
//■ I.

z*3"?

'-"CTE
jWVi 19951

r^

CVl
00

MINIMIZING THE IMPACT OF SYNCHRONIZATION OVERHEAD

IN PARALLEL DISCRETE EVENT SIMULATIONS

THESIS
Andrew Christopher Walton
Second Lieutenant, USAF

AFIT/GCS/ENG/94D-25

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
E:~

lipprov:-.d i;r ri.::..:ic release;
Erbtributicr, Unlimited

AFIT/GCS/ENG/94D-25

MINIMIZING THE IMPACT OF SYNCHRONIZATION OVERHEAD

IN PARALLEL DISCRETE EVENT SIMULATIONS

THESIS
Andrew Christopher Walton
Second Lieutenant, USAF

AFIT/GCS/ENG/94D-25

m°^Aijr
;'i'£!T),

Approved for public release; distribution unlimited

AFIT/GCS/ENG/94D-25

MINIMIZING THE IMPACT OF SYNCHRONIZATION OVERHEAD IN

PARALLEL DISCRETE EVENT SIMULATIONS

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Andrew Christopher Walton, B.S.E.E.

Second Lieutenant, United States Air Force |

Accesion For

NTiS CR.V9:!
U i , o

U !:;;■::

Juctiv

!/?-/!

J a
D

14 December, 1994

Approved for public release; distribution unlimited

REPORT DOCUMENTATION PAGE
i

Form Approved

OMB No. 0706-0188

Public resort*-?. ourden for tnis collection of information is estimated to average '■ nour oer response, inducing the time tor reviewing instructions,
gathered anc r-amtain'nc the cat? needed, and comoieting and reviewing the collection of information. Send comments reoa-dino this burden esti
collection of in-orr.atior:, including suggestions for reducing this Durden. to Washington Headquarters Services, Directorate fo" information Ooerari
Davis Hiohwav. Suite 12C^t. Arlington, V- 222Q2-43C2. and to tne Office of Management and Budoet, Paperwork Reduction Prciect (C70-t-0ff:5), Wash

. other asoect of this
Dort; f 215 Jefferson

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1991

,4. TITLE AfvX- SUBTITLE

Minimizing the Impact of Synchronization Overhead in
Parallel Discrete Event Simulations

6. AUTHOR;?.)

3. REPORT TYPE AND DATES CCVTRLX
Master's Thesis

f 5. FUNDING kVi/.lit:i

Andrew C. Walton

Air Force Institute of Technology, WPAFB OH 45433-6583

b. PLJ

REF

AFIT/GCS/ENG/93D-25

9. SPONSORING/rvlOKiTORING AGEF4CY NAME(S) AND ADDRESS(ES)

ARPA/CSTO, 4001 N. Fairfax Dr. #200, Arlington, VA 22203-1615

t ic. SPONSorjivG/MON'rc-RiriiG
AGEFvSCV REPORT DUMBER

11. SUPPLEMENTARY FJOTES

12£. D'STRiEUTiOFt' AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. AESTKAi (Maximum 200 words)

A Parallel Discrete Event Simulation Coprocessor was designed for conservative synchronization protocols and
was implemented in software using some of a parallel computer's nodes to act as coprocessors. The coprocessor was
designed to offload synchronization overhead and next event queue management from the nodes running the simulation.
The coprocessor was designed to accelerate simulations based on the Simulation Protocol Evaluation on a Concurrent
Testbed with ReUsable Modules (SPECTRUM) environment. The research was conducted in three steps: the
SPECTRUM environment was ported from an Intel iPSC/2 to an Intel Paragon XP/S, the coprocessor was designed and
the simulations were timed, with and without the coprocessor. In some cases, the coprocessor provided up to a 2.5 times
speedup. On other simulations, the coprocessor slowed the simulation a small amount. This reduction in speed was due
to communication delays between the logical processes and the coprocessors that were incurred by placing them on
separate nodes. The communications delay was accurately modeled for a simple simulation and spinloops were used to
compensate for the delay. The delay would be several orders of magnitude smaller if the coprocessor was actually
implemented in hardware. The simulations that were not accelerated by the coprocessor were not being slowed by null
message passing or next event queue management. Instead, these simulations were slowed by blocking times where the
logical processes were forced to wait for a message from another logical process that would allow them to continue the
simulation. This research concluded that parallel simulations need to be partitioned to logical processes in a manner which
reduces blocking times.

14. SMBJICT TERF^S
Parallel Simulation, Coprocessor, Conservative Synchronization

;15. LivTSER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Sto Z39-18

A cknowledgments

Several faculty members at AFIT made significant contributions to my research. Lt Col Tom S.

Wailes guided me in the right direction by helping me decide that the coprocessor could be implemented

more quickly in software than hardware. I am very thankful for his guidance and encouragement. Lt Col

William C. Hobart Jr., my thesis advisor, provided innumerable insights into how parallel discrete event

simulations work and helped me learn to program using an unfamiliar language and operating system. Lt

Col Hobart also helped me focus my attention on only the important issues; he kept me from becoming side-

tracked on several occasions.

My wife's contributions to my thesis were also critical to its success. Christina proofread my thesis

several times and helped me make hundreds of corrections. Her understanding and patience helped make

our first year and a half of marriage a pleasant one, even with the demands of classwork and research. I am

excited about our future together.

Most of all, I would like to thank my Lord and Savior, Jesus Christ for answering my prayers and

giving me the strength I needed to complete the tasks set before me. My Redeemer is faithful and true.

Andrew Christopher Walton

Table of Contents

Page

List of Figures vii

List of Tables ix

Abstract x

I. Background and Statement of Problem 1

1.1 Background 1

1.2 Problem Statement 2

1.3 Summary of Current Knowledge 3

1.4 Assumptions 8

1.5 Scope 9

1.6 Approach 10

1.7 Outline of Thesis 11

II. Literature Review 12

2.1 Introduction 12

2.2 PDES Algorithms 12

2.2.1 Conservative Algorithms 12

2.2.2 Optimistic Algorithms 14

2.3 Hardware Acceleration 16

2.3.1 Hardware Acceleration of Simulations 16

2.3.2 General Purpose Accelerators 20

2.4 SPECTRUM 21

2.5 TheCarwash Simulation 22

2.6 VHDL Simulations 24

2.7 Conclusion 26

in

III. Porting SPECTRUM to the Intel Paragon XP/S 27

3.1 Introduction 27

3.2 Comparison of iPSC/2 Hypercube and Paragon Computers 27

3.2.1 Processor Capabilities 28

3.2.2 Machine Topologies 29

3.2.3 Operating System Differences 32

3.3 Paragon Communications Bottlenecks 32

3.4 System Specific Calls 35

3.5 High-Level Design 36

3.5.1 Redesigning SPECTRUM to Replace the Host Program 38

3.5.2 Changes to the Termination Algorithm 40

3.6 Low-Level Design 40

3.7 Implementation 44

3.7.1 TheUseoffork() 44

3.8 Capabilities that were not Implemented 45

3.9 Conclusion 46

IV. Software Architecture of the Coprocessor 47

4.1 Introduction 47

4.1.1 SPECTRUM'S Layers Revisited 48

4.2 High Level Analysis of SPECTRUM'S Functions 49

4.2.1 LP Manager Functions 50

4.2.2 Node Manager Layer 60

4.2.3 Filter Functions 62

4.2.4 A Typical SPECTRUM Simulation 63

4.3 Low Level Design 65

4.3.1 Coprocessor Topology 65

IV

4.3.2 CPSPECTRUM's Layers 66

4.3.3 LP Interface Layer 68

4.3.4 CP Layers 70

4.3.5 Functions Common to LPs and CPs 71

4.3.6 Types of Messages Passed Between LP and CP 72

4.3.7 Global Variable Concerns 74

4.3.8 Initialization and Termination Algorithms 75

4.4 Implementation 77

4.4.1 Loading Coprocessors 77

4.4.2 Mapping Variables 79

4.4.3 CP Message Passing 80

4.4.4 Preventing Recursive LP Requests 82

4.4.5 Example Interface Functions 85

4.5 Summary 87

V. Test Methodology and Results 88

5.1 Introduction 88

5.2 Message Passing Latencies 88

5.3 Use of Spinloops 93

5.3.1 Adding Spinloops to Applications 95

5.3.2 Spinloop Input File 95

5.4 Granularity's Effect on Run Times 96

5.5 Use of the Graph Partitioning Tool 99

5.6 Test Conditions 100

5.7 Carwash Simulation Results 103

5.8 Wallace Tree Multiplier Results 106

5.8.1 Random Partitioning 107

5.8.2 Breadth-First, No Feedback Partitioning Ill

5.8.3 Breadth-by-Source, No Feedback Partitioning 113

5.8.4 Wallace Tree Multiplier Conclusions 117

5.9 Associative Memory Results 119

5.10 Conclusion 121

VI. Conclusions 122

6.1 Introduction 122

6.2 Conclusions 122

6.3 Recommendations 124

6.4 Summary 125

Appendix A: Concerns For the Future Use of SPECTRUM Simulations 126

Carwash Memory Leaks 126

Problems with VSIM's Filter 126

Using the Paragon's Interactive Parallel Debugger with SPECTRUM 127

Bibliography 130

Vita 132

List of Figures

Figure Page

1. Parallel Reduction Network 17

2. SPECTRUM Architecture 21

3. Car Wash Simulation 22

4. Intel Paragon GP Node 31

5. iPSC/2 Hypercube System Resource Manager 32

6. Intel Paragon Architecture 34

7. Natural Numbering of 17LPs on Six Nodes 38

8. SPECTRUM'S fork algorithm 45

9. Example of Flow Control Diagram 49

10. SPECTRUM'S Event Structure 52

11. lp_post_event()'sFlow of Control 54

12. lp_post_message()'s Flow of Control 55

13. lp_get_event()'s Flow of Control 57

14. lp_advance_time()'s Flow of Control 59

15. SPECTRUM High Level Flow of Control for a Typical Application 64

16. Example of Coprocessor Topology Using 6 Nodes and 5 Logical Processes 66

17. CPSPECTRUM's Layers 67

18. Loading the Coprocessors 79

19. Coprocessor Message Format 81

20. Simplified CP Flow of Control 84

21. Example Filter-LP Interface Function 85

22. Example Filter-CP Interface Function 86

23. Example Filter-CP Stub Function 87

24. Total Message Times for Ring Program 90

Vll

25. Paragon Communications Bandwidth 91

26. Paragon's Message Passing Latencies 92

27. SpinloopCode 93

28. Code Used to Read Spinloop Input File 96

29. NQS Script used to ran Wallace Tree Multiplier 102

30. Modifications to Application^ 102

31. Carwash Times using the Coprocessor on the Null Filter 105

32. Carwash Speedup using the Coprocessor on the Null Filter 105

3 3. Wallace Tree Times without Coprocessor, using Random Partition and 1 Spinloop 108

34. Wallace Tree Times with Coprocessor, using Random Partition and 1 Spinloop 108

35. Wallace Tree Times without Coprocessor, using Random Partition and 50 Spinloops 110

36. Wallace Tree Times with Coprocessor, using Random Partition and 50 Spinloops 110

37. Wallace Tree Times without Coprocessor, using Breadth-First Partition and 1 Spinloop 113

3 8. Wallace Tree Times with Coprocessor, using Breadth-First Partition and 1 Spinloop 113

39. Wallace Tree Times without Coprocessor, using Breadth-by-Source Partition and 1 Spinloop 115

40. Wallace Tree Times with Coprocessor, using Breadth-by-Source Partition and 1 Spinloop 115

41. Wallace Tree Times without Coprocessor, using Breadth-by-Source Partition and 50 Spinloops.... 116

42. Wallace Tree Times with Coprocessor, using Breadth-by-Source Partition and 50 Spinloops 117

43. Wallace Tree Performance Summary with 1 Spinloop 118

44. Wallace Tree Performance Summary with 50 Spinloops 119

45. Associative Memory Times with 1 Spinloop 121

Vlll

List of Tables

Table Page

1. Times Required for Coprocessor Operations 7

2. Mesh and Hypercube Characteristics 30

3. Summary of SPECTRUM'S Functions 59

4. SPECTRUM'S Filter Pointers 63

5. Filter Interface Functions 69

6. Messages passed between the CP and the LP 73

7. CPSPECTRUM's Mapping Variables 80

8. Results From Altering Nullwash's Granularity 104

9. Wallace Tree Multiplier Results Using Random Partition and 1 Spinloop 108

10. Wallace Tree Multiplier Results Using Random Partition and 50 Spinloops 109

11. Wallace Tree Multiplier Results Using Breadth-First Partition and 1 Spinloop 112

12. Wallace Tree Multiplier Results Using Breadth-by-Source Partition and 1 Spinloop 114

13. Wallace Tree Multiplier Results Using Breadth-by-Source Partition and 50 Spinloops 116

14. Associative Memory Results Using Random Partition and 1 Spinloop 120

IX

AFIT/GCS/ENG/94D-25

Abstract

A Parallel Discrete Event Simulation Coprocessor was designed for conservative synchronization

protocols and was implemented in software using some of a parallel computer's nodes to act as

coprocessors. The coprocessor was designed to offload synchronization overhead and next event queue

management from the nodes running the simulation. The coprocessor was designed to accelerate

simulations based on the Simulation Protocol Evaluation on a Concurrent Testbed with ReUsable Modules

(SPECTRUM) environment. The research was conducted in three steps: the SPECTRUM environment

was ported from an Intel iPSC/2 to an Intel Paragon XP/S, the coprocessor was designed and the

simulations were timed, with and without the coprocessor. In some cases, the coprocessor provided up to a

2.5 times speedup. On other simulations, the coprocessor slowed the simulation a small amount. This

reduction in speed was due to communication delays between the logical processes and the coprocessors

that were incurred by placing them on separate nodes. The communications delay was accurately modeled

for a simple simulation and spinloops were used to compensate for the delay. The delay would be several

orders of magnitude smaller if the coprocessor was actually implemented in hardware. The simulations that

were not accelerated by the coprocessor were not being slowed by null message passing or next event queue

management. Instead, these simulations were slowed by blocking times where the logical processes were

forced to wait for a message from another logical process that would allow them to continue the simulation.

This research concluded that parallel simulations need to be partitioned to logical processes in a manner

which reduces blocking times.

MINIMIZING THE IMPACT OF SYNCHRONIZATION OVERHEAD IN

PARALLEL DISCRETE EVENT SIMULATIONS

/. Background and Statement of Problem

1.1 Background

Computer simulations are useful for modeling a wide range of physical systems. Many of

the objects and systems that the Department of Defense needs to simulate, such as battlefields and

electronic circuits, are very complex and can consume large amounts of computer simulation time.

The purpose of this research is to characterize the parallelism in a specific type of simulation,

called Parallel Discrete Event Simulations (PDES), and use this characterization to determine how

a coprocessor could accelerate such simulations.

The goal of parallel discrete event simulations is to accelerate simulations by running

parts of the simulation in parallel. Running the simulations in parallel allows many processors to

work on the same task simultaneously and speed up the task's completion. Amdahl's law states

that the performance improvement gained from using a faster mode of execution is limited by the

portion of the time that the faster mode can be used [1:8]. The speedup provided by PDES can be

calculated using the following formula [1:9]:

Execution time of task without using the enhancement
Speedup = :

Execution time of the task using the enhancement when possible

Equation 1: Speedup

For PDES, the execution time of the task without the enhancement would be the time that it took

for the fastest known sequential algorithm to run. The execution time of the task using the

enhancement would be the time that it took the parallel simulation to run. This formula implies

that the acceleration of the simulation is proportional to how much of the simulation can be run in

parallel. The more that a simulation is able to exploit parallelism, the faster it will run. Parallel

simulations, by nature, contain significant amounts of parallelism, but this parallelism is extremely

difficult to exploit [2].

1.2 Problem Statement

Parallel discrete event simulations rely on the assumption that events only occur at

discrete points in time. Like sequential discrete event simulations, PDES schedule events in next

event queues and process those events in the time-order they are scheduled. The simulations take

the earliest scheduled event off of the top of the queue, process it and schedule any new events.

Unlike sequential simulations, PDES have multiple next event queues, one for each process

running the simulation. To divide the simulations' events so that they can be run in parallel, the

physical system being modeled is broken down into physical processes which interact with each

other through messages[3:198]. Each physical process corresponds to a Logical Process (LP)

which is run on a node of the parallel computer. In addition to processing the events in its local

next event queue, each LP must also schedule events, by passing messages to be processed by

other LPs in the system and remain synchronized with other LPs running the simulation. An event

scheduled for the future which affects an event scheduled in the past causes what is called a

causality error. The synchronization mechanism used in the simulation must prevent or correct

causality errors without creating an excessive load on the LP's processor. If the synchronization

mechanism takes too much processor time, the LP will run more slowly and the speedup will be

adversely affected. An inefficient synchronization mechanism can cause the speedup to be less

than one, so that the simulation takes longer on a parallel machine than on a sequential machine.

Apart from the parallelism inherent in running the simulation on multiple nodes, there is

some parallelism in the tasks performed by the nodes themselves. In addition to performing

synchronization tasks, each LP has to manage its local next event queue. These tasks increase the

load on the processor and reduce the amount of parallelism that can be exploited. This research

examines how much parallelism can be exploited by placing all of the synchronization tasks on a

coprocessor and examines the coprocessor's effect on the LP's workload.

1.3 Summary of Current KnoM'ledge

This research has been preceded by several other theses at AFIT. Taylor proposed a

design for a Discrete Event Simulation Coprocessor which managed synchronization and

message-passing tasks for the host processor. This coprocessor would provide a speedup between

1 and 20 as the number of LP's per node varied. Daniel continued work on the coprocessor by

modeling it at the gate-level using the VHSIC Hardware Description Language (VHDL). Using

VHDL simulations, Daniel's design tested the coprocessor's feasibility and predicted that the

coprocessor could provide a speedup between 1.3 and 60, depending on the granularity of the

simulation[4:86]. Berlin refined the coprocessor's design, breaking it up into components that

were implemented using Field Programmable Gate Arrays (FPGA), custom-fabricated circuits,

and commercial products. Berlin fabricated and tested many of the custom circuits, using the

observed behavior of several simulations to design realistic tests. Using a VHDL simulation of a

Wallace Tree multiplier, Berlin obtained a speedup of four times for the next event queues'

functions that the coprocessor performed. Unfortunately, he also found that the acceleration of

the next event queue would result in only a 1.02 speedup since the queue management functions

took less than 2% of the application's time[5:68].

Berlin's results deviate greatly from the expected results because of the manner in which

the parts of the simulations were timed. The time that it took for an LP to get an event from the

next event queue was greatly overstated. It included the length of time that the LP was blocked,

waiting for either an event or a synchronization message from another LP. Since many of the

simulations tend to be communication bound, the LPs spent a significant amount of time waiting

for messages. The process of getting an event was originally considered the most time-

consuming, but is actually very small. Since the next event queues in the parallel simulations at

AFIT are implemented with linked lists, the processor requesting an event simply looks at the head

of the linked list to get the next event. Getting an event is, therefore, much quicker than placing

an event in the queue.

Much of the parallelism derived from the use of the coprocessor will result from the

coprocessor's ability to place events in the next event queue and perform synchronization tasks

while the LP continues to process events. To insert an event in the next event queue, the processor

will have to traverse the linked list until it finds the correct time slot for the event it is trying to

insert. In the worst case, the coprocessor will have to traverse the entire linked list to find the

correct position for the message. Since the messages from other LPs tend to be in the future

relative to the receiving LP's clock, it makes sense to insert them into the list, traversing the list

from the tail, and minimizing the likelihood that the coprocessor will have to traverse the entire

list.

Since Berlin's results indicated that the coprocessor would produce an insignificant

amount of speedup, it is necessary to compare the capability of the coprocessor with a

microprocessor performing the same task with software. If a general purpose microprocessor

could provide more useful functions to the LP, it would be feasible to use some of the nodes of

the parallel computer as coprocessors. In the hardware for the coprocessor, the next event queue

(NEQ) is implemented using an Extreme Search Associative Memory (ESAM) which will allow

insertions and removals to occur with 0(1) complexity. The 0(1) complexity of the NEQ

operations is a result of the properties of the ESAM, which uses hardware to search for the event

with the lowest time-stamp. For a general purpose microprocessor, using a linked list to

implement fhe queue, the order-of complexity for NEQ operations is also 0(1) for getting an

event from the queue and O(n) for placing events on the queue, where n is the number of events

stored in the queue. Although the general purpose microprocessor appears to be slower than the

coprocessor at inserting events into the list, it is important to remember that any order-of analysis

neglects a constant factor by which the order-of analysis is multiplied. This means that for a small

n, O(n) operations could actually be faster than O(l) operations if the constant in front of the O(n)

is small and the constant in front of the O(l) is large. It is difficult to measure the constants in this

order-of analysis, but we can estimate their size by looking at the properties of the ESAM and of a

general-purpose microprocessor.

Berlin's timing analysis provided enough information to calculate the approximate times

it would take to perform the various operations of the coprocessor. By calculating these times,

this research determined how fast the coprocessor was compared to a microprocessor. Berlin's

equations for the coprocessor's timing required the following assumptions about the simulation's

characteristics:

• The number of input arcs would be seven.

• The number of output arcs would be seven.

• 90% of the messages would be written to reserved words in the ES AM

• 10% of the messages would be written to unreserved words in the ES AM

• 80% of the messages would be null messages.

• 20% of all of the messages would be real messages.

• 10% of the time, the LP status would need to be updated after Get Event

The above assumptions were intentionally chosen in an optimistic manner and the coprocessor

would probably not perform quite as well as the equations predict that it will perform. The

number of input arcs and the number of output arcs were chosen to be the same number of arcs

the processor would have if connected to the Parallel Simulation Group's Intel iPSC/2 Hypercube.

The clock frequency of the coprocessor chip was determined by Berlin's analysis of its

critical path. The ESAM was in the coprocessor's critical path and limited the clock frequency to

8.7 MHz. Since the ESAM's critical path increased linearly as additional words were added to it,

the coprocessor's clock frequency would be decreased to an even slower rate when the

coprocessor's memory was expanded.

The times for the coprocessor's operations are shown in Table 1 below:

Routine Clock Cycles Required Time Required (microseconds)

(assumes 8.7 MHz clock)

Initialize Simulation 1844 211.954

Post Message 420.4 48.3218

Get Event 974.8 112.046

Post Event 792 91.0345

Table 1: Times Required for Coprocessor Operations

The times for each operation would take were fairly long, as Table 1 suggests, and would limit the

practicality of the original design of the coprocessor. The above timing results indicate that a

general purpose microprocessor could perform the functions of the Discrete Event Simulation

Coprocessor more efficiently. In addition to increased speedup, the benefits of using a general

purpose microprocessor appear to greatly out-weigh the value of a specialized chip for message-

synchronization. Some of these benefits are:

• A general purpose microprocessor would be less risky since it is an off-the-shelf part.

• It would be less expensive than a custom-fabricated chip.

• It would be easier to increase the size of the queue in the microprocessor than it would be

to scale up the amount of memory in the ES AM.

The microprocessor could store all of the message's data where the Discrete Event

Simulation Coprocessor could only store a pointer to the message in the host processor's

memory.

• A microprocessor would be more flexible because its software can be changed without

removing and replacing chips. (A wide variety of simulations could be more easily

accommodated.)

• A microprocessor would be faster than the Discrete Event Simulation Coprocessor.

These benefits justified this research's attempt to use a general purpose microprocessor to emulate

the coprocessor. The decision to use a microprocessor greatly changed the nature of the research.

Instead of designing and interfacing a coprocessor, a microprocessor would be programmed act as

the coprocessor. To avoid having to interface another microprocessor to each of the parallel

computer's nodes, half of the nodes would be used to run the actual simulation, and the other half

of the nodes would be configured to act as the coprocessors. This configuration of the computer

would allow the coprocessor to be simulated using software.

To use half of a parallel computer's nodes as coprocessors, software had to be written that

made the nodes behave like the coprocessor, and modifications had to be made to Simulation

Protocol Evaluation on a Concurrent Testbed with ReUsable Modules (SPECTRUM) [6], the

testbed for the parallel simulation protocols. By obtaining the amount of speedup gained by

different coprocessor configurations, this research could more accurately specify what type of

functions needed to be implemented in a parallel discrete event simulation coprocessor.

1.4 Assumptions

Several assumptions significantly affected the architecture of this design. One of the

biggest assumptions concerned the architecture of the Intel Paragon: the simulation would be

computation-bound and the time it would take to pass messages between the Paragon's nodes

would be very small compared to the time it took the software coprocessors to complete their

tasks. If the Paragon took a long time to pass messages between the nodes running the simulation

and the nodes running the coprocessor software, then the messages passed between those nodes

would be a bottleneck. If the simulations were too fine grained, and were communications-bound,

the simulation would run faster without the coprocessor and the speedup would be less than one.

Since the carwash simulation does very little computation, it was suspected that the carwash would

not be accelerated much, if any, by the coprocessor. The VS1M simulations, however, appear to

be coarser grained and it appeared that they might be accelerated if the synchronization and

SPECTRUM next event queue management were off loaded to the coprocessor. This research

also assumed that the simulation's granularity could be increased by adding spin loops to the parts

of the simulations that process events. By varying the duration of the spin loops, this research

could characterize the granularity at which the coprocessor provided the most speedup.

This research also assumed that SPECTRUM could be modified without having to make

significant changes to the Carwash Simulation and VSIM. If a lot of time was spent modifying

the simulations, it would be difficult to test different configurations of the coprocessor. For this

reason, the coprocessor is designed to appear transparent to the application running on

SPECTRUM.

1.5 Scope

The scope of this research was limited to implementing several different coprocessor

designs in software and characterizing their performance. The coprocessor runs on separate nodes

of the parallel computer, with one coprocessor per LP. The standard carwash simulation and

VHDL simulations were used to characterize the performance of the coprocessors. The VHDL

simulations were run using VSIM and simulate the same VHDL files that Berlin used to

characterize his design.

1.6 Approach

This research was completed in five steps: the simulations were ported to the Intel

Paragon, the coprocessor was designed, the coprocessor was implemented, its effect on the

simulation's performance was measured, and its performance was analyzed. The simulations were

originally designed to run on the Intel iPSC/2 Hypercube in AFIT's Parallel Simulation Lab. They

used SPECTRUM to perform the synchronization tasks necessary to prevent causality errors.

SPECTRUM allows different synchronization mechanisms to be tested without having to alter the

application. The first step in porting the simulations was to port SPECTRUM to the Paragon

since it contained all of the machine-specific code. Then, by modifying the simulations' make

files, they would run on the Paragon.

Once SPECTRUM ran on the Paragon, this research examined ways it could exploit

parallelism in the activities an individual node performed. It determined what functions could be

placed on the coprocessor and then implemented them. After finishing the coprocessor's

implementation, its performance was compared to the simulations' performance without the

coprocessor. The analysis of the results of this comparison revealed many of the effects of

synchronization communication latency and the effects of the tasks' granularity.

10

1.7 Outline of Thesis

The rest of this document is organized as follows: The second chapter is a review of

related theses and technical literature. The third chapter describes how SPECTRUM was ported

to the Intel Paragon XP/S, and the fourth chapter discusses the coprocessor's design and

implementation. The methods used to analyze the simulations' performance and performance

measurements are described in chapter five. The sixth, and final, chapter contains conclusions and

recommendations for future research.

11

II. Literature Review

2.1 Introduction

This chapter describes the state of current research into parallel discrete event simulations

with an emphasis on accelerating them. Articles describing both PDES algorithms and hardware

acceleration were examined to see if they were relevant to the design of the coprocessor. These

articles provided the background necessary to complete this research.

2.2 PDES Algorithms

Parallel discrete event simulations have been implemented using a variety of algorithms.

These algorithms are generally classified as being either conservative or optimistic. According to

Fujimoto, the conservative approach uses some strategy to determine when it is safe for an event

to be processed and, in doing so, strictly avoids causality errors. The optimistic approach allows

causality errors to occur and uses a mechanism which detects the error and recovers[2]. No

matter which simulation protocol is used, the protocol must prevent causality errors from affecting

the simulation's results and prevent the LPs from deadlocking.

2.2.1 Conservative A Igorithms

The first parallel discrete event simulations were based on conservative approaches where

the protocol strictly avoided causality errors[7:33]. Before an LP can process an event in these

simulations, it must first ensure that none of the LPs on its input arcs can send an earlier event.

12

Fujimoto emphasized the concept of lookahead in his description of conservative methods[7].

Lookahead is a logical process' ability to look ahead of the current value of the simulation clock

and determine how far into the future the clock can progress before that logical process will have

an event affecting other logical processes. If it sends messages to other logical processes, they can

execute safely up to that time before they have to wait for messages from that logical process.

Fujimoto tied the concept of lookahead to speedup when he said "Effectively exploiting the

lookahead properties of the simulation appears to be the key to achieving good performance with

these methods" [7].

One of the first and most prominent conservative protocols was developed by Chandy and

Misra and is described in a survey called "Distributed Discrete-Event Simulation," by Jayadev

Misra [8]. This article proposed that simulations be run on multi-processor computers in which

the processors are connected so that they can pass messages. In the Chandy-Misra protocol, each

LP sends messages along output arcs connected to other LPs and receives messages along input

arcs. These messages are assumed to be delivered in the same order they were sent and must be

sent in time-order along the arc. This means that once an LP has sent a message along an arc with

a certain time stamp, it cannot send a message across the arc with an earlier time stamp. The time

of the earliest possible event is called the safetime. The safetime is determined by taking the

minimum time on the LP's input arcs after adding delays to the times of the last messages

received along the arcs. These delays are called arc delays and vary for each of the input arcs.

The arc delays define how much lookahead the simulation can exploit. The best performance in a

parallel discrete event simulation can be obtained by partitioning the simulation onto LPs so that

the arc delays are maximized and the LPs' interdependencies are minimized. The time of the last

message sent along an arc is called the channel time. When the safetime is greater than the earliest

time on the LP's next event queue, it is safe for the LP to execute that event. By using time-

13

stamped messages and safetimes, the Chandy-Misra protocol can be used to synchronize a

simulation.

The Chandy-Misra protocol is designed to prevent deadlocks. Deadlock occurs when an

LP is waiting for a message that will never be sent. There are many situations that can cause

deadlock, such as when there are circular dependencies between nodes. To prevent deadlocks, the

protocol sends null messages. According to Chandy and Misra, a null message "... is used to

announce the absence of messages," and consists of an empty, time-stamped message[8:5 7]. Null

messages prevent deadlock because they allow the LP that receives them to update its channel

times. As the channel times are incremented, the LP's safetime will eventually be incremented

and the simulation will avoid deadlock. When an LP is waiting for an event or is waiting for the

safetime to be incremented, it is said to be blocked. The amount of time spent blocked

contributes to the overhead incurred by running the simulation in parallel. Although they play a

vital role in the Chandy-Misra protocol, null messages can exact a heavy penalty on simulation

performance since they increase the number of messages handled by the computer's

communication network and can cause communications bottlenecks.

2.2.2 Optimistic A Igorithms

Optimistic protocols, as mentioned previously, allow causality errors to occur and are

capable of detecting and recovering from them. Optimistic simulation protocols tend to be more

complicated than conservative algorithms, but have several advantages over them. One advantage

of optimistic protocols is that they can exploit parallelism in situations where causality errors

might occur, but do not [7:40]. If a simulation can exploit such parallelism, it will run faster than

a conservative algorithm since the conservative algorithm must always wait for the potential

causality error to be avoided. Dynamic creation of processes and dynamic dependencies between

14

LPs are also easier to implement using optimistic protocols[7]. The primary difficulty with

optimistic protocols is that they must remember old states to be able to recover from a causality

error. These old states can consume large amounts of memory and restoring them frequently can

slow the simulation down. The optimistic protocols, therefore, have a wider variance of speedups

since they can run much faster or much slower than conservative protocols.

According to Fujimoto, the most prominent optimistic approach is Jefferson's time

warp[7]. Time warp allows each of the logical processors to work at its own pace. If an LP gets a

message with a time stamp that is lower than the current simulation time at that process, that

message is called a straggler. When an LP receives a straggler, it must rollback to the time at

which the straggler should have been scheduled if it had arrived on time. When a logical process

backtracks, it must tell the other logical processes in the system that the messages that it sent, after

the time stamp of the straggler, were bad and all of the interdependent logical processes must also

lower their simulation times and send out messages saying they had to rollback. These messages

telling the other LPs to backtrack are called antimessages.

Since old states can consume a large amount of memory, tune warp provides a

mechanism for eliminating them once they are no longer needed. Unneeded, old states are called

fossil states. To detennine when to eliminate fossil states, time warp occasionally computes the

global virtual time (GVT) of all of the LPs. The GVT is the earliest local clock time on the

simulation's LPs and a rollback cannot happen at any earlier time. All of the states earlier than the

GVT are fossil states and can be eliminated. The problem with finding the GVT is that it is a

global operation and is communication intensive. Righter and Walrand state that GVT can be

estimated using a distributed algorithm with a time complexity of 0(«), where n is the number of

processors running the simulation[9]. They also state that time warp requires less memory if the

15

GVT is computed often, but that this computation will increase processor and communication

overhead. The time warp protocol has not been used in any of the simulations at AFIT, but might

be in the future. To be general purpose, the discrete-event simulation coprocessor also had to be

able to support time warp.

2.3 Hardware Acceleration

The hardware acceleration articles reviewed here fall into two categories: those which

directly apply to PDES and those which apply to general purpose microprocessors. The articles

pertaining to general purpose microprocessors are significant because any speedup in the

microprocessors could result in a corresponding speedup in the simulation.

2.3.1 Hardware Acceleration of Simulations

Attempts to speedup parallel discrete event simulations have taken several approaches.

One approach is to develop hardware for a particular synchronization protocol. Such a design is

described in "Design and Evaluation of the Rollback Chip: Special Purpose Hardware for Time

Warp," by Fujimoto, Tsai and Gopalakrishnan [10]. This article states that time warp mechanisms

are inefficient for simulations where large amounts of state information need to be stored for use

in a rollback. Fujimoto showed that performance is reduced by 50% when the state information

increases from a very small amount to 2000 bytes. Many significant simulations require much

greater amounts of state space and would degrade the performance of time warp even further. The

rollback chip can efficiently store state spaces of up to several megabytes every 100 microseconds

and can perform a rollback every millisecond. These capabilities are intended to "allow parallel

programs to exploit the advantages of time warp while avoiding most of the associated overheads"

16

[10]. The rollback chip is an interesting means of accelerating parallel discrete event simulations,

but cannot be applied to protocols other than time warp.

Another approach to accelerating parallel discrete event simulations was presented by

Reynolds. This approach uses hardware called a Parallel Reduction Network (PRN) that can "...

quickly disseminate globally reduced values, such as GVT [Global Virtual Time] ..." [11:435]

The hardware for Reynold's design is shown in Figure 1 below. A globally reduced value is a

HOST COMMUNICATION NETWORK

I
Master Host

Processor

buffer buffer

Auxiliary
Processor

Input

Host Processor

buffer bufl'e

Auxiliary
Processor

Parallel
Reduction
Network

Host Processor

buffer buffer

Auxiliary
Processor

Host Processor

buffer buffer

Auxiliary
Processor

Output

Figure 1: Parallel Reduction Network

17

value returned by a function that compares a variable, local to each LP, on every LP. An example

of a global reduction function would be to find the minimum of some variable across all of the

nodes of the simulation. The minimum value for all of the LPs' clocks is called the Global

Virtual Time. Global reduction functions are also useful for such activities as lookahead

computations, termination detection, and global consensus.

To be useful, a PRN would have to perform its functions much quicker than the system's

existing communication network. Like the coprocessor at AFIT, Reynold's parallel reduction

network can be reprogrammed and can perfonn a variety of tasks for different synchronization

protocols. The parallel reduction network is different from AFIT's coprocessor in that it adds

another means of communication to the LPs. The auxiliary processors can send data to a series of

Arithmetic Logic Units (ALU) that are connected to form a binary tree. The ALUs perform a

global reduction operation and return a result to the auxiliary processors. Since the ALUs are

connected to form a binary tree, and the tree has a height of log w, where n is the number of

processors, the PRN can perfonn global reduction operations in 0(log ri) time[l 1:441].

Reynolds demonstrated the PRN by using it to calculate a simulation's GVT. In such a

simulation, with 8 LPs, the delay between the actual change in the GVT and the PRN's calculation

of the GVT was 10-20 jis [11:450]. Since the amount of time to perform linear operations

increases logarithmically as the number of LPs increases linearly, Reynolds expects operations for

32- and 64-node simulations to take the same order of magnitude of time as for 8 LPs[11:451].

Reynolds used the GVT in this simulation to perform fossil collection for a time warp protocol.

A simulation using time warp can free memory used for state changes that occurred before the

GVT. The PRN, however, is not limited to time warp simulations; it can be used for a variety of

synchronization mechanisms. The PRN can significantly reduce the load on the computers

Communications network by passing all of the information necessary to synchronize the

LPs[l 1:451]. The main disadvantages of the parallel reduction network are that it requires an

additional communication network to be added to the parallel computer and that it may not be

feasible for computers with large numbers of nodes since it requires n-\ ALUs (where n is the

number of LPs).

Comfort proposed an idea that had significant implications for the design of the hardware

accelerator in "The Simulation of a Master-Slave Event Set Processor" [12]. In this research,

Comfort implemented hardware which allowed NEQ management to be offloaded from a host

processor to another slave processor. To facilitate this offloading of event list management,

Comfort defined three primitive event list operations: schedule, next, and cancel. The schedule

operation, given an event and a time, schedules that event in the NEQ. The next operation returns

the event with the smallest time and increments the simulation time to that time. The cancel

operation, given an event and a time, deletes the event from the NEQ, but does not alter the

simulation time. By placing these operations on two or three external chips, Comfort was able to

get a significant speedup. He implemented this design on a DEC PDP-11, a computer that was

nearly obsolete in 1984 when he wrote the paper. To determine if his research applied to modern

parallel systems, I had to determine what portion of the logical processes' time was spent

managing their NEQs. The larger this time is, the more Comfort's method would accelerate the

logical processes. A speedup in the execution of logical processes could result in a corresponding

speedup in the overall simulation. Like Comfort, Fujimoto suggested that there was a limited

amount of speedup possible from using dedicated functional units to perform some of the

simulation tasks such as NEQ management[7]. This potential speedup is of great interest to this

research and is investigated further in the following chapters.

19

2.3.2 General Purpose A cceletutors

In "Processor Reconfiguration Through Instruction-Set Metamorphosis," Athanas and

Silvennan proposed a concept for using hardware to accelerate a microprocessor that was not

directly related to simulations, but could prove useful in accelerating them[13]. This method

involved adapting a general-purpose microprocessor to a specialized task by changing the way in

which that microprocessor executed instructions. This is equivalent to rewriting the

microprocessor's microcode automatically when software is compiled. Athanas and Silvennan

developed a platform called Processor Reconfiguration through Instruction Set Metamorphosis

(PRISM-I). They wrote software that takes a program, written in C, and returns software and

hardware image files. It then uses the hardware image files to synthesize a hardware description

that can be fed into a Xilinx FPGA. The software image files are then run and use the FPGA to

perform some of the computer's operations. This type of FPGA could eventually be incorporated

into the design of a microprocessor, allowing the microprocessor's instructions to be customized

for a particular task. One difficulty in this design is that the programmer is required to determine

what instructions are being executed frequently and taking up a large percentage of the runtime.

Since simulations are usually built around a simulation environment, it might be possible to

optimize the simulation environment for an entire class of simulations. If a new class of

simulations was developed, then the processor would only have to be reconfigured once for that

whole class. Athanas and Silvennan achieved speedups between 2.9 and 54 on a 10 MHz 68010-

based computer system. If similar results could be achieved in the nodes of parallel computers,

this method could provide a significant performance improvement to PDES.

20

2.4 SPECTRUM

Simulation Protocol Evaluation on a Concurrent Testbed with ReUsable Modules

(SPECTRUM) was originally designed as a testbed, at the University of Virginia, to support "the

empirical study of parallel simulation protocols and applications, with the expectation that

experience with the testbed will provide insights into the efficacy of various protocols and their

interplay with classes of applications" [14]. SPECTRUM consists of four parts: cube2.c,

lpman.c, an application, and a set of filters as shown in Figure 2 below. The file called cube2.c

<Application>.c

lpman.c

cube2.c

Application Layer

LP Manager Layer

<filter>.c

Node Manager Layer

Figure 2: SPECTRUM Architecture

is SPECTRUM'S interface to the parallel computer. It contains all of the system calls that are

specific to the iPSC computers. To port SPECTRUM to another machine, cube2.c is the only file

that needs to be changed. The file called lpman.c is the node level manager and it performs all

of the tasks of the LP. It is essentially SPECTRUM'S interface to the user's application. The

filters allow the functions performed by lpman.c to be changed so that many message-passing

protocols can be supported. Since the filters are the only files that need to be changed for new

21

protocols, the user can write a simulation and not have to rewrite it for every new protocol. To

support optimistic protocols, however, the application has to be changed so that it can save its

state. When a causality error occurs, the application has to restore the old state itself.

2.5 The Carwash Simulation

The carwash simulation is a simple queuing model of a carwash and has been partitioned

into eight Logical Processes (LPs). These LPs consist of three sources, four car washes, and a

single exit. They are connected as shown in Figure 3 below:

Figure 3: Car Wash Simulation

Cars are directed to the carwashes by the three sources. Each source can direct a car to one of

two car washes. The source will send the car to the first idle carwash. Once a car is washed, it

goes to the exit where it is inspected. If the car is not clean enough, it is sent back to either source

0 or source 2. The carwash simulation concludes when the simulation clock reaches a certain

time.

The carwash exhibits several characteristics that make it useful for testing the coprocessor.

It is extremely fine-grained and the LPs spend a considerable part of their time waiting for

22

messages. Although the fine-grained nature of the carwash simulation makes it hard to accelerate,

the addition of spin-loops makes it possible to alter the simulations granularity. Since the

carwash's computational demands are small, the spin loops dominate the simulation's processor

time and allow accurate control of the simulation's granularity. The carwash is also interesting

because it is an extremely unbalanced simulation. Since the LP named Source 1 has no inputs

arcs, it never has to wait for messages from any of the other LPs. It can process events as quickly

as it can schedule them in its next event queue. Source 1 does, however, schedule events on other

LPs, and these LPs will have much larger next event queues to manage. The carwash simulation is

also deterministic—the events are scheduled in the same order every time it is run. Normal parallel

discrete event simulations are not deterministic because the simulations run on many processors

and the communication latency between processors can cause events with the same time stamp to

arrive in different orders each time the simulation is run. For example, if LP! and LP2 schedule an

event on LP3 at the same time step in the simulation, there is no way to ensure that one message

will always be processed before other. When LP3 receives the event from the other LPs, the

events will have the same time stamp so it will schedule the events in the order that they arrived.

If the event from LP] is processed before the event from LP2, then the simulation will probably

have different results than if the events are processed in the opposite order. The carwash's

determinism makes it easy to compare various simulation runs since, for all of the runs, the event

should be scheduled in the same order. The determinism also makes it easy to validate the

simulation's output.

23

2.6 VHDL Simulations

VHDL is a hardware description language that was developed for the United States

Department of Defense as part of the very high speed integrated circuit (VHSIC) program[15:l].

Using VHDL, circuit designs can be specified at both the abstract and concrete level. A wide

variety of tools have been developed to synthesize VHDL circuit descriptions into integrated

circuits. VHDL simulations permit circuit designs to be tested before they are fabricated, but such

simulations take a considerable amount of time for large circuits. Several theses at AFIT

examined ways to accelerate VHDL simulations by running them on parallel computers. The

most recent of these, by Kapp, studied the effects of a deliberate partitioning strategy for mapping

the circuits to LPs[l6:3-4]. Kapp's research demonstrated how an efficient partitioning strategy

could minimize the dependencies between LPs and reduce the number of messages passed

between nodes. Since parallel discrete event simulations tend to be communication bound,

reducing the number of messages they send improves simulation performance[16:132].

AFIT's parallel VHDL simulator, VSIM, implements a subset of VHDL commands and

uses SPECTRUM to synchronize the LPs. VSIM uses a commercial, sequential VHDL compiler

by Intennetrics to convert VHDL into intermediate C source code[16:31]. A utility, called pbuild,

converts the C source code into code compatible with VSIM. Each LP in the simulation contains

a complete copy of the VHDL behaviors and SPECTRUM and this limits the maximum size of

the simulation. If an LP only contained its behaviors, then larger simulations could be run and

more behaviors could be simulated per node. If more behaviors were simulated on a node, the

simulation's granularity and speedup would also increase. Unlike other simulations synchronized

by SPECTRUM, there are two next event queues maintained for each LP. As it is in other

simulations, one of the next event queues is maintained by SPECTRUM. The other next event

24

queue, however, is managed at the application level by VSIM. This is necessary because VSIM

behaviors schedule new events by directly manipulating this queue. A filter, VHDLClocks, is

used to coordinate the two next event queues and is used to implement a conservative, null

message protocol based on that of Chandy and Misra.

Several VSIM simulations were used in this research. The simplest was an 8-bit, carry-

lookahead adder (CLA). This circuit was relatively small, having less than 100 gates, and was

useful for testing the ported versions of SPECTRUM with VSIM. The Wallace-tree multiplier

simulation was also used and is much larger, consisting of over 1,000 behaviors. This multiplier

multiplies two eight-bit vectors to form a twelve-bit output vector. Both the carry-lookahead

adder and the Wallace-tree multiplier run for 2,000 nanoseconds. The largest VSIM simulation

was the associative memory, a part of the hardware coprocessor, with over 4,000 behaviors. This

memory was called an extreme search associative memory (ESAM) in Berlin's thesis and would

search for a maximum or minimum value, in its contents, with O(l) complexity. The ESAM is

more powerful than the Content Addressable Memory (CAM) described by Daniel since, in

addition to searching for an equal value, it can search for maximum and minimum values. The

ESAM's simulation size is useful because, when efficiently partitioned, it has a coarser granularity

since each LP must execute more behaviors. The associative memory simulation was originally

designed to run for 8000 ns, but since VSIM's clock only has enough resolution for 2000 ns, the

memory's time scale was changed to picoseconds and it now runs for 8 ns. To compensate for the

altered time scale, all times were scaled so that a 3 nanosecond delay became a 3 picosecond

delay.

25

2.7 Conclusion

This chapter described the current state of research into parallel discrete event simulations.

Both conservative and optimistic algorithms were examined to determine how a coprocessor

could be used to accelerate them. Various hardware acceleration efforts were examined to see if

any of them applied to this research, including efforts to accelerate microprocessors in general.

This chapter also described SPECTRUM, the simulation environment used at AFIT, and several

of the simulations that were used to test the coprocessor.

26

///. Porting SPECTRUM to the Intel Paragon XPS

3.1 Introduction

The first step in implementing the coprocessor was to modify the SPECTRUM simulation

environment to run on the Intel Paragon. The Intel Paragon was chosen because it is more

scalable than the other computers used at AFIT and would accommodate larger numbers of LPs

and coprocessors. Most of the previous parallel research at AFIT was conducted on Intel

Hypercubes, and the Paragon's system calls are very similar to the Hypercube's. These

similarities made porting SPECTRUM to the Paragon straightforward.

The SPECTRUM simulation environment is very similar to an operating system in that it

performs communication tasks for the LPs and other tasks such as deadlock prevention. The

machine-specific portion of SPECTRUM is therefore closely tied to the characteristics of the

machine on which it is implemented. Before implementing SPECTRUM on a new machine, it

was important to understand the architecture of the machine to which it was being ported.

3.2 Comparison ofiPSC2 Hypercube and Paragon Computers

Since the iPSC/2 and the Paragon have different architectures, it was crucial to modify

the code to suit the characteristics of the machine. This type of modification involved more than

just replacing new system calls in the existing program; it required looking at the overall

topologies of the machines and determining how to map the simulation's functions to the nodes of

the Paragon. An investigation of the machines' topologies revealed that the machines had

different communication bottlenecks. These bottlenecks also played a significant role in how the

27

simulation environment was redesigned. One other problem involved determining what system

calls were supported by both the iPSC computers and the Paragon. Since the machines were both

produced by Intel and are in the same family of computers, there are many similarities between

the two machines. However, some of the calls did not work on both machines. After determining

how to best utilize the machine's topology, eliminate bottlenecks, and replace the machine-

specific system calls, a high level analysis and design was completed.

3.2.1 Processor Capabilities

The processors used in the iPSC/2 are of a significantly different architecture than those

used in the Paragon. The iPSC/2 utilizes a Complex Instruction Set Computing (CISC) Intel

80386 with a 80387 floating-point coprocessor while the Paragon incorporates a Reduced

Instruction Set Computing (RISC) i860XP. A Wietek 1167 coprocessor provides additional

numeric capability to the iPSC/2 [17]. The 16-MHz 80387 is rated at 0.3 MFLOPS . In contrast,

the heavily pipelined, superscalar design of the i860XP processor used in the Paragon allows it to

achieve a peak rating of 75 MFLOPS while only running at a clock speed of 50 MHz [18]. The

floating point unit of the i860 is integrated with the CPU on the chip. One problem with the

i860's floating point unit is that it lacks a floating-point divide instruction [1:167]. Instead of

dividing, the i860 must take the inverse of a number using a micro-coded, iterative algorithm and

then multiply the numbers. Hence, the floating-point divide performance of the i860 is much

slower than other arithmetic operations. Most of the i860's built-in instructions for floating-point

math do not conform to the IEEE 754 standard for floating-point math. The IEEE 754 standard

has two more bits of precision for certain operations, but requires that the i860 run a math library

written in assembly language[19:8-8]. This math library is much slower than the i860's intrinsic

instructions.

28

Since the i860 gains much of its speed from pipelining, stalling the pipeline frequently

will significantly slow the processor. If the processor predicts the wrong direction in a branch

operation, it causes a pipeline hazard and wastes clock cycles while it refills the pipeline. The

compilers used on the Paragon can optimize the code to improve the processor's branch

prediction, and this had a very significant effect on the speed of computationally intense

programs. Unfortunately, such optimizations are less significant on parallel discrete event

simulations because of their fine granularity.

3.2.2 Machine Topologies

The Intel iPSC/2 and the Paragon are both distributed memory machines, but they have

significantly different architectures. The iPSC series of computers use a hypercube topology. The

hypercube topology is versatile and many different algorithms and data structures can be mapped

to it with ease. The hypercube has a relatively small diameter and a large bisection bandwidth.

The primary disadvantage of the hypercube topology lies in its high connectivity. The hypercube

has so many connections between nodes that it is expensive to use a large number of processors.

The Paragon uses a simpler topology called a two-dimensional mesh, without wraparound. The

2D mesh is simpler and scales to large sizes more easily than a hypercube, but it is not as well

connected and has a smaller bisection bandwidth. The characteristics of both machines are shown

in Table 2, where p is the number of processors in the system.

29

Characteristic 2D Mesh without Wraparound Hypercube

Diameter
2(^-1)

logO)

Bisection Width IP p/2

Arc Connectivity 2 log(/>)

Cost (Number of Links) 2(P-Jp) (p\ogp)/2

Table 2: Mesh and Hypercube Characteristics

The characteristics of the machines' topologies reveal that the hypercube has many

communications advantages over the mesh. Since the mesh has a smaller bisection bandwidth,

congestion is more likely to be a problem. Intel chose to address congestion on the Paragon in

several ways. One technique increases the bisection bandwidth by adding more connections

between nodes so that 16 bits and a parity bit can be transferred at once[20]. Another way Intel

reduces congestion on the Paragon is by using wormhole routing, a variation of cut-through

routing. Wormhole routing is an improvement over store and forward message passing because it

does not require the intermediate nodes to store the whole message. Instead the message is

forwarded by the intermediate nodes as soon as its head is received. Unlike older techniques that

locked communication channels for the duration of messages, wormhole routing allows the

intermediate nodes to release the connections when it receives the tail of the message.

Both the Paragon and the iPSC/2 use specialized hardware to pass messages. This

hardware allows the nodes' processors to do useful work while messages are being passed and

accelerates the bandwidth of the computers' communication networks. Intel claims that the Mesh

Routing Component, used to pass messages on the Paragon, has a maximum throughput of 200

Mbytes per second, but the operating system overhead limits its speed to about 75 Mbytes

/sec[20]. This is considerably faster than the 2.8 Mbyte/sec communication rate on the iPSC/2's

30

Direct-Connect Modules and implies that congestion should be less of a problem[21]. To achieve

a communication speed of 75 Mbytes/sec, Intel added another i860XP processor to each node of

the machine. This processor was unused until release 1.2 of the operating system, but now acts as

a message processor, sharing the same memory space as the node's main processor. Figure 4

shows how this processor is connected to the node's General Purpose (GP) board:

from/to
MRC

Network
Interface

(NIC)

i860 XP
Message
Processor

i860 XP
Application
Processor

64 bit
single cycle

50Mhz
400 MB/s (peak)

100 MB/s (typical)

LTU

Memory
Controller

LTU
i

16MB
or

32MB

DRAM

Expansion Port 1^-

Reprogrammable

Performance Monitor

Figure 4: Intel Paragon GP Node 118]

In addition to the application and message processors, the GP node on the Paragon has

many significant features. All of the parts of the GP Node are connected by a 64 bit bus with a

peak bandwidth of 400 MB/sec. The Network Interface Chip (NIC) connects the board to the

Mesh Routing Component and allows messages to be passed to the board via a FIFO queue big

enough to hold a single packet. The memoiy controller contains two Line Transfer Units (LTU)

and, in addition to interfacing memory to the bus, provides DRAM refresh and Direct Memory

Access (DMA) services. The expansion port can be used to add such things as memory or disk

controllers. The Reprogrammable Performance Monitor (RPM) provides many services for

debugging and code profiling such as the number of page faults, the number of exceptions, the

amount and direction of message-passing traffic, the CPU's and memory's utilization, and a high

precision timer. The RPM's timer is a 10 MHz 56-bit, global clock accurate to 100 ns local to the

node and 1 ps across all of the nodes in the system[22]. From this description, it is clear that the

GP node has many interesting features for applications programmers and is useful for measuring

SPECTRUM'S performance.

3.2.3 Operating System Differences

The Paragon and iPSC/2 both use the Unix operating system, but they use it in

significantly different ways. The iPSC/2 uses AT&T Unix Version V on an external processor

called the System Resource Manager (SRM), or the host node, as shown in Figure 5.

o
Hypercube

Nodes

-o

Ö

System Resource
Manager

-6 J
NodeO

Figure 5: iPSC 2 Hypercube System Resource Manager[23:3]

The host node is typically an Intel 301 PC with a 80386 processor and is used to handle all shells

and user commands. It loads programs onto the nodes and contains the language compilers and

routine libraries[23]. In addition to running Unix, the iPSC/2 uses NX/2, a small, multitasking

operating system on the nodes. A typical iPSC/2 program executes a host program and uses that

32

program to load and start the program(s) on the nodes. The host program can also pass messages

to the processes on the nodes and can be used for tasks that require centralized operations.

The Paragon uses the OSF/1 Operating System, developed by the Open Software

Foundation, and the Mach 3.0 microkernal on all of the system's nodes. The Paragon's version of

OSF/1 Unix supports most Unix standards, such as POSIX1003.1, and has extensions to support

parallel processing[24]. Some of the extensions to provide a single system image across all of the

system's nodes. The single system image ". . . makes all the nodes appear to be one large system"

and allows all the nodes to use a single file system[24]. This single system image, however, does

not imply that all of the nodes share the same memory space; the Paragon is a distributed

computer and each node has its own memory[24]. In addition to multitasking, the Paragon's

operating system supports multithreaded programs and virtual memory. The NX/2 library of calls

is also provided to maintain compatibility with the iPSC computers.

3.3 Paragon Communications Bottlenecks

Even though the Paragon's communication between nodes is much quicker than the

iPSC/2's, there are still communication bottlenecks that significantly alter SPECTRUM'S

performance on the Paragon. These communications bottlenecks are not a result of slow

communications within the computer, but result from poor input/output (10) to devices outside the

computer. To understand where these bottlenecks occur, it is necessary to know how the

Paragon's nodes are configured and how they perform IO. A simplified diagram of the Paragon's

architecture is shown in Figure 6, below. In this figure, there are several types of nodes. The

largest number of nodes are the compute nodes, where the Paragon's processors are located.

Many of the nodes are empty and appear to go unused. These empty nodes, however, still contain

33

a Mesh Routing Component (MRC), and are placed where message traffic is likely to be the

highest to pass messages quickly. The service nodes are where the user interacts with the

machine. When a user logs onto the Paragon, the service nodes process commands sent to the

Paragon. These nodes are also where a host program would typically be run if used to coordinate

activities between the nodes.

Node Type:

O Empty
Boot Node

i Service Node
MIO node w/RAID
Compute Node

Figure 6: Intel Paragon Architecture

The Multipurpose 10 (MIO) nodes can be used for several types of IO, such as to connect

a Redundant Array of Inexpensive Disks (RAID) or as a network controller. The MIO card uses a

SCSI interface to connect the disk drives, which is a bottleneck since the SCSI interface used in

the Paragon is limited to approximately 2.4 Mbyte/sec[20]. This may not seem bad for a normal

computer, but this figure is extremely low for a supercomputer which is theoretically capable of

over 10 GigaFLOPS. According to Patterson and Hennessy, the overriding supercomputer IO

measure is data throughput and, as a result, Intel needs to increase the throughput as it improves

the Paragon's CPU performance [1:510].

34

Another possible bottleneck is that the Network File Server (NFS) has to pass through a

MIO node or the boot node to retrieve files stored there. At Wright-Patterson Air Force Base, the

boot node is the only node that connects the computer to the outside world. This boot node is

likely to be a source of contention because all of the machine users will interact with the machine

via this node and many of the users will try to write files to network drives on other computers

that are connected to this node. One alternative to the slow IO offered by the Paragon is to use the

Parallel File System (PFS). PFS still writes to the slow disks on the MIO nodes, but is does so in

parallel and provides a great increase in IO throughput when several nodes can write to the disk at

once.

Programs will run much faster if they avoid writing large files to disks using the normal

Unix File System (UFS) and using the Network File Server (NFS). Instead, they should write to

the Parallel File System or to High Performance Disk Space (HPD), which accesses the SCSI

drives in the Paragon's RAIDs. It is also important to avoid writing a lot of information to the

screen because this involves writing to the terminal's screen through the boot node which is very

heavily used. These communication bottlenecks, and the fact that the service nodes are heavily

used, led to the conclusion that the host program for SPECTRUM should not be used on the

service nodes. Instead, the code was redesigned so that the host was no longer necessary. The

host program for SPECTRUM, and how it was eliminated, will be discussed later in the high-level

design.

3.4 System Specific Calls

The last major problem in porting SPECTRUM to the Paragon was that some of its

system calls have changed from those of the iPSC series of computers. Many of the iPSC/2 calls

35

are still supported to maintain compatibility with older software, but since they may not be

supported in future revisions of the operating system, 1 decided not to use them.

Another change required by the Paragon's operating system was to replace all of the

references to the process id (pid) with ptype. Related iPSC commands, such as setpid()' and

mypid() were replaced by the appropriate functions, setptype() and myptype(). This change was

necessary because the OSF/1 Unix on the Paragon uses the pid to stand for a Unix process

identifier. Each process on the Paragon has its own unique pid throughout the system and can be

killed by the command: kill pid from any node. Since all of the processes in an application

belong to the same process group, they can be killed from within the application by the command:

kill(0, SIGKILL) where SIGKILL is defined in the header file, signals.h. Therefore the kill()

command replaced the iPSC/2 command, killcube().

Several other machine-specific commands from the iPSC/2's host program, such as

getcube(), startcube, load, and waitall() were also eliminated from SPECTRUM. Since

these calls existed in only the host program, and the host program was not implemented for the

Paragon, these calls were no longer needed and were not replaced.

3.5 High-Level Design

The original version of SPECTRUM for the iPSC/2 consisted of four parts: cube2.c,

Ipman.c, an application, and a set of filters as shown in Figure 2 in the previous chapter. The file

called cube2.c is SPECTRUM'S interface to the parallel computer. It contains all of the system

1 In this document, all commands entered at the command line appear in this non-proportional

font. All system function calls are denoted by their parentheses.

36

calls specific to the iPSC computers. To port SPECTRUM to another machine, cube2.c and its

associated header file would be the only files needing changes. The file called Ipman.c is the

node level manager and it performs all of the tasks of the LP. It is essentially SPECTRUM'S

interface to the user's application. The filters allow the functions performed by Ipman.c to be

changed so that many message-passing protocols can be supported. Since the filters are the only

files changed for new protocols, the user can write a simulation and not have to rewrite the

simulation for every new protocol. To support optimistic protocols, however, the application

would have to be changed so that it could save its state. When a causality error occurred, the

application would have to restore the old state itself.

The iPSC/2 used a host program to load SPECTRUM. This host program, called

getcube() to get a portion of the hypercube, loaded the simulation onto the hypercube, stalled the

simulation, kept track of which processors were still running the simulation and terminated the

programs on the nodes. When the host program loaded the nodes of the hypercube, it would send

as many copies of the program as needed for the simulation to run. The host could send multiple

copies of the program if the node needed to run more than one LP. This was possible because the

nodes of the iPSC/2 could multitask. The host program could map the LPs to the nodes of the

hypercubes three ways: it could read the assignment of LPs to nodes from a file, it could prompt

the user to assign the LPs, and it could assign the LPs using "natural" assignment where LP 0 is

mapped to node 0 and LP 1 to node 1. With natural assignment, once all of the nodes had 1 LP

assigned to them, the host would then start again at 0 and continue mapping the rest of the LPs as

shown in the example in Figure 7.

37

ptype 2 LP 14 LP 15 LP 16

ptype 1 LP7 LP8 LP9 LPIO LP11 LP12 LP13

ptypeO LPO LPT LP2 LP3 LP4 LP5 LP6

< k i 1 '' ' k w V w «
node 0 node 1 node 2 node 3 node 4 node 5 node 6

Figure 7: Natural Numbering of] 7 LPs on Six Nodes

The host program coordinated the simulation shutdown by waiting for messages of type

LASTTIME. When the host program received a LASTTIME message from an LP, it knew that

the LP finished running the simulation and that it was waiting for a message of type ENDMSG.

When all of the LPs finished, the host program would send them a message of type ENDMSG

and the LPs would send the host program a message containing some information about how the

simulation ran. When the host received all of the statistics from the nodes, it would execute

killcube() to make sure that all of the nodes were terminated. The modified version of cube2.c,

called mesh.c, assigns all of these host node functions to other nodes on the Paragon.

3.5.1 Redesigning SPECTRUM to Replace the Host Program

Because the Paragon version of SPECTRUM eliminated the host node, the host node's

features had to be mapped to the LPs. Node_level_init() was altered to map the LPs to nodes in a

distributed manner. To start the simulation, only one copy of the program loads per node. Each

38

node then calculates the number of LPs needed on that node and loads onto itself, the necessary

number of LPs. The following fonnula determines how many LPs are needed on a node:

num_ lps_ needed -
Num_ LPS - the_ node_ number

the_ number _ of _ nodes

Equation 2: Number of LPs Needed on a Specific Node

Once the algorithm determines how many LPs are needed, it creates the proper number of LPs per

node and the LPs start the simulation. The processes then must figure out which LP they are,

using the following formula:

lp_ number - my_ node_ number + total_ number__ of _ nodes x my_ ptype

Equation 3: Determining a LP Number

The simulation, at this point, runs identically to the simulation on the iPSC/2 until a node finishes.

When a node finishes, it sends a message to a control node and this node keeps track of which LPs

are finished. When all of the LPs are finished, the control node sends all of the nodes an

ENDMSG telling them to shutdown. The nodes wait for an ENDMSG before they shut down

because sometimes a node sends a null message at the exact same time that the node finishes its

part of the simulation. If the node did not go into a waiting state, accepting these messages, the

nodes input message queue would still have a message in it and the simulation would not

terminate cleanly. By waiting for an ENDMSG, the nodes queues are empty and the simulation

terminates cleanly. When the LPs receive an ENDMSG, they send an ENDSTATS message to

the control node and exit.

39

3.5.2 Changes to the Termination Algorithm

The termination algorithm also presented several challenges. The biggest challenge was

writing the termination algorithm for the control node so that it would handle the following three

situations:

1. The control node finishes first and has to wait for all of the other nodes to finish

2. The control node finishes last and all of the other processors have to wait for it

3. The control node finishes after some processors have finished and before others

The first two cases were relatively simple. SPECTRUM was modified to ensure that the control

node was capable of receiving messages of type LASTTIME both while it ran its part of the

simulation and while it waited for other LPs to finish. The third case was a little more

complicated because it required the control node to remember the state of all the other nodes

across several function calls. This problem was solved by embedding the processor state in a

global variable visible to all of the functions in the node level of SPECTRUM. This global

variable could be updated both during and after the node ran the simulation by two different

functions.

3.6 Low-Level Design

In adding the control node to SPECTRUM to replace the host program's functionality,

there was a choice between using a dedicated node or adding the functions to a node also used as

an LP. An examination of the control node's functions revealed that the control node was used

primarily during the simulation's startup and shutdown. The only function performed while the

simulation was running was keeping track of which LPs finished the simulation. Since the control

40

node's functions would not significantly increase the LP's load, they were placed on one of the

nodes running an LP.

Many of SPECTRUM'S functions had to be modified to perform the algorithms described

in the high-level design. The functions that had to be modified were node_level_init(),

node_receive_pending_messages(), node_terminate(), shut_down(), and node_abort(). Three

functions, all_done(), broadcast(), and set_control_node() were added.

Node_level_init() was changed so that it could assign LPs to nodes in a distributed

manner and create enough processes using the forking algorithm described in the next section of

the report. The use of the iPSC/2 command waitall() was eliminated from this part of the code

and each LP is allowed to begin the simulation after it receives a synchronization message from

the control node. The startup synchronization messages are used as follows: The control node

waits for an INITDONEMSG from all of the LPs after they have initialized. Once all of the

LPs have sent this message, the control node broadcasts a STARTSIMMSG to them, starting

the simulation. The simulation could be started without synchronization, relying on the simulation

protocol to prevent causality errors, but such a simulation would be harder to instrument for

performance measurements. With the synchronization, all of the processors start after the

STARTSIMMSG is broadcast to them and timing measurements can be started here.

Node_receive_pending_messages() was extensively modified. It was altered to receive

messages of type ABORTMSG and of type LASTTIME. The ABORT MSG type was added

so that one of the nodes could call node_abort() and broadcast ABORTMSGs to all the other

nodes, telling them to abort the simulation. The LASTTIME message type was added so that the

control node could receive them and tell when an LP had reached its last simulation time. If the

41

LAST TIME message is sent to any other node in the simulation besides the control node, the

simulation is aborted.

Node_abort() was also modified extensively. It previously sent messages to the host of

the iPSC/2 to tell it to end the simulation. Since the host was eliminated, node_abort() was

modified to broadcast ABORTMSGs to all of the LPs using the new function, broadcast).

Node_abort() was also modified to detect whether or not the simulation had completely

initialized. If the simulation had not initialized when node_abort() was called, then it would try to

abort nodes that didn't exist. To fix this problem, node_abort() uses kill() to kill all the

processes if the simulation has not initialized. The global variable, initnotdone, was added so

that the LP would know if initialization was completed when it was set to 0. The variable,

initnotdone, is initialized to 1 and is set in two places. The control node sets it to 0 when it

receives INITDONEMSGs from all of the other LPs. The other LPs set initnotdone to 0

when they receive a STARTSIMMSG from the control node. Both of these assignments to

initnotdone occur in node_level_init().

Node_terminate() was changed so that it had two routines embedded in it. One routine

was similar to the iPSC/2 implementation, and the second routine was added so that the control

node could shut down all of the other nodes. The second routine originally used Intel's broadcast

to send all of the other nodes the ENDMSG, but this had to be changed for the cases when

SPECTRUM uses a different number of LPs on a node. Intel's broadcast would send messages to

all of the nodes whether or not they actually had a process ofthat ptype. If a node did not have a

process of the Intel broadcast's ptype, then the message would wait in the node's input buffer and

cause the simulation to hang when it tried to shutdown. The broadcast() function was added to

fix this problem. Node_terminate() was also changed to call another new function, all_done(), to

determine when the simulation was finished on all of the nodes.

42

This research added all_done() to the file mesh.c, designing it to look at an array of

processor states and determine which processors had not finished. The processor states were

added to the global structure called lptable by adding a new field called LPstate. If LPstate

equals 0 then the LP is still running the simulation. If it is 1, the LP has finished. If all of the LPs

are finished, alldone returns a 0. If the LP has not received a message of type LASTTIME from

all of the nodes, then alldone returns a 1.

The function broadcast() was added to simplify broadcasts to all the processes running

the simulation. It was written because of the previously described problems with Intel's broadcast

and because Intel's broadcast only sent messages to a single ptype. If the simulation was running

more than one LP per node, the Intel broadcast would have to be called once for each ptype.

Other global commands such as gsync() work in the same manner as Intel's broadcast and had to

be avoided. The syntax of Intel's broadcast is: csend(type, message, length, -1, ptype) where the

-1 in the node parameter indicates that the message is to be broadcast. The new broadcast has the

following syntax: broadcast(type, message, length). It first determines the number of ptypes used

by every node and the number of ptypes only used on some of the nodes. Then it uses Intel's

broadcast to send the message to processes that have a ptype used on every node. Intel's

broadcast is used at this point because it uses a binary tree structure to broadcast the message more

quickly than if individual messages were sent. The rest of the processes have a ptype that is used

on only some of the nodes and are sent individual messages.

Another function, set_control_node(), was added to insure that the control node was set

properly. The Paragon version of SPECTRUM stores the location of the control node in the

variables cnode and cptype. These variables should only be altered by set_control_node() so that

it can check to ensure they point to a node that actually exists. This function is called by

node_Ievel_init(), which passes it the variables that identify the control node's number and ptype.

43

These variables are currently fixed to make node 0, ptype 0 the control node since this node will

always be used for any simulation.

When these algorithms were redesigned, this effort made them as robust as possible by

checking for errors that would be impossible under the normal operation of the program. One

such error was that some of the data structures used pointers and an invalid pointer could cause a

segmentation fault. The routine that updated the processor state when the control node received a

message of type LASTTIME caused the most concern. This routine stripped an integer from the

LASTTIME message and used that integer to calculate a pointer into an array. If the message

was scrambled, and the integer stripped from it was wrong, the resulting integer could cause a

segment fault when it was used as the array's index. To increase SPECTRUM'S robustness,

bounds checking was added to this routine and several other places where invalid pointers might

cause segmentation faults.

3.7 Implementation

The implementation of SPECTRUM on the Paragon was relatively straightforward except

for the algorithm used to fork new LPs on a node. The data structures required few modifications,

but some of the functions had to be modified extensively.

3.7.1 TheUseqfforkO

Because it is fast and memory efficient, fork() was used to create the multiple processes

on a node and assign them their new ptype numbers. When a node forks, it does not copy the

entire code of the new process. Instead, it uses reentrant code and has two data spaces, one for

each thread of control. All of the variables that have the same value are shared between the two

programs and they are only copied when one of the processes writes a new value to them. This

44

works to SPECTRUM'S advantage because the only values that are defined when the program

forks are values that are constant among the processes. In fact, forking not only eliminates the

need to load another program onto the node, it eliminates the need for each LP to load the arc file

describing the arrangement of the simulation's communication arcs. With forking, only the first

LP on a node reads the file and the information is common to all of that node's children that it

forks. The fork algorithm is shown in Figure 8 and consists of a loop that uses the array of

integers, lpnumtable, to hold the number of times that the LP needs to fork. The numbers in

for(i=0; i < (lp num table [mynodeO] - 1); i++)

if ((pid = f srkO) < 0)

nx perror('fork error in node level init") -"

else if (pid == 0)

< /* then child sets ptype and continues loop */

setptype(i + 1);

printf("forked on node(%ld) ptype(%ld)\n", mynode(), myptype());

) else /* pa rent let the child do the rest of the forking */

break;

)

Figure 8: SPECTRUM s fork algorithm

lpnumtable are calculated using Equation 3, described previously. The forking algorithm

worked successfully and allowed me to assign any number of LPs to a node.

3.8 Capabilities That Were Not Implemented

Due to time limitations, this research was not able to make all of the changes originally

intended for SPECTRUM. One such change was the ability to place comments within the arc

files. Another capability not added was the ability to map the LPs to nodes from a file. This

45

capability would be very useful and would allow the simulation programmer more flexibility on

how the simulation was partitioned. It could be added to nodeJevel_init() on the control node

when it starts the simulation by broadcasting the STARTSIMMSG. The control node could

broadcast the necessary information to the other nodes in the system so that they would know how

many times to fork and how to assign LPs to the new processes. While these changes would be

useful additions to SPECTRUM, their absence does not limit its utility.

3.9 Conclusion

Porting SPECTRUM to the Intel Paragon entailed tailoring it to the Paragon's

architecture. The systems' support of the same message passing calls greatly simplified the move

from the iPSC/2 to the Paragon. The host node, used on the iPSC/2, was eliminated and the host

node's functions were placed on the control node, which also was one of the LPs. The files

mesh.c and mesh.h replaced cube2.c and cube2.h, respectively. Several functions in the file

mesh.c had to be modified and three new functions were added. Most of these changes involved

adding the control node's functions, but some of them also implemented a distributed mapping

algorithm used to assign nodes to LPs. The fork() command was used to create the processes

needed for the required number of LPs on the nodes. Once these changes were complete, the

simulations' make files were altered and SPECTRUM was tested on the Paragon. The

simulations' performance results on the Paragon are described in Chapter 6.

46

IV. Software Architecture of the Coprocessor

4.1 Introduction

The decision to use a general purpose microprocessor changed the nature of this research.

Instead of being a hardware design effort, the coprocessor became a software project where the

parallel computer would be use some nodes to run logical processes and others to run the

coprocessor. To be useful, the coprocessor would need to exploit parallelism in the tasks

performed by an LP. From a high-level perspective, an LP performs four basic tasks:

1. An LP executes events (NEQ).

2. It schedules new events in its NEQ.

3. It passes events between itself and other LPs.

4. It synchronizes itself with other LPs to prevent causality errors.

The only application-specific task in the above list is when an LP executes an event. All of the

other tasks are generally handled by the simulation's environment. The simulation environment is

used to schedule events because the events may need to be scheduled on another LP's NEQ. It is

also important to note that passing events and LP synchronization are closely related, especially

for conservative protocols that wait for events from other LPs.

The coprocessor was designed to minimize work performed by the node running the LP.

More specifically, it was designed to manage the LP's NEQ, handle message-passing between

LPs, and perform synchronization tasks. Before these tasks could be offloaded to the CP,

SPECTRUM'S flow of control, functions, and global variables had to be analyzed to see how they

would be affected by running on a node other than the node running the application. After

47

SPECTRUM was analyzed, it was modified to support a coprocessor and renamed

CPSPECTRUM.

4.1.1 SPECTRUM'S Layers Revisited

SPECTRUM'S layered architecture, shown in Figure 2, simplified the coprocessor's

interface to the application software because it limited the functions that the LP called. An

application is only supposed to call SPECTRUM'S functions in the LP Manager layer. The only

other function, outside of the LP Manager layer, that an LP might call is node_abort(). By

moving the bodies of these functions to the coprocessors and replacing them with small functions

of the same name, it was not necessary to modify the simulations to run using the CPs. The

replacement functions pass a message to the CP, requesting that one of SPECTRUM'S functions

be run and, if necessary, wait for a reply from the CP. The following functions can be called by

an LP: lp_level_init(), lp_init(), lp_post_event(), lp_get_event(), lp_advance_time(),

lp_terminate(), and node_abort(). The LP can also call the following utility functions:

readlp info(), display_lp_info(), open_file(), errlog(), display_event_q() and log().

Implementing these functions on a coprocessor would place all of the NEQ management tasks,

message passing tasks, and synchronization tasks on the coprocessor and would minimize the LP's

load. SPECTRUM required extensive changes to support such a coprocessor, but these changes

did not change SPECTRUM'S high-level behavior. Because many simulations are already

designed to run on SPECTRUM, backwards compatibility was a key goal in CPSPECTRUM's

design. Since the filters interact frequently with the LP manager functions, they had to be moved

to the coprocessor as well. Moving the filters presented several problems because they can make

calls to the application layer. Before any of these changes were implemented, SPECTRUM'S

flow of control had to be analyzed.

48

4.2 High-Level Analysis of SPECTRUM'S Functions

Moving SPECTRUM'S functions and filters to the coprocessor required a thorough

understanding of SPECTRUM'S functions and variables. Since SPECTRUM'S layers are

implemented in several files, and these files do not explicitly state the location of the functions

that they are calling, it was very difficult to determine the order in which SPECTRUM called

functions. To follow SPECTRUM'S flow of control, several diagrams, similar to flow charts,

were made that showed how SPECTRUM'S functions were called. An example diagram is shown

in Figure 9.

Start

f function 1 () \

i '

\

functian_2()

)

input file function_5()

End

function_4()

return to
function 3 ()

Figure 9: Example of Flow Control Diagram

In this figure, each rectangle represents a function call and each diamond represents a

branch that determines what functions will be called. The program in Figure 9 begins with the

block labeled "start" and immediately calls function_l(). The gray box with rounded edges

denotes that function_l() calls function_2() and that function_2() returns before function 1()

49

exits. Gray boxes can be nested and that the function calling the other functions in the gray box is

also within the gray box but is not gray. The diamond, as mentioned before, represents a branch

that affects the program's flow of control. If the condition specified in the diamond is true, then

function_3() is called, otherwise function_5() is called. It is important to note that the diamond

represents only a decision that affects the program's flow of control. The program may have

many other conditional branches, but they are not shown if they do not affect which functions are

called. If function_5() is called, then the program starts over at function_l(). The conditional

construct shown in this diagram therefore implements a loop. Depending on the diamond's

placement, many types of loops, such as "for" loops or "while" loops may be constructed. The

dashed line between function_3() and function_4() means that function_3() calls function_4()

and function_4() does not return to function_3() immediately. Instead, function_4() returns the

flow of control to function_3() later, at the box labeled: return to function_3(). Boxes with

labels in italics can also be used to denote other important events that may not affect the flow of

control. The disk-shaped box labeled "input file" represents a file read by function_5(). If the

arrow was pointing the other direction, it would represent a file being written.

These flow of control diagrams provided useful insights into how SPECTRUM works and

helped resolve many problems during the coprocessor's implementation. A diagram was

completed for each of the functions in SPECTRUM'S LP Manager layer and shows how these

functions call filters and functions from SPECTRUM'S Node Manager layer. Another diagram,

shown in Figure 15, illustrates the flow of control for a typical SPECTRUM-based application.

4.2.1 LP Manager Functions

A SPECTRUM-based simulation interacts with other nodes through the LP Manager

layer. The application layer typically uses the following functions from this layer:

50

lp_level_init(), lp_init(), lp_post_event(), lp_get_event(), lp_advance_time(), and

lp_terminate(). These functions also call several other functions in the LP Manager layer such as

lp_post_message() and lp_nq_event(). Before implementing the coprocessor, each of these

functions were examined and their roles in the simulation were determined.

An application's first call to SPECTRUM is always to lp_level_init() which initializes

SPECTRUM and the filters. The application passes an array of pointers to functions and an array

of arguments to lp_level_init(). These pointers are set to point to functions that run an LP, and

the application passes the arguments to these functions when the LP starts. For example, in the

carwash simulation, there are eight LPs. Each LP has its own function that describes how it runs.

In the VHDL simulations that use VSIM, each LP runs the same function, but different arguments

tell each LP which of the gates it is supposed to simulate. This arrangement of LPs is versatile

because each LP-node can run any of the LPs, but is inefficient because the LPs have unnecessary

code from the other LPs that is not executed and wastes memory.

When lp_level_init() is called, it reads an arcs file that describes the number and the

qualities of communication paths between LPs. The arc delays are also read from the arcs file.

With SPECTRUM, the number of communication arcs and their delays are static. After the arcs

file is read, node_level_init() is called. Since node_level_init() is a node manager function, it

will be described later. Node_level_init() calls the appropriate LP function in the application

layer and starts the application. The application's LP function then calls lp_init(), which

initializes the synchronization protocol's filter. SPECTRUM'S initialization up to this point is

depicted in Figure 15.

Once lp_init() sets up the application's filters, the first event in the simulation is

scheduled using the function, lp_post_event(). Whenever an LP needs to schedule an event, it

51

can schedule it using lp_post_event(), even if the event will be executed on another LP.

SPECTRUM'S events have the following structure:

typedef struct event {

int from lp; /* lpid of lp sending event */

int to lp; /* lpid of destination lp */

int t ime ; /* timestamp of event */

int event; /* event type or number */

int id; /* signal id */

int value; /* signal value */

int aux; /* to be used as needed by application */

int line num; /* some lp pairs may have more than 1 line */

int bufsize; /* Sizeof following databuf */

char *databuf; /* Pointer to user provided buffer */

struct event *

};

next;

Figure 10: SPECTRUM'S Event Structure

Most of the event's fields are self explanatory. The tolp and frornjp fields describe which LPs

the event is to and from. The time field is the time at which the event occurs and is used by both

the synchronization mechanisms and the next event queue. The event field is used to determine

the event's type and is application specific. If a simulation uses null messages, it sets the event

field to the value of a simulation-defined constant. The rest of the fields are also application

specific. The databuf field allows information to be packed into an event and sent to another

node. The databuf can be used for such tasks as load balancing, where the information sent would

not fit into any of the other fields. The bufsize is the length, in bytes, of the databuf and must be

set correctly for the databuf to be passed. The next field is a pointer to another event and is used

by the NEQ to link the events stored in it. If an event has not been placed in the NEQ, this field is

set to null.

52

A flow of control diagram for lp_post_event() is shown in Figure 11. This flow of

control diagram illustrates many important facts about how SPECTRUM'S LP Manager works.

The first task performed by lp_post_event() is to call the POST FILTER, if one is present. The

filter can use the information in the event's structure to determine what to do with the event. If the

filter determines that the message is unnecessary, it will replace the pointer to the event with a null

pointer and lp_post_event() will return without sending the event. If the event is not eliminated

by the filter, lp_post_event() then determines whether or not it needs to be sent to other nodes. If

the event occurs on another LP, it is sent to that LP via node_send_message(). If the event is to

be scheduled on the LP's NEQ, then a new event is created and that event is passed to

lp_post_message(). The new event is created, using node_create_event(), so that the event can

be placed in and removed from the queue independently, without the application freeing its

memory. Since lp_post_event() copies the event to a new event, the application is expected to

free the event that it passes. The new copy of the event is passed to lp_post_message() where it is

scheduled on the LP's NEQ.

53

event for all *
yes node_send_message()

downstream
\lps? .^

to all downstream Ips

no
i r

no node_send_message()
to appropriate Ip

node_create_event()

lp_post_message()
to this Ip

fitterjable[MESS_;FILTERl {)

lp_nq_eveta ()

Return

Figure 11: lp_post eventf') 's Flow of Control

54

The flow of control diagram for lp_post_message() is shown in Figure 12. Like

lpjpostmessage, it receives an event and calls a filter before it does anything to the event. The

filter for lp_post_message() is called MESS FILTER. After the filter has been called, the

function checks to see if the event eliminated the message. If it did, the function returns. If the

event was not eliminated, the event is placed on the NEQ by lp_nq_event(). Even though

SPECTRUM uses lp_post_message() to put an event in an LP's NEQ, it is important that the

application does not use it in the same way. The application should always use lp_post_event() to

place a message on the queue because using lp_post_message() would bypass the

POST FILTER. Even though the POST FILTER would not eliminate an event scheduled to run

on its LP, it could use the event's time stamp to update some of the synchronization protocol's

internal structures.

f \
Start

l> /

' '

iilter_table[MESS_FILTER] ()

lp_nq_event ()

Return

Figure 12: lp_post_message()'s FIOM' of Control

55

SPECTRUM uses the function, lp_get_event() to get an event from the next event queue.

The flow of control diagram for lp_get_event() is shown in Figure 13. The application does not

pass any parameters to lp_get_event() but receives an event from it when it returns. The first task

performed by lp_get_event() is to call the filter, GETFILTER. If the filter is present, it is used

to receive the event and the rest of the function is bypassed. If the filter is not used, then

lp_get_event() calls node_receive_pending_messages() to see if any messages are waiting. If no

messages are waiting and there is at least one event in the NEQ, lp_get_event() returns the top

event in the queue. If there are messages waiting, lp_get_event()'s first call to

node_receive_pending_messages() will receive up to MAX MESSAGES of them, where

MAX MESSAGES is a constant defined in SPECTRUM'S node layer. If no messages are

waiting and the NEQ is empty, lp_get_event() calls node_block_til_message() which waits for a

message to be received. When a LP waits for an event or a message from another node, it is said

to be blocking. Blocking is an overhead resulting from the parallel implementation. Its severity

depends on the simulation's synchronization protocol and the amount of lookahead the protocol is

able to exploit.

56

Start

yes
get_filter? ^ »

no

filter_table[GET_FILTER] ()

ncxle_receive_pending_messagos()

no

lp_post_message()

ywM'-wvw-.iu-tmi^P',^

Return (event)
(first event on queue)

Figure 13: lp_get_event()'s Flow of Control

57

Since lp_get_event()'s functionality can be entirely superseded by the filter's, it is

versatile and can implement a wide range of simulation protocols. This versatility is evident in the

way VSIM was implemented. Because VSIM uses a NEQ at the application level in addition to

the NEQ built into SPECTRUM, its GETFILTER must be able to look at both queues. If

VSIM's queue is ahead of SPECTRUM'S, VSIM must still call lp_get_event() to make sure that

executing the event at the top of its application-level queue will not cause a causality error. In the

case that SPECTRUM'S next event occurs after VSIM's, lp_get_event() should not return its

earliest event. Instead, the filter checks the input arcs, decides which queue has the earliest event

and returns a null pointer if VSIM's queue is ahead. Before it returns this null pointer, it must

wait for any synchronization messages necessary for the LP's next event.

To advance the simulation clock, the application calls lp_advance_time(). This function

uses a filter called TTMEFILTER to make sure that the time can be advanced. The application

passes the function a time, and the filter makes sure that the new time is valid. If the time

requested is not valid, the filter must handle the error. The application usually calls

lp_get_event() to get an event, and then uses the time stamp from that event in the call to

lp_advance_time(). SPECTRUM uses the global variable, my clock, to hold each LP's

simulation time and uses lp_advance_time() to update this variable. The flow control diagram for

lp_advance_time() is shown in Figure 14.

58

Figure 14: lp advance_time()'s Flow ofControl

When an LP's local clock is greater than or equal to the time at which the simulation is

supposed to end, it calls lp_terminate(). This function calls the TERMFILTER, to inform the

filters that the simulation is about to end, and then calls node_terminate(), which ends the

simulation. This function's flow of control may be seen in Figure 15.

Simulations access SPECTRUM'S features using the functions: lp_level_init(), lp_init(),

lp_post_event(), lp_get_event(), lp_advance_time() and lp_terminate(). The following table

summarizes their use:

Function Input Parameters Returns Purpose

lp_level_init() LP functions, args Starts SPECTRUM

lp_init() LP# Initializes filters

lp_post_event() Event Posts an event to one of the LP's NEQ

lp_get_event() Event Gets first event from NEQ, receives
messages from other nodes

lp_advance_time() The New Time l Advances SPECTRUM'S simulation
clock

lp_terminate() Event Removes filters so simulation can
terminate

Table 3: Summary of SPECTRUM'S Functions

lp_advance_time() does not return a value, but it does have the side-effect of updating myclock.

59

The functions in Table 3 are important in the design of the coprocessor because they are the only

functions, aside from node_abort(), that the coprocessor will have to support. When the

application makes a call to one of these functions, the node running the LP will have to send a

message to the CP telling it to perform one of SPECTRUM'S functions. If the function returns a

value, then the LP will have to wait for the CP to pass a message, containing the returned value,

back to it.

4.2.2 Node Manager Layer

Most of changes necessary to implement the coprocessor were made in the Node Manager

Layer. The coprocessor needs this layer to initialize itself, send and receive messages, and

terminate the simulation. Before adding these capabilities, SPECTRUM'S existing capabilities

had to be examined.

The first function that SPECTRUM calls in the node manager layer is node_level_init().

This function initializes all of the global variables used to map the LPs locations and

communications arcs. It also determines how LPs are mapped to nodes and synchronizes the LPs

as they start up. The LPs start when node_level_init() calls their functions, and can be timed

during this call to see how long they run.

The heart of the Node Manager Layer consists of the functions used to send and receive

messages from other LPs. The function, node_receive_pending_messages() is used to receive all

messages sent to the LP while it is running. Node_receive_pending_messages() starts by

checking to see if any messages have been received by the node and are in the node's message

buffer. If a message is waiting in the buffer, node_receive_pending_messages() will receive the

message, examine its type, and process it. If a message is not waiting,

node_receive_pending_messages() will return a zero. Another function, called

60

node_block_til_message(), is used to wait for a message to be placed in the nodes message buffer

by the operating system. It calls node_receive_pending_messages() to receive the message. If

the LP is blocked and is waiting for an event, node_block_til_message() will call

node_receive_pending_messages() until an event arrives that will allow the simulation to

continue. Node_blocktil_message() blocks when waiting for a message by using a synchronous

probe. When an event is received by node_receive_pending_messages(), it calls lp_post_event()

to post the event to SPECTRUM'S NEQ. Next, lp_post_event() calls lp_post_message() which

uses the MESS FILTER to determine if the next event can be executed. The MESS FILTER will

be described in the next section. The MESS FILTER or lp_post_message sets one of two flags to

inform node_receive_pending_messages() that the next event can be executed. The first flag,

called posted, is set by lp_post_message() when it posts an event to the NEQ. The second flag,

processed, was added by Hurford to allow an application to try to execute the next event after it

receives a null message[25]. Normally SPECTRUM would need to wait for a real event before

continuing, but if the application has its own queue, the updated arcs from the null message may

allow it to execute an event from its application level queue. The processed flag is used by

VSIM's filters in the file, vhdlclocks.c. If neither the posted or the processed flags are set,

node_receive_pending_messages() returns a zero and node_block_til_message() will wait for

another message to be received.

The coprocessor needs to handle additional message types such as LP requests, and

node_receive_pending_messages() is the ideal place to add this capability. It is called frequently

and it will be able to handle requests from the LP node quickly. Another advantage of receiving

the LPs' requests for SPECTRUM services in node_receive_pending_messages() is that while the

CP is waiting for a request, this same function can be receiving and enqueueing events from other

61

LPs. Most of the parallelism the coprocessor exploits results from its ability to receive and

enqueue messages while its LP is processing events.

The node level manager uses the function, node_send_message() to send a message to

another processor. This function, which is passed an event, examines the event's tolp field and

uses some of the global mapping variables to determine which node to send the message. Since

node_send_message() can only be passed an event, any other type of message will have to be

embedded in an event. The global mapping variable that this function uses to determine the

message's destination had to be changed to send the message to the coprocessor, but other than

that, this function was unchanged.

4.2.3 Filter Functions

SPECTRUM'S filters are called by the functions in the LP manager layer. When

lp_level_init() is called, it calls a function, build_table(), which is supplied by the filter's code.

This function constructs a table of pointers pointing to the filter functions that the LP manager will

call. The pointers are stored in an array, called filtertable, which is indexed by five constants.

INITFILTER, GETEILTER, POSTFILTER, TIME_FILTER, MESS_FILTER,

TERMFILTER. The following table summarizes which filters are used by the LP manager's

functions:

62

Function Filter Table Index

lp_level_init() None

lp_init() INITFILTER

lp_post_event() POSTFILTER

lp_post_message()2 MESS_FILTER

lp_get_event() GETFILTER

lpadvance time() TIMEFILTER

lp_terminate() TERMFILTER

Table 4: SPECTRUM'S Filter Pointers

Since the filters are tied closely to both the application and the LP manager layer, the filters can

make calls to either layer. Most of the filters' calls are to the LP manager and they use many

global variables defined by SPECTRUM. Because of these function calls and variables, the filters

run on the coprocessor.

4.2.4 A Typical SPECTRUM Simulation

Figure 15 is a flow of control diagram from a typical SPECTRUM-based application.

This particular diagram is based on the carwash simulation and reveals many insights into how

SPECTRUM'S functions are used by the application. One useful section of the diagram, labeled

"Main Simulation Loop," shows how the application uses lp_get_event(), lp_advance_time(),

and lp_post_event() to get events, advance the simulation clock and schedule new events.

lp_post_message is not called directly by the application, but is called by lp_post_event()

63

Start

-"" ir :'~^

main()

' .' :w" .

Assign
junctions, args

<" + ^
/ lp level init()

' F .

read_lp_mfo()

\ «^. s

node_level_init()

.arcs file
Application Level

function(args)

return to
lp terminate()

return to
node terminate ()

return to
function(args)

return to
node level init()

return to
main()

End

lp_post_event()
post first event

Start Main
Sim Loop

"

lp_get_event()

IF

lp_advance_time()

t
Main

Simulation
Loop

lp_post_event()
schedule new events

NOTE: The application
must free the event after

this call!

process the event

lp_terminate()

shut_down<)

: ~x—

yes
'term filter?"*S » filterJable[TERM_FILTER] ()

no

node_terrmnate(0)

Figure 15: SPECTRUM High Level Flow of Control for a Typical Application

64

4.3 Lew Level Design

The coprocessor's design reflects two main goals: to maintain compatibility with existing

simulations and to minimize the work performed by the nodes running the LPs. The detailed

analysis of SPECTRUM in the previous section of this report was very useful for accomplishing

the first goal. Moving the NEQ management functions and synchronization tasks to the CP

accomplished the second. A third goal was to minimize the communication latency added by the

use of the coprocessor. Unfortunately, since the coprocessor is on a separate node from the LP, it

was difficult to complete the third goal. The only possible way to minimize the communication

latencies between the LPs and the CPs was to insure that they were located on nodes that were

close together. Because most of the Paragon's communication latency is the time that the

operating system takes to format the messages, placing the LPs and CPs close together did not

significantly reduce their communication latency. Placing them near one another, however, did

minimize congestion and reduced communication latency when large numbers of nodes were

used.

4.3.1 Coprocessor Topology

With the coprocessor, LPs and CPs are mapped in a similar manner to natural order. The

main difference from SPECTRUM'S usual natural ordering is that coprocessors are placed

between the nodes running the LPs. To maximize the coprocessor's time on its node's processor,

only one coprocessor can be mapped to a CP node. Since the LP will communicate frequently

with its CP, the CP nodes are located between the LPs, thus minimizing contention. The CPs are

also mapped in natural order, with as many CPs between the LP-nodes as there are LPs on the

previous LP-node. An example of this mapping is shown in Figure 16 where the arrows denote

which LP uses which CP.

65

ptype 2

ptype 1

ptype 0

nodeO node 1 node 2 node 3 node 4 node 5 node 6

Figure 16: Example of Coprocessor Topology Using 6 Nodes and 5 Logical Processes

With this mapping scheme, the simulations using the coprocessor need at least n +1

nodes to run, where n is the number of LPs. With the minimum number of nodes, one node will

run n LPs and the other nodes will run 1 coprocessor each. The maximum number of nodes that

the simulation can use with the coprocessor is In, where n is the number of LPs. If the

maximum number of nodes is used, there will be an LP on every even numbered node (assuming

0 is even) and a CP on every odd numbered node. Ideally, there would be only one LP per node

running LPs. For all of the tested simulations, the Paragon was large enough to use the ideal

number of nodes. The coprocessor was also tested extensively with fewer than ideal nodes to

insure that larger simulations could be run.

4.3.2 CPSPECTRUM's Layers

CPSPECTRUM's architecture had to be expanded to support the coprocessor. Several

new layers needed to be added so that the application could use SPECTRUM'S original interface

and to enable the filters to obtain information from the application. These layers are shown in

66

Figure 17. The nodes running LPs have two layers: the Application Layer and the LP Interface

Layer. The Application Layer is the same as the original version of SPECTRUM. The LP

interface layer allows the application to make calls to SPECTRUM'S LP manager by passing

messages to the CP.

SPECTRUM calls
common to lp & cp

(common, c)

SPECTRUM calls
common to lp & cp

(common.c)

Application Layer

Application call to one
of SPECTRUM'S

Functions

Application Function

LP Interface Layer
LP INTERFACE

(lp.c)
Filter-LP
Interface

(used for filter calls to the
application)

Node Manager
main()

(cpmesh.c)

Layer
Filter-CP
Interface

(used for filter calls to the
application)

—z

LP Manager Layer

SPECTRUM Calls
(lpman.c)

filter

Node Manager Layer

SPECTRUM Low-Level
Calls

(cpmesh.c)

SPECTRUM Low-Level
Calls

(cpmesh.c)

FigureH: CPSPECTRUM's Layers

67

Two of CPSPECTRUM's layers run on the coprocessor: the Node Manager Layer and the LP

Manager Layer. These layers allow the CP to service requests from the LP. Both the LP node

and the CP node have main() functions. The LP's main() function is in the Application Layer

and the CP's main() function is in the Node Manager Layer. The main() functions are indicated

by rounded boxes in Figure 17.

4.3.3 LP Interface Layer

The LP interface layer is designed to replace SPECTRUM'S functions on the LP with

small functions that send requests to the coprocessor. To maintain compatibility with existing

simulations, the functions supported by the LP interface layer have the same names and

parameters as the original SPECTRUM. They also return the same values as SPECTRUM'S

functions.

The Filter-LP Interface is used to maintain compatibility with existing filters. When the

filters were moved to nodes that were not running the application, filter calls to the application

layer posed a difficult problem . Since the filters, to maintain backward compatibility, could not

be modified, CPSPECTRUM had to provide some mechanism by which the coprocessor could

emulate the application's response to a function. The Filter-LP Interface is part of that

mechanism. Whenever the application makes a call to one of SPECTRUM'S functions, the LP

Interface calls a function in the Filter-LP Interface. The Filter-LP Interface function names are

predefined as shown in the following table:

68

SPECTRUM Call Filter Used Interface Functions

lp_init() INITFILTER init_filter_interface_lp()

init_filter_interface_cp()

lp_post_event() POST FILTER post_filter_interface_lp()

post_filter_interface_cp()

lp_post_message() MESS_FILTER mess_filter_interface_lp()

mess_filter_interface_cp()

lp_advance_time() TIMEFILTER time_filter_interface_lp()

time_filter_interface_cp()

lp_get_event() GETEILTER get_filter_interface_lp()

get_filter_interface_cp()

lp_terminate() TERMJTLTER term_filter_interface_lp()

term_filter_interface_cp()

Table 5: Filter Interface Functions

In Table 5, two filter interface functions are shown for each filter. The functions whose names

end with "_lp" are run on the LP node, and the functions whose name end with "_cp" are run on

the CP node. Whenever a Filter-LP Interface function is called, it calls any application-level

functions or examines an application-level global variable and places any values that the filter will

need in a message. If the filter does not need any information, it returns a null pointer. This

message is then passed to the CP node, along with any of SPECTRUM'S variables that the LP

manager's function will need, telling the CP to perform one of SPECTRUM'S services. The LP

will therefore be able to pass the filter any information it needs, but the filter will not be able to

pass any information back to the LP, except what it embeds in an event returned by

lp_get_event(). The filter's inability to send information directly to the LP is not a problem since

the filter sends the information back in an event.

The LP Interface layer also has a modified copy of node_level_init() which is used to

initialize the LP's data structures and start the simulation. In addition to starting the simulation,

69

node_level_init() is used to load all of the coprocessors onto their nodes and sets the control

node. Another similar copy of node_level_init() initializes the CP. Both of these versions of

node_level_init() map the LPs and CPs to nodes. To avoid having two copies of the same source

code, these mapping routines were moved to a function called node_map() and this function was

placed in common.c, which will be described later.

4.3.4 CP Layers

The CP has two layers: the node manager layer and the LP manager layer. The node

manager layer contains SPECTRUM'S normal functions with several extensions. A main()

function was added to the node manager so that it could start the coprocessor by performing the

same functions as lp_level_init() and then calling node_level_init(). The function,

node_level_init(), was modified so that it called lp_init() to run the INITFILTER, and started a

loop where the CP received messages. The node manager in the coprocessor can receive both

messages from other CPs, such as events and synchronization messages, and messages from the

LP for which it works.

The coprocessor allows the filter to access data from the application layer through the

Filter-CP Interface functions. There are two types of Filter-CP Interface functions. The first type

of Filter-CP Interface functions are defined in Table 5 and are used to retrieve information from

the LP's requests. These functions take a buffer as an input and assign the information in the

buffer to the appropriate variables. If any of these variables are copies of application-level global

variables used by the filter, then the Filter-CP Interface must declare them. The second type of

Filter-CP Interface function is a duplication of a function in the application level. It has the same

parameters and returns the same type variable as the function in the application level, but its body

is different. The body of this second type of Filter-CP Interface function simply returns a variable

70

which was set by the first type of Filter-CP Interface function. Although these functions add to

the coprocessor's complexity, they allow filters and applications to be run on the coprocessor

without modification. The only changes to the application's code are minor changes in its make

file. For every new filter that is going to be used with the CP, a Filter-LP Interface and a Filter-CP

Interface is also needed. Fortunately, these files are fairly simple and the new files can be created

by altering other filter's files.

4.3.5 Functions Common to LPs and CPs

Several of SPECTRUM'S functions are used by both the LP and the coprocessor. These

functions are shown in Figure 17 as two blocks that are outside of CPSPECTRUM's layers and

are defined in the file, common.c. Most of the common functions are utility functions from

SPECTRUM'S LP manager layer. Two of the functions in common.c pass messages between the

LPs and their CPs. Another function, called node_map() maps the LPs and CPs to the Paragon's

nodes. Since both the LPs and CPs know which node is acting as the control node,

set_control_node() is included in common.c so that they can both set the control node.

The utility functions included in common.c are functions that were previously defined in

the LP manager layer. Since the LP Manager layer was moved to the coprocessor, and since the

LP might still use these functions, they were block-copied from lpman.c to common.c. These

utility functions are: read_lp_info(), display_lp_info(), openfileQ, errlog(), display_event(),

and log(). All of these functions are exactly the same as their SPECTRUM counterparts, with the

exception of log(). It has been modified to write to separate files for the LPs and CPs.

Two of the functions in common.c, send_message() and recv_message(), are used to

pass messages between the LPs and CPs. Given a message type, a SPECTRUM buffer, a user

buffer, and the lengths of the buffers, send_message() will send a message between an LP and a

71

CP. A global variable tells send_message() whether it is being run on an LP or a CP, and it

automatically sends the message to the appropriate node. The receiving node calls

recv_message(), passing to it the type of message to be received. This function returns a message

structure to the receiving node. The message structure contains a SPECTRUM buffer, a user

buffer and the buffer lengths. The SPECTRUM buffer is intended to allow CPSPECTRUM to

pass information from the LP Manager and Node Manager between the LPs and CPs. The filter

interface functions employ the user buffer to pass application-level data to the LP Manager and

Node Manager layers. These message passing functions simplify the coprocessor's software by

providing a consistent, but versatile, interface between the LPs and CPs.

The functions node_map() and set_control_node() initialize both the LPs and the CPs.

Because both the CPs and LPs can access the lpinfotable, they both have to run the distributed

mapping algorithm that assigns the LPs and CPs to nodes. The mapping algorithm that

SPECTRUM used in node_level_init() was copied into node_map() and placed in common.c so

that both types of nodes could run it. Since both nodes have access to the lpinfotable, they also

need to know which of the nodes is acting as the control node. The control node's CP number is

set in the header file, mesh.h, as a constant and setcontrol node() uses this constant to set the

control node's number and ptype.

4.3.6 Types of Messages Passed Between LP and CP

After determining which functions were needed in the LP Interface Level, it was necessary

to define messages with which the LP Interface Layer could make calls to CPSPECTRUM on the

CP. It was also necessary to determine which of CPSPECTRUM's functions needed to pass

information back to the LP. The messages passed to and from the CP are shown in Table 6. Each

of the LP manager's functions, except lp_level_init(), correspond to a message type used to

72

request that function from the CP. All of these messages are passed using send_message() and

recv_message().

Function Message Types Request
Contents

Reply
Contents

Comments

nodelevel init() Request:

START_LP

This type of message is sent from the
CP to the LP at the beginning of the
simulation.

lp_level_init() none Performed on both LPs and CPs

lp_init() Request:

IN1T_REQ

LP# Tells CP to initialize filters

lp_post_event() Request:

POST_EVENT_REQ

Reply:

POST_EVENT_RPL

Event

lp_j»et_event() Request:

GET_EVENT_REQ

Reply:

GET_EVENT_RPL

Event or null
pointer

Null pointer is used in simulations
with both application and
SPECTRUM next event queues.
Null pointer is returned when it is
safe for the application to process the
next event on its queue.

lp_advance_time() Request:

ADVANCE_TIME_REQ

Reply:

ADVANCE_TIME_RPL

New Time my_clock,
ok_to_advance,
timetoadvance

This function does not return the
values sent in the reply. Instead,
these values are updated in the
appropriate global variable before the
function returns.

lp_terminate() Request:

TERMINATE_REQ

Event Assumed to be the last message sent
to the CP from the LP.

Table 6: Messages passed between the CP and the LP

As Table 6 suggests, only two of CPSPECTRUM's functions send reply messages to the

LP. Reply messages lower the amount of parallelism that the CP can exploit because they force

the LP to wait until the CP replies. More parallelism can be exploited if the LP can send a request

to the CP and then continue to process events while the CP handles the request. Unfortunately,

there are several circumstances where the LP needs to wait for a reply, such as when the LP

requests the next event from the CP using lp_get_event(). The LP must wait for the event; it

would not have requested the event unless it needed it. The only other function that sends a reply

to the LP is lp_advance_time() which sends the updated value of myclock and several other

73

values to the LP. Ideally, the LP would know myclock's value from its next event, but some

simulations, such as the carwash, rely on myclock to determine when to terminate.

4.3.7 Global Variable Concerns

SPECTRUM used global variables extensively. These global variables reduced the

code's clarity and complicated the coprocessor's design. Many of these variables were used by

several files, across many of SPECTRUM'S layers. An example of such a variable is myclock

which SPECTRUM uses to store the LPs' local simulation times. In the carwash simulations, the

application layer used myclock to determine when to end the simulation, the filters used

myclock to maintain causality, and the LP Manager layer updated the value of myclock. If a

global variable was accessed by both the application and SPECTRUM, moving that variable to the

coprocessor would require some mechanism to insure that the variable held the same value on

both the LP and the CP. Fortunately, myclock was the only variable both the LP and the CP

could access. Either, not both, the LP or the CP used all of the other global variables.

To make sure that myclock was consistent between the LP and the CP, this research had

to examine when the variable was assigned values and when the variable was read. The only

function that wrote a value to myclock was lp_advance_time(). This function wrote to the

variable when it updated the simulation clock. In the carwash, myclock was read after

lp_advance_time() was called. Since lp_advance_time() would be moved to the coprocessor, it

would have to send a message to the LP after the clock advanced, telling the LP myclock's new

value. When the LP called lp_advance_time(), it would have to send an

ADVANCEJTIMEREQ to the CP and wait for an ADVANCETIMERPL from the CP.

Some of the SPECTRUM'S global variables were declared as static in the header file,

mesh.h. These variables could be a source of significant problems, since the static declaration in

74

the header file would make them local to each file that used them. For example, if function A()

set variable X in file I.c and function B(), which was in file J.c, tried to read the variable, B()

would read a different value for X. Since functions in several files used the global variables in

mesh.h, they are no longer declared as static.

4.3.8 Initialization and Termination Algorithms

Moving SPECTRUM to a coprocessor also required changes to its initialization and

termination algorithm. The initialization algorithm needed to be changed to include assigning LPs

to CPs, loading the CPs, and initializing them. The termination algorithm had to be changed so

that the LP could shut down while the CP waited for the other LPs to finish.

A CPSPECTRUM-based application consists of two executable files and at least one data

file. One of the executable files is run on the LP nodes, and the other executable file is run on the

CP nodes. The data file contains information about the simulation's communication arcs. The

name of the LP's executable file is based on the simulation's name. The name of the CP's

executable file is defined in the Filter-LP Interface by the string, cp_program, and is typically

named by appending "_cp" to the filter's name. For example, the carwash can be run with several

filter executables called: nullwashcp, delwashcp, safewashcp and sradwashcp.

To simplify CPSPECTRUM's use, the LPs load each CPs' executable onto the

appropriate nodes. This prevents the user from having to explicitly load all of the CPs from the

command line. To start a simulation, the user types the name of the LP's executable followed by

any command line arguments and the number nodes needed (using the -sz switch). This command

will load the LPs on all of the nodes allocated to the simulation. The LPs will assign functions

and arguments to an array of function pointers and an array of arguments. Like SPECTRUM, the

LPs will call lp_level_init() and that function will call read_lp_info() and node_level_init().

75

When node_level_init() is called, the LP will allocate memory for all of

CPSPECTRUM's mapping variables and will map the LPs and CPs to nodes using node_map().

Once all of the nodes have been mapped, node_level_init() will do one of two things, depending

on whether or not the node is supposed to be a coprocessor. On nodes that are supposed to be

LPs, node_level_init() will start executing the LP's code or, on nodes that are supposed to be

CPs, it will send a message to one of the LPs and exit. It is important to note that the LP's

executable is loaded on all of the nodes and exits, before the simulation begins, on nodes that are

supposed to be coprocessors. One of the LP processes, which has a node number of 0 and a

ptype of 0, is used to load all of the CPs on the appropriate nodes. This node waits for messages

from the LPs that exit on the CP nodes to insure that it does not load the coprocessors over LPs

while they are still running. Node 0, ptype 0 was selected to load the CPs because it is always

present in any Paragon application. If a program on the Paragon consists of only one node, it will

still have a node 0, ptype 0. With the way in which CPs are mapped to nodes, node 0, ptype 0

will always be a LP. Once this LP has loaded all of the coprocessors, all of the LPs wait for a

message of type STARTLP from their coprocessor. When this message is received, the LPs call

the application's LP functions and the simulation begins.

When a CP is loaded, it calls read_lp_info() and then calls the CP's version of

node_level_init(). Like the node_level_init() used on the LPs, this version of the function

initializes the mapping variables using node_map(). It differs from the LP version of

node_level_init() in that it does not call the application functions. Instead, it sends a STARTLP

message to the LP for which it works and enters a while loop. This while loop calls

node_receive_pending_messages() repeatedly until the simulation is completed. Since

node_receivejpending_messages() can receive messages from both the coprocessor's LP and

from other CPs, this loop handles all of the CP's tasks while the simulation runs.

76

With CPSPECTRUM, the simulation terminates at the same time it would when using the

normal version of SPECTRUM. When the LP's local simulation time is greater than or equal to

the stop time, the LP calls lp_terminate(). When it calls lp_terminate(), the LP sends a message,

with an event embedded in it, telling the CP that it is terminating. Once it has sent this message to

the CP, the LP exits. The coprocessor calls lp_terminate() when it receives the message, and the

simulation terminates the same way it would with SPECTRUM, calling node_terminate() and

shut_down(). The coprocessor does not exit until directed by the control node. It waits for

messages and continuously empties its message buffer until it is told to exit and in doing so,

allows the simulation to terminate cleanly.

4.4 Implementation

CPSPECTRUM's implementation involved modifying SPECTRUM Node Manager

Functions, grouping the functions common to both the LP and CP in a separate file, adding

several new mapping variables, and modifying the simulation's make files. Some of the more

significant modifications are described in this section of the report and several parts of the source

code are explained.

4.4.1 Loading Coprocessors

Several techniques for loading the coprocessors were examined before a suitable one was

found. Originally, each LP was designed to load its own coprocessor using the exec() function.

This approach did not work because each LP used exec() to load the same coprocessor, but on

different nodes. Because it supports distributed process groups, the Paragon's operating system

realized that multiple copies of the coprocessor were being placed in the same process group and

killed the simulation. Because the coprocessors were loaded separately, by the LPs for which they

77

would work, the Paragon's operating system would not allow them to talk to each other, even if it

allowed them to be loaded using exec(). The operating system terminated the simulation because

all of the coprocessors needed to be loaded using a single command that would place the

coprocessors on the correct nodes.

To fix the problems with loading the coprocessor, nx_load() replaced the exec() call,

which is one of the calls in the Paragon's NX message passing library. The nx_load() function,

given the node numbers, the number of nodes, the desired ptype, and the executables' name, loads

the executable on the specified nodes. It also uses an array of type pidt, to return the

coprocessors' process identifiers. Because nx_load() loads all of the coprocessors, node number

0, ptype 0, loaded the CPs. The code used to load the coprocessors is shown in Figure 18. This

routine waits for messages of type READY FOR NXLOAD from all of the LPs that exit on the

CP-nodes, and creates an array of node numbers, called cpnodes, on which the CPs will be

loaded. It then loads the CPs and checks to see if they loaded correctly. If the Paragon was

unable to load all of the CPs, this routine terminates the simulation and displays an error message.

78

#ifndef IPD
/* if Interactive Parallel Debugger is not going to be used */

/* nx_load() the coprocessor program on the cp nodes */
if (mynodeO == 0 && myptype() == 0)

{
for (i=0; i < NUM_PROCS; i++)

(
cpnodes[i] = cp_locate_table[i].CP_Node_Index;
/* make sure that lp program on cp nodes has exited */
crecv(READY_FOR_NXLOAD, &msg, 0) ,-

printf("\nNode (%d) will be executing cp program: %s.\n", mynode(),
cp_program);

i = nx_load(cpnodes, NUM_PR0CS, 0, pids, cp_program);
if (i == -1)

{
printf("ERROR — errno = %d\n", errno);

}
else if (i != NUM_PROCS)

(
printf("ERROR — was only able to load %d cps — ABORTING\n", i);
errlog("ERROR — was not able to load all of the cps");
kill(0, SIGKILL); /* This call kills everything in process group */

) /* end if */
} /* end if mynode() ==0 ss myptype() == 0 */

#endif

Figure 18: Loading the Coprocessors

The source code in Figure 18 uses a flag, called IPD, to determine whether the code that

loads the coprocessors should be compiled. This flag was added so that the Paragon's Interactive

Parallel Debugger (IPD) could be used with the coprocessor. IPD was unable to debug the

program when it called nx_load() because it cannot debug processes in a dynamic process group.

IPD requires a static process group and requires that the coprocessors be loaded manually, before

the simulation is started. The process of loading the coprocessors manually is described in

Appendix A.

4.4.2 Mapping Variables

Moving SPECTRUM'S functions to the coprocessor created the need for additional

mapping variables that allowed CPSPECTRUM to keep track of its nodes. These variables tell

79

the LPs which CP they are supposed to use and tell the CPs for which LP they work. Table 7

summarizes the mapping variables which are set using the function node_map().

Name Type Purpose

NUM_PROCS int The number of LPs. Since the number of CPs is equal to the
number of LPs it is also the number of CPs.

lp_mesh_table[NUM_PROCS] LP_TO_MESH Indexed by LP number. Points from LP to node, ptype and
to CP's node, ptype.

cp_mesh_table[NUM_PROC S] CPTOLP Indexed by LP number. Points from CP to LP's node, ptype.

cpJocate_table[NUM_PROCS] NUM_TO_CP Indexed by CP number. Points from CP number to CP's
node, ptype

lp_num_table[number of nodes] int Indexed by node number. Holds the number of LPs per
node. For a CP's node number, this variable is set to -1

my_lpid int The LP's node number. On a CP, it is the LP number for
which the CP works.

my_cpid int The CP's node number. On a LP, it is the CP number that
the LP uses.

I_AM_LP int Set to 1 on an LP. Set to 0 on a CP.

Table 7: CPSPECTRUM's Mapping Variables

4.4.3 CP Message Passing

As mentioned in the low-level design, the LPs and CPs pass messages using the functions

send_message() and recv_message(). The coprocessor messages passed using these functions

contain two parts: a SPECTRUM buffer and a user buffer. The format of the coprocessor

messages is shown in Figure 19.

The coprocessor message structure contains two pointers that point to the SPECTRUM

buffer and the user buffer. It also contains the buffers lengths. When send_message() is used to

send a message between a LP and a CP, it must copy the entire message into a contiguous

memory block so that the Paragon's operating system can send the message. Since the Paragon's

csend() call, which is used to send a message, takes a pointer to an object and the object's size as

input parameters, it does not know the contents of the messages and cannot follow the pointers in

the coprocessor message to the buffers. When a message is placed into contiguous memory, it is

80

said to be "packed". The coprocessor messages are packed in the following order: the message

structure, the SPECTRUM buffer, and the user buffer.

psize -

Message Structure
int SPC_bufsize
int usrbufsize
char *SPECTRUM_buffer
char *user buffer

SPECTRUM buffer

user buffer

■ ssize

<— ssize + SPC bufsize

Figure 19: Coprocessor Message Format

When the recv_message() function is used to receive a message, the pointers in the

message's structure are incorrect since the message has been packed. To unpack the message,

recv_message() allocates enough memory for a message structure and it then copies the

information from the packed message's structure to the unpacked message's structure. Using the

buffer lengths from the packed message, recv_message() then allocates enough memory for the

buffers and assigns the location of the buffers to the appropriate field of the unpacked message.

The buffers in the packed message are then copied to the unpacked message's buffer. The

SPECTRUM buffer begins immediately after the message structure at ssize in Figure 19, where

ssize is the structure's size. The user buffer begins after the SPECTRUM buffer, at ssize +

SPCbufsize, where SPCbufsize is the size of the message's SPECTRUM buffer.

81

4.4.4 Preventing Recursive LP Requests

CPSPECTRUM was designed to detect many types of error conditions. One such error

condition would occur if a LP request was received while another LP request was being

processed. When the LP and CP are running normally, this type of error is impossible, but it

could occur if some type of error condition existed that caused to LPs to send requests to the same

CP.

During the simulation, the CPs can only receive messages when they are running the

function, node_receive_pending_messages(). When a CP receives a request from the LP for

which they work, node_receive_pending_messages() calls the LP manager function appropriate

for the request and the LP either waits for a reply or continues running the simulation. When a CP

receives an event from another CP, node_receive_pendingjmessages() calls lp_post_message()

to post the event in SPECTRUM'S next event queue. Throughout the CP's execution, only one

thread of control is used, and that thread switches between servicing LP requests and receiving

events from other coprocessors as needed. Most of the LP manager functions do not call

node_receivejpending_messages(), but if they do then the CP can receive another request from

an LP that will cause them to process the second request before they finish processing the first

request. Such a recursive call to node_receive_pending_messages() could cause causality errors

or deadlock. To prevent such a recursive call, all of the LP manager's functions were examined.

Only lp_get_event() called node_receive_pending_messages() and might cause recursion. A

more detailed examination of both the LP's and the CP's algorithm revealed that lp_get_event(),

as it was currently implemented, would not cause recursion. Recursion was avoided because the

LP, after requesting that the CP execute lp_get_event(), had to wait for the CP to return an event

before it continued running the simulation. Recursion was prevented in lp_get_event() because

the LP would not send another request to the coprocessor until the CP completed its current task

82

and returned an event to the LP. Therefore, the only way recursive calls could be made to the LP

manager would be if more than one LP sent requests to a single CP or if an LP's code executed

incorrectly.

Even though recursive calls to the LP manager would not occur when the program ran

correctly, CPSPECTRUM was modified to detect such a recursive call and terminate the

simulation when one was detected. This extra error checking was simple to implement and could

prevent many problems. CPSPECTRUM prevents recursive calls to the LP manager by setting a

flag, called performingcp function, every time the CP processes a request from the LP and

clearing the flag when the CP is finished processing the request. If the CP receives a recursive

request for one of the LP manager's functions, the CP will see that the flag has already been set

and terminate the simulation.

The error checking that prevents recursive calls to the LP manager's functions is not

necessary for the other simulation functions. In fact, checking all of the received messages for

recursive calls to node_receive_pending_messages() would prevent the simulation from running.

When a CP receives a request for lp_get_event(), this LP manager function will recursively call

node_receive_pending_messages(). This recursive call can be seen in Figure 20, which is a

simplified flow of control diagram for the coprocessor. The ellipses in this diagram represent

places where unnecessary detail was omitted. When node_receive_pending_messages() receives

an event, it will return to lp_get_event() which will return an event to

node_receive_pendingjmessages() that will be sent back to the LP. Since the recursive call to

node_receive_pending_messages() returns before it can be called again, this recursion will only

occur two levels deep in the coprocessor.

83

Initialize
Coprocessor

End of Simulation

Main
Coprocessor

Loop

node_receive_pending_messages()

Jp_post_messageO

rrlp_jnanagcr_ftBiiajuoO rr-+*.

lp_get_event()

/Note: Ip_get_ercnt() ■::»
'has been simplified here,
■ft still has the same flow of
Icontrolasitdidin
'SPECTRUM.

node_receive_penäingjuiessages()
recursive call--; :::: ^

">••• TT
node_block_til_message()

returns a zero if no events
have been received

Figure 20: Simplified CP Flow of Control

84

4.4.5 Example Interface Functions

Although five filter interfaces had to be written for carwash and VSIM to run using

CPSPECTRUM, only VSIM's filter interface had to pass data from the LP to the CP. VSIM's

filter interface had to be written to allow its filter to call the function get_low_time() in its

application layer. The function get_low_time() is called by VSIM's GETFILTER and is

supported by the function get_filter_interface_lp(), which is shown in Figure 21. This Filter-LP

Interface function is run on the LP whenever the LP calls lp__get_event(). It calls get_low_time()

and places the value returned by that function in a message. When the LP sends the request, it

includes the message sent by the Filter-LP Interface Function.

* Function: get_filter_interface_lp
* Purpose: This interface function places information in the user buffer of a
* message which is sent to the coprocessor. The information in the
* user buffer is used by the GET_FILTER on the coprocessor. The
* information placed in the message is dependent on the application
* being run.
*
* Parameters: returns a struct message
* Comments: This function is intended to be run on the lp node.
* History: created 5 September 94 Walton
*

struct message get_filter_interface_lp()
{
struct message the_message;
unsigned int the_time;

the_message.user_buffer = (char *)malloc(20);
if (the_message.user_buffer == NULL)

{
printfC'Out of memory on CP node(%d) ptype (%d) \n",

mynode(), myptype());
errlogC'CP Out of memory in get_filter_interface () ") ;
node abort();

the_time = get_low_time();
sprintf(the_message.user_buffer, "%u", the_time);
the_message.usr_bufsize = strlen(the_message.user_buffer) + 1;

return the_message;
! /* end get_filter_interface_lp */

Figure 21: Example Filter-LP Interface Function

85

When the coprocessor receives a request from the LP for which it works, it calls the

appropriate Filter-CP Interface function. Figure 22 shows VSIM's Filter-CP Interface function for

GETEVENTREQ messages. This function uses sscanf() to take a value out of a string passed

to it from the Filter-LP Interface and places that value in a global variable.

/•••••••••••A**

* Function: get_filter_interface_cp
* Purpose: This interface function takes the information in the buffer which
* is passed to it and assigns it to the appropriate variable. The
* filter, which is running on the cp, can the use the variable with-
* out any modifications to the filter. This function takes the
* information in the buffer and assigns it to variables used by the
* GET_FILTER. The variables written to by this routine depend on
* the application being run.
*
* Parameters: the size of the user_buffer and the user_buffer
* Comments:
* History: created 5 September 94 Walton

void get_filter_interface_cp(bufsize, the_buffer)
int bufsize;
char *the_buffer;
{

sscanf(the_buffer, "%u", &the_low_time);

return;
! /* end get_filter_interface_cp */

Figure 22: Example Filter-CP Interface Function

Both the Filter-CP Interface function and a stub function use the global variable,

thelowtime, which returns its value to the GETFILTER when it calls get_low_time(). Since

the filter is the same as the one used by SPECTRUM, it calls get_low_time() as if it could make

the call directly to the application. The stub function must therefore have the same name and

parameters, and must return the same type of value as its application-level counterpart. The stub

function for get_low_time() is shown in Figure 23. All this function does is return the global

variable, thelowtime, but in doing so, allows the filter to make an indirect call to the application

layer.

86

* Function: get_low_time()
* Purpose: This 'stub' function duplicates a function call in SPECTRUM'S
* application level so that the filter is allowed to call it.
*
* Parameters: returns an unsigned integer which is equal to the lowest time
* in vsim's next event queue when the application made a call to
* lp_get_event()
*

* Comments: uses data passed by get_filter_interface_lp and
* get_filter_interface_cp
*

* History: created 5 September 94 Walton
*

UINT32 get_low_time()
!
return the_low_time;
} /* end get_low_time */

Figure 23: Example Filter-CP Stub Function

4.5 Summary

CPSPECTRUM was developed using a three-stage approach. First, a high-level analysis

was performed on SPECTRUM'S functions, variables and layers. Next, a low-level design

specified CPSPECTRUM's algorithms, layers and structures, and then these specifications were

implemented. Several new data structures were needed to map LPs and CPs to one another and

the Paragon's nodes, and several new functions were needed. Most of the changes to the source

code were made in SPECTRUM'S node level, and several new files were necessary to simulate

SPECTRUM'S presence on the LP and to allow the filters to make calls to the application layer.

Once CPSPECTRUM was implemented, the simulations' make files were altered and tested. The

next chapter describes the methodology used to examine the coprocessor's effect on the carwash

and VSIM simulations. The coprocessor was tested using the carwash simulation, and several

VSIM simulations, including the Wallace tree multiplier, and the associative memory simulations.

87

V. Test Methodology and Results

5.1 Introduction

This chapter describes how CPSPECTRUM's performance was measured and analyzed.

It also includes the performance measurements used to conduct the analysis. Many factors can

effect CPSPECTRUM's performance. Message passing latencies delay messages passed between

the LPs and the coprocessors. These latencies were measured to model their effect on the

simulations. The simulation's granularity was varied using spinloops to measure its effect on the

CPSPECTRUM's performance. The VHDL simulations also used several circuit partitioning

schemes to determine their effect on SPECTRUM'S performance. Since the VHDL simulations

can be partitioned to run on any number of nodes, the number of LPs was also varied. Varying all

of these factors and measuring their effect on the simulation's performance provided several

useful insights.

5.2 Message Passing Latencies

One disadvantage of implementing the coprocessors in software was that the messages

passed between the LP and its CP would suffer from much larger delays than if a hardware

coprocessor was used. Since a hardware coprocessor could be connected to the GP board's

expansion slot, it could be accessed at the board's bus speed. To accurately model

CPSPECTRUM's communications delay, a program was modified to time message latencies as

they were passed in a ring. By timing the message's traversal of the ring, this program calculated

the Paragon's communication bandwidth and message passing latencies.

88

The ring program varied the size of its message to see if it affected the message passing

times. Node 0 started the ring program by sending node 1 a message. Node 1 and all successive

nodes did nothing except receive the message and immediately send it to the next node. When the

ring program was run on n nodes, the «th node passed the message back to node 0, thus forming a

ring. To increase the times' statistical significance, the program passed the message around the

ring 100 times for each message size. The ring program was run with two, eight and sixteen

nodes to determine how varying the number of nodes affected the time.

The total times for the ring program are graphed in Figure 24. This figure illustrates many

facts about the Paragon's message passing performance. It shows that the message passing times

increased proportionally as the size of the ring increased. It took twice as long to pass a message

around eight nodes as it did to pass the same message around four nodes. This figure also

demonstrates the effects of message packetization. The Paragon breaks messages into 2 kilobyte

packets in which the first 292 bytes are reserved for the system[20]. When a message's size

exceeds 1,756 bytes, the message is broken into two packets. Figure 24's times have a step-like

shape because of the packetization. Clearly, the Paragon takes longer to format a message than it

takes the hardware to pass it.

89

0.15

0.05

2000 2500
Message Size (Bytes)

3500 4000 4500

Figure 24: Total Message Times for Ring Program

The Paragon's message passing bandwidth is also affected by the message's size. The

ring program measured how the message's size influenced the bandwidth and these results are

shown in Figure 25. The ring program calculated the bandwidth by using the following formula:

msg size x number of nodes x number of times around
bytes I second = —— ~ ~ = =

ring time

ring

Equation 3: Bandwidth Calculation for Ring Program

Since the number of nodes and the number of times around the ring are factored into this formula,

their effects are not shown in Figure 25. The bandwidth measurements for the ring program

overlap and do not differ between the one, four and eight node runs. The graph of the Paragon's

bandwidth reveals that its bandwidth increases rapidly as the message size increases. The large

overhead in formatting messages causes this rapid increase in bandwidth. The breaks in the curve

are due to packetization and illustrate the large overhead involved in breaking the message into

90

packets. The slope of the curve's segments decreases slightly as the message size increases

because the larger messages tend to saturate the Paragon's communication's network. Eventually,

as the message sizes increase, the Paragon's communications network will become saturated

between 50 and 60 Mbytes per second [18]. Since the mesh routing components in the Paragon's

hardware have a maximum bandwidth of 200 Mbytes per second, it is clear that the slower actual

message passing times result from the way the operating system handles messages. Since most of

SPECTRUM'S messages are about 48 bytes long, the ring program was not used to examine

where the Paragon's communication network saturated.

2e+07

g1.5e+07

'S.
m

Se+06

oj9

For 8 Node
For 16 Node

s, 100 Times Ar
>, 100 Times Ar

»und Ring ■+-
»undRing o ^fl |p

■^P^^^
o

-h

1500 2000 2500
Message Size (Bytes)

3500 4000 4500

Figure 25: Paragon Communications Bandwidth

The ring program also recorded the average message passing times as the message size

varied. These times are shown in Figure 26 and were calculated using the following formula:

91

average message_time ■ ring time

number of nodes x number_of_times around ring

Equation 4: Average Time to Pass Message in Ring Program

The message passing times in Figure 26, like the previous figures, have discontinuities as a result

of packetization. The data graphed in Figure 26 indicates that most of SPECTRUM'S messages

take around 70 useconds to pass between two nodes. Because most of the message passing

latency results from the operating system and not the hardware, the message passing times

between more than two nodes will also probably be 70 useconds. Each mesh routing component

the message passes through will add only 40 nseconds if the message passes straight through it

and 180 nseconds if the message has to turn a corner in it [20]. Because the mesh routing

component's delays are at least several orders of magnitude smaller than the message passing

latencies, and because the Paragon's wormhole routing minimizes contention on the

communication channels, these latencies do not have to be modeled to estimate the average delay

for messages in a SPECTRUM simulation.

0.00018

0.00016

i 8<M55

■3ädä IBS

For 8 Nod
For 16 Nod

is, 100 Times Ar
s, 100 Times AT

aund Ring ■+■
iund Ring ra

m
tfti

^|^ Ml 1

Wi^

i

2000 2500
Message Size (Bytes)

3500

Figure 26: Paragon's Message Passing Latencies

92

5.3 Use ofSpinloops

Spinloops revealed how the simulation's granularity affected the coprocessor's

performance. The spinloop consisted of the code shown in Figure 27 and performed two floating

point calculations for every loop. Floating point calculations were used because they require more

time to execute. The first calculation performed in the spinloop was a multiply and the second

was a divide. On the i860, division uses an iterative formula to take the inverse of denominator

and then multiplies it with the numerator. This iterative inverse takes a relatively large amount of

time and is ideal for adding a delay to a program. To prevent the number from overflowing or

underflowing, the same number was used to divide as was previously used to multiply. Therefore

the value of the variable, u, would not change after a spinloop completed. If u overflowed, an

exception would be raised and the processor would have to perform extra work for that iteration

of the spinloop. Since the variable is not changed, it did not overflow and the spinloop's

execution time scaled linearly as the number of iterations were increased. If u was not used by

any other part of the program, an optimizing compiler might eliminate the spinloop. To prevent

the spinloop from being eliminated, u was assigned to another variable, called v, at the

completion of the loop.

#ifdef SPIN
for (i = 0; i < SPINLOOP; i++){

u = u * 1.0000001;
u = u / 1.0000001;

}
v = u; /* makes sure that compiler doesn't eliminate SPINLOOP */

#endif

Figure 27: Spinloop Code

The spinloops' effect on simulations depends on how much it delays the processor. The

spinloop code in Figure 27 was timed, using the Reprogrammable Performance Monitor Clock, to

determine how long the spinloop delayed the simulations. This program ran the spinloop 100,000

times and divided the final time by 100,000 to determine a single spinloop time. The program,

93

with a sample of 20 runs, measured the spinloop delay to be approximately 1.85 |j.seconds. Since

the message passing latency was measured to be 70 useconds, the spinloop would have to execute

at least 38 times for each message to cancel the message passing latency's effect on the

simulation's granularity. The average SPECTRUM simulation cycle consists of the following:

lp_g;et_event(), lp_advance_time(), and an lp_post_event() for each new event to be scheduled.

For a simple simulation like the carwash, it is relatively simple to figure out how many messages

are passed to the CP per simulation cycle. The lp_get_event() call causes a request to be sent to

the CP and reply to be received. The lp_advance_time() call also sends a request and receives a

reply. The lp_post_event() only sends a request. If only one event is scheduled per simulation

cycle, then five messages are used per cycle. To cancel out the message passing latency of five

messages, the spinloop would have to be set to 38 spinloops/message x 5 messages = 190

spinloops.

For more complex simulations, such as VSIM simulations, the number of spinloops

needed to cancel the message passing latencies would differ. For VSIM the number of spinloops

needed to cancel the messages would be less than 190 because of VSIM's application-level NEQ.

To determine the number of spinloops needed to cancel the message passing latencies, the number

of events executed from the SPECTRUM next event queue for every event executed from VSIM's

NEQ would have to be known. With an efficient partitioning strategy, most events would be

executed from VSIM's NEQ and the number of spinloops needed to cancel the message passing

latencies would be less than 190. Since CPSPECTRUM has to pack messages that it passes

between the LPs and CPs, there is some overhead that is not counted in the spinloop timing

measurements. This additional delay was neglected in this research because it was assumed to be

relatively small compared to the message passing delays.

94

5.3.1 Adding Spinloops to Applications

For the carwash simulation, the spinloop was added to the application code in the file

afitwash.c. Since each LP had a separate function in the carwash, the spinloop had to be

added to each of these functions. The spinloop was added using an #ifdef statement so that it

would be compiled only if spinloops were requested. To include the spinloop code in the

carwash, the flag SPIN had to be defined in the makefile for afitwash.c. Otherwise the spinloop

would not be included and would not slow the simulation.

The spinloop was added to VSIM by modifying the file vsim.c. Like the carwash, the

VSIM spinloop was added using an #ifdef statement so that spinloops would only be compiled if

a flag, called BUSY, was set. VSIM's spinloop was added so that it delayed events from both

VSIM's and SPECTRUM'S next event queues.

5.3.2 Spinloop Input File

The original spinloop code used a constant, SPINLOOP, to define the number of times

the loop iterated. The use of a constant was cumbersome because it required the program to be

recompiled every time the size of the spinloop changed. To simplify altering the spinloop's size,

the code was modified so that it read it from a file, spinloop.inp. This text file contained a single

integer value that defined the number of spinloops. The node manager layer was modified so that

the function, read_lp_info(), read the spinloop input file and assigned its value to SPINLOOP.

There are several reasons why read_lp_info() was chosen to read the spinloop input file.

Since read_lp_info() is executed before the nodes mapped to LP's, it reads the spinloop size

before SPECTRUM calls fork() to create any addition LPs on a node. By reading the spinloop

value this early in the simulation, it only has to be read by one process per node. When fork() is

95

called to create the additional LPs, they will already know the spinloop size. Since, in

CPSPECTRUM, read lp_info() is called by both the LPs and their coprocessors, the CPs will be

able to record the spinloop size in their log files. This is advantageous because the simulation

times are also written to the CP's log files. Storing both the simulation times and the spinloop

size in the same file added to CPSPECTRUM's convenience. The code added to read_lp_info()

is shown in Figure 28.

#ifdef SPIN
fp = open_file("spinloop.inp",FREAD);
fscanf(fp, "%d", &SPINLOOP);
fclose(fp);
if (SPINLOOP < 0) {

errlog("Illegal SPINLOOP value in spinloop.inp") ,
node_abort();

)
#endif

#ifdef BUSY
fp = open_file("spinloop.inp",FREAD);
fscanf(fp, "%d", &SPINLOOP);
fclose(fp);
if (SPINLOOP < 0) {

errlog("Illegal SPINLOOP value in spinloop.inp"),
node_abort();

}
#endif

Figure 28: Code Used to Read Spinloop Input File

5.4 Granularity's Effect on Run Times

The extent of the parallel overhead affects a parallel algorithm's acceleration. Ideally, a

parallel simulation's acceleration would increase linearly as the number of nodes used increased.

With an ideal speedup, the simulation's time would be:

sequential_ time
parallel time ■

number _ of _processors

Equation 5: Ideal Parallel Time

96

Unfortunately, most parallel simulations do not accelerate linearly with the addition of more

processors. Instead, the additional processors cause the simulation to incur delays since the

simulation has to keep the LPs synchronized. Including the parallel overhead, the simulation's

time can be modeled using the following equation:

,, , sequential time „ , , ,
parallel time = = h parallel overhead

number _ of _ processors

Equation 6: Realistic Parallel Time Model

In the above equation, the parallel overhead is the only unknown. The parallel and sequential

times are easy to measure. Modeling the affects of the spinloops is not as simple as adding the

spinloop delay to the above equation. If the spinloop was added to the parallel time equation, the

resulting equation would look like the following:

sequential time
parallel time = = + parallel overhead + spinloop_delay

number _ of _ processors

Equation 7: Incorrect Model for Spinloop Delay

This equation is not very useful because it contains two unknown values: paralleloverhead and

spinloopdelay. Because the spinloops execute in parallel, the total delay resulting from the

spinloops is hard to calculate. The spinloop delay for an individual event is easy to measure, and

this delay can be multiplied by the number of events executed in the simulation to get a maximum

total delay. This maximum total delay, however, assumes that all of the events are executed

sequentially. If some of the events are executed in parallel, then the actual total delay as a result

of the spinloops will be much less. The parallel overhead is unknown because it may vary as the

simulation's granularity changes. The parallel overhead measurements from timing the simulation

without spinloops will be different from the parallel overhead when spinloops are used.

97

Another, more feasible way to model the effects of spinloops is to measure their effect on

the sequential simulation's time, and replace the sequential time in the equation with the sequential

time when spinloops are used. The resulting equation is shown below:

„ , sequential time{with spinloops) ,, , , ,
parallel _ time = — = - —v parallel_ overhead

number _ of _ processors

Equation 8: Correct Model for Spinloop Times

This equation can be applied to the ideal parallel simulation by setting the parallel overhead to

zero. Since the equation only has a single unknown, it can calculate the parallel overhead with

spinloops. The parallel overhead, using this equation, is equal to:

, , „ , sequential timeiwüh spinloops)
parallel_overhead - parallel time =

number_ of _ processors

Equation 9: Parallel Overhead

Measuring how the parallel overhead varies as granularity increases provides several

fundamental insights into how the simulations run. The coprocessor's goal is to reduce the

parallel overhead by relieving the LPs of the burdens of receiving messages and sending null

messages. If receiving and sending messages take a large part of the LPs' times, then the

coprocessor should accelerate the simulations. If the LPs spend the majority of their time

blocking, waiting for a message from another LP, then the coprocessor will not provide much

speedup. If the simulation's parallel overhead increases with the addition of spinloops, it indicates

that the spinloops increase the amount of time that the LPs are blocked. Because the spinloops

create a uniform delay for every event on every processor, it is likely that the time a blocked LP

has to wait for an event to unblock it will scale linearly as the spinloops increase.

98

5.5 Use of the Graph Partitioning Tool

The Graph Partitioning Tool partitions the behaviors of a VHDL circuit to LPs. Kapp's

thesis involved modifying the tool to use more efficient partitioning strategies and Joel Hurford

took this work farther by further improving its partitioning strategies[25]. Several partitioning

strategies were examined since they can have a significant impact on the simulations'

performance. The first partitioning strategy examined was the random partition. This partitioning

strategy randomly distributed VSIM's behaviors between the LPs. The random partition will

almost always introduce feedback into the circuit and has a small lookahead. It was expected to

perform very poorly.

Two of Hurford's improved partitioning strategies were also used in this research. The

first strategy was a breadth-first search with no feedback loops. A feedback loop consists of a

cyclic dependency and can result from the circuit's structure or the partitioning strategy.

Feedback inherent in the circuit's structure cannot always be eliminated, but feedback introduced

by the partitioning strategy can. Hurford eliminates feedback by grouping strongly connected

components on a LP. Since feedback increases the amount of time the LPs spend blocking, the

breadth-first search was expected to improve the simulation's performance.

The breadth-first search partitioning strategies, in addition to eliminating feedback, might

pipeline the circuit. Pipelining could have one of several effects, depending on the nature of the

circuit. If the circuit has feedback arcs from the end of the pipeline to the beginning, breadth first

partitioning would negate any speedup gained from eliminating other, internal feedback loops.

Since the first LP in the pipeline would have to wait for the LP at the end, the rest of the LPs in

the pipeline would have to wait for the LP in front of them. In such a case, only one LP could

99

process events at a time. If no feedback path existed from the end to the front of the pipeline, then

a large amount of parallelism would be exploited using breadth first search to partition the circuit.

The other partitioning strategy tested from Hurford's research was breadth-first search by

source with no feedback. This partitioning strategy differs from the previous strategy only in the

way the it attempts to distribute the sources among the LPs. By distributing sources evenly

between the LPs, Hurford attempts to make sure that the LPs always have events in their next

event queues. If the LPs in a simulation tend to block as a result of empty next event queues, this

partitioning strategy will probably improve their performance. If the LPs tend to block while they

wait for one of the LPs on their input arcs to catch up, having a source on the LP may improve

performance because the source input arc is one less arc for which the LP has to wait.

5.6 Test Conditions

There are many ways in which the Paragon's operating environment can affect the

simulations' run times. Since the Paragon is a multi-user system, any program it executes can

influence the performance of other programs. Since the Paragon does not allow users to share a

processor in its compute partition, the effect of programs competing for resources is not always

obvious. When programs compete for resources on the Paragon, the most noticeable effect is that

IO slows considerably. The most common form of conflict between two programs appears to

occur when they write data through the boot node. Writing files or displaying text causes a

program to perform inconsistently because it may have to wait for another program which is also

sending information through the boot node.

To prevent boot node IO conflicts from skewing performance measurements, all output to

the screen or to log files had to be either turned off or done outside of the timed portion of the

100

code. Since improving IO performance was beyond the scope of this thesis, all IO was done so

that it did not affect the simulations' times. The LPs and coprocessors were loaded onto the nodes

and initialized before the timing started and the final statistics were not written to log files or

displayed until the simulation ended.

Since the log files were not written during the simulation, they did not affect the

simulation's performance. They could still, however, affect other users if they were written

through the boot node. To minimize the simulations' effect on other users, SPECTRUM

executables were copied to disk drives, in High Performance Disk (HPD) space, local to the

Paragon. HPD did not improve the simulations' run times, but it did improve the speed with

which the simulation loaded.

One side effect of using CPSPECTRUM was that all of the simulations required twice as

many nodes as they did with the normal version of SPECTRUM. For example, a 32-LP

simulation required 64 nodes using CPSPECTRUM. Since the WPAFB Paragon only has 48

nodes in its open partition, some of the larger CPSPECTRUM simulations could not be run in it.

Instead, the simulations were run in the Paragon's Network Queue Server (NQS). NQS has many

queues with a variety of time constraints and node number constraints. Most of the simulations

were fast enough to run in a fifteen minute queue and were small enough to run in less than 64

nodes. These queues were tested to ensure that they would not skew the simulation times by

running several simulations in both the open partition and the queues. The queues did not appear

to effect any of the simulation's times unless the queues ran two simulations in the same directory

at the same time. When two such simulations were run simultaneously, the log files were

interleaved and the simulation times were noticeably higher. To prevent two simulations from

running simultaneously, the simulations were queued so that a program from another directory

was queued between programs from the same directory.

101

The only other problem with using NQS to run large simulations involved the way the

Paragon buffers files when they are written. SPECTRUM writes the simulation times to log files

prior to exiting. When SPECTRUM was run in a NQS partition, these times would not get written

because the partition would be removed by the operating system before the buffered write could

be completed. To fix this problem, the sleep command was added to the scripts which ran

simulations in NQS partitions. This sleep command is shown on the example script below:

cd /paragonl/waltonac/wallace/d20
cpwallace 2000 -sz 40
sleep 4
cpwallace 2000 -sz 40
sleep 4

Figure 29: NQS Script used to run Wallace Tree Multiplier

The first command in the script insures that the Paragon is in the correct directory. Then, the file

cpwallace is executed using a run time of 2000 ns and 40 nodes. Since the coprocessor is in use,

there are twice as many nodes as there are LPs. The file Wallace was renamed cpwallace so that

the coprocessor version of the simulation could exist in the same directory as the normal version.

Normally, the CPSPECTRUM simulation would have the same name as the normal version of the

simulation and would exist in a separate directory. The coprocessor executable for VSIM, called

vsimcp, also had to be copied into the directories in HPD. Both the LP and the CP executables

had to be recompiled every time the number of LPs changed. The number of LPs was varied by

changing two lines of the file application.!!, shown below:

* File: application.h *
* *
* Used for SPECTRUM interface to VSIM. Has vspec.c globals and *
* prototypes. *

tdefine NUM_PROCS 8 /* number of logical processes */
#define INPUT_ARCS "lp8.arcs" /* input filename for lp dependencies */

Figure 30: Modifications to Application.h

102

In Figure 30, application.il is set to use eight LPs and use the file, lp8.arcs, to run the simulation.

In addition to the arcs file, the map, and spinloop input files had to copied to the HPD directories.

The map file is named using the convention: lpX.map where X is equal to the number of LPs.

Once these files were set up and the application compiled, SPECTRUM and the coprocessor were

ready to be tested.

5.7 Carwash Simulation Results

The carwash was the simplest simulation used to measure the coprocessor's performance.

Since the carwash's LPs are fixed, the simulation's granularity was the only factor which varied.

The spinloop's value was varied from 1 to 500 in steps of 50. The simulation times from varying

the spinloops are shown in Table 8. The results in this table come from running the carwash with

the filter, unullmess.c, which is based on the conservative Chandy-Misra protocol. Several

other filters, called delnull.c and safeclocks.c, which are variations of the Chandy-Misra

protocol, were developed at AFIT and were also used to measure the carwash's performance.

These filters were so similar to the unullmess filter that they did not significantly alter the

simulation's performance. Since the other filters had similar results, their times were not included.

103

Spinloop Size Avg. Time without Coprocessor (sec) Avg Time with Coprocessor (sec) Avg Speedup

1 0.221 0.728 0.304

10 0.615 0.716 0.859

38 0.853 1.636 1.918

50 2.092 0.976 2.143

100 3.930 1.622 2.423

150 5.799 2.303 2.518

200 7.595 2.974 2.554

250 9.435 3.646 2.588

300 11.294 4.393 2.571

350 13.147 5.077 2.590

400 14.937 5.770 2.589

450 16.788 6.426 2.613

500 18.697 7.131 2.622

1000 37.443 13.832 2.707

2000 72.958 27.331 2.669

Table 8: Results From Altering Nullwash 's Granularity

The carwash times are plotted in Figure 31 and the speedup is plotted in Figure 32. With 1

spinloop, the simulation ran slower with the coprocessor. This was not surprising because of the

extra message passing latencies incurred from the coprocessor's use. When the spinloop was set

to 38, the message passing latencies were partially canceled and the coprocessor provided a

speedup of 1.98. Figure 32 shows that as the number of spinloops was increased beyond 200, the

coprocessor provided a constant speedup of approximately 2.6. This constant acceleration occurs

when the spinloop delay is big enough to cancel the message passing latencies between the LPs

and CPs. Figure 32 confirms an earlier prediction stated that 190 spinloops would be needed to

cancel the message passing latencies between the LPs and CPs in the carwash. The largest test

used 2000 spinloops, approximately a 4 millisecond delay for each event. Since the simulation's

granularity's are not likely to get much coarser, no larger measurements were taken.

104

20

18

16 --

14

-$—Avg Time with Coprocessor (sec)
-■—Avg. Time without Coprocessor (sec)

200 250 300

Number of Spinloops

Figure 31: Carwash Times using the Coprocessor on the Null Filter

SpeedupA

Carwash Speedup using Null Filter

♦ ♦♦ ♦-

800 1000 1200

Number of Spinloops

Figure 32: Carwash Speedup using the Coprocessor on the Null Filter

The carwash's performance measurements revealed many characteristics of the

parallelism that the coprocessor was designed to exploit. Much of the work on designing a PDES

coprocessor at AFIT has emphasized the carwash simulation. This simulation is interesting

because it exemplifies how a poorly partitioned simulation performs. Since one of the nodes in

the carwash has no input arcs, it races ahead of the other nodes and creates a load imbalance. The

105

rest of the nodes send a lot of null messages as they catch up and, because the carwash is such a

fine grained simulation, the time spent sending and receiving null messages is excessive. One

danger of using the carwash simulation with SPECTRUM is that the node without any input arcs

can send so many messages that the rest of the LPs spend all of their time receiving these

messages. To prevent the LPs from spending all of their time receiving messages, SPECTRUM

only receives ten messages at a time before it goes back to processing events. Since the

coprocessor is designed to send and receive messages for the LP for which it works, it effectively

eliminates the time that the LP spends sending and receiving null messages. The coprocessor can

receive messages, queue them in its NEQ, and keep track of the minimum times on the input arcs

while the LP continues to do useful work. Since the carwash sends so many null messages, the

coprocessor provides a significant amount of speedup. On more evenly partitioned simulations,

such as the Wallace tree multiplier, the coprocessor is less likely to accelerate the simulation.

5.8 Wallace Tree Multiplier Results

The Wallace tree multiplier provided a more realistic test for the coprocessor. It was run

using three different partitioning strategies and the number of LPs used in the simulation was

varied from 2 to 32. To approximate the simulation's sequential time, the simulation was also run

using one LP. Varying these factors and the number of spinloops meant that a large of number of

simulations had to be run. At least five simulations were run for each configuration to minimize

the variance of the results.

Because all of the partitioning strategies tested attempt to place an equal number of gates

on the LPs, the Wallace tree simulations tended to be more balanced than the carwash. An

examination of a Wallace tree multiplier schematic confirmed that the Wallace tree multiplier

106

does not contain significantly large feedback cycles. The Wallace tree multiplier consists of

adders connected in a tree in which signals flow straight through the adders to the outputs. This

lack of feedback was expected since the Wallace tree multiplier performs a fixed function. The

absence of feedback improves the likelihood that the no feedback partitions will perform well.

5.8.1 Random Partitioning

Random partitioning was the first partitioning strategy tested. Since this strategy

randomly placed circuit elements on LPs, it introduced feedback into the design and increased the

number of arcs between LPs. The times for the randomly partitioned Wallace tree are shown in

Table 9. In addition to the Wallace tree's times, Table 9 also contains approximations for ideal

speedup and parallel overhead. These are calculated using Equation 4 and Equation 5. A problem

with VSIM's filter prevented the randomly partitioned simulation from being run on 22 LPs. This

problem results from an overflow in the time, in TIMEFILTER, when the simulation clock was

advanced. Hurford experienced the same problem in his research on the iPSC/2, but with a

different number of LPs. Because of this problem, no results were obtained for random partitions

using 22 LPs.

The results in table 9 imply that the coprocessor introduces a large amount of overhead

for any number of LPs. The large overhead resulting from the coprocessor's use is probably

exaggerated by the large message passing delays between the LPs and their CPs. This large

overhead can be seen by comparing Figure 33 and Figure 34 and is especially pronounced for

small numbers of LPs.

107

ofLPs Avg Times
w/o CP (sec)

Time w/Ideal
Speedup (sec)

Overhead
(sec)

Avg Times
w/CP (sec)

Time w/Ideal
Speedup (sec)

Overhead
(sec)

1 10.414 12.898
2 5.877 5.207 0.670 16.422 6.449 10.072

4 4.660 2.604 2.057 16.521 3.225 13.297

6 4.676 1.736 2.940 14.088 2.150 11.939

8 5.031 1.302 3.729 14.310 1.612 12.698

10 5.699 1.041 4.658 14.272 1.290 12.982
12 6.590 0.868 5.722 14.179 1.075 13.104
14 7.671 0.744 6.927 13.756 0.921 12.835
16 8.896 0.651 8.245 15.658 0.806 14.852
18 10.332 0.579 9.753 14.941 0.717 14.224
20 11.906 0.521 11.385 15.900 0.645 15.255
24 14.377 0.434 13.943 18.939 0.537 18.402
26 16.378 0.401 15.977 17.004 0.496 16.508
28 18.241 0.371 17.870 18.180 0.461 17.719
30 19.631 0.347 19.284 20.920 0.430 20.490
32 20.259 0.325 19.934 18.607 0.403 18.204

Table 9: Wallace Tree Multiplier Results Using Random Partition and 1 Spinloop

Wallace Tree
Simulation Times without Coprocessor

Time (seconds)

■ Overheadfsec)

■ Time w/kJeaiSpeedup (sec)

■«rtilllllllll
10 12 14 16 18 20

Number of LPs

26 28 30 32

Figure 33: Wallace Tree Times without Coprocessor, using Random Partition and 1 Spinloop

Wallace Tree
Simulation Times with Coprocessor

Time (seconds)

■Overhead(sec)
■ Time w/ldealSpeedup (sec)

Mmuniimi
10 12 14 16 18 20 24 26 28 30 32

Number of LPs

Figure 34: Wallace Tree Times with Coprocessor, using Random Partition and 1 Spinloop

108

Even though the coprocessor did not accelerate the randomly partitioned Wallace tree,

Figures 33 and 34 illustrate one of the coprocessor's advantages: the coprocessor reduces the

growth in parallel overhead as the simulation uses more LPs. When the Wallace tree is partitioned

among more LPs, the resulting LPs have more arcs connecting them to other LPs. Since the

coprocessor handles messages sent and received along these arcs while the LP continues to

perform useful work, the simulation can be accelerated. Unfortunately, this acceleration can occur

at a point in which the parallel overhead is greater than the sequential simulation.

To determine how the message passing delay affected the Wallace tree's performance

with the coprocessor, the spinloops were increased to 50. The delay caused by spinloops of this

size was expected to offset most of the message passing overhead. The results from increasing the

spinloop are shown in Table 10 and are graphed in Figure 35 and Figure 36.

ofLPs Avg Times

w/o CP (sec)

Time w/Ideal

Speedup (sec)

Overhead

(sec)

Avg Times

w/CP (sec)

Time w/Ideal

Speedup (sec)

Overhead

(sec)
1 128.779 131.544

2 72.314 64.390 7.925 84.578 65.772 18.806
4 42.650 32.195 10.455 56.451 32.886 23.565
6 34.060 21.463 12.597 45.824 21.924 23.900
8 28.451 16.097 12.354 39.238 16.443 22.795
10 26.672 12.878 13.794 36.925 13.154 23.771
12 23.971 10.732 13.239 33.164 10.962 22.202
14 22.270 9.199 13.072 30.390 9.396 20.994
16 22.159 8.049 14.110 29.964 8.222 21.743
18 22.927 7.154 15.773 29.489 7.308 22.181
20 23.356 6.439 16.917 29.090 6.577 22.513
24 24.189 5.366 18.823 28.960 5.481 23.479
26 25.004 4.953 20.051 28.388 5.059 23.329
28 26.235 4.599 21.636 28.309 4.698 23.611

30 26.383 4.293 22.090 28.492 4.385 24.107

32 26.691 4.024 22.667 27.696 4.111 23.585

Table 10: Wallace Tree Multiplier Results Using Random Partition and 50 Spinloops

Although the increased number of spinloops did not cause the coprocessor to accelerate

the simulation, they did show that message passing latencies had a large effect on the coprocessor.

109

Figure 36 shows that the parallel overhead no longer consumed most of the simulation time when

the spinloops were increased. These results also show how the coprocessor could make a

simulation more scalable. When the coprocessor was not used, the parallel overhead increased

more rapidly than when it was used, but still increased less than it did with a single spinloop.

Since the only difference between the randomly partitioned simulations was the rate at which they

passed messages, this less-rapid increase in parallel overhead implied that contention was a

problem for the randomly partitioned Wallace tree when it only uses one spinloop. This

contention will be discussed further in the Wallace tree conclusions.

Wallace Tree
Simulation Times without

Coprocessor

Time (seconds)

■ Overhead^ sec)
■ Time w/MealSpeedup (sec)

lllllilllllllll
10 12 14 16 18 20 24

Number of LPs

Figure 35: Wallace Tree Times without Coprocessor, using Random Partition and 50 Spinloops

Time (seconds)

Wallace Tree
Simulation Times with Coprocessor

Figure 36: Wallace Tree Times with Coprocessor, using Random Partition and 50 Spinloops

Since the randomly partitioned Wallace tree has many arcs between nodes and passes a lot

of null messages, it appears that the coprocessor should accelerate the simulation. The

110

coprocessor's lack of acceleration indicates that null messages are not driving the simulation's

performance. If the LPs spent a majority of their time processing null messages, the coprocessor

would probably accelerate the simulation. Instead, the randomly partitioned Wallace tree's

performance is limited by two other factors. One factor, the lookahead ratio, is obvious from the

way the circuit was partitioned. Since the LPs were constructed by randomly grouping gates, the

lookahead is probably only a single gate delay for most arcs between LPs. If the largest arc time

was a single gate in the whole system, the simulation would be forced to execute in a time-driver

manner and the simulation would be communications-bound. Another factor, related to

lookahead, that is slowing the simulation is that the LPs have to wait on their slowest input arc to

catch up to the LP's local time before the LP can process any events. If one of an LP's input arcs

consistently lags behind the LP's other arcs, the LP will spend a large portion of its time in a

blocked state, waiting for events to arrive on that arc. When an LP is blocked, it can no longer

execute events in parallel with the coprocessor and the advantage of the coprocessor is lost. Since

the randomly partitioned Wallace tree has a small lookahead ratio and since its LPs spend a large

portion of their time in a blocked state, the coprocessor does not accelerate the simulation.

5.8.2 Breadth-First, No Feedback Partitioning

The breadth first, no feedback, partitioning strategy is an improvement over random

partitioning for several reasons. One improvement lies in the fact that the LPs consist of strongly

connected components and removes any partition-induced feedback arcs that were caused by the

random partitioning algorithm. The removal of feedback arcs helps increase lookahead and

reduce the amount of time that the LPs have to block. The breadth-first, no feedback partition's

run times shown in Table 11 reflect these improvements over random partitioning.

Ill

ofLPs Avg Times
w/o CP (sec)

Time w/Ideal
Speedup (sec)

Overhead
(sec)

Avg Times
w/CP (sec)

Time w/Ideal
Speedup (sec)

Overhead
(sec)

1 10.387 12.850

2 5.912 5.194 0.719 8.634 6.425 2.209

4 3.354 2.597 0.757 6.209 3.213 2.997

6 2.487 1.731 0.756 4.905 2.142 2.763

8 2.246 1.298 0.948 4.523 1.606 2.917

10 2.826 1.039 1.787 4.374 1.285 3.089

12 2.156 0.866 1.290 4.095 1.071 3.024

14 2.705 0.742 1.963 3.767 0.918 2.849
16 2.265 0.649 1.616 3.811 0.803 3.008

18 2.249 0.577 1.672 3.939 0.714 3.225

20 1.994 0.519 1.475 4.177 0.643 3.535

22 2.401 0.472 1.929 4.356 0.584 3.772

24 2.228 0.433 1.795 4.580 0.535 4.045

26 2.055 0.400 1.656 4.529 0.494 4.035

28 2.074 0.371 1.703 4.515 0.459 4.056

30 2.996 0.346 2.650 4.863 0.428 4.435

32 2.788 0.325 2.463 4.970 0.402 4.568

Table 11: Wallace Tree Multiplier Results Using Breadth-First Partition and 1 Spinloop

The results in Table 11 show a large improvement over the random partition's times

shown in Table 10. Even with the spinloops set to 1, the simulation's parallel overhead is smaller

than it was for the random partition. The coprocessor was affected by the improved partition in

several ways. Since the breadth-first, no feedback partition reduced the time that the LP spent in a

blocked state, it reduced the coprocessor's parallel overhead. The reduction of the blocked times

decreased the number of null messages needed. The breadth-first, no feedback partition also

reduced the number of arcs connecting the LPs and in doing so, lowered the number of nulls even

further. The reduction of parallel overhead enhanced the coprocessor's performance, but the

reduction of null messages also significantly limited the coprocessor's ability to work in parallel

with the LPs. Figure 37 and Figure 38 illustrate the lower parallel overhead from using the

breadth-first, no feedback partition.

112

Time (seconds)

Wallace Tree
Simulation Times without Coprocessor

12 14 16 18 20 22

Number of LPs

26 28 30 32

Figure 37: Wallace Tree Times without Coprocessor, using Breadth-First Partition and I Spinloop

Time (seconds)

Wallace Tree
Simulation Times with Coprocessor

Figure 38: Wallace Tree Times with Coprocessor, using Breadth-First Partition and 1 Spinloop

5.8.3 Breadth-by-Source, No Feedback Partitioning

Breadth-by-source was the last partitioning method tested using the Wallace tree

multiplier. This method is similar to breadth-first-search except that it tries to distribute the

sources equally among all of the LPs. This distribution of sources might improve the simulation's

performance if having the source allows an LP to constantly execute events, but it also might hurt

the simulation's performance of it causes one of the input arcs to constantly stay ahead of the

other input arcs. It would probably be better to place all of the sources on LPs in a manner which

minimized the differences in the times on each of the LP's input arcs. The timing measurements

for the breadth-by-source strategy are shown in Table 12.

113

ofLPs Avg Times
w/o CP (sec)

Time w/Ideal
Speedup (sec)

Overhead
(sec)

Avg Times
w/CP (sec)

Time w/Ideal
Speedup (sec)

Overhead
(sec)

1 10.456 12.837
2 5.574 5.228 0.346 8.787 6.419 2.460

4 2.901 2.614 0.287 5.498 3.209 2.289

6 2.690 1.743 0.947 4.662 2.140 2.523

8 2.585 1.307 1.278 4.293 1.604 2.688

10 3.425 1.046 2.379 3.929 1.284 2.645

12 4.370 0.871 3.499 3.633 1.070 2.563
14 2.485 0.747 1.738 3.773 0.917 2.856
16 3.460 0.654 2.807 3.753 0.802 2.951

18 2.586 0.581 2.005 3.855 0.713 3.142
20 2.514 0.523 1.991 3.765 0.642 3.123

22 2.495 0.475 2.020 4.054 0.584 3.471

24 3.555 0.436 3.119 4.285 0.535 3.750

26 3.147 0.402 2.745 4.584 0.494 4.090

28 3.079 0.373 2.706 4.847 0.458 4.389

30 3.108 0.349 2.759 5.151 0.428 4.723

32 3.227 0.327 2.900 5.254 0.401 4.853

Table 12: Wallace Tree Multiplier Results Using Breadth-by-Source Partition and I Spinloop

Without the coprocessor, the breadth-by-source partitioning strategy was faster than the

random strategy, but was slower than the breadth-first-search with no feedback. Moving the

sources probably slowed the simulation because the sources caused some input arcs to get ahead

of others. When the coprocessor was used, breadth-by-source was slightly faster than breadth-first

because the coprocessor could reduce the effects of one input arc in an LP preceding others. The

execution times for the breadth-by-source partition are in Figure 39 and Figure 40. These figures

indicate that the coprocessor incurs much more parallel overhead for small numbers of nodes than

for simulations that don't use the coprocessor. To determine if this overhead could be reduced by

increasing the simulation's granularity, the spinloops were increased to 50.

114

Wallace Tree
Simulation Times without Coprocessor

Time (seconds)

lOverhead(sec)

■Time w/MealSpeedup (sec)

MMllilliilllll
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of LPs

Figure 39: Wallace Tree Times without Coprocessor, using Breadth-by-Source Partition and 1 Spinloop

Wallace Tree
Simulation Times with Coprocessor

■ Overhead(sec)

■ Time w/MealSpeedup (sec)

Time (seconds)

Figure 40: Wallace Tree Times without Coprocessor, using Breadth-by-Source Partition and 1 Spinloop

Increasing the Wallace tree's spinloops to 50 compensated for much of the penalty of LPs

sending messages to coprocessors on a separate node. The times for the coprocessor shown in

Table 13 compare more favorably to the normal runs than they did in Table 12.

115

ofLPs Avg Times

w/o CP (sec)

Time w/ldeal

Speedup (sec)

Overhead

(sec)

Avg Times

w/CP (sec)

Time w/Ideal

Speedup (sec)

Overhead

(sec)

1 129.519 130.369

2 84.958 64.760 20.199 85.785 65.185 20.601

4 43.627 32.380 11.247 46.029 32.592 13.437

6 34.484 21.587 12.898 36.749 21.728 15.021

8 30.076 16.190 13.886 32.269 16.296 15.973

10 23.337 12.952 10.385 25.416 13.037 12.379

12 19.170 10.793 8.377 20.676 10.864 9.812

14 23.209 9.251 13.958 24.776 9.312 15.464

16 22.916 8.095 14.821 24.234 8.148 16.086

18 22.458 7.196 15.263 24.037 7.243 16.794

20 19.668 6.476 13.192 21.441 6.518 14.923

22 16.454 5.887 10.567 18.438 5.926 12.512

24 14.680 5.397 9.283 16.480 5.432 11.048

26 17.879 4.982 12.898 19.181 5.014 14.167

28 16.091 4.626 11.465 17.403 4.656 12.747

30 15.551 4.317 11.234 16.628 4.346 12.282

32 14.360 4.047 10.313 15.754 4.074 11.680

Table 13: Wallace Tree Multiplier Results Using Breadth-by-Source Partition and 50 Spin loops

The breadth-by-source Wallace tree simulation with 50 spinloops is still faster than the

randomly partitioned simulation with the same number of spinloops when they are increased to

50, but the difference is less noticeable than before the spinloops were added. The increased

granularity appears to reduce contention and greatly improves the simulation's ability to be scaled

up. This effect of granularity will be further discussed in the Wallace tree conclusions. Increasing

the granularity also reduced the parallel overhead, as shown in Figure 41 and Figure 42.

Wallace Tree
Simulation Times without Coprocessor

Time (seconds)

Figure 41: Wallace Tree Times without Coprocessor, using Breadth-by-Source Partition and 50 Spinloops

116

Time (seconds)

Wallace Tree
Simulation Times with Coprocessor

Figure 42: Wallace Tree Times with Coprocessor, using Breadth-by-Source Partition and 50 Spinloops

5.8.4 Wallace Tree Multiplier Conclusions

The Wallace tree multiplier was useful for testing the coprocessor because it represented a

large combinatoric circuit used to solve a simple problem. Since it had no feedback, the

partitioning strategies that avoided feedback loops provided a large amount of acceleration. The

efficient partitioning strategies accelerated the Wallace tree more than the coprocessor did because

the coprocessor did not reduce the amount of time that the LPs spent blocking. The Wallace tree

simulation times with 1 spinloop are summarized in Figure 43. From this figure, it is clear that the

best partitioning strategy tested for the Wallace tree is breadth-first with no feedback and no

coprocessor.

Figure 44 summarizes the Wallace tree simulation times with 50 spinloops. Changing the

Wallace tree multiplier's granularity had a profound effect on the random partition's performance

because it reduced the increase in parallel overhead as LPs were added to the simulation. This can

be seen by comparing Figure 43 with Figure 44. In fact, the parallel overhead was reduced to the

point where the breadth-by-source partition has less of an advantage over the random partition

than it did with one spinloop. The random partition's improvement is not surprising because, by

adding a uniform, constant delay to all of the LPs without increasing the number of messages sent,

the spinloop is similar to a perfect partition. As the time spent in the spinloop dominates the time

117

25 -T-

20

Time (seconds)

Wallace Tree
Simulation Times

+ Random Partition
Avg Times w/o CP
(sec)

-^—BF Partition Avg
Times w/CP (sec)

-H—Random Partition
Avg Times w/CP
(sec)

-3K—BFBS Partition Avg
Times w/o CP (sec)

-BF Partition Avg
Times w/o CP (sec)

-BFBS Partition Avg
Times w/CP (sec)

H 1 1 h H h H 1 1 1
6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of LPs

Figure 43: Wallace Tree Performance Summary with I Spinloop

spent running the simulation, the simulation will obtain a close to ideal speedup when additional

nodes are added. The spinloops are useful for altering a simulation's granularity, but are not

useful for eliminating the effects of message passing latencies between the LPs and CPs if the

number of spinloops is set too high. The additional computation time incurred from the use of the

spinloop should be equal to the time an LP spends passing messages between itself and its LP.

118

140 T

120 -

100

Tire (seconds)

40

20

VUalaceTree
Smiabcn Tmes with Coprocessor

IS 20

NurfcerofLPs

-4)—Rarefcm Partition Avg Tmes wroCP(secJ

-B—Random Partition Avg Tmes «TCP (sec)

-A— BFBS Avg Tmes vto CP (sec)

-X—BFBS Avg Tmes wrCP (sec)

25 30 35

Figure 44: Wallace Tree Performance Summary with 50 Spinloops

5.9 Associative Memory Results

The associative memory simulation differs from the Wallace tree multiplier in several

significant ways. The associative memory does not perform a simple operation on the data input

to it. Instead, it stores and recalls data and therefore contains many internal feedback loops. Since

the associative memory was much larger than the Wallace tree, its execution times were much

larger than previous simulations. Table 14 shows the results of running it using the random

partition with one spinloop. Each average time in Table 14 represents the average of at least five

samples.

119

ofLPs Avg Times

w/o CP (sec)

Time w/Ideal

Speedup (sec)

Overhead

(sec)

Avg Times

w/CP (sec)

Time w/Ideal

Speedup (sec)

Overhead

(sec)

1 1313.908 1319.565

2 516.171 656.954 -140.783 870.127 659.783 210.345

4 230.754 328.477 -97.723 659.521 329.891 329.630

6 142.037 218.985 -76.948 464.075 219.928 244.148

8 105.762 164.239 -58.477 355.464 164.946 190.518

10 95.426 131.391 -35.965 306.446 131.957 174.490

12 87.540 109.492 -21.952 262.267 109.964 152.303

14 86.008 93.851 -7.843 240.687 94.255 146.432

16 85.673 82.119 3.554 216.233 82.473 133.760

18 92.092 72.995 19.097 209.538 73.309 136.229

20 95.489 65.695 29.794 193.776 65.978 127.798

22 98.091 59.723 38.368 181.588 59.980 121.608

24 107.201 54.746 52.455 185.369 54.982 130.387

26 119.862 50.535 69.327 193.162 50.753 142.410

28 126.948 46.925 80.023 184.126 47.127 136.999

30 138.850 43.797 95.053 189.643 43.986 145.658

32 154.973 41.060 113.913 197.655 41.236 156.419

Table 14:

The associative

Associative Memory Results Using Random Partition and 1 Spinloop

memory simulations provided some surprising results. The negative

overhead values for the simulation imply a super-linear speedup, but really indicate that the

sequential time being compared to the parallel times is not optimal. There exists some faster

algorithm that would reduce the sequential time. Part of the slow sequential results may be a

result of cache misses or some other delay in the Paragon's memory hierarchy, but is mainly a

result of the way VSIM inserts events into its next event queue. VSIM's queue is implemented

with a linked list. When it inserts an event into its queue, it starts from the head of the queue and

traverses the linked list until it finds the appropriate location for the event. Since VSIM starts

from the head of its queue, it has to traverse the entire linked list to insert an event scheduled later

than all the other events in the queue. When one LP is used, the LP will have to traverse a much

longer linked list and most of the events will be inserted at the tail of the queue. As additional

LP's are used to run the simulation, the size of the queues decrease and inserting events into them

120

becomes more efficient. If VSIM was modified to insert events by starting at the end of the

queue, the sequential simulation would run much faster.

The coprocessor increased the associative memory's message passing overhead because

its use increased the amount of time the LPs had to block. Contention probably also contributed

to the poor speedup since the coprocessor increases the number of messages passed in a

simulation which is already communications bound.

Associative Memory Simulation Times

Time (seconds)

1400 -

:*
—■- -Avg Times w/CP (sec)

-Avg Times w/o CP (sec)

1000 - u.
800 \\-
600 V X.
400

i>^ —• ■ B ,,

0 • 1 1 1 ——i—
-f- -4- -1- —•—•—•
 1 1

15 20

Number of LPs

Figure 45: Associative Memory Times with 1 Spinloop

5.10 Conclusion

The coprocessor did not provide any acceleration for most of the simulations. It did

accelerate the carwash when spinloops were used to increase its granularity, but most of the other

simulations were slowed considerably by the message passing latencies between the coprocessors

and the LPs. Although the coprocessor did not accelerate the simulations, it did provide several

important conclusions about ways to accelerate parallel discrete event simulations. These insights

are described in the next chapter.

121

VI. Conclusions

6.1 Introduction

This chapter describes the conclusions drawn from this research and gives

recommendations for future research. The conclusions drawn pertain to both the coprocessor and

parallel simulations in general.

6.2 Conclusions

Much of the previous research at AFIT concentrated on reducing the amount of null

messages necessary to maintain the simulation's causality. The coprocessor's main design goals

were to offload the work of sending and receiving null messages and the work needed to manage

the simulation's NEQ. Since most of the VHDL simulations were not accelerated by the use of

the coprocessor, it important to reexamine the role null messages play in determining the

simulations' run times. Null messages can slow a simulation by causing contention on the parallel

computer's communication channels and can dominate the LP's workload, but they are not the

simulation's real problem. Excessive null message overhead is a symptom of a non-ideal partition

in which the LPs are blocked for long periods of time. The amount of time that the LPs block can

be minimized by maximizing the LPs' lookahead ratios and partitioning the LPs so that channel

times on all of the LPs' input arcs progress consistently. When an input arc falls behind the other

input arcs on an LP, the LP must block until that arc catches up. This blocking time is only

exacerbated by the presence of feedback loops. Therefore, minimizing the number of feedback

loops will generally improve the simulation's performance.

122

Partitioning the circuits so that the sources are evenly distributed among the LPs can cause

some of an LP's input arcs to get ahead of the rest of the simulation. If sources which generate

events at approximately the same rate are placed on the same LP, that LP is likely to run faster

because there is less chance of it having to wait on the sources. This research confirmed that

partitioning by sources can be slower than simple feedback loop elimination.

The coprocessor demonstrated its ability to accelerate poorly partitioned simulations with

the carwash. The coprocessor was able to reduce the effects of the carwash's load imbalance and

fine granularity. The coprocessor might be able to provide a reasonable amount of speedup in

BATTLESIM applications because realistic battle simulations tend to get unbalanced.

Dynamically partitioned simulations would also probably benefit from a coprocessor similar to

the one developed in the research. The coprocessor could minimize the effects of small load

imbalances and excessive nulls being generated by a small number of LPs. If such a coprocessor

was expanded to perform some of the load balancing tasks, it would provide even more speedup.

VHDL circuits are static by nature and can be partitioned relatively efficiently. Since the

VSIM simulations tended to be more evenly partitioned, the coprocessor did not accelerate them.

The application level NEQ used in VSIM also limited the amount of lookahead the LPs were able

to exploit. Because the VSIM NEQ did not send nulls to update its LP's output arcs, the only

opportunity for lookahead occurred when an LP received an event from SPECTRUM'S NEQ.

Since most of the events were executed from VSIM's NEQ, most of the opportunities to exploit

lookahead were missed. VHDL simulations can be accelerated using better partitioning strategies.

The simulation's algorithm plays such a large role in determining the simulation's run time that

any significant improvements to the algorithm will result in a far better speedup than a

corresponding improvement in the hardware.

123

6.3 Recommendations

Since BATTLESIM simulations are less likely to be partitioned efficiently than the

VHDL simulations, the coprocessor should be tested with BATTLESIM. Porting BATTLESIM

to the Paragon should be fairly simple. BATTLESIM's makefiles would need to be modified, but

few other changes would be required.

Another future area of research would be to see how the coprocessor could assist a

simulation that used dynamic arc times. The use of dynamic arc times would allow the

application to calculate lookahead when it sent null messages. This would probably increase the

simulation's lookahead ratio and improve the simulation's performance. Dynamic lookahead

could provide a large amount of speedup in VSIM simulations when the LP was executing events

out of VSIM's application level queue. The lookahead would improve the simulation's

performance the most when the simulation was executing events for gates that were logically close

to the LP's input arcs. Since these gates are the farthest from the LP's outputs, it would be simple

to calculate how many gate delays the signal would take, using the shortest possible path, before

the events at the gate could affect the output. Such calculations would require the application to

have some knowledge about what gates were on the LP, but this information could easily be

passed from SPECTRUM'S node level. The partitioning tool would have performed many of the

calculations when it divided the gates among the LPs and the results could be placed in an

expanded map file.

Any future effort to try to minimize the time differences on the LP's input arcs would be

best served by allowing the partitioning strategy to know information about the simulation's

inputs. By knowing the average rate at which various inputs changed, the partitioning tool could

place sources with the same event rate on the same LP. Knowing simulation specific information

124

such as source arrival rates would allow the partitioning tool to use queuing theory to efficiently

partition the rest of the circuit. Such partitions would probably minimize the amount of time that

the LPs were blocked and could provide large amounts of acceleration.

6.4 Summary

The coprocessor provided many insights as to how parallel discrete events can be

accelerated. It was able to accelerate poorly partitioned, fine-grained simulations such as the

carwash, but did not accelerate balanced simulations. For most evenly balanced simulations,

better acceleration can be obtained by improving the simulation's partition than by designing a

hardware coprocessor. The coprocessor provides the most benefits when the partitioning strategy

cannot be improved. Future efforts in accelerating parallel simulations should include examining

ways to maximize the LPs' lookahead ratio and finding ways to minimize the time differences on

the LPs' input arcs.

125

Appendix A. Concerns For the Future Use of SPECTRUM Simulations

This Appendix describes several issues which might affect future users of SPECTRUM.

The comments in this appendix apply to using SPECTRUM on both the iPSC/2 and the Paragon

unless otherwise noted.

Carwash Memory Leaks

The carwash simulation contains a significant memory leak that could affect its

performance if the simulation was lengthened. When an application calls lp_post_event(), it

passes the function an event to be posted. This event, which is dynamically allocated, is either

posted to the LP's next event queue or sent to the appropriate LP. SPECTRUM makes a copy of

this event when it processes it so that the application cannot release its memory. SPECTRUM

assumes that the original event will be freed by the application when the application no longer

needs it. In the carwash simulation, old events that have been posted are never eliminated.

Instead, the pointer to the events is changed and the events continue to consume memory as the LP

processes them. If the carwash was run long enough, it would eventually use all of a node's

memory and would crash the iPSC/2. On the Paragon, the memory leaks would eventually cause

the Paragon to page virtual memory to and from its hard drives, and would cause the simulation's

performance to degrade.

Problems with VSIM's Filter

This research observed two problems with VSIM's filter. There are several type

mismatches in the filter and the filter cannot prevent large clock values from causing the clock

126

variable to overflow. The type mismatches occur because VSIM does not include the header file,

vsim.h when the filter is compiled. In this header file the function, get_low_time(), is prototyped

to return an unsigned integer. Since the header is not compiled with the filter, the C compiler

assumes that get_low_time() returns an integer. Thus in the application level, get_low_time() is

expected to return a variable with a different type than the variable returned in the filter.

Fortunately, the unsigned integer's representation is close enough to the integer's that the

simulation is not affected. This type mismatch still might cause problems if SPECTRUM or the

filter were modified.

The second problem with VSIM's filter was more serious. During long simulations the

clock time can exceed the size that the variable, myclock can hold. When the LPs call

lp_advance_time() in such a case, myclock overflows and goes from a very large value to a very

small value. This small value is incorrectly recognized as a causality error and causes the

simulation to abort. The clock can overflow even when the end of the simulation's end-time is set

lower than the maximum value that myclock can hold because of the way VSIM terminates. The

clock overflowed on several partitions in this research's test cases and prevented data collection

from those partitions. Hurford noted in his research that VSIM's filter exhibited the same

problem on the iPSC/2[25].

Using the Paragon's Interactive Parallel Debugger with CPSPECTRUM

CPSPECTRUM, since it changes the application's process group when it loads the

coprocessors, will not normally work with the Paragon's Interactive Parallel Debugger (IPD). To

allow IPD to be used with CPSPECTRUM, a conditional compile switch called "IPD" has been

added. This switch, when defined, alters CPSPECTRUM so that it will not automatically load the

127

coprocessors. This means that the coprocessors have to be loaded manually from either the

command line or IPD's prompt.

The IPD flag is set in the makefile by adding "-DIPD" to the compile switches as shown

in the following line:

PARA_CFLAGS=-c -g -DIPD -DBÜSY -UOUTPUT -DCOUNTS -UMONITORCUBE -UMAPPING

When the IPD compile switch is defined, the carry lookahead adder (CLA) simulation and

its coprocessors can be loaded manually from the Paragon's command line with the following

command:

cla 150 -on 0,2,4,6,8,10,12,14 -sz 16 \; vsim_cp -on 1,3,5,7,9,11,13,15

This command runs the simulation for 150 ns on 16 nodes. The "\" is used to inform the Paragon

that the executables cla and vsimcp are to execute in the same process group and is necessary for

the coprocessors to work with the LPs. The LPs are loaded on even-numbered nodes and the CPs

are loaded on odd-numbered nodes.

The CLA simulation and coprocessors can be loaded at IPD's prompt with the following

command:

load cla 150 -sz 16 -on 0,2,4,6,8,10,12,14\; vsim_cp -on 1,3,5,7,9,11,13,15

This command works exactly the same way that the previous command did for the Paragon's

command line.

Both of the commands for manual CP loading have been tested with revision 1.2 of the

Paragon's operating system. The Paragon command line interpreter has trouble when arguments

are passed to a parallel application. Both of these commands, since they pass arguments to the

application, work only in the order shown. If the application argument or the -sz switch is moved,

the command will no longer work. The order of the arguments in these commands contradicts the

128

order shown in the Paragon's on-line manual pages. The Paragon's on-line pages suggest ordering

the commands in a different order, but that order does not work. Future versions of the Paragon's

operating system will probably improve the way it handles command line arguments.

129

Bibliography

[I] Hennessy, John L. and David A. Patterson. Computer Architecture: A Quantitative Approach.
SanMateo: Morgan Kaufmann Publishers, Inc. 1990.

[2] Fujimoto, Richard M. Parallel Discrete Event Simulation. School of Information and Computer
Science, Georgia Institute of Technology. Atlanta, Georgia 30332.

[3] Chandy, K. M. and J. Misra. "Asychronous Distributed Simulation via a Sequence of Parallel
Computations," Communications of the Association of Computing Machinery. 20(1) 198-206
(April 1981).

[4] Daniel, David W. Design of a Hardware Discrete Event Simulation Coprocessor. MS Thesis,
AFIT/GCE/ENG/93M-01, Air Force Institute of Technology (AU) Wright-Patterson AFB OH
March 1993.

[5] Berlin, Jacob L. Design of a Parallel Discrete Event Simulation Coprocessor. MS Thesis,
AFIT/GCS/ENG/93D-02, Air Force Institute of Technology (AU) Wright-Patterson AFB, OH,
December 1993.

[6] Reynolds, Jr. Paul F. et. al. "Comparative Analysis of Parallel Simulation Protocols," Proceedings
of the 1989 Winter Simulation Conference. 671-679. 1989.

[7] Fujimoto, Richard M. "Parallel Discrete Event Simulation." Communications of the Association of
Computing Machinery. 33(10):31-53 (October 1990).

[8] Misra, J. "Distributed Discrete-Event Simulation," Computing Surveys, the Association of
Computing Machinery. 18(l):39-65 (March 1986).

[9] Righter, Rhonda and Jean C. Walrand. "Distributed Simulation of Discrete Event Systems,"
Proceedings of the IEEE. 77(1):99-113 (January 1989).

[10] Fujimoto, Richard M., Jya-Jang Tsai and Ganesh C. Gopalakrishnan. "Design and Evaluation of
the Rollback Chip: Special Purpose Hardware for the Time Warp." IEEE Transactions on
Computers. 41(l):68-82. January 1992.

[II] Reynolds, Jr. Paul F., Carmen M. Pancerella, and Sudhir Srinivasan. "Design and Performance
Analysis of Hardware Support for Parallel Simulations." Journal of Parallel and Distributed
Computing. 18:435-453. 1993.

[12] Comfort, John C. "The Simulation of a Master-Slave Event Set Processor," Simulation.
42(3): 117-124. January 1989.

[13] Athanas, Peter M. and Harvey F. Silverman. "Processor Reconfiguration Through Instruction-Set
Metamorphosis," Computer. 26(3):11-18 March 1993.

[14] Reynolds, Jr. Paul F. et. al. "Comparative Analysis of Parallel Simulation Protocols," Proceedings
of the 1989 Winter Simulation Conference. 671-679. 1989.

[15] Perry, Douglas L. VHDL. New York: McGraw-Hill Inc. 1991.

[16] Kapp, Kevin L. Partitioning Structural VHDL Circuits for Parallel Execution on Hypercubes. MS
Thesis, AFIT/GCS/ENG/93D-07, Air Force Institute of Technology (AU) Wright-Patterson AFB,
OH, December 1993.

[17] Droddy, Vincent A., ed. "Chapter 5: The Mesh Connection Network and iPSC Performance
Analysis," AFIT/ENG Compendium of Parallel Programs, Vol. I., AFIT, 1993.

[18] Intel Paragon Supercomputer Programming II. Intel Supercomputer Systems Division,
Beaverton: Intel Corporation. August 1994

130

[19] i860 Microprocessor Family Programmer's Reference Manual. Intel Corporation Literature
Sales, Mt. Prospect: 1992.

[20] Intel Paragon Training Notes. Intel Supercomputer Systems Division, Beaverton: Intel
Corporation. March 1994.

[21] Goosby, Darin, et al, AFIT/ENG Intel Hypercube iPSC/2 Quick Reference Manual. Version 1.0,
Air Force Institute of Technology (AU) Wright-Patterson AFB, OH, 1994.

[22] Intel Paragon OSF/1 On-line Manual Pages. Intel Supercomputer Systems Division, Beaverton:
Intel Corporation. August 1994.

[23] Pickering, Ron, Clifford Addison, Jeremy Cook and David Warhurst. Parallel Processing: A Self-
Study Introduction, A First Course in Programming the iPSC/2 Hypercube. Parallab, Dept. of
Infomatics, University of Bergen, N-5020 Bergen, Norway, July 1989.

[24] Intel Paragon User's Guide. Intel Supercomputer Systems Division, Beaverton: Intel
Corporation. June 1994.

[25] Hurford, Joel. Accelerating Conservative Parallel Simulations of VHDL Circuits. MS Thesis,
AFIT/GCS/ENG794D-10, Air Force Institute of Technology (AU) Wright-Patterson AFB, OH,
December 1994.

131

Vita

Second Lieutenant Andrew C. Walton was born in Winston-Salem, North Carolina, on 13

June 1970. He graduated from Walter Williams High School in Burlington, North Carolina in

1988. He attended Marion Military Institute in Marion, Alabama in 1989 and graduated from the

United States Air Force Academy in June 1993 with a Bachelor of Science Degree in Electrical

Engineering. In May of 1993, Lieutenant Walton was selected to attend the Air Force Institute of

Technology for completion of a Master of Science in Computer Engineering.

Permanent Address: 517 Fountain Place
Burlington, North Carolina 27215

132

