
DTIC
ELECTE
JAN, 0 3.1995

B

oo

cvj
cvi

T

TELEPRESENT SPACECRAFT DOCKING WITH
OBJECT-BASED BILATERAL CONTROL (OBBC)

THESIS

Paul Woznick, Captain, USAF

AFIT/GA/ENY/GA94D-9

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

K^^^T^^at.
OM**SS-

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GA/ENY/GA94D-9

TELEPRESENT SPACECRAFT DOCKING WITH
OBJECT-BASED BILATERAL CONTROL (OBBC)

THESIS

Paul Woznick, Captain, USAF

AFIT/GA/ENY/GA94D-9

.-?&■ sD*>

AFIT/GA/ENY/94D-9

TELEPRESENT SPACECRAFT DOCKING WITH
OBJECT-BASED BILATERAL CONTROL (OBBC)

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Astronautical Engineering

PaulWoznick, B.S.
Captain, USAF

December 1994

Accession For

R2IS CRAM UP*
DTIG TAB □
Unannounced)~}
Justification

By
J5istr|1biitiön/

<£.

Availability C®6&&

Met
Avail asiä/er

Approved for public release; distribution unlimited.

Acknowledgments

I wish to thank my advisor, Dr. Curtis Spenny for his support of my thesis, his time

and his patience. I also want to thank the other committee members, Dr. Schneider and

Dr. Hall as well as Mark Deriso, my lab technician and John Brohas for his machining

skills. Special thanks goes to Mark Hunter and Tom Deeter, my fellow robotics students,

for all their suggestions and support of my research and laboratory activities. It was the

Robotics Group that made me feel like I belonged here. Finally, I beg forgiveness from

my wife for the times I wasn't there for her and want her to know that our pregnancy

means more to me than I could ever express in words.

Table of Contents

page
Acknowledgments ii

List of Figures vi

List of Tables vii

Abstract viii

I. Introduction 1

1.1 Overview 1
1.2 Background 2
1.2 Principal Accomplishments 7

II. OBBC Concepts and Current Implementation Methods 8

2.1 OBBC Telemanipulation Architecture 8
2.2 Qualitative Comparison of Teleoperation Techniques 10
2.3 Prototype OBBC Mode Characteristics 11

2.3.1 Mode 1 - Unilateral Control 11
2.3.2 Mode 2 - Force Reflection 12
2.3.3 Mode 3 - Virtual Force Reflection 13
2.3.4 Mode 4 - Velocity Reflection with Electronic Funneling 14
2.3.5 Mode 5 - Virtual Environment Alternative Mode 16

III. Description of Prototype Hardware for OBBC 18

3.1 Overview 18
3.2 Actuator 19
3.3 Servo Amplifier and Power Supply '.. 19
3.4 CIS Dimension 6 Spaceball 19
3.5 Spaceball Platform and Actuator Casing 20

IV. Prototype Object-based Bilateral Controller Design 22

4.1 Overview •• 22
4.2 Prototype OBBC Architecture 23

4.2.1 Master Control 24
4.2.2 Slave Position Controller Design 25
4.2.3 Object/Environment Interaction 27

4.2.3.1 Mode 2 - Force Reflection 27

ui

4.2.3.2 Mode3 - Virtual Force Reflection 28
4.2.3.3 Mode 4 - Velocity Reflection with Electronic Funneling 28

4.3 Communication Software 29

4.3.1 Ethernet Communication 30
4.3.2 Master Controller Input Communication..... 31

4.4 IGRIP Environment 31

V. Demonstration ofPrototype Operation 32

5.1 Task Description 32
5.2 Closure Rate Profiles 32

VI. Conclusion and Recommendations 35

6.1 Conclusion 35
6.2 Recommendations 36

6.2.1 Feedback Design 36
6.2.2 Multi-axis to Single-axis Bilateral Feedback 36
6.2.3 Closed Loop Motor Control 36

Bibliography 38

Appendix A 40

A.l Design Drawings: Spaceball Platform 40
A.2 Design Drawings: Actuator Casing 41

Appendix B 43

B.l Prototype's Server Software: Flowchart 43
B.2 Prototype's Server Software: Source Code Listing 44

Appendix C 81

C.l Graphical Simulation Software: Flowchart 81
C.2 Graphical Simulation Software: Source Code Listing 82

Appendix D 96

D.l Communication Code Listing: Communication Hub 96
D.2 Communication Code Listing: R/T Microprocessor Communication Link 100
D.3 Communication Code Listing: Spaceball Communication 102

Appendix E 108

IV

E.l Operating Instructions: Preparation 108
E.2 Operating Instructions: Execution 109

Appendix F 112

F.l CIS Dimension 6 Communication Parameters 112

Vita 113

List of Figures

Figure Page

1-1. Teleoperated Spacecraft Docking 1

2-1. Block Diagram of Teleoperation Architectures 9

2-2. Depiction of Translational Hypercone Constraints 15

3-1. Prototype OBBC Master Controller 18

3-2. Dim 6 Keypad 20

4-1. Prototype OBBC Architecture 23

4-2. Position Controller Block Diagram 26

4-3. System Data Flow 30

5-1. Spacecraft Closure Rates 34

A-l. Side View - Spaceball Platform 40

A-2. Top View - Spaceball Platform 40

A-3. Front View- Spaceball Platform 41

A-4. Side View- Actuator Casing 41

A-5. Top View- Actuator Casing 42

B-l. Server_frobmc.c Flow Chart 43

C-l. Frobmc.gsl Flow Chart 81

VI

List of Tables

Table Page

2-1. Qualitative Comparison of Teleoperation Techniques 10

2-2. Comparison of Implemented and Alternative Feedback Modes 17

4-1. Master Controller Keypad Functions 25

5-1. Master Mode Simulation Summary 32

E-l. Initial Input 110

F-l. Spaceball Dipswitch Settings 112

Vll

AFIT/GA/ENY94D-9

Abstract

The concept of object-based control is extended to the field of teleoperation,

specifically to accomplish the task of spacecraft docking via a bilateral manual controller.

An object-based controller with bilateral feedback controls the motion of the grasped

object, not the trajectory of the manipulator. For this reason it can be designed with

feedback that is intricately linked with the task kinematics. The benefits derived from

anthropomorphicity and force feedback are possible without kinematically/geometrically

similar master-slave systems, complex calibration and joint mapping schemes, or

expensive, high degree-of-freedom force reflection. Object-based control is ideal for low-

level telerobotic interfaces.

A hand controller and a spacecraft docking simulation are designed and

constructed to demonstrate object-based bilateral control. The dominant task objective in

spacecraft docking is the approach to a target vehicle along a single axis of motion.

Several methods of bilateral feedback linked with this dominant objective are proposed in

addition to simple force reflection. One method involves virtual forces and another

utilizes velocity reflection. Each method, practical only with object-based control,

enhances the man-machine interface by providing a heuristic method of manual control.

Vlll

TELEPRESENT SPACECRAFT DOCKING WITH OBJECT-BASED

BILATERAL CONTROL (OBBC)

I. Introduction

1.1 Overview This thesis proposes a new control method for teleoperation. The task

chosen to demonstrate this new control architecture is spacecraft docking. Figure 1-1

depicts teleoperated spacecraft docking. Major docking objectives are a translational

approach to the target vehicle on one nominal axis with man-in-the-loop control and the

quick and accurate reduction of the target and tracking vehicle separation distance.

X

TARGET VEHICLE

MASTER HAND CONTROLLER

Figure 1-1. Teleoperated Spacecraft Docking

1.2 Background Space-based applications have historically required man's unique

decision-making skills to implement contingency operations and manual control (1,2,3,4).

Additionally, the consensus of the Department of Defense (DOD), major universities and

industry is that man-in-the loop control will play a vital part in future applications that

involve highly complex tasks in extremely dynamic environments (1). As a result,

NASA's manned and unmanned space programs are based on the premise of man-in-the-

loop control. The highly automated interplanetary missions such as Surveyor III and

Viking Mars involved manual mission modifications and ground-based manipulator arm

control (5). The Shuttle Transportation System's robotic arm, as well as the orbital

docking accomplished throughout the Gemini, Apollo, and Apollo-Soyuz programs,

required extensive manual control (2,5,6). The future requirements of space flight in the

era of the space station will depend heavily on telemanipulated spacecraft docking (5).

The history of spacecraft docking and the uncertainties of this task suggest the need for

the complex decision capabilities of man, while the need for quick communication without

time delay and the hazardous environment in which this task is performed suggest the need

for autonomy. But at least until significant progress in automation is achieved, critical

decision-making capability and emergency contingency operations in unpredictable

environments will remain a human responsibility.

Past and current spacecraft rendezvous operations and proximity operations require

either manual override or hand control (7,25). Astronauts review data displayed at

consoles and either punch the necessary buttons and switches for automatic control or use

combinations of simple interface devices similar to joysticks to perform manual spacecraft

control (2,7,25). All proximity operations require crew visual queues and have manual

override capability perhaps because virtually all of the U.S. and former Soviet Union's

attempts at docking required some form of astronaut/cosmonaut manual control (2,7,25).

Review of the research establishes three categories of control in the field of

telemanipulation. They are distinguished by the degree of man's input into the control

loop. The three categories are executive, supervisory, and manual control. Executive and

manual control are easily defined because the represent the extremes in telemanipulation.

Executive control is basically on/off control of an autonomous robot (4) and is typically

associated with the term telerobotics (1). Manual control is total human control and is

typically associated with the term teleoperation (1). Supervisory control, a term coined

by Sheridan (8), is more difficult to precisely define because it combines both autonomous

and human control (5,8). Because it involves some form of human input, it too is often

considered teleoperation. Supervisory control similar to the telerobotic extreme implies

human input, which augments pre-programmed computer control (6,8). Supervisory

control similar to the teleoperation extreme implies computer input which augments

human manual control (8). The degree to which the interface device provides a human

operator with realistic information from the task environment is telepresence (1,5). Each

broad category of control implies that the human operator is physically separated from the

task environment, necessitating a man-machine interface device. This interface device is

referred to as a master controller.

Since Ray Goertz created the world's first electrical master-slave manipulator in the

1950's at the Argonne National Laboratory (3,5), two master controller types have

conclusively emerged: geometrically/kinematically identical master-slave controllers

(hereafter referred to as master-slave controllers) and hand controllers (9). Emphasis has

been on the master-slave controllers (10), probably because designers seeking

ergonomically enhanced man-machine interface, have turned to anthropomorphicity

(1,4,10) and force reflection (11). Anthropomorphicity and high degree of freedom

(DOF) force reflection are predominantly identified with master-slave controllers. Force

reflecting hand controllers have been limited to miniaturized replica robots (5). In other

words, traditional force reflecting hand controllers are just miniaturized versions of the

master-slave controllers. Hand controllers have made strides only because of their

compactness. The need for this trait is particularly evident in space-based operations

where orbital work space is at a premium (4,9,12). The question of utility versus cost of a

force reflecting hand controller has limited the use of force reflection in hand controller

application (10). Still, force reflecting hand control is being pursued (12,13) and is a

design specification for the free world's future space station. The space station has been

the main force behind this technology for the past decade (5).

Research reveals many control theories that track actual slave motion to the desired

motion. Common control concepts include position and force control. More recent

methods are hybrid position-force control and impedance control (5). The foundation of

the research in this thesis is object impedance control, a concept and theory introduced

and developed by Schneider and Cannon (14). This concept focuses on the control of the

object and not the kinematics of the manipulator. The authors proposed that object-based

control is an extremely efficient technique due to instinctual control and transparent

manipulator dynamics. If applied to teleoperation, the instinctual control and transparent

manipulator dynamics would have three effects on a telemanipulation system. First, there

is a need for shared control and increased autonomy. As a result, the basic operation

requires little or no training because control is reduced to (at most) three simple

translations and rotations in space, which are skills humans accomplish routinely many

times per work day (1,4). Manipulator motion is automatically generated by the computer

based on the commanded object motion. Secondly, the physical characteristics of the

master controller need not be anthropomorphic or geometrically/kinematically similar to

the slave. Instead, the controller can be similar to the grasped object and can provide

DOF control equal to that required by the object. And thirdly, the feedback needed for

bilateral control becomes easier to implement, no longer dependent on complex

mathematical joint-mapping transformations, and can be designed kinematically similar to

the task.

Up to now, little research has been done in this area. Dr. Nat Durlach of MIT

introduced and researched Tool Handle Teleoperation specifically for the field of tele-

surgery. This method allows a surgeon to manipulate a surgical instrument mounted to a

robot as if there was a handle attached to the instrument (15). Most recently, Dr. Paul

Michelman and Dr. Peter Allen of Columbia University have proposed object-space

teleoperation (16). They use a simple input device to control elementary rotation and

translation motion of a Utah/MIT dexterous hand. The input device commands are based

on the grasped object space, rather than joint position space, which is the traditional

method to control motion of the dexterous hand.

The telepresence provided by a master controller is achieved mainly through the

coupling of visual feedback with bilateral control, the two-way communication of position

and force information between the user and the task environment (17,18). Research

indicates that telemanipulated task completion is up to 50% quicker when some kind of

force information is returned to the operator (8,12,13,16,19) and shows that force

reflection used for bilateral control is extremely effective if the operator desires to control

[contact] forces in the task environment (11,17,18). Traditional teleoperation

architecture derives feedback in one of two ways (17). In the first method, the effect of

object/environment interaction on each slave joint is directly measured, and impedance or

hybrid position/force control is used to force the corresponding actuated joints of the

master to track these slave joints. Master-slave symmetry makes this method practical but

dictates master controller geometric design. The second method, which is required for

hand controllers, is to form complex Jacobians that mathematically transform slave end-

effector forces into master joint torques. For either method, slave/environment forces are

corrupted by the compliance of the systems, while task and grasped object dynamics are

completely neglected. Furthermore, the complex mathematical transformations make it

impossible to orchestrate this information so that it can be used to provide a more

instinctual feedback.

This thesis proposes a new teleoperation concept called object-based bilateral

control (OBBC), and demonstrates its implementation with a spacecraft docking

Simulation. OBBC extends the object control theory of Schneider and Canon (14) to

teleoperation and enhances operator telepresence via the addition of bilateral control.

OBBC provides object-space control to facilitate simple and realistic reflection of the

interaction of the object with the environment while transparently controlling the motion

of the slave. Complex schemes to transform end-effector dynamics to joint-space torques

for effective bilateral control are not required; instead, the feedback is tailored to exploit

the task's dominant kinematic objectives. OBBC makes 1-DOF tactile feedback a

practical and useful design trait. Additionally, this type of control simplifies the

correlation of multiple DOF data for feedback via a controller with a single or low-level

DOF feedback capability.

Spacecraft docking is an ideal task for OBBC implementation because dominant

kinematic objectives are clear and easily integrated into the master controller design.

Additionally, the use of the OBBC master controller is compatible with the practice of

using hand controllers in spacecraft proximity operations.

The following chapter compares object-based teleoperation architecture with the

current architectures and makes general comparisons of each. The design characteristics

and operational traits of the master controller's four operational modes are also discussed.

Presently, AFIT does not possess a hand controller that offers bilateral control capability;

therefore, a prototype master controller has been designed and fabricated to enable OBBC

implementation. The description of this hardware is the subject of chapter 3. The master

controller is designed bilaterally, that is, it is used to input commands for the six degrees

of freedom (3 translational and 3 rotational) of a spacecraft and it is actuated for feedback

in one degree of freedom, specifically for spacecraft approach axis feedback. The simple

integration of two special types of heuristic feedback designed with task kinematic

similarity is discussed. Both methods utilize virtual feedback that includes a shared

control between the operator and the computer thereby increasing the overall system

autonomy. Chapter 4 describes the overall OBBC system controller design and its link

with the graphical spacecraft docking simulation. Also discussed in this chapter is the

OBBC communication network. Standard UNIX C programs have been written to

perform master controller serial communication and ethernet communication between

Silicon Graphics, Sun Sparc workstations, and a real-time microprocessor. Chapter 5

documents results recorded during spacecraft docking simulation with the four operational

modes of the prototype OBBC system. Chapter 6 summarizes conclusions and

recommendations about the thesis. Finally, the appendices supply design drawings, code

listings and flowcharts, and simulation operation instructions.

1.3 Principal Accomplishments The principal accomplishments of this research are:

• development and demonstration of an object-based bilateral teleoperation concept, a
concept unique to the field of teleoperation.

• fabrication of a 6-degree-of-freedom hand controller with l-degree-of-freedom
feedback to the operator, offering bilateral control

• demonstration of the utility of multi-axis to single-axis feedback for bilateral control,
specifically in spacecraft docking

• development and implementation of two bilateral controllers unique to
telemanipulation and

• the design of a low-level telemanipulation communication hub.

n. OBBC Concepts and Current Implementation Methods

2.1 OBBC Telemanipulation Architecture Research implies that a paradigm has evolved

with the control architecture of telemanipulation. The physical design of the slave has

dictated the foundation of the overall system control theory, the physical design of the

master controller, and the design and implementation of the system's feedback.

Additionally, due to the benefits derived from ergonomics, designers have been forced to

incorporate anthropomorphic and high DOF force reflection characteristics in master

controller design, putting further limitations on the slave design. This paradigm

necessitates complex calibration and joint mapping schemes, geometrically/kinematically

identical master-slave systems, and detailed knowledge of task and manipulator. It has

also forced the emergence of basically two types of master controllers. The two controller

types are force reflecting hand controllers (FRHC) and the geometrically/kinematically

identical master-slave controllers with force reflection. The basic control architecture for

these type of controllers is illustrated in Figure 2-la.

The OBBC challenges this paradigm because the control theory is object based;

therefore, the operator controls the motion of the object, not the slave. The OBBC

implementation used in this thesis to perform teleoperated spacecraft docking

demonstrates a master controller physical design not restricted by a need for geometric

symmetry. OBBC also demonstrates bilateral control that utilizes feedback designed to

exploit the docking task. Furthermore, ergonomic benefits are demonstrated without

anthropomorphism. The proposed general architecture is seen in Figure 2-lb.

human operator

human operator
<r

1

master
e communication -*

e SLAVE environment

Figure 2-la. TRADITIONAL TEILOPERATION ARCHITECTURE

master communication

 7S~

! slave \, OBJECT
*H K

f f
o o

environment

Figure 2-lb. OBBC TELEOPERATION ARCHITECTURE

Figure 2-1. Block Diagrams of Teleoperation Architectures

Figure 2-1 illustrates the difference between object-based control and the

traditional teleoperation architecture defined by Anderson and Spong (18). Ideally, for

the traditional architecture, the desired effect of the slave (vs) is controlled to equal the

input's effect on the master (vm), and the reflected force from the environment (fe) is

controlled to equal the force sensed by the operator (f*h). The object and task dynamics

are neglected when implementing traditional teleoperation. For the OBBC architecture,

the desired effect of the object (v0) is controlled to equal the input on the master (vm) via

automatic computer generated slave input (vs). In Figure 2-lb the slave box in the OBBC

architecture is drawn dotted to illustrate that the slave dynamics are transparent to the

operator. It is also important to note that object forces need not be manifested through

the slave before communication back to the master controller.

The terms in the teleoperation architectures are related to the spacecraft docking

task (pictured in Figure 1-1 of chapter 1) in the following discussion. The human operator

or teleoperator is an astronaut or ground personnel manning the master controller. The

master controller is the interface device that provides input for the control of a remote

slave and object. The slave, specifically for docking, is the attitude control and propulsion

subsystems of the object or tracking vehicle at a remote environment. Finally, the

environment is the approach and interaction between the tracking and target vehicles.

2.2 Qualitative Comparison of Teleoperation Techniques Table 2-1 compares

information obtained from the design and implementation of OBBC with existing master

controllers' characteristics. Automatic control is included in this table because it

represents the ultimate evolution in telemanipulation, otherwise known as telerobotics.

The assessed characteristics for FRHC, master-slave and autonomous controllers are

extracted from 4,5,10,11,12,13,16,17,20, and 21 and are divided into the two categories

of engineering and human factors. In Table 2-1, the OBBC and Autonomous controllers

are shaded to highlight their similarity. The letters "H", "M", and "L" stand for high,

medium and low respectively and represent the degree to which each characteristic was

manifested.

Controller Characteristics FRHC Master-
Slave

OBBC Autono-
mous

engineering
factors

Design simplicity L H H L
Ease of object/environment
feedback implementation

L M H

Degree of autonomy M llttlÄlti
Anthropomorphic
dependency

L H
L

Tailored to task dynamics L L H H
Universal H L 'mmm L
Cost H M L

human
factors

Ease of use M M 11111111
Required training H M L L
Requires coupling w/ visual
f/b

H H
h L

Ergonomie feedback M L H

Table 2-1. Qualitative Comparison of Teleoperation Techniques

10

General assessments could not be made about certain controllers for some of the

characteristics, thus their respective table entries are left blank. The table illustrates two

key points. It.compares the human and engineering characteristics of each controller to

show that the OBBC controller is a specialized FRHC which makes the controller more

autonomous but less universal.

2.3 Prototype OBBC Mode Characteristics The prototype OBBC system is designed

with four operational modes. All modes provide six degree of freedom (6-DOF) control

of a tracking vehicle in a spacecraft docking simulation. Detailed information about the

docking simulation is documented in chapters 3 and 4. The baseline mode offers only

unilateral control with no feedback other than the visual feedback inherent to the graphical

simulation. The remaining three modes additionally offer 1-DOF bilateral control

reflecting information about the axis of approach. The four modes are as follows:

• Mode 1 : unilateral control

• Mode 2 : force reflection

• Mode 3 : virtual force reflection

• Mode 4 : electronic tunneling

Table 2-2 is a comparison of the prototype's operational modes and a

recommended alternative mode. The table summarizes the characteristics derived from

each mode's feedback design and implementation discussed in sections 2.2.1 through

2.2.5. As in Table 2-t, the characteristics are assigned a grade of "H", "M "or "L".

Assessments are made from the actual implementation of the four operational modes. The

alternative mode's assessment is hypothesized.

2.3.1 Mode 1 - Unilateral Control. The unilateral control mode enables the

teleoperator to provide the 6-DOF input required for control of the tracking vehicle during

docking simulation. No feedback is returned to the operator in this mode. The operator

11

uses only visual feedback to accomplish the spacecraft docking. The target vehicle was

assumed to have been designed with the necessary compliance to produce acceptable

impact forces for a range of nominal terminal closure rates. This mode is most

representative of current spacecraft proximity operations in that it is performed via a hand

controller without bilateral control. One could postulate that a highly skilled and practiced

operator using unilateral control with visual feedback could eventually perform the task

optimally, without the need for special, non-visual feedback.

The performance, operation, and design of this mode is used as the baseline for the

comparison of the design and operation of the other master controller modes. The human

factor traits in this discussion are based on initial operation of the master controller in its

respective modes.

2.3.2 Mode 2 - Force Reflection. The major kinematic objective in spacecraft

docking is a translational approach along only one axis of motion (2). In mode two, force

reflection, the approach axis force resulting from object/environment (i.e. tracking and

target vehicle) interaction is reflected back to the operator. During the docking task, force

on the approach axis due to the environment is non-existent unless contact between the

target and tracking vehicles occur. Upon contact, either from task completion or an

unplanned collision, contact force on the approach axis is modeled as the force generated

by a simple spring that has sufficient force-length to allow the operator to "feel" contact

for sufficient time to sense the rate of closure and to make required adjustments. This

type of feedback would be extremely effective for docking if the target vehicle has a

recoiling probe that is'extended during docking to absorb impact forces.

During operation in this mode, the operator feels no interaction until actual contact

is made with the target vehicle at task completion. Thus, force reflection indicates only

that contact has occurred, regardless of whether this contact is from a successful docking

or from a catastrophic collision. Though the operator easily recognizes task completion,

force reflection information does nothing to enhance the operator's pre-contact

12

performance because the operator's ability to react is limited by the limitations on the

spring force-length. Details about this mode and its integration into the OBBC prototype

controller are found in section 4.2.3.1.

2.3.3 Mode 3 - Virtual Force Reflection. A unique feedback method is mode

three, virtual force reflection. Virtual force reflection employs a virtual spring to provide

the teleoperator with feedback throughout the task duration. The computer generates this

virtual spring environment that continuously interacts with the tracking vehicle along the

approach axis. The object/environment interaction is monitored by the computer and

reflected back to the operator via the actuated master controller. The operator must apply

forces to the master controller to overcome a growing virtual force. If the applied forces

are greater than the reflected force, the operator can feel the master controller move in the

nominal docking direction. The virtual force, calculated in object-space, grows linearly as

the tracking vehicle approaches the target on the approach axis. Mode three is designed

with a 100m linear virtual spring, but any spring length and force/displacement relationship

could have been substituted. The virtual spring of mode 3 extends from the docking port

of the target vehicle. The operator can apply forces at the master controller only sufficient

enough to equal the maximum force of the virtual spring, making impact with the target

vehicle theoretically impossible.

The virtual force is designed to moderate the negative effect of the feedback on the

task performance, so the feedback is reflected only when motion is commanded with the

manual controller, acting like a dead man trigger. This mode demonstrates how the

OBBC concept permits the simple manipulability of the data derived from

object/environment interaction, transforming it into ergonomic feedback by selecting only

useful information for return to the teleoperator. The feedback thus allows the operator to

concentrate on other task objectives.

During simulation, the motion along the axis of approach is automatically

regulated as the tracking vehicle approaches because the virtual force limits the input

13

commanded at the master controller, leaving the operator free to align the remaining

translational and rotational degrees of freedom. The commanded translation over the

separation distance is extremely fast and returns continuous feedback to the teleoperator.

While the operator remains dependent on visual feedback despite virtual force reflection,

this mode enhances the manual control of the docking simulation and demonstrates the

utility of single-axis force reflection. Details about this mode's integration into the

prototype OBBC controller are found in section 4.2.3.2.

2.3.4 Velocity Reflection with Electronic Funneling. OBBC makes it possible to

propose two methods of feedback, the previously mentioned virtual force reflection and

velocity reflection with electronic funneling. These methods are unique to

telemanipulation because OBBC allows the feedback design to integrate the major

kinematic objective of the docking task, and OBBC facilitates the orchestration of all

information derived from object and environment interaction. The second unique

feedback, implemented in mode 4, is velocity reflection derived from tunneled multi-axis

object/environment interaction. Because the prototype OBBC hand controller is object-

based, a simulated constant spacecraft velocity can be reflected back to the master

controller. Approach motion of both the object and the master is prohibited until the

operator uses the master controller to satisfy position and orientation constraints on the

tracking vehicle. The constraints are dictated by a virtual hypercone originating at the

docking port of the target vehicle and centered on the approach axis. If all constraints are

satisfied, the docking approach can proceed. The operator "feels" the approach

proceeding when the master begins to move at a constant velocity scaled from the actual

spacecraft velocity. The master controller is actuated with forces derived from a constant

force virtual spring that exerts a force on the master on the nominal docking axis. This

force is actuated at the master only when a hypercone of constraints around the ultimate

target position and orientation are satisfied and only when motion along the approach axis

is commanded.

14

The constraints are described by a virtual hypercone, since they are dependent on

information from all six degrees of freedom. The translational constraints of the

hypercone are. depicted in Figure 2-2. The virtual hypercone extends out from the nominal

docking position. It is 25m in length, and its radius at any given point is dependent on the

separation distance between the target and tracking vehicle along the axis of nominal

docking direction. Thus the closer the tracking vehicle is to the target vehicle, the stricter

the tolerances become on the error between the commanded position and orientation of

the tracking vehicle and the nominally docked position and orientation. Inherent in this

/N

approach axis

tracking vehicle

target vehicle

Z
I

25m

Figure 2-2. Depiction of Translational Hypercone Constraints

mode is a shared control between the teleoperator and the computer. Motion along the

approach axis is handled by the computer, with executive control dictated by the

operator's alignment of the remaining position and orientation axes. The virtual hypercone

places constraints on the off-axes data to "funnel" the object's approach to a pre-planned

target position. The feedback is unique to teleoperation because it is derived from multi-

axis data but is fed back to the teleoperator via single-axis actuation of the master

15

Controller; therefore, both the approach to the target vehicle and the multi-axis feedback

are, in a sense, funneled.

During the simulation, velocity feedback with electronic tunneling allows quick

and accurate task completion when coupled with visual feedback. Small simulation

modifications could make task completion with this mode possible even without visual

feedback. Teleoperator control is enhanced with the use of various input filtering

functions programmed for the spaceball which modify the programmed velocity or

sensitize off-axis input, thereby increasing the effectiveness of the mode. Final docking

position and attitude are completely accurate but spacecraft terminal closure rate is high.

Safety concerns related to this high terminal velocity can be addressed by modifying the

ultimate target position, which can be accomplished by modifying the hypercone

constraints.

The limited range of motion on the prototype hand controller's feedback actuation

system forced the interruption of the docking simulation and hampered the evaluation of

this feedback mode. Details about this mode's integration into the prototype OBBC

controller are found in section 4.2.3.3.

2.3.5 Mode 5 - Virtual Environment. A virtual environment is suggested as an

alternative master controller mode, designed to reflect position, velocity, and (virtual)

interaction forces to the teleoperator. The virtual environment is practical and easily

implemented because OBBC sensors at the object provide object-space data. This mode

would require the implementation of the optical encoder and augmentation of its

associated processing hardware. As a result, closed loop motor control can be utilized.

The hand controller could then be designed with position references which are calibrated

to match actual positions. Position commands are input via the hand controller, and the

actual position/velocity is bilaterally returned to the operator. Virtual forces could be

reflected to complete the package. The controller becomes a mini-virtual environment,

and visual feedback is no longer necessary for manual control. This alternative mode

16

which represents nominal telepresence, is discussed for comparative purposes and was not

implemented.

FEEDBACK DESIGN Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

ergonomically designed
tailored to task kinematics
ease of implementation
derived from multiple axis
data

L L M H H
L L M H H
H H M M M

H H

1A1SK rEK*UKMAINLJL
completion speed
completion accuracy
contingency capability
(manual)
dependency on visual
feedback

L L H M H
L L M H H
H H H H H

H H H M L

Table 2-2. Comparison of Implemented and Alternative Feedback Modes

17

IQ. Description of Prototype Hardware for OBBC

3.1 Overview To investigate and demonstrate OBBC, a six degree of freedom (6-DOF)

master hand controller actuated to provide feedback had to be designed and constructed.

The fabricated master controller is a position control interface device for a spacecraft

docking simulation. The complexity and cost of multi-axis feedback, as well as the nature

of the docking task, suggested that a master controller with feedback in only the nominal

docking direction would supply the teleoperator with sufficient feedback for enhanced

telepresence. The prototype master controller is pictured in Figure 3-1. The four major

components of the controller are the actuator, the servo-amplifier and power supply, the

CIS Dimension 6 spaceball, and the spaceball platform and actuator casing.

spaceball platform
keypad

optical force sensor knob
A^ "spaceball"

CIS Dimension 6

Figure 3-1. Prototype OBBC Master Controller

During the simulation, the operator envisions the master controller spaceball

platform as the spacecraft in the simulation display and inputs changes to the spacecraft

position and attitude by imparting a force or torque on the spaceball knob, acting as if

18

using his hand to position the spacecraft itself. The actuator casing always remains

immobile, but in modes 2 through 4, described in the previous chapter, the approach axis

force sensed at the spacecraft from its interaction with the environment is converted to a

proportional torque that is applied to the platform actuator. The operator then "feels"

one axis of spacecraft/environment force (or motion in mode 4) with his hand.

3.2 Actuator The actuator is a Globe 24VDC electric motor, selected because it was

back-driveable and already in AFIT's possession. The actuator generates the necessary

reflected feedback. Attached to its motor shaft is a double cable spool, which is designed

to simultaneously reel in and out six gauge metal cable. The drive cable is secured to each

end of the spaceball platform and pulls on the platform to move it in either direction along

the tracks, the direction being dependent on the direction of the reflected force. The

spaceball platform is immobile due to the mechanical impedance of the drive system unless

voltage is supplied to the actuator. Also attached to the motor is a Hewlett Packard 500

count resolution optical encoder.

3.3 Servo-amplifier and power supply The servo-amplifier is a Copley Controls Corp.

300 Series Amplifier powered with a Series 600 unregulated DC power supply, requiring a

standard 120V AC outlet. The amplifier is used as a voltage to current converter and is

operated in the flat-gain mode, requiring a reference or control voltage of ± 75mV.

Specific amplifier information can be obtained from its user manual (22). Unforced

movement of the spaceball platform requires at least a + 35mV reference voltage signal to

the servo-amplifier which overcomes the impedance of the drive system.

3.4 CIS Dimension 6 Spaceball The CIS Dimension 6 Spaceball (Dim 6) contains a 6-

DOF optical force sensor integrated into a spherical knob. It is this force sensor that is

used to modify the tracking vehicle's position vector. A standard RS-232 connection and

a null modem device allows serial interface with a Silicon Graphics IRIS Indigo

workstation (SGI). The Dim 6 has dip switch selectable communication parameters, the

settings for which are found in Appendix F.

19

In addition to the optical force sensor, the Dim 6 has a keypad complete with 8

function buttons and 3 transmission modes. Function buttons are user definable, and these

functions are defined in section 4.2.1. Figure 3-2 depicts the buttons used for the three

transmission modes, labeled as "TRA", "DOM", and "ROT". When initially powered up,

the Dim 6 is in default mode and will transmit forces sensed in all six degrees of freedom.

The teleoperator can use the TRA button to transmit only translational inputs and the

ROT button to transmit only rotational inputs. The DOM button transmits only the

dominant force sensed by the spaceball and can be used in conjunction with any

transmission mode.

0000
0000

TRA
per

DOM

x /\

>

indicator
light

Figure 3-2. Dim 6 Keypad

Additional information about the Dim 6 can be obtained from its user manual (26).

3.5 Spaceball Platform and Actuator Casing The Dim 6 provides the required 6-DOF

command input to the spacecraft, but by itself is incapable of reflecting feedback to the

20

teleoperator. Thus a platform capable of "frictionless" motion in the ± x (approach axis)

direction was constructed with aluminum and four ball-bearing wheels. The Dim 6 is

mounted to the platform, and the drive cable of the actuator is attached at both ends. The

platform glides on tracks machined into the top of the actuator casing, prohibiting out of

plane motion. The range of translational travel is up to three inches. The actuator casing

provides a housing for the actuator motor and spool, as well as the servo-amplifier and the

power supply. Additionally, the casing provides a pulley interface for the connection

between the actuator cable and the spaceball platform.

21

IV. Prototype Object-based Bilateral Controller Design

4.1 Overview Several programs were required to perform overall system control. The

serverfrobmc.c program of appendix B, in conjunction with the frobmc.gsl program of

appendix C, performs two main functions. First the programs serve as a fully resolved

position control system that performs tracking of a desired position command input.

Secondly, these programs function together as a master control system that processes

operator input from a master controller operating in one of four operational modes and

actuate the master controller to return feedback to the operator. A secondary function of

serverfrobmc.c allows user- selectable scaling of hand controller input. The simulation

driven by frobmc.gsl with input from server_frobmc.c displays the approach of a 6-DOF

rigid body spacecraft to an immobile target vehicle. The main visual display provided to

monitor docking is a cockpit view and is complete with dual crosshairs to enhance visual

feedback. A set of crosshairs is attached to each docking point on the tracking and target

vehicles. A second display provides a top view of the docking. The target vehicle is a

space station constructed from graphics provided by Deneb Robotics for Interactive

Graphics for Robotic Interface Program (IGRIP). The tracking vehicle is modeled after

the Precision Orbital Tracking Vehicle (POTV), the spacecraft of Lawrence's thesis (23).

Both vehicles' graphics and the basic simulation design were originally programmed by

Tom Bridgman (24). User keyboard interface is required to input the tracking method and

operational mode preferences, and the initial separation distance necessary to initiate the

simulation. The server_frobmc.c coding is accomplished in standard UNIX C, and a

complete listing as well as a flowchart can be found in Appendix B. This software is

intricately linked with the Graphics simulation code, which drives the visual display of the

docking on an SGI Indigo workstation. The frobmc.gsl coding is written in Graphics

22

Simulation Language (GSL) for IGRIP, and a complete listing as well as its flowchart can

be found in Appendix C.

4.2 Prototype OBBC Architecture The function of the OBBC control system is to

force the position of the object to track the position input at the master controller while

simultaneously allowing the master controller actuation system to track the influence of

the environment on the object. Thus the OBBC teleoperation system can be considered a

two-port network. One port represents the interaction between the operator and the

master controller, while the other port represents the interaction between the spacecraft

(object) and its environment. The object/environment port must be created to allow the

slave (spacecraft attitude control/propulsion subsystems) dynamics to remain transparent

to the operator. One way to represent the OBBC two-port architecture is illustrated in

Figure 4-1 and is discussed in the following sections.

® server frobmc.c

O frobmc.gsl

Figure 4-1. Prototype OBBC Architecture

23

4.2.1 Master Control. To move the simulated object (tracking vehicle), the

teleoperator imparts a force or a torque in the desired translational or rotational direction

on the hand controller knob. This input forms the master input vector and is made up of

three forces and three torques:

■ = [/,/,/,',^,f

The server_frobmc.c program then translates this into meters/degrees with the mapping

function, Km. Km maps forces and torques exerted on the control knob to values

between 0 and 1 meters and between 0 and 1 degrees respectively.

If operating the master in mode 1, the mapped input is simply summed with the

current desired position command vector. A keyboard input of the initial desired position

is required before the simulation will commence. Operation in modes 2 and 3 sums the

mapped input with the current desired position command vector, as well as with the force

information derived from the object/environment interaction. In mode 4 operation,

server_frobmc.c evaluates a flag returned from frobmc.gsl. This flag indicates whether or

not the mode 4 constraints are satisfied. When the constraints are satisfied, the desired

command vector is updated with a constant lm input. Unsatisfied constraints allow the

desired command vector to remain unchanged. The updated desired position command

vector is made up of three translational positions and three relative attitude angles:

r = \-Xdes y<les Z des "des 9des Vdes J

At Simulation initiation, the initial desired position command is input via the keyboard.

Server_frobmc.c enables the teleoperator to use the function keys on the keypad of

the master controller to modify the scale and sensitivity of the commanded input.

24

Function button #4 reduces input to 1/10 the default input capability. Depressing button

#5 cuts commanded input of the off-axes by half while button #8 doubles the input of the

off-axes. The.operator can double the input of the approach axis with button #6. Finally,

the input can be restored to default levels with button #2. Table 4-1 summarizes the

keypad functions.

Button # Function
2 reset all

4 0.1[fyf7tVtyt7l

5 0.5rfykt*tyt*l

6 2fv

8 2[fy h h ty tzl

Table 4-1. Master Controller Keypad Functions

4.2.2 Slave Position Controller Design. The updated desired position command

vector becomes the input to a slave position controller. For a spacecraft, this slave

controller would be the attitude control and propulsion subsystems. The design of the

controller (see Figure 4-2) is borrowed and modified from a thesis by Richard E.

Lawrence (23). This design includes the controller system, input, pre-filter, and gain

matrices optimized for both the V-Bar and R-Bar tracking methods. The R-Bar tracking

method is an approach to the target along the radius vector of the target vehicle, while V-

bar tracking is an approach to the target vehicle along a horizontal component of the

target vehicle's tangential velocity vector (25).

25

Figure 4-2. Position Controller Block Diagram

The vectors and matrices in Figure 4-2 are defined as follows:

r6xl = desired position command vector F = system matrix

u9xl = COntrol vector G = input matrix

x12xl = SyStem state vector H = output matrix

y6xl = output position vector M = pre-filter matrix

K == controller gain matrix

The controller code utilizes a 4tn-order Runge-Kutta method for the necessary

integration of the relative equations of motion and is extracted from a program by Tom

Bridgman (24). The linearized equations of motion of the tracking vehicle relative to the

target vehicle, as well as the non-gravitational forces and moments, are completely derived

by Lawrence (23). The complete set of both translational and rotational relative equations

of motion are as follows:

26

F
x-2ny-3n2x = — (4.1)

m
Fy

y + 2nx = -^ (4.2)
m

z + n2z = ^- (4.3)
m

A{9-n<f>) + (C-B)(n0 + n20) = Mx (4.4)

3«2z
B(0 + n0) + {A-C){n6-An2<j) -) = Mv (4.5)

C(y~) + (5-^)(3«V-—) =MZ (4.6)
2r„ r.

where Fx, Fy, and Fz are non-gravitational forces; Mx, My, and Mz are non-gravitational

moments; n = yjGMB/r3; A, B, and C are principal moments of inertia of the tracking

vehicle; m is the mass of the tracking vehicle; r0 is the magnitude of the target vehicle's

position vector; and r is the magnitude of the tracking vehicles position vector.

4.2.3 Object/Environment Interaction. The slave controller output position

vector y is used by frobmc.gsl to drive the position and attitude of the object (tracking

vehicle) in the docking simulation. The operator then uses this simulation as visual

feedback. At this point, unilateral master control (mode 1) is completely described. For

the remaining operational modes, frobmc.gsl creates a simulated environment to provide a

source for the non-visual feedback.

4.2.3.1 Mode 2 - Force Reflection. In mode 2, the force on the axis of

approach from any contact between the tracking and target vehicles is modeled as the

force of a linear spring. This force, limited to the approach axis due to master controller

design, is calculated in object space as described in Figure 4-1, where xc is the position of

contact, and x is the commanded position of the object that caused the contact. Ks is a

spring constant and makes the force proportional with fx. The resulting object-based

force fe x is summed with the fx input sensed at the master. The summed force is then

27

converted to the necessary voltage units to actuate the spaceball platform on the master

controller.

4.2.3.2 Mode 3 - Virtual Force Reflection. In mode 3, the source of the

feedback created by frobmc.gsl is a virtual spring. The operator must overcome the

virtual force generated by a 100m long virtual spring that originates from the target

vehicle. For the prototype, this virtual spring is infinitely wide and the force fe x is

calculated as described in Figure 4-1, where lvs is the unforced length of the virtual

spring. As before, this force is limited to the axis of approach because it is this axis for

which feedback is available at the master controller. Kvs is a spring constant and makes

the force proportional to fx. No force is created until the separation distance is less than

the 100m length of the spring. Furthermore, the force is fed back only when the

teleoperator makes a command input in the nominal docking direction (fx > 0). The

feedback imparted to the operator by the master is the sum of the commanded force fx and

the virtual force fe x. This summed force is then converted to voltage and relayed to the

manual controller. If a collision with another part of the target vehicle should occur in this

mode, this force is reflected back by the same method used in mode two.

4.2.3.3 Mode 4 - Velocity Reflection with Electronic Funneling. In mode 4,

the code again generates an environment for object interaction that serves as the source

for the non-visual feedback. Unlike the previous two modes, all of the object's position

and attitude components are utilized in the derivation of the feedback. A hypercone of

off-axes alignment constraints is created from the separation distance between the tracking

and target vehicles. As can be seen in Figure 4-1, the feedback is only possible when the

constraints C of the virtual hypercone are satisfied by the ongoing simulation and only

when the operator is commanding motion in the nominal docking direction (fx > 0).

The constraints C are explicitly defined below:

28

y-yt\<0.25s

z-zt\<0.25s

0-Ot\<O.25Qs

*-6\<0.25Qs

^-d<0.25Qs

where the subscript t indicates a target vehicle variable and the separation distance is s =

(x-xt). The 0.25 constant was arbitrarily chosen. The constraints were specifically made

dependent on the separation distance, tailoring the feedback design to task dynamics. The

constant can be changed to make the constraints more stringent. In order to provide a

concrete example of the tolerances created by the constraints, consider two vehicles with a

separation distance of 12m. The translational position error on the off- axes can be no

larger than 3m and the attitude angle error can be no larger than 3°.

The constraints are monitored by frobmc.gsl with additional visual feedback

provided to the operator if the constraints are not satisfied. This additional visual

feedback is in the form of the background color of the simulation display and the set of

crosshairs representing the target and tracking vehicles. The operator adjusts off-axes

translational positions by "superimposing" the tracking vehicle crosshairs on the target

vehicles crosshairs. The background color of the cockpit view display will turn green if

the tracking vehicle with respect to the nominal docking attitude is off in yaw, yellow if off

in pitch, and purple if off in roll. Because motion of the tracking vehicle, and thus the

master controller, is only permitted when the software verifies that all constraints are

satisfied, increased system autonomy and shared control is implied.

4.3 Communication Software Communication is a very important design trait for a

teleoperation system because time delay is a major problem source for teleoperation (18).

Total round-trip communication for the prototype controller is less than 1/5 of a second,

which causes a slight discrepancy between the visual feedback and the feedback used to

29

provide bilateral control. The communication network for the prototype OBBC

simulation consists of the basic components needed to perform teleoperation but lacks

realism in its representation of all components necessary for true remote teleoperation.

For example, the displays provided for the visual feedback during simulation would

actually require radio communication to remote cameras. This type of communication

was not part of the OBBC simulation.

The communication software that provides the necessary teleoperation

communication to support the data flow illustrated in Figure 4-3 is written in standard

UNIX C language. A complete source listing can be found in appendix D.

visual feedback (position)

Operator i J

OBBC_comm_hub.c

i

/
force

(f/b ldof o nly)

force/velocity feedback

l

^ {
i r ; I '

Spaceball/Platform

volts

serial comm
software

-> server_frobmc.c

Servo Amplifier / ' \ •v.
position force (volt s)

V
vly

/
i

R/T Microprocessor*
IGRIP frobmc.c
spacecraft simulation L Actuator/Encoder

Manual Controller Object and Environment

Con lmunication

Figure 4-3. System Data Flow

4.3.1 Ethernet Communication. The central hub of all ethernet communication is

OBBC_comm_hub.c . It is executed on a Sun Microsystems SPARC 2 Workstation.

This hub provides communication between the SGI workstation and the CIUMERA-

operated real-time VME microprocessor. The code providing the communication link at

30

the microprocessor necessary for D/A and A/D interface with the manual controller is the

program fr.c.

4.3.2 Master Controller Input Communication. The communication software also

provides serial communication between the SGI workstation and the CIS Dimension 6

spaceball portion of the master controller. Because the master controller control is

performed in the same location as the creation of the virtual environment and the control

of the simulated object, this communication is not truly indicative of remote teleoperation.

This communication satisfies simulation requirements, but again, reality would require a

radio communication component necessary to relay information between the master and a

remote object. The source code is written to support all selectable communication

parameters of the Dimension 6 spaceball.

4.4 IGRIP Environment The Deneb Robotics IGRIP software provides many

interactive tools that the teleoperator may find useful during the simulation. Three that

have aided in a successful completion of the docking task are the joint values, magnify,

and rotate world functions. The operation of these tools is described in the operation

instructions found in Appendix E. The joint value function allows the user to view the

tracking vehicle's translational and rotational position values. The magnify tool, when

used in conjunction with the rotate world tool, allows for a close inspection of the mating

between the target and tracking vehicles. These tools can be used to enhance the views

generated automatically by frobmc.gsl.

31

V. Demonstration of Prototype Operation

5.1 Task Description The operation of the prototype OBBC master was limited. A

simple spacecraft docking simulation was used to demonstrate the functional capability of

the controller in each of its four modes. In each case the tracking vehicle made an R-bar

approach to the target vehicle and master control was initiated at a separation distance of

15 meters. No attitude angles were commanded. The approach was free of any possible

contingency operation and accuracy of the docking position at task completion was not

recorded. The task was considered complete when the separation distance was reduced to

15mm or less. The operator was expected to perform the task as accurately as possible

and achieve a small terminal velocity. Table 5-1 summarizes each mode's simulation

performance.

Characteristic Mode 1 Mode 2 Mode 3 Mode 4
Initial separation distance 15m 15m 15m 15m
Tracking method R-bar R-bar R-bar R-bar
Maximum velocity (m/s) 0.0047 0.0071 0.0114 0.0165
Velocity at task completion (m/s) 0.0015 0.0003 0.0 0.0
Duration (s) 3800 4920 2320 4360

Table 5-1. Master Mode Simulation Summary

5.2 Closure Rate Profiles For each of the master controller modes, tracking vehicle

velocity was recorded to illustrate functional differences. Figure 5-1 shows their

separation closure rates. These plots should not be interpreted as an evaluation of the

controller since insufficient controls were applied during data collection. Possible controls

would have included such factors as accuracy at task completion, skilled or unskilled

operators, task duration limits, and contingency response. The results are specific to the

32

operator and could change even if rerun due to their sensitivity to operator skill and style.

For all modes, manual operation was initiated at 3900 seconds because all mode

simulations were initiated with identical initial command vectors. The profiles for

operation in modes 1 and 2 illustrate each mode's sensitivity to operator style. The mode

1 profile shows a non aggressive style indicated by small initial commanded velocities.

The operator was forced to command input near task completion, resulting in a terminal

velocity larger than any mode. In contrast, the profile recorded for mode 2 shows an

aggressive operator style indicated by the large initial commanded velocities, which

resulted in a slow terminal velocity.

When making further comparisons, it should be noted from Figure 5-1 that the

mode 4 zero closure rates indicate translational corrections in the off-axes. The mode was

designed so that the task could not proceed until the errors in the alignment of the lateral

axes were corrected. This design characteristic allows unequaled accuracy in task

performance. Errors in the lateral translational axis at task completion were significantly

less than those of any other mode. In fact, a perfectly piloted tracking vehicle with mode

4 operation, could achieve significant reductions in task duration due to its high constant

velocity input (note the maximum velocities in Table 5-1). Neglecting the time for off-

axes correction in mode 4's profiled data, task duration is 2520s.

The profiles for modes 3 and 4 show no velocity at task completion, indicating that

contact between the tracking and target vehicle is never achieved. This is possible only

because the sensors are assumed to be perfectly accurate and reliable.

33

5

3? 4
E.
CD

4—1

2 3

in

■8 2

.x10"-

2000

15

| 10

4—'

2 5
<i>

.x10"

Mode 1

v\
,\ 'taskcompletion

w\

-*V-

V NA
4000 6000

time (s)

Mode 3

8000

I "task completion
i '^ ! I ;j..v j ,

I \ I I
..A X-i ; 7! \: :

■ ' •

3000 4000 5000 6000 7000
time (s)

x10" Mode 2

o

T task completion

V \

---^—fi .-JK
2000 4000 6000 8000 10000

time (s)

^3 Mode 4
20

,x10

<D

15

10

O
" 0

"task completion

fV

k I
•*-

2000 4000 6000 8000 10000
time (s)

Figure 5-1. Spacecraft Closure Rates

34

VI. Conclusion and Recommendations

6.1 Conclusion Current teleoperation systems are based fundamentally on the slave

that manipulates the controlled object, and master-slave symmetry is either required or

assumed in order to provide enhanced telepresence to the operator via the master

controller. Object-based bilateral control (OBBC) offers a new control concept for

teleoperation and for master controller design. The benefits of anthropomorphicity and

bilateral control are obtained without the need for kinematically/geometrically identical

master-slave systems, complex calibration and joint mapping schemes, detailed task and

manipulator knowledge, and expensive high DOF force reflection. Manipulator motion is

transparent to the user and automatically generated. Subsequently, the controller

autonomy is increased, thus enhancing task performance and significantly reducing the

operator's required training for the task. Both the master controller and its feedback are

tailored to the task and designed ergonomically with no geometrical limitations imposed

by the design of the manipulator. The obviated need for complex joint mapping

transformations implies that multiple axis feedback can be selectively reflected to a low

DOF feedback capable controller, making single-axis feedback a desirable design trait.

Mode 3 of the prototype controller demonstrates how OBBC can be used to increase the

utility of single-axis feedback. Furthermore, OBBC facilitates the orchestration of multi-

axis object/environment information, allowing for the return of useful information to a low

DOF feedback controller. As a result, practical tactile feedback, like the velocity feedback

of mode 4, can be implemented to provide enhanced telepresence without dependency on

force reflection.

The feasibility of the telepresent OBBC architecture and the utility of its unique

feedback has been demonstrated through implementation in a spacecraft docking

35

Simulation. OBBC application is not limited to spacecraft docking, but includes aircraft

munitions loading, micro-chemistry, and tele-surgery.

6.2 Recommendations OBBC is unique because its control is performed in object-

space, and its design utilizes bilateral control. Though object-based teleoperation has very

recently been demonstrated, never before has it been accomplished with bilateral control.

Object-based teleoperation is in its infancy, and its general concept deserves further

exploration.

6.2.1 Feedback Design. With OBBC, feedback is not just a means to provide

heuristic, natural manual control. The feedback itself is designed ergonomically. Useful

feedback for bilateral control is not limited to force reflection. Many types of tactile

feedback can now be practical because the feedback design can be tailored to specific task

kinematics. The many possibilities of feedback design, including optimal feedback

"mixing" and selective feedback, are the most significant benefit of OBBC and should be

explored. Specifically to the thesis work, Mode 4 could be enhanced by substituting the

constant force spring with linearly increasing force derived similarly from the off-axis

deviation.

6.2.2 Multi-axis to Single-axis Feedback. OBBC has demonstrated the utility of a

single-axis feedback capable controller by funneling multi-axis data. This idea of

"funneled feedback" should be researched. Master controllers designed with limited DOF

feedback capability could significantly reduce their cost. The potential cost savings alone

is reason enough to pursue multi-axis to single-axis feedback.

6.2.3 Closed Loop Motor Control. The feedback actuation on the prototype hand

controller has been designed with an open loop motor control. The actuator that provides

the 1-DOF bilateral control is equipped with an optical encoder. The communication

software has been designed to handle this required communication flow. However, the

hardware and software necessary to process encoder data must be augmented. Closed

loop motor control would enhance the current controller's feedback modes by providing

36

accurate position feedback and would allow additional feedback designs, such as the

virtual environment suggested in chapter 2, to be more intricately coupled to the task.

37

Bibliography

1. Whitaker, D. L. (Ed.) Advanced Robotics for Air Force Operations. Washington DC:
National Academy Press, 1989.

2. Syromiatnikov, V. S. Spacecraft Docking Devices. Princeton: Soviet Technical Paper
NO. SSIVSS-1, 1990.

3. Corliss, W. R. and Edwin G. Johnson. Teleoperators and Human Augmentation.
Washington DC: NASA SP-5070, 1967.

4. Corliss, W. R. and Edwin G. Johnson. Teleoperator Controls. Washington DC: NASA
SP-5070, 1968.

5. Jacobus, H.N., A.J. Riggs, C.J. Jacobus, and Y. Weinstein. "Implementation Issues for
Telerobotic Handcontrollers: Human-Robot Ergonomics." Human-Robot Interaction.
London: Taylor and Francis, 1992.

6. Hirzinger, G, K. Landzettel, and J. Heindl. "ROTEX - Space Telerobotic Flight
Experiment." SPIE Proceedings on Telemanipulator Technology and Space Telerobotics..
edited by W. S. Kim. 2057: 51-72. Boston, 1993.

7. NASA Memorandum DM6-86-81, "Rendevous Flight Rules and Rationale." Trajectory
Operations Branch, Johnson Space Center.

8. Sheridan, T. B. Telerobotics. Automation, and Human Supervisory Control. Cambridge:
The MIT Press, 1992.

9. Milgram, Paul. "Human Performance Evaluation of Isometric and Elastic Rate Controllers
in a 6 DOF Tracking Task." SPIE Proceedings on Telemanipulator Technology and
Space Telerobotics.. edited by W. S. Kim. 2057: 130-141. Boston, 1993.

10. Eberman, B. and Bin An. "EXOS Research on Force-Reflecting Controllers." SPIE
Proceedings on Telemanipulator Technology., edited by Hari Das. 1833: 9-19. Boston,
1992.

11. Draper J. V., J. N. Herndon, B. S. Weil and W. E. Moore. "Effects of Force Reflection
on Servomanipulator Performance." Proceedings of International Topical Meeting on
Remote Handling and Robotics in Hostile Environments, pp. 654-660, American Nuclear
Society, IL. 1987.

12. Handlykken, M. and T. Turner. "Control System Analysis and Synthesis for a Six
Degree-of-Freedom Universal Force-Reflecting Hand Controller." IEEE, 1980.

38

13. Bejczy, A. K. and J.K. Salisbury. "Controlling Remote Manipulators Through
Kinesthetic Coupling." Computers in Mechanical Engineering. July, 1983: 48-60.

14. Schneider, S. A. and Robert H. Cannon, Jr. "Object Impedance Control for Cooperative
Manipulation:. Theory and Experimental Results." IEEE Proceedings of the NASA
Conference on Space Telerobotics, (Pasadena CA), NASA, February 1989.

15. Durlach, N. "Human-Machine Interfaces for Virtual Environment and Teleoperation
Systems." Briefing, Armstrong Labratory, 21 June, 1994.

16 Michelman, P. and P. Allen. "Shared Autonomy in a Robot Hand Teleoperation System."
IEEE International Conference on Intelligent Robots and Systems. 1994.

17. Hannaford, B. "A Design Framework for Teleoperators with Kinesthetic Feedback."
IEEE Transactions on Robotics and Automation. 5: 426-434. August 1989.

18. Anderson, R. J. and M. W. Spong. "Bilateral Control of Teleoperators with Time
Delay." IEEE Transactions on Automatic Control. 34: 494-501. May 1989.

19. Draper, John V. "Human Factors in Telemanipulation: Perspectives from the Oakridge
National Laboratory Experience." SPIE Proceedings on Telemanipulator Technology and
Space Telerobotics.. edited by W. S. Kim. 2057: 162-174. Boston, 1993.

20. Bejczy, A. K. "Teleoperation: The Language of the Human Hand." IEEE International
Workshop on Robot and Human Communication. 32-43: April, 1992.

21. Vertut, J. and P. Coiffet. Teleoperation and Robotics Evolution and Development. 3 A &
3B, London: KoganPage, 1986.

22. Copley Controls Corporation. 300 Series Amplifier User's Guide. Rev. 6: March, 93.

23. Lawrence, R. E. Jr. "An Electromagnetically Controlled Precision Orbital Tracking
Vehicle (POTV)." Thesis. AFIT, 1992.

24. Bridgman, T. and C. H. Spenny. "Simulation of POTV." Proceedings of 1993 Deneb
User Group, 35-37: Auburn Hill, MI, December 1993.

25. Hall, William M. An Introduction to Shuttle/LDEF Retrieval Operations: The
R-bar Approach Option. NASA TM-78668, February 1978.

26. CIS Graphics Incorporated. Dimension 6 User's Manual. Version A: July, 1988.

39

Appendix A

A. 1 Design Drawings: Spaceball Platform (cm, not to scale)

I 4.6 1

11.7
1-2, H

0.9 DIA 0.9 DIA

0.9

&

T
4.1

1
5.1

Figure A-l. Side View - Spaceball Platform

39.4

13.8

6.8

T
f

5.1

if.

5. 1

2.7

1-..»- 1-1.9-1
$,

1.6

1

_.^" Tie-dawn S o crew _ ,
Tie-down Screw

^O
7

Figure A-2. Top View - Spaceball Platform

40

H..6H

11.7

4.1

Tie-down Screws

m
13.8

-^

]
£ 0.6

Figure A-3. Front View- Spaceball Platform

A.2 Design Drawings: Actuator Casing (cm, not to scale)

7.3

-ä ..7 K-

* <P*

7 N o.s

2.1 DIA Pulley

1.7 DIA

JZ
T

T
13

1
Figure A-4. Side View - Actuator Casing

41

1-3.H

12.8

31.6

Power Supply

1.8 DIA

I 7.9 1

Motor
&

Pulley
Servo-Amplifier

1
12.3

.74

rr"V

33 rr EääMMS!^^ä3

-ä K-o.: 7.6

53"

Figure A-5. Top View - Actuator Casing

42

Appendix B

B. 1 Prototype's Server Software: Flowchart

Eitabliih Ethernet

communication

Establish IGRIP
communication

Create output matrix T2
Create V-bar

controller Gain,

pre-iilter

^^T Reao^V^

V-bar ^^^ tracking ^^^ R-bar

Create R-bar

controller Gain,

ryitem & input

matriciei

K,M,F,G

^^^ preference irom ^^
lytt em & input

matriciei

K,M,F,G

Establish communication

with hand controller

read in deiired command

vector r from IGRIP

cloie alt communication

Figure B-1. Serverfrobmc. c Flow Chart

43

B.2 Prototype's Server Software: Source Code Listing

* Name: Paul Woznick, Jul 94 *
* Serverjrobmc.c Adapted from code provided by T. Bridgman *

* Purpose: The purpose if this program is to implement a *
* 4th order Runge-Kutta routine needed to solve

*

* differential equations. Specifically, the routine will *
* perform motion generation computations for a 6 DOF

* rigid body (r-bar, and v-bar tracking) *
* for docking procedures. The target platform *
* is a space station in circular orbit. *
* *

#include <stdio.h>
#include <math.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <errno.h>
#include <netdb.h>
#include <signal.h>
#include <arpa/inet.h>
include "sb.h"

#define MAXLINE 4096
#define MAX_TIMES 500

float init[12], newfunc[12], new[12], kl[12], k2[12], k3[12], k4[12];
float fcl[12][12], frcfunc[12][6], K[9][12], Kinv[12][9], M[9][6];
float u_bias[9], input[6], volts, frdof, force_volts;
float tl,t2,t3,t4,t5,t6,x_home,x, scale, scalex;
float finalout_l,collide_x,moved;
struct sockaddr_in cli_addr,serv_addr;
struct servent *sp;
char inbuf[MAXLINE],outbufIMAXLINE];
int sockfd, op_mode,flag 1 ,scale_button,n, collision;
int clilen, childpid, newsockfd, count;

44

void open_spaceball();
void init_spaceball(Byte mode);
void write_spaceball();
int read_raw_spaceball();
void read_spaceball();
void parse_spaceball();
void close_spaceball();
int read_standard ();
void parse_standard ();
void calculatevelocityO;
FILE *out;

main(argc, argv)
int arge;
char *argv[];
{

/*
* Declare the 'main' program's variables.
*/

SpaceballData sd;
char igripbuf[MAXLINE];
char returnbuflMAXLINE];
int sockport;
int sockdsc;
int i, j, k, 1, mm, ctrl_num;
int stop_process, test;
float fcn(float[], float[], int);
float pi, facos(float), sum;
float frcfix[12], output[6][12];
float init[12], no_change, previous_t3;
float u[9], M_fix[12], altitude;
float finalout_2, finalout_3, delta;
float finalout_4, finalout_5, finalout_6;
float sensitize,collidex;
void r_bar();
void v_bar();
void motor_control();
void scale_voltage();

printf("The server for object is started.W);

/* Open up file for data collection */
out = fopen("velocity4.out","w");

45

/*
* Initialize all the variables pertinent to this program to
* zero (0), to limit the errors which might occur in the
* computational process.
*/'
for(i = 0;i<= ll;i++)

{
finalout_l = 0.0;
finalout_2 = 0.0;
finaloutj = 0.0;
fmalout_4 = 0.0;
finalout_5 = 0.0;
finalout_6 = 0.0;
frcfix[i] - 0.0;
init[i] = 0.0;
new[i] = 0.0;
newfunc[i] = 0.0;
M_fix[i] = 0.0;
kl[i] = 0.0;
k2[i] = 0.0;
k3[i] = 0.0;
k4[i] = 0.0;
u_bias[i] = 0.0;
forG = 0;j<=ll;j++)

{
fcl[i]D] = 0.0;

}
}
for (i = 0; i <= 5; i++)

{
input[i] = 0.0;
for(j = 0;j<=ll;j++)
{

frcfunc|j][i] = 0.0;
output[i][j] = 0.0;

}
}
for (i = 0; i <= 8; i++)

{
u[i] = 0.0;
for(j = 0;j<=ll;j++)

K[i][j] = 0.0;
for(j = 0;j<=5;j++)

M[i]D] = 0.0;

46

}
pi = acos(-1.0);
altitude = 0.0;
stop_process = 1;
op_mode = 0;
volts = 0.0;
scale = 1.0;
sensitize = 1.0;
scalex=1.0;

/*IMPORTANT* * * *IMPORTANT* * * *IMPORTANT* * * *EVIPORTANT* * * *IMPORT
ANT*

* Set the incremental change for the Runge-Kutta computations.
* This incremental step is in seconds. It can be changed at
* the discretion of the user.
*/

delta = 20.0;

/*
* The following are the values for the appropriate output
* vectors. This output matrix has a dimension of 6 x 12
* and it is similar to the 'Hsys' of R. Lawrence's thesis, 1992.
*/

output[0][0] = 1000.0;
output[l][2] = 1000.0;
output[2][4] = 1000.0;
output[3][6] =180.0/3.141592654;
output[4][8] =180.0/3.141592654;
output[5][10] = 180.0/3.141592654;

/*
* The following is the initialization for this
* program, SERVERFROBMC.C, to communicate over the
* network with OBBC_comm_hub.c

*/

if ((sockfd = socket(AF_INET,SOCK_STREAM,IPPROTO_TCP)) < 0)
perror(" server: cannot open stream socket");

printf("client sck# %d\n", sockfd);

serv_addr.sin_family= AF_INET;
serv addr.sin addr.s_addr= INADDRANY;

47

serv_addr.sin_port = htons(4903);

printf("%d is the port\n",serv_addr.sin_port);
if(bind(sockfd,(struct sockaddr *) &serv_addr,sizeof(serv_addr))<0)
{
perror("server:cannot bind local address");
exit(O);

}
printf("bindingOK!!!\nM);
if(listen(sockfd,5)<0)

perror("listen error");
printf("listen()OK!!!\n");

/*
* Check the port socket, the one used for communication between
* the FROBMC.GSL and this program to ensure the link
* is properly operating. If the port socket is not functioning
* properly, send a message to "Standard Error" (stderr) output
* and exit the program immediately.
*/

sockport = atoi(argv[l]);

if(argc!=2)
{

fprintf(stderr,"Usage: %s <port>\n", argv[0]);
exit(l);

}
if (net_init_socket_serv(sockport, «fesockdsc) != 0)
{

fprintf(stderr, "Can't initialize server socket.Yn");
printf("the server socket is initialized.\n");
exit(l);

}

/*
* Read from FROBMC.GSL. the following:

The initial controller configuration, ctrlnum, the operation
* mode (force ref, virtual force ref. etc.), the orbital
* altitude of the space platform.
* Then create the initial bias, 'stand-off current using
* stdoff_vel(altitude, ctrl_num).
*/

*

48

stop_process = net_readsocket(sockdsc, igripbuf);
if (stop_process = 0)
{

sscanf(igripbuf,"%d %d %f", &ctrl_num, &op_mode, &altitude);
printf("%s\n", igripbuf);
fflush(stdout);
stdoffvel(altitude);

}

/* Initialize target ultimate position of approach axis. This is
* dictated by the separation distance and the geometry of the
* space station.
*/

xhome = -90.374;
if(ctrl_num==2)

{
x_home = 409.75;
}

/* Assign correct tracking method coefficients to the
* position controller input, system, pre-filter, and
* gain matricies. These are provided by Richard Lawrence (21).
*/

switch(ctrl_num)
{

case 2: r_bar();
break;

case 3: v_bar();
break;

}

/*
* Read in the target orbit characteristics
*/

stop_process = net_*eadsocket(sockdsc, igripbuf);
if (stop_process = 0)
{

sscanf(igripbuf, "%f %f %f %f %f
%f',&input[0],&input[l],&input[2],«&input[3],&input[4],&input[5]);

printf("%s\n",igripbuf);
fflush(stdout);

}
/* Make the necessary transition from degrees to radians */

49

for(i=3;i<=5;i++)
inputp] = (input[i]*3.141592654)/180.0;

/* Open a path to the spaceball input port and initialize
* the spaceball (see spaceball user's guide). Initialization is
* dictated by the sb.h source file. Changes must be coded.
* In particular, the mode or the argument for init_spaceball.
*/

open_spaceball(7dev/ttyd2",B19200);
init_spaceball(SB_STANDARD);

/* make initial handshake to kirk */

clilen = sizeof(cli_addr);
newsockfd = accept(sockfd,(struct sockaddr *) &cli_addr,&clilen);

if((childpid=fork())<0)
perror("server: cannot fork.");

/* if handshake is made, pass the information. */
else if(childpid = 0)

{
printf("Communicating\n");
close(sockfd);

volts=0;
sprintf(outbuf, M%f\n",volts);

n=strlen(outbuf);
put_data(newsockfd, outbuf, n);

/* printf("sent initial h/s.\n"); */

/*
* Continue to loop until the whole process is "killed". That is,
* the simulation is killed by the DENEB/IGRTP simulation running
* in the foreground or if bad communication between the two
* programs occur. -
*/

while((1) && (stop_process =0))

{
/*

* Read in spaceball controller information from the RS232 port for
* the six values of the joints, three translational and
* three rotational. All these values can be continuously changed

50

* These values must be converted from byte values (-127 to 128)
* and the z values must be reversed to match the simulation.
* NOTE: Spaceball x,y and z values do not correspond to the x,y
* and z values of the simulation.
*/

read_spaceball(&sd);

frdof = 0;

/* Check for an adjustment (scaling) to the commanded input.
*/

scale_button = ((sd.button«24)»24);

switch(scalebutton)

{
case 2: /* reset scale and sensitivity */

scale = 1.0;
sensitize = 1.0;
scalex=1.0;
printf("input back to normal.W);
break;

case 4: /* adjust sensitivity to off-axes */
sensitize = 0.1;
printf("off-axes now less sensitive.W);
break;

case 5: /* scale input by one-half of off-axes */
scale = scale*0.5;
printf("input of off axes halvedAn");
break;

case 6: /* double the input of axis of interest */
scalex=scalex*2;
if(scalex>4)
scalex=4;

printfC'input of axis of interest doubled.V);
break;-

case 8: /* double the input of off axes */
scale = scale*2.0;
printf("input of off axes doubled.W);
break;

default: /* do nothing */
break;

}

51

/* printf("scale button is %f\n",scale_button); */

/* Now read in any spaceball induced changes to the commanded
* input. Ignore axis of interest if flag 1 conditions met.

*/

tl=((sd.xtrans«24)»24)/-128.0*scale*sensitize;
t2=((sd.ytrans«24)»24)/128.0* scale* sensitize;
t3=((sd.ztrans«24)»24)/-128.0*scalex;
if(flagl>=l&&t3>0)

{
t3=O.0;

}
t4=(((sd.xrot«24)»24)/128.0)*(-3.141592654/180.0)*scale*sensitize;
t5=(((sd.yrot«24)»24)/128.0)*(3.141592654/180.0)*scale*sensitize;
t6=(((sd.zrot«24)»24)/128.0)*(-3.141592654/180.0)*scale*sensitize;

if(op_mode-=4)

{
if (t3 > 0)
t3=l;

if (t3 < 0)
t3=-l;

}

if (op_mode = 3 && t3 > 0 && force_volts != 20)

{
frdof = t3 - (force_volts/10.0);
if (previous_t3 > t3)
frdof= 0;

input[0]=input[0] + frdof;
previous_t3 =t3;

}
else

{
input[0]=t3+input[0];
previous_t3 = 0;

}

input[l]=tl+input[l];
input [2]=t2+input[2];
input[3]=t6+input[3];
input[4]=t4+input[4];
input[5]=t5+input[5];
/*printf("%f %f %f %f %f 0/of\n",t 1 ,t2,t3,t4,t5,t6);

52

printf("%x %x %x\n",sd.xtrans,sd.ytrans,sd.ztrans);*/

/*
* Create the new forcing array with the input variables
* Use the equation:
*

* init[12] = Gcl[12][6] * r[6][l] - Fcl[12][12] * x[12][l]

* The Gcl[12][6] matrix is from R. Lawrence's
* thesis work. In server_frobmc.c,
* the Gcl[12][6] matrix assumes the responsibility of the
* forcing function for the equations of motion and,
* therefore, the matrix is re-assigned to the the matrix
* frcfunc[12][6].

*/

for(i = 0;i<=ll;i++)

{
sum = 0.0;
for(j = 0;j<=5;j++)

sum = sum + frcfunc[i][j]*input[j];
frcfix[i] = sum;

}

/*
* With the equation to obtain the vector array of currents,
* given as:
*

* u[8] = M[9][6] * input[6][l] - K[9][12] * x[6][l]
*

* From page 4-11 and 4-12, of R. Lawrence's thesis, the u[9]
* array contains eight (8) current variables and one (1)
* thruster value. Therefore, one of parts on the right-hand
* side of the above equation,
*

* M[9][6] * input[6][l]
*

* can be multiplied now, while the remaining part

K[9][12] * x[6][l]
*

* can only be derived at the completion of one full loop of
* this routine because that is when the x[6][l]
* values are obtained.

53

V

for (i = 0; i <= 8; i++)

{
sum = 0.0;
for(j = 0;j<=5;j++)

sum = sum + M[i][j]*input[j];
M_fix[i] = sum;

}

/*
* Loop which obtains all Kl [i] values.
*/

for(i = 0;i<=ll;i++)

{
for(j = 0;j<=ll;j++)

newöj=fcl[i]ü];
kl[i] = fcn(new, init, 11) + frcfix[i];

}

/*
* Loop which obtains all K2[i] values.
*/

for(i = 0;i<=ll;i++)

{
for(j = 0;j<=ll;j++)
{

new[j] = fcl[i][j];
newfuncö] = init[j] + ((delta/2.0) * kl[j]);

}
k2[i] = fcn(newfunc, new, 11) + frcfix[i];

}

/*
* Loop which obtains all K3[i] values.
*/

for (i = 0; i<= 11; i++)

{
for(j = 0;j<=ll;j++)

{
new[j]=fcl[i][j];
newfuncö] = initfj] + ((delta/2.0) * k2[j]);

54

}
k3[i] = fcn(newfunc, new, 11) + frcfix[i];

}

/*
* Loop which obtains all K4[i] values.
*/

for (i = 0; i <= 11; i++)
{

for(j = 0;j<=ll;j++)

{
newö] = fcl[i][j];
newflinc[j] = initp] + delta * k3[j];

}
k4[i] = fcn(newfunc, new, 11) + frcfixfi];

}

/*
* The following loop solves each incremental value for the the
* sought after x[6][l] array from the equation:
*

* x(DOT)[12][l] = M_fix[12][l] + Fcl[12][12] * x(*)[12][l]
*

* or, as will be shown below:
*

x(*)[12][l] = init[12][l]

* And to derive the desired ouput array, y[6][l]
*

y[6][l] = output[6][12]*x(*)[12J[l],
*/

for (i = 0; i <= 11; i++)
init[i] = init[i] + (delta/6.0)*(kl[i] + 2.0*k2[i] + 2.0*k3[i] + k4[i]);

/*
* The following will obtain the 'u' vector array, which
* consists of eight current values and one thruster
* value. The bias current, obtained in the sub-
* routine, stdoff_vel(altitude, crtl_num), is also added on in
* all 9 cases. (9 cases = 8 currents + 1 thruster)
*

* u[9][l] = M_fix[9][l] - K[9][12] * x(*)[12][l]
■*/

55

for (i = 0; i <= 8; i++)

{
sum = 0.0;

forG = 0;j<=ll;j++)
sum = sum + K[i][j]*initO];

u[i] = M_fix[i] - sum + u_bias[i];

}

/*
* The following statements will find the appropriate
* output array to move the OBJECT, in the DENEB/IGRIP
* simulation, accordingly. The below statements performed
* to the equation
*

y[6][l] = output[6][12]*x(*)[12][l]
*/

for (i = 0; i<= 11; i++)

{
if(output[0][i]!=0.0)

finaloutl = output[0][i] * init[i];
if(output[l][i]!=0.0)

finalout_2 = output[l][i] * init[i];
if(output[2][i]!=0.0)

finalout_3 = output[2][i] * init[i];
if(output[3][i] !=0.0)

finalout_4 = output[3][i] * initfi];
if(output[4][i] !=0.0)

finalout_5 = output[4][i] * init[i];
if(output[5][i]!=0.0)

finalout_6 = output[5][i] * initfi];

}

/*

* Send the data back to frobmc.gsl.
*/

sprintf(returnbuf,"%f %f %f %f %f %f, finalout_l, finalout_2, finaloutj,
finalout_4, finalout_5, finalout_6);

/*
* Check to make sure the data made it back to frobmc.gsl
*/

56

if (net_writesocket(sockdsc, returnbuf) != 0)

{
printf("Write failed, server aborting...\n");
break;

}

/* The igripbuf contains environment information from
* the frobmc.gsl program. This information must be read
* and further manipulated before being relayed to the
* connect.c program on kirk
*/

if (net_readsocket(sockdsc,igripbuf) != 0)

{
printf("Read from IGRIP failed, IGRIP server aborting..\n");
net_close_socket(sockdsc);
break;

}
sscanf(igripbuf, "%f %d", &force_volts,&collision);
fflush(stdout);
printf("force volts = %f\n",force_volts);

/* Data must be evaluated to perform neccessary motor control.
*/

motor_control();
printfC'volts = %f\n",volts);

/* send motor control voltage to OBBC_comm_hub.c on kirk
* a handshake from kirk must be received first.
*/

get_data(newsockfd,inbuf,MAXLINE);

sprintf(outbuf,"%f\n",volts);
n=strlen(outbuf);
put_data(newsockfd,outbuf,n);

/* calculate velocity */

calculate_velocity(finalout_l ,delta);

/* reset motor voltage */

volts = 0.0;

57

}
}
printf("out of else loop,program terminated.W);

if(l = 2)fclose(out);
/*net_close_socket(sockdsc);
exit(0);*/

}

/ ^|C 5|C 5|C 5|C SfC 3|C 9|C 9|C S|C 5|C JfC 3|C 5|C 3JC #JC 3|C 3|C SfC 3|C 5f» 3JC 3JC 3fC 3|C ?|C 3(5 5|C 3|C 3|C 1* 1* 1* *t* f* t* *t* 1* *P 1* 1* 1* 1^ 1* 1* f* f* f* T* ^*p*p'p*l*3f*?p*p5J»'l**p'p'T**|* *p *|* *P

*

* Subroutine fcn() which operates in a loop and to obtains a
* result returns to each of the seperate K[i] value loops.
*

float fcn(NEWl,NEW2, T)
float NEW1[],NEW2[];
intT;
{

float value;
int m;
value = 0;
for (m = 0; m <= T; m++)
{

value = value + (NEWl[m] * NEW2[m]);
}
return value;

}

*

* The following subroutine will determine the difference in
* velocities for two space vehicles. Then it will adjust the
* objects bias current appropriately so that the two will be
* able to stay parallel-with each other in the same orbital
* plane.
*
♦♦He**/

void stdoffvel(orbit)
float orbit;
{

int q, r, tolerance;

58

float sum, tol_check[12], sub_input[6], sub_frcfix[12];
float subM_fix[12], fabs(float);
float sub_init[12], sub_newfunc[12], sub_new[12];
float u_biaslast[12], sub_frcfunc[12], sub_delta;
for(q = 0;q<=5;q++)

sub_input[q] = 0.0;
for(r = 0;r<=ll;r++)

{
sub_init[r] = 0.0;
u_biaslast[r] = 0.0;
sub_newfunc[r] = 0.0;
sub _new[r] = 0.0;
sub frcfttnc[r] = 0.0;
tol_check[r] = 0.0;

}

/*
* Set the "tolerance" flag low to enable the R-K rountine to
* sufficiently compute the values necessary for the calculation.
*/

tolerance = 0;
sub_delta = 20.0;
sub_input[0] = (orbit - 400.0) * 1000.0;
if (abs(sub_input[0]) < 1.0)

{
for (q = 0; q <= 8; q++)

u_bias[q] = 0.0;
tolerance = 1;
printf("This is where subjnput < 1.0.W);
fflush(stdout);

}

/*
* Create the new forcing array for the inputted variables
* Multiply the input array, the input[i] values, which is held
* in a 6 x 1 matrix, and pre-multiply it with the
* frcfunc[i][j] values, which are held in a 12 x 6 matrix, to
* develop a new 12x1 matrix. For the bias current
* level, this vector array will only have to be computed
* once because the values of'input[q]' are static, or fixed.
*/

for(q = 0;q<=ll;q++)
{

59

sum = 0.0;
for (r = 0; r <= 5; r++)

sum = sum + frcfunc[q][r]*sub_input[r];
sub_frcfix[q] = sum;

}

/*
* With the equation to obtain the vector array of currents,
* given as:
*

* u[i] = M[i][j]*input[j][l] - K[i][k]*x[k][l]
*

* Find the new M[i][j] matrix now and put the newly obtained
* values back into M[i][j]. This vector array will only have
* to be completed once since both the values of M[q][r] and
* input[r] are static, or fixed.
*/

for (q = 0; q <= 8; q++)

{
sum = 0:0;
for(r = 0;r<=5;r++)

sum = sum + M[q] [r] *sub_input[r];
subM_fix[q] = sum;

}

/*
* Loop until all values in the 'u' vector array, the eight
* bias currents and the thruster value meet the tolerance
* desired by the programmer.
*/

while (tolerance == 0)

{

/*
* Loop which obtains all Kl[q] values.
*/

for(q = 0;q<=ll;q++)

{
for(r = 0;r<=ll;r++)

sub_new[r] = fcl[q][r];
kl[q] = fcn(sub_new, submit, 11) + sub_frcfix[q];

}

60

/*
* Loop which obtains all K2[q] values.

*/

for(q = 0;q<=ll;q++)

{
for(r = 0;r<=ll;r++)

{
sub_new[r] = fcl[q][r];
sub_newfunc[r] = sub_init[r] + ((sub_delta/2.0) * kl[r]);

}
k2[q] = fcn(sub_newfunc, sub_new, 11) + sub_frcfix[q];

}

/*
* Loop which obtains all K3[q] values.
*/

for(q = 0;q<=ll;q++)

{
for(r = 0;r<=ll;r++)

{
sub_new[r] = fcl[q][r];
sub_newflinc[r] = sub_init[r] + ((sub_delta/2.0) * k2[r]);

}
k3[q] = fcn(sub_newfunc, sub_new, 11) + sub_frcfix[q];

}

/*

* Loop which obtains all K4[i] values.
*/

for(q = 0;q<=ll;q++)
{

for(r = 0;r<=ll;r++)

{
sub_new[r] = fcl[q][r];
sub_newfunc[r] = sub_init[r] + sub_delta * k3[r];

}
k4[q] = fcn(sub_newfunc, sub_new, 11) + sub_frcfix[q];

}

/*
* Find the incremental values of newinit and then compare them

61

* with the last values of'new_initlast' to ensure all the
* values will meet the tolerance specification.
*/

for(q = 0;q<=ll;q++)
sub_init[q] = sub_init[q] + (sub_delta/6.0)*(kl[q] + 2.0*k2[q] + 2.0*k3[q] +

k4[q]);
for (q = 0; q <= 8; q++)

{
sum = 0.0;
for(r = 0;r<=ll;r++)

sum = sum + K[q][r]*sub_init[r];
u_bias[q] = -1.0*(subM_fix[q] - sum);
tol_check[q] = u_bias[q] - u_biaslast[q];
if(tol_check[q]<0.0)

tol_check[q] = -tol_check[q];

}

if(tol_check[0]< 0.000001)

{
if(tol_check[l]< 0.000001)

{
if(tol_check[2]< 0.000001)

{
if (tol_check[3] < 0.000001)

{
if (tol_check[4] < 0.000001)

{
if(tol_check[5]< 0.000001)

{
if (tol_check[6] < 0.000001)

{
if(tol_check[7]< 0.000001)

{
if (tol_check[8] < 0.000001)

{
- for (q =0 ; q <= 5; q++)

{
tolerance = 1;

}
}

}
}

}
}

62

}

}
}
if (tolerance ==0)
{

for(q = 0;q<=ll;q++)
u_biaslast[q] = u_bias[q];

}

*

* Purpose: The purpose if this subroutine is to re-assign the
* values of the matrices to enable the usage of a
* controller to operate in the R-bar tracking approach.
*

void r_bar()
{

/*
* The following are the coefficients for the K matrix, the
* controller gain matrix, for R-Bar tracking. These numbers
* were generaterd by MATLAB (Lawrence,Bridgman).
*/

K[0][0
K[0][1
K[0][2
K[0][3
K[0][4
K[0][5
K[0][6
K[0][7
K[0][8
K[0][9
K[0][10]

K[0][1

K[1][0
K[l][l
K[l][2

]

-1.9372844e+01
1.1382179e+03
-1.0484363e+01
-1.2627757e+04
4.8058444e-03;
2.6076772e-01;
1.9799792e+04
6.5975727e+06
-8.0401281e+03
-6.3170347e+05

= -8.9295885e+03;
: -2.3974952e+06;

-1.9372920e+01;
1.1383228e+03;
-1.048463 9e+01;

63

K[l][3] = -1.2627702e+04;
K[l][4] = 4.7943422e-03;
K[l][5] = 2.6058334e-01;
K[l][6] = -1.9799731e+04;
K[l][7] = -6.5975459e+06;
K[l][8] = 8.0401275e+03;
K[l][9] = 6.3170358e+05;
K[l][10] = 8.9295654e+03;
K[l][ll] = 2.3974857e+06;

K[2][0] = 2.1350014e+01;
K[2][l] = 1.3290093e+04;
K[2][2] = -1.9259708e+01;
K[2][3] = -7.0571294e+03;
K[2][4] = -8.3645144e-02;
K[2][5] = -3.6078841e+00;
K[2][6] = -1.6592817e+04;
K[2][7] = 1.6285092e+05;
K[2][8] = 5.7744003e+02;
K[2][9] = 4.6901470e+04;
K[2][10] = = -5.6121438e+04;
K[2][ll] = = -2.8910389e+06;

K[3][0] = 2.1349998e+01;
K[3][l] = 1.3290139e+04;
K[3][2] = -1.9259816e+01;
K[3][3] = -7.0571196e+03;
K[3][4] = -8.3644301e-02;
K[3][5] = -3.6078704e+00;
K[3][6] = 1.6592063e+04;
K[3][7] = -1.6316309e+05;
K[3][8] = -5.7743319e+02;
K[3][9] = -4.6902710e+04;
K[3][10] = = 5.6121730e+04;
K[3][ll] = = 2.8911501e+06;

K[4][0] = -7.7490634e+00;
K[4][l] = 4.5518412e+02;
K[4][2] = -4.1934744e+00;
K[4][3] = -5.0511578e+03;
K[4][4] = 1.9192968e-03;
K[4][5] = 1.0424961e-01;
K[4][6] = 4.8473696e+04;
K[4][7] = 1.5742645e+07;
K[4][8] = -3.2478818e+02;

64

K[4] [9] = 5.8681483e+04;
K[4] [10] = =-1.7758985e+04;
K[4] [11] = = -5.5497698e+06;

K[5] [0] = -7.7492422e+00;
K[5] [1] = 4.5543218e+02;
K[5] [2] = -4.1941265e+00;
K[5] [3] = -5.0510259e+03;
K[5] [4] = 1.9207779e-03;
K[5] [5] = 1.042908 le-01;
K[5] [6] = -4.8473672e+04;
K[5] [7] = -1.5742634e+07;
K[5] [8] = 3.2478792e+02;
K[5] [9] = -5.8681439e+04;
K[5] [10] = = 1.7758976e+04;
K[5] [11] = = 5.5497660e+06;

K[6] [0] = 1.3774246e+00;
K[6] [1] = 8.5741921e+02;
K[6] [2] = -1.2425465e+00;
K[6] [3] = -4.5530252e+02;
K[6] [4] = -5.4403149e-03;
K[6] [5] = -2.3349659e-01;
K[6] [6] = 3.2213237e+03;
K[6] [7] = 8.8134193e+05;
K[6] [8] = 5.7155433e+04;
K[6] [9] = 4.7502364e+06;
K[6] [10] = = -7.6466147e+02;
K[6] [11] = ;-3.2563935e+05;

K[7] [0] = 1.3774149e+00;
K[7] [1] = 8.5743450e+02;
K[7] [2] = -1.2425841e+00;
K[7] [3] = -4.5529419e+02;
K[7] [4] = -5.3525526e-03;
K[7] [5] = -2.3203597e-01;
K[7] [6] = -3.22137-23e+03;
K[7] [7] = -8.8136207e+05;
K[7] [8] = -5.7155432e+04;
K[7] [9] = -4.7502365e+06;
K[7] [10] = = 7.6468029e+02;
K[7] [11] = = 3.2564653e+05;

K[8] [0] = 1.2111042e-01;
K[8] [1] = 7.1257672e+01;

65

K[8][2] =
K[8][3] =
K[8][4] =
K[8][5] -
K[8][6] =
K[8][7] =
K[8][8] =
K[8][9] =
K[8][10]
K[8][ll]

-9.8619627e-02;
-3.3139152e+01;
3.1574096e+01;
1.54673 7 le+03;

-9.548101 le-03;
-3.281169 le+00;
-3.7105341e-02;
-7.7442906e+00;
2.4333163e-03;
1.1794325e+00;

/*
* The following are the coefficients for the M matrix, the pre-
* filter matrix, for R-bar tracking.
* These numbers were generated by MATLAB (Lawrence,Bridgman)
*/

M[0][0] = -1.9372844e+01;
M[0][1] = -1.0484557e+01;
M[0][2] = 4.7994661e-03;
M[0][3] = 2.1123605e+04;
M[0][4] = -8.0977716e+03;
M[0][5] = -7.6148644e+03;

M[1][0] = -1.9372920e+01;
M[l][l] = _1.0484445e+01;
M[l][2] = 4.8007206e-03;
M[l][3] = -2.1123544e+04;
M[l][4] = 8.0977710e+03;
M[l][5] = 7.6148414e+03;

M[2][0] = 1.2182571e+01;
M[2][l] = -1.9259736e+01;
M[2][2] = -8.3644978e-02;
M[2][3] = -1.6627255e+04;
M[2][4] = 5.7893960e+02;
M[2][5] = -5.5930583e+04;

M[3][0] = 1.2182555e+01;
M[3][l] = -1.9259788e+01;
M[3][2] = -8.3644467e-02;
M[3][3] = 1.662650le+04;
M[3][4] = -5.7893276e+02;
M[3][5] = 5.5930875e+04;

66

M[4][0] =
M[4][l] =
M[4][2] =
M[4][3] =
M[4][4] =
M[4][5] =

-7.7490634e+00;
-4.1939361e+00;
1.9220176e-03;
5.1638699e+04;

-3.0019900e+02;
-1.4629438e+04;

M[5][0] =
M[5][l] =
M[5][2] =
M[5][3] =
M[5][4] =
M[5][5] =

M[6][0] =
M[6][l] =
M[6][2] =
M[6][3] =
M[6][4] =
M[6][5] -

-7.7492422e+00;
-4.1936648e+00;
1.9180571e-03;

-5.1638675e+04;
3.0019874e+02;
1.4629429e+04;

7.8597663e-01;
-1.2425733e+00;
-5.3858544e-03;
3.404685le+03;
5.764761le+04;

-5.8255894e+02;

M[7][0] =
M[7][l] =
M[7][2] =
M[7][3] =
M[7][4] =
M[7][5] =

7.8596693e-01;
-1.2425573e+00;
-5.407013 le-03;
-3.4047338e+03;
-5.7647610e+04;
5.8257776e+02;

M[8][0] =
M[8][l] =
M[8][2] =
M[8][3] =
M[8][4] =
M[8][5] =

7.1462518e-02
-9.8619627e-02
3.162259le+01

-9.548101 le-03
-3.7105341e-02
2.4333163e-03

/*
* The following are the coefficients for the closed loop
* matrix needed for R-bar tracking. Generated by MATLAB.
*/

fcl[0][l] = 1.0;

fcl[l][0]
fcl[l][l]
fcl[l][2]

-5.1051910e-06;
-5.5693194e-03;
8.0709427e-06;

67

fcl[l][3] =
fcl[l][4] =
fcl[l][5] =
fcl[l][6] =
fcl[l][7] =
fcl[l][8] =
fcl[l][9] =
fcl[l][10]
fcl[l][ll]

5.2205767e-03;
3.5051926e-08;
1.5119071e-06;
1.5802786e-07;
6.5408553e-05;

-1.4335932e-09;
2.5981651e-07;
-6.1117026e-08;
-2.3302007e-05;

fcl[2][3] =1.0;

fcl[3][0] =
fcl[3][l] =
fcl[3][2] =
fcl[3][3] -
fcl[3][4] =
fcl[3][5] =
fcl[3][6] =
fcl[3][7] =
fcl[3][8] -
fcl[3][9] =
fcl[3][10]
fcl[3][ll]

-1.5126204e-06

-2.1743624e-03
-8.1862214e-07

-9.8596385e-04
3.7478776e-10
2.0353354e-08
2.3765060e-09
1.0449128e-06
-2.5176599e-ll
4.3071479e-09
-9.0131231e-10;
-3.6980522e-07;

fcl[4][5] = 1.0;

fcl[5][0] =
fcl[5][l] =
fcl[5][2] =
fcl[5][3] =
fcl[5][4] =
fcl[5][5] =
fcl[5][6] -
fcl[5][7] =
fcl[5][8] =
fcl[5][9] =
fcl[5][10]
fcl[5][ll]

2.2754180e-08
9.0926835e-06
-5.9408860e-08
-2.4888944e-05
-8.3504213e-04
-4.0843854e-02
1.9793661e-07
6.4205930e-05
9.8030032e-07.
2.0440757e-04;
-4.3297856e-08;
-2.3151249e-05;

fcl[6][7] = 1.0;

fcl[7][0]
fcl[7][l]
fcl[7][2]

1.3678761e-14;
-8.2696450e-ll;
1.8553312e-13;

68

fcl[7][3] =
fcl[7][4] =
fcl[7][5] -
fcl[7][6] =
fcl[7][7] =
fcl[7][8] =
fcl[7][9] =
fcl[7][10]
fcl[7][ll]

-4.8641306e-12
-2.0444772e-15
-3.042809 le-14
-1.0752985e-04
-4.3338970e-03
3.2474382e-06
2.7426953e-04
-2.9926523e-04
-1.3879672e-02

fcl[8][9] = 1.0;

fcl[9][0] =
fcl[9][l] =
fcl[9][2] -
fcl[9][3] =
fcl[9][4] =
fcl[9][5] =
fcl[9][6] =
fcl[9][7] =
fcl[9][8] =
fcl[9][9] =
fcl[9][10]
fcl[9][ll]

1.8386265e-15
1.9163855e-12
1.2998572e-15
1.6394579e-12
-5.3121648e-14
3.7007982e-12

-2.3849997e-06
-4.1956024e-04
-2.9269167e-04
-2.4093633e-02
-2.3515522e-06
-3.2041876e-05

fcl[10][ll]= 1.0;

fcl[ll][0] =
fcl[ll][l] =
fcl[ll][2] =
fcl[ll][3] =
fcl[ll][4] -
fcl[ll][5] =
fcl[ll][6] -
fcl[ll][7] =
fcl[ll][8] =
fcl[ll][9] =
fcl[ll][10]
fcl[ll][ll]

1.3811916e-13
-L2208962e-10
3.7644795e-13
-8.6974114e-ll
-4.1910707e-15
-6.8744864e-14
-2.4813087e-04
5.1646815e-03
5.6838123e-06

= 4.7023891e-04
= -8.6626763e-04;
= -4.5582467e-02;

/*
* The forcing function vector of the R-bar tracking procedure.
*/

frcrunc[l][0] = 5.1051910e-06;

69

}

frcfunc[3][0] = 1.5126204e-06;
frcfunc[5][0] = -2.2754180e-08;
frcfanc[7][0] =-1.3678761e-14;
frcfunc[9][0] =-1.8386266e-15;
frcfunc[ll][P] =-1.3811916e-13;

frcfonc[l][l] = -8.0709427e-06;
frcfunc[3][l] = 8.1862214e-07;
frcfunc[5][l] = 5.9408860e-08;
frcfunc[7][l] =-1.8553312e-13;
frcfunc[9][l] =-1.2998570e-15;
frcfunc[ll][l] = -3.7644795e-13;

frcfunc[l][2] =-3.5051926e-08
frcfunc[3][2] =-3.7478776e-10
frcfunc[5][2] = 8.3504213e-04
frcfunc[7][2] = 2.0444795e-15
frcfunc[9][2] = 5.3121680e-14
frcfonc[ll][2]= 4.1910758e-15

frcfunc[l][3] =-1.5802786e-07
frcfunc[3][3] = -2.3765060e-09
frcfunc[5][3] =-1.9793661e-07
frcfunc[7][3] = 1.0752985e-04
frcfunc[9][3] = 2.3849997e-06
frcfunc[ll][3]= 2.4813087e-04;

frcfunc[l][4] = 1.4335932e-09;
frcfunc[3][4] = 2.5176599e-ll;
frcfunc[5][4] = -9.8030032e-07;
frcfunc[7][4] =-3.2474382e-06;
frcfunc[9][4] = 2.9269167e-04;
frcfunc[ll][4] = -5.6838123e-06;

frcfunc[l][5] = 6.1117026e-08
frcfunc[3][5] = 9.013123 le-10
frcfunc[5][5] = 4.3297856e-08
frcfunc[7][5] = 2.9926523e-04
frcfunc[9][5] = 2.3515522e-06;
frcfunc[ll][5]= 8.6626763e-04;

*

70

* Purpose: The purpose if this subroutine is to re-assign the
* values of the matrices to enable the graphics
* simulation to depict V-bar tracking maneuevers.
*

void v_bar()

{

/*
* The following are the coefficients for the K matrix (contains
* the controller gain coefficients), needed by V-Bar tracking.
*/

K[0
K[0
K[0
K[0
K[0
K[0
K[0
K[0
K[0
K[0
K[0
K[0

K[l
K[l
K[l
K[l
K[l
K[l
K[l
K[l
K[l
K[l
K[l
K[l

K[2
K[2
K[2
K[2
K[2

0
1
2
3
4
5
6
7
8
9
10] =

0
1
2
3
4
5
6

7
8
9
10] =

-3.6612135e+01;
-1.3904802e+04;
5.1325587e+00;
-1.0949306e+04;
8.3798158e-03;
5.9216850e-01;
2.6305463e+01;
5.9199334e+03;
-1.8968539e+03;
-1.6171560e+04;
-1.801923 8e+04;
-1.6660839e+06;

-3.6612122e+01;
-1.3904757e+04;
5.1326473e+00;
-1.0949301e+04;
8.3862481e-03;
5.9261237e-01;
-2.6300618e+01;
-5.9197905e+03;
1.8968117e+03;
1.6322903e+04;
1.8019244e+04;
1.666067le+06;

1.3096827e+01;
6.1718000e+03;
-4.5054323e+00;
2.2426954e+03;
-4.2521850e-03;

71

K[2][5] = -3.4124974e-01;
K[2][6] = -7.2112769e+03;
K[2][7] = -6.0229524e+05;
K[2][8] = 9.6384832e+02;
K[2][9] = .8.4922898e+05;
K[2][10] = -5.2040471e+02;
K[2][ll] = -1.3382572e+05;

K[3][0] - 1.3096872e+01;
K[3][l] = 6.1718330e+03;
K[3][2] = -4.5054138e+00;
K[3][3] = 2.2427073e+03;
K[3][4] = -4.1720655e-03;
K[3][5] = -3.3794867e-01;
K[3][6] = 7.2112753e+03;
K[3][7] = 6.0229520e+05;
K[3][8] = -9.6402456e+02;
K[3][9] = -8.4929048e+05;
K[3][10] = 5.2042519e+02;
K[3][ll] = 1.3383270e+05;

K[4][0] = -2.3620767e+00;
K[4][l] = -8.9708690e+02;
K[4][2] = 3.3112876e-01;
K[4][3] = -7.0640921e+02;
K[4][4] = 5.2476146e-04;
K[4][5] = 3.7588427e-02;
K[4][6] = 1.6979459e+04;
K[4][7] = 1.4148367e+06;
K[4][8] = 6.9926058e+01;
K[4][9] = 4.1536603e+05;
K[4][10] = -1.6119563e+02;
K[4][ll] = -5.2096581e+04;

K[5][0] = -2.3620689e+00;
K[5][l] = -8.9707819e+02;
K[5][2] = 3.3114260e-01;
K[5][3] = -7.0640415e+02;
K[5][4] = 5.5692008e-04;
K[5][5] = 3.8849049e-02;
K[5][6] = -1.6979459e+04;
K[5][7] = -1.4148367e+06;
K[5][8] = -6.9928781e+01;
K[5][9] = -4.1535627e+05;
K[5][10] = 1.6119602e+02;

72

K[5][ll]= 5.2095498e+04;

K[6
K[6
K[6
K[6
K[6
K[6
K[6
K[6
K[6
K[6
K[6
K[6

K[7
K[7
K[7
K[7
K[7
K[7
K[7
K[7
K[7
K[7
K[7
K[7

K[8
K[8
K[8
K[8
K[8
K[8
K[8
K[8
K[8
K[8
K[8
K[8

0] = 5.2385689e+00
1] = 2.4685985e+03
2] = :1.8022490e+00
3] = 8.9703003e+02
4] = -2.0229852e-03
5] = -1.4965554e-01
6] = 2.2402244e+02
7] = 7.817551 le+03
8] = 7.5309034e+03
9] = 7.4136323e+06
10]= -8.693483 le+02
11]= -8.1372833e+05

0] = 5.2389108e+00
1] = 2.4688547e+03
2] = -1.8020894e+00
3] = 8.9713105e+02
4] = -1.3467150e-03
5] = -1.2202382e-01
6] = -2.2402310e+02
7] = -7.8175666e+03
8] = -7.5309739e+03
9] = -7.4136569e+06
10]= 8.6935651e+02
11]= 8.1373112e+05

0] = 7.5763769e-02
1] = 2.9838519e+01
2] = -1.3043747e-02
3] = 2.1240033e+01
4] = 9.9516137e+00
5] = 8.6823629e+02
6] = -7.9539094e-02
7] = -2.3193669e+00
8] = -1.3096549e+00
9] = -2.7011420e+03
10]= 1.7483581e-01
11]= 2.9749725e+02

/*
* The following coefficients are for the M matrix, the pre-
* filter matrix. These values were generated by MATLAB.
* V-Bar tracking.

73

*/

M[0][0] = -3.6612135e+01;
M[0][1] = 5.1326009e+00;
M[0][2] = .8.3737002e-03;
M[0][3] = 2.5909729e+01;
M[0][4] = -1.9521226e+03;
M[0][5] = -1.8304848e+04;

M[1][0] = -3.6612122e+01;
M[l][l] = 5.1326052e+00;
M[l][2] = 8.3923637e-03;
M[l][3] = -2.5904884e+01;
M[l][4] = 1.9520804e+03;
M[l][5] = 1.8304854e+04;

M[2][0] = -3.6105526e+01;
M[2][l] = -4.5054050e+00;
M[2][2] = -4.0171014e-03;
M[2][3] = -7.1960649e+03;
M[2][4] = 3.0883771e+03;
M[2][5] = -7.0489404e+02;

M[3][0] = -3.6105481e+01;
M[3][l] = -4.5054410e+00;
M[3][2] = -4.407149 le-03;
M[3][3] = 7.1960632e+03;
M[3][4] = -3.0885533e+03;
M[3][5] = 7.0491452e+02;

M[4][0] = -2.3620767e+00;
M[4][l] = 3.3114037e-01;
M[4][2] = 6.2504192e-04;
M[4][3] = 1.6943090e+04;
M[4][4] = 9.7619402e+02;
M[4][5] = -2.3989392e+02;

M[5][0] = -2.3620689e+00;
M[5][l] = 3.3113099e-01;
M[5][2] = 4.5663961e-04;
M[5][3] = -1.6943090e+04;
M[5][4] = -9.7619675e+02;
M[5][5] = 2.398943 le+02;

M[6][0] = -1.4442372e+01;

74

M[6][l] = -1.8020246e+00;
M[6][2] = -1.5768961e-05;
M[6][2] = 2.2191543e+02;
M[6][3] = 2.5670786e+04;
M[6][4] = -2.3900313e+03;

M[7][0] = -1.4442030e+01;
M[7][l] = -1.802313 8e+00;
M[7][2] = -3.3539312e-03;
M[7][3] = -2.2191608e+02;
M[7][4] = -2.5670856e+04;
M[7][5] = 2.3900394e+03;

M[8][0] = 2.6115867e-02;
M[8][l] = -1.3043747e-02;
M[8][2] = 1.0000109e+01;
M[8][3] = -7.9539094e-02;
M[8][4] = -1.3096549e+00;
M[8][5] = 1.7483581e-01;

/*
* The following are the coefficients for the closed loop matrix
* generated by MATLAB (Lawrence,Bridgman) for V-Bar tracking.
*/

fcl[0][l] = 1.0;

fcl[l][0] =
fcl[l][l] -
fcl[l][2] =
fcl[l][3] =
fcl[l][4] =
fcl[l][5] =
fcl[l][6] =
fcl[l][7] =
fcl[l][8] =
fcl[l][9] =
fcl[l][10]
fcl[l][ll]

2.8190912e-06
-4.8189089e-04
3.5178012e-07
2.0881292e-03
3.2887964e-10
2.6515657e-08

6.4125679e-ll
1.5155439e-09
6.8801932e-09
2.4008197e-06
-7.994355 le-10;
-2.7268703e-07;

fcl[2][3] =1.0;

fcl[3][0]
fcl[3][l]
fcl[3][2]

-1.5342577e-05
-8.0901361e-03
2.1508544e-06

75

fcl[3"
fcl[3"
fcl[3"
fcl[3"
fcl[3"
fcl[3"
fcl[3"
fcl[3"
fcl[3;

fcl[4]

fcl[5]
fcl[5^
fcl[5"
fcl[5"
fcl[5"
fcl[5"
fcl[5"
fcl[5"
fcl[5"
fcl[5"
fcl[5"
fcl[5;

fcl[6]

fcl[7]
fcl[7]
fcl[7]
fcl[7]
fcl[T
fcl[7"
fcl[7"
fcl[7
fcl[7"
fcl[7]
fcl[7]
fcl[7]

fci[8;

fcl[9"
fcl[9"
fcl[9]

[3] =-4.5883849e-03
[4] = 3.5129702e-09
[5] = 2.4824550e-07
[6] = 1.0151231e-09
[7] = ,2.9957644e-08L

[8] =-8.8419494e-09;
[9] = 3.1710672e-05;
[10]= 1.2707592e-09;
[ll] = -3.5152392e-06

[5] = 1.0;

[0] = 4.8422408e-08;
[I] = 2.2197206e-05;
[2] =-1.3945275e-08;
[3] = 7.3203772e-06;
[4] = -2.6406463e-04;
[5] =-2.2926794e-02;
[6] = 2.1001850e-06;
[7] = 6.1241658e-05;
[8] = 3.4581546e-05;
[9] = 7.1322364e-02;
[10] = -4.6166045e-06;
[II] = -7.8552673e-03;

[7] = 1.0;

[0] =-8.0046854e-14
[I] =-3.8390332e-ll
[2] = 4.2680318e-14
[3] =-3.4225792e-13
[4] =-1.4483390e-14
[5] =-1.0586828e-12
[6] =-2.8722782e-04
[7] =-2.3993513e-02
[8] = 4.8978833e-06:

[9] = 9.1323594e-04;
[10] = -8.7260906e-07;
[II] = -7.1646026e-05;

[9] = 1.0;

[0] = 3.7317838e-14;
[1] = 2.0159832e-12;
[2] = -4.2131677e-14;

76

fcl[9][3] =
fcl[9][4] =
fcl[9][5] =
fcl[9][6] =
fcl[9][7] =
fcl[9][8] =
fcl[9][9] =
fcl[9][10] =
fcl[9][ll] =

1.0032060e-ll
■4.6428223 e-13
3.4128175e-12
■2.2684248e-08
:2.5126452e-05
■9.7419189e-06
■2.0259801e-03
-2.5681076e-05
-2.1763998e-03

fcl[10][ll]= 1.0;

fcl[ll][0] -
fcl[ll][l] =
fcl[ll][2] =
fcl[ll][3] =
fcl[ll][4] =
fcl[ll][5] =
fcl[ll][6] =
fcl[H][7] =
fcl[ll][8] =
fcl[ll][9] =
fcl[ll][10]
fcl[ll][ll]

-8.8295896e-14
-5.1984722e-ll
-2.1924174e-14
-3.4937462e-ll
-5.5774712e-14
-3.4692950e-12
-2.1126336e-06
-1.276863 5e-04
-2.4516140e-05
7.6569121e-05
-2.3999590e-04;
-2.1867746e-02;

I"
* The forcing function vector for the V-bar tracking procedure.
*/

frcfunc[l][0] = -2.8190912e-06;
frcfunc[3][0] = 1.5342577e-05;
frcfunc[5][0] = -4.8422408e-08;
frcfunc[7][0] = 8.0046854e-14;
frcfunc[9][0] =-3.7317838e-14;
frcfunc[ll][0]= 8.8295896e-14;

frcfunc[l][l]
frcfunc[3][l]
frcfunc[5][l]
frcfunc[7][l]
frcfunc[9][l]
frcfunc[ll][l]

= -3.5178012e-07;
= -2.1508544e-06;
= 1.3945275e-08;
= -4.2680318e-14;
= 4.2131677e-14;

2.1924175e-14;

frcfunc[l][2] =-3.2887964e-10;
frcfunc[3][2] =-3.5129702e-09;

77

frcfunc[5][2] = 2.6406463e-04;
frcfunc[7][2] = 1.4483415e-14;
frcfunc[9][2] = 4.6428224e-13;
frcfunc[ll][2]= 5.5 77473 Oe-14;

frcfunc[l][3] = -6.4125680e-ll;
frcfunc[3][3] =-1.0151231e-09;
frcfunc[5][3] = -2.1001850e-06;
frcfunc[7][3] = 2.8722782e-04;
frcfunc[9][3] = 2.2684248e-08;
frcfunc[ll][3]= 2.1126336e-06;

frcfunc[l][4] = -6.8801932e-09;
frcfunc[3][4] = 8.8419494e-09;
frcfunc[5][4] =-3.4581546e-05;
frcfunc[7][4] = -4.8978833e-06;
frcfunc[9][4] = 9.7419189e-06;
frcfonc[ll][4]= 2.4516140e-05;

frcfunc[l][5] = 7.9943551e-10;
frcfunc[3][5] =-1.2707592e-09;
frcfunc[5][5] = 4.6166045e-06;
frcfunc[7][5] = 8.7260906e-07;
frcfonc[9][5] = 2.5681076e-05;
frcftmc[ll][5]= 2.3999590e-04;

}

* This subroutine performs all remaining analysis for *
* motion of the actuator on the manual controller. *

void motor_control()

{
/* motor move */ -
collide_x = xhome;

switch(op_mode)
{

case 1: /* simple mode */
volts=0;
break;

case 2: /* force reflection mode */

78

}
}

case 3: /* virtual force reflection mode */
if (collision == 1)

{
flagl++;

. if (flagl = 1)
collide_x = finalout_l/1000.0;

}
else flagl=0;

volts = (t3/scalex)*10.0+force_volts;

if (input[0] > collidex)
input[0] = collidex;
if(volts>=0)
volts = 0.015;
scale_voltage();
if(t3<=0)
volts=0;

break;
case 4: /* electronic tunneling mode */

if (forcejvolts = 0 && t3 >= 0)

{
flagl=l;
input[0]=flnalout_l/1000.0;

}
else
flagl=0;
if(t3>0)

{-
volts=0.025*force_volts;
break;

}
if (t3<0)

{
volts=-0.035;
break;

} '
else volts=0;

/***

* This subroutine scales the voltages to necessary values for input to the servo amplifier.
***/

79

void scale_voltage()

{
if (volts >0)
volts=volts*0.0050+0.025;
if(volts<0)
volts=volts*0.0055-0.035;

}

* This subroutine calculates closure rate during simulation.
*

void calculate_velocity(displaced,timer)

float displaced,timer;

{
float velocity,elapsed;

printf("in the velocity routine.\n");
count++;
if (count == 1)

moved = finalout_l;
if(count:==3)

{
velocity = ((displaced-moved)/(timer*3))/1000.0;
fprintf(out, "%f\n",velocity);
printf("the velocity is: %f\n",velocity);
count=0;

}
}

80

Appendix C

C. 1 Graphics Simulation Software: Flowchart

Query tracking and
mode preference

initialize V-bar
views and
nominal docking
position

tracking?

initialize R-bar
viewB and
nominal docking
position

read initial approach
position

send preferences and
separation distance
to server software

no force calculated
in simple and force
reflecting mode

Figure C-l Frobmc.gsl Flow Chart

81

C.2 Graphical Simulation Software: Source Code Listing

Paul Woznick, Jul 94
Adapted from program asset, T. Bridgman.

frobmc.gsl must begin with the 'PROGRAM' name followed
by the name of the device being programmed in a WORKCELL.
The device OBJECT will be assigned to this program.
A separate server/number crunching program must be
running before the simulation starts. To enable the 'C
routine, goto the /usr/deneb/igrip.4d/giftware directory and
type server_frobmc 2074. With this, the two
can communicate with each other through the address location
2074. Ensure OBBC_comm_hub.c is all ready running on KTRK.

Program object

- Declaration of the variables that will be used in this program.
- 'VAR' variables are ones declared frobmc.gsl while
~ the 'CLI_VAR variables are used when a command like
-- CLI(" ") is called.

VAR

pick, trackjnum, i: INTEGER
view_num: INTEGER
preference: INTEGER
opmode: INTEGER
loop: INTEGER
coll_checker: INTEGER
flagger: INTEGER
X, Y: REAL
orbit: REAL
extjt: REAL
volts, virt_dist: REAL
force_ref_axis_dist: REAL
xf,xo,yf,yo,zf,zo: REAL

82

yawf,yawo,rollf: REAL
rollo,pitchf,pitcho: REAL
z_check,y_check: REAL
yaw_check: REAL
fiinnel_radius: REAL
pitchcheck: REAL
roll_check: REAL
collidex: REAL
jt_in: ARRAY[6] of REAL
jt_out: ARRAY[6] of REAL
pi, p2: POSITION

CLI_VAR

stand_ofF: REAL
tempsep: REAL

Begin

Below, the user will be promted for the type of control
employed to dock the OBJECT with a space station.

write("Before the simulation begins, choose from the ", cr)
write("the tracking options listed below.", cr)
write(cr)
DELAY 1000
write("The choices are:", cr)
write(cr)
write(" 1. V-BAR tracking.", cr)
write(" 2. R-BAR tracking.", cr)
write(cr)
read_kbd(Enter a tracking preference', preference)
write(cr)
write("You must also choose the mode of operation of", cr)
write("the controller. The choices are:", cr)
write(cr)
write(" 1. Simple 6DOF control.", cr)
write(" 2. 6 DOF control with force reflection.", cr)
write(" 3. 6 DOF control with virtual force reflection.", cr)
write(" 4. 6 DOF control with Electronic funneling.", cr)
read_kbd(Enter operation mode', opmode)

83

write(cls)
if(opmode>4)then

opmode = 1
endif

Open up a port for communication with server frobmc.c.
For this simulation, the communications port
is assigned unit number 3. Therefore, all writing
to and reading from serverfrobmc.c necessary for this
simulation is done through unit #3.

open client 'hardy: 2074' for update as 3

Set up the space station view and allocate appropriate
V-bar or R-bar tracking matricies.

view_station()

Initialize docking position to match camera view at
separation of 500m.

SWITCH preference

CASE1: xf=-90374
yf=512640-
zf=-4406

collidex = xf
CASE 2: xf=409700

yf=12873
zf=-5039

collide_x = xf

ENDSWITCH

84

yawf=0
pitchf=0
rollf=0

~ After either V-Bar tracking or R-Bar tracking is picked have
-- the command of the program goto the 'position()' sub-routine
~ to prompt the user to input the six (6) needed values for
-- "automated" flight. The six (6) values are three (3) trans-
~ lational and three (3) rotational. Recommended values are:
— x=400, y= 12, z= -5, xrot=yrot=zrot=0.

rendevous_position()

Write to serverfrobmc.c the pertinent values user preference
and simulation execution. The values sent to
serverjrobmc.c are the tracking preference, the operation
mode (ie. virtual force reflection) and station altitude.
Then send the object orbital characteristics after rendevous.

write #3, (trackjnum,'', opmode,'', temp_sep, cr)
DELAY 10
write #3, (jt_out[0],'', jt_out[l],'', jt_out[2],'', jt_out[3],'', jt_out[4],'', jt_out[5],

cr)

Turn on collision queue if in a force reflection mode.

if (opmode > 1) then
ADD 'freedom'/asset' TO QUEUE
SET COLLISION CHECKS ON

endif

85

Initialize zero force f/b if in simple DOF mode.

if (opmode = 1) then
volts = 0.0
collchecker = 0

endif

This simulation will keep operating until the user presses
both the middle and the right mouse buttons simultaneously.

while (pick <> 3) do
pick = MOUSE_BUTTON(X, Y)

■ Read from the sub-routine the up-dated values so the
■ object can move accordingly. The values read in are
■ the three (3) translational movements, jt_in[0] thru
■ jt_in[2] and the three (3) rotational movements, jt_in[3]
■thrujt_in[5].

read (#3, jt_in[0], jt_in[l], jt_in[2], jt_in[3], jt_in[4], jt_in[5])

Use the MOVE JOINT _ TO Value' IMMEDIATE command to
move each of the six (6) joints of the object.

if (collchecker = 1 OR jt_in[0] > collidex) then
jt_in[0] = collide_x
endif

MOVE JOINT 1 TO jt_in[0] IMMEDIATE
MOVE JOINT 2 TO jt_in[l] IMMEDIATE

86

MOVE JOINT 3 TO jt_in[2] IMMEDIATE
MOVE JOINT 4 TO jt_in[3] IMMEDIATE
MOVE JOINT 5 TO jt_in[4] IMMEDIATE
MOVE JOINT 6 TO jt_in[5] IMMEDIATE
SIM UPDATE

Determine the voltage necessary to provide the appropriate
force reflection to the manual controller. Send
this information to server frobmc.c

if(opmode> 1) then
check_position()
collide_checker()
calculate_force2volts()

endif

- write(volts,' ',coll_checker, cr)
write #3, (volts,' ',coll_checker, cr)

The program is terminated when the value 'pick' = 3.

endwhile

Close the port address so this
address doesn't 'hang' or go into a 'dead-lock'.

Set the 'MULTI VIEWS' from the two (2) screen, horizontally
split window to the full, unsplit picture window. Also
set the view to a good spectator view by using the
selected view, 'spec_canada.'

87

CLI("MULTI VIEWS 0")
CLIC'SET VIEW TO 'spec_canada'")

End the main program with the END' command following by
name of the main program, in this case 'object'.

END object

~ The following sub-routine is for tracking with a space station

Procedure view_station()
Begin

~ Set view_num to T for viewing space station.
~ and track_num to '2' for R-Bar controller configuration
~ or trackjium to 3 for V-bar tracking

view num = 1

88

Prompt the user for the separation between the space
station and the object. This depends on tracking
configuration.

if (preference == 2) then
track_num = 2
write(els)
write("You have selected R-BAR tracking. ", cr)
write("At the prompt below,", cr)
write("indicate the separation between the ", cr)
write("space station and the object (in meters).", cr)
DELAY 5000
write("Remember that R-bar tracking dictates an ", cr)
write("approach to the target along the target's ", cr)
write("position vector, r. A recommended ", cr)
write("safe minimum separation is 100 ", cr)
write("meters, therefore acceptable values", cr)
write("of separation should be greater than ", cr)
write("100 meters", cr)
read_kbd('Enter the separation, in meters', standoff)
temp_sep = 400000 + stand_off
temp_sep = temp_sep/1000
DELAY 500
write(els)
extJt = 0

endif

if (preference = 1) then
trackjium = 3
write(els)
write("You have selected V-BAR tracking. ", cr)
write("At the prompt below,", cr)
write("indicate the separation between the ", cr)
write("space station and the object (in meters).", cr)
DELAY 5000
write("Remember4hat V-bar tracking dictates an ", cr)
write("approach to the target along the target's", cr)
write("orbit (east/west). A recommended ", cr)
write("safe minimum separation is 100 ", cr)
write("meters, therefore acceptable values", cr)
write("of separation should be greater than ", cr)
write("100 meters", cr)
read_kbd('Enter the separation, in meters', standoff)
temp_sep = 400

89

DELAY 500
write(els)

extjt = 90
endif

convert standoff distance to milimeters

stand_off=stand_off* 1000
DELAY 500

Retrieve the space station from the /usr/deneb/Usrlib/DEVICES
directory and translate it to the standoff distance specified
by the user.

if (trackjnum == 2) then
CLI("GET DEVICE Vusr/deneb/Usrlib/DEVICES/freedom"')
DELAY 100
CLI("ACTIVATE 'freedom'")
CLI("TRANSLATE DEVICE freedom TO stand_off, 0, 0")
DELAY 500
CLI("DEACTIVATE 'freedom'")
DELAY 500

endif
if (tracknum = 3) then

CLI("GET DEVICE Vusr/deneb/Usrlib/DEVICES/freedom'")
DELAY 100
CLI("ACTIVATE 'freedom'")
CLI("TRANSLATE DEVICE freedom TO 0, stand_off, 0")
DELAY 500
CLI("ROTATE DEVICE freedom TO 0, 0, 90")
DELAY 100
CLI("DEACTIVATE 'freedom'")
DELAY 500

endif

~ Move the object to position (0, 0, 0, 0, 0, 0) so that

90

~ the simulation can begin from the original reference point.

MOVE JOINT 1 TO jt_in[0] IMMEDIATE
MOVE JOINT 2 TO jt_in[l] IMMEDIATE
MOVE JOINT 3 TO jt_in[2] IMMEDIATE
MOVE JOINT 4 TO jt_in[3] IMMEDIATE
MOVE JOINT 5 TO jt_in[4] IMMEDIATE
MOVE JOINT 6 TO jt_in[5] IMMEDIATE
DELAY 500

-- Set split screen views to the space station viewing.

CLI("MULTI VIEWS 6")
CLI(" ACTIVATE VIEW 1")
CLIfSET VIEW TO 'ssf_canada'")
if (track_num ==3) then

CLI("SET VIEW TO 'vbar_objecf")
endif

CLI("SCALE WORLD TO 20000")
CLI(" ACTIVATE VIEW 2")
CLI("ATTACH EYE TO TAG pi")
CLI(" SCALE WORLD TO 20000")

End

This subroutine prompts for the initial desired position
command.

Procedure rendevous_position()

Begin
write("The following prompts below will ask ", cr)
write("for a series of attributes about", cr)
write("the rendevous orbit. Requested are ", cr)
write("three position and three attitude values.", cr)
read_kbd('Enter an attainable x (m)', jt_out[0])

91

read_kbd('Enter an attainable y (m)', jt_out[l])
read_kbd('Enter an attainable z (m)', jt_out[2])
read_kbd('Enter an attainable xjrot (deg)', jt_out[3])
read_kbd('Enter an attainable y_rot (deg)', jt_out[4])
read_kbd('Enter an attainable z_rot (deg)1, jt_out[5])
write(els)

End

~ This procedure makes joint values from the simulation
-- available for manipulation by program procedures.

Procedure check_position()

Begin

UNPOS('asset',xo,yo,zo,yawo,pitcho,rollo)

End

This procedure initiates the creation of the forces
of the object/environment interaction

Procedure calculate_force2volts()

Begin

force_ref_axis_dist = xf-xo

SWITCH opmode

CASE 2: volts=0
if(force_ref_axis_dist <= 0)then
volts = force_ref_axis_dist/1000.0
if(volts<-10)then
volts = -10
endif

return
endif

92

CASE 3: virtual_force2volts()
return

CASE 4: funnel_force2volts()
return

ENDSWITCH

End

-- This procedure creates the virtual spring environment
-- and the associated forces involved with it's interaction.

Procedure virtual_force2volts()

Begin

virt_dist = (100000.0 - force_ref_axis_dist)/l000.0
if(virt_dist<=0)then

return
endif

volts = (virt_distA2)/1000

if (volts > 10.0) then
volts =10.0
endif

volts=-volts

End

This procedure checks for a collision between the space
station and the tracking vehicle.

Procedure collide_checker()

Begin

93

coll_checker = DEV_COLLISIONS('freedomVasset')

if (collchecker == 1) then
check_position()
collidex = xo

endif

End

~ This procedure creates the hypercone environment and
~ the associated forces involved with it's interaction.

Procedure funnel_force2volts()

Begin

volts = 1.0
if(coll_checker= l)then
volts=0
endif
flagger = 0

if ((force_ref_axis_dist/1000) <= 25 AND force_ref_axis_dist > 0) then

funnelradius = 0.25*force_ref_axis_dist
z_check = abs(zf-zo)-funnel_radius
y_check = abs(yf-yo)-funnel_radius
yaw_check = abs(yawo) - funnel_radius/1000.0
pitch_check = abs(pitcho) - funnel_radius/1000.0
roll_check = abs(rollo) - funnel_radius/1000.0

if (y_check>=0 OR z_check>=0) then
volts = 0.0
endif

if (yaw_check >= 0) then
flagger=flagger+l
volts=0

endif
if (pitch_check >= 0) then

flagger=flagger+2
volts=0

94

endif
if(roll_cneck>=0)then

flagger=flagger+4
volts=0

endif

SWITCH flagger

CASE1:
CLI("SET BACK COLOR TO 0.01,0.99,0.99")

CASE 2:
CLI("SET BACK COLOR TO 0.99,0.99,0.01")

CASE 3:
CLI("SET BACK COLOR TO 0.01,0.99,0.99")
CLI("SET BACK COLOR TO 0.99,0.99,0.01")

CASE 4:
CLI("SET BACK COLOR TO 0.99,0.01,0.99")

CASE 5:
CLI("SET BACK COLOR TO 0.01,0.99,0.99")
CLI("SET BACK COLOR TO 0.99,0.01,0.99")

CASE 6:
CLI("SET BACK COLOR TO 0.99,0.99,0.01")
CLI("SET BACK COLOR TO 0.99,0.01,0.99")

CASE 7:
CLI("SET BACK COLOR TO 0.01,0.99,0.99")
CLI("SET BACK COLOR TO 0.99,0.99,0.01")
CLI("SET BACK COLOR TO 0.99,0.01,0.99")

DEFAULT:
CLI("SET BACK COLOR TO 0.001,0.001,0.001")

ENDSWITCH

endif

End

95

Appendix D

D. 1 Supporting Software Code Listing: Communication Hub

**
*

* OBBC_comm_hub is the ethernet communication hub for the OBBC demonstration
* It is modified by Paul Woznick from connect, c, written by Tom Deeter.
* Code was extracted from Dave Doaks (AFIT) and Matthew Gertz (CMU) programs
*

♦♦fr***

*/
#include <stdio.h>
#include <math.h>
#include <sys/types.h>
#include <sys/socket.h>
^include <netinet/in.h>
#include <errno.h>
#include <netdb.h>
#include <signal.h>
#include <chimera.h>
#include <enet.h>
#include <string.h>

#define WFCJOINTS 1
#define WFC_QUIT 0
#define MAXLINE 4096

int sockfd;

*

* Function clean_up will gracefully disconnect
* machines.

void clean_up()

{
close(sockfd);
shutdownQ;

96

exit(O);
}

*

* Function put_data will send the data to the remote
* non chim machine.
*

put_data(sd,buf,nbytes)
register int sd;
register char *buf;
register int nbytes;

{
int nleft,nwritten;

nleft = nbytes;

while(nleft > 0)

{
nwritten = write(sd,buf,nleft);
if(nwritten <= 0)

return nwritten;
nleft -= nwritten;
buf += nwritten;

}
return nbytes-nleft;

}

*

* Function get_data will read the data from the remote
* non chim machine.
*

int get_data(sd,buf,maxlen)
register int sd;
register char *buf;
register int maxien;

{
int n,rc;
char c;

97

for(n=0;n<maxlen;n++) {
if((rc=read(sd,&c,l))==l)

{
*buf++ = c;
if(c == W)
break;

}
else if(rc==0)

{
if(n==l) return 0; /* no data*/
else break;
}

else
return-1;

}
*buf= 0;
return n;

}

main(argc,argv)
int arge;
char *argv[];
{

struct sockaddrjn cli_addr;
struct servent *sp;
struct hostent *hp;
float volts, pi;
char *pname = argv[0];
int n, i, count;
char inbuffer[MAXLINE],outbuff[MAXLINE];
ENET *chimenet;
char chimbuffer[4096];
int loop,type,size;

if(argc<2)

{
printf("Usage: %s remote_host_name\n",argv[0]);
exit(0);

}

while (1)
{

98

/********************#**

* Connect to chimera using enetCreate. Do this first then
* start fr.c on chimera.
*

**

printf("Creating server tsok on CHIMERAW);
printf("Start CHIMERA NEW communication program\n");
chimenet = enetCreate("tsok",0);
printf("Connected.. An");

*

* Connect to remote non chim machine using standard unix (TCP Protocal)
* calls.
*
***/

signal(SIGINT,clean_up);

bzero((char *)&cli_addr,sizeof(cli_addr));
if ((hp = gethostbyname(argv[l])) = NULL)

{
perror("unknown host");
exit(O);

}
bcopy(hp->h_addr,(char*)&cli_addr.sin_addr,hp->h_length);

cli_addr.sin_family= hp->h_addrtype;
cli_addr.sin_port = htons(4903);

printf("%d is the family\n",cli_addr.sin_family);
printf("%d is the port \n",cli_addr.sin_port);
if((sockfd=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP)) < 0)

{
perror("client: cannot open stream socket");
exit(l);

}
if(connect(sockfd, (struct sockaddr *) &cli_addr,sizeof(cli_addr)) < 0)

{
printf("error #: %d\n", errno);
perror("client: cannot connect to server");
exit(l);

}

99

printf("Connected to %s \n",argv[l]);

do

{
size = sizeof(chimbuffer);
type=l;

/* get data from hardy */

/* printf("getting data from hardyW'); */
get_data(sockfd,outbuff,MAXLINE);

/* printf("got dataW); */
n = strlen(outbuff);

/* printf(" data to chim is %s\n",outbuff); */

/* send data to chimera */

enetSend(chimenet,WFC_JOINTS,n,outbuff,0);

/* recieve handshake */

/* printf("receiving hand shake from chim\n"); */
enetReceive(chimenet, &type, &size, chimbufFer, 0);

/* printf("got handshake: %s\n",chimbufFer);*/

/* create handshake for hardy */

sprintf(inbuffer,"\n,,);
n = strlen(inbuffer);

/* send handshake to hardy*/

/* printfC'sending handshake to hardyW); */
put_data(sockfd,inbuffer,n);

}
while (type != WFC^QUIT);
printf("Destroying server... \n");
enetDestroy(chimenet);

}
}

D.2 Supporting Software Code Listing: R/T Microprocessor Communication Link

100

/***

*

* This program modified for OBBC-microprocessor communication by Paul Woznick

* Original code provided by Tom Deeter, 1994

**

/

#include <chimera.h>
#include <sbs.h>
#include <enet.h>

#define WFC_ACK 2

void poke_volts();

main()

{

charconnection[80],inburrI4096],outbuffer[4096];
int no_conn, type, size;
int loop,n;
float volts,hex_volts;
unsigned short out_volt;
ENET *enet;

printf(" starting prog\n");
no_conn=0;
strcpy(connection, "tsok@kirk");

/* Attach to an enet port if appropriate */
printf("trying to attach\n");

enet = enetAttach(connection, ENET_RETRIES(2));
printf("attached\n");

poke_volts(0x07ff);
printf("attached2\n"); -

while(l)
{

/* get data from kirk, connect */

enetReceive(enet, &type, &size, inbuff,0);
/* kprintf("Received %s\n",inbuff); */

101

/* assign data to a buffer */

sscanf(inbuff,"%f',&volts);
/* kprintf("%f\nM,volts); */

/* convert float volts to hexadecimal and send to D/A */
hex_volts = 4095.0-((4096.5/5.0)*(volts+2.5));
out_volt=(unsigned short) hex_volts;

/* kprintf("just converted volts to hex\n"); */
poke_volts(out_volt);

/* create handshake buffer */

sprintf(outbuffer, "test");
n=strlen(outbuffer);

/* send handshake to kirk */

/* kprintf("send to kirk %s\n",outbuffer); */
enetSend(enet, WFC_ACK, n, outbuffer,0);

}
}

void poke_volts(volt)
unsigned short volt;

{
unsigned short *D_A_addr;
short i;
D_A_addr = (unsigned short *) 0xFAFFF900;
/*prratf("volt= %x\n",volt);*/

/* send all channels same value */
*(D_A_addr + 0) = (unsigned short)volt;

}

D.3 Supporting Software Code Listing: Spaceball Communication

* The following subroutine opens a port to the spaceball. All Spaceball
* subroutines are based on Bob Filers thesis work, converted to C and
* modified to communicated with a Silicon Graphics Indigo Iris workstation.

void open_spaceball(ttyport, speed)

102

String ttyport;
int speed;

{
struct termio tty;
int status;

if ((SB_fd = open(ttyport, 0_RDWR | 0_NDELAY)) = -1)

{
perror("Cannot open Spaceball");
exit(l);

}

/* Get the current port parameters */

status = ioctl(SB_fd, TCGETA, &tty);
if(status==-l) {

fprintf (stderr, "Error in save ioctl call\n\n");

}

/*
* Set the port up for:
* Hang up on last close
* eight bits
* local line
* enable receiver
* enable signals
* canonical input
* user specified baud rate

■*/

/*
* These flags set up the port for "raw" input. This allows us to
* grab whatever input is present in the read queue regardless of
* whether the device is done sending a full packet or not.
*/

tty.c_cflag = HUPCL | CS8 | CLOCAL | CREAD | speed;
tty.cjflag = IGNBRK;
tty.ejflag = 0;
tty.c_oflag = 0;
tty.c_cc[VMIN] = 0;
tty.c_cc[VTIME] = 0;

status = ioctl (SB_fd, TCSETAF, &tty);
if(status==-l) {

fprintf (stderr, "Error in set ioctl call\n\n");

103

}

* The following subroutine initializes the spaceball to *
* one of three modes: voltage, force or standard. See *
* user's guide. NOTE: The mode will be determined by the
* programmer (when the call is made). The simulation *
* user will not be able to dictate a particular mode *

void init_spaceball(Byte mode)
{
if ((mode = SB_VOLTAGE) || (mode == SBFORCE) || (mode =

SB_STANDARD))
SB_mode = mode;

else {
SBmode = SBFORCE;
perror ("Incorrect mode request in ink call\n");

}

* The following subroutine reads in the raw spaceball data
* from the RS232 port and stores it in buf This is called *
* only when the spaceball is in the force and voltage modes.

int read_raw_spaceball(Byte *buf,int len)

{
int count = 0;

/* flush the input queue to get the most recent data */

ioctl(SB_fd, TCFLSH, (struct termio *)0);

while(count != len)
count = read(SB_fd, buf, len);

buf[len -1] = NULL; /* strip CR/LF */
return(strlen((const char*)buf));

}

/**********************+J(£+J|tt+J|t%++!|t#+!(t++t!|t++!|t!|c#!jt!|c+!|CJ|tJ|c!jt!|<j|tj|cj)<!(<

* The following subroutine is needed for the standard *

104

* operation mode. *

void write_spaceball(Byte *buf,int len)

{
if (write(SB_fd, buf, len) != len)

{
perror("Short write to Spaceball");
exit(l);

}
}

* The following subroutine reads in input from the spaceball *
* only if it is operating in the standard mode. It will store *
* the incoming data in buf. *

int read_standard(Byte *buf,int len)

{
Byte enq[2];

int count = 0;
int times = 0;

enq[0] = 5; /* ASCII ENQ character */
write_spaceball(enq, 1);

#ifdefONYX
sginap ((long)l);

#endif

while ((count != len) && (times < MAXTIMES)) {
count = read(SB_fd, buf, len);
times++;

}

if (times = 500) return (-1);
else return(strlen((const char *)buf));

}

* This subroutine formats incoming data. *

105

void parse_spaceball(SpaceballData *sd, Byte *buf)

{
short button;
sscanf((const char *)buf, "%hd %hd %hd %hd %hd %hd %hd"

&(sd->xtrans), &(sd->ytrans), &(sd->ztrans),
&(sd->xrot), &(sd->yrot), &(sd->zrot),
&button);

switch (SB_mode)
{
case SB_FORCE:

sd->button = ABS(button);
break;

case SBVOLTAGE:
sd->button = 8 - (short)loglO((double)button);
break;

}

/**

* This subroutine formats incoming data when in standard
* mode. *
Jit*!!!!!!**/

void parse_standard (SpaceballData *sd, Byte *buf)
{

if(buf[3]!=37){
perror ("Incorrect standard read\n");

} else {
sd->xtrans = buf[4];
sd->ytrans = buf[5];
sd->ztrans = buf[6];
sd->xrot =buf[7];
sd->yrot = buf[8];
sd->zrot =buf[9];
sd->button = ABS(buf[10]);

}
}

/***#************************* ********************************

* This subroutine is the one called by the main program to *
* read in spaceball data. The data is stored in sd. *
***/

106

void read_spaceball(SpaceballData *sd)

{
Byte buf[SB_DATA_SIZE + 1];

short oldbutton = 0;
switch(SBmode)

{
case SBFORCE:

read_raw_spaceball(buf, SBFORCESIZE);
parse_spaceball(sd, buf);
break;

case SB_VOLTAGE:
read_raw_spaceball(buf, SB_VOLTAGE_SIZE);
parse_spaceball(sd, buf);
break;

case SB_STANDARD:
if ((read_standard (buf, SB_STANDARD_SIZE)) == -1) {

sd->xtrans = sd->ytrans = sd->ztrans = 0;
sd->xrot = sd->yrot = sd->zrot = 0;
sd->button = 0;

} else
parsestandard (sd, buf);

break;

}

/* De-bounce buttons */

if ((sd->button > 0) && (sd->button != oldbutton))
oldbutton = sd->button;

else

{

}

oldbutton = 0;
sd->button = 0;

107

Appendix E

E. 1 Operating Instructions: Preparation

1. Ensure that the CHIMERA operated microprocessor is powered on.

2. Login to Kirk and start CHIMERA by typing chim <enter> at a command prompt.

3. To insure that the D/A board is cleared of any voltages type ex clean <enter> at the
chim control prompt. CAUTION: This step must be completed successfully before
proceeding to step 4.

4. Connect both plugs of the hand controller into standard AC outlets.

5. Toggle on switch for the CIS DIM 6. Watch for all indicator lights on the keypad to
flash. This indicates proper power up of the Dim 6.

6. Select TRA button on the Dim 6 keypad.

7. Ensure that the serial cable from the Dim 6 is connected to serial port 1 on the Silicon
Graphics workstation.

8. Sign on the Silicon Graphics Hardy Workstation (pwoznick home directory) and
create 4 shells with the shell tool. Make the 4 shells as short as possible and about 4
inches wide. Drag shells to each corner of the display. The two windows on top will be
your local shells and the two on the bottom will be your remote shells.

9. In the upper left window at the prompt type:
cd deneb <enter>

10. In the upper right window at the prompt type:
cd /usr/deneb/igrip.4d/giftware/woznick <enter>

11. In the lower left window at the prompt type:
rlogin kirk <enter>
cd /Thesis/frobmc/comm <enter>

12. Repeat step 9 for the lower right window.

13. Return the cursor to the lower left window and at the prompt type:
chim <enter>

A chim control prompt should appear.

14. In the upper left window type:

108

/usr/deneb/igrip.4d/igrip <enter>
This will create a ghost shell. Drag and click at the center of the monitor. Make this
window as large as possible without covering the other 4 window. This is the IGRIP
workcell.

E.2 Operating Instructions: Execution

1. With the mouse, select the SYS button from the tool bar displayed along the top of the
IGRIP workcell. Now select the FILE button from the vertical tool bar located at the
extreme right of the workcell. Next select the APPEND button from the lower portion of
the vertical tool bar. A pop up window will open. Use the mouse to select Usrlib. The
message: File - Usrlib - selected

Config file appended

2. Now return the horizontal tool bar along the top of the IGRIP window and select
LAYOUT. Now select Retrieve Workcell from the vertical tool bar. Pick from a
resulting pop up window the library:
/home/pwoznick/usr/deneb/Usrlib/WORKCELLS
Now pick object. Wait about 90 seconds for the program to be retrieved.

3. A message window will appear. Use the mouse to drag and click the window to the
top center of the IGRIP window, just below the horizontal tool bar.

4. Now select MOTION from the horizontal tool bar. Then select Simulate from the
upper portion of the vertical tool bar.

5. Move the cursor to the upper right 'local' window. At the prompt type:
serverfrobmc 2074 <enter>

The message: object server started
and: Listening!?

6. Move the cursor to the IGRJP window and select Run from the upper middle of the
vertical tool bar. A pop up window will appear. Select done from the upper right of this
window. The graphics simulation will begin. A series of pop up windows will prompt the
user. Follow these instructions.

7. The first prompt will ask for a tracking method preference. Using the SGI keyboard
enter the number 1 or 2. 1 is V-bar and 2 is R-bar. Default is R-bar.

8. The second prompt will ask the user for the OBBC controller feedback preference.
Using the SGI keyboard, enter numbers 1, 2, 3, or 4. 1 is baseline. 2 is force reflection. 3
is virtual force reflection and 4 is electronic funneling. Default is baseline mode.

109

9. The third prompt will be for a Separation or standoff distance. Type 500 <enter>. This
can be anything but to ensure safe separation, this is the recommended separation.
Graphics will update after <enter>.

10. The final set of prompts will ask for initial desired position commands. This can be
used to get the tracking vehicle in the direct proximity of the target vehicle. Suggested
values for good demonstration and ensuring all programmed camera views. Enter the
values depending on mode and tracking method from the table below:

Input
Modes 1,

R-bar
2&3

V-bar
Mode 4

R-bar V-bar

X 400 -115 400 -112

y 10 510 12.873 512.64
z -5 -5 -5.039 -4.406

xrot 0 0 0 0
yrot 0 0 0 0
zrot 0 0 0 0

Table E-l. Initial Input

11. Upon entering the zrot value the display will switch to a split screen display. The
cockpit view will be on the lower screen and a top view of the space station will be on the
upper screen.

12. Move the cursor to the lower right 'remote' window. At the prompt type:
OBBC hardy <enter>

A message prompting the initiation of the comm link on the microprocessor.

13. Move the cursor to the lower left 'remote' window and at the chim control prompt
type: ex OBBC1 <enter>
A series of messages should appear in both remote windows indicating the necessary
connections have been made. The simulation should begin in IGRIP at this time.

14. Use the hand controller to complete the approach. Control is completely natural. Do
to the controller knob.what you would like done to the tracking vehicle.

15. It may be helpful to use the TRA or ROT and/or DOM buttons on the keypad of the
controller. These functions are described in chapter 3. Additionally, the keypad has 8
function keys. The functions programmed with each of these keys are described in
Chapter 4.

16. Remember to keep the cursor in the IGRIP window to keep the simulation running.
Also, keep an eye on the upper right local window for any communication messages and
other information. IGRIP is an interactive graphics environment. Therefore tool buttons

no

located on the bottom horizontal tool bar as well as the buttons on the current vertical tool
bar are available to enhance the simulation demonstration. Particularly useful buttons are
the magnify and the jnt vals buttons. Magnify can be used to inspect the mating of the
spacecraft and joint values function will keep you updated on the tracking vehicles
position.

17. To end the simulation, ensure the mouse cursor is in the main IGRIP window and
then simultaneously press the right and middle mouse buttons. The simulation will end
with a spectator view of the tracking and target vehicle. Disconnect both controller
electrical plugs.

Ill

Appendix F

F. 1 CIS Dimension 6 Communication Parameters The Dim 6 has dip switch selectable

communication parameters, baud rate and software protocol. The baud rate can be from

300 to 19200 bps and is set at 19200 bps for this thesis. The software protocol can be set

to ASCII voltages, ASCII force, ASCII standard, or special protocol. For this thesis the

protocol is ASCII standard. Using this protocol, an imparted force on the spherical knob

is converted to a hexadecimal value between -127 and 128. Table F-l shows the dip

switch setings of the spaceball compatable with the OBBC prototype software.

Dip Switch 1 2 6 7 8

State on off on on on

Table F-l. Spaceball Dipswitch Settings

112

Vita

Captain Paul Woznicki was born on 31 March 1967, in Long Island, New York.

He graduated from West Milford Township High School in West Milford, New Jersey and

attended the U.S. Air Force Academy, graduating with a Bachelor of Science in

Astronautical Engineering in May 1989. Upon graduation, he received his regular

commission in the USAF and served his first tour of duty at Falcon AFB, Colorado. He

began as a planner analyst in the 1st Space Operations Squadron (1 SOPS) where he

performed routine commanding and state of health analysis of the Defense Support

Program and Defense Meteorogical Satellite Program satellites. He was then handpicked

to help form the 1 SOPS' first satellite engineering group and went on to become the

squadron's lead engineer for the Defense Support Program satellite constellation. He

entered the School of Engineering, Air Force Institute of Technology, in June of 1993.

His next assignment is as a Foreign Communication Satellite Analyst at the National Air

Intelligence Center, Wright-Patterson AFB, Ohio.

Permanent Address:

1515LynleeDr.

Bellbrook, OH 45305-1134

113

REPORT DOCUMENTATION PAGE
form "porc.ed

OMB Nc 07G4-Q188

; collector ;; -i
' Da-'S H:ar-vav -.. ;i 222J2-43G2 .jr.dM :-- l''-?.;t',!j'i:»

r per -asperse, nrluairv-; :^e T -"■>"■ '0' '^ . -.-■ '■-. ■-.' .

: jna budget. a:*per.vor:< ^5C;J:::C" p':■; =a 0 /C4-;' ?^i

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1994
3. REPORT TYPE AN) DATES COVERED

Master's Thesis

6. AUTHOR(S)

\ Paul Woznick, Captain, USAF

(4. TITLE AND SUBTITLE

j Telepresent Spacecraft Docking With Object-Based Bilateral

! Control (OBBC)

5. FUNDING NUMBERS

: 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

; Air Force Institute of Technology, WPAFB, OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUM8ER

AFIT/GA/ENY/94D-9

!9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

_
12a. DISTRIBUTION/AVAILABILITY STATEMENT

| Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The concept of object-based control is extended to the field of teleoperation,
specifically to accomplish the tas^ of spacecraft docking via a bilateral manual
controller. An object-based controller with bilateral feedback controls the motion
of the grasped object, not the trajectory of the manipulator. For this reason it can
be designed with feedback that is intricately linked with the task kinematics. The
benefits derived from anthropomorphicity and force feedback are possible without
kinematically/geometrically similar master-slave systems, complex calibration and
joint mapping schemes, or expensive, high degree-of-freedom force reflection.
Object-based control is ideal for low-level telerobotic interfaces.

A hand controller and a spacecraft docking simulation are designed and constructed
to demonstrate object-based bilateral control. The dominant task objective in space-
craft docking is the approach to a target vehicle along a single axis of motion.
Several methods of bilateral feedback linked with this dominant objective are proposed
in addition to simple force reflection. One method involves virtual forces and
another utilizes velocity reflection. ^Eacrimethod, .practical only witK object-based
control, enhance the man-machine interface by providing a heuristic method of control.

14. SUBJECT TERMS

Robotics, telerobotics, object-based control,
spacecraft docking

bilateral control,

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

122
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard ?orm 298 {Rev 2 39)
Prescribed bv -NS in Z39-'S
298-*02

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. publication date
including clay, month, and year, if available (e.g. 1
jan88). Must cite at least the ,ea;\

Block 3. lypeof Report)ates Covered.
State whether report is Interim, final, etc. if
applicable, enter inclusive report dates (e.g. 10
Jun87-30Jun88).

Block 4. Title and Subtitle. A title Is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Blocks. Funding Numbers. To include contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR
G - Grant TA
PE - Program WU

Element

Project
Task
Work Unit
Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
thename(s).

Block7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in.... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

DOE See authorities.
NASA- See Handbook NHB 2200.2.
NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categories

from the Standard Distribution for
Unclassified Scientific and Technica
Reports.

NASA- Leave blank.
NT!S - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words.) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev 2-39)

HJ S GPO. I 990-0-273-27 I

