D

Flight Control Design using Mixed H,/u Optimization

THESIS

Douglas D. Decker
Captain, USAF

AFIT/GA/ENY/94D-8 ;
DEPARTMENT OF THE AIR
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

1

Wright-Patterson Air Force Base, Ohio



AFIT/GA/ENY/94D-8

Flight Control Design using Mixed H3/u Optimization

THESIS

Douglas D. Decker
Captain, USAF

AFIT/GA/ENY/94D-8

e o T )
i R &)

Approved for public release; distribution unlimited




form Approved
REPORT DOCUMENTATION PAGE e 0188
puplic raort ng surden Tor this coliection of information 1s estimated to average ! “our per response, inciuding the time for reviawing instructicns, s@arcning existing data sources, !

qathering and maintaining the data needed, and comolettng and review:ng the collecticn of information. Send comments regaraing this Burden ssumate or any other aspect of this :
coliection o1 :nTormanon, including suggestions for requcing this Surgen, 10 WVasnington Headauarters Services, Directorate Tor Intormatcn Operauons and Reports, 1215 jefferson !
Davis Highwav, Suite 1204, arlington, /A 22202-4302, and 1o the Cffice of Management and Budget, Paperwork Reduction Project (C704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) {2.R &%&%@;51994 3. R%&%geg,‘gPi\hlég{S DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
FLIGHT CONTROL DESIGN USING MIXED H/p OPTIMIZATION

5.4 2821&51)3 D. Decker, Captain, USAF

7. PERFCRMING ORGANIZATION NAME(S) AND ADDRESS{ES) 8. PERFCRMING CRGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 Ri%‘?’;fGUX?}EERI\IY /94D-8

9. SPONSCRING/ MCNITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPCNSORING / MONITORING
: Dr Marc Jacobs AGZNCY REPORT NUMBER
AFOSR/NM

Bolling AFB DC 20332-0001

11, SUPPLEMENTARY NOTES

T RISIRIBUTICH AYAILABITY STATEMENT 12b. DISTRIBUTION CODE
128 RO T PAbAC Releadet ™ EN 25 BIST .4

Distribution Unlimited

, 13- ARRTEAREY TN Fe of the mixed H3/u optimal control synthesis method in the design of a flight
i control system for the lateral/directional axes of the F-16 Variable Stability In-Flight Simulator Test Aircraft
i (VISTA). The method is designed to minimize the H, norm (two-norm) for a given value of u. This
should provide adequate noise and disturbance rejection while maintaining robustness against several types
of uncertainties in the system. This thesis finds that, for this problem, the two-norm is not an accurate
representation of the outputs of interest. When the two-norm is broken up into its constituent parts an
appropriate solution can be found. This thesis also finds that it is possible to use an H; controller which
is destabilizing to the evaluation model as the starting point in the mixed Hz/p curve and still get an
acceptable answer. A numerical approach was used, utilizing a recently improved computer algorithm.

1a. SUBJECT, TERMS .. . L } T 15. BER OF PAGES
(‘f’ontrol ’fﬁeory, H2 Optimization, H-inf Optimization, Mu-Synthesis, Multiobjective gt i

Optimal Control 16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION }20. LIMITATION OF ABSTRACT

ENELERSIFIED Gh A S8FFED UNCEASEIFIED UL

k“"& 5

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 v
298-102 .




The views expressed in this thesis are those of the author and do not reflect the official policy or

position of the Department of Defense or the U. S. Government.

. Accession For {

NTIS GRAAL T4
DIIC TAB O
O

Unannounced
Justificstio

By
Distrjbutionf, -

Availability Cedes

iAvail ema/or
nn‘ Special

b




AFIT/GA/ENY/94D-8

Flight Control Design using Mixed H;/p Optimization

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science

Douglas D. Decker, B.S.

Captain, USAF

December 1994

Approved for public release; distribution unlimited




Acknowledgements

I would first like to thank my advisor, Dr. Brett Ridgely, for all his help in getting this thesis
done; from answering my questions to editorial comments and proofreading. Thanks also go to
Dave Jacques and Linda Smith for programming new optimization schemes and letting me bounce

ideas off of them.

A very big debt of gratitude goes to my wife, Celia. Thank you honey for your patience and
understanding. It’s been a long haul and you’ve been great. Thanks also to Daniel and Drew,
you guys and your Mom were always there to bring me back to earth and show me what’s truly

important.

Most of all, I would like to give thanks to God for showing me the way to get around the

roadblocks that held me at bay for so long. He makes all things possible.

Douglas D. Decker




Table of Contents

Page

Acknowledgements . . . . . . .. ... L e e ii
List of Figures . . . . . . o o i it et e e e e e e e vi
List of Tables . . . v v v v v et e e e e e e e e e e e e e e e e e e e e e ix
ABStract . o v o e s e e e e e e e e e e e e e e e e e e e e e e e e e X
I Introduction . . . v v v v i v e e e e e e e e e e e e e e e e e 1-1
1.1 Background/Motivation . . . . . . ... .o 1-1

1.2 ThesisOutline . . . . . . . o v vt it it it i et ittt e e e 1-2

IL. Preliminaries . . o v v v v v v v e e e e e e e e e e e e e e e e e 2-1
2.1 Mathematical Preliminaries . . . . . .. ... ... ... ... 2-1

2.1.1 Hy; OptimalControl . . ... ... ... ... .. ...... 2-1

2.1.2 H, OptimalControl. . . ... ... .. ... .. ..., 2-6

2.1.3 Mixed Hy/Hy, Control . . .. ... .. ... 2-12

2.1.4 p Analysis and Synthesis . .. ... .......... ..., 2-26

2.1.5 Mixed Ha/pControl . . . ... ... .. 2-36

2.2 Control Preliminaries . . . . . .. . . v it i 2-37

2.2.1 DynamicInversion . . . . ... ... vttt 2-37

2.2.2 Control Selector . . .. ... ... ... e 2-38

III. F-16 Design Example. . . . . . . . .. o ittt i it iet e 3-1
3.1 OVEIVIEW . v v v v i v v et e e e e e e e e e e e e 3-1

3.2 Details . . . v v it e e e e e e e e e e e 3-3

3.2.1 Lateral/Directional Equations of Motion . . . . ... ... .. 3-3

3.2.2 Control Selector . . . . . . . v v i i i i e e e e e e 3-4




3.2.3 ImnerLoopDesign . .. . ... ... .0t eeeenon.. 3-5

3.24 Actuator . . ... .. e e e 3-9

325 TlandT2 ...... T 39

326 Theldeal Model . ... .. .. ... ... .. . ... ... .. 3-10

327 NOISES . « v v v v e v e e i et e e 3-11

3.3 Evalua,tic;n Model . .. .. . ittt et e 3-12
3.4 Robust Analysis Model . .. ... ... ... . 3-16
3.4.1 Structured Uncertainty . ... .. .. ... ... ... 3-16

3.4.2 Unstructured Uncertainty . .. ... . ... ... ... .... 3-19

3.4.3 Robust Performance . . .. .. .. ... ... ..., 3-19

IV, e Design . . o v o v vt e e e e e e e 4-1
41 OuterLoopDesign. . . . . .. o i i i it i it 4-1
42 pdesign. .. ..o e e e e s 4-1
4.2.1 The Ideal Model and the Performance Weighting . . . . . . . 4-1

422 Actuator . .. .. . e e 4-2

4.2.3 Parameter Uncertainty Weighting . . ............. 4-4

4.2.4 State space formulation . ... ....... .. ... .., 4-5

425 Results ... ... . . i it e 4-8

V. Hj and Mixed Ha/p Design A . . . . . o ottt i i 5-1
5.1 HyDesign . . . v v v v it i i i i e e e e 5-1
5.1.1 StateSpace . . . . v oo v i it e e e e 5-2

51.2 Results . ... .. ..ottt 5-12

5.2 Mixed Hy/p using Hy Controller A . . ... .............. 5-14
5.2.1 More Definitions . . . . .. .. . oo o oo 5-14

B.2.2 MThe MiX . . v o v v v v e e e e e e et e e e e e 5-15




+ Page

VI. HyRevisited . .. ... . . i it e e 6-1
6.1 Another Look at the Two-morm . ... ... ... ... 6-1

6.2 Mixed Hy/pDesign B . . . ... ... i 6-4

6.3 Yet Another Look at the Two-norm . . ... .............. 6-8

6.4 Mixed Hy/pDesign C . . . . .. . vt i it i i 6-13

VII. Conclusions and Recommendations . . . . . .. .. ... v oL 7-1
7.1 Summary and Conclusions . e 7-1

7.2 Recommendations . . . .. . . .o v it it ittt 7-2

Appendix A. Model Data. o« v v v v v v e e et e e e e e e e e e e A-1
A1l Design Model Data . ... ... ... ... Al

A.1.1 Central Flight Condition ... ......... . Al

A.1.2 Design Actuator . . . .. ... .. . e Al

A13 Ideal Model . . . . . . . o i i it e e e A2

A2 EvaluationModel Data . . ... .. .. ...t A-2

Appendix B. i Optimal Controller . . . ... .. .. ..o B-1
Appendix C. State Space Representation of H; Problem on the Evaluation Model . C-1

Bibliography . . . . . . v it i e e e BIB-1




List of Figures

Figure Page
2.1. Basic Block Diagram for the Hy problem . . . . . ... .. ............ 2-2
2.2. Hj system with parameterized controller .. ... ................ 2-4
2.3. Basic Block Diagram for the Heo problem . . .. ... ..... ... ... ... 2-9
2.4. Exampleofan Hy problem . . ... ... .. ... .. o 2-13
2.5. Basic Block Diagram for the mixed Hy/H problem . .. .. ... ....... 2-14
2.6. Possibleregionsfory . . .. .. . . . e e 2-25
2.7. Typical mixed Ho/Hoo Y VS. G CUIVE .+ v v v v v v v v v e e e oo e oo oo e 2-26
2.8. System withuncertainty . . .. ... ... ... . . o o e 2-27
2.9. P-K version of the system with uncertainty . . . . .. ... ... ... ... ... 2-28
2.10. M-A version of a matrix with uncertainty . ... ... ... ... .. .. ..., 2-29
2.11. M-A version of a matrix with two uncertainties . . .. .. ... ... ... ... 2-31
2.12. M-A version of the system for robust stability and robust performance . . . . . 2-33
2.13. LFT system with uncertainty and exogenous inputs and outputs. . . . . . ... 2-33
2.14. Mixed Ha/B CUIVE . . v v it it it e et e e e e 2-36
3.1. Basic Design Model of the VISTAF-16 . .. .. ... .... ... ... ... 3-2
3.2. Design Block Diagram of the Inner Loop . . . . . ... .. ... ...... ... 3-8
3.3. Design Block Diagram of the VISTA F-16 with Noise . . . .. . ... ...... 3-12
3.4. Evaluation Model for the VISTAF-16 . ... ... ... ... ..., 3-13
3.5. Wind Gust (solid) compared to Sensor Noise (dashed) . ............. 3-14
3.6. Open Outer Loop Response to Wind Gust and Sensor Noise, angles in degrees . 3-15
3.7. Robust Analysis Model for the VISTAF-16 ... ................. 3-16
3.8. Singular Valueplot of W1, - o o oo vttt 3-20
4.1. Design Model for p-synthesis . . . . . ... ... ... .. .. o0 4-2

4.2. Singular Value plot of WadeT - -« v v v v v v v v i e e e 4-3




Figure
4.3.

4.4.

4.5.

4.6.
4.7.
4.8.

4.9.

5.1.
5.2.
5.3.
5.4.

5.5.

5.6.
5.7.
5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

6.1.

6.2.

6.3.

Singular Value plot for the optimal p controller . . .. ... ... ........

Noiseless Tracking Capability of the u controller (solid line) compared to the ideal
response (dashed) for astepinSandastepinpg . ................

Noisy Tracking Capability of the u controller (solid line) compared to the ideal
response (dashed) for astepinBandasteping . ................

i bounds for the pcontroller . ... ......... ... .. ... ...
Robust Analysis of the pcontroller . . . . ... ... ... ... ..........
System’s Response to Wind Gust and Sensor noise, u Controller . . . . . . ...

System’s Response to Sensor Noise only, u Controller . . . . . ... ... ....

Design Model for Hy -synthesis . . . ... .. ... .. .. ...
System’s Response to Wind Gust and Sensor Noise, K =1............
FFT of the state responses tonoise . . . . . . . . v v v v v v i vt o v e oo
Closed loop SV plots for Z,¢qtes vs. wind gust and sensor noise, K =1 .. ...

Effect of varying one design weight, km, on closed loop gain of Z,¢ase, for wind

gust and noise input at w ~3.8radfsec . ........ ... ...
System’s Response to Wind Gust and Sensor Noise, 1st controller . . . .. ...
Closed loop SV plots for Z,s41¢s vs. wind gust and sensor noise for the 1st controller
System’s Response to Wind Gust and Sensor Noise, Hy Controller A . . . . ..

Closed loop SV plots for Zssates vs. wind gust and sensor noise for Hy Controller

yvs. ccurveusing Design A . . .. ... . o oo
“Knee” of the y vs. a curve using Design A . . . ... .. ............
System’s Response to Wind Gust and Sensor Noise, Mixed Controller A .

« vs. a for 23rd order based on Mixed Design A, p controller shown by *. . . .

P-K version of the Hj part of the Hy/Ho, problem . . .. ............

4 vs. a curves for the various two-norms using Design A (x), and the p Controller(*)

4 vs. « curves for the various two-norms using Design B (x) and the p Con-

troller(¥) . . . e

Page
4-9

4-10

4-11
4-12
4-13
4-14

4-16

5-2
5-6
5-7

5-9

5-10
5-11
5-12

5-13

5-14
5-16
5-17
5-18

5-19

6-1

6-3

6-6




Figure Page

6.4. System’s Response to Steps in 8 and fi, Mixed Controller B . . . . ... .. .. 6-7
6.5. System’s Response to Wind Gust and Sensor Noise, Mixed Controller B . . . . 6-10
6.6. System’s Response to Sensor Noise only, Mixed Controller B . .. ....... 6-11
6.7. System’s Response to Wind Gust and Sensor noise, Controller C . . ... ... 6-15
6.8. System’s Response to Sensor noise only, Controller C . . . .. .. .. ... ... 6-16

6.9. Closed loop SV plots for Z,¢ates vs. wind gust and sensor noise for Controller C 6-17
6.10. Mu bounds plot of Controller C . . . .. .. .. ... ... ... .. ... 6-18

6.11. 4 vs. a curve for the various two-norms using Design C (x) and the p controller

(K)o e e e 6-19
6.12. System’s Response to Wind Gust and Sensor noise, Mixed Controller C . . . . 6-21
6.13. System’s Response to Sensor noise only, Mixed Controller C . . . . . ... ... 6-22
6.14. Step Response plot of Mixed Controller C . . . . . ... ... ... ....... 6-23
6.15. Mu bounds plot of Mixed Controller C . . . ... ... ... .. ......... 6-24
6.16. Noisy Step Response plot of Mixed Controller C . . . ... ........ ... 6-25
6.17. Noisy Step Response plot of the pcontroller . . . . ... ... .......... 6-26

C.1. H, Problem on the Evaluation Model . . . . ... ... .. ... ......... C-2




Table

3.1

4.1.

5.1
5.2,
5.3.

5.4.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

List of Tables

Structured Uncertainty Levels . . . . . . . . ... it
Reduction in Open Loop Noise and Wind Effects using s Controller. . . . . . .

Design Weights for the Ist controller . . . . ... ... ... ... ...,
Design Weights for Hy Controller A . . . . . . ... .. oo
Change in g Controller Noise and Wind Effects using Hz Controller A . . . ..

Change in g Controller Noise and Wind Effects using Mixed Design A . . . ..

Various two-norms for the x4 Controller and Mixed Controller A . . . ... ...
Various two-norms for the p Controller and H; Controller B . . . . .. .. ...
Change in g Controller Noise and Wind Effects using Hz Controller B . . . . .
Various two-norms for the u Controller, H, Controller B and Mixed Controller B
Change in p Controller Noise and Wind Effects using Mixed Controller B
Various two-norms for the u Controller and Mixed Controller B . . . . .. ...
Change in p Controller Noise Effects Only using Mixed Controller B . . . . . .
Various two-norms for the u Controller and Hz Controller C . . . . . ... ...
Change in p Controller Noise and Wind Effects using H; Controller C . . . . .
Change in g Controller Noise Effects Only using H; Controller C . . . .. . ..
Various two-norms for the u Controller and Mixed and H; Controller C
Change in g Controller Noise and Wind Effects using Mixed Controller C

Change in p Controller Noise Effects Only using Mixed Controller C . . . . . .

Page

3-18

4-15

5-12
5-14

5-17

6-3

6-4

6-9
6-9
6-14
6-14
6-17
6-20

6-20

6-20




AFIT/GA/ENY/94D-8

Abstract

This thesis examines the use of the mixed H/u optimal control synthesis method in the design
of a flight control system for the lateral/directional axes of the F-16 Variable Stability In-Flight
Simulator Test Aircraft (VISTA). The method is designed to minimize the Hz norm (two-norm) for
a given value of u. This should provide adequate noise and disturbance rejection while maintaining
robustness against several types of uncertainties in the system. This thesis finds that, for this
problem, the two-norm is not an accurate representation of the outputs of interest. When the
two-norm is broken up into its constituent parts an appropriate solution can be found. This thesis
also finds that it is possible to use an H, controller which is destabilizing to the evaluation model
as the starting point in the mixed Ha/p curve and still get an acceptable answer. A numerical

approach was used, utilizing a recently improved computer algorithm.




Flight Control Design using Mixed H,/p Optimization

1. Introduction

1.1 Background/Motivation

To design a controller, the designer must use a model of the system he or she wishes to control.
Usually, however, the model is not perfect. In general, there will be many underlying assumptions
made in developing the model. These assumptions could include linearizations, simplifying assump-
tions, approximations, etc. The end result is a model which could be far from perfect. Sometimes
the imperfection can be characterized well — for example, a parameter which is plus or minus a

known amount. Sometimes the imperfection cannot be characterized very well.

Any controller developed from this model is then suspect. It may work well on the design
model but perform poorly when tested on the actual system or an accurate evaluation model. If we
could somehow incorporate this unknown uncertainty into the design model and design for it, we
should be able to get a more capable controller, in terms of working well in the face of uncertainty.

That is, a controller that is more robust.

H,, optimal control is capable of designing for uncertainty. To be specific, it minimizes the
output energy of a system with unknown, but bounded energy inputs. This method is also useful

in designing a good tracker (minimize the energy of an error signal due to a pulse command).

Unfortunately, Ho, is limited in that it can only handle one uncertainty. It is probable that
a real system would have multiple uncertainties occurring at different locations. Hoo by itself is

incapable of handling this problem.

Doyle developed a method which would eliminate this limitation. His work centered on the

complex structured singular value, u, which allows for these multiple uncertainties. See [PD93] for

an excellent summary.




If unknown, but bounded energy inputs were all we had to worry about in a system, Hoo
and p would take care of everything. Unfortunately, there are other concerns. One of them is the
response to noise eﬁtering the system. Noise is not bounded energy. It is usually characterized as
white Gaussian (constant power at all frequencies, random). Hy and p are incapable of handling
this type of input. However, H, optimization is designed to minimize the energy of a system’s
output when the system is faced with white Gaussian noise inputs. Note that the objectives in Hoo
and p compete with the objective of H,. However, we can trade off these objectives in an optimal

fashion using mixed Hy/H, optimization.

To date, only a numerical solution is available for mixed Hz/Ho. Ridgely [Rid91] was the first
to develop a numerical optimization approach to find a general mixed Hy/Hy, controller. Walker
[Wal94] has improved upon this method by eliminating several assumptions made by Ridgely and
producing a computationally more efficient solution to the problem. Further improvements have

been made to the efficiency and robustness of the numerical computation by Smith [Smi94].

Madiwale [Mad89] first proposed adding robustness to the mixed control problem. Walker
incorporated p into the mixed Hz/H o format described above and completed a SISO example and

a 2 x 2 MIMO example.

The purpose of this thesis is to extend the work by Walker to a more rigorous example using

H2/p and the improved numerical algorithm.

1.2 Thesis Outline

This thesis is divided into seven chapters, including this introductory chapter. The next
two chapters provide the groundwork on which the controller is based. The development of mixed
H;/H,, design theory is described in Chapter II. This chapter also describes the complex structured

singular value, p, in terms of analysis and synthesis. This chapter ends with a discussion of several




controller design topics necessary for the development of the design and analysis models described

in Chapter III.

Chapter III presents the mathematical state space model used in our MIMO VISTA F-16
example. Also, in this chapter, the basic design model is described as well as the evaluation model
for analyzing the time responses. To evaluate robustness, a robust analysis model is developed for

the p analysis.

The p design model is constructed by adding certain inputs and outputs associated with
the uncertainties to the basic design model. This model is then used to develop the p controller.

Chapter IV describes this process and the subsequent analysis of that controller.

Chapter V shows the development of an H; controller from the basic design. The controller
is evaluated and mixed with the u controller. The resulting mixed controller is evaluated and found

to be deficient.

In Chapter VI, the deficiency is analyzed and a correction is made. Another Hj controller
is developed which, again, is mixed with the u controller. This mixed controller exhibits another
deficiency which is analyzed and corrected. This final correction will prove to be sufficient and
the resulting H controller is then mixed with the u controller. This final mixed controller is then

analyzed.

Chapter VII then summarizes the results of this study, presents some conclusions and provides

recommendations for further study.




II. Preliminaries

Before we can begin, we must discuss some of the basic theory. The majority of this chapter
will discuss the optimization methods used: Hy , Hy and p. The final section will discuss a few

control design topics.

2.1 Mathematical Preliminaries

2.1.1 H, Optimal Control.

2.1.1.1 The Hy space. H, is defined as the space of all transfer function matrices
which are stable (eigenvalues in the open left-half complex plane) and have a bounded two-norm.

The two-norm (designated a ) is defined as
. A T i . .
o = [Tl 1= 5 [ tr [T (59 e (0] 2:)

The subspace RH; is defined as the space of real-rational functions (rational functions with real

coefficients) in Hz. An easier way to compute (2.1) is found in [DFT92] and is summarized here.

Consider the transfer function
G(s) = € RH; (2.2)
Note that (2.2) makes use of the following notation.

:=C(sI—A)"'B+D (2.3)
c|D

The two-norm is determined from the following algorithm:




K

Figure 2.1 Basic Block Diagram for the Hs problem

Step 1 Find the positive semidefinite solutions to the following Lyapunov equations.

AL+ L AT + BBT =0 (2.4)

LA+ ATL,+CTC=0 (2.5)

L, and L, are the controllability and observability gramians of G(s), respectively.

Step 2 Now the two-norm can be calculated by

o? =||G(s)||2 = tr (L.CTC) = tr (L,BBT) (2.6)

2.1.1.2 H; optimization. Consider the H block diagram in Figure 2.1. The input
to the system is w, a zero-mean, unit intensity, white Gaussian noise type input (typically, for
aircraft, wind gusts and sensor noise). The output z is whatever quantities we wish to have
minimally affected by w. The plant is designated P. For design purposes, P will include the design
weights which can be used to emphasize or de-emphasize the importance of a certain frequency
range. K is the feedback controller which will be found using the method described in this section.
The measurements from the plant, y, are input into the controller. The control, u, is the output of

the controller which is fed back into P.




The objective of H; optimization is to find the stabilizing controller K which minimizes the
energy of z with w being a white Gaussian noise input. This is the same thing as minimizing the
two-norm of the closed loop transfer function, T;,. The solution is ob'ta,ined by solving 2 Algebraic
Riccati Equations (ARE) and is actually a generalization of the LQG problem. LQG requires
that there only be two white noises entered at specific locations and that the outputs be statically
weighted states and controls. H allows the white noise inputs to be placed anywhere, and the

outputs to be anything and placed anywhere. Dynamic weightings are also allowed.

The minimal value of the two-norm, ¢, is defined as

= i f *
& K(J)S%zlbilizing ||Z||2 (2 7)
= inf Tow 2.
K(J)Sizbilizing ” ”2 ( 8)

A state space realization of P is given by

2y = Azzs + Byw + By, u (2.9)
z=0Cz23+ Dypyw+ Dyu (2.10)
y= Cyzmz + Dy'w'w + Dy’uu (211)

The 2 subscript indicates that this representation is for H; optimization.

To find K, the following assumptions are made:
(1) Do =0

(i) Dyu=10

(iii) (A2, Bu,) is stabilizable and (Cy,, Aj) is detectable

(iv) DI, D,y =1I and Dy, DY, =1




Figure 2.2 H, system with parameterized controller

A —jwl By,
(v) has full column rank for all w
Cz Dzu
Az - ij B.w
(vi) has full row rank for all w
i C:llz D yw

Condition (i) is necessary for the two-norm to be finite. Condition (ii) is made to simplify the
problem (it is not necessary). Condition (ii) is necessary for a stabilizing compensator to exist.
Condition (iv) is actually a simplifying assumption; the underlying necessary condition of (iv) is
that the products be full rank to avoid a singular control problem (we must have a penalty on
all controls and no perfect measurements). This simplifying assumption can be relaxed to the
necessary full-rank condition through scaling [Dai90]. Finally, conditions (v) and (vi) are required

to ensure the existence of stabilizing solutions to the two AREs in the Hj solution.

For any given o, the family of all stabilizing controllers, K, that satisfies @ < ||Toull2 < o

can be found by using the following algorithm. This algorithm is based on parameterizing the

controller, K, as a feedback loop of J and Q (see Figure 2.2).




Step 1 Form the following algebraic Riccati equations and solve for X, and Y5:

(Az — B,, DT, C.)T X3 + X3(Az — By, DT, C,) — X2B,, BL, X,

+[(I - DZ“DZ"LL)CZ]T[(I - DZ'UD;PH.)CZ] =0 (212)

(Az — By DY, Cy,)Ys + Ya(A — By D, Cy,) ~ Y2C5,Cy, Ya

+[Bw(I - DZ'wDyw N[Bu(I - Dgw Dyu)]" =0 (2.13)

To be valid, the solutions X; and Y, must each be real, unique, symmetric, and positive

semidefinite.

Step 2 Substitute X, and Y3 into the following:

K; =Y,CL, + By Dy, (2.14)
K. =BT X, + D],C, (2.15)
Ky = By, (2.16)
Ka = —Cy, (2.17)

which are then substituted into




Step 3 Now take (2.14) — (2.18) and substitute into:

Aj Kf Kﬂ
Juy Jwr AJ BJ
J(s) = = =| -K,| 0 I (2.19)
J'uy Jur C.I DJ
Kg | 1 0

Step 4 Choose a Q that is real-rational, stable and strictly proper (this makes @ € RH;) that

meets the following criterion:

QI3 < o® — o (2.20)

Any Q€ RH; that satisfies (2.20) is acceptable; it is a freedom parameter.
Step 5 Now, form K(s) from J(s) given in (2.19) and the @Q(s) chosen in Step 4.

K(s) is given by the lower linear fractional transformation of J(s) and Q(s) (see Figure 2.2).

This is written as

K(3) = Juy + Jur Q(I — JvrQ)—-lJuy (2.21)

We can see from (2.20) that when the chosen a equals the optimal, @, @ := 0. In this case, (2.21)
says K(s) = Juy. This is the unique Hj optimal controller, K3,,,. Thus, @ = 0 yields K3, ,. If a

suboptimal controller is desired (which it will be in mixed H3/Ho, optimization), choose @ # 0.

2.1.2 H, Optimal Control.

2.1.2.1 The Hy space. H, is defined as the space of transfer function matrices
which are stable (eigenvalues in the open left-half complex plane) and have a bounded infinity norm.
RH, is the subspace of real-rational H,, functions. The infinity norm is an induced operator norm

and is defined as




7 = I (222)

= Tl (223)
[ Tead]|2

= sup-—— (2.24
i Tl :

= sup |lef|2 (2.25)
llalla<1

= sup@ [Tea(jw)] (2.26)
w

Thus, the infinity norm is the maximum possible energy-to-energy gain of the system. To minimize
the energy of an output due to an unknown but deterministic bounded energy input (like a pulse
input), we must minimize the infinity-norm of the associated transfer function. An important fact
for robustness problems is that since the infinity-norm is an induced operator norm, it has the

submultiplicative property [Dai90]; given F, G € Hy, then

1FGlloo < [|Flool|Glloo (2.27)

An easy way to determine the infinity-norm is to plot the maximum singular values of the transfer
function over the appropriate frequency range and determine the maximum on the plot; that is the
infinity norm of the system. However, this may not be the most practical method numerically since
we don’t necessarily know around what frequency range the maximum singular value will attain its

maximum.

A more numerically robust approach is based on the Hamiltonian matrix obtained from the

state space representation of a proper stable transfer function [Dai90]. Given the transfer function

G(s) = (2.28)




we can construct the associated Hamiltonian

A+ BR'DTC BR-1BT
H= (2.29)

—CT(I -y2DDT)"'C —(A+BR'DTC)”

where R := %I — DT D.

The dual of (2.29) is

(A+ BDTR-'C)T CTR™C
H= (2.30)

—B(I —v~2DTD)~'BT —(A+BDTR™'C)

where R := %I — DDT.

Any Hamiltonian matrix has the form

(2.31)
z -XT

where Y = YT, Z = Z7. Thus, it has the property that the eigenvalues mirror each other across the
imaginary axis. That is, if X is an eigenvalue of H, then —) is also an eigenvalue of H. A theorem
in [Dai90] implies that we can use the Hamiltonian and this “mirroring” property to determine the
infinity-norm, 7, of the associated system in an iterative way. To do this, we choose a value of v and
calculate the eigenvalues of the Hamiltonian. If any of the eigenvalues are on the imaginary axis,
our 7 is too small; the next guess should be bigger. If there are no purely imaginary eigenvalues
our v is too big; the next guess should be smaller. We are looking for the value of v when the
eigenvalues first meet on the imaginary axis. By using a bisection method or a golden step search

on v we can quickly converge to ¥ = ||G||c Within any desired accuracy level.

2.1.2.2 H,, Optimization. Now consider the Ho, block diagram in Figure 2.3. This




K

Figure 2.3 Basic Block Diagram for the Hy, problem

is the same as Figure 2.1, except the exogenous input and output and the closed loop transfer
function have been renamed. This is done to keep H,, distinct from the Hj optimization method.
The plant, P, includes the design weights. The input, d, is assumed to be unknown but deterministic
and have bounded energy. We want to find a stabilizing controller, K(s), which minimizes the
energy of the output, e. Since we are trying to minimize the energy of an output to a worst case
bounded energy input, we are trying to minimize the infinity-norm of the closed loop transfer

function, Teq4:

inf sup |lefz = X inf  ||Ted|lc =7 (2.32)

Kstabilizing ||d||,<1 stabilizing

where the infinity-norm of Teq is

”Ted”oo = sup a'[CZ"ed] (233)
w

and & denotes the maximum singular value. The minimum achievable infinity-norm, as indicated

by (2.32), is designated 7. The state space representation of P in Figure 2.3 is given by:

Boo = Aoo®oo + Bad+ By u (2.34)

e = Ceoo + Degd+ Deytt (2.35)

y = Cy. oo+ Dyad+ Dyyu (2.36)




where the oo subscript indicates the problem setup for H@optimization. As in H, there are some

underlying assumptions:

(1) Dea=0
(ii) Dy =0
(iii) (Aoo, Bu.,) is stabilizable and (Cy,,, Ax) is detectable

(iv) DT, Dey = I and DyaD, =1

Ay —jwl B,
(v) has full column rank for all w
CB Deu
Ayp —jwl By
(vi) has full row rank for all w
C’.'Ioo Dya

Assumption (i) is not a requirement for the Ho, problem, but does allow the development to be
simpler. Assumption (ii) is also not required but makes the problem simpler. Condition (iii) is
required for a stabilizing compensator to exist. Condition (iv) is just like condition (iv) in Section
2.1.1.2; it is a simplifying assumption with an underlying necessary condition that the products be
full rank to avoid a singular control problem (i.e. we need a direct penalty on all controls and no
perfect measurements). Conditions (v) and (vi) are required to ensure the existence of stabilizing
solutions to the two AREs in the H solution. Later, in the mixed Hz/Ho, problem, conditions

(i) and (iv) will be relaxed.

Like H, optimal, the Ho, optimal controller, K(s), is found from equation (2.21) with J(s)

defined as in (2.19). Of course, the elements in (2.19) (47, Ky, etc) are defined differently. The

algorithm for H, optimization is an iterative process.




Step 1 Pick an initial value of v, and form the following two algebraic Riccati equations:

(Aco - B'u.ooDZ'uCe)TXoo + Xoo(AOO - Bung;‘Cc) - X°°(7—zBng' - B"'OOB?"'OO)XOO

+CT (I — Deu DL, (I — Dy DT,)C. = 0(2.37)

(Aoo - BdngCym )Yoo + Y (Aoo - BdDZ'dCyoa )T + Yo (7—203103 - Cg;, Cy.. )Yoo

+By(I — D} Dya)(I — DJ3Dya)" B] =0 (2.38)

Step 2 Solve for X and Y. For the parametrization to be valid, the resulting X, and Yo must

satisfy the following three conditions:

1. The solutions must be symmetric and positive semidefinite.

2. No eigenvalues of the Hamiltonian matrices associated with (2.37) and (2.38) can be on

the imaginary axis.
3. p(XooYoo) < 72, where p(M) := max; [A;(M)| is the spectral radius of M.

Check the three conditions; if any condition fails, increase v and repeat the process. If all
three conditions are met we have a solution, but it is not necessarily the optimal solution. If
we are looking for the optimal v (i.e. 7), we reduce v and repeat until one of the 3 conditions
above just fails. By doing this, we can find the minimum infinity-norm to any desired level
of accuracy. Once we have v (for optimal) or v (for sub-optimal) to the accuracy we want,

we may continue the algorithm to find the controller(s) which achieves this .

Step 3 Take the value of 7, Xoo, and Yo found in Step 2 and substitute into the following equa-

tions:

Ar=Aw — K;Cy — By K. +7 Y CT(C. — Deu Ko) (2.39)




K; =YoCL  + BiD, (2.40)

Kji =v9"2YC T Dey + Ba., (2.41)

K. =BT Xo +DI,Co(l — 7 Yo Xoo)™? (2.42)
=—(y? T I -7V X))t 2.4

Ka = —(7 *DyaBi Xoo + Cyo. )T =77 Yoo X o) (2.43)

Step 4 Substitute the answers from Step 3 into equation (2.19) to form the J(s) for the Hy

problem.

Step 5 Choose any @ such that

Q € RMHo (2.44)

Rl < (2.45)

Substitute that @ and the elements of J from Step 4 into (2.21) and we have our controller.

Note that the optimal H,, controller is not necessarily unique.

2.1.3 Mized Hy/Ho, Control.

2.1.3.1 Motivation. Recall that both H; and H, optimization minimize the energy
of the chosen output(s); however, they each do this for different types of inputs. The input for
which H is designed is characterized as white Gaussian noise. Some examples that come to mind
for aircraft are sensor noises and wind gusts (which has a definite noise-like quality to it). The type
of inputs used in H, are characterized as having bounded energy. An example here would be the
error signal produced from a pulse command to a feedback system (see Figure 2.4). This would
give us good tracking. By mixing the two, we should be able to get good output characteristics

(stability and/or performance) for a system which has both types of inputs.




error

pulse command output
=)

Figure 2.4 Example of an H,, problem

We must keep in mind, however, that we are in a sense producing competing goals, in that
we will often find ourselves trying to minimize the norm of the sensitivity (say, for good tracking),
S, and the norm of the complementary sensitivity (say, for good noise rejection), T' . Thus, we can

expect to have a trade-off between good H; and good Heo.

We could try to do an optimization scheme where we try to minimize both norms (multi-
objective optimization), but that may be too limiting. It would only find one solution and that
may be a solution we are not interested in. For example, using the examples above, we may be
more interested in getting good tracking than getting rid of most of the noise, so we would, in that
case, be willing to let ||Tu||2 (@) increase a little if we got a lower ||Tedlloo (7) in return. Therefore,
we will not pursue multi-objective optimization here. We will instead follow Ridgely [Rid91] and
Walker [Wal94] where they have one objective, minimize «, and append the infinity-norm as a

constraint, as

Kinf || Tow||2, subject to the constraint ||Ted|lee < ¥ (2.46)
adm

Note that in this fashion, we will not be doing H optimization (Section 2.1.2.2), but rather will

only be constraining the infinity-norm (Section 2.1.2.1).

2.1.3.2 State Space Formulation. The development represented here was taken from

Walker [Wal94]. The block diagram of the mixed Hy/Ho problem is in Figure 2.5. This system
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Figure 2.5 Basic Block Diagram for the mixed Hz/H, problem

has exogenous inputs w and d and controlled outputs z and e. The measured output is y and the
control is u. These are all defined the same way as in Figures 2.1 and 2.3. P is now the combination

of the P’s in those figures!. The resulting state space representation of P is now

&= Az + Bgd+ Byw+ Byu (2.47)
e=Coz+ Dygd + Deyw + Dewu (2.48)
z2=C,z+ Dygd + Doww + Dyyu (2.49)
y= C’ym + ﬁydd + f)yw'w + ﬁyuu (2.50)
or, in transfer function form,
fi Bd N'w -éu
~e f)ed De'w 1~)eu
P= (2.51)
z zd Dz'w Dzu
éy yd ~yw Dy'u

1this will be made more clear in Chapter III




This may also be represented by the individual H; and H, problems, which are

22 = Azzg+ Byw+ By,u
z = C,z3+4 Dyyw+ Dyyu (2.52)

y = Cy22+ Dyyw+ Dyyu

Zoo = Aoo®oo + Bad+ By u
e = Ceoo+ Degd+ Deyu (2.53)

y = Cywmoo + Dydd+ Dy'u.'u'

The assumptions used to solve the mixed problem are the same as the assumptions for the
H, and Ho problem except that four assumptions from the Ho, problem (Section 2.1.2.2) are not

included. The assumptions which are not included are:

1. Deg =10

2. DZ,D,, = I and DyaDT, = I

Ay —jwl B,
3. has full column rank for all w
Ce D&’ll.
Ay —jwl By
4, has full row rank for all w
Cyoo Dyd

(1) was never necessary, and does not seriously compicate the mixed development. (2) was necessary
to ensure a non-singular H,, problem. In this development, no assumption is made about the ranks
of D, and Dy4 (we will allow for perfect measurements and /or controls with no penalty). The H>

part of the problem handles this. (3) and (4) are not necessary, as Heo Riccati equations will not




be used in the mixed development. We will be calculating the controller using H, optimization, so

we will have a stabilizing controller.

Therefore, the assumptions for mixed Hy/H, are:

3. (Az, By,) stabilizable, (Cy,, A2) detectable

4. DI, D,, full rank, Dy, D;fw full rank

A — jwl B,,
5. has full column rank for all w
CZ DZ'M
Az - ]wI Bw
6. has full row rank for all w
Cyz Dyw

In state space, the controller in Figure 2.5 is given by

B = Acmc+ch

u = Cezx.+ Doy (2.54)

Combining (2.52) with (2.54) produces the closed-loop state space equations for T,y

(A -+ B'u.z DcCyz)mz + B'u.zccwc + (Bw + B’uchDy'w)w

:l":z =
2, = B.Cy,z3+ Acxc+ BcDynw (2.55)
z = (C;+ D;uD.Cy,)xz + D;yCezc + Dyy De Dyyyw

Applying assumption (1) to (2.55), we see that D,y D.Dy, must equal zero for the two-norm of
T, to be finite. Applying assumption (4), we find that D, = 0. Thus, the only way this problem

will have a solution is for the controller K to be strictly proper.
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When we close the loop of the individual H; and H,, problems with the above controller,b we

get the following closed-loop state space representations:

X2 = Aaxz + Byw

z2=0C,xz

and
Xoo == AooXeo + Bad
€ = CeXoo + Degd
where
T2
X2 =
L
Lo
Xoo =
Tc
A2 BuZCc
Az =
BcCyZ A-c
Ax  BuxCe
Aoo =
B.Cyo  Ac
By
B, =
B.Dyy
Bq
By =
| BeDya
C. = C. D.C.

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)



Cg = [ CE DB‘MCC ] (2‘67)

Dea = Ded ~ (2.68)

To simplify the development, the following definitions are made:

v = infxadm [|Tedlloo
¢ = infxeim || Tewl2
K;,,, = the unique K(s) that makes ||Tuwll2 =
¥ = ||Ted|lo when K = K3,
Kpiz = a solution to the Hy/H,, problem for some 7
7* = ||Ted|lc when K(s) = Kpmiz
a* = ||Tiwllz when K(s) = Kniz
4y = the constraint which 7* must stay less than or equal to (v* < v)

The mixed Hz/Ho, problem can now be restated as follows: determine a K(s) such that

1. the underlying H; and Ho, problems are stable, i.e., Az and A are stable
2. 4* < 4 for some given v > ¥
3. ||Tew]|2 is minimized.

To develop this problem, Walker [Wal94] introduced the following theorem:

Theorem 2.1.1 Let (A, B, C.) be given and assume there ezists a Qoo = QY > 0 satisfying

AsoQoo + QuoAL, + (QooCl +BaDgg) R (QuCy + BaD3y)" + BaBy =0 (2-69)

where R = (y?I — DedD'fd) > 0. Then the following are equivalent:

1. (Ao, Ba) is stabilizable




2. As is stable.
3. Ao 1s stable.

Moreover, if the above hold then the following are true:

3. ”Ted”oo S Y

4. the two-norm of the transfer function T,., is given by

| Tew |2 = tr[C.Q2CT ] = tr[Q2CT C,]

where Q2 = QF > 0 is the solution to the Lyapunov equation

A2Qz + Q2AF +B,BI =0

5. all real symmetric solutions Qo of Equation (2.69) are positive semidefinite

6. there exists a unique minimal solution Qo to Equation (2.69) in the class of real symmetric

solutions

7. Qo is the minimal solution of Equation (2.69) if and only if

Re[Xi(Aw + BiDL,R™IC. + QwCTR™'C.)] < 0 foralli (2.70)

8. |Todlloo < (L) 7 iff Re [Mi(Aco + BiDLR™IC. + QooCT R71C.)] < (<) 0 where Qoo is the
minimal solution to Equation (2.69).
The main result from this theorem is that the constraint ||Teallcoc < 7 (v* < ) is equivalent to

the constraint found in (2.70). The only way (2.70) can be satisfied is for Qo to solve (2.69). So we

have replaced an inequality constraint with an equality constraint. Note that (2.69) is the Riccati




equation associated with the Ho, Hamiltonian (2.30). Walker backs that up with his Theorem

2.5.11 [Wal94:pages 2-23 thru 2-25}.

Using this theorem, the mixed problem can be restated as: Find the K (s) which minimizes

the objective function

J(Ac, Be, C.) = tr[Q2CT C,] (2.71)

where Q; is the real, symmetric, positive semidefinite solution to

A2Q; + Q2A7 + B, BL =0 (2.72)

and satisfying the constraint

Aoo Qoo + QoA + (QooCT + BaDL) R (QooCl + BaDy)" + BaBj =0 (2.73)

where Q. is the real, symmetric, positive semidefinite solution.

This is a minimization problem with two equality constraints and is very amenable to the
Lagrange multiplier method. In brief, the Lagrange multiplier method takes the function you wish
to minimize (the objective), adds on the constraints to it, and multiplies those constraints by
Lagrange multipliers. The resulting equation is called the Lagrangian. This does not change the

equation since the constraints equal 0 (so we are adding nothing to the equation).

The Lagrangian corresponding to this problem is

L = tr[Q:CTC,]+tr{{A2Qz2 + Q2A7 + B,BL|X}
+ t"'{[AooQoo + Qoo-A-g + (Qoocg‘ + de’fd)R_l(QooCZ' + BdDz‘d)T

+ BiBilV} (2.74)

where X and Y are symmetric Lagrange multiplier matrices.
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When we take the derivative of the Lagrangian and set it equal to zero, we obtain the following

equations (partial derivatives of the Lagrangian with respect to each independent variable):

oL

aa = X501+ X2Qs + Y13Qu + YaQs] = 0 (2.75)
oL
5 = AXRQIC) + XQhCy, + XVia + XaBeVa + ¥13QuC).,
+Y2Q5,CT + Y5 Vay + V2B Vs + (V5Q0 + Y2Q3,)CT M
+ (Y5 Qap + Y2Q5)CT DL, M] =0 (2.76)
oL
C. = 2[BT X1Q12 + BY X12Q: + RT,Q12 + R2C.Q2 + BL_Y1Qa
c
+ BY_Y12Qs + R5,QuY1Qab + B5,QaY12Qs + R3QasY12Qab
+ RL,Q.Y2Qs + RoC.QLY1Qus + RyC-QuY15Qup
+ RyC.QLY12Qs + RyC.QuY2 Qs
+ P1(Y1Qas + Y12Qs) + Py(Y5Qas + Y2Q)] = 0 (2.77)
oL 7 7
5/‘? = AQ:+ Q2A; +ByB, =0 (2.78)
— = MX+XA+CTC. =0 (2.79)
0Q:
oL
35 = AoQoot QAL+ (QuCl + B RN Qe + BaDL)
+B48 =0 (2.80)
0
oL _ (Aoo + BaDTLR™Ce + QuoCT R71C.)TY
0Qw

+ Y(Aco + BiDLR™'Co + QooCl R71C) = 0 (2.81)




Qoo

B, BT
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G Y
u y
L BY DI, BT ]
] B Dy
_ Vi VBT

By

Vo

CT

z

R

CT

B:.Dyq

CI D%,
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cTp?

B. VY5 B.V,BT

(DI4R ™ Dea +1I) [ BY

Vas BT

B.VY B,V,BY

[ CZ DZ‘H-CC ]

RIZCc

CT R,C,
R [ C. DeuCe ]
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CIRyC.

0,5t |

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)




These equations have yet to be solved analytically, so a numerical approach will be necessary.

Note that (2.81) has the form

ATY + Y4, =0 (2.93)

where 4, = (A + BdDZ‘dR_ICe + QCTRIC,).

There are two theorems from [SZ70] regarding this form which are relevant at this point:

Theorem 2.1.2 If A, is stable, then Y = 0 is the only solution to

ATY + Y4, =0 (2.94)

This theorem tells us that if A, is stable then ) = 0 is the only solution to (2.81). Theorem 2.1.1
#8 tells us that if A, is not neutrally stable, Q is not the minimal solution to (2.69). Moreover,

since Y = 0, the Lagrangian (2.74) reduces to

L = tr[Q:CTC.] + tr{[A2Q2 + QA% + B, BI| X} (2.95)

This is the Lagrangian associated with the H, problem (the Lyapunov equation in the constraint

must be solved to evaluate the objective which is the two-norm, see Section 2.1.1.1).

The other theorem applicable to (2.81) is:

Theorem 2.1.3 Let A, be neutrally stable. Then

ATY+Y4, =0 (2.96)

has infinitely many Y > 0 solutions of possibly varying ranks.




This theorem says if A, is neutrally stable, } can be nonzero. From Theorem 2.1.1 #8, Qo
is the minimal solution. The following theorem from [Wal94] will show how we can relate this to

the original v* < constraint.

Theorem 2.1.4 Assume A 15 stable and R = (fsz - DedDZ'd) > 0. If there ezists a Qo > 0

salisfying
AxsQoo + QuoAs, + (QuCy + BaDI) R H(QuoCy + BaDgy)” +BaBg =0 (2.97)

then the following are equivalent:

1. ||Tedlloo =
2. (Ao + BiDL,R1C, + Qoo CT R™1C,) is neutrally stable
Furthermore, in this case Q s unique.

Thus, (2.81) tells us one of two things. Either:

1. Y = 0 in which case we have the unconstrained H, problem (y* =)

or,
2. 4 = (A + B,;Dg'dR‘l(fﬂ + QOOCZ'R_IC.,) is neutrally stable. In this case, we are on the
boundary of the original v* < -y constraint and Q is the neutrally stabilizing solution to the

H,, Riccati equation {2.81).
At this point, we follow Walker [Wal94] and fix the order of the controller to the order of
the underlying H; problem, ng, or greater. We can now ask ourselves the question, what are the

possible regions in which we may place the constraint, v (||Ted|lcc < 7 i.e. 7* <) and what is

the solution (y*) in that region? We will look at three possible regions (see Figure 2.6).

Iy <7 There is no controller which can reduce the infinity-norm below v (the optimal H, prob-

lem). Therefore, in the mixed Hz/H, problem, there is no solution for v < 7.
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Figure 2.6 Possible regions for -y
III vy > 7 Since the order of the controller can be equal to nz, K3,,, is admissible. Using the K3, ,
controller, 7* = 7. Thus, for the mixed H,/Hy problem with ¥ > ¥ the optimal controller
is the H, optimal controller (Kpmiz = Ka,,, = 7" = 7). There is no possible decrease in
a achievable by choosing ¥ > 7. In fact, since ¢ is the global minimum and the K which

achieves it is unique, any forced increase in v above 7 will increase a.

IT y <9 <% Since the optimal Ho, controller usually has a non-zero D, term, the two-norm of the
H, problem with the optimal Hy, controller would be infinite. That leaves us with the only
interesting region being v < ¥ < 7. In this region, Y # 0 (or we would have v* = 7 which is

a contradiction). Thus, Y # 0 which we have already shown means ||Teallc =7 (7" =17)-

These facts are summarized in the following theorem from Walker [Wal94].
Theorem 2.1.5 Assume n. > ny. Then the following hold:

(i) If ¥ <y, no solution to the mized Hy/Ho, problem ezists
(i1) If Y < v <7, Kmiz is such that y* =y

iii) Ify > %, Ka,,, is the solution to the mized Hy/H, problem.
7 opt
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Figure 2.7 Typical mixed Hy/Hy ¥ vs. & curve

For a controller with order greater than or equal to the order of the H; problem, the solution
to the mixed Hz/Ho problem with v < 4 < 7 lies on the boundary of the H,, constraint,
4* = «. Thus, in this region, a* is a monotonically decreasing function of ¥ as shown in Figure
2.7. Unfortunately, since the solution to (2.80) must be the neutrally stabilizing solution, (2.81)

becomes very difficult to handle.

2.1.8.8 Practical (Numerical) approach. As stated earlier, a numerical approach
is needed to synthesize a mixed H/H,, controller. The method used in this thesis is based on
Sequential Quadratic Programming (SQP). The normal approach to this problem is to compute
the H; optimal controller (since it’s easy to compute) which gives us a starting point on the curve.
Then we step along the « versus v curve by incrementally reducing v from 7 to near y. At each
7, SQP will determine the controller which minimizes o subject to the constraint y* <+y. When it
minimizes « as much as it can (we don’t know if it’s a local minimum or global minimum) it puts
that point on the curve and the controller is saved. More information on the program used can be

found in [Smi94].

2.1.4 p Analysis and Synthesis. Consider the problem represented in Figure 2.8. In

this figure, d, is the exogenous input, e, is the controlled output, G is the core plant, ACT is

the actuator and K is the controller. The system has uncertainties in the actuator and in the
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Figure 2.8 System with uncertainty

core plant itself. These uncertainties can be due to unmodelled dynamics or uncertain parameters
(among other things). The actuator, as represented in Figure 2.8, is represented as having an input
multiplicative uncertainty, Agcs- The uncertainty in the plant, Ag, is represented as an additive
uncertainty. We can see from the figure that there is a structure to the uncertainty (there is one kind
of uncertainty for the actuator and another for the plant and the uncertainties occur at different
places). The complex structured singular value, u, allows us to use this structure to come up with

a less conservative design for robustness than the standard singular value.

Figure 2.8 can be put into P-K form as in Figure 2.9. Here we see that the uncertainties
are combined in a matrix format with a block diagonal structure. The input to the matrix in the
A block is a vector made up of the two inputs to the individual uncertainty blocks in Figure 2.8.
The output of the matrix in the A block is a vector made up of the two outputs of the uncertainty
blocks in Figure 2.8. Let A € A, where A is a set of block diagonal matrices with a given structure.
There are two types of blocks for any A € A. They must either be repeated scalar blocks (a block
which is formed by multiplying a scalar, §, times an identity matrix of order r;, I,) or full blocks

(something in every element of the block). In mathematical terms

A= {diag[&lIrl, ceybslg, Ay, .. L AFR] | 6 €C,Aj¢€ ™ X5 } (2_98)
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Figure 2.9 P-K version of the system with uncertainty

where &;1,, is the ith scalar block of order r; and A; is the jth fuli block of order m;. For simplicity
of development, it will be assumed that A is square, but the theory applies as well for non-square

perturbations. The dimension n of A € A is given by
s F
n=3Y ri+Y. m (2.99)
=1 j=1

We will eventually want to place a limit on the maximum infinity-norm that A can have. By

doing this, we have defined a norm bounded subset of A.
Ba:={AcA |7(A) <y} (2.100)

The structured singular value of a matrix M € C™*" is defined as

1
min {G(A) | A € A,det(I - MA)=0}

pa(M) = (2.101)

2-28




M =——

Figure 2.10 M-A version of a matrix with uncertainty

unless there is no A € A which makes I — M A singular, in which case pa (M) :=0.

[B*93] gives a good interpretation of p. For the rest of this discussion on the interpretation
of u we will not be talking about dynamical systems, but simply constant matrices. Consider the

system in Figure 2.10. This loop represents the following equations:

e=Md (2.102)
d=Ae
which is the same as
I M e 0
= (2.103)
-A I d 0

If I — MA is nonsingular, the only solutions to the loop equations are e = d = 0. However,
if I — MA is singular, then there are an infinite number of solutions to (2.103), and the values of
e and d can be arbitrarily large. We will call this system “unstable”. In the same way, we will
call the system “stable” when the only solution to (2.103) is € = 0,d = 0. In this context, we see
that pa (M) gives us a measure of the smallest A which causes the system in Figure 2.10 to go

“unstable”.




At this point, we don’t know how to calculate p itself (except in certain special cases which
are not very useful practically). However, we can define upper and lower bounds of x due to the

following property (see [B*93] for a proof).

p(M) < pa(M) < 7(M) (2.104)

Unfortunately, the upper bound has been found to be too conservative. One method of
reducing this conservativeness is by introducing a transformation on M that does not affect the
value of pa (M) but does affect (M). This requires another definition. We will define a set of

scaling transfer functions D which has the same block structure as A. This set is defined as

D := {[D1,...,Ds,diln,,...,dF-1Ime_y, Imn] |

D; € C"%" D; = D} > 0,d; € R,d; >0} (2.105)

Now, the less conservative upper bound on pa (M) is given by the following:

Theorem 2.1.6 Assume M € C™*™, A is defined by (2.98), and D is defined by (2.105). Then

- -1
pa(M) SBE%G(DMD ) (2.106)

Proof: See [B*93], Theorem 2.3.3. =

We have now reduced the upper bound on p to computing the maximum singular value of a matrix

and a search on D.

Let the matrix M have two uncertainties which are represented by A, and A, (see Figure

2.11). We can partition M and A as follows




As

_—9 —
s

A,

Figure 2.11 M-A version of a matrix with two uncertainties

My My
M= (2.107)
Mz Ms
A, O
AcA= A, € Do, Ay € Ay (2.108)
0 A

We can now state a very important theorem from [PD93].

Theorem 2.1.7 (Main Loop Theorem) The following are equivalent:

1. pa(M) <7
2. (a) pa,(My) <7, and
(0) \max ua, [Fu(M,A)] <7

Proof: See [PD93], Corollary 4.7. ™

We can see where 2(a) comes from by looking at the following definition, which is used in

2(3)

Fu(M,A,) = Mag + Moy A, (I — M1 A,) " My (2.109)




Item 2(a) is simply the requirement that the system be well posed (i.e. the inverse of (I — M114,)

exists).

We can see how well posed-ness is related to u by noting 3 facts from the definition of p.

1. p is inversely proportional to G(A).
2. For p # 0, (I — MA) must be singular for some A € A.
3. u tells us the size of the smallest A which makes the system unstable.

If ua, <7, then 5(A,) > v~ 1. This means that as long as Az € Ba,, no A, will destabilize

the system.

2.1.4.1 Frequency Domain p. In terms of dynamical systems, let M(s) be a stable
MIMO transfer function with ng inputs and n, outputs. Let A be a block structure, as in (2.98).
Let Mg denote the entire set of real-rational, proper, stable, transfer matrices. Associated with
any block structure A, let M(A) represent the set of all block diagonal, stable rational transfer

functions, with block structure like A.

M(B) = {A() € Ms : A(s) € REw ] A(s0) € A for all 59 €T* } (2.110)

where C is the closed right-half complex plane.

p of a dynamic transfer matrix M(s) with the structured perturbations A(s) € M(A) is

defined by

|M(s)||a := sup pa [M(jw)] (2.111)
weR
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Figure 2.12 M-A version of the system for robust stability and robust performance

dg s
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Figure 2.13 LFT system with uncertainty and exogenous inputs and outputs

Note that even though we use the norm symbol for g, it is not a true norm since it doesn’t

satisfy the triangle inequality.

Now consider the dynamical system in Figure 2.12. Assume that A; through A, are the
model uncertainties which have been arranged into the standard block-diagonal form. The vectors
e, and d, are made up of signals such as e, and d, in Figure 2.9. The vectors e, and d, are
the vectors associated with the performance part of the problem. Now define an augmented block

structure

0
A= Ags € M(As), Ap € M(Ap) (2.112)
0 Ap

The perturbed transfer function from d,, to e, is given by F, (M, As) (see Figure 2.13).




The transfer function equations for Figure 2.12 are

es ds M1 M, ds
= [M]

€p dp M21 M22 dp

(2.113)

Now the following theorems from [B*93] relate robust stability and robust performance to

dynamic systems.

Theorem 2.1.8 (Robust Stability) Lety > 0. The loop in Figure 2.12 is well-posed and inter-

nally stable for all As € M(A,) with ||As||lo <7 iff

1
|M11|las = sup pag [Mu] < = (2.114)
wER

=2

Proof: See [B*93], Theorem 2.6. n

Theorem 2.1.9 (Robust Performance) Let vy > 0. The loop in Figure 2.12 is well-posed and

internally stable, and ||Fy(M, As)|loo < % for all As € M(A,) with ||Asl||eo < v iff

1]l = sup pa [M] < (2.115)
we

e

Proof: This is Theorem 2.7 in [B*93]. =

2.1.4.2 Frequency Domain u synthesis. Recall from (2.106) that we can find an
overbound to g using the infinity-norm (in fact, for 3 or fewer full blocks in A, the overbound is
an equality). To keep from being tedious, we will refer to the overbound of y as p unless the term

real p is used. Thus, we could attempt to use Heo optimization on p (the overbound). If we make

M = Fy(P,K) (2.116)
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Figure 2.9 becomes Figure 2.13. Our optimization problem then becomes

inf  inf ||DMD™ 2.117
I;IGID Katall}}lizing ” ”oo ( )

Finding a controller which gets arbitrarily close to this infimum is u synthesis. Unfortunately,
it is not known how to solve this minimization problem directly. Rather, we can approximate it by

using an iterative process known as D-K iteration. The process is:

Step 1 Choose a set of frequencies to represent the system. Choose the scaling matrix D, defined
in (2.105), which minimizes 5(DM D) at each of those frequencies. This is done through
p analysis software, which will give the D matrices and give the value of p for the system.
The D matrices may be dynamic or static. If dynamic, their states are added to P. This
will, after Ho, optimization, increase the order of the controller, so choose static D’s or as
low order as possible. Obviously the choice of the set of frequencies is important and must
have a sufficient range and density to adequately represent the system. Usually, for the first
iteration, just start with D = I.

Step 2 Once you have the D-scales (frequency dependent scaling matrices), fit the D-scales in
magnitude with stable, minimum phase (giving stable inverse) rational functions. The result
will be stable, diagonal transfer function matrices D(s) that have stable inverses. It is this

“best fit” which is absorbed into P. Again, it is best to get as low of an order of fit as possible.
Step 3 Once an appropriate D is chosen, use Hqo optimization to compute the controller K(s)
which minimizes ||[DM D™1||qo.
Step 4 If p is less than whatever value is predetermined or if you can’t reduce p any further, stop.

If not, go to Step 1.

In general, each A in A will have its own D matrix. MATLAB’s y Toolbox will not find a D

matrix for the last block. The reason is explained in {B¥93].
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Figure 2.14 Mixed Hy/p curve

2.1.5 Mized Hy/pu Control. Hz/pis just Hy/Hoo with a twist. The theoretical framework
for Hy/p was laid out in Section 2.1.3. This section will just discuss the practical differences. H>
is done as before, but now the H,, part of the problem is scaled by the D matrices mentioned in

Section 2.1.4.

First, p synthesis is done on the portion of the problem that deals with the uncertainties and
any energy-to-energy part of the problem. Normally, we would only be interested in the resulting
controller. However, now we are interested in the D scales. These D scales will be absorbed into
the open loop P of the H, problem, and that will be our new H, problem. It will be from that
P that we will do the Ho, calculations. Other than that, there is no difference from Hy/H . For

notational purposes, refer to Figure 2.14.




2.2 Control Preliminaries

2.2.1 Dynamic Inversion. Dynamic inversion is described in [LS88] and a short summary
is in [ABSB92]. This summary is paraphrased here.
Dynamic inversion, as will be used in this thesis, will allow us to develop a control law which

will make a given system have approximately the same dynamics as a desired system. The nonlinear

aircraft dynamics can take the form

i = f(z,u) (2.118)

y = Cso (2.119)

where @ is an (n x 1) state vector, u is an (m x 1) input vector and C is a (p x n) constant matrix.

To use inverse dynamics as described in [LS88], our equations must be in the following form

z = A(z)+ B(z)u (2.120)

y = C(z) (2.121)

where A(z) is an (nx 1) vector and B(z) is an (n x m) matrix. To transform (2.118) and (2.119) into
(2.120) and (2.121), we can augment the system dynamics with derivatives of appropriate control
inputs. To get the inverse dynamics of (2.120) and (2.121) we differentiate each of the elements of
y until a term containing a u appears. Since only m outputs can be controlled independently by

m inputs, we will assume that p = m. We can now represent our equations as

y[ldxl

[dz]
Y
d9=| 7 | = hz) + g(z)u (2.122)

yy"]




where yf" is the d;th derivative of the output ;. We will use v to represent the output of the

desired dynamics. By setting v = 49, we can develop the inverse dynamics control law.

u=g(z) (v - h(z)) (2.123)

2.2.2 Conirol Selector.  The flight control system in this thesis will have as a result of the
pilot commanded inputs what will be called generalized commands. These will be the commands
from the controller, K and will be rotational rate commands for the corresponding actuators (for
example, pitch rate corresponds to the elevators — the pilot doesn’t care what his actuators are
commanded to do, as long as they give him the desired pitch rate). A control selector will be used in
this thesis to transform generalized rotational rate commands, §*, into actuator position commands,
5. However, we want the contribution of §* to the system to be the same as the corresponding é.

In other words, we want

Bé = B*§* (2.124)

There are cases where different actuators combine to produce a desired effect. For instance,
an aircraft with asymmetric horizontal tail and asymmetric flaps (as the VISTA F-16 has) could
use both control surfaces to achieve a desired roll rate. Put another way, both control surfaces
combine to form, in effect, an aileron. The VISTA F-16 is just such an aircraft [ABSB92]. This
thesis will focus on the lateral/directional part of the VISTA F-16. The control surfaces used are

asymmetric horizontal tail, asymmetric flaps, and rudder. This is represented as

épr




However, we can capture the effects described above by combining asymmetric horizontal tail and

asymmetric flaps into a single effective control which we will call aileron (84).

04
brpr =N = Néar (2.126)
or

Now, substituting (2.126) into (2.124) and solving for 4r gives
6ar = (BN)*B*64p (2.127)

The operator (-)# represents the left pseudo-inverse of (-). Since our real actuators are érrr, we

need to substitute (2.127) into (2.126)
P —— (2.128)

where

T = N(BN)#B* (2.129)'

which is the equation which relates our generalized controls, 8% p (hereafter known as *) to our
actual controls é7rr (hereafter known as §). Note that B is function of flight condition. Thus, the
control selector (T) is a function of flight condition (Mach number, altitude, and angle of attack)

as well.




III. F-16 Design Ezample

The example used in this thesis will be a manual flight control system for the lateral /directional
axis of the VISTA F-16 test vehicle. The basic problem was taken from [ABSB92]. The first section
of this chapter will give a brief overview of their design. In Section 3.2 we will delve into the details
(define equations of motion, actuator, develop Keq, etc.), and introduce noise into the system. The
result will be the basic design model. This design model will not be complete. To complete it we
will have to select the inputs we will concern ourselves with, then select the outputs we wish to
minimize and weight them if necessary. This is done in Chapters 4 and 5. In Section 3.3 we will
highlight the differences between the design model and the evaluation model we will use. The eval-
uation model will not be used to simulate the system with uncertain parameters. The assumption
is made that the designed system will be given sufficient robustness to handle parameter variations.

To evaluate the robustness, a robust analysis model will be developed in Section 3.4.

3.1 Overview

The basic design was taken from [ABSB92]. They design a 2-degree-of-freedom, manual flight
control system for the lateral/directional axis of the VISTA F-16. The block diagram of this basic
design is found in Figure 3.1. A key element of their design is the use of an “inner equalization
loop” containing the controller K¢,. The purpose of this loop is to reduce the amount of gain
scheduling required by making “the input/output behavior of the closed loop system uniform for
all operating conditions by using a nonlinear static feedback matrix [K.g]” [ABSB92:page 44]. In
other words, they try to make the outer loop see the same desired dynamics from the inner loop
no matter what the flight condition. This is done through K4, which is formed using dynamic
inversion [ABSB92:pages 28-29,53-55). It is dependent on flight condition and can be found using

table-look-up methods.
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Figure 3.1 Basic Design Model of the VISTA F-16

The inputs to the system are the pilot generated commands (or references) B.; (sideslip
angle about the stability axis) and fi,es (roll rate about the stability axis). The commands are
differenced with the correspbnding outputs of the system and fed into the controller, K. The
outputs of the controller are ,éc (yaw acceleration command about the stability axis) and ji. (roll
acceleration command about the stability axis). These are then input into a transformation matrix

T1 which transforms from the stability axis to the body axis.

The output of T1 enters the inner loop and, when combined with the output of K.q, is
converted to the generalized commands p. (roll acceleration command) and 7. (yaw acceleration
command) both in the body axis. The outputs of the inner loop are the states of the core plant
(in the body axis) B (sideslip angle), p (roll rate) and r (yaw rate). These are fed into T2 which

transforms from the body axis to the stability axis.




3.2 Details

3.2.1 Lateral/Directional Equations of Motion. The equations of motion for the linear

model are represented in state space as:

8 Ys sina —cosa 8 [ Yspr Yspr Yir Spr
p|=| Lg L L, p |t | Lior Lspor Lsr épr (3.1)
7 Ns N, N, r Nspr Nspr  Nsr 6r

The parameters in this equation are a function of flight condition (Mach number, altitude
and angle of attack). Only one flight condition will be used in this thesis. That flight condition
is the central flight condition. Central just means that the flight condition was at some dynamic
pressure between the minimum and maximum values for the design envelope. The flight condition
chosen as central corresponds to V = 622.43ft/sec, o = 4.3° at an altitude of 20,000 ft. The A
and B matrices associated with this condition are found in Appendix A. Engineering judgement

was used in choosing the central flight condition.

The “states” which we are ultimately interested in controlling are 8 and ji. These will be
compared to the reference signal from the pilot and entered into the outer loop controller, K. g is

one of the states of the core plant. The stability axis roll rate, i, can be found from

fp=pcosa+ rsine (3.2)

Another output which we may be interested in is ny, the lateral acceleration in g’s. This can

be determined from:




v
g

Ny = Ys sina (l—cosa)] P (3.4)

8.2.2 Control Selector.  Recall from Section 2.2.2 that T (the control selector) transforms
the generalized rotational rate commands, §*, into the actual actuator position commands, §. Our
generalized commands are actually rate commands (p and r), so our generalized rate commands

are rotational acceleration commands p. and 7,.. The control effectiveness matrix for § is:

Yspr Yspr Ysr

B=| Lspr Lspr Lsr (3.5)
Nspr Nspr Nsr
The control effectiveness matrix for 6 is:
0 0
B*=|1 ¢ (3.6)
01

The generalized rate commands, §*, are the body axis roll acceleration command, p., and

body axis yaw acceleration command, 7.. By substituting the B from (3.1) into (2.124), we see

that _ o 3 ) )
Yspr Yspr Yir épT 0 0
Dc
Bé= | Lspr Lspr Lsr bpr | =11 0 = B*6" (3.7)
o
Nspr Nspr Nsr 6r 0 1

Recall from (2.129) that the control selector is :

T = N(BN)*B*
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It was found that by choosing the N in (2.129) to be the identity matrix, unreasonable control
deflections would occur [ABSB92]. This problem can be prevented by combining the asymmetric
flaps and asymmetric horizontal t'ail into a single effective control as described in Section 2.2.2. This
effective control was the “aileron”. Thus, N fixes the proportion between asymmetric horizontal
tail and asymmetric flap commands for the effective aileron. Since the horizontal tail’s primary

purpose is pitch control, a ratio of 1/4 was used [ABSB92].

N was chosen to be

0.25 0.0
N=1| 10 0.0 (3.8)
0.0 1.0

This choice was an engineering judgement decision.

3.2.8 Inner Loop Design. In this section we will use the information found in Sections

2.2.1 and 2.2.2 to form the inner loop controller, K¢4.

With the control selector implemented and neglecting actuator dynamics, the equations of

motion are:

ﬂ Ys sina —cosa B 0 0




Now we want to use inverse dynamics to form K.q. We can see that by taking the derivative of

(3.10) once, we get (3.9) back and we have both of the controls appearing in the output equations.

h(z) g(=)
7T 1ir 1T :
B Yg sina —cosa B8 00
Pe
p|=|Lg L, L p|*t|1 0 (3.11)
Te
7 N, N, N, r 0 1

We now have the form in (2.122),

Y = h(o) + g2}

However, we have more outputs than inputs which violates the assumption in Section 2.2.1.
We can see why this is so important by naively continuing on. By taking the left-inverse of g(z)

which is, in our case, the left-inverse of B*, we can form our version of (2.123).

We then have

B Ys sina —cosa B8
0 1 0

j’c = vV — L"9 Lp L, P (312)
6 0 1

e Nsg N, N, r

We immediately see that we have an incongruity in dimensions. The left side is (3 x 1) but the

product on the right side is (2 x 1).

The 2 outputs, p and r represent the dominant fast dynamics of the open loop system

[ABSB92]. By limiting ourselves to p and r, we represent the system well and meet the assumption

that the number of outputs equal the number of inputs.




(3.10) then becomes

B
P 0 10
Y = = P (3.13)
r 0 01
r
After we differentiate once, we get
B
P Lg L, L, 10 De
7 Ng N, N, 01 Te
r
which is the correct form found in (2.122).
This makes our real inverse dynamics control law
B
De 010 Lg L, L,
— v — P (3.15)
Te 0 01 Ng N, N,
T

Note that the ,6 dynamics are not represented in (3.14). This will cause the inner loop

equalization to be less than perfect.

Remember that v is the matrix which represents the desired linear dynamics. This is obviously
an important step in the control synthesis for the inner equalization loop. A linear quadratic
regulator design was performed at the central flight condition described in Section 3.2.1. The
desired dynamics for the dynamic inversion calculations are the regulated dynamics at thisl flight

condition.

Anom = (Acentral - B*KLQ) (316)
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Figure 3.2 Design Block Diagram of the Inner Loop

B
Anomn Ano’mzz Ano‘m;g
v= p (3.17)

Ano‘m.n Anomu Anomu

The compensator for the inner equalization loop can be represented as a linear state feedback

compensator of the form.

. B
P
=Ke | p (3.18)
7
r

where

Anomss —Lp  Anomms — Lp  Anomns — L
K= | "™ " ’ " (3.19)

Anoms; — Ng Anoms, — Np  Anomss — Ny
The aerodynamic parameters in (3.19) are stored in a database for future table lookup.
Note that the description of the design of K.q above corresponds to the block diagram of the
inner loop found in Figure 3.2. The most notable feature of this block diagram is that it has no

actuator dynamics. On top of that, it uses the generalized version of B. This will be one source of

error between the design model and the evaluation model.




3.2.4 Actuator. In the design of the outer loop controller, K, we will include a model of
the actuator. The actuator model used in the design model is a linear system which is based on
the generalized commands. We are simulating a “generalized actuator”. Just as a real actuator
takes control deflection commands and produces actual control deflections, this “generalized actu-
ator” will take the rotational acceleration commands and produce rotational accelerations. This is
represented in transfer function matrix form as

(19.7)(65.0)2

(s 19.7)(s% + 2(0.71)(65.0)s F (65.0)%) 2x20eom (*) (3.20)

§*(s) =

This is the actuator which has been used in previous work [ABSB92]. However, to simplify things

and reduce the order even further, we will use an even more simplified model.

§*(s) = (‘{.%91"767)6:““(3) (3.21)

This corresponds to the state space representation found in Appendix A.

3.2.5 T1 and T2 As already described, T1 and T2 are the transformation matrices
between the stability axis and the body axis. These are a function of angle of attack, o, and are

defined as

sinae cosa

Ti= (3.22)

—cosa sina

1 0 0
T2 = (3.23)

0 cosa sina

Since o = 4.3° at our central flight condition,

7.4979¢ — 02 9.9719e — 01
T1 =

—9.9719e — 01 7.4979e — 02




1.0000e + 00 0 0
T2 =

0 9.9719e — 01 7.4979¢ — 02

Note that by regulating in the stability axis, the control will have a dependence on angle of attack

that will eliminate some of the need for gain scheduling with a.

3.2.6 The Ideal Model. The ideal model of the desired aircraft response to pilot inputs
will drive the flying qualities aspect of the design. The ideal model is made from the ideal low order
equivalent system transfer function parameters. We will include the flying qualities in the design
process by forcing the complementary sensitivity transfer function to take the frequency response

shape (the loop shape) of this ideal model.

The ideal loop is just to give us a reference so we can see how well we tracked the ideal model.
It is not on the actual aircraft, although it could be. To effectively use such a model following
system in that manner would be an adaptive control type procedure which is out of the scope of

this thesis. The ideal model for this design has the form

B w?

B:  s2+2pwis+wd (3.24)
2 1/Tr

—_— = 3.25
e = (o+1/Ta) (3.25)

where wp is the desired Dutch roll frequency, {p is the desired Dutch roll damping, and T is the
desired roll mode time constant. Note that in the ideal model, we are not allowing for coupling

between sideslip and roll rate. Not only does the ideal model provide the desired flying qualities,

but it will force the design to attempt to decouple the responses.




For this thesis, the ideal model parameters are wp = 3.0 rad/s, {p = 0.71, and T = 0.33

seconds. The state space representation of the ideal model using the above parameters can be

found in Appendix A.

3.2.7 Noises. We will attempt to design for robustness, noise and disturbance rejection.
The sensor noises and the wind gust (disturbance) will be modeled as white, Gaussian noise inputs

which are taken through coloring filters to more realistically represent the class of noises.

9.2.7.1 Wind. The wind gust “noise” isn’t actually a white noise (uniform energy
across all frequencies) , but more of a colored noise (more energy in one set of frequencies than in
others). Most of its energy is at low frequencies, so the wind gust is passed through a low-pass
filter to be represented more accurately. The filter chosen here was taken from [Bai92]. The filter

is represented in the frequency domain as:

_ 0.0187k,

= e (3.26)

The wind gust enters the system as a perturbation in 8. This is effectively accomplished by
multiplying the filtered wind times the first column of the A matrix of the plant and adding this

to the states. The first column of A will be denoted by T'.

3.2.7.2 Sensors. There are three sensors in the system which measure the states
of the core plant. Sensor noise is a high frequency type noise. To model the sensor noise, a white
Gaussian noise is taken through a high pass filter. This is done for each of the three sensors. The

transfer function is:

_ 0.08(s +0.01)
(s+10)

W, = K, (3.27)
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Figure 3.3 Design Block Diagram of the VISTA F-16 with Noise

where
ks, 0 0
K, = 0 k, O (3.28)
0 0k,

kp, kp, and k, are the gains for the 8, p, and r sensor noise respectively.

The noise gains k, and K, are the “design knobs” used in designing an H3 controller. They

will also be used to develop a simulation model of the noise, which will be discussed later.

Figure 3.3 shows the design model with noise. Note that except for eyery, this figure has none
of the outputs or weightings associated with an actual design problem. The main purpose here is to
highlight the difference between the design and evaluation models. Later, when we design an outer

loop controller, we will choose what outputs we wish to minimize and their associated weightings.

3.8 Evaluation Model

The evaluation model for this example is shown in Figure 3.4. One of the main differences

here when compared to the design model are the actuators. The actuators in the aircraft are not

the generalized actuators used in the design. They are the actuators for the differential tail, the
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Figure 3.4 Evaluation Model for the VISTA F-16

differential flaps and the rudder. The model for the actuators is now

(19.7)(65.0)2

brrr(s) = (s + 19.7)(s? + 2(0.71)(65.0)s + (65.0)2)I3X36TFR°(3) (3-29)

The control selector will be used to convert from §! to é7rr, and will be required prior to
the actuator. Of course, the evaluation model will not recognize that we designed K., for a perfect
actuator (ACT = I). Therefore, there are enough differences between the design and the evaluation
model that the controller we design (K) will have to be fairly robust to handle the differences

between the two models.

To determine the noises used in the evaluation model, the gains k; and K, were used to
“tweak” the noises to make them more realistic. To choose a realistic kg, the open loop system (no
outer feedback loop) was simulated with K, = 0 using various k4’s . The goal was to find the gain

which produced a somewhat realistic output response. The responses looked at were 3, 1, and ny.

To choose K,, the open loop system was simulated with k; = 1 using various K,’s. The

noisy responses were compared with the noiseless responses to get a good ratio. Again, the goal

was to get responses which weren’t too outrageous but were big enough to see improvements in the
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subsequent designs (hopefully). The values finally chosen were :

004 0 0
kg=1 Ks=| 0 003 0
0 0 0.01

See Figure 3.5 to get an idea of the size of the sensor noise compared to the wind gust. To get a
feel for the response of the system to the wind gust and noise, see Figure 3.6. We can see that the
noise produces a fairly strong response especially in i (~ 9°/sec) and n, (0.25 g’s). 8 is not too

bad at = 1°. This noise is strong enough that we should be able to see a difference in the design.
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Figure 3.7 Robust Analysis Model for the VISTA F-16

3.4 Robust Analysis Model

To analyze the robustness of our controllers, a robust analysis model developed in [ABSB92]
was used; see Figure 3.7. This model will analyze the ability of the controller, K, to handle the
structured uncertainty in the plant, (A4, ), unstructured uncertainty in the actuator (Ag¢) and
the sensors (Ayens), and the performance (Apery). Following [ABSB92], robust stability analysis
is performed on the Ay B, Agct, and A,en, blocks separately due to the lack of highly accurate
models for the different uncertainties. Robust performance analysis is performed on all four blocks

together (the four blocks are combined into one large block).

3.4.1 Structured Uncertainiy. The plant uncertainty, represented as structured uncer-
tainty, is driven by perturbations in aerodynamic parameters. As in [ABSB92], seven stability
derivatives and seven control derivatives are identified for robustness analysis. The perturbed state

equations can by written as:

t=(A+AA)z+ (B+AB)u (3.30)




where

AY; 0 0
AA=| ALs AL, AL (3.31)
ANs AN, AN,

AY; 0 0
AB=| ALs AL, AL (3.32)

ANg AN, AN,

Now, incorporating the A4 p block, we can rewrite the system equations as:

# = Az+ Bu+BalAy B2 (3.33)

z2 = Caz+ Dau (3.34)

When 5(A4,p) < 1, we can represent the maximum uncertainty in the system matrices as:

AA=BaCa (3.35)

AB = BaDa (3.36)




AY, 0 0

ALy 0 0
ANs; 0 0
0 AL 0
Ca = (3.38)
0 AN, 0
0 0 AL,

i O7x3 ]
O7x3
ALspr 0 0
AN;spr 0 0
0 ALspr 0
Da = (3.39)

0 ANspr 0

0 0 AYsr

0 0 ALsr

0 0 AN;sr

The level of uncertainty for the parameters at each flight condition is represented as a per-

centage of its nominal value. These values are found in Table 3.1 [ABSB92:page 77).

Table 3.1 Structured Uncertainty Levels

stability derivatives | control derivatives
AYg = 0.15Yp AY;r = 0.15Y5g
ALg =0.10Lg ALspr = 0.15Lspr
AL, =0.30L, ALspr = 0.10LsprF
AL, =0.20L, ALsgr = 0.40Lsp
ANg = 0.30Ng ANspr = 0.15N;sp7r
AN, = 0.50N, ANspr = 0.20N5pF
AN, = 0.15N, AN;r = 0.15Nsg




3.4.2 Unstructured Uncertainty. The uncertainties in the actuator and the sensors are
represented as unstructured uncertainties. Since we wish to analyze the “real” system, we will
use the “real” actuators. The actuator uncertainties represent unmodeled dynamics as well és
saturation effects. As per [ABSB92], the uncertainty is assumed to be 30% for each actuator. By
putting the value of 0.30 ahead of Ag:, we are ensuring that for any (Agct|o(Aact) < 1), i p <1

we will be able to handle the 30% uncertainty. So

03 0 0
Weet=1| 0 03 0 (3.40)
0 0 03

The uncertainties in the sensor are caused by the quality of the sensors. The body axis
rotational rates can be measured very precisely and reliably by gyros. The sideslip angle, however,
is usually estimated or reconstructed using complementary filtering [ABSB92] and is not as accurate
or reliable. The analysis for the sensors are accomplished for the following levels of maximum

uncertainty: 10% in body axis rotational rates and 40% in sideslip measurements."

04 0 O
Wins=1| 0 01 0 (3.41)
0 0 0.1
8.4.8 Robust Performance.  There are three differences in the analysis of robust perfor-

mance when compared to the robust stability analysis.

1. The level of structured uncertainty is reduced from the uncertainty used for the robust sta-
bility analysis. The levels of uncertainty used in robust stability analysis were the worst case
tests of closed loop stability. In general, we will lose robust performance long before we lose

robust stability as the size of A is increased. It is, therefore, unreasonable to expect robust
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performance to the same worst case set used in robust stability. For this reason, the robust
performance analysis is accomplished using uncertainty levels which are 25% those shown in

Table 3.1.

. The performance weight, Wy, used here is not the same as that used in robust stability.

That design weight was mainly chosen to give good nominal performance. Here, we are
concerned with how much error there is between the ideal model and the evaluation model.
We want a weight which will bound the allowable error between the two models. The weight
chosen here was designed to ensure that the steady state error to commands is less than 10%

and is an estimation of the weight used in [ABSB92].

0.2471(s + 4.5389)

I 3.42
(s+.1176)  ** (342)

Whpers =

The SV plot of the inverse of (3.42) shows a graphical representation of the error allowed

between the two models and is found in Figure 3.8.

. The robust performance analysis will be performed using all four blocks simultaneously.

Now we are ready to start the design process.




IV. p Design
4.1 Outer Loop Design

We will attempt to design the outer loop compensator, K, to provide flying qualities, robust-
ness, and sensor noise and wind gust disturbance rejection. We will first design a u controller which
will meet the flying qualities and robustness objectives, and then examine its noise and disturbance
rejection capability. Next, we will attempt to design an Hj controller which will do better in sensor
noise and wind gust disturbance rejection than the p controller. We will then “combine” the two

controllers using mixed H2/p to get the best of both worlds in the next chapter.

4.2 p design
The design model for p-synthesis is shown in Figure 4.1. In this design, we are modeling an
input-multiplicative actuator uncertainty and an additive plant uncertainty. The flying qualities

will be characterized as being good if the actual output of the system is close to an ideal model of

the desired aircraft response to pilot inputs. This will be our performance requirement.

4.2.1 The Ideal Model and the Performance Weighting. =~ The ideal model for this design

has the form

g _ w}

E T84 2Cpu1;)f)s +w? (4.1)
B 1/Tg

P P V) (%2

where wp is the desired Dutch roll frequency, (p is the desired Dutch roll damping, and T is the

desired roll mode time constant.
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Figure 4.1 Design Model for p-synthesis

The performance weight, Wp, is designed to provide a frequency weighting on the “perfor-
mance error”. We want this error to be small, but we are mainly concerned with frequencies which
are between 1 and 10 rad/s. These are the frequencies which “dominate the transient response
of the closed loop system to pilot commands. If the performance error is not reduced adequately
in this frequency region, higher order dynamics will show up in the transient response, destroying

flying qualities.” [ABSB92]
For this thesis, the ideal model parameters are wp = 3.0 rad/s, (p = 0.71, and Tr == 0.33
seconds. The performance weight chosen was

_ (s+30)

We = (s +0.03)

Ipx2 (4.3)
To incorporate robust performance, the A block associated with the performance will be

represented as a full block.

4.2.2  Actuator. The description of the actuator is found in Chapter III. The input
multiplicative uncertainty model is represented mathematically as (I + A)ACT where A represents
the uncertainty in the actuator. We will assume that we have fairly accurate models of the actuator

at low frequencies, but that our model becomes less accurate at higher frequencies. There is no

4-2
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Figure 4.2 Singular Value plot of WaacT

frequency information in A. That information is incorporated through the weighting associated

with A.

The weighting chosen for the actuator in the p design is

200(s + 5)(s + 200)
(s + 20)(s + 10, 000)

Waacr = (4.4)

the singular value plot of which can be found in Figure 4.2. This weighting is designed to indicate
an uncertainty of 10% at low frequencies and an uncertainty of 100% at approximately 400 rad/sec.
As can be seen in Figure 4.2, the uncertainty continues to grow until the frequency is approximately

10,000 rad/sec, where it is flattened out to avoid an improper transfer function.

The uncertainty in the actuator is not very well known. It could have magnitude and phase

variations and the control surfaces could interact with each other. Therefore, the A block used for

the actuator is of the unstructured kind (a full block).




4.2.8 Parameter Uncertainty Weighting.  The uncertainties in the plant come from equal-
ization errors and uncertainty in aerodynamic stability derivatives. Robustness to parameter vari-
ations is incorporated into the p-synthesis design model through the weights Ba and Ca. Section

3.4.1 presented a detailed description of this method using variations in 14 parameters.

Unfortunately, the order of the controller produced by p synthesis is proportional to the
number of outputs and inputs to each A block and the order of the fit used for the D matrix for
each of those blocks. In our case we will have 3 blocks; one for the actuator, one for the plant,
and one for performance. MATLAB’s pu-Synthesis Toolboz will always set the last block equal to
the identity matrix and therefore has no D-scale associated with it [B*93]. That leaves us with
two A’s we have to worry about. We will let n, and m, equal the number of inputs and outputs
respectively for the actuator block. We will let n, and m, equal the number of inputs and outputs
respectively for the core plant block. The order of the weighted plant (P) is np and the orders of

the D scale fit for each block are ng4, and ngep. The order of the controller n, will be

Ne =Tp + nda(na + ma) + ndcp(ncp + mcp) (45)

Note that the above assumes all blocks are full blocks. If any part of the blocks are repeated scalar

blocks, they will have their own D scale and will contribute in the same way.

Now, if we were to use the 14 input, 14 output A block from Section 3.4.1, and if we chose
a 2nd order fit of the D scaling for that block, we would add 56 states to our controller from that
block alone. This is not acceptable. To try to reduce the order, we will attempt to make the system
robust to the inner loop equalization error and do extensive analysis of the actual uncertainty using

the Robust Analysis model.

We saw in Section 3.2.3 that the inner loop design does not perfectly equalize the plant. In

this case, the error in equalization will be due to Yg, sina, and cos @ not existing in the inner loop




controller. By treating these parameters as uncertainties in the u design, we will make the overall

control system more robust to the errors in the equalization [ABSB92:pg. 63].

Our uncertainty block will allow for the fact that there can exist interaction between the
parameters when it comes to uncertainty. This means we will use a full block to represent the
uncertainty. The weighting matrices are scaled such that the maximum uncertainty (when G(A) =

1) in the A matrix is represented as :

AA = BaCa (4.6)

The parameter uncertainty weights used in this design are:

0.1 0.1
By = 0 0 (4.7)
0 0
005 0 O
Car = (4.8)
0 0.26 0

4.2.4 State space formulation. The state space formulation is as follows:

ACTUATOR: (assume strictly proper)

Bact = AactPact + BoctUact (49)
Yact — CactTact (4.10)
G: (assume strictly proper)

2, = Acz:.+ Bada+ B*u, (4.11)

Ye = Cez. (412)




act*®

mAa.ct = AAa.c! mAac! + BAa,ctuAa.ct
eAa.ct = CAa,ct mAa.ct + ‘DAact uAa.ct
Wp:
d}'wp = Awp:c'wp + B'wp'u"wp
€perf = C’wpm'wp + D'wp'urwp
IDEAL: (strictly proper)
igt = AiaZia + Biavia
via = Ciazia

The state vector and disturbance vector are:

T
T2 = I:mc Taet Lidl Lwp T'Aact:I

T
d = [dAact dA dperf]

This makes the state space representation of P:

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)




Ac B* Cact 0 0 0
Bact Keq Aacz 0 0 0
Ay = 0 0 Aag 0 0 (4.21)

~Bout T 0 Bwpcidl Awp 0

BpgctKeg 0 0 0 Apnact
0 Ba 0
Bact 0 0
By = 0 0 Bia (4.22)

0 0 BupDia

0 0 0
0
Ba.ctTl
By, = 0 (4.23)
0
BAa.clTl
DAactKeq 0 0 0 CAact
Ce= Ch 0 0 0 0 (4.24)

_prTZ 0 prCidl pr 0

Cy=|-T, 0 0 0 0 (4.25)




Daa=1|0 0 0 (4.26)
0 0 DuypDia
DpactTy
Dew = 0 (4.27)
0
Dy = [ 00 I ] (4.28)
Dy, = [0] (4.29)

4.2.5 Results. The p-Toolboz was used and gave the controller found in Appendix B. It
is a 26th order, strictly proper controller. The singular value plots of the controller can be found

in Figure 4.3.

The controller was entered into the Evaluation Model for simulation.

4.2.5.1 Tracking Capability. The tracking capability (ability to follow the ideal
model) can be seen in Figure 4.4. The ideal response is represented by the dashed line, the actual

response is shown as a solid line.

Since in this case we are dealing only with angles and angular rates, we can assign whatever
angular units we wish to the plots and nothing would change. We will assume the inputs to be in

degrees.

As seen in Figure 4.4, a step in @ produces a maximum deviation from the ideal 3 response

of 0.05 deg. The response of /& for a 3 step stays very close to zero (within 0.1 degrees). A step in
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Figure 4.3 Singular Value plot for the optimal u controller

[+ has a tougher time tracking the ideal model but still has an acceptable maximum error of 0.19
degrees/sec. The (3 response to the j step is almost negligible. We can see that p synthesis did a

very good job of tracking and decoupling the responses.

The noisy tracking response can be found in Figure 4.5. It can be seen that, besides the

expected noisiness, there is no significant change from the noiseless response.

4.2.5.2 Robusiness. Recall from Section 3.4 that, except for A,.rf, We are going
to analyze each uncertainty separately for robust stability. This means we will perform p analysis
on the Ay B, Agct, and A,en, blocks in Figure 3.7 one at a time, treating each as if it were the
only block in the system. We will also treat these blocks as a block diagonal of the appropriate
number of As, where each A is a 1 x 1 full block. This will allow us to simulate an uncertainty
for each sensor, actuator and parameter. Note that we are designing for a “tougher” uncertainty
than that which is used in the evaluation. We are designing for uncertainties which interact with
each other. We are evaluating uncertainties which do not. Besides the fact that we are always

justified to design conservatively, we are also justified in that we are including more uncertainties
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Figure 4.6 u bounds for the u controller

in the evaluation than was used in the design (for controller order purposes), such as the sensors

and more uncertain parameters in the plant.

The p plot for the design (three full blocks forming one big block) is found in Figure 4.6. The
robust analysis plots are calculated using the robust analysis model and are found in Figure 4.7.
We can see that even though u = 4.609, we still satisfy the conditions set in the robust analysis.
This is just saying that the weighting we gave p in the design sets us up for a much tougher problem
than what we actually need in our robust analysis model. Or put another way, the weightings we
used in the design are much more conservative than the weightings we used in the analysis (which

is our best guess of the model of the uncertainty).

The system responses to wind gusts and sensor noise only (no command) are shown in Figure
4.8. When compared to the open loop response in Figure 3.6, we see that pu did fairly well even
in noise and disturbance rejection. For a complete and accurate comparison later, we will look at
two things when talking about the state response to noise: the standard deviation, which is a more
mathematical measure; and the maximum value, which is more intuitive. Table 4.1 summarizes

the reduction in noise compared to the open loop (Figure 3.6) using both measures.
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Table 4.1 Reduction in Open Loop Noise and Wind Effects using 2 Controller

state | maximum value | standard deviation
B -33% —-40%
73 —62% —64%
Ny —54% —-62%

Note that (ignoring the rates, which would be washed out) the control deflections are reason-

able with the possible exception of the rudder. It is moving +8° for just noise!

For comparison purposes, Figure 4.9 shows the response of the system given sensor noise only.
This is to get an idea of the size of the high frequency content of the noise, which is lost in the

much larger wind gust effects.
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V. H, and Mized Hy/p Design A

We can see from the preceding figures that the p controller does a good job on the robustness
and the tracking problems. In fact, it is good enough in those areas that we could sacrifice some
of those features in trade for something else. While the u cc;ntroller also does reasonably well on
noise and disturbance rejection, there is room for improvement. Qur objective now is to design an
H, controller which will show even more improvement on noise and disturbance rejection. Then,
an appropriate mix of Hy/u should provide better noise rejection than y alone without losing much

of u’s robustness or tracking capability.

5.1 Hj Design

The design model for the H; problem is found in Figure 5.1. Note that in this design, we
have the wind gust entering the system directly into the states (specifically, into §). We have
the sensor noises entering into the inner loop since we must be able to measure the outputs of
the plant to bring those values. into K.q. We would normally put the penalty on contr‘ol usage,
Zeontrol, Tight after ACT. In this way we would be penalizing actual control usage. However, since
our actuator is strictly proper, this penalty would produce a zero D,, term which would violate
H;/H,, assumption (4) in Section 2.1.3.2. Moving the penalty to just before ACT would take care
of that assumption, but would violate D,,, = 0 (assumption 1) since Wyoise enters the inner loop.
This, in turn, could be taken care of by MOVINg Wneise Outside of the inner loop, but that makes
the problem unrealistic (we would have perfect measurements entering K.y but not K ). It was

decided to move Zeontrar to just after the controller, K. In the same way, Zstates must be prior to

Wpoise instead of after it. That way, all assumptions involving z will be met.

The weightings py, Ks, kg, Kstates are all design chosen variables to “tune” the H, problem
to produce the desired controller. The weights W, and W, are coloring filters to model the wind

gust and sensor noise as colored noise. Wy is a low pass filter to model the wind gust as having
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Figure 5.1 Design Model for H; -synthesis

most of its energy at lower frequencies. The filter chosen is the same filter used in the evaluation

model. The filter for the sensor noise W, is also the same high pass filter used in the evaluation

model.

5.1.1 State Space.

The state space equations for the actuator and core plant are found

in Section 4.2.4. The only other dynamical elements in Figure 5.1 are W, and W,.

Wy:

Zg

Yg

s

Ys

= Agzg+ Byug

= Cyzg+ Dyug

= A,zs+ Byu,

= Cyzs+ Dsu,

(5.1)

(5.2)

(5.3)

(5.4)




where

and

Uy = K, Wnoise

0 0
ks, 0
0 ki, |

The state vector and disturbance vector are:

T
[mc Lact <Tg ms]

T2 =

[ Waust

T
Wnoise ]

This makes the state space representation of P:

A

Az:

B*C.e TC, 0

Bact Keq Aact

0 Ba.ct KeqCa

A, 0
0 A,
0
BactKeq Ds Ks
0

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)




KstateaTZ 0 00

C, =
0 0 0 0
Cp=| -T, 0 0 —TzC,,]
0 0
D,y =
00
0
D,y =
pul

Dyw = [ 0 -T,D,K, ]

Dy, = [0]

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

H, optimization design is a very “hit and miss” type of process. Everything depends on

finding the correct design variables to get an acceptable answer. Methods to “find” the correct

values of these variables are few and far between. If we do not “happen” to choose the correct

values, we will not get an acceptable controller. In our case, we must find the correct design weights




for the H, system which will produce a controller that does better than the p controller on noise
and disturbance rejection. This proved to be one of the hardest tasks of this thesis. Even when
successful, the changes were minor; however, we are looking at the concept of mixed Hz/u and
interesting things were found. In this problem, it was possible to beat the u controller in either the
noise or the control usage, but it seemed impossible to beat x in both. Months were spent trying
to vary the individual weightings and look for trends. The only thing noticed here was that the
two-norm itself means little when changing the weights. When we change a weight, we are changing
the problem and we cannot compare the new two-norm with the old two-norm in the weighted H>

system.

Traditionally, the method used is to try to shape the open loop singular value (SV) plot to
get the desired loop shape. This was tried with no success. What we are really interested in is the

closed loop response of the system. That is where our attention will now focus.

The method which seemed to have the most success in finding the weights which would
produce a controller that beats p involved studying the frequency content of the signal coming out
of the system. If we want to observe the response of the system due to the sensor noise, we need

an outer loop controller. The identity matrix was chosen for ease of use.

The system’s response to wind gust and noise for K = I is found in Figure 5.2. Even though
the input to the system is a white noise (uniform power at all frequencies), the output will not be
white. In addition to going through the coloring filters which make the input more realistic, the
system itself is a filter and will favor certain freqﬁencies above others. Our objective here, then, is
to determine the frequencies which the system “favors”. To do that, we need to examine the power
spectrum of the output signal (a plot of power vs. frequency). MATLAB has a discrete Fourier

transform function “FFT” which can be used to estimate the power spectrum of a signal. The

result of FFT for each of the “states” is found in Figure 5.3.
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To estimate the power spectrum of a signal from a plot such as Figure 5.3, we can apply the

following equation to determine the frequency for a given index or sample number [0S89].
Actual freq = 2n{inde)(= (5.18)
ual freq = 2m(indez)(m .

where T is the sample time used in the simulation and N is the total number of samples. We can
see from Figure 5.3 that all three responses have most of their energy around indez = 30. In our

case, T' = 0.005 and N = 10000. Hence, most of our energy is around 3.8 rad /sec.

On a purely theoretical basis, if our simulation accurately simulated white noise, this should
be sufficient since white noise has a flat power spectrum and the system would filter all noise in
the same manner. However, our samples are probably not accurate representations of white noise.
Thus, any analysis which only includes one sample of noise is incomplete. We need to do a series of
samples at various random number generator seeds. Several seeds were used and the peaks of the
power of all samples had frequencies around 3.8 (£0.9) rad/sec. Thus, it was felt that 3.8 rad/sec

was an appropriate representation of the frequency that had the most power.

Now we have a more quantitative way to help us in determining the design weights needed for
our H; design. We now know that we want the gain of the closed-loop response to be low around
3.8 rad/sec since this is where most of our noise is coming from. This can be seen directly in an SV
plot of Zstates/Ws OF Zstates/Wy. We can vary a weight and measure the gain at the frequency of
interest using the SV plot. As we change the weight we can see the corresponding change in gain.
An example of the type of plots which will be produced is seen in Figure 5.4. We can see from
these plots that there is a hump around 3.8 rad/sec. It is this hump which must be lowered if we

want a less noisy response.

We can now make a program which will systematically vary each of the weights and record
the maximum gain of the closed 100p Zytates /Wy and Zsiates/Ws SV plots at the frequency (ies)

of interest and make a plot which will show the data graphically. An example of such a plot is

5-8
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Figure 5.4 Closed loop SV plots for Z,;4tes vs. wind gust and sensor noise, K =1

in Figure 5.5. In this way, gains can be found which produce the lowest singular value at the
frequency(ies) of interest. Using this method produced the most favorable response of any other
method tried up to this point. The weights which produced the best responses are found in Table

5.1

Table 5.1 Design Weights for the 1st controller

Design Weight | value
P 0.001
Ksta.tes kb 1
km 1
K, ks, 1
ks, 1
ks, 1
kg 1

The plots of the response to wind and noise are in Figures 5.6. The closed loop SV plots are
in Figure 5.7. Note how the humps in Figure 5.7 have decreased. This corresponds with Figure

5.6.

Unfortunately, this controller, when evaluated on the evaluation model, is unstable. This

is possibly a problem. H, guarantees us a stabilizing controller and this controller does indeed

5-9
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Figure 5.5 Effect of varying one design weight, k., on closed loop gain of Z,¢ates for wind gust
and noise input at w = 3.8 rad/sec

stabilize the design model. But the controller isn’t robust enough to handle the differences between
the design model and the evaluation model. The major difference between the two models is that
in our design model, we are using generalized controls instead of the actual controls. This is too
large a A for this H; controller to handle. Recall that H; optimization wasn’t designed to handle
uncertainty, but u synthesis was (note that 4 had no problem with this A). This is consistent with
what we know already about H; and u. While a mixed controller might be acceptable, it was felt
that this controller was not preferable as an “anchor” to the mixed Ha/p problem (i.e., as the right

end of the curve).

At this point there were two alternatives: either go back and make the design have the
same actuators as the evaluation model, or choose larger controller weights to see if the resulting
controller will be acceptable noise-wise and not drive the evaluation model unstable. The latter
approach was used. The design chosen had the weights shown in Table 5.2. This controller will be

denoted H; Controller A. The results of this controller are discussed in the next section.
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Table 5.2 Design Weights for H, Controller A

Design Weight | value
P 0.7
Katates kb 1
km 1
K, %y, 0.1
k,, || 0.1
k. 0.1
kg 10

5.1.2 Results. Recall that our objective in the H; portion is to do better than p in noise
and disturbance rejection. We don’t necessarily care about its tracking capability or robustness,
although these will be interesting to look at and compare with the u controller and the final
mixed Hz/p controller. For right now, though, we will only concern ourselves with the noise and

disturbance.

The response and closed loop SV plot of Hz Controller A are found in Figures 5.8 thru 5.9.
The response marginally improved over the u controller for two of the “states” (8 and ny), while
s got worse. Also note that the “hump” in Z,tates/W, in Figure 5.9 has appeared again. A more

quantitative look is in Table 5.3, which summarizes the change in maximum noise value and the
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standard deviation when compared to the u controller. We will also include the maximum value of

the control deflections to get an idea of the control power used.

Table 5.3 Change in pu Controller Noise and Wind Effects using Hz Controller A

state | maximum value | standard deviation || control surface | maximum control deflection
B —-19% -21% épr ~T7%
i +30% +27% épF —77%
Ny —9% —4% én —73%

We see that with one exception, the noise response is better and we have gained an enormous

reduction in control usage. Therefore, we expect that the mixed controllers should show an overall

improvement in noise and wind response.

5.2 Mized Hy/p using Ha Controller A

5.2.1 More Definitions.

Before we continue and discuss mixed Hz/p for Design A, we

will add another definition to the list in Section 2.1.3.2 and make a notational comment.




We will define @ as the two-norm of the p part of the system with the K3 ,, controller in
place. Recall from Section 2.1.3.2 that normally @ would be infinite since the Hoo controller usually
has a nonzero D, term. That is not the case for us (see the u controller in Appendix B). Hence,

we will have a finite & and the definition has meaning.

Recall from Section 2.1.5 that mixed Ha/y is mixed Ha/Hy with the Ho, problem scaled by
the D scales. Calculating the infinity-norm of this scaled Ho, problem is calculating the overbound
of p. To keep the distinction straight, when we refer to the mixed Hz/u problem and talk of the
infinity-norms, we will continue to use the 7’s defined in Section 2.1.3.2. This will remind us that
we are calculating the overbound to u and not p itself. We will also occasionally refer to the H;
open loop system and the p open loop system (Ho open loop multiplied by the D scales). These
will be designated P, and P,, respectively; the corresponding closed loop systems will be designated

T, and DT,qD~!, respectively.

5.2.2 The Miz. At this point we know the general shape of the curve (Section 2.1.5),
one end point (associated with the Hz optimal solution, the “anchor”), and a point where the
curve may not be able to reach (the point associated with the p controller). Remember, all two-
norm calculations are done with T}, and all infinity-norm calculations are done with DT.;D 1,
Therefore, using the u controller and using the Hy optimal controller found above, our end points

yield:

p:  @=6.567  y=4.709 26** order

Hy: a=0.6532 75=2923¢+4 9 order

These can serve as a check on our optimization routine.

The H,/H, optimization program was run on MATLAB for a 9t order controller. The

resulting 4 vs. a curve is found in Figure 5.10. The location on the curve of each controller
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Figure 5.10 « vs. a curve using Design A

calculated is shown by an ’x’. A controller from this set of controllers must now be chosen. Usually,
a point near the “knee” of the curve is chosen to get a “lowest o for the lowest 4” type point. The
“knee” in Figure 5.10 is shown in more detail in Figure 5.11. As long as we stay in the vicinity of
7, we should keep most of our tracking and robustness characteristics. The lower a should give us

the better noise performance when compared to p.

The chosen controller has a 4 == 7.992 and o = 1.716. This controller will be denoted as

Mixed Controller A. The plots of the noise and disturbance response are in Figure 5.12.

We can see immediately that the control usage decreases dramatically but the response is
worse for all three “states”. We might have expected that i would increase since it was higher
in the H; optimal response compared to the p controller. However, the two-norm is lower for the
mixed controller than in the u controller; at least one of the state responses should improve. It is

the states that concern us the most. Table 5.4 summarizes the changes when compared to p.

5.2.2.1 Possible Problem — Order. One possible explanation for the discrepancy

is the fact that the mixed curve is 9th order (order of the H, optimal system) and a minimal
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Figure 5.11 “Knee” of the v vs. a curve using Design A

Table 5.4 Change in u Controller Noise and Wind Effects using Mixed Design A

state | maximum value | standard deviation || control surface | maximum control deflection
,3 +10% +12% épr —65%
i +73% +66% épr —65%
ny +50% +51% ér —65%

realization of the p controller is 23rd order. To examine this possibility, a 23rd order controller
was formed from H, Controller A by adding 14 pole/zero cancellations. If order is indeed the
explanation, then with the 23rd order controller as our starting point, our mixed controllers (which
will also be 23rd order) should have responses which are better than u (possibly 8 and ny better,

£ worse). This was not the case. All state responses were worse.

5.2.2.2 Possible Problem — Robustness . It is known that u is designed for robust-
ness and Hj is not. We have already seen how one H design was stable for the design model but
not for the evaluation model. Perhaps Hz Controller A was also not robust, not in a stability sense

(the controller did stabilize the evaluation model), but in a performance-to-noise sense. Maybe at

some point on the curve, the u side starts to take over and the noise performance gets better, while
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Figure 5.12 System’s Response to Wind Gust and Sensor Noise, Mixed Controller A
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lower on the curve the performance gets worse. If that was the case, then it may be that the area
p extends its robustness to wasn’t reached by our curve. We can see in Figure 5.13 that there is a

large gap between the point where our 23rd order curve ends and the point associated with the p

controller.

In this case, the problem is, again, the difference between our design model and our evaluation
model. We are saying that our two-norm, which is calculated using the design model, does not
accurately reflect the “truth” which we see in our evaluation model. Therefore, to test this theory,
we can use the evaluation model to calculate our two-norm. We will form the open loop system
(P) from the evaluation model, close the system with the controller and calculate that two-norm.
This will give us the “true” two-norm. We will do this for the 9th order controller that we used
(Mixed Controller A) and for the p controller. Appendix C gives the state space representation of

the open loop evaluation model and the resulting matrices. The resulting two-norms are:




The two-norm for Mixed Controller A is less than half that of the p controller, and should
have less noise than . Since this two-norm was calculated from the evaluation model and we are
simulatingl using the evaluation model, we know that we have an accurate measure of the two-norm.
This is in direct contrast to what we’ve seen in the time responses. There is only one choice left

to us. The overall two-norm isn’t an accurate measure of the noise. This will be examined in the

next chapter.




VI. H, Revisited
6.1 Another Look at the Two-norm

So far we've been taking the two-norm of the whole system as our objective and using the
two-norm as an indication of the “noisiness” in our system. However, we have seen that it isn’t a
reliable indicator. Even though the two-norm for Mixed Controller A is less than the two-norm of

the p controller, the time responses are much noisier. How can this be?

The answer lies in a basic property of the two-norm. We can split up an H system into
components (when we are calculating the two-norm). In the case of the system in Figure 6.1, we
can consider the system as two systems that are the same except for the choice of outputs. One
system (designated T,;) will have only Z,tates = 8, ;},]T and the other system (designated Te:,)

will have only Zeontrat = [64, 6R]T (the generalized controls). The two-norms are related by

| Tewllf = ITeellf + (| Teer 13 (6.1)

Two proofs are available. One uses the Lyapunov equations which are used to calculate the

two-norm (2.4 through 2.6), the other uses the definition of the two-norm (2.1). We will use the
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K

Figure 6.1 P-K version of the Hy part of the Hz/H, problem




latter. Let

Zst
7z = (6.2)

Z ctr

where Z,; is the output concerning the states and Z, the output that weights control usage. For

now, leave the exogenous input as one vector, w. Then

Z,t/w Tt
Tow = = ) (63)
th'r/w Tct'r
Now, by the definition of the two-norm,
Qitot = ”{szllg (64.)
1 [+
= -2—7;/_00 tr [T, Tow) dw (6.5)
1 +o0 Tyt
= /). tr [ T, T, ] dw (6.6)
Tctr
1t
= _2_7r / tr [T,*tht + T‘;,’.Tct-,-] dw (6.7)
1 [t 1 [t
= — tr [T, To] dw + — tr [T, Tetr] dw .
o . ’l‘[ 3tTt] + 27r»/—-oo 1"[ ctr t] (68)
= |IToell? + | Teer I3 (6.9)
= afy+ak, (6.10)

With this in mind, we should reexamine our results and look at all three two-norms (we will
designate the total two-norm as o). To do this, all we have to do is change the C' matrix to
correspond with the appropriate outputs. MATLARB’s p-Toolbox does this very easily using the

SEL (select) command. It takes a system matrix 1 and the appropriate division of Z and forms

10ne way the u-Toolbox can represent the system. A system is put in this form using the “PCK” (pack) command.
It takes the 4, B, C and D matrices and packs them together into one matrix with some additional information
inside to tell the number of states. It can then determine the number of inputs and outputs.
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Figure 6.2 4 vs. a curves for the various two-norms using Design A (x), and the p Controller(*)

the corresponding system matrix for the new system. Table 6.1 shows the final results of the

calculations. In fact, we can do this for the whole v vs. a curve we calculated before. This is found

in Figure 6.2.

Table 6.1 Various two-norms for the u Controller and Mixed Controller A

Controller Opot Qg Qctr

© 6.5668 | 0.4348 | 6.5489
Mixed A 2.8271 | 0.7803 | 2.7172

After calculating the two-norms of the individual a’s, we see that a,; is indeed higher for
Controller A than for g. This corresponds with the time histories we have observed. We also see

that o, increases as y decreases. This makes sense in that o, is bigger than «,;, and therefore




contributes heavily to ayo:. Thus, most of the concentration when decreasing oo is to decrease

Qctr. Unfortunately this doesn’t correspond with the output we are most concerned about, Zsiates-

In fact, we can see from Figure 6.2 that we have a problem from the start. At H; optimal,
we see that we start out at a higher o, than that of p, so of course the mix will not work well in

terms of oe. This is not a good controller from the start.

6.2 Mized Hy/u Design B

Let’s go back and look at the earlier H; design and corresponding controller (from Chapter

V) that destabilized the system. Call this Hz Controller B. Its two-norms are shown in Table 6.2.

Table 6.2 Various two-norms for the u Controller and Hz Controller B

Controller Qiot Oyt ety
© 1.120 1.116 | 0.0894
H,B 0.4026 | 0.4021 | 0.0206

Table 6.3 Change in u Controller Noise and Wind Effects using Hz Controller B

state | maximum value | standard deviation || control surface | maximum control deflection
B —32% —33% épr —81%
i +25% +21% épF —81%
ny —14% —8% or —71%

Now we are starting out in a good position, with a,:(Hz) < ase(p). Traditionally, this
controller would not have been used in the mixed algorithm since it is not really a good controller
by itself (it destabilizes the evaluation model!). However, we will try it anyway in the hopes that
the p controller will extend its robustness characteristics to the mixed controller enough that the

mixed controller will stabilize the evaluation model.

For consistency, the summary of the noise and wind responses of Hz Controller B is found in

Table 6.3.
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Using H, Controller B, the new “end points” are:

p:  @=112  y=4709 26" order (6.11)

Ha: a=04026 7=3323¢+5 9™order (6.12)

The v vs. « curves are found in Figure 6.3. At this point, our main concern is finding an Hy
controller which does better than the u controller in noise and disturbance rejection. This is where
our attention will focus. Thus, we will choose a fairly low « (and subsequently high ) for our
mixed controller. In this way, we hope to determine if our mixed design has potential. The chosen

mixed controller (Mixed Controller B) has « = 18.046 and a;or = 0.6228.

First, let’s look at the two-norms. Table 6.4 lists the various two-norms for the “ends” and

chosen mixed controller.

Table 6.4 Various two-norms for the u Controller, H; Controller B and Mixed Controller B

Controller Qot Qs Qctr
© 1.120 |} 1.116 | 0.0894
Mixed B 0.6228 | 0.6207 | 0.0514
H, B 0.4026 | 0.4021 | 0.0206

This looks promising, as c,(Mixed) < a,:(u). We also see from Figure 6.4 that Mixed
Controller B stabilizes the evaluation model. The p Controller obviously extended its robustness

to this controller. The summary of responses is found in Table 6.5.

Table 6.5 Change in u Controller Noise and Wind Effects using Mixed Controller B

state | maximum value | standard deviation || control surface | maximum control deflection
B +50% +46% épT —37%
['1, +34% +32% épr -37%
ny +33% +34% 6r —40%

Again, we are in a quandary. The system’s response is worse in all of the 3 states we care

about. This is in spite of the fact that s (Hz2) < ase(p). We must re-examine the two-norm issue.
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Step in Beta: Ideal (dotted) and Real (solid) Beta
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6.9 Yet Another Look at the Two-norm

Let’s now look at what Z in (6.2) consists of.

T, Tat Wy
z2=Tpw = w=
Tetr Tetr r
Tstw Tst, Wy
Tetr,, Tetr, Wy
Tstw Tat,

&3
g
I

Tct'ru, Tct'r,

Now we substitute (6.15) into the definition of the two-norm.

1ofre
1Teullfi= 52 [ tr(TiTuuldo

1t T Teor, Tot, T,
= 2—- tr dw
Moo T T Tor. T
st ctr, ctry ctr,
1 Foo

= om tr {T:t,,,Tstw + Tg, Tot, + Tepr, Tetr, + T:tr,TCtT.} dw
-0

= N Tetull3 + |1 Tet, 13 + 1 Tetr |13 + 1 Terr, |12

. 2 2 2 2
= aat._., + ast, + act’rw + actr,

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)




We could extend this even further by breaking up the vectors Z,; and Z;, into their individual

signals : )
g
Dyt =
b
6a
oty =
or

Hopefully, this will be unnecessary.

Now we can examine the various two-norms of the system we just designed.

Table 6.6 Various two-norms for the u Controller and Mixed Controller B

[ Controller [ oot [ @t || @at, | @at, || Cetr || Qctry, | etr, |
I 1.1195 1.1160 || 0.0472 { 1.1150 || 0.0894 || 2.7543e-4 { 0.0894
Mixed B 0.6228 ||l 0.6207 || 0.0648 | 0.6173 || 0.0514 || 2.4868e-4 | 0.0514
H, B 0.4026 |li 0.4021 || 0.0597 | 0.3976 || 0.0206 {| 6.3648e-5 | 0.0206

Even though a,; is going in the right direction, the bulk of it is composed of a¢,. It should be
the sensor noise that is affected the most and in the right direction. To verify this result, the wind
in the evaluation model was multiplied by zero to “turn it off”. Simulations of the sensor-noise-only
response were then completed for both the p Controller and Mixed Controller B. The maximum
magnitude and the standard deviation of the responses were then compared as before. The results
of the comparison are in Table 6.7. The plots for Mixed Controller B are shown in Figures 6.5 and

6.6 for later discussion.

Table 6.7 Change in p Controller Noise Effects Only using Mixed Controller B

state | maximum value | standard deviation | control surface | maximum control deflection
J¢j —65% —~63% épT -56%
3 —54% —48% épr —56%
Ny —55% —50% ér —53%
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After comparing Table 6.7 with Table 6.5, we see that the sensor noise was, in fact, affected
the most favorably by this controller. We also see when comparing Figure 6.6 to Figure 6.5 that
the response to sensor-noise-only is very small compared to the résponse of wind-and-sensor-noise.
Therefore, the majority of the wind-and-sensor-noise response is due to the wind. This corresponds
to what we would expect. Thus, it is really o, we are trying to decrease as we walk down the
curve. We are concerned with a,¢, as well, but since the noise response is so small, it would be
sufficient if a,;, remains below a certain amount. This sounds like an optimization problem with a

(some) constraint(s).

Note also from Table 6.6 that H, Controller B has a higher a,;, than the u Controller. The
way the problem is set up, c,;,, has to increase. We obviously must have o, lower for the anchor

than for u. That, however, is not the end of our problem.

The optimization program we are running tries to produce the optimal curve for that order.
Since we are using the p controller as a reference,‘ we will examine what happens as the curve is
traced from the p controller to the Hy optimal controller. For the p controller, we have seen that
Q0 is made up mostly of a,; which is made up mostly of e,¢,. In other words, a,¢, makes up the
majority of as,;. Therefore, as the program forces a;or to decrease (walking down the curve from
the p controller), it is forcing oy, to decrease. As long as a,:, is decreasing, a,:, could decrease
or increase since it is so small. If the Hs optimal controller had a lower a,:,, than the u controller,
but it didn’t make up the bulk of a,;, there would be nothing to prevent a,¢, from getting larger

than the corresponding u value at some point on the curve causing our time responses to get worse.

In fact, we see something similar in @, in Table 6.6. There, we see a situation where the
mixed controller has a larger a,;, than either the anchor or the p controller. This brings up the
following question: At the optimal curve for that order, are the paths of the smaller two-norms, in
fact, allowed to vary at will? Or are they monotonically increasing or decreasing? If the latter is

true, then we see from Table 6.6 that we must be at a local minimum. If the former is true, we can




not make such a generalization and may not be able to say anything at all about how the smaller

two-norms will behave.

Assuming local minima are not the problem, the answer to our immediate problem lies in
finding a weighted Hj system which will make a,; the largest element of oo and at the same time

make a,;,, the largest element in a,;.

6.4 Mized Hy/pu Design C

We will now attempt to find the weights for our H, system which will do two things:

1. Make oy, the largest element in the o array (largest element in eo )
2. Make o4, for the anchor smaller than for the u controller

We will start our search by varying the weights of H, Controller B since it has better time
responses when compared to Ha Controller A. Recall that even though it was destabilizing to the

evaluation model, Hy/p was able to produce a stabilizing controller.

It may be possible to do something similar to the p weightings, where we use 2 matrices to

produce a A4

AA=ABAC

In our case we would produce a matrix of input weightings and a matrix of output weightings

which, when combined, would weight Z,; , more than the others.

A simpler yet logical choice would be to make the wind weighting, kg4, larger. This could,
by the same logic, also make a,, larger, which might make o, larger than o,;. This would be

undesirable. However, a.¢,,, is 5o small that making it slightly larger shouldn’t hurt too much.

The method used was to increase ky and examine the two-norm array using the resulting H>
controller as well as the two-norm array using the u controller. Recall that it is the u controlier

with which we will compare. Also recall that the two-norms are of the weighted H; part of the
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system, so changing the weights changes T,. Hence, even though the time responses of the pu

controller won’t change (we are still using the same controller), the two-norms will (we are using

the new Hj system with that controller).

There are several choices available to us as engineers at this point. We could try to get all

two-norms of the H, controller less than the corresponding two-norms of p or we could try to get

a little more difference between the noise responses of the wind-and-noise for a little bit of loss in

the sensor-only response. This would correspond to allowing the percentage difference of a,;, to

get smaller so that the percentage difference of ;. could get larger. This was the choice made.

A value of k; = 32 was chosen. A further increase in kg (kg = 64) produced a situation where the

only two-norm that decreased relative to u was a,;,; all others increased when compared to p.

The two-norm array for the new Hj controller (H; Controller C) is seen in Table 6.8.

Table 6.8 Various two-norms for the p Controller and H, Controller C

[ Controller [| atr [| st || oo, |

Oyt ” Cletr ”

Qctr,, | Cctr, |

© 1.8789
H; C 1.4204

1.8767 || 1.5096
1.4105 || 1.1310

1.1150 || 0.0898 || 8.8139%-3 | 0.0894
0.8429 || 0.1668 || 8.6967e-3 | 0.1666

The time response plots of the corresponding H, optimal controller are found in Figures 6.7

and 6.8. Tables 6.9 and 6.10 summarize the responses.

Table 6.9 Change in p Controller Noise and Wind Effects using H, Controller C

state | maximum value | standard deviation || control surface | maximum control deflection
B 7% —T74% épT —-71%
13 —-22% —-26% épF —-71%
Ty —46% —44% br —47%

We see that we finally have an Hz controller which does better than the u controller in all

areas. The closed loop SV plots for Z,¢ates/ Wy and Zysates /W, are found in Figure 6.9. We see here

that we have indeed reduced the gain at the frequency of interest (3.8 rad/sec). An examination of

the step response (not included) showed that this controller is destabilizing to the evaluation model.
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Figure 6.7 System’s Response to Wind Gust and Sensor noise, Controller C
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Table 6.10 Change in u Controller Noise Effects Only using H; Controller C

state | maximum value | standard deviation | control surface | maximum control deflection
B —86% —85% épr —73%
i -30% —23% épFr —73%
Ny —-61% —56% or —62%
- Zg1ates/Wg SV Plot
i
7]
‘sei'o" 1o’
Frequency, rad/sec
Zsiates/Ws SV Ploi

Singular Value, dB
3 \'

Frequency, rad/sec

Figure 6.9 Closed loop SV plots for Z,sate, vs. wind gust and sensor noise for Controller C

For later comparison with the mixed controller, Figure 6.10 shows that we have no robustness with
our H, controller. Our purpose all along has been to incorporate some of u’s robustness by using
the mix and we have seen that p can also take care of our instability. Both of these things should

be taken care of by mixing with pu.

One other point should be brought up before we examine the mixed controller. Note in Table
6.11 that s (and oer,) is larger for Hy Controller C than for u, yet the responses show the
opposite. The explanation is probably due to the fact that we have been calculating the two-norms

using the weighted H system and not the evaluation model.

The resulting v vs. a curves for mixed Hz/p with this new (and final) controller is found in
Figure 6.11. A mixed controller with oo = 1.582, v = 7.997 was chosen as Mixed Controller C.

Note that this figure does not plot the whole two-norm array.

The two-norm array is shown in Table 6.11.
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Table 6.11 Various two-norms for the u Controller and Mixed and H; Controller C

[Controller | asor || st || sty | @st, || @etr || Qetry | otr, |
I 1.8789 1.8767 || 1.5096 | 1.1150 || 0.0898 || 8.8139e-3 | 0.0894
mixed C 1.5819 1.5688 || 1.1426 | 1.0750 || 0.2025 || 9.3628e-3 | 0.2023
H, C 1.4204 1.4105 || 1.1310 | 0.8429 || 0.1668 || 8.6967e-3 | 0.1666

The time response plots of the corresponding mixed controller are found in Figures 6.12 and

6.13. The summary of these responses are found in Tables 6.12 and 6.13. Just as was the case for

H, Controller C, we see that the time response plots follow the two-norms except for the control

usage. This discrepancy, again, may be attributable to the difference between the H; design model

and the evaluation model.

Table 6.12 Change in p Controller Noise and Wind Effects using Mixed Controller C

maximum control deflection

state | maximum value | standard deviation || control surface
J¢] —59% —54% épT -30%
@ —24% —24% épF —-30%
Ny —43% -38% bR —28%

Table 6.13 Change in u Controller Noise Effects Only using Mixed Controller C

maximum control deflection

state | maximum value | standard deviation | control surface
B —24% —24% épr —-28%
n —6% +1% épF —28%
Ny —20% —15% érn —24%

We can see from Figure 6.14 that Mixed Controller C is indeed stabilizing for the evaluation

model and provides a fairly good step response. From Figure 6.15 we see that this controller provides

robustly stability and robust performance. For comparison purposes, the noisy step response of

Mixed Controller C is found in Figure 6.16, the noisy step response of the p controller is recreated

in Figure 6.17. Most of the difference initially is due to the fact that the mixed controller tracks

a little worse than the u controller. After the initial response, though, we can see that the noise

response is slightly better for the mixed controller.
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Figure 6.12 System’s Response to Wind Gust and Sensor noise, Mixed Controller C
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Figure 6.14 Step Response plot of Mixed Controller C
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Figure 6.16 Noisy Step Response plot of Mixed Controller C
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Figure 6.17 Noisy Step Response plot of the u controller




We finally have a good mixed controller. This mixed Hj/u controller (Mixed Controller C)
incorporates most of the robustness and performance of the y controller while decreasing the effect
of noise and win.d gusts on the system. This reduction is fairly significant for the wind-and-noise
response and less so for the noise-only response. Note that this ixﬁprovement is accomplished for a
9% order controller compared to the 26* order u controller. For these reasons, it is felt that Mixed

Controller C is “better” than the u controller.




VII. Conclusions and Recommendations
7.1 Summary and Conclusions

This thesis examined the mixed Ha/u problem for a MIMO system. The system chosen was
the lateral/directional model of the VISTA F-16. The p controller proved to be not only very
robust with good model following capabilities, but also proved to do reasonably well at noise and
disturbance rejection. Due to this, it was difficult to determine the design weightings which would

produce an H controller that surpasses p’s performance in these areas.

In the process of attempting to find just such a controller, several novel techniques were
developed to aid in determining the appropriate design weightings for the H; system (which would
then result in the Hj controller). The method that was the most successful involved decomposing
the two-norm of the system into its constituent elements, the two-norms of the corresponding
individual elements of z and w. In this way, we were able to determine the weights which we
needed to concentrate on to improve the H3 noise rejection over the u controller’s. Once we had

those, it was a simple matter to improve the H2 design.

We also found that it was possible to use an Hj controller which destabilized the evaluation
model and still have the resulting mixed Ha/u controller stabilize the evaluation model. This fact
expands the set of controllers which can be used as the “anchor” to the mixed Hy/u curve (the Hj
optimal point). This may be necessary for the H; controller to have better performance than the
1 controller.

A 9* order mixed Ha/p controller was found which improved upon the 26" order p con-

troller’s noise (wind gust and sensor noise) response. This was accomplished while still maintaining

acceptable levels of robustness and step response performance.




7.2 Recommendations

e Examine other flight conditions. The design of the inner loop is to force the response of the
system to be the same for multiple flight conditions. This thesis analyzed the responses at the
central flight condition. Other flight conditions should be examined to verify the capability

of the inner loop in the mixed Hy/p problem.

e Use a more accurate model of the VISTA F-16 for the evaluation model. The evaluation
model used in this thesis was a simplified, linearized model of the equations of motion. There
exists a high fidelity, six degree of freedom, nonlinear simulation model for the VISTA F-16
[ABSB92]. This model should be used to truly evaluate the controller developed in this thesis.
This is especially true since the H optimal that was used destabilized the evaluation model.

The nonlinear model would be the truth model.

e Examine the discrepancy in the two-norm for control. The two-norms of the control usage
terms of the final controller disagreed with the corresponding time responses. There is, as of

yet, no explanation for this.

e Attempt to incorporate the constituent two-norms into the optimization routine directly.
Now that we know the composition of the two-norm, we can choose the two-norm associated
with the item we are most interested in. We could make this two-norm the objective in our
optimization routine and treat the other two-norms as constraints. Another possibility would
be to make the objective a weighting of some or all of the constituent two-norms and the

remaining two-norms left as constraints.

e Study the use of the two-norm decomposition in Ha/Hy, and Hz/u . This thesis performed
the preliminary investigation. More work is needed. What is the effect, if any, of the ratios
between the two-norms? When on the optimal fixed order curve, do the individual two-norms

follow a monotonically increasing/decreasing path? If not, is there any way to predict when

they would increase or decrease?




Appendiz A. Model Data
A.1 Design Model Data

A.1.1 Central Flight Condition.  The central flight condition is defined as:

Mach=0.6 h=20,000ft o=4.3deg g=245.1psf

The state space representation of the central flight condition is:

Acentral = -1.6885e-01 7.5949e-02 -9.9523e-01
-2.7692e+01 -2.3750e+00 1.7141e-01
6.6973e+00 -6.6493e~02 -3.9717e-01
Bcentral = 2.3384e-02 3.7619e-03 2.5281e-02

-2.2464e+01 -2,9507e+01 6.0951e+00

-2.3973e+00 -5.2764e-01 -2.6622e+00

A.1.2 Design Actuator. The actuator model for the design model has the following state

space representation:

Aact = -1.9700e+01 0
0 -1.9700e+01
Bact = 1.9700e+01 0
0 1.9700e+01
Cact = 1




Dact = 0 0

A.1.8 Ideal Model. The IDEAL model has a state space representation of:

Aideal = -4.5576e+00 -1.0848e+01 0
9.5469e-01 2.9759e-01 0
0 0 -3.0303e+00
Bideal =  3.282be-01 0
0 0

0 9.9926e-02

Cideal = 0 2.8719e+01 0
0 0 3.0325e+01
Dideal = 0 0
0 0

A.2 Evaluation Model Data

The only difference between the design model data and the evaluation model data is the state
space representation of the actuator. The evaluation actuator is a 3 x 3 transfer function matrix.

Each transfer function has 3 states. This produces a 9th order state space representation.

Aact =

Columns 1 through 6




-1.1200e+02 0

0 -1.1200e+02

0 0

¢ -1.0000e+00

-1.0000e+00 0
0 0
0 0
0 0

Columns 7 through 9

8.3232e104 0
0 8.3232e+04
0 0

0 0

-1.1200e+02

-1.0000e+00

0

0

o]

8.3232e+04

0

0

6.0433e+03

1.0000e+00

0 6.0433e+03

6.0433e+03 0
0 0
0 0
0 0
0 0

0 1.0000e+00

1.0000e+00 0

0 0




0 0 -1
0 -1 0
-1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Cact =

Columns 1 through 6

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Columns 7 through 9

0 0 8.3232e+04

0 8.3232e+04 0

8.3232e+04 0 0







Appendiz B. p Optimal Controller

The state space representation of the controller from p-synthesis is as follows:

Columns 1 through 6

4.8582e¢+00 -1.9456e+00 1.9669e+01 -2.3481e+00 1.2155e-01 -2.3579e+00
1.3066e-01 5.8502¢-02 -5.9182e-01  1.0984e-01 -5.6868e-03 1.1031e-01
7.2513e-01 -6.1527e¢-01 4.8747e+00 -1.2647e+00 6.5470e-02 ~1.2700e+00
2.9826e+01 1.0654e+01 -2.9648e+01 1.5477e+01 -4.3683e+00 4.0397e+01
-1.3953e+00 -4.9843e~01 1.3870e+00 -3.6609e-01 1.7185e-01 -1.5616e+00
1.6065e+01 5.7384e+00 -1.5969e+01  6.4442e+00 -1.9202e+00 1.6039e+01
4,5564e-04 8.8126e-05 -3.2144e-04 1.4790e-03 3.4164e-05 -4.5169e-04
~2.6293e~03 -1.3881e-04 1.2036e~03 -8.2575e-04 -2.1286e-05 2.9088e-04
-5.4193e-04 -3.2388e-04 7.6824e~04 -6.3265e-03 -1.4483e-04 1.9093e-03
3.4080e-01 -6.7318e-02 7.5323e-01 -1.0525e-01 5.6446e-03 -1.0912e-01
1.3895e+00 4.9458e-01 -1.3781e+00 9.1974e-01 -1.7666e-01 1.6781e+00
2.2246e-05 4.2446e-06 -1.5592e-056 7.0998e-05  1.6404e-06 -2.1690e-05
3.0334e~06 -6.6155e-07 5.9030e-08 -1.6180e-05 -3.6628e-07 4.8108e-06
-2.4485e-05 4.9885e-06 1.4270e-07 1.2327e-04 2.7894e-06 -3.6631e-05
-1.1214e-04 -3.4754e-06 4.7024e-05 1.5755e-05 2.5500e-07 -2.9061e-06
2.4714e-04 -4.9770e-05 -~2.4664e-06 -1.2321e-03 -2.7878e~05 3.6609e-04
1.7033e~02 -3.4335e-03 3.8361e-02 -5.4730e-03 2.8331e-04 -5.4957e-03

6.9518e~02 2.4832e-02 -6.9103e-02 4.1782e-02 -9.0803e-03 8.6674e-02

4.1538e-10 5.1919e-11 -2.4297e-10 7.5573e-10 1.7627e-11 -2.3378e-10




1.5949e-09

4.5286e-04

6.0700e-05

~3.5996e-04

4.1138e-04

3.8636e-04

-2.0635e-03

.9213e-10

.0315e-086

.0767e-06

.7283e-06

.9500e-04

.3778e-056

.3920e-04

Columns 7 through 12

2.0401e+02
-9.5444e+00
1.0988e+02
7.8839e+02
~-3.6884e+01
4.2464e+02
-1.7270e-01
-2.7694e+01
6.6892e+00
9.4209e+00
3.6012e+01
3.2796e-01
6.5230e-05
-6.1308e-04

-1.0001e+00

6.3416e-03

.3482e+02

.0987e+01

.2648e+02

.3107e+01

.0855e+00

.2458e+01

.2036e-01

.2048e+00

.2683e-03

.2778e+01

.5940e-01

.1170e-03

.4525e-04

.5917e-02

.8687e-02

.615be-01

.4487e-09

.3620e-04

.9322e~-056

.3962e-04

.9359e-04

.5328e-04

.5264e-03

.6917e+01

.91564e-01

.1122e+00

.1749e+02

.4968e+00

.3281e+01

.9271e-01

.0840e-01

.8784e-01

.2986e-01

.4279e+00

.9463e-04

.9521e-05

.1263e-03

.4418e-03

.1444e-02

.0061e-09
.8430e-04
.7247e-05

.8459¢-04
.7422e-03
.0258e-03

.5339e-03

.9330e+00
.7756e~01
.1966e+00
.9185e-01
.7045e-02
.2650e-01
.3263e-05
.0001e+00
.2352e~05
.9973e+01
.6918e~02
.4843e-07
.0780e-07
.6463e-07
.5486e-06

.7182e-06

.0694e-10

.1470e-05

.0624e-07

.8758e-06

.5753e-05

.3762e-056

.7379e-04

.9665e-01

.2003e-03

.0692e-01

.3021e+00

.0127e-01

.3172e+00

.2333e-056

.1172e-05

.0001e+00

.0915e-03

.9900e+01

.5527e-06

.4319e-07

.6129e-06

.9076e-07

.6113e-05

.7313e-09

.5286e-04

.2178e-05

.9585e-05

.1308e-03

.1444e-04

.2967e-03

.9801e+02

.2634e+00

.0665e+02

.3440e+03

.5644e+02

.8011e+03

.4697e-02

.1791e~02

.0683e-01

.0528e+00

.5517e+02

.5588e100

.5497e-01

.1111e-03

.6151e-04

.1102e-02




4.7551e-01

1.8376e+00

-9.3358e-10

~7.1415e-09

-8.2717e-04

1.8792e-03

-6.5465e-03

3.6092e-02

-6.3886e-03

2.0629e-02

.4733e-01

.3873e-02

.0678e-08

.7468e-08

.3017e+00

.3570e-02

.5157e-01

.6381e~02

.6590e-02

.8054e-02

Columns 13 through 18

1.5318e+03

-7.1664e+01

8.2509e+02

-2.5429e+04

1.1896e+03

-1.3696e+04

-2.9258e-01

1.1398e+00

4.4606e-01

7.01568e+01

~1.1808e+03

-1.0863e+01

2.9670e-01

.9288e+03

.2414e+02

.7319e+03

.4241e+02

.4071e+01

.0768e+02

.1883e-01

.5303e+00

.3795e+00

.3406e+02

.1955e+01

.8151e-02

.5662e-02

.9432e-02
.7384e-01
.2033e-09
.4585e-09
.8981e-02
.0470e-03
.6633e-02
.8929e-04
.4963e-03

.1382e-03

.2580e+02
.8855e+00
LT773e+01
.7921e+03
.3062e+02
.5038e+03
.3004e-01
.1066e+00
.9320e-01
.8646e+00
.3050e+02
.88562e-03

.8962e-03

-1.

-1.

-1.

3828e-02

8456e-03

2535e-11

.3566e-11

.3920e-05

.8866e-06

.1492e-056

.0171e-056

.1417e-05

.9439e-05

.9539e+03

.3818e+02

.5909e+03

.7205e+02

.2710e+01

.4661e+02

.2718e-01

.3991e+00

.3759e+00

.5125e+02

.0754e+01

.8062e-02

.5302e-02

.5835e-04

.0027e-02

.6762e-11

.9534e-10

.0987e-05

.7896e-07

.4879e-06

.0837e-05

.2619e-05

.6437e-04

.3630e+04

.4447e+03

.9658e+04

.6252e+03

.0994e+02

.5684e+03

.4071e-01

.0077e+00

.1411e-02

.9630e+06

.0959e+02

.9007e-03

.5975e-03

.6152e-01

.7941e+00

.2466e-08

.5139e-07

.8319e-03

.8059e-04

.4331e-03

.3114e-02

.7071e-02

.2603e-01

.5496e+02

.0639e+01

.5277e+02

.6180e+04

.5639e+03

.1031e+04

.6741e-01

.1989e-01

.4254e+00

.9085e+01

.9628e+06

.7239e-02

.1969e-03




-5.7195e-04

2.8781e101

7.2176e-04

3.5705e+00

~5.9269e+01

-2.1879e-07

-1.0816e-06

-8.3446e-02

1.7054e-02

-7.9339%e-02

~2.9959e-01

-1.5744e-01

1.2921e+00

-3

-2

3

2

5

-1.

.3187e+00

.2124e-01

.3212e+01

.6150e+01

.1970e+00

.4117e-07

1843e-06

.0659e-01

.8010e-01

.8092e+00

.6735e-01

.8775e-01

.4748e-01

Columns 19 through 24

-5.2433e+06

2.4530e105

-2.8241e+06

1.1304e+04

-5.2933e+02

6.0905e+03

-6.4170e+00

6.9676e+01

-1.1710e+01

3.9139e+07

3.

7347e+05

.T472e+04

.0116e+056

.9079e+06

.6995e+05

.2593e+06

.8521e+01

.9144e+01

.5243e+02

.7054e+04

1

.4408e-02

.6647e~02

.4924e-01

.9326e-01

.5077e+00

.3991e-07

.3820e-08

.1604e-02

.1900e-02

.8279e-02

.3556e-01

.3171e-02

.5381e~-01

.0329e+01

.8224e4+00

.2494e+01

.2243e+00

.8475e-01

.4297e+00

.3615e-04

.3771e-04

.3109e-04

.6571e+03

-2.

-2,

8451e-01

1633e-01

.8183e+00

.8848e+00

.3453e-01

.2607e-07

.2053e~-06

.8649e-01

.7555e-01

.7806e+00

.7235e~01

.7381e-01

.9206e-01

.9653e+00

.1945e-02

.0586e+00

.0608e+00

.9630e-02

.7139e-01

.0350e-05

.0711e-05

.9500e-05

.7562e+01

.2709e-02

.4271e-02

.2797e-01

.7662e+02

.5442e+01

.0000e+00

.9535e-07

.6488e-01

.2802e-02

.4551e-01

.5943e-02

.2511e-01

.1605e-01

.4424e+01

.1426e+00

.3155e+01

.5068e+00

.1727e-01

.3502e+00

.8982e-056

.3559e-04

.6892e-05

.9288e+02

.7212e-02

.8922e-03

.7189e-01

.5267e+00

.8266e+02

.9018e-07

.0000e+00

.8620e-01

.4354e-02

.0276e-02

.4347e+00

.9365e-01

.8901e+00

.0007e+00

.3602e~02

.0776e+00

.2853e+01

.0048e+00

.3081e+01

.2212e~-04

.1145e-04

.3592e-03

.2484e-02



3.7084e+02

-3.1842e-01

-1.5293e-01

1.2034e+00

3.1874e+00

-1.2096e+01

-1.3221e+04

2.6350e+01

-8.3593e-06

-6.2462e-06

-1.0552e+01

-1.5315e+00

1.0799e+01

4.3991e+00

-6.4079e+00

2.5522e+01

.9013e+07

.8088e+00

.5213e-01

.9706e+00

.9730e-01

.9685e+01

.7049e+02

.9431e+04

.9632e-05

.5812e-04

.8712e+01

.4007e+00

.9235e+00

.4918e+02

.0486e+01

.9849e+02

Columns 25 through 26

-1.6216e-01

7.5863e-03

-8.7340e-02

-5.2461e-01

2.4543e-02

-2.8256e-01

-4.1141e-06

.7577e+00

.2231e-02

.4672e-01

.0042e+01

.6982e-01

.4090e+00

.7086e—-05

.8340e-01

.6563e-06

.0821e-06

.6854e-06

.6071e-05

.7585e~-05

.4061e-01

.9169e-02

.2812e-10

.5072e-10

.8319e+02

.9283e+00

.0056e+02

.0667e-04

.1699e-04

.1095e-04

.9284e-02

.00765e-07

.9051e-08

.0691e-07

.1179¢-06

.0428e-06

.5808e-03

.4726e-03

.2050e-12

.0640e-11

.9283e+00

.8518e-01

.3763e+00

.8403e-05

.9169e-06

.0018e-05

.1704e-01

.3997e-06

.0481e-07

.0245e-06

.4663e-05

.0538e-05

.6926e-02

.8428e-03

.8723e~-11

.4516e-10

.0056e+02

.3763e+00

.8445e+01

.7695e-056

.3101e-056

.1609e-04

.6578e+03
.5468e-05
.41%2e~06
.6017e-05
.8746e-06
.6001e-04
.6632e-03
.9880e-02
.6703e-10
.9458e-09
.0952e-04
.7675e-06
.4656e-05
.8319e+02
.9281e+00

.0056e+02




4.4192e-06

1.6341e-05

-7.4568e-03

7.7628e+01

-1.9783e-07

3.7842e-08

-2.8709e-07

6.0716e-08

2.8674e-06

-3.7795e-04

-1.2227e-03

~2.2654e~12

-2.3998e-11

-1.6185e-06

-1.4760e-07

-1.4100e-07

-8.9283e+00

3.8517e-01

-4.3762e+00

-1.4257e-01

1.1523e-03

-2.6863e-02

1.

i.

-1.

.6692e-05

.1573e-04

.0886e-02

.9354e+02

.7042e-06

.6345e-07

.8030e-06

.4396e-07

.7978e-05

.0968e-03

.3407e-02

.1208e-11

.5766e-10

.8267e—-05

.4316e-06

.4697e—~06

.0056e+02

.3762e+00

.8445e+01

2333e+00

5811e-01

8691e-01



.0406e-01

.4630e-02

.7318e-01

.6549e+00

.9712e+00

.5547e-01

.0652e+00

.4014e+01

.9740e+01

.2996e-03

.2455e-02

.7095e-01

.2868e-01

.9351e-06

.9842e-056

.0435e-06

.9462e-06

.8732e-01

.9340e-01

.0554e+00

.3627e+00

.4190e+00

.6752e+00

.4795e~-02
.2558e-01
.2266e+06
.9913e+00
.2893e+02
.4696e+01
.8160e+02
.1457e+01
.8907e~-01
.8393e-01
.0497e+01
.2057e+00
.6125e+01
.4875e-056
.4799e-05
.6819e-06
.6679e-07
.6431e+02
.3829e-01
.6041e+01
.5712e+00

.0195e+01

.5950e+01



Columns i through 6

-5.6064e-04 -2.0614e-04

1.8289e-04 -1.2869e-0b

Columns 7 through 12

6.5613e-03 -6.9979e-04

-3.4428e-03 -3.0469e-03

Columns 13 through 18

4.8916e-01 -8.0742e-03

~7.2792e~03  1.3404e-01

Columns 19 through 24

1.2272e+03 -1.6272et+04

1.6324e+04 1.2307e+03

Columns 25 through 26

9.8127e-06 -1.8978e-04

-3.8607e-06 4.8120e-05

.9145e-04

.7248e—-04

.4817e-02

.63563e-03

.3649e-02

.6108e-03

.0627e-05

.1671e-03

.4666e-04

.9156e-05

.6210e-06

.1476e-04

.6020e-04

.6958e-02

.7485e-056

.9164e-05

.4780e-05

.2819e-06

.2102e-05

.9604e-06

.1684e+01

.1867e+02

.2838e-05

.7132e-04

.1552e¢-04

.3916e-06

.4322e-02

.0231e-03

.1863e+02

.1566e+01

.1775e-04

.0002e-04







Appendiz C. State Space Representation of Hy Problem on the Evaluation Model

The H, problem on the evaluation model is shown in Figure C.1.

The state space representation of the P in a P— K format for the H problem on the evaluation

model is as follows (the control selector is represented as T):

Ac Bc Cact
Bact TcKeq Aact
Az =
0 0
0 0
TDyk,

TC,

0

0 BactTcKqusKs

0

0

BactTc KeqC.s

(C.1)

(C.2)




Z states

ot —=] Kg || W, }
T2
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éﬁéCSI>ACT»I%m 1)

-

cent

€q

T2

Figure C.1 Hj Problem on the Evaluation Model

e
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