
Flight Control Design using Mixed H2//U Optimization 

THESIS 

Douglas D. Decker 
Captain, USAF 

AFIT/GA/ENY/94D-8 

19941228 076 
DEPARTMENT OF THE AIR 

AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio sd* 
<jgQ& 



AFIT/GA/ENY/94D-8 

Flight Control Design using Mixed E^j'y, Optimization 

THESIS 

Douglas D. Decker 
Captain, USAF 

AFIT/GA/ENY/94D-8 

Approved for public release; distribution unlimited 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0788 

Puolic reccrr-.q ourden ror This ccliea:on of inTormation is estimated to average ' "our per response, including the time 'or reviewing instructions, searching existing data sources, 
gathering and Maintaining the data needed, and completing and reviewing the collection of information, Send comments regarding this burden estimate or anv other aspect of this 
collection or nrormation, including suggestions for reducing this ourden. to Washington Headquarters Services. Directorate tor inrormaticn Operations and Reports. 1215 Jefferson 
Davis Highwav. Suite 1201. Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (C7CJ-Q188). Wasnington. DC 20503. 

1.  AGENCY USE ONLY (Leave blank) 2- Rb°e°ceTm&erTE1994 
3- R»y'YsPThAeä! DATES C0VERED 

4. TITLE AND SUBTITLE 
FLIGHT CONTROL DESIGN USING MIXED H2/ii OPTIMIZATION 

5.  FUNDING NUMBERS 

i 

Douglas D. Decker, Captain, USAF 

i 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
'        Air Force Institute of Technology, WPAFB OH 45433-6583 

8.   PERFORMING ORGANIZATION 
REPORT NUMBER 

AFIT/GA/ENY/94D-8 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Dr Marc Jacobs 

AFOSR/NM 
Boiling AFB DC 20332-0001 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

] 11. SUPPLEMENTARY NOTES 

i 

\ 
1 

1 

\ 12a. DISTRIBUTjGS^'A^AlLABiyTY STATEMENT 
!        ApprovedTTor Public Release; 
i        Distribution Unlimited 

12b. DISTRIBUTION CODE                         i 
i 

' Tfnis thesis Examines the use of the mixed flV/x optimal control synthesis method in the design of a flight 
control system for the lateral/directional axes of the F-16 Variable Stability In-Flight Simulator Test Aircraft         i 
(VISTA). The method is designed to minimize the H2 norm (two-norm) for a given value of fi.   This 
should provide adequate noise and disturbance rejection while maintaining robustness against several types 
of uncertainties in the system.  This thesis finds that, for this problem, the two-norm is not an accurate 
representation of the outputs of interest.   When the two-norm is broken up into its constituent parts an 
appropriate solution can be found. This thesis also finds that it is possible to use an H2 controller which 
is destabilizing to the evaluation model as the starting point in the mixed Kily. curve and still get an 
acceptable answer. A numerical approach was used, utilizing a recently improved computer algorithm. 

14. SUBJECT,TERMS      „„ _     .    .       .        „ .   „^     .    .      .       ,,    „       ,     .,,,.,.      . 
Control Theory, H2 Optimization, H-mf Optimization, Mu-Synthesis, Multiobjective 
Optimal Control 

15. N^BER OF PAGES 

16. PRICE CODE 

17.   SECURITY CLASSIFICATION 

UN'Sf&'SSlFIED 
18.   SECURITY CLASSIFICATION 

tfNCL'A§Si¥lED 
19.   SECURITY CLASSIFICATION 

TJtfc£lWlED 
20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 



The views expressed in this thesis are those of the author and do not reflect the official policy or 

position of the Department of Defense or the U. S. Government. 

Aooesslon For 

HTIS «RAÄl    ~G3 
DTIC TAB £3 
Unannounced D 
jKStlflcatios __ 

By r 
Distribution^ 
Availability C«<Sea 

»i»t r vail emd/or Special 



AFIT/GA/ENY/94D-8 

Flight Control Design using Mixed H2/fi Optimization 

THESIS 

Presented to the Faculty of the School of Engineering 

of the Air Force Institute of Technology 

Air University 

In Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science 

Douglas D. Decker, B.S. 

Captain, USAF 

December 1994 

Approved for public release; distribution unlimited 



Acknowledgements 

I would first like to thank my advisor, Dr. Brett Ridgely, for all his help in getting this thesis 

done; from answering my questions to editorial comments and proofreading. Thanks also go to 

Dave Jacques and Linda Smith for programming new optimization schemes and letting me bounce 

ideas off of them. 

A very big debt of gratitude goes to my wife, Celia. Thank you honey for your patience and 

understanding. It's been a long haul and you've been great. Thanks also to Daniel and Drew, 

you guys and your Mom were always there to bring me back to earth and show me what's truly 

important. 

Most of all, I would like to give thanks to God for showing me the way to get around the 

roadblocks that held me at bay for so long. He makes all things possible. 

Douglas D. Decker 



Table of Contents 

Page 

Acknowledgements  u 

List of Figures  vi 

List of Tables  ix 

Abstract  x 

I. Introduction  1-1 

1.1 Background/Motivation  1-1 

1.2 Thesis Outline  1-2 

II. Preliminaries  2-1 

2.1 Mathematical Preliminaries  2-1 

2.1.1 H2 Optimal Control  2-1 

2.1.2 Hx Optimal Control  2-6 

2.1.3 Mixed F2/-ffoo Control     2-12 

2.1.4 /j, Analysis and Synthesis      2-26 

2.1.5 Mixed ff2//i Control  2-36 

2.2 Control Preliminaries  2-37 

2.2.1 Dynamic Inversion  2-37 

2.2.2 Control Selector  2-38 

III. F-16 Design Example  3-1 

3.1 Overview  3-1 

3.2 Details      3-3 

3.2.1 Lateral/Directional Equations of Motion  3-3 

3.2.2 Control Selector  3-4 

in 



Page 

3.2.3 Inner Loop Design  3-5 

3.2.4 Actuator      3-9 

3.2.5 Tl and T2     3-9 

3.2.6 The Ideal Model  3-10 

3.2.7 Noises  3-11 

3.3 Evaluation Model     3-12 

3.4 Robust Analysis Model  3-16 

3.4.1 Structured Uncertainty      3-16 

3.4.2 Unstructured Uncertainty  3-19 

3.4.3 Robust Performance  3-19 

IV. fj, Design  4-1 

4.1 Outer Loop Design  4-1 

4.2 fj. design  4-1 

4.2.1 The Ideal Model and the Performance Weighting  4-1 

4.2.2 Actuator      4-2 

4.2.3 Parameter Uncertainty Weighting      4-4 

4.2.4 State space formulation  4-5 

4.2.5 Results     4-8 

V. H2 and Mixed H2/n Design A      5-1 

5.1 H2 Design      5-1 

5.1.1 State Space  5-2 

5.1.2 Results     5-12 

5.2 Mixed H2/fi using H2 Controller A      5-14 

5.2.1 More Definitions  5-14 

5.2.2 The Mix  5-15 

IV 



' Page 

VI. H2 Revisited     6-1 

6.1 Another Look at the Two-norm      6-1 

6.2 Mixed H2/n Design B  6-4 

6.3 Yet Another Look at the Two-norm  6-8 

6.4 Mixed H2/fi Design C  6-13 

VII. Conclusions and Recommendations  7-1 

7.1 Summary and Conclusions     7-1 

7.2 Recommendations  7-2 

Appendix A.         Model Data  A-l 

A.l   Design Model Data      A-l 

A.l.l   Central Flight Condition  A-l 

A.1.2   Design Actuator  A-l 

A.1.3   Ideal Model  A-2 

A.2   Evaluation Model Data  A-2 

Appendix B.         fi Optimal Controller  B-l 

Appendix C.          State Space Representation of H2 Problem on the Evaluation Model . C-l 

Bibliography  BIB-1 

Vita  VITA-1 



List of Figures 

Figure Page 

2.1. Basic Block Diagram for the H2 problem  2-2 

2.2. H2 system with parameterized controller       2-4 

2.3. Basic Block Diagram for the Hoo problem  2-9 

2.4. Example of an if«, problem  2-13 

2.5. Basic Block Diagram for the mixed H2/Ho0 problem  2-14 

2.6. Possible regions for 7  2-25 

2.7. Typical mixed H2/Hoo 7 vs. a curve  2-26 

2.8. System with uncertainty  2-27 

2.9. P-K version of the system with uncertainty  2-28 

2.10. M-A version of a matrix with uncertainty      2-29 

2.11. M-A version of a matrix with two uncertainties  2-31 

2.12. M-A version of the system for robust stability and robust performance  2-33 

2.13. LFT system with uncertainty and exogenous inputs and outputs  2-33 

2.14. Mixed H2/n curve      2-36 

3.1. Basic Design Model of the VISTA F-16      3-2 

3.2. Design Block Diagram of the Inner Loop  3-8 

3.3. Design Block Diagram of the VISTA F-16 with Noise  3-12 

3.4. Evaluation Model for the VISTA F-16     3-13 

3.5. Wind Gust (solid) compared to Sensor Noise (dashed)      3-14 

3.6. Open Outer Loop Response to Wind Gust and Sensor Noise, angles in degrees . 3-15 

3.7. Robust Analysis Model for the VISTA F-16  3-16 

3.8. Singular Value plot of W~elf  3-20 

4.1. Design Model for /z-synthesis  4-2 

4.2. Singular Value plot of WAACT      4-3 

VI 



Figure Page 

4.3. Singular Value plot for the optimal fi controller  4-9 

4.4. Noiseless Tracking Capability of the fi controller (solid line) compared to the ideal 

response (dashed) for a step in ß and a step in ß  4-10 

4.5. Noisy Tracking Capability of the fi controller (solid line) compared to the ideal 

response (dashed) for a step in ß and a step in ß  4-11 

4.6. n bounds for the /z controller      4-12 

4.7. Robust Analysis of the fi controller  4-13 

4.8. System's Response to Wind Gust and Sensor noise, n Controller  4-14 

4.9. System's Response to Sensor Noise only, fi Controller  4-16 

5.1. Design Model for H2 -synthesis  5-2 

5.2. System's Response to Wind Gust and Sensor Noise, K = I  5-6 

5.3. FFT of the state responses to noise  5-7 

5.4. Closed loop SV plots for Zstates vs. wind gust and sensor noise, K = I  5-9 

5.5. Effect of varying one design weight, km, on closed loop gain of Zstates for wind 

gust and noise input at w w 3.8 rad/sec      5-10 

5.6. System's Response to Wind Gust and Sensor Noise, 1st controller  5-11 

5.7. Closed loop SV plots for Zttates vs. wind gust and sensor noise for the 1st controller 5-12 

5.8. System's Response to Wind Gust and Sensor Noise, H2 Controller A  5-13 

5.9. Closed loop SV plots for Zstates vs. wind gust and sensor noise for H2 Controller 

A  5-14 

5.10. 7 vs. a curve using Design A      5-16 

5.11. "Knee" of the 7 vs. a curve using Design A  5-17 

5.12. System's Response to Wind Gust and Sensor Noise, Mixed Controller A   . . . . 5-18 

5.13. 7 vs. a for 23rd order based on Mixed Design A, fi controller shown by * ... . 5-19 

6.1. P-K version of the JET2 part of the fi"2/-ffoo problem  6-1 

6.2. 7 vs. a curves for the various two-norms using Design A (x), and the fj, Controller(*) 6-3 

6.3. 7 vs.   a curves for the various two-norms using Design B (x) and the // Con- 

troller^)       6-6 

vn 



Figure Page 

6.4. System's Response to Steps in ß and ft, Mixed Controller B  6-7 

6.5. System's Response to Wind Gust and Sensor Noise, Mixed Controller B   . . . . 6-10 

6.6. System's Response to Sensor Noise only, Mixed Controller B       6-11 

6.7. System's Response to Wind Gust and Sensor noise, Controller C      6-15 

6.8. System's Response to Sensor noise only, Controller C  6-16 

6.9. Closed loop SV plots for Zstates vs. wind gust and sensor noise for Controller C 6-17 

6.10. Mu bounds plot of Controller C       6-18 

6.11. 7 vs. a curve for the various two-norms using Design C (x) and the fi controller 

(*)  6-19 

6.12. System's Response to Wind Gust and Sensor noise, Mixed Controller C    .... 6-21 

6.13. System's Response to Sensor noise only, Mixed Controller C  6-22 

6.14. Step Response plot of Mixed Controller C  6-23 

6.15. Mu bounds plot of Mixed Controller C  6-24 

6.16. Noisy Step Response plot of Mixed Controller C      6-25 

6.17. Noisy Step Response plot of the //controller  6-26 

C.l. H2 Problem on the Evaluation Model  C-2 

Vlll 



List of Tables 

Table Page 

3.1. Structured Uncertainty Levels  3-18 

4.1. Reduction in Open Loop Noise and Wind Effects using y. Controller  4-15 

5.1. Design Weights for the 1st controller  5-9 

5.2. Design Weights for H2 Controller A  5-12 

5.3. Change in y Controller Noise and Wind Effects using H2 Controller A  5-14 

5.4. Change in y Controller Noise and Wind Effects using Mixed Design A  5-17 

6.1. Various two-norms for the/z Controller and Mixed Controller A  6-3 

6.2. Various two-norms for the y Controller and H2 Controller B  6-4 

6.3. Change in y Controller Noise and Wind Effects using H2 Controller B  6-4 

6.4. Various two-norms for the y Controller, H2 Controller B and Mixed Controller B 6-5 

6.5. Change in y Controller Noise and Wind Effects using Mixed Controller B    . . . 6-5 

6.6. Various two-norms for the y Controller and Mixed Controller B  6-9 

6.7. Change in y Controller Noise Effects Only using Mixed Controller B  6-9 

6.8. Various two-norms for the y Controller and H2 Controller C  6-14 

6.9. Change in y Controller Noise and Wind Effects using H2 Controller C  6-14 

6.10. Change in y Controller Noise Effects Only using H2 Controller C  6-17 

6.11. Various two-norms for the y Controller and Mixed and H2 Controller C    . . . . 6-20 

6.12. Change in y Controller Noise and Wind Effects using Mixed Controller C    . . . 6-20 

6.13. Change in y Controller Noise Effects Only using Mixed Controller C  6-20 



AFIT/GA/ENY/94D-8 

Abstract 

This thesis examines the use of the mixed H2/(i optimal control synthesis method in the design 

of a flight control system for the lateral/directional axes of the F-16 Variable Stability In-Flight 

Simulator Test Aircraft (VISTA). The method is designed to minimize the H2 norm (two-norm) for 

a given value of fj,. This should provide adequate noise and disturbance rejection while maintaining 

robustness against several types of uncertainties in the system. This thesis finds that, for this 

problem, the two-norm is not an accurate representation of the outputs of interest. When the 

two-norm is broken up into its constituent parts an appropriate solution can be found. This thesis 

also finds that it is possible to use an H2 controller which is destabilizing to the evaluation model 

as the starting point in the mixed H2//i curve and still get an acceptable answer. A numerical 

approach was used, utilizing a recently improved computer algorithm. 



Flight Control Design using Mixed H2/fi Optimization 

/.   Introduction 

1.1    Background/Motivation 

To design a controller, the designer must use a model of the system he or she wishes to control. 

Usually, however, the model is not perfect. In general, there will be many underlying assumptions 

made in developing the model. These assumptions could include linearizations, simplifying assump- 

tions, approximations, etc. The end result is a model which could be far from perfect. Sometimes 

the imperfection can be characterized well — for example, a parameter which is plus or minus a 

known amount. Sometimes the imperfection cannot be characterized very well. 

Any controller developed from this model is then suspect. It may work well on the design 

model but perform poorly when tested on the actual system or an accurate evaluation model. If we 

could somehow incorporate this unknown uncertainty into the design model and design for it, we 

should be able to get a more capable controller, in terms of working well in the face of uncertainty. 

That is, a controller that is more robust. 

Hoo optimal control is capable of designing for uncertainty. To be specific, it minimizes the 

output energy of a system with unknown, but bounded energy inputs. This method is also useful 

in designing a good tracker (minimize the energy of an error signal due to a pulse command). 

Unfortunately, #«, is limited in that it can only handle one uncertainty. It is probable that 

a real system would have multiple uncertainties occurring at different locations, -ff«, by itself is 

incapable of handling this problem. 

Doyle developed a method which would eliminate this limitation. His work centered on the 

complex structured singular value, fi, which allows for these multiple uncertainties. See [PD93] for 

an excellent summary. 

1-1 



If unknown, but bounded energy inputs were all we had to worry about in a system, Hx 

and n would take care of everything. Unfortunately, there are other concerns. One of them is the 

response to noise entering the system. Noise is not bounded energy. It is usually characterized as 

white Gaussian (constant power at all frequencies, random). Hoo and /z are incapable of handling 

this type of input. However, H2 optimization is designed to minimize the energy of a system's 

output when the system is faced with white Gaussian noise inputs. Note that the objectives in ff«, 

and n compete with the objective of H2. However, we can trade off these objectives in an optimal 

fashion using mixed Ä2/-H00 optimization. 

To date, only a numerical solution is available for mixed .E^/floo- Ridgely [Rid91] was the first 

to develop a numerical optimization approach to find a general mixed H2/Hoo controller. Walker 

[Wal94] has improved upon this method by eliminating several assumptions made by Ridgely and 

producing a computationally more efficient solution to the problem. Further improvements have 

been made to the efficiency and robustness of the numerical computation by Smith [Smi94]. 

Madiwale [Mad89] first proposed adding robustness to the mixed control problem. Walker 

incorporated /z into the mixed ^/-Hro format described above and completed a SISO example and 

a 2 x 2 MIMO example. 

The purpose of this thesis is to extend the work by Walker to a more rigorous example using 

H2/P and the improved numerical algorithm. 

1.2    Thesis Outline 

This thesis is divided into seven chapters, including this introductory chapter. The next 

two chapters provide the groundwork on which the controller is based. The development of mixed 

H2/Hoo design theory is described in Chapter II. This chapter also describes the complex structured 

singular value, fi, in terms of analysis and synthesis. This chapter ends with a discussion of several 

1-2 



controller design topics necessary for the development of the design and analysis models described 

in Chapter III. 

Chapter III presents the mathematical state space model used in our MIMO VISTA F-16 

example. Also, in this chapter, the basic design model is described as well as the evaluation model 

for analyzing the time responses. To evaluate robustness, a robust analysis model is developed for 

the fi analysis. 

The fj. design model is constructed by adding certain inputs and outputs associated with 

the uncertainties to the basic design model. This model is then used to develop the fi controller. 

Chapter IV describes this process and the subsequent analysis of that controller. 

Chapter V shows the development of an H2 controller from the basic design. The controller 

is evaluated and mixed with the fi controller. The resulting mixed controller is evaluated and found 

to be deficient. 

In Chapter VI, the deficiency is analyzed and a correction is made. Another H2 controller 

is developed which, again, is mixed with the p controller. This mixed controller exhibits another 

deficiency which is analyzed and corrected. This final correction will prove to be sufficient and 

the resulting H2 controller is then mixed with the fj, controller. This final mixed controller is then 

analyzed. 

Chapter VII then summarizes the results of this study, presents some conclusions and provides 

recommendations for further study. 

1-3 



II.   Preliminaries 

Before we can begin, we must discuss some of the basic theory. The majority of this chapter 

will discuss the optimization methods used: H2 , #00 and fj.. The final section will discuss a few 

control design topics. 

2.1    Mathematical Preliminaries 

2.1.1    H2 Optimal Control. 

2.1.1.1 The H2 space. H2 is defined as the space of all transfer function matrices 

which are stable (eigenvalues in the open left-half complex plane) and have a bounded two-norm. 

The two-norm (designated a ) is defined as 

1    r+°° 
a2 = \\TZW\\\ := — J      tr[T;w(j<v)Tzw(jw)} do, (2.1) 

The subspace IRH2 is defined as the space of real-rational functions (rational functions with real 

coefficients) in H2. An easier way to compute (2.1) is found in [DFT92] and is summarized here. 

Consider the transfer function 

G(s) = 
A B 

C 0 
€SRH2 (2.2) 

Note that (2.2) makes use of the following notation. 

A B 

C D 
C{sI-A)~xB + D (2.3) 

The two-norm is determined from the following algorithm: 
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w 

p 
z 

K 

Figure 2.1    Basic Block Diagram for the H2 problem 

Step 1 Find the positive semidefinite solutions to the following Lyapunov equations. 

ALC + LCA
T + BBT = 0 (2.4) 

LoA + ATLo + CTC = 0 (2.5) 

Lc and L0 are the controllability and observability gramians of G(s), respectively. 

Step 2 Now the two-norm can be calculated by 

a2 = \\G(s)\\l = tr (LCC
TC) = tr (L0BBT) (2.6) 

2.1.1.2 H2 optimization. Consider the H2 block diagram in Figure 2.1. The input 

to the system is w, a zero-mean, unit intensity, white Gaussian noise type input (typically, for 

aircraft, wind gusts and sensor noise). The output z is whatever quantities we wish to have 

minimally affected by w. The plant is designated P. For design purposes, P will include the design 

weights which can be used to emphasize or de-emphasize the importance of a certain frequency 

range. K is the feedback controller which will be found using the method described in this section. 

The measurements from the plant, y, are input into the controller. The control, u, is the output of 

the controller which is fed back into P. 

2-2 



The objective of H2 optimization is to find the stabilizing controller K which minimizes the 

energy of z with w being a white Gaussian noise input. This is the same thing as minimizing the 

two-norm of the closed loop transfer function, Tzw. The solution is obtained by solving 2 Algebraic 

Riccati Equations (ARE) and is actually a generalization of the LQG problem. LQG requires 

that there only be two white noises entered at specific locations and that the outputs be statically 

weighted states and controls. H2 allows the white noise inputs to be placed anywhere, and the 

outputs to be anything and placed anywhere. Dynamic weightings are also allowed. 

The minimal value of the two-norm, a, is defined as 

a   = inf ||z||2 (2-7) 
K(s) Stabilizing 

inf \\TZW\\2 (2.8) 
K (s)Stabilizing 

A state space realization of P is given by 

x2 = A2x2 + Bww + BU2u (2.9) 

z = Czx2 + Dzww + Dzuu (2.10) 

y= Cy2x2 + Dyww + Dyuu (2-11) 

The 2 subscript indicates that this representation is for H2 optimization. 

To find K, the following assumptions are made: 

(i) Dzw = 0 

(ii) Dyu = 0 

(iii) (A2,BU2) is stabilizable and (CV2,A2) is detectable 

(iv) DT
ZUBZU = I and DywD^w = I 

2-3 



W 

P 
z 

y 

J 

Q 
K 

Figure 2.2    H2 system with parameterized controller 

(v) 
A2 - jul    BU2 

has full column rank for all w 

(vi) 
A2 - jul    Bu 

has full row rank for all w 

Condition (i) is necessary for the two-norm to be finite.   Condition (ii) is made to simplify the 

problem (it is not necessary). Condition (iii) is necessary for a stabilizing compensator to exist. 

Condition (iv) is actually a simplifying assumption; the underlying necessary condition of (iv) is 

that the products be full rank to avoid a singular control problem (we must have a penalty on 

all controls and no perfect measurements). This simplifying assumption can be relaxed to the 

necessary full-rank condition through scaling [Dai90]. Finally, conditions (v) and (vi) are required 

to ensure the existence of stabilizing solutions to the two AREs in the H2 solution. 

For any given a, the family of all stabilizing controllers, K, that satisfies a < ||T2„,||2 < a 

can be found by using the following algorithm. This algorithm is based on parameterizing the 

controller, K, as a feedback loop of J and Q (see Figure 2.2). 
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Step 1 Form the following algebraic Riccati equations and solve for X2 and Y2: 

(A2 - BU2D
T

ZUCZ)
T X2 + X2(A2 - BU2D

T
ZUCZ) - X2BU2B^X2 

+[(/ - DZUDT
ZU)CZ]T[{I - DZUDT

ZU)CZ] = 0 (2.12) 

(A2 - BWD^WCV2)Y2 + Y2(A - BwDT
ywCV2) - Y2C

T
V2Cy2Y2 

+[BW(I - DTwDyw)][Bw(I - DT
ywDyw))T = 0 (2.13) 

To be valid, the solutions X2 and Y2 must each be real, unique, symmetric, and positive 

semidefinite. 

Step 2 Substitute X2 and Y2 into the following: 

Kf=Y2Cl + BwDTw (2.14) 

Kc=Bl2X2 + DT
zuCz (2.15) 

Kfi = BU2 (2.16) 

Kd = -Cy2 (2.17) 

which are then substituted into 

Aj=A2-KfCV2-BU2Kc (2.18) 
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Step 3 Now take (2.14) - (2.18) and substitute into: 

J(s) 
Juy      JILT 

Vf}y        O'QX 

Aj 

Cj 

Bj 

Dj 

Aj Kf Kfi 

-Kc 0 I 

Kci I 0 

(2.19) 

Step 4 Choose a Q that is real-rational, stable and strictly proper (this makes Q G 9tH2) that 

meets the following criterion: 

HQllI < «2-«2 (2.20) 

Any Qe $iH2 that satisfies (2.20) is acceptable; it is a freedom parameter. 

Step 5 Now, form K(s) from J(s) given in (2.19) and the Q(s) chosen in Step 4. 

K(s) is given by the lower linear fractional transformation of J(s) and Q(s) (see Figure 2.2). 

This is written as 

Ä ySJ — Juy ~r Jur*v\l       Jvrty)      Jvy (2.21) 

We can see from (2.20) that when the chosen a equals the optimal, a, Q := 0. In this case, (2.21) 

says K(s) = Juy. This is the unique H2 optimal controller, K2ort. Thus, Q = 0 yields K2oTi. If a 

suboptimal controller is desired (which it will be in mixed H2/Hoo optimization), choose Q ^ 0. 

2.1.2   .ff«) Optimal Control. 

2.1.2.1 The Hoc space. #«> is defined as the space of transfer function matrices 

which are stable (eigenvalues in the open left-half complex plane) and have a bounded infinity norm. 

Sßffoo is the subspace of real-rational Hoo functions. The infinity norm is an induced operator norm 

and is defined as 
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=   IM 

:=     IITedHoc 

\\Tedd\\2 
=    SUP    11,111 

d?o    ||a||2 

=      sup   ||e||2 
||d||2<i 

=     supä [Ted(jw)] 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

Thus, the infinity norm is the maximum possible energy-to-energy gain of the system. To minimize 

the energy of an output due to an unknown but deterministic bounded energy input (like a pulse 

input), we must minimize the infinity-norm of the associated transfer function. An important fact 

for robustness problems is that since the infinity-norm is an induced operator norm, it has the 

submultiplicative property [Dai90]; given F,G G If«, then 

Halloo < ||J||oo||G||c (2.27) 

An easy way to determine the infinity-norm is to plot the maximum singular values of the transfer 

function over the appropriate frequency range and determine the maximum on the plot; that is the 

infinity norm of the system. However, this may not be the most practical method numerically since 

we don't necessarily know around what frequency range the maximum singular value will attain its 

maximum. 

A more numerically robust approach is based on the Hamiltonian matrix obtained from the 

state space representation of a proper stable transfer function [Dai90]. Given the transfer function 

G(s) 
A B 

C D 
(2.28) 
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we can construct the associated Hamiltonian 

H 

where R := j2I - DT D. 

The dual of (2.29) is 

H = 

where R:= j2I - DDT. 

A + BR~1DTC BR^B* 

-CT{I-1-2DDTY1C   -{A + BR-1DTC)T 

(2.29) 

(A + BDTR-1C)T CTR-XC 

-B{I-j-2DTD)-1BT    -(A + BDTR'1C) 

(2.30) 

Any Hamiltonian matrix has the form 

X      Y 

Z    -XT 

(2.31) 

where Y = YT, Z = ZT. Thus, it has the property that the eigenvalues mirror each other across the 

imaginary axis. That is, if A is an eigenvalue of H, then -A is also an eigenvalue of H. A theorem 

in [Dai90] implies that we can use the Hamiltonian and this "mirroring" property to determine the 

infinity-norm, 7, of the associated system in an iterative way. To do this, we choose a value of 7 and 

calculate the eigenvalues of the Hamiltonian. If any of the eigenvalues are on the imaginary axis, 

our 7 is too small; the next guess should be bigger. If there are no purely imaginary eigenvalues 

our 7 is too big; the next guess should be smaller. We are looking for the value of 7 when the 

eigenvalues first meet on the imaginary axis. By using a bisection method or a golden step search 

on 7 we can quickly converge to 7 = ||G||c» within any desired accuracy level. 

2.1.2.2   Hoo Optimization.      Now consider the H^ block diagram in Figure 2.3. This 
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d 

P 
e 

K 

Figure 2.3    Basic Block Diagram for the Hoc problem 

is the same as Figure 2.1, except the exogenous input and output and the closed loop transfer 

function have been renamed. This is done to keep HQQ distinct from the Hi optimization method. 

The plant, P, includes the design weights. The input, d, is assumed to be unknown but deterministic 

and have bounded energy. We want to find a stabilizing controller, K(s), which minimizes the 

energy of the output, e. Since we are trying to minimize the energy of an output to a worst case 

bounded energy input, we are trying to minimize the infinity-norm of the closed loop transfer 

function, Te<j: 

inf sup   ||e||2 =       inf       ||Ted||oo=7 
Katabilizing ||d||2<l Ktiabilizing 

(2.32) 

where the infinity-norm of Ted is 

||Ted||00=supä[Ted] (2.33) 

and ö denotes the maximum singular value. The minimum achievable infinity-norm, as indicated 

by (2.32), is designated 7. The state space representation of P in Figure 2.3 is given by: 

ioo    =    AooXoo + Bdd+ BUaau 

e     —     CeXoo + Dedd + T>e.uU 

V — CyaaX0O+  Dydd+   DyUU 

(2.34) 

(2.35) 

(2.36) 
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where the oo subscript indicates the problem setup for .ff«, optimization. As in H2 there are some 

underlying assumptions: 

(i) Ded = 0 

(ii) Dyu = 0 

(iii) (Aao, BUJ) is stabilizable and (C^, 4oo) is detectable 

(iv) DT
euDeu = I and DydD*d = I 

Aoo - jwl   BUo 

(v) 

(vi) 
X    - JWI Bd 

Cy°° Dy& 

has full column rank for all w 

has full row rank for all u> 

Assumption (i) is not a requirement for the If«, problem, but does allow the development to be 

simpler. Assumption (ii) is also not required but makes the problem simpler. Condition (iii) is 

required for a stabilizing compensator to exist. Condition (iv) is just like condition (iv) in Section 

2.1.1.2; it is a simplifying assumption with an underlying necessary condition that the products be 

full rank to avoid a singular control problem (i.e. we need a direct penalty on all controls and no 

perfect measurements). Conditions (v) and (vi) are required to ensure the existence of stabilizing 

solutions to the two AREs in the ffoo solution. Later, in the mixed .H2/-H00 problem, conditions 

(i) and (iv) will be relaxed. 

Like #2 optimal, the H«, optimal controller, K(s), is found from equation (2.21) with J(s) 

defined as in (2.19). Of course, the elements in (2.19) (Aj, Kf, etc) are defined differently. The 

algorithm for Hex, optimization is an iterative process. 
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Step 1 Pick an initial value of 7, and form the following two algebraic Riccati equations: 

(^00 - B^D^CefXoo + JM^oo - BUoaD
T

euCe) - X^-'BdBj - B^B^JX^ 

+CT
e{I - DeuD

T
euf{I - DeuD

T
eu)Ce = 0(2.37) 

^ - BjD^CyJY«, + Y^iAeo - BdD*dCyJ
T + Y^'C^C, - C^CyjY^ 

+Bd(I - DT
ydDyd)(I - DT

ydDyd?BT
d = 0   (2.38) 

Step 2 Solve for XQO and Y«,. For the parametrization to be valid, the resulting Xoo and F«, must 

satisfy the following three conditions: 

1. The solutions must be symmetric and positive semidefinite. 

2. No eigenvalues of the Hamiltonian matrices associated with (2.37) and (2.38) can be on 

the imaginary axis. 

3. piXooYoo) < 72, where p(M) := max, |Aj(M)| is the spectral radius of M. 

Check the three conditions; if any condition fails, increase 7 and repeat the process. If all 

three conditions are met we have a solution, but it is not necessarily the optimal solution. If 

we are looking for the optimal 7 (i.e. 7), we reduce 7 and repeat until one of the 3 conditions 

above just fails. By doing this, we can find the minimum infinity-norm to any desired level 

of accuracy. Once we have 7 (for optimal) or 7 (for sub-optimal) to the accuracy we want, 

we may continue the algorithm to find the controller(s) which achieves this 7. 

Step 3 Take the value of 7, X«,, and YQO found in Step 2 and substitute into the following equa- 

tions: 

Aj = A00- KfCyca - BUoa Kc + 7-2Y00Ce
T(Ce - DeuKc) (2.39) 

2-11 



KS =Y°°tf~+ B*Dyd (2-40) 

Kf^j^Y^CfD^ + B^ (2.41) 

Kc = Bl^Xcc + DT
euCe{I - T-^OO^OO)-

1 (2.42) 

Kd = -(T-'^BjXoo + C,.)^ - T'^ooXoo)-1 (2.43) 

Step 4 Substitute the answers from Step 3 into equation (2.19) to form the J(s) for the Hx 

problem. 

Step 5 Choose any Q such that 

Q £ ftW«, (2.44) 

HÖH« < 7 (2-45) 

Substitute that Q and the elements of J from Step 4 into (2.21) and we have our controller. 

Note that the optimal Hoo controller is not necessarily unique. 

2.1.3   Mixed RvlHaa Control. 

2.1.3.1 Motivation. Recall that both H2 and Hoc optimization minimize the energy 

of the chosen output(s); however, they each do this for different types of inputs. The input for 

which H2 is designed is characterized as white Gaussian noise. Some examples that come to mind 

for aircraft are sensor noises and wind gusts (which has a definite noise-like quality to it). The type 

of inputs used in HQO are characterized as having bounded energy. An example here would be the 

error signal produced from a pulse command to a feedback system (see Figure 2.4). This would 

give us good tracking. By mixing the two, we should be able to get good output characteristics 

(stability and/or performance) for a system which has both types of inputs. 
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pulse command output 
—s- 

Figure 2.4    Example of an H^ problem 

We must keep in mind, however, that we are in a sense producing competing goals, in that 

we will often find ourselves trying to minimize the norm of the sensitivity (say, for good tracking), 

S, and the norm of the complementary sensitivity (say, for good noise rejection), T . Thus, we can 

expect to have a trade-off between good H2 and good Hoo- 

We could try to do an optimization scheme where we try to minimize both norms (multi- 

objective optimization), but that may be too limiting. It would only find one solution and that 

may be a solution we are not interested in. For example, using the examples above, we may be 

more interested in getting good tracking than getting rid of most of the noise, so we would, in that 

case, be willing to let \\TZW \\2 (a) increase a little if we got a lower HT^II«, (7) in return. Therefore, 

we will not pursue multi-objective optimization here. We will instead follow Ridgely [Rid91] and 

Walker [Wal94] where they have one objective, minimize a, and append the infinity-norm as a 

constraint, as 

inf  ||T2U)||2, subject to the constraint ||Ted||oo < 7 (2.46) 
"■adm 

Note that in this fashion, we will not be doing H^ optimization (Section 2.1.2.2), but rather will 

only be constraining the infinity-norm (Section 2.1.2.1). 

2.1.3.2    State Space Formulation.      The development represented here was taken from 

Walker [Wal94j. The block diagram of the mixed -ff2/#oo problem is in Figure 2.5. This system 
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w 

u 
p 

K 

z 

y 

Figure 2.5    Basic Block Diagram for the mixed .ff2/-Hoo problem 

has exogenous inputs w and d and controlled outputs z and e. The measured output is y and the 

control is u. These are all defined the same way as in Figures 2.1 and 2.3. P is now the combination 

of the P's in those figures1. The resulting state space representation of P is now 

x = Äx + Bdd + Bww + Buu (2.47) 

e = Cex + Dedd + Deww + Deuu 

z = Czx + Dzdd + Dzww + Dzuu 

y = Cyx + Dydd + Dyww + Dyuu 

(2.48) 

(2.49) 

(2.50) 

or, in transfer function form, 

1 Bd By, Bu 

ce Ded "ew "eu 

cz Dzd L)ZW DM* 

Cy Dyd Dyw ■Uyu 

1 this will be made more clear in Chapter III 

(2.51) 
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This may also be represented by the individual H2 and H<» problems, which are 

x2    =    A2x2 + Bww + BU2u 

z    =   Czx2 + Dzww + Dzuu 

y   =   Cy3x2 + Dyww + Dyuu 

(2.52) 

ioo    =   AooXoo + Bdd + BUtx>u 

e    —   CeXoo + Dedd + Deuu 

y Cy „Xoc + Dydd+ DyUU 

(2.53) 

The assumptions used to solve the mixed problem are the same as the assumptions for the 

H2 and J2oo problem except that four assumptions from the #«> problem (Section 2.1.2.2) are not 

included. The assumptions which are not included are: 

1. Ded = 0 

2. DT
euDeu = I and DydIJ?d = I 

Aoo - jwl   BUa 
3. has full column rank for all w 

has full row rank for all w 
-Aoo - jwl     Bd 

Cy™ Dyd 

(1) was never necessary, and does not seriously compicate the mixed development. (2) was necessary 

to ensure a non-singular H,*, problem. In this development, no assumption is made about the ranks 

of Deu and Dyd (we will allow for perfect measurements and/or controls with no penalty). The H2 

part of the problem handles this. (3) and (4) are not necessary, as ffoo Riccati equations will not 
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be used in the mixed development. We will be calculating the controller using H2 optimization, so 

we will have a stabilizing controller. 

Therefore, the assumptions for mixed H2/Hoo are: 

1. Dzw = 0 

2. Dyu = 0 

3. (A2,BU2) stabilizable, (Cy2,A2) detectable 

4. BT
ZUDZU full rank, DywD^w full rank 

6. 

A2 - ju>I   BU2 

A2 - ju)I    Bw 

Cy2 Dyw 

has full column rank for all w 

has full row rank for all w 

In state space, the controller in Figure 2.5 is given by 

u    =    Ccxc + Dcy (2.54) 

Combining (2.52) with (2.54) produces the closed-loop state space equations for Tzw 

x2    =    {A + BU2DcCy2)x2 + BU2Ccxc + (Bw + BU2DcDyw)w 

xc    =    BcCy2x2 + Acxc + BcDyww (2.55) 

z    =    (Cz + DzaDcCV2)x2 + DzuCcxc + DZUDCD. yw l 

Applying assumption (1) to (2.55), we see that DzuDcDyw must equal zero for the two-norm of 

Tzw to be finite. Applying assumption (4), we find that Dc = 0. Thus, the only way this problem 

will have a solution is for the controller K to be strictly proper. 
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When we close the loop of the individual H2 and #<» problems with the above controller, we 

get the following closed-loop state space representations: 

X2 =-4.2*2 + BWW (2.56) 

z = Czx2 

and 

where 

Xoo = -4.00X00 + Bdd 

e = CeXoo + "Dedd 

X2      = 

A2      = 

■/loo      — 

Bu 

Bd 

«2 

r 

A2 BU2CC 

BCCy2 Ac 

-"■OO ■&uoo*-/c 

■Bclsy 00 Ac 

Bw 

c -Uyw 

Bd 

BcDyd 

L>z      -Uzu cc 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

(2.66) 
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Ce    =       Ce    DeuCc j (2-67) 

Ved   =   Ded (2.68) 

To simplify the development, the following definitions are made: 

7 = infifadm H^edHoo 

a = infjcadm \\TZW H2 

K2opt = the unique K(s) that makes ||TZW||2 = a 

7 = ll^lloo when K = K2epi 

Kmix = a solution to the H2/Hoo problem for some 7 

7* = ||Te<i||oo when K(s) = Kmix 

a* = \\TZW\\2 when K(s) = Kmix 

7 = the constraint which 7* must stay less than or equal to (7* < 7) 

The mixed H2/Hoo problem can now be restated as follows: determine a K(s) such that 

1. the underlying H2 and Hx problems are stable, i.e., A2 and A<x> are stable 

2. 7* < 7 for some given 7 > 7 

3. ||Tiw||2 is minimized. 

To develop this problem, Walker [Wal94] introduced the following theorem: 

Theorem 2.1.1 Let (Ac, Bc, Cc) be given and assume there exists a Q«,   =   Q^   >   0 satisfying 

AooQoo + Qoo^ + (QooCf + BaV^R-^Q^ + BdV
T

edf + BdB
T

d = 0 (2.69) 

where R = (j21 - VedD^d) > 0. Then the following are equivalent: 

1. (Aoo,Bd) is stabilizable 
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2. A2 is stable. 

3. Aoo is stable. 

Moreover, if the above hold then the following are true: 

3.  \\Ted\\oo < 7 

4- the two-norm of the transfer function Tzw is given by 

\\T„\\l = tr[CzQ2CT
z] = tr[Q2CT

zCz] 

where Q2 = Q2 > 0 is the solution to the Lyapunov equation 

A2Q2 + Q2A% +BwBl = 0 

5. all real symmetric solutions Qoo of Equation (2.69) are positive semidefinite 

6. there exists a unique minimal solution Qoo to Equation (2.69) in the class of real symmetric 

solutions 

7. Qoo is the minimal solution of Equation (2.69) if and only if 

Re[Xi{Aoo  + BdV^R^Ce  + QoogST'-Ce)]  <  0   for all i (2.70) 

*. ||Ted||oo < (<) 7 iffte [A*(A» + BdP£jr1Ce + Q00C*'Ä-1CB)] < (<) 0 where Q«, is the 

minimal solution to Equation (2.69). 

The main result from this theorem is that the constraint HT^H«, < 7 (7* < 7) is equivalent to 

the constraint found in (2.70). The only way (2.70) can be satisfied is for Qoo to solve (2.69). So we 

have replaced an inequality constraint with an equality constraint. Note that (2.69) is the Riccati 
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equation associated with the #«> Hamiltonian (2.30).   Walker backs that up with his Theorem 

2.5.11 [Wal94:pages 2-23 thru 2-25]. 

Using this theorem, the mixed problem can be restated as: Find the K(s) which minimizes 

the objective function 

J(Ac,Bc,Cc) = tr[Q2C?Cz] (2.71) 

where Q2 is the real, symmetric, positive semidefinite solution to 

A2Q2+Q2A% + BwBZ = 0 (2.72) 

and satisfying the constraint 

.A00Q00 + QocA£, + {QooCT
e + BäV^R-^Q^ + BdV

T
edf + BdB

T
d = 0 (2.73) 

where Qoo is the real, symmetric, positive semidefinite solution. 

This is a minimization problem with two equality constraints and is very amenable to the 

Lagrange multiplier method. In brief, the Lagrange multiplier method takes the function you wish 

to minimize (the objective), adds on the constraints to it, and multiplies those constraints by 

Lagrange multipliers. The resulting equation is called the Lagrangian. This does not change the 

equation since the constraints equal 0 (so we are adding nothing to the equation). 

The Lagrangian corresponding to this problem is 

C    =   tr[Q2C^Cz] + tr{[A2Q2 + Q2A^+BwBl}X} 

+   triiAooQco + QooAl, + {QooCT
e + BiV^R-^Q^C* + BdVjd)

T 

+   BdB
T

d]y} (2-74) 

where X and y are symmetric Lagrange multiplier matrices. 
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When we take the derivative of the Lagrangian and set it equal to zero, we obtain the following 

equations (partial derivatives of the Lagrangian with respect to each independent variable): 

where 

dc 
dAc 

dc 
dBc 

dC 
dCc 

2[X?2Qu + X2Q2 + Y&Qab + Y2Qb] = 0 (2.75) 

2[X*2QxCl + X2Q
T

12Cl + X*2Vl2 + X2BCV2 + Y^2QaC^ 

+ Y2Q
T

abC^ + Y?2Vab + Y2BcVb + {Y&Qa + Y2Q
T

ab)C?M 

+ {Y&Qa* + Y2Qh)C
T

cD
T

RUM] = 0 (2.76) 

2[BlaX1Q12 + Bl2X12Q2 + RT
X2Q\2 + R2CcQ2 + BljT^Qai 

+ B^Y12Qb + B&QaYiQ* + RT
abQaYl2Qb + RT

abQabY?2Qab 

+ RT
abQabY2Qb + RhCcQ^YiQab + RbCcQbY?2Qab 

+ RbCcQ
T

abY12Qb + RbCcQbY2Qb 

+ Px{YiQab + Y12Qb) + P2(Y?2Qab + Y2Qb)] = 0 (2.77) 

A2Q2 + Q2A% + BwBl = 0 (2.78) 

A2
rX + XA2 + C*C2 = 0 (2.79) 

Ax,Q=c + Qoo-C + (Q°°ce + BdDldR-^QooG + BäDT
ed)

T 

+ BdßJ = 0 (2.80) 

fl„       -    (A^ + Bd-D^R^Ce + Q^R^Cefy 
dQ<x> 

+ y(A» + BdV
T

edR-xCe + Q00C? JT xCe) = 0 (2.81) 

dc 
dX 
dc 

dQ2 

dC 
oy 

dC 

M = R~xDedD*d 

Pi = D^R-'D^Bj 

P2 
— DT

euMBT
c 

(2.82) 

(2.83) 

(2.84) 
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<?2 

X   = 

Qi   Q12 

Ql*   Q2 

xx   X 

Qc 

"vjOw 

12 

xT
X2   x2 

Qa      Qab 

Y\    Y12 

Y?2    Y2 

Bw 

Jjc-Uyw 

Bw     Dyw Be 

Vi        V12B
T

C 

BCV?2    BCV2B
T

C 

Bd{VT
edR-xVed + I)BT

d 

CT,CZ    = 

Bd 

BCDyd 

Va        VabB
T

c 

BcV?h    BcVbB
T

c 

(V^R^V^ + I) BJ    D%dB? 

C?Dl, 
(~*z      Uzu*sc 

Ri RuCc 

Cc B-\2   Cc RiGc 

Cr R     Ce 

CT
cD

T
eu 

R- Oe      J^eu^c 

-Ro RabCc 

@c Rab     Cc RbCc 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

(2.92) 
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These equations have yet to be solved analytically, so a numerical approach will be necessary. 

Note that (2.81) has the form 

Ap + yAy = 0 (2.93) 

where Ay = (Aoo + BiT^Br1^ + Qoo^R^C,). 

There are two theorems from [SZ70] regarding this form which are relevant at this point: 

Theorem 2.1.2 If Ay is stable, then y = 0 is the only solution to 

ATy + yAy = 0 (2.94) 

This theorem tells us that if Ay is stable then y = 0 is the only solution to (2.81). Theorem 2.1.1 

#8 tells us that if Ay is not neutrally stable, Q«, is not the minimal solution to (2.69). Moreover, 

since y = 0, the Lagrangian (2.74) reduces to 

C = tr[Q2<*C,] + tr{[A2Q2 + QiA + BwBl]X} (2.95) 

This is the Lagrangian associated with the H2 problem (the Lyapunov equation in the constraint 

must be solved to evaluate the objective which is the two-norm, see Section 2.1.1.1). 

The other theorem applicable to (2.81) is: 

Theorem 2.1.3 Let Ay be neutrally stable. Then 

ATy + yAy = 0 (2.96) 

has infinitely many y > 0 solutions of possibly varying ranks. 
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This theorem says if Ay is neutrally stable, y can be nonzero. From Theorem 2.1.1 #8, Qoo 

is the minimal solution. The following theorem from [Wal94] will show how we can relate this to 

the original 7* < 7 constraint. 

Theorem 2.1.4 Assume A<x> is stable and R = {^/2I - DedD^d) > 0. If there exists a Qoo > 0 

satisfying 

^ooQoo + QccAl + (QooCf + Bt-D^R-^Cj + BdV
T

ed)
T + BdB

T
d = 0 (2.97) 

then the following are equivalent: 

1. IM«, = 7 

2. (Ac + BiDT
eAR-^Ce + QooCjiJ-^e) is neutrally stable 

Furthermore, in this case Q^ is unique. 

Thus, (2.81) tells us one of two things. Either: 

1. y = 0 in which case we have the unconstrained H2 problem (7* = 7) 

or, 

2. Ay = (Aoo + BdZ>edR~1Ce + QooCe R~1Ce) is neutrally stable. In this case, we are on the 

boundary of the original 7* < 7 constraint and Q«, is the neutrally stabilizing solution to the 

Hoo Riccati equation (2.81). 

At this point, we follow Walker [Wal94] and fix the order of the controller to the order of 

the underlying H2 problem, 7&2, or greater. We can now ask ourselves the question, what are the 

possible regions in which we may place the constraint, 7 (||Ted||oo < 7 i.e. 7* < 7) and what is 

the solution (7*) in that region? We will look at three possible regions (see Figure 2.6). 

I 7 < 7 There is no controller which can reduce the infinity-norm below 7 (the optimal Hoo prob- 

lem). Therefore, in the mixed H2/H00 problem, there is no solution for 7 < 7. 
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Figure 2.6    Possible regions for 7 

III 7 > 7 Since the order of the controller can be equal to n2, K2opi is admissible. Using the K2opt 

controller, 7* = 7. Thus, for the mixed fi"2/#oo problem with 7 > 7 the optimal controller 

is the H2 optimal controller (Kmix = K2opt =>■ 7* = 7)- There is no possible decrease in 

a achievable by choosing 7 > 7. In fact, since a is the global minimum and the K which 

achieves it is unique, any forced increase in 7 above 7 will increase a. 

II 7 < 7 < 7 Since the optimal H<x> controller usually has a non-zero Dc term, the two-norm of the 

H2 problem with the optimal Hoo controller would be infinite. That leaves us with the only 

interesting region being 7 < 7 < 7. In this region, y ^ 0 (or we would have 7* = 7 which is 

a contradiction). Thus, y ^0 which we have already shown means ||Ted||oo =7    (l* = ?)• 

These facts are summarized in the following theorem from Walker [Wal94]. 

Theorem 2.1.5 Assume nc>n2. Then the following hold: 

(i) Ifj< 7, no solution to the mixed H2/Hoo problem exists 

(ii) Ifj < 7 < 7, Kmix is such that 7* = 7 

(Hi) Ifj>"f, K2opi is the solution to the mixed H2/H<» problem. 

2-25 



IITJI2 

i       r    IITJL y 

Figure 2.7   Typical mixed .H2/-H00 7 vs. a curve 

For a controller with order greater than or equal to the order of the H2 problem, the solution 

to the mixed -ff2/#oo problem with 7 < 7 < 7 lies on the boundary of the -ff«) constraint, 

7* = 7. Thus, in this region, a* is a monotonically decreasing function of 7 as shown in Figure 

2.7. Unfortunately, since the solution to (2.80) must be the neutrally stabilizing solution, (2.81) 

becomes very difficult to handle. 

2.1.3.3 Practical (Numerical) approach. As stated earlier, a numerical approach 

is needed to synthesize a mixed H2/jffoo controller. The method used in this thesis is based on 

Sequential Quadratic Programming (SQP). The normal approach to this problem is to compute 

the H2 optimal controller (since it's easy to compute) which gives us a starting point on the curve. 

Then we step along the a versus 7 curve by incrementally reducing 7 from 7 to near 7. At each 

7, SQP will determine the controller which minimizes a subject to the constraint 7* < 7. When it 

minimizes a as much as it can (we don't know if it's a local minimum or global minimum) it puts 

that point on the curve and the controller is saved. More information on the program used can be 

found in [Smi94]. 

2.1.4    (i Analysis and Synthesis. Consider the problem represented in Figure 2.8.   In 

this figure, dp is the exogenous input, ep is the controlled output, G is the core plant, ACT is 

the actuator and K is the controller.   The system has uncertainties in the actuator and in the 
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Figure 2.8    System with uncertainty 

core plant itself. These uncertainties can be due to unmodelled dynamics or uncertain parameters 

(among other things). The actuator, as represented in Figure 2.8, is represented as having an input 

multiplicative uncertainty, Aact- The uncertainty in the plant, Ac, is represented as an additive 

uncertainty. We can see from the figure that there is a structure to the uncertainty (there is one kind 

of uncertainty for the actuator and another for the plant and the uncertainties occur at different 

places). The complex structured singular value, p, allows us to use this structure to come up with 

a less conservative design for robustness than the standard singular value. 

Figure 2.8 can be put into P-K form as in Figure 2.9. Here we see that the uncertainties 

are combined in a matrix format with a block diagonal structure. The input to the matrix in the 

A block is a vector made up of the two inputs to the individual uncertainty blocks in Figure 2.8. 

The output of the matrix in the A block is a vector made up of the two outputs of the uncertainty 

blocks in Figure 2.8. Let A G A, where A is a set of block diagonal matrices with a given structure. 

There are two types of blocks for any A G A. They must either be repeated scalar blocks (a block 

which is formed by multiplying a scalar, 6, times an identity matrix of order n, Iri) or full blocks 

(something in every element of the block). In mathematical terms 

A := {diag[hlri, ■■■, SSIrs ,AX A,]  | ft G C, A,- € Cm*xm' } (2.98) 

2-27 



**= 
^ 

gj 

u 

Aact 0 

0 AG 

P 

IT 

= en 

Aact 0 
0 AG 

Figure 2.9    P-K version of the system with uncertainty 

where 6iITi is the ith scalar block of order r< and Aj is the j'th full block of order rrij. For simplicity 

of development, it will be assumed that A is square, but the theory applies as well for non-square 

perturbations. The dimension n of A G A is given by 

(2.99) 

We will eventually want to place a limit on the maximum infinity-norm that A can have. By 

doing this, we have defined a norm bounded subset of A. 

BA:={AG A |a(A)<7-1} (2.100) 

The structured singular value of a matrix M € Cnxn is defined as 

MA(M) 
min {ä(A) | A G A, det(I - MA) = 0 } 

(2.101) 
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Figure 2.10   M-A version of a matrix with uncertainty 

unless there is no A € A which makes I — MA singular, in which case (J,A(M) := 0. 

[B+93] gives a good interpretation of/x. For the rest of this discussion on the interpretation 

of fj, we will not be talking about dynamical systems, but simply constant matrices. Consider the 

system in Figure 2.10. This loop represents the following equations: 

e-Md 

d- Ae 

(2.102) 

which is the same as 

I      -M 

-A      / d 

(2.103) 

If I — MA is nonsingular, the only solutions to the loop equations are e = d = 0. However, 

if J — MA is singular, then there are an infinite number of solutions to (2.103), and the values of 

e and d can be arbitrarily large. We will call this system "unstable". In the same way, we will 

call the system "stable" when the only solution to (2.103) is e = 0,d = 0. In this context, we see 

that (J.A(M) gives us a measure of the smallest A which causes the system in Figure 2.10 to go 

"unstable". 
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At this point, we don't know how to calculate fj, itself (except in certain special cases which 

are not very useful practically). However, we can define upper and lower bounds of fi due to the 

following property (see [B+93] for a proof). 

p{M) < MA(M) < ä{M) (2.104) 

Unfortunately, the upper bound has been found to be too conservative. One method of 

reducing this conservativeness is by introducing a transformation on M that does not affect the 

value of (IA(M) but does affect W(M). This requires another definition. We will define a set of 

scaling transfer functions D which has the same block structure as A. This set is defined as 

D      :=      {[Di,...,Ds,dilM1,-- ■,dF-lImF-i,ImF\   I 

Di e CTiXTi, Di = D*i > 0,dj G SR, dj > 0} (2.105) 

Now, the less conservative upper bound on n&(M) is given by the following: 

Theorem 2.1.6 Assume M £ Cnxn, A is defined by (2.98), and D is defined by (2.105). Then 

A*A(ilf) <  inf äiDMD-1) (2.106) 

Proof:     See [B+93], Theorem 2.3.3. ■ 

We have now reduced the upper bound on fj, to computing the maximum singular value of a matrix 

and a search on D. 

Let the matrix M have two uncertainties which are represented by A5 and Ap (see Figure 

2.11). We can partition M and A as follows 
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Figure 2.11    M-A version of a matrix with two uncertainties 

M = 
Mn      Mi2 

M2i    M22 

Ae A= < 
A.     0 

0     Aj, 

We can now state a very important theorem from [PD93] 

A, e As, Ap G Ap 

(2.107) 

(2.108) 

Theorem 2.1.7 (Main Loop Theorem)  The following are equivalent: 

1. PA.(M) < 7 

2.   (a) n&,{Mu) < 7, and 

(b)    max   nAp[Fu{M,A,)]<j 

Proof:     See [PD93], Corollary 4.7. 

We can see where 2(a) comes from by looking at the following definition, which is used in 

2(b) 

FU(M, A,) = M22 + M2iA,(I - MUAS)-
1M12 (2.109) 
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Item 2(o) is simply the requirement that the system be well posed (i.e. the inverse of (J-MnA,) 

exists). 

We can see how well posed-ness is related to fj, by noting 3 facts from the definition of fi. 

1. fj, is inversely proportional to cf(A). 

2. For n ^ 0, (I — MA) must be singular for some A 6 A. 

3. n tells us the size of the smallest A which makes the system unstable. 

If HA. < 7i then ^(Aj) > 7-1. This means that as long as A2 € BA2 , no A, will destabilize 

the system. 

2.1.4-1 Frequency Domain /z. In terms of dynamical systems, let M(s) be a stable 

MIMO transfer function with na inputs and ne outputs. Let A be a block structure, as in (2.98). 

Let Ads denote the entire set of real-rational, proper, stable, transfer matrices. Associated with 

any block structure A, let A((A) represent the set of all block diagonal, stable rational transfer 

functions, with block structure like A. 

M(A) := JA(-) € Ms : A(«) € SRH«,  I A(s0) G A for all s0eÜ+} (2.110) 

where C    is the closed right-half complex plane. 

fi of a dynamic transfer matrix M(s) with the structured perturbations A(s) € M(A) is 

defined by 

||M(S)||A := sup fiA [M(juj)] (2.111) 
we« 
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Figure 2.12   M-A version of the system for robust stability and robust performance 

As 

M 
p 

Figure 2.13    LFT system with uncertainty and exogenous inputs and outputs 

Note that even though we use the norm symbol for /x, it is not a true norm since it doesn't 

satisfy the triangle inequality. 

Now consider the dynamical system in Figure 2.12. Assume that Ai through An are the 

model uncertainties which have been arranged into the standard block-diagonal form. The vectors 

e, and d„ are made up of signals such as e„ and da in Figure 2.9. The vectors eP and dp are 

the vectors associated with the performance part of the problem. Now define an augmented block 

structure 

A:= { As€M{As),APeM(AP) 
As     0 

0     AP 

The perturbed transfer function from dp to ep is given by FU(M, As) (see Figure 2.13). 

(2.112) 
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The transfer function equations for Figure 2.12 are 

e, d. 
= [M\ =: 

ep dp 

Mn   M\2 

M2i   M22 d„ 

(2.113) 

Now the following theorems from [B+93] relate robust stability and robust performance to 

dynamic systems. 

Theorem 2.1.8 (Robust Stability) Let 7 >0. The loop in Figure 2.12 is well-posed and inter- 

nally stable for all As € M(AS) with ||As||oo <7 iff 

|-MII||AS  
:= SUp/iAs [Mil] < - 

we» 7 
(2.114) 

Proof:     See [B+93], Theorem 2.6. ■ 

Theorem 2.1.9 (Robust Performance) Let 7 > 0.   The loop in Figure 2.12 is well-posed and 

internally stable, and \\FU(M, As)||oo < ^ for all As G M{AS) with ||As||oo <1 iff 

|M||A := sup /iA [M] < - 
weiß 7 

(2.115) 

Proof:     This is Theorem 2.7 in [B+93]. 

2.I.4.2 Frequency Domain fi synthesis. Recall from (2.106) that we can find an 

overbound to fi using the infinity-norm (in fact, for 3 or fewer full blocks in A, the overbound is 

an equality). To keep from being tedious, we will refer to the overbound of ft as /i unless the term 

real \h is used. Thus, we could attempt to use R<x> optimization on \L (the overbound). If we make 

M = Ft{P, K) (2.116) 
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Figure 2.9 becomes Figure 2.13. Our optimization problem then becomes 

inf        inf       HDMir1!!«, (2.117) 
DgD Kstabilizing 

Finding a controller which gets arbitrarily close to this infimum is fj, synthesis. Unfortunately, 

it is not known how to solve this minimization problem directly. Rather, we can approximate it by 

using an iterative process known as D-K iteration. The process is: 

Step 1 Choose a set of frequencies to represent the system. Choose the scaling matrix D, defined 

in (2.105), which minimizes W(DMD~1) at each of those frequencies. This is done through 

H analysis software, which will give the D matrices and give the value of /x for the system. 

The D matrices may be dynamic or static. If dynamic, their states are added to P. This 

will, after Hoc optimization, increase the order of the controller, so choose static D's or as 

low order as possible. Obviously the choice of the set of frequencies is important and must 

have a sufficient range and density to adequately represent the system. Usually, for the first 

iteration, just start with D = I. 

Step 2 Once you have the D-scales (frequency dependent scaling matrices), fit the D-scales in 

magnitude with stable, minimum phase (giving stable inverse) rational functions. The result 

will be stable, diagonal transfer function matrices D(s) that have stable inverses. It is this 

"best fit" which is absorbed into P. Again, it is best to get as low of an order of fit as possible. 

Step 3 Once an appropriate D is chosen, use H<x, optimization to compute the controller K(s) 

which minimizes ||DMD_1||oo. 

Step 4 If fj, is less than whatever value is predetermined or if you can't reduce fj, any further, stop. 

If not, go to Step 1. 

In general, each A in A will have its own D matrix. MATLAB's y, Toolbox will not find a D 

matrix for the last block. The reason is explained in [B+93]. 
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Figure 2.14    Mixed .HVM curve 

2.1.5 Mixed H2/11 Control. Hzjn is just H2/H00 with a twist. The theoretical framework 

for H2/P was laid out in Section 2.1.3. This section will just discuss the practical differences. H2 

is done as before, but now the Hoo part of the problem is scaled by the D matrices mentioned in 

Section 2.1.4. 

First, fj, synthesis is done on the portion of the problem that deals with the uncertainties and 

any energy-to-energy part of the problem. Normally, we would only be interested in the resulting 

controller. However, now we are interested in the D scales. These D scales will be absorbed into 

the open loop P of the Hoo problem, and that will be our new Hoo problem. It will be from that 

P that we will do the Hoo calculations. Other than that, there is no difference from H2/Hoo. For 

notational purposes, refer to Figure 2.14. 
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2.2    Control Preliminaries 

2.2.1 Dynamic Inversion. Dynamic inversion is described in [LS88] and a short summary 

is in [ABSB92]. This summary is paraphrased here. 

Dynamic inversion, as will be used in this thesis, will allow us to develop a control law which 

will make a given system have approximately the same dynamics as a desired system. The nonlinear 

aircraft dynamics can take the form 

x    =    f(x, u) 

y    =    Cx 

(2.118) 

(2.119) 

where x is an (n X 1) state vector, u is an (m x 1) input vector and C is a (p x n) constant matrix. 

To use inverse dynamics as described in [LS88], our equations must be in the following form 

x    —    A(x) + B(x)u 

y   =    C(x) 

(2.120) 

(2.121) 

where A(x) is an (nx 1) vector and B(x) is an (nxm) matrix. To transform (2.118) and (2.119) into 

(2.120) and (2.121), we can augment the system dynamics with derivatives of appropriate control 

inputs. To get the inverse dynamics of (2.120) and (2.121) we differentiate each of the elements of 

y until a term containing a u appears. Since only m outputs can be controlled independently by 

m inputs, we will assume that p= m. We can now represent our equations as 

»M 
yf] 

fr 

= h(x) + g(x)u (2.122) 
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where y*' is the djth derivative of the output j/j.   We will use v to represent the output of the 

desired dynamics. By setting v = y^, we can develop the inverse dynamics control law. 

u = g(x)    {v - h(x)) (2.123) 

2.2.2 Control Selector. The flight control system in this thesis will have as a result of the 

pilot commanded inputs what will be called generalized commands. These will be the commands 

from the controller, K and will be rotational rate commands for the corresponding actuators (for 

example, pitch rate corresponds to the elevators — the pilot doesn't care what his actuators are 

commanded to do, as long as they give him the desired pitch rate). A control selector will be used in 

this thesis to transform generalized rotational rate commands, S*, into actuator position commands, 

6. However, we want the contribution of 6* to the system to be the same as the corresponding S. 

In other words, we want 

B6 = B*8* (2.124) 

There are cases where different actuators combine to produce a desired effect. For instance, 

an aircraft with asymmetric horizontal tail and asymmetric flaps (as the VISTA F-16 has) could 

use both control surfaces to achieve a desired roll rate. Put another way, both control surfaces 

combine to form, in effect, an aileron. The VISTA F-16 is just such an aircraft [ABSB92]. This 

thesis will focus on the lateral/directional part of the VISTA F-16. The control surfaces used are 

asymmetric horizontal tail, asymmetric flaps, and rudder. This is represented as 

STFR 

6DT 

8DF 

6R 

(2.125) 
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However, we can capture the effects described above by combining asymmetric horizontal tail and 

asymmetric flaps into a single effective control which we will call aileron (6A )• 

6TFR = N 
6A 

6R 

N6AR 

Now, substituting (2.126) into (2.124) and solving for 6AR gives 

(2.126) 

6AH = (BN)*B*6*AR (2.127) 

The operator (•)# represents the left pseudo-inverse of (•). Since our real actuators are 6TFR> we 

need to substitute (2.127) into (2.126) 

6TFR = T6AR (2.128) 

where 

T=N{BN)*B* (2.129) 

which is the equation which relates our generalized controls, 6AR (hereafter known as 6*) to our 

actual controls 6TFR (hereafter known as 6). Note that B is function of flight condition. Thus, the 

control selector (T) is a function of flight condition (Mach number, altitude, and angle of attack) 

as well. 
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III.   F-16 Design Example 

The example used in this thesis will be a manual flight control system for the lateral/directional 

axis of the VISTA F-16 test vehicle. The basic problem was taken from [ABSB92]. The first section 

of this chapter will give a brief overview of their design. In Section 3.2 we will delve into the details 

(define equations of motion, actuator, develop Keq, etc.), and introduce noise into the system. The 

result will be the basic design model. This design model will not be complete. To complete it we 

will have to select the inputs we will concern ourselves with, then select the outputs we wish to 

minimize and weight them if necessary. This is done in Chapters 4 and 5. In Section 3.3 we will 

highlight the differences between the design model and the evaluation model we will use. The eval- 

uation model will not be used to simulate the system with uncertain parameters. The assumption 

is made that the designed system will be given sufficient robustness to handle parameter variations. 

To evaluate the robustness, a robust analysis model will be developed in Section 3.4. 

3.1    Overview 

The basic design was taken from [ABSB92]. They design a 2-degree-of-freedom, manual flight 

control system for the lateral/directional axis of the VISTA F-16. The block diagram of this basic 

design is found in Figure 3.1. A key element of their design is the use of an "inner equalization 

loop" containing the controller Keq. The purpose of this loop is to reduce the amount of gain 

scheduling required by making "the input/output behavior of the closed loop system uniform for 

all operating conditions by using a nonlinear static feedback matrix [Keq]" [ABSB92:page 44]. In 

other words, they try to make the outer loop see the same desired dynamics from the inner loop 

no matter what the flight condition. This is done through Keq, which is formed using dynamic 

inversion [ABSB92:pages 28-29,53-55]. It is dependent on flight condition and can be found using 

table-look-up methods. 

3-1 



ß- 

dperf 

ß. 

K Tl ACT B* —o— 

G, core plant 

IDEAL - 

~ß~ 
p 
r 

JV 

cent 

K. eq 

T2 ß 

Figure 3.1    Basic Design Model of the VISTA F-16 

The inputs to the system are the pilot generated commands (or references) ßref (sideslip 

angle about the stability axis) and firef (roll rate about the stability axis). The commands are 

differenced with the corresponding outputs of the system and fed into the controller, K. The 

outputs of the controller are ßc (yaw acceleration command about the stability axis) and /ic (roll 

acceleration command about the stability axis). These are then input into a transformation matrix 

Tl which transforms from the stability axis to the body axis. 

The output of Tl enters the inner loop and, when combined with the output of Keq, is 

converted to the generalized commands pc (roll acceleration command) and rc (yaw acceleration 

command) both in the body axis. The outputs of the inner loop are the states of the core plant 

(in the body axis) ß (sideslip angle), p (roll rate) and r (yaw rate). These are fed into Tl which 

transforms from the body axis to the stability axis. 
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3.2   Details 

3.2.1   Lateral/Directional Equations of Motion.       The equations of motion for the linear 

model are represented in state space as: 

ß Yß sin a — cos a ß YsDT YlDF       YsR &DT 

p 
= 

Lß LP Lr P + LsDT LSDF      LgR 6DF 

r Nß Np Nr r NSDT NSDF    NSR 6R 

(3.1) 

The parameters in this equation are a function of flight condition (Mach number, altitude 

and angle of attack). Only one flight condition will be used in this thesis. That flight condition 

is the central flight condition. Centralist means that the flight condition was at some dynamic 

pressure between the minimum and maximum values for the design envelope. The flight condition 

chosen as central corresponds to V = 622.43/f/sec, a = 4.3° at an altitude of 20,000 ft. The A 

and B matrices associated with this condition are found in Appendix A. Engineering judgement 

was used in choosing the central flight condition. 

The "states" which we are ultimately interested in controlling are ß and ß. These will be 

compared to the reference signal from the pilot and entered into the outer loop controller, K. ß is 

one of the states of the core plant. The stability axis roll rate, /i, can be found from 

/i = pcosa + rsina (3.2) 

Another output which we may be interested in is ny, the lateral acceleration in g's. This can 

be determined from: 

ny    =    j(ß + r) (3.3) 
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n„ 
V 

9 
Yß    sin a    (1 — cos a) 

ß 

P (3.4) 

3.2.2 Control Selector. Recall from Section 2.2.2 that T (the control selector) transforms 

the generalized rotational rate commands, 6*, into the actual actuator position commands, 6. Our 

generalized commands are actually rate commands (p and r), so our generalized rate commands 

are rotational acceleration commands pc and r'c. The control effectiveness matrix for 6 is: 

B = 

YsDT       YsDF       YSR 

LsDT      LsDF      LgR 

NSDT    N6DF   NSR 

(3.5) 

The control effectiveness matrix for 6* is: 

B* 

0 0 

1 0 

0 1 

(3.6) 

The generalized rate commands, 6*, are the body axis roll acceleration command, pc, and 

body axis yaw acceleration command, rc. By substituting the B from (3.1) into (2.124), we see 

that 

BS 

YSDT       YgDF       YSR 

LsDT      LsDF      LsR 

NSDT   NSDF   NSR 

SDT 0    0 
Pc 

6DF 1    0 
rc 

SR 0    1 

B*S* (3.7) 

Recall from (2.129) that the control selector is 

T=N{BN)#B* 
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It was found that by choosing the N in (2.129) to be the identity matrix, unreasonable control 

deflections would occur [ABSB92]. This problem can be prevented by combining the asymmetric 

flaps and asymmetric horizontal tail into a single effective control as described in Section 2.2.2. This 

effective control was the "aileron". Thus, N fixes the proportion between asymmetric horizontal 

tail and asymmetric flap commands for the effective aileron. Since the horizontal tail's primary 

purpose is pitch control, a ratio of 1/4 was used [ABSB92]. 

N was chosen to be 

N 

0.25 0.0 

1.0 0.0 

0.0    1.0 

(3.8) 

This choice was an engineering judgement decision. 

3.2.3    Inner Loop Design.       In this section we will use the information found in Sections 

2.2.1 and 2.2.2 to form the inner loop controller, Keq. 

With the control selector implemented and neglecting actuator dynamics, the equations of 

motion are: 

ß 

P 

Yß    sin a    — cos a 

bß      ^v 

Na     N„ 

Lr 

Nr 

m 

ß 0   0 
Pc 

p + 1    0 
rc 

r 0    1 

Note that our inner loop is full state feedback, so our outputs are: 

Y = 

1 0 0 

0 1 0 

0   0    1 

ß 

p 

(3.9) 

(3.10) 
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Now we want to use inverse dynamics to form Keq. We can see that by taking the derivative of 

(3.10) once, we get (3.9) back and we have both of the controls appearing in the output equations. 

/L(Z g(x) 

r-            -i r        i 
ß Yß sin a — cos a ß 0   0 

V = Lß Lp Lr P + 1    0 

r Nß Np Nr r 0    1 

Pc 
(3.11) 

We now have the form in (2.122), 

1/M = h(x) + g{x)u 

However, we have more outputs than inputs which violates the assumption in Section 2.2.1. 

We can see why this is so important by naively continuing on. By taking the left-inverse of g{x) 

which is, in our case, the left-inverse of B*, we can form our version of (2.123). 

We then have 

ßc 

Pc 
0    1    0 

0   0    1 

V 

Yß    sin a    — cos a 

Lß Lr 

Nß     Np        NT 

I   1\ 
ß 

p 

.r\) 

(3.12) 

We immediately see that we have an incongruity in dimensions.  The left side is (3 x 1) but the 

product on the right side is (2 x 1). 

The 2 outputs, p and r represent the dominant fast dynamics of the open loop system 

[ABSB92]. By limiting ourselves to p and r, we represent the system well and meet the assumption 

that the number of outputs equal the number of inputs. 
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(3.10) then becomes 

Y = 

After we differentiate once, we get 

ß 
0    1    0 

p 
0    0    1 

r 

Lß    Lp    LT 

Nß    Np    Nr 

which is the correct form found in (2.122). 

This makes our real inverse dynamics control law 

ß 

p 

r 

+ 
1    0 

0    1 

Pc 

0    1    0 

0    0    1 

v — 
Lß    Lp    Lr 

Np    Np    Nr 

\ 

ß 

P 

\) 

(3.13) 

(3.14) 

(3.15) 

Note that the ß dynamics are not represented in (3.14). This will cause the inner loop 

equalization to be less than perfect. 

Remember that v is the matrix which represents the desired linear dynamics. This is obviously 

an important step in the control synthesis for the inner equalization loop. A linear quadratic 

regulator design was performed at the central flight condition described in Section 3.2.1. The 

desired dynamics for the dynamic inversion calculations are the regulated dynamics at this flight 

condition. 

■"■nom — {-"-central       " J^LQ) (3.16) 
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Figure 3.2   Design Block Diagram of the Inner Loop 
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ß 

P 
(3.17) 

The compensator for the inner equalization loop can be represented as a linear state feedback 

compensator of the form. 

K, eq 

ß 

P 
(3.18) 

where 

K, eq 
*-nom,2 i — Lß      -Ajiom22 — -"p      "nomjj       "T 

(3.19) 

-Anomal — -"jB      Aiomsa ~ -"p      ■"■nom.as       -*»r 

The aerodynamic parameters in (3.19) are stored in a database for future table lookup. 

Note that the description of the design of Keq above corresponds to the block diagram of the 

inner loop found in Figure 3.2. The most notable feature of this block diagram is that it has no 

actuator dynamics. On top of that, it uses the generalized version of B. This will be one source of 

error between the design model and the evaluation model. 

3-8 



3.2-4 Actuator. In the design of the outer loop controller, K, we will include a model of 

the actuator. The actuator model used in the design model is a linear system which is based on 

the generalized commands. We are simulating a "generalized actuator". Just as a real actuator 

takes control deflection commands and produces actual control deflections, this "generalized actu- 

ator" will take the rotational acceleration commands and produce rotational accelerations. This is 

represented in transfer function matrix form as 

6*(s) 
(19.7)(65.0)2 

(s + 19.7)(s2 + 2(0.71)(65.0)s + (65.0)2) hx2Scomis) (3.20) 

This is the actuator which has been used in previous work [ABSB92]. However, to simplify things 

and reduce the order even further, we will use an even more simplified model. 

19 7 
6*{s)=(s + 19.7fcom{s) (3.21) 

This corresponds to the state space representation found in Appendix A. 

3.2.5    Tl and T2. As already described, Tl and T2 are the transformation matrices 

between the stability axis and the body axis. These are a function of angle of attack, a, and are 

defined as 

sin a     cos a 
(3.22) Tl 

T2 

— cos a    sin a 

1       0 0 

0    cos a    sin a 

Since a = 4.3° at our central flight condition, 

Tl 
7.4979e - 02     9.9719e - 01 

-9.9719e - 01    7.4979e - 02 

(3.23) 
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T2 = 
l.OOOOe+00 0 0 

0 9.9719e - 01   7.4979e - 02 

Note that by regulating in the stability axis, the control will have a dependence on angle of attack 

that will eliminate some of the need for gain scheduling with a. 

3.2.6 The Ideal Model. The ideal model of the desired aircraft response to pilot inputs 

will drive the flying qualities aspect of the design. The ideal model is made from the ideal low order 

equivalent system transfer function parameters. We will include the flying qualities in the design 

process by forcing the complementary sensitivity transfer function to take the frequency response 

shape (the loop shape) of this ideal model. 

The ideal loop is just to give us a reference so we can see how well we tracked the ideal model. 

It is not on the actual aircraft, although it could be. To effectively use such a model following 

system in that manner would be an adaptive control type procedure which is out of the scope of 

this thesis. The ideal model for this design has the form 

ß «2 
ße S2 + 2(DU)2DS + U>2D 

£   =       l/Ta 

ßc (s + 1/TR) 

(3.24) 

(3.25) 

where UD is the desired Dutch roll frequency, £/> is the desired Dutch roll damping, and TR is the 

desired roll mode time constant. Note that in the ideal model, we are not allowing for coupling 

between sideslip and roll rate. Not only does the ideal model provide the desired flying qualities, 

but it will force the design to attempt to decouple the responses. 
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For this thesis, the ideal model parameters are Wjj = 3.0 rad/s, CD — 0.71, and TR = 0.33 

seconds. The state space representation of the ideal model using the above parameters can be 

found in Appendix A. 

3.2.7 Noises. We will attempt to design for robustness, noise and disturbance rejection. 

The sensor noises and the wind gust (disturbance) will be modeled as white, Gaussian noise inputs 

which are taken through coloring filters to more realistically represent the class of noises. 

3.2.7.1 Wind. The wind gust "noise" isn't actually a white noise (uniform energy 

across all frequencies) , but more of a colored noise (more energy in one set of frequencies than in 

others). Most of its energy is at low frequencies, so the wind gust is passed through a low-pass 

filter to be represented more accurately. The filter chosen here was taken from [Bai92]. The filter 

is represented in the frequency domain as: 

-.-m, (3-M) 

The wind gust enters the system as a perturbation in ß. This is effectively accomplished by 

multiplying the filtered wind times the first column of the A matrix of the plant and adding this 

to the states. The first column of A will be denoted by T. 

3.2.7.2 Sensors. There are three sensors in the system which measure the states 

of the core plant. Sensor noise is a high frequency type noise. To model the sensor noise, a white 

Gaussian noise is taken through a high pass filter. This is done for each of the three sensors. The 

transfer function is: 

(s + 10) 
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Figure 3.3    Design Block Diagram of the VISTA F-16 with Noise 

where 

K,= 

ktb 0 0 

0 kSp 0 

0       0     fc5„ 

(3.28) 

kb, kp, and kr are the gains for the ß, p, and r sensor noise respectively. 

The noise gains kg and Ks are the "design knobs" used in designing an H2 controller. They 

will also be used to develop a simulation model of the noise, which will be discussed later. 

Figure 3.3 shows the design model with noise. Note that except for epeTf, this figure has none 

of the outputs or weightings associated with an actual design problem. The main purpose here is to 

highlight the difference between the design and evaluation models. Later, when we design an outer 

loop controller, we will choose what outputs we wish to minimize and their associated weightings. 

3.3    Evaluation Model 

The evaluation model for this example is shown in Figure 3.4. One of the main differences 

here when compared to the design model are the actuators. The actuators in the aircraft are not 

the generalized actuators used in the design.  They are the actuators for the differential tail, the 

3-12 



Jperf K 

IDEAL- 

H„ 

w gust w„ r 
Tl cs ACT B cent Hh; 

T2t 

cent 

w. 
3HS 

Ks 

K, eq 

-[T2 

Figure 3.4    Evaluation Model for the VISTA F-16 

differential flaps and the rudder. The model for the actuators is now 

Cl 

c      / x (19.7)(65.0)2 , . 
W(s) = (, + 19.7)(.» + 2(0.71)(65.0). + (65.0)») l3^TFR^ 

(3.29) 

The control selector will be used to convert from 6* to 6TFRC and will be required prior to 

the actuator. Of course, the evaluation model will not recognize that we designed Keq for a perfect 

actuator (ACT = I). Therefore, there are enough differences between the design and the evaluation 

model that the controller we design (K) will have to be fairly robust to handle the differences 

between the two models. 

To determine the noises used in the evaluation model, the gains kg and K„ were used to 

"tweak" the noises to make them more realistic. To choose a realistic kg, the open loop system (no 

outer feedback loop) was simulated with Ks = 0 using various &9's . The goal was to find the gain 

which produced a somewhat realistic output response. The responses looked at were ß, fi, and ny. 

To choose Ks, the open loop system was simulated with kg — 1 using various Ks's. The 

noisy responses were compared with the noiseless responses to get a good ratio. Again, the goal 

was to get responses which weren't too outrageous but were big enough to see improvements in the 

3-13 



Sideslip 

20 

¥   10 

5-      0 
o 

■o 

1-10 

-20 

Rolt Rate around the Stability Axis 
—i  . ,.   , i 

yjg&j&l g0 i^ky: 
••T&R 

Mm 
%i§0l i&äi^L 

:1'l ' '-ff!1'- 

*ji% 

- •■'r& 

Lateral Acceleration 

8 9 10 

Figure 3.5    Wind Gust (solid) compared to Sensor Noise (dashed) 

subsequent designs (hopefully). The values finally chosen were : 

kg = l      K, 

0.04      0 0 

0      0.03      0 

0 0      0.01 

See Figure 3.5 to get an idea of the size of the sensor noise compared to the wind gust. To get a 

feel for the response of the system to the wind gust and noise, see Figure 3.6. We can see that the 

noise produces a fairly strong response especially in ß (Pü 9°/sec) and ny (0.25 g's). ß is not too 

bad at « 1°. This noise is strong enough that we should be able to see a difference in the design. 
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Figure 3.7   Robust Analysis Model for the VISTA F-16 

3-4    Robust Analysis Model 

To analyze the robustness of our controllers, a robust analysis model developed in [ABSB92] 

was used; see Figure 3.7. This model will analyze the ability of the controller, K, to handle the 

structured uncertainty in the plant, (A^B), unstructured uncertainty in the actuator (Aoct) and 

the sensors (Ajen»)i anc* ^e performance (Aperf). Following [ABSB92], robust stability analysis 

is performed on the A^B, Aoct, and Ajen» blocks separately due to the lack of highly accurate 

models for the different uncertainties. Robust performance analysis is performed on all four blocks 

together (the four blocks are combined into one large block). 

3.4-1 Structured Uncertainty. The plant uncertainty, represented as structured uncer- 

tainty, is driven by perturbations in aerodynamic parameters. As in [ABSB92], seven stability 

derivatives and seven control derivatives are identified for robustness analysis. The perturbed state 

equations can by written as: 

i = {A + AA)x + (B + AB)u (3.30) 
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where 

AA = 

AB 

AYß       0 0 

ALß Alp ALr 

ANß ANP ANT 

AYß       0 0 

ALß ALP ALr 

ANß ANP ANr 

Now, incorporating the AA,B block, we can rewrite the system equations as: 

(3.31) 

(3.32) 

x    =    Ax + Bu + BAAA,BZ2 

22      =     CAX + DAU 

(3.33) 

(3.34) 

When W(AA,B) < 1 , we can represent the maximum uncertainty in the system matrices as: 

A4 = BAC& (3.35) 

AB = BADA (3.36) 

where 

BA 

10000000000100 

01010101010010 

00101010101001 

(3.37) 
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CA 

AYß 0 0 

ALß 0 0 

ANß 0 0 

0 ALP 0 

0 ANP 0 

0 0 ALr 

0 0 

Ü7x3 

AN, 

DA = (3.39) 

07x3 

ALSDT 0 0 

ANSDT 0 0 

0 ALSDF        0 

0 ANSDF       0 

0 0 AYSR 

0 0 ALSR 

0 0 ANSR 

The level of uncertainty for the parameters at each flight condition is represented as a per- 

centage of its nominal value. These values are found in Table 3.1 [ABSB92:page 77]. 

(3.38) 

Table 3.1    Structured Uncertainty Levels 

stability derivatives control derivatives 
AYß = 0.15Y/3 AYSR = 0.15YSR 

ALß = 0.10-fy ALSDT = O.lbLgDT 
ALP = 0.30Ip ALSDF = O.IOLSDF 

ALr = 0.20Lr ALSR = OAOLSR 

ANP = O.SONß ANSDT = 0.15NSDT 

ANp = O.öOiVp ANSDF = 0.2QNSDF 

ANr = 0.15Nr ANSR = 0A5NSR 
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3.4-2 Unstructured Uncertainty. The uncertainties in the actuator and the sensors are 

represented as unstructured uncertainties. Since we wish to analyze the "real" system, we will 

use the "real" actuators. The actuator uncertainties represent unmodeled dynamics as well as 

saturation effects. As per [ABSB92], the uncertainty is assumed to be 30% for each actuator. By 

putting the value of 0.30 ahead of Aact, we are ensuring that for any {Aact\ä(Aact) < 1), if M < 1 

we will be able to handle the 30% uncertainty. So 

Wact = 

0.3 0 0 

0 0.3 0 

0      0     0.3 

(3.40) 

The uncertainties in the sensor are caused by the quality of the sensors. The body axis 

rotational rates can be measured very precisely and reliably by gyros. The sideslip angle, however, 

is usually estimated or reconstructed using complementary filtering [ABSB92] and is not as accurate 

or reliable. The analysis for the sensors are accomplished for the following levels of maximum 

uncertainty: 10% in body axis rotational rates and 40% in sideslip measurements. 

W„ 

0.4 0 0 

0 0.1 0 

0       0     0.1 

(3.41) 

3.4.3    Robust Performance.       There are three differences in the analysis of robust perfor- 

mance when compared to the robust stability analysis. 

1. The level of structured uncertainty is reduced from the uncertainty used for the robust sta- 

bility analysis. The levels of uncertainty used in robust stability analysis were the worst case 

tests of closed loop stability. In general, we will lose robust performance long before we lose 

robust stability as the size of A is increased. It is, therefore, unreasonable to expect robust 
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Figure 3.8    Singular Value plot of Wpelf 

performance to the same worst case set used in robust stability. For this reason, the robust 

performance analysis is accomplished using uncertainty levels which are 25% those shown in 

Table 3.1. 

2. The performance weight, Wperf, used here is not the same as that used in robust stability. 

That design weight was mainly chosen to give good nominal performance. Here, we are 

concerned with how much error there is between the ideal model and the evaluation model. 

We want a weight which will bound the allowable error between the two models. The weight 

chosen here was designed to ensure that the steady state error to commands is less than 10% 

and is an estimation of the weight used in [ABSB92]. 

0.2471(s + 4.5389) 
W**" =        (s + .1176)      /2X2 

(3.42) 

The SV plot of the inverse of (3.42) shows a graphical representation of the error allowed 

between the two models and is found in Figure 3.8. 

3. The robust performance analysis will be performed using all four blocks simultaneously. 

Now we are ready to start the design process. 
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IV.  fi Design 

4.1 Outer Loop Design 

We will attempt to design the outer loop compensator, K, to provide flying qualities, robust- 

ness, and sensor noise and wind gust disturbance rejection. We will first design a fi controller which 

will meet the flying qualities and robustness objectives, and then examine its noise and disturbance 

rejection capability. Next, we will attempt to design an H2 controller which will do better in sensor 

noise and wind gust disturbance rejection than the /z controller. We will then "combine" the two 

controllers using mixed H2/li to get the best of both worlds in the next chapter. 

4.2 fJ, design 

The design model for //-synthesis is shown in Figure 4.1. In this design, we are modeling an 

input-multiplicative actuator uncertainty and an additive plant uncertainty. The flying qualities 

will be characterized as being good if the actual output of the system is close to an ideal model of 

the desired aircraft response to pilot inputs. This will be our performance requirement. 

4.2.1 The Ideal Model and the Performance Weighting. The ideal model for this design 

has the form 

ß "I 
ße    ~    s2 + 2(Du>2

Ds + w2
D 

fic (s + 1/TB) 

(4.1) 

(4.2) 

where wD is the desired Dutch roll frequency, (D is the desired Dutch roll damping, and TR is the 

desired roll mode time constant. 
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Figure 4.1    Design Model for /^-synthesis 

The performance weight, Wp, is designed to provide a frequency weighting on the "perfor- 

mance error". We want this error to be small, but we are mainly concerned with frequencies which 

are between 1 and 10 rad/s. These are the frequencies which "dominate the transient response 

of the closed loop system to pilot commands. If the performance error is not reduced adequately 

in this frequency region, higher order dynamics will show up in the transient response, destroying 

flying qualities." [ABSB92] 

For this thesis, the ideal model parameters are mo — 3.0 rad/s, (z> = 0.71, and TR = 0.33 

seconds. The performance weight chosen was 

Wp = (Äö3)/2X2 (4.3) 

To incorporate robust performance, the A block associated with the performance will be 

represented as a full block. 

4-2.2 Actuator. The description of the actuator is found in Chapter III. The input 

multiplicative uncertainty model is represented mathematically as (I + A).4.CT where A represents 

the uncertainty in the actuator. We will assume that we have fairly accurate models of the actuator 

at low frequencies, but that our model becomes less accurate at higher frequencies.   There is no 
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Figure 4.2    Singular Value plot of WAACT 

frequency information in A.  That information is incorporated through the weighting associated 

with A. 

The weighting chosen for the actuator in the (i design is 

WAACT 
200(s + 5)(s + 200) 

(s + 20)(s+10,000) 
(4.4) 

the singular value plot of which can be found in Figure 4.2. This weighting is designed to indicate 

an uncertainty of 10% at low frequencies and an uncertainty of 100% at approximately 400 rad/sec. 

As can be seen in Figure 4.2, the uncertainty continues to grow until the frequency is approximately 

10,000 rad/sec, where it is flattened out to avoid an improper transfer function. 

The uncertainty in the actuator is not very well known. It could have magnitude and phase 

variations and the control surfaces could interact with each other. Therefore, the A block used for 

the actuator is of the unstructured kind (a full block). 
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4-2.3 Parameter Uncertainty Weighting. The uncertainties in the plant come from equal- 

ization errors and uncertainty in aerodynamic stability derivatives. Robustness to parameter vari- 

ations is incorporated into the /i-synthesis design model through the weights B& and CA- Section 

3.4.1 presented a detailed description of this method using variations in 14 parameters. 

Unfortunately, the order of the controller produced by p synthesis is proportional to the 

number of outputs and inputs to each A block and the order of the fit used for the D matrix for 

each of those blocks. In our case we will have 3 blocks; one for the actuator, one for the plant, 

and one for performance. MATLAB's fi-Synthesis Toolbox will always set the last block equal to 

the identity matrix and therefore has no D-scale associated with it [B+93]. That leaves us with 

two A's we have to worry about. We will let na and ma equal the number of inputs and outputs 

respectively for the actuator block. We will let ncp and mcp equal the number of inputs and outputs 

respectively for the core plant block. The order of the weighted plant (P) is np and the orders of 

the D scale fit for each block are nda and ndcp. The order of the controller nc will be 

nc=np+ nda(na + ma) + ndcp(ncp + mcp) (4.5) 

Note that the above assumes all blocks are full blocks. If any part of the blocks are repeated scalar 

blocks, they will have their own D scale and will contribute in the same way. 

Now, if we were to use the 14 input, 14 output A block from Section 3.4.1, and if we chose 

a 2nd order fit of the D scaling for that block, we would add 56 states to our controller from that 

block alone. This is not acceptable. To try to reduce the order, we will attempt to make the system 

robust to the inner loop equalization error and do extensive analysis of the actual uncertainty using 

the Robust Analysis model. 

We saw in Section 3.2.3 that the inner loop design does not perfectly equalize the plant. In 

this case, the error in equalization will be due to Yß, sin a, and cos a not existing in the inner loop 
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controller. By treating these parameters as uncertainties in the /z design, we will make the overall 

control system more robust to the errors in the equalization [ABSB92:pg. 63]. 

Our uncertainty block will allow for the fact that there can exist interaction between the 

parameters when it comes to uncertainty. This means we will use a full block to represent the 

uncertainty. The weighting matrices are scaled such that the maximum uncertainty (when CT(A) = 

1) in the A matrix is represented as : 

A4 = BACA (4.6) 

The parameter uncertainty weights used in this design are: 

BA 

CA 

0.1 0.1 

0 0 

0 0 

0.05 0      0 

0 0.26   0 

(4.7) 

(4.8) 

4.2.4    State space formulation.      The state space formulation is as follows: 

ACTUATOR: (assume strictly proper) 

Xact     =     AactXact + BactUact 

Vact     =     CactX, act 

(4.9) 

(4.10) 

G: (assume strictly proper) 

Acxc + BA <IA + B*uc 

Vc      —       ^c^c 

(4.11) 

(4.12) 
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WAaci: 

XAaoi    =    AAactxAaci + BAactUAa 

eAaci    =   CAactxAact +DAacluAa 

(4.13) 

(4.14) 

Wp: 

"wp ■n.WpXyjp "T- ■tfwp'U'wp 

€perf      —      \^wp^wp   i   ^wp"! •wp 

(4.15) 

(4.16) 

IDEAL: (strictly proper) 

Vidl      =      CidlXidl 

(4.17) 

(4.18) 

The state vector and disturbance vector are: 

«2 •&c      ®act      &idl      <Ewp      ®Aact 

dAact     dA      dpeTf 

(4.19) 

(4.20) 

This makes the state space representation of P: 
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A,= 

Ac B*Cact 0 0 0 

"act&eq "■act 0 0 0 

0 0 Am 0 0 

— BactT2 0 ByjpCidl ■™-wp 0 

B^actKeg 0 0 0 A/\act 

(4.21) 

Ce = 

Bd 

0 BA 0 

Bact 0 0 

0 0 Bidl 

0 0 BwpDidi 

0 0 0 

0 

BactTl 

0 

0 

BAaetTi 

Bua — 

DAactKeq     0 

CA 0 

0 CAOC« 

0 0 

DwpT2     0    DWpCidi    C\ ■>wp 0 

(4.22) 

(4.23) 

(4.24) 

Jy» -T2    0   0   0    0 (4.25) 
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Ded = 

0    0 0 

0   0 0 

0   0   DwpDidi 

■Ueu — 

Dyd 

DAactTl 

0 

0 

0      0/ 

(4.26) 

(4.27) 

(4.28) 

D, v* [0] (4.29) 

4.2.5 Results. The fi-Toolbox was used and gave the controller found in Appendix B. It 

is a 26th order, strictly proper controller. The singular value plots of the controller can be found 

in Figure 4.3. 

The controller was entered into the Evaluation Model for simulation. 

4.2.5.1    Tracking Capability. The tracking capability (ability to follow the ideal 

model) can be seen in Figure 4.4. The ideal response is represented by the dashed line, the actual 

response is shown as a solid line. 

Since in this case we are dealing only with angles and angular rates, we can assign whatever 

angular units we wish to the plots and nothing would change. We will assume the inputs to be in 

degrees. 

As seen in Figure 4.4, a step in ß produces a maximum deviation from the ideal ß response 

of 0.05 deg. The response of ß for a ß step stays very close to zero (within 0.1 degrees). A step in 
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Figure 4.3    Singular Value plot for the optimal fi controller 

fi has a tougher time tracking the ideal model but still has an acceptable maximum error of 0.19 

degrees/sec. The ß response to the ß step is almost negligible. We can see that fi synthesis did a 

very good job of tracking and decoupling the responses. 

The noisy tracking response can be found in Figure 4.5.   It can be seen that, besides the 

expected noisiness, there is no significant change from the noiseless response. 

4.2.5.2 Robustness. Recall from Section 3.4 that, except for Aperf, we are going 

to analyze each uncertainty separately for robust stability. This means we will perform fj, analysis 

on the AA,B, Aoct, and Atent blocks in Figure 3.7 one at a time, treating each as if it were the 

only block in the system. We will also treat these blocks as a block diagonal of the appropriate 

number of As, where each A is a 1 x 1 full block. This will allow us to simulate an uncertainty 

for each sensor, actuator and parameter. Note that we are designing for a "tougher" uncertainty 

than that which is used in the evaluation. We are designing for uncertainties which interact with 

each other. We are evaluating uncertainties which do not. Besides the fact that we are always 

justified to design conservatively, we are also justified in that we are including more uncertainties 
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Figure 4.4     Noiseless Tracking Capability of the // controller (solid line) compared to the ideal 
response (dashed) for a step in ß and a step in fi 
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Figure 4.6    /x bounds for the fj, controller 

in the evaluation than was used in the design (for controller order purposes), such as the sensors 

and more uncertain parameters in the plant. 

The n plot for the design (three full blocks forming one big block) is found in Figure 4.6. The 

robust analysis plots are calculated using the robust analysis model and are found in Figure 4.7. 

We can see that even though fj, = 4.609, we still satisfy the conditions set in the robust analysis. 

This is just saying that the weighting we gave \i in the design sets us up for a much tougher problem 

than what we actually need in our robust analysis model. Or put another way, the weightings we 

used in the design are much more conservative than the weightings we used in the analysis (which 

is our best guess of the model of the uncertainty). 

The system responses to wind gusts and sensor noise only (no command) are shown in Figure 

4.8. When compared to the open loop response in Figure 3.6, we see that \i did fairly well even 

in noise and disturbance rejection. For a complete and accurate comparison later, we will look at 

two things when talking about the state response to noise: the standard deviation, which is a more 

mathematical measure; and the maximum value, which is more intuitive. Table 4.1 summarizes 

the reduction in noise compared to the open loop (Figure 3.6) using both measures. 
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Figure 4.7    Robust Analysis of the fj, controller 
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Figure 4.8    System's Response to Wind Gust and Sensor noise, fj, Controller 
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Table 4.1    Reduction in Open Loop Noise and Wind Effects using fj, Controller 

state maximum value standard deviation 

ß 

Tly 

-33% 
-62% 
-54% 

-40% 
-64% 
-62% 

Note that (ignoring the rates, which would be washed out) the control deflections are reason- 

able with the possible exception of the rudder. It is moving ±8° for just noise! 

For comparison purposes, Figure 4.9 shows the response of the system given sensor noise only. 

This is to get an idea of the size of the high frequency content of the noise, which is lost in the 

much larger wind gust effects. 
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Figure 4.9    System's Response to Sensor Noise only, fi Controller 
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V.   H2 and Mixed H2I11 Design A 

We can see from the preceding figures that the /i controller does a good job on the robustness 

and the tracking problems. In fact, it is good enough in those areas that we could sacrifice some 

of those features in trade for something else. While the (j, controller also does reasonably well on 

noise and disturbance rejection, there is room for improvement. Our objective now is to design an 

#2 controller which will show even more improvement on noise and disturbance rejection. Then, 

an appropriate mix of K-ily. should provide better noise rejection than fi alone without losing much 

of fJt's robustness or tracking capability. 

5.1    B.2 Design 

The design model for the H2 problem is found in Figure 5.1. Note that in this design, we 

have the wind gust entering the system directly into the states (specifically, into ß). We have 

the sensor noises entering into the inner loop since we must be able to measure the outputs of 

the plant to bring those values into Keq. We would normally put the penalty on control usage, 

«control, right after ACT. In this way we would be penalizing actual control usage. However, since 

our actuator is strictly proper, this penalty would produce a zero Dzu term which would violate 

.H2/-H00 assumption (4) in Section 2.1.3.2. Moving the penalty to just before ACT would take care 

of that assumption, but would violate Dzw = 0 (assumption 1) since wnoise enters the inner loop. 

This, in turn, could be taken care of by moving tunoj„e outside of the inner loop, but that makes 

the problem unrealistic (we would have perfect measurements entering Keq but not K). It was 

decided to move zcontroi to just after the controller, K. In the same way, zstates must be prior to 

wnoise instead of after it. That way, all assumptions involving z will be met. 

The weightings pu, K„, kg, Kstates are all design chosen variables to "tune" the H2 problem 

to produce the desired controller. The weights Wg and W, are coloring filters to model the wind 

gust and sensor noise as colored noise.  Wg is a low pass filter to model the wind gust as having 
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Figure 5.1    Design Model for H2 -synthesis 

most of its energy at lower frequencies. The filter chosen is the same filter used in the evaluation 

model. The filter for the sensor noise W, is also the same high pass filter used in the evaluation 

model. 

5.1.1    State Space.       The state space equations for the actuator and core plant are found 

in Section 4.2.4. The only other dynamical elements in Figure 5.1 are Wg and W,. 

Wa: 

Xn       =       AnXn + B„U, g**g T ^gvg 

Vg     -     C9X9 + D9U9 

(5.1) 

(5.2) 

W,: 

xs    =   A„xs + Bsus 

y,    —    Csxs + D,us 

(5.3) 

(5.4) 
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where 

u, = K.w. :i — ■"« '"none (5.5) 

and 

Ks = 

*.»    o     o 

0     *.,     0 

0       0     k,. 

(5.6) 

The state vector and disturbance vector are: 

Z2 

w 
-iT 

(5.7) 

(5.8) 

This makes the state space representation of P: 

A2 = 

Ac       B*Cact   rc9 0 

BactKeq Aact 0 BactKeqCs 

Aa 0 

A, 

(5.9) 

Bw 

TDgkg 0 

0 BactKeqDsKg 

BgKg 0 

0 BSK, 

(5.10) 
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-B«, — 

0 

BactTi 

0 

0 

ff.tote.Ta    0   0   0 

0 0   0   0 

(5.11) 

(5.12) 

Cy* — -T2   0   0   -T2a 2^. 
(5.13) 

Dz 

Dz 

0   0 

0   0 

0 

Pul 

(5.14) 

(5.15) 

D, yw 0    -T2DSK, (5.16) 

Dyu = [0] (5.17) 

H2 optimization design is a very "hit and miss" type of process. Everything depends on 

finding the correct design variables to get an acceptable answer. Methods to "find" the correct 

values of these variables are few and far between. If we do not "happen" to choose the correct 

values, we will not get an acceptable controller. In our case, we must find the correct design weights 
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for the H2 system which will produce a controller that does better than the fi controller on noise 

and disturbance rejection. This proved to be one of the hardest tasks of this thesis. Even when 

successful, the changes were minor; however, we are looking at the concept of mixed B^/M and 

interesting things were found. In this problem, it was possible to beat the //, controller in either the 

noise or the control usage, but it seemed impossible to beat fj, in both. Months were spent trying 

to vary the individual weightings and look for trends. The only thing noticed here was that the 

two-norm itself means little when changing the weights. When we change a weight, we are changing 

the problem and we cannot compare the new two-norm with the old two-norm in the weighted JB2 

system. 

Traditionally, the method used is to try to shape the open loop singular value (SV) plot to 

get the desired loop shape. This was tried with no success. What we are really interested in is the 

closed loop response of the system. That is where our attention will now focus. 

The method which seemed to have the most success in finding the weights which would 

produce a controller that beats (M involved studying the frequency content of the signal coming out 

of the system. If we want to observe the response of the system due to the sensor noise, we need 

an outer loop controller. The identity matrix was chosen for ease of use. 

The system's response to wind gust and noise for K — I is found in Figure 5.2. Even though 

the input to the system is a white noise (uniform power at all frequencies), the output will not be 

white. In addition to going through the coloring filters which make the input more realistic, the 

system itself is a filter and will favor certain frequencies above others. Our objective here, then, is 

to determine the frequencies which the system "favors". To do that, we need to examine the power 

spectrum of the output signal (a plot of power vs. frequency). MATLAB has a discrete Fourier 

transform function "FFT" which can be used to estimate the power spectrum of a signal. The 

result of FFT for each of the "states" is found in Figure 5.3. 
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Figure 5.2    System's Response to Wind Gust and Sensor Noise, K = I 
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To estimate the power spectrum of a signal from a plot such as Figure 5.3, we can apply the 

following equation to determine the frequency for a given index or sample number [OS89]. 

Actual f req =2-K(index)(—~) (5.18) 

where T is the sample time used in the simulation and N is the total number of samples. We can 

see from Figure 5.3 that all three responses have most of their energy around index = 30. In our 

case, T = 0.005 and N = 10000. Hence, most of our energy is around 3.8 rad/sec. 

On a purely theoretical basis, if our simulation accurately simulated white noise, this should 

be sufficient since white noise has a flat power spectrum and the system would filter all noise in 

the same manner. However, our samples are probably not accurate representations of white noise. 

Thus, any analysis which only includes one sample of noise is incomplete. We need to do a series of 

samples at various random number generator seeds. Several seeds were used and the peaks of the 

power of all samples had frequencies around 3.8 (±0.9) rad/sec. Thus, it was felt that 3.8 rad/sec 

was an appropriate representation of the frequency that had the most power. 

Now we have a more quantitative way to help us in determining the design weights needed for 

our #2 design. We now know that we want the gain of the closed-loop response to be low around 

3.8 rad/sec since this is where most of our noise is coming from. This can be seen directly in an SV 

plot of Z8tates/Ws or Zlta.tes/Wg. We can vary a weight and measure the gain at the frequency of 

interest using the SV plot. As we change the weight we can see the corresponding change in gain. 

An example of the type of plots which will be produced is seen in Figure 5.4. We can see from 

these plots that there is a hump around 3.8 rad/sec. It is this hump which must be lowered if we 

want a less noisy response. 

We can now make a program which will systematically vary each of the weights and record 

the maximum gain of the closed loop Zstates/Wg and ZstatesjWs SV plots at the frequency(ies) 

of interest and make a plot which will show the data graphically.  An example of such a plot is 
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Figure 5.4    Closed loop SV plots for Zstate, vs. wind gust and sensor noise, K = I 

in Figure 5.5. In this way, gains can be found which produce the lowest singular value at the 

frequency(ies) of interest. Using this method produced the most favorable response of any other 

method tried up to this point. The weights which produced the best responses are found in Table 

5.1. 

Table 5.1    Design Weights for the 1st controller 

Design Weight value 

P 0.001 

■"■states fa 
k 

1 
1 

Ks k 

K 
far 

1 
1 
1 

Kg 1 

The plots of the response to wind and noise are in Figures 5.6. The closed loop SV plots are 

in Figure 5.7. Note how the humps in Figure 5.7 have decreased. This corresponds with Figure 

5.6. 

Unfortunately, this controller, when evaluated on the evaluation model, is unstable. This 

is possibly a problem.   #2 guarantees us a stabilizing controller and this controller does indeed 
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Figure 5.5     Effect of varying one design weight, km, on closed loop gain of Zstates for wind gust 
and noise input at w äS 3.8 rad/sec 

stabilize the design model. But the controller isn't robust enough to handle the differences between 

the design model and the evaluation model. The major difference between the two models is that 

in our design model, we are using generalized controls instead of the actual controls. This is too 

large a A for this H2 controller to handle. Recall that H2 optimization wasn't designed to handle 

uncertainty, but fj. synthesis was (note that /z had no problem with this A). This is consistent with 

what we know already about H2 and p. While a mixed controller might be acceptable, it was felt 

that this controller was not preferable as an "anchor" to the mixed H2/fj, problem (i.e., as the right 

end of the curve). 

At this point there were two alternatives: either go back and make the design have the 

same actuators as the evaluation model, or choose larger controller weights to see if the resulting 

controller will be acceptable noise-wise and not drive the evaluation model unstable. The latter 

approach was used. The design chosen had the weights shown in Table 5.2. This controller will be 

denoted H2 Controller A. The results of this controller are discussed in the next section. 
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Figure 5.6    System's Response to Wind Gust and Sensor Noise, 1st controller 
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Figure 5.7    Closed loop SV plots for Zstates vs. wind gust and sensor noise for the 1st controller 

Table 5.2    Design Weights for H2 Controller A 

Design Weight value 

P 0.7 
■^■states h 

fern 

1 
1 

Ks 0.1 
0.1 
0.1 

Kg 10 

5.1.2 Results. Recall that our objective in the H2 portion is to do better than fj, in noise 

and disturbance rejection. We don't necessarily care about its tracking capability or robustness, 

although these will be interesting to look at and compare with the fi controller and the final 

mixed H^/p controller. For right now, though, we will only concern ourselves with the noise and 

disturbance. 

The response and closed loop SV plot of H2 Controller A are found in Figures 5.8 thru 5.9. 

The response marginally improved over the fj, controller for two of the "states" (ß and ny), while 

ß got worse. Also note that the "hump" in Zltates/W, in Figure 5.9 has appeared again. A more 

quantitative look is in Table 5.3, which summarizes the change in maximum noise value and the 
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Figure 5.8    System's Response to Wind Gust and Sensor Noise, H2 Controller A 
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Figure 5.9   Closed loop SV plots for Zstates vs. wind gust and sensor noise for H2 Controller A 

standard deviation when compared to the n controller. We will also include the maximum value of 

the control deflections to get an idea of the control power used. 

Table 5.3    Change in fi Controller Noise and Wind Effects using H2 Controller A 

state maximum value standard deviation control surface maximum control deflection 

ß 

Uy 

-19% 
+30% 
-9% 

-21% 
+27% 
-4% 

6DT 

SDF 

SR 

-77% 
-77% 
-73% 

We see that with one exception, the noise response is better and we have gained an enormous 

reduction in control usage. Therefore, we expect that the mixed controllers should show an overall 

improvement in noise and wind response. 

5.2   Mixed H2/fi using H2 Controller A 

5.2.1 More Definitions. Before we continue and discuss mixed H2//J, for Design A, we 

will add another definition to the list in Section 2.1.3.2 and make a notational comment. 
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We will define 57 as the two-norm of the fj, part of the system with the K2ej)t controller in 

place. Recall from Section 2.1.3.2 that normally 57 would be infinite since the Hoo controller usually 

has a nonzero Dc term. That is not the case for us (see the y, controller in Appendix B). Hence, 

we will have a finite 57 and the definition has meaning. 

Recall from Section 2.1.5 that mixed #2/M is mixed H2/H(X with the #«, problem scaled by 

the D scales. Calculating the infinity-norm of this scaled #«, problem is calculating the overbound 

of (j,. To keep the distinction straight, when we refer to the mixed H2/y. problem and talk of the 

infinity-norms, we will continue to use the 7's defined in Section 2.1.3.2. This will remind us that 

we are calculating the overbound to fi and not fi itself. We will also occasionally refer to the H2 

open loop system and the fi open loop system {Hx open loop multiplied by the D scales). These 

will be designated P2 and i3^, respectively; the corresponding closed loop systems will be designated 

Tzw and DTeiD~x, respectively. 

5.2.2 The Mix. At this point we know the general shape of the curve (Section 2.1.5), 

one end point (associated with the H2 optimal solution, the "anchor"), and a point where the 

curve may not be able to reach (the point associated with the /x controller). Remember, all two- 

norm calculations are done with Tzw and all infinity-norm calculations are done with DTeiD~ . 

Therefore, using the fj, controller and using the H2 optimal controller found above, our end points 

yield: 

fj.: 57 = 6.567        7 = 4.709 26th order 

H2:        a = 0.6532        7 = 2.923e + 4     9th order 

These can serve as a check on our optimization routine. 

The Ht/Hoa optimization program was run on MATLAB for a 9th order controller. The 

resulting 7 vs.   a curve is found in Figure 5.10.   The location on the curve of each controller 
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Figure 5.10   7 vs. a curve using Design A 

calculated is shown by an 'x'. A controller from this set of controllers must now be chosen. Usually, 

a point near the "knee" of the curve is chosen to get a "lowest a for the lowest 7" type point. The 

"knee" in Figure 5.10 is shown in more detail in Figure 5.11. As long as we stay in the vicinity of 

7, we should keep most of our tracking and robustness characteristics. The lower a should give us 

the better noise performance when compared to fj,. 

The chosen controller has a 7 = 7.992 and a = 1.716. This controller will be denoted as 

Mixed Controller A. The plots of the noise and disturbance response are in Figure 5.12. 

We can see immediately that the control usage decreases dramatically but the response is 

worse for all three "states". We might have expected that (1 would increase since it was higher 

in the #2 optimal response compared to the /J, controller. However, the two-norm is lower for the 

mixed controller than in the ß controller; at least one of the state responses should improve. It is 

the states that concern us the most. Table 5.4 summarizes the changes when compared to (i. 

5.2.2.1    Possible Problem — Order.       One possible explanation for the discrepancy 

is the fact that the mixed curve is 9th order (order of the H? optimal system) and a minimal 
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Figure 5.11    "Knee" of the 7 vs. a curve using Design A 

Table 5.4    Change in // Controller Noise and Wind Effects using Mixed Design A 

state maximum value standard deviation control surface maximum control deflection 

ß 

ny 

+10% 
+73% 
+50% 

+12% 
+66% 
+51% 

SDT 

SDF 

6R 

-65% 
-65% 
-65% 

realization of the fi controller is 23rd order. To examine this possibility, a 23rd order controller 

was formed from H2 Controller A by adding 14 pole/zero cancellations. If order is indeed the 

explanation, then with the 23rd order controller as our starting point, our mixed controllers (which 

will also be 23rd order) should have responses which are better than /J, (possibly ß and ny better, 

ß worse). This was not the case. All state responses were worse. 

5.2.2.2 Possible Problem — Robustness . It is known that (M is designed for robust- 

ness and H2 is not. We have already seen how one H2 design was stable for the design model but 

not for the evaluation model. Perhaps H2 Controller A was also not robust, not in a stability sense 

(the controller did stabilize the evaluation model), but in a performance-to-noise sense. Maybe at 

some point on the curve, the fi side starts to take over and the noise performance gets better, while 
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Figure 5.12    System's Response to Wind Gust and Sensor Noise, Mixed Controller A 
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Figure 5.13   7 vs. a for 23rd order based on Mixed Design A, fi controller shown by * 

lower on the curve the performance gets worse. If that was the case, then it may be that the area 

H extends its robustness to wasn't reached by our curve. We can see in Figure 5.13 that there is a 

large gap between the point where our 23rd order curve ends and the point associated with the fj, 

controller. 

In this case, the problem is, again, the difference between our design model and our evaluation 

model. We are saying that our two-norm, which is calculated using the design model, does not 

accurately reflect the "truth" which we see in our evaluation model. Therefore, to test this theory, 

we can use the evaluation model to calculate our two-norm. We will form the open loop system 

(P) from the evaluation model, close the system with the controller and calculate that two-norm. 

This will give us the "true" two-norm. We will do this for the 9th order controller that we used 

(Mixed Controller A) and for the fi controller. Appendix C gives the state space representation of 

the open loop evaluation model and the resulting matrices. The resulting two-norms are: 

a^    =    0.27 

OiA 0.12 
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The two-norm for Mixed Controller A is less than half that of the fi controller, and should 

have less noise than /x. Since this two-norm was calculated from the evaluation model and we are 

simulating using the evaluation model, we know that we have an accurate measure of the two-norm. 

This is in direct contrast to what we've seen in the time responses. There is only one choice left 

to us. The overall two-norm isn't an accurate measure of the noise. This will be examined in the 

next chapter. 
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VI.   Hi Revisited 

6.1    Another Look at the Two-norm 

So far we've been taking the two-norm of the whole system as our objective and using the 

two-norm as an indication of the "noisiness" in our system. However, we have seen that it isn't a 

reliable indicator. Even though the two-norm for Mixed Controller A is less than the two-norm of 

the fi controller, the time responses are much noisier. How can this be? 

The answer lies in a basic property of the two-norm. We can split up an H2 system into 

components (when we are calculating the two-norm). In the case of the system in Figure 6.1, we 

can consider the system as two systems that are the same except for the choice of outputs. One 

system (designated Tst) will have only Zstates = \ß, ß]T and the other system (designated Tctr) 

will have only ZcontToi - [6A, 6R]
T
 (the generalized controls). The two-norms are related by 

\\T2W\\l = \\Tst\\l + \\Tctr\\l (6.1) 

Two proofs are available. One uses the Lyapunov equations which are used to calculate the 

two-norm (2.4 through 2.6), the other uses the definition of the two-norm (2.1). We will use the 

w 

1*2 
8  =».  ^ 

K 

Figure 6.1    P-K version of the H2 part of the JS2/.H00 problem 



latter. Let 

Z = 
Zst 

Zctr 

(6.2) 

where Zst is the output concerning the states and ZctT the output that weights control usage. For 

now, leave the exogenous input as one vector, w. Then 

Ztt/w 

Zctr/W 

Now, by the definition of the two-norm, 

TctT 

(6.3) 

&tot 1131.11? 
1       />+°o 

2^ 

±st      1ctr 

/+oo 
tr[TzwTzw]du> 

■oo 

= h /rtr [T:tTst+T:trTctr] ** 
=    ^ J      tr [T;tTst] du + -j^tr [T*ctrTctr] du, 

f+oo 

Tctr 

\\T.t\\l + \\Tctr\\l 

„2     .   „2 :=    a,t + actr 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

With this in mind, we should reexamine our results and look at all three two-norms (we will 

designate the total two-norm as atot)- To do this, all we have to do is change the C matrix to 

correspond with the appropriate outputs. MATLAB's /^-Toolbox does this very easily using the 

SEL (select) command. It takes a system matrix x and the appropriate division of Z and forms 

1 One way the n-Toolbox can represent the system. A system is put in this form using the "PCK" (pack) command. 
It takes the A, B, C and D matrices and packs them together into one matrix with some additional information 
inside to tell the number of states. It can then determine the number of inputs and outputs. 
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Figure 6.2    7 vs. a curves for the various two-norms using Design A (x), and the fj, Controller(*) 

the corresponding system matrix for the new system. Table 6.1 shows the final results of the 

calculations. In fact, we can do this for the whole 7 vs. a curve we calculated before. This is found 

in Figure 6.2. 

Table 6.1    Various two-norms for the fj. Controller and Mixed Controller A 

Controller <*tot a,t OtctT 

Mixed A 
6.5668 
2.8271 

0.4848 
0.7803 

6.5489 
2.7172 

After calculating the two-norms of the individual a's, we see that ast is indeed higher for 

Controller A than for /z. This corresponds with the time histories we have observed. We also see 

that actr increases as 7 decreases. This makes sense in that actr is bigger than a,t, and therefore 
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contributes heavily to atot. Thus, most of the concentration when decreasing atot is to decrease 

actT- Unfortunately this doesn't correspond with the output we are most concerned about, Z,tates- 

In fact, we can see from Figure 6.2 that we have a problem from the start. At H2 optimal, 

we see that we start out at a higher ast than that of /z, so of course the mix will not work well in 

terms of ast. This is not a good controller from the start. 

6.2   Mixed H2/n Design B 

Let's go back and look at the earlier H2 design and corresponding controller (from Chapter 

V) that destabilized the system. Call this H2 Controller B. Its two-norms are shown in Table 6.2. 

Table 6.2    Various two-norms for the /x Controller and H2 Controller B 

Controller OCtot a,t "ctr 

H2B 
1.120 

0.4026 
1.116 

0.4021 
0.0894 
0.0206 

Table 6.3    Change in // Controller Noise and Wind Effects using H2 Controller B 

state maximum value standard deviation control surface maximum control deflection 

ß 
A 
ny 

-32% 
+25% 
-14% 

-33% 
+21% 
-8% 

6DT 

6DF 

SR 

-81% 
-81% 
-71% 

Now we are starting out in a good position, with ast(H2) < ast(/x). Traditionally, this 

controller would not have been used in the mixed algorithm since it is not really a good controller 

by itself (it destabilizes the evaluation model!). However, we will try it anyway in the hopes that 

the n controller will extend its robustness characteristics to the mixed controller enough that the 

mixed controller will stabilize the evaluation model. 

For consistency, the summary of the noise and wind responses of H2 Controller B is found in 

Table 6.3. 
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Using H2 Controller B, the new "end points" are: 

fj,: ä=1.12 7 = 4.709 26thorder 

H2:        a- 0.4026        7 = 3.323e + 5    9thorder 

(6.11) 

(6.12) 

The 7 vs. a curves are found in Figure 6.3. At this point, our main concern is finding an H2 

controller which does better than the \i controller in noise and disturbance rejection. This is where 

our attention will focus. Thus, we will choose a fairly low a (and subsequently high 7) for our 

mixed controller. In this way, we hope to determine if our mixed design has potential. The chosen 

mixed controller (Mixed Controller B) has 7 = 18.046 and atot = 0.6228. 

First, let's look at the two-norms. Table 6.4 lists the various two-norms for the "ends" and 

chosen mixed controller. 

Table 6.4    Various two-norms for the // Controller, H2 Controller B and Mixed Controller B 

Controller atot Oi,t Oictr 

Mixed B 
H2B 

1.120 
0.6228 
0.4026 

1.116 
0.6207 
0.4021 

0.0894 
0.0514 
0.0206 

This looks promising, as aJt(Mixed) < ast(fj,). We also see from Figure 6.4 that Mixed 

Controller B stabilizes the evaluation model. The /z Controller obviously extended its robustness 

to this controller. The summary of responses is found in Table 6.5. 

Table 6.5    Change in /i Controller Noise and Wind Effects using Mixed Controller B 

state 
ß 

n„ 

maximum value 
+50% 
+34% 
+33% 

standard deviation 
+46% 
+32% 
+34% 

control surface 
6DT 

SDF 

6R 

maximum control deflection 
-37% 
-37% 
-40% 

Again, we are in a quandary.  The system's response is worse in all of the 3 states we care 

about. This is in spite of the fact that ast{H2) < a,t{v)- We must re-examine the two-norm issue. 
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6.3    Yet Another Look at the Two-norm 

Let's now look at what Z in (6.2) consists of. 

z = T,ww 

" 
Tst 

W = 
T,t Ww 

Tctr T ztr ■w, 

J-stw Tst, Ww 

J-ctrw TctT. W % 

(6.13) 

(6.14) 

■LZW      

J-3tw ■'■St, 

J-ctrm      -I-ctr, 

Now we substitute (6.15) into the definition of the two-norm. 

(6.15) 

1   r+co 

(6.16) 

1    f+°°* = —- /       tr < 

■LstB       Jctr, -Lctrw      -Lctr, 

d(V 

1       /"+°° 
^ y       tr {T;t„Tat„ + 37t.TIt. + TZtrwTctrw + TctrTctr,} do, 

(6.17) 

(6.18) 

I|2»tjl2 + ||2»tJ|2 + H^ctrJb + l|2ctr,||2 

—     «J«. + tt2t. + altrw + "dr. 

(6.19) 

(6.20) 
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We could extend this even further by breaking up the vectors Zst and ZctT into their individual 

signals : 

ß 
Z,t = 

"'ctr 
6A 

6R 

Hopefully, this will be unnecessary. 

Now we can examine the various two-norms of the system we just designed. 

Table 6.6   Various two-norms for the /x Controller and Mixed Controller B 

Controller CUtot <x,t a>tw Ottt. <*ctr actrw "ctr. 

Mixed B 
H2B 

1.1195 
0.6228 
0.4026 

1.1160 
0.6207 
0.4021 

0.0472 
0.0648 
0.0597 

1.1150 
0.6173 
0.3976 

0.0894 
0.0514 
0.0206 

2.7543e-4 
2.4868e-4 
6.3648e-5 

0.0894 
0.0514 
0.0206 

Even though ast is going in the right direction, the bulk of it is composed of ast,. It should be 

the sensor noise that is affected the most and in the right direction. To verify this result, the wind 

in the evaluation model was multiplied by zero to "turn it off". Simulations of the sensor-noise-only 

response were then completed for both the fj, Controller and Mixed Controller B. The maximum 

magnitude and the standard deviation of the responses were then compared as before. The results 

of the comparison are in Table 6.7. The plots for Mixed Controller B are shown in Figures 6.5 and 

6.6 for later discussion. 

Table 6.7    Change in (i Controller Noise Effects Only using Mixed Controller B 

state maximum value standard deviation control surface maximum control deflection 

ß 

ny 

-65% 
-54% 
-55% 

-63% 
-48% 
-50% 

6DT 

6R 

-56% 
-56% 
-53% 
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Figure 6.5    System's Response to Wind Gust and Sensor Noise, Mixed Controller B 
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After comparing Table 6.7 with Table 6.5, we see that the sensor noise was, in fact, affected 

the most favorably by this controller. We also see when comparing Figure 6.6 to Figure 6.5 that 

the response to sensor-noise-only is very small compared to the response of wind-and-sensor-noise. 

Therefore, the majority of the wind-and-sensor-noise response is due to the wind. This corresponds 

to what we would expect. Thus, it is really astw we are trying to decrease as we walk down the 

curve. We are concerned with alt, as well, but since the noise response is so small, it would be 

sufficient if ast. remains below a certain amount. This sounds like an optimization problem with a 

(some) constraint(s). 

Note also from Table 6.6 that H2 Controller B has a higher astw than the fj, Controller. The 

way the problem is set up, astm has to increase. We obviously must have a,tw lower for the anchor 

than for /J. That, however, is not the end of our problem. 

The optimization program we are running tries to produce the optimal curve for that order. 

Since we are using the fj, controller as a reference, we will examine what happens as the curve is 

traced from the p controller to the H2 optimal controller. For the fi controller, we have seen that 

atot is made up mostly of ast which is made up mostly of a,t„. In other words, aat, makes up the 

majority of atot- Therefore, as the program forces atot to decrease (walking down the curve from 

the fi controller), it is forcing ast, to decrease. As long as ast, is decreasing, astw could decrease 

or increase since it is so small. If the H2 optimal controller had a lower astw than the fi controller, 

but it didn't make up the bulk of ast, there would be nothing to prevent astw from getting larger 

than the corresponding fj. value at some point on the curve causing our time responses to get worse. 

In fact, we see something similar in astw in Table 6.6. There, we see a situation where the 

mixed controller has a larger astw than either the anchor or the /x controller. This brings up the 

following question: At the optimal curve for that order, are the paths of the smaller two-norms, in 

fact, allowed to vary at will? Or are they monotonically increasing or decreasing? If the latter is 

true, then we see from Table 6.6 that we must be at a local minimum. If the former is true, we can 
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not make such a generalization and may not be able to say anything at all about how the smaller 

two-norms will behave. 

Assuming local minima are not the problem, the answer to our immediate problem lies in 

finding a weighted H2 system which will make ast the largest element of atot and at the same time 

make astw the largest element in ctst. 

6.4    Mixed H2/n Design C 

We will now attempt to find the weights for our H2 system which will do two things: 

1. Make ctstw the largest element in the a array (largest element in atot ) 

2. Make atot for the anchor smaller than for the fj, controller 

We will start our search by varying the weights of H2 Controller B since it has better time 

responses when compared to H2 Controller A. Recall that even though it was destabilizing to the 

evaluation model, H2/fJ, was able to produce a stabilizing controller. 

It may be possible to do something similar to the fj, weightings, where we use 2 matrices to 

produce a AA 

AA = ABAC 

In our case we would produce a matrix of input weightings and a matrix of output weightings 

which, when combined, would weight Z„tw more than the others. 

A simpler yet logical choice would be to make the wind weighting, kg, larger. This could, 

by the same logic, also make actTw larger, which might make actr larger than a3t. This would be 

undesirable. However, actTw is so small that making it slightly larger shouldn't hurt too much. 

The method used was to increase kg and examine the two-norm array using the resulting H2 

controller as well as the two-norm array using the fj, controller. Recall that it is the /i controller 

with which we will compare.  Also recall that the two-norms are of the weighted H2 part of the 
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system, so changing the weights changes Tzw. Hence, even though the time responses of the fj, 

controller won't change (we are still using the same controller), the two-norms will (we are using 

the new #2 system with that controller). 

There are several choices available to us as engineers at this point. We could try to get all 

two-norms of the #2 controller less than the corresponding two-norms of fi or we could try to get 

a little more difference between the noise responses of the wind-and-noise for a little bit of loss in 

the sensor-only response. This would correspond to allowing the percentage difference of ast, to 

get smaller so that the percentage difference of astw could get larger. This was the choice made. 

A value of kg = 32 was chosen. A further increase in kg (kg = 64) produced a situation where the 

only two-norm that decreased relative to fj, was astw; all others increased when compared to fi. 

The two-norm array for the new H2 controller {Hz Controller C) is seen in Table 6.8. 

Table 6.8    Various two-norms for the fi Controller and H2 Controller C 

Controller &tot <*,t a>tw «««, "ctr <*ctTw <*ctr. 

H2C 
1.8789 
1.4204 

1.8767 
1.4105 

1.5096 
1.1310 

1.1150 
0.8429 

0.0898 
0.1668 

8.8139e-3 
8.6967e-3 

0.0894 
0.1666 

The time response plots of the corresponding If2 optimal controller are found in Figures 6.7 

and 6.8. Tables 6.9 and 6.10 summarize the responses. 

Table 6.9    Change in fi Controller Noise and Wind Effects using If2 Controller C 

state maximum value standard deviation control surface maximum control deflection 

ß 
ß 

ny 

-77% 
-22% 
-46% 

-74% 
-26% 
-44% 

6DT 

8DF 

SR 

-71% 
-71% 
-47% 

We see that we finally have an B.2 controller which does better than the fi controller in all 

areas. The closed loop SV plots for Zstates/Wg and Zstates/Ws are found in Figure 6.9. We see here 

that we have indeed reduced the gain at the frequency of interest (3.8 rad/sec). An examination of 

the step response (not included) showed that this controller is destabilizing to the evaluation model. 
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Figure 6.7    System's Response to Wind Gust and Sensor noise, Controller C 
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Table 6.10    Change in y. Controller Noise Effects Only using H2 Controller C 

state maximum value standard deviation control surface maximum control deflection 

ß 
ß 
ny 

-86% 
-30% 
-61% 

-85% 
-23% 
-56% 

6DT 
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-73% 
-73% 
-62% 
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Figure 6.9   Closed loop SV plots for Zstates vs. wind gust and sensor noise for Controller C 

For later comparison with the mixed controller, Figure 6.10 shows that we have no robustness with 

our H2 controller. Our purpose all along has been to incorporate some of ^'s robustness by using 

the mix and we have seen that fi can also take care of our instability. Both of these things should 

be taken care of by mixing with (i. 

One other point should be brought up before we examine the mixed controller. Note in Table 

6.11 that actT (and actr,) is larger for H2 Controller C than for //, yet the responses show the 

opposite. The explanation is probably due to the fact that we have been calculating the two-norms 

using the weighted H2 system and not the evaluation model. 

The resulting j vs. a curves for mixed H2/p with this new (and final) controller is found in 

Figure 6.11. A mixed controller with atot = 1.582, 7 = 7.997 was chosen as Mixed Controller C. 

Note that this figure does not plot the whole two-norm array. 

The two-norm array is shown in Table 6.11. 
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Table 6.11    Various two-norms for the /i Controller and Mixed and H2 Controller C 

Controller Ottot <x,t a>tw a«t. <*ctr actrw <*ctr. 

mixed C 
H2C 

1.8789 
1.5819 
1.4204 

1.8767 
1.5688 
1.4105 

1.5096 
1.1426 
1.1310 

1.1150 
1.0750 
0.8429 

0.0898 
0.2025 
0.1668 

8.8139e-3 
9.3628e-3 
8.6967e-3 

0.0894 
0.2023 
0.1666 

The time response plots of the corresponding mixed controller are found in Figures 6.12 and 

6.13. The summary of these responses are found in Tables 6.12 and 6.13. Just as was the case for 

H2 Controller C, we see that the time response plots follow the two-norms except for the control 

usage. This discrepancy, again, may be attributable to the difference between the H2 design model 

and the evaluation model. 

Table 6.12    Change in fj, Controller Noise and Wind Effects using Mixed Controller C 

state maximum value standard deviation control surface maximum control deflection 

ß 

ny 

-59% 
-24% 
-43% 

-54% 
-24% 
-38% 

6DT 

6R 

-30% 
-30% 
-28% 

Table 6.13   Change in fj, Controller Noise Effects Only using Mixed Controller C 

state maximum value standard deviation control surface maximum control deflection 

ß 

ny 

-24% 
-6% 
-20% 

-24% 
+1% 
-15% 

SDT 

6DF 

SR 

-28% 
-28% 
-24% 

We can see from Figure 6.14 that Mixed Controller C is indeed stabilizing for the evaluation 

model and provides a fairly good step response. From Figure 6.15 we see that this controller provides 

robustly stability and robust performance. For comparison purposes, the noisy step response of 

Mixed Controller C is found in Figure 6.16, the noisy step response of the n controller is recreated 

in Figure 6.17. Most of the difference initially is due to the fact that the mixed controller tracks 

a little worse than the // controller. After the initial response, though, we can see that the noise 

response is slightly better for the mixed controller. 
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Figure 6.12    System's Response to Wind Gust and Sensor noise, Mixed Controller C 
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Figure 6.13    System's Response to Sensor noise only, Mixed Controller C 
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Figure 6.14    Step Response plot of Mixed Controller C 
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Figure 6.15    Mu bounds plot of Mixed Controller C 
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Figure 6.16    Noisy Step Response plot of Mixed Controller C 

6-25 



Step in Beta: Ideal (dotted) and Real (solid) Beta 

4 5 6 
Time, (sec) 

10 

Step in Beta: Ideal (dotted) and Real (solid) Mudot, max=-0.1065 

0.02 

ffl 
CO 

-0.02 

Step in Mudot: Ideal (dotted) and Real (solid) Beta, max=0.01394 
"i r 

4 5 6 
Time, (sec) 

Step in Mudot: Ideal (dotted) and Real (solid) Mudot 

Figure 6.17   Noisy Step Response plot of the (i controller 
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We finally have a good mixed controller. This mixed Rij\i, controller (Mixed Controller C) 

incorporates most of the robustness and performance of the (i controller while decreasing the effect 

of noise and wind gusts on the system. This reduction is fairly significant for the wind-and-noise 

response and less so for the noise-only response. Note that this improvement is accomplished for a 

9th order controller compared to the 26th order fj, controller. For these reasons, it is felt that Mixed 

Controller C is "better" than the fi controller. 
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VII.   Conclusions and Recommendations 

7.1    Summary and Conclusions 

This thesis examined the mixed H2/ß problem for a MIMO system. The system chosen was 

the lateral/directional model of the VISTA F-16. The /J, controller proved to be not only very 

robust with good model following capabilities, but also proved to do reasonably well at noise and 

disturbance rejection. Due to this, it was difficult to determine the design weightings which would 

produce an H2 controller that surpasses /z's performance in these areas. 

In the process of attempting to find just such a controller, several novel techniques were 

developed to aid in determining the appropriate design weightings for the H2 system (which would 

then result in the H2 controller). The method that was the most successful involved decomposing 

the two-norm of the system into its constituent elements, the two-norms of the corresponding 

individual elements of z and w. In this way, we were able to determine the weights which we 

needed to concentrate on to improve the H2 noise rejection over the // controller's. Once we had 

those, it was a simple matter to improve the H2 design. 

We also found that it was possible to use an H2 controller which destabilized the evaluation 

model and still have the resulting mixed H2/y. controller stabilize the evaluation model. This fact 

expands the set of controllers which can be used as the "anchor" to the mixed H2/fi curve (the H2 

optimal point). This may be necessary for the H2 controller to have better performance than the 

fj, controller. 

A 9th order mixed H2/fi controller was found which improved upon the 26th order (J, con- 

troller's noise (wind gust and sensor noise) response. This was accomplished while still maintaining 

acceptable levels of robustness and step response performance. 
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7.2    Recommendations 

• Examine other flight conditions. The design of the inner loop is to force the response of the 

system to be the same for multiple flight conditions. This thesis analyzed the responses at the 

central flight condition. Other flight conditions should be examined to verify the capability 

of the inner loop in the mixed #2//* problem. 

• Use a more accurate model of the VISTA F-16 for the evaluation model. The evaluation 

model used in this thesis was a simplified, linearized model of the equations of motion. There 

exists a high fidelity, six degree of freedom, nonlinear simulation model for the VISTA F-16 

[ABSB92]. This model should be used to truly evaluate the controller developed in this thesis. 

This is especially true since the H2 optimal that was used destabilized the evaluation model. 

The nonlinear model would be the truth model. 

• Examine the discrepancy in the two-norm for control. The two-norms of the control usage 

terms of the final controller disagreed with the corresponding time responses. There is, as of 

yet, no explanation for this. 

• Attempt to incorporate the constituent two-norms into the optimization routine directly. 

Now that we know the composition of the two-norm, we can choose the two-norm associated 

with the item we are most interested in. We could make this two-norm the objective in our 

optimization routine and treat the other two-norms as constraints. Another possibility would 

be to make the objective a weighting of some or all of the constituent two-norms and the 

remaining two-norms left as constraints. 

• Study the use of the two-norm decomposition in .H2/-H00 and H2/p . This thesis performed 

the preliminary investigation. More work is needed. What is the effect, if any, of the ratios 

between the two-norms? When on the optimal fixed order curve, do the individual two-norms 

follow a monotonically increasing/decreasing path? If not, is there any way to predict when 

they would increase or decrease? 
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Appendix A.   Model Data 

A.l    Design Model Data 

A.l.l    Central Flight Condition.     The central flight condition is defined as: 

Mach =0.6   /i=20,000/i   a = A.Zdeg   q = 245.1psf 

The state space representation of the central flight condition is: 

Acentral =    -1.688Se-01      7.5949e-02    -9.9523e-01 

-2.7692e+01    -2.3750e+00      1.7141e-0i 

6.6973e+00    -6.6493e-02    -3.9717e-01 

Bcentral = 2.3384e-02 3.7619e-03 2.5281e-02 

-2.2464e+01 -2.9507e+01 6.095ie+00 

-2.3973e+00    -5.2764e-01    -2.6622e+00 

A.1.2    Design Actuator.      The actuator model for the design model has the following state 

space representation: 

Aact =        -1.9700e+01 0 

0    -1.9700e+01 

Bact = 1.9700e+01 0 

0      i.9700e+01 

Cact = 10 

0 1 
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Dact 0 0 

0 0 

A.1.3   Ideal Model. The IDEAL model has a state space representation of: 

Aideal =    -4.5576e+00 -1.0848e+01                         0 

9.5469e-01 2.9759e-0i                         0 

0 0    -3.0303e+00 

Bideal =  3.2825e-01 0 

0 0 

0 9.9926e-02 

Cideal 0  2.8719e+01 0 

0 0  3.0325e+0i 

Dideal 0    0 

0    0 

A.2    Evaluation Model Data 

The only difference between the design model data and the evaluation model data is the state 

space representation of the actuator. The evaluation actuator is a 3 X 3 transfer function matrix. 

Each transfer function has 3 states. This produces a 9th order state space representation. 

Aact = 

Columns 1 through 6 
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1.1200e+02 0 0 0 0 6.0433e+03 

0 -1.1200e+02 0 0 6 0433e+03 0 

0 0 -1 1200e+02 6 0433e+03 0 0 

0 0 -1 0000e+00 0 0 0 

0 -l.OOOOe+00 0 0 0 0 

l.OOOOe+00 0 0 0 0 0 

0 0 0 0 0 l.OOOOe+00 

0 0 0 0 1 .0000e+00 0 

0 0 0 1 0000e+00 0 0 

Columns 7 through 9 

8.3232e+04 

0  8.3232e+04 

0  8.3232e+04 
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Bact = 

0 

0 

-1 

0 

0 

0 

0 

0 

0 

Cact = 

Columns 1 through 6 

Columns 7 through 9 

0          0 8.3232e+04 

0  8.3232e+04 0 

8.3232e+04          0 0 

Dact 
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0 0 0 

0 0 0 

0 0 0 
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Appendix B.   \i Optimal Controller 

The state space representation of the controller from //-synthesis is as follows: 

A = 

Columns 1 through 6 

4.8582e+00 -1.9456e+00 i.9669e+01 -2.3481e+00 

1.3065e-01 5.8502e-02 -5.9182e-01 i.0984e-01 

7.2513e-0i -6.1527e-01 4.8747e+00 -i.2647e+00 

2.9826e+01 1.0654e+01 -2.9648e+01 1.5477e+0i 

-1.3953e+00 -4.9843e-0i 1.3870e+00 -3.6609e-01 

1.6065e+01 5.7384e+00 -1.5969e+01 6.4442e+00 

4.5564e-04 8.8126e-05 -3.2144e-04 1.4790e-03 

-2.6293e-03 -1.3881e-04 1.2036e-03 -8.2575e-04 

-5.4193e-04 -3.2388e-04 7.6824e-04 -6.3265e-03 

3.4080e-01 -6.7318e-02 7.5323e-01 -1.0525e-01 

1.3895e+00 4.9458e-0i -1.3781e+00 9.1974e-01 

2.2246e-0S 4.2446e-06 -1.5592e-05 7.0998e-05 

3.0334e-06 -6.6155e-07 5.9030e-08 -1.6180e-05 

-2.4485e-05 4.9885e-06 1.4270e-07 i.2327e-04 

-1.1214e-04 -3.4754e-06 4.7024e-05 i.5755e-05 

2.4714e-04 -4.9770e-05 -2.4664e-06 -i.232ie-03 

1.7033e-02 -3.4335e-03 3.8361e-02 -5.4730e-03 

6.9518e-02 2.4832e-02 -6.9103e-02 4.1782e-02 

4.1538e-10 5.1919e-ii -2.4297e-10 7.5573e-10 

i.2155e-01 -2.3579e+00 

-5.68686-03 1.1031e-01 

6.5470e-02 -1.2700e+00 

-4.3683e+00 4.0397e+01 

1.7185e-0i -1.5616e+00 

-1.9202e+00 1.6039e+01 

3.4164e-05 -4.5169e-04 

-2.1286e-05 2.9088e-04 

-1.4483e-04 1.9093e-03 

5.6446e-03 -1.0912e-01 

-1.7666e-01 i.6781e+00 

1.6404e-06 -2.1690e-05 

-3.6628e-07 4.8108e-06 

2.7894e-06 -3.663ie-05 

2.5500e-07 -2.9061e-06 

-2.7878e-05 3.6609e-04 

2.8331e-04 -5.4957e-03 

-9.0803e-03 8.6674e-02 

1.7627e-li -2.3378e-10 
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i.5949e-09 4.9213e-10 -1.4487e-09 9.0061e-09 2.0694e-10 -2.7313e-09 

4.5286e-04 4.0315e-05 -2.3620e-04 4.8430e-04 1.1470e-05 -1.5286e-04 

6.0700e-05 4.0767e-06 -2.9322e-05 3.7247e-05 9.0624e-07 -1.2178e-05 

-3.5996e-04 -4.7283e-06 1.3962e-04 1.8459e-04 3.8758e-06 -4.9585e-05 

4.1138e-04 1.9500e-04 -4.9359e-04 3.7422e-03 8.5753e-05 -1.1308e-03 

3.8636e-04 6.3778e-05 -2.5328e-04 i.0258e-03 2.3762e-05 -3.1444e-04 

-2.0635e-03 -4.3920e-04 i.5264e-03 -7.5339e-03 -1.7379e-04 2.2967e-03 

Columns 7 through 12 

2.0401e+02 -2.3482e+02 -1.6917e+01 -5.9330e+00 -1.9665e-01 1.9801e+02 

-9.5444e+00 1.0987e+01 7.9154e-01 2.7756e-01 9.2003e-03 -9.2634e+00 

1.0988e+02 -i.2648e+02 -9.1122e+00 -3.1956e+00 -1.0592e-01 1.0665e+02 

7.8839e+02 -2.3107e+01 -1.1749e+02 -7.9185e-01 -4.3021e+00 -3.3440e+03 

-3.6884e+01 i.0855e+00 5.4968e+00 3.7045e-02 2.0127e-01 1.5644e+02 

4.2464e+02 -i.2458e+0i -6.328ie+01 -4.2650e-01 -2.3i72e+00 -1.8011e+03 

-1.7270e-01 i.2036e-01 -9.9271e-01 -1.3263e-05 -3.2333e-05 -2.4697e-02 

-2.7694e+01 -3.2048e+00 1.0840e-01 1.0001e+00 2.1172e-05 1.1791e-02 

6.6892e+00 6.2683e-03 -3.8784e-01 1.2352e-05 1.0001e+00 i.0683e-01 

9.4209e+00 -1.2778e+01 -9.2986e-01 -1.9973e+0i -9.0915e-03 9.0528e+00 

3.6012e+01 -7.5940e-01 -5.4279e+00 -3.6918e-02 -1.9900e+01 -1.5517e+02 

3.2796e-01 3.1170e-03 1.9463e-04 -6.4843e-07 -1.5527e-06 -4.5588e+00 

6.5230e-05 6.4525e-04 5.9521e-05 -1.0780e-07 3.4319e-07 9.5497e-01 

-6.1308e-04 9.5917e-02 7.1263e-03 8.6463e-07 -2.6129e-06 -2.1111e-03 

-1.0001e+00 -1.8687e-02 -1.4418e-03 3.5486e-06 -i.9076e-07 -3.6151e-04 

6.3416e-03 -9.6155e-01 -7.1444e-02 -8.7182e-06 2.6113e-05 2.1102e-02 
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4.7551e-01 -5.4733e-0i -3.9432e-02 -i.3828e-02 

1.8376e+00 -5.3873e-02 -2.7384e-01 -i.8456e-03 

-9.3358e-10 6.0678e-08 4.2033e-09 -1.2535e-ll 

-7.1415e-09 3.7468e-08 -2.4585e-09 -4.3556e-ll 

-8.2717e-04 1.3017e+00 9.8981e-02 -1.3920e-05 

1.8792e-03 -1.3570e-02 -1.0470e-03 -1.8866e-06 

-6.5465e-03 3.5157e-0i 2.6633e-02 1.1492e-05 

3.6092e-02 2.6381e-02 -2.8929e-04 -1.0171e-05 

-6.3886e-03 6.6590e-02 4.4963e-03 -1.1417e-05 

2.0629e-02 -9.8054e-02 -3.1382e-03 5.9439e-05 

-4.5835e-04 4.6152e-01 

-1.0027e-02 -7.7941e+00 

-1.6762e-ll -1.2466e-08 

-1.9534e-10 -1.5139e-07 

-i.0987e-05 -7.8319e-03 

-8.7896e-07 -5.8059e-04 

-3.4879e-06 -3.4331e-03 

-8.0837e-05 -6.3114e-02 

-2.2519e-05 -i.7071e-02 

1.6437e-04 1.2603e-01 

Columns 13 through 18 

1.5318e+03 6.9288e+03 

-7.1664e+01 -3.2414e+02 

8.2509e+02 3.7319e+03 

-2.5429e+04 9.4241e+02 

1.1896e+03 -4.4071e+01 

-1.3696e+04 5.0768e+02 

-2.9258e-01 -1.1883e-01 

1.1398e+00 -6.5303e+00 

4.4606e-01 1.3795e+00 

7.0158e+01 3.3406e+02 

-1.1808e+03 4.1955e+01 

-1.0863e+01 -4.8151e-02 

2.9670e-01 2.5662e-02 

1.2580e+02 2.9539e+03 -7.3630e+04 6.5496e+02 

-5.8855e+00 -1.3818e+02 3.4447e+03 -3.0639e+01 

6.7773e+01 1.5909e+03 -3.9658e+04 3.5277e+02 

-2.7921e+03 2.7205e+02 -6.6252e+03 -7.6180e+04 

1.3062e+02 -1.2710e+01 3.0994e+02 3.5639e+03 

-1.5038e+03 1.4661e+02 -3.5684e+03 -4.1031e+04 

-1.3004e-01 -1.2718e-01 -1.4071e-01 -5.6741e-01 

1.1066e+00 -6.3991e+00 1.0077e+00 3.1989e-01 

-2.9320e-01 1.3759e+00 5.1411e-02 2.4254e+00 

5.8646e+00 1.5125e+02 1.9630e+06 2.9085e+01 

-1.3050e+02 1.0754e+01 -3.0959e+02 1.9628e+06 

-7.8852e-03 -4.8062e-02 -6.9007e-03 -2.7239e-02 

-2.8962e-03 2.5302e-02 -1.5975e-03 6.1969e-03 
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-5.7195e-04 -3.3187e+00 1.4408e-02 -2.8451e-01 

2.8781e+01 -2.2124e-01 3.6647e-02 -2.1633e-01 

7.2176e-04 3.3212e+01 -1.4924e-01 2.8183e+00 

3.5705e+00 1.6150e+01 2.9326e-01 6.8848e+00 

-5.9269e+01 2.1970e+00 -6.5077e+00 6.3453e-01 

-2.1879e-07 5.4117e-07 -1.3991e-07 5.2607e-07 

-1.0816e-06 -1.1843e-06 -5.3820e-08 -i.2053e-06 

-8.3446e-02 9.0659e-01 -3.1604e-02 8.8649e-01 

1.7054e-02 2.8010e-0i 2.1900e-02 2.75S5e-01 

-7.9339e-02 -1.8092e+00 -5.8279e-02 -1.7806e+00 

-2.9959e-01 -3.6735e-01 1.35S6e-01 -3.7235e-01 

-1.5744e-01 4.8775e-01 -4.3171e-02 4.7381e-01 

i.2921e+00 -9.4748e-01 4.5381e-01 -8.9206e-01 

1.2709e-02 -4.7212e-02 

4.427ie-02 -5.8922e-03 

-i.2797e-01 4.7189e-01 

-3.7662e+02 1.5267e+00 

-1.5442e+01 -3.8256e+02 

i.OOOOe+00 -2.9018e-07 

-3.9535e-07 1.0000e+00 

-1.6488e-01 -1.8620e-01 

-2.2802e-02 -1.4354e-02 

1.4551e-01 -7.02756-02 

-6.5943e-02 -i.4347e+00 

-1.2511e-01 -3.9365e-0i 

6.1605e-01 2.8901e+00 

Columns 19 through 24 

-5.2433e+06 3.7347e+05 -6.0329e+01 -i.9653e+00 2.4424e+01 -2.0007e+00 

2.4530e+05 -1.7472e+04 2.8224e+00 9.1945e-02 -1.1426e+00 9.3602e-02 

-2.8241e+06 2.0116e+05 -3.2494e+01 -1.0586e+00 1.3155e+0i -i.0776e+00 

1.1304e+04 -7.9079e+06 -8.2243e+00 -1.0608e+00 2.5068e+00 -4.2853e+01 

-5.2933e+02 3.6995e+05 3.8475e-01 4.9630e-02 -1.1727e-01 2.0048e+00 

6.0905e+03 -4.2593e+06 -4.4297e+00 -5.7139e-01 1.3502e+00 -2.3081e+01 

-6.4170e+00 -5.852ie+0i -1.3615e-04 -1.0350e-05 4.8982e-05 -3.2212e-04 

6.9676e+01 2.9144e+0i 8.3771e-04 3.07iie-05 -3.3559e-04 2.1145e-04 

-1.1710e+01 2.5243e+02 1.3109e-04 2.9500e-05 -2.6892e-05 1.3592e-03 

3.9139e+07 1.7054e+04 1.6571e+03 7.7562e+01 -8.9288e+02 -9.2484e-02 
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3.7084e+02 3.9013e+07 -3.8340e-01 -4.9284e-02 

-3.1842e-01 -2.8088e+00 -6.6553e-06 -5.0075e-07 

-1.5293e-01 6.5213e-01 -1.0821e-06 2.9051e-08 

1.2034e+00 -4.9706e+00 8.6854e-06 -2.0691e-07 

3.1874e+00 -7.9730e-01 3.6071e-05 1.1179e-06 

-1.2096e+01 4.9685e+01 -8.7585e-05 2.0428e-06 

-1.3221e+04 8.7049e+02 -1.4061e-01 -4.S808e-03 

2.6350e+01 -i.9431e+04 -1.9169e-02 -2.4726e-03 

-8.3593e-06 -2.9632e-05 -1.2812e-10 -7.2050e-12 

-6.2462e-06 -3.5812e-04 -4.5072e-10 -5.0640e-ll 

-1.0552e+01 -1.8712e+01 -1.8319e+02 -8.9283e+00 

-i.5315e+00 -1.4007e+00 8.9283e+00 3.8518e-0i 

1.0799e+01 -7.9235e+00 -1.0056e+02 -4.3763e+00 

4.399ie+00 -1.4918e+02 -1.0667e-04 -1.8403e-05 

-6.4079e+00 -4.0486e+01 -1.1699e-04 -7.9169e-06 

2.5522e+01 2.9849e+02 6.1095e-04 5.0018e-05 

1.1704e-01 1.6578e+03 

2.3997e-06 -1.5468e-05 

5.0481e-07 3.4172e-06 

-4.02456-06 -2.6017e-05 

-1.4663e-05 -1.8746e-06 

4.05386-05 2.6001e-04 

5.6926e-02 -4.6632e-03 

5.8428e-03 -9.9880e-02 

4.8723e-li -1.6703e-10 

1.4516e-10 -1.9458e-09 

1.0056e+02 -1.0952e-04 

-4.3763e+00 -8.7675e-06 

4.84456+01 -3.4656e-05 

2.7695e-05 -1.8319e+02 

4.3101e-05 8.9281e+00 

-2.1609e-04 -i.0056e+02 

Columns 25 through 26 

-1.6216e-01 1.7577e+00 

7.5863e-03 -8.2231e-02 

-8.7340e-02 9.4672e-01 

-5.2461e-01 1.0042e+01 

2.4543e-02 -4.6982e-01 

-2.8256e-01 5.4090e+00 

-4.1141e-06 7.7086e-05 
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4.4192e-06 -6.6692e-05 

1.6341e-05 -3.1573e-04 

-7.4568e-03 8.0885e-02 

7.7628e+01 -8.93S4e+02 

-1.9783e-07 3.7042e-06 

3.7842e-08 -7.6345e-07 

-2.8709e-07 5.8030e-06 

6.0716e-08 -3.4396e-07 

2.8674e-06 -5.7978e-05 

-3.7795e-04 4.0968e-03 

-1.2227e-03 2.3407e-02 

-2.2654e-12 4.1208e-ll 

-2.3998e-ll 4.5766e-10 

-1.6185e-06 2.8267e-05 

-1.4760e-07 2.4316e-06 

-1.4100e-07 5.4697e-06 

-8.9283e+00 1.0056e+02 

3.8517e-01 -4.3762e+00 

-4.3762e+00 4.8445e+0i 

B = 

-1.4257e-01  1.2333e+00 

1.1523e-03  1.581ie-01 

-2.6863e-02 -1.8591e-0i 
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-7.0406e-0i 3.4795e-02 

-5.4630e-02 6.25S8e-01 

1.7318e-01 -1.2266e+00 

-1.6549e+00 4.9913e+00 

4.9712e+00 -1.2893e+02 

4.5547e-01 1.4696e+01 

5.0652e+00 -1.8160e+02 

-7.4014e+01 3.1457e+01 

3.9740e+01 1.8907e-01 

2.2996e-03 i.8393e-0i 

-6.2455e-02 1.0497e+0i 

2.7095e-01 -3.2057e+00 

6.2868e-01 1.6125e+01 

-i.9351e-06 5.4875e-05 

3.9842e-05 -2.4799e-05 

-1.0435e-06 9.6819e-06 

-4.9462e-06 -2.6679e-07 

-4.8732e-01 1.6431e+02 

2.9340e-01 -5.3829e-01 

-1.0554e+00 3.6041e+01 

3.3627e+00 1.5712e+00 

-1.4190e+00 1.0195e+01 

7.6752e+00 -1.5950e+0i 

B-7 



Columns 1 through 6 

-5.6064e-04 -2.0614e-04  5.9145e-04 -3.4666e-04  7.4780e-05 -7.1552e-04 

1.8289e-04 -i.2869e-05  2.7248e-04 -1.9156e-05 -3.2819e-06  8.3916e-06 

Columns 7 through 12 

6.5613e-03 -6.9979e-04 -1.4817e-02  6.6210e-06  8.2102e-05  6.4322e-02 

-3.4428e-03 -3.0469e-03  1.6353e-03 -1.1476e-04 -9.9604e-06 -1.0231e-03 

Columns 13 through 18 

4.8916e-01 -8.0742e-03  5.3649e-02 -9.6020e-04  6.1684e+01 -8.1863e+02 

-7.2792e-03  1.3404e-01 -1.6108e-03  5.6958e-02  8.1867e+02  6.1566e+01 

Columns 19 through 24 

1.2272e+03 -1.6272e+04  7.0627e-05  1.7485e-05 -1.2838e-05  8.1775e-04 

1.6324e+04  1.2307e+03 -1.1671e-03 -3.9164e-05  4.7132e-04 -1.0002e-04 

Columns 25 through 26 

9.8127e-06 -1.8978e-04 

-3.8607e-06  4.8120e-05 
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D = 
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Appendix C.   State Space Representation of H2 Problem on the Evaluation Model 

The H2 problem on the evaluation model is shown in Figure C.l. 

The state space representation of the P in a P-K format for the H2 problem on the evaluation 

model is as follows (the control selector is represented as Tc): 

A2 = 

BcCact  rc0 

BactTcKeq        A-act 0 BactTcKeqC, q^s 

0 

A. 

(C.l) 

Bw — 

TDgkg 0 

0 

0 BSKS 

BgKg 

(C.2) 

BU2 — 

0 

BactTcT\ 

0 

0 

(C.3) 

Cz = 
T2    0   0   0 

0    0   0   0 

(C.4) 

Jv* -T2    0    0    -T2CS 
(C.5) 
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Figure C.l    H2 Problem on the Evaluation Model 

D2 

0    0 

0    0 

(C.6) 

Dz 

0 
(C.7) 

■Lsvw  — 0    -T2D,K, (C.8) 

Dyu = [0] (C.9) 
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