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AFIT/GEO/ENP/94D-06 

Abstract 

Multispectral detection methods attempt to discriminate targets in a dominant clutter 

background using multiple images of the same real-world scene taken in different narrow 

spectral bands in the infrared. Detection is possible due to the empirically-observed phe- 

nomenon that the radiance of man-made objects, such as a tank or truck, often lies off the 

main spectral correlation axis of that of natural backgrounds. Radiometrie measurements 

of several vehicles and a tree canopy background taken over three days in June, 1994 were 

used to examine the factors affecting multispectral detection. Results clearly showed that 

the processes which provide for higher spectral correlation of natural backgrounds tend to 

diminish the spectral separation between the background and target. Very high correlations 

between IR spectral bands for the targets and background were found to exist. The degree 

of correlation between bands in the LWIR was found to be higher than that for the MWIR 

for the correlation levels (p) of interest, p > 0.99. The MW/LW combinations were found 

to almost never produce these high correlations. 

In addition, a scoring method for use in ranking pairs of spectral band pairs over 

multiple collection instances was developed and evaluated. The score was intended to rank 

combinations of spectral bands which provide consistent, if moderate, performance over 

bands which may provide both excellent and unacceptable signal-to-clutter ratios (SCRs) 

over the same observation period.   The scoring method found more stable spectral pairs, 

vni 



and, for data reflecting more difficult detection situations, produced rank-ordered lists of 

wavelength pairs which exhibited higher mean, minimum, and maximum SCRs than were 

produced by simply ranking the bandpairs by average SCR value. 

IX 



MULTISPECTRAL DETECTION OF GROUND 

TARGETS IN HIGHLY CORRELATED 

BACKGROUNDS 

/.   Introduction 

1.1    Motivation 

The United States Air Force currently has only a limited capability to search large 

areas of a battlefield for hidden targets. This problem was identified during the Persian Gulf 

War when Iraqi mobile Scud missile launchers frequently evaded detection despite the large 

numbers of warplanes the United States had committed to their detection and destruction. 

One major new area of research which shows promise for developing an accurate and reliable 

wide-area search capability is that of multispectral detection methods. 

Current infrared (IR) sensors detect the infrared radiation emitted by a target across 

relatively wide portions of the electromagnetic spectrum in either the mid- or far-IR regions, 

often defined to be wavelengths from approximately 3.0-5.0 microns and 8.0-12.0 microns, 

respectively [15, 12]. The total radiance emitted by the target within these regions is often 

substantially different from the total radiance of the background. When such is the case, 

the contrast allows the target to be distinguished from the background and displayed to the 

system operator who can then engage it as appropriate. 



However, potential targets and backgrounds normally exhibit large variability in their 

respective temperatures and emissivities. Such variability can often give rise to a situation 

known as 'thermal crossover', an instance in which, over the portion of the IR spectrum of 

interest, the total radiance of the target is the same as that of the background. Under these 

conditions, there is no contrast between the target and background in a broadband IR sensor 

image, and the target is, effectively, invisible. Thermal crossover most often occurs during 

the hours of sunrise and sunset, but may occur, because of weather conditions and other 

factors, at any time of the day or night [7]. 

Current airborne IR sensors are used mainly for targeting and weapon delivery, and 

are not suited to performing the wide-area search mission. The multispectral detection 

methods being developed today are intended to provide this capability to the Air Force. In 

multispectral detection methods, multiple, relatively narrow regions of the IR spectrum are 

examined simultaneously to discriminate between target and background. The techniques 

have been used to detect targets under conditions which broadband IR sensors cannot [7]. 

They also show potential for providing high probabilities of detection with low false alarm 

rates, traits deemed essential for achieving effective automated target detection [18]. 

1.2   Problem 

The most important problem in multispectral detection is the selection of the spectral 

bands which will be used to find a particular target in a particular background. Choosing 

the spectral bands to be examined is a form of feature selection in the sense of a classical 



pattern recognition problem. Solutions to such problems begin with determining a set of 

features which are characteristic of the pattern signal and can be used to identify the signal's 

presence and/or classify its type [11]. The efforts of the Air Force's Joint Multispectral Sensor 

Program (JMSP) to develop multispectral detection methods are currently focused primarily 

on the detection problem, although the techniques may eventually demonstrate a capability 

to classify targets as well. 

The problem studied during this work was how to select a small number of spectral 

band pairs which will provide for the detection of targets, using representative radiometric 

measurements of specific targets and natural backgrounds. The correlation of natural back- 

grounds and the spectral separation from these backgrounds by man-made objects are the 

parameters which affect multispectral detection. These were examined using the most recent 

JMSP radiometric data, collected in June 1994. In addition, a new method to rank-order 

the bandpairs using data from multiple experiments taken at different times and under dif- 

ferent conditions was developed. This development of a new ranking priority was intended 

to address the question of how to best find spectral pairs which promise accurate detection 

for more than one type of detection situation. 

1.3   Key Results 

The parameters affecting current multispectral detection methods were calculated and 

compiled for various targets against the same natural background of trees for experimental 

data from the latest of four JMSP multispectral radiometric collections.   The results of 



this compilation confirmed that a phenomenon which had been observed in the prior data 

sets is evident in the fourth. Specifically, the processes which provide for higher correlation 

of natural backgrounds at multiple wavelengths tend to diminish the spectral separation 

between the background and man-made objects (such as a tank or Scud missile). Also, very 

high correlations between IR spectral bands for both targets and backgrounds were found 

to exist. The LWIR was found to exhibit high correlation between spectral bands more 

often than either the MWIR or MW/LWIR regions. Bandpairs which exhibited these high 

correlations were, in general, far more numerous than in the previous data collections. 

The utility of using a scoring method to rank pairs of bands was evaluated against that 

of ranking the bands by the signal-to-clutter ratios (SCRs) which they exhibit. The score 

was intended to rank combinations of spectral bands which provide consistent, if moderate, 

performance over bands which may provide both excellent and unacceptable SCRs over the 

same observation period. The score was defined as 

Score =  (1) 
a 

where /i is the mean SCR value over the observation times in question, a is the standard 

deviation of the SCRs, and Tb is the minimum 'acceptable' SCR. The scoring method did 

result in the selection of more stable choices from the data, and, for the more difficult 

detection situations, actually produced rank ordered lists of pairs which exhibited higher 

average SCR than those listings which were based solely upon the SCR values. 



1.4    Organization of this Thesis 

This thesis is divided into five chapters. The first chapter gives some of the important 

considerations which have spurred the many new efforts to develop multispectral detection 

methods, and introduces the general concept behind them. The second chapter presents 

the foundations which can justify modeling infrared imagery as the result of independent 

random processes. The multispectral techniques being considered to detect ground targets 

are based upon this idea, and are also described in chapter two. The third chapter explains 

the methodology of this thesis work and the origin of the data used to support it. The fourth 

contains results and an analysis of these. Conclusions and recommendations are presented in 

the final chapter. Two appendices are included; the first is a directory of the experiments in 

each data set, and the second is a guide to using the MATLAB code written to accomplish 

the data analysis. 



77.   Current Knowledge 

2.1 Some Preliminary Ideas 

Most infrared sensors carried by U.S. Air Force aircraft are imaging sensors. These 

sensors produce a two-dimensional representation of the three-dimensional world as seen by- 

small IR detectors through various types of imaging optics. Images captured on photographic 

film can be said to vary continuously in intensity across the spatial dimensions of the image 

field. This idea is reasonable because of the miniscule physical dimensions of each photon- 

sensitive molecule embedded in the film or photographic plate. In contrast, images which 

might be displayed on a monitor consist of a finite number of spatially separate points, 

or 'pixels'. The pixels of these images also assume only a finite number of values in the 

range between the highest and lowest found in the photographic analogue due to the digital 

techniques which are used to store and manipulate the data. Images with these characteristics 

are referred to as 'digital' images. 

2.2 An Assumption of Gaussian Behavior in Imagery 

A great deal of effort has been invested in examining the properties of digital imagery 

of real-world scenes. The statistical properties of real-world images have particular signifi- 

cance to those attempting to develop reliable target detection algorithms while keeping the 

computational load for the process to a minimum. Simplifying assumptions, when reason- 

able, are highly useful in that they can lead to simplified modeling, fewer computations, and 

therefore more timely solutions, often with minimal impact on overall performance.   One 



assumption often made with regard to digital imagery is that the distribution of the pixels 

(in intensity) is approximately Gaussian in form. However, imagery rarely has a Gaussian 

character [8], and, despite the utility in assuming this distribution, it is usually unrealistic 

to do so. 

However, B. R. Hunt and T. M. Cannon showed in 1976 [5] that image intensity very 

often can be modeled as a two-dimensional function with a rapidly varying local spatial mean 

and slowly varying covariance. The intensity fluctuations about the varying spatial mean 

are approximately Gaussian distributed, they conclude. The local mean for a position (x, y) 

in an image Y is defined to be the average value of the pixels within a region W around 

(x, y), the size of W being a fraction of the size of the image itself (see Figure 1). 

Region W 

Pixel Location (x,y) 

Image Y 

Figure 1. Use of a Spatial Mask W to Calculate Matrix of local Means 



Hunt and Cannon estimated the local mean of numerous images, originally using several 

two-dimensional Gaussian point-spread functions with standard deviations of from 5 to tens 

of pixels as the mask W. They also reported achieving extremely similar results using simple 

square masks, and more recent papers [3, 9, 14] suggest that the local mean estimation be 

calculated 

Y = ±-2.[Y*W] (2) 

where ' * ' denotes discrete 2-D convolution and W is a square N x N matrix of ones, with N 

an odd number. Y(x, y) is therefore the average of the intensities within mask W centered on 

(x, y), and Y is the matrix of all such means. The matrix of local means is subtracted from 

Y to form the processed image Y = Y -Y which has a histogram that is approximately 

Gaussian. Selecting the most appropriate mask size from iV = 3, 5, 7, 9. ..etc., is done 

by choosing the size N which results in a histogram of the intensities in Y which has the 

smallest third moment, since the third moment of a Gaussian distribution is zero [3, 5, 9]. 

This choice has been observed to produce the most Gaussian behavior when local mean 

removal is performed on actual imagery, infrared and otherwise [3, 5]. The residual images 

which are produced by such pre-processing therefore may reasonably be modeled as having a 

Gaussian character, a very convenient assumption. The statistics of Gaussian distributions 

are well known, and being able to assume this form for the pixel intensities of these processed 

images can make the mathematical development of multispectral detection schemes much 

easier. 



2.3    Covariance Between Images 

Gaussian distributions of more than one dimension may be characterized fully by a 

mean vector and a covariance matrix. A review of some notation and mathematical concepts 

from statistical probability as they apply to the covariance properties of images is needed 

in order to set the framework for building the description of infrared imagery which is used 

in the multispectral detection paradigm. The following development is based upon the 

treatments found in [6] and [17]. 

To begin, if X is a random variable, let x represent an (nxl) column vector of n 

observations of X: 

Xi 

x = 
Xo 

Xr, 

(3) 

The transpose of the vector x has dimension (lxn) and is designated xT, so that 

x — [Xx,X2, ■. .,xn] (4) 

The 'expected value' of the random variable X is the value which X would be seen to 

most often assume if an infinite number of observations could be made. An estimate of the 

expected value which is calculated using a finite number of realizations of X is familiarly 

known as the average, or mean, of X and is designated with the use of the expectation 

operator as £?[X]. 

9 



If Y is another random variable, and y contains n observations of Y taken concurrently 

with the observations of X, the expected value of the product of the random variables X 

and Y is calculated by averaging the product of the observations of the two variables and is 

expressed E[XY). If we now designate the mean of X by mx = E[X], the variance of X 

can be written 

var(X) = E[(X - mx){X -mx)\ = E[(X - mxf] = a\ (5) 

Similarly, the variance of Y is 

var(Y) = E[{Y- mYf\ = v2
Y (6) 

In this discussion of expectation, no connection has been assumed between the pro- 

cesses which determine the values of variables X and Y. But suppose now that vectors x and 

y contain the intensities of the individual pixels of two images of the same real-world scene, 

Ri and i?2, respectively. Image Ri is taken at one wavelength in the MWIR, say 3.0 microns, 

and image R2 is of the scene at a different wavelength, perhaps 3.7 microns. The images 

are co-registered, meaning that two pixels, one in Ri and the other in R2, which represent 

the same part of the real-world scene are at the same location in their respective images. 

The n pixel values are entered into the vectors in some way that is deterministic, and the 

ordering is the same for both, therefore the intensities may be thought of as corresponding 

observations of the two variables X and Y (which may or may not be random in this case). 

10 



Xi , where i = l,2,3,...,n,is therefore the intensity of pixel i at a wavelength of 3 microns 

and Yi is the intensity of this same pixel at 3.7 microns. 

The covariance matrix M between X and Y has dimension (2x2) and is formulated 

M 
E[(X - mx)(X - mx)}   E[{X - mx)(Y - mY)} 

E[(Y - mY){X - mx)\    E[(Y - mY)(Y - mY)\ 

<?X      VXY 

aYX    o-y 

(7) 

The off-diagonal components of M above are also sometimes written paxaY where p is the 

correlation coefficient between X and Y.   The correlation coefficient for these vectors is 

formally defined in [17] as 

axaY 
(8) 

The correlation coefficient takes on values between minus one and one. Values near zero 

indicate little or no correlation between two variables, while values near one and minus one 

indicate high positive and negative correlation, respectively. 

If we extend our consideration beyond two dimensions in order to describe the use of 

an arbitrary number of multiple bands, a covariance matrix calculated for J co-registered 

images will have dimension (J x J) and be of the form 

M 

af    <7i2 

(721      0"2 

C\J 

&2J 

(9) 

CJI     <?J2 

11 



Look again at the final notation for the covariance matrix of Equation 7. It is always true 

that OXY = &YX, and henceforth both will be written uXY for convenience. In addition, note 

that the square root of the variance (a scalar) is commonly called the 'standard deviation' 

and generally designated by the symbol a. Therefore, with regard to a variable X, the 

standard deviation is represented by ax, the variance by ax, and the covariance of X with 

another variable, Y, by aXy [17]. 

Jiah Chen and Irving Reed have reported on the properties of the covariance matrices 

of co-registered images which have been pre-processed by local mean removal [3]. The two 

researchers calculated the covariance matrices of various sizes of sub-images of co-registered 

multiple-image sets which had been first processed as described in the preceding section. 

They found that the covariance matrices of small sub-images very often could be approx- 

imated by diagonal matrices, because the off-diagonal covariance values were often much 

smaller than the variances located along the main diagonals. Chen and Reed propose that 

this indicates the intensity fluctuations are random, or white, in the same sense as that of 

'white noise'. After local mean removal, the Gaussian character of the intensity fluctuations 

is evident in histograms of the entire processed image. The maximum size sub-image for 

which the diagonal approximation remains valid, however, is typically small with respect to 

the main image (32 x 32 in the 512 x 512 pixel imagery examined by Chen and Reed) [3]. 

No assumptions concerning the independence of the image pixels from their neighbors 

were made by Chen and Reed. But having found a basis for the assumption of both Gaus- 

sian and random behavior in images, showing that image pixels may justly be considered 

12 



independent from one another becomes an extremely tantalizing goal. Evidence that may- 

justify such an assumption, produced by A. Stocker, I. Reed and X. Yu, is given in Figure 2. 

Taken from [14], the figure shows the two-dimensional autocorrelation (normalized to have a 

maximum value of one) of a 256 X 256 infrared image of a site near Adelade, Australia which 

was collected by the NASA-developed Thermal Infra-red Multi-spectral Scanner (TIMS). 

Before the autocorrelation was computed, the image was, once again, processed to remove 

the space-varying local mean value, in this case with an 11 x 11 pixel window. The axes of 

Figure 2 are labelled in vertical and horizontal pixel lag which indicates how severely the two 

copies of the same TIMS scene were mis-registered when the correlations between the pixels 

in the first and those in the second were calculated. The contours show constant values of the 

normalized autocorrelation as the two images are shifted in two dimensions. As expected, 

the maximum value is at coordinates (0, 0), demonstrating that the maximum correlation 

between the image and a copy of itself occurs when they are co-registered. As seen in the 

figure, when one copy is offset from the other by a small amount, the overall correlation 

between the pixels in copy one and copy two begins to decrease rapidly. When the images 

are subjected to a shift of one pixel, the autocorrelation is approximately one-fifth that of 

the maximum value. The value drops near zero and remains there for any greater degree 

of shift. The pixels of the processed TIMS image are nearly decorrelated, even from their 

immediate neighbors [14]. The mathematics of statistics and probability show that the cor- 

relation between two independent random variables is zero. Stocker, Reed and Yu therefore 

13 
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Figure 2.    2-D Autocorrelation of Pre-processed TIMS Image Suggesting Pixel-to-Pixel 
Independence 

suggest that it is reasonable to treat the pixel intensity fluctuations of infrared images as if 

each is independent from every other [14]. 

If this last statement is accepted, then the J-dimensional clustering of the pixel values 

in a small sub-region from J pre-processed image frames can be characterized as one or more 

multivariate Gaussian distributions of independent random events. Being able to model 

infrared imagery as the result of independent random events makes the many powerful tools 

of statistical probability available for use in formulating multispectral detection algorithms. 

14 



2.4    Correlation Between Images of Natural Backgrounds 

Experiments have shown that the infrared images of natural backgrounds are often 

highly correlated between narrow spectral bands of the mid-wave IR (MWIR) and far- or 

long-wave IR (LWIR) spectrum [1]. Figure 3 shows a scatterplot of intensities for four 

different pairs of wavelengths, two in the MWIR and two in the LWIR, for 70 measurements 

of coniferous trees. The data come from one experiment of a recent collection of radiometric 

MICOM data set: experiment mapOdO 
,95r 

MICOM data set: experiment mapOdO 
,295 

"56789 
Radiance @ 3.001 microns 

MICOM data set: experiment mapOdO 
960 r 

275 
80 85 90 95 

Radiance @ 4.001 microns 

MICOM data set: experiment mapOdO 
,870 

980 1000 1020 1040 
Radiance @ 10.99 microns 

•820 
900 920 940 960 

Radiance @ 12 microns 

Figure 3.    Correlations of 70 Radiometric Measurements of Tree Canopy for Several Pairs 
of IR Spectral Bands 

measurements which is described and discussed in chapter three. The measurements in 

the figure were taken at 10:32, the morning of 20 July 1993, at the U.S. Army's Redstone 

Arsenal in Hunstville, Alabama, and have units of /jW/(cm2 • Steradian • ym) [1]. A high 

degree of correlation between the wavelengths of 11 and 12 microns is clearly evident, as 

are varied lower degrees for the three other pairings. The sample points plotted in Figure 3 

15 



correspond to separate portions of the tree canopy. However, these particular data were 

not produced by an imaging instrument, but taken individually over the span of several 

minutes. Sets of real infrared images have been shown to demonstrate similar degrees of 

correlation between their respective pixel intensities, and the correlation is preserved in 

images subjected to local mean removal [18]. The data in Figure 3 can therefore be thought 

of as representing the light intensity, at the respective wavelengths, of individual pixels which 

might be present in a pre-processed infrared image of the trees. The scatterplot contains 

no spatial information to indicate what portion of the image each point might represent. It 

merely shows the correlation, from one pixel to another, between each rise and fall of the 

radiance levels across the trees at the paired wavelengths. Note that this is different from 

the concept of correlation between neighboring pixels in each individual image, which was 

discussed previously. The correlations demonstrated in Figure 3 are spectral, not spatial. 

The intensity of one pixel at 12 microns may be linked to the pixel intensity at 11 microns, 

thereby demonstrating spectral correlation. However, spatial independence between pixels 

is still assumed, meaning that, for all wavelengths, the intensity of any pixel in the image 

is independent from that of any other pixel. Multispectral detection of a target within an 

image, such as a truck in trees or scrub bushes, is based upon the observed phenomenon that 

the band-to-band correlations of pixels from man-made objects often lie off the main axis of 

the distribution of the background pixels. Figure 4 depicts a hypothetical example of how 

the pixels of an infrared image containing a target against a natural background might be 

distributed in a two dimensional scatterplot of intensities at a pair of narrow spectral bins 

16 



Radiance at 
Wavelength 2 

o°°°   08? °° 
0000 

oo° 
Q  O 

Radiance at 
Wavelength 2 

°o 
. 0° 

DISTRIBUTION OF 

TARGET PIXELS 

BACKGROUND 

PDCELS 

Radiance at 
Wavelength 1 

Radiance at 
Wavelength 1 

Figure 4. Hypothetical Depiction of Spectral Separation for a Target and Background 

centered at different wavelengths. The target distribution is sometimes referred to as having 

'color' [14, 18] with respect to the background due to the evident separation between the 

means of the distributions in 2-D wavelength space. Spectral separation and color separation 

are terms which are used interchangeably to refer to this property [7]. 

Now assume for a moment that the spectral mean radiance of a target with respect to 

the mean of a background were as depicted in Figure 5 over some portion of the IR spectrum. 

The hypothetical detection situation of Figure 4 above might be produced by scatterplot- 

ting the pixel intensities at the wavelengths indicated in Figure 5. The spectral separation 

results from the fact that mean target radiance is lower than the mean background radiance 

in wavelength #1, while the opposite is true at wavelength #2. Many different factors can 

lead to this circumstance. Differences in temperature between target and background can 

cause spectral separation. Another common cause is the difference in spectral emissivities 

of the target and background at the two wavelengths. The situation in Figure 4 would 

be a good one for detection because the target distribution is well-removed from the back- 
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of Figure 4 

ground distribution. This spectral separation in multiple-wavelength space is fundamental 

to multispectral detection of targets in correlated backgrounds. The 'coloring' of man-made 

objects with respect to natural backgrounds has been observed often enough to encourage 

the development of techniques to exploit this behavior [4, 18]. 

2.5   Methods for Detection 

Target detection may be attempted under two conditions; when one or more targets 

are actually present in an image, and when no target is present. A system is said to attempt 

detection under the H0 hypothesis when no target is present, and to attempt detection 

under hypothesis Hx when a target is present.  Any target detection which is made under 
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hypothesis H0 is a false alarm. With the paradigm established for multispectral detection in 

the previous section, under Hi, a detection may be either a false alarm or a true detection. 

For instance, a tree pixel might still be classified as a target by the detection system while 

properly classifying an image pixel from a tank as a target as well. There is also a chance 

under Hi that the system may not recognize the existence of the target at all, resulting in a 

missed detection [10]. 

Three basic techniques for processing multispectral data are the minimum clutter pro- 

cessor, the spectral matched filter, and the 'RX' algorithm. These three techniques are 

described in [15], and can all be derived from a generalized linear multidimensional filter. 

These three methods have been the primary methods proposed for multispectral detection for 

a number of years, and were the basis for the work described in this thesis. The discussions 

of each method below are based upon the work in [14],[15], and [18]. 

Consider J co-registered sub-frames, each from an image taken in a different IR spectral 

band and pre-processed by local mean removal. The total number of pixels in each frame 

is n. Let x_i,x2,...,xn be column vectors containing the intensities in the J sub-frames for 

each of the n pixels. Each x is therefore a (J x 1) multispectral vector for one pixel in the 

input image. A (J x n) matrix X of these n multispectral observations may be formulated 

X = •£l    ^2    £3 
(10) 
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A J-dimensional linear filter will modify the input observations in X through matrix multi- 

plication with a (J x 1) weight vector w. The output y of such a filter is given by [10, 15]: 

f = wTX (11) 

A spatial filter s of dimension (n x 1) is often multiplied with y to produce a scalar output, 

y = wTXs (12) 

The use of a spatial filter is based upon a presumption that the size and shape of a target 

in the image may be known beforehand, and that the target in the image will consist of 

more than one pixel [14, 15]. The spatial filter therefore places an additional constraint 

on the system by requiring that pixels which are spectrally separate from the background 

clutter in wavelength space form a contiguous region in the image itself before the filter will 

produce a substantial output. When the spatial filter mask is centered on a region of many 

pixels which are spectrally separate from the background, the scalar output is expected to 

be above some threshold for deciding if a target is indeed present. When sub-pixel target 

detection is attempted, the spatial filter is not needed and the pixels from the sub-frame 

from the pre-processed image are evaluated individually, rather than collectively, against the 

threshold to achieve target detection. In either case, if the output of the filter is greater than 

this threshold, the single pixel or group of pixels in the image is classified as a target. 

Signal detection is almost invariably performed amid some form of noise, loosely defined 

to be any process which can obscure or eliminate the pattern one seeks to detect [10, 11]. 
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The parameter which is frequently used to evaluate the effect of system noise on the output 

is the signal-to-noise ratio (SNR). SNR is defined to be the expected value of the signal 

divided by the standard deviation of the system noise [12]. The task of detecting a target in 

the midst of tress or brush in an image is one of recognizing the target signal hidden within 

the natural background. The pixels from the background can be thought of as noise, but 

this noise is not internal to the detection system, and therefore is usually termed 'clutter'. 

The measure of target detectability in images is termed the signal-to-clutter ratio, or SCR. 

From the above discussion, the general expression for the SCR for the linear spectral filter 

(with a spatial filter) described by Equation 12 is [15] 

SCR = 
E2 [y] under Hi 

(13) 
var(y) under Ho 

Figure 6 shows three vectors b12^ with respect to a background clutter distribution 

of high correlation for an image for which 3=2 bands. As considered in [14] and [15], a 

vector b represents a single pixel of the image. The relative position of b with respect to 

the center of the clutter is the characteristic used to decide if b represents a target pixel 

or a pixel of the background. The center of the background clutter is located at the origin 

when modeling the image sub-frame since the histogram of an image subjected to local mean 

removal pre-processing has an approximately Gaussian histogram with a mean value of zero 

[14]. The Figure also shows the relationships of the hypothetical spectral radiances which 

might position each target b vector relative to the mean radiance of the background. The 

vertical axis is normalized by the maximum difference in the radiance levels between target 

21 



Ü 

RADIANCE AT WAVELENGTH 1 

a y 

9     7> 

8 

OH 
CO 

Wavelength 2 —,                   r-WLl 
{01h,2,3                  WLl        I fCrb_3   KA 

1                   ,,     forb,      |W           /    I 

tl\ k.A/W, 
1          /             i 

W  WLl   - 
1/     forb_j 

, W       Target Pixel Radiance 

Minus Mean Background 

Radiance 

SHORTER ■*- X- ->  LONGER 

Figure 6. Relation Between Signal Vectors and Background Mean for Three Bandpairs 

and background over the portion of the IR spectrum of interest. This positioning of b due 

to the relative radiance levels in each band has been described in terms of differing spectral 

apparent temperature as well. The radiance levels are converted to apparent temperature 

by assuming a common emissivity for both target and background, then calculating the 

'apparent' temperature of each based upon the measured radiance from both over the IR 

spectrum [13]. 
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The three detection filtering techniques outlined in [15] are obtained by selecting three 

different spectral weight vectors, w, but in general, the performance of each depends upon 

the signal-to-clutter ratio of the scalar detector output of Equation 12. Given the above 

discussion of the target vector b, the SCR may be written [15] 

SCR 
E2 [y] under Hi 
var(y) under HQ 

(wTbf 
wTMw 

(14) 

The following sections describe the choices of the weight vector w_ which give rise to the 

three methods for detecting a target vector b which is spectrally separate from a background 

distribution. 

2.5.1 The Minimum Clutter Processor. The Minimum Clutter (MC) processor 

performs 'weighted band differencing' of the image vectors in J-bands and is used to minimize 

the total power of the background clutter [15]. The process is illustrated in Figure 7 for the 

dual-band case (J=2). If the background pixel intensities for two bands are highly correlated, 

plotting the image intensities will give two traces which are very similar to one another within 

some scale factor, as shown in Figure 7a. If the means are subtracted from each trace and one 

is scaled with respect to, and then subtracted from, the other, target pixels which lie off the 

main axis of correlation will produce a larger residual value (Figure 7d). Thresholding the 

residual vector will identify vector elements which are not well correlated with the majority 

of the pixels. These residuals are expected to be pixels from the target, provided the target 

is colored with respect to the background. A spectral weight which accomplishes this scaling 

and differencing is 
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and has been found to be the weight which minimizes the magnitude of the background 

residual intensity values, as required for the MC processing [15, 16]. 

2.5.2 The Matched Spectral Filter. The matched filter, like the MC processor, 

takes advantage of the difference in the means of the target and background distributions, 

a situation like that shown previously in Figure 4. Whereas the MC processing minimizes 

the total squared summed magnitude of the background, matched filtering maximizes the 

signal-to-clutter ratio (SCR) of an expected target signal with respect to the background 

clutter. In general, the J-dimensional weight vector associated with the matched filter for a 
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known (J x 1) target vector b and known (J x J) spectral covariance matrix M is [15] 

wT
MF = bTM-1 (16) 

The covariance matrix M for J=2 bands is 

M = 

p(J\02       o2 

(17) 

and the SCR for the matched filter (also for J=2 bands), based upon Equation 14 may be 

written [14] 

SCR = (1 - ^)-1((6iM)2 - 2p(b1/a1)(b2/a2) + (b2/a2f) (18) 

The improvement in the SCR which is achieved by examining a pair of bands instead 

of a single band is the dual-band SCR expression, given in the equation above, divided by 

the magnitude of the best single-band SCR (remember that negative single-band SCRs are 

possible, in this formulation, due to the convention used in describing b). The expression 

for the improvement in SCR has been termed the multispectral gain, G [14, 18]. If the best 

single-band SCR is assumed to be associated with the center wavelength of the first spectral 

bin and designated SCRi, then G can be expressed [14] 

G = SCR/SCR! =  (1 - p2)_1(l - 2PR + R2) (19) 

25 



where R is the ratio of the signed single-band SCRs and p is the correlation coefficient of 

the background clutter distribution in the 2D wavelength feature space, calculated as in 

Equation 8. R is expressed mathematically, as 

(&iM) 

As was mentioned above, the absolute value of (&i/ci) is assumed to be greater than the 

absolute value of (62/02) s0 that R takes on values between 1 and -1. The color ratio R 

gives a measure of the spectral separation between the target vector and the background 

clutter, and is called the 'color coefficient'. R has an angular dependence with respect to 

the background mean in the dual-band wavelength space. This characteristic is illustrated 

in Figure 8. Pixels aligned with the main correlation axis of the correlated clutter have color 

ratios of one, while pixels which are orthogonal to this main axis have a value of negative 

one. Lower R values indicate greater color, or spectral separation, [14], between target and 

background. Negative R values indicate the greatest color between target and background 

and are most desired. The advantage in using pairs of spectral bands increases as the 

background distribution becomes more highly correlated and the color ratio R decreases. 

This fact can be seen in the plot of the multispectral gain, G, versus the color coefficient, R, 

for several background correlation values in Figure 9, reproduced from [14]. The parameter 

G has a direct dependence upon the value of R. The dependence of the dual-band SCR upon 

R is not as immediately apparent, but is similar to the dependence seen in G. That is, the 

SCR generally increases as R decreases and becomes negative. 
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2.5.3 The 'RX' Filter. A problem with the matched filter is the requirement to 

assume that both the target vector and the covariance matrix of the background may be 

known exactly. This is an unrealistic expectation. The RX algorithm, so-named due to 

the notation used for its derivation in [14], implements an adaptive filter which explicitly 

substitutes estimates of the target vector b and the covariance matrix M into the weight 

vector associated with the matched filter (Equation 16). These are maximum likelihood 

estimations [18] which are based upon the observed image data and the assumption of a 

multivariate Gaussian form for the background distribution. Because these estimates are 

used, the algorithm is considered to be an approximation to the matched filter. The weight 

for the RX algorithm is 

Ac = f M-1 (21) 
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The target vector estimate, b is 

£=£& ,5^ = Xs 
i=i 

(22) 

where the spectral observation matrix X and the spatial filter s are the same as previously 

defined. The true covariance is estimated by calculating the covariance matrix M from the 

number of pixels present in the pre-processed sub-frame: 

M = -X>äT = -XX 
n i=\ n 

(23) 

This result is the average (or expected value) of XXT, and for 3—2 bands is the same result 

as that of Equation 7.   This covariance matrix calculation would be the exact covariance 
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matrix of the background clutter if there were an infinite number of pixels available from 

which to form the estimate. The RX algorithm incurs a loss in sensitivity with respect to the 

perfectly matched filter, but this loss may be limited to about 1 dB of SCR if the number 

of independent pixel observations used to calculate M is sufficiently large [15, 18]. 

The three detection methods described in this chapter are the favored candidates for 

performing multispectral detection. The value of the SCR in Equation 18, upon which the 

performance of the matched filter depends, is a function of the parameters which affect 

multispectral detection, namely p and R. Since the matched filter is usually considered to 

be an optimal detection method for finding the location of a known signal in high noise or 

clutter [14], Equation 18 provides an upper bound on the SCR that can be expected to be 

found under operational conditions. In addressing the fundamental question of multispectral 

detection (what bands provide the best target/background discrimination), dual-band SCR 

becomes a useful and easily interpreted measure of the potential of a given spectral band 

pairing to provide this discrimination. For this reason, dual-band SCR has become the 

metric of choice for use in examining bandpair performance, and was adopted for this thesis 

work as well. 
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III.   Methodology 

3.1    The JMSP data collections 

To date, the JMSP has completed the four radiometric data collections listed in Table 

1. More detailed listings, which give the names and dates of all the experiments contained 

in each collection, are provided in Appendix A. Brief descriptions of the targets and back- 

grounds measured during each collection are also included. 
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Table 1. JMSP Radiometrie Data Collections 

Collection Name Dates Location Description 

wsmr 

micom 

wright Jab 

symptom _slew 

6-12 Jan 1993        White Sands Missile Range,   Tanks, trucks, 
New Mexico painted panels, desert 

scrub, soil, grass, 
mixed backgrounds 

14 July-6 Sep 1993   Redstone Arsenal 
Huntsville, Alabama 

24 Sep-29 Nov 1993   Wright-Patterson AFB, 
Ohio 

6-10 June 1994      Wright-Patterson AFB, 
Ohio 

Military vehicles 
(some under camouflage 
nets), civilian vehicles, 
painted test panels, 
soil, coniferous and 
mixed tree 
backgrounds 

M35 truck, painted 
panels, grass and soil 
backgrounds 

Scud B missile, Scud 
launch vehicle, M60 
tank, M35 truck, M752 
Lance missile launcher, 
panels, target decoys, 
U-Haul, tree and grass 
backgrounds 

The instrument currently used for the data collections is a BOMEM Fourier Transform 

Spectrometer (FTS), specially designed to take radiometric measurements in the field [2], 

and is discussed in detail in the following section. The MB-100 FTS was configured to have 

a maximum instantaneous field of view (IFOV) of 5 milliradians, and is the sensor used to 

collect the radiometric measurements of the coniferous trees presented previously in Figure 3. 
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In general, the measurements of the targets and backgrounds in the data is one-half IFOV 

oversampled, meaning that half of the IFOV during each measurement overlaps that of the 

previous measurement. Because each measurement is taken individually, the data collected 

by the FTS may be treated as independent samples of the respective targets in each collection 

[1]. The instrument is thus suited to investigating the properties of targets and backgrounds 

which might someday be examined in combat scenarios by imaging multispectral IR sensors. 

3.2    The Bomem MB-100 Fourier Transform Spectrometer 

Reference [2] is the final report on the design and noise characterization of the Bomem 

MB-100 FTS. The heart of the MB-100 is a Michelson interferometer consisting of a KBr 

beamsplitter positioned between two cube corner retro-reflectors which are mounted on a 

forked scan arm as shown in Figure 10 (reproduced from [2]). The design has two comple- 

mentary inputs and outputs. The first input is directed toward the target of interest and 

the second toward a stable cold reference, liquid nitrogen, for temperature calibration. Both 

outputs are sent to the two detectors, an InSb detector for the MWIR of the spectrum and 

a HgCdTe detector for the LWIR region. As the scan arm in the MB-100 pivots, the optical 

path difference introduced between the arms produces an interferogram. Sampling of this in- 

terferogram is done with reference to the lasing wavelength of a HeNe laser, which propagates 

through the interferometer and is used for calibration of the sample points. The sampled 

interferogram is then Fourier transformed to produce the target spectrum. Two interfero- 

grams are actually produced (one per detector), and the Fourier transforms are computed in 

real time by two digital signal processor boards and remotely linked to the control computer 
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Figure 10. BOMEM MB-100 FTS Scan Arm Configuration 

through a pair of RS422 interfaces. A 10-inch Cassegrain telescope and collimator assembly- 

serve as the input optics for the FTS, and the system has an instantaneous field-of-view of 

5 milliradians with the limiting apertures fully opened. A dichroic beamsplitter is used in 

the collimating assembly to direct part of the input to a CCD camera which can then be 

used to boresight the FTS through the common telescope aperture. The entire assembly is 

set on a motorized mount, and azimuth and elevation are input to the mount by the control 

software. The experiments are thus completely automated, once programmed, and a typical 

collection of fifty samples of various targets and backgrounds may take from approximately 

8-15 minutes [1]. Pointing repeatability is determined by the backlash and run-out of the 

rotary stage gearing mechanism. For uni-directional scans the repeatability is better than 50 
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microradians, or 0.01 times the maximum IFOV of 5 milliradians. for bi-directional scans, 

the repeatability is 0.03 x maximum IFOV [2]. 

FTS radiometric calibration is accomplished with the use of two Electro-Optical In- 

dustries model T1812D blackbody sources. They each provide temperature ranges from 0 to 

50.0 degrees C over 12 in. x 12 in. emitter surfaces. The Environmental Research Institute 

of Michigan has determined that these sources maintain their temperature to within 0.15 

degrees C. The temperatures of the sources are set to the anticipated range of the target 

scene and the sources are used to perform a two-point radiometric calibration of the FTS 

system just before and just after each series of radiance collections [1]. 

The final conclusions drawn from the noise characterization of the MB-100 FTS published 

in [2] are : 

1) The correlation and mean difference measurements made within a single calibration 

cycle will be practically unaffected by anticipated miscallibrations. 

2) The correlation and mean difference measurements between multiple calibration 

cycles are more affected [by such miscallibrations], but errors can be minimized using stable 

sources. 

3) Expected mean difference uncertainties will be on the order of 1% apparent emis- 

sivity or less between calibration cycles. 

4) Expected decorrelation due to calibration source instability will range from 0.97 to 

0.999 depending on scene radiance variance [between calibration cycles]. 
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As the analysis in [2] shows, the effects of noise on the correlations evident in the data 

are negligible. Therefore, sensor noise was not considered in this work. 

3.3    The Statistics of the Spectral Bands 

Multispectral detection seeks to exploit the frequent high correlations between spectral 

bands which have been observed. The techniques also require some amount of spectral sep- 

aration between target and background. A few moments of reflection on these requirements 

quickly brings a number of questions to mind: How often do targets exhibit color relative to 

a particular natural background? Are there many wavelengths which produce this behavior, 

or only a few? Which wavelengths are they, and can favorable performance be expected a 

good deal of the time when choosing them? 

These are not the only questions that need to be answered, but just these few suggest 

that an examination of the statistics of the various data sets is necessary. The micom and 

wsmr collections have been analyzed, and the wrightJab data set is currently being examined. 

Some trends in the parameters of interest, namely target color and background correlation, 

have been identified thus far, and many of them are discussed in [13]. One trend evident 

in the data is that natural backgrounds usually exhibit higher correlations between spectral 

bands in the LWIR than in the MWIR, and correlations of MW/LW bands are typically 

very poor [13]. Although the LWIR tends to show greater correlations, the MWIR seems 

to reflect greater color between man-made targets and natural background. MW/LW pairs 

often show the most spectral separation, but the correlations are invariably too low to be 
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considered for use [7, 13]. The minimum spectral correlation which is widely considered to 

be worthy of interest is p = 0.99 [7]. 

The total amount of data contained in the four collections is vast. The scope of this 

thesis was therefore limited to consideration of the fourth, most recent data collection. The 

symptomslew data set was chosen over the others for two reasons. First, this collection 

had not been examined in any way, and yet was available soon after the start of this thesis 

work. Second, the majority of the experiments contain data from both targets and back- 

grounds taken almost simultaneously. In addition to containing target measurements which 

were taken concurrently with background measurements, the symptomslew experiments were 

performed at very nearly the same times over several days, allowing a direct comparison of 

the detection conditions from one day to the next. 

3.4    Development of a Score for Selecting Band Pairs 

The JMSP data collections provide many opportunities to examine the coloring of 

targets with respect to natural backgrounds. Each experiment where a background and 

target are chosen and then examined provides an opportunity for detection. The collections 

contain hyperspectral data, radiometric measurements in several hundred spectral bands. 

The number of band combinations which might be examined by a muföspectral sensor is 

in the tens of bands, however. Therefore, one important task in developing an affordable 

operational multispectral sensor is narrowing consideration to a smaller number of bands. 

Finding a small number of bandpairs (from the many thousand combinations) which provide 
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for good target discrimination a majority of the time could allow for designing a sensor 

with a number of filter wheels to block all bands but those of interest. Such wheels serve 

as a mount for several narrow-band IR filters which can be rapidly rotated into position 

in front of an IR sensor to exclude all bands but that which the filter is designed to pass. 

This option is attractive because of its simplicity and the inherent savings associated with 

reduced complexity in an operational system [7]. 

A detailed examination of these opportunities is the current focus of the JMSP. One 

matter which is unresolved is how this data might be used most effectively to identify a small 

number of bands which demonstrate favorable detection conditions over varied conditions. 

This is of concern since factors such as weather and temperature can change substantially 

with time of day and the time of year. 

One straightforward method of evaluating the performance of a particular set of bands 

over multiple experiments is to simply average the dual-band SCRs of the individual detection 

opportunities and choose the J bandpairs which have the highest overall SCR. This is an 

obvious and conceptually simple method, and it is natural that this might be the method 

employed to rank order a set of promising bandpairs. However, a potentially more useful 

method for ranking the performance of the candidate pairs is to score them based upon a set 

of criteria which represent a particular notion of ideal performance. For example, consider 

a band pair that remains above some set lower bound on SCR for every instance under 

consideration. A pair which did this might be a better choice than another which has very 

high SCR for some times of the day, but exhibits undesirably low SCRs at other times. The 
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mean SCR value across the day may be higher for the second pair than for the first, and 

yet the first pair may actually be the more desirable choice. To promote band pairs which 

reflect this attribute above others which may not when the mean SCRs are comparable, the 

following score is proposed: 

Score = ^—^ (24) 
a 

where //. is the mean SCR value, a is the standard deviation of the SCRs under consideration, 

and Tb is the minimum 'acceptable' SCR. 

The dual-band SCR has been established as a good metric for evaluating the detection 

potential of a single detection opportunity. Knowledge of how often any particular pair pro- 

vides the desired high SCRs may be gained if these SCR values are calculated and considered 

over a number of instances during a day or perhaps over a period of days. Figure 11 shows 

how a set of SCR's is scored in relation to the lower bound Tb. If it may be assumed that 

the processes which determine these SCRs influence their distribution about a mean value in 

some deterministic fashion, the distributions of an infinite number of such calculated SCRs 

over an infinite number of detection opportunities will be of the same form. Making such an 

assumption may or may not be justified at this point, but it may prove useful to view the 

SCR as a variable whose value in time is randomly distributed over some finite numerical 

range. In the figure, the familiar Gaussian shape is used only to illustrate the idea behind the 

score in Equation 24. No specific form for the distribution of the SCRs has been assumed, 

nor is it suggested that the Gaussian form is best suited to describe the SCR distribution. 

Figure 11 demonstrates that the value of the score is directly proportional to the fraction 
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Figure 11. Scoring two SCR Distributions with Different Standard Deviations 

of the total area under the distribution which is above Tb. The Figure therefore suggests 

that the higher the score for a particular pair of bands, when considered over some period 

of time, the more often the pair should produce signal-to-clutter ratios which are above the 

lower bound T&. The second part of this thesis is devoted to determining if ranking the 

bandpairs by the score in Equation 24 exhibits any potential advantages over ranking them 

by average SCR value. 
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IV.   Presentation and Analysis of Results 

The three experiment series from the symptomslew data set which were examined in 

this thesis are listed below in Table 2. The targets contained in each series are given in 

Table 3. 

Table 2. The Data Series Examined 

Experiment date time 
Name 
d06nzl 06 June 1994 3:23 AM 
d06nz2 5:28 AM 
d06nz3 7:21 AM 
d06nz4 9:10 AM 
d06nz5 11:03 AM 

d07nzl 07 June 1994 3:23 AM 
d07nz2 5:21 AM 
d07nz3 7:18 AM 
d07nz4 9:09 AM 
d07nz5 11:05 AM 

d08nzl 08 June 1994 5:15 AM 
d08nz2 7:06 AM 
d08nz3 9:26 AM 
d08nz4 11:14 AM 
d08nz5 1:16 PM 

Target and background data were collected simultaneously for these experiments. They 

are therefore ideally suited to examining the parameters affecting the performance of multi- 

spectral detectors, since the color coefficient R has meaning only with respect to a background 

clutter distribution. However, if one were to attempt to examine all the different   combina- 
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tions of the spectral bands available in the data, it would entail performing (7282 - 728)/2, 

or 264,628 calculations each of R, p, SCR or whichever parameter or metric was needed. 

To reduce the required computations, only spectral bins at wavelength intervals of 0.1 /xm 

from 3.0 to 14.2 /xm were considered for any target or background. This binning reduced 

the dimensionality of the spectral matrices to (113 x 113), a more tractable amount of data. 

The width of the spectral bins was chosen to be 100 nm. JMSP researchers have generally 

agreed that this bin width is the smallest which may reasonably be considered for use in a 

multispectral sensor due to the limited dwell time available to an airborne sensor [7]. Spec- 

tral filters passing bands of smaller width than 100 nm may not admit enough photons in 

the time available to allow the detector to operate in the MWIR. In addition, Multispectral 

detection performance (evaluated through use of the dual-band SCR expression of a matched 

filter and Multispectral Gain G) has been observed to remain fairly constant as binning is 

increased to 200 nm, but to steadily drop as the width is increased beyond this point [13]. 

For this reason, 100 nm bin widths have been used in all investigations using the JMSP data. 

To allow direct comparison of this work, the choice was made to use a bin width of 100 nm 

for this thesis as well. 

The interval of 0.1 microns between the centers of the bands is approximate because 

the data reflects constant sampling at intervals of wavenumber not wavelength. The data 

extraction process steps through values from 3 to 14.2 /im in increments of 0.1, and calculates 

and index into the data vector which contains the radiance values of the closest wavelength 

actually present in the experiment. These radiance values are then read and properly labeled 

41 



Table 3. The Targets in the Experiments 

Experiment     Targets 
Series 
d06nz_ 
06 June 1994 

d07nz_ 
07 June 1994 

d08nz_ 
08 June 1994 

M752_Launcher 0 11 
MAZ543_TEL 12 27 
MAZ543_Decoy 28 4 
M50_Tank 44 55 
M35_Truck 56 67 
Tree_Canopy 68 85 

M752_Launcher 0 11 
Lance.Missile 12 14 
MAZ543_TEL 15 30 
Scud_B_Missile 31 34 
MAZ543JDecoy 35 50 
M50_Tank 55 66 
M35_Truck 67 78 
UHauLTruck 79 8 
Tree_Canopy 82 99 

M752_Launcher 0 11 
MAZ543_TEL 12 27 
MAZ543JDecoy 28 43 
M50_Tank 44 55 
M35_Truck 56 67 
UHauLTruck 68 70 
Tree_Canopy 71 88 
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by converting the wavenumber to wavelength. Since the step size between the wavemimbers 

of the data is approximately 3.85 cm-1, the spacing of actual data points in wavelength is 

about 80 nm at 14.2 /an and 3 nm at 3.0/zm. Since the program finds the nearest actual data 

point when searching by wavelength, the difference between the nominal wavelength and that 

for which the data actually exists will be at most plus or minus half these values at the two 

extremes of the spectrum. This effect is seen in the labeling of the axes of the scatterplots 

for the trees in Figure 3. The nominal wavelengths which were entered to produce the plots 

were 3, 4, and 5 microns in the MWIR and 11, 12, and 13 microns in the LWIR. The closest 

wavelengths to each of these for which data was actually present in the collection are those 

used in the axis labels. 

The decision to examine the data on the scale of wavelength rather than wavenumber 

was made for several reasons. First, the critical parameters, p and R, appeared to vary on 

the scale of wavelength rather than wavenumber. The change in the relationship between 

target and background was negligible when incrementing through the largest wavenumbers 

(the MWIR) but easily discernable for the lowest wavenumbers (the LWIR). In addition, 

filtering of the spectrum has been traditionally discussed in terms of wavelength, leading to 

the consideration of multispectral issues in a similar terms [7]. These reasons, along with 

the reduction in data processing provided by binning at intervals of wavelength, led to this 

choice, although examining the multispectral issue on the wavenumber scale could very well 

have provided additional insight during the course of this work. 
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Figure 12. Wavelength map of the background p, 6-8 June 1994: symptomslew Data Set 

Figure 12 shows an intensity plot of the average background correlation for the tree 

canopy on June 6, 1994. Only the lower triangular half of the matrix of correlation values is 

shown, since the values are symmetric about a line at 45 degrees to either axis. The intensity 

scale for this figure is an inverse logarithmic function of the correlation value. The only wave 

bands which are distinguishable from the black background are those with p values of 0.97 

or greater. The brightest regions in Figure 12 correspond to bandpairs exhibiting spectral 

correlations of 0.99 and higher. A very large fraction of the total wavelength pairs exhibited 

these high average correlations during 6-8 June. 

The average color coefficient R across the dual-spectrum wavelength space for the 

M752 lance missile launcher and trees on 6 June is shown in Figure 13.  The intensity for 
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Figure 13.    Wavelength map of the Color Ratio R, 6-8 June 1994: Lance Missile Launcher 
and trees, symptom.slew Data Set 

the upper half of the dual-wavelength space indicates an R value of zero. The dark regions 

which cut through the middle of the spectrum are spectral wavelengths which are not passed 

by the atmosphere, and which are therefore not processed. The narrow band from 4.2 to 

4.4 microns corresponds to a CO2 molecular absorption line, while the larger region which 

has been removed from consideration is the range 6.0-7.9 microns, an absorption region due 

to water. These bands were also removed from consideration in the data depicted in Figure 

12 as well, but their omission is less noticeable due to the dark surrounding regions in that 

figure. Note that for this target and background combination, there are no negative values 

of R. 
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4-1    The Statistics of the Symptom Slew collection 

It is apparent from a comparison of Figures 12 and 13 that high correlations and high 

color (lower and negative R values) for this target and this background are somewhat mutu- 

ally exclusive events. The following figure contains three scatterplots of all 3403 bandpairs 

considered in the MW, LW and MW/LW IR regions for the Lance and the trees. The figures 

of merit are again R and p averaged over the five collection times for each of the three days 

in June.  These plots show how the target/background combination has a strong tendency 
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Figure 14.    Relation between R and background p for 3403 bandpairs, 6-8 June 1994: symp- 
tom.slew Data Set 

toward a loss of color with increasing background correlation between bands. Similar plots 

have been observed for all the other targets from 6-8 June with respect to the same tree 
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background. In general, the loss of color with increasing background correlation is evident 

in nearly all data of the symptom.slew collection. 

Most IR detectors in use today in the region of 3-14 microns perform well only in either 

the long- or mid-wave IR. Therefore, it is natural to examine the properties of MW/MW 

LW/LW and MW/LW bandpairs separately, since a single detector in an operational sensor 

design may only cover a portion of the thermal infrared spectrum. The high background 

correlations which are deemed necessary for reliable target detection performance might be 

found for pairs in any, all, or none of the MW, LW and MW/LW regions. To characterize 

the background correlation levels of each region, the number of bandpairs for which p > 0.99 

were counted for each time of day in the experiments of Table 2. These numbers were then 

divided by the total number of pairs from each region, 190 MW pairs, 1,953 LW pairs, and 

1260 MW/LW pairs. These percentages are listed in Table 4. 

4-2    Selection by SCR v. Selection by Score 

Besides providing information on some of the important parameters involved with mul- 

tispectral detection, the symptomslew experiments were used to evaluate the performance 

of the score of Equation 24 in choosing bandpairs which consistently displayed high SCRs. 

The expression for the SCR of the perfectly matched spectral filter was used as the metric 

to evaluate the performance of each of the 3403 band combinations in each of the regions of 

the sampled spectra, and the value of the ratio was converted to dB (20logio(SCR)). This 

evaluation was performed for each of the twenty targets versus the tree background for the 
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Table 4.    Percentage of Bandpairs in each IR region with Background Correlation p  >  0.99 

Experiment MW LW MW/LW 
Name 
d06nzl 14.21 24.63 0 
d06nz2 16.32 24.58 0 
d06nz3 25.26 52.28 0 
d06nz4 32.63 67.43 0 
d06nz5 36.84 69.18 0 

d07nzl 13.68 29.03 0 
d07nz2 20.00 37.48 0 
d07nz3 17.37 30.31 0 
d07nz4 22.63 48.64 0 
d07nz5 27.37 61.29 0 

d08nzl 14.21 35.07 0 
d08nz2 14.74 19.41 0 
d08nz3 26.32 51.51 0 
d08nz4 27.37 83.56 18.33 
d08nz5 25.26 54.74 0 
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five collection times during the respective days, producing 100 separate lists of the calculated 

signal-to-clutter ratios for the 4303 bandpairs. In general, the highest SCRs were produced 

by pairs exhibiting very high background correlations (p > 0.99) and moderate degrees of 

color (R> 0.5). Occasionally, very poorly correlated bands with very good color (R< 0) 

produced the highest SCRs, as did bands with moderate color (R slightly above 0) and lower 

correlations (p > 0.9). 

The lists were subsequently reduced in size and ranked by the following three condi- 

tions: 1) Ranked lists were produced based upon the overall SCR performance (average) for 

each of the three days, 2) Only pairs with background correlations greater than 0.99 were 

considered, 3) Only pairs providing an average SCR of 18 dB or greater over each day were 

considered. The number of pairs which met all three criteria ranged from approximately 300 

to 700, depending on the target and time of day. These pairs were ranked first by calculating 

the mean SCR value during the day, then by the score of Equation 24. The lower bound 

Tft was chosen to be 18 dB because, assuming that Gaussian statistics describe the distribu- 

tions, SCRs of 18 dB and above are generally expected to provide reliable target detection 

performance [7, 13, 18]. The differences between the rankings produced by the two methods 

were significant. The two methods typically exhibited only 70% commonality for a given 

number of the top ranked pairs, and the exact ordering of these was usually different. 

The most straightforward and meaningful way to evaluate the two selection methods 

is to examine the SCRs for the different times of day which produced the rankings. The 

twenty ranked lists were based upon the five detection times for each of the three days. 
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Figures 15-20 on the following pages show how the pairs selected by score compare to those 

selected by average SCR for the top 10 pairs and top 50 pairs from each. Figures 15 and 

16 concern the average SCRs present in the top 10 and 50 pairs, respectively, for all 100 

detection scenarios (20 target/background matchups x the 5 times of day). In the upper 

half of each figure, the signal-to-clutter ratios which were placed in each final list are plotted 

versus the mean SCR between the two lists. As mentioned, the dual-band SCR is used here 

to provide some measure of the probable detection performance which might be expected for 

a given target and background. The range of values in which the highest SCRs fall for any 

detection opportunity thus gives an indication of the ease with which a sensor might detect 

the target. The mean SCR for the two methods plotted in the top graph of each figure 

is therefore plotted along the horzontal axes of both graphs as an indicator of the target 

detectibility for each of the 100 detection opportunities. 

The lower portions of the figures are plots of the difference between the mean of the 

SCRs for the pairs which survived the two ordering processses. The value plotted for the 

average-SCR method is subtracted from that for the scoring method. Positive values in the 

lower plots correspond, therefore, to instances when the scoring method produced a 'better' 

list, as evaluated by the average of the SCRs, as well as the minimum and maximum SCR 

values, present in each list. The first two figures show that when the data reflects more 

difficult target detection circumstances, the scoring method tends to produce rank-ordered 

lists of bandpairs which, on average, have higher SCRs. Figures 17-20 show a similar trend 
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with regard to the best and worst SCRs evident in the lists. Again, using the scoring method 

is shown to be advantageous when the data reflect more difficult detection conditions. 
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Another process used to evaluate the selection capabilities of the two methods involved 

detecting the target pixels at the wavelengths specified by the two different rankings. The 

lists produced by both methods were compared band-for-band through the top ten and thirty 

selections by re-accessing the spectral data for the two pairs and attempting detection of the 

target pixels using the minimum clutter (MC) processor. The detection method was simpli- 

fied by dropping p from the second element of the weight vector used by the MC processing 

(Equation 15), since all correlations were greater than 0.99. The performance of each pair 

was evaluated based upon the number of target pixels which were successfully detected, as 

well as the incorrect target classifications (false alarms) made under Hi and H0 hypotheses. 

Detection was attempted for each target pixel individually (againt all background pixels) 

so that the presence of a proportionately large number of target pixels would not adversely 

affect estimates of the background clutter standard deviations. This is reasonable because 

the number of target pixels in the pre-processed image frames of interest will almost always 

be much less than the number of background pixels. A detection threshold was set at 1.75 

times the standard deviation of the residual vector under Hi for the comparison. This value 

was chosen when noting, after trial and error, that use of this value allowed pixels of both 

types to be mis-classified during the detection process. This allowed a comparison of the 

two methods based upon numbers of correctly identified target pixels as well as the number 

of tree pixels which were incorrectly classified as targets. 

The scores and mean SCRs for each of the three days were used to select final pairs 

for the six target types. The final bandpair list for each target which guided the detection 
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process was a composite list that was compiled using the bandpair rankings from all days. 

Although data for the MAZ543 TEL exists for 7 June, this data was left out of consideration 

when making the final lists and detecting the MAZ543 because the engine of the vehicle 

was running during the collection on this day, whereas this target was cold on both 6 and 8 

June [7]. 

The composite bandpair lists were used to detect the target pixels in each of the 

experiments involving the six target/background scenarios. Detection was performed using 

both the SCR and score composite lists for the top ten and thirty bandpairs. This amounts to 

(80 experiment times during the 3 days) *(2 ranking methods) * [ (10 pairs) + (30 pairs) ] = 

6,400 cases of target detection. The method of the list which came out on top in this 

evaluation are given in Tables 5 and 6. The SCR method is shown to perform better overall. 

This is the expected result, given the trends observed in the previous section. Since the lists 

of scored bandpairs exhibit a lower average SCR as the detectability of the targets increases, 

the predominance of such very good detection opportunities in the 100 cases which were 

examined gives rise to the results of Tables 5 and 6. 
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Table 5. Method Performance: Comparison of top TEN bandpairs 

Experiment M752 MAZ543 MAZ543 M50 M35 U-Haul 
Name Lance TEL Decoy Tank Truck 
d06nzl SCR score SCR tie SCR - 

d06nz2 SCR score score SCR SCR - 

d06nz3 score score SCR tie tie - 

d06nz4 tie SCR SCR tie SCR - 

d06nz5 SCR tie SCR tie SCR - 

d07nzl SCR „ SCR score SCR score 
d07nz2 SCR - SCR tie SCR tie 
d07nz3 SCR - score tie tie tie 
d07nz4 tie - SCR SCR tie score 
d07nz5 tie - SCR tie tie tie 

d08nzl score SCR SCR tie SCR score 
d08nz2 score SCR SCR tie SCR score 
d08nz3 tie score SCR tie tie score 
d08nz4 tie SCR SCR tie SCR tie 
d08nz5 SCR score SCR SCR tie tie 
Overall 
Result SCR score SCR SCR SCR score 
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Table 6. Method Performance: Comparison of top THIRTY bandpairs 

Experiment M752 MAZ543 MAZ543 M50 M35 U-Haul 
Name Lance TEL Decoy Tank Truck 
d06nzl SCR score SCR SCR tie - 

d06nz2 SCR score tie SCR SCR - 

d06nz3 tie score SCR score score - 

d06nz4 tie SCR SCR SCR SCR - 

d06nz5 SCR SCR SCR SCR SCR - 

d07nzl tie _ SCR score tie score 
d07nz2 tie - SCR score SCR tie 
d07nz3 SCR - score SCR tie SCR 
d07nz4 score - SCR tie score score 
d07nz5 tie - SCR SCR tie score 

d08nzl score SCR SCR tie SCR SCR 
d08nz2 score score SCR SCR score score 
d08nz3 score tie SCR SCR tie score 
d08nz4 score SCR SCR tie SCR tie 
d08nz5 tie SCR SCR tie tie SCR 
Overall 
Result score SCR SCR SCR SCR score 
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V.   Conclusions and Recommendations 

The symptomslew data show large regions of high correlation for band pairings in the 

thermal IR. This fact suggests that multispectral detectors will often encounter background 

correlations which provide for good detection performance. In every experiment the LWIR 

exhibited a higher degree of correlation than the MWIR, while the MW/LW rarely exhibited 

sufficiently high p. The LWIR may therefore be a better region than the MWIR for providing 

reliable and accurate multispectral detection if p > 0.99 is a necessary condition. 

The plots of Figure 14 show the disappointing loss of target/background color with 

increasing correlation, supporting similar observations which have been made after an ex- 

amination of earlier JMSP data collections. The best SCRs typically are produced by highly 

correlated wavelength pairs, but this is not uniformly the case. The choice in this work of 

establishing the threshold for consideration of a bandpair at 0.99 for the background correla- 

tion often eliminated numerous MWIR pairs which had slightly lower p values but sufficient 

color (low R) to provide the highest SCRs. The highest number of MWIR pairs on any candi- 

date list (of several hundred total pairs meeting the criteria p > 0.99 and SCR> 18 dB) was 

twelve, and only occasionally were MWIR pairs included in the top 10, 30, or 50 bandpairs 

in the final ranked lists. The fact that many MWIR pairs with high SCRs were eliminated 

by this consideration of p suggests that the preference for the very highest correlations may 

be unjustified given the current assumption, made by proponents of the RX detection algo- 

rithm, that the covariance matrices of the background clutter distibutions may be accurately 
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estimated from actual sensor data in real-time with Equation 23. The dual-band SCR may 

alone be good enough for evaluating combinations of spectral bands. At the least, this work 

suggests that it may be necessary to re-examine the reasons for the bias toward extremly 

high correlations, which has sometimes been evidenced in previous research ([13] and [14]). 

Selecting bandpairs based upon a ranking accomplished with the score of Equation 24 shows 

an advantage when the data reflects difficult detection by exhibiting lower signal-to-clutter 

ratios. When the SCRs are higher, the disadvantage of the score-selected bandpairs should 

not be of great concern due to the still-excellent detection potential implied by the high 

SCRs. The score developed in this work could prove useful in evaluating the current and 

future multispectral data collections by directing the selection of spectral bandpairs which 

provide more consistent detection when the detection problem is more difficult. The use of 

the score is therefore recommended based upon the evidence developed during this work and 

presented in this thesis. 
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Appendix A.   Listings of Experiments for the JMSP Multispectral Data 

Collections 
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micom experiments 
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wright_lab experiments 
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Appendix B.   Guide to MATLAB Code and the Multispectral Data Format 
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B. 1    Organization of the JMSP Data 

The multispectral data used in this thesis was modified to be read by SUN mi- 

crosystems's SPARC workstations in early 1994. It was provided in the tape archive file 

bomem.raw. tar which, when 'un-tared', creates a directory called bomem containing the data 

from the first three collections, each in its own subdirectory. The symptom.slew collection 

is retrieved by un-taring the file symptomslew.tar. This file places the data from the fourth 

collection into directory symptomslew, which can be moved into the bomem directory to 

allow access to all four sets through the same path. 

The data from each experiment is given a separate directory which corresponds to the 

six-letter experiment name. The filenames within these are designated by the experiment 

name followed by a three-letter extension. The most important files are described below 

with one experiment from the wsmr data set used as an example: 

Path Description 

/bomem/wsmr The wsmr collection directory 

/bomem/wsmr/asxzza Directory containing files for experiment asxzza 

/bomem/wsmr/asxzza/asxzza.raw   Spectral data for experiment asxzza 

/bomem/wsmr/asxzza/asxzza.grt    Ground truth file listing targets and their locations 

within the raw data 

/bomem/wsmr/asxzza/asxzza.hdr   Experiment header giving date and 

time of the experiment 
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The output of the ground truth file asxzza.grt is given below: 

Table 7. Targets listed in asxzza.grt 

Camo_Tankl 0 11 
Camo.Truck 12 23 
Camo_CARC_Tan 24 25 
Camo_Low_E_Tan 26 27 
Diffuse 28 29 
Specular 30 31 
CARC_Green 32 33 
Camo_Cylinder 34 35 
Sky 36 40 
Blackbody 41 43 
Scrub 44 73 

The numbers after each target description give the locations in the raw data where 

the spectra from the target may be found. For experiment asxzza, there are 74 separate 

samples of various targets and backgrounds. Each sample consists of a 728-point spectrum 

produced by the MB-100 FTS collection instrument. Because of the nature of the collection 

instrument, the spectrum sample points are spaced at intervals of constant energy from 

698.10553 cm-1 to 3502.09839 cm-1. The spacing is therefore linear in wavenumber, but 

non-uniformly spaced in wavelength due to the inverse relationship between the two units of 

measure. The spacing between sample points in wavelength is approximately 0.5 nm at 2.86 

microns and 80 nm around 14.32 microns. 

The data in asxzza.raw is a single vector of numbers in IEEE floating point format. 

New code was developed to read and manipulate the JMSP data on The Air Force Institute 

of Technology's Sun Microsystems SPARC workstations. The MATLAB code written during 
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this thesis manipulates the data after it is first read into a single vector, a. The indices for 

the targets in experiment asxzza, which are listed above, describe the location of the data 

for each vehicle within vector a, as shown in Figure 21. The data for the camouflaged truck 

begins with the first point in spectrum number 12 and ends with the 728th point in spectrum 

23. The twelve 'looks' at the truck taken during experiment asxzza therefore consitute 8,736 

of the 53,872 elements in the data vector a. 

53,872 ELEMENTS IN VECTOR FOR ASXZZA 

a    = 

DATA FOR CAMOUFLAGED TRUCK 

Figure 21. Location of Camo_Truck spectra in data vector a 

B.2   MATLAB File Descriptions and Outputs 

The major and subsidiary MATLAB m-files used to manipulate the data are listed 

below with a brief description of each. More detailed descriptions of the individual files and 

sample outputs for most are given in the next section of this appendix. 
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Table 8. The Major MATLAB commands 

Command       Use 
mam 
new 
grt 
hdr 
target 
sp 
d06nz_RUNl 
mult access 
pairstats 

pairscores 
finalpairs 

select data set and a single experiment 
select different experiment within chosen data set 
list the targets in an experiment 
list the experiment collection date and time 
define ranges in the data of all targets of interest (up to five) 
scatterplot of all targets at a single pair of wavelengths 
multiple experiment target extraction guided by file 'testd06nz_M752' 
2D maps of SCR,R,G,and target and background correlation p 
Produces statistics for the bandpairs across the IR 
for a given experiment series with target and background 
Ranks top bandpairs by dual-band SCR and by score 
Selects final lists of bandpairs based upon rankings 
for several data series by SCR and score. Then performs 
detection on original data as a comparison of the two bandpair lists 

Table 9. Subsidiary MATLAB commands 

Command Use 
access 

rsp 
suppress 
bestbySCR_no_brho 

bestpairs 

finaldet 

Interface routine called by multaccess.m or used alone 
to interface with the figures produced by multaccess.m 
Scatterplot routine called by access.m 
Weighted band differencing routine called by access.m 
Used by pairstats.m to rank bandpairs 
by dual-band SCR 
Used by pairscores.m to rank bandpairs by dual-band 
SCR as well as score 
Used by finalpairs.m to perfom detection in the data 
for the bandpair selections as ranked in finalpairs.m 
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B.3    Use of the Major Commands 

main 

Typing this command from within the MATLAB program will produce either a graph- 

ical point-and-click menu or a text menu for use in selecting the data collection to be exam- 

ined. When the data set is chosen, the file prompts for the experiment name and types the 

associated ground truth and header files (by running the m-files grt.m and hdr.m) after the 

data has been loaded, as shown by the following MATLAB screen output: 

» main 

  Choose desired data set: 

1) Micom 
2) WSMR 
3) Wright Labs 
4) Symptom_slew 

Select a menu number: 4 

Enter name of experiment ==> d06nzl 

M752_Launcher 0 11 

MAZ543.TEL 12 27 

MAZ543_Decoy 28 43 
M50_Tank 44 55 

M35_Truck 56 67 
Tree_Canopy 68 85 

698.10553 first wavenumber 

3502.09839 last wavenumber 

728.00000 number of points 
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6 month 
6 day 

3 hour 

23 minute 

» 
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new 

This command allows selection of a new experiment within the same data collection. 

MATLAB screen output looks like the following: 

>> new 

Enter name of experiment ==> a08npl 

Specular_Panel 0 0 

Diffuse_Panel 1 1 

Black.Panel 2 2 
CARC_Green_Panel 3 3 

Blackbody 4 4 

Sky 5 7 

698.10553 first wavenumber 
3502.09839 last wavenumber 
728.00000 number of points 

6 month 
8 day 
3 hour 

56 minute 

» 

If the user invokes this command but reconsiders the decision to switch to another 

experiment, the operation can be canceled with an input of <Return>. 
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target 

Use to select the indices to the targets and/or backgrounds of immediate interest. A 

maximum of five targets may be selected, and the command may be used to change these 

selections at any time without affecting the experiment data in memory. The example output 

reproduced below selects all radiometric measurements for three targets: the M752 Lance 

missile launcher, the M-50 tank, and the tree canopy background. 

>> target 

M752_Launcher 0 11 

MAZ543.TEL 12 27 

MAZ543_Decoy 28 43 

M50_Tank 44 55 

M35_Truck 56 67 

Tree_Canopy 68 85 

Enter ranges for all targets (e.g. for two targets: 0 9 24 47 ) ==> 0 11 44 55 

68 85 
» 

A single radiometric spectrum from each vehicle may be examined with respect to the 

trees as well. The following line selects the first spectrum in the data from each vehicle and 

all data for the trees: 

Enter ranges for all targets   (e.g.  for two targets:  0 9 24 47 )  ==> 0 0 44 44 
68 85 
» 
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sp 

When the targets of interest have been selected from the experiment data, they may be 

repeatedly scatterplotted at any two wavelengths with the sp command. The three targets 

(2 vehicles, 1 background) chosen in the previous example are scatterplotted at 9 and 11 

microns in the following example: 

» sp 

1st wavelength? (between 2.86 and 14.25 microns) ==> 9 

2nd wavelength? (in microns) ==> 11 

blue_cross = 

1st target 

red_circle = 

2nd target 

magenta_star = 

3rd target 

» 
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SYMPTOM_SLEW data set: experiment d06nz1 - binning of 0.1 microns 
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Figure 22. Scatterplot Produced by the Command sp 
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m-file d06nz_RUNl.m and text file testd06nz_M752 

These two files together constitute the primary method for calculating the parameters 

important to multi-spectral detection for the JMSP data. After the text file is read by the 

m-file, the dual-band SCR, color ratio R, Multispectral gain G, and target and background 

correlations (p) are calculated for all pairings of wavelengths at 100 nm intervals from 3-14.2 

microns and with 0.1 micron binning of the data. For convenience, the name of this m-file 

indicates that the code will calculate these parameters for the five experiments in series 

d06nz_ as directed by the text file testd06nz_M752. The contents of testd06nz_M752 are: 

d06nzl 00 11 1 
d06nz2 00 11 1 
d06nz3 00 11 1 
d06nz4 00 11 1 
d06nz5 00  11  1 

d06nzl 68 85 2 
d06nz2 68 85 2 
d06nz3 68 85 2 
d06nz4 68 85 2 
d06nz5 68 85 2 

This text file guides the m-file in accessing the various experiments of the series and 

selecting the targets to be examined; in this case, the M752 Lance missile launch vehicle 

and tree background of the d06nz_ experiment series. The file must be created as shown in 

Figure B.3. 
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Experiment 2-digit index for start 
Name of data in each experiment 

2-digit index for end 
of data in each experiment 

Target and 
Background 

( 
/ ( 

d06nzl00 11 
d06nz2 00 11 
d06nz3 00 11 

<       d06nz4 00 11 
paired by position's.    d06nz5 00 11 

(NOT filename)     ^ dQ6nzl 68 g5 2 

d06nz2 68 85 2 
d06nz3 68 85 2 
d06nz4 68 85 2 
d06nz5 68 85 2 

Target type ID number 

Block for target 1 

Block for target 2 

Figure 23. Format of text file testd06nz_M752 Which Directs m-file d06nzJR.UNl.rn 

Given this format, a text file directing the examinination of the M50 tank data in 

experiment series h09nz_ versus the tree data in the i09nz_ series would be created as follows: 

h09nzl 01 12 1 
h09nz2 01 12 1 
h09nz3 01 12 1 
h09nz4 01 12 1 
h09nz5 01 12 1 
h09nz6 01 12 1 
h09nz7 01 12 1 
h09nz8 01 12 1 
h09nz9 01 12 1 
h09nza 01 12 1 
h09nzb 01 12 1 
h09nzc 01 12 1 
h09nzd 01 12 1 

i09nzl 11 46 2 
i09nz2 11 46 2 
i09nz3 11 46 2 
i09nz4 11 46 2 
i09nz5 11 46 2 
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i09nz6 11 46 2 
i09nz7 11 46 2 
i09nz8 11 46 2 
i09nz9 11 46 2 
i09nza 11 46 2 
i09nzb 11 46 2 
i09nzc 11 46 2 
i09nzd 11 46 2 

The run-time for file d06nz_RUNl.m is about 3| hours on a SPARCstation 20. There- 

fore, all the variables, matrices, etc. calculated during the program run are saved as a .mat 

file. When the two files are re-named and modified to examine different targets and back- 

grounds in other data sets, the name of this output file should be made to relate to its 

contents. The current naming convention implemented in the program is the experiment 

series name followed by the frst data index of the target and background. The output file 

produced by d06nz_RUNl.m is therefore d06nz_00_68.mat. 

79 



multaccess and access 

The command multaccess produces two-dimensional "wavelength-maps" of the data 

calculated and stored in an output file such as d06nz_00_68.mat, which was described above. 

The user must select which experiment to view. When this is done, multaccess.m produces 

the intensity maps of the five parameters SCR, R, G, and target and background p over the 

2D wavelength space, and calls the command access. The file access.m begins a point-and 

click interface for retrieving parameter values from the data when a pair of wavelengths is 

selected by clicking with the mouse inside the axes of the figures. The first mouse button 

selects a point, the second cycles through the figures, and the third exits this process and 

returns the user to the MATLAB command line. This routine was designed for MATLAB 

running in Openwindows on a SPARCstation, and these routines will therefore most likely 

fail to run properly in a PC-based MATLAB environment. The screen output seen when 

using this command in MATLAB is provided below, along with two of the parameter maps 

which are produced: 

» load d06nz_00_68 

» multaccess 

experiments = 

d06nzl d06nz2 d06nz3 d06nz4 d06nz5 

Enter name of experiment to view results==> d06nz3 

Warning: Log of zero 
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Warning: Divide by zero 

Warning: Log of zero 

Warning: Divide by zero 
» 
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R map by wavelength: experiment d06nz3, tgt = 0, bgnd = 68 
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Wavelength (microns) 

Figure 24. R Map Produced by command multaccess 
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Background rho map by wavelength: experiment d06nz3, tgt = 0, bgnd = 68 
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Figure 25. Background p Map produced by command multaccess 
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SCR map by wavelength: experiment d06nz3, tgt = 0, bgnd = 68 
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Figure 26. SCR Map produced by command multaccess 

Gain (G) map by wavelength: experiment d06nz3, tgt = 0, bgnd = 68 

14 

12 

•| 10 

6 8 10 12 
Wavelength (microns) 

14 16 

Figure 27. Multispectral Gain (G) Map produced by command multaccess 
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The command access may be invoked from the MATLAB command line to re-gain 

"access" to the current graphs if the user exits this interface, but then wishes to enter 

it again with the same figures without re-producing them with multaccess. Clicking on a 

portion of the SCR map with the 1st (left) mouse button gives the dual-band SCR at that 

wavelength pair for the target and background, as well as the color coefficient and background 

correlation. The m-file access.m also scatterplots the data at the chosen wavelengths in a 

sixth figure, and shows the results of detecting the targets by weighted-band differencing in a 

seventh. The two commands called by this m-file to perform these functions are, resectively, 

rsp and suppress. Examples of these plots for a selected wavelength pair from the maps of 

Figures 24-27 are given in Figures 28 and 29. 

SYMPTOM SLEW data set: d06nz3 
860 

885 890 895 900 905 
Radiance @ 9.194 microns 

915 

Figure 28. Scatterplot produced by command rsp 
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SYMPTOM_SLEW: d06nz3, target = 0, bgnd = 68, at 9.194 and 11.68 microns 
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Figure 29. Weighted-Band Differencing Detection performed by command suppress 
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pair stats 

This command is used to determine some of the statistics of several multispectral 

paramenters, such as rho and R for the various regions of the IR spectrum. The m-file 

which executes this command calls the subsidiary file bestbySCR_no_brho.m which ranks 

the bandpairs by dual-band SCR only, without regard to any other parameter (such as the 

background correlation). The ouput is a text file with '.pairstats' appended to a shortened 

name of the loaded .mat data file. For example, the output file for this command when used 

on the data in d06nz_00_68.mat is named d06_00_68_pairstats. 

Portions of this output file are reproduced below: 

(Output o/d06U0_68_pairstats) 

d06_00_68 d06nzl 

SCR R bgnd rho tgtrho G wavelength_l wavelength_2 

27.06 0.7234 0.9639 0.9927 1.348 3.7 3.6 

26.56 0.9743 0.9993 0.9999 1.205 8.4 8.3 

26.29 0.9616 0.9982 0.9995 1.17 8.3 8.2 

26.21 0.9664 0.9985 0.9999 1.165 8.6 8.5 

26.16 0.7933 0.2685 0.9008 1.139 13.6 9.1 

26.09 0.9689 0.9986 0.9997 1.146 8.8 8.5 

26.08 0.9786 0.9996 1 1.251 11.9 11.8 

26.08 0.8099 0.2569 0.9013 1.152 13.6 9.2 

26.07 0.7962 0.2926 0.8991 1.13 13.6 8.3 

26.06 0.799 0.2877 0.9009 1.134 13.6 9 

percent of top 100 in MW = 1 

percent of top 100 in LW = 90 
percent of top 100 in MW/LW = 9 
percent of top 100 w/ R<=0.2 = 0 
percent of top 100 w/ brho>=0.99 15 
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percent of MW pairs w/ brho>=0.99 = 14.21 
percent of LW pairs w/ brho>=0.99 = 24.63 

percent of MW/LW pairs w/ brho>=0.99 = 0 
percent of MW pairs w/ SCR>=18 dB and bro>=0.99 = 2.105 

percent of LW pairs w/ SCR>=18 dB and bro>=0.99 =21.4 

percent of MW/LW pairs w/ SCR>=18 dB and bro>=0.99 = 0 

percent of all 3403 bandpairs w/ SCR>=18.0 dB = 98.71 
percent of all good pairs (SCRs>=18 dB) in MW = 5.418 
percent of all good pairs (SCRs>=18 dB) in LW = 57.81 
percent of all good pairs (SCRs>=18 dB) in MW/LW = 36.77 

percent of all good pairs (SCRs>=18 dB) w/ R<=0.2 = 8.634 
percent of all good pairs (SCRs>=18 dB) w/ brho>=0.99 = 12.56 
percent of all good pairs (SCRs>=18 dB) w/ brho>=0.99 and R<=0.2 = 0 

d06_00_68 d06nz2 

SCR R bgnd rho tgtrho G wavelength.1 wavelength_2 

21 0.5049 0.9961 0.9975 5.651 11.3 9.2 

20.71 0.4593 0.9946 0.9973 5.251 11.6 9.2 

20.68 0.5194 0.9961 0.9977 5.527 11.2 9.2 

20.68 0.4123 0.9933 0.9968 5.119 11.7 9.2 

d06 00_68 d06nz5 

SCR R bgnd rho tgtrho G wavelength.1 wavelength_2 

33.42 0.9685 0.9999 0.9999 2.991 10.2 9.8 

32.96 0.9489 0.9998 0.9998 2.809 10.5 9.8 

32.65 0.9503 0.9998 1 2.75 10.5 9.7 

32.48 0.9571 0.9999 0.9999 2.667 10.4 9.8 

d06 00_68 overall 

SCR R bgnd rho tgtrho G wavelength.1 wavelength_2 

24.84 0.8158 0.9987 0.9998 4.157 10.5 9.7 

24.69 0.7735 0.9974 0.9997 3.93 10.8 9.6 

24.61 0.7294 0.996 0.9987 4.139 11.3 9.2 
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24.58 0.7389 0.9966 0.9988 4.119 11.2 9.2 

24.57 0.6922 0.9946 0.9985 4.155 11.7 9.2 

24.54 0.7236 0.9954 0.9988 4.013 11.4 9.2 

24.54 0.7059 0.9952 0.9987 4.068 11.6 9.2 

24.53 0.7686 0.9972 0.9997 3.805 10.9 9.6 

24.47 0.717 0.9954 0.9988 3.943 11.5 9.2 

24.47     0.8748    0.9995    0.9998    4.207     10.2      9.8 

percent of top 100 in MW = 0 
percent of top 100 in LW = 100 
percent of top 100 in MW/LW = 0 
percent of top 100 w/ R<=0.2 = 0 
percent of top 100 w/ brho>=0.99 = 99 
percent of MW pairs w/ brho>=0.99 = 18.42 
percent of LW pairs w/ brho>=0.99 = 37.43 
percent of MW/LW pairs w/ brho>=0.99 = 0 
percent of MW pairs w/ SCR>=18 dB and bro>=0.99 = 1.579 
percent of LW pairs w/ SCR>=18 dB and bro>=0.99 = 20.94 
percent of MW/LW pairs w/ SCR>=18 dB and bro>=0.99 = 0 
percent of all 3403 bandpairs w/ SCR>=18.0 dB = 29.89 
percent of all good pairs (SCRs>=18 dB) in MW = 3.638 
percent of all good pairs (SCRs>=18 dB) in LW = 69.32 
percent of all good pairs (SCRs>=18 dB) in MW/LW = 27.04 
percent of all good pairs (SCRs>=18 dB) w/ R<=0.2 = 0 
percent of all good pairs (SCRs>=18 dB) w/ brho>=0.99 = 40.51 
percent of all good pairs (SCRs>=18 dB) w/ brho>=0.99 and R<=0.2 = 0 
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pairscores 

Like pairstats.m, this m-file prompts the user for a .mat data file. The program then 

rank orders all bandpairs (typically, a few hundred) for which average SCR over all experi- 

ments is greater than or equal to 18 dB and average background correlation is greater than 

or equal to 0.99. The bandpairs which meet these requirements are ranked by dual-band 

SCR and the score defined in this thesis. The subsidiary file which accomplishes this ranking 

and which is satrted within pairscores.m is names bestpairs.m. 

The output of pairscores.m is a textfile which is named by appending the string 

'_scoredprs' to a shortened name of the loaded .mat data file. For example, the output file 

for this command when used on the data in d06nz_00_68.mat is named d06_00_68jscoredprs. 

This output file is reproduced below: 

(Output of d06_00_68 jscoredprs) 

d06_00_68 Pair selection by SCR alone 

Top 15 bandpairs of 412 

wvlth _1 wvlth_2 mean SCR R bgndrho tgtrho G Rank Scored # 

10.5 9.7 24.84 0.8158 0.9987 0.9998 4.157 1 39 

10.8 9.6 24.69 0.7735 0.9974 0.9997 3.93 2 35 

11.3 9.2 24.61 0.7294 0.996 0.9987 4.139 3 3 

11.2 9.2 24.58 0.7389 0.9966 0.9988 4.119 4 8 

11.7 9.2 24.57 0.6922 0.9946 0.9985 4.155 5 1 

11.4 9.2 24.54 0.7236 0.9954 0.9988 4.013 6 6 

11.6 9.2 24.54 0.7059 0.9952 0.9987 4.068 7 2 

10.9 9.6 24.53 0.7686 0.9972 0.9997 3.805 8 41 

11.5 9.2 24.47 0.717 0.9954 0.9988 3.943 9 7 

10.2 9.8 24.47 0.8748 0.9995 0.9998 4.207 10 59 
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10.9 9.2 24.43 0.7472 0.9968 0.999 3.965 11 17 

11 9.2 24.43 0.7483 0.9968 0.9989 3.972 12 16 

11.3 9.3 24.42 0.7481 0.9967 0.9992 3.971 13 11 

11.7 9.1 24.4 0.6899 0.9934 0.9987 3.981 14 5 

11.7 9.3 24.4 0.7096 0.9954 0.999 3.945 15 4 

wvlth_l wvlth_2 mean SCR sdev(dB) SCR1 SCR2 SCR3 SCR4 SCR5 

10.5 9.7 24.84 6.509 24.76 18.35 18.51 29.96 32.65 

10.8 9.6 24.69 6.256 25.28 18.26 18.36 30.06 31.47 

11.3 9.2 24.61 4.128 25.3 21 19.74 27.93 29.07 

11.2 9.2 24.58 4.367 25.34 20.68 19.47 28.18 29.21 

11.7 9.2 24.57 3.455 25.37 20.68 21.38 26.72 28.72 

11.4 9.2 24.54 4.289 25.34 20.32 19.89 27.86 29.28 

11.6 9.2 24.54 3.777 25.3 20.71 20.57 27.18 28.92 

10.9 9.6 24.53 6.233 25.52 17.95 18.24 29.7 31.22 

11.5 9.2 24.47 4.251 25.34 20.36 19.78 27.63 29.23 

10.2 9.8 24.47 6.783 24.97 17.57 18.05 28.33 33.42 

10.9 9.2 24.43 4.986 25.35 19.73 18.8 28.65 29.62 

11 9.2 24.43 4.926 25.28 19.75 18.9 28.67 29.52 

11.3 9.3 24.42 4.697 25.36 20.45 18.7 28.36 29.25 

11.7 9.1 24.4 4.072 25.64 19.22 21.16 27.1 28.89 

11.7 9.3 24.4 4.062 25.42 20.01 20.33 27.27 28.97 

Bottom 5 bandpairs  of 412 

wvlth_l wvlth_2 mean SCR R bgndrho tgtrho G Rank Scored # 

11.4 10.9 18.05 0.9569 0.9989 0.9999 1.584 946 408 

11.4 10.8 18.04 0.9493 0.9986 0.9999 1.581 953 409 

11.3 11.1 18.03 0.9608 0.9995 0.9999 1.62 961 410 

10.9 10.5 18.01 0.9341 0.9986 0.9998 1.729 1000 411 

11.4 10.6 18 0.9254 0.9973 0.9998 1.55 1012 412 

wvlth_l wvlth_2 mean SCR sdev(dB) SCR1 SCR2 SCR3 SCR4 SCR5 

11.4 10.9 18.05 8.608 24.58 8.468 9.036 22.05 26.09 

11.4 10.8 18.04 8.398 24.87 8.676 9.303 21.68 25.67 

11.3 11.1 18.03 8.858 25.07 10.34 6.851 21.72 26.18 

10.9 10.5 18.01 8.781 25.64 8.544 8.587 21.61 25.69 

11.4 10.6 18 8.633 25.07 8.703 8.644 21.95 25.65 
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d06_00_68 Pair selection by score 

Top 15 bandpairs of 412 

wvlth.l wvlth_2 Score mean SCR R bgndrho tgtrho G Rank 

11.7 9.2 1.903 24.57 0.6922 0.9946 0.9985 4.155 5 

11.6 9.2 1.731 24.54 0.7059 0.9952 0.9987 4.068 7 

11.3 9.2 1.601 24.61 0.7294 0.996 0.9987 4.139 3 

11.7 9.3 1.576 24.4 0.7096 0.9954 0.999 3.945 15 

11.7 9.1 1.572 24.4 0.6899 0.9934 0.9987 3.981 14 

11.4 9.2 1.524 24.54 0.7236 0.9954 0.9988 4.013 6 

11.5 9.2 1.522 24.47 0.717 0.9954 0.9988 3.943 9 

11.2 9.2 1.506 24.58 0.7389 0.9966 0.9988 4.119 4 

11.6 9.3 1.464 24.36 0.7239 0.996 0.9992 3.885 16 

11.8 9.2 1.462 24.15 0.7017 0.9939 0.9984 3.748 28 

11.3 9.3 1.367 24.42 0.7481 0.9967 0.9992 3.971 13 

11.6 9.1 1.356 24.13 0.7036 0.9938 0.9989 3.733 31 

11.7 9 1.338 24.27 0.7031 0.9935 0.999 3.898 22 

11.5 9.3 1.31 24.27 0.7346 0.9962 0.9992 3.785 21 

11.4 9.3 1.309 24.33 0.7418 0.9962 0.9993 3.845 19 

wvlth_l wvlth_2 mean SCR sdev(dB) SCR1 SCR2 SCR3 SCR4 SCR5 

11.7 9.2 24.57 3.455 25.37 20.68 21.38 26.72 28.72 

11.6 9.2 24.54 3.777 25.3 20.71 20.57 27.18 28.92 

11.3 9.2 24.61 4.128 25.3 21 19.74 27.93 29.07 

11.7 9.3 24.4 4.062 25.42 20.01 20.33 27.27 28.97 

11.7 9.1 24.4 4.072 25.64 19.22 21.16 27.1 28.89 

11.4 9.2 24.54 4.289 25.34 20.32 19.89 27.86 29.28 

11.5 9.2 24.47 4.251 25.34 20.36 19.78 27.63 29.23 

11.2 9.2 24.58 4.367 25.34 20.68 19.47 28.18 29.21 

11.6 9.3 24.36 4.347 25.36 20.12 19.55 27.69 29.1 

11.8 9.2 24.15 4.207 25.22 19.62 19.85 27.54 28.52 

11.3 9.3 24.42 4.697 25.36 20.45 18.7 28.36 29.25 

11.6 9.1 24.13 4.518 25.55 18.92 19.82 27.41 28.94 

11.7 9 24.27 4.684 25.55 18.04 20.89 27.63 29.23 

11.5 9.3 24.27 4.788 25.43 19.79 18.77 28.02 29.37 

11.4 9.3 24.33 4.83 25.39 19.66 18.92 28.23 29.43 

Bottom 5 bandpairs of 412 
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wvlth_l wvlth_2 Score   mean SCR R bgndrho tgtrho G Rank 

11.4 10.9 0.005235 18.05 0.9569 0.9989 0.9999 1.584 946 

11.4 10.8 0.004727 18.04 0.9493 0.9986 0.9999 1.581 953 

11.3 11.1 0.003944 18.03 0.9608 0.9995 0.9999 1.62 961 

10.9 10.5 0.00141 18.01 0.9341 0.9986 0.9998 1.729 1000 

11.4 10.6 0.0004795 18 0.9254 0.9973 0.9998 1.55 1012 

wvlth.l wvlth_2 mean SCR sdev(dB) SCR1 SCR2 SCR3 SCR4 SCR5 

11.4 10.9 18.05   8.608 24.58 8.468 9.036 22.05 26.09 

11.4 10.8 18.04   8.398 24.87 8.676 9.303 21.68 25.67 

11.3 11.1 18.03   8.858 25.07 10.34 6.851 21.72 26.18 

10.9 10.5 18.01   8.781 25.64 8.544 8.587 21.61 25.69 

11.4 10.6 18      8.633 25.07 8.703 8.644 21.95 25.65 

d06_00_68 Performance comparison 

SCR1 SCR2 SCR3 SCR4 SCR5 

means in dB, first 10 SCRs 

means in dB, first 10 scores 

25.25 
25.36 

19.59 
20.27 

19.4 
20.17 

28.36 
27.51 

30.32 
28.99 

means in dB, first 15 SCRs 
means in dB, first 15 scores 

25.3 
25.39 

19.67 
19.97 

19.46 
19.92 

28.24 
27.65 

29.96 
29.07 

means in dB, first 50 SCRs 

means in dB, first 50 scores 

25.28 

25.36 

18.64 

18.69 

18.64 

18.94 

28.39 

28.05 

30.06 

29.42 

location of highest mean (SCRs)   0 
(scores)  1 

0 

1 

0 

1 

1 

0 

1 

0 

(SCRs)   0 
(scores)  1 

0 
1 

0 
1 

1 
0 

1 
0 

(SCRs) 0 
(scores)  1 

0 
1 

0 
1 

1 
0 

1 
0 

minimums in dB, first 10 SCRs     24.76   17.57   18.05   26.72   28.72 

minimums in dB, first 10 scores   25.22   19.22   19.47   26.72   28.52 
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18.05 26 72 28.72 

18.7 26 72 28.52 

16.86 26 72 28.52 

17.42 26 65 28.15 

1 0 0 
0 0 1 

1 0 0 
0 0 1 

1 0 0 
0 1 1 

minimums in dB, first 15 SCRs 24.76 17.57 

minimums in dB, first 15 scores 25.22 18.04   18.7 

minimums in dB, first 50 SCRs 24.74 16.71 

minimums in dB, first 50 scores 24.76 16.8 

location of minimum     (SCRs) 1 1 
(scores) 0 0 

(SCRs) 1 1 

(scores) 0 0 

(SCRs) 1 1 
(scores) 0 0 

maximums  in dB,   first  10 SCRs 25.52        21 21.38 30.06        33.42 
maximums  in dB,  first  10 scores 25.64        21 21.38 28.18        29.28 

maximums  in dB,  first  15 SCRs 25.64        21 21.38 30.06        33.42 
maximums  in dB,  first  15 scores 25.64        21 21.38 28.36        29.43 

maximums  in dB,  first 50 SCRs 25.64        21 21.38 30.06        33.42 
maximums  in dB,  first 50 scores 25.8 21 21.38 30.06        32.65 

location of maximum (SCRs) 0 0 0 11 
(scores) 10 0 0 0 

(SCRs) 0 0 0 11 
(scores) 0 0 0 0 0 

(SCRs) 0 0 0 0 1 
(scores) 10 0 0 0 

d06_00_68 Pair selection by SCR alone        MW pairs only 

Top 3 MW bandpairs of 3 

wvlth.l wvlth_2  mean SCR   R    bgndrho tgtrho  G      SCR #   Scored # 
4.9     4.5     18.46   0.8338  0.9965 0.9987  2.671   365     373 
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5 4.5 18.29 0.7496 0.9914 0.9938 2.439 381 382 

5.1 5 18.15 0.785 0.9904 0.972 1.911 394 391 

wvlth.l wvlth_2 mean SCR sdev(dB) SCR1 SCR2 SCR3 SCR4 SCR5 

4.9 4.5 18.46 9.808 23.15 12.06 4.768 23.35 28.97 

5 4.5 18.29 8.384 24.14 15.76 5.249 19.72 26.56 

5.1 5 18.15 8.233 24.59 15.07 5.572 19.61 25.89 

d06_00_68 Pair selection by score MW pairs only 

Top 3 MW bandpairs of 3 

wvlth_l wvlth_2 
4.9     4.5 

5      4.5 
5.1     5 

wvlth_l wvlth_2 

4.9     4.5 

5      4.5 

5.1     5 

Score 
0.04698 

0.03419 
0.01773 

mean SCR   R 
18.46   0.8338 

18.29   0.7496 
18.15   0.785 

mean SCR sdev(dB) SCR1 

18.46 9.808 23.15 

18.29 8.384 24.14 
18.15 8.233 24.59 

bgndrho tgtrho G Score Rank 

0.9965 0.9987 2.671 373 
0.9914 0.9938 2.439 382 
0.9904 0.972 1.911 391 

SCR2 SCR3 SCR4 SCR5 

12.06 4.768 23.35 28.97 

15.76 5.249 19.72 26.56 

15.07 5.572 19.61 25.89 
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finalpairs 

The finalpairs.m program looks at a number of experiment series (several .mat data 

files) at once. It identifies the bandpairs which meet the criteria set forth in the section 

on command scoredpairs for each series. The purpose is to use data from several days to 

produce a final rank-ordered list of bandpairs which display the 'best' multispectral detection 

performance. Once again, the two choices for evaluating this property of the bandpairs, are 

ranking by highest average SCR, and highest total score. This program then uses the m-file 

finaldet.m to look at the multipectral target and bachground data and attempt detection of 

the target pixels for a specified number of the top-ranked bandpairs. This is done for the 

SCR- and score-ranked bandpairs and comparison is made based upon the numbers of pixels 

correctly detected and the number falsely determined to be targets under both Hi and H0 

conditions. The results of this comparison are printed to a text file with the prefix 'finaldet'. 

The current m-file examines the data files d0(6,7,8)nz_00_68, and places output in the file 

'finaldet_M752_10', defined in the code itself. The '_10' indicates that comparison between 

the ranking methods was performed for the top 10 bandpairs. 

In addition, finaldet.m creates an ouput text file of its own and places information 

about the final bandpair lists for both selection by SCR and by score. The file divides the 

output into bandpairs which are common to both lists and those which are unique to each. 

The naming convention for this output file is some form of the first .mat filename and a 

prefix of 'finalpairs'. 

Examples of these output files are provided. 
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finalpairs 

The finalpairs.m program looks at a number of experiment series (several .mat data 

files) at once. It identifies the bandpairs which meet the criteria set forth in the section 

on command scoredpairs for each series. The purpose is to use data from several days to 

produce a final rank-ordered list of bandpairs which display the 'best' multispectral detection 

performance. Once again, the two choices for evaluating this property of the bandpairs, are 

ranking by highest average SCR, and highest total score. This program then uses the m-file 

finaldet.m to look at the multipectral target and bachground data and attempt detection of 

the target pixels for a specified number of the top-ranked bandpairs. This is done for the 

SCR- and score-ranked bandpairs and comparison is made based upon the numbers of pixels 

correctly detected and the number falsely determined to be targets under both Hi and H0 

conditions. The results of this comparison are printed to a text file with the prefix 'finaldet'. 

The current m-file examines the data files d0(6,7,8)nz_00_68, and places output in the file 

'finaldet_M752_10', defined in the code itself. The '_10' indicates that comparison between 

the ranking methods was performed for the top 10 bandpairs. 

In addition, finaldet.m creates an ouput text file of its own and places information 

about the final bandpair lists for both selection by SCR and by score. The file divides the 

output into bandpairs which are common to both lists and those which are unique to each. 

The naming convention for this output file is some form of the first .mat filename and a 

prefix of 'finalpairs'. 

Examples of these output files are provided. 
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(Output of finalpairsd06_00_68) 

M752 Lance (listsize 10) and Tree Canopy dissimilar final pair selection by SCR 

position wl_l wl_2 SCR 
7      10.8 9.2 23.36 
9      11.9 9.2 23.33 
10     11 9.2 23.33 

M752 Lance (listsize 10) and Tree Canopy dissimilar final pair selection by score 

position wl_l wl_2 score 
8      11.6 9.3 1.135 
9       11.8 9.3 1.115 
10      11.5 9.3 1.105 

M752 Lance (listsize 10) and Tree Canopy Common final pair selection 

SCR pos. wl_l   wl_2 SCR score pos. wl_l 
1 
2 
3 
4 
5 
6 
8 

11.6 
11.8 
11.5 
11.4 
11.2 
11.7 
11.3 

9.2 
9.2 
9.2 
9.2 
9.2 
9.2 
9.2 

23.52 
23.5 
23.46 
23.44 
23.38 
23.37 
23.34 

1 
4 
2 
5 
7 
3 
6 

11.6 
11.8 
11.5 
11.4 
11.2 
11.7 
11.3 

wl_2 
9.2 
9.2 
9.2 
9.2 
9.2 
9.2 
9.2 

score 
1.207 
1.162 
1.176 
1.155 
1.148 
1.174 
1.154 

(Output o/finaldet_M752_10) 

M752 Lance  (listsize  10)  and trees for d06nzl 

SCRwins    scorewins    ties 
2 0 8 
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M752 Lance (listsize 10) and trees for d06nz2 

SCRwins scorewins ties 
3       2       5 

M752 Lance (listsize 10) and trees for d06nz3 

SCRwins scorewins ties 
0       2       8 

M752 Lance (listsize 10) and trees for d06nz4 

SCRwins scorewins ties 
0       0       10 

M752 Lance (listsize 10) and trees for d06nz5 

SCRwins scorewins ties 
4       2       4 

M752 Lance (listsize 10) and trees for d07nzl 

SCRwins scorewins ties 
5       3       2 

M752 Lance (listsize 10) and trees for d07nz2 

SCRwins scorewins ties 

2       1       7 

M752 Lance (listsize 10) and trees for d07nz3 

SCRwins scorewins ties 

2       1       7 
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M752 Lance (listsize 10) and trees for d07nz4 

SCRwins scorewins ties 
0       0       10 

M752 Lance (listsize 10) and trees for d07nz5 

SCRwins scorewins ties 
0       0       10 

M752 Lance (listsize 10) and trees for d08nzl 

SCRwins scorewins ties 

4       5       1 

M752 Lance (listsize 10) and trees for d08nz2 

SCRwins scorewins ties 

2       7       1 

M752 Lance (listsize 10) and trees for d08nz3 

SCRwins scorewins ties 
2       2       6 

M752 Lance (listsize 10) and trees for d08nz4 

SCRwins scorewins ties 
0       0       10 

M752 Lance (listsize 10) and trees for d08nz5 

SCRwins scorewins ties 
2       0       8 
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