100% reliability. This is the maximum output rate of the

Polhemus 3SPACE magnetic tracker used in this research, so no

determination of speed above this maximum could be made.

The MMAE cycle time was determined with the mmae_time program,

which performs 1000 iterations of the same three calls. First Correct is called

with a (constant) Z value, then Predict, and finally Project is called for a

projection two sample periods ahead. mmae_time reports the number of

seconds required to do the cycle 1000 times. The data in Table 7 represent

the mean value from ten executions of the test program. The C++ version

showed a great deal of variability in the cycle time; values from a low of nine

to a high of twenty-three were noted during testing. Therefore, the range is

reported in the table.

Filter cycle time was determined with the filter_time program, which

is conceptually similar to mmae_time, above. 1000 iterations of the filter

routines (Update, Propagate, and Project) are performed, and the time

required in seconds is reported. Again, the data in Table 7 represent the

mean often program executions. Here, there was very little variability noted

in the figures obtained. Results indicate that the C++ implementation

executed slightly faster than the Ada 9X implementation.

-112

Frame rate was determined by modifying the pfdisplay application to

use Free-Running mode and a desired frame rate of 60 Hz. In Free-Running

mode, frames are rendered as quickly as they are produced (therefore frame

rate is maximized). The precise choice of frame rate is not that critical;

Performer will use whatever frame rate it can. However, 60 Hz is the typical

goal frame rate for graphics applications, so it was used. The actual frame

rate for the application was noted by having Performer display channel

statistics during program execution. These statistics give real-time

indications of application performance in terms of frame rate and time spent

in the various processes (application time, render time, etc.). In all trials, the

window size used for the display was equal to the screen size available

(1280x1024 pixels). Also, the applications were verified to have an

application time (computation time) greater than the draw time (display

render time), thus eliminating the possibility that the frame was driven

solely by how long it took to render the scene. The values reported in Table 7

represent modal values (the values most commonly seen), since some frame

rate variability was noted.

The final row, executable size, was taken from a directory listing of the

executables. The C++ executable is approximately one half the size in bytes

of the Ada 9X executable. This could be due to the immaturity of the Ada 9X

compiler used.

The table is somewhat surprising. It was expected that the Ada 9X

implementation would not be able to generate performance equal to the C++

implementation; the Ada 9X compiler is immature, and the Ada 9X software

had extra layers of interface from the Performer bindings. However, the

frame rates for both applications are identical (with some variability in the

frame rate; however, this variability was noted in both applications). Also,

-113-

current graphics applications in the AFIT graphics laboratory run at

approximately 12 to 15 Hz, which can easily be met by either

implementation. The overall conclusion is that, based only on this data, Ada

9X implementations appear to have the same performance capabilities (in

terms of frame rate) as C++ implementations.

The other comparison performed was a design-based comparison. The

metric used for this comparison was Weighted Methods per Class (WMC)

developed by Chidamber and Kemerer [Chidamber91]. This metric measures

the complexity of a class by the sum of the static complexities of the class

members. The formula for this is given below.

WMC = ^Ct
t=7

where Q is the static complexity of each method within the class. Chidamber

and Kemerer did not offer a preferred method for determining static

complexity, so McCabe's Complexity Metric [McCabe89] was used. The

results are summarized in Table 8.

Class

C++ Ada9X

#Methods WMC #Methods WMC

GenMatrix
FOGMA.Filter

FOGMA_MMAE

ThreeSpace

22

18

18
3

72

44

64
7

13

16
15

3

58
49

61

5

Totals 61 187 47 173
Table 8: Results of WMC Calculations for Implementation Classes

Note that since the abstract classes (MMAE, Kalman_Filter) do not have

implementations (only specifications), they are not included in the table.

-114

McCabe states that the complexity of a unit should be kept under ten

[McCabe89]; complexities greater than ten usually indicate software that

needs to be redesigned to reduce its complexity. Both of these

implementations are well below this threshold; the overall average

complexity is 3.1 for the C++ implementation and 3.7 for the Ada 9X

implementation.

Overall, the table indicates that the two implementations are very

similar. This was the expected result, because the Ada 9X was purposely

implemented to be as structurally similar to the C++ as possible. McCabe's

Complexity Metric [McCabe89] is essentially a structurally-based complexity

measure, so the similarly structured implementations should have similar

complexities as measured by McCabe's. It is likely that re-implementing the

Ada 9X design to take better advantage of the software engineering principles

embodied in the language would significantly reduce the complexity measure

for the Ada 9X implementation. As an illustration of this point, consider the

following. The Ada 9X implementation did not use constrained ranges for

variables since these are not available in C++. If the constraints were used,

then many bounds checks could be eliminated from the Ada 9X

implementation (they would be handled by the run-time environment

automatically). Since McCabe's complexity measure relates directly to

decision points in the methods (such as deciding whether or not a value is

within the prescribed range), moving these bounds checks out of the method

would have a direct impact on the complexity measure.

115

4.4 Summary

This chapter presented results and analysis of the studies conducted to

validate this research. Essentially, the studies used fall into three broad

categories: studies done during implementation of the software; studies done

to provide a characterization of the MMAE performance in comparison to

other tracking modes (Single Filter, Polhemus Only); and studies done to

provide a comparison of the implementation languages (C++ and Ada 9X).

Studies done during implementation had three main objectives. The

first objective was to verify proper functioning of the software. To this end,

several test programs were developed that allowed the system objects to be

individually tested and studied. The second objective was to tune the

individual filters. This was accomplished through a trial and error process in

which a researcher would generate an appropriate motion type with the

Polhemus and then observe the response of the MMAE. If the MMAE

response did not meet expectations, then adjustments to the individual filter

c and x values were made. This process was continued until a satisfactory

MMAE tuning was achieved. The third and final objective was to establish a

performance baseline for the MMAE. This was achieved through the use of

the previously mentioned test programs and prepared data sets for the

various types of motion used in the research. The data from these tests was

used to establish a performance baseline for future researchers.

In order to characterize the performance of the MMAE in comparison

to other tracking modes, a performance study involving AFIT faculty and

students as subjects was conducted. The task used during the study was an

acquisition/tracking task in which subjects were asked to follow the motion of

a 3D sphere in a virtual environment. Ten different data items were collected

-116-

during the study, and the resulting data sample analyzed for any trends. The

raw data suggests that the Polhemus may be the best overall choice in

tracking mode; however, this observation cannot be shown statistically, and

it is more likely that the study format was not sufficiently sensitive to detect

differences between the tracking modes.

The implementation language comparison had two objectives. The

first involved comparing the performance of two equivalent applications, one

developed in C++ and the other in Ada 9X. Two implementations were done,

and then compared under several criteria. Other than executable size (in

which the C++ had the clear advantage) the implementations provided

virtually identical performance. The discrepancy in executable size was

attributed to compiler immaturity on the part of the Ada 9X compiler.

The other objective was to provide a measure of design quality. This

was provided by a comparison of Weighted Methods per Class, a metric

developed by Chidamber and Kemerer [Chidamber92]. This metric assigns a

weight to each class in an object-oriented design according to the number and

complexity of methods within the class. Method complexity was calculated

according to McCabe's Complexity Metric [McCabe89]. The results showed

that the two implementations have about equal complexity, and that both are

well within the low complexity range as specified by McCabe [McCabe89].

This was the expected result; the Ada 9X implementation purposely tried to

mimic the structure of the C++ implementation, so a complexity measure

based on structure (such as McCabe's) should report the implementations

roughly equal. The Ada 9X implementation could be altered to take better

advantage of the software engineering principles embodied by the language,

-117

and this could have a significant impact on the complexity measure of the

resulting implementation.

-118

V Conclusions and Recommendations

The focus of this research has been to apply software engineering tools

and techniques to develop an application that reduces the lag typically

present in virtual environment displays. The application developed was a

Multiple Model Adaptive Estimator (MMAE) composed of three Kaiman

filters that predicted the orientation of a participant's head one sample period

into the future. The prediction was used by the environment rendering

software to generate the image shown to the participant. The period used for

the MMAE prediction was equal to the time required to compute and render

the next frame for the environment display. Assuming perfect prediction,

this approach would allow the computer to generate and display a virtual

environment with zero lag (therefore in real-time); the frame shown to the

participant would be appropriate to his/her current head orientation at the

time the frame was displayed.

Each of the filters in the MMAE was designed for a different type of

head motion (benign, slow movements; moderate, normal movements; and

rapid, jerky movements), thus allowing the MMAE to adapt to changes in

head movement characteristics. Each filter in the MMAE produced a

predicted orientation and a probability value that the hypothesis used in

designing the filter was the best hypothesis about the participant's head

motion for that prediction. The MMAE used the probability outputs to assign

probability weightings to each filter's output. These weightings reflected the

probability that the hypothesis used in a particular filter was correct for the

observed behavior. The MMAE estimate was then computed as a probability

weighted average of the individual filter outputs.

-119

The focus of the software engineering aspect of this research was to

investigate the appropriateness of Ada 9X as a software engineering tool and

implementation language for a virtual environment application. Recently, C

and C++ have been the implementation languages of choice for these

applications. However, Ada 9X provides all the object-oriented features

necessary for design and development, and also offers engineering

advantages that might make it more attractive in the future. Strong typing

and the ability to use exceptions to separate normal processing from

exception handling are examples of the engineering support provided by Ada

9X.

The research approach was validated by two studies. The first was a

comparison of C++ and Ada 9X implementations of the application software.

The performance of the application in terms of maximum allowable frame

rate and time required for individual components to execute was compared.

Also, the extent to which the implementations support software engineering

principles was also compared. The other was a performance study of the

application. Subjects taken from AFIT faculty and staff were asked to follow

the movements of a ball (3D sphere) in a virtual environment. Several

methods of tracking the subjects' head movements were compared: Polhemus

only tracking (i.e., without any prediction); single Kaiman filter based

tracking (i.e., a predictive filter with no adaptive capability); and MMAE

tracking. The purpose of the study was to validate the approach taken in

designing and implementing the MMAE , and to provide a performance

baseline against which to measure future research efforts.

Several results were generated by the studies. Data collected during

implementation of the software was used to establish a performance baseline

-120

for the MMAE developed in this research. This will give future researchers

in this area a benchmark against which to measure their own efforts. The

performance study data indicated a possible advantage for the MMAE under

the assumption of moderate motion, but this observation could not be shown

to be statistically valid. More, and more explicit, research is needed in this

area to provide a valid, definitive characterization of the ability of the MMAE

compared to other tracking modes. Finally, the language study had the

surprising result that Ada 9X appears to perform just as well as an

equivalent C++ implementation under IRIX 5.2. This result is very

surprising because of the immaturity of the Ada 9X compiler, and the extra

interface software required to develop the Ada 9X implementation. This

result, combined with Ada 9X's strong support of software engineering

practices and principles, makes an argument for the use of Ada 9X as an

implementation language for graphics-intensive applications.

Although much work has been done to this point, and some

observations and conclusions made, there are still many discoveries waiting

in this field of research. The following paragraphs present recommendations

for further research in this area. They are based on experience and insight

gained during the course of this research, and are divided into software

engineering, Kaiman filter/MMAE, and performance areas.

5.1 Software Engineering Recommendations

There are many opportunities for further research in the software

engineering and implementation area; only a few are presented here.

• Re-examine the Ada 9X implementation in light of (anticipated)

compiler improvements. The GNAT compiler used in this research is

121-

currently very immature, and this was one of the constraints that
drove the Ada 9X design. It is hoped that the compiler will become

much more stable and mature in the near future, and it would then be

appropriate to reexamine the Ada 9X design and implementation in

light of the increased capabilities of the compiler.

• Continue to use the Ada 9X implementation as the basis for future
research efforts. The operating system under which this thesis work
was done is due to be upgraded, and it will be necessary to upgrade the
C++ software to make it compatible with the new operating system if it
is desired to use the C++ implementation for future research. By

contrast, the Ada 9X implementation offers virtually identical

performance, and is already fully operational under IRIX 5.2.

• Decouple the Polhemus interface from the main application. One of
the known problems with Kaiman filters and MMAEs is their tendency

to overshoot target motion. While this can be minimized through

proper tuning of the individual filters, it cannot be entirely eliminated.

However, it may be possible to minimize the impact of overshoot
through oversampling of the MMAE. If the MMAE is sampled and
updated at a rate greater than the actual display update rate used (2

or 3 times as often, for example) then it may be possible to get through

the overshoot period before the display is updated. This, at least in
theory, could provide the participant with the appearance of a much
better prediction model. One method of achieving this oversampling is
to remove the Polhemus and MMAE objects from the main application,
and make them a separate, independently executing process. The
Polhemus could provide information to the MMAE as rapidly as
possible, and the MMAE could place the results in a shared memory
block for the renderer to take whenever it was ready.

• Enhance the display characteristics of the virtual environment. Two
possible enhancements are: to include roll cues in the display, and to

modify the display (and appropriate outputs) so that filter weights are
shown as zero in Polhemus Only mode. Roll was not included in the

head motion for this research because calculating roll required reading

-122-

extra information from the Polhemus, and the resulting increase in
read time was unacceptable. However, the read time decreased

dramatically when the software was executed under IRIX 5.2, and

reading the extra information became a possibility. The realism of the

display will be greatly enhanced if roll cues are provided. The other

enhancement (outputting filter weights of zero in Polhemus Only

mode) will make it easier for the researcher and the participant to
differentiate between Polhemus Only and MMAE modes (currently, the
filter weight outputs for these modes are identical). This would be of
tremendous benefit when analyzing data from performance studies.
The researcher could have a reasonable assurance that the correct
MMAE mode was used simply by examining the filter weight outputs.

5.2 Kaiman filter / MMAE Recommendations

The MMAE developed in this research was a necessary first step into

the field; a stepping-off point for further research. The recommendations

below outline some of the possibilities in this area.

• Refine the MMAE developed in this research. Because this is the first

research in this area done at AFIT, one of the goals of this research
was to provide a performance baseline against which to compare future
applications. However, the performance baseline developed can just as
effectively be used to improve the performance of this application. It

seems reasonable to fine tune this application to the greatest extent
possible in order to provide the best possible basis for further work.

• Explore other models. The First Order Gauss Markov acceleration

model used in this research may not be the best dynamics model for
head motion. A logical direction for future research is therefore to
explore other models such as First Order Gauss Markov Velocity

models. On a related note, it is possible that the Constant Gain Filter

is also not the best choice. This research had the luxury of using a

-123-

fixed frame rate, which also made the filters used in this research
viable. However, other graphics research applications at AFIT do not

use a fixed frame rate; instead, the renderer is asked to provide the

maximum frame rate possible for the scene being rendered. The result

is that frame rates can vary wildly during program execution. Kaiman

filters that do not require a fixed time interval for doing predictions
may provide more accurate and useful predictions in these situations,

and should be explored.

Compare the MMAE to other predictor models. The MMAE developed

in this research is only one approach to solving the head prediction and

lag problems. MIT researchers have developed an MMAE based on
different designs (velocity-based dynamics models within a maximum a
posteriori MMAE) that is used with their virtual drum set application
[Friedman92]. It is reasonable to believe that there is much to be
learned from doing a fair comparison of these approaches.

5.3 Performance Study Recommendations

The final area for recommendations is the area of human performance.

This area was not treated in any great depth in this research, but is certain

to become much more important in future research. The ultimate test of an

engineering process is the product that it produces. When that product is a

tool such as the MMAE developed in this research, it must eventually be

measured by its ability or inability to improve the performance of a task. The

product of this research is no different; it will have to be measured by its

ability or inability to provide a participant with a more realistic virtual

experience. In keeping with these observations, the following

recommendations are made:

-124

Characterize MMAE performance in terms of enhancing the ability of a
human to perform a task. The studies done in this research provide a

good basis for analyzing and improving the performance of the MMAE

as a head movement predictor; however, it is desirable to measure the

benefit, if any, to be gained from the MMAE in terms of task

performance in virtual environment.

Design experiments that measure the ability of the human to perform
a task, not just the ability of the MMAE to predict head motion. An
example of such a task is to have a ball appear at a random location in

the virtual environment, and then begin moving in some (possibly

pseudo-random) manner. In order to successfully complete the trial,

the subject must find the ball as quickly as possible, and then

successfully track it for a set amount of time (one second for example).
Collect data on how long it takes the subject to successfully complete
the trial. Use different tracking modes in the trials. These types of
tasks allow the benefit of using the MMAE versus some other form of

tracking/prediction strategy to be measured and analyzed.

In a related note to the one above, use more real-world tasks to
perform the human performance studies. Research is always best
when it is applied to real-world problems with real-world constraints.
Select experiments that not only give good indications of the MMAE

performance, but that also closely mimic real-world applications of this
research.

5.4 The Final Word

The final recommendation does not fall into any of the categories

denned above. This line of research involves several different areas of study

and expertise, and the potential for fruitful research in each of these areas is

enormous. However, the investment in time and energy to gain sufficient

background in each of these areas is also enormous. In order to minimize the

-125-

time necessary to gain sufficient background knowledge to do this research, it

seems reasonable to work in teams rather than as individuals. This will

allow the teams to increase their productivity by using the experience of the

team members.

Initial research efforts can be done in teams of two (one electrical

engineering student to handle the technical end of the MMAE design and

implementation, and one software engineering student to handle the software

design and implementation). Each of the students can write an individual

thesis document to meet AFIT graduation requirements. Later, if the line of

research proves as fruitful as it promises to be, and if other issues (such as

performance issues) are ready to be explored, other students can be added to

the team. Again, the potential of this line of research is enormous; certainly

big enough to allow exploration in teams.

-126-

Appendix A:
Prototype Software Problem Reports

The following is a listing of various problems encountered in the

prototype software, and the actions taken (if any) to correct them. This

listing is provided for two reasons. First and foremost, these problem reports

provide visibility to the factors that drove design decisions for the thesis
software. The insight and experience gained from modifying and using the
prototype software was instrumental in determining how to design and
implement the thesis software. Second, these reports serve to underscore the

importance of thorough software design and testing strategies. It is

reasonable to assume that the original implementers of this software did not
intend these problems to be present in the final product; therefore, we can

conclude that whatever design and testing strategy they employed did not

uncover these problems.
Each of the entries below contains the date the problem was first

reported, the person or persons who discovered it, a general description of the

problem, and a list of actions taken to isolate and correct the problem. The
problem reports are listed in chronological order by discovery date.

DATE 1 January 1994

FINDER Russell
PROBLEM The niters in the MMAE produce nonsense values; residual

values are HUGE.

ACTIONS
• 15 February 1994. Changed cnt value (minimum number of filter

cycles before restart may occur) from 15 to 10 to allow faster restart of
divergent filters. No noticeable effect on performance.

• 22 February 1994. Removed lower bound check on exponentiation in
calculation of f-value. No noticeable effect on performance.

• 24 February 1994. Added code to zero PMAT1, PMAT2, and PMAT3
before initialization. Necessary because 1) C++ does not clear memory

-127-

at allocation, and 2) not all matrix elements are given a value at
initialization. This corrected the residual and divergence problems.

• 25 February 1994. Re-tuned filters.

• Addendum. The prototype code did not have a separate matrix object;

instead, matrix operations were defined inside the code for the Kaiman

filter.

DATE 1 January 1994
FINDER Russell
PROBLEM The probabilities for the individual filters sum to more than 1.0.

ACTIONS
• 22 February 1994. Rewrote code which enforces lower probability

bound of 0.01. Original code did not correctly handle the case where

two of the three filters needed to be adjusted.

DATE 28 February 1994

FINDER Amburn
PROBLEM The box in the center of the display needs to be changed to

crosshairs.

ACTIONS
• 28 February 1994. Changed box to crosshairs.

DATE 31 March 1994
FINDER Maybeck
PROBLEM The renderer is not sensitive enough to accommodate small

changes in head orientation, resulting in coarse movement.

ACTIONS

• 31 March 1994. Removed the EPSILON value check in the renderer
(the view direction into the scene was not changed until the orientation
values changed by at least EPSELON). This resulted in acceptable
movement characteristics.

DATE 31 March 1994
FINDER Amburn, Maybeck

-128

PROBLEM The aircraft in the environment appear to undergo shearing
when they make clearing turns. They become very difficult to

follow when this occurs.

ACTIONS
9 31 March 1994. Believe the problem is in the orientation vectors for

the aircraft contained in the data file. Investigating methods to

guarantee orthogonal orientation vectors.

• Addendum. The problem was indeed in the data files. No fix to this
problem was ever implemented.

DATE 31 March 1994

FINDER Russell
PROBLEM The renderer inverts up and down when the viewer is at or

beyond ninety degrees from initial forward direction.

ACTIONS

• 31 March 1994. Investigated Polhemus orientation to assure we are in

the active hemisphere of the Polhemus.

• 30 April 1994. Rewrote read_Adjusted_Fastrak method to return

readings in row-major ordering (instead of column-major); verified
right-hand coordinate system. This resulted in acceptable

performance.

• Addendum. read_Adjusted_Fastrak is a method in a library object for

interfacing with a Polhemus. In order to make this fix, it was

necessary to first copy the library code to a local directory, then modify
the local copy.

DATE 31 March 1994
FINDER Maybeck

PROBLEM The status information in the display undergoes a color intensity
shift (white to gray to black) depending on the color of the
terrain behind it.

129-

ACTIONS
• 4 March 1994. Changed information display color to black. This

eliminates the intensity shift (black has no intensity). Cause of

original intensity shift is still unknown.

• Addendum. The cause for the original intensity shift was never

isolated.

DATE 31 March 1994
FINDER Maybeck
PROBLEM We need to be able to isolate the filters so that only one of them

is running (single filter mode). This will aid in filter tuning.

ACTIONS
• 8 April 1994. Added MMAE_Mode variable to allow for three modes

of operation: polhemus mode, single filter mode, and adaptive filter
mode. Added 'm' option to checklnput routine to allow the mode of

operation to change dynamically.

• 6 May 1994. Added dummy probabilities to MultModels method.
These probabilities allow the MMAE to simulate single filter mode
without incurring the performance degradation associated with
actually shutting down filters.

• Addendum. The prototype code did not have separate Kaiman filter
and MMAE objects; instead, a single Kaiman filter object was coded

the encompassed the behavior of both. This single object had duplicate

variables so that it could simulate three Kaiman filter objects, as well
as code to handle necessary MMAE functions. Because of this, it was
very difficult to isolate problems with and/or make modifications to

either the filters or the MMAE.

DATE 31 March 1994

FINDER Maybeck

PROBLEM The data currently collected by the simulation is not sufficient.

-130-

ACTIONS
• 22 April 1994. Added individual filter outputs, sim_time, big, and

little to the output data. Made necessary adjustments to routines.

• 26 April 1994. Added VHP and VPN to output data.

• 28 April 1994. Added cycle_start and cycle_end to output data.

• Addendum. Adding these output variables involved changes to
approximately six routines in several different objects, including the
use of shared memory. The effort required to make these changes is
directly related to the coupling between objects in the prototype code.

DATE 20 April 1994

FINDER Russell, Maybeck
PROBLEM In follow mode, the participant's distance behind the aircraft is

not fixed, but is a function of the aircraft's velocity.

ACTIONS
• Addendum. No actions were taken on this problem.

131-

Appendix B:
Test Program Sample Outputs

This appendix contains output listings for the filter_test and

mmae_test programs in both implementation languages (C++ and Ada 9X).

The benign filter was used for both of the filter_test executions, as was the
BenignO data set. The mmae_test output was generated with the BenignO

data set.

Filter-Test Output — C++ Implementation

INITIALIZING FOGMA FILTER . . .

Filter successfully initialized

READING PATH FILE . . .

Path file ../PATHS/benignO.xyz read and normalized

BEGINNING SIMULATION LOOP . . .

***** Time = 1 *****

Updating for Z = [-0.0597 0.9910 -0.1196](T)

Updated X = [-0.0108 0.9984 -0.0217](T)
LQuot () = 1.467929
MQuot () = 0.017940
f = 22.557404

Propagating one sample period ahead

Propagated X = [-0.0119 0.9982 -0.0239] (T)

Projecting two sample periods ahead

Projected X = [-0.0131 0.9980 -0.0262] (T)

-132-

***** Tims = 2 *****

Updating for Z = [-0.0597 0.9909 -0.1206](T)

Updated X = [-0.0206 0.9969 -0.0415](T)
LQuot () = 0.954828
MQuot () = 0.011669
f = 29.154612

Propagating one sample period ahead

Propagated X = [-0.0226 0.9966 -0.0456](T)

Projecting two sample periods ahead

Projected X = [-0.0247 0.9963 -0.0498](T)

***** Time = 3 *****

Updating for Z = [-0.0596 0.9908 -0.1213] (T)

Updated X = [-0.0294 0.9955 -0.0593](T)
LQuot () = 0.584525
MQuot () = 0.007144
f = 35.084595

Propagating one sample period ahead

Propagated X = [-0.0321 0.9951 -0.0649](T)

Projecting two sample periods ahead

Projected X = [-0.0350 0.9947 -0.0707](T)

Updating for Z = [-0.0592 0.9908 -0.1220] (T)

Updated X = [-0.0371 0.9943 -0.0753](T)
LQuot () = 0.328595
MQuot () = 0.004016
f = 39.873981

-133 -

Propagating one sample period ahead

Propagated X = [-0.0404 0.9938 -0.0821](T)

Projecting two sample periods ahead

Projected X = [-0.0438 0.9933 -0.0890] (T)

***** Time = 5 *****

Updating for Z = [-0.0589 0.9907 -0.1228](T)

Updated X = [-0.0438 0.9932 -0.0895](T)
LQuot () = 0.164408
MQuot () = 0.002 009
f = 43.285347

Propagating one sample period ahead

Propagated X = [-0.0475 0.9927 -0.0972] (T)

Projecting two sample periods ahead

Projected X = [-0.0514 0.9921 -0.1050](T)

***** Time = 6 *****

Updating for Z = [-0.0586 0.9906 -0.1235](T)

Updated X = [-0.0495 0.9923 -0.1020] (T)
LQuot () = 0.067255
MQuot () = 0.000822
f = 45.439762

Propagating one sample period ahead

Propagated X = [-0.0536 0.9916 -0.1103](T)

Projecting two sample periods ahead

Projected X = [-0.0577 0.9910 -0.1188](T)

-134-

***** Time = 7 *****

Updating for Z = [-0.0582 0.9906 -0.1236](T)

Updated X = [-0.0544 0.9915 -0.1127](T)
LQuot () = 0.016174
MQuot () = 0.000198
f = 46.615192

Propagating one sample period ahead

Propagated X = [-0.0586 0.9908 -0.1215](T)

Projecting two sample periods ahead

Projected X = [-0.0629 0.9901 -0.1304](T)

***** Time = 8 *****

Updating for Z = [-0.0581 0.9907 -0.1231](T)

Updated X = [-0.0585 0.9908 -0.1218](T)
LQuot () = 0.000232
MQuot () = 0.000003
f = 46.988255

Propagating one sample period ahead

Propagated X = [-0.0628 0.9901 -0.1307](T)

Projecting two sample periods ahead

Projected X = [-0.0672 0.9894 -0.1398](T)

***** Time = 9 *****

Updating for Z = [-0.0577 0.9908 -0.1223](T)

Updated X = [-0.0619 0.9902 -0.1292](T)
LQuot () = 0.008071
MQuot () = 0.000099
f = 46.804520

-135-

Propagating one sample period ahead

Propagated X = [-0.0661 0.9896 -0.1381](T)

Projecting two sample periods ahead

Projected X = [-0.0704 0.9889 -0.1472](T)

***** Time = 10 *****

Updating for Z = [-0.0572 0.9910 -0.1207](T)

Updated X = [-0.0645 0.9898 -0.1350](T)
LQuot () = 0.031605
MQuot () = 0.000386
f = 46.257156

Propagating one sample period ahead

Propagated X = [-0.0687 0.9892 -0.1437](T)

Projecting two sample periods ahead

Projected X = [-0.0728 0.9885 -0.1526](T)

Filter-Test Output — Ada 9Xlmplementation

INITIALIZING FOGMA FILTER . . .

Filter successfully initialized

READING PATH FILE ...

Path file ../THESIS-C/PATHS/benignO.xyz read and normalized

BEGINNING SIMULATION LOOP . . .

***** Time = 1 *****

Updating for Z = [-0.0597 0.9910 -0.1196](T)

Updated X = [-0.0108 0.9984 -0.0217](T)

-136-

LQuot () = 1.467929
MQuot () = 0.017940
f = 22.557405

Propagating one sample period ahead

Propagated X = [-0.0119 0.9982 -0.0239](T)

Projecting two sample periods ahead

Projected X = [-0.0131 0.9980 -0.0262](T)

***** Time = 2 *****

Updating for Z = [-0.0597 0.9909 -0.1206](T)

Updated X = [-0.0206 0.9969 -0.0415](T)
LQuot () = 0.954828
MQuot () = 0.011669
f = 29.154610

Propagating one sample period ahead

Propagated X = [-0.0226 0.9966 -0.0456] (T)

Projecting two sample periods ahead

Projected X = [-0.0247 0.9963 -0.0498](T)

***** Time = 3 *****

Updating for Z = [-0.0596 0.9908 -0.1213](T)

Updated X = [-0.0294 0.9955 -0.0593](T)
LQuot () = 0.584525
MQuot () = 0.007144
f = 35.084595

Propagating one sample period ahead

Propagated X = [-0.0321 0.9951 -0.0649](T)

Projecting two sample periods ahead

Projected X = [-0.0350 0.9947 -0.0707](T)

-137-

***** Tims = 4 *****

Updating for Z = [-0.0592 0.9908 -0.1220] (T)

Updated X = [-0.0371 0.9943 -0.0753] (T)
LQuot () = 0.328595
MQuot 0 = 0.004016
f = 39.873985

Propagating one sample period ahead

Propagated X = [-0.0404 0.9938 -0.0821](T)

Projecting two sample periods ahead

Projected X = [-0.0438 0.9933 -0.0890] (T)

***** Time = 5 *****

Updating for Z = [-0.0589 0.9907 -0.1228](T)

Updated X = [-0.0438 0.9932 -0.0895](T)
LQuot () = 0.1644 08
MQuot () = 0.002 009
f = 43.285347

Propagating one sample period ahead

Propagated X = [-0.0475 0.9927 -0.0972](T)

Projecting two sample periods ahead

Projected X = [-0.0514 0.9921 -0.1050](T)

***** Time = 6 *****

Updating for Z = [-0.0586 0.9906 -0.1235](T)

Updated X = [-0.0495 0.9923 -0.1020] (T)
LQuot () = 0.067255
MQuot () = 0.000822
f = 45.439770

-138-

Propagating one sample period ahead

Propagated X = [-0.0536 0.9916 -0.1103](T)

Projecting two sample periods ahead

Projected X = [-0.0577 0.9910 -0.1188](T)

***** Time = 7 * * * * *

Updating for Z = [-0.0582 0.9906 -0.1236](T)

Updated X = [-0.0544 0.9915 -0.1127](T)
LQuot () = 0.016174
MQuot () = 0.000198
f = 46.615185

Propagating one sample period ahead

Propagated X = [-0.0586 0.9908 -0.1215](T)

Projecting two sample periods ahead

Projected X = [-0.0629 0.9901 -0.1304] (T)

***** Time = 8 *****

Updating for Z = [-0.0581 0.9907 -0.1231](T)

Updated X = [-0.0585 0.9908 -0.1218](T)
LQuot () = 0.000232
MQuot () = 0.000003
f = 46.988251

Propagating one sample period ahead

Propagated X = [-0.0628 0.9901 -0.1307](T)

Projecting two sample periods ahead

Projected X = [-0.0672 0.9894 -0.1398](T)

***** Time = 9 *****

-139-

Updating for Z = [-0.0577 0.9908 -0.1223](T)

Updated X = [-0.0619 0.9902 -0.1292] (T)
LQuot () = 0.008071
MQuot () = 0.000099
f = 46.804520

Propagating one sample period ahead

Propagated X = [-0.0661 0.9896 -0.1381](T)

Projecting two sample periods ahead

Projected X = [-0.0704 0.9889 -0.1472] (T)

***** Time = 10 *****

Updating for Z = [-0.0572 0.9910 -0.1207](T)

Updated X = [-0.0645 0.9898 -0.1350](T)
LQuot () = 0.031605
MQuot () = 0.000386
f = 46.257153

Propagating one sample period ahead

Propagated X = [-0.0687 0.9892 -0.1437](T)

Projecting two sample periods ahead

Projected X = [-0.0728 0.9885 -0.1526](T)

MMAE-Test Output ~ C++ Implementation

INITIALIZING MMAE . . .

MMAE successfully initialized

READING PATH FILE . . .

Path file ../PATHS/benignO.xyz read and normalized

BEGINNING SIMULATION LOOP . . .

-140-

***** Time = 1 *****

Correcting for Z = [-0.0597 0.9910 -0.1196] (T)

Xp residual RAR RR

-0.0108 -0.0597
Filter 1 0.9984 -0.0090 1.4679 0.0179

-0.0217 -0.1196

-0.0265 -0.0597
Filter 2 0.9960 -0.0090 0.9969 0.0179

-0.0531 -0.1196

-0.0373 -0.0597
Filter 3 0.9944 -0.0090 0.6730 0.0179

-0.0747 -0.1196

Corrected X = [-0.0216 0.9968 -0.0433](T)

Predicting one sample period ahead

Filter 1 Xm = [-0.0119 0.9982 -0.0239](T) pkl = 0.46
Filter 2 Xm = [-0.0345 0.9948 -0.0691](T) pk2 = 0.33
Filter 3 Xm = [-0.0553 0.9917 -0.1108](T) pk3 = 0.21

Predicted X = [-0.0285 0.9957 -0.0572](T)

Extending two sample periods ahead

Extended X = [-0.0356 0.9946 -0.0714](T)

***** Time = 2 *****

Correcting for Z = [-0.0597 0.9909 -0.1206](T)

Xp residual RAR RR

-0.0206 -0.0478
Filter 1 0.9969 -0.0073 0.9548 0.0117

-0.0415 -0.0966

-0.0457 -0.0252
Filter 2 0.9931 -0.0039 0.1835 0.0033

-0.0920 -0.0515

-0.0580 -0.0044

-141-

Filter 3 0.9912 -0.0008 0.0043 0.0001
-0.1169 -0.0098

Corrected X = [-0.0334 0.9949 -0.0673](T)

Predicting one sample period ahead

Filter 1 Xm = [-0.0226 0.9966 -0.0456](T) pkl = 0.55
Filter 2 Xm = [-0.0574 0.9913 -0.1155](T) pk2 = 0.32
Filter 3 Xm - [-0.0776 0.9882 -0.1564](T) pk3 = 0.13

Predicted X = [-0.0408 0.9938 -0.0822](T)

Extending two sample periods ahead

Extended X = [-0.0483 0.9927 -0.0973](T)

***** Time = 3 *****

Correcting f or Z = [-0 0596 0.9908 -0 .1213](T)

Xp residual RAR RR

Filter 1
-0.0294
0.9955

-0.0593

-0.0370
-0.0058
-0.0758

0.5845 0 0071

Filter 2
-0.0584
0.9911

-0.1181

-0.0023
-0.0005
-0.0058

0.0022 0 0000

Filter 3
-0.0664
0.9898

-0.1345

0.0180
0.0026
0.0351

0.0585 0 .0016

Corrected X = [-0.0399 0.9939 -0. 0807] (T)

Predicting one sample period ahead

Filter 1 Xm = [-0.0321 0.9951 -0.0649](T) pkl = 0.65
Filter 2 Xm = [-0.0708 0.9892 -0.1432](T) pk2 = 0.29
Filter 3 Xm = [-0.0806 0.9876 -0.1635](T) pk3 = 0.06

Predicted X = [-0.0461 0.9930 -0.0933] (T)

Extending two sample periods ahead

-142-

Extended X - [-0.0524 0.9920 -0.1061](T)

***** Time = 4 *****

Correcting for Z = [-0.0592 0.9908 -0.1220](T)

Xp residual RAR RR

-0.0371 -0.0271
Filter 1 0.9943 -0.0043 0.3286 0.0040

-0.0753 -0.0571

-0.0656 0.0115
Filter 2 0.9899 0.0016 0.0324 0.0006

-0.1338 0.0212

-0.0672 0.0213
Filter 3 0.9896 0.0031 0.0820 0.0022

-0.1376 0.0415

Corrected X = [-0.0440 0.9932 -0.0895] (T)

Predicting one sample period ahead

Filter 1 Xm = [-0.0404 0.9938 -0.0821](T) pkl = 0.76
Filter 2 Xm = [-0.0767 0.9882 -0.1566](T) pk2 = 0.22
Filter 3 Xm = [-0.0749 0.9883 -0.1540](T) pk3 = 0.02

Predicted X = [-0.0491 0.9925 -0.0999](T)

Extending two sample periods ahead

Extended X = [-0.0543 0.9916 -0.1105] (T)

***** Time = 5 *****

Correcting for Z = [-0.0589 0.9907 -0.1228] (T)

Xp residual RAR RR

-0.0438 -0.0186
Filter 1 0.9932 -0.0031 0.1644 0.0020

-0.0895 -0.0407

-0.0688 0.0178

-143-

Filter 2 0.9893 0.0025 0.0814 0.0015
-0.1416 0.0338

-0.0649 0.0160
Filter 3 0.9898 0.0023 0.0463 0.0012

-0.1345 0.0312

Corrected X = [-0.0475 0.9926 -0.0972] (T)

Predicting one sample period ahead

Filter 1 Xm = [-0.0475 0.9927 -0.0972](T) pkl = 0.85
Filter 2 Xm = [-0.0776 0.9879 -0.1600](T) pk2 = 0.14
Filter 3 Xm = [-0.0677 0.9893 -0.1413](T) pk3 = 0.01

Predicted X = [-0.0519 0.9919 -0.1064](T)

Extending two sample periods ahead

Extended X = [-0.0565 0.9912 -0.1158](T)

***** Time = 6 *****

Correcting for Z = [-0.0586 0.9906 -0.1235](T)

Xp residual RAR RR

-0.0495 -0.0111
Filter 1 0.9923 -0.0020 0.0673 0.0008

-0.1020 -0.0263

-0.0692 0.0190
Filter 2 0.9891 0.0027 0.0943 0.0017

-0.1438 0.0365

-0.0620 0.0091
Filter 3 0.9901 0.0013 0.0150 0.0004

-0.1302 0.0177

Corrected X = [-0.0513 0.9920 -0.1057] (T)

Predicting one sample period ahead

Filter 1 Xm = [-0.0536 0.9916 -0.1103](T) pkl = 0.91
Filter 2 Xm = [-0.0754 0.9881 -0.1573](T) pk2 = 0.08
Filter 3 Xm = [-0.0620 0.9900 -0.1315](T) pk3 = 0.01

144-

Predicted X = [-0.0555 0.9913 -0.1144](T)

Extending two sample periods ahead

Extended X = [-0.0597 0.9907 -0.1233](T)

***** Time = 7 *****

Correcting for Z = [-0.0582 0.9906 -0.1236] (T)

Xp residual RAR RR

-0.0544 -0.0046
Filter 1 0.9915 -0.0010 0.0162 0.0002

-0.1127 -0.0132

-0.0677 0.0172
Filter 2 0.9892 0.0026 0.0799 0.0014

-0.1423 0.0337

-0.0596 0.0038
Filter 3 0.9904 0.0006 0.0029 0.0001

-0.1265 0.0079

Corrected X = [-0.0551 0.9913 -0.1142](T)

Predicting one sample period ahead

Filter 1 Xm = [-0.0586 0.9908 -0.1215](T) pkl = 0.94
Filter 2 Xm = [-0.0715 0.9885 -0.1510](T) pk2 = 0.05
Filter 3 Xm = [-0.0584 0.9905 -0.1253](T) pk3 = 0.01

Predicted X = [-0.0592 0.9907 -0.1229](T)

Extending two sample periods ahead

Extended X = [-0.0634 0.9900 -0.1317] (T)

***** Time = 8 *****

Correcting for Z = [-0.0581 0.9907 -0.1231](T)

Xp residual RAR RR

-0.0585 0.0005

-145-

Filter 1 0.9908 -0.0001 0.0002 0.0000
-0.1218 -0.0016

-0.0656 0.0134
Filter 2 0.9895 0.0022 0.0534 0.0010

-0.1386 0.0279

-0.0582 0.0003
Filter 3 0.9906 0.0002 0.0002 0.0000

-0.1239 0.0022

Corrected X = [-0.0587 0.9907 -0.1222](T)

Predicting one sample period ahead

Filter 1 Xm = [-0.0628 0.9901 -0.1307](T) pkl = 0.96
Filter 2 Xm = [-0.0673 0.9891 -0.1432](T) pk2 = 0.03
Filter 3 Xm = [-0.0569 0.9908 -0.1220](T) pk3 = 0.01

Predicted X = [-0.0629 0.9901 -0.1310](T)

Extending two sample periods ahead

Extended X = [-0.0671 0.9894 -0.1398](T)

Correcting i :or Z = [-0. 0577 0.990* I -0 .1223]

Xp residual RAR

-0.0619 0.0051
Filter 1 0.9902

-0.1292

-0.0630

0.0007
0.0085

0.0096

0.0081

Filter 2 0.9899
-0.1339

-0.0574

0.0017
0.0209

-0.0008

0.0296

Filter 3 0.9908
-0.1222

0.0001
-0.0002

0.0000

Corrected X = [-0.0619 0.9902 -0 1292 1 (T)

:T)

RR

0.0001

0.0005

0.0000

Predicting one sample period ahead

-146-

Filter 1 Xm = [-0.0661 0.9896 -0.1381](T) pkl = 0.98
Filter 2 Xm = [-0.0633 0.9898 -0.1353](T) pk2 = 0.01
Filter 3 Xm = [-0.0563 0.9910 -0.1203](T) pk3 = 0.01

Predicted X = [-0.0660 0.9896 -0.1379](T)

Extending two sample periods ahead

Extended X = [-0.0702 0.9889 -0.1468](T)

***** Time = 10 *****

Correcting for Z = [-0.0572 0.9910 -0.1207](T)

Xp residual RAR RR

-0.0645 0.0089
Filter 1 0.9898 0.0015 0.0316 0.0004

-0.1350 0.0174

-0.0606 0.0061
Filter 2 0.9903 0.0012 0.0140 0.0003

-0.1288 0.0146

-0.0569 -0.0009
Filter 3 0.9910 0.0001 0.0000 0.0000

-0.1205 -0.0004

Corrected X = [-0.0644 0.9898 -0.1348](T)

Predicting one sample period ahead

Filter 1 Xm = [-0.0687 0.9892 -0.1437](T) pkl = 0.98
Filter 2 Xm = [-0.0599 0.9904 -0.1279](T) pk2 = 0.01
Filter 3 Xm = [-0.0561 0.9912 -0.1188](T) pk3 = 0.01

Predicted X = [-0.0684 0.9892 -0.1433](T)

Extending two sample periods ahead

Extended X = [-0.0725 0.9886 -0.1519](T)

MMAE-Test Output — Ada 9X Implementation

INITIALIZING MMAE . . .

-147-

Initializing Filter 1
Initializing Filter 2
Initializing Filter 3
MMAE successfully initialized

READING PATH FILE . . .

Path file ../THESIS-C/PATHS/benignO.xyz read and normalized

BEGINNING SIMULATION LOOP . . .

***** Time = 1 *****

Correcting for Z = [-0.0597 0.9910 -0.1196] (T)

Xp residual RAR RR

-0.0108 -0.0597
Filter 1 0.9984 -0.0090 1.4679 0.0179

-0.0217 -0.1196

-0.0265 -0.0597
Filter 2 0.9960 -0.0090 0.9969 0.0179

-0.0531 -0.1196

-0.0373 -0.0597
Filter 3 0.9944 -0.0090 0.6730 0.0179

-0.0747 -0.1196

Corrected X = [-0.0216 0.9968 -0.0433] (T)

Predicting one sample period ahead

Filter 1 = [-0.0119 0.9982 -0.0239](T) pkl = 0.46
Filter 2 = [-0.0345 0.9948 -0.0691](T) pk2 = 0.33
Filter 3 = [-0.0553 0.9917 -0.1108](T) pk3 = 0.21

Predicted X = [-0.0285 0.9957 -0.0572](T)

Extending two sample periods ahead

Extended X = [-0.0356 0.9946 -0.0714] (T)

***** Time = 2 *****

-148-

Correcting for Z = [-0 0597 0.9909 -0.1206](T)

Xp residual RAR

-0.0206 -0.0478
Filter 1 0.9969 -0.0073 0.9548

-0.0415 -0.0966

-0.0457 -0.0252
Filter 2 0.9931 -0.0039 0.1835

-0.0920 -0.0515

-0.0580 -0.0044
Filter 3 0.9912 -0.0008 0.0043

-0.1169 -0.0098

Corrected X = = [-0.0334 0.9949 -0. 0673](T)

RR

0.0117

0.0033

0.0001

Predicting one sample period ahead

Filter 1 = [-0.0226 0.9966 -0.0456](T) pkl = 0.55
Filter 2 = [-0.0574 0.9913 -0.1155](T) pk2 = 0.32
Filter 3 = [-0.0776 0.9882 -0.1564](T) pk3 = 0.13

Predicted X = [-0.0408 0.9938 -0.0822](T)

Extending two sample periods ahead

Extended X = [-0.0483 0.9927 -0.0973](T)

***** Time = 3 *****

Correcting for Z = [-0.0596 0.9908 -0.1213](T)

Xp residual RAR RR

-0.0294 -0.0370
Filter 1 0.9955 -0.0058 0.5845 0.0071

-0.0593 -0.0758

-0.0584 -0.0023
Filter 2 0.9911 -0.0005 0.0022 0.0000

-0.1181 -0.0058

-0.0664 0.0180
Filter 3 0.9898 0.0026 0.0585 0.0016

-0.1345 0.0351

-149-

Corrected X = [-0.0399 0.9939 -0.0807](T)

Predicting one sample period ahead

Filter 1 = [-0.0321 0.9951 -0.0649](T) pkl = 0.65
Filter 2 = [-0.0708 0.9892 -0.1432](T) pk2 - 0.29
Filter 3 = [-0.0806 0.9876 -0.1635](T) pk3 = 0.06

Predicted X = [-0.0461 0.9930 -0.0933] (T)

Extending two sample periods ahead

Extended X = [-0.0524 0.9920 -0.1061](T)

***** Time = 4 *****

Correcting for Z = [-0.0592 0.9908 -0.1220](T)

Xp residual RAR RR

-0.0371 -0.0271
Filter 1 0.9943 -0.0043 0.3286 0.0040

-0.0753 -0.0571

-0.0656 0.0115
Filter 2 0.9899 0.0016 0.0324 0.0006

-0.1338 0.0212

-0.0672 0.0213
Filter 3 0.9896 0.0031 0.0820 0.0022

-0.1376 0.0415

Corrected X = [-0.0440 0.9932 -0.0895](T)

Predicting one sample period ahead

Filter 1 = [-0.0404 0.9938 -0.0821](T) pkl = 0.76
Filter 2 = [-0.0767 0.9882 -0.1566](T) pk2 = 0.22
Filter 3 = [-0.0749 0.9883 -0.1540](T) pk3 = 0.02

Predicted X = [-0.0491 0.9925 -0.0999] (T)

Extending two sample periods ahead

Extended X = [-0.0543 0.9916 -0.1105](T)

-150-

***** Tiiue = 5 * * * * *

Correcting for Z = [-0.0589 0.9907 -0.1228](T)

Xp residual RAR RR

-0.0438 -0.0186
Filter 1 0.9932 -0.0031 0.1644 0.0020

-0.0895 -0.0407

-0.0688 0.0178
Filter 2 0.9893 0.0025 0.0814 0.0015

-0.1416 0.0338

-0.0649 0.0160
Filter 3 0.9898 0.0023 0.0463 0.0012

-0.1345 0.0312

Corrected X = [-0.0475 0.9926 -0.0972] (T)

Predicting one sample period ahead

Filter 1 = [-0.0475 0.9927 -0.0972](T) pkl = 0.85
Filter 2 = [-0.0776 0.9879 -0.1600](T) pk2 = 0.14
Filter 3 = [-0.0677 0.9893 -0.1413](T) pk3 = 0.01

Predicted X = [-0.0519 0.9919 -0.1064](T)

Extending two sample periods ahead

Extended X = [-0.0565 0.9912 -0.1158](T)

***** Time = 6 *****

Correcting for Z = [-0.0586 0.9906 -0.1235](T)

Xp residual RAR RR

-0.0495 -0.0111
Filter 1 0.9923 -0.0020 0.0673 0.0008

-0.1020 -0.0263

-0.0692 0.0190
Filter 2 0.9891 0.0027 0.0943 0.0017

-0.1438 0.0365

-151-

0 9916 -0 1103] (T) pkl = 0 91
0 9881 -0 1573] (T) pk2 = 0 08
0 9900 -0 1315] (T) pk3 = 0 01

-0.0620 0.0091
Filter 3 0.9901 0.0013 0.0150 0.0004

-0.1302 0.0177

Corrected X = [-0.0513 0.9920 -0.1057](T)

Predicting one sample period ahead

Filter 1 = [-0.0536
Filter 2 = [-0.0754
Filter 3 = [-0.0620

Predicted X = [-0.0555 0.9913 -0.1144](T)

Extending two sample periods ahead

Extended X = [-0.0597 0.9907 -0.1233](T)

***** Time = "y * * * * *

Correcting for Z = [-0.0582 0.9906 -0.1236] (T)

Xp residual RAR RR

-0.0544 -0.0046
Filter 1 0.9915 -0.0010 0.0162 0.0002

-0.1127 -0.0132

-0.0677 0.0172
Filter 2 0.9892 0.0026 0.0799 0.0014

-0.1423 0.0337

-0.0596 0.0038
Filter 3 0.9904 0.0006 0.0029 0.0001

-0.1265 0.0079

Corrected X = [-0.0551 0.9913 -0.1142](T)

Predicting one sample period ahead

Filter 1 = [-0.0586 0.9908 -0.1215](T) pkl = 0.94
Filter 2 = [-0.0715 0.9885 -0.1510](T) pk2 = 0.05
Filter 3 = [-0.0584 0.9905 -0.1253](T) pk3 = 0.01

Predicted X = [-0.0592 0.9907 -0.1229](T)

-152-

Extending two sample periods ahead

Extended X = [-0.0634 0.9900 -0.1317](T)

***** Time = 8 *****

Correcting for Z = [-0.0581 0.9907 -0.1231](T)

Xp residual RAR RR

-0.0585 0.0005
Filter 1 0.9908 -0.0001 0.0002 0.0000

-0.1218 -0.0016

-0.0656 0.0134
Filter 2 0.9895 0.0022 0.0534 0.0010

-0.1386 0.0279

-0.0582 0.0003
Filter 3 0.9906 0.0002 0.0002 0.0000

-0.1239 0.0022

Corrected X = [-0.0587 0.9907 -0.1222](T)

Predicting one sample period ahead

Filter 1 = [-0.0628 0.9901 -0.1307](T) pkl = 0.96
Filter 2 = [-0.0673 0.9891 -0.1432](T) pk2 = 0.03
Filter 3 = [-0.0569 0.9908 -0.1220](T) pk3 = 0.01

Predicted X = [-0.0629 0.9901 -0.1310](T)

Extending two sample periods ahead

Extended X = [-0.0671 0.9894 -0.1398](T)

* * * * * Time = 9 *****

Correcting for Z = [-0.0577 0.9908 -0.1223](T)

Xp residual RAR RR

-0.0619 0.0051
Filter 1 0.9902 0.0007 0.0081 0.0001

-0.1292 0.0085

-153-

-0.0630 0.0096
Filter 2 0.9899 0.0017 0.0296 0.0005

-0.1339 0.0209

-0.0574 -0.0008
Filter 3 0.9908 0.0001 0.0000 0.0000

-0.1222 -0.0002

Corrected X = [-0.0619 0.9902 -0.1292](T)

Predicting one sample period ahead

Filter 1 = [-0.0661 0.9896 -0.1381](T) pkl = 0.98
Filter 2 = [-0.0633 0.9898 -0.1353](T) pk2 = 0.01
Filter 3 = [-0.0563 0.9910 -0.1203](T) pk3 = 0.01

Predicted X = [-0.0660 0.9896 -0.1379](T)

Extending two sample periods ahead

Extended X = [-0.0702 0.9889 -0.1468](T)

***** Time = 10 *****

Correcting for Z = [-0.0572 0.9910 -0.1207] (T)

Xp residual RAR RR

-0.0645 0.0089
Filter 1 0.9898 0.0015 0.0316 0.0004

-0.1350 0.0174

-0.0606 0.0061
Filter 2 0.9903 0.0012 0.0140 0.0003

-0.1288 0.0146

-0.0569 -0.0009
Filter 3 0.9910 0.0001 0.0000 0.0000

-0.1205 -0.0004

Corrected X = [-0.0644 0.9898 -0.1348](T)

Predicting one sample period ahead

Filter 1 = [-0.0687 0.9892 -0.1437](T) pkl = 0.98
Filter 2 = [-0.0599 0.9904 -0.1279](T) pk2 = 0.01
Filter 3 = [-0.0561 0.9912 -0.1188](T) pk3 = 0.01

-154-

Predicted X = [-0.0684 0.9892 -0.1433](T)

Extending two sample periods ahead

Extended X = [-0.0725 0.9886 -0.1519](T)

-155-

Appendix C:

Performance Study Instructions

PURPOSE

This study is designed to compare the effectiveness of Polhemus tracking,

single filter (non-adaptive) tracking, and adaptive Kaiman filter tracking in a

virtual environment. Specifically, the data collected will be used to determine if

adaptive Kaiman filtering offers any advantage over the other modes in reducing

display lag. This is a theoretical research project, and is NOT a preliminary step in

any USAF program. Further, the data collected in this experiment will not be used

to evaluate individual performance.

FORMAT

This study will be conducted in the following manner. First, you will be given

an overview of both the software and hardware to be used. Next, you will be given

an opportunity to familiarize yourself with both the equipment and the virtual

environment. You will then be asked to perform a series of trials. The objective of

these trials is to keep a crosshair centered on a moving ball by changing your head

orientation; in other words, follow the bouncing ball.

TRAINING

[Show the subject the Polhemus 3SPACE Tracker] This is the Polhemus

3SPACE Magnetic Tracker, or Polhemus for short. [Show the subject the source

element] It uses three orthogonal magnetic coils located inside this source unit that

-156-

are independently pulsed and picked up by the sensor attached to the PT-01 HMD.

This is how your head orientation is monitored.

[Show the subject the PT-01 HMD] This is the PT-01 Head Mounted Display

Unit or HMD for short. It is similar to looking through a pair of binoculars. [Show

the subject the underside of the housing with the adjustment levers] These levers

allow you to adjust the interocular distance (the distance between the eyes) and the

focus for each eye image. [Show the subject the various position adjustment knobs]

The HMD housing can be adjusted in, out, up, and down for comfort, and the head

band can also be tightened and/or loosened. Go ahead and put the HMD on, making

certain it is adjusted comfortably. [Allow the subject to try on the HMD. Help

him/her adjust it "comfortably" onto his/her head. Load up the benignO data set

and set the tracking mode appropriately for this subject] You should be able to see a

green ground plane with a cross-hatch texture on it. This texture has no

significance to the experiment except that it provides you with motion cues when

you turn your head. You should also see a blue sky, a black crosshair in the middle

of the screen, and a red ball somewhere near the crosshair. [Make certain the

subject can see all this]

Each trial will be conducted in the same way. In order to start a trial, you

simply hit the space bar. When you do, the crosshair in the center of the screen will

turn white, indicating that the trial has started. Also, a box will appear around the

crosshair. It will be either red or blue. Whatever color the box is, find the ball of

the same color as quickly as you can and track its movement. This is what it will

look like [Hit the space bar to start the trial]

Three types of trial will be used. The first type, which you are currently

looking at, is benign motion. The ball makes very slow movements. [Let the subject

finish the trial; load up the moderateO data set] The second type is moderate

movement. The ball makes very short, but very quick movements. I am not

157-

expecting that you will be able to follow moderate motion perfectly; just do the best

that you can. [Let the subject watch the moderate trial; load up the mixedO data

set]. Also, for these two trials you may center the crosshair in the ball before you

begin the trial if you like.

The final trial is a mixed trial. If you look to your left, you will see the red

ball; if you look to your right, the blue ball. These balls will move about in the

general area they are currently in, but the red ball will always be to your left, and

the blue ball to your right. Remember, whatever the color of the box around the

cursor is, find that ball AS QUICKLY AS YOU CAN and track it. If the box around

the cursor should change color, find the other ball AS QUICKLY AS YOU CAN and

track it. Since the initial color of the box around the cursor is random, I suggest you

start by simply picking a point roughly between the two balls. This task roughly

analogous to being in trail behind a friendly aircraft, and watching for enemy

aircraft. You need to keep track of both as much as possible. [Let the subject view

the mixed trial].

The experiment will be conducted as follows. You will do seven trials (two

benign, two moderate, and three mixed) for a particular tracking mode. Then we

will change the tracking mode and do the same seven trials (two benign, two

moderate, and three mixed) again. Then we will switch tracking modes one more

time and do the same seven trials again. Each of the trials is approximately thirty

seconds in length, and you start each by hitting the space bar.

Trials

[Do the trials as prescribed by the data sheet. Be certain to tell the subject

what type of trial he I she is doing, and also which tracking mode he I she is using. Be

certain to use the appropriate tracking mode!!!]

-158-

Debrief

[When the trials are complete, ask the subject if he/she noted any differences

between the various tracking modes. Also, ask if one seemed any easier or harder

than the others.]

-159-

Appendix D:

Mean +/- 1 Sigma Plots

This appendix contains mean +/- sigma plots for selected data sets (Benignl,

Moderate!., and Mixedl) from the data collected during the performance study.

Only the middle ten seconds of data from a thirty-second data sample was plotted in

these graphs due to space constraints. The graphs are arranged so that X- and Z-

direction graphs for the same condition are on the same page.

In order to have something against which to compare prediction value, a

simulated Polhemus error was defined as the difference between the Polhemus

values at time t and the Polhemus values at time t+1; this definition accounts for

the fact that under normal conditions, Polhemus data is one frame old when it is

used to render a scene.

The graphs were generated by caluculating the absolute error value

expressed as the difference between the predicted (or simulated predicted in the

case of Polhemus Only mode) value, and the appropriate Polhemus input value,

such that the result was always positive. These absolute errors were calculated for

each subject and each sample period in the data set. The mean and standard

deviation of these errors across all subjects for each sample period was calculated

and used to produce the graphs in this appendix. Note that the graphs depicted are

not for the same subjects in all conditions. The experiment was not designed such

that a particular subject did all data sets in all tracking modes. However, in all

cases, the graphs represent data for six subjects.

-160-

■0.05 ■-

■0.1 ■-

lll

Time (0.1 sec)

X-direction Path Values, Benignl Data Set

llllllllllllllllllllllllHlll

Time (0.1 sec)

Z-direction Path Values, Benignl Data Set

-161-

Time (0.1 sec)

MMAE Prediction Error, X-direction, Benignl Data Set

0.14 -r

0.12 ■■

0.1 -■

® 0.08 --

Time (0.1 sec)

MMAE Prediction Error, Z-direction, Benignl Data Set

-162

Time (0.1 sec)

Single Filter Prediction Error, X-direction, Benign 1 Data Set

0.14

0.12 -■

0.1 ■■

Time (0.1 sec)

Single Filter Prediction Error, Z-direction, Benignl Data Set

163

0.14 ■-

0.12 -■

0.1 --

a> 0.08 --

es
>

o

Ui

0.06 --

0.04 ■-

0.02

0

■0.02 ■-

■0.04 ■-

JL^MI^

Time (0.1 sec)

Simulated Polhemus Prediction Error, X-direction, Benignl Data Set

0.14 j

0.12 ■■

0.1 ■■

o 0.08 ■-

> 0.06 ■-

£ 0.04 ■-

W 0.02 --

0

-0.02 ■-

-0.04 --

itfttfrf^^ J^lMtttafflWwrf

Time (0.1 sec)

Simulated Polhemus Prediction Error, Z-direction, Benignl Data Set

-164-

0)
3
(0
>

0.3 T

0.2 --i

0.1 ■-

•0.1 --

•0.2 ■-

■0.3

■0.4 -L

tm+HH

Time (0.1 sec)

X-direction Path Values, Moderate 1 Data Set

llllllllllllllllllllllllllllllllllllll

Time (0.1 sec)

Z-direction Path Values, Moderatel Data Set

-165-

0.3 T

0.24 ■-

o> 0.18 --

-0.06 ±

Time (0.1 sec)

MMAE Prediction Error, X-direction Values, Moderate 1 Data Set

0.3

0.24

« 0.18 +

>
0.12 ■■

w 0.06 -r

■0.06 J-

Time (0.1 sec)

MMAE Prediction Error, Z-direction Values, Moderate 1 Data Set

-166-

0.3

0.24 ■-

0) 0.18 --

-0.06 ±

Time (0.1 sec)

Single Filter Prediction Error, X-direction Values, Moderate 1 Data Set

0.3 T

0.24 --

» 0.18 +

o
>

0.12 -ft

w 0.06 -i

■0.06 -L

mmiiwmimiimiii

Time (0.1 sec)

Single Filter Prediction Error, Z-direction Values, Moderate 1 Data Set

167-

0)
3
to
>

o
HI

0.5 j

0.45 ■-

0.4

0.35 --

0.3 --

0.25 ■-

0.2 ■-

0.15 --

0.1 •-

0.05

0

■0.05 -1-

tfiilliiMy^ \

Time (0.1 sec)

Simulated Polhemus Prediction Error, X-direction Values, Moderatel Data Set

0.5 -.

0.45 -

0.4 -

0.35 ■
0)
3 0.3 ■
CO
> 0.25 ■

o
■_

LU

0.2 •

0.15 -

0.1 -

0.05 ■
djlkuJ- JL

0 . wTmttri PfflWifri 1111 i'/ih i.'.11111i'i'liilf111'jJih'^Oi^'JitfJtitffiiWli^'i1111I'I'I1111IVJI

-0.05 -

Time (0.1 sec)

Simulated Polhemus Prediction Error, Z-direction Values, Moderatel Data Set

-168-

0.6 T

0.4

0.2 +

in in im nun in min in in in ii im in in in iiiiiiiii min in iiiiiii in in in

Time (0.1 sec)

X-direction Path Values, Mixedl Data Set

ll IIIIIII ll IIIIIIIIIII ll IIIIIII ll II ll ll ll ll ll l IIIIIIII ll ll ll l ll ll ll ll ll

Time (0.1 sec)

Z-direction Path Values, Mixedl Data Set

-169-

0)
3

>

O

UJ

0.5

0.45 ■-

0.4 --

0.35

0.3 --

0.25 -■

0.2 ■-

0.15 --

0.1 4
0.05

0

■0.05 ■L

Time (0.1 sec)

MMAE Prediction Error, X-direction, Mixedl Data Set

0)
3

CO
>

0

UJ

0.5 -r

0.45 --

0.4 --

0.35

0.3 --

0.25 ■-

0.2 --

0.15

0.1 +

0.05

0

■0.05 J-

. lljj mülÜJ
,,, .JrflivfTwflMfriWFllllrrAUm, Hh-jM

Time (0.1 sec)

MMAE Prediction Error, Z-direction, Mixedl Data Set

-170-

3

CO
>

o
LU

Time (0.1 sec)

Single Filter Prediction Error, X-direction, Mixedl Data Set

O)
3

CO
>

o
k.

UJ

0.5 j

0.45 --

0.4 ■-

0.35

0.3 +

0.25

0.2 ■■

0.15 ■■

0.1 ■-

0.05

0

■0.05 J-

Time (0.1 sec)

Single Filter Prediction Error, Z-direction ,Mixedl Data Set

-171-

0)
_3

(0
>

o
Ui

0.5 j

0.45 --

0.4 ■■

0.35 ■-

0.3 ■-

0.25 •-

0.2 ■-

0.15 ■-

0.1 ■-

0.05 •■

0

-0.05 x

1)MIMIVIW

Time (0.1 sec)

Simulated Polhemus Prediction Error, X-direction, Mixedl Data Set

0)
3

CQ
>

O

LU

0.5

0.45 +

0.4

0.35 ■-

0.3 --

0.25 ■■

0.2 ■-

0.15

0.1 +

0.05

0

■0.05 -1-

Time (0.1 sec)

Simulated Polhemus Prediction Error, Z-direction, Mixedl Data Set

-172-

Bibliography

[Arthur93]

[Azuma94]

[Batory91]

[Bryson92]

[Bryson90]

[Chang84]

[Chidamber91]

[Chung92]

[Diaz94]

Kevin W. Arthur, Kellogg S. Booth, and Colin Ware;
"Evaluating 3D Task Performance for Fish Tank Virtual
Worlds"; ACM Transactions on Information Systems;
Volume 11, issue 3, July 1993; pp 239-265.

Ronald Azuma and Gary Bishop; "Improving Static and
Dynamic Registration in an Optical See-through HMD";
Proceedings ofSIGGRAPH '94 (CD-ROM version).

Don Batory and Sean O'Malley; The Design and
Implementation of Hierarchical Software Systems Using
Reusable Components; Technical Report TR-91-22;
Department of Computer Science, University of Texas,
Austin; June 1991.

Steve Bryson; "Measurement and Calibration of Static
Distortion of Position Data from 3D Trackers";
Proceedings of the SPIE - The International Society for
Optical Engineering; Volume 1669, 1992; pp 244-255.

Steve Bryson and Scott S. Fisher; "Defining, Modeling,
and Measuring System Lag in Virtual Environments";
Proceedings of the SPIE - The International Society for
Optical Engineering; Volume 1256, 1990; pp 98-109.

Chaw-Bing Chang and John A. Tabaczynski; "Application
of State Estimation to Target Tracking"; IEEE
Transactions on Automatic Control; Volume AC-29,
Number 2, February 1984; pp 98-109.

Shyam R. Chidamber and Chris F. Kemerer; "Towards a
Metrics Suite for Object Oriented Design"; Proceedings of
OOPSLA '91; pp 197-211.

James Chung; "A Comparison of Head-Tracked and
Non-Head-Tracked Steering Modes in the Targeting of
Radiotherapy Treatment Beams"; Proceedings of the 1992
ACM Symposium on Interactive 3D Graphics; 1992; pp
193-196.

Milton E. Diaz; The Photo Realistic AFIT Virtual Cockpit;
Masters Thesis, AFIT/GCS/ENG/94D-02, School of
Engineering, Air Force Institute of Technology, Wright-
Patterson AFB, OH; December, 1994.

-173-

[Ellis94]

[Ellis91]

[Foley90]

[Fortner94]

[Friedman92]

[Gardner93]

[Garlan93]

[Gerken91]

[Jagacinski77]

Stephen Ellis; "What are Virtual Environments?"; IEEE
Computer Graphics and Applications; Volume 14, Number
1, January 1994; pp 17-22.

S.R. Ellis; "Nature and Origins of Virtual Environments:
A Bibliographical Essay"; Computing Systems in
Engineering; Volume 2, Number 4, 1991; pp 321-347.

James Foley, Andries van Dam, Steven Feiner, John
Hughes; Computer Graphics, Principles and Practice
(second edition); Addison-Wesley Publishing Company;
1990.

Jonathan L. Fortner; Distributed Interactive Simulation
Virtual Cassette Recorder: A Datalogger with Variable
Speed Replay; Masters Thesis, AFIT/GE/ENG/94D-10,
School of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH; December, 1994.

Martin Friedman, Thad Starner, and Alex Pentland;
"Device Synchronization Using an Optimal Linear Filter";
Proceedings of the 1992 ACM Symposium on Interactive
3D Graphics; 1992; pp 57-62.

Michael Thurman Gardner; A Distributed Interactive
Simulation Based Remote Debriefing Tool for Red Flag
Missions; Masters Thesis, AFIT/GCS/ENG/93D-09, School
of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH; December, 1993.

David Garlan and Mary Shaw; "An Introduction to
Software Architecture"; in Advances in Software
Engineering and Knowledge Engineering; Volume I;
edited by V. Ambriola and G. Tortora; World Scientific
Publishing Company; 1993; pp 1-39.

Mark James Gerken; An Event Driven State Based
interface for Synthetic Environments; Masters Thesis,
AFIT/GCS/ENG/91D-07, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH;
December, 1991.

Richard J. Jagacinski; "A Qualitative Look at Feedback
Control Theory as a Style of Describing Behavior";
Human Factors, Volume 19, Number 4, 1977; pp 331-347.

-174

[Kayloe94]

[Kelley68]

[Kestermann94]

[Kozak93]

[Li94]

[Liang91]

[MacKenzie93]

[MatLab90]

[Maybeck94a]

[Maybeck94b]

Jordan R. Kayloe; The Use of Ada 9X in a Visual
Simulation System Software Architecture; Masters Thesis,
AFIT/GCS/ENG/94D-11, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH;
December, 1994.

Charles R. Kelley; Manual and Automatic Control; John
Wiley & Sons, Incorporated; 1968.

Jim Kestermann; Immersing the User in a Virtual
Environment: The AFIT Information Pod Design and
Implementation; Masters Thesis, AFIT/GCS/ENG/94D-13,
School of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH; December, 1994.

J.J. Kozak, P.A. Hancock, E.J. Arthur, and S.T. Chrysler;
"Transfer of Training from Virtual Reality"; Ergonomics;
Volume 36, Number 7, July 1993; pp 777-784.

X. Rong Li and Yaakov Bar-Shalom; "A Recursive
Multiple Model Approach to Noise Identification"; IEEE
Transactions on Aerospace and Electronic Systems;
Volume 30, Number 3, July 1994; pp 671-684.

Jiandong Liang, Chris Shaw, and Mark Green; "On
Temporal-Spatial Realism in the Virtual Reality
Environment"; Proceedings of the ACM Symposium on
User InterfaceSoftware and Technology; 1991; pp 19-25.

I. Scott MacKenzie and Colin Ware; "Lag as a
Determinant of Human Performance in Interactive
Systems"; Proceedings of the CHI '93 Conference on
Human Factors in Computing Systems (INTERCHI '93);
24-29 April 1993; pp 488-493.

PRO-MATLAB User's Guide; The MathWorks,
Incorporated, 21 Eliot Street, South Natick, MA 01760;
January 31, 1990.

Peter S. Maybeck; Class handouts, EENG 699, Special
Study on Head Motion Tracking; School of Computer and
Electrical Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, OH; spring quarter, 1994.

Peter S. Maybeck, Theodore D. Herrera, and Roger J.
Evans; "Target Tracking Using Infrared Measurements
and Laser Illumination"; IEEE Transactions on Aerospace
and Electronic Systems; Volume 30, Number 3, July 1994;
pp 758-768.

175-

[Maybeck82]

[Maybeck79]

[McCabe89]

[MultiGen94]

[0'Connor92]

[Oman90]

[Parr89]

[Performer92]

[Polhemus90]

[PT01]

[Rebo88]

[Rheingold91]

Peter S. Maybeck; Stochastic Models, Estimation, and
Control, Volume II; Academic Press; 1982.

Peter S. Maybeck; Stochastic Models, Estimation, and
Control, Volume I; Academic Press; 1979.

Thomas J. McCabe and Charles W. Butler; "Design
Complexity Measurement and Testing"; Communications
of the ACM; Volume 32, Number 12, December 1989; pp
1415-1425.

MultiGen Modeler's Guide; version 14.0; Software
Systems, 1884 The Alameda, San Jose CA; March 1994.

Bill O'Connor and Doug Blake; unpublished notes and
software for a Multiple Model Adaptive Estimator
developed at the Air Force Institute of Technology; dates
on the software indicate it was developed in 1992.

Charles M. Oman; "Motion Sickness: A Synthesis and
Evaluation of the Sensory Conflict Theory"; Canadian
Journal of Physiology and Pharmacology; Volume 68,
1990; pp 294-303.

John M. Parr and Charles L. Philips; "State Estimation
From Retarded Measurements"; Proceedings - Energy and
Information Technologies in the Southeast; Volume 3 of 3,
1989; pp 1275-1280.

Patricia McLendon; IRIS Performer Programming Guide;
Document Number 007-1680-010; Silicon Graphics,
Incorporated; 1992.

3Space Users Manual; Document Number
OPM3016-004D; Polhemus Incorporated, Colchester,
Vermont; August 1990.

PT-01 User's Manual; provided by 01 (a division of Optics
1, Incorporated); 3050 Hillcrest Drive Suite 100, Westlake
Village, CA 91362.

Robert Keith Rebo; A Helmet Mounted Virtual
Environment Display System; Masters Thesis,
AFIT/GCS/ENG/88D-17, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH;
December, 1988.

Howard Rheingold; Virtual Reality; New York: Summit
Books; 1991.

-176-

[Rohrer94]

[Rumbaugh91]

[Shaw93]

[Snyder93]

[So93]

[Stroustrup91]

[Sutherland68]

[Tobin86]

[USAF93]

J. J. Rohrer; Design and Implementation of Tools to
Increase User Control and Knowledge Elicitation in a
Virtual Battlespace; Masters Thesis, AFIT/GCS/ENG/94D-
20, School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, OH; December, 1994.

James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorensen; Object-Oriented
Modeling and Design; Prentice-Hall, Incorporated; 1991.

Chris Shaw, Mark Green, Jiandong Liang, and Yunqi
Sun; "Decoupled Simulation in Virtual Reality with the
MR Toolkit"; ACM Transactions on Information Systems;
Volume 11, Number 3, July 1993; pp 287-317.

Mark I. Snyder; ObjectSim -A Reusable Object Oriented
DIS Visual Simulation; Masters Thesis,
AFIT/GCS/ENG/93D-20, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH;
December, 1993.

R.H.Y. So and M.J. Griffin; Effect of Lags on Human
Performance with Head-Coupled Simulators; Technical
Report AL/CF-TR-1993-0101; Human Factors Research
Unit, Institute of Sound and Vibration Research,
University of Southampton, Southampton, United
Kingdom; June 1993.

Bjarne Stroustrup; The C++ Programming Language,
second edition; Addison-Wesley Publishing Company;
1991.

Ivan Sutherland; "A Head-Mounted Three-Dimensional
Display"; Proceedings of the Fall Joint Computer
Conference; 1968; pp 757-764.

David M. Tobin; A Multiple Model Adaptive Tracking
Algorithm for a High Energy Laser Weapon System;
Masters Thesis, AFIT/GE/ENG/86D-37, School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH; December, 1986.

Department of the Air Force; Guidelines for Successful
Acquisition and Management of Software Intensive
Systems: Weapons Systems, Command and Control
Systems, Management Information Systems; AFPAM
63-115; Washington: HQ USAF; November 1993.

-177

[Vanderburgh94] John C. Vanderburgh; Space Modeler: An Expanded,
Distributed, Virtual Environment for Space Visualization;
Masters Thesis, AFIT/GCS/ENG/94D-23, School of
Engineering, Air Force Institute of Technology, Wright-
Patterson AFB, OH; December, 1994.

-178

Vita

Captain James E. Russell was born in Coudersport, Pennsylvania, on

June 15, 1966. He graduated from Coudersport Area Jr. Sr. High School in

1984. He then attended the Pennsylvania State University (main campus),

and in 1988 graduated with a Bachelor's Degree in Computer Science. Upon

graduation, he received a reserve commission in the United States Air Force,

and was assigned to Vance AFB, OK, for Undergraduate Pilot Training.

After nine months in pilot training, he was re-assigned to Air Force

Global Weather Central (AFGWC), Offutt AFB, NE, as a communications-

computer specialist. Before commencing his duties at AFGWC, however, he

married his wife, Elaine, and attended the Basic Communications-Computer

Officer Training course (BCOT) at Keesler AFB, MS.

Capt Russell started his tour at AFGWC as a maintenance

analyst/programmer for the Data Transfer Interface (DTI) team. As a

member of this team, he was responsible for maintenance of the DTI software

that provides a standard interface to the Hyperchannel, which is the AFGWC

intra-building communications network. Capt Russell eventually became

chief of the DTI team, and after several months, was given responsibility for

maintenance of Hyperchannel software as well.

After three years at Offutt, Capt Russell applied and was accepted to

AFIT. His major was Computer Science with an emphasis in Software

Engineering, and upon graduation from AFIT, he will be going to Kirtland

AFB, NM, to work at Phillips Laboratory.

Permanent Address: 7 West Seventh Street

Coudersport, PA 16915

-179

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

,,n nattie aa'ta^e'eded' and'compietmYand reviewing" the collection ot iMormation. 'send "comments regarding this Dulden estimate or any other aspect,of this
'„„„-„< i„.„™, on Indudincsuggestionsfo"Teducing this burden, to Washington Headguaners Services. Directorate for Information Operations ana Reports 1215 Jefferson
0° TO^hwäi?■ sü™ !°ÖV Arhngtln ^^222^-430; and To the Office of Management and Budget. PaperworK Reducuon Proiect (0704-0186). Washington. uC 20503.
gathering ana matruamif

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1994

3. REPORT TYPE AND DATES COVERED
Master's Thesis

\ MULTIPLE MODEL ADAPTIVE ESTIMATION AND HEAD MOTION
[TRACKING IN A VIRTUAL ENVIRONMENT: AN ENGINEERING
| APPROACH
. 6. AUTHOR(S)

James E. Russell, Capt, USAF

5. FUNDING NUMBERS

T"PERFORM!NG ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology
WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/94D-21

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Mr. Donald J. Reifer
Chief, Ada Joint Program Office (AJPO)
701 South Courthouse Road
Arlington, VA 22204-2199

10. SPONSORING MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

I

' 12E. D:S7R!BUT'CN/AVAILABILITY STATEMENT
j Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) .
Software engineering tools and techniques were applied to design and implement an application that

reduces lag typically present in virtual environment displays. The application was a Multiple Model
Adaptive Estimator (MMAE), composed of three Kaiman filters, mat predicted head orientation one sample
period into the future. The environment rendering software used these predictions to generate the
environment display. Each of the filters in the MMAE was designed for a different assumed head motion
type (benign, moderate, or heavy), which allowed the MMAE to adapt to changes in head movement
characteristics.

The use of Ada 9X as an implementation language for a virtual environment applications was also
investigated. Ada 9X provides object-oriented features for design and development, and it also offers
software engineering support that makes it preferable to C or C++ for the application developed.

Two significant results were produced. The first is a performance baseline for the MMAE that can be used
as a benchmark for future research in this area. The other is a performance-based comparison of equivalent
Ada 9X and C++ graphics applications in which Ada 9X performance was practically identical to C++. This
second result is somewhat surprising, and should be investigated further.

14. SUBJECT TERMS

Software Engineering, Kaiman filters, MMAE, Virtual Environments

15. NUMBER OF PAGES
194

16. PRICE CODE

17. SECURITY CLASSIFICATION
Unclassified

18. SECURITY CLASSIFICATION
UnelassifiedGE

19. SECURITY CLASSIFICATION
Unclassified T

NSN 75dO-O1-28O-55O0

20. LIMITATION OF ABSTRACT
UL

_93 2-391

