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Abstract

The Air Breathing Medium Range Air-to-Air Missile (ABMRAAM) represents

developmental technology which incorporates both a rocket engine and a RAMJET

engine. Such a missile uses proportional navigation guidance plus an additional

trajectory loft command. This thesis examines the optimal trajectory, and hence the

optimal lofting command, for an ABMRAAM. A numerical simulation of the missile

is presented and the necessary conditions for the optimal trajectory are derived.

From these conditions, the problem can be numerically solved for the optimal loft

command.

xii



Formulation of the Optimal Trajectory for an Air-Breathing Medium

Range Air-to-Air Missile

L Introduction

1.1 Background

The United States Air Force (USAF) is investigating the feasibility of air-to-

air missiles that incorporate both a rocket engine and a variable throttle RAMJET

engine. The missile with both a rocket engine and a variable throttle RAMJET has

been termed a Variable Flow Ducted Rocket (VFDR). The goal is to improve the

performance of the missile for the same preflight weight as a purely rocket-propelled

version. Currently, these missiles incorporate proportional navigation guidance plus

a loft command, glo t. Generally, the loft command is related to the ratio of the

current line of sight distance to the original line of sight distance between the missile

and the target and an altitude command. As the range between the two decreases,

the magnitude of the command decays exponentially:

t' RLOS } 
( .1

- RLOSo /

where

galtcmd = the altitude command,

RLOS = the current range along the line of sight vector,

RLOS,, = the initial range along the line of sight vector, and

"rioft = the loft decay constant.
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Due to the short duration of propulsion and near constant thrust, commanding a

loft according to Eq. (1.1) has proven to be effective in rocket-propelled missiles

as a method of increasing the potential energy of the vehicle. Attempting to gain

altitude, thus increasing potential energy, may or may not be the most effective

guidance implementation for a variable throttle RAMJET. Therefore, the optimal

trajectory of this missile is being investigated in an effort to determine the correct

loft command for the VFDR to minimize intercept time.

The RAMJET engine compresses the incoming air without the mechanical

compressor associated with most air-breathing engines (4). The pressure of the in-

coming air is increased by passing through standing shock waves. To ensure appro-

priate pressure increase, the incoming air flow must remain relatively undisturbed.

To prevent disturbances, the sideslip angle must be approximately zero for the VFDR

due to the configuration of the RAMJET inlet. Hence, the missile equipped with

a RAMJET must fly a bank to turn (BTT) profile to maintain zero sideslip angle.

Therefore, the VFDR utilizes coordinated turning to alter its cross range position,

rather than the skid to turn (zero roll angle) profile of the typical rocket propelled

missile.

1.2 Previous Work

The model for the simulation is based on the simulation ENGAGE (10). EN-

GAGE was created for use with personal computers and simulates a one-on-one

aircraft pursuit and evasion. Each aircraft is capable of launching one missile at the

other aircraft. The algorithms are versatile and permit extensive variations of guid-

ance and control algorithms for both the aircraft and the missiles they fire. However,

ENGAGE is not useful as a tool to optimize a given performance criterion; whether

the criterion is minimum time, maximum range, etc. Parameters such as feedback

gains, loft command cutoff values, and altitude commands can be varied by the user

in an attempt to achieve improved performance. This type of optimization is ad hoc
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at best. The variable throttle RAMJET complicates performance evaluation even

further by greatly increasing the variation of the missile's performance based upon

the trajectory flown (6:319). Paris et. al. evaluated the optimal trajectory for an

air-breathing missile problem but only for the RAMJET phase of boost. ENGAGE

simulates the full flight of the missile but is not designed to allow the application of

the calculus of variations to determine optimal loft command.

1.3 Project Scope

The scope of this project is to first recreate a simulation for the VFDR using

MATLABTM. During the course of recreating the missile portion of ENGAGE, a

few errors were discovered so an analysis of the impact is presented. Second, the

necessary conditions for the optimal loft control are developed. The minimum time

optimal loft control for the three-dimensional interception problem is shown to be

most interesting when the engagement is in a vertical plane. Therefore, the emphasis

is shifted to determining the optimal control assuming missile flight is restricted

to the vertical plane. Third, a numerical shooting method is developed to solve

the two-point boundary-value problem that is derived as a result of optimizing the

loft command. The discussion so far has frequently referred to "optimal control;"

however, optimal performance is never complete until a measure of performance is

presented. The goal of this analysis is to find the optimal control for loft to minimize

the final time of rendezvous with the target. Hence, the performance index can be

stated as

minimize J = tf (1.2)

where

J = the performance index, and

tf = the final time.
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1.4 Sequence of Presentation

The first step in solving this problem is to develop a simulation for the VFDR.

Chapters two and three describe the model that is simulated in ENGAGE. The

description includes the coordinate systems, the atmospheric model, the equations

of motion, the engines and the guidance and control. Chapter four analyzes the

simulations and discusses the errors discovered. Chapter five presents the derivation

of the necessary conditions for an extremal solution for the free final time problem.

The shooting method is presented as a numerical technique for solving the two-point

boundary-value problem formulated from the necessary conditions for an extremal

solution. An example problem and the numerical results accompany the discussion.

The formulation for the optimal trajectory is presented for the three-dimensional

intercept. An interesting situation occurs when flight is restricted to the vertical

plane. Therefore, the two-dimensional intercept is examined and the formulation for

the optimal trajectory two-point boundary-value problem is presented.
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I1. Basic Equations for the Simulation

2.1 Atmosphere

The atmosphere is modeled using the U.S. Standard Atmosphere, 1962 (1).

The model assumes that the atmosphere is comprised of ideal air that contains no

moisture or dust and can be characterized by the ideal gas law. An ideal gas is a

gas in which the molecules are sufficiently far apart so that intermolecular forces

are negligible; the gas acts as a continuous material in which the properties are

determined by statistical average of the particle effects (8:48). Up to altitudes of 80

kilometers (kin), air is assumed to be homogeneously mixed with a relative volume

composition that leads to a constant molecular weight, MWair. Applying the ideal

gas law to air yields
P pRM . (2.1)

where

R, = the universal gas constant,

P = the total pressure of air,

T = the total temperature, and

p = density.

However, since the molecular weight of air is assumed constant,

Rar= -I1RV*,R, -MW~ir '

= constant.

Therefore, the ideal gas law for air becomes,

P = pRaiT. (2.2)
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To 80 kin, the modeled atmosphere is also assumed to be in equilibrium which means

that the pressure is related to the geometric altitude by the differential relation

dP = -pAdhG (2.3)

where

hG = the geometric height above the earth's surface, and

S= gravity as a function of altitude.

Equation (2.3) is the hydrostatic equation. The customary approach in standard

atmosphere calculations is to eliminate the variation of gravity with altitude from the

hydrostatic equation. To effectively eliminate the dependence, geopotential altitude

h is introduced. Before the geopotential altitude can be defined, the variation of

gravity with geometric altitude is examined.

Consider two small elements of the atmosphere, where one is just at the surface

of the earth (hG = 0) and the other is at some geometric altitude, hG, above the

surface of the earth. The inverse square law of gravitation expresses the attractive

force between each element and the earth as

G= a ' (2.4)
M~2

=~ G MEM2 2  (2.5)
(RE + hG)2

where

RE = the radius of the earth,

G = the gravitational constant,

mx and m 2 = the mass of the elements, and
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ME = the mass of the earth.

Defining g as the acceleration due to gravity at the earth's surface, it is noted that

4 = g when hG is zero. Also noting that the mass of each element cancels from the

expressions above, Eqs. (2.4) and (2.5) become

GME (2.6)

ME

= (RE + hM)2 ' (2.7)

An expression for 4 as a function of geometric altitude is obtained by forming the

ratio of the above equations,

E ) 2 ' ( 2 .8 )
g (RE ha) 2

( ýR-E + h G) 2 * (2.9)

The hydrostatic equation, Eq. (2.3), can be expressed either as

dP = -p[dhG (2.10)

or noting that if 4 g, then dhG is equal to an arbitrarily small change in geopo-

tential height, dh, and the hydrostatic equation can be expressed as

dP = -pgdh. (2.11)

Equating Eqs. (2.10) and (2.11) and solving for dh yields

dh = gdhG. (2.12)
g

2-3



Temperature Profile in the Standard Atmosphere
60 ,

50 ........................ I ........................ .......... ............... .....

<40............ ............ ............ ............ ..........

<30 ...............................

C .

0

10 .. .. . .. ...... ....

210 220 230 240 250 260 270 280 290
Absolute Temperature, (deg K)

Figure 2.1 Standard Atmosphere Relation Between Temperature and Altitude

Substituting the relation obtained in Eq. (2.8) and then performing the integration

an expression for h is

dh = R2E dhG
(RE + h)2hG

h RE (2.13)
(RE + hG)hG

Equation (2.13) is the geopotential altitude, an altitude that assumes gravity is

constant and equal to its sea level value. The variation of temperature with altitude

was determined experimentally for the U.S. Standard Atmosphere, 1962 and is shown

in Fig. 2.1. For the atmosphere in which air-breathing flight takes place, there are two

noticeable traits. There is a temperature gradient region and an isothermal region.

The temperature in the gradient region varies linearly. Therefore, the temperature
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at a given h is expressed by

T=Tb+ dT (h- hb) (2.14)

where

Tb = the reference temperature at the start of the region of interest, and

hb = the associated reference geopotential altitude.

Dividing Eq. (2.3) by Eq. (2.1)and performing the integration, two expressions for

density are formed. The first expression is valid for the region that temperature

varies linearly with h. The second expression is applicable in the isothermal region.

Pb a for 0 0, (2.15)

rg(h-h•b)) dT
P = Pbexp h -TJ for d- 0. (2.16)

where,

Pb = the reference density at the start of the region of interest.

Equations (2.15) and (2.16) are two expressions for p, depending upon whether the

altitude is in an isothermal region or a temperature gradient region. Table 2.1 gives

the corresponding reference values for h, Tb, Pb, and dT

The above atmospheric model allows the determination of T, p, and P solely

as a function of geopotential altitude up to 80 km. Figure 2.2 shows the variation

of density and pressure as a function of geopotential altitude for the atmospheric

model. The values for density and pressure are normalized by the respective sea-
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dT

Reference Altitude, Reference Temperature, Reference Density, d--
h, km Tb, K Pb, kg/mi3  K/km

0 288.15 1.225 -6.5
11 216.65 3.639 x 10-' 0
20 216.65 8.803 X 10-2 1
32 228.65 1.332 X 10-2 1
47 270.65 1.427 x 10-3 2.8
52 270.65 7.594 X 10-4 0
61 252.65 2.511 X 10-4 -2

Table 2.1 Properties of the Atmosphere at the Isothermal Gradient Boundaries

80 .

70

60 - Pressure Profile

T- Density Profile

-Z

_40

830
a ,

20-

10-

0 0.1 0.2 0.3 0 .4 0.5 0.6 0.7 0.8 0.9 1
Density and Pressure, Percent Sea-Level Value

Figure 2.2 Density and Pressure as Percent of Sea Level Value
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level value. Above 80 km, air begins to diffuse and the molecular weight can no

longer be assumed constant.

From these quantities, the following expressions for a, the speed of sound in

air, and Q,, dynamic pressure, can be obtained:

a = y/airfairT (2.17)

Qo= 2PVIi. (2.18)
2

"-Yair = the the specific heat ratio of air

Vaij, = the velocity of the freestream air.

2.2 Coordinate Systems

This section describes the various coordinate systems used in the model and

the necessary rotation sequences used to define the axis systems. This model is

developed assuming that the earth is a flat, non-rotating reference frame. This

assumption is valid given the relatively short duration of a typical flight which is on

the order of one minute.

2.2.1 Inertial Axis. The inertial axis is formed by using the right hand rule

with XE and YE forming a plane parallel to the surface of the earth, and ZE normal

to the surface of the earth. Figure 2.3 depicts the earth fixed coordinate system.

2.2.2 Velocity Axis. To go from the Earth-fixed, or inertial, axis system

to the velocity axis system, a rotation of angle 0 is made about the ZE axis. This

forms an intermediate axis XE1, YE1, and ZE1. Figure 2.4 shows this rotation. The
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ZE

YB

_ XE

Eafth

Figure 2.3 Inertial Axis System

YEI YE z ZEI

Rotation 1 Rotation 2

XEI YE1,V ,

N'XE XEI

ZEE1

Figure 2.4 Rotation Sequence From Earth to Velocity Axis

transformation from the inertial axis to the intermediate axis is given byEXEI 1 [ sin 01 [XE1
YE -sine0 cos 0 YE (2.19)

ZE1 I 0 0 1 oZE]

Next, a rotation of angle y is made about the resulting -YE1 axis. This is chosen so

a positive -y represents climbing flight. This produces unit vectors in xv, yv, and zv
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z z

G

yv

Figure 2.5 Rotation from Velocity to Stability Axis

directions with the total velocity, V, always pointed in the xv direction.

xv- cos-y 0 siny XE11

Yv 0 1 0 YE1 (2.20)

z .- sin '- 0 cos -Y ZE1

Equations (2.19) and (2.20) can be combined allowing the definition of TEV to be

the rotation matrix from the earth to the velocity coordinate system.

xy Cos'y 0 siny-] cos 4 sine 0][XE]

Yv 0 1 0 -sine0 cos 0 YE (2.21)

ZV -sin3- 0 cos y' 0 0 1-ZE

[ cos Ycos4 cos-ysin4' sin-y1 [XE1

-- sin cos 00 YE (2.22)

-sin y cos -sin -y sin 0 cos . ZE]

=TEv YE (2.23)

-ZE

2.2.3 Stability Axis. The stability axis is defined by a roll angle, 0, about

the -xv axis. This results in coordinates xs, ys, and zs. Figure 2.5 shows the

rotation sequence to the stability axis system and is given by

2-9



YsI zYS zsI

Rotation 1 Rotation 2

YSI.B
XsYs ,E

xs 1

ZSS
z s~si

Figure 2.6 Rotation Sequence from Stability to Body Axis

[XS [1 0 0 iFXV]
ys 0 cosa -sinra yv (2.24)

zs 0 sina cos a [ zV

-Tvs y (2.25)

Equation (2.24) leads to the definition of the rotation matrix from the velocity to

the stability axis system, Tvs.

2.2.4 Body Axis. The body axis system is defined relative to the stability

axis system by two rotations. Figure 2.6 shows the rotation sequence from the

stability axis to the body axis. The first is a rotation of angle 3 about the zs axis.

The second rotation is an angle a about the resulting -y axis. The transformation

from the stability axis to the body axis is
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ZR

XB

Xs,v

XE

Figure 2.7 Body Fixed Axis System

XB cosa 0 sina[ cos P sino 0 xsi

YB 0 1 0 -sin8 cos H ys (2.26)
ZB sina 0 cosa 0 0 zs

[cos acos/ cos asin3 sinai [xsl
-sin 0 cos/3 0 ys (2.27)

[-sinacoso -sinasin/3 cosaj JzsL

=TSB Ys]• (2.28)

-zs-

The resulting direction vectors, XB, YB, and ZB, are fixed to the missile with XB out

the nose, YB out the left side of the missile and ZB out the top; see Fig 2.7. The

transformation from the stability axis system to the body axis system is accomplished

by TSB, which is defined by Eq. (2.28).

2.3 Force Equations

Figure 2.8 is a free body diagram of the missile in flight. The missile is assumed

to be a point mass. The sum of forces produces the net acceleration of the vehicle.

2-11



ZB

XB

Thrust s~

Normal
• VelocityE

..... XE

Axial

Weight

Figure 2.8 Free Body Diagram of the Missile in Flight

The acceleration terms are derived followed by a development of the force terms.

E Fv = may

=m M -(VV) +WV/E X VV] (2.29)

where

Fv = the total force on the missile,

av = the total acceleration of the missile,

Vv = the velocity vector in the velocity frame,

wWIE= the angular velocity vector of the velocity frame

relative to the inertial frame.
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The forces acting on the missile in flight are in various reference frames. Weight, W,

is acting in the inertial frame and the axial, Fa, normal, F, lateral, F,, and thrust,

FT, forces are in the body frame.

By definition, the velocity axis system is aligned with the velocity vector,

vv = . (2.30)

The angular velocity of the velocity axis system relative to the inertial frame is

known through the rotations required to go from the inertial to velocity coordinate

systems.

WV/E = OZE - )YýEi (2.31)

However, OZE and ýýE1 must be expressed in the velocity frame, hence

[0]

cos - cos cos 7ycosi/ sin-'0
- sinek cos 0 0

[-siny cos [ sin]y sin cos -
nsin s i c

= 0

¢Cos 7

and

cos-y 0 sin-y 0]

sVi= 0 1 0 (2.32)

-sin 1 0 cos 3-
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Therefore, WV/E can be expressed entirely in the velocity axis system as

WV/E =4sin -y-v - '-ýpv + bcos -yv. (2.33)

Knowing WV/E and Vv, the cross product of Eq. (2.29) becomes

WVIE XVV = bsin -y -ý ýbcos-y

V 0 0

=V'ý/Cosy (2.34)I;']
Also,

=Viv. (2.35)

Combining Eqs. (2.34) and (2.35) the total acceleration vector, av becomes

d
av = ~-(VV) + WV/EXVV

= VO os -Y(2.36)
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For completion of Eq. (2.29), the net forces in the velocity axis frame must be

determined. The forces acting in the body frame are the thrust, the axial force, the

normal force and the side force. The thrust force is aligned with the xB axis. The

axial force is also aligned with the XB axis but acts in the opposite direction of the

thrust force. The normal force acts normal to the xB - YB plane in the ýB direction.

The lateral force acts in the yB direction. The force vector is expressed as

fFB= FyT ] (2.37)

F.

where PB indicates the force vector is only thrust and aerodynamic forces, and

gravity is not yet included. As a first step in transforming FB, the force vector is

rotated to the stability axis,

Fs = TBsFB

= TSB TB[ cosacos3 -sin/3 -sinacos/] FT-F,

= cos a sin cos/ sin a sin Fy

sin a 0 cos an] F. ]

[FT cos a cos 9- Fa cos a cos /3 - Fy sin 3 - F, sin a cos /3

FTcosasin3- Facosasin3+ Fycos3- F,,sinasin/3 (2.38)

[ c snFT sin a - Fa sin a + Fo cos a I
Equation (2.38) represents the thrust and aerodynamic forces acting on the missile

relative to the stability axis system. Drag, D, side, S and lift, L, are defined in

the missile stability axis and are pictured in Fig 2.9. Lift is the total aerodynamic

force acting on the missile in the stability axis in the 2 s direction. Drag is the total

aerodynamic force acting on the missile in the stability axis in the -3s direction. The

side force is the total aerodynamic force acting on the missile in the stability axis in
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it Thrus Xs
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Figure 2.9 Forces on Missile in Stability Axis System

the •)s direction.

D --Facos acosI3±+Fy sin/3±+Fnsin acos/3 (2.39)

S Fa cos asin/3±+Fy cos/3-Fn sin asinfl (2.40)

L Fa 5s11 Q + F n cos a (2.41)

The above definitions reduce Eq. (2.38) to

,FT cos oacos /3-- D]1

F~s [/FT cosoasin /3 + S. (2.42)

1_FTsin a + L

The final rotation sequence from the stability axis system to the velocity axis system

is accomplished by the transpose of the rotation matrix in Eq. (2.25). The result of

the rotation is the thrust and the aerodynamic forces are expressed in the velocity
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axis system.

V= TvsTFs
[1 0 0 1[FT cosCO 1 o

0 cos o" sin or FT cos a sin + S

-- sin a cos or FT sin a + L
FT cos a cos # - D

(FT sina+L)sin-+(FTcosasin/3+S)cos- (2.43)

(FT sin a + L) cos a - (FT cos asin • + S) sin a

Fv is the thrust and aerodynamic forces acting of the missile in the velocity reference

frame. Gravity effects are now included to produce the total force vector in the

velocity coordinate system, Fv. Gravity acts in the -ZE direction of the inertial

frame. Noting the mass of the missile is m and using the relation

WE=m[0 (2.44)

yields

0

WE J

Resolving the weight vector into the the velocity axis components yields,

Wv TEv []
cos ^ cos cos y cos sin 7 ][0

= - sin 0, Cos 0 0 [ 0

-sin-ycoso -sin-ysino cos'). _-W_
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-- W sin-y'
0 (2.45)

-W Cos -Y

The thrust and aerodynamic forces, Eq. (2.43), are combined with the weight,

Eq. (2.45) to denote the total forces acting on the missile in the velocity frame.

Fv Fv + Wv
[FT cos acosl3D 1 -WsinY

= (FTsina+L)sina+ (FTcosasinp+S)cosr + 0

-(FTsina+L)cosa-(FTcosasin,+S)sinJ L -Wcos -J
FT cos a cos 0 - D - W sin 1/

(FTsina+ L)sina + (FT cosasin0 + S) cosa ]. (2.46)

/(FT sin a + L) cos o - (FT cos a sin ± + S)sin a - W cos-y

The expressions for the acceleration of the missile in the velocity axis and

the total forces acting on the missile in the velocity axis can now be combined in

Eq. (2.29) to complete the expressions for the equations of motion of the missile.

Recall Eq. (2.29):

Fv = may

Substituting the expression obtained from Eq. (2.46) for Fv and the expression

obtained from Eq. (2.36) for av yields

o FT cos a cos - D - W sin 1
M V[ CosT] = (FTsina + L)sina + (FTcosasin/# + S)cos a

Vý (FT sin a + L) coso,- (FT cos asin 0+ S) sin o,- Wcos

(2.47)
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Dividing both sides of the equation by the mass of the missile, the above equation

becomes

SFT COs a cos- D - Wsin ]
Vý Cos 7| (FT sin a+ L)sino,+(FT cos asinPl+ S) cos o

Vý [ (FT sin a + L) cos u - (FTcosasinfo + S) sin or - W cos-y.(2.48)

Substituting
1 _g- (2.49)
m W

into Eq. (2.48), the expression becomes

~F g-cosa cosf w sin -),
g [(sina+ sinau + ( cos asinfP + s)cos a]

[Vi = [(ga + (_cos-- -Fzcos a sin y) + -L n-cos

Rearranging the terms, expressions for V, / and 'y are

[]_ __ [(__w sina + -)sinu + (-F cosa sin P + s)cos u] (2.51)
( si cCosor - -C Sin ) ] o

S(- ) (W Wcos si) sin _ cos,]

Noting S = 0 and /3 = 0 for this missile, the equations of motion reduce to

[ g( Cos a - D-sin-y)

- --z sin a + I) sin U (2.52)
S[--z sin a + Lcs- COST]1

XE, YE, and ZE are related to the velocity vector in the velocity axis system

through the transpose of Eq. (2.23)

[E =TEV T[
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[V Cos 7 Cos b 1
V Vcos-sin4'. (2.53)

V sin 7]

Equation (2.53) gives the translational equations needed to determine the po-

sition of the missile in the inertial coordinate system and Eq. (2.52) represents the

equations of motion in the velocity frame for the missile in flight. Specific expressions

for FT, L and D are developed in the following sections.

2.4 Aerodynamic Forces

The aerodynamic forces for this missile are in the form of dimensionless aero-

dynamic coefficients. This data is in tabular form and was generated through wind

tunnel testing. There is no sideslip angle, hence there is no side force. The axial

force is modeled as a function of a dimensionless axial force coefficient, Ca, based

on Mach number, M, and a. A dimensionless compensation to the axial force coef-

ficient, ACa, as a function of altitude and Mach number corrects for the variations

in aerodynamic effects as density and Mach number vary. The axial force, Fa, is

expressed as

Fa = (Ca + ACa)Aref Qo (2.54)

Ca = f(a,M) (2.55)

ACa = f(h,M) (2.56)

where

Araf = the aerodynamic reference area of the missile.

Two sets of data are required for Ca. The RAMJET requires air flow into the com-

bustion chamber, which requires ducts to open. These ducts are not deployed during
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the rocket boost phase, hence the two different axial force profiles, one corresponding

to the axial coefficient during the rocket boost phase, and the other corresponding

to the axial coefficient during the RAMJET boost phase.

The normal force, F,, is modeled as a function of a dimensionless normal force

coefficient, Cn, based on M and a.

F. = C.ArefQo (2.57)

C" = f(a,M) (2.58)

2.5 Engine

The engine needs to be described during the three phases of its flight. Overall,

there are two propulsion phases and one coast phase. The rocket boost phase is the

first phase. The rocket booster burns at a fixed rate until the propellant is depleted.

The next propulsion phase is the air-breathing boost phase. This phase is terminated

when the oxidizer is depleted. Unlike the constant fuel flow rate in the rocket boost

phase, the fuel flow rate is variable in the air-breathing boost phase. Separating the

rocket boost phase and the air-breathing boost phase is a brief (0.2 sec) coast phase

where there is no thrust developed and no fuel depletion. This phase begins when

the propellant for the rocket engine is depleted and the transition time permits the

opening of the RAMJET inlet. Finally, the missile returns to the coast phase if the

oxidizer is depleted prior to target intercept.

2.5.1 Rocket Boost Phase. The thrust, FT, of a rocket engine pictured in

Fig. 2.10 is given by

FT = ±+ Aeit(psi - p), (2.59)

where

Týj = the thrust at sea level,
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Ambient pressure, p.

Thrust, FT .....

Exit Area, A ,

Control Volume
------------------------------

Figure 2.10 Rocket Engine Control Volume

Amexit = the exit area of the nozzle,

pat = the atmospheric pressure at sea level.

This equation is useful since T81 is known from test data and Aeit is known from the

geometry of the missile. The pressure, po, is known as a function of altitude from

the atmospheric model and is given by Eq. (2.1). The weight of the missile, Win,

decreases at the rate the fuel is depleted, zbf;

I, (2.60)

where

Iap, = the sea level specific impulse

and is known from test data. T81 and Ip,, are modeled as constant values which

implies that tbf is constant for the rocket boost phase of flight.

2.5.2 Air-Breathing Boost Phase. A general RAMJET engine is pictured

in Fig. 2.11 (11:96). Air at station 0 enters the engine at free-stream velocity, Vo, and

pressure, Po, at a rate of zba. The capture area is A,. The velocity of the entering air

is reduced and the static pressure is increased by the supersonic diffuser at station

1. The subsonic diffuser, station 2, then compresses the air further. The air flows

into the combustor at station 3, which houses the burners. The air is heated by the
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Figure 2.11 Features of the General RAMJET Engine

continuous combustion of fuel. The heated products of combustion are expanded in

the nozzle, station 4, and are ejected at station 6 at a speed greater than the incoming

air. The increase in momentum of the gas results in a thrust in the direction of flight.

Since this engine requires flowing air in order to build pressure for the combus-

tion process, the engine is not able to generate thrust at zero flight speed. Hence, the

RAMJET must be propelled to a minimum velocity to operate. The ABMRAAM

accomplishes this through the rocket booster previously described. Once in flight,

the thrust, FT, generated by the RAMJET is given by

FT = (tb + wbf ) veit - W V. + (Penit - po)Aexit, (2.61)
g g

where

Veit = the velocity of the gases exiting the nozzle,

Pexit = the pressure of the gases exiting the nozzle, and

Aexit = the exit area of the nozzle.
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A throttle is used to control the fuel flow rate, tbf, entering the combustion

chamber which regulates the thrust. The throttle logic will be discussed further

in the next chapter. Once tbf is determined, tba, V,,it, and Peuit in Eq. (2.61) are

functions of M and a. Again, the data for this model is in tabular form.

2.5.3 Coast Phase. As previously mentioned, the coast phase can occur

twice during a missile flight. The first time it occurs is between the rocket and the

RAMJET boost phases. The duration is for 0.2 seconds and allows for the transition

of power modes. The next time the coast phase can occur is if intercept has not

happened prior to the expenditure of the fuel to sustain the RAMJET propulsion.

In either situation, the drag induced by the aerodynamic effects over the inlet, Di of

the RAMJET is given by

Di = Cd, QA, (2.62)

where

Cdj = the coefficient of induced drag.

Cdj is a function of M and a and is in tabular form for the missile model. This table

was generated by wind tunnel testing.
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III. Guidance and Control

3.1 Guidance

The VFDR uses a mixed guidance strategy to guide it to the target. The

lateral guidance is a proportional navigation command. The horizontal guidance is

"a combination of a Mach command and a gravity command. The vertical guidance is

"a combination of a loft command, a proportional navigation command and a gravity

command. This section will describe the guidance of the VFDR and derive the

line of sight parameters for proportional navigation. Commands not generated by

proportional navigation will then be discussed. Proportional navigation guidance

results in an acceleration command in the velocity axis system proportional to the

angular rate of change of the line-of sight vector, WLOS, from the missile to the

target. N is called the proportional navigation constant. Therefore, the commands

generated to guide the missile are proportional to the angular velocity of the missile

relative to the target by a factor of N. Generally, N ranges from 2 to 6 which

implies that the missile develops a lead angle on the target (9). If N = 1, then the

resulting missile accelerations will alter the relative velocity between the missile and

the target and drive the line of sight rate to zero and if N < 1, the missile will lag

behind the target (3:262). Differentiating the velocity vector with respect to time,

Eq. (3.1), yields the desired acceleration vector, am, of the missile in terms of the

angular velocity of line of sight vector.

dV
am= -

dt 1E

-- dV " + NWLO$ X×d V

= Výv + NWLOS x V. (3.1)
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Figure 3.1 Typical Missile-Target Intercept Scenario

Taking the cross product of the final term in Eq. (3.1) yields

iv ýv iv 0

NWLOS x V = Nw. NwY Nwý [ VmNwz

Vm 0 0 -VmNwy

= V1mV + VmNwz-Iv - VmNwy~v (3.2)

Normalizing the acceleration vector, am, with respect to gravity yields

am
- -Nmg

V,, Vm Nwz V,, NwY v
= + -YV V m V (3.3)

g g g

Specific expressions for w. and w, in Eq. (3.3) are developed by examining the line of

sight parameters between the missile and the target. Note that W., does not appear in

Eq. (3.2). Figure 3.1 shows a general three-dimensional missile target game. Before

expressions can be obtained for w. and w, in Eq. (3.2), some initial definitions must

be made for the components of distance from the target to the missile and the
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components of relative velocity from the missile to the target.

XLOS = XT - Xm (3.4)

YLOS YT - Ym (3.5)

ZLOS hT - hm (3.6)

VXLOS - Vm COS Om C0 cOS% (3.7)

VYLOS - YT - Vm sin Okn COS '. (3.8)

VZLOS hT - Vm sin "Yn (3.9)

where the subscript T denotes the target and m denotes the missile. From the

definitions in Eqs (3.4) through (3.9), the range along the line of sight, RLOS, can

be expressed as

IIRLoslI = (Xos + y2os + Z2o S) . (3.10)

The closing velocity, Vo10se can be expressed as

RLOS * VLOS
IIRLosll

XLOS ULOS ZLOSI*[ VXLOS VYLOS VZLOS]T. (3.11)
IIRLosII

Dividing the line of sight range by the closing velocity, an estimation for the time

remaining until intercept, tgo is expressed as

tgo IIRLOsII (3.12)

Referring to Fig 3.1, the rate of change of the position vector from the missile to

the target can be described by a cross range angular velocity, i/LOS, and an angular

rate of change from the horizontal, 4LOS. The total angular velocity of the line of

sight vector is

WLOS = /LOSZE - ;YLOSPE1. (3.13)
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Figure 3.2 Line of Sight Geometry for the XLOS - YLOS Plane

Specific expressions for 4LOS and ":LOS in terms of the definitions for the line of sight

parameters are required to generate the necessary guidance commands in Eq. (3.3)

to intercept the target. Examining the XLOS - YLOS plane, gLOS is shown in Fig 3.2

along with the tangential and normal components of the line of sight velocity vector

in the plane. VXLOS and VYLos are the line of sight components in the XLOS and

YLOS directions, respectively. Resolving the velocity vectors into their XEi and YE1

components yields

"VXLosE1 COS /LOS sin LOS 01 VxLOS

VyLosE1 -sin 4'LOS COS OLOS 0] VyLOS

VzLosEi 0 0 1 VzLOS

VXLOS cos 4LOS + VYLOS sin 4LOS

-- VXLOS sin OLOS + VYLOS cos iL0S (3.14)

VZLOS

The line of sight velocity component in the YE, direction is the tangential velocity

of point A that is being swept by the radius (xLO + Y~os)½ with angular velocity
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'LOS. Equating the two expressions for the velocity of point A yields

1

(xLos + YLos)2 PLOS = VLos cos kLOS-VxLos sin "LOS. (3.15)

Therefore, 'bLOS can be expressed as

4/LOS = VYL+S COS OLOS -- VYLOSsin .LOS (3.16)

(2o + y2oS)"

Noting from the geometry in Fig 3.2 that

COS OLOS =- XLOS

(X2o + y2oS)j~ - XLOS

sin hLOS = YLOS

(4X2 + yos)!2

the expression for 1/LOS becomes

'/LOS = VYLOSXLOS - VXLOSYLOS (3.17)XLos + YLoS 3.7

The rotation due to the "7LOS is shown in Fig 3.3.

"VXLOSV COs'- 0 sin I VXLOS Cos LOS + VYLos sin O'LOS

VYLOSV 0 1 0 -VXLoS sinV)LOS + VYLos cos VLOS

VLosV - sin-y 0 cos-y VýLOS

(VXLOS COS /LOS VYLOS sin /)LOS) COS 'I + VzLOS sin -y

(V --VOS Los sin LOS + VYLOSCOSLos cos (3.18)
-(V•Lscs€O yo sin OLOS) sin '7 + V--o COS '

As before, the tangential components of velocity are equated

RLOS'/LOS = VzYL, Cos -Y - (VXLos COS V)LOS-- VYLOS sin nLOS) Sin-Y. (3.19)
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Figure 3.3 Line of Sight Geometry for the XLOSE1 - ZLOS Plane

Dividing by RLOS, ;/LOS is expressed as

;(LOS = VZLOS COS 3' - (VXzos COS /LOS + VYLoS sin ?LOS) sin -y (3.20)
RLOS

Noting from the geometry in Fig 3.3

2(os + y20os)!2
COS 3LOS = RLOS

ZLOS
sin ",LOS = RLOS

and substituting expressions for cos OLOS and sin OLOS, '(LOS can be expressed by

LOS Zs (,LOS + Y2LOS) VXsXLOSZLOS

RLos(4os + YLos)! RLos

VyVLOSYLOSZLOS
(2os + yLs)2 R~o5

V~Zs (X2LS + Y2OS) - ZLOS (VrLOsXLOS + VYLOSYLOS) (3.21)

( 2oS + y2os)2 R1 o.
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Recall the angular line of sight velocity vector

WLOS = 4'LOSZE - AYLOSYE1 (3.22)

Rotating O'LOSZE to the intermediate coordinate system yields[ XEl 1 O [ V)s/ sino/ 0fl 0]

LZEl 0 0 1 o J LOS]

0 (3.23)=LIT
The line of sight angular velocity rate becomes

wLosEI = ?LOSZEi - iLOSYE1. (3.24)

Rotating to the velocity axis system produces

c os 0 sin -y 0

WLOSV = 1 0 -ýLos
-sin - 0 cos -y LOS

[IPLOS sin ^

= -LOS (3.25)

LOLOS cos Y

The angular rate of change in the velocity axis of the line of sight vector is given by

Eq. (3.25). Therefore,

wy - -- LOS (3.26)

W, = ILOS COS" (3.27)
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are the expressions required to generate a proportional navigation command. Recall

Eq. (3.3) for the proportional navigation command vector

Vm VmNWz __ V,, NwY
n.m = + Yv g ZV. (3.28)

Substituting Eqs. (3.26) and (3.27) yields

Vm ^ VmNkLos cos, VmNý(LOS,^
nm= -xv + Yv + Zv (3.29)

9 g g

which is the dimensionless command vector. The proportional navigation command

vector used is [0

gcmdP/N V VmN2bLos cos-y (3.30)
YrnNj/LOS

Proportional navigation is not the only command used to guide the missile.

The other commands employed by the VFDR will be examined. Only proportional

navigation is used in the lateral, ý,, direction. Therefore, the total gcmd, is given by

gcm•d = gcmdp/ny = VmN'LOSCOS'Y (3.31)
.9

where

gcmdy = the total command in the ý, direction. (3.32)

The command in the horizontal direction is a combination of a command to control

the Mach number and a command to counter the effects of gravity. The Mach

command, gmach.• is generated first comparing a desired Mach number to the actual

Mach number of the missile;

Mcmd - M = AM (3.33)
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where

Mcmd = desired Mach number

M = actual Mach number

AM = delta Mach number, desired - actual.

The VFDR uses a fixed Mcmd for the desired Mach number. AM is multiplied by

the speed of sound to obtain a delta velocity. The delta velocity is divided by a time

constant and gravity to produce a dimensionless gmach,, gmach, can be expressed by

a

gmachý = (Mcmd - M) - (3.34)
TMg

where

a = the speed of sound

TM = the time constant

g = gravity

The total gcmd is a combination of gmach, and a command to counter the effects of

gravity.

gv TEV 0 (3.35)

_-g_
-9 sin -,

- 0 (3.36)

-g cos If

Making gvx dimensionless and opposite to the gravity term yields

9cmdg, = sin -. (3.37)
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The total command in the horizontal direction is expressed by

gcmd. = gmachý + gcmdg.

(Mcmd - M) a + sin- (3.38)
TMg

ENGAGE does not use the actual value of the speed of sound in air. ENGAGE

approximates the speed of sound and assumes it is constant with a = 304.3 m/sec

(998.2 ft/sec).

The commands in the vertical direction, .v, are a combination of proportional

navigation, gravity effect, and a loft command. The proportional navigation com-

mand is expressed in Eq. (3.30)

VNA/LOS

gcdP/Ný -= (3.39)g

The command to counteract the effect of gravity in the • direction is determined

by examining the gy vector.

gv TEv 0

-gsing

0 (3.40)

1. -g COS l'

which can be expressed as a dimensionless command by dividing by gravity

gcmdg, = cos 7. (3.41)

The loft command is employed to increase the altitude of the missile. gloft is the

control that is unknown in the formulation of the optimization problem. The total
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gcmd, vector is expressed as

gcmd, = gcmdP/N. + gcmdgz + glft
VNjTLOS

- + cos -y + g 0 ft. (3.42)
g

3.2 Control

This section describes the control logic for the fuel flow rate of the RAMJET

engine, the missile roll control, and the missile pitch control.

3.2.1 Fuel Flow Rate Control. The throttle logic accomplishes three things.

First, it prevents the pressure inside the combustion chamber, station 3 in Fig. 2.11,

from getting too large. In turn, this prevents too large a pressure at the inlet. Ex-

cessive pressure at the inlet would prevent sufficient air flow to support combustion.

Second, the throttle logic maintains zbj between a minimum and maximum value.

Decreasing tb1 too low will cause a flame out. Increasing zbf too much will result

in wasted fuel since exceeding the stoichiometric fuel air ratio will cause fuel to be

exhausted without being converted to energy by the combustion process. Third, the

throttle logic will prevent the missile from exceeding a maximum velocity. For sus-

tainment of propulsion in the combustor, the air flow rate must not blow the flame

out the rear of the engine. This can happen if the velocity of the air through the

combustor is too large.

3.2.2 Roll Control. A block diagram of the roll control for the missile is

pictured in Fig. 3.4. The control logic is simply a feedback of the actual roll angle,

a, using static gains. From the diagram,

1 + CF, (a'cmd - a) (3.43)
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Figure 3.4 Block Diagram of Roll Control

where

6- = the roll rate of the missile,

Qmd = the roll command,

C, = the feedforward gain, and,

F, = the feedback gain.

Defining r, as
1 __ C, (3.44)

,r,- 1 + FuCc

Eq. (3.43) is reduced to

1 1
r (1) - IO'cmdliUl (t - to) - (t) (3.45)

where

Ilacmdjl = the magnitude of input

u-1 = the unit step function
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where

U-1 (t - to) ={Olt < t'lt>t

Taking the Laplace transform of both sides yields

(s 0(0 +±01 8 1 e-sto
(O8 - a (0) + 1a (s) = 1- J Hcmdll. (3.46)

Ta 'r, 8

Collecting terms, the expression becomes

(S+ 1)0 (8) 1 a- o 11.cindll +H01(0) (3.47)

or, in terms of u(s)
1 e-3tQllramdll + U(0) (3.48)
-( S + 1•= ~ (81) S+-

Th

The first term on the right side of the equation can be expanded in partial fractions

to yield

A B A(s+-)+Bs-- s± - s(s±
8 8 + -- 8 S + 1

1110'cmdll
- TO (3.49)

A and B are determined from the above expression to be

A = 10U 11.dI (3.50)

B =- -10.1 mdI. (3.51)

Substituting these values for A and B yields

a(S)= _.It, 11___ 11 _ -_o 0(0) (3.52)
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Figure 3.5 Roll Response to a 5 Degree Step Command

Inverting, u- as a function of time becomes

U(t) = a(O)e-ra + IlJcmdHlU-1(t - to) - Iaomdlle-tu-l1(t - tQ). (3.53)

The expression for a-(t) is continuous for all time, however &(t) is discontinuous at

time t,. Therefore, the commanded value of roll is achieved by a continuous change

in a- rather than by a discrete step. The first two terms on the right side of the

expression are the zero state solution (7:7). The final term is the zero input solution

(7:8) and assumes the response is due to initial energy in the system and the input

is zero. For a linear system as the roll control for the missile, the complete response

is just a linear superposition of the zero input and the zero state response (7:9). The

roll response for a step input of 5' is shown in Fig 3.5 assuming the input occurs at

to = 0 and ao = 0'.

To determine a-cmd, the command vector in the velocity axis is transformed to

the missile body axis system.

gcmdB = TVBgcmdv
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Figure 3.6 Block Diagram of Pitch Control

= TvsTSBgcmd,

gcmd COS a + (gcmd, sin C + gcmdz COS a)% sin 1
= gmd, COS 0a -- gcrd, sin or (3.54)

= -gcrmd sin a + (gcmdy sin a + gcmdz COS 0) COS

However, for a BTT missile the following must be true:

gcmd B = 0 = gcmdy COS o - g9md4 sin a. (3.55)

The expression for 'cTd is therefore

Ucmd = arctan ( gcmdy (3.56)

3.2.3 Pitch Control. The pitch control of the VFDR is accomplished

through the deflection of control surfaces on the tail. The deflections cause the

rotation of the body to a new angle-of-attack and lift is generated by the wings

and the body (9:18). The angle of attack of the missile changes proportionally to

the difference between the magnitude of the commanded acceleration in the velocity

yV - zV plane and the actual acceleration in the velocity yv - zv plane. A block

diagram of the pitch control is pictured in Fig 3.6. Therefore,

& = 1lgcmdyz[[- fnlaeroyzl . (3.57)
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The magnitude of gcmdyz is given by

1gCmdyzI1 = (gcmd, + gcMdz) (3.58)

and the magnitude of the actual acceleration is given by

Ilnaeroyzii [ )+ + cos

N _(T sina+ L)sin (oFT asin-+ -) Cosi }2

+ ( sina +W) cos - w cos a sin # + - sin .(3.59)

Recalling that S = 0 and f3 0 for the VFDR, the equation reduces to

linaeroyzI1 = sin a + L )2 (sin2 o- + cos 2 0)]

T sina + Ln (3.60)w w

The pitch control is an open loop system and integrates the command. A bounded

input does not produce bounded output. An angle of attack response for a 1g delta

command is pictured in Fig 3.7. As is the case with the roll control logic, the pitch

control logic produces a continuous change in the angle of attack so discontinuities

in a do not exist.
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IV. Analysis of Simulation

Upon completion of the modeling, the simulation was coded into MATLABTM.

Two baseline test flights were used for comparison and the results of ENGAGE were

not duplicated for flight based solely on proportional navigation. For the first test

flight, the missile and target are initially at the same altitude and relative cross

range; the flight is in a vertical plane. Figure 4.1 depicts the scenario. The target

flies a constant altitude profile and is non accelerating at an air speed of 0.9 Mach.

The missile is launched with an initial speed of 0.9 Mach and is pointing directly at

the target. For the second test flight, the target is at a lower altitude and a different

cross range position than the missile. Table 4.1 summarizes the initial conditions and

the results for the two flights. The states for the first flight are shown in Figs 4.2

and 4.3. The solid lines indicate the simulation results from the MATLABTM code

and the dashed lines represent the results obtained from ENGAGE. An error exists

between the two simulations. The states for the second test case are shown in Figs 4.4

and 4.5. Again, an error is noticeable.

During the course of comparing results to those obtained from ENGAGE, two

errors were found in the original code of ENGAGE. The first error was in the model

of the atmosphere. Recall the two expressions obtained for density depending upon

Z

Missile
Target

X

Figure 4.1 Initial Conditions of Baseline Simulation
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Flight I FlightT2

Missile Target Missile Target
Down Range (km) 0 27.8 0 18.5
Cross Range (km) 0 0 0 9.26

Altitude (m) 6098 6098 6098 4573
Mach Number 0.9 0.9 0.9 0.9

Flight Path Angle (Deg) 0 0 0 0
Heading Angle (Deg) 0 -180 0 -180
Intercept Time (Sec) 24.76 21.10

RLOS (M) 2.03 0.640

Table 4.1 Initial Conditions and Results for Baseline Simulations

E25 , 1
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Figure 4.2 XE, YE, ZE and V Simulation Comparisons for Flight 1
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Figure 4.6 Density as a Function of Altitude

the characteristics of temperature for the local region; Eq. (2.15) and Eq. (2.16).

0T d

Po Pb ( for -O0, and,
g(hG-hb) dT

po =pbe RTb for -- = 0.dhG

The first expression is used to approximate air density in regions that temperature

is characterized as varying linearly with altitude, Fig 2.1. The second expression is

used within regions that temperature is constant with altitude.

ENGAGE utilizes the expression for density valid only in isothermal regions.

Figure 4.6 shows the density calculated with both equations. Figure 4.7 shows the

percent error between the correct expression and the incorrect expression. Notice

that near the top of the gradient region the error is almost 10.0 percent. The density
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value is used to determine the aerodynamic forces acting on the missile; Eqs. (2.54)

and (2.57) where

QO 2 (4.1)

Hence, the aerodynamic forces acting on the missile in a region of the atmosphere

that temperature is modeled as varying with altitude will be in error and this error

could be a high as 9.7 percent at 8,400 m.

The throttle control logic during the RAMJET boost phase requires the den-

sity of the air in determining the maximum airflow rate through the engine. The

maximum airflow rate information is then utilized in the determination of the fu-

elflow rate. Consequently, an incorrect density value will result in an improper thrust

level.

The thrust calculated during the rocket boost phase will also have an associated

error due to the density error. Recall Eq. (2.59), the thrust for the rocket boost phase,

FT = Tq, + Aexit(ps- p). (4.2)

Due to the error in the density calculation, the atmospheric pressure calculated will

be lower than the actual atmospheric pressure. Hence, the thrust value calculated

in ENGAGE will be too large.

A second error was discovered in the line of sight algorithm of ENGAGE.

Recall from Eq. (3.21) that

1 {zo(X2os + Y2LOS)

YLOS = 2 (1 {VZLOS L 2OS (XL + YL2S)2

-ZLOS (VXLOSXLOS + VYLosYLos)}"
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ENGAGE calculated A[LOS as

1Los R= os (X2oS + y2oS+ 2Zos)2 { VOS L )

-ZLOS (VXLOSXLOS + VYLOSYLOS)}.

Upon inspection, an error between the two expressions for JLOS occurs when the

target and missile are not at the same altitude. The relative error between the two

expressions is shown in Fig 4.8. The XLOS and YLOS values were both fixed at 9.3 km

and ZLOS was varied from -8 to 8 km. Recall the proportional navigation command

in the vertical direction:

VN'jLOS
gcmdP/Nz g

4-9



The command is proportional to AiLOS. Hence, ENGAGE generated less of a vertical

proportional navigation command. Figure 4.8 depicts the percentage decrease of the

proportional command.

The errors noticed in Figs 4.2 through 4.5 are a combination of these two

errors. Modifying the MATLABTM code to recreate the errors, the simulations

agreed and the missile still intercepted the target. The MATLABTM simulation can

interface with computer workstations so that numerical techniques can be employed

to optimize the missile's performance.
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V. The Optimal Control Problem

5.1 Necessary Conditions For a Minimum

This chapter describes the necessary conditions for the standard optimal con-

trol problem with free final time (2:71) (5:155). Consider a dynamic system described

by a set of differential equations with known initial time, t0, in the form of

+= f(X,u,t) (5.1)

where,

x = an n x 1 vector of the state variables,

u = an m x 1 vector of control variables, and

t, xo -= known.

The system is subject to p constraints on the terminal conditions of the state vari-

ables, q constraints on the state variables, and r constraints on the control variables,

so the constraints can be expressed by

Ti(Xf,tf) = 0 for i = 1 ... p, (5.2)

Si (x,t) = 0 for i = 1 ... q, and (5.3)

Ci(u,t) = 0 for i = 1 ... r. (5.4)

The problem is to determine a function u(t) which minimizes a scalar performance

index, J, subject to the conditions stated in Eqs (5.1) through Eq. (5.4). The

performance index is given by

J = ~ tf) + L(x, u, t)dt. (5.5)
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The performance index is adjoined with the system differential equations, Eq. (5.1),

by introducing Lagrange multipliers, A(t), as a multiplier function. Similarly, the

constraints, Eqs (5.2) through (5.4), are also adjoined to the performance index with

additional Lagrange multipliers, v(t), 0(t), and 1t(t). Therefore, the augmented

performance index, J', is given by,

J'= G(t, xf, v,) + j' [H (t, X, u, A, 0,) )- l] dt (5.6)

where the Bolza function, G, and the variational Hamiltonian, H (5:156), are defined

as

G(tf,xf,v) = 4(tf, Zf) + I•,T (tf, Xf),

H(t, x, u, A, 0, It) = L(t, x, u) + ATf(x, t, u) + OTS(X, t) + LTCc(u, t).

Furthermore, the constraints can be of an equality or inequality type. For inequality

constraints, slack variables, 1, are introduced. For example, assume a control u is

limited to some maximum value, Urmax. The constraint equation is,

U < Umax. (5.7)

The new constraint equation is expressed by Eq. (5.8),

U - Umax + 12 = 0 (5.8)

The inequality constraint is now an equality constraint because any value of u greater

than Umax will never satisfy Eq. (5.8) for real valued 1. When I is zero, the control

is at the constraint value. When I is not zero, It is identically zero. A potential

drawback is there exists another unknown variable. Note the Hamiltonian is now a
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function of I also. Thus,

H(t, x, u,A, 0, i,l) = L(t, x, u) + ATf(x, t, u) + OTS(x, t) + PTC(u,t,l)(5.9)

and the augmented performance index becomes

X = G(tfxfv) + [H(t,x,uA,0,, 1) _ AT +] dt. (5.10)

The first variation of the augmented performance index is given by

6' = GtfStf + Gxf xf + G~bv

+ ff{HSx + HJu + HSA + HoMO + H513,z + HISi - xTsA - AT•}dt

+[H- AT Si]bt ,o (5.11)

where the notation implies

()y = 9

(t- = o evaluated at t= t= ,at

6() = a time free variation,

6() = a time fixed variation.

The last term in Eq. (5.11) can be evaluated at t, and tf as

[H - 0Th]St Kt= (Hf - A•])6tf - (H0 - A~od 0)6to. (5.12)

The initial time is known, hence bto is zero. Therefore, the final term on the right

in Eq. (5.12) is eliminated. Eliminating this term, the variation of the augmented
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performance index becomes

b' = Gtf btf + G=,,xf + G,bv + (Hf - X'+)btf
tf

+ {Hx + H,,u + HASA + HoS0 + H,Stt + H l - 5.TSA -_ ATS.+}dt.
(5.13)

Recall the constraint equations given by Eqs (5.2) through (5.4). Recognizing

G, = A(Xftf) = 0 (5.14)

Ho = S(x,t) 0 (5.15)

H., = C(u,t) = 0 (5.16)

eliminates G~bv, HOSO and Hg/I from Eq. (5.13). Thus, the variation of the

augmented performance index is now expressed as

6J' =Gtf St + Gx,Sx f + (Hf - AT. f)Stf

+ J {HSx + Huu + H1 I + (HA _- T)bA - AT&+ } dt. (5.17)

Noting HA = fT and recalling Eq. (5.1), the terms multiplied by SA reduce to

HA _.+T = fT _ gT = xT _ iT = 0. (5.18)

Hence, the term multiplied by SA is always zero. Substituting Eq. (5.18) into

Eq. (5.17) yields

6J' = Gtf bt + Gxf xf + (HI - )btf

+ t!{Hxx + H•,,u + HS1- AThg}dt. (5.19)
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Figure 5.1 Relationship Between 6 xf, b5xf, and +f5t

The last term in the integral in Eq. (5.11) can be integrated by parts in the following

fashion,
'
t
f ftf T -

)LT& =-A 1 6Týf + \TSX, ±+ -A &xdt. (5.20)

Therefore, substituting the above information into Eq. (5.11), 5J' can now be ex-

pressed by

-J Gtf btf + G.,fbxf _ \TSXf ± \TS6X,

+ (Hf _- A_\Tf)6tf + [(Hx + ±T)Sx + H6Su + H, 1 l]dt. (5.21)

The relationship between the final time free variation and the final time fixed varia-

tion is

SXf = bXf - + f6t. (5.22)

This relationship is presented graphically in Fig 5.1. Also, since the initial conditions

are known,

X" = 0 •: \T'5Xo = 0. (5.23)
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Substituting Eq. (5.22) and Eq. (5.23) into Eq. (5.21) yields

6J' = Gtfj 5tf + GQ, Xf + AT.+f tf _ Af 6 33f + [H1  AT~fx]btf

+ j' [(H, + jT)ýX + Hcýu + HýlI]dt.

Collecting terms and noting AT.+ - AT.+ = 0 yields

6J'= (Gtf + Hf)5tf + (G., - AT)bzf

+± [(H. + ýT)• , + Hutu + HPSI]dt. (5.24)to

For an extremal, the variation of JY must be zero. Additionally, each variation is

independent yielding the free final time necessary conditions for an extremal;

Hf = -Gtf (5.25)

A T=GT, (5.26)

= -- HT (5.27)

HU = O (5.28)

H, = 0 (5.29)

@ = S = C =0 (5.30)

to = to (5.31)

X0 = xos (5.32)

.+ = f. (5.33)

Equations (5.25) through (5.33) provide the necessary conditions for an extremal.

The Weierstrass condition and the Legendre-Clebsch condition are two suffi-

cient conditions for a minimum (5:106). The Weierstrass condition is necessary for

a strong relative minimum. This condition states that no other control can pro-

duce a lower value of the Hamiltonian than the optimal control. More precisely, the
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Weierstrass condition states that for any control u. other than the optimal control

U

H(t, x, u., A) - H(t, x, u, A) > 0. (5.34)

The Legendre-Clebsch condition is sufficient for only a weak relative minimum.

The weak variation is a particular case of a strong variation and is applicable only

for small variations in the control. The Legendre-Clebsch condition requires

Hu > 0. (5.35)

When the Weierstrass condition is satisfied, the Legendre-Clebsch condition is auto-

matically satisfied. However, the Weierstrass condition is not necessarily satisfied if

the Legendre-Clebsch condition is satisfied. When the Legendre-Clebsch condition

is not satisfied, the Weierstrass condition will not be satisfied.

5.2 Shooting Method

The shooting method is an algorithm that provides a numerical solution to a

two-point boundary-value problem. Hence, if the optimal control problem can be

converted into a two-point boundary-value problem, the shooting method can be

used to provide a numerical solution. Recall the necessary conditions for the free

final time problem;

=f (5.36)

A=-Hj (5.37)

to= tos (5.38)

X= Xos (5.39)

Hf =-Gt (5.40)
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O= H, (5.41)

Af= G,,T (5.42)

H= 0 (5.43)

= S = C =0. (5.44)

The Lagrange multipliers adjoined to the constraints, v, 0 and it and the slack

variables, 1, are eliminated through the solutions to Eqs (5.40) through (5.44). The

control, u, is expressed as a function of x, A, and t from the solution to Eq. (5.41).

Hence the problem is reduced to a function of x, A, and t. The necessary conditions

become

= F1 (t, x, A) (5.45)

A= F 2 (t, X, A) (5.46)

h(tf, xf,) = 0 (5.47)

to = tos (5.48)

Xo = oO (5.49)

A new vector is defined that is a combination of x and A

Z = A(5.50)

Therefore, the necessary conditions are restated in terms of this new definition as

S= F (t, z) (5.51)

to= tos (5.52)[xo]
Zo I I (5.53)

h (tf, zf) = 0. (5.54)
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z is a vector of length 2n where n is the number of original states. n of the initial

conditions of z are known (i.e. x,). Equation (5.54) gives the 2n + 1 terminal

conditions for zf and tf. The conditions stated in Eqs (5.51) through (5.54) represent

a standard two-point boundary-value problem. The n unknown initial z values and

a final time are guessed and the shooting method iteratively updates the unknown

initial z (i.e. A,) and tf until Eq. (5.54) is satisfied to within a specified tolerance.

Therefore, a method is required to update the initial guesses.

Taking the first variation of Eq. (5.51) yields

ý.i = FSz (5.55)

d = Fbz. (5.56)

Recall the definition for z and that the initial conditions for x are known. Therefore,

the total variation of z at the initial time is

6z 0 = I ] (5.57)

Sk I -(5.58)

Assume the initial guesses are in the neighborhood of the actual values. A state

transition matrix, 4ý, is introduced to relate the total variation of z at any time to

the initial total variation of z. Using 4, Sz is expressed by

5z = 4 (t, to) bzo (5.59)

and the initial condition on • is

4' (to, t) = I. (5.60)
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Substituting Eq. (5.59) into Eq. (5.56) yields

d [4' (t, tQ) zo] = F,4' (t, tQ) zo (5.61)dt

9b(t, t)•zo = F,4'(t, tQ bz,. (5.62)

Equation (5.62) reduces to another set of differential equations

4) (t, tQ) = F-4' (t, tQ) (5.63)

with the initial condition

4'(to, t) I. (5.64)

This equation is integrated from t0 to tj to yield an expression for the final total

variation of z in terms of linear combinations of the initial total variation of z

bzf = 4' (tf, tQ) bzo. (5.65)

Applying the initial total variation of z to the above equation, the final total variation

of z becomes

bzf = 4' (tf, to) bz"

=04 (t, [ ] (5.66)

The transition matrix can be partitioned to yield

5-01
bZf = [4'1 (tf, I Q 4'2 (tf, Q0) 1 (5.67)
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Therefore, the final total variation of z is expressed solely as a total variation of the

initial unknown elements of z

bzf = 02 (tf , t,) ••o. (5.68)

The final boundary conditions of Eq. (5.54) are evaluated based upon the

initial guess for the unknown initial variables. Assuming Eq. (5.54) is not satisfied,

the initial guess of the unknown variables must be modified. To determine the

modification to the guess, the time free variation of the terminal boundary condition

is examined

6h = htf t1 + hzs6zf. (5.69)

The relationship between a time free variation and a total variation is

bzf = bzf + if tf. (5.70)

Substituting Eq. (5.70) into Eq. (5.69) yields

bh = htf t1 + h2 16zf + hzfif tf

= h, bzf + (htf + h21 k1 ) btf. (5.71)

The total variation of the final z is known through Eq. (5.68). Making the substi-

tution for 8zf, bh becomes

bh = hzf 4' (tf,to) A 0 + (h,, + h2 fZf) btf. (5.72)

The variation of h can also be expressed as

bh-= hnew - h. (5.73)
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Recall the previous assumption of the neighboring path. With this assumption, the

variation of h due to variations in z is small. Hence, the value for hnew is close to

the old value of h and is expressed as

hnew = yh (5.74)

with r7 close to 1. (5.75)

Substituting the expression for hnew into Eq. (5.73), bh becomes

6h= - (1- q))h

= -ah (5.76)

where a is defined as,

a = (1- ). (5.77)

Typically, a is about 0.1. Combining Eq. (5.72) and Eq. (5.76) yields

[h1z712 (tf,to) htf + 1 z] It/ = -=ah. (5.78)

A means to modify the initial guess is provided by Eq. (5.78). The initial guess for

A,, and tf is updated by

Anw = A, + 6Ao (5.79)

tfne. = tf + St1  (5.80)

To implement the algorithm, \,, and tf are guessed. Equations (5.51) and (5.63) are

integrated from t, to tf. zf, O2(t1 ,to), and I1hHl are computed. I1hHl is checked to

determine if it is within a specified tolerance. a is set to 1 and 6,A and St1 are cal-

culated and intermediate values for the initial guesses are formed. Equations (5.51)

and (5.63) are integrated again from t, to tf using the intermediate values. 1lhil is
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Figure 5.2 Lunar Launch Example Problem

checked again to determine if its value decreased. If not, a is reduced by half and

6A, and btf are recomputed. If IJhHJ was less than the previous value, then the inter-

mediate values are accepted as the new Ao and tf values. This process is repeated

until the specified tolerance for lihil is achieved.

5.3 Shooting Method Example Problem

The necessary conditions are utilized to formulate a two-point boundary-value

problem for a lunar launch. The shooting method previously described is imple-

mented to provide a numerical solution to the problem. The problem is to find the

control history which minimizes the final time for a spacecraft's injection into Lunar

orbit at prescribed final conditions from the surface of the moon. Figure 5.2 depicts

the scenario. The problem is stated as;

minimize J = tf (5.81)
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subject to the differential equations

S=u (5.82)

•=v (5.83)
TU = -Cos 0 (5.84)
m

T
v = - sin 0 - g (5.85)m

with initial conditions

t 0 = O (5.86)

x(o) = 0 (5.87)

y(O) =0 (5.88)

u(o) = 0 (5.89)

v(0) = 0 (5.90)

and the terminal conditions

tf = unknown (5.91)

x (t f) = free (5.92)

y (tf) = 15.24 km (5.93)

u (tf) = 1660 m/s (5.94)

v (tf) = 0 (5.95)

where

u = the velocity component in the x direction

v = the velocity component in the y direction
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T- = 6.34 m/s 2 and is constant

m
g = the force of gravity, 1.62 m/s 2 and is constant

0 = the control variable.

Expressing the terminal constraints as functions of 0 yields

"'V = Yf - 15,240 = 0 (5.96)

Tu = uf - 1660 = 0 (5.97)

T, = Vf = 0. (5.98)

Adjoining the terminal constraints with Lagrange multipliers, V, the Bolza function

is expressed as

G (tj, xf ) = q (tf, xj) + TVW (t, Xf)

=-tf + vy (yf - 15240) + Vu (uf - 1660) + vvf. (5.99)

Adjoining the differential equations with Lagrange multipliers, A, the Hamiltonian

is expressed as

H (t, x, 0, A) L (t, x, 0) + ATf (t, X, 9) (5.100)

Axu ±+ v + A• (T cos )0 + (T sin0 - g).

The augmented performance index is given by

X1 = G (tf, xf, v) + to' [H (t, x, u, A) - A\Tg] dt

= tf + y (yf - 15240) + ±• (uf - 1660) + vvf

+ f' K•u + Ayv + Au (T cos )

+A, (T sin0 - g) - AT ] dt. (5.101)
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The necessary conditions for a minimum result from the first variation of the aug-

mented performance index being set equal to zero. Hence, the differential equations

for A result from the necessary condition

A= -HT (t, x,0, A). (5.102)

Applying Eq (5.102), the expressions for A are

= 0 (5.103)

ýy = 0 (5.104)

= (5.105)

= -AY. (5.106)

The control is eliminated by- the necessary condition

H 0=0. (5.107)

Applying Eq. (5.107) yields

Ho = -A (T sine) + Av (T cos0 (5.108)

= 0. (5.109)

Solving for 0 yields two possible control laws

AV sin0 = A, cos0 (5.110)
sinO 0tn AVs0 tan0 = A (5.111)Cos 0 T,,

01 = arctan AV (5.112)

or 02 = arctan -A, (5.113)
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Figure 5.3 Quadrant Problem for Lunar Launch Control

The quadrant problem shown in Fig 5.3 results because of the two possible solutions

for 0. Evaluating the second partial derivative of the Hamiltonian with respect to 0

resolves which solution is sufficient for a local minimum. Taking the second partial

derivative of H with respect to 0 yields

82H--A T cos0-ATsin0
,02 m m

-T
- (AV cos 0 + A, sin0). (5.114)

Substituting 01 into Eq. (5.114) yields

0 2 H- -T (A• + A (5.115)
o0•((A,, + Au) (AV + A)U

<0. (5.116)
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01 is a local maximum. Substituting 02 into Eq. (5.114) yields

a02 _ 2 -A--212 2 (5.117)
S rn (A +(A2+ A2)1)

>0. (5.118)

02 satisfies the sufficient condition for a local minimum because it is always positive.

Hence, 0 is eliminated from all equations by using the relationships

sinO A, = ;cos 02 Au

The terminal conditions are the three constraint equations and A. = 0 because

x(tf) is unspecified. The necessary condition Hf = -Gtf provides the additional

expression required to determine tf. These conditions are expressed by

A. (tf) u(tf) +Ay (tf) v(tf)- (T) ýý tJ- (Z) ýý -- -gAv(t) +l1 -0-
M A(tf) rn A(tf)

y(tf)/15,240 - 1 0

u(tf)/1660- 1 -0

v (tf) /1660 0

A.(tf) .0

where

(A 2 + 1A)2 (5.119)

The problem is now in the form of a standard two-point boundary-value prob-

lem. To obtain a numerical solution to the problem using the shooting method, the

lunar launch problem is formulated to coincide with the description of the shooting

method provided in the previous section. Defining

z=[x y u v Ax Av A, Av]T (5.120)

5-18



the differential equations become

U

V

T Au
mA

T Aý
- g (5.121)

0
0

where A is defined by Eq. (5.119). The initial conditions are given by

to = 0 (5.122)

z (t,) = [0 0 0 0 AX AYO Auo 1 vo ]T. (5.123)

The terminal conditions are expressed in the form of Eq. (5.54) by

A, (tf ) u (tf) + A1y (tf ) v (tf ) - (K) At - (1) ? - gA, (tf ) + 1M A(tf) M A(tf)

y(tf) /15240 - I

h(tf, zf) = u(tf) /1660 - 1

v(tf) /1660

Ax (tf)

Note some scaling has been applied to the terminal conditions for numerical condi-

tioning. The differential equations for the state transition matrix, Eq. (5.63), require
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an expression for F, which is expressed as

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0000 A B

0000 0 0 B C
S=- (5.124)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0

0 0 0 0 0 -1 0 0

where A = T (-I_ ) + A2 (5.125)

B =T A,, (5.126)
M A 3

C -- + ). (5.127)m A A3]

The update to the initial guesses requires expressions for ht, and h,, and these are

expressed by

h,,= 0 0 0 0 0 ]T (5.128)

0 0 A.(tf) Ay(tf) u(tf) v(tj) D(tf) E(tf)
0 1 0 0 0 0 0 0

15240

hz1 = 0 0 1660 0 0 0 0 0 (5.129)
0 0 0 1 0 0 0 0

1660

.0 0 0 0 1 0 0 0

where D =T -- A+ L-u _ 2A-] (5.130)

M A3_ A3 2A]
EA= T+ -A,,•_ A 2,] _ g. (5.131)

Applying the shooting method to the sample lunar launch problem, the min-

imum final time was determined to be 272.706 seconds. The tolerance for IhHl was
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Iteration A[, A_ A,, A,

Initial 1.000 X 10-4 -1.000 X 10-4 -1.000 x 10.2 -1.000 x 10-2

1 5.150 x 10-19 -1.483 x 10- -5.370 x 102 -2.668 x 102
2 -1.215 x 10-21 -8.676 x 10-5 -4.684 x 10-2 -2.456 x 10-2

3 0 -7.863 x 10-' -4.865 x 10-2 -2.382 x 10-2

4 0 -7.763 x 10-' -4.867 x 10-2 -2.374 x 10-2

5 0 -7.762 x 10. -4.867 x 102 -2.374 x 102

Table 5.1 Iteration History of A, for Shooting Method Example Problem

Iteration tf (Sec) ]1h1:
Initial 300 9.846 x 10-1

1 240.08 1.529 x 10-1

2 271.45 2.311 x 10-3

3 272.68 1.047 x 10-4
4 272.71 5.194 X 10-7

5 272.71 6.942 x 10.9

Table 5.2 Iteration History of tf and I1hil for Shooting Method Example Problem

1 x 10-' and was achieved in five iterations. Table 5.1 summarizes the iteration

history of A,. Table 5.2 summarizes the iteration history of tf and 11hij. The time

histories of the states are shown in Fig 5.4. Table 5.3 summarizes the prescribed

final states and the numerical results for the final states. The time history of the

control required to achieve the terminal conditions is shown in Fig 5.5.

x(tf) I Prescribed Value Numerical Result

x(t_) Free 222.29723 (km)
y(tf ) 15.24 (kin) 15.239999 (km)
u(tf) 1660 (m/s) 1660.0000 (m/s)
V(tf) 0 -8.86199x10- 7 (m/s)

Table 5.3 Summary of x(tf) for Shooting Method Example Problem
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Figure 5.5 Control History for Lunar Launch
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5.4 Three-Dimensional Pursuit

Consider the three-dimensional intercept scenario where the problem is to find

the control u(t) that minimizes the final time. The performance index is given by

J = tf. (5.132)

The differential equations described in chapters 2 and 3 are

= V cos-Y cos (5.133)

V cos -y sin b (5.134)

h= Vsin-7 (5.135)

g (Tcosa- D)-gsiny (5.136)Wg
•/-vw g (Tsina+L)cosa- cos (5.137)

g (T sin a + L) sina (5.138)
VW Cos -Y

+g2~ phase1=Ca [(u 2 +Cmd,) (Tsina + L)] (5.139)

I= 1 [arctan (9crd-) - a] (5.140)

(5.141)

where

phase = (5.142)
1-1, a < 0

and the terminal constraint

(tf= [(Xf - )2+ 5-2 + (hf - hTf)2] = 0. (5.143)
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The control, u, is chosen to represent the total commanded g's in the ýv direction.

Recalling Eq. (3.42), u is defined as

U gcmd' gcmdP/N, + gcmdgq + gloft. (5.144)

The terminal constraint requires that the missile intercepts the target at the final

time. The state constraint is given by

S 1 = a- 20 +l 1 = 0 (5.145)
_a- + 12 = 0 (5.146)

which implies that the angle of attack must remain between 0* and 20'. 1" is the

slack variable added to the a state since the constraint is an inequality constraint.

The control constraints are expressed as

C, =u-20+ l 1 =0 (5.147)

C2 = -u - 20 + 1 2 = 0. (5.148)

The control is limited to a value of -20 to 20 g's. For simplification define the state

vector as x

x -[x y h V -1 0b a o W]T (5.149)

then
f : (•,,u 't) (5.150)

where f(x, u, t) is the system of equations given above. The Bolza function, G, and

the variational Hamiltonian, H, are expressed as

G(tf, xf, v) = tf ± v [(xf - XTf ) 2 + (Yf _ ±~) (hf - hTf )2]

H(t,x , u,A , 0, I, l) = AxV cos -y cos 0 + A)V cos') sin ± + AhV sin y
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±Av [--(T sin a - D) - g sin

±A~y g(T sin a+ L) cos o - cos -]

+A~b [ 9cs (T sin a±+L) sincT]

Ca md• + u2)½ -hase (Tsina + L)]

+-7. [arctan (cd) - w-)wf

+01 (a - 20 + al•) + 02 (_ 012)

±~i(u - 20 + iul) + P'2 (-u - 20 - U2) (5.151)

In addition to satisfying the constraints, the remaining necessary conditions are

expressed as

H1 = -Gt= -1 (5.152)

2v (xf X T)

2v (Yf - ?/Tf)

2v (hf - hT,)

0

Af= Gf = 0 (5.153)

0

0

0

0

ýX =0 (5.154)

A? =0 (5.155)

Ah = 0 (5.156)

= -Ax cos - cos / - AY cosy sin - Ahsin

+ g (Tsin+L) cos -gcos]
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+ (T sin a + L) sin o] (5.157)+ 1• V2W OS _yI

iy = AV sin ( cos -+ A+V sin g sin AhV cos 7

(Tin L) sin has

g . - gsi 27 (T sin a + L) sin a ] (5.158)

2l = A.Vcos-sin - AuV C (5.159)

H= =0 (Tsina - D) - A + L) u

t-lphnaseE-i(T COt ao+tL)msin u+AtCo (Ta COSa + L)

-01 +=02 (5.160)

=A,/-- (T sin a+ L) sin u- Ap (T sin a + L o" -511
VwVW COS -Y Tor

W Avg (cS a-D) +A g (Tia L)cs

9-ACphase
+A,0vw2co CO _ (T sin a + L) sin o, - A,, Cc'ýW (T sin aW+ L) (5.162)

.2011,1-

2u021,,

H = 2-= 0 (56163)
2p~lul,

.2t2 Iu2_
Hu = 0 (5.164)

Examining the optimal control law, H.,, = 0

Hu~~ ~ ~ =g A, C, (g ] )UA cd + P1 + P2 =0 (5.165)

and the necessary condition HI = 0

"2011,,,

2021c,2
HI = 2,l = O. (5.166)

L2/1 Iu2,1
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three cases are required to be examined depending upon the value of u to satisfy

Eqs (5.166) and (5.165).

CASE 1: u = Urea,, = 20. This case occurs when the constraint at Umax is

active. Hence, Ps2 is zero because the constraint at Umin is inactive. lul is zero to

satisfy Eq. (5.147) and 1u2 = V4- to satisfy Eq. (5.148). An expression for ul is

obtained from Eq. (5.165) with the substitution u = 20 yielding

IL -20ACa (g9mdy - 202)- + 2 K gc0d 2 (5.167)r• \gndy + 22 )

CASE 2: u = Umin = -20. This case occurs when the constraint at Umin is

active. Hence, /p1 is zero because the constraint at Umax is inactive. 1u2 is zero to

satisfy Eq. (5.148) and lI1 = v/• to satisfy Eq. (5.147). An expression for Pc2 is

obtained from Eq. (5.165) with the substitution u = -20 yielding

P2 =g- 2 2 + 2 0(g (5.168)
'~~"aL,0 (9m +W~cmdy +1 202 )

CASE 3: umin < u < Umax. This case occurs when u is between the upper and

lower constraint values. Hence, P1 = P2 = 0 because both constraints are inactive.

1 = V20- u to satisfy Eq. (5.147) and Iu2 = vr/+ u to satisfy Eq. (5.148).

Equation (5.165) is used to determine the value of u. Adding a common denominator,

Eq. (5.165) becomes

AQC,, (9Cmdy + U U = -gcmd,. (5.169)
'TO

Squaring both sides of the equation and expanding yields

u 4 + g u2  
- K 2gcrdy = 0 (5.170)

where

STA,C (5.171)
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Solving for u produces four possible solutions:

{1 [-gcmd, + 1gc.d, + 4K 2g9mdy]}½

= - I { [--gjd + d+ 4 g (5.172)

2 { c[9mdy, - Vgcmd, ; 41f2g2,L ] }
2. -{d~ [-~- md, + 4K 2g9CMd,]

The last two possibilities are always imaginary and can immediately be discounted.

Hence, the remaining solutions are

"ý2 2_g21

= { {[-gcm + ¢gmd + 2 2+K r d .] * (5.173)1 [_ 2 422

[2Cmd, + Vgc~md 4 I +42gcmdj ]}I!

An interesting problem arises when gmd,% is zero which implies flight is occur-

ring in a vertical plane. Solving for u with gmd, = 0 indicates u = 0. When these

values are substituted back into Eq. (5.165), the result can only be evaluated in the

limit as u goes to zero. Additionally, the numerical value of Ucmd is either 0' or 1800,

depending upon the manner in which u approaches zero. If u approaches zero from

below, then ocmd is 180* and if u approaches zero from above, then a0 md is Oo. Thus,

Ucmd is not an explicit function of u. Therefore, Eq. (5.164) with a constant value

applied for Ucmd reduces to

AC, = 0. (5.174)

An expression for the control is not contained in Eq. (5.174). For this third case,

flight in the vertical plane is a special case and will be examined in more detail.

5.5 Two-Dimensional Pursuit

The differential equations for the two-dimensional pursuit reduce to

S= V cos ^ (5.175)
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- Vsin-y (5.176)

- (Tcosa - D) -gsin-y (5.177)

g (Tsina+L)E�--cos'Y (5.178)
Vw V

-C [u (T sina + L) ] (5.179)

=-tbf (5.180)

where
= {iU 

(5.181)
-1, u < 0

E is representing the roll in this model. Recall the roll command for the three-

dimensional intercept

acmd = arctan (gc-dr) . (5.182)

When gcmd, is zero and acmd is 00 for positive u and 1800 for negative u if a four

quadrant arctan is used. The terminal constraints reduce to

'hf = [(xf - XTJ) 2 (hf - hTf)2] = 0. (5.183)

The state and control constraints remain the same as in the three-dimensional pursuit

and are given by Eqs (5.145) through (5.148). The Bolza and Hamiltonian functions

are

G = tf + V [(xf - XT) + (h1 - hTf )2] = 0 (5.184)

H = AxVcos'y + AhVsin-y +±AV [w (Tcosa- D) -gsiny]

[g (T sin c, + L) E - cos
[u 1 (Tsin a + L) E

-ixW•tf + 01 (a - 20 a /21 ) + 02 (-C1 " l22)

"+f1 (ui - 20 -U-/ 1 ) + P-2 (--u - 20 + 1U2). (5.185)
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The necessary conditions are

S= 0 (5.186)

A, = 0 (5.187)

ýy = -A cos y - Ah sin - - Av 2g D (5.188)
Vw

+A, ( 2gLE - - cos y
LV2W V2W V2  j

2L

WV
A=AxVsin-' - AhVcos-/ + Avgcos'y - AV sin^ (5.189)

= 9 T sin a - Al g( Tcos) E+w (VW osa +0

SA2 (5.190)

Aw = Av-2 (T cosa - D) + yVWg (T-sin a + L) E

- A, (Tsina + L) E (5.191)

Hf = -1 (5.192)

2v (xf - XTf)

0
Af = G T = (5.193)

Xf 0

0

•2011,1

2021,a2

HI = =0 (5.194)

2/•121lu

H. = aC. + p, -2 = 0 (5.195)

H5 =30. (5.196)
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As in the three-dimensional pursuit, three cases must be examined to satisfy Eqs (5.194)

and (5.195).

CASE 1: u = um,, = 20. This case occurs when the constraint at Umax is

active. Hence, P2 is zero because the constraint at Umin is inactive. Iul is zero to

satisfy Eq. (5.147) and 1u2 = V'4 to satisfy Eq. (5.148). An expression for Pti is

obtained from Eq. (5.195) yielding

[i = -A.C.• (5.197)

CASE 2: u = Umin = -20. This case occurs when the constraint at Umin is

active. Hence, y1 is zero because the constraint at Umax is inactive. 102 is zero to

satisfy Eq. (5.148) and lui = V'r4O to satisfy Eq. (5.147). An expression for /P2 is

obtained from Eq. (5.195) yielding

P2 = ).Ca. (5.198)

CASE 3: Umin < U < Umax. This case occurs when u is between the upper and

lower constraint values. Hence, P1 =-P2 = 0 because both constraints are inactive.

Iul = 2-0- u to satisfy Eq. (5.147) and 102 = V20 + u to satisfy Eq. (5.148).

Examining Eq. (5.195) to determine the value of u yields

A = 0. (5.199)

The necessary condition is satisfied when A, is zero. An expression for u is not

contained in the optimality condition. However, since Hu, is singular, the extremal

arc for A, = 0 is called a singular arc (2:246). It is still possible to determine an

expression for u for some finite time interval that satisfies the optimality condition.

The time rate of change of the optimality condition must remain zero along the
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singular arc (2:252). Hence,

d
- (H.) = A'c. (5.200)

= C, [A,4T sina - A, ( T cossa) E + A,,C, T(- sa .01)

= 0. (5.202)

This expression still does not contain the control, so the second time derivative of

H,, must be zero. The differential equations for the system can be expressed as

S= f (X) +9 *~u (5.203)

where

V cos 3'

V sin y

•w(T cos a - D) - g sin ̂ Io (5.204)

v (Tsina+L)E--9-cos-y

-_ (Tsina+L) EW

0-

0

0

0 
(5.205)

0C"

Note that Eq. (5.200) can be expressed as

d- (H .) = \T(#xf - g)

= xTq (5.206)
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where

q #~f - fxg
0

0

Cw2Tsina u U. (5.207)
-Cc• TcosaaE2T

C'2W -1COS aE

0

With the above definitions for f, •, and q, the second time derivative of Hu can be

expressed as

dt2 -• (•) =,,kr•l +£Tq(5.208)

A T Tq. (f + #u) - A\T (f. + gqu) q (5.209)

- AT (q.f - fq)+ AT (q.# - ,q) u (5.210)

-0 (5.211)

Noting that

# = 0 (5.212)

f = -u #(5.213)

and recalling that A. is identically zero for the singular arc, an expression for u is

= AT (qf - f ,q) (5.214)
= , T (g.#)

= A.A + AhB - AvC - AYD (5.215)

AvE + AyF
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where

A = Cg±T (sin a cos y + cos a sin IE)
W

B = C,-T (sin a sin -y - cos a cos -yE)
W [C +v 2Dg

C C,,WýT[g - '(Tsin a+ L)cos aE + -•sin a + sin a

C gT cos (Tsnn +in inD=,, g(cos a-D +0_

- -T(Tsina+L)sina- T-hfcosaE+ g T(Tsinca+L)sina

VW7
- 2g LT sin aE - -- T sin a co y+ITcsaco E-C 'o'

17W V vJW
E = C21 gTcos aý'W
F =0Q2 g T.sinaE

&VW

Having determined u for all three cases, the two-dimensional pursuit is now formu-

lated in such a matter that the shooting method previously discussed can be used

to find the optimal trajectory.
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VI. Conclusions and Recommendation

The simulation was successfully recreated in MATLABTM. Errors discovered

in ENGAGE were analyzed to determine the impact of the errors. The recreated

simulation will permit future numerical analysis of the missile's performance. The

necessary and sufficient conditions for an extremal solution to the free final time

optimal control problem were presented. The shooting method was developed to

provide a numerical solution to the optimal control problem posed as a two-point

boundary-value problem. An example problem of a lunar lift off was formulated as

a two-point boundary-value problem and then numerically solved via the shooting

method. The necessary conditions for an extremal solution were applied to the three-

dimensional pursuit. The vertical plane intercept scenario was determined to be an

interesting case. Therefore, the two-dimensional intercept was analyzed and a two-

point boundary-value problem was formulated to determine the optimal trajectory

for a minimum time target intercept.

Future efforts in this project should be directed towards numerically solving

the two-dimensional pursuit to analyze the behavior of the optimal loft command

for various initial conditions. Efforts should then expand the problem to the three-

dimensional pursuit to develop an expression for the loft control which approximates

the optimal loft control.
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