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Abstract 

Cecil and Pullenkamp developed a program that transforms knowledge captured in 

an object-model in one environment into a different object-model in a different environ- 

ment. This program worked well for the intended purpose, but if one of the object-models 

is replaced by a different object-model then this transformation program has to be re- 

engineered. As the object-modeling paradigm becomes more prevalent, many systems 

are experiencing this problem. The primary goal of this research was to determine what 

reusable knowledge could be extracted from these types of program and used to build a 

general object-model transformer that generalizes such transformation programs. Toward 

this end, we analyzed several cases of object-model transformations, designed a generic 

version of an object-model transformer, and implemented and tested a prototype trans- 

former. The research results provide an approach to analyzing the problem, designing a 

solution, and transformation templates for various aspects of a solution strategy. These 

results should be extremely beneficial to software engineers designing object-model trans- 

formation systems. 
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A General Object Model Transformation System 

I.   Introduction 

1.1    Background 

Object Database Management Systems (ODBMS) are widely recognized as the means 

to support a range of applications that traditional Relational Database Management Sys- 

tems (RDBMS) can not (13). In particular, RDBMS do not support the long transactions 

and complex objects with multiple versions required by applications like Computer Aided 

Design (CAD) and Computer Aided Software Engineering (CASE) tools. Typically, a 

user of one of these applications will work for hours on one object, making changes to an 

engineering design or modifying a program. During the entire time, no one else should 

be allowed to modify the object, so all of this work must be considered as one trans- 

action. The prototype domain-oriented application composition system being developed 

by the Knowledge-Based Software Engineering (KBSE) Group requires this same type of 

database support; therefore, it seemed logical to incorporate an ODBMS into this compo- 

sition system. 

The domain-oriented application composition system provides an environment in 

which software applications for a particular domain can be composed, or synthesized, using 

lower-level components of that domain. The heart of this application composition environ- 

ment is an application composer, called Architect. Architect is an evolving prototype first 

developed by Anderson and Random (1, 10) .  It runs in the SOFTWARE REFINERY de- 
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velopment environment and was written in REFINE which is a wide-spectrum specification 

language. Architect allows application developers to create a specification for a required 

application program. These specifications are created by connecting the formal specifica- 

tions for pre-defined software components, in a correctness preserving manner. Since these 

components represent natural artifacts within this domain, the developer knows what the 

components are and understands how they relate to each other. The Architect Visual 

System Interface (AVSI) (7, 15) presents these components to the application developer 

as icons which the developer simply connects in an appropriate way to create a new spec- 

ification. This specification can then be compiled and executed. If it has captured the 

desired behavior then a formal specification for the application program can be generated; 

otherwise, the developer can change it and try again. 

All of the domain artifacts for the domain currently being manipulated by Architect 

are represented as objects in the SOFTWARE REFINERY environment. This set of objects 

can be thought of as the working technology base for Architect. However, this working 

technology base ceases to exist when the Architect session ends, so any domain artifacts are 

lost unless they are saved in some type of persistent technology base. The original version of 

Architect used a system of flat files for this persistent storage. While this system worked, 

it was inefficient for large domains with many applications. Cecil and Fullenkamp (6) 

improved on this design by using an ITASCA ODBMS as the persistent technology base. 

To incorporate the ODBMS into the domain-oriented application composition envi- 

ronment Cecil and Fullenkamp (6) developed an object-model of the Object Connection 

Update (OCU) software architecture model that was different than the one used in Archi- 

tect. The object-model used for Architect was flat because the domain artifacts were stored 
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as files. With an ODBMS, the natural hierarchy of the OCU model can be represented; 

therefore, the ODBMS implementation can make better use of the OCU model. However, 

in order to move domain artifacts from Architect into the ODBMS or from the ODBMS 

into Architect, the domain artifacts must be transformed from one object-model to the 

other. Cecil and Pullenkamp (6) wrote a set of programs to do these transformations, but 

their programs encapsulated detailed knowledge about the two models being transformed. 

Consequently, a new set of programs would need to be written if a different type of object- 

model was required. The focus of this research was to increase the functionality of the 

persistent technology base by making these transformation programs more general. 

1.2    Problem 

The goal of this research was to develop a general object-model transformation system 

that transfers the knowledge captured in an ODBMS object-model to an abstract syntax 

tree for REFINE which can be used in the working technology base for Architect. Then 

as new application domains are required, they could be specified with an object-model 

and transformed into an object-model for Architect. In the best case, a previously defined 

specification could be re-used merely by transforming the information from one object- 

model to another. 

In order to transfer knowledge from the ODBMS to Architect's working technology 

base, Cecil and Pullenkamp (6) had to transform the knowledge captured in an object- 

model corresponding to their model of the OCU architecture into an abstract syntax tree 

for Refine which uses an object-model corresponding to a different model of the OCU 

architecture.  This transformation is accomplished by traversing the source object-model 
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from top to bottom creating an object of the correct class in the target model to corre- 

spond to each object as it is encountered. Then the new objects in the target model must 

be recomposed into the proper order. The transformation programs they designed incor- 

porated knowledge of the source and target object-models. For example, these programs 

include the names of the object classes and are designed to follow the actual structure 

of these specific object-models. Although these programs work very well, every time the 

structure of either object-model changes another transformation program has to be writ- 

ten. A more general transformation program would be written at a more abstract level. 

It would contain as few of the specific details of the object-models as possible. Since these 

details are required for the transformation, they would have to be given to the transformer 

as inputs. Then the transformer could instantiate a specific transform program for the 

required transformation. 

1.3 Hypotheses 

The following two hypotheses were the primary focus of this research: 

1. That there is a set of general transformations that can be used to transform object- 

models. 

2. That it is possible to build a system that can transform object-models based on this 

set of general transformations. 

1.4 Goals 

I established the following objectives for this research: 
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1. Analyze object-model transformations and develop a set of general transformations. 

2. Implement these transformations in REFINE. 

3. Develop a specification for a general object-model transformation system. 

4. Implement and test a general object-model transformation system. 

1.5 Assumptions 

In order to conduct this research, I assumed I would have the necessary computer 

resources to develop and test the proposed system. 

1.6 Scope 

The scope of this effort was limited to developing a transformer that worked between 

the ITASCA ODBMS and the SOFTWARE REFINERY environment. 

1.7 Conclusion 

The following chapters describe my approach to solving the problem of transfer- 

ring knowledge from the ITASCA ODBMS to the working technology base for Architect. 

In particular, this transfer was accomplished with a general object-model transformation 

system. This system will transform knowledge from one object-model format to another 

when given a description of the source and target object-models. The next chapter is 

an analysis of object-model transformations that results in specifications for six general 

object-model transformations. These transformations form the kernel for a general object- 

model transformer. Chapter III describes the high-level design of such a transformer. 

Chapter IV describes the implementation of a general object-model transformer prototype 
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using SOFTWARE REFINERY, and Chapter V describes the validation testing of this proto- 

type. Finally, Chapter VI discusses the results and conclusions of this effort and suggests 

some topics for additional research. 
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II.   Analysis of Object-Model Transformations 

2.1 Introduction 

The heart of an Object-Model Transformer is the set of general transformations that 

are used to transform one object-model into another. This chapter develops a set of six 

general transformations by analyzing several cases of object-model transformations. The 

chapter begins by defining what an object-model is, in particular, by describing the perti- 

nent aspects of two object-model standards. The rest of the chapter provides a case analysis 

of object-model transformations. Besides the general transformations, this analysis also 

yields the information needed by a transformer to conduct an object-model transformation. 

2.2 Object Models 

Object-models are used in many disciplines of computer science and software engi- 

neering with many and varied definitions of what an object-model is. The following sections 

discuss the Object Management Group (OMG) Object-Model and the Object Database 

Management Group (ODMG) Object-Model. These two object models are related and are 

widely, although not universally (8), accepted standards for implementing object-models. 

Consequently, they provide a good working definition of an object-model. 

2.2.1 OMG Object Model. The OMG defines a set of features called the Core 

Object-Model, which is intended to be the core component for object-based system (e.g. 

Object Request Broker (ORB) or ODBMS) standards. These other object-based system 

standards are supposed to build on the Core Object-Model by adding any other components 

that they need to form a standard profile of that type of object-based system. All systems 
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that comply with the standard profile will be interoperable, and all systems of other types 

that comply with the Core Object-Model will be able to share objects. (14) 

The OMG Core Object-Model defines the following characteristics for an object: 

1. Objects represent real-world entities, like a student, a book, or a cruise missile 

2. Objects have unique identities that do not change during the life of the object 

3. Objects have operations which represent their behavior and provide the interface to 

their state 

4. Objects are instances of a specific type, where the type defines the set of common 

operations that apply to all instances of that type 

5. Types can inherit operations from their supertypes 

2.2.2 ODMG Object Model. The ODMG has specified a standard for Object 

Databases which is referred as ODMG-93 (2). ODMG-93 extends the OMG Object-Model 

by specifying additional components that together with the core component form a pro- 

file for ODBMS. In particular, ODMG-93 defines persistent objects, introduces exception 

handling to operations, introduces queries and transactions, and defines attributes and 

relationships for objects. 

For this discussion, the most important extension is the addition of attributes and 

relationships since we are primarily concerned with the structure of object-models. The 

OMG Object-Model does not specify how an object keeps track of its state; it only requires 

the object to be able to report its state information via its operations. ODMG-93 extends 

the OMG model by specifying that objects maintain their state in their attributes and 
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relationships, collectively called properties. Attributes are defined for an object type and 

take literal values. Each attribute has two built-in operations set-value to write its value 

and get-value to read its value. Relationships are defined between two objects, and can have 

multiplicity of one-to-one, one-to-many, or many-to-many. Depending on the multiplicity, 

there are several built-in operations specified for relationships, including create, delete, 

and traverse. 

In addition to establishing a standard object-model, ODMG-93 defines an Object 

Query Language (OQL) and an Object Definition Language (ODL). OQL is a declarative 

query language that facilitates access to data stored in ODBMSs that comply with the 

ODMG-93 Object-Model. As such, OQL is to ODBMSs as SQL is to relational DBMSs. 

On the other hand, ODL is a specification language for defining interfaces to object types 

that comply with the ODMG-93 Object-Model. It is programming language independent, 

and therefore, it is an aid to portability because once a schema is specified in ODL, it 

can be defined in a variety of programming languages and implemented on any ODMG-93 

compliant ODBMS. 

For the rest of this discussion, object-models are assumed to comply with the ODMG- 

93 standard. This will become more important later when the object-model descriptions 

for the general object-model transformer are specified in ODL. 

2.3    Object-Model Transformations 

An object-model transformation is a process that changes an object-model described 

in one syntax into a semantically similar object-model described in a different syntax. 

For example, the schema for an ODBMS and the internal representation of data within 
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some software application could both be represented by object-models. However, these two 

object-models may be described in different languages. For example, the ODBMS schema 

may be written in ODL and the software application may be written in C++. In order to 

load data from the ODBMS into the software application, the data stored in the ODBMS 

has to be transformed into an instance of the object-model in the software application. 

There are two general cases of object-model transformations, the equivalent case and 

the non-equivalent case. In the equivalent, case the source and target object-models have 

the same objects with the same attributes and the same relationships. The non-equivalent 

case is separated further into two cases. 

1. The case in which the resultant model does not contain as much information as the 

source model therefore the transformation results in a loss of information. Usually, 

information is lost because the resultant model does not represent the inheritance 

hierarchy of the object-model as well as the source model does. For example, if the 

resultant model does not use multiple inheritance or represents the object-model with 

fewer levels of inheritance (i.e., the model possesses less of a hierarchical structure). 

2. The case in which the target model contains more information than the original model 

therefore the transformation adds information to the object-model. For example, if 

the target model requires additional structure. 

The rest of this chapter analyzes these general cases in order to establish a set of general 

transformations and to determine what information a general object-model transformer 

needs in order to automatically transform one object-model into another. Where possi- 

ble the general transformations are expressed formally, as REFINE transforms. A REFINE 
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Instructor 
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Branch 
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y^ 

Civ-Student Mil-Student 

Figure 2.1    A Generic Object-Model 

transform specifies a transformation with two predicates separated by a —► . The pred- 

icate on the left side is called a precondition and the predicate on the right is called the 

postcondition. A transform can be interpreted semantically as, the precondition must be 

true before the transform can be applied and the postcondition will be true as a result of 

this transform. (3). 

2.3.1 Equivalent Case. In the simplest case, an object-model is transformed into 

an equivalent object-model which means that for each object in the source model, there 

is an equivalent object in the target model with the same attributes and relationships. 

To produce this transformation an object is created in the target model for each object 

in the source model and its attribute values are set equal to the attribute values of the 
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corresponding object in the source model.  Or more formally, this transformation can be 

specified as a REFINE transform: 

(Tl)    x in source-model & a in attribute-of(x)  —> 
class(y) = class(x) & y in target-model k fa(b)(b = a & b(y) = a(x)) 

where x and y are objects and a and b are attributes of x and y respectively. For 

example, referring to the object-model in Figure 2.1, for each instance of Student in the 

source model, an instance of Student is created in the target model, and the attribute GPA 

of the newly created instance is set equal to the value of GPA in the original instance. This 

procedure is repeated until all objects in the source model are transformed. 

Objects which are an aggregation of other objects are a special case because the 

objects that form the aggregation are transformed first and included in the aggregate. 

This transformation can be specified in REFINE as: 

(T2)      x in source-model & a in aggregate-of(x)  —> 
y = x & y in target-model & a = b & b in aggregate-of(y) 

where a, b, x, and y are objects. For example, again referring to the object-model in 

Figure 2.1, when transforming instances of Course, all instances of Student and Instructor 

corresponding to a particular instance of Course are created and attached to that instance 

of Course as part of the transformation. This procedure is repeated until all aggregated 

objects in the source model are transformed. 
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Once all the objects are created, any relationships between them must be represented. 

This is done by making a relationship in the target model for each relationship in the source. 

For example, the relationship Advises between Instructor and Student is represented in 

the target model. In REFINE, this transformation can be specified as: 

(T3)    <x,a,b> in source-relation —> 
y = x and c = a and d = b and <y,c,d> in target-relation 

where x is the name of the relation, a is the name of one of the classes involved in the 

relation, and b is the name of the other class involved in the relation. Note this equation 

assumes that all relations will be binary, though it is conceivable that some relations may 

be n-ary. In order to make this equation more general, a sequence of object names could 

replace a and b in the ordered tuple. 

Thus there are three general transformations that are required to transform on object- 

model into an equivalent object-model. Analysis of the example above reveals that the 

transformer executing these transformations needs the following information. 

• What classes compose the source object-model and which of these classes are aggre- 

gations 

• What classes compose the target object-model 

• What are the attributes for each class in the source model 

• What are the attributes for each class in the target model 

• What is the mapping from the attributes in the source to the attributes in the target 

if there is more than one attribute of the same type, e.g. symbol, string, etc. 
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• What relationships exist between the classes in the source model 

• What relationships exist between the classes in the target model 

• What is the mapping between the relationships in the source and the relationships 

in the target 

• What is the multiplicity of these relationships 

2.3.2    Non-equivalent Case. The last section discussed the case in which the 

target model is equivalent to the original model. However, in most cases the source object- 

model is different from the target model. The following sub-sections discuss different cases 

of non-equivalent transformations and explain when the general transformations described 

for the equivalent case are sufficient. When these transformations are not sufficient, new 

transformations are developed if appropriate. First, the case in which the transformation 

results in a loss of information is discussed; then, the case in which the transformation 

results in adding information to the object-model is discussed. 

2.3.2.1 Losing Information. A transformation results in a loss of infor- 

mation if the target model does not have as much structure or semantic meaning as the 

original model. The following paragraphs discuss three cases of transformation in which 

information is lost. The first case occurs when the target model does not have as many 

levels of inheritance as the source model, i.e., the target model is "flatter" than the source 

model. In the second case the source model uses multiple inheritance and the target model 

does not. In the third case, the objects in the target model do not have all the attributes 

or relationships that the objects in the source model do. 
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Course 
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Figure 2.2    A Flattened Version of the Generic Object-Model 

Case 1: Transforming into a flatter model. An object-model is said 

to be a flatter model than another object-model when it does not have as deep of an 

inheritance hierarchy. For instance, the object-model in Figure 2.2 is similar to the object- 

model in Figure 2.1, but it is a flatter model because Civ-Student and Mil-Student do 

not inherit from Student. Transforming an instance of the object-model in Figure 2.1 

into this flatter model results in a loss of information since the fact that Civ-Student and 

Mil-Student are specializations of Student is not represented. However, objects of type Civ- 

Student and Mil-Student still have the same attributes as they do in Figure 2.1 because the 

attributes that are inherited from Student in Figure 2.1, for example GPA, are explicitly 

attributes of Civ-Student and Mil-Student in Figure 2.2.  Since the objects in the flatter 
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model look the same as the objects in the source model, the procedure for transforming the 

objects is exactly the same as the one for transforming into an equivalent model. Therefore, 

specification Tl describes these object transformations. Transforming the relationships is 

more difficult, though. While all the objects in the flatter model have the same number 

of relationships, these relationships are not strictly the same as the relationships in the 

source model. For example, the Advises relationship is inherited by Civ-Student and Mil- 

Student from Student in Figure 2.1, but in Figure 2.2, the relationship between Instructor 

and Civ-Student is called Advises-Civ since Civ-Student does not inherit from Student. In 

order to perform this transformation, the transformer has to know that Advises maps to 

Advises-Civ; therefore, specification T3 needs to be modified to include this mapping. In 

REFINE, this modified transformation can be specified as: 

(T3a)       <x,a,b> in source-relation —> 
y in target-map(x) &c=a&d=b&<y,c,d>in target-relation 

where x is the name of the relation, a is the name of one of the classes involved in 

the relation, and b is the name of the other class involved in the relation, and target-map 

is the set of relationships in the target that correspond to the given relationship in the 

source. 

Case 2: Transforming into a model that does not have multiple inheri- 

tance. Transforming an object-model that uses multiple inheritance into one that does 

not is similar to transforming into a flatter model. In both cases, some objects lose a 

level of inheritance. In fact, the general transformations that describe transforming into 

the flatter model describe transforming into a model without multiple inheritance.   For 
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Figure 2.3    A Generic Object-Model without Multiple Inheritance 
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example, Figure 2.3 is equivalent to Figure 2.1 except that it does not support multiple in- 

heritance. In particular, Mil-Student inherits from both Student and Officer in Figure 2.1; 

while in Figure 2.3, Mil-Student only inherits from Student. Once again, an object of type 

Mil-Student has the same attributes in both the source and the target models; therefore 

transforming from the source to the target is the same as in the equivalent case. However, 

as with the case of the flattened model, any inherited relationships in the source model 

that are not inherited relationships in the target model, for example Student-Serves-In, 

must be mapped to the relationship it corresponds to. 

Case 3: Transforming into a different model. The past two sections 

have discussed transforming an object-model into another object-model in which the in- 

heritance hierarchy was different but the objects being transformed were identical. Many 

times it is desirable to transform an object-model into another in which the objects are 

different. Such a transformation is more difficult to generalize because the transformer has 

to figure out which attributes and relationships are the same between the two objects and 

which are missing. As an example, the object-model represented in Figure 2.4 could be a 

possible target for the model in Figure 2.1. Notice that the attributes of Officer are differ- 

ent in the two models. In particular, Rank is in both objects, but Specialty and Serves-In 

are in the source object and not in the target object. Thus to transform an instance of 

Officer in the source to an instance of Officer in the target, the transformer would have to 

set Rank equal to Rank and disregard Specialty and Serves-In. This transformation is still 

described by specification Tl since the right hand side includes the predicate 

fa(b)(b=a and b(y)  = a(x)) 
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where b is an attribute of the target object and a is an attribute of the source object. This 

predicate can be interpreted as meaning that if an attribute is not in the target model 

then disregard it. This is a subtle point of which an implementer of this transformation 

must be aware. 

Required Information for Losing Transformations. Since the losing 

transformations require the same transformations as the equivalent case with a modified 

transformation for relationships, the information required to do these transformations is 

the same as in the equivalent case with the addition of a mapping from relationships in 

the source to the relationships in the target. 

2.3.2.2    Gaining Information. A transformation results in a gain of in- 

formation if the target model has more structure or semantic meaning than the original 

model. This type of transformation could occur if the target model has more layers of 

inheritance or multiple inheritance, if some of the objects in the target have attributes 

or relationships that the source model does not have, or if the target has some object 

classes that the source model does not. Gaining transformations are more troublesome 

than losing transformations because the added information has to come from somewhere. 

The following paragraphs discuss these cases. 

Case 1: Transforming into a Deeper Model. Transforming an object- 

model into another object-model that has more levels of inheritance, e.g., from Figure 2.2 

to Figure 2.1 or from Figure 2.3 to Figure 2.1, is essentially the same as transforming 

from the model with more inheritance to the model with less inheritance.  That is, first 
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Figure 2.5    A Generic Object-Model 

transform each object then transform the relationships between them using a mapping to 

determine which relationships from the source correspond to which relationships in the 

target. However, this transformation is making a more profound change to the object- 

model than the other way does. In case 1 before, where we went from more hierarchy to 

less hierarchy, some information is lost about an object, but the meaning of the transformed 

object is preserved. However, in the case of less to more hierarchy, meaning is being added 

to the transformed object. While in some cases this transform is useful, there are other 

cases where the new meaning is incorrect and may cause a failure in the target application. 

Case 2:      Adding an Object. Another way that information can 

be added to an object-model is by adding an object.   For example, the object-model in 

2-15 



Figure 2.5 is similar to the object-model in Figure 2.1 except that the model in Figure 2.5 

has a new type called Book. To transform the model in Figure 2.1 to this model the 

transformation is the same as in the other cases with the addition of a transform to 

create a new object in the target that does not exist in the source. More formally, this 

transformation can be specified as a REFINE transform: 

(T4)    x in target-model & x "  in source-model —> 
make-object(x) & (y in attributes(x) —> set-attrs(x,y,value(y))) 

where x is the class of the new object and y is an attribute of x. To accomplish this 

transformation the transformer has to know what x is, what x's attributes are, and where 

to find the values of these attributes. 

Case 3: Adding an Attribute. In some cases the difference between 

the source model and the target model is that some of the objects in the target model 

have more attributes than their counterparts in the source model. For example, Course in 

Figure 2.5 has Course-Num that Course in Figure 2.1 does not have. In order to do this 

transformation, a transformation that sets the value of an attribute is required. This can 

be specified as a REFINE transform: 

(T5)    x in source-model & y in target-model & class(x)  = class(y) 
b in attribute-of(y) & b ~  in attribute-of(x)  —> 

set-attrs(y, b, b-value) 
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where x and y are objects, b is the attribute that is being set, and b-value is a legal 

value for b. To accomplish this transformation the transformer has to know what x and y 

are, what b is, and where to get b-value. 

Case 4:   Adding a Relationship. In some cases, the target model 

has additional relationships between objects that are not in the source model. For exam- 

ple, Used-In in Figure 2.5 is not in Figure 2.1. To accomplish this transformation, the 

transformer needs a transform that creates a relationship. More formally, 

(T6)      yXz —> <X,y,z> in relations of Target 

where X is a relationship and y and z are the objects involved in the relationship. 

To do this transformation, the transformer has to know what X, y, and z are, and how to 

determine which y relates with which z. In most cases this will be difficult to determine 

automatically. 

Required Information for Gaining Transformations. In order to per- 

form gaining transformations, a transformer needs all the information required for the 

equivalent and losing transformations plus the values of any attributes which are not pro- 

vided by the source model and the descriptions of any relationships in the target model 

that are not in the source model. On a more fundamental level, a transformer needs to 

know that the information being added as a result of the transformation is, at least, not 

incorrect. Ideally, the added information makes for a truer representation of reality. 
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2.4    Conclusion 

As a result of the preceding case analysis of object-model transformations, it is 

apparent that there are six general transformations that characterize object-model trans- 

formations. The first three transformations described how objects and relationships are 

transformed. These transformations apply when the object-models being transformed are 

equivalent or when the target model has weaker semantics than the source model. They 

will also apply to some cases where the target model has stronger semantics. The last 

three transformations describe how objects, attributes, and relationships are added to an 

object-model. These transformations apply in the cases where the target model has some 

additional structure than the source model. 

These six transformations have been formally described using REFINE syntax, and 

some or all of these transformations must be incorporated in any object-model transfor- 

mation program. An additional product from this analysis is a list of information required 

to do object-model transformations. This information is required in the next chapter to 

design a general object-model transformer. 
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III.   Object-Model Transformer Design 

3.1    Introduction 

This chapter describes a top-level design of a general object-model transformation 

system which is strongly influenced by the knowledge gained from the analysis of object- 

model transformations in Chapter II. This design is implementation-independent, and as 

such, provides a starting point for developing general object-model transformers for many 

different environments. Chapter IV provides a description of one such implementation in 

SOFTWARE REFINERY with an ODBMS as the source environment. This chapter begins 

by describing a general object-model transformer on a conceptual level. This high-level 

description is followed by a discussion of the major aspects to the design of a general 

object-model transformer. 

A general object-model transformer is a software system that transforms many dif- 

ferent types of object-models to create another object-model that is more convenient for 

a particular application. These transformations are accomplished by applying a set of 

general transformations to the objects and relationships in the object-model. Figure 3.1 

is a conceptual view of a general object-model transformer. The heart of this system 

is a transformation kernel containing a set of general transformations. Conceptually, an 

object-model transformer works as follows. The system inputs a description of the source 

and target object-models. Next, it uses these descriptions to determine which transforma- 

tions from the transformation kernel are needed to transform each object. If a required 

transformation is not in the transformation kernel, it is provided by the user using the 

transformation description language. Once the required transformations are selected, the 
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Figure 3.1    A conceptual view of a General Object-Model Transformer 

system composes a control algorithm that applies the transformations in the appropriate 

order. Finally, the system executes the control algorithm to traverse an instance of the 

source object-model and transform it into an instance of the target object-model. 

There are four aspects to the development of the general object-model transformer. 

1. Developing the transformation description language. 

2. Determining how to implement the general transformations. 

3. Determining how to describe the source and target object-models to the transformer. 

4. Determining what control algorithm to use. 

The following sections discuss these four aspects in more detail. 
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3.2    Transformation Description Language 

A transformation description language is a language for specifying object-model 

transformations. Basically, this language contains a set of commands for manipulating 

objects and object-model descriptions. These commands can be instantiated with the 

appropriate binding for the environment in which the transformer is executing. With a 

transformation description language, the developer implementing an object-model trans- 

former does not have to worry about the details of the interface between the transformer 

and the source or target model environments. In addition, a set of transformations written 

in a transformation description language are more portable to other environments because 

once a new set of bindings are written, the transformations should work as before. 

As a minimum, a transformation description language should have commands to do 

the following. 

• Create an object of an arbitrary class. 

• Access an object given its object identifier. 

• Read an attribute of an object. 

• Set an attribute of an object. 

• Create a relationship between two objects. 

• Get a set of all objects involved in a relationship. 

• Access all objects of a particular class. 

• Get the description of a particular class from the object-model description. 

• Get a list of the attributes of a particular class from the object-model description. 
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Tl 

X in source-model & a in attribute-of(x) —> 
class(y) = class(x) ft y in target-model ft fa(b)(b = a & b(y) = a(x)) 

T2 

X in source-model ft a in aggregate-of(x) —> 
y = x ft y in target-model ft a = b ft b in aggregate-of(y) 

T3a 

<3 .,a,b> in source-relation —> 
y in target-map(x) &c=aftd=b& <y,c,d> in target-relation 

T4 

X in target-model ft x " in source-model —> 
make-object(x) ft (y in attributes(x) --> set-attrs(x,y,value(y))) 

T5 

X in source-model ft y in target-model ft class(x) = class(y) ft 
b in attribute-of(y) ft b " in attribute-of(x) —> 

set-attrs(y, b, b-value) 

T6 

y* z —> <X,y,z> in relations of Target 

Figure 3.2    General Transformations from Chapter II 

• Get the description of a relationship from the object-model description. 

3.3    Transformation Kernel 

The specifications for general transformations developed in Chapter II (Figure 3.2) 

provide the basis for the transformation kernel. These specifications are implemented in 

an executable transformation description language. The following are some considerations 

for implementing these general transformations. 

• These transformations can be kept as general as possible by parameterizing all the 

variant parts. For example, the identity of the object being transformed is going to 
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change each time the transformation is executed. The variant parts of each general 

transformation in Figure 3.2 are described below. 

- Tl - Transform an object 

* Source object class 

* Target object class 

* Object identifier for the source object 

* Source attribute names 

* Target attribute names 

* Mapping of source names to target names 

- T2 - Transform an object composed of aggregates 

* All items from Tl 

* Name of the attribute that contains the aggregate objects 

— T3a - Transform a relationship 

* Name of the source relationship 

* Names of the target relationships 

* Object identifier of the object that implements the relationship 

* Classes of the objects involved in the relationship 

* Names of the target objects involved in the relationship 

* Mapping of source names to target names 

— T4 - Create an object 

* Class of the object 
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* Attributes of the object 

- T5 - Set an attribute 

* Name of the attribute 

* Object identifier of the object to which the attribute belongs 

* Value of the attribute 

— T6 - Create a relationship 

* Name of the relationship 

* Object identifiers of the objects involved in the relationship 

• In some cases transformations may be composed from other transformations.   For 

example, since T2 requires transforming objects, Tl could be used by T2. 

While the implemented transformations in the transformation kernel are as gen- 

eral as possible, they still encapsulate some design decisions based on assumptions that 

are not true for every conceivable object-model transformation. In cases where these as- 

sumptions do not hold, the implemented transformations cannot accurately transform the 

object-model, and the user has to specify a unique transformation. Note that this unique 

transformation will still conform to one of the general transformation specifications in Fig- 

ure 3.2 - only the way it is implemented is unique. Any unique transformations should 

be specified in the transformation description language and added to the transformation 

kernel. 
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3.4    Object-Model Descriptions 

For the transformer to be able to transform an object-model, it must have a useful 

description of the structure of the source and target object-models. This description is 

used by the general transformations and the control algorithm. Such a description clearly 

shows what objects there are, what attributes these objects have, and what relationships 

exist between these objects. The most convenient way to do this is to parse in a file- 

based description of each object-model, and transform it into some type of intermediate 

representation useful to the transformer. 

The Object Definition Language (ODL), described in Chapter II, is a logical choice 

for the file-based description of the object-models. ODL is becoming the standard for 

describing ODBMS Schemas and most applications of an object-model transformer are 

going to involve some sort of ODBMS as either the source or the target environment. In 

addition, ODMG-93 specifies a Backus-Naur Form description of ODL which could readily 

be used with a parser generator tool to develop a parser for ODL. The big advantage to 

using a standard language like ODL for the object-model description language is portability. 

Once an object-model is described in ODL, it can be used by several different object-model 

transformers. 

The intermediate representation of the source and target object-models depends on 

the environment in which the transformer is executing. In most cases, an abstract syntax 

tree structure based on a meta-model of object-models would be the most useful represen- 

tation. This type of structure is easy for a parser to build and easy for the transformer to 

manipulate. 
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3.5    Control Algorithm 

The most difficult part of the object-model transformer is developing the control 

algorithm. The control algorithm is the procedure that the transformer follows in order 

to transform an object-model. This procedure specifies which object to start with, which 

transformation to use on each object, and what strategy to follow for picking the next ob- 

ject to transform, e.g., bottom-up, top-down, random-selection, etc. A control algorithm 

developer must look at the source and target object-models and decide which transfor- 

mations to apply to each object and in what order. These decisions are difficult because 

they are based primarily on the semantics of the object-model. They are doubly difficult 

when the semantics are captured in the meaning of the English words used to describe 

the objects and the relationships between them. For example, a producer and a source 

could easily be the same thing in two different object-models. This meaning is particularly 

difficult for a machine to understand. 

In order to develop the control algorithm, the developer has to look at the source 

and target object-models to determine which strategy for transforming objects to use. 

This determination is based on the structure of the object-models, e.g. does it have a 

natural tree structure. Either the source or the target model can drive this decision, 

depending on which one has less flexibility. (A lack of flexibility might be caused by the 

environment in which the object-model is implemented.) Once a basic strategy has been 

picked, the developer has to decide which object should be transformed first if it is not 

already determined by the transformation strategy.   Next, the developer has to look at 
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each object and decide which of the transformations, including specific transformations, 

will be able to transform it into the target model. 

The ultimate object-model transformer should incorporate an automatic control algo- 

rithm developer. This control algorithm developer would be implemented with an inference 

engine based on a knowledge base of decision rules for developing control algorithms for 

object-model transformations. However, in a less than ultimate design, the designer of the 

transformer has to build a control algorithm into the transformer. Then the transformer 

executes this algorithm using the object-model descriptions and the transformation kernel. 

Whenever it needs to know a piece of information, it queries the user by presenting a 

pop-up window with a mouse-sensitive menu of the possible responses. 

3.6    Conclusion 

A general object-model transformer depends first and foremost on the set of general 

transformations specified in Figure 3.2. The implementation of these transformations be- 

comes the transformation kernel which is used to transform the objects in the source model 

into the target model. To accomplish this transformation, the transformer first parses ODL 

descriptions of the source and target models and forms an internal representation of both 

object-models. Next, it adds any specialized transformations to the transformation kernel. 

Then following the order specified in the control algorithm, it transforms an instance of the 

source object-model into an instance of the target object-model. Chapter IV describes a 

sample implementation using SOFTWARE REFINERY of a general object-model transformer 

for SOFTWARE REFINERY and the ITASCA ODBMS. 
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IV.   Implementation of a General Object-Model Transformer 

4-1    Introduction 

This chapter describes the implementation of a prototype of a general object-model 

transformation system based on the top-level design discussed in Chapter III. This proto- 

type was implemented in SOFTWARE REFINERY for two reasons. First, SOFTWARE REFIN- 

ERY provides an ideal environment for implementing a general object-model transformer 

prototype. Second, one of the goals of this research was to generalize the object-model 

transformation system between the ITASCA ODBMS and the Architect system which is 

implemented in SOFTWARE REFINERY. The chapter begins by describing the Implemen- 

tation Plan for a general object-model transformer in SOFTWARE REFINERY; then the 

intermediate representation of the object-model descriptions, the implementation of the 

transformation kernel, and the implementation of the controller are discussed. 

4.2    Implementation Plan 

Figure 4.1 is a conceptual view of a prototype transformer that transforms an object- 

model stored in the ITASCA ODBMS into an abstract syntax tree for Architect. In this 

prototype, the controller, which implements the control algorithm, is written in REFINE, 

and the transformation kernel is implemented as a set of REFINE functions. The controller 

executes these functions to transform the object-model. Any unique transformations are 

provided to the transformer as REFINE functions. The object-model descriptions of the 

source and target models are provided to the transformer in Object Definition Language 
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Figure 4.1    An Implementation of a General Object-Model Transformer in Software 
Refinery 

(ODL). These descriptions are parsed into the environment and represented as abstract 

syntax trees which conform to the transformer's meta-model for object-models. 

This prototype operates as follows. First the descriptions of the source and tar- 

get object-model structures are built and any unique transformations are added to the 

transformation kernel. (The object-model descriptions currently have to be built manually 

since the ODL parser has not been implemented.) Then the controller follows the control 

algorithm to accomplish the transformation using the object-model descriptions and the 

transformation kernel. User input is required whenever the controller cannot determine 

something automatically. 
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Figure 4.2    Meta-Model of Object Models 

4-3    Implementation of the Object-Model Descriptions 

The descriptions of the source and the target object-models are used by the controller 

and the transformation kernel to guide the transformation process. These descriptions 

are represented in the transformer as abstract syntax trees (AST) in the REFINE object 

base. ASTs are easy to build with the DIALECT parser and easy to manipulate with 

REFINE because it has many built-in language features that support tree traversal. Since 

ASTs in REFINE are specified as object-models, the object-model descriptions are actually 

represented as object-models. An object-model of an object-model, such as this, is called a 

meta-model. Thus the source and target object-model descriptions are captured as ASTs 

which are instances of the meta-model of object-models. Figure 4.2 provides a Rumbaugh 
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(12) style description of this meta-model. Since the ASTs were intended to be constructed 

by the ODL parser which was not fully implemented, they were created manually for 

testing of the transformer. 

According to the meta-model, an OBJECT-MODEL is composed of OBJECTS and 

ASSOCIATIONS with OBJECTS being composed of ATTRIBUTES and METHODS. 

The model also shows two sub-types of OBJECTS, TOP-OBJECTS and AGGREGATE- 

OBJECTS, which are useful for the general object-model transformer. The following are 

descriptions of the object-classes that make up the meta-model. 

• OBJ-MODEL - The OBJ-MODEL represents an object-model. An OBJ-MODEL is 

composed of OBJ-CLASS and ASSOCIATION objects. 

• ASSOCIATION - An ASSOCIATION represents a relationship between two OBJ- 

CLASS objects. ASSOCIATION has four attributes: 

1. Name - the name of the relationship 

2. Assoc-From - the name of the OBJ-CLASS that implements the relationship as 

one of its attributes. In an environment that implements relationships differ- 

ently, either of the OBJ-CLASS objects could go here. 

3. Assoc-To - the name of the OBJ-CLASS that is captured in the attribute of 

Assoc-From. 

4. Multiplicity - a boolean that is true if the multiplicity of the relationship is 

other than one-to-one. 
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• OBJ-CLASS - An OBJ-CLASS represents an object class, or type, in the object- 

model. An OBJ-CLASS is composed of ATTRIBUTE and METHOD objects and 

has the following three attributes: 

1. Name - the name of the class 

2. Superclass - a set of the names of the direct superclasses of this class 

3. Relations - a set of the names of the ASSOCIATION objects which are imple- 

mented by this OBJ-CLASS 

• TOP-OBJ - The TOP-OBJ is the OBJ-CLASS that is the top-level object in the 

OBJ-MODEL. Not all object-models have a top-level object. 

• AGG-OBJ - An AGG-OBJ represents an OBJ-CLASS that is composed of aggregate 

objects. An AGG-OBJ has the following two additional attributes: 

1. The-Agg-Attribute - contains the name of the ATTRIBUTE that is a set of 

aggregate objects. For example, if a Book is composed of Chapters, the Book 

is an AGG-OBJ and The-Agg-Attribute would equal Has-Chapters. 

2. Type-Of-Agg - contains the type (i.e. AGG-OBJ or OBJ-CLASS) of the objects 

in the set of aggregate objects. For example, if a Book is composed of Chapters 

and a Chapter is composed of Pages, then Book and Chapter are of type AGG- 

OBJ. Furthermore, The-Agg-Attribute of Book would equal Has-Chapters and 

the Type-Of-Agg of Book would equal AGG-OBJ, since Chapter is of type 

AGG-OBJ. 
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• ATTRIBUTE - An ATTRIBUTE represents an attribute of an object. Class AT- 

TRIBUTE has the following attributes: 

1. Name - the name of the attribute 

2. Att-Type - the type of the attribute, i.e. string, integer, etc. 

• METHOD - A METHOD represents a method of an object. A METHOD is com- 

posed of STATEMENT objects, and has a Name attribute which represents the name 

of the method. 

• STATEMENT - A STATEMENT represents a single statement in a METHOD. A 

STATEMENT has an attribute called State-ment which is a string representing the 

statement. 

4-4    Implementation of the Transformation Kernel 

In order to implement the transformation kernel for the general object-model trans- 

former prototype, it was necessary to implement each of the general transformations de- 

veloped in Chapter II. In keeping with the implementation plan, these transformations 

were designed assuming the ITASCA ODBMS contained the source object-model and the 

REFINE object-base contained the target object-model. For this prototype, REFINE was 

used as the transformation description language, so each of the transformations was im- 

plemented as a REFINE function. The following paragraphs describe the implementation 

of the general transformations. 

4-4-1 Transform Object. The first transformation, specification Tl, transforms 

an object in the source model into an object in the target model. The function Transform- 
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function Transform-Object (Object-Class: Object, 

Source-Name : any-type, 

Name-List  : set(tuple(symbol,symbol))) = 

let (Source-Attribute  = 'nil, 

Target-Attribute  = 'nil, 

Source-Class      = Name(Object-Class)) 

let (Target = make-object(6et-Target-Name(Source-Class, Name-List))) 

(enumerate Next-Attribute over has-Attributes(Object-Class) do 

Source-Attribute <- Name(Next-Attribute); 

Target-Attribute <- Get-Target-Name(Source-Attribute, Name-List); 

set-attrs(Target, 
Target-Attribute, itasca::send(Source-Attribute, Source-Name))); 

Target   

Figure 4.3 

Object, Figure 4.3, implements this general transformation. It accepts as parameters an 

Object Identifier (OID), a class description , and a name map. The OID is the unique tag 

to the object in the ODBMS that is being transformed. The class description is the object 

in the meta-model description for the source that represents the class of the object being 

transformed. The name map maps the class and attribute names of the source class to the 

class and attribute names of the target class. The name map makes the transformation 

more general by eliminating the requirement that the names in the source and target model 

be identical. 

The function transforms the object corresponding to the OID as follows. First, it 

determines the class of the source object from the class description then it uses the name 

map to determine which class this corresponds to in the target model. Armed with the class 

of the target object, the function creates an object of that class in the target model. Then 

using the object class description, it enumerates over the attributes of the source class. For 

each attribute, it gets that attribute's value from the ODBMS, determines which target 

attribute the attribute corresponds to, and sets the target attribute to the correct value. 
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a. 
Course 

CSCE799 

AFTT-Course 

CSCE799 

Instance of the Source Instance of the Target 
C. 

b. 
OBJ-CLASS OBJ-CLASS 

Course 
SchoolWorld 

null 

\ 
AFTT-Course 
AFIT-World 

null 

> / 

< ) 0 
ATTRIBUTE ATTRIBUTE 

Name 
Symbol 

Crse-Name 
Symbol 

(Course, AFIT-Course) 
(Name, Crse-Name) 

Name Mapping 

Class Description of Source    Class Description of Target 

Figure 4.4    Example for Transform Object 

This implementation of specification Tl is based on the following assumptions. 

1. The Target model has a class that corresponds to the source class, i.e. 

class(x)  in source —>  (ex y)(class(y)  in target    class(y) = class(x)) 

2. The Target object has an attribute of the same type that corresponds to each at- 

tribute in the Source object, i.e. 

(fa a)(a in attributes-of(x)    class(x)  in source)  —> 
(ex b)(b = a    type(b)  = type(a)    b in attributes-of(y) 

class(y)  = class(x)     class(y)  in target). 
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For example, assume we need to transform the instance of Course CSCE799 shown 

in part a of Figure 4.4, into an instance of AFIT-Course. Transform-Object is passed the 

Object-Class description object shown in part b of Figure 4.4, the database OID for Course 

CSCE799, and the Name-List shown in part c of Figure 4.4. The class of Course CSCE799 

is Course and from the Name-List it is apparent that Course maps to AFIT-Course. So 

an instance of AFIT-Course is created in SOFTWARE REFINERY. The only attribute of 

class Course is Name which maps to the Crse-Name attribute of AFIT-Course. Therefore 

the Crse-Name attribute of the newly created instance of AFIT-Course is set to CSCE799. 

Thus Course CSCE799 has been transformed into AFIT-Course CSCE799. 

4.4.2    Transform Relationship. The function Transform-Relation, Figure 4.5, 

implements the general transformation in specification T3a. This function transforms a 

relationship between two objects in the ITASCA ODBMS into an equivalent relationship 

in the REFINE environment. This function accepts as parameters: 

• a description of the relationship, 

• the OID of the source object that implements the relationship, 

• a set of objects that are to be included in this relationship, 

• a mapping of names in the source to names in the target, 

• a mapping of the relationships in the source to relationships in the target. 

The description of the relationship is the association object from the object-model descrip- 

tion of the source model (see Figure 4.2) that corresponds to the relationship to be trans- 

formed.  This description provides the name of the relationship, its multiplicity, and the 
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function Transform-Relation (Assoc      : Object, 
Source-OID  : any-type, 
Object-Set  : set(object), 
Name-List  : set(tuple(symbol,symbol)), 
Relation-Map: set(tuple(symbol, symbol, re::binding, symbol))) 

let  (From-Class = Assoc-From(Assoc), 

The-Relation = Name(Assoc), 

Relation-is-a-Set? = Multiplicity(Assoc), 

New-Relation   : symbol     = nil, 

Rel-Obj       : object     = nil) 
let (Target = Find-Object('user-object,itasca::send('name, Source-OID)), 

New-From-Class = Get-Target-Name(From-Class, Name-List)) 

(if Relation-is-a-Set? then 

(enumerate x over Object-Set do 
New-Relation <- Get-Relation-Name(The-Relation, New-From-Class, 

Instance-Of(x), Relation-Map); 

set-attrs(Target, 

New-Relation, Retrieve-Attribute(Target, Find-Attribute(New-Relation)) 

with x)) 

else       '/, the Relation is one to one and is not a set 

Rel-Obj <- arb(Object-Set); 

New-Relation <- Get-Relation-Name(The-Relation, New-From-Class, 

Instance-Of(Rel-Obj), Relation-Map)j 

set-attrs( Target, 

New-Relation, Rel-Obj)); 

Target 

Figure 4.5 
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names of the classes involved. The OID is a handle to the object in the ITASCA ODBMS 

that contains the relationship as one of its properties. The set of objects contains the ob- 

jects in the REFINE object base that form the transformed relationship. It is necessary to 

pass this set as a parameter since the objects are transformed before Transform-Relation is 

called and it is difficult to access objects in the REFINE object base if they are not named 

objects. The name mapping is the same as in Transform-Object above; it maps the names 

of the source classes to the names of the target classes. The relationship mapping accounts 

for the possibility that relationships in the source may become more than one relationship 

in the target, for example in the case where the target model is flatter than the source 

model. The relationship map returns the name of the target relationship given the name 

of the source relationship and the names of the target classes involved in the relationship. 

Transform-Relation works as follows. First, it finds the object in the REFINE object 

base that corresponds to the object identified by the OID, i.e., the transformed object. 

If the multiplicity of the relationship is one-to-many, then for every object in the set of 

objects, Transform-Relation finds the name of the target relationship which the object 

belongs to and adds it to that relationship for the transformed object. Finding the name 

of the target relationship for each object is necessary since one relationship in the source 

model may be represented by multiple relationships in the target and the objects in the 

set of objects do not necessarily belong to the same target relationship even though they 

did in the source model. Similarly, if the multiplicity of the relationship is one-to-one, 

Transform-Relation finds the name of the target relationship which the object belongs to 

and sets that relationship equal to the object. 

This implementation is based on the following assumptions. 
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1. The Target object-model has a relationship that corresponds to the Source relation- 

ship. 

2. All objects in the Target relationship already exist. 

3. Relationships in the Source and Target models are implemented in the same way, in 

particular as sets of objects. 

4-4-3 Transform Aggregate. The function Transform-Aggregate, Figure 4.6, im- 

plements the general transformation in specification T2. This function transforms an object 

composed of aggregates in the ITASCA ODBMS into an equivalent object in the REFINE 

environment. Transform-Aggregate accepts the same parameters as Transform-Object. It 

begins processing by calling Transform-Object with the object in the ITASCA ODBMS 

that corresponds to Source. This transformation sets all the attributes except the aggre- 

gate attribute, i.e., the one that contains a set of other objects. Next, this function gets the 

set of aggregate objects that belong to the Source object. If these objects are composed 

of aggregates themselves, Transform-Aggregate is called recursively to transform them. 

Otherwise, Transform-Object is called to transform them. In either case the aggregate 

attribute is set equal to the set of transformed aggregate objects. 

As a result of the way in which aggregation is implemented in the ITASCA ODBMS 

and in REFINE, this function is equivalent to using Transform-Object followed by Transform- 

Relation. Except, it is more limited since it can only handle one relationship per object. 

Therefore for this transformation (from ITASCA to REFINE) , it generally makes more 

sense to use Transform-Object and Transform-Relation. In other transformations where 
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aggregates are implemented differently than relationships, a Transform-Aggregate function 

would be more useful. 

This implementation of specification T2 is based on the following assumptions. 

1. The Target model has a class that corresponds to the source class, i.e. 

class(x)  in source —>  (ex y)(class(y)  in target    class(y) = class(x)) 

2. The Target object has an attribute of the same type that corresponds to each at- 

tribute in the Source object, i.e. 

(fa a)(a in attributes-of(x)     class(x)  in source)  —> 
(ex b)(b = a    type(b)  = type(a)    b in attributes-of(y) 
class(y) = class(x)    class(y)  in target). 

3. Aggregation is implemented the same way in the Source and Target models, in par- 

ticular as sets of objects. 

4. Only one type of aggregate for each object. 

4-4-4 Create New Object. The general transformation in specification T4 can 

be implemented with the standard REFINE language constructs for creating an object and 

setting its attributes. Namely, the 

make-object(x) and set-attrs(a,b,c) 

constructs, where x is an object class, a is an object of type x, b is the name of an attribute 

of a, and c is the value of b. 
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function Transform-Aggregate (Object-Class: object, 

Source     : any-type, 

Name-List   : set(tuple(symbol,symbol))) = 

let  (The-Class = Name(Object-Class), 

Agg-List : seq(any-type) = [], 

Agg-Set : set (object) = O, 
Target = Transform-Object(Object-Class, Source, Name-List)) 

Agg-List <- itasca::send(The-Agg-Attribute(Object-Class), Source); 

(if Agg-Obj(Find-Object('user-object, Type-Of-Agg(Object-Class))) then 

(enumerate Next-Agg over Agg-List do 

Agg-Set <- Agg-Set with 

Transform-Aggregate(Find-Object('user-object, Type-Of-Agg(0bject-Class)), 

Next-Agg, Name-List)) 

else 

(enumerate Next-Agg over Agg-List do 

Agg-Set <- Agg-Set with 

Transform-Object(Find-Object('user-object, Type-Of-Agg(0bject-Class)), 

Next-Agg, Name-List))); 

(set-attrs( Target, 

Get-Target-Name(The-Agg-Attribute(Object-Class),Name-List), Agg-Set)); 

Target 

Figure 4.6 
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4-4-5 Set New Attribute. The general transformation in specification T5 can be 

implemented with the standard REFINE language construct for setting attributes, 

set-attrs(x,y,z), 

where x is an object, y is an attribute of x, and z is the value of y. 

4-4-6    Create New Relationship. Since relationships are best implemented as 

attributes in REFINE, the general transformation in specification T6 can be implemented 

with the standard REFINE language construct for setting attributes, 

set-attrs(x,y,z), 

where x is an object, y is an attribute of x, and z is a set of objects. 

4-4-7 Specific Irans formations. Each specific transformation is written in the 

transform description language which is REFINE. Basically, the user writes a REFINE 

function that implements the required transformation. In most cases, one of the general 

transformations can serve as a template for this specific transformation, or the general 

transformations as they are implemented can be used as building-blocks which can be 

composed to form the specific transformation. Once the new transformation is written the 

user has to modify the controller to use it. 

4-5   Implementation of the Controller 

The controller for this prototype object-model transformer attempts to deduce as 

much information as it can then it asks the user for help as required. The basic algo- 

rithm is to transform the top-level object then to recursively transform any objects it 
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has relationships with. Then once all the objects involved in a particular relationship are 

transformed, the controller transforms the relationship. This algorithm assumes that all 

the objects in the source object-model can be accessed via relationships from previously 

transformed objects. If this assumption is not correct, the user will have to change the 

controller to implement a better control algorithm for that situation. 

First, the controller checks the source object-model description to determine if there is 

a TOP-OB J. If there is, the controller begins the transformation with this class. Otherwise, 

it traverses the source object-model description and prints all the OBJ-CLASS Names and 

asks the user which class to begin with. Once it knows which class to begin with, the 

controller queries the ITASCA ODBMS for a list of the names of all the objects of that 

class, presents the user with this list, and asks which object to transform. Next, the 

controller traverses the target object-model description and presents the user with a list 

of the classes in the target model and asks which one corresponds to the source object 

which was just selected. Based on this response and the source class selected above, the 

controller adds this source class-target class tuple to the name map. 

Now that the controller knows which object to transform and which class to transform 

it into, the name map for the attributes must be constructed. To do this, the controller 

traverses the ATTRIBUTE objects that correspond to the source OBJ-CLASS and the 

target OBJ-CLASS and for each attribute in the source model the controller presents the 

user with a list of the attributes in the target model, and asks which one corresponds to 

the source attribute. Based on these responses the controller builds the name map. Then 

it calls Transform-Object to transform the source object based on the description of the 

object class, the handle to the object, and the name map. 
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After transforming the object the controller determines if it is involved in any re- 

lationships. If so, it presents the user with a list of the classes in the target, and asks 

which class corresponds to the source class involved in the relationship with the top-level 

object. Based on this response, it builds a name map like before and transforms the ob- 

jects keeping track of each transformed object. Then it presents the user with a list of the 

relationships in the target model, and asks the user which relationships correspond to the 

source relationship. Based on this response, it builds a relationship map. Then it calls 

Transform-Relationship to transform the source relationship based on the relationship de- 

scription, the handle to the object that implements the relationship, the set of transformed 

objects, the name map, and the relationship map. The controller continues in this way 

until the entire source model is transformed. 

4-6    Conclusion 

This chapter described the implementation of a general object-model transformer 

prototype for the SOFTWARE REFINERY environment. A meta-model of object-models 

that specifies the abstract syntax tree used as the intermediate representation of the 

object-model descriptions was also described. Next, the implementation of the general 

object-model transformations using REFINE as the transformation description language 

was explained. Finally, the controller was described. The controller is written in RE- 

FINE and executes the control algorithm. The next chapter describes the validation of this 

prototype and discusses some of its limitations. 
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V.   Validation of the General Object-Model Transformer 

5.1 Introduction 

The general object-model transformer prototype was developed following an evolu- 

tionary development methodology. At each stage of the development a prototype was 

built and tested. Based on the results of the testing, the prototype was refined. Then 

new functionality was added, and the new prototype was tested and refined. First, the 

general transformations were developed in this manner. Then the controller which uses 

these transformations was evolved. The prototypes were validated with the Logic Circuits 

domain developed by Anderson and Randour and the School domain used in Chapter II. 

This chapter describes the validation domain in more detail, then discusses the validation 

testing in which test cases were executed for each case in the case analysis of object-model 

transformations discussed in Chapter II. 

5.2 Validation Domain 

Two validation domains were used for the validation of the general object-model 

transformer prototype. The primary validation domain was the set of OCU Applications 

from the Logic Circuits domain. A Rumbaugh (12) diagram of the ITASCA ODBMS 

schema for OCU Applications is shown in Figure 5.1. The secondary validation domain was 

the set of Courses in the School domain. The schema for a Course is shown in Figure 2.1. 

The secondary domain was required because OCU Applications did not contain all the 

necessary constructs required for some test cases; in particular, an OCU Application does 

not make use of multiple inheritance.   Also, the School domain is smaller and therefore 
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Update-Name 
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Description 
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Figure 5.1    A Subset of an OCU Application 

more flexible.   As a result, it was more convenient to use during the initial phases of 

evolutionary development. Test cases were validated against both domains where possible. 

The OCU model, developed by the Software Engineering Institute (9) was used as 

the software architecture for Architect. A good description of the OCU Architecture and 

the way it was implemented in the ODBMS is provided by Cecil and Fullenkamp (6). For 

this validation testing, a subset of an OCU Application was used. As Figure 5.1 shows an 

Application is composed of Subsystems. Subsystems control Elements which can be either 

Primitives of the application domain or other Subsystems. 
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(^Domain^) Q__^ 

Figure 5.2    Instance Diagrams of the Source and Target Model Descriptions 

5.3    Validation Testing 

The objective of the validation testing was to ensure object-models in the ITASCA 

ODBMS could be transformed into object-models in SOFTWARE REFINERY. Separate 

validation tests were accomplished for each case of object-model transformation. A test 

case was developed, and the expected results were derived manually before the test was 

executed. In this way, the actual results of each test could be validated against the expected 

results. 

5.3.1 Equivalent Case. In order to test for the equivalent case, an object-model 

that was equivalent to the schema of an OCU application was specified in SOFTWARE RE- 

FINERY since there was not one currently specified. Next, AST descriptions of the source 

and newly created target models were built in SOFTWARE REFINERY. These descriptions 

were constructed by creating an instance of the meta-model of object-models, from Chap- 
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Led Switch 

0 
Led Switch 

Figure 5.3    Instance Diagrams of the Source and Target Models of a Simple-Light 

ter IV, for each object-model (see Figure 5.2 parts a and b). Then a test Application 

was created in Architect and saved to the ODBMS. Figure 5.3 illustrates this transfor- 

mation for one sample test Application, namely a Simple-Light. Once everything was in 

place, the transformer was passed the object-model descriptions and told to transform the 

Simple-Light. After the transformation the resultant Simple-Light was validated against 

the expected results. 

5.3.2 Flattened Model. The procedure for the flattened model was similar to the 

equivalent case. First, a flattened version of an OCU Application, Figure 5.4, was specified 

in SOFTWARE REFINERY, and then a description of this flattened object-model was built. 

The object-model description for the source model is the same as before. Figure 5.3 

illustrates the transformation of the Simple-Light for this case. Notice that the instance 

diagrams are the same as for the equivalent case. Once again, the transformer was passed 
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Figure 5.4    Flatter Object-Model for the OCU Model 

the object-model descriptions and told to transform the Simple-Light, and the results were 

validated against the expected results. 

5.3.3 Loss of Multiple Inheritance. This case was tested with a Course from the 

School domain. An OCU Application could not be used since OCU Applications do not use 

multiple inheritance. In this case, a Course that did not incorporate multiple inheritance 

was specified in SOFTWARE REFINERY. Then the descriptions for the source and target 

models were built manually. Since Architect does not compose Courses, a test Course was 

built in the ODBMS manually. Once everything was ready, the transformer executed with 

the descriptions as input parameters, and the results were compared with the expected 

results. 
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5.3.4 Different Model. This case was tested using the School domain. First, a 

Course that incorporated a different Officer type was specified in SOFTWARE REFINERY. 

Then the description for this target model was built manually. Next, using the test Course 

developed before, the transformer executed the transformation with the source and target 

model descriptions, and the result was validated against the expected results. 

5.3.5 Gaining Hierarchy. In order to test this case, the School domain schema 

had to be modified in the ODBMS. The Student class was removed so that Civ-Student 

and Mil-Student inherited directly from Person and new relationships were developed to 

replace Advises and Has-Students. Then an object-model for the School domain with 

Student as a superclass was introduced in SOFTWARE REFINERY. Now the School domain 

in the ODBMS was flatter than the one in SOFTWARE REFINERY. Next the descriptions 

for the source and target models were built. Since the schema was modified a new test 

Course had to be built in the ITASCA ODBMS manually. Finally, the test Course was 

transformed and the resultant model was validated against the expected results. 

5.3.6 Adding Structure. As a result of the decision to implement the last three 

transformations as REFINE language constructs, validating that they work was a matter 

of testing to see if an object could be created and it attributes set to specified values. 

5.4    Replacing the Existing Transformation Program 

One of the original goals of this research was to replace the transformation system 

developed by Cecil and Fullenkamp with a general object-model transformation system. 

Their transformer transformed objects in the ITASCA ODBMS into objects in SOFTWARE 
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REFINERY that Architect can manipulate. While the general transformer prototype de- 

veloped in this research could accomplish this transformation, I chose not to implement 

it with the limited time available. The difference between the ODBMS schema and the 

Architect object-model is such that the prototype requires a unique control algorithm and 

specific transformations for each object. In some cases this may be necessary; however, 

it would be of little benefit for this research since there is already a unique transformer 

for this transformation that works well. And a general transformer with a unique set of 

transformations and control algorithm would still have to be modified whenever the source 

or target object-model was changed. 

5.5    Conclusion 

This chapter described the process used to validate the general object-model trans- 

former prototype. As a result of this testing the object-model transformer prototype was 

validated for all cases using relatively simple models. However, it is not yet complete 

enough to replace the transformation system developed by Cecil and Pullenkamp. The 

next chapter discusses the results and conclusions of this research and makes several rec- 

ommendations for continued research. 
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VI.   Conclusions and Recommendations 

Cecil and Pullenkamp (6) developed a program that transforms knowledge captured 

in an object-model in one environment into a different object-model in a different environ- 

ment. This program worked well for the intended purpose, but if one of the object-models 

is replaced by a different object-model then this transformation program has to be re- 

engineered. As the object-modeling paradigm becomes more prevalent, many systems 

are experiencing this problem. The primary goal of this research was to determine what 

reusable knowledge could be extracted from these types of program and used to build a 

general object-model transformer that generalizes these transformation programs. Toward 

this end, I analyzed several cases of object-model transformations, designed a generic ver- 

sion of an object-model transformer, and implemented and tested a prototype transformer. 

The results of this research should be beneficial for a software engineer who is designing 

an object-model transformer because they provide an analysis of the problem, a design for 

the solution, as well as templates of the various parts of the solution. 

6.1    Results and Conclusions 

6.1.1 Object-Model Transformation Analysis. Based on the analysis of object- 

model transformations, I developed six general transformations that characterize the pro- 

cess of transforming object-models. These general transformations can be stated generally 

as: 

1. make a new object, 

2. set an object's attribute, 
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3. create a relationship between two objects, 

4. transform an object into a new object, 

5. transform the relationship between two objects into a relationship between two new 

objects, 

6. transform an object with aggregate objects into a new object with aggregate objects. 

These general transformations, when implemented in an appropriate high-order program- 

ming language and instantiated with the specific details of the object-models being trans- 

formed, are the heart of an object-model transformer. Generic versions of these transfor- 

mations that take specific object-model details as parameters are required for a general 

object-model transformer. 

6.1.2 General Object-Model Transformer Design. In order to build a general 

object-model transformer, a designer has to make four high-level design decisions. These 

decisions depend on the source and target environments and what the object-models being 

transformed look like. These decisions are: 

1. How to implement the general transformations - The general transformations, above, 

have to be implemented in the transformation description language. These imple- 

mentations take the object-model descriptions of the source and target models as 

parameters. 

2. How to describe the object-models to the transformer - To accomplish the transfor- 

mation the transformer has to have a detailed description of the source and target 
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object-models. This description has to be represented in a way that is convenient for 

the transformer. 

3. Which control algorithm to use - The control algorithm has to be implemented in the 

appropriate language and should be designed such that it can successfully transform 

a large proportion of the object-models that are required. In order to determine 

which algorithm is best, the designer should study the type of object-models that 

have to be transformed . 

4. How to create specific transformations - In some cases the generic transformations 

are too general and the user of the transformer has to build specific transformations. 

The user should be able to build these transformations in the transform description 

language and be able to modify or reuse the generic transformations or to compose 

specific transformations out of the generic transformations. 

In the general object-model transformer prototype implemented using SOFTWARE 

REFINERY, the generic transformations were implemented as functions. The object-model 

descriptions were designed to be written in ODL and parsed into the transformer where 

they are stored as abstract syntax trees. The transformer incorporates a variation of a 

top-down control algorithm and queries the user for any information which it can not infer 

for itself. Any model-specific transformations have to be implemented as functions and 

the function call has to be added to the controller. This limited prototype demonstrates 

the feasibility of constructing a general object-model transformer and provides a template 

which a designer can use to develop a transformer for a different environment. 
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The general object-model transformer works well for cases in which the source and 

target object-models are nearly equivalent and the differences between the models can 

be described by regular patterns. However in cases where the two object-models are 

significantly different, users have to write specific transformations that incorporate specific 

control algorithms. In these cases, the general transformations may not be used at all. 

6.2    Recommendations for Further Research 

• Design and implement the control algorithm/controller developer. Developing the 

controller which incorporates the control algorithm and specifies which transforma- 

tions to apply is the most difficult part of the object-model transformer. A controller 

developer that built a controller for each type of object-model transformation would 

make a general object-model transformer more automatic and easier to use. Basically, 

it would decide which control algorithm to use given the source and target object- 

model descriptions and the transformation kernel. As stated in Chapter III, this 

developer would have to incorporate some type of automated inferencing technique 

based on a knowledge base of decision rules about object-model transformations. 

• Develop a standard for the transformation description language. A transformation 

description language that provides generic commands for object manipulation and ac- 

cessing the object-model descriptions would enhance the general object-model trans- 

former. For this prototype REFINE was used as the transformation description lan- 

guage, but using REFINE forces the designer to handle the interfacing details between 

the transformer and the source and target environments. A better transformation 

description language abstracts the interface details away allowing the designer to 
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specify the transformations and let the interface binding handle the details. A stan- 

dard set of commands and the semantics of these commands should be developed. 

Then bindings from the transformation description language to any appropriate lan- 

guage can be developed. 

• Implement the ODMG ODL parser. Since ODL is poised to become the standard lan- 

guage for describing ODBMS Schemas, and since most object-model transformations 

involve some type of ODBMS, ODL seems like a logical choice for describing object- 

models to the transformer. In order for the transformer to use this description, some 

type of ODL parser needs to be developed. For the prototype object-model trans- 

former, an ODL parser could be implemented using the DIALECT parser builder 

which is part of the SOFTWARE REFINERY environment. For other environments, 

common parser building tools could be used. 

• Design a windowing interface for the user queries. The prototype user interface is 

extremely error-prone because a user has to manually enter the responses to any 

queries even though he is presented with a menu of options. This interface would be 

more effective and user friendly if the system presented the user with the menu in a 

pop-up window where he could use a mouse to click on the correct answer. 

• Research and develop different useful control algorithms. Currently, the prototype has 

one control algorithm incorporated within its controller. But this control algorithm 

does not work for all instances of object-model transformations. There are other 

control algorithms, some that may be a superset of the one developed in this research, 

that are required to transform other models.   These other algorithms need to be 
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developed so that they can be added to the general object-model transformer. Then 

the transformer can select the best algorithm for each object-model transformation. 
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Appendix A.   Script for the Prototype General Object-Model Transformer 

A.l    Introduction 

This section provides a script for a sample transformation. An instance of the School 

Model, described by Figure A.l, is transformed from the ITASCA ODBMS into the SOFT- 

WARE REFINERY environment. 

f    Course ~\ 

CSCE790 
V 

held-in 

y^-- -Y Room      i 

V 
260          , 

f Instructor 
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V^   Professor   y 1 / taken-by 

1 S Civ-Student ~^ f Mil-Student N Civ-Student 

\ 
V 

Smith 
CS 
94 J 

MuUaney 
Captain 

CS 
ClA 

Jones 
CS 

I              94           J 
\ y 

Figure A.l    Instance of a Course to be transformed 

A. 2    Script 

At the REFINE prompt, the user should type: 

.>  (load "start-api-21") 

This will connect the SOFTWARE REFINERY environment with the ITASCA ODBMS 

via the ITASCA Lisp API. At the next prompt, type: 

.>  (load "read-utilities") 
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This loads a set of input/output utilities. Next load the object-model for the target 

object-model which is a REFINE AST. Do this by typing: 

.>  (load "school-model") 

Then load the source and target object-model descriptions by typing: 

.>  (load "domain-model") 

Note that domain-model and school-model are files that would change if a different 

domain was being transformed. At the next prompt, load the object-model tranformations 

by typing: 

.>  (load "obj-trans") 

Then load the controller by typing: 

.>  (load "controller") 

Now that everything is loaded, it is time to execute the controller. Use the following 

command, where source-obj and target-obj are the descriptions for the source and target 

object-models. 

.>  (controller source-obj target-obj) 

After this command the user will be presented with the following menu and query: 

Entering Controller 

CIV-STUDENT 

MIL-STUDENT 

TEACHER 

ROOM 
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COURSE 

Which class should I transform first?: 

For this example, type course. Then the following menu will appear: 

CS700 

Choose an item: 

For this example, there is only one application in the ODBMS, so type cs700. Then 

the transformer presents the next query. 

Which transform should I use for COURSE    :     (NIL): 

Since there is not a unique transformation for type COURSE, the user should hit 

return. After this, the following menus will appear. The user should pick the appropriate 

item from the menu and type it in at the prompt. In order to transform the sample model 

the responses given should be entered. 

C-STUD 

M-STUD 

TCHR 

RM 

CRSE 

Which class should I transform COURSE to?   :   crse 

NAME 

Which of these attributes map to NAME?   :  name 
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TAKEN-BY-CIV 

TAKEN-BY-MIL 

HELD 

TAUGHT 

Which relations correspond to TAUGHT-BY? :  (NIL): taught 

:  (NIL): 

Which transform should I use for TEACHER :  (NIL): 

C-STUD 

M-STUD 

TCHR 

RM 

CRSE 

Which class should I transform TEACHER to? : tchr 

NAME 

T-RANK 

Which of these attributes map to NAME? : name 

NAME 

T-RANK 

Which of these attributes map to RANK? : t-rank 
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TAKEN-BY-CIV 

TAKEN-BY-MIL 

HELD 

TAUGHT 

Which relations correspond to HELD-IN? :  (NIL): held 

:  (NIL): 

Which transform should I use for ROOM :  (NIL): 

C-STUD 

M-STUD 

TCHR 

RM 

CRSE 

Which class should I transform ROOM to? : rm 

RM-NUM 

Which of these attributes map to NUMBER? : rm-num 

TAKEN-BY-CIV 

TAKEN-BY-MIL 
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HELD 

TAUGHT 

Which relations correspond to TAKEN-BY? :  (NIL): taken-by-civ 

:  (NIL): taken-by-mil 

:  (NIL): 

Which transform should I use for MIL-STUDENT :  (NIL): 

C-STUD 

M-STUD 

TCHR 

RM 

CRSE 

Which class should I transform MIL-STUDENT to? : m-stud 

NAME 

M-STUD-RANK 

M-STUD-MAJOR 

M-STUD-YR 

Which of these attributes map to NAME? : name 

NAME 

M-STUD-RANK 
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M-STUD-MAJOR 

M-STUD-YR 

Which of these attributes map to RANK? : m-stud-rank 

NAME 

M-STUD-RANK 

M-STUD-MAJOR 

M-STUD-YR 

Which of these attributes map to MAJOR? : m-stud-major 

NAME 

M-STUD-RANK 

M-STUD-MAJOR 

M-STUD-YR 

Which of these attributes map to YR? : m-stud-yr 

Which transform should I use for CIV-STUDENT :  (NIL): 

C-STUD 

M-STUD 

TCHR 

RM 

CRSE 

A-7 



Which class should I transform CIV-STUDENT to? : c-stud 

NAME 

C-STUD-MAJOR 

C-STUD-YR 

Which of these attributes map to NAME? : name 

NAME 

C-STUD-MAJOR 

C-STUD-YR 

Which of these attributes map to MAJOR? : c-stud-major 

NAME 

C-STUD-MAJOR 

C-STUD-YR 

Which of these attributes map to YR? : c-stud-yr 

Which transform should I use for CIV-STUDENT :  (NIL): 

C-STUD 

M-STUD 

TCHR 

RM 
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CRSE 

Which class should I transform CIV-STUDENT to? : c-stud 

NAME 

C-STUD-MAJOR 

C-STUD-YR 

Which of these attributes map to NAME? : name 

NAME 

C-STUD-MAJOR 

C-STUD-YR 

Which of these attributes map to MAJOR? : c-stud-major 

NAME 

C-STUD-MAJOR 

C-STUD-YR 

Which of these attributes map to YR?  :  c-stud-yr 

As a result of the following sequence of choices the transformer has transformed the 

instance of a COURSE from the ODBMS into the SOFTWARE REFINERY environment. 

The following object description which corresponds to the object of COURSE CS700 is 

returned as a result of the transformation. 

#1<CS700 - a crse> 

re::class: CRSE 
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name: CS700 

taught: {#2<BAIL0R - a tchr>} 

held: #3<a rm> 

taken-by-civ: {#4<SMITH - a c-stud>, #5<JONES - a c-stud» 

taken-by-mil: {#6<MULLANEY - a m-stud>} 
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