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Introduction 
Marine animals produce a remarkable variety of sounds (Watkins and Wartzok 1985). A 
primary goal of our bioacoustic program at the Woods Hole Oceanographic Institution 
(WHOI) has been to parse this variation into biologically significant classes of signals. 
Marine mammal sounds exhibit distinctive features associated with species (op. cit), 
individual identity (Caldwell, Caldwell and Tyack 1990), and certain behaviors . These 
features have never been examined quantitatively, comparing the sounds of a wide variety 
of species. Do these sounds remain distinctive as the scope of comparison broadens? 
Experienced researchers can aurally and visually (via spectrographic analysis) identify 
acoustic features that appear to be species-specific, and sometimes features unique to 
individual animals; can we specify numerical algorithms that objectively recognize these 
distinctions? 

The logistic requirements for addressing these questions remain formidable. Many 
biological and environmental conditions potentially contribute to acoustic variability. To 
quantify the interspecific and intraspecific variability in marine animal sounds, large 
numbers of sounds must be accumulated and analyzed for each distinct class of sounds. 
Several results indicate that correct identification of sounds is significantly improved by 
utilizing all available biological information during the construction or "training" of the 
classifier (Fristrup and Watkins 1992). Therefore, numeric features extracted from 
acoustic data must be conveniently referenced to species, population, group, social 
context, behavior, activity, individual identity, sex, reproductive situation, age, season, 
geographic location, water depth, and sound propagation. 

The SOUND database system of marine animal sounds (Watkins, Fristrup, and Daher 
1991) provided this capability. The databases and associated files contained thousands of 
digitized sound segments. The database described the time, geographic location, 
recording conditions, identity of the animal(s) producing the sounds, the behavioral 
observations associated with sound production, etc. These SOUND databases 
represented years of work by several people. The ONR Ocean Acoustics Program 
(Marshall Orr) provided the initial funding, but continued development and expansion 
were funded by a blend of Navy and private sources. The feature extraction and 
classification program would not have been feasible without the SOUND resources. In 
turn, development of feature extraction and sound classification, funded by TRICCSMA 
resulted in significant structural improvements in the database systems. New, relational 
database structures were implemented to permit flexible and convenient integration of 
statistical results with the biological and environmental information. 

The ability to select and to analyze acoustic measurements based on related biological or 
environmental observations was crucial for these data. This could have been done by 
segregating data files for different species, activities, locations, etc. and independently 
processing each batch. However, it would have been increasingly cumbersome and 
difficult to manage data segregation as the scope and complexity of analyses increased. 
Maintaining the integrity of the data (correct file assortment by attributes, labeling 
processed output) would be problematic. A more powerful technique was to process all 



sound cuts in one batch, and to attach an identifier to the vector of measurements from 
each sound cut. Automatic feature extraction for all available sound cuts proceeded 
unattended, with one command. The resulting measurements, with the attached identifier, 
were imported as a table in a relational database program. The identifier provided a 
unique link between the vector of quantitative acoustic features describing a sound and the 
biological observations associated with that sound. Interactive exploration of relationships 
among statistics and biological or environmental factors followed, exploiting the 
convenience and flexibility of relational database queries. 

The SOUND text databases for the recordings and the digital sound sequences (Watkins, 
Fristrup, and Daher 1991) could have accommodated new numeric data from the 
statistical analyses, but the INMAGIC software used to develop this system was 
unsuitable. It required restructuring the entire database each time the number of numeric 
fields changed. This was not feasible: the analyses required many iterations and 
modifications. Therefore, PARADOX software (relational database support, with visual, 
query-by-example interface) was used. The text information from the SOUND databases 
remained unmodified as distinct tables, and additional tables were created for the acoustic 
results. Statistical summaries of subsamples were generated with specific queries. This 
structuring of information also permits queries using sound characteristics to identify 
species and locations that have previously exhibited similar sounds. 

The acoustic feature extraction program (AcouStat) was called with one command line 
parameter, the name of the file containing a digital sound cut. AcouStat processed these 
data, and sent the results to standard output (stdout in the C language). Redirection of 
this output was used to store the data, or to pipe the acoustic features to another program 
for additional processing. For the analyses described here, these data were appended to a 
text file that was later imported into a PARADOX table. PARADOX queries were used 
to link text and acoustic features, and the results were exported to SPLUS and SYSTAT 
(data analysis packages) for classification analysis. 

There is no scientific precedent for quantification of time-frequency characteristics of 
animal sounds on this scale. No prior work has dealt with so many species and such a 
variety of repertoires from individual animals. The WHOI studies of marine animal 
acoustics, a continuous program initiated by William E. Schevill in the late 1940's, have 
provided the heuristic basis for selecting features and designing algorithms. Our personnel 
utilize many different acoustic features to describe sounds and diagnose their identity. As 
a first step toward the development of an automatic, objective system for identifying 
animal sounds, we devised statistical measures to resolve familiar acoustic features. 



The Feature Extraction Algorithm 
There is no a priori basis for selecting statistics that will maximize classifier performance. 
Our approach has been iterative, guided by the following criteria: 

Each statistic was designed to emphasize particular parameters of animal sounds that 
we recognized as important for distinguishing species. 
Each statistic had to be insensitive to temporal artifacts introduced by ocean 
propagation (multipath, fading). 
Most statistics had to be relatively insensitive to noise levels (resistant to outliers, 
possessing a high breakdown point). 
Most statistics had to yield consistent results despite variation in the shape of the 
ambient noise power spectra. 
Many statistics needed to relate to obvious features in time-frequency displays of these 
sounds (duration, frequency range,...). This eased interpretation of success and 
diagnosis of flawed performance. 

The signal processing was relatively simple, using power spectra derived from a Fast 
Fourier Transform. For most files, FFT size was 256 sample points, but for very short 
files (low sampling rates) the FFT size was decreased to obtain a minimum of 16 FFT data 
blocks per file. Adjacent blocks overlapped by 25%. The samples were level-shifted to 
obtain a block mean of zero, tapered with a Hamming window, and level shifted again to 
remove the DC bias introduced by tapering. The complex FFT values were multiplied by 
their complex conjugates (to form the magnitude-squared values), and the energy in the 
"negative" frequency bins was added to the corresponding "positive" frequency bins. 
Thus, the sum of the first Ng/2 +1 bins equaled the sum-squared energy. Windowing 
smoothed the power spectra. Overlapping increased time resolution, and extracted useful 
information from data that would otherwise have been "lost" in the tails of the window. 

More precise time-frequency analyses could be substituted for this procedure 
(Wigner-Villle, RID), but resolution of signal characteristics on these scales would be 
sensitive to phase perturbations. These techniques might require explicit source extraction 
(environmental deconvolution) to provide signals of sufficient quality. Such efforts were 
not indicated in the course of our analyses, but they remain an attractive option for very 
brief signals. 

Noise Compensation 
Our noise compensation technique starts with an estimated "average" noise power 
spectrum. This was computed as the median of the data blocks comprising the initial and 
terminal 5% of the sound file. By convention, our transient extraction protocols included 
a leader and trailer of background sound. Some signal energy was occasionally present in 
one of these regions, but the median spectrum was not grossly inflated by these signals. 
Previously, we used a large number of data blocks, taken at fixed intervals throughout the 
sound cut, and computed a noise spectrum from the quietest sections. The newer routine 
is comparable and faster. 



A multiple of this noise spectrum is subtracted from each data block's spectrum; all 
negative results are set to zero. Previously, we subtracted a constant multiple — about 7x 
the noise spectrum — from all data blocks. This multiple was subjectively determined by 
examining a variety of spectrographs. The newer technique was "adaptive" because the 
level of the noise spectrum was adjusted prior to subtraction from each block's spectrum. 
This enhancement was prompted by frequent observations of "swelling" noise 
backgrounds: the shape of the noise spectrum seemed relatively constant, but the noise 
energy fluctuated widely in some cuts. Initial attempts to model this utilized orthogonal 
decompositions to identify principal components of noise spectrum variability. Utilization 
of more than two orthogonal components was found to introduce spectrographic artifacts 
in the form of frequency banding, due to the partial correlation of some noise vectors with 
transient sound spectra (biological signals). Also, the most significant improvement was 
seen to result from allowing the first component (essentially the mean spectrum) to vary. 
Thus, a simplified algorithm was devised. 

Each bin in a data block's spectrum was divided by the corresponding bin in the noise 
spectrum, yielding a vector of possible multipliers. "Multipliers" indicates that if the noise 
spectrum is multiplied by one of these values, and subtracted from the data block's 
spectrum, the corresponding bin in the data spectrum will be exactly cancelled. These 
values were sorted, and the value corresponding to the 6th percentile order statistic (8th of 
128) was used. This multiplier always underestimates the proper scaling for the noise 
spectrum, but it also is very unlikely to be inflated by signal energy: it is a consistent 
underestimate. This order statistic must be magnified by a constant value for best 
performance. The magnitude ofthat adjustment was determined by analyzing noise 
compensation performance with a variety of parameter settings. 

To measure noise compensation performance, we needed to measure the relative amounts 
of noise and signal energy that were removed. All of our sound cuts represented single 
channel recordings containing noise and signal. Thus, synthetic signals resembling marine 
mammal sounds were generated, as were randomly generated noise sequences resembling 
the backgrounds in our cuts. The noise compensation algorithm was applied to pure 
signal and noise sequences respectively, and the residual energy after compensation was 
measured. Values were sought that preserved as much signal energy and removed as 
much noise energy as possible. 

Before discussing the results, our index of performance merits explanation. Residual 
signal-to-noise ratio did not prove to be a useful measure, because this metric resulted in 
excessively high levels of noise subtraction. The "optimal" values reached with this metric 
resulted in spectrographs that retained only the very loudest portion of the signal. 
Critically important components of the signal (for classification) were subtracted out. A 
more useful metric proved to be the percent signal energy remaining minus the percent 
noise energy remaining. A simple interpretation provides heuristic justification for this 
criterion. One estimate of expected residual signal energy is the residual noise energy 
multiplied by the original signal-to-noise ratio. This would be accurate if both signal and 
noise energy were reduced in proportion by the noise compensation technique. Our 



metric is proportional to the "signal excess", the actual residual signal energy minus the 
expected residual signal energy. Optimal parameter values derived with this metric agreed 
with subjective judgments of spectrograph quality by experienced observers. 

The most problematic sounds were relatively broad band, because more of the possible 
multipliers could be inflated by signal energy. This suggested that the best performance 
would be realized with low order statistics. Figure 1 presents the results of a simulation 
that used a broad-band signal and noise generated by forcing a sixth order autoregressive 
model with normally distributed white noise. Higher levels of signal excess represent 
better performance. Each vertical line represents performance at varying multiplier values, 
holding the order statistic constant. The leftmost vertical line starts at the bottom with a 
multiplier of 8, and ends with a multiplier of 160. The diagonal segment to the next 
vertical line denotes the performance value with the largest multiplier value on the left, and 
the performance of the next order statistic with its smallest multiplier on the right. 
Successive vertical lines represent different ranges of multipliers, ending with a range of 
l->20 for the 50% order statistic. The graph illustrates the falling levels of performance 
with increasing order statistic number, and our success in bracketing the best multiplier 
values for each order statistic. On the basis of these and other tests, we chose the 6th 
percentile order statistic and a multiplier value of 75. 

Figures 2 and 3 illustrate the effect of noise compensation, and compare the fixed noise 
compensation technique used previously with the adaptive technique. Both of these 
signals have poor signal-to-noise ratios, much worse than our typical sound cut. Note the 
improved retention of signal energy: fewer dropouts in the Lagenodelphis whistles, clearer 
representation of the soft, introductory moan in the right whale signal. The marked 
speckling in the Lagenodelphis adaptive spectrograph also represents preserved signal 
energy: echolocation clicks. 

This noise compensation algorithm, and the methods we used to develop and test it, 
represented significant improvements over our previous work, but we do not represent 
this as the optimal or state-of-the-art technique. It allows us to achieve impressive 
classification performance. In our judgment, further improvements in this area are 
desirable, but not essential. The software has been designed to facilitate replacement of 
this module if we become aware of a better alternative. 

After noise compensation, seven measurements were extracted from each data spectrum 
and stored. The first was amplitude, computed as the sum of the residual spectrum 
energy. This exploited Parseval's relation (Oppenheim and Schäfer 1989, p. 574) to 
measure loudness after noise compensation. The remaining measurements described 
spectral characteristics. The frequency that bisected the energy in the power spectrum 
was saved as the median. The frequency corresponding to the largest energy value in the 
spectrum was saved as the mode. 

Three estimates of "bandwidth" were saved. The minimum number of spectral bins 
needed to accumulate half of the total spectral energy was computed (including a fraction 



derived from linear interpolation); we designated this the concentration. The highest and 
lowest frequencies encountered in this integration were saved as the upper and lower 
frequencies; the difference between these provided a broader estimate of bandwidth, 
designated as spread. The ratio of total energy to the energy in the modal spectral bin 
was saved as the modewidth, the most compact bandwidth estimate of the three. We 
rescaled these three bandwidth estimators by dividing them by the sample interval 
represented by a single FFT block, so the resulting units were Hertz/s (otherwise, the same 
signal would have yielded different values when sampled at different rates or processed 
with different FFT sizes). 

An analog of skewness, designated as asymmetry, was computed as 
(upper-median)/(upper-lower). Asymmetry varied between 0.0 (median equal to 
upper) and 1.0 (median equal to lower). Spectral asymmetry of 0.5 indicated a 
symmetrical density; so we later may shift these values by subtracting 0.5 from them to 
render the results more intuitive (this would not affect classifier performance). 

The lists of short-term signal measurements were sorted to extract the upper quartile (75th 
percentile), median (50th percentile), and lower quartile (25th percentile) values. When 
the computed index for one of the quartiles had a fractional component, the nearest values 
were used to linearly interpolate the desired value. The mode was estimated by finding 
the most tightly grouped set of five consecutive values, and selecting the middle of these. 
The quartiles were used to compute spread (upper quartile-lower quartile) and 
asymmetry (upper quartile-median)/(upper quartile-lower quartile). These statistics were 
analogous to the standard deviation and skewness, but they performed better. Amplitude 
was treated differently from the other short-term measurements. Its magnitude was 
arbitrary, so we divided mode and spread by the median to render them dimensionless. 
A total of 27 statistics resulted from these calculations: 

Amplitude: mode/median, spread/median, asymmetry 
Frequency Mode: mode, median, spread, asymmetry 
Frequency Median: mode, median, spread, asymmetry 
Spectral Spread: mode, median, spread, asymmetry 
Spectral Concentration: mode, median, spread, asymmetry 
Spectral Modewidth: mode, median, spread, asymmetry 
Spectral Asymmetry: mode, median, spread, asymmetry 

Nonparametric correlations were computed among the short-term measurements, to 
quantify relationships among time, amplitude and frequency. We employed the Spearman 
Rank-Order Correlation (Press, W. H. et al. (1989), Numerical Recipes in C, Cambridge 
Univ. Press, pp. 507-509), and utilized the deviation of the sum-squared difference of 
ranks from its expected value, scaled in standard deviations. A large negative value 
indicated strong positive correlation, a large positive value indicated strong negative 
correlation (a sign change might be introduced later to ease interpretation). The 15 
statistics resulting from these calculations were: 
• Time-Amplitude Deviance 
• Time-Frequency Mode Deviance 
• Time-Frequency Median Deviance 



• Time-Spectral Spread Deviance 
• Time-Spectral Concentration Deviance 
• Time-Spectral Modewidth Deviance 
• Time-Spectral Asymmetry Deviance 
• Amplitude-Frequency Mode Deviance 
• Amplitude-Frequency Median Deviance 
• Amplitude-Spectral Spread Deviance 
• Amplitude-Spectral Concentration Deviance 
• Amplitude-Spectral Modewidth Deviance 
• Amplitude-Spectral Asymmetry Deviance 
• Frequency Median-Spectral Spread Deviance 
• Frequency Median-Spectral Asymmetry Deviance 
To measure "flat" frequency contours, which were often important in distinguishing 
among odontocete whistles, we timed the longest section in the signal exhibiting minimal 
change in frequency mode (maxflat). We computed the fraction of neighboring signal 
blocks in which the latter had more energy than the former (attack fraction), and in which 
the latter had a higher frequency median than the former (upsweep fraction). We also 
computed the average of all changes in frequency median (upsweep mean), and the 
average absolute value (sweep mean) of such changes. 

Each short-term spectrum also contributed to two cumulative power spectra. One 
averaged all of the short-term spectra; this produced the marginal spectral density of the 
spectrographic representation of signal, the total spectrum. The second accumulated 
energy from the loudest element of each residual spectrum, the modal spectrum. Figure 
4 exhibits the relationship of the total spectrum (frequency marginal energy density) and 
amplitude envelope (time marginal energy density) to a noise compensated signal. The 
dark regions represent the portions of these densities that concentrate 75% of the total 
signal energy. These cumulative spectra were summarized with the same spectral statistics 
as the short-term spectra. This produced 6 total spectrum and 6 modal spectrum 
statistics: medians, modes, spreads, concentrations, modewidths, and asymmetries. 
In total, 91 fields were produced by the feature extraction program for each sound. 

Classification Performance 
Two techniques were used to quantify the usefulness of these acoustic features for 
distinguishing among species. The first was a classical linear classifier (Morrison 1976, 
ch. 6), which would be optimal if the species differed in their group means, but shared a 
common multivariate normal dispersion (common covariance matrix). This was applied to 
a subset of the data consisting of isolated sound elements; it produced 73% correct 
classification (208 errors for 784 sounds). The distribution of mistakes is illustrated by the 
bubble graph in Figure 5. Most of the errors were located in a square at the lower left 
corner of the plot, which indicated confusion of one baleen whale sound for another. A 
weaker tendency was incorrect identification of some baleen whale sounds as seals. 

Linear classification analysis of all sounds revealed poorer performance: only 50% correct 
(1037 errors for 2104 sounds). Figure 6 indicates the distribution of errors. Confusion 
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among baleen whale sounds was again an important feature, but the horizontal banding in 
the plot indicated that a few species are responsible for most of the confusion. This 
structure is partly an artifact of sample sizes: more heavily sampled species will of course 
produce more incorrect classifications (these bubbles are not scaled to account for species 
sample size). This did not appear to be a complete explanation, and this phenomenon will 
be studied at greater length in the future. 

An alternative technique for classifying these sounds utilized tree-based models (Clark and 
Pregibon 1992, ch. 9). This technique recursively partitioned the data, using a single 
variable at each binary split. At each point in the tree (called a node), a measure of 
diversity called "deviance" can be computed. It is defined as: 

N 
deviance = -2 2 .y*log(jp/jfc), yik = 1 if the k"1 individual is of class /', 0 otherwise; 

pik = the probability that the k"1 individual is of class /, 
estimated as the fraction of individuals in the node of class /. 

This is equivalent to minus twice the log-likelihood function. Each interior node 
(including initial node containing all sounds) is split such that the residual deviance of the 
resulting pair of nodes is maximally reduced. Thus, the process of splitting results in 
successively "purer" nodes, with the process terminating when a node is sufficiently pure 
or there are insufficient individuals in the node to support another split. This process 
provides both a simple technique for classifying unknown sounds (a series of true/false 
questions) and clues to the important variables for diagnosis. It also accommodates 
diversity within a class: if a species produces two or more distinct types of sounds, a 
tree-based analysis will not be compromised (unlike a linear or quadratic classifier). 

Figure 7 exhibits the tree-based classifier for the isolated sounds. The vertical distance 
associated with each split graphically depicts the reduction in deviance achieved by that 
split. The initial split was based on the median short-term spectral concentration; the 
next two splits were based on the median frequency of the total spectrum and the 
spectral concentration of the frequency modulation spectrum. This analysis permits a 
species' sounds to be split into more than one "leaf," depending upon their relationships to 
the other sounds in the sample. Correct classification was 85%; this is nearly a 50% 
reduction in misclassification relative to the linear classifier. A tree-based classification 
analysis of all sounds yielded 66% correct classification (figure 8). Tyack, Fristrup and 
Mclntosh (submitted) have shown that similar analyses of signature whistles in young 
bottlenose dolphins correctly identified the individual for 90% of the sounds tested. 

The linear classifier had one advantage over the tree-based classifier: it provided a 
measure of similarity to help judge the correctness of the identification. The tree-based 
technique must be augmented to provide this capability, using some distance metric 
generated from the terminal groupings. A straightforward adaptation would be to 
calculate a sample covariance matrix for each terminal grouping, and use Mahalanobis 
distance to measure the similarity of an unknown to that group. This adaptation, and tests 
of alternative classification schemes (quadratic classifier, kNN voting, hybrid designs), will 
be pursued further. 
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Figure 1. Noise compensation performance: higher levels of'signal excess" represent 
better performance. Each vertical line represents the range of performance achieved with 
a fixed multiplier order statistic and varying magnification. The leftmost vertical line starts 
at its minimum with a magnifier of 8, and terminates at the intersection with the diagonal 
line with a multiplier of 160. The initial and terminal values of subsequent settings of 
multiplier order statistic are indicated by the intersections with diagonal lines on the left 
and right. The range of magnification decreases with increasing order statistic, but the 
maximum performance is clearly bracketed in each case. 
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Figure 2. Noise compensation performance: this sequence of spectrographs illustrates a 
recording of Lagenodelphis hosei, the Fraser's dolphin. The first panel is the unmodified 
signal. The second illustrates the same signal processed using the older, fixed 
compensation algorithm. The third the illustrates the effect of processing with the newer, 
adaptive compensation algorithm. The pronounced speckling in all spectrographs 
represents echolocation clicks by the dolphins. 
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Figure 3. Noise compensation performance: this sequence of spectrographs illustrates a 
recording of Eubalaena glacialis, the northern right whale. The first panel is the 
unmodified signal. The second illustrates the same signal processed using the older, fixed 
compensation algorithm. The third the illustrates the effect of processing with the newer, 
adaptive compensation algorithm. Note the preservation of a faint, introductory moan in 
the third panel, near the left edge. 
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Figure 4. The time and frequency marginal energy densities, in relation to the 
spectrograph that produced them. The dark areas of the energy densities indicate the 
portions included in the calculation of concentration, upper, and lower values. The 
original spectrograph was of very poor quality, not useable for classifier training. Note 
the leakage of low frequency noise energy, and the appearance of this energy in the shaded 
portions of the marginal distributions. 
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Figure 5. Linear classifier performance, isolated sounds: the x and y axes represent the 
species tested, the area of the circle represents the number of mistakes. The numeric 
ordering closely follows systematic ordering (historical relatedness). Numbers 1-8 are 
baleen whale species; numbers 9-22 are toothed whale species, 23-31 are seals, and 
number 32 is a manatee. Specifically, 
1. Balaena mysticetus 
2. Eubalaena glacialis 
3. Eubalaena australis 
4. Eschrichtius robustus 
5. Balaenoptera acutorostrata 
6. Balaenoptera borealis 
7. Balaenoptera physalus 
8. Megaptera novaeangliae 
9. Physeter catodon 
10. Delphinapterus leucas 
11. Monodon monoceros 
12. Peponocephala electra 
13. Steno bredanensis 
14. Delphinus bairdii 
15. Delphinus delphis 
16. Grampus griseus 
17. Lagenorhynchus acutus 
18. Globicephala macrorhynchus 
19. Globicephala melaena 
20. Orcinus orca 
21. Pseudorca crassidens 
22. Phocoena phocoena 
23. Arctocephalus forsten 
24. Eumetopias jubatus 
25. Odobenus rosmarus 
26. Phocafasciata 
27. Phoca largha 
28. Ommatophoca rossi 
29. Erignathus barbatus 
30. Halichoerus grypus 
31. Leptonychotes weddellii 
32. Trichechus manatus 
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Linear classifier errors (208/784): isolated sounds 
area of circles is proportional to number of errors 
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Figure 6. Linear classifier performance, all sounds: the x and y axes represent the species 
tested, the area of the circle represents the number of mistakes. The numeric ordering 
closely follows systematic ordering (historical relatedness). Numbers 1-9 are baleen whale 
species; numbers 9-39 are toothed whale species, 40-53 are seals, and number 54 is a 
manatee. Specifically, 
1. Balaena mysticetus 
2. Caperea marginata 
3. Eubalaena glacialis 
4. Eubalaena australis 
5. Eschrichtius robustus 
6. Balaenoptera acutorostrata 
7. Balaenoptera borealis 
8. Balaenoptera physalus 
9. Megaptera novaeangliae 
10. Physeter catodon 
11. Delphinapterus leucas 
\2.Monodon monoceros 
13. Peponocephala electra 
14. Sotalia 
15. Sousa 
16. Stenella attenuata 
17. Stenella clymene 
18. Stenella coeruleoalba 
19. Stenella longirostris 
20. Steno bredanensis 
21. Tursiops catalania 
22. Tursiops truncatus 
23. Cephalorhynchus commersonii 
24. Cephalorhynchus heavisidii 
25. Delphinus bairdii 
26. Delphinus delphis 
27. Grampus griseus 
28. Lagenodelphis hosei 
29. Lagenorhynchus acutus 
30. Lagenorhynchus albirostris 
31. Globicephala sp. 
32. Globicephala macrorhynchus 
33. Globicephala melaena 
34. Globicephala scammoni 
35. Orcinus orca 
36. Pseudorca crassidens 
37. Phocoena phocoena 
38. Neophocaena phocaenoides 
39. /n/a geqffrensis 
40. Arctocephalus forsten 
41. Eumetopiasjubatus 
42. Odobenus rosmarus 
43. Phocafasciata 
44. Phoca groenlandica 
45. Phoca hispida 
46. PAoca largha 
Al. Ommatophoca rossi 
48. Cystophora cristata 
49. Erignathus barbatus 
50. Halichoerus grypus 
51. Leptonychotes weddellii 
52. Enhydra lutris 
53. Trichechus manatus 
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Linear classifier errors (1037/2104): all sounds 
area of circles is proportional to number of errors 
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Figure 7. Tree-based classification, isolated sounds: the minuscule labels at each interior 
node describe the criterion that was used to split the sounds at that node into two 
subnodes. The terminal nodes ("leaves") of the tree, located at the bottom of the figure, 
are labeled with a code describing the identities of the dominant fractions of the sounds in 
those nodes. The code reflects the systematic hierarchy. The translations are: 

CONCmed:median st concentration 
TSmed:total spectrum median frequency 
MSmed:modal spectrum median frequency 
ERGmxmd:maximum/median amplitude 
FMEDSPRDr:median freq. X spread corr. 
EGDmodw:amplitude modewidth 
MODWmod:mode of st modewidth 
FMSmod:FM spectrum mode 
TSmod:total spectrum mode 
MSmodw:modal spectrum mode 
ATAKfrac:attack fraction 
FMSmed:FM spectrum median 
SPRDsprd:spread of st spread 
AMSmodrAM spectrum mode 
UPSWfrac:upsweep fraction 
TSmodw:total spectrum modewidth 
ASYMmod:modal st asymmetry 
AMSupp:AM spectrum upper frequency 
MODWmed:median st modewidth 
TSasym:total spectrum asymmetry 
FMSconcrFM spectrum concentration 
SPRDasym:asymmetry of st spread 
AASYMr:amplitude X st asymm. corr. 
FMSsprd:FM spectrum spread 
AFMODWr:amplitude X st modewidth corr. 
TSupp:total spectrum upper frequency 
MSupp:modal spectrum upper frequency 

st == short term 

AA1A: Balaam mysticetus 
AA3A: Eubalaena glacialis 
AA3B: Eubalaena australis 
AB1A: Eschrichtius robustus 
AC1A: Balaenoptera acutorostrata 
AC1B: Balaenoptera borealis 
AC1F: Balaenoptera physalus 
AC2A: Megaptera novaeangliae 
BA2A: Physeter catodon 
BB1A:. Delphinapterus leucas 
BB2A:. Monodon monoceros 
BD10A: Peponocephala electro 
BD17A:. Steno bredanensis 
BD3A: Delphinus bairdii 
BD3B: Delphinus delphis 
BD4A:. Grampus griseus 
BD6A:. Lagenorhynchus acutus 
BE3B: Globicephala macrorhynchus 
BE3C: Globicephala melaena 
BE7A: Orcinus orca 
BE9A: Pseudorca crassidens 
BF2A: Phocoena phocoena 
CA1F: Arctocephalus forsteri 
CA3B: Eumetopias jubatus 
CB1A: Odobenus rosmarus 
CC12F: Phocafasciata 
CC12L: Phocalargha 
CC14A: Ommatophoca rossi 
CC2A: Erignathus barbatus 
CC3A: Halichoerus grypus 
CC5A: Leptonychotes weddellii 
DB1B: Trichechus manatus 
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Figure 8. Tree-based classification, all sounds: the minuscule labels at each interior node 
describe the criterion that was used to split the sounds at that node into two subnodes. 
The terminal nodes ("leaves") of the tree, located at the bottom of the figure, are labeled 
with a code describing the identity of the dominant fractions of the sounds in those nodes. 
The code reflects the systematic hierarchy. The translations are: 
MODWmed:median st modewidth 
MSmod:modal spectrum mode 
ERGmxmd:maximum/median amplitude 
SPRDsprd:spread of st spread 
FMSmod:FM spectrum mode 
MSmed:modal spectrum median 
AMSmodrAM spectrum mode freq. 
MODWsprd:spread of st modewidth 
MSmodw:modal spectrum modewidth 
SWPabs:mean absol. delta freq. 
CONCasym:asymm. of st concent. 
FMEDmed:median st median freq. 
Maxflat:see text description 
SPRDmed:median st spread 
ATAKfrac:attack fraction 
FMSsprd:FM spectrum spread 
SPRDmodrmode of st spread 
TSsprd:total spectrum spread 
EGDconc:amplitude concentration 
FMSconcrFM spectrum concent. 
FMEDASYMr:median freq. X asymmetry corr. 
TSupp:total spectrum upp. freq. 
FMSupprFM spectrum upper freq. 
EGDsprd:amplitude spread 
AFMODWr:amplitude X modewidth correlation 
FMEDSPRDr-.med.freq. X spread correlation 
TSmed:total spect. median freq. 
MODWmod:mode of st modewidth 
ASYMasym:asymmetry of st asymm. 
FMODmed:median of st mode freq. 
CONCmod:mode of st concent. 
FMEDmod:mode of st median freq. 
AMSconc:concent, of st asymm. 
ASYMmed:median st asymmetry 
UPSWfrac:upsweep fraction 
ERGcv:amplitude coeff. of var. 
st == short term 

AAl A: Balaena mysticetus 
AA2 A Caperea marginata 
AA3 A Eubalaena glacialis 
AA3B: Eubalaena australis 
AB1A Eschrichtius robustus 
AC1 A; Balaenoptera acutorostrata 
AC1B: Balaenoptera borealis 
AC 1F: Balaenoptera physalus 
AC2 A Megaptera novaeangliae 
BA2 A Physeter catodon 
BB1 A: Delphinapterus leucas 
BB2 A Monodon monoceros 
BD10A Peponocephala electra 
BD12: Sotalia 
BD13: Sousa 
BD15A Stenella attenuata 
BD15B: Stenella clymene 
BD15C: Stenella coeruleoalba 
BD1SL: Stenella longirostris 
BD17A Steno bredanensis 
BD19B: Tursiops catalania 
BD19D: Tursiops truncatus 
BDI A Cephalorhynchus commersonii 
BD1C: Cephalorhynchus heavisidii 
BD3 A Delphinus bairdii 
BD3B: Delphinus delphis 
BD4A Grampus griseus 
BD5 A Lagenodelphis hosei 
BD6A Lagenorhynchus acutus 
BD6B: Lagenorhynchus albirostris 
BE3: Globicephala sp. 
BE3B: Globicephala macrorhynchus 
BD3C: Globicephala melaena 
BE3D: Globicephala scammoni 
BE7A Orcinus orca 
BE9 A Pseudorca crassidens 
BF2 A Phocoena phocoena 
BF6 A Neophocaena phocaenoides 
BG2 A Inia geqffrensis 
CA1F: Arctocephalusforsten 
CA3B: Eumetopiasjubatus 
CB1A Odobenus rosmarus 
CC12F: Phocafasciata 
CC12G: Phoca groenlandica 
CC12H: Phoca hispida 
CC12L: Phoca largha 
CC14A- Ommatophoca rossi 
CC1A Cystophora cristata 
CC2A Erignathus barbatus 
CC3 A Halichoerus grypus 
CC5 A Leptonychotes weddellii 
CD1A Enhydra lutris 
DB1B: Trichechus manatus 
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