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AFIT/GA/ENY94D-9 

Abstract 

The concept of object-based control is extended to the field of teleoperation, 

specifically to accomplish the task of spacecraft docking via a bilateral manual controller. 

An object-based controller with bilateral feedback controls the motion of the grasped 

object, not the trajectory of the manipulator. For this reason it can be designed with 

feedback that is intricately linked with the task kinematics.   The benefits derived from 

anthropomorphicity and force feedback are possible without kinematically/geometrically 

similar master-slave systems, complex calibration and joint mapping schemes, or 

expensive, high degree-of-freedom force reflection. Object-based control is ideal for low- 

level telerobotic interfaces. 

A hand controller and a spacecraft docking simulation are designed and 

constructed to demonstrate object-based bilateral control. The dominant task objective in 

spacecraft docking is the approach to a target vehicle along a single axis of motion. 

Several methods of bilateral feedback linked with this dominant objective are proposed in 

addition to simple force reflection. One method involves virtual forces and another 

utilizes velocity reflection. Each method, practical only with object-based control, 

enhances the man-machine interface by providing a heuristic method of manual control. 
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TELEPRESENT SPACECRAFT DOCKING WITH OBJECT-BASED 

BILATERAL CONTROL (OBBC) 

I. Introduction 

1.1 Overview This thesis proposes a new control method for teleoperation. The task 

chosen to demonstrate this new control architecture is spacecraft docking. Figure 1-1 

depicts teleoperated spacecraft docking. Major docking objectives are a translational 

approach to the target vehicle on one nominal axis with man-in-the-loop control and the 

quick and accurate reduction of the target and tracking vehicle separation distance. 

X 

TARGET VEHICLE 

MASTER HAND CONTROLLER 

Figure 1-1. Teleoperated Spacecraft Docking 



1.2 Background Space-based applications have historically required man's unique 

decision-making skills to implement contingency operations and manual control (1,2,3,4). 

Additionally, the consensus of the Department of Defense (DOD), major universities and 

industry is that man-in-the loop control will play a vital part in future applications that 

involve highly complex tasks in extremely dynamic environments (1). As a result, 

NASA's manned and unmanned space programs are based on the premise of man-in-the- 

loop control. The highly automated interplanetary missions such as Surveyor III and 

Viking Mars involved manual mission modifications and ground-based manipulator arm 

control (5). The Shuttle Transportation System's robotic arm, as well as the orbital 

docking accomplished throughout the Gemini, Apollo, and Apollo-Soyuz programs, 

required extensive manual control (2,5,6). The future requirements of space flight in the 

era of the space station will depend heavily on telemanipulated spacecraft docking (5). 

The history of spacecraft docking and the uncertainties of this task suggest the need for 

the complex decision capabilities of man, while the need for quick communication without 

time delay and the hazardous environment in which this task is performed suggest the need 

for autonomy. But at least until significant progress in automation is achieved, critical 

decision-making capability and emergency contingency operations in unpredictable 

environments will remain a human responsibility. 

Past and current spacecraft rendezvous operations and proximity operations require 

either manual override or hand control (7,25).   Astronauts review data displayed at 

consoles and either punch the necessary buttons and switches for automatic control or use 

combinations of simple interface devices similar to joysticks to perform manual spacecraft 

control (2,7,25). All proximity operations require crew visual queues and have manual 

override capability perhaps because virtually all of the U.S. and former Soviet Union's 

attempts at docking required some form of astronaut/cosmonaut manual control (2,7,25). 

Review of the research establishes three categories of control in the field of 

telemanipulation. They are distinguished by the degree of man's input into the control 



loop. The three categories are executive, supervisory, and manual control. Executive and 

manual control are easily defined because the represent the extremes in telemanipulation. 

Executive control is basically on/off control of an autonomous robot (4) and is typically 

associated with the term telerobotics (1). Manual control is total human control and is 

typically associated with the term teleoperation (1). Supervisory control, a term coined 

by Sheridan (8), is more difficult to precisely define because it combines both autonomous 

and human control (5,8). Because it involves some form of human input, it too is often 

considered teleoperation. Supervisory control similar to the telerobotic extreme implies 

human input, which augments pre-programmed computer control (6,8). Supervisory 

control similar to the teleoperation extreme implies computer input which augments 

human manual control (8). The degree to which the interface device provides a human 

operator with realistic information from the task environment is telepresence (1,5). Each 

broad category of control implies that the human operator is physically separated from the 

task environment, necessitating a man-machine interface device. This interface device is 

referred to as a master controller. 

Since Ray Goertz created the world's first electrical master-slave manipulator in the 

1950's at the Argonne National Laboratory (3,5), two master controller types have 

conclusively emerged: geometrically/kinematically identical master-slave controllers 

(hereafter referred to as master-slave controllers) and hand controllers (9). Emphasis has 

been on the master-slave controllers (10), probably because designers seeking 

ergonomically enhanced man-machine interface, have turned to anthropomorphicity 

(1,4,10) and force reflection (11). Anthropomorphicity and high degree of freedom 

(DOF) force reflection are predominantly identified with master-slave controllers. Force 

reflecting hand controllers have been limited to miniaturized replica robots (5). In other 

words, traditional force reflecting hand controllers are just miniaturized versions of the 

master-slave controllers.   Hand controllers have made strides only because of their 

compactness. The need for this trait is particularly evident in space-based operations 



where orbital work space is at a premium (4,9,12). The question of utility versus cost of a 

force reflecting hand controller has limited the use of force reflection in hand controller 

application (10). Still, force reflecting hand control is being pursued (12,13) and is a 

design specification for the free world's future space station. The space station has been 

the main force behind this technology for the past decade (5). 

Research reveals many control theories that track actual slave motion to the desired 

motion. Common control concepts include position and force control. More recent 

methods are hybrid position-force control and impedance control (5). The foundation of 

the research in this thesis is object impedance control, a concept and theory introduced 

and developed by Schneider and Cannon (14). This concept focuses on the control of the 

object and not the kinematics of the manipulator. The authors proposed that object-based 

control is an extremely efficient technique due to instinctual control and transparent 

manipulator dynamics.   If applied to teleoperation, the instinctual control and transparent 

manipulator dynamics would have three effects on a telemanipulation system. First, there 

is a need for shared control and increased autonomy. As a result, the basic operation 

requires little or no training because control is reduced to (at most) three simple 

translations and rotations in space, which are skills humans accomplish routinely many 

times per work day (1,4). Manipulator motion is automatically generated by the computer 

based on the commanded object motion.   Secondly, the physical characteristics of the 

master controller need not be anthropomorphic or geometrically/kinematically similar to 

the slave. Instead, the controller can be similar to the grasped object and can provide 

DOF control equal to that required by the object. And thirdly, the feedback needed for 

bilateral control becomes easier to implement, no longer dependent on complex 

mathematical joint-mapping transformations, and can be designed kinematically similar to 

the task. 

Up to now, little research has been done in this area. Dr. Nat Durlach of MIT 

introduced and researched Tool Handle Teleoperation specifically for the field of tele- 



surgery. This method allows a surgeon to manipulate a surgical instrument mounted to a 

robot as if there was a handle attached to the instrument (15).   Most recently, Dr. Paul 

Michelman and Dr. Peter Allen of Columbia University have proposed object-space 

teleoperation (16). They use a simple input device to control elementary rotation and 

translation motion of a Utah/MIT dexterous hand. The input device commands are based 

on the grasped object space, rather than joint position space, which is the traditional 

method to control motion of the dexterous hand. 

The telepresence provided by a master controller is achieved mainly through the 

coupling of visual feedback with bilateral control, the two-way communication of position 

and force information between the user and the task environment (17,18). Research 

indicates that telemanipulated task completion is up to 50% quicker when some kind of 

force information is returned to the operator (8,12,13,16,19) and shows that force 

reflection used for bilateral control is extremely effective if the operator desires to control 

[contact] forces in the task environment (11,17,18).   Traditional teleoperation 

architecture derives feedback in one of two ways (17). In the first method, the effect of 

object/environment interaction on each slave joint is directly measured, and impedance or 

hybrid position/force control is used to force the corresponding actuated joints of the 

master to track these slave joints. Master-slave symmetry makes this method practical but 

dictates master controller geometric design.   The second method, which is required for 

hand controllers, is to form complex Jacobians that mathematically transform slave end- 

effector forces into master joint torques. For either method, slave/environment forces are 

corrupted by the compliance of the systems, while task and grasped object dynamics are 

completely neglected. Furthermore, the complex mathematical transformations make it 

impossible to orchestrate this information so that it can be used to provide a more 

instinctual feedback. 

This thesis proposes a new teleoperation concept called object-based bilateral 

control (OBBC), and demonstrates its implementation with a spacecraft docking 



Simulation. OBBC extends the object control theory of Schneider and Canon (14) to 

teleoperation and enhances operator telepresence via the addition of bilateral control. 

OBBC provides object-space control to facilitate simple and realistic reflection of the 

interaction of the object with the environment while transparently controlling the motion 

of the slave. Complex schemes to transform end-effector dynamics to joint-space torques 

for effective bilateral control are not required; instead, the feedback is tailored to exploit 

the task's dominant kinematic objectives. OBBC makes 1-DOF tactile feedback a 

practical and useful design trait. Additionally, this type of control simplifies the 

correlation of multiple DOF data for feedback via a controller with a single or low-level 

DOF feedback capability. 

Spacecraft docking is an ideal task for OBBC implementation because dominant 

kinematic objectives are clear and easily integrated into the master controller design. 

Additionally, the use of the OBBC master controller is compatible with the practice of 

using hand controllers in spacecraft proximity operations. 

The following chapter compares object-based teleoperation architecture with the 

current architectures and makes general comparisons of each. The design characteristics 

and operational traits of the master controller's four operational modes are also discussed. 

Presently, AFIT does not possess a hand controller that offers bilateral control capability; 

therefore, a prototype master controller has been designed and fabricated to enable OBBC 

implementation. The description of this hardware is the subject of chapter 3. The master 

controller is designed bilaterally, that is, it is used to input commands for the six degrees 

of freedom (3 translational and 3 rotational) of a spacecraft and it is actuated for feedback 

in one degree of freedom, specifically for spacecraft approach axis feedback. The simple 

integration of two special types of heuristic feedback designed with task kinematic 

similarity is discussed. Both methods utilize virtual feedback that includes a shared 

control between the operator and the computer thereby increasing the overall system 

autonomy. Chapter 4 describes the overall OBBC system controller design and its link 



with the graphical spacecraft docking simulation. Also discussed in this chapter is the 

OBBC communication network. Standard UNIX C programs have been written to 

perform master controller serial communication and ethernet communication between 

Silicon Graphics, Sun Sparc workstations, and a real-time microprocessor. Chapter 5 

documents results recorded during spacecraft docking simulation with the four operational 

modes of the prototype OBBC system. Chapter 6 summarizes conclusions and 

recommendations about the thesis. Finally, the appendices supply design drawings, code 

listings and flowcharts, and simulation operation instructions. 

1.3 Principal Accomplishments The principal accomplishments of this research are: 

• development and demonstration of an object-based bilateral teleoperation concept, a 
concept unique to the field of teleoperation. 

• fabrication of a 6-degree-of-freedom hand controller with l-degree-of-freedom 
feedback to the operator, offering bilateral control 

• demonstration of the utility of multi-axis to single-axis feedback for bilateral control, 
specifically in spacecraft docking 

• development and implementation of two bilateral controllers unique to 
telemanipulation and 

• the design of a low-level telemanipulation communication hub. 



n. OBBC Concepts and Current Implementation Methods 

2.1 OBBC Telemanipulation Architecture Research implies that a paradigm has evolved 

with the control architecture of telemanipulation. The physical design of the slave has 

dictated the foundation of the overall system control theory, the physical design of the 

master controller, and the design and implementation of the system's feedback. 

Additionally, due to the benefits derived from ergonomics, designers have been forced to 

incorporate anthropomorphic and high DOF force reflection characteristics in master 

controller design, putting further limitations on the slave design.   This paradigm 

necessitates complex calibration and joint mapping schemes, geometrically/kinematically 

identical master-slave systems, and detailed knowledge of task and manipulator. It has 

also forced the emergence of basically two types of master controllers. The two controller 

types are force reflecting hand controllers (FRHC) and the geometrically/kinematically 

identical master-slave controllers with force reflection. The basic control architecture for 

these type of controllers is illustrated in Figure 2-la. 

The OBBC challenges this paradigm because the control theory is object based; 

therefore, the operator controls the motion of the object, not the slave. The OBBC 

implementation used in this thesis to perform teleoperated spacecraft docking 

demonstrates a master controller physical design not restricted by a need for geometric 

symmetry. OBBC also demonstrates bilateral control that utilizes feedback designed to 

exploit the docking task.    Furthermore, ergonomic benefits are demonstrated without 

anthropomorphism. The proposed general architecture is seen in Figure 2-lb. 
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Figure 2-la. TRADITIONAL TEILOPERATION ARCHITECTURE 

master communication 

 7S~ 

! slave     \,    OBJECT 
*H K 

f     f 
o    o 

environment 

Figure 2-lb. OBBC TELEOPERATION ARCHITECTURE 

Figure 2-1. Block Diagrams of Teleoperation Architectures 

Figure 2-1 illustrates the difference between object-based control and the 

traditional teleoperation architecture defined by Anderson and Spong (18).   Ideally, for 

the traditional architecture, the desired effect of the slave (vs) is controlled to equal the 

input's effect on the master (vm), and the reflected force from the environment (fe) is 

controlled to equal the force sensed by the operator (f*h). The object and task dynamics 

are neglected when implementing traditional teleoperation. For the OBBC architecture, 

the desired effect of the object (v0) is controlled to equal the input on the master (vm) via 

automatic computer generated slave input (vs). In Figure 2-lb the slave box in the OBBC 

architecture is drawn dotted to illustrate that the slave dynamics are transparent to the 

operator. It is also important to note that object forces need not be manifested through 

the slave before communication back to the master controller. 

The terms in the teleoperation architectures are related to the spacecraft docking 

task (pictured in Figure 1-1 of chapter 1) in the following discussion. The human operator 

or teleoperator is an astronaut or ground personnel manning the master controller. The 

master controller is the interface device that provides input for the control of a remote 



slave and object. The slave, specifically for docking, is the attitude control and propulsion 

subsystems of the object or tracking vehicle at a remote environment. Finally, the 

environment is the approach and interaction between the tracking and target vehicles. 

2.2 Qualitative Comparison of Teleoperation Techniques  Table 2-1 compares 

information obtained from the design and implementation of OBBC with existing master 

controllers' characteristics. Automatic control is included in this table because it 

represents the ultimate evolution in telemanipulation, otherwise known as telerobotics. 

The assessed characteristics for FRHC, master-slave and autonomous controllers are 

extracted from 4,5,10,11,12,13,16,17,20, and 21 and are divided into the two categories 

of engineering and human factors. In Table 2-1, the OBBC and Autonomous controllers 

are shaded to highlight their similarity.   The letters "H", "M", and "L" stand for high, 

medium and low respectively and represent the degree to which each characteristic was 

manifested. 

Controller Characteristics FRHC Master- 
Slave 

OBBC Autono- 
mous 

engineering 
factors 

Design simplicity L H H L 
Ease of object/environment 
feedback implementation 

L M H 

Degree of autonomy M llttlÄlti 
Anthropomorphic 
dependency 

L H 
L 

Tailored to task dynamics L L H H 
Universal H L 'mmm L 
Cost H M L 

human 
factors 

Ease of use M M 11111111 
Required training H M L L 
Requires coupling w/ visual 
f/b 

H H 
h L 

Ergonomie feedback M L H 

Table 2-1. Qualitative Comparison of Teleoperation Techniques 

10 



General assessments could not be made about certain controllers for some of the 

characteristics, thus their respective table entries are left blank. The table illustrates two 

key points. It.compares the human and engineering characteristics of each controller to 

show that the OBBC controller is a specialized FRHC which makes the controller more 

autonomous but less universal. 

2.3 Prototype OBBC Mode Characteristics The prototype OBBC system is designed 

with four operational modes.   All modes provide six degree of freedom (6-DOF) control 

of a tracking vehicle in a spacecraft docking simulation. Detailed information about the 

docking simulation is documented in chapters 3 and 4. The baseline mode offers only 

unilateral control with no feedback other than the visual feedback inherent to the graphical 

simulation. The remaining three modes additionally offer 1-DOF bilateral control 

reflecting information about the axis of approach. The four modes are as follows: 

• Mode 1 : unilateral control 

• Mode 2 : force reflection 

• Mode 3 : virtual force reflection 

• Mode 4 : electronic tunneling 

Table 2-2 is a comparison of the prototype's operational modes and a 

recommended alternative mode. The table summarizes the characteristics derived from 

each mode's feedback design and implementation discussed in sections 2.2.1 through 

2.2.5. As in Table 2-t, the characteristics are assigned a grade of "H", "M "or "L". 

Assessments are made from the actual implementation of the four operational modes. The 

alternative mode's assessment is hypothesized. 

2.3.1 Mode 1 - Unilateral Control.   The unilateral control mode enables the 

teleoperator to provide the 6-DOF input required for control of the tracking vehicle during 

docking simulation. No feedback is returned to the operator in this mode. The operator 

11 



uses only visual feedback to accomplish the spacecraft docking. The target vehicle was 

assumed to have been designed with the necessary compliance to produce acceptable 

impact forces for a range of nominal terminal closure rates. This mode is most 

representative of current spacecraft proximity operations in that it is performed via a hand 

controller without bilateral control. One could postulate that a highly skilled and practiced 

operator using unilateral control with visual feedback could eventually perform the task 

optimally, without the need for special, non-visual feedback. 

The performance, operation, and design of this mode is used as the baseline for the 

comparison of the design and operation of the other master controller modes. The human 

factor traits in this discussion are based on initial operation of the master controller in its 

respective modes. 

2.3.2 Mode 2 - Force Reflection.     The major kinematic objective in spacecraft 

docking is a translational approach along only one axis of motion (2). In mode two, force 

reflection, the approach axis force resulting from object/environment (i.e. tracking and 

target vehicle) interaction is reflected back to the operator. During the docking task, force 

on the approach axis due to the environment is non-existent unless contact between the 

target and tracking vehicles occur.   Upon contact, either from task completion or an 

unplanned collision, contact force on the approach axis is modeled as the force generated 

by a simple spring that has sufficient force-length to allow the operator to "feel" contact 

for sufficient time to sense the rate of closure and to make required adjustments. This 

type of feedback would be extremely effective for docking if the target vehicle has a 

recoiling probe that is'extended during docking to absorb impact forces. 

During operation in this mode, the operator feels no interaction until actual contact 

is made with the target vehicle at task completion. Thus, force reflection indicates only 

that contact has occurred, regardless of whether this contact is from a successful docking 

or from a catastrophic collision. Though the operator easily recognizes task completion, 

force reflection information does nothing to enhance the operator's pre-contact 

12 



performance because the operator's ability to react is limited by the limitations on the 

spring force-length.   Details about this mode and its integration into the OBBC prototype 

controller are found in section 4.2.3.1. 

2.3.3 Mode 3 - Virtual Force Reflection.   A unique feedback method is mode 

three, virtual force reflection. Virtual force reflection employs a virtual spring to provide 

the teleoperator with feedback throughout the task duration. The computer generates this 

virtual spring environment that continuously interacts with the tracking vehicle along the 

approach axis. The object/environment interaction is monitored by the computer and 

reflected back to the operator via the actuated master controller. The operator must apply 

forces to the master controller to overcome a growing virtual force. If the applied forces 

are greater than the reflected force, the operator can feel the master controller move in the 

nominal docking direction. The virtual force, calculated in object-space, grows linearly as 

the tracking vehicle approaches the target on the approach axis. Mode three is designed 

with a 100m linear virtual spring, but any spring length and force/displacement relationship 

could have been substituted. The virtual spring of mode 3 extends from the docking port 

of the target vehicle. The operator can apply forces at the master controller only sufficient 

enough to equal the maximum force of the virtual spring, making impact with the target 

vehicle theoretically impossible. 

The virtual force is designed to moderate the negative effect of the feedback on the 

task performance, so the feedback is reflected only when motion is commanded with the 

manual controller, acting like a dead man trigger. This mode demonstrates how the 

OBBC concept permits the simple manipulability of the data derived from 

object/environment interaction, transforming it into ergonomic feedback by selecting only 

useful information for return to the teleoperator. The feedback thus allows the operator to 

concentrate on other task objectives. 

During simulation, the motion along the axis of approach is automatically 

regulated as the tracking vehicle approaches because the virtual force limits the input 

13 



commanded at the master controller, leaving the operator free to align the remaining 

translational and rotational degrees of freedom. The commanded translation over the 

separation distance is extremely fast and returns continuous feedback to the teleoperator. 

While the operator remains dependent on visual feedback despite virtual force reflection, 

this mode enhances the manual control of the docking simulation and demonstrates the 

utility of single-axis force reflection. Details about this mode's integration into the 

prototype OBBC controller are found in section 4.2.3.2. 

2.3.4 Velocity Reflection with Electronic Funneling.    OBBC makes it possible to 

propose two methods of feedback, the previously mentioned virtual force reflection and 

velocity reflection with electronic funneling. These methods are unique to 

telemanipulation because OBBC allows the feedback design to integrate the major 

kinematic objective of the docking task, and OBBC facilitates the orchestration of all 

information derived from object and environment interaction. The second unique 

feedback, implemented in mode 4, is velocity reflection derived from tunneled multi-axis 

object/environment interaction. Because the prototype OBBC hand controller is object- 

based, a simulated constant spacecraft velocity can be reflected back to the master 

controller. Approach motion of both the object and the master is prohibited until the 

operator uses the master controller to satisfy position and orientation constraints on the 

tracking vehicle. The constraints are dictated by a virtual hypercone originating at the 

docking port of the target vehicle and centered on the approach axis. If all constraints are 

satisfied, the docking approach can proceed. The operator "feels" the approach 

proceeding when the master begins to move at a constant velocity scaled from the actual 

spacecraft velocity. The master controller is actuated with forces derived from a constant 

force virtual spring that exerts a force on the master on the nominal docking axis. This 

force is actuated at the master only when a hypercone of constraints around the ultimate 

target position and orientation are satisfied and only when motion along the approach axis 

is commanded. 

14 



The constraints are described by a virtual hypercone, since they are dependent on 

information from all six degrees of freedom. The translational constraints of the 

hypercone are. depicted in Figure 2-2. The virtual hypercone extends out from the nominal 

docking position. It is 25m in length, and its radius at any given point is dependent on the 

separation distance between the target and tracking vehicle along the axis of nominal 

docking direction. Thus the closer the tracking vehicle is to the target vehicle, the stricter 

the tolerances become on the error between the commanded position and orientation of 

the tracking vehicle and the nominally docked position and orientation. Inherent in this 

/N 

approach axis 

tracking vehicle 

target vehicle 

Z 
I 

25m 

Figure 2-2. Depiction of Translational Hypercone Constraints 

mode is a shared control between the teleoperator and the computer. Motion along the 

approach axis is handled by the computer, with executive control dictated by the 

operator's alignment of the remaining position and orientation axes. The virtual hypercone 

places constraints on the off-axes data to "funnel" the object's approach to a pre-planned 

target position. The feedback is unique to teleoperation because it is derived from multi- 

axis data but is fed back to the teleoperator via single-axis actuation of the master 
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Controller; therefore, both the approach to the target vehicle and the multi-axis feedback 

are, in a sense, funneled. 

During the simulation, velocity feedback with electronic tunneling allows quick 

and accurate task completion when coupled with visual feedback. Small simulation 

modifications could make task completion with this mode possible even without visual 

feedback.   Teleoperator control is enhanced with the use of various input filtering 

functions programmed for the spaceball which modify the programmed velocity or 

sensitize off-axis input, thereby increasing the effectiveness of the mode.   Final docking 

position and attitude are completely accurate but spacecraft terminal closure rate is high. 

Safety concerns related to this high terminal velocity can be addressed by modifying the 

ultimate target position, which can be accomplished by modifying the hypercone 

constraints. 

The limited range of motion on the prototype hand controller's feedback actuation 

system forced the interruption of the docking simulation and hampered the evaluation of 

this feedback mode. Details about this mode's integration into the prototype OBBC 

controller are found in section 4.2.3.3. 

2.3.5 Mode 5 - Virtual Environment.   A virtual environment is suggested as an 

alternative master controller mode, designed to reflect position, velocity, and (virtual) 

interaction forces to the teleoperator. The virtual environment is practical and easily 

implemented because OBBC sensors at the object provide object-space data.   This mode 

would require the implementation of the optical encoder and augmentation of its 

associated processing hardware.   As a result, closed loop motor control can be utilized. 

The hand controller could then be designed with position references which are calibrated 

to match actual positions. Position commands are input via the hand controller, and the 

actual position/velocity is bilaterally returned to the operator. Virtual forces could be 

reflected to complete the package. The controller becomes a mini-virtual environment, 

and visual feedback is no longer necessary for manual control. This alternative mode 
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which represents nominal telepresence, is discussed for comparative purposes and was not 

implemented. 

FEEDBACK DESIGN Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

ergonomically designed 
tailored to task kinematics 
ease of implementation 
derived from multiple axis 
data 

L L M H H 
L L M H H 
H H M M M 

H H 

1A1SK rEK*UKMAINLJL 
completion speed 
completion accuracy 
contingency capability 
(manual) 
dependency on visual 
feedback 

L L H M H 
L L M H H 
H H H H H 

H H H M L 

Table 2-2. Comparison of Implemented and Alternative Feedback Modes 
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IQ. Description of Prototype Hardware for OBBC 

3.1 Overview To investigate and demonstrate OBBC, a six degree of freedom (6-DOF) 

master hand controller actuated to provide feedback had to be designed and constructed. 

The fabricated master controller is a position control interface device for a spacecraft 

docking simulation. The complexity and cost of multi-axis feedback, as well as the nature 

of the docking task, suggested that a master controller with feedback in only the nominal 

docking direction would supply the teleoperator with sufficient feedback for enhanced 

telepresence. The prototype master controller is pictured in Figure 3-1. The four major 

components of the controller are the actuator, the servo-amplifier and power supply, the 

CIS Dimension 6 spaceball, and the spaceball platform and actuator casing. 

spaceball platform 
keypad 

optical force sensor knob 
A^ "spaceball" 

CIS Dimension 6 

Figure 3-1. Prototype OBBC Master Controller 

During the simulation, the operator envisions the master controller spaceball 

platform as the spacecraft in the simulation display and inputs changes to the spacecraft 

position and attitude by imparting a force or torque on the spaceball knob, acting as if 
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using his hand to position the spacecraft itself. The actuator casing always remains 

immobile, but in modes 2 through 4, described in the previous chapter, the approach axis 

force sensed at the spacecraft from its interaction with the environment is converted to a 

proportional torque that is applied to the platform actuator.   The operator then "feels" 

one axis of spacecraft/environment force (or motion in mode 4) with his hand. 

3.2 Actuator The actuator is a Globe 24VDC electric motor, selected because it was 

back-driveable and already in AFIT's possession. The actuator generates the necessary 

reflected feedback. Attached to its motor shaft is a double cable spool, which is designed 

to simultaneously reel in and out six gauge metal cable. The drive cable is secured to each 

end of the spaceball platform and pulls on the platform to move it in either direction along 

the tracks, the direction being dependent on the direction of the reflected force. The 

spaceball platform is immobile due to the mechanical impedance of the drive system unless 

voltage is supplied to the actuator. Also attached to the motor is a Hewlett Packard 500 

count resolution optical encoder. 

3.3 Servo-amplifier and power supply The servo-amplifier is a Copley Controls Corp. 

300 Series Amplifier powered with a Series 600 unregulated DC power supply, requiring a 

standard 120V AC outlet. The amplifier is used as a voltage to current converter and is 

operated in the flat-gain mode, requiring a reference or control voltage of ± 75mV. 

Specific amplifier information can be obtained from its user manual (22).    Unforced 

movement of the spaceball platform requires at least a + 35mV reference voltage signal to 

the servo-amplifier which overcomes the impedance of the drive system. 

3.4 CIS Dimension 6 Spaceball The CIS Dimension 6 Spaceball (Dim 6) contains a 6- 

DOF optical force sensor integrated into a spherical knob. It is this force sensor that is 

used to modify the tracking vehicle's position vector. A standard RS-232 connection and 

a null modem device allows serial interface with a Silicon Graphics IRIS Indigo 

workstation (SGI).   The Dim 6 has dip switch selectable communication parameters, the 

settings for which are found in Appendix F. 
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In addition to the optical force sensor, the Dim 6 has a keypad complete with 8 

function buttons and 3 transmission modes. Function buttons are user definable, and these 

functions are defined in section 4.2.1. Figure 3-2 depicts the buttons used for the three 

transmission modes, labeled as "TRA", "DOM", and "ROT".   When initially powered up, 

the Dim 6 is in default mode and will transmit forces sensed in all six degrees of freedom. 

The teleoperator can use the TRA button to transmit only translational inputs and the 

ROT button to transmit only rotational inputs. The DOM button transmits only the 

dominant force sensed by the spaceball and can be used in conjunction with any 

transmission mode. 

0000 
0000 

TRA 
per 

DOM 

x /\ 

> 

indicator 
light 

Figure 3-2. Dim 6 Keypad 

Additional information about the Dim 6 can be obtained from its user manual (26). 

3.5 Spaceball Platform and Actuator Casing The Dim 6 provides the required 6-DOF 

command input to the spacecraft, but by itself is incapable of reflecting feedback to the 
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teleoperator. Thus a platform capable of "frictionless" motion in the ± x (approach axis) 

direction was constructed with aluminum and four ball-bearing wheels. The Dim 6 is 

mounted to the platform, and the drive cable of the actuator is attached at both ends. The 

platform glides on tracks machined into the top of the actuator casing, prohibiting out of 

plane motion. The range of translational travel is up to three inches. The actuator casing 

provides a housing for the actuator motor and spool, as well as the servo-amplifier and the 

power supply. Additionally, the casing provides a pulley interface for the connection 

between the actuator cable and the spaceball platform. 
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IV.   Prototype Object-based Bilateral Controller Design 

4.1 Overview   Several programs were required to perform overall system control. The 

serverfrobmc.c program of appendix B, in conjunction with the frobmc.gsl program of 

appendix C, performs two main functions.   First the programs serve as a fully resolved 

position control system that performs tracking of a desired position command input. 

Secondly, these programs function together as a master control system that processes 

operator input from a master controller operating in one of four operational modes and 

actuate the master controller to return feedback to the operator.   A secondary function of 

serverfrobmc.c allows user- selectable scaling of hand controller input. The simulation 

driven by frobmc.gsl with input from server_frobmc.c displays the approach of a 6-DOF 

rigid body spacecraft to an immobile target vehicle. The main visual display provided to 

monitor docking is a cockpit view and is complete with dual crosshairs to enhance visual 

feedback. A set of crosshairs is attached to each docking point on the tracking and target 

vehicles. A second display provides a top view of the docking. The target vehicle is a 

space station constructed from graphics provided by Deneb Robotics for Interactive 

Graphics for Robotic Interface Program (IGRIP). The tracking vehicle is modeled after 

the Precision Orbital Tracking Vehicle (POTV), the spacecraft of Lawrence's thesis (23). 

Both vehicles' graphics and the basic simulation design were originally programmed by 

Tom Bridgman (24). User keyboard interface is required to input the tracking method and 

operational mode preferences, and the initial separation distance necessary to initiate the 

simulation. The server_frobmc.c coding is accomplished in standard UNIX C, and a 

complete listing as well as a flowchart can be found in Appendix B. This software is 

intricately linked with the Graphics simulation code, which drives the visual display of the 

docking on an SGI Indigo workstation. The frobmc.gsl coding is written in Graphics 
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Simulation Language (GSL) for IGRIP, and a complete listing as well as its flowchart can 

be found in Appendix C. 

4.2 Prototype OBBC Architecture   The function of the OBBC control system is to 

force the position of the object to track the position input at the master controller while 

simultaneously allowing the master controller actuation system to track the influence of 

the environment on the object. Thus the OBBC teleoperation system can be considered a 

two-port network. One port represents the interaction between the operator and the 

master controller, while the other port represents the interaction between the spacecraft 

(object) and its environment. The object/environment port must be created to allow the 

slave (spacecraft attitude control/propulsion subsystems) dynamics to remain transparent 

to the operator. One way to represent the OBBC two-port architecture is illustrated in 

Figure 4-1 and is discussed in the following sections. 

®   server frobmc.c 

O   frobmc.gsl 

Figure 4-1. Prototype OBBC Architecture 
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4.2.1 Master Control. To move the simulated object (tracking vehicle), the 

teleoperator imparts a force or a torque in the desired translational or rotational direction 

on the hand controller knob. This input forms the master input vector and is made up of 

three forces and three torques: 

■ = [/,/,/,',^,f 

The server_frobmc.c program then translates this into meters/degrees with the mapping 

function, Km. Km maps forces and torques exerted on the control knob to values 

between 0 and 1 meters and between 0 and 1 degrees respectively. 

If operating the master in mode 1, the mapped input is simply summed with the 

current desired position command vector. A keyboard input of the initial desired position 

is required before the simulation will commence. Operation in modes 2 and 3 sums the 

mapped input with the current desired position command vector, as well as with the force 

information derived from the object/environment interaction.   In mode 4 operation, 

server_frobmc.c evaluates a flag returned from frobmc.gsl. This flag indicates whether or 

not the mode 4 constraints are satisfied. When the constraints are satisfied, the desired 

command vector is updated with a constant lm input. Unsatisfied constraints allow the 

desired command vector to remain unchanged. The updated desired position command 

vector is made up of three translational positions and three relative attitude angles: 

r = \-Xdes  y<les   Z des    "des    9des    Vdes    J 

At Simulation initiation, the initial desired position command is input via the keyboard. 

Server_frobmc.c enables the teleoperator to use the function keys on the keypad of 

the master controller to modify the scale and sensitivity of the commanded input. 
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Function button #4 reduces input to 1/10 the default input capability. Depressing button 

#5 cuts commanded input of the off-axes by half while button #8 doubles the input of the 

off-axes. The.operator can double the input of the approach axis with button #6.   Finally, 

the input can be restored to default levels with button #2. Table 4-1 summarizes the 

keypad functions. 

Button # Function 
2 reset all 

4 0.1[fyf7tVtyt7l 

5 0.5rfykt*tyt*l 

6 2fv 

8 2[fy h h ty tzl 

Table 4-1. Master Controller Keypad Functions 

4.2.2 Slave Position Controller Design. The updated desired position command 

vector becomes the input to a slave position controller. For a spacecraft, this slave 

controller would be the attitude control and propulsion subsystems. The design of the 

controller (see Figure 4-2) is borrowed and modified from a thesis by Richard E. 

Lawrence (23). This design includes the controller system, input, pre-filter, and gain 

matrices optimized for both the V-Bar and R-Bar tracking methods. The R-Bar tracking 

method is an approach to the target along the radius vector of the target vehicle, while V- 

bar tracking is an approach to the target vehicle along a horizontal component of the 

target vehicle's tangential velocity vector (25). 
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Figure 4-2. Position Controller Block Diagram 

The vectors and matrices in Figure 4-2 are defined as follows: 

r6xl = desired position command vector      F = system matrix 

u9xl = COntrol vector G = input matrix 

x12xl = SyStem state vector H = output matrix 

y6xl = output position vector M = pre-filter matrix 

K == controller gain matrix 

The controller code utilizes a 4tn-order Runge-Kutta method for the necessary 

integration of the relative equations of motion and is extracted from a program by Tom 

Bridgman (24). The linearized equations of motion of the tracking vehicle relative to the 

target vehicle, as well as the non-gravitational forces and moments, are completely derived 

by Lawrence (23). The complete set of both translational and rotational relative equations 

of motion are as follows: 
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F 
x-2ny-3n2x = — (4.1) 

m 
Fy 

y + 2nx = -^ (4.2) 
m 

z + n2z = ^- (4.3) 
m 

A{9-n<f>) + (C-B)(n0 + n20) = Mx (4.4) 

3«2z 
B(0 + n0) + {A-C){n6-An2<j) -) = Mv (4.5) 

C(y~) + (5-^)(3«V-—) =MZ (4.6) 
2r„ r. 

where Fx, Fy, and Fz are non-gravitational forces; Mx, My, and Mz are non-gravitational 

moments; n = yjGMB/r3; A, B, and C are principal moments of inertia of the tracking 

vehicle; m is the mass of the tracking vehicle; r0 is the magnitude of the target vehicle's 

position vector; and r is the magnitude of the tracking vehicles position vector. 

4.2.3 Object/Environment Interaction. The slave controller output position 

vector y is used by frobmc.gsl to drive the position and attitude of the object (tracking 

vehicle) in the docking simulation. The operator then uses this simulation as visual 

feedback. At this point, unilateral master control (mode 1) is completely described. For 

the remaining operational modes, frobmc.gsl creates a simulated environment to provide a 

source for the non-visual feedback. 

4.2.3.1 Mode 2 - Force Reflection. In mode 2, the force on the axis of 

approach from any contact between the tracking and target vehicles is modeled as the 

force of a linear spring. This force, limited to the approach axis due to master controller 

design, is calculated in object space as described in Figure 4-1, where xc is the position of 

contact, and x is the commanded position of the object that caused the contact. Ks is a 

spring constant and makes the force proportional with fx. The resulting object-based 

force fe x is summed with the fx input sensed at the master.   The summed force is then 
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converted to the necessary voltage units to actuate the spaceball platform on the master 

controller. 

4.2.3.2 Mode 3 - Virtual Force Reflection. In mode 3, the source of the 

feedback created by frobmc.gsl is a virtual spring. The operator must overcome the 

virtual force generated by a 100m long virtual spring that originates from the target 

vehicle. For the prototype, this virtual spring is infinitely wide and the force fe x is 

calculated as described in Figure 4-1, where lvs is the unforced length of the virtual 

spring. As before, this force is limited to the axis of approach because it is this axis for 

which feedback is available at the master controller. Kvs is a spring constant and makes 

the force proportional to fx. No force is created until the separation distance is less than 

the 100m length of the spring. Furthermore, the force is fed back only when the 

teleoperator makes a command input in the nominal docking direction (fx > 0).   The 

feedback imparted to the operator by the master is the sum of the commanded force fx and 

the virtual force fe x. This summed force is then converted to voltage and relayed to the 

manual controller. If a collision with another part of the target vehicle should occur in this 

mode, this force is reflected back by the same method used in mode two. 

4.2.3.3 Mode 4 - Velocity Reflection with Electronic Funneling. In mode 4, 

the code again generates an environment for object interaction that serves as the source 

for the non-visual feedback.   Unlike the previous two modes, all of the object's position 

and attitude components are utilized in the derivation of the feedback. A hypercone of 

off-axes alignment constraints is created from the separation distance between the tracking 

and target vehicles. As can be seen in Figure 4-1, the feedback is only possible when the 

constraints C of the virtual hypercone are satisfied by the ongoing simulation and only 

when the operator is commanding motion in the nominal docking direction (fx > 0). 

The constraints C are explicitly defined below: 
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y-yt\<0.25s 

z-zt\<0.25s 

0-Ot\<O.25Qs 

*-6\<0.25Qs 

^-d<0.25Qs 

where the subscript t indicates a target vehicle variable and the separation distance is s = 

(x-xt). The 0.25 constant was arbitrarily chosen.   The constraints were specifically made 

dependent on the separation distance, tailoring the feedback design to task dynamics. The 

constant can be changed to make the constraints more stringent. In order to provide a 

concrete example of the tolerances created by the constraints, consider two vehicles with a 

separation distance of 12m. The translational position error on the off- axes can be no 

larger than 3m and the attitude angle error can be no larger than 3°. 

The constraints are monitored by frobmc.gsl with additional visual feedback 

provided to the operator if the constraints are not satisfied. This additional visual 

feedback is in the form of the background color of the simulation display and the set of 

crosshairs representing the target and tracking vehicles. The operator adjusts off-axes 

translational positions by "superimposing" the tracking vehicle crosshairs on the target 

vehicles crosshairs. The background color of the cockpit view display will turn green if 

the tracking vehicle with respect to the nominal docking attitude is off in yaw, yellow if off 

in pitch, and purple if off in roll. Because motion of the tracking vehicle, and thus the 

master controller, is only permitted when the software verifies that all constraints are 

satisfied, increased system autonomy and shared control is implied. 

4.3 Communication Software Communication is a very important design trait for a 

teleoperation system because time delay is a major problem source for teleoperation (18). 

Total round-trip communication for the prototype controller is less than 1/5 of a second, 

which causes a slight discrepancy between the visual feedback and the feedback used to 
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provide bilateral control. The communication network for the prototype OBBC 

simulation consists of the basic components needed to perform teleoperation but lacks 

realism in its representation of all components necessary for true remote teleoperation. 

For example, the displays provided for the visual feedback during simulation would 

actually require radio communication to remote cameras. This type of communication 

was not part of the OBBC simulation. 

The communication software that provides the necessary teleoperation 

communication to support the data flow illustrated in Figure 4-3 is written in standard 

UNIX C language. A complete source listing can be found in appendix D. 

visual feedback (position) 

Operator i J 

OBBC_comm_hub.c 

i 

/ 
force 

(f/b ldof o nly) 

force/velocity feedback 

l 

^ { 
i r  ; I                      ' 

Spaceball/Platform 

volts 

serial comm 
software 

-> server_frobmc.c 

Servo Amplifier / ' \               •v. 
position             force (volt s) 

V 
vly 

/ 
i 

R/T Microprocessor* 
IGRIP frobmc.c 
spacecraft simulation L  Actuator/Encoder 

Manual Controller Object and Environment 

Con lmunication 

Figure 4-3. System Data Flow 

4.3.1 Ethernet Communication.   The central hub of all ethernet communication is 

OBBC_comm_hub.c . It is executed on a Sun Microsystems SPARC 2 Workstation. 

This hub provides communication between the SGI workstation and the CIUMERA- 

operated real-time VME microprocessor. The code providing the communication link at 
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the microprocessor necessary for D/A and A/D interface with the manual controller is the 

program fr.c. 

4.3.2 Master Controller Input Communication. The communication software also 

provides serial communication between the SGI workstation and the CIS Dimension 6 

spaceball portion of the master controller. Because the master controller control is 

performed in the same location as the creation of the virtual environment and the control 

of the simulated object, this communication is not truly indicative of remote teleoperation. 

This communication satisfies simulation requirements, but again, reality would require a 

radio communication component necessary to relay information between the master and a 

remote object. The source code is written to support all selectable communication 

parameters of the Dimension 6 spaceball. 

4.4 IGRIP Environment The Deneb Robotics IGRIP software provides many 

interactive tools that the teleoperator may find useful during the simulation. Three that 

have aided in a successful completion of the docking task are the joint values, magnify, 

and rotate world functions. The operation of these tools is described in the operation 

instructions found in Appendix E. The joint value function allows the user to view the 

tracking vehicle's translational and rotational position values. The magnify tool, when 

used in conjunction with the rotate world tool, allows for a close inspection of the mating 

between the target and tracking vehicles. These tools can be used to enhance the views 

generated automatically by frobmc.gsl. 
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V. Demonstration of Prototype Operation 

5.1 Task Description The operation of the prototype OBBC master was limited. A 

simple spacecraft docking simulation was used to demonstrate the functional capability of 

the controller in each of its four modes. In each case the tracking vehicle made an R-bar 

approach to the target vehicle and master control was initiated at a separation distance of 

15 meters. No attitude angles were commanded. The approach was free of any possible 

contingency operation and accuracy of the docking position at task completion was not 

recorded. The task was considered complete when the separation distance was reduced to 

15mm or less. The operator was expected to perform the task as accurately as possible 

and achieve a small terminal velocity. Table 5-1 summarizes each mode's simulation 

performance. 

Characteristic Mode 1 Mode 2 Mode 3 Mode 4 
Initial separation distance 15m 15m 15m 15m 
Tracking method R-bar R-bar R-bar R-bar 
Maximum velocity (m/s) 0.0047 0.0071 0.0114 0.0165 
Velocity at task completion (m/s) 0.0015 0.0003 0.0 0.0 
Duration (s) 3800 4920 2320 4360 

Table 5-1. Master Mode Simulation Summary 

5.2 Closure Rate Profiles For each of the master controller modes, tracking vehicle 

velocity was recorded to illustrate functional differences. Figure 5-1 shows their 

separation closure rates.   These plots should not be interpreted as an evaluation of the 

controller since insufficient controls were applied during data collection. Possible controls 

would have included such factors as accuracy at task completion, skilled or unskilled 

operators, task duration limits, and contingency response. The results are specific to the 
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operator and could change even if rerun due to their sensitivity to operator skill and style. 

For all modes, manual operation was initiated at 3900 seconds because all mode 

simulations were initiated with identical initial command vectors. The profiles for 

operation in modes 1 and 2 illustrate each mode's sensitivity to operator style. The mode 

1 profile shows a non aggressive style indicated by small initial commanded velocities. 

The operator was forced to command input near task completion, resulting in a terminal 

velocity larger than any mode. In contrast, the profile recorded for mode 2 shows an 

aggressive operator style indicated by the large initial commanded velocities, which 

resulted in a slow terminal velocity. 

When making further comparisons, it should be noted from Figure 5-1 that the 

mode 4 zero closure rates indicate translational corrections in the off-axes. The mode was 

designed so that the task could not proceed until the errors in the alignment of the lateral 

axes were corrected.   This design characteristic allows unequaled accuracy in task 

performance.   Errors in the lateral translational axis at task completion were significantly 

less than those of any other mode. In fact, a perfectly piloted tracking vehicle with mode 

4 operation, could achieve significant reductions in task duration due to its high constant 

velocity input (note the maximum velocities in Table 5-1). Neglecting the time for off- 

axes correction in mode 4's profiled data, task duration is 2520s. 

The profiles for modes 3 and 4 show no velocity at task completion, indicating that 

contact between the tracking and target vehicle is never achieved. This is possible only 

because the sensors are assumed to be perfectly accurate and reliable. 
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VI. Conclusion and Recommendations 

6.1 Conclusion Current teleoperation systems are based fundamentally on the slave 

that manipulates the controlled object, and master-slave symmetry is either required or 

assumed in order to provide enhanced telepresence to the operator via the master 

controller. Object-based bilateral control (OBBC) offers a new control concept for 

teleoperation and for master controller design. The benefits of anthropomorphicity and 

bilateral control are obtained without the need for kinematically/geometrically identical 

master-slave systems, complex calibration and joint mapping schemes, detailed task and 

manipulator knowledge, and expensive high DOF force reflection.   Manipulator motion is 

transparent to the user and automatically generated. Subsequently, the controller 

autonomy is increased, thus enhancing task performance and significantly reducing the 

operator's required training for the task. Both the master controller and its feedback are 

tailored to the task and designed ergonomically with no geometrical limitations imposed 

by the design of the manipulator. The obviated need for complex joint mapping 

transformations implies that multiple axis feedback can be selectively reflected to a low 

DOF feedback capable controller, making single-axis feedback a desirable design trait. 

Mode 3 of the prototype controller demonstrates how OBBC can be used to increase the 

utility of single-axis feedback. Furthermore, OBBC facilitates the orchestration of multi- 

axis object/environment information, allowing for the return of useful information to a low 

DOF feedback controller. As a result, practical tactile feedback, like the velocity feedback 

of mode 4, can be implemented to provide enhanced telepresence without dependency on 

force reflection. 

The feasibility of the telepresent OBBC architecture and the utility of its unique 

feedback has been demonstrated through implementation in a spacecraft docking 
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Simulation.   OBBC application is not limited to spacecraft docking, but includes aircraft 

munitions loading, micro-chemistry, and tele-surgery. 

6.2 Recommendations OBBC is unique because its control is performed in object- 

space, and its design utilizes bilateral control. Though object-based teleoperation has very 

recently been demonstrated, never before has it been accomplished with bilateral control. 

Object-based teleoperation is in its infancy, and its general concept deserves further 

exploration. 

6.2.1 Feedback Design. With OBBC, feedback is not just a means to provide 

heuristic, natural manual control.   The feedback itself is designed ergonomically. Useful 

feedback for bilateral control is not limited to force reflection. Many types of tactile 

feedback can now be practical because the feedback design can be tailored to specific task 

kinematics. The many possibilities of feedback design, including optimal feedback 

"mixing" and selective feedback, are the most significant benefit of OBBC and should be 

explored. Specifically to the thesis work, Mode 4 could be enhanced by substituting the 

constant force spring with linearly increasing force derived similarly from the off-axis 

deviation. 

6.2.2 Multi-axis to Single-axis Feedback. OBBC has demonstrated the utility of a 

single-axis feedback capable controller by funneling multi-axis data. This idea of 

"funneled feedback" should be researched.   Master controllers designed with limited DOF 

feedback capability could significantly reduce their cost. The potential cost savings alone 

is reason enough to pursue multi-axis to single-axis feedback. 

6.2.3 Closed Loop Motor Control. The feedback actuation on the prototype hand 

controller has been designed with an open loop motor control. The actuator that provides 

the 1-DOF bilateral control is equipped with an optical encoder. The communication 

software has been designed to handle this required communication flow. However, the 

hardware and software necessary to process encoder data must be augmented. Closed 

loop motor control would enhance the current controller's feedback modes by providing 
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accurate position feedback and would allow additional feedback designs, such as the 

virtual environment suggested in chapter 2, to be more intricately coupled to the task. 
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Appendix A 

A. 1 Design Drawings: Spaceball Platform (cm, not to scale) 
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A.2 Design Drawings: Actuator Casing (cm, not to scale) 
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Appendix B 

B. 1 Prototype's Server Software: Flowchart 
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B.2 Prototype's Server Software: Source Code Listing 

* Name: Paul Woznick, Jul 94 * 
* Serverjrobmc.c Adapted from code provided by T. Bridgman * 

* Purpose: The purpose if this program is to implement a * 
* 4th order Runge-Kutta routine needed to solve 

* 

* differential equations. Specifically, the routine will * 
* perform motion generation computations for a 6 DOF 

* rigid body (r-bar, and v-bar tracking) * 
* for docking procedures. The target platform * 
* is a space station in circular orbit. * 
* * 

#include <stdio.h> 
#include <math.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <errno.h> 
#include <netdb.h> 
#include <signal.h> 
#include <arpa/inet.h> 
include "sb.h" 

#define MAXLINE 4096 
#define MAX_TIMES 500 

float init[12], newfunc[12], new[12], kl[12], k2[12], k3[12], k4[12]; 
float fcl[12][12], frcfunc[12][6], K[9][12], Kinv[12][9], M[9][6]; 
float u_bias[9], input[6], volts, frdof, force_volts; 
float tl,t2,t3,t4,t5,t6,x_home,x, scale, scalex; 
float finalout_l,collide_x,moved; 
struct sockaddr_in cli_addr,serv_addr; 
struct servent *sp; 
char inbuf[MAXLINE],outbufIMAXLINE]; 
int sockfd, op_mode,flag 1 ,scale_button,n, collision; 
int clilen, childpid, newsockfd, count; 
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void open_spaceball(); 
void init_spaceball(Byte mode); 
void write_spaceball(); 
int read_raw_spaceball(); 
void read_spaceball(); 
void parse_spaceball(); 
void close_spaceball(); 
int read_standard (); 
void parse_standard (); 
void calculatevelocityO; 
FILE *out; 

main(argc, argv) 
int arge; 
char *argv[]; 
{ 

/* 
* Declare the 'main' program's variables. 
*/ 

SpaceballData sd; 
char igripbuf[MAXLINE]; 
char returnbuflMAXLINE]; 
int sockport; 
int sockdsc; 
int i, j, k, 1, mm, ctrl_num; 
int stop_process, test; 
float fcn(float[], float[], int); 
float pi, facos(float), sum; 
float frcfix[12], output[6][12]; 
float init[12], no_change, previous_t3; 
float u[9], M_fix[12], altitude; 
float finalout_2, finalout_3, delta; 
float finalout_4, finalout_5, finalout_6; 
float sensitize,collidex; 
void r_bar(); 
void v_bar(); 
void motor_control(); 
void scale_voltage(); 

printf("The server for object is started.W); 

/* Open up file for data collection */ 
out = fopen("velocity4.out","w"); 
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/* 
* Initialize all the variables pertinent to this program to 
* zero (0), to limit the errors which might occur in the 
* computational process. 
*/' 
for(i = 0;i<= ll;i++) 

{ 
finalout_l = 0.0; 
finalout_2 = 0.0; 
finaloutj = 0.0; 
fmalout_4 = 0.0; 
finalout_5 = 0.0; 
finalout_6 = 0.0; 
frcfix[i] - 0.0; 
init[i] = 0.0; 
new[i] = 0.0; 
newfunc[i] = 0.0; 
M_fix[i] = 0.0; 
kl[i] = 0.0; 
k2[i] = 0.0; 
k3[i] = 0.0; 
k4[i] = 0.0; 
u_bias[i] = 0.0; 
forG = 0;j<=ll;j++) 

{ 
fcl[i]D] = 0.0; 

} 
} 
for ( i = 0; i <= 5; i++) 

{ 
input[i] = 0.0; 
for(j = 0;j<=ll;j++) 
{ 

frcfunc|j][i] = 0.0; 
output[i][j] = 0.0; 

} 
} 
for (i = 0; i <= 8; i++ ) 

{ 
u[i] = 0.0; 
for(j = 0;j<=ll;j++) 

K[i][j] = 0.0; 
for(j = 0;j<=5;j++) 

M[i]D] = 0.0; 
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} 
pi = acos(-1.0); 
altitude = 0.0; 
stop_process = 1; 
op_mode = 0; 
volts = 0.0; 
scale = 1.0; 
sensitize = 1.0; 
scalex=1.0; 

/*IMPORTANT* * * *IMPORTANT* * * *IMPORTANT* * * *EVIPORTANT* * * *IMPORT 
ANT* 

* Set the incremental change for the Runge-Kutta computations. 
* This incremental step is in seconds. It can be changed at 
* the discretion of the user. 
*/ 

delta = 20.0; 

/* 
* The following are the values for the appropriate output 
* vectors. This output matrix has a dimension of 6 x 12 
* and it is similar to the 'Hsys' of R. Lawrence's thesis, 1992. 
*/ 

output[0][0] = 1000.0; 
output[l][2] = 1000.0; 
output[2][4] = 1000.0; 
output[3][6] =180.0/3.141592654; 
output[4][8] =180.0/3.141592654; 
output[5][10] = 180.0/3.141592654; 

/* 
* The following is the initialization for this 
* program, SERVERFROBMC.C, to communicate over the 
* network with OBBC_comm_hub.c 

*/ 

if ((sockfd = socket(AF_INET,SOCK_STREAM,IPPROTO_TCP)) < 0) 
perror(" server: cannot open stream socket"); 

printf("client sck# %d\n", sockfd); 

serv_addr.sin_family= AF_INET; 
serv addr.sin addr.s_addr= INADDRANY; 
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serv_addr.sin_port = htons(4903); 

printf("%d is the port\n",serv_addr.sin_port); 
if(bind(sockfd,(struct sockaddr *) &serv_addr,sizeof(serv_addr))<0) 
{ 
perror("server:cannot bind local address"); 
exit(O); 

} 
printf("bindingOK!!!\nM); 
if(listen(sockfd,5)<0) 

perror("listen error"); 
printf("listen()OK!!!\n"); 

/* 
* Check the port socket, the one used for communication between 
* the FROBMC.GSL and this program to ensure the link 
* is properly operating. If the port socket is not functioning 
* properly, send a message to "Standard Error" (stderr) output 
* and exit the program immediately. 
*/ 

sockport = atoi(argv[l]); 

if(argc!=2) 
{ 

fprintf(stderr,"Usage: %s <port>\n", argv[0]); 
exit(l); 

} 
if ( net_init_socket_serv( sockport, «fesockdsc ) != 0 ) 
{ 

fprintf( stderr, "Can't initialize server socket.Yn"); 
printf("the server socket is initialized.\n"); 
exit(l); 

} 

/* 
* Read from FROBMC.GSL. the following: 

The initial controller configuration, ctrlnum, the operation 
* mode (force ref, virtual force ref. etc.), the orbital 
* altitude of the space platform. 
* Then create the initial bias, 'stand-off current using 
* stdoff_vel(altitude, ctrl_num). 
*/ 

* 
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stop_process = net_readsocket( sockdsc, igripbuf); 
if (stop_process = 0 ) 
{ 

sscanf(igripbuf,"%d %d %f", &ctrl_num, &op_mode, &altitude); 
printf("%s\n", igripbuf); 
fflush(stdout); 
stdoffvel(altitude); 

} 

/* Initialize target ultimate position of approach axis. This is 
* dictated by the separation distance and the geometry of the 
* space station. 
*/ 

xhome = -90.374; 
if(ctrl_num==2) 

{ 
x_home = 409.75; 
} 

/* Assign correct tracking method coefficients to the 
* position controller input, system, pre-filter, and 
* gain matricies. These are provided by Richard Lawrence (21). 
*/ 

switch(ctrl_num) 
{ 

case 2: r_bar(); 
break; 

case 3: v_bar(); 
break; 

} 

/* 
* Read in the target orbit characteristics 
*/ 

stop_process = net_*eadsocket( sockdsc, igripbuf); 
if ( stop_process = 0) 
{ 

sscanf(igripbuf, "%f %f %f %f %f 
%f',&input[0],&input[l],&input[2],«&input[3],&input[4],&input[5]); 

printf("%s\n",igripbuf); 
fflush(stdout); 

} 
/* Make the necessary transition from degrees to radians */ 
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for(i=3;i<=5;i++) 
inputp] = (input[i]*3.141592654)/180.0; 

/* Open a path to the spaceball input port and initialize 
* the spaceball (see spaceball user's guide). Initialization is 
* dictated by the sb.h source file. Changes must be coded. 
* In particular, the mode or the argument for init_spaceball. 
*/ 

open_spaceball(7dev/ttyd2",B19200); 
init_spaceball(SB_STANDARD); 

/* make initial handshake to kirk */ 

clilen = sizeof(cli_addr); 
newsockfd = accept(sockfd,(struct sockaddr *) &cli_addr,&clilen); 

if((childpid=fork())<0) 
perror("server: cannot fork."); 

/* if handshake is made, pass the information. */ 
else if(childpid = 0) 

{ 
printf("Communicating\n"); 
close(sockfd); 

volts=0; 
sprintf(outbuf, M%f\n",volts); 

n=strlen(outbuf); 
put_data(newsockfd, outbuf, n); 

/* printf("sent initial h/s.\n"); */ 

/* 
* Continue to loop until the whole process is "killed". That is, 
* the simulation is killed by the DENEB/IGRTP simulation running 
* in the foreground or if bad communication between the two 
* programs occur.    - 
*/ 

while(( 1) && (stop_process =0)) 

{ 
/* 

* Read in spaceball controller information from the RS232 port for 
* the six values of the joints, three translational and 
* three rotational. All these values can be continuously changed 
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* These values must be converted from byte values (-127 to 128) 
* and the z values must be reversed to match the simulation. 
* NOTE: Spaceball x,y and z values do not correspond to the x,y 
* and z values of the simulation. 
*/ 

read_spaceball(&sd); 

frdof = 0; 

/* Check for an adjustment (scaling) to the commanded input. 
*/ 

scale_button = ((sd.button«24)»24); 

switch(scalebutton) 

{ 
case 2:   /* reset scale and sensitivity */ 

scale = 1.0; 
sensitize = 1.0; 
scalex=1.0; 
printf("input back to normal.W); 
break; 

case 4: /* adjust sensitivity to off-axes */ 
sensitize = 0.1; 
printf("off-axes now less sensitive.W); 
break; 

case 5: /* scale input by one-half of off-axes */ 
scale = scale*0.5; 
printf("input of off axes halvedAn"); 
break; 

case 6: /* double the input of axis of interest */ 
scalex=scalex*2; 
if(scalex>4) 
scalex=4; 

printfC'input of axis of interest doubled.V); 
break;- 

case 8: /* double the input of off axes */ 
scale = scale*2.0; 
printf("input of off axes doubled.W); 
break; 

default: /* do nothing */ 
break; 

} 
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/* printf("scale button is %f\n",scale_button); */ 

/* Now read in any spaceball induced changes to the commanded 
* input. Ignore axis of interest if flag 1 conditions met. 

*/ 

tl=((sd.xtrans«24)»24)/-128.0*scale*sensitize; 
t2=((sd.ytrans«24)»24)/128.0* scale* sensitize; 
t3=((sd.ztrans«24)»24)/-128.0*scalex; 
if(flagl>=l&&t3>0) 

{ 
t3=O.0; 

} 
t4=(((sd.xrot«24)»24)/128.0)*(-3.141592654/180.0)*scale*sensitize; 
t5=(((sd.yrot«24)»24)/128.0)*(3.141592654/180.0)*scale*sensitize; 
t6=(((sd.zrot«24)»24)/128.0)*(-3.141592654/180.0)*scale*sensitize; 

if(op_mode-=4) 

{ 
if (t3 > 0) 
t3=l; 

if (t3 < 0) 
t3=-l; 

} 

if (op_mode = 3 && t3 > 0 && force_volts != 20) 

{ 
frdof = t3 - (force_volts/10.0); 
if (previous_t3 > t3) 
frdof= 0; 

input[0]=input[0] + frdof; 
previous_t3 =t3; 

} 
else 

{ 
input[0]=t3+input[0]; 
previous_t3 = 0; 

} 

input[l]=tl+input[l]; 
input [2]=t2+input[2]; 
input[3 ]=t6+input[3 ]; 
input[4]=t4+input[4]; 
input[5]=t5+input[5]; 
/*printf("%f %f %f %f %f 0/of\n",t 1 ,t2,t3,t4,t5,t6); 
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printf("%x %x %x\n",sd.xtrans,sd.ytrans,sd.ztrans);*/ 

/* 
* Create the new forcing array with the input variables 
* Use the equation: 
* 

* init[12] = Gcl[12][6] * r[6][l] - Fcl[12][12] * x[12][l] 

* The Gcl[12][6] matrix is from R. Lawrence's 
* thesis work. In server_frobmc.c, 
* the Gcl[12][6] matrix assumes the responsibility of the 
* forcing function for the equations of motion and, 
* therefore, the matrix is re-assigned to the the matrix 
* frcfunc[12][6]. 

*/ 

for(i = 0;i<=ll;i++) 

{ 
sum = 0.0; 
for(j = 0;j<=5;j++) 

sum = sum + frcfunc[i][j]*input[j]; 
frcfix[i] = sum; 

} 

/* 
* With the equation to obtain the vector array of currents, 
* given as: 
* 

* u[8] = M[9][6] * input[6][l] - K[9][12] * x[6][l] 
* 

* From page 4-11 and 4-12, of R. Lawrence's thesis, the u[9] 
* array contains eight (8) current variables and one (1) 
* thruster value. Therefore, one of parts on the right-hand 
* side of the above equation, 
* 

* M[9][6] * input[6][l] 
* 

* can be multiplied now, while the remaining part 

K[9][12] * x[6][l] 
* 

* can only be derived at the completion of one full loop of 
* this routine because that is when the x[6][l] 
* values are obtained. 
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V 

for (i = 0; i <= 8; i++) 

{ 
sum = 0.0; 
for(j = 0;j<=5;j++) 

sum = sum + M[i][j]*input[j]; 
M_fix[i] = sum; 

} 

/* 
* Loop which obtains all Kl [i] values. 
*/ 

for(i = 0;i<=ll;i++) 

{ 
for(j = 0;j<=ll;j++) 

newöj=fcl[i]ü]; 
kl[i] = fcn(new, init, 11) + frcfix[i]; 

} 

/* 
* Loop which obtains all K2[i] values. 
*/ 

for(i = 0;i<=ll;i++) 

{ 
for(j = 0;j<=ll;j++) 
{ 

new[j] = fcl[i][j]; 
newfuncö] = init[j] + ((delta/2.0) * kl[j]); 

} 
k2[i] = fcn(newfunc, new, 11) + frcfix[i]; 

} 

/* 
* Loop which obtains all K3[i] values. 
*/ 

for (i = 0; i<= 11; i++) 

{ 
for(j = 0;j<=ll;j++) 

{ 
new[j]=fcl[i][j]; 
newfuncö] = initfj] + ((delta/2.0) * k2[j]); 
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} 
k3[i] = fcn(newfunc, new, 11) + frcfix[i]; 

} 

/* 
* Loop which obtains all K4[i] values. 
*/ 

for (i = 0; i <= 11; i++) 
{ 

for(j = 0;j<=ll;j++) 

{ 
newö] = fcl[i][j]; 
newflinc[j] = initp] + delta * k3[j]; 

} 
k4[i] = fcn(newfunc, new, 11) + frcfixfi]; 

} 

/* 
* The following loop solves each incremental value for the the 
* sought after x[6][l] array from the equation: 
* 

* x(DOT)[12][l] = M_fix[12][l] + Fcl[12][12] * x(*)[12][l] 
* 

* or, as will be shown below: 
* 

x(*)[12][l] = init[12][l] 

* And to derive the desired ouput array, y[6][l] 
* 

y[6][l] = output[6][12]*x(*)[12J[l], 
*/ 

for (i = 0; i <= 11; i++) 
init[i] = init[i] + (delta/6.0)*(kl[i] + 2.0*k2[i] + 2.0*k3[i] + k4[i]); 

/* 
* The following will obtain the 'u' vector array, which 
* consists of eight current values and one thruster 
* value. The bias current, obtained in the sub- 
* routine, stdoff_vel(altitude, crtl_num), is also added on in 
* all 9 cases. (9 cases = 8 currents + 1 thruster) 
* 

* u[9][l] = M_fix[9][l] - K[9][12] * x(*)[12][l] 
■*/ 
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for (i = 0; i <= 8; i++) 

{ 
sum = 0.0; 

forG = 0;j<=ll;j++) 
sum = sum + K[i][j]*initO]; 

u[i] = M_fix[i] - sum + u_bias[i]; 

} 

/* 
* The following statements will find the appropriate 
* output array to move the OBJECT, in the DENEB/IGRIP 
* simulation, accordingly. The below statements performed 
* to the equation 
* 

y[6][l] = output[6][12]*x(*)[12][l] 
*/ 

for (i = 0; i<= 11; i++) 

{ 
if(output[0][i]!=0.0) 

finaloutl = output[0][i] * init[i]; 
if(output[l][i]!=0.0) 

finalout_2 = output[l][i] * init[i]; 
if(output[2][i]!=0.0) 

finalout_3 = output[2][i] * init[i]; 
if(output[3][i] !=0.0) 

finalout_4 = output[3][i] * initfi]; 
if(output[4][i] !=0.0) 

finalout_5 = output[4][i] * init[i]; 
if(output[5][i]!=0.0) 

finalout_6 = output[5][i] * initfi]; 

} 

/* 

* Send the data back to frobmc.gsl. 
*/ 

sprintf(returnbuf,"%f %f %f %f %f %f, finalout_l, finalout_2, finaloutj, 
finalout_4, finalout_5, finalout_6); 

/* 
* Check to make sure the data made it back to frobmc.gsl 
*/ 
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if ( net_writesocket( sockdsc, returnbuf) != 0 ) 

{ 
printf("Write failed, server aborting...\n"); 
break; 

} 

/* The igripbuf contains environment information from 
* the frobmc.gsl program. This information must be read 
* and further manipulated before being relayed to the 
* connect.c program on kirk 
*/ 

if (net_readsocket(sockdsc,igripbuf) != 0) 

{ 
printf("Read from IGRIP failed, IGRIP server aborting..\n"); 
net_close_socket(sockdsc); 
break; 

} 
sscanf(igripbuf, "%f %d", &force_volts,&collision); 
fflush(stdout); 
printf("force volts = %f\n",force_volts); 

/* Data must be evaluated to perform neccessary motor control. 
*/ 

motor_control(); 
printfC'volts = %f\n",volts); 

/* send motor control voltage to OBBC_comm_hub.c on kirk 
* a handshake from kirk must be received first. 
*/ 

get_data(newsockfd,inbuf,MAXLINE); 

sprintf(outbuf,"%f\n",volts); 
n=strlen(outbuf); 
put_data(newsockfd,outbuf,n); 

/* calculate velocity */ 

calculate_velocity(finalout_l ,delta); 

/* reset motor voltage */ 

volts = 0.0; 
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} 
} 
printf("out of else loop,program terminated.W); 

if(l = 2)fclose(out); 
/*net_close_socket( sockdsc); 
exit( 0 );*/ 

} 

/ ^|C 5|C 5|C 5|C SfC 3|C 9|C 9|C S|C 5|C JfC 3|C 5|C 3JC #JC 3|C 3|C SfC 3|C 5f» 3JC 3JC 3fC 3|C ?|C 3(5 5|C 3|C 3|C 1* 1* 1* *t* f* t* *t* 1* *P 1* 1* 1* 1^ 1* 1* f* f* f* T* ^*p*p'p*l*3f*?p*p5J»'l**p'p'T**|* *p *|* *P 

* 

* Subroutine fcn() which operates in a loop and to obtains a 
* result returns to each of the seperate K[i] value loops. 
* 

float fcn(NEWl,NEW2, T) 
float NEW1[],NEW2[]; 
intT; 
{ 

float value; 
int m; 
value = 0; 
for (m = 0; m <= T; m++) 
{ 

value = value + (NEWl[m] * NEW2[m]); 
} 
return value; 

} 

* 

* The following subroutine will determine the difference in 
* velocities for two space vehicles. Then it will adjust the 
* objects bias current appropriately so that the two will be 
* able to stay parallel-with each other in the same orbital 
* plane. 
* 
♦♦He************************************************************/ 

void stdoffvel(orbit) 
float orbit; 
{ 

int q, r, tolerance; 
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float sum, tol_check[12], sub_input[6], sub_frcfix[12]; 
float subM_fix[12], fabs(float); 
float sub_init[12], sub_newfunc[12], sub_new[12]; 
float u_biaslast[ 12], sub_frcfunc[12], sub_delta; 
for(q = 0;q<=5;q++) 

sub_input[q] = 0.0; 
for(r = 0;r<=ll;r++) 

{ 
sub_init[r] = 0.0; 
u_biaslast[r] = 0.0; 
sub_newfunc[r] = 0.0; 
sub _new[r] = 0.0; 
sub frcfttnc[r] = 0.0; 
tol_check[r] = 0.0; 

} 

/* 
* Set the "tolerance" flag low to enable the R-K rountine to 
* sufficiently compute the values necessary for the calculation. 
*/ 

tolerance = 0; 
sub_delta = 20.0; 
sub_input[0] = (orbit - 400.0) * 1000.0; 
if (abs(sub_input[0]) < 1.0) 

{ 
for (q = 0; q <= 8; q++) 

u_bias[q] = 0.0; 
tolerance = 1; 
printf("This is where subjnput < 1.0.W); 
fflush(stdout); 

} 

/* 
* Create the new forcing array for the inputted variables 
* Multiply the input array, the input[i] values, which is held 
* in a 6 x 1 matrix, and pre-multiply it with the 
* frcfunc[i][j] values, which are held in a 12 x 6 matrix, to 
* develop a new 12x1 matrix. For the bias current 
* level, this vector array will only have to be computed 
* once because the values of'input[q]' are static, or fixed. 
*/ 

for(q = 0;q<=ll;q++) 
{ 
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sum = 0.0; 
for (r = 0; r <= 5; r++) 

sum = sum + frcfunc[q][r]*sub_input[r]; 
sub_frcfix[q] = sum; 

} 

/* 
* With the equation to obtain the vector array of currents, 
* given as: 
* 

* u[i] = M[i][j]*input[j][l] - K[i][k]*x[k][l] 
* 

* Find the new M[i][j] matrix now and put the newly obtained 
* values back into M[i][j]. This vector array will only have 
* to be completed once since both the values of M[q][r] and 
* input[r] are static, or fixed. 
*/ 

for (q = 0; q <= 8; q++) 

{ 
sum = 0:0; 
for(r = 0;r<=5;r++) 

sum = sum + M[q] [r] *sub_input[r]; 
subM_fix[q] = sum; 

} 

/* 
* Loop until all values in the 'u' vector array, the eight 
* bias currents and the thruster value meet the tolerance 
* desired by the programmer. 
*/ 

while (tolerance == 0) 

{ 

/* 
* Loop which obtains all Kl[q] values. 
*/ 

for(q = 0;q<=ll;q++) 

{ 
for(r = 0;r<=ll;r++) 

sub_new[r] = fcl[q][r]; 
kl[q] = fcn(sub_new, submit, 11) + sub_frcfix[q]; 

} 
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/* 
* Loop which obtains all K2[q] values. 

*/ 

for(q = 0;q<=ll;q++) 

{ 
for(r = 0;r<=ll;r++) 

{ 
sub_new[r] = fcl[q][r]; 
sub_newfunc[r] = sub_init[r] + ((sub_delta/2.0) * kl[r]); 

} 
k2[q] = fcn(sub_newfunc, sub_new, 11) + sub_frcfix[q]; 

} 

/* 
* Loop which obtains all K3[q] values. 
*/ 

for(q = 0;q<=ll;q++) 

{ 
for(r = 0;r<=ll;r++) 

{ 
sub_new[r] = fcl[q][r]; 
sub_newflinc[r] = sub_init[r] + ((sub_delta/2.0) * k2[r]); 

} 
k3[q] = fcn(sub_newfunc, sub_new, 11) + sub_frcfix[q]; 

} 

/* 

* Loop which obtains all K4[i] values. 
*/ 

for(q = 0;q<=ll;q++) 
{ 

for(r = 0;r<=ll;r++) 

{ 
sub_new[r] = fcl[q][r]; 
sub_newfunc[r] = sub_init[r] + sub_delta * k3[r]; 

} 
k4[q] = fcn(sub_newfunc, sub_new, 11) + sub_frcfix[q]; 

} 

/* 
* Find the incremental values of newinit and then compare them 
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* with the last values of'new_initlast' to ensure all the 
* values will meet the tolerance specification. 
*/ 

for(q = 0;q<=ll;q++) 
sub_init[q] = sub_init[q] + (sub_delta/6.0)*(kl[q] + 2.0*k2[q] + 2.0*k3[q] + 

k4[q]); 
for (q = 0; q <= 8; q++) 

{ 
sum = 0.0; 
for(r = 0;r<=ll;r++) 

sum = sum + K[q][r]*sub_init[r]; 
u_bias[q] = -1.0*(subM_fix[q] - sum); 
tol_check[q] = u_bias[q] - u_biaslast[q]; 
if(tol_check[q]<0.0) 

tol_check[q] = -tol_check[q]; 

} 

if(tol_check[0]< 0.000001) 

{ 
if(tol_check[l]< 0.000001) 

{ 
if(tol_check[2]< 0.000001) 

{ 
if (tol_check[3] < 0.000001 ) 

{ 
if (tol_check[4] < 0.000001 ) 

{ 
if(tol_check[5]< 0.000001) 

{ 
if (tol_check[6] < 0.000001 ) 

{ 
if(tol_check[7]< 0.000001) 

{ 
if (tol_check[8] < 0.000001 ) 

{ 
-     for (q =0 ; q <= 5; q++) 

{ 
tolerance = 1; 

} 
} 

} 
} 

} 
} 
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} 

} 
} 
if (tolerance ==0) 
{ 

for(q = 0;q<=ll;q++) 
u_biaslast[q] = u_bias[q]; 

} 

* 

* Purpose: The purpose if this subroutine is to re-assign the 
* values of the matrices to enable the usage of a 
* controller to operate in the R-bar tracking approach. 
* 

void r_bar() 
{ 

/* 
* The following are the coefficients for the K matrix, the 
* controller gain matrix, for R-Bar tracking. These numbers 
* were generaterd by MATLAB (Lawrence,Bridgman). 
*/ 

K[0][0 
K[0][1 
K[0][2 
K[0][3 
K[0][4 
K[0][5 
K[0][6 
K[0][7 
K[0][8 
K[0][9 
K[0][10] 

K[0][1 

K[1][0 
K[l][l 
K[l][2 

] 

-1.9372844e+01 
1.1382179e+03 
-1.0484363e+01 
-1.2627757e+04 
4.8058444e-03; 
2.6076772e-01; 
1.9799792e+04 
6.5975727e+06 
-8.0401281e+03 
-6.3170347e+05 

= -8.9295885e+03; 
: -2.3974952e+06; 

-1.9372920e+01; 
1.1383228e+03; 
-1.048463 9e+01; 
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K[l][3] = -1.2627702e+04; 
K[l][4] = 4.7943422e-03; 
K[l][5] = 2.6058334e-01; 
K[l][6] = -1.9799731e+04; 
K[l][7] = -6.5975459e+06; 
K[l][8] = 8.0401275e+03; 
K[l][9] = 6.3170358e+05; 
K[l][10] = 8.9295654e+03; 
K[l][ll] = 2.3974857e+06; 

K[2][0] = 2.1350014e+01; 
K[2][l] = 1.3290093e+04; 
K[2][2] = -1.9259708e+01; 
K[2][3] = -7.0571294e+03; 
K[2][4] = -8.3645144e-02; 
K[2][5] = -3.6078841e+00; 
K[2][6] = -1.6592817e+04; 
K[2][7] = 1.6285092e+05; 
K[2][8] = 5.7744003e+02; 
K[2][9] = 4.6901470e+04; 
K[2][10] = = -5.6121438e+04; 
K[2][ll] = = -2.8910389e+06; 

K[3][0] = 2.1349998e+01; 
K[3][l] = 1.3290139e+04; 
K[3][2] = -1.9259816e+01; 
K[3][3] = -7.0571196e+03; 
K[3][4] = -8.3644301e-02; 
K[3][5] = -3.6078704e+00; 
K[3][6] = 1.6592063e+04; 
K[3][7] = -1.6316309e+05; 
K[3][8] = -5.7743319e+02; 
K[3][9] = -4.6902710e+04; 
K[3][10] = = 5.6121730e+04; 
K[3][ll] = = 2.8911501e+06; 

K[4][0] = -7.7490634e+00; 
K[4][l] = 4.5518412e+02; 
K[4][2] = -4.1934744e+00; 
K[4][3] = -5.0511578e+03; 
K[4][4] = 1.9192968e-03; 
K[4][5] = 1.0424961e-01; 
K[4][6] = 4.8473696e+04; 
K[4][7] = 1.5742645e+07; 
K[4][8] = -3.2478818e+02; 
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K[4] [9] = 5.8681483e+04; 
K[4] [10] = =-1.7758985e+04; 
K[4] [11] = = -5.5497698e+06; 

K[5] [0] = -7.7492422e+00; 
K[5] [1] = 4.5543218e+02; 
K[5] [2] = -4.1941265e+00; 
K[5] [3] = -5.0510259e+03; 
K[5] [4] = 1.9207779e-03; 
K[5] [5] = 1.042908 le-01; 
K[5] [6] = -4.8473672e+04; 
K[5] [7] = -1.5742634e+07; 
K[5] [8] = 3.2478792e+02; 
K[5] [9] = -5.8681439e+04; 
K[5] [10] = = 1.7758976e+04; 
K[5] [11] = = 5.5497660e+06; 

K[6] [0] = 1.3774246e+00; 
K[6] [1] = 8.5741921e+02; 
K[6] [2] = -1.2425465e+00; 
K[6] [3] = -4.5530252e+02; 
K[6] [4] = -5.4403149e-03; 
K[6] [5] = -2.3349659e-01; 
K[6] [6] = 3.2213237e+03; 
K[6] [7] = 8.8134193e+05; 
K[6] [8] = 5.7155433e+04; 
K[6] [9] = 4.7502364e+06; 
K[6] [10] = = -7.6466147e+02; 
K[6] [11] = ;-3.2563935e+05; 

K[7] [0] = 1.3774149e+00; 
K[7] [1] = 8.5743450e+02; 
K[7] [2] = -1.2425841e+00; 
K[7] [3] = -4.5529419e+02; 
K[7] [4] = -5.3525526e-03; 
K[7] [5] = -2.3203597e-01; 
K[7] [6] = -3.22137-23e+03; 
K[7] [7] = -8.8136207e+05; 
K[7] [8] = -5.7155432e+04; 
K[7] [9] = -4.7502365e+06; 
K[7] [10] = = 7.6468029e+02; 
K[7] [11] = = 3.2564653e+05; 

K[8] [0] = 1.2111042e-01; 
K[8] [1] = 7.1257672e+01; 
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K[8][2] = 
K[8][3] = 
K[8][4] = 
K[8][5] - 
K[8][6] = 
K[8][7] = 
K[8][8] = 
K[8][9] = 
K[8][10] 
K[8][ll] 

-9.8619627e-02; 
-3.3139152e+01; 
3.1574096e+01; 
1.54673 7 le+03; 

-9.548101 le-03; 
-3.281169 le+00; 
-3.7105341e-02; 
-7.7442906e+00; 
2.4333163e-03; 
1.1794325e+00; 

/* 
* The following are the coefficients for the M matrix, the pre- 
* filter matrix, for R-bar tracking. 
* These numbers were generated by MATLAB (Lawrence,Bridgman) 
*/ 

M[0][0] = -1.9372844e+01; 
M[0][1] = -1.0484557e+01; 
M[0][2] = 4.7994661e-03; 
M[0][3] = 2.1123605e+04; 
M[0][4] = -8.0977716e+03; 
M[0][5] = -7.6148644e+03; 

M[1][0] = -1.9372920e+01; 
M[l][l] = _1.0484445e+01; 
M[l][2] = 4.8007206e-03; 
M[l][3] = -2.1123544e+04; 
M[l][4] = 8.0977710e+03; 
M[l][5] = 7.6148414e+03; 

M[2][0] = 1.2182571e+01; 
M[2][l] = -1.9259736e+01; 
M[2][2] = -8.3644978e-02; 
M[2][3] = -1.6627255e+04; 
M[2][4] = 5.7893960e+02; 
M[2][5] = -5.5930583e+04; 

M[3][0] = 1.2182555e+01; 
M[3][l] = -1.9259788e+01; 
M[3][2] = -8.3644467e-02; 
M[3][3] = 1.662650le+04; 
M[3][4] = -5.7893276e+02; 
M[3][5] = 5.5930875e+04; 
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M[4][0] = 
M[4][l] = 
M[4][2] = 
M[4][3] = 
M[4][4] = 
M[4][5] = 

-7.7490634e+00; 
-4.1939361e+00; 
1.9220176e-03; 
5.1638699e+04; 

-3.0019900e+02; 
-1.4629438e+04; 

M[5][0] = 
M[5][l] = 
M[5][2] = 
M[5][3] = 
M[5][4] = 
M[5][5] = 

M[6][0] = 
M[6][l] = 
M[6][2] = 
M[6][3] = 
M[6][4] = 
M[6][5] - 

-7.7492422e+00; 
-4.1936648e+00; 
1.9180571e-03; 

-5.1638675e+04; 
3.0019874e+02; 
1.4629429e+04; 

7.8597663e-01; 
-1.2425733e+00; 
-5.3858544e-03; 
3.404685le+03; 
5.764761le+04; 

-5.8255894e+02; 

M[7][0] = 
M[7][l] = 
M[7][2] = 
M[7][3] = 
M[7][4] = 
M[7][5] = 

7.8596693e-01; 
-1.2425573e+00; 
-5.407013 le-03; 
-3.4047338e+03; 
-5.7647610e+04; 
5.8257776e+02; 

M[8][0] = 
M[8][l] = 
M[8][2] = 
M[8][3] = 
M[8][4] = 
M[8][5] = 

7.1462518e-02 
-9.8619627e-02 
3.162259le+01 

-9.548101 le-03 
-3.7105341e-02 
2.4333163e-03 

/* 
* The following are the coefficients for the closed loop 
* matrix needed for R-bar tracking. Generated by MATLAB. 
*/ 

fcl[0][l] = 1.0; 

fcl[l][0] 
fcl[l][l] 
fcl[l][2] 

-5.1051910e-06; 
-5.5693194e-03; 
8.0709427e-06; 
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fcl[l][3] = 
fcl[l][4] = 
fcl[l][5] = 
fcl[l][6] = 
fcl[l][7] = 
fcl[l][8] = 
fcl[l][9] = 
fcl[l][10] 
fcl[l][ll] 

5.2205767e-03; 
3.5051926e-08; 
1.5119071e-06; 
1.5802786e-07; 
6.5408553e-05; 

-1.4335932e-09; 
2.5981651e-07; 
-6.1117026e-08; 
-2.3302007e-05; 

fcl[2][3] =1.0; 

fcl[3][0] = 
fcl[3][l] = 
fcl[3][2] = 
fcl[3][3] - 
fcl[3][4] = 
fcl[3][5] = 
fcl[3][6] = 
fcl[3][7] = 
fcl[3][8] - 
fcl[3][9] = 
fcl[3][10] 
fcl[3][ll] 

-1.5126204e-06 

-2.1743624e-03 
-8.1862214e-07 

-9.8596385e-04 
3.7478776e-10 
2.0353354e-08 
2.3765060e-09 
1.0449128e-06 
-2.5176599e-ll 
4.3071479e-09 
-9.0131231e-10; 
-3.6980522e-07; 

fcl[4][5] = 1.0; 

fcl[5][0] = 
fcl[5][l] = 
fcl[5][2] = 
fcl[5][3] = 
fcl[5][4] = 
fcl[5][5] = 
fcl[5][6] - 
fcl[5][7] = 
fcl[5][8] = 
fcl[5][9] = 
fcl[5][10] 
fcl[5][ll] 

2.2754180e-08 
9.0926835e-06 
-5.9408860e-08 
-2.4888944e-05 
-8.3504213e-04 
-4.0843854e-02 
1.9793661e-07 
6.4205930e-05 
9.8030032e-07. 
2.0440757e-04; 
-4.3297856e-08; 
-2.3151249e-05; 

fcl[6][7] = 1.0; 

fcl[7][0] 
fcl[7][l] 
fcl[7][2] 

1.3678761e-14; 
-8.2696450e-ll; 
1.8553312e-13; 
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fcl[7][3] = 
fcl[7][4] = 
fcl[7][5] - 
fcl[7][6] = 
fcl[7][7] = 
fcl[7][8] = 
fcl[7][9] = 
fcl[7][10] 
fcl[7][ll] 

-4.8641306e-12 
-2.0444772e-15 
-3.042809 le-14 
-1.0752985e-04 
-4.3338970e-03 
3.2474382e-06 
2.7426953e-04 
-2.9926523e-04 
-1.3879672e-02 

fcl[8][9] = 1.0; 

fcl[9][0] = 
fcl[9][l] = 
fcl[9][2] - 
fcl[9][3] = 
fcl[9][4] = 
fcl[9][5] = 
fcl[9][6] = 
fcl[9][7] = 
fcl[9][8] = 
fcl[9][9] = 
fcl[9][10] 
fcl[9][ll] 

1.8386265e-15 
1.9163855e-12 
1.2998572e-15 
1.6394579e-12 
-5.3121648e-14 
3.7007982e-12 

-2.3849997e-06 
-4.1956024e-04 
-2.9269167e-04 
-2.4093633e-02 
-2.3515522e-06 
-3.2041876e-05 

fcl[10][ll]= 1.0; 

fcl[ll][0] = 
fcl[ll][l] = 
fcl[ll][2] = 
fcl[ll][3] = 
fcl[ll][4] - 
fcl[ll][5] = 
fcl[ll][6] - 
fcl[ll][7] = 
fcl[ll][8] = 
fcl[ll][9] = 
fcl[ll][10] 
fcl[ll][ll] 

1.3811916e-13 
-L2208962e-10 
3.7644795e-13 
-8.6974114e-ll 
-4.1910707e-15 
-6.8744864e-14 
-2.4813087e-04 
5.1646815e-03 
5.6838123e-06 

= 4.7023891e-04 
= -8.6626763e-04; 
= -4.5582467e-02; 

/* 
* The forcing function vector of the R-bar tracking procedure. 
*/ 

frcrunc[l][0] = 5.1051910e-06; 
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} 

frcfunc[3][0] = 1.5126204e-06; 
frcfunc[5][0] = -2.2754180e-08; 
frcfanc[7][0] =-1.3678761e-14; 
frcfunc[9][0] =-1.8386266e-15; 
frcfunc[ll][P] =-1.3811916e-13; 

frcfonc[l][l] = -8.0709427e-06; 
frcfunc[3][l] = 8.1862214e-07; 
frcfunc[5][l] = 5.9408860e-08; 
frcfunc[7][l] =-1.8553312e-13; 
frcfunc[9][l] =-1.2998570e-15; 
frcfunc[ll][l] = -3.7644795e-13; 

frcfunc[l][2] =-3.5051926e-08 
frcfunc[3][2] =-3.7478776e-10 
frcfunc[5][2] = 8.3504213e-04 
frcfunc[7][2] = 2.0444795e-15 
frcfunc[9][2] = 5.3121680e-14 
frcfonc[ll][2]= 4.1910758e-15 

frcfunc[l][3] =-1.5802786e-07 
frcfunc[3][3] = -2.3765060e-09 
frcfunc[5][3] =-1.9793661e-07 
frcfunc[7][3] = 1.0752985e-04 
frcfunc[9][3] = 2.3849997e-06 
frcfunc[ll][3]= 2.4813087e-04; 

frcfunc[l][4] = 1.4335932e-09; 
frcfunc[3][4] = 2.5176599e-ll; 
frcfunc[5][4] = -9.8030032e-07; 
frcfunc[7][4] =-3.2474382e-06; 
frcfunc[9][4] = 2.9269167e-04; 
frcfunc[ll][4] = -5.6838123e-06; 

frcfunc[l][5] = 6.1117026e-08 
frcfunc[3][5] = 9.013123 le-10 
frcfunc[5][5] = 4.3297856e-08 
frcfunc[7][5] = 2.9926523e-04 
frcfunc[9][5] = 2.3515522e-06; 
frcfunc[ll][5]= 8.6626763e-04; 

* 

70 



* Purpose: The purpose if this subroutine is to re-assign the 
* values of the matrices to enable the graphics 
* simulation to depict V-bar tracking maneuevers. 
* 

void v_bar() 

{ 

/* 
* The following are the coefficients for the K matrix (contains 
* the controller gain coefficients), needed by V-Bar tracking. 
*/ 

K[0 
K[0 
K[0 
K[0 
K[0 
K[0 
K[0 
K[0 
K[0 
K[0 
K[0 
K[0 

K[l 
K[l 
K[l 
K[l 
K[l 
K[l 
K[l 
K[l 
K[l 
K[l 
K[l 
K[l 

K[2 
K[2 
K[2 
K[2 
K[2 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10] = 

0 
1 
2 
3 
4 
5 
6 

7 
8 
9 
10] = 

-3.6612135e+01; 
-1.3904802e+04; 
5.1325587e+00; 
-1.0949306e+04; 
8.3798158e-03; 
5.9216850e-01; 
2.6305463e+01; 
5.9199334e+03; 
-1.8968539e+03; 
-1.6171560e+04; 
-1.801923 8e+04; 
-1.6660839e+06; 

-3.6612122e+01; 
-1.3904757e+04; 
5.1326473e+00; 
-1.0949301e+04; 
8.3862481e-03; 
5.9261237e-01; 
-2.6300618e+01; 
-5.9197905e+03; 
1.8968117e+03; 
1.6322903e+04; 
1.8019244e+04; 
1.666067le+06; 

1.3096827e+01; 
6.1718000e+03; 
-4.5054323e+00; 
2.2426954e+03; 
-4.2521850e-03; 
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K[2][5] = -3.4124974e-01; 
K[2][6] = -7.2112769e+03; 
K[2][7] = -6.0229524e+05; 
K[2][8] = 9.6384832e+02; 
K[2][9] = .8.4922898e+05; 
K[2][10] = -5.2040471e+02; 
K[2][ll] = -1.3382572e+05; 

K[3][0] - 1.3096872e+01; 
K[3][l] = 6.1718330e+03; 
K[3][2] = -4.5054138e+00; 
K[3][3] = 2.2427073e+03; 
K[3][4] = -4.1720655e-03; 
K[3][5] = -3.3794867e-01; 
K[3][6] = 7.2112753e+03; 
K[3][7] = 6.0229520e+05; 
K[3][8] = -9.6402456e+02; 
K[3][9] = -8.4929048e+05; 
K[3][10] = 5.2042519e+02; 
K[3][ll] = 1.3383270e+05; 

K[4][0] = -2.3620767e+00; 
K[4][l] = -8.9708690e+02; 
K[4][2] = 3.3112876e-01; 
K[4][3] = -7.0640921e+02; 
K[4][4] = 5.2476146e-04; 
K[4][5] = 3.7588427e-02; 
K[4][6] = 1.6979459e+04; 
K[4][7] = 1.4148367e+06; 
K[4][8] = 6.9926058e+01; 
K[4][9] = 4.1536603e+05; 
K[4][10] = -1.6119563e+02; 
K[4][ll] = -5.2096581e+04; 

K[5][0] = -2.3620689e+00; 
K[5][l] = -8.9707819e+02; 
K[5][2] = 3.3114260e-01; 
K[5][3] = -7.0640415e+02; 
K[5][4] = 5.5692008e-04; 
K[5][5] = 3.8849049e-02; 
K[5][6] = -1.6979459e+04; 
K[5][7] = -1.4148367e+06; 
K[5][8] = -6.9928781e+01; 
K[5][9] = -4.1535627e+05; 
K[5][10] = 1.6119602e+02; 
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K[5][ll]=   5.2095498e+04; 

K[6 
K[6 
K[6 
K[6 
K[6 
K[6 
K[6 
K[6 
K[6 
K[6 
K[6 
K[6 

K[7 
K[7 
K[7 
K[7 
K[7 
K[7 
K[7 
K[7 
K[7 
K[7 
K[7 
K[7 

K[8 
K[8 
K[8 
K[8 
K[8 
K[8 
K[8 
K[8 
K[8 
K[8 
K[8 
K[8 

0] =   5.2385689e+00 
1] =   2.4685985e+03 
2] = :1.8022490e+00 
3] =   8.9703003e+02 
4] = -2.0229852e-03 
5] = -1.4965554e-01 
6] =   2.2402244e+02 
7] =   7.817551 le+03 
8] =   7.5309034e+03 
9] =   7.4136323e+06 
10]= -8.693483 le+02 
11]= -8.1372833e+05 

0] =   5.2389108e+00 
1] =   2.4688547e+03 
2] = -1.8020894e+00 
3] =   8.9713105e+02 
4] = -1.3467150e-03 
5] = -1.2202382e-01 
6] = -2.2402310e+02 
7] = -7.8175666e+03 
8] = -7.5309739e+03 
9] = -7.4136569e+06 
10]=   8.6935651e+02 
11]=   8.1373112e+05 

0] = 7.5763769e-02 
1] = 2.9838519e+01 
2] = -1.3043747e-02 
3] = 2.1240033e+01 
4] = 9.9516137e+00 
5] = 8.6823629e+02 
6] = -7.9539094e-02 
7] = -2.3193669e+00 
8] = -1.3096549e+00 
9] = -2.7011420e+03 
10]= 1.7483581e-01 
11]=   2.9749725e+02 

/* 
* The following coefficients are for the M matrix, the pre- 
* filter matrix. These values were generated by MATLAB. 
* V-Bar tracking. 
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*/ 

M[0][0] = -3.6612135e+01; 
M[0][1] = 5.1326009e+00; 
M[0][2] = .8.3737002e-03; 
M[0][3] = 2.5909729e+01; 
M[0][4] = -1.9521226e+03; 
M[0][5] = -1.8304848e+04; 

M[1][0] = -3.6612122e+01; 
M[l][l] = 5.1326052e+00; 
M[l][2] = 8.3923637e-03; 
M[l][3] = -2.5904884e+01; 
M[l][4] = 1.9520804e+03; 
M[l][5] = 1.8304854e+04; 

M[2][0] = -3.6105526e+01; 
M[2][l] = -4.5054050e+00; 
M[2][2] = -4.0171014e-03; 
M[2][3] = -7.1960649e+03; 
M[2][4] = 3.0883771e+03; 
M[2][5] = -7.0489404e+02; 

M[3][0] = -3.6105481e+01; 
M[3][l] = -4.5054410e+00; 
M[3][2] = -4.407149 le-03; 
M[3][3] = 7.1960632e+03; 
M[3][4] = -3.0885533e+03; 
M[3][5] = 7.0491452e+02; 

M[4][0] = -2.3620767e+00; 
M[4][l] = 3.3114037e-01; 
M[4][2] = 6.2504192e-04; 
M[4][3] = 1.6943090e+04; 
M[4][4] = 9.7619402e+02; 
M[4][5] = -2.3989392e+02; 

M[5][0] = -2.3620689e+00; 
M[5][l] = 3.3113099e-01; 
M[5][2] = 4.5663961e-04; 
M[5][3] = -1.6943090e+04; 
M[5][4] = -9.7619675e+02; 
M[5][5] = 2.398943 le+02; 

M[6][0] = -1.4442372e+01; 
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M[6][l] = -1.8020246e+00; 
M[6][2] = -1.5768961e-05; 
M[6][2] = 2.2191543e+02; 
M[6][3] = 2.5670786e+04; 
M[6][4] = -2.3900313e+03; 

M[7][0] = -1.4442030e+01; 
M[7][l] = -1.802313 8e+00; 
M[7][2] = -3.3539312e-03; 
M[7][3] = -2.2191608e+02; 
M[7][4] = -2.5670856e+04; 
M[7][5] = 2.3900394e+03; 

M[8][0] = 2.6115867e-02; 
M[8][l] = -1.3043747e-02; 
M[8][2] = 1.0000109e+01; 
M[8][3] = -7.9539094e-02; 
M[8][4] = -1.3096549e+00; 
M[8][5] = 1.7483581e-01; 

/* 
* The following are the coefficients for the closed loop matrix 
* generated by MATLAB (Lawrence,Bridgman) for V-Bar tracking. 
*/ 

fcl[0][l] = 1.0; 

fcl[l][0] = 
fcl[l][l] - 
fcl[l][2] = 
fcl[l][3] = 
fcl[l][4] = 
fcl[l][5] = 
fcl[l][6] = 
fcl[l][7] = 
fcl[l][8] = 
fcl[l][9] = 
fcl[l][10] 
fcl[l][ll] 

2.8190912e-06 
-4.8189089e-04 
3.5178012e-07 
2.0881292e-03 
3.2887964e-10 
2.6515657e-08 

6.4125679e-ll 
1.5155439e-09 
6.8801932e-09 
2.4008197e-06 
-7.994355 le-10; 
-2.7268703e-07; 

fcl[2][3] =1.0; 

fcl[3][0] 
fcl[3][l] 
fcl[3][2] 

-1.5342577e-05 
-8.0901361e-03 
2.1508544e-06 
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fcl[3" 
fcl[3" 
fcl[3" 
fcl[3" 
fcl[3" 
fcl[3" 
fcl[3" 
fcl[3" 
fcl[3; 

fcl[4] 

fcl[5] 
fcl[5^ 
fcl[5" 
fcl[5" 
fcl[5" 
fcl[5" 
fcl[5" 
fcl[5" 
fcl[5" 
fcl[5" 
fcl[5" 
fcl[5; 

fcl[6] 

fcl[7] 
fcl[7] 
fcl[7] 
fcl[7] 
fcl[T 
fcl[7" 
fcl[7" 
fcl[7 
fcl[7" 
fcl[7] 
fcl[7] 
fcl[7] 

fci[8; 

fcl[9" 
fcl[9" 
fcl[9] 

[3] =-4.5883849e-03 
[4] = 3.5129702e-09 
[5] = 2.4824550e-07 
[6] = 1.0151231e-09 
[7] = ,2.9957644e-08L 

[8] =-8.8419494e-09; 
[9] = 3.1710672e-05; 
[10]= 1.2707592e-09; 
[ll] = -3.5152392e-06 

[5] = 1.0; 

[0] = 4.8422408e-08; 
[I] = 2.2197206e-05; 
[2] =-1.3945275e-08; 
[3] = 7.3203772e-06; 
[4] = -2.6406463e-04; 
[5] =-2.2926794e-02; 
[6] = 2.1001850e-06; 
[7] = 6.1241658e-05; 
[8] = 3.4581546e-05; 
[9] = 7.1322364e-02; 
[10] = -4.6166045e-06; 
[II] = -7.8552673e-03; 

[7] = 1.0; 

[0] =-8.0046854e-14 
[I] =-3.8390332e-ll 
[2] = 4.2680318e-14 
[3] =-3.4225792e-13 
[4] =-1.4483390e-14 
[5] =-1.0586828e-12 
[6] =-2.8722782e-04 
[7] =-2.3993513e-02 
[8] = 4.8978833e-06: 

[9] = 9.1323594e-04; 
[10] = -8.7260906e-07; 
[II] = -7.1646026e-05; 

[9] = 1.0; 

[0] = 3.7317838e-14; 
[1] = 2.0159832e-12; 
[2] = -4.2131677e-14; 
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fcl[9][3] = 
fcl[9][4] = 
fcl[9][5] = 
fcl[9][6] = 
fcl[9][7] = 
fcl[9][8] = 
fcl[9][9] = 
fcl[9][10] = 
fcl[9][ll] = 

1.0032060e-ll 
■4.6428223 e-13 
3.4128175e-12 
■2.2684248e-08 
:2.5126452e-05 
■9.7419189e-06 
■2.0259801e-03 
-2.5681076e-05 
-2.1763998e-03 

fcl[10][ll]= 1.0; 

fcl[ll][0] - 
fcl[ll][l] = 
fcl[ll][2] = 
fcl[ll][3] = 
fcl[ll][4] = 
fcl[ll][5] = 
fcl[ll][6] = 
fcl[H][7] = 
fcl[ll][8] = 
fcl[ll][9] = 
fcl[ll][10] 
fcl[ll][ll] 

-8.8295896e-14 
-5.1984722e-ll 
-2.1924174e-14 
-3.4937462e-ll 
-5.5774712e-14 
-3.4692950e-12 
-2.1126336e-06 
-1.276863 5e-04 
-2.4516140e-05 
7.6569121e-05 
-2.3999590e-04; 
-2.1867746e-02; 

I" 
* The forcing function vector for the V-bar tracking procedure. 
*/ 

frcfunc[l][0] = -2.8190912e-06; 
frcfunc[3][0] = 1.5342577e-05; 
frcfunc[5][0] = -4.8422408e-08; 
frcfunc[7][0] = 8.0046854e-14; 
frcfunc[9][0] =-3.7317838e-14; 
frcfunc[ll][0]= 8.8295896e-14; 

frcfunc[l][l] 
frcfunc[3][l] 
frcfunc[5][l] 
frcfunc[7][l] 
frcfunc[9][l] 
frcfunc[ll][l] 

= -3.5178012e-07; 
= -2.1508544e-06; 
= 1.3945275e-08; 
= -4.2680318e-14; 
= 4.2131677e-14; 

2.1924175e-14; 

frcfunc[l][2] =-3.2887964e-10; 
frcfunc[3][2] =-3.5129702e-09; 
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frcfunc[5][2] = 2.6406463e-04; 
frcfunc[7][2] = 1.4483415e-14; 
frcfunc[9][2] = 4.6428224e-13; 
frcfunc[ll][2]= 5.5 77473 Oe-14; 

frcfunc[l][3] = -6.4125680e-ll; 
frcfunc[3][3] =-1.0151231e-09; 
frcfunc[5][3] = -2.1001850e-06; 
frcfunc[7][3] = 2.8722782e-04; 
frcfunc[9][3] = 2.2684248e-08; 
frcfunc[ll][3]= 2.1126336e-06; 

frcfunc[l][4] = -6.8801932e-09; 
frcfunc[3][4] = 8.8419494e-09; 
frcfunc[5][4] =-3.4581546e-05; 
frcfunc[7][4] = -4.8978833e-06; 
frcfunc[9][4] = 9.7419189e-06; 
frcfonc[ll][4]= 2.4516140e-05; 

frcfunc[l][5] = 7.9943551e-10; 
frcfunc[3][5] =-1.2707592e-09; 
frcfunc[5][5] = 4.6166045e-06; 
frcfunc[7][5] = 8.7260906e-07; 
frcfonc[9][5] = 2.5681076e-05; 
frcftmc[ll][5]= 2.3999590e-04; 

} 

* This subroutine performs all remaining analysis for * 
* motion of the actuator on the manual controller. * 

void motor_control() 

{ 
/* motor move */    - 
collide_x = xhome; 

switch(op_mode) 
{ 

case 1: /* simple mode */ 
volts=0; 
break; 

case 2: /* force reflection mode */ 
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} 
} 

case 3: /* virtual force reflection mode */ 
if (collision == 1) 

{ 
flagl++; 

. if (flagl = 1) 
collide_x = finalout_l/1000.0; 

} 
else flagl=0; 

volts = (t3/scalex)*10.0+force_volts; 

if (input[0] > collidex) 
input[0] = collidex; 
if(volts>=0) 
volts = 0.015; 
scale_voltage(); 
if(t3<=0) 
volts=0; 

break; 
case 4: /* electronic tunneling mode */ 

if (forcejvolts = 0 && t3 >= 0) 

{ 
flagl=l; 
input[0]=flnalout_l/1000.0; 

} 
else 
flagl=0; 
if(t3>0) 

{- 
volts=0.025*force_volts; 
break; 

} 
if (t3<0) 

{ 
volts=-0.035; 
break; 

}       ' 
else volts=0; 

/******************************************************************* 

* This subroutine scales the voltages to necessary values for input to the servo amplifier. 
*******************************************************************/ 
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void scale_voltage() 

{ 
if (volts >0) 
volts=volts*0.0050+0.025; 
if(volts<0) 
volts=volts*0.0055-0.035; 

} 

* This subroutine calculates closure rate during simulation. 
* 

void calculate_velocity(displaced,timer) 

float displaced,timer; 

{ 
float velocity,elapsed; 

printf("in the velocity routine.\n"); 
count++; 
if (count == 1) 

moved = finalout_l; 
if(count:==3) 

{ 
velocity = ((displaced-moved)/(timer*3))/1000.0; 
fprintf(out, "%f\n",velocity); 
printf("the velocity is: %f\n",velocity); 
count=0; 

} 
} 
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Appendix C 

C. 1 Graphics Simulation Software: Flowchart 

Query tracking and 
mode preference 

initialize V-bar 
views and 
nominal docking 
position 

tracking? 

initialize R-bar 
viewB and 
nominal docking 
position 

read initial approach 
position 

send preferences and 
separation distance 
to server software 

no force calculated 
in simple and force 
reflecting mode 

Figure C-l Frobmc.gsl Flow Chart 
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C.2 Graphical Simulation Software: Source Code Listing 

Paul Woznick, Jul 94 
Adapted from program asset, T. Bridgman. 

frobmc.gsl must begin with the 'PROGRAM' name followed 
by the name of the device being programmed in a WORKCELL. 
The device OBJECT will be assigned to this program. 
A separate server/number crunching program must be 
running before the simulation starts. To enable the 'C 
routine, goto the /usr/deneb/igrip.4d/giftware directory and 
type server_frobmc 2074. With this, the two 
can communicate with each other through the address location 
2074. Ensure OBBC_comm_hub.c is all ready running on KTRK. 

Program object 

- Declaration of the variables that will be used in this program. 
- 'VAR' variables are ones declared frobmc.gsl while 
~ the 'CLI_VAR variables are used when a command like 
-- CLI("    ") is called. 

VAR 

pick, trackjnum, i: INTEGER 
view_num: INTEGER 
preference: INTEGER 
opmode: INTEGER 
loop: INTEGER 
coll_checker:        INTEGER 
flagger: INTEGER 
X, Y: REAL 
orbit: REAL 
extjt: REAL 
volts, virt_dist:     REAL 
force_ref_axis_dist: REAL 
xf,xo,yf,yo,zf,zo:   REAL 
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yawf,yawo,rollf:     REAL 
rollo,pitchf,pitcho: REAL 
z_check,y_check:     REAL 
yaw_check: REAL 
fiinnel_radius:       REAL 
pitchcheck: REAL 
roll_check: REAL 
collidex: REAL 
jt_in: ARRAY[6] of REAL 
jt_out: ARRAY[6] of REAL 
pi, p2: POSITION 

CLI_VAR 

stand_ofF: REAL 
tempsep: REAL 

Begin 

Below, the user will be promted for the type of control 
employed to dock the OBJECT with a space station. 

write("Before the simulation begins, choose from the ", cr) 
write("the tracking options listed below.", cr) 
write(cr) 
DELAY 1000 
write("The choices are:", cr) 
write(cr) 
write(" 1. V-BAR tracking.", cr) 
write(" 2. R-BAR tracking.", cr) 
write(cr) 
read_kbd( Enter a tracking preference', preference) 
write(cr) 
write("You must also choose the mode of operation of", cr) 
write("the controller. The choices are:", cr) 
write(cr) 
write(" 1. Simple 6DOF control.", cr) 
write(" 2. 6 DOF control with force reflection.", cr) 
write(" 3. 6 DOF control with virtual force reflection.", cr) 
write(" 4. 6 DOF control with Electronic funneling.", cr) 
read_kbd( Enter operation mode', opmode) 
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write(cls) 
if(opmode>4)then 

opmode = 1 
endif 

Open up a port for communication with server frobmc.c. 
For this simulation, the communications port 
is assigned unit number 3. Therefore, all writing 
to and reading from serverfrobmc.c necessary for this 
simulation is done through unit #3. 

open client 'hardy: 2074' for update as 3 

Set up the space station view and allocate appropriate 
V-bar or R-bar tracking matricies. 

view_station() 

Initialize docking position to match camera view at 
separation of 500m. 

SWITCH preference 

CASE1:     xf=-90374 
yf=512640- 
zf=-4406 

collidex = xf 
CASE 2:     xf=409700 

yf=12873 
zf=-5039 

collide_x = xf 

ENDSWITCH 
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yawf=0 
pitchf=0 
rollf=0 

~ After either V-Bar tracking or R-Bar tracking is picked have 
-- the command of the program goto the 'position()' sub-routine 
~ to prompt the user to input the six (6) needed values for 
-- "automated" flight. The six (6) values are three (3) trans- 
~ lational and three (3) rotational. Recommended values are: 
— x=400, y= 12, z= -5, xrot=yrot=zrot=0. 

rendevous_position() 

Write to serverfrobmc.c the pertinent values user preference 
and simulation execution. The values sent to 
serverjrobmc.c are the tracking preference, the operation 
mode (ie. virtual force reflection) and station altitude. 
Then send the object orbital characteristics after rendevous. 

write #3, (trackjnum,'', opmode,'', temp_sep, cr) 
DELAY 10 
write #3, (jt_out[0],'', jt_out[l],'', jt_out[2],'', jt_out[3],'', jt_out[4],'', jt_out[5], 

cr) 

Turn on collision queue if in a force reflection mode. 

if (opmode > 1) then 
ADD 'freedom'/asset' TO QUEUE 
SET COLLISION CHECKS ON 

endif 
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Initialize zero force f/b if in simple DOF mode. 

if (opmode = 1) then 
volts = 0.0 
collchecker = 0 

endif 

This simulation will keep operating until the user presses 
both the middle and the right mouse buttons simultaneously. 

while (pick <> 3) do 
pick = MOUSE_BUTTON( X, Y) 

■ Read from the sub-routine the up-dated values so the 
■ object can move accordingly. The values read in are 
■ the three (3) translational movements, jt_in[0] thru 
■ jt_in[2] and the three (3) rotational movements, jt_in[3] 
■thrujt_in[5]. 

read (#3, jt_in[0], jt_in[l], jt_in[2], jt_in[3], jt_in[4], jt_in[5]) 

Use the MOVE JOINT _ TO Value' IMMEDIATE command to 
move each of the six (6) joints of the object. 

if (collchecker = 1 OR jt_in[0] > collidex) then 
jt_in[0] = collide_x 
endif 

MOVE JOINT 1 TO jt_in[0] IMMEDIATE 
MOVE JOINT 2 TO jt_in[l] IMMEDIATE 
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MOVE JOINT 3 TO jt_in[2] IMMEDIATE 
MOVE JOINT 4 TO jt_in[3] IMMEDIATE 
MOVE JOINT 5 TO jt_in[4] IMMEDIATE 
MOVE JOINT 6 TO jt_in[5] IMMEDIATE 
SIM UPDATE 

Determine the voltage necessary to provide the appropriate 
force reflection to the manual controller. Send 
this information to server frobmc.c 

if(opmode> 1) then 
check_position() 
collide_checker() 
calculate_force2volts() 

endif 

- write(volts,' ',coll_checker, cr) 
write #3, ( volts,' ',coll_checker, cr) 

The program is terminated when the value 'pick' = 3. 

endwhile 

Close the port address so this 
address doesn't 'hang' or go into a 'dead-lock'. 

Set the 'MULTI VIEWS' from the two (2) screen, horizontally 
split window to the full, unsplit picture window. Also 
set the view to a good spectator view by using the 
selected view, 'spec_canada.' 
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CLI("MULTI VIEWS 0") 
CLIC'SET VIEW TO 'spec_canada'") 

End the main program with the END' command following by 
name of the main program, in this case 'object'. 

END object 

~ The following sub-routine is for tracking with a space station 

Procedure view_station() 
Begin 

~ Set view_num to T for viewing space station. 
~ and track_num to '2' for R-Bar controller configuration 
~ or trackjium to 3 for V-bar tracking 

view num = 1 
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Prompt the user for the separation between the space 
station and the object. This depends on tracking 
configuration. 

if (preference == 2) then 
track_num = 2 
write( els) 
write("You have selected R-BAR tracking. ", cr) 
write("At the prompt below,", cr) 
write("indicate the separation between the ", cr) 
write("space station and the object (in meters).", cr) 
DELAY 5000 
write("Remember that R-bar tracking dictates an ", cr) 
write("approach to the target along the target's ", cr) 
write("position vector, r. A recommended ", cr) 
write("safe minimum separation is 100 ", cr) 
write("meters, therefore acceptable values", cr) 
write("of separation should be greater than ", cr) 
write("100 meters", cr) 
read_kbd( 'Enter the separation, in meters', standoff) 
temp_sep = 400000 + stand_off 
temp_sep = temp_sep/1000 
DELAY 500 
write( els) 
extJt = 0 

endif 

if (preference = 1) then 
trackjium = 3 
write( els) 
write("You have selected V-BAR tracking. ", cr) 
write("At the prompt below,", cr) 
write("indicate the separation between the ", cr) 
write("space station and the object (in meters).", cr) 
DELAY 5000 
write("Remember4hat V-bar tracking dictates an ", cr) 
write("approach to the target along the target's", cr) 
write("orbit (east/west). A recommended ", cr) 
write("safe minimum separation is 100 ", cr) 
write("meters, therefore acceptable values", cr) 
write("of separation should be greater than ", cr) 
write("100 meters", cr) 
read_kbd( 'Enter the separation, in meters', standoff) 
temp_sep = 400 
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DELAY 500 
write( els) 

extjt = 90 
endif 

convert standoff distance to milimeters 

stand_off=stand_off* 1000 
DELAY 500 

Retrieve the space station from the /usr/deneb/Usrlib/DEVICES 
directory and translate it to the standoff distance specified 
by the user. 

if (trackjnum == 2) then 
CLI("GET DEVICE Vusr/deneb/Usrlib/DEVICES/freedom"') 
DELAY 100 
CLI("ACTIVATE 'freedom'") 
CLI("TRANSLATE DEVICE freedom TO stand_off, 0, 0") 
DELAY 500 
CLI("DEACTIVATE 'freedom'") 
DELAY 500 

endif 
if (tracknum = 3) then 

CLI("GET DEVICE Vusr/deneb/Usrlib/DEVICES/freedom'") 
DELAY 100 
CLI("ACTIVATE 'freedom'") 
CLI("TRANSLATE DEVICE freedom TO 0, stand_off, 0") 
DELAY 500 
CLI("ROTATE DEVICE freedom TO 0, 0, 90") 
DELAY 100 
CLI("DEACTIVATE 'freedom'") 
DELAY 500 

endif 

~ Move the object to position (0, 0, 0, 0, 0, 0) so that 
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~ the simulation can begin from the original reference point. 

MOVE JOINT 1 TO jt_in[0] IMMEDIATE 
MOVE JOINT 2 TO jt_in[l] IMMEDIATE 
MOVE JOINT 3 TO jt_in[2] IMMEDIATE 
MOVE JOINT 4 TO jt_in[3] IMMEDIATE 
MOVE JOINT 5 TO jt_in[4] IMMEDIATE 
MOVE JOINT 6 TO jt_in[5] IMMEDIATE 
DELAY 500 

-- Set split screen views to the space station viewing. 

CLI("MULTI VIEWS 6") 
CLI(" ACTIVATE VIEW 1") 
CLIfSET VIEW TO 'ssf_canada'") 
if (track_num ==3) then 

CLI("SET VIEW TO 'vbar_objecf") 
endif 

CLI("SCALE WORLD TO 20000") 
CLI(" ACTIVATE VIEW 2") 
CLI("ATTACH EYE TO TAG pi") 
CLI(" SCALE WORLD TO 20000") 

End 

This subroutine prompts for the initial desired position 
command. 

Procedure rendevous_position() 

Begin 
write("The following prompts below will ask ", cr) 
write("for a series of attributes about", cr) 
write("the rendevous orbit. Requested are ", cr) 
write("three position and three attitude values.", cr) 
read_kbd( 'Enter an attainable x (m)', jt_out[0]) 
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read_kbd( 'Enter an attainable y (m)', jt_out[l]) 
read_kbd( 'Enter an attainable z (m)', jt_out[2]) 
read_kbd( 'Enter an attainable xjrot (deg)', jt_out[3]) 
read_kbd( 'Enter an attainable y_rot (deg)', jt_out[4]) 
read_kbd( 'Enter an attainable z_rot (deg)1, jt_out[5]) 
write( els) 

End 

~ This procedure makes joint values from the simulation 
-- available for manipulation by program procedures. 

Procedure check_position() 

Begin 

UNPOS('asset',xo,yo,zo,yawo,pitcho,rollo) 

End 

This procedure initiates the creation of the forces 
of the object/environment interaction 

Procedure calculate_force2volts() 

Begin 

force_ref_axis_dist = xf-xo 

SWITCH opmode 

CASE 2: volts=0 
if(force_ref_axis_dist <= 0)then 
volts = force_ref_axis_dist/1000.0 
if(volts<-10)then 
volts = -10 
endif 

return 
endif 
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CASE 3: virtual_force2volts() 
return 

CASE 4: funnel_force2volts() 
return 

ENDSWITCH 

End 

-- This procedure creates the virtual spring environment 
-- and the associated forces involved with it's interaction. 

Procedure virtual_force2volts() 

Begin 

virt_dist = (100000.0 - force_ref_axis_dist)/l000.0 
if(virt_dist<=0)then 

return 
endif 

volts = (virt_distA2)/1000 

if (volts > 10.0) then 
volts =10.0 
endif 

volts=-volts 

End 

This procedure checks for a collision between the space 
station and the tracking vehicle. 

Procedure collide_checker() 

Begin 
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coll_checker = DEV_COLLISIONS('freedomVasset') 

if (collchecker == 1) then 
check_position() 
collidex = xo 

endif 

End 

~ This procedure creates the hypercone environment and 
~ the associated forces involved with it's interaction. 

Procedure funnel_force2volts() 

Begin 

volts = 1.0 
if(coll_checker= l)then 
volts=0 
endif 
flagger = 0 

if ((force_ref_axis_dist/1000) <= 25 AND force_ref_axis_dist > 0) then 

funnelradius = 0.25*force_ref_axis_dist 
z_check = abs(zf-zo)-funnel_radius 
y_check = abs(yf-yo)-funnel_radius 
yaw_check = abs(yawo) - funnel_radius/1000.0 
pitch_check = abs(pitcho) - funnel_radius/1000.0 
roll_check = abs(rollo) - funnel_radius/1000.0 

if (y_check>=0 OR z_check>=0) then 
volts = 0.0 
endif 

if (yaw_check >= 0) then 
flagger=flagger+l 
volts=0 

endif 
if (pitch_check >= 0) then 

flagger=flagger+2 
volts=0 
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endif 
if(roll_cneck>=0)then 

flagger=flagger+4 
volts=0 

endif 

SWITCH flagger 

CASE1: 
CLI("SET BACK COLOR TO 0.01,0.99,0.99") 

CASE 2: 
CLI("SET BACK COLOR TO 0.99,0.99,0.01") 

CASE 3: 
CLI("SET BACK COLOR TO 0.01,0.99,0.99") 
CLI("SET BACK COLOR TO 0.99,0.99,0.01") 

CASE 4: 
CLI("SET BACK COLOR TO 0.99,0.01,0.99") 

CASE 5: 
CLI("SET BACK COLOR TO 0.01,0.99,0.99") 
CLI("SET BACK COLOR TO 0.99,0.01,0.99") 

CASE 6: 
CLI("SET BACK COLOR TO 0.99,0.99,0.01") 
CLI("SET BACK COLOR TO 0.99,0.01,0.99") 

CASE 7: 
CLI("SET BACK COLOR TO 0.01,0.99,0.99") 
CLI("SET BACK COLOR TO 0.99,0.99,0.01") 
CLI("SET BACK COLOR TO 0.99,0.01,0.99") 

DEFAULT: 
CLI("SET BACK COLOR TO 0.001,0.001,0.001") 

ENDSWITCH 

endif 

End 
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Appendix D 

D. 1 Supporting Software Code Listing: Communication Hub 

** 
* 

* OBBC_comm_hub is the ethernet communication hub for the OBBC demonstration 
* It is modified by Paul Woznick from connect, c, written by Tom Deeter. 
* Code was extracted from Dave Doaks (AFIT) and Matthew Gertz (CMU) programs 
* 

♦♦fr***************************************************** 

*/ 
#include <stdio.h> 
#include <math.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
^include <netinet/in.h> 
#include <errno.h> 
#include <netdb.h> 
#include <signal.h> 
#include <chimera.h> 
#include <enet.h> 
#include <string.h> 

#define WFCJOINTS      1 
#define WFC_QUIT   0 
#define MAXLINE 4096 

int sockfd; 

* 

* Function clean_up will gracefully disconnect 
* machines. 

void clean_up() 

{ 
close(sockfd); 
shutdownQ; 
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exit(O); 
} 

* 

* Function put_data will send the data to the remote 
* non chim machine. 
* 

put_data(sd,buf,nbytes) 
register int sd; 
register char *buf; 
register int nbytes; 

{ 
int nleft,nwritten; 

nleft = nbytes; 

while(nleft > 0) 

{ 
nwritten = write(sd,buf,nleft); 
if(nwritten <= 0) 

return nwritten; 
nleft -= nwritten; 
buf += nwritten; 

} 
return nbytes-nleft; 

} 

* 

* Function get_data will read the data from the remote 
* non chim machine. 
* 

int get_data(sd,buf,maxlen) 
register int sd; 
register char *buf; 
register int maxien; 

{ 
int n,rc; 
char c; 

97 



for(n=0;n<maxlen;n++) { 
if((rc=read(sd,&c,l))==l) 

{ 
*buf++ = c; 
if(c == W) 
break; 

} 
else if( rc==0) 

{ 
if(n==l) return 0; /* no data*/ 
else break; 
} 

else 
return-1; 

} 
*buf= 0; 
return n; 

} 

main(argc,argv) 
int arge; 
char *argv[]; 
{ 

struct sockaddrjn cli_addr; 
struct servent *sp; 
struct hostent *hp; 
float volts, pi; 
char *pname = argv[0]; 
int n, i, count; 
char inbuffer[MAXLINE],outbuff[MAXLINE]; 
ENET *chimenet; 
char chimbuffer[4096]; 
int  loop,type,size; 

if(argc<2) 

{ 
printf("Usage: %s remote_host_name\n",argv[0]); 
exit(0); 

} 

while (1) 
{ 
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/********************#**************************************** 

* Connect to chimera using enetCreate. Do this first then 
* start fr.c on chimera. 
* 

************************************************************ 

printf("Creating server tsok on CHIMERAW); 
printf("Start CHIMERA NEW communication program\n"); 
chimenet = enetCreate("tsok",0); 
printf("Connected.. An"); 

* 

* Connect to remote non chim machine using standard unix (TCP Protocal) 
* calls. 
* 
***************************************************************/ 

signal(SIGINT,clean_up); 

bzero(( char *)&cli_addr,sizeof(cli_addr)); 
if ((hp = gethostbyname(argv[l])) = NULL) 

{ 
perror("unknown host"); 
exit(O); 

} 
bcopy(hp->h_addr,(char*)&cli_addr.sin_addr,hp->h_length); 

cli_addr.sin_family= hp->h_addrtype; 
cli_addr.sin_port = htons(4903); 

printf("%d is the family\n",cli_addr.sin_family); 
printf("%d is the port \n",cli_addr.sin_port); 
if((sockfd=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP)) < 0) 

{ 
perror("client: cannot open stream socket"); 
exit(l); 

} 
if(connect(sockfd, (struct sockaddr *) &cli_addr,sizeof(cli_addr)) < 0) 

{ 
printf("error #: %d\n", errno); 
perror("client: cannot connect to server"); 
exit(l); 

} 
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printf("Connected to %s \n",argv[l]); 

do 

{ 
size = sizeof(chimbuffer); 
type=l; 

/* get data from hardy */ 

/* printf("getting data from hardyW'); */ 
get_data(sockfd,outbuff,MAXLINE); 

/* printf("got dataW); */ 
n = strlen(outbuff); 

/* printf(" data to chim is %s\n",outbuff); */ 

/* send data to chimera */ 

enetSend(chimenet,WFC_JOINTS,n,outbuff,0); 

/* recieve handshake */ 

/* printf("receiving hand shake from chim\n"); */ 
enetReceive(chimenet, &type, &size, chimbufFer, 0); 

/* printf("got handshake: %s\n",chimbufFer);*/ 

/* create handshake for hardy */ 

sprintf(inbuffer,"\n,,); 
n = strlen(inbuffer); 

/* send handshake to hardy*/ 

/* printfC'sending handshake to hardyW); */ 
put_data(sockfd,inbuffer,n); 

} 
while (type != WFC^QUIT); 
printf("Destroying server... \n"); 
enetDestroy(chimenet); 

} 
} 

D.2 Supporting Software Code Listing: R/T Microprocessor Communication Link 
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/*********************************************************************** 

* 

* This program modified for OBBC-microprocessor communication by Paul Woznick 

* Original code provided by Tom Deeter, 1994 

************************************************************** 

/ 

#include <chimera.h> 
#include <sbs.h> 
#include <enet.h> 

#define WFC_ACK    2 

void poke_volts(); 

main() 

{ 

charconnection[80],inburrI4096],outbuffer[4096]; 
int no_conn, type, size; 
int loop,n; 
float volts,hex_volts; 
unsigned short out_volt; 
ENET *enet; 

printf(" starting prog\n"); 
no_conn=0; 
strcpy(connection, "tsok@kirk"); 

/* Attach to an enet port if appropriate       */ 
printf("trying to attach\n"); 

enet = enetAttach(connection, ENET_RETRIES(2)); 
printf("attached\n"); 

poke_volts(0x07ff); 
printf("attached2\n"); - 

while(l) 
{ 

/* get data from kirk, connect */ 

enetReceive(enet, &type, &size, inbuff,0); 
/* kprintf("Received %s\n",inbuff); */ 
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/* assign data to a buffer */ 

sscanf(inbuff,"%f',&volts); 
/* kprintf("%f\nM,volts); */ 

/* convert float volts to hexadecimal and send to D/A   */ 
hex_volts = 4095.0-((4096.5/5.0)*(volts+2.5)); 
out_volt=(unsigned short) hex_volts; 

/* kprintf("just converted volts to hex\n"); */ 
poke_volts(out_volt); 

/* create handshake buffer */ 

sprintf(outbuffer, "test"); 
n=strlen(outbuffer); 

/* send handshake to kirk   */ 

/* kprintf("send to kirk %s\n",outbuffer); */ 
enetSend(enet, WFC_ACK, n, outbuffer,0); 

} 
} 

void poke_volts(volt) 
unsigned short volt; 

{ 
unsigned short *D_A_addr; 
short i; 
D_A_addr = ( unsigned short *) 0xFAFFF900; 
/*prratf("volt= %x\n",volt);*/ 

/* send all channels same value */ 
*(D_A_addr + 0) = (unsigned short)volt; 

} 

D.3 Supporting Software Code Listing: Spaceball Communication 

* The following subroutine opens a port to the spaceball. All Spaceball 
* subroutines are based on Bob Filers thesis work, converted to C and 
* modified to communicated with a Silicon Graphics Indigo Iris workstation. 

void open_spaceball(ttyport, speed) 
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String ttyport; 
int speed; 

{ 
struct termio tty; 
int status; 

if ((SB_fd = open(ttyport, 0_RDWR | 0_NDELAY)) = -1) 

{ 
perror("Cannot open Spaceball"); 
exit(l); 

} 

/* Get the current port parameters */ 

status = ioctl(SB_fd, TCGETA, &tty); 
if(status==-l) { 

fprintf (stderr, "Error in save ioctl call\n\n"); 

} 

/* 
* Set the port up for: 
* Hang up on last close 
* eight bits 
* local line 
* enable receiver 
* enable signals 
* canonical input 
* user specified baud rate 

■*/ 

/* 
* These flags set up the port for "raw" input. This allows us to 
* grab whatever input is present in the read queue regardless of 
* whether the device is done sending a full packet or not. 
*/ 

tty.c_cflag = HUPCL | CS8 | CLOCAL | CREAD | speed; 
tty.cjflag = IGNBRK; 
tty.ejflag = 0; 
tty.c_oflag = 0; 
tty.c_cc[VMIN] = 0; 
tty.c_cc[VTIME] = 0; 

status = ioctl (SB_fd, TCSETAF, &tty); 
if(status==-l) { 

fprintf (stderr, "Error in set ioctl call\n\n"); 
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} 

* The following subroutine initializes the spaceball to * 
* one of three modes: voltage, force or standard. See * 
* user's guide. NOTE: The mode will be determined by the 
* programmer (when the call is made). The simulation * 
* user will not be able to dictate a particular mode * 

void init_spaceball(Byte mode) 
{ 
if ((mode = SB_VOLTAGE) || (mode == SBFORCE) || (mode = 

SB_STANDARD)) 
SB_mode = mode; 

else { 
SBmode = SBFORCE; 
perror ("Incorrect mode request in ink call\n"); 

} 

* The following subroutine reads in the raw spaceball data 
* from the RS232 port and stores it in buf This is called * 
* only when the spaceball is in the force and voltage modes. 
********************************************************* 

int read_raw_spaceball(Byte *buf,int len) 

{ 
int count = 0; 

/* flush the input queue to get the most recent data */ 

ioctl(SB_fd, TCFLSH, (struct termio *)0); 

while(count != len) 
count = read(SB_fd, buf, len); 

buf[len -1] = NULL; /* strip CR/LF */ 
return(strlen((const char* )buf)); 

} 

/**********************+J(£+J|tt+J|t%++!|t#+!(t++t!|t++!|t!|c#!jt!|c+!|CJ|tJ|c!jt!|<j|tj|cj)<!(< 

* The following subroutine is needed for the standard * 
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* operation mode. * 

void write_spaceball(Byte *buf,int len) 

{ 
if (write(SB_fd, buf, len) != len) 

{ 
perror("Short write to Spaceball"); 
exit(l); 

} 
} 

* The following subroutine reads in input from the spaceball * 
* only if it is operating in the standard mode. It will store * 
* the incoming data in buf. * 

int read_standard(Byte *buf,int len) 

{ 
Byte enq[2]; 

int count = 0; 
int times = 0; 

enq[0] = 5;      /* ASCII ENQ character */ 
write_spaceball(enq, 1); 

#ifdefONYX 
sginap ((long)l); 

#endif 

while ((count != len) && (times < MAXTIMES)) { 
count = read(SB_fd, buf, len); 
times++; 

} 

if (times = 500) return (-1); 
else return(strlen((const char *)buf)); 

} 

* This subroutine formats incoming data. * 
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void parse_spaceball(SpaceballData *sd, Byte *buf) 

{ 
short button; 
sscanf((const char *)buf, "%hd %hd %hd %hd %hd %hd %hd" 

&(sd->xtrans), &(sd->ytrans), &(sd->ztrans), 
&(sd->xrot), &(sd->yrot), &(sd->zrot), 
&button); 

switch (SB_mode) 
{ 
case SB_FORCE: 

sd->button = ABS(button); 
break; 

case SBVOLTAGE: 
sd->button = 8 - (short)loglO((double)button); 
break; 

} 

/********************************************************** 

* This subroutine formats incoming data when in standard 
* mode. * 
Jit*!!!!!!******************************************************/ 

void parse_standard (SpaceballData *sd, Byte *buf) 
{ 

if(buf[3]!=37){ 
perror ("Incorrect standard read\n"); 

} else { 
sd->xtrans = buf[4]; 
sd->ytrans = buf[5]; 
sd->ztrans = buf[6]; 
sd->xrot =buf[7]; 
sd->yrot = buf[8]; 
sd->zrot =buf[9]; 
sd->button = ABS(buf[10]); 

} 
} 

/***#************************* ******************************** 

* This subroutine is the one called by the main program to * 
* read in spaceball data. The data is stored in sd. * 
*************************************************************/ 
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void read_spaceball(SpaceballData *sd) 

{ 
Byte buf[SB_DATA_SIZE + 1]; 

short oldbutton = 0; 
switch(SBmode) 

{ 
case SBFORCE: 

read_raw_spaceball(buf, SBFORCESIZE); 
parse_spaceball(sd, buf); 
break; 

case SB_VOLTAGE: 
read_raw_spaceball(buf, SB_VOLTAGE_SIZE); 
parse_spaceball(sd, buf); 
break; 

case SB_STANDARD: 
if ((read_standard (buf, SB_STANDARD_SIZE)) == -1) { 

sd->xtrans = sd->ytrans = sd->ztrans = 0; 
sd->xrot = sd->yrot = sd->zrot = 0; 
sd->button = 0; 

} else 
parsestandard (sd, buf); 

break; 

} 

/* De-bounce buttons */ 

if ((sd->button > 0) && (sd->button != oldbutton)) 
oldbutton = sd->button; 

else 

{ 

} 

oldbutton = 0; 
sd->button = 0; 
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Appendix E 

E. 1 Operating Instructions: Preparation 

1. Ensure that the CHIMERA operated microprocessor is powered on. 

2. Login to Kirk and start CHIMERA by typing chim <enter> at a command prompt. 

3. To insure that the D/A board is cleared of any voltages type ex clean <enter> at the 
chim control prompt.   CAUTION: This step must be completed successfully before 
proceeding to step 4. 

4. Connect both plugs of the hand controller into standard AC outlets. 

5. Toggle on switch for the CIS DIM 6. Watch for all indicator lights on the keypad to 
flash. This indicates proper power up of the Dim 6. 

6. Select TRA button on the Dim 6 keypad. 

7. Ensure that the serial cable from the Dim 6 is connected to serial port 1 on the Silicon 
Graphics workstation. 

8. Sign on the Silicon Graphics Hardy Workstation (pwoznick home directory) and 
create 4 shells with the shell tool. Make the 4 shells as short as possible and about 4 
inches wide. Drag shells to each corner of the display. The two windows on top will be 
your local shells and the two on the bottom will be your remote shells. 

9. In the upper left window at the prompt type: 
cd deneb <enter> 

10. In the upper right window at the prompt type: 
cd /usr/deneb/igrip.4d/giftware/woznick <enter> 

11. In the lower left window at the prompt type: 
rlogin kirk <enter> 
cd /Thesis/frobmc/comm <enter> 

12. Repeat step 9 for the lower right window. 

13. Return the cursor to the lower left window and at the prompt type: 
chim <enter> 

A chim control prompt should appear. 

14. In the upper left window type: 
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/usr/deneb/igrip.4d/igrip <enter> 
This will create a ghost shell. Drag and click at the center of the monitor. Make this 
window as large as possible without covering the other 4 window. This is the IGRIP 
workcell. 

E.2 Operating Instructions: Execution 

1. With the mouse, select the SYS button from the tool bar displayed along the top of the 
IGRIP workcell. Now select the FILE button from the vertical tool bar located at the 
extreme right of the workcell. Next select the APPEND button from the lower portion of 
the vertical tool bar. A pop up window will open. Use the mouse to select Usrlib. The 
message:    File - Usrlib - selected 

Config file appended 

2. Now return the horizontal tool bar along the top of the IGRIP window and select 
LAYOUT. Now select Retrieve Workcell from the vertical tool bar. Pick from a 
resulting pop up window the library: 
/home/pwoznick/usr/deneb/Usrlib/WORKCELLS 
Now pick object. Wait about 90 seconds for the program to be retrieved. 

3. A message window will appear. Use the mouse to drag and click the window to the 
top center of the IGRIP window, just below the horizontal tool bar. 

4. Now select MOTION from the horizontal tool bar. Then select Simulate from the 
upper portion of the vertical tool bar. 

5. Move the cursor to the upper right 'local' window. At the prompt type: 
serverfrobmc 2074 <enter> 

The message:    object server started 
and: Listening!? 

6. Move the cursor to the IGRJP window and select Run from the upper middle of the 
vertical tool bar. A pop up window will appear. Select done from the upper right of this 
window. The graphics simulation will begin. A series of pop up windows will prompt the 
user. Follow these instructions. 

7. The first prompt will ask for a tracking method preference. Using the SGI keyboard 
enter the number 1 or 2.  1 is V-bar and 2 is R-bar. Default is R-bar. 

8. The second prompt will ask the user for the OBBC controller feedback preference. 
Using the SGI keyboard, enter numbers 1, 2, 3, or 4. 1 is baseline. 2 is force reflection. 3 
is virtual force reflection and 4 is electronic funneling. Default is baseline mode. 
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9. The third prompt will be for a Separation or standoff distance. Type 500 <enter>. This 
can be anything but to ensure safe separation, this is the recommended separation. 
Graphics will update after <enter>. 

10. The final set of prompts will ask for initial desired position commands. This can be 
used to get the tracking vehicle in the direct proximity of the target vehicle. Suggested 
values for good demonstration and ensuring all programmed camera views. Enter the 
values depending on mode and tracking method from the table below: 

Input 
Modes 1, 

R-bar 
2&3 

V-bar 
Mode 4 

R-bar              V-bar 

X 400 -115 400              -112 

y 10 510 12.873            512.64 
z -5 -5 -5.039            -4.406 

xrot 0 0 0                 0 
yrot 0 0 0                 0 
zrot 0 0 0                 0 

Table E-l. Initial Input 

11. Upon entering the zrot value the display will switch to a split screen display. The 
cockpit view will be on the lower screen and a top view of the space station will be on the 
upper screen. 

12. Move the cursor to the lower right 'remote' window. At the prompt type: 
OBBC hardy <enter> 

A message prompting the initiation of the comm link on the microprocessor. 

13. Move the cursor to the lower left 'remote' window and at the chim control prompt 
type: ex OBBC1 <enter> 
A series of messages should appear in both remote windows indicating the necessary 
connections have been made. The simulation should begin in IGRIP at this time. 

14. Use the hand controller to complete the approach. Control is completely natural. Do 
to the controller knob.what you would like done to the tracking vehicle. 

15. It may be helpful to use the TRA or ROT and/or DOM buttons on the keypad of the 
controller. These functions are described in chapter 3. Additionally, the keypad has 8 
function keys. The functions programmed with each of these keys are described in 
Chapter 4. 

16. Remember to keep the cursor in the IGRIP window to keep the simulation running. 
Also, keep an eye on the upper right local window for any communication messages and 
other information. IGRIP is an interactive graphics environment. Therefore tool buttons 
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located on the bottom horizontal tool bar as well as the buttons on the current vertical tool 
bar are available to enhance the simulation demonstration. Particularly useful buttons are 
the magnify and the jnt vals buttons. Magnify can be used to inspect the mating of the 
spacecraft and joint values function will keep you updated on the tracking vehicles 
position. 

17. To end the simulation, ensure the mouse cursor is in the main IGRIP window and 
then simultaneously press the right and middle mouse buttons. The simulation will end 
with a spectator view of the tracking and target vehicle. Disconnect both controller 
electrical plugs. 
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Appendix F 

F. 1 CIS Dimension 6 Communication Parameters The Dim 6 has dip switch selectable 

communication parameters, baud rate and software protocol. The baud rate can be from 

300 to 19200 bps and is set at 19200 bps for this thesis. The software protocol can be set 

to ASCII voltages, ASCII force, ASCII standard, or special protocol.   For this thesis the 

protocol is ASCII standard. Using this protocol, an imparted force on the spherical knob 

is converted to a hexadecimal value between -127 and 128. Table F-l shows the dip 

switch setings of the spaceball compatable with the OBBC prototype software. 

Dip Switch 1 2 6 7       8 

State on off on on on 

Table F-l. Spaceball Dipswitch Settings 
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